
www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

RESTful .NET

www.allitebooks.com

http://www.allitebooks.org

Other Microsoft .NET resources from O’Reilly

Related titles Learning C# 3.0

Learning WCF

Programming C# 3.0

Programming WCF Services

RESTful Web Services

.NET Books

Resource Center

dotnet.oreilly.com is a complete catalog of O’Reilly’s books on

.NET and related technologies, including sample chapters and

code examples.

ONDotnet.com provides independent coverage of fundamental,

interoperable, and emerging Microsoft .NET programming and

web services technologies.

Conferences O’Reilly brings diverse innovators together to nurture the ideas

that spark revolutionary industries. We specialize in document-

ing the latest tools and systems, translating the innovator’s

knowledge into useful skills for those in the trenches. Visit

conferences.oreilly.com for our upcoming events.

Safari Bookshelf (safari.oreilly.com) is the premier online refer-

ence library for programmers and IT professionals. Conduct

searches across more than 1,000 books. Subscribers can zero in

on answers to time-critical questions in a matter of seconds.

Read the books on your Bookshelf from cover to cover or sim-

ply flip to the page you need. Try it today for free.

www.allitebooks.com

http://www.allitebooks.org

RESTful .NET

Jon Flanders

Beijing • Cambridge • Farnham • Köln • Sebastopol • Taipei • Tokyo

www.allitebooks.com

http://www.allitebooks.org

RESTful .NET
by Jon Flanders

Copyright © 2009 Jon Flanders. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (http://safari.oreilly.com). For more information, contact our corporate/
institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editor: John Osborn
Production Editor: Sumita Mukherji
Copyeditors: Amy Thomson and Audrey Doyle
Proofreader: Emily Quill

Indexer: Lucie Haskins
Cover Designer: Karen Montgomery
Interior Designer: David Futato
Illustrator: Robert Romano

Printing History:
November 2008: First Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of
O’Reilly Media, Inc. RESTful .NET, the image of an electric catfish, and related trade dress are trademarks
of O’Reilly Media, Inc.

.NET is a registered trademark of Microsoft Corporation.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc. was aware of a
trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and author assume
no responsibility for errors or omissions, or for damages resulting from the use of the information con-
tained herein.

ISBN: 978-0-596-51920-9

[M]

1226506094

www.allitebooks.com

http://safari.oreilly.com
http://www.allitebooks.org

Table of Contents

Foreword . ix

Preface . xi

1. REST Basics . 1
Architecture of the World Wide Web 1
SOAP 4
REST 5

Resources and URIs 5
Uniform Interface 7
Resource Representations 9

Implementing a Simple RESTful Service Example 11
Resources 11
URIs and Uniform Interface 11
Representations 12
Interaction 13
Wrap-Up 14

Processes 16
Summary 16

2. WCF RESTful Programming Model . 19
Isn’t WCF All About SOAP? 19
Channels and Dispatching 19
HTTP Programming with WCF 3.0 22
Web Programming in WCF 3.5 27

WebHttpBinding 30
WebHttpBehavior 30
WebServiceHost 31
WebOperationContext 31
WebGetAttribute 32

UriTemplate 33
UriTemplate Literal Values 42

v

www.allitebooks.com

http://www.allitebooks.org

UriTemplate Special Values 43
UriTemplate QueryString 43

Summary 44

3. Programming Read-Only Services . 47
Using WebGetAttribute and UriTemplate 47
Data Formats 49

Message 50
DataContract 52
XmlSerializer 55
Hybrid Approach 57

Summary 58

4. Programming Read/Write Services . 59
POST, PUT, and DELETE 59
Using WebInvokeAttribute 60

Resources 60
URIs and Uniform Interface 60
Representations 61
Implementation 61

Summary 71

5. Hosting WCF RESTful Services . 73
WCF REST Hosting Isn’t a Special Case 73
Self-Hosting 74

Configuring, Opening, and Closing a ServiceHost 74
Base Addresses 79
ServiceHost Versus WebServiceHost 80
Custom ServiceHost 84

Hosting in IIS 86
ASP.NET Compatibility 92
Multiple Hostnames 95
Removing the .svc File Extension 96

Custom ServiceHostFactory 98
Hosting Wrap-Up 99
Summary 99

6. Programming Feeds . 101
Building a Feed with WCF 101

SyndicationItem 105
Formatters 107

Exposing a Feed on a Live URI 110
Feed Validation 111

vi | Table of Contents

www.allitebooks.com

http://www.allitebooks.org

Adding Links to a Feed 115
Summary 117

7. Programming Ajax and Silverlight Clients . 119
WCF Web Services and Ajax 120
JSON 123

JSON-Enabling a Service Endpoint 127
ASP.NET Ajax 132
Silverlight 1.0 141
Silverlight 2.0 142

Parsing XML in Silverlight 2.0 144
Parsing JSON in Silverlight 2.0 151
Consuming Feeds in Silverlight 2.0 152
Cross-Domain Security in Silverlight 2.0 154

Returning JSON and XML Conditionally with a Single Method 154
Summary 157

8. Securing REST Endpoints . 159
Authenticating: Self-Hosted Endpoints 159

Setting Endpoint Security: WebHttpBinding.Security’s Mode Property 161
Setting Authentication Requirements: WebHttpBinding’s Transport
Property 165

Authenticating: Managed Hosting Endpoints 169
Authorizing Endpoints 170

Authorization with Impersonation 170
Role-Based Authorization 171

Summary 174

9. Using Workflow to Deliver REST Services . 175
Consuming REST Services from WF 175
The SendActivity Instance 176
The ReceiveActivity Instance 181
Stateless Workflow Services 182
Stateful Workflow Services 189
Summary 193

10. Consuming RESTful XML Services Using WCF . 195
Defining the Client 195

Generating the Contract 197
Creating the Resource Representations 199
Creating the ServiceContract 207
Using the Service 209

Client Extensibility 214

Table of Contents | vii

www.allitebooks.com

http://www.allitebooks.org

Summary 216

11. Working with HTTP . 217
Programming HTTP with WCF 217

IncomingWebRequestContext 219
OutgoingWebResponseContext 220
OutgoingWebRequestContext 222
IncomingWebResponseContext 223
Context Wrap-Up 223

Status Codes 224
201 — Created 227
404 — Not Found 229

Conditional GET 231
LastModified 232
ETags 236

Caching 239
Output Caching 239
HttpContext.Cache 241
Content-Type 242

Summary 243

A. WCF 3.5 SP1 . 245

B. ADO.NET Data Services . 257

C. ADO.NET Entity Framework Walkthrough . 273

Index . 279

viii | Table of Contents

www.allitebooks.com

http://www.allitebooks.org

Foreword

I’m an RPC guy in my bones. I spent years of my life working with various remote
procedure call technologies, so when SOAP came along, it seemed like the obvious next
step on this path. To me, web services meant SOAP, period.

Then REST appeared.

When the RESTful approach first hit the scene, I wrote a short article describing it. At
the end, I noted SOAP’s broad support, then closed with this:

Still, even though SOAP is already quite well established, the ideas embodied in REST
are worth understanding. Web services are still new, and REST makes a remarkably
interesting contribution to the technology.

For a SOAP guy in 2002, I thought I was being quite open-minded. The REST fans
didn’t see it this way. My inbox sizzled with mail telling me that I was stupid for not
immediately seeing REST’s innate superiority over the pure evil that was SOAP.

My response was to completely ignore REST for the next several years. I didn’t write
about it, I didn’t speak about it, and I wouldn’t even take questions on the topic during
talks on web services. I was convinced that REST was the religion of a small band of
fanatics, and rude ones at that. The common appellation for a REST fan—
RESTafarian—seemed very appropriate to me, derived as it was from the name of an
actual religion. These people were true believers, and I couldn’t share their faith.

Yet REST was too cool to ignore forever. Once you get your mind around the approach
(which doesn’t take long—it’s simple), REST’s beauty is evident. More important,
REST’s utility is also evident. While SOAP and the WS-* protocols still have a significant
role, REST is useful in many, many situations. To one degree or another, we’re all
RESTafarians now.

There’s no better evidence of this than Microsoft’s embrace of REST in Windows
Communication Foundation (WCF). While it’s wrong to view this as marking the end
of SOAP, WCF’s REST support is a big endorsement from what was once the strongest
bunch of SOAP advocates. Developers now have a single foundation on which to build
all kinds of web services.

But while REST is simple, WCF is not. To really understand and exploit this part of
WCF requires a knowledgeable and experienced guide. I don’t know anybody who’s

ix

better suited to this role than Jon Flanders. Along with being one of the smartest people
I know, and one of the most capable developers, Jon is first-rate at explaining compli-
cated things.

Even to a long-time RPC guy like me, it’s clear that RESTful services will be a big part
of the future. This book is the best introduction I’ve seen to creating and using these
services with WCF. If you’re a WCF developer looking to enter the RESTful world, this
book is for you.

—David Chappell
Chappell & Associates

x | Foreword

Preface

I’ve been working with the Web throughout my entire software engineering career. I
started out writing ASP pages and COM components. I then moved into the world
of .NET with ASP.NET and ASMX web services.

In 2004, I got involved with BizTalk Server, which pushed me even more into the world
of services and XML. I worked with Windows Communication Foundation (WCF) in
its early beta stages, before its release in 2007. At that time, the Microsoft world of
services was focused on service-oriented architecture (SOA), SOAP, and the WS-*
specifications as the preferred methods for building services.

Had I been paying attention, I would have noticed that in 2000 a man named Roy
Fielding had written a doctoral dissertation describing the architecture of the Web. By
2000, the Web had arguably become the world’s biggest and most scalable distributed
application platform. In his dissertation, Fielding examined this platform and distilled
from it an architectural style based on the factors that led to its success. He named this
architecture REST and suggested it as a way of building not only websites, but also web
services.

REST is an architecture that uses the strengths of the Web to build services. It proposes
a set of constraints that simplifies development and encourages more scalable designs.

Developers (the majority of whom were outside the Microsoft world) began to adopt
this set of architectural constraints shortly after it was proposed (although, to be fair,
there were a few inside the Microsoft camp who jumped on the REST technology).
Many toolkits embraced REST as the major driver for building applications and serv-
ices, especially Ruby on Rails, which soared in popularity.

Although WCF isn’t tied to SOAP and WS-*, the majority of its programming model
was initially geared toward building those kinds of services. The WCF channel model
actually did have support for building services using REST, but the WCF programming
model lacked explicit support for doing so.

In 2007, a Microsoft program manager named Steve Maine spearheaded an effort to
build a REST programming model on top of the WCF infrastructure. This model was
released with WCF 3.5 in early 2008.

xi

It was around that time that I read RESTful Web Services by Leonard Richardson and
Sam Ruby (O’Reilly). After reading and digesting that book, I finally, truly “got it.” The
“it” that I got wasn’t about the technological details, since I understood that part pretty
well even before reading the book. The “it” was why people are so enthusiastic about
REST. These people are often referred to as RESTafarians, and I now consider myself
one of them.

To me, a RESTafarian isn’t someone who is religious and argumentative about REST
on web forums and blogs (or someone who sends nasty emails to smart people like
David Chappell). A RESTafarian is someone who really knows the REST architecture
and knows when to apply it in building services. A RESTafarian is someone who un-
derstands that using REST’s architectural constraints to build services provides a big
advantage over RPC-type technology for a large number of systems.

I confess, I am indeed now a RESTafarian. I’ll admit it openly and freely. I think using
REST should be the first choice when building services, and that RPC should be chosen
only if the system requires some particular feature exclusive to RPC technology (like
SOAP and WS-*).

After coming to this conclusion, I knew I needed to write this book. I think that all
developers deserve to have the tools they need to build highly scalable, loosely coupled
services using REST techniques. Hopefully this book will help you learn the ways of
REST and how to apply them when developing applications and services using .NET
and WCF.

Who This Book Is For
This book is written for .NET developers who are familiar with WCF and REST and
who want to learn about using the REST programming model in WCF 3.5.

This book does not teach the fundamentals of WCF. If you aren’t familiar with WCF,
I highly recommend you read Learning WCF by Michele Leroux Bustamante (O’Reilly).
Also, while this book does provide some background on REST (in Chapter 1), the book
does not focus on the basics of REST. For that, I recommend reading RESTful Web
Services, followed by Roy Fielding’s dissertation, available at http://www.ics.uci.edu/
~fielding/pubs/dissertation/top.htm.

This book is intended to be a companion to both of the books listed above. The samples
in this book are all in C#. All of the samples are available on this book’s website at
http://www.rest-ful.net/book in both C# and VB.NET.

How This Book Is Organized
The main chapters of this book are all about WCF 3.5, and the appendixes cover the
new features of the WCF 3.5 SP1 upgrade.

xii | Preface

http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
http://www.rest-ful.net/book

Chapter 1, REST Basics
Chapter 1 is an introduction to the basic concepts of REST. Again, this book is not
intended to be a “learn everything about REST” book. This chapter is a gentle
introduction to the concepts of REST. From this chapter you should get the basic
ideas of REST, including how resources are identified by unique URIs and how to
interact with those resources using the uniform interface of HTTP.

Chapter 2, WCF RESTful Programming Model
This chapter introduces the WCF channel and programming models. The purpose
of this chapter is to get you oriented in terms of how WCF processes messages and
uses those messages to call methods on your services. This chapter should give you
a good idea of the plumbing that was added in WCF 3.5 to support this new pro-
gramming model. It introduces the bindings and hosting infrastructure for building
RESTful services as well as the UriTemplate class, which is used to map resource
URIs onto your methods.

Chapter 3, Programming Read-Only Services
GET is arguably the most important of the verbs in the HTTP uniform interface. For
a high percentage of services, most or all of the functionality is to return read-only
data. This chapter will introduce you to the WebGetAttribute, which is the mech-
anism for building resources that return read-only representations.

Chapter 4, Programming Read/Write Services
WCF supports the remainder of the uniform interface (POST, PUT, and DELETE)
through the WebInvokeAttribute. Combined with the UriTemplate class, this at-
tribute will enable you to build a complete RESTful service that supports the whole
uniform interface.

Chapter 5, Hosting WCF RESTful Services
Although this book isn’t about WCF in general, one of the key decisions any WCF
developer will make is how and where to host services. The RESTful programming
model influences that decision, since it is based on HTTP. This chapter will ex-
amine special considerations for hosting this type of endpoint.

Chapter 6, Programming Feeds
One of the most interesting and exciting features enabled by the RESTful pro-
gramming model of WCF is the ability to work with feeds. Feeds today are not
your father’s feeds. Feeds have historically been used (if any technology less than
10 years old can have real history) for publishing web logs (blogs), small technical
articles, and the like. Feeds have expanded to include news and other kinds of
website data, and are now quickly moving into the Enterprise. Feed readers are
built into every modern browser, so they can provide a powerful way to expose
corporate data. In this chapter, I’ll show you how to build and consume feeds using
the WCF feed programming model.

Chapter 7, Programming Ajax and Silverlight Clients
Many people see RESTful services as being useful only for exposing data to Ajax-
based applications such as mashups, but REST does have reach beyond this type

Preface | xiii

of application. In this chapter, we’ll examine WCF 3.5’s ability to return data as
XML- or JSON-encoded results, as well as the integration between WCF and
ASP.NET Ajax.

Chapter 8, Securing REST Endpoints
Despite the fact that anti-REST forces often point to a lack of security as a drawback
of REST, this is a false argument. RESTful services take advantage of the Web, and
the Web has tried-and-true security features.

In this chapter, we’ll examine the WCF settings for enabling security and for cre-
ating an endpoint that is highly secure.

Chapter 9, Using Workflow to Deliver REST Services
Another new piece of functionality in .NET 3.5 is the ability to use Windows
Workflow Foundation (WF) workflows to implement and consume services. The
RESTful programming model can be used on top of this facility.

This chapter focuses on both stateless and stateful workflow models for imple-
menting RESTful services.

Chapter 10, Consuming RESTful XML Services Using WCF
WCF is used as much for building service clients as it is for building services them-
selves. The same is true of the RESTful programming model. In this chapter, we’ll
take a RESTful service, SQL Server Data Services (which is a cloud-based storage
system), and decompose it into a WCF service contract that can invoke the service
through the WCF programming model.

Chapter 11, Working with HTTP
Most RESTful implementations use HTTP as the application protocol. In this
chapter, I’ll talk about how to interact between the WCF programming model and
the HTTP request and response messages. Also, we’ll look at a couple of slightly
more advanced HTTP features and how to use them with your RESTful services
in WCF.

Appendix A, WCF 3.5 SP1
WCF 3.5 SP1 was released just as this book was being finalized. Appendix A dis-
cusses the SP1 improvements and contains a list of new features found in the up-
grade, including the new UriTemplate syntax and the new support for AtomPub.

Appendix B, ADO.NET Data Services
.NET 3.5 SP1 includes ADO.NET Data Services (codename Astoria), which pro-
vides you with the ability to use a prebuilt WCF service contract to expose a data-
backed object model through AtomPub. This appendix shows you how to use
ADO.NET Data Services and discusses why you might choose to use it instead of
writing your own custom RESTful service endpoints.

Appendix C, ADO.NET Entity Framework Walkthrough
ADO.NET Data Services will use any data-backed object model to expose an
AtomPub service, but is optimized for use with the ADO.NET Entity Framework
(EF). Although EF doesn’t have anything to do with RESTful services, I have

xiv | Preface

included this appendix to demonstrate how you can use EF to implement the types
of services that are explained in Appendix B.

What You Need to Use This Book
To run the samples provided throughout this book, you need to have Visual Studio
2008 (any version) installed. If you want to work with the code in the appendixes, you
will require .NET 3.5 SP1, Visual Studio 2008 SP1, and SQL Server Express or above.

Conventions Used in This Book
The following typographical conventions are used in this book:

Plain text
Indicates menu titles, menu options, menu buttons, and keyboard accelerators
(such as Alt and Ctrl).

Italic
Indicates new terms, URLs, email addresses, filenames, file extensions, pathnames,
directories, and Unix utilities.

Constant width

Indicates commands, options, switches, variables, attributes, keys, functions,
types, classes, namespaces, methods, modules, properties, parameters, values, ob-
jects, events, event handlers, XML tags, HTML tags, macros, the contents of files,
or the output from commands.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values.

This icon signifies a tip, suggestion, or general note.

This icon indicates a warning or caution.

Preface | xv

Using Code Examples
This book is here to help you get your job done. In general, you may use the code in
this book in your programs and documentation. You do not need to contact us for
permission unless you’re reproducing a significant portion of the code. For example,
writing a program that uses several chunks of code from this book does not require
permission. Selling or distributing a CD-ROM of examples from O’Reilly books does
require permission. Answering a question by citing this book and quoting example
code does not require permission. Incorporating a significant amount of example code
from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “RESTful .NET by Jon Flanders. Copyright
2009 Jon Flanders, 978-0-596-51920-9.”

If you feel your use of code examples falls outside fair use or the permission given above,
feel free to contact us at permissions@oreilly.com.

How to Contact the Author
Feel free to look at this book’s web page at http://www.rest-ful.net/book. You can also
email me at jon.flanders@gmail.com.

Comments and Questions
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at:

http://www.oreilly.com/catalog/9780596519209

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about our books, conferences, Resource Centers, and the
O’Reilly Network, see our website at:

http://www.oreilly.com

xvi | Preface

http://www.rest-ful.net/book
http://www.oreilly.com/catalog/9780596519209
http://www.oreilly.com

Acknowledgments
There are a number of people I’d like to thank for helping to make this book possible.

I’d like to thank John Osborn, my editor at O’Reilly, for helping me to write this book
and, of course, for putting up with the delays.

Thanks to David Chappell for writing an incredible Foreword. David is one of the
smartest people I run into in my travels, and is also one of the nicest and most sincere.
Thanks David.

I want to thank all of the technical reviewers: Aaron Lerch, Dare Obasanjo, Aaron
Skonnard, Drew Miller, Matt Milner, Michele Bustamante, Julia Lerman, Dominick
Baier, Sam Gentile, Dave Chappell, Brian Noyes, Steve Resnick, and Matthew Fowle.
If you think part of the book is good, the reviewers deserve credit. If there is any part
of the book that you don’t like, the fault is exclusively my own.

I also want to thank some people at Microsoft: Steven Maine for pushing to get this
programming model into WCF, and Don Box for being the person who helped to get
my career started.

The people who deserve the most thanks are members of my family. I want to thank
my wife Shannon Ahern for enabling me to do the things I love to do, through her love
and support (and also for being an incredible technical editor—if there are any spelling
or grammar mistakes in this book, they were introduced after her editing pass). I also
need to thank our children: Christian, Raiden, Austin, Parker, and Catherine for putting
up with long hours of writing, and having to quiet their normal level of enthusiasm to
give me an environment in which to work.

Preface | xvii

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 1

REST Basics

Representational State Transfer (REST) is an architectural style first laid out in the
dissertation of a man named Roy Fielding at the University of California Irvine, just a
few miles from Monterey Park, CA, where I live (not that it matters—it’s just a fun fact
for me).

REST is a set of constraints based on the architectural style of the World Wide Web.
Writing this book in 2008, I don’t need to go into much detail about the success of the
Web; it is a ubiquitous system for hypermedia and applications built on hypermedia.
In this chapter, we’ll examine the basics of the REST architecture and its constraints,
which are based on resource design and uniform interface interaction. This chapter is
an introduction to the concepts of REST, and the remainder of the book will concen-
trate on applying those concepts to building RESTful services using Windows Com-
munication Foundation (WCF).

Architecture of the World Wide Web
The success of the Web can be attributed in part to luck and timing, but some of the
credit for its success can be attributed to its architecture. The architecture of the Web
is based on a few fundamental principles that have taken it from its small beginnings
to the large mass of information and functionality that exists today. These principles
include:

• Addressable resources

• Standard resource formats

• A uniform interface for interacting with those resources

• Statelessness in the interaction between clients and services

• Hyperlinking to enable navigation between resources

Everything on the Web is addressable. Uniform Resource Identifiers (URIs) are used
to define the locations of particular resources. Resources can be things like HTML
documents, images, or other media types. Addressability is one of the important parts

1

of the Web’s success. How easy is it for us to find things on the Web based on partial
knowledge of URIs? How many advertisements or commercials have a URI placed
prominently for our consumption? The fact that you can take a URI from an adver-
tisement, type it into a browser, and have the browser return the information you
wanted is actually pretty amazing.

Part of the power of the Web stems from the fact that the resources on the Web are
standard media types. This makes it possible for vendors to build new web browsers
(a.k.a. user agents) without having to ask any particular company or authority for per-
mission. It means that programs and users can access a web server’s resources using
any modern operating system and browser. There are certainly some real issues here
in terms of the way different browsers interpret resources, but clearly those issues
haven’t done much to stop the ubiquity of the Web.

Based on HTTP (Hypertext Transfer Protocol), the uniform interface of the Web also
plays into this openness and interoperability. HTTP is an open and well-known pro-
tocol that defines a standard way for user agents to interact with both resources and
the servers that produce the resources. These interactions are based on the verbs (or
methods) that accompany each HTTP request.

GET is probably the most commonly used and well-known verb, and its name is de-
scriptive of its effect. A GET for a particular URI returns a copy of the resource that URI
represents. One of the most important features of GET requests is that the result of a
GET can be cached. Caching GET requests also contributes to the scalability of the Web.
Another feature of GET requests is that they are considered safe, because according to
the HTTP specification, GET should not cause any side effects—that is, GET should never
cause a change to a resource. Certainly, a resource might change between two GET
requests, but that should be an independent action on the part of the service.

Some site maintainers fail on this part of the uniform interface and use
GET requests from a user agent to change a resource. These are incorrect
implementations, and those individuals should have their web pro-
gramming licenses revoked.

POST, which indicates a request to create a new resource, is probably the next most
commonly used verb, and there are a whole host of others that we will examine later
in this chapter and throughout this book.

HTTP and the Web were designed to be stateless. A stateless service is one that can
process an incoming request based solely on the request itself. The concept of per-client
state on the server isn’t part of the design of HTTP or the Web.

2 | Chapter 1: REST Basics

Session State
Vendors have attempted to implement state management techniques on top of the
Web. In a typical scenario, a user’s browser stores a small piece of data known as a
cookie. The data contained in the cookie is presented to the server on each subsequent
request. Using server-side session management techniques, information contained in
the cookie or a unique URI can be mapped to a set of name-value pairs on the server
and thus associated with a particular user agent.

If the cookie contains all of the required state information, its usage can be considered
RESTful since the request itself still contains all the information the server requires to
process it (it doesn’t require an external store or server-side data structure).

Some implementations attempt to maintain stateful sessions for the scalability of an
application. The architectural constraints of the Web are goals to strive for, and some-
times there are good reasons to use techniques that conflict with these constraints. Per-
client sessions are useful because they greatly simplify the programming model for
building websites or web services, but when you adopt them you are limiting your
ability to scale your application.

If a request from a particular user agent contains all of the state necessary to retrieve
(or create) a resource, that request can be handled by any server in a farm of servers,
thus creating a scalable, robust environment.

Statelessness also improves visibility into web applications. If a request contains
everything needed for the server to make a proper reply, the request also contains all
the data needed to track and report on that request. There is no need to go to some
data source with some key and try to recreate the data that was used as part of a request
in order to determine what went right, or what went wrong (this wouldn’t be ideal
anyway, since that data may have changed in the meantime). Statelessness increases a
web application’s manageability because the entire state of each request is contained
in the request itself.

Hyperlinking between resources is also an important part of the Web’s success. The
fact that one resource can link to another, enabling the user agent (often through its
human driver, but sometimes not) to navigate between related resources, makes the
Web interconnected in a very significant way.

The Web is the world’s largest, most scalable, and most interoperable distributed ap-
plication. The success of the Web and the scalability of its architecture have led many
people to want to build applications or services on top of it.

Architecture of the World Wide Web | 3

SOAP
Many individuals and organizations have tried to build on the success and scalability
of the Web by describing architectures and creating toolkits for building services.
Services are endpoints that can be consumed programmatically rather than by a person
sitting at a computer driving an application like a web browser. The two main ap-
proaches used in these attempts have been either the SOAP protocol or the architectural
style of REST.

While a chapter on the subtle differences between protocols such as
REST and POX (Plain Old XML over HTTP) might make for an inter-
esting read, this chapter is more specifically focused on the architectural
differences between REST and its main competitor, SOAP.

SOAP, which at one point in its history stood for Simple Object Access Protocol (before
its acronym status was revoked in the 1.2 version of its specification), is what many
developers think of when they hear the term web service. SOAP was born out of a
coordinated attempt by many large vendors to create a standard around a program-
matic Web.

In many ways, SOAP doesn’t follow the architecture of the Web at all. Although there
are bindings for using SOAP over HTTP, many aspects of SOAP are at odds with the
architecture of the Web.

Rather than focusing on URIs (which is the way of the Web), SOAP focuses on
actions, which are essentially a thin veneer over a method call (although of course a
SOAP client can’t assume a one-to-one relation between an action and a method call).
In this and many other ways, SOAP is an interoperable cross-platform remote proce-
dure call (RPC) system. SOAP-based services almost always have only one URI and
many different actions. In some ways, actions are like the HTTP uniform interface,
except that every single SOAP service creates new actions; this is about as un-uniform
and variable as you can get.

When used over HTTP, SOAP limits itself to one part of the Web’s uniform interface:
POST. This creates a limitation because results, even those that are read-only, can’t be
safely cached. In many SOAP services, most actions should really use GET as the verb
because they simply return read-only data. Because SOAP doesn’t use GET, SOAP results
cannot be cached because the infrastructure of the Web only supports caching respon-
ses to GET requests. To be honest, you can’t really call a SOAP-based service a web
service since SOAP intentionally ignores much of the architecture of the Web. The term
“SOAP service” is probably a more accurate description.

When confronted with the fact that SOAP doesn’t follow the architecture of the Web,
SOAP proponents will often point out that SOAP was designed to be used over many
different protocols, not just HTTP. Because it is meant to be generic and used over

4 | Chapter 1: REST Basics

many different protocols, SOAP can’t take advantage of many of the Web’s features
since many of those features are particular to HTTP.

REST
REST is an architectural style for building services. This style is based on the architec-
ture of the Web, a fact that creates a fairly sharp contrast between REST and SOAP.
While SOAP goes out of its way to make itself protocol-independent, REST embraces
the Web and HTTP. Although it’s certainly possible to use some or all of the principles
of REST over other protocols, many of its benefits are greatest when used over HTTP.

Another significant contrast is that SOAP isn’t an architectural style at all. SOAP is a
specification that sets out the technical details on how two endpoints can interact in
terms of the message representation, and it doesn’t offer any architectural guidance or
constraints. In contrast, REST services are built to follow the specific constraints of the
REST architectural style.

Services that follow this style are known as RESTful. Note that these
architectural constraints are more what you’d call “guidelines” than ac-
tual rules. Some services will use all of these constraints, and some will
use only some of the constraints.

In their book RESTful Web Services (O’Reilly), Leonard Richardson and
Sam Ruby lay out something they call the Resource Oriented Architec-
ture (ROA), which is a stricter set of rules for determining whether a
service is really RESTful.

While SOAP services are based on a service-specific set of actions and a single URI,
RESTful services model the interaction with user agents based on resources. Each re-
source is represented by a unique URI, and the user agent uses the uniform interface
of HTTP to interact with a resource via that URI. Put another way, REST services are
more concerned with nouns (e.g., resources) than verbs (e.g., HTTP methods or SOAP
actions) since the design of a service is about the URIs rather than a custom interface.

Resources and URIs
The first thing to do when designing a RESTful service is to determine which resources
you are going to expose. A resource is any information that you want to make available
to others, such as:

• All the movies playing in or near your zip code

• The current price of a particular stock

• All the photos Jon took on June 1, 2008

• A list of all the products your company sells

REST | 5

As you can see, some resources are static, like pictures taken on a particular day in the
past, and some resources are dynamic, like the movies playing in or near a particular
zip code. Many resources are dynamic in nature, so having an addressable set of
resources for your service doesn’t mean that you know all the particular resource in-
stances when you sit down to design your service. A resource is a conceptual mapping
to a particular entity or entity set that you want your service to be able to work with.

When designing a RESTful service, you will identify the resources that your service will
expose and use. Once you’ve identified the resources you’ll map them to URIs.

URI design

One of the things I like most about RESTful services is the fact that all resources are
uniquely identified by a URI. The capability to retrieve a resource via a unique address
is one of the big reasons the Web has been so successful.

Additionally, the use of RESTful services builds on our existing experience in using the
Web. Nothing is more satisfying than using a website that has nicely designed URIs
(yes, websites can be as RESTful as web services can). The utility of well-designed URIs
is fairly self-evident. You can appreciate this if, like me, you have “hacked” a URI on a
website to find a particular resource, even if the page you started with had no hyperlink
to that resource.

An excellent example of a website that employs this resource-URI association is Flickr
(http://www.flickr.com). Flickr allows you to store, view, and share photos on the Web.
Here are a few of the resources that Flickr exposes for me:

• All Jon’s photos

• All Jon’s photos from a particular date

• All Jon’s photos in a named set

• All Jon’s photos with a particular tag

Here are the corresponding URIs for those resources:

• http://www.flickr.com/photos/jonflanders

• http://www.flickr.com/photos/jonflanders/archives/date-posted/2008/06/05/

• http://www.flickr.com/photos/jonflanders/sets/72157605450493091/

• http://www.flickr.com/photos/jonflanders/tags/rest/

I think these are pretty good URIs (although I’d prefer it if I could put in the name of
a set rather than using Flickr’s identifier for a named set). This URI design allows me
to find easily whichever resources (photos) I want to see. For example, if I wanted to
see all of my photos taken on January 1, 2008, I would request the resource at http://
www.flickr.com/photos/jonflanders/archives/date-taken/2008/06/05/.

I mention Flickr in a book ostensibly about services, even though Flickr is a website,
to emphasize two points. First, good URI design is important, as it can greatly increase

6 | Chapter 1: REST Basics

http://www.flickr.com
http://www.flickr.com/photos/jonflanders
http://www.flickr.com/photos/jonflanders/archives/date-posted/2008/06/05/
http://www.flickr.com/photos/jonflanders/sets/72157605450493091/
http://www.flickr.com/photos/jonflanders/tags/rest/
http://www.flickr.com/photos/jonflanders/archives/date-taken/2008/06/05/
http://www.flickr.com/photos/jonflanders/archives/date-taken/2008/06/05/

the usability of a website (and therefore a RESTful service as well). Second, our human
experience in using the Web can help us in designing and using RESTful services, which
is one of the points in my “Why REST matters to me” list.

The ironic thing about Flickr’s very RESTful URI design is that its pro-
grammatic API (which Flickr claims is based on REST) isn’t very REST-
ful at all from a URI point of view.

Flickr uses a design that is often referred to as a REST-RPC hybrid be-
cause it uses GET even when it modifies a resource. Flickr doesn’t rely on
the uniform interface to define interactions with resources; it basically
adds an action to the Query string of GET requests.

The idea behind REST is to design your URIs in a way that makes logical sense based
on your resource set. The URIs should, if possible, make sense to any user looking at
them. If they make sense to a user looking at the URIs, they will make sense to the
program that consumes the URIs programmatically. When designing the associations
between resources and URIs, it may be useful to map them as if you were designing a
browsable website. Even if the URIs will never be entered into a browser, this type of
mapping will be useful for the person or persons writing the code to consume your
service. Human-readable URIs are not strictly required for a service to be considered
RESTful; they are just generally helpful when testing and debugging.

Uniform Interface
In REST, resources are identified by a unique URI. This is one of the constraints of the
REST architectural style. Another constraint limits how a user agent interacts with your
resources. User agents only interact with resources using the prescribed HTTP verbs.
The main verbs are what we call the uniform interface. The verb that is used in a request
to a particular URI indicates to the service what the user agent would like to do. When
using the REST architectural style we do not make up our own verbs, we use the verbs
prescribed by the HTTP standard.

The four main verbs of the uniform interface are GET, POST, PUT, and DELETE. Recall that
GET is the verb that tells the service that the user agent wishes to get a read-only repre-
sentation of a resource. DELETE indicates that a client wishes to delete a resource. POST
indicates the desire to create a new resource. PUT is typically used for modifying an
existing resource. If, however, the user agent has the knowledge to specify the URI for
the new resource, PUT is used for resource creation. See Figure 1-1.

What is the advantage of the uniform interface of REST over any other service creation
architecture? Why is it a useful constraint?

One reason that the uniform interface is so useful is that it frees us from having to create
a new interface every time a new service is created. Creating an interface for a service
endpoint is the equivalent of creating a new API, and can be hard work. Even when the

REST | 7

API has limited scope, it can be hard work. Whole books and research papers are
written on the correct approach to creating a reusable API. Doing it properly is not a
trivial exercise.

On a related note, when consuming REST-based services, you don’t have to learn a
new API every time you want to use a new service. Instead, you have to determine the
URIs and the format of the resources (more on this later in this chapter), as well as
which parts of the uniform interface the URIs will allow you to use. In some ways, once
you learn how to build and use one RESTful service, you’ve learned how to build and
use them all.

Another benefit of the uniform interface is the comfort you can take from the fact that
GET is always safe, and the knowledge that the rest of the uniform interface’s verbs other
than POST are idempotent.

Idempotent means that the effect of doing something more than once
will be the same as the effect of doing it only once.

You can call GET on a service or resource as many times as you want with no side effects.
You can update a resource over and over with no ill effects. Deleting a resource that
has already been deleted is a no-op. The only unsafe verb continues to be POST, and
because the effect of POST is undefined by the HTTP specification, you’ll need to decide
when implementing a service what the exact effect of POST should be (see Chapter 4 for
more information about writing read/write services with REST).

GET
• Retrieves a resource
• Guaranteed not to cause side-effect (SAFE)
• Cacheable

POST • Creates a new resource
• Unsafe, effect of this verb isn’t defined by HTTP

PUT
• Updates an existing resource
• Used for resource creation when client knows URI
• Can call N times, same thing will always happen (idempotent)

DELETE • Removes a resource
• Can call N times, same thing will always happen (idempotent)

Figure 1-1. Uniform interface

8 | Chapter 1: REST Basics

POST is unsafe because there aren’t any rules about what will happen
when you do a POST. The service can really do anything when a POST
request comes in, and the resource could be radically changed.

As well as being safe, GET also allows caching (see Chapter 11 for more information
about caching and its benefits). In order to scale, a service has to be able to cache, and
SOAP services, no matter what you do with them, cannot be safely cached, even when
the action is one that is essentially read-only. This is because SOAP always uses POST,
which can’t be cached at any level.

Another important point about the uniform interface is that not every single resource
has to implement the entire uniform interface. In fact, in many cases the only part of
the uniform interface you’ll implement on a resource is GET. If a resource already exists,
and will not be created, modified, or deleted by the user agent, the only job of the
RESTful service will be to return that resource in response to a GET request.

Hopefully you’re beginning to see the architectural constraints of REST to take shape.
The constraints comprise a checklist for building a RESTful service. First, you decide
what your resources are. Then you map those resources to URIs. For each of those URIs
you determine which media type, or representation, you are going to accept and return.

Resource Representations
REST has no architectural constraints on physical representations of resources. This
makes sense considering the varied needs of applications and users on the Web. A
RESTful service’s resource type is technically known as its media type. The media type
is always returned in an HTTP response as one of the HTTP headers (Content-Type).

The media type for your resources is variable, but there are a few pretty popular and
commonly used ones.

XML

XML is probably the most popular format for representation of resources. It’s a well-
known format, and there are libraries for processing XML on every mainstream plat-
form. The formal media type for XML is application/xml (it used to be text/xml, but
that media type has been deprecated).

When choosing XML as your data format, one of the things you’ll decide is whether
to use a custom XML schema or one of the XML formats that has been standardized
across applications.

REST | 9

RSS/Atom

Feeds are a popular beast on the Web today; they are usually associated with what are
called feed readers, and with a particular kind of web application known as a web log
(or just blog for short). Blogs (and other types of data exposed as feeds) syndicate
(broadcast) their data, and feed readers consume that syndicated data.

The two XML schemas that are used for feed syndication are Really Simple Syndication
(RSS) and the Atom Syndication Format. Atom is the more recent standard and seems
to be winning the hearts and minds of most developers and companies. It is accompa-
nied by the Atom Publishing Protocol (commonly known as APP or AtomPub), which
is more than just a format specification, but is an additional set of constraints built on
top of REST architecture. AtomPub dictates the media types for a service, as well as
the required uniform interface implementation for content publishing. AtomPub has
grown to be used in many different applications besides classic content publishing like
blogs.

See Chapter 6 for more information about feeds, and Chapter 11 for an example of the
usage of Atom in a nonBlog blog scenario.

The media type for RSS is application/rss+xml. Atom’s is application/atom+xml.

XHTML

Extensible Hypertext Markup Language (XHTML) is an HTML media type that is also
valid XML. HTML is the media type (text/html) that has driven the human-readable
Web for many years. HTML can be challenging to parse if you’ve ever tried it, since
the rules about tags, closing tags, attributes, and so on are all very loose. XML, on the
other hand, has a very strict set of format requirements. XHTML (application/xhtml
+xml) is the merger of HTML and XML. It is primarily intended for display by a
browser, but is easily parsed by an XML library. It is also fairly commonly used in
programmatically accessible services. Some services are written to return XHTML to
both browser and programmatic user agents.

JSON

JavaScript Object Notation (JSON) is a media type (application/json) that is a text-
based resource format for representing programmatic data types. It’s a very simple and
basic network data representation for objects.

Although often associated with the JavaScript language, JSON is actually used as a
media type in many different programming languages and environments.

One of JSON’s selling points is its ease of use from JavaScript and Ajax-type browser-
based applications. Another selling point is the size of the representation over the net-
work. As a media type, XML tends to be much larger than the compact, terse format
of JSON. Many services now return JSON exclusively, regardless of the media type

10 | Chapter 1: REST Basics

www.allitebooks.com

http://www.allitebooks.org

requested by the user agent, even when the user agent isn’t an AJAX application in the
browser. Chapter 7 covers more about JSON as a media type.

Other media types

The four media types discussed in this section are not exhaustive. There are many other
media types such as binary media types and images. When building a RESTful service,
you have great latitude to choose your media type based on the particular application
you are building. If you aren’t sure about which media type to use, try viewing some
microformats at http://www.microformats.org/. Microformats are standardized media
types based on common usage and behaviors. The nice thing about choosing a micro-
format as your media type is that it will be more well known than an XML schema that
you create on your own, since tools and libraries may already exist to aid you in working
with those formats.

Implementing a Simple RESTful Service Example
To help you understand the concepts introduced in this chapter, let’s walk through an
example that employs the basic steps of designing a RESTful service. For this example,
we will use an easy-to-understand domain: a membership system that stores informa-
tion about its users.

Resources
This user system will expose the following set of resources:

• All users

• A particular user delineated by the user’s unique identifier

This is a fairly simple set of resources, but it actually turns out that many real-life
services include only a handful of resources. Of course, because a resource is a con-
ceptual entity, there will likely be near infinite URIs based on those resources.

URIs and Uniform Interface
For our example service, I’m going to start with the relative segments of the URIs, and
I’m going to use a simple template syntax (curly braces {}) to indicate parts of the URI
that will be replaced by context-specific variables (such as user ID). Table 1-1 contains
a listing of the different URIs and the parts of the uniform interface we will implement
for each URI.

Implementing a Simple RESTful Service Example | 11

http://www.microformats.org/

Table 1-1. User service example URIs

URI Method Description Output Input

/users/ GET Returns a representation of all users in the system users

collection

n/a

/users POST Creates a new user in the system, expects a repre-

sentation of the user in the HTTP body

user user (without

the user_id

specified)

/users/{user_id} GET Returns the representation of a particular user,

based on the user’s identifier in the system

user n/a

/users/{user_id} PUT Modifies a user resource user user

/users/{user_id} DELETE Deletes a user from the system user user

This service has a small surface area, but you can see that it implements all the parts of
the uniform interface for the user resource.

PUT or POST for Creation?
Note that in our example, the URI for creating a user is different from the URI for getting
a user. In this case, the URI for creating the user acts as a factory because it represents
all users.

Whether you use the same or different URIs for creating and getting resources will
depend partially on the design of your system. If our example service allowed the users
of the service to specify the identifier for a new user, the URI for PUT and GET would be
the same (/user/{user_id}). For resource creation the user agent would use PUT instead
of POST because that is the expected RESTful semantic when the user knows the URI
of the new resource.

In our example, we do not allow the user agent to determine the identifier for a user.
Rather, we will create that identifier ourselves (perhaps it’s an identity column in my
database table that represents users) and return it as part of the response. For this
reason, we will stick with POST for resource creation.

Representations
If we were working with a hierarchy or linked data for the users, XHTML would be a
good choice for resource representation, since it would allow us to link to related data.
However, our example domain will not contain these types of links, so we will use a
simpler custom XML format.

Notice that I’m using the term custom XML format instead of custom XML schema.
XML schemas are another media type altogether. They are XML documents that pro-
vide constraints on the format of other XML media type instances. XML schemas are
very important in the SOAP world; you might say they are essential, but they are op-
tional in a RESTful service. If you want to create XML schemas for your representations

12 | Chapter 1: REST Basics

and provide them to your consuming user agents, that’s fine. Nothing in the set of REST
architectural constraints mandates it or forbids it.

Having metadata like XML schemas and Web Service Description Language (WSDL)
is one of the features of SOAP services that people find very useful. The lack of such
metadata in RESTful services is somewhat troubling to people who come from that
world. In Chapter 9 we’ll examine the options for building up the client’s API for con-
suming a service that doesn’t expose a schema.

Interaction
Now that we have the basis for our RESTful service example, let’s examine the inter-
action that will occur between the user agent and the service.

If the service is deployed at the host example.com (http://example.com), the first inter-
action (assuming there are no users yet) will be a POST to the /users URI to create a new
user (see Figure 1-2).

The user agent will send an HTTP request using POST to the /users URI, passing in the
media type, as well as the resource it wishes to create as the HTTP request body. As-
suming there are no error conditions, the service will return a 201 Created status code.
It’s convention for a service to return the newly created resource as the response to a
POST. The service can also return a Location header, which specifies the URI of the new
resource. A user agent can make a GET request to the /users URI to get a list of all the
resources available, which at this point will be one. This is shown in Figure 1-3.

Since we can GET all the users, we should also be able to GET a specific user. A GET request
to the URI that represents user 1 will simply be a GET request to /users/1 (see Figure 1-4).

The last two parts of the uniform interface that this service implements are PUT and
DELETE. Figure 1-5 shows a PUT request and Figure 1-6 shows DELETE.

POST /users HTTP/1.1
Host:example.org
Content_Length:111
Content-type: application/xml

<user>
<id/>
<firstname>Jon</firstname>
<lastname>Flanders</lastname>
<email>jon@foo.com</email>
</user>

Client

HTTP/1.1 201 Created
Content-Length:116
Content-type: application/xml
Location:
http://example.org/users/1

<user>
<id>1</id>
<firstname>Jon</firstname>
<lastname>Flanders</lastname>
<email>jon@foo.com</email>
</user>

Service

Figure 1-2. Using POST to create a resource

Implementing a Simple RESTful Service Example | 13

http://example.com
http://example.com

Wrap-Up
One of the things I really enjoy about REST as an architecture is the exercise I just went
through. When designing a RESTful service, first determine the resources that the
service will expose. Next, determine how you will map those resources to URIs, and
decide which part of the uniform interface each URI should implement. Finally, choose
the resource format.

This set of steps follows the architectural constraints of REST, and can help you de-
termine what the service should look like (URIs) and how it should behave (the uniform
interface). The verbs are preset, so you can concentrate solely on the nouns (resources),
and you don’t have to create a new API for every service. SOAP, on the other hand,

GET/usersHTTP/1.1
Host:example.org

Client

HTTP/1.1 200 Created
Content-Length:135
Content-type: application/xml

<users>
<user>
<id>1</id>
<firstname>Jon</firstname>
<lastname>Flanders</lastname>
<email>jon@foo.com</email>
</user>
</users>

Service

Figure 1-3. GET to /users

GET/users/1 HTTP/1.1
Host:example.org

Client

HTTP/1.1 200 OK
Content-Length:120
Content-type: application/xml

<user>
<id>1</id>
<firstname>Jon</firstname>
<lastname>Flanders</lastname>
<email>jon@foo.com</email>
</user>

Service

Figure 1-4. GET for a particular user

14 | Chapter 1: REST Basics

provides no real guidelines for what a service should look like or do. Each of the actions
are created out of nothing with no real guidance for what they should be. REST builds
on knowledge that you already have about URIs, and tells you exactly what each of
those URIs can potentially do by restricting you to the uniform interface. This is one
of the design constraints of REST, and, if I can interject a little personal opinion into
this chapter, it’s one that I enjoy.

Admittedly, there is still data variability in RESTful services, since REST does not im-
pose constraints on resource media types. However, this lack of data constraints is
outweighed by the great utility of the REST interface and addressing constraints.

Another benefit of using REST constraints is that it becomes easier to use with each
service that you build. Once you learn REST, you can easily identify which parts of the

PUT/users/1 HTTP/1.1
Host:example.org
Content-Length:116
Content-type: application/xml

<user>
<id>1</id>
<firstname>Jon</firstname>
<lastname>Flanders</lastname>
<email>jon@bar.com</email>
</user>

Client

HTTP/1.1 200 OK
Content-Length:116
Content-type: application/xml

<user>
<id>1</id>
<firstname>Jon</firstname>
<lastname>Flanders</lastname>
<email>jon@bar.com</email>
</user>

Service

Figure 1-5. Changing a resource using PUT

DELETE/users/1 HTTP/1.1
Host:www.userservice.com

Client

HTTP/1.1 200 OK
Content-Length:0

Service

Figure 1-6. Removing a resource using DELETE

Implementing a Simple RESTful Service Example | 15

architectural constraints are being used on a service, which makes it increasingly easy
to determine which constraints you should use in the future.

Processes
One criticism some people have about REST is its lack of support for the concept of a
processing endpoint that models a particular process. Services can sometimes expose
functionality that either doesn’t seem to fit well within the concept of a resource or
doesn’t seem to fit well within the semantics of the uniform interface. For example,
consider a service that is designed to implement bank transfers from one account to
another. Clearly, you can create each account as a separate resource and use the uniform
interface to specify the operations that users can perform on each account. But what
resource represents a transfer between two accounts?

This is really a matter of having the right point of view. If you view this type of operation
as a function, it will not fall neatly into the REST model. You can, however, treat it as
a temporary resource.

In a typical distributed system, this type of operation would generally
be wrapped in a transaction. Of course, REST doesn’t use the concept
of transactions, but you could also represent transactions as resources.

This idea doesn’t resonate with some people, even when all the other parts of REST as
an architecture do. This is a design decision you may encounter and be faced with. It
also may be that you never will run into this kind of decision, or that you are completely
happy with the idea of a transaction as a resource.

Some people look at this problem and decide to stick with SOAP services. Others look
at it and decide simply to overload on POST. And others try to push REST and the
concept of resources to their fullest, and will model everything as resources (even
processes).

Summary
This chapter discussed the basics of creating RESTful services and using REST as an
architecture. There are some core tenets of REST that you’ll want to keep with you as
you read through the book.

First, REST uses the same tenets for building services as the Web. Resources are named
entities that we’d like to interact with. Resources are addressable using URIs. The in-
teraction between our code and those URIs is done using the uniform interface. The
constraints of the REST architectural style are simple, elegant, and easy to remember,

16 | Chapter 1: REST Basics

and are the foundations with which arguably the world’s largest, most scalable dis-
tributed application was built.

REST employs architectural constraints for building services, and you are free to use
as many or as few of the constraints as you like (although, if you only use a few, you
may have to argue with purists if you want to advertise your service as RESTful).

Summary | 17

CHAPTER 2

WCF RESTful Programming Model

In Chapter 1, I introduced the concepts fundamental to using REST to build services.
WCF in .NET 3.5 includes a sophisticated built-in mechanism that allows you, a .NET
developer, to build RESTful services using the WCF programming model.

Isn’t WCF All About SOAP?
You might be thinking, “Isn’t WCF all about SOAP?” While you will probably find
many people who think WCF is only used for building SOAP-based services (and many
who think WCF is only for building RPC-styled SOAP-based services), it turns out that
WCF is much broader than either of those communication styles. WCF is really a highly
extensible framework with a common programming model and a totally pluggable
communication infrastructure.

To illustrate the high-level extensibility of WCF, let’s look at some technical details on
particular pieces of WCF’s plumbing. Although most of the time you won’t be working
at this low level, looking at this code will help your understanding of REST and WCF.

Channels and Dispatching
So what does WCF do, from a server-side perspective? The basic job of the WCF run-
time is to listen for (or retrieve) messages from a network location, process those mes-
sages, and pass them to your code so that your code can implement the functionality
of a service (Figure 2-1).

WCF’s client-side programming model is symmetrical to that on the
server side, but the processing of messages is in the opposite direction.
Chapter 10 discusses the WCF programming model from the client
perspective.

19

The transport channel
When you open a WCF server-side endpoint, WCF uses a channel listener to create
a network listener called the transport channel to accept network traffic or use a
network protocol to retrieve messages. When WCF is accepting messages (for ex-
ample, when listening on a socket), it is acting as a passive listener. When WCF is
looking for messages (for example, when using the MSMQ—Microsoft Message
Queuing—protocol to connect to a named queue to retrieve messages), it is acting
as an active listener. Regardless of listening style, the job of listening for messages
is performed by what WCF refers to as a transport channel. Common transport
channels include HTTP and MSMQ. In the case of the server side, the transport
channel is created by a channel listener. The channel listener is a factory pattern
object that is responsible for setting up the server-side listening infrastructure.

The message encoder
Next is the message encoder, which takes a network message and wraps it in an
object that the rest of the WCF infrastructure can understand. This object is an
instance of System.ServiceModel.Channels.Message. Although Message is modeled
somewhat after a SOAP message pattern, with a header and a body, it isn’t neces-
sarily tied to the SOAP protocol.

The Message object can be used to deserialize a message into a .NET object or
retrieve it as XML (even if the underlying message is not formatted as XML). One
important property of Message is Version. When this property is set to
MessageVersion.None, the object will ignore the Headers property (in fact, an ex-
ception is raised if the Headers property is used when Version is set to
MessageVersion.None).

Another interesting property is Properties. This is a collection that can contain
arbitrary objects, so it acts like a per-instance state bag. Interesting data can be

Your code

Transport channel

Message encoder

Protocol channel

(1-N)

Dispatcher
action

Network

MessageMessage

Figure 2-1. The WCF server-side stack

20 | Chapter 2: WCF RESTful Programming Model

www.allitebooks.com

http://www.allitebooks.org

placed into this collection, and other components up and down the stack can then
communicate information indirectly through data on the message itself.

Protocol channels
Optional objects follow the message encoder. WCF refers to these objects as chan-
nels, and to disambiguate them from transport channels, they are called protocol
channels. Protocol channels implement protocols that might be useful for a par-
ticular service, such as security or reliable-messaging protocols. These objects are
optional, but in certain services may be helpful or even required to implement a
particular style of architecture.

The dispatcher
The dispatching layer is responsible for invoking the proper methods on incoming
message objects. First, the IDispatchOperationSelector object determines
which method is appropriate. Next, a pluggable component implements
IDispatchMessageFormatter to deserialize the Message object into the proper .NET
type. Finally, the IOperationInvoker object actually invokes the service.

Together, the transport channel, message encoder, protocol channels, and dispatcher
are called the channel stack. WCF uses bindings to create the stack. A binding is really
a piece of configuration, although it can be represented in memory as an object or
serialized into an application configuration file. Based on the configuration of your
service, through both attributes and another type of configuration called a behavior,
WCF constructs the dispatching layer.

The infrastructure that creates the channel stack is not reliant on any particular pro-
gramming model or communication mechanism. In other words, WCF is a pluggable
pipeline-like architecture for creating channels of communication.

Using this programming model, WCF supports a wide variety of communication
mechanisms. Suppose, for example, that you want the implementation to listen for
SOAP-formatted messages over HTTP at a particular URI and then route those mes-
sages based on the SOAP action header’s name. To do this, you can use either the
WsHttpBinding or BasicHttpBinding objects, which derive from the binding base class
and provide SOAP-based communication over HTTP.

If you use the default dispatch layer configuration, the IDispatchOperationSelector
looks at the incoming Message object for the SOAP action header and then uses .NET
metadata to match the action header value to the name of a .NET method (this could
be an exact match or could be customized using the OperationContractAttribute). The
dispatch layer then uses this information to deserialize the message into the accep-
ted .NET types, and the IOperationInvoker actually invokes the correct object.

The name of the default implementation is OperationSelector, which
might indicate that there is only one, but this is actually just one poten-
tial implementation.

Channels and Dispatching | 21

Although many of the WCF defaults in the dispatch layer lean toward a SOAP model,
the channel stack has no real notion of anything “SOAP-y” in the least. It’s only some
of the WS-* protocols and WCF out-of-the-box (OOTB) bindings and objects that are
aware of the SOAP protocol.

Given my assertion that WCF isn’t tied to SOAP, what would it take to create a RESTful-
based service using WCF? Not a whole lot, actually, since WCF has an HTTP listener
(in the form of the HTTP transport channel), which isn’t tied to POST (i.e., it can handle
other HTTP verbs). It also has a message encoder that understands XML messages,
even when those messages aren’t based on SOAP. Putting both of those pieces together
gives us the basic building blocks for doing RESTful services with WCF.

You might be wondering about other incoming HTTP message body
formats like form or JSON-encoded bodies—we’ll deal with those in
later chapters.

HTTP Programming with WCF 3.0
It turns out that the facility to use REST existed in WCF even before .NET 3.5. (For
clarity, I’ll refer to the version that shipped with .NET 3.0 as WCF 3.0, and the version
that ships with .NET 3.5 as WCF 3.5.) WCF 3.0 actually has the infrastructure for
doing RESTful-style programming, but it lacks any sort of standard RESTful program-
ming model. Most of the remainder of this book will focus on the WCF programming
model rather than on the communication infrastructure. In this section we’ll spend
some time on the communication layer to illustrate a few key points. First, WCF isn’t
tied to SOAP, even in WCF 3.0. Second, the communication infrastructure of WCF
was written well enough to support different communication styles without modifica-
tion in WCF 3.5. WCF 3.5 adds a programming model for REST that we could build
without Microsoft’s help if we were so inclined.

It is possible to use WCF 3.0 to put together an HTTP endpoint that doesn’t use SOAP.
To do this, we first require a binding to create the correct channel stack. However,
WCF 3.0 doesn’t include any OOTB bindings that fit the bill (they all default to using
SOAP), so we will have to create a custom binding using a CustomBinding object and
adding the correct BindingElements. These BindingElements will be used to build the
channels in the channel stack.

We could also build a class that derives from the binding base class,
which would be the right thing to do if we were going to reuse this
binding in more than one project.

22 | Chapter 2: WCF RESTful Programming Model

For this binding we will need, at minimum, a message encoder and a transport channel.
These two objects are the only required elements for a channel stack. For most RESTful
services, that’s all we’ll ever need in the channel stack—there are very few situations
in which we would want to use other protocol channels. The BindingElements have to
be added to the binding in the reverse order that they will be used, so we add the
TextMessageEncodingBindingElement first, followed by HttpTransportBindingElement
(which specifies the use of the HTTP transport in the channel stack). Example 2-1
shows the code that creates the custom binding (as always, this could instead be part
of a configuration file).

Example 2-1. Creating a custom binding

CustomBinding b = new CustomBinding();
TextMessageEncodingBindingElement msgEncoder;
msgEncoder = new TextMessageEncodingBindingElement();
msgEncoder.MessageVersion = MessageVersion.None;
b.Elements.Add(msgEncoder);
HttpTransportBindingElement http;
http = new HttpTransportBindingElement();
b.Elements.Add(http);

Note that this code changes the MessageVersion property to MessageVersion.None. This
instructs the TextMessageEncoder not to look for anything “SOAP-y,” although it still
will only process incoming messages that are formatted as XML (since this is what the
TextMessageEncoder is programmed to do).

Next, we must construct an endpoint. A WCF endpoint has three parts: an address, a
binding, and a contract. The binding dictates the look of the channel stack and deter-
mines how the endpoint will communicate. The address is the URI at which the end-
point will listen, and the contract contains information about the type that WCF will
use to route messages. In WCF, the contract will be a .NET type with the
ServiceContractAttribute, and this type can be either an interface or a .NET class. In
this case I am specifying a .NET class as the contract.

The next step is to host the endpoint so that WCF will create a channel listener to start
the channel stack. In most cases, the class named ServiceHost will carry out this part
(see Chapter 5 for more information about hosting WCF endpoints).

After creating the ServiceHost instance, add a ServiceEndpoint using the
CustomBinding, an HTTP-based URI as the address, and a type named
SimpleHTTPService as the contract. This code also uses Console.ReadLine as the mech-
anism to keep the process alive while requests are being processed. We can create a
console application to host my WCF endpoint. Example 2-2 shows the Main method
from my console application.

HTTP Programming with WCF 3.0 | 23

Example 2-2. SimpleHTTPService using WCF

static void Main(string[] args)
{
CustomBinding b = new CustomBinding();
TextMessageEncodingBindingElement msgEncoder;
msgEncoder = new TextMessageEncodingBindingElement();
msgEncoder.MessageVersion = MessageVersion.None;
b.Elements.Add(msgEncoder);
HttpTransportBindingElement http;
http = new HttpTransportBindingElement();
b.Elements.Add(http);
ServiceHost sh = new ServiceHost(typeof(SimpleHTTPService));
ServiceEndpoint se = null;
se = sh.AddServiceEndpoint(typeof(SimpleHTTPService),
 b,
 "http://localhost:8889/TestHttp");
sh.Open();
Console.WriteLine("Simple HTTP Service Listening");
Console.WriteLine("Press enter to stop service");
Console.ReadLine();
}

This code may lead you to wonder what SimpleHTTPService looks like.
SimpleHTTPService is a class that includes one method (this is typically referred to in
WCF terminology as a universal operation). Instead of having regu-
lar .NET types as input and output parameters to the method, we are using
System.ServiceModel.Channels.Message.

Using Message means that the WCF dispatch layer doesn’t have to deserialize the in-
coming message into specific .NET types. Adding the OperationContractAttribute and
setting its Action property equal to * and the ReplyAction property equal to * indicates
that all messages, regardless of action, will be routed to this method. Admittedly, having
to use SOAP header information is kind of non-RESTful, since we are annotating the
class with SOAP-based attributes, but the values of these properties actually
short-circuit any SOAP-based routing. Example 2-3 shows the code for the
SimpleHTTPService.

Example 2-3. SimpleHTTPService implementation

[ServiceContract]
public class SimpleHTTPService
{
[OperationContract(Action = "*", ReplyAction = "*")]
Message AllURIs(Message msg)
{
 HttpRequestMessageProperty httpProps;
 string propName;
 propName = HttpRequestMessageProperty.Name;
 httpProps = msg.Properties[propName] as HttpRequestMessageProperty;
 string uri;
 uri = msg.Headers.To.AbsolutePath;
 Console.WriteLine("Request to {0}", uri);

24 | Chapter 2: WCF RESTful Programming Model

 if (httpProps.Method != "GET")
 {
 Console.WriteLine("Incoming Message {0} with method of {1}",
 msg.GetReaderAtBodyContents().ReadOuterXml(),
 httpProps.Method);
 }
 else
 {
 Console.WriteLine("GET Request - no message Body");
 }
 //print the query string if any
 if (httpProps.QueryString != null)
 Console.WriteLine("QueryString = {0}", httpProps.QueryString);
 Message response = Message.CreateMessage(
 MessageVersion.None,
 "*",
 "Simple response string");
 HttpResponseMessageProperty responseProp;
 responseProp = new HttpResponseMessageProperty();
 responseProp.Headers.Add("CustomHeader", "Value");
 return response;
}

Figure 2-2 shows the results of testing the client (which is just a browser in this case)
and the output from the service in the console application.

Figure 2-2. Testing WCF 3.0 HTTP service

HTTP Programming with WCF 3.0 | 25

Due to the structure of WCF 3.0, the endpoint created here will route all incoming
network requests to the single method. While it would be possible to use .NET 3.0 to
automatically dispatch different network messages to different methods without using
SOAP (since the default dispatching is based on the concept of Action), it requires
adding a fair amount of custom code into the WCF channel stack and dispatching layer.
This is one of the things included in WCF 3.5, which we’ll examine in a moment.

There is something else to note about the code in the body of the AllURIs method in
the earlier code sample. Notice how I am asking the Message object for a
property from its Properties collection. The property is an instance of the
HttpRequestMessageProperty type, which is a property populated by the HTTP trans-
port channel. As you can see from the code, this property has all the information about
the current HTTP request, including the Method and the incoming HTTP headers. Mes-
sage properties are indexed by name, so the static Name property of the
HttpRequestMessageProperty is used to find the property inside of the Message (of course
my code is assuming the binding being used has the HTTP transport channel in use
and that the property will always be there). If I wasn’t using Message as the parameter
type I could access the property via the OperationContext.Current.IncomingMessage
Properties collection. Example 2-4 is the full definition of the
HttpRequestMessageProperty.

Example 2-4. HttpRequestMessageProperty definition

namespace System.ServiceModel.Channels
{
 public sealed class HttpRequestMessageProperty
 {

 public WebHeaderCollection Headers { get; }
 public string Method { get; set; }
 public static string Name { get; }
 public string QueryString { get; set; }
 public bool SuppressEntityBody { get; set; }
 }
}

The code at the end of the AllURIs method in Example 2-2 creates an HttpResponseMes
sageProperty object, which is the corollary object to the HttpRequestMessageProperty
object. The HTTP transport channel will use this property to set parts of the HTTP
response. The code creates and sets the value of a custom HTTP header. Exam-
ple 2-5 includes the full definition of the HttpResponseMessageProperty.

Example 2-5. HttpResponseMessageProperty definition

namespace System.ServiceModel.Channels
{
 public sealed class HttpResponseMessageProperty
 {
 public static string Name { get; }
 public HttpStatusCode StatusCode { get; set; }

26 | Chapter 2: WCF RESTful Programming Model

 public string StatusDescription { get; set; }
 public bool SuppressEntityBody { get; set; }
 }
}

HttpWebRequestMessageProperty and HttpWebResponseMessageProperty are important
tools when using WCF for HTTP, and since RESTful services use HTTP, we’ll find
them helpful there as well. You’ll see these properties being used throughout this book
to enhance our RESTful services.

So, what insight into WCF does the code in Examples 2-1 and 2-2 provide? Mainly,
that WCF is not just about SOAP, and that WCF has included most of the facilities to
support RESTful services since the beginning. What was lacking in 3.0 was an explicit
programming model for REST.

Web Programming in WCF 3.5
With the introduction of WCF 3.5, the WCF channel stack and dispatching layer look
like the drawing in Figure 2-3.

Your code

Transport channel

(HTTP)

Message encoder

(text; no SOAP)

Protocol channel

(1-N)

Dispatcher
(URI + VERB)

Network

MessageMessage

Figure 2-3. The WCF 3.5 server-side stack

The WCF 3.5 web programming model provides features that build on the 3.0 model
to make RESTful programming possible with WCF without adding a significant
amount of custom code. These are contained in the System.ServiceModel.Web.dll as-
sembly, which is new for WCF 3.5. Here is a list of the features that make it easier to
build RESTful services:

WebHttpBinding

An OOTB binding that uses the HTTP transport and text message encoder (with
its MessageVersion set to None). This is something that could be done in 3.0 with a

Web Programming in WCF 3.5 | 27

CustomBinding, as shown in the previous section. Having an OOTB binding is def-
initely a timesaver.

WebBehavior

This is an endpoint behavior that will modify the dispatch layer on all operations
on a contract. The modifications cause messages to be dispatched to methods on
your service based on URIs and HTTP verbs (rather than the default, which is to
dispatch based on the SOAP action header).

WebServiceHost

This is a ServiceHost-derived class that simplifies the configuration of a web-based
service. Also included is a WebServiceHostFactory for IIS/WAS hosting scenarios
(hosting is discussed in more detail in Chapter 5).

WebOperationContext

This is a new context object, which contains the state of the incoming request and
outgoing response, and simplifies coding against HTTP using WCF.

WebGetAttribute and WebInvokeAttribute
Two new operation behaviors that are applied as attributes on a
ServiceContract’s methods that already are operations because they have the
OperationContractAttribute applied. On each method, using these attributes de-
clares which part of the uniform interface (GET, POST, PUT, and DELETE) the CLR
method should implement. WebGetAttribute is for GET and WebInvokeAttribute is
for all the other parts of the uniform interface. It also tells the dispatcher how to
match the methods to URIs, and also how to parse the URI into method
parameters.

You can see this set of objects applied in Figure 2-3. The code shown in my next example
reimplements the WCF 3.0 HTTP-based service from Example 2-2 using WCF 3.5.
Example 2-6 shows the Main method of the Console Application host, after adding a
reference to System.ServiceModel.Web.dll and adding a using statement to the code file
for System.ServiceModel.Web.

Example 2-6. WCF 3.5 version of Main

static void Main(string[] args)
{
 WebHttpBinding binding;
 binding = new WebHttpBinding();
 WebServiceHost sh;
 sh = new WebServiceHost(typeof(SimpleHTTPService));
 sh.AddServiceEndpoint(typeof(SimpleHTTPService),
 binding,
 "http://localhost:8889/TestHttp");
 sh.Open();
 Console.WriteLine("Simple HTTP Service Listening");
 Console.WriteLine("Press enter to stop service");
 Console.ReadLine();

}

28 | Chapter 2: WCF RESTful Programming Model

This code contains considerably fewer lines than the WCF 3.0 version shown in Ex-
ample 2-2. Instead of having to create a CustomBinding, this code uses the
WebHttpBinding, which uses the HTTP transport, as well as a text encoder with its
MessageVersion set to MessageVersion.None.

This code also uses the new WebServiceHost class. The WebServiceHost API is exactly
the same as the standard ServiceHost class based on how you program against it, as it
still requires AddServiceEndpoint (or the configuration file) for all the endpoints it will
host. But when the code calls WebServiceHost.Open, some behind-the-scenes magic
happens (well not really magic, but stuff happens automatically). WebServiceHost over-
rides the ServiceHostBase.OnOpening method, loops through all the endpoints, and
adds a special new behavior to each endpoint. This behavior, named
WebHttpBehavior, modifies the WCF dispatching layer to route messages to methods
on your service based solely on the URI. It adds the WebHttpBehavior to all endpoints
of the service, so use WebServiceHost only when hosting RESTful endpoints. If the serv-
ice contains any non-RESTful endpoints, use ServiceHost and add the
WebHttpBehavior manually to only the endpoints that require it.

Example 2-7 shows the WCF 3.5 version of my service.

Example 2-7. WCF 3.5 SimpleHTTPService implementation

[ServiceContract]
public class SimpleHTTPService
{

 [OperationContract()]
 [WebGet(UriTemplate="*")]
 Message AllURIs(Message msg)
 {
 WebOperationContext webCtx;
 webCtx = WebOperationContext.Current;
 IncomingWebRequestContext incomingCtx;
 incomingCtx = webCtx.IncomingRequest;
 string uri;
 uri = incomingCtx.UriTemplateMatch.RequestUri.ToString();
 Console.WriteLine("Request to {0}", uri);
 if (incomingCtx.Method != "GET")
 {
 Console.WriteLine("Incoming Message {0} with method of {1}",
 msg.GetReaderAtBodyContents().ReadOuterXml(),
 incomingCtx.Method);
 }
 else
 {
 Console.WriteLine("GET Request - no message Body");
 }
 NameValueCollection query;
 query = incomingCtx.UriTemplateMatch.QueryParameters;
 //print the query string if any
 string queryName;
 if (query.Count != 0)

Web Programming in WCF 3.5 | 29

 {
 Console.WriteLine("QueryString:");
 var enumQ = query.GetEnumerator();
 while(enumQ.MoveNext())
 {
 queryName = enumQ.Current.ToString();
 Console.WriteLine("{0} = {1}", queryName, query[queryName]);
 }
 }
 Message response = Message.CreateMessage(
 MessageVersion.None,
 "*",
 "Simple response string");
 OutgoingWebResponseContext outCtx;
 outCtx = webCtx.OutgoingResponse;
 outCtx.Headers.Add("CustomHeader", "Value");
 return response;
 }
}

One big difference between the 3.0 and 3.5 versions of this code is that the Operation
ContractAttribute on the CLR method doesn’t have to use * as the values for the
Action and ReplyAction properties, since the new dispatch layer doesn’t Action for
routing at all. In the 3.5 version, the dispatching is based on the URIs and the HTTP
verbs rather than the SOAP action header value. WCF will ignore all of the SOAP-
specific properties when WebHttpBinding is used.

WebHttpBinding
The WebHttpBinding class is a new OOTB binding in WCF 3.5, designed to be the
binding for RESTful WCF endpoints.

The binding is pretty simple, and is very much like the CustomBinding used in my WCF
3.0 example earlier in the chapter (Example 2-1). WebHttpBinding contains a binding
element that creates the HTTP (or HTTPS) WCF transport channel to listen for or send
messages over HTTP(S). It also contains a message-encoder binding element that sets
the channel stack’s encoder to TextMessageEncoder, with the Version set to
MessageVersion.None (no SOAP expected).

In some cases, you may still have to create a CustomBinding, but the WebHttpBinding type
will suffice the majority of the time.

WebHttpBehavior
WebHttpBehavior is one of the key pieces of the WCF 3.5 programming model. The job
of the WebHttpBehavior is to modify the WCF dispatching layer to use RESTful-based
context to route messages to the CLR methods of the service object, and to modify the
serialization layer to use the correct objects to deserialize requests and serialize
responses.

30 | Chapter 2: WCF RESTful Programming Model

www.allitebooks.com

http://www.allitebooks.org

Although the WebHttpBehavior itself can’t be customized, it is influenced by other set-
tings, mostly the new attributes for OperationContractAttribute methods, which I’ll
discuss in a moment.

The code shown in Example 2-3 does not explicitly use the WebHttpBehavior type;
rather, the WebServiceHost added it automatically.

WebServiceHost
WebServiceHost is a new class in WCF 3.5 that derives from the ServiceHost class. Recall
that ServiceHost is the piece of the WCF infrastructure that starts channel listeners for
each endpoint.

WebServiceHost is similar in functionality to ServiceHost, but it simplifies the configu-
ration of its endpoints by assuming the WebHttpBinding and automatically applying the
WebHttpBehavior to all the endpoints. WebServiceHost can also auto-configure endpoints
in cases where the service type (the type that is passed to its constructor) only has one
contract. Chapter 5 goes into much more detail on WebServiceHost.

WebOperationContext
In terms of programming against the HTTP API in WCF, the implementation of the
AllURIs method remains fairly unchanged between the WCF 3.0 and WCF 3.5 versions.
However, in WCF 3.5, you can use the WebOperationContext object
inside the method body to interrogate the incoming request, instead of having to rely
on information from both OperationContext and the HTTP message
properties (HttpRequestMessageProperty and HttpResponseMessageProperty).
WebOperationContext attaches itself to the OperationContext using IExtension<Opera-
tionContext>. IExtension of t is used to attach one object to another as an extension.

As an extension of OperationContext, WebOperationContext wraps the
HttpRequestMessageProperty and HttpResponseMessageProperty with other, more ex-
plicitly typed properties that simplify programming against commonly used HTTP
constructs. Chapter 11 includes more information about programming against these
constructs.

WebOperationContext has four properties, each of which represents a different part of
an HTTP request/response message exchange sequence. Example 2-8 is the full defi-
nition of WebOperationContext.

Example 2-8. WebOperationContext definition

namespace System.ServiceModel.Web
{
 public class WebOperationContext : IExtension<OperationContext>
 {
 public static WebOperationContext Current { get; }
 public IncomingWebRequestContext IncomingRequest { get; }

Web Programming in WCF 3.5 | 31

 public IncomingWebResponseContext IncomingResponse { get; }
 public OutgoingWebRequestContext OutgoingRequest { get; }
 public OutgoingWebResponseContext OutgoingResponse { get; }

 }
}

The static Current property will retrieve the correct WebOperationContext instance for
the currently executing request. The remaining properties represent the four potential
call points in an incoming or outgoing HTTP request. IncomingRequest and Outgoing
Response are server-side properties for introspecting and modifying HTTP properties.
OutgoingRequest or IncomingResponse are responsible for setting the properties on the
HTTP request or looking at the HTTP response on the client side. See Chapter 11 for
more information about these important context objects.

Another simplification provided by WCF 3.5 is that WebOperationContext parses the
QueryString. While you can view this data in WCF 3.0 using the OperationContext, you
must write the code to parse those parameters. In WCF 3.5, you can use the
QueryParameters collection on the IncomingRequest property to view the data in a more
easily readable format. Additionally, you can use the OutgoingResponse property to set
a custom HTTP header on the response, instead of having to create and set the
HttpResponseMessageProperty.

WebGetAttribute
Also note that I added a new attribute to the method on the service in Example 2-7:
WebGetAttribute. The new dispatch layer will use this attribute to determine which
method to call for a particular incoming request.

If you don’t customize WebGetAttribute, the URI of the service (since there is only one
method at this point) will be http://localhost:8889/TestHttp/AllURIs. By default, WCF
3.5 uses the CLR method name as part of the URI. This is true for both
WebGetAttribute and WebInvokeAttribute.

If you want the resource URI model of your RESTful service to follow the constraints
and guidelines of REST, you should customize the URI. If you use the default URIs,
you can end up with two URIs for a single resource if you want to use more than one
verb from the uniform interface. Having two URIs for a single resource would violate
one of the most important constraints of REST. Also, if you stick with the default URI
the CLR method names in the URIs become more like custom verbs again, instead of
the noun-based approach we want to use with REST.

WCF 3.5 allows you to customize the URI for each CLR method. You can do this by
customizing the UriTemplate property, which is a property on both WebGetAttribute
and WebInvokeAttribute.

32 | Chapter 2: WCF RESTful Programming Model

http://localhost:8889/TestHttp/AllURIs

WebGetAttribute and WebInvokeAttribute annotate service operations (methods that
include the OperationContractAttribute). These attributes form the base of the new
dispatching model built into 3.5.

WebInvokeAttribute includes all of the same properties that WebGetAttribute has, but
it also includes a Method property. WebGetAttribute is pretty obviously about which part
of the uniform interface it implements: GET. The Method property indicates which verb
(other than GET of course) the associated method will implement from the uniform
interface. If the Method property isn’t set, the default is POST. Table 2-1 shows the prop-
erties of both WebGetAttribute and WebInvokeAttribute.

Table 2-1. WebGetAttribute and WebInvokeAttribute properties

Property name Type Default value Description

BodyStyle WebMessage

BodyStyle

Bare Specifies whether the request and the response data

should be wrapped in an element with the same name as

the CLR method name. Bare is typically used with RESTful

services.

ResponseFormat WebMessage

Format

Xml Specifies the format for serializing the response.

RequestFormat WebMessage

Format

Xml Specifies the format for deserializing the request.

UriTemplate string null (assumed to be

the name of the CLR

method)

The definition of the URI the CLR method should respond

to.

Method string null (assumed to be

POST if null)

The HTTP verb the method should respond to (again this

property is not on WebGetAttribute).

The UriTemplate property on WebGetAttribute is a simple string, but is arguably the
most important property in the whole WCF web programming model. The string is
going to be parsed into a type (also named UriTemplate) during the creation of the
endpoint. This type is used at runtime to route messages to methods based on matching
the template to the requested URI.

UriTemplate
It makes sense to take a moment to look at the UriTemplate class in detail. It is important
to get a good idea of its mechanics and how you can use it to your advantage when
designing your services.

Note that UriTemplate is in the System namespace even though the class
is contained in the System.ServiceModel.Web.dll assembly.

UriTemplate | 33

UriTemplate enables you to make a template out of part of a URI by declaring a pattern-
matching syntax. When passed a URI, the UriTemplate class parses the URI and deter-
mines if its pattern matches the URI. If the pattern matches, UriTemplate parses the
matched parts into a data structure, indexed by order and possibly indexed by name
(depending on the type of template used). This is a little bit like regular expression
matching of a string, and although it’s not quite as powerful as regular expressions, it
doesn’t really have to be. Let’s start out with a URI example.

Imagine we had a web service that served up data about the biological taxonomy (e.g.,
Domain, Kingdom, Phylum, etc.). The URIs of this service should be:

http://example.org/Domain/Kingdom/Phylum/Class/Order/Family/Genus/Species

Users could specify any level of this hierarchy and get the data appropriate for that
level. Some valid URIs would be:

• http://example.org/

• http://example.org/Eukaryote/Animalia

• http://example.org/Eukaryote/Animalia/Chordata

• http://example.org/Eukaryote/Animalia/Chordata/Mammalia/Carnivora/Canidae/
Canis/C.%20lupus

• http://example.org/Eukaryote/Animalis/Chordata/Felidae/Felis/F%20silvestris

The idea is to have each of these URIs return the appropriate data when an HTTP
GET request is made to my service (we’ll discuss the data format later in the chapter; for
now we’ll focus on the URIs). The service should return data that is appropriate for the
specified hierarchy level. So, for example, if a user makes a request for the root, the
service will return data about all the Domains (Archaea, Eubacteria, and Eukaryota),
and if a user requests http://example.org/Eukaryote, the service will return data only
about the organisms in the Eukaryote domain.

I’m going to use the following template string to make this URI scheme work with
UriTemplate:

"/{Domain}/{Kingdom}/{Phylum}/{Class}/{Order}/{Family}/
{Genus}/{Species}"

Notice that the whole URI is not included in the template—only the path after the
scheme, host, and port portion of the URI. The UriTemplate infrastructure assumes that
part of your complete URI can and will probably change (as it would typically when
you moved from dev to test to production as each environment would have a different
host name). The curly braces between each level of hierarchy of the URI are the
UriTemplate syntax. This syntax enables the UriTemplate to parse a particular URI for
a match and, if a match is found, to bind the parts of the URI into a collection of
variables.

34 | Chapter 2: WCF RESTful Programming Model

http://example.org/Domain/Kingdom/Phylum/Class/Order/Family/Genus/Species
http://example.org/
http://example.org/Eukaryote/Animalia
http://example.org/Eukaryote/Animalia/Chordata
http://example.org/Eukaryote/Animalia/Chordata/Mammalia/Carnivora/Canidae/Canis/C.%20lupus
http://example.org/Eukaryote/Animalia/Chordata/Mammalia/Carnivora/Canidae/Canis/C.%20lupus
http://example.org/Eukaryote/Animalis/Chordata/Felidae/Felis/F%20silvestris
http://example.org/Eukaryote

UriTemplate also includes wildcard capabilities. UriTemplate="*" (used
in Example 2-7) will route all URIs to one method. The wildcard char-
acter can also be used at the end of a URI to allow a catch-all method
for an unknown number of URI path segments (e.g., UriTemplate="/
{Domain}/*"). The wildcard (*) must be either the only string or the last
string in the UriTemplate—additional path segments aren’t allowed after
a wildcard.

Example 2-9 shows some of the code from a console application that attempts to match
URIs based on UriTemplate.

Example 2-9. Exercising UriTemplate

Uri baseUri = new Uri("http://example.org");
UriTemplate template = new UriTemplate("/{Domain}/{Kingdom}/
{Phylum}/{Class}/{Order}/{Family}/{Genus}/{Species}");
Console.WriteLine("URI path segments are:");
foreach (var pathSeg in template.PathSegmentVariableNames)
{
 Console.WriteLine(pathSeg);
}
Console.WriteLine("type in a URI to test");
string uri = Console.ReadLine();
Uri testUri = new Uri(uri);
UriTemplateMatch match = template.Match(baseUri, testUri);
if (match != null)
{
 var bound = match.BoundVariables;
 string keyValue;

 foreach (var key in bound.Keys)
 {
 keyValue = key.ToString();
 Console.WriteLine("{0} = {1}", keyValue, bound[keyValue]);
 }
}
else
 Console.WriteLine("URI not a match");

The output of running this application is shown in Figure 2-4.

The code in Example 2-9 is pretty simple. It creates a UriTemplate instance, then prints
all the path segments to the console. UriTemplate uses path segment internally for each
part of the URI that is denoted by the curly braces ({}). The program will then receive
input from the console and turn that input into a URI. Finally, the code will attempt
to match the URI against the UriTemplate that was set with the hierarchy we are trying
to parse.

Figure 2-5 shows the results of passing in the URI http://example.org/Eukaryote/Ani
malia/Chordata/Actinopterygii/Siluriformes/Malapteruridae/Malapterurus/minjiriya.

UriTemplate | 35

http://example.org/Eukaryote/Animalia/Chordata/Actinopterygii/Siluriformes/Malapteruridae/Malapterurus/minjiriya
http://example.org/Eukaryote/Animalia/Chordata/Actinopterygii/Siluriformes/Malapteruridae/Malapterurus/minjiriya

When I type a string into a console and press Enter, the code takes the string and turns
it into an URI. It then uses UriTemplate.Match to determine whether the URI matches
the template definition. If there is a match, the returned UriTemplateMatch object can
be used to inspect the results of the match, which would allow the code to use the
matched path segment values. This program loops through the UriTemplateMatch.Bound
Variables collection, which contains all the data that has been bound to each path
segment. Table 2-2 shows the complete list of UriTemplateMatch properties.

In Chapter 10, when we talk about using WCF to invoke RESTful
services, I’ll show you how to turn UriTemplate around the other way—
to get a full URI from a template by passing in the bound variables.

Figure 2-4. UriTemplate testing output based on Example 2-9

Figure 2-5. UriTemplate testing full URI

36 | Chapter 2: WCF RESTful Programming Model

Table 2-2. UriTemplateMatch properties

Property Type Description

BaseUri Uri Contains the base URI passed to UriTemplate.Match

BoundVariables NameValueCollection A collection of name/value pairs, where the names are the

path segments from the UriTemplate and the values are

the parsed data

Data Object Arbitrary application-specific data that can be associated with

a UriTemplate

QueryParameters NameValueCollection A name/value collection of items from the query string of the

parsed URI

RelativePathSegments Collection<string> A union of the results of template matching and wildcard

matching

RequestUri Uri The request URI passed to Match

UriTemplate UriTemplate A reference to the UriTemplate instance on which

Match was called

WildCardPathSegments Collection<string> All the data that matched against the wildcard part of the

UriTemplate (if any)

Compound Path Segments
Some RESTful services employ a URI feature known as compound path template syn-
tax, which is useful when the URI resource you are modeling has more than one piece
of data at a single level, or when you’d like to template the final URI extension. If, for
example, you were working with the latitude and longitude of geographical locations,
you might include the following in the UriTemplate:

"/{lat}/{long}"

However, it doesn’t make much sense to have a URI formatted this way because lon-
gitude isn’t part of a hierarchy under latitude. The general rule of thumb with URIs is
that if there are multiple same-level pieces of data for a particular resource, and order
matters, use a semicolon to separate them. If order doesn’t matter, use a comma.

Unfortunately, WCF does not inherently support this type of functionality. If it did,
the UriTemplate might look like the following for latitude and longitude:

"/{lat};{long}"

Another common practice is to expose different resource formats using the file
extension:

"/map.json"
"/map.xml"

It would be nice to template these URIs like this:

"/map.{format}"

UriTemplate | 37

Chapter 7 discusses why this syntax might not be the optimal solution when using
WCF when returning different media types (like JSON and XML) from the same
method.

Because UriTemplate doesn’t support either of these UriTemplate values in .NET 3.5,
you can use the following workaround:

"/{latlong}"

You can then parse the data from the combined latitude/longitude string into its com-
ponent parts by using String.Split or other string parsing mechanism. This is not an
optimal solution, but at least WCF will not reject a particular path segment’s data if it
contains a comma or semicolon. I should also note here that WCF 3.5 SP1 adds addi-
tional support for compound path segments (see Appendix A).

If you pass an incomplete URI (a URI that doesn’t contain all of the predefined levels)
to the testing program, things don’t go so well. Figures 2-6 and 2-7 show the results of
passing http://example.org/ and http://example.org/Eukaryote, respectively.

Figure 2-6. Result of passing the root URI to UriTemplate

From Figures 2-6 and 2-7, you can see that in order to consider a URI a match, UriTem
plate requires a match on all of the path segments (assuming there is no wildcard in
the template). So how do we deal with the problem of producing a URI that matches
only the specified levels? This is precisely the function of the UriTemplateTable class.

UriTemplateTable is, as its name suggests, a table or collection of related UriTemplate
objects. UriTemplateTable allows you to build up a collection of UriTemplate instances,
and then run a match against the whole table. When you build up this table of

38 | Chapter 2: WCF RESTful Programming Model

http://example.org/
http://example.org/Eukaryote

UriTemplate instances, you associate each UriTemplate with an arbitrary (but hopefully
useful) object. This object is then used to set the UriTemplateMatch.Data property if
there is a match for a particular UriTemplate. The WCF infrastructure uses
UriTemplateTable to store all the UriTemplate definitions for ServiceContract, and uses
matches to route requests to methods based on a template match (as well as an HTTP
verb match).

Right now, I am just going to use UriTemplateTable to illustrate how this works.

Example 2-10 represents version 2 of my code from Example 2-6. It creates an array of
strings and a UriTemplate instance for each string. It then adds all the UriTemplate
instances (and each UriTemplate’s associated object) to a UriTemplateTable instance
using its KeyValuePairs property. The code then includes a simple loop logic that waits
for a URI and, when entered, tries to match that URI against the UriTemplateTable
using UriTemplateTable.MatchSingle.

UriTemplateTable also has a Match method that can return a collection
of UriTemplateMatch instances if more than one UriTemplate matches.
Using MatchSingle will cause the service to throw an exception if more
than one UriTemplate matches, so if you plan to use MatchSingle, you
should use UriTemplateTable to ensure only one UriTemplate will match.

Example 2-10. Using UriTemplateTable

string[] stemplates = new string[]{
"/",
"/{Domain}",
"/{Domain}/{Kingdom}",

Figure 2-7. Result of passing the first-level URI to UriTemplate

UriTemplate | 39

"/{Domain}/{Kingdom}/{Phylum}",
"/{Domain}/{Kingdom}/{Phylum}/{Class}",
"/{Domain}/{Kingdom}/{Phylum}/{Class}/{Order}",
"/{Domain}/{Kingdom}/{Phylum}/{Class}/{Order}/{Family}",
"/{Domain}/{Kingdom}/{Phylum}/{Class}/{Order}/{Family}/{Genus}",
"/{Domain}/{Kingdom}/{Phylum}/{Class}/{Order}/{Family}/{Genus}/{Species}"
};
Dictionary<UriTemplate, object> templates =
 MakeTemplates(stemplates);
Uri baseUri = new Uri("http://example.org");
//create the UriTemplateTable
UriTemplateTable tt = new UriTemplateTable(baseUri);
//add all the UriTemplate/Value pairs to it
foreach (var kvp in templates)
{
 tt.KeyValuePairs.Add(kvp);
}
bool done = false;
while (!done)
{
 Console.WriteLine("type in a URI to test ('Q' to exit)");
 string uri = Console.ReadLine();
 if (uri == "Q")
 {
 done = true;
 }
 else
 {
 Uri testUri = new Uri(uri);
 UriTemplateMatch match = tt.MatchSingle(testUri);
 if (match != null)
 {
 Console.WriteLine(match.Data);
 }
 else
 {
 Console.WriteLine("No match found!");
 }
 }
}

Before discussing the execution of the program shown in Example 2-10, let’s look at
Example 2-11, which is the method (called MakeTemplates) that I used to create the
UriTemplate instances.

Example 2-11. The MakeTemplates method

static Dictionary<UriTemplate, object> MakeTemplates(string[] templateStrings)
{
 Dictionary<UriTemplate, object> templates =
 new Dictionary<UriTemplate, object>();
 UriTemplate uriTemplate = null;
 string msg = null;
 int lastPathSegment = 0;
 string segment = "ROOT";

40 | Chapter 2: WCF RESTful Programming Model

www.allitebooks.com

http://www.allitebooks.org

 foreach (string template in templateStrings)
 {
 uriTemplate = new UriTemplate(template);
 if (uriTemplate.PathSegmentVariableNames.Count > 0)
 {
 lastPathSegment = uriTemplate.PathSegmentVariableNames.Count - 1;
 segment = uriTemplate.PathSegmentVariableNames[lastPathSegment];
 }
 msg = segment + " MATCH!";
 templates.Add(uriTemplate, msg);
 }
 return templates;
}

There isn’t anything special about the MakeTemplates method in Example 2-11, but it
shows the logic I am using in my code to associate an object with each UriTemplate
instance. Basically, the code creates a string that is logically associated with each URI
you want to match. You can now use this new code to match against all the different
URIs that are part of the logical URI scheme.

Figure 2-8. Using UriTemplateTable to match multiple URIs

UriTemplateTable allows you to match multiple URIs at multiple levels in the same
program. The output of Example 2-10 is shown in Figure 2-8.

Now, what if the string associated with each UriTemplate was the name of a method
instead of just a string with no particular meaning? When a match is found, the code
could dynamically invoke the associated method on a particular object. This is pretty
much the way in which WCF 3.5 URI dispatching works. In WCF 3.5,
WebHttpBehavior adds the object to the WCF server-side dispatching layer.
WebHttpDispatchOperationSelector returns the name of the method selected (based on
the UriTemplateMatch), and the IOperationInvoker invokes the method on the service
instance object.

This implementation is inside the WebHttpDispatchOperationSelector type. It is the part
of the WCF dispatching layer that determines which method is to be called on a service
instance based on the UriTemplate match and the HTTP verb of the incoming request.
The dispatcher keeps a special class (WCFLookupResult) that keeps track of which
method is associated with a particular template and also which HTTP verb. I can’t use

UriTemplate | 41

WCFLookupResult because it is a private class (it’s actually a nested class inside
WebHttpDispatchOperationSelector), but I like knowing about it since it helps me to
understand how the 3.5 dispatching model works. Here is the full definition of
WCFLookupResult:

private class WCFLookupResult
{

 public WCFLookupResult(string method, string operationName);

 // Properties
 public string Method { get; }
 public string OperationName { get; }
}

As the WCF channel stack is opening, the WebHttpDispatchOperationSelector uses re-
flection on all the service methods on the contract associated with the current endpoint,
and uses that information to construct the UriTemplateTable. It then adds a
KeyValuePair instance for each method creating an UriTemplate and a
WCFLookupResult. The UriTemplate comes from the UriTemplate property in either
WebGetAttribute or WebInvokeAttribute. If WebGetAttribute is used, the
WCFLookupResult.Method will be GET; otherwise, it’s the value of WebInvokeAt

tribute.Method. The WCFLookup.OperationName is the name of the function on the service
contract. This is how the WebHttpDispatchOperationSelector is able to implement its
functionality.

UriTemplate Literal Values
Another UriTemplate feature that is worth mentioning is the capability to mix literal
values with variable (path segment) values. In all of the preceding examples in this
chapter, the UriTemplate has either been a wildcard value or a template in which all
segments are variable values.

Building on the biological taxonomy example, imagine that instead of having all Do-
main requests routed to the same method, we want each discrete Domain value routed
to its own method. Here’s an example of using UriTemplate to mix literal and variable
values to enable this type of dispatching:

UriTemplate levelOne = new UriTemplate("/Animalia");
UriTemplate levelTwo = new UriTemplate("/Animalia/{Kingdom}");

In this example, only those URIs containing the literal value Animalia as the first path
segment after the base URI will be routed to the ProcessAnimalia method. URIs with
the literal value Animalia will match on the first UriTemplate. URIs with the literal value
Animalia followed by another path segment will be routed to the match on the levelTwo
UriTemplate. In this way, you can combine literal values with variable path segments
as dictated by your URI scheme.

42 | Chapter 2: WCF RESTful Programming Model

Another thing you can do is use a string literal at a particular path level on one method
when another method uses a variable path segment at that same level. For example, to
expose a special resource under the /Animalia resource, change the code to:

UriTemplate levelOne = new UriTemplate("/Animalia");
UriTemplate levelTwo = new UriTemplate("/Animalia/{Kingdom}");
UriTemplate specialLevel = new UriTemplate("/Animalia/special");

There is now a third UriTemplate, which extends the top-level template, but it has a
literal path segment instead of a variable path segment. According to the rules of Uri
TemplateTable matching, any URI with Animalia and another path segment that isn’t
the literal value special will continue to match on the UriTemplate with the variable
name of levelTwo that has the variable path segment. If the literal value special is the
value of the path segment in a URI after the segment with the literal value Animalia,
the UriTemplate named specialLevel (the third one in this list) will be a match. This
rule comes in handy when special-casing a particular path segment literal value. You
could just use a variable path segment and check the value of the variable path segment
in the levelTwo template match for the literal value special, but since WCF can handle
that for you, you can partition your code into two methods and instead of having to
write the conditional code yourself, WCF will conditionally route the request
automatically.

UriTemplate Special Values
Two special characters for UriTemplate are what I call the root template and the wildcard
template.

The first UriTemplate in the UriTemplateTable in Example 2-10 uses the root template,
which is simply the forward-slash character:

UriTemplate root = new UriTemplate("/");

This template is used quite often in a RESTful service to represent the root resource of
a particular hierarchy, or the factory URI for creating new resources.

The other special template, the wildcard template, uses the wildcard character (*), either
alone or in conjunction with literal and variable path segments. When the wildcard
character is used alone, UriTemplate will match every URI:

UriTemplate matchAll = new UriTemplate("*");

UriTemplate QueryString
Yet another UriTemplate feature is the capability to parse the path portions of the URI
along with the QueryString. Conventional wisdom is that the QueryString should be
reserved for indicating to the client that the data being passed includes algorithm var-
iables rather than resource hierarchy variables.

UriTemplate | 43

To illustrate this capability, imagine a RESTful endpoint with search capabilities.
Which URI makes more sense, a or b?

a) http://example.org/search/Don%20Box
b) http://example.org/search?q=Don%20Box

Sometimes URI design is based on aesthetics, and in this case, I prefer option b. Also,
option b follows the convention of having resources that perform algorithms take pa-
rameters as query parameters.

The URIs in both options could be parsed successfully with UriTemplate, but I prefer
the syntax to support option b):

UriTemplate search = new UriTemplate("/search={y}");

Contrast this to the syntax to support option a:

UriTemplate search = new UriTemplate("/search/{q}");

Again, both options will accomplish the same thing (that is, route the request to the
Add method and pass both x and y to the method), but the QueryString version just feels
better because x and y aren’t part of the resource, they are just values being passed to
a resource.

Summary
In this chapter you learned about the basic functionality of the new WCF 3.5 pro-
gramming model, and how that model builds on the extensibility of the basic WCF
channel stack. WCF 3.5 includes several features that enable you to build RESTful
services, including WebHttpBinding, which creates a channel stack that will support
HTTP programming with variable URIs (and without any hint of SOAP).

• WebServiceHost provides an easy hosting environment for RESTful services, and
adds the WebHttpBinding and WebHttpBehavior to service endpoints automatically.

• WebHttpBehavior replaces the default dispatching infrastructure of WCF, which is
based on routing messages to CLR methods based on the SOAP action header.
Instead, WebHttpBehavior allows routing of messages to CLR methods based on the
URI and the HTTP verb.

• WebGetAttribute and WebInvokeAttribute operation behaviors are the pieces of the
infrastructure that enable annotating CLR methods on the service contract type
with the information used by the new dispatching layer. This allows incoming
network requests to be routed to the correct method on your service instance. The
WebGetAttribute indicates the CLR method will response to HTTP GET

requests. When a method has the WebInvokeAttribute associated, the
WebInvokeAttribute.Method property indicates which part of the uniform interface
that method will respond to. The UriTemplate facility adds to this functionality by
also allowing customization of the URI for each service method, with the variable

44 | Chapter 2: WCF RESTful Programming Model

http://example.org/search/Don%20Box
http://example.org/search?q=Don%20Box

path segments and query string capabilities to customize the URIs for RESTful
services.

Now that I’ve shown you the basics of the REST architectural constraints, and the
basics of how WCF provides a programming model for those constraints, I can start to
show you how to build services using both.

Summary | 45

CHAPTER 3

Programming Read-Only Services

Many RESTful services are designed only to return read-only data and implement GET
from the uniform interface for all or a majority of their resources. GET is by far the most
commonly used verb in the uniform interface.

In this chapter, we’ll look at how to create this type of service using the constraints of
REST using WCF as the implementation. By using the WebGetAttribute and the URI
customization of UriTemplate, we will build up a simple but fairly deep set of resources.
We will also examine serialization options in WCF and how they relate to RESTful
services. We will continue to use the biological taxonomy example from Chapter 2,
since it has a rich hierarchy that shows off the power of the UriTemplate system. Chap-
ter 4 will focus on read/write services.

Using WebGetAttribute and UriTemplate
The process of building resources that expose themselves through HTTP GET using
WCF is fairly straightforward. You build up a service contract definition
using the normal WCF constructs of ServiceContractAttribute and
OperationContextAttribute. If you are used to building SOAP-based services with WCF
you might be used to customizing these attributes by changing their properties. Al-
though you can do this when building a RESTful service using WCF, doing so won’t
help you when using REST.

In addition to these existing attributes, WCF 3.5 adds the WebGetAttribute for building
read-only RESTful endpoints. This attribute is added to each CLR method on a
ServiceContract definition that already has the OperationContextAttribute. The
WebGetAttribute has the UriTemplate property, which allows you to modify the URI
that the method will respond to. WCF uses this attribute to enable a method on your
service type to become part of a RESTful endpoint. You can use the WebGetAttribute
on the methods you want to expose via an HTTP GET request. The
WebGetAttribute.UriTemplate property allows you to specify the exact URI to represent
the resource. This combination allows you to be exact about which resource (or re-
sources) the method will return a representation of.

47

Going back to the biological taxonomy system example from Chapter 2, imagine that
we want a unique method on the service to handle each level of the resource hierarchy.
To do this, we need to build up the service contract and add one CLR method for each
resource. Next, we add the OperationContractAttribute to each method, along with
the WebGetAttribute. Finally, we customize the UriTemplate property to provide the
correct number of variable path segments for each resource. The service contract might
look like the code shown in Example 3-1.

Example 3-1. IBioTaxService definition

[ServiceContract]
public interface IBioTaxService
{
 [OperationContract]
 [WebGet(UriTemplate = "/")]
 Message GetRoot();
 [OperationContract]
 [WebGet(UriTemplate = "/search?q={query}")]
 Message Search(string query);
 [OperationContract]
 [WebGet(UriTemplate = "/{Domain}")]
 Message GetDomain(string domain);
 [OperationContract]
 [WebGet(UriTemplate = "/{Domain}/{Kingdom}")]
 Message GetKingdom(string Domain,string Kingdom);
 [OperationContract]
 [WebGet(UriTemplate = "/{Domain}/{Kingdom}/{Phylum}")]
 Message GetPhylum(string Domain, string Kingdom,string Phylum);
 [OperationContract]
 [WebGet(UriTemplate = "/{Domain}/{Kingdom}/{Phylum}/{Class}")]
 Message GetClass(string Domain, string Kingdom, string Phylum,string Class);
 [OperationContract]
 [WebGet(UriTemplate = "/{Domain}/{Kingdom}/{Phylum}/{Class}/{Order}")]
 Message GetOrder(string Domain, string Kingdom, string Phylum,
 string Class,string Order);
 [OperationContract]
 [WebGet(UriTemplate = "/{Domain}/{Kingdom}/{Phylum}/{Class}/{Order}/{Family}")]
 Message GetFamily(string Domain, string Kingdom, string Phylum,
 string Class, string Order, string Family);
 [OperationContract]
 [WebGet(UriTemplate = "/{Domain}/{Kingdom}/{Phylum}/
{Class}/{Order}/{Family}/{Genus}")]
 Message GetGenus(string Domain, string Kingdom, string Phylum,
 string Class, string Order, string Family,string Genus);
 [OperationContract]
 [WebGet(UriTemplate = "/{Domain}/{Kingdom}/{Phylum}/{Class}
/{Order}/{Family}/{Genus}/{Species}")]
 Message GetSpecies(string Domain, string Kingdom, string Phylum,
 string Class, string Order, string Family, string Genus,string Species);
}

Note that the names of the methods are totally unrelated to the dispatching method.
The contract definition uses a custom method-naming convention (GetXXX, where XXX

48 | Chapter 3: Programming Read-Only Services

is the name of the resource) for readability only—it provides no benefit to either WCF
or the service clients because the URI that each method will respond to is customized
using the UriTemplate property.

Because the templates for each method have replaceable path segments, the parameters
on each method must have the same name as the name of each path segment, and must
be in the same order that the replaceable UriTemplate path segments are in. When WCF
makes the UriTemplate match for a particular request, it uses the names and variables
of the UriTemplateMatch.BoundVariables collection to invoke the matched method. All
the method parameters that relate to replaceable path segments had to be string only.
In Chapter 4, we’ll examine how complex types from the HTTP request body are de-
serialized and passed to CLR methods as arguments. Since we are only concerned with
GET right now, there won’t be any request bodies.

Notice that in the Example 3-1 code the second method on the contract is Search. The
UriTemplate property on the Search method’s WebGetAttribute is using two interesting
features of the UriTemplate system. First, it is using a string literal, which overrides the
variable path segment used by the third method (GetDomain with a UriTemplate
of "/{Domain}"). Since there is no biological domain named “search” it is safe to use a
UriTemplate value of "/search" as a literal path segment. The special feature is that any
request with a URI of "/search" will be dispatched to the Search method, and any other
URI with just one path segment will be routed to GetDomain. It also uses the query string
feature of UriTemplate by adding the string "?q={query}" to the end of its template
definition. The feature allows replaceable query string parameters to be used as well as
replaceable path segments. Like variable path segments, variable query string templates
must have names that match the variable names of the CLR method parameters exactly.

Another interesting thing to note about Example 3-1 is that we are using the
System.ServiceModel.Channels.Message type as the return value for all the methods.
This type is not used as commonly as other WCF facilities for serialization because,
although Message is very powerful, it also requires a fair amount of heavy lifting. How-
ever, this type is very useful when you want fine-grained control over the serialization
of a resource. However, this is only one of the ways to define the serialization of return
values. Let’s look at some WCF serialization options and how they interact in a RESTful
environment.

Data Formats
Inputs come into methods that use the WebGetAttribute when WCF takes the
UriTemplateMatch.BoundVariables collection after the URI has been matched against a
UriTemplate and passes them into your method as strings, based on either the URI path
segments or query string parameters. As we saw in Example 3-1, these parameters must
always be simple strings.

Data Formats | 49

You could also use string for the return type from your methods, as WCF does support
returning scalar types like string and int from RESTful service methods. However, it
is more likely that you will want to use more complex return types from a RESTful
service than just a scalar type.

The default behavior in WCF 3.5 is exactly the same as in WCF 3.0 in terms of returning
complex types from the CLR methods on a service contract. WCF receives the object
passed as the return value from the CLR method and attempts to serialize it into an
XML instance using one of a few well-known and documented approaches.

WCF uses either the DataContractSerializer or the XmlSerializer when serializing and
deserializing input and output parameters, depending on how we define the service
contract. Another approach that is somewhat more advanced is to use the WCF Mes
sage type System.ServiceModel.Channels.Message, which leaves the message processing
in our hands instead of WCF’s. Let’s take each of these approaches in turn, starting
with the most complex: Message.

This chapter only deals with the format of the response messages. In
Chapter 4, we will examine the ways in which WCF can deserialize
incoming HTTP message bodies into .NET types.

WCF 3.5 does add some additional functionality in the area of seriali-
zation. In addition to XML, it adds support for an additional serializa-
tion format: JavaScript Object Notation (JSON). Chapter 7 will discuss
JSON in more detail.

Message
In Chapter 2, I introduced the Message type as the underlying representation of a net-
work message to the WCF channel stack, and demonstrated the creation of a Message
object as the return value of an HTTP GET request.

It is relatively rare to find Message as a parameter type or return type in most WCF
services because, in general, most WCF-built services use strongly typed .NET types
for their input and output parameters. This is mostly because the generated metadata,
the Web Services Description Language (WSDL), can be used by clients to autogenerate
client code to simplify the client development experience, and because the service de-
veloper’s programming experience is also simplified by only having to deal with .NET
types and not the underlying message types.

In the RESTful world, there is no WSDL, so using strongly typed contracts doesn’t have
the same benefits as it does when using SOAP, since the client will not be able to
generate a proxy using WSDL for metadata.

50 | Chapter 3: Programming Read-Only Services

www.allitebooks.com

http://www.allitebooks.org

Some RESTful services are starting to support something called
WADL. WADL stands for Web Application Description Language, and
is used to generate clients automatically. WCF doesn’t currently have
any support for WADL. Chapter 10 will discuss options for building
clients using WCF.

Another reason that Message isn’t used very often in WCF service implementations is
that Message requires a fair amount of heavy lifting in terms of using XML APIs to create
the message (although there is a hybrid approach that allows you to combine the def-
inition of Message as the return value from your methods with strongly typed serializa-
tion, and newer APIs like LINQ to XML that further simplify the XML heavy lifting).

LINQ to XML (or XLINQ) stands for Language Integrated Query for
XML, which is part of the overall LINQ subsystem added to .NET 3.5.

The flip side to this extra complexity is that Message gives you total control over the
XML returned to the client from your operations. DataContractSerializer is somewhat
limited in this area because it doesn’t allow the full range of XML constructs—for
example, it doesn’t allow you to use XML attributes. XmlSerializer provides more
flexibility in terms of the XML format, but it requires extensive attributing to your .NET
data types. Another drawback of the XmlSerializer is dealing with the generation of
the special assembly that it uses to do its work, either by letting it dynamically generate
the assembly at runtime or by using the sgen.exe tool to pregenerate it. These limitations
also apply when using WCF with SOAP, but the advantage of using strongly typed
WSDL generally overrides them. Since there is no WSDL in the RESTful case,
Message becomes a more attractive construct.

Message also has the advantage of giving you much more control over versioning re-
source representations. Many developers build REST clients in other languages and
runtimes using constructs like Message or raw XML APIs, because these create a much
more loosely coupled service and client. And even if a client does use an object serial-
ization construct, the service can still use Message because the service then has the option
to return new data to new clients and continue to use the old data format for old clients.

Example 3-2 shows what it might look like if we used Message in the biological taxon-
omy service.

Example 3-2. Using Message as the return type

public Message GetRoot()
{
 MemoryStream ms = new MemoryStream();
 XmlDictionaryWriter xw = XmlDictionaryWriter.CreateTextWriter(ms);
 xw.WriteStartDocument();

Data Formats | 51

 xw.WriteStartElement("Domains");
 string[] domains = new string[] { "Archaea", "Eubacteria", "Eukaryota" };
 foreach (string domain in domains)
 {
 xw.WriteStartElement("Domain");
 xw.WriteAttributeString("name", domain);
 xw.WriteAttributeString("uri", domain);
 xw.WriteEndElement();
 }
 xw.WriteEndElement();
 xw.WriteEndDocument();
 xw.Flush();
 ms.Position = 0;
 XmlDictionaryReader xdr = XmlDictionaryReader.CreateTextReader
 (ms, XmlDictionaryReaderQuotas.Max);
 Message ret = Message.CreateMessage(MessageVersion.None, "*", xdr);
 return ret;
}

Example 3-2 isn’t the only way to write code that uses Message. You could, for example,
use LINQ to XML. Whatever the XML technology used, the basic operations will be
the same: create or retrieve the XML as a stream, create an XmlDictionaryReader, and
then call the Message.CreateMessage factory method. Note that in the Example 3-2 code
the MessageVersion is set to MessageVersion.None. This allows MessageVersion to func-
tion properly with the TextEncoder in this non-SOAP scenario. Also, Action is set to
"*" because the action header is irrelevant to the WCF components when using REST.

Figure 3-1 shows the results of running the Example 3-2 code.

Figure 3-1. Message result

DataContract
The DataContract serialization system was built specifically for WCF 3.0 (and continues
without any visible changes in WCF 3.5). The idea behind this system was to create a
fast and simple serialization layer that could turn .NET objects into XML and XML
into .NET objects. It is pretty heavily constrained in terms of support for XML schema
features.

52 | Chapter 3: Programming Read-Only Services

The biggest restriction of DataContract serialization is that DataContract only supports
elements, so you can’t use XML attributes. This means that you can’t recreate the same
XML format as you can when you use Message. Is this necessarily bad? It depends on
your point of view, but I’d rather have the option to use attributes when it makes sense.
Also, I often prefer XHTML for read-only services, especially since browsers can read
it and XHTML can’t be generated using the DataContractSerializer.

Another limitation of DataContract (although not one that matters much in the REST
world) is that all of the elements must be schema-qualified. This means that you must
set elementFormDefault="qualified" at the global schema level or on each element.
However, this limitation doesn’t matter much when programming RESTful services
because, in general, XSD is not always used to represent the format of XML-based
resources. There are other restrictions when using DataContract, most of which deal
with parts of the XSD specification that, although useful, tend to reduce interoperability
with other SOAP toolkits.

The DataContractSerializer will also serialize types that are marked
with the Serializable attribute (in addition to the DataContract attrib-
ute). This is useful for scenarios where you are using existing types. The
downside of relying on Serializable is that you don’t have any control
over issues like namespaces or the order of items in the resulting XML.

DataContractSerializer will also use IXmlSerializable or ISerializa
ble if implemented on a type.

Another feature added to .NET 3.5 SP1 that complicates this discussion
somewhat is that DataContractSerializer can be used to serializer Plain
Old CLR Objects (POCOs). See Appendix A.

To use DataContract you must use a type that has the DataContract attribute, and you
must attach the DataMember attribute to all of the fields or properties that you want to
include in the serialization. A Domain type definition with these attributes would look
like this:

[DataContract()]
public class Domain
{
 [DataMember]
 public string Name;
 [DataMember]
 public string Uri;
}

One nice feature of WCF is the capability to return generic collection types from meth-
ods and have the DataContract serialization layer deal with them directly. This means
that you can change the GetRoot method to this:

Data Formats | 53

[OperationContract]
[WebGet(UriTemplate = "/")]
List<Domain> GetRoot();

And you can change the implementation to this:

public List<Domain> GetRoot()
{
 List<Domain> ret = new List<Domain>();
 string[] domains = new string[] { "Archaea", "Eubacteria", "Eukaryota" };
 foreach (string domain in domains)
 {
 ret.Add(new Domain { Name = domain, Uri = domain });

 }
 return ret;
}

Figure 3-2 shows the resulting XML.

Figure 3-2. DataContract serialization result

There are two things I don’t like about the XML format displayed in Figure 3-2. First,
I don’t really want an XML namespace for the XML, and if I did, I certainly wouldn’t
want it to be the default that the DataContract serialization layer puts in. The namespace
can be changed by modifying the DataContract attribute on the Domain type:

[DataContract(Namespace="")]
public class Domain
{
 [DataMember]
 public string Name;

54 | Chapter 3: Programming Read-Only Services

 [DataMember]
 public string Uri;
}

The other thing I don’t really like is that the root element is "ArrayOfDomain". I’d much
rather see Domains as the root element name. To change the root element name, create
a new type that derives from List<Domain> and use the CollectionDataContract attribute
to dictate the name used for serialization:

[CollectionDataContract(Name = "Domains", Namespace = "")]
public class DomainList : List<Domain>
{
}

Set the Namespace property on this attribute to an empty string and change the contract
and service to use this new type:

public DomainList GetRoot()
{
 DomainList ret = new DomainList();
 string[] domains = new string[] { "Archaea", "Eubacteria", "Eukaryota" };
 foreach (string domain in domains)
 {
 ret.Add(new Domain { Name = domain, Uri = domain });

 }
 return ret;
}

Figure 3-3 shows the result of the changes to the XML format. Unfortunately, there is
no way to get rid of the xmlns attribute for the XSD instance schema, although that
shouldn’t really hurt anything.

When building RESTful services, using Message is often a better option than using
DataContract. If you want to use .NET types to represent your data and have more
control over the XML format, XmlSerializer is the recommended approach.

XmlSerializer
System.Xml.Serialization.XmlSerializer has been in the .NET Framework since .NET
1.0. It’s a reliable and tried-and-true way to serialize .NET instances into XML and vice
versa.

WCF supports the XmlSerializer system in order to support existing .NET types that
already have associated XmlSerializer attributes, for example, in services that port web
services written using .NET’s ASMX web service infrastructure to WCF.
XmlSerializer also supports parts of the XSD specification that DataContract doesn’t
support. When using SOAP and consuming WSDL from web services that were written
in other toolkits, you will often have to deal with XML schemas that use those parts of
the XSD specification. This can also be the case when you want to expose or consume
RESTful resources that are XML and use those XSD constructs.

Data Formats | 55

XmlSerializer is one of my favorite tools for carrying out RESTful serialization because
it provides more control over how objects are serialized into XML than DataContract.

Here are the Domain and DomainList types rewritten using the XmlSerializer attributes:

[XmlRoot(Namespace="",ElementName="Domain")]
public class Domain
{
 [XmlAttribute(AttributeName="name")]
 public string Name;
 [XmlAttribute(AttributeName = "uri")]
 public string Uri;
}
[XmlRoot(Namespace = "", ElementName = "Domains")]
public class DomainList : List<Domain>
{
}

This is a pretty simple matter of using the XmlSerializer attributes instead of the
DataContract attributes. Instead of being limited to attributes, by using the XmlAttri
bute we can make the XmlSerializer turn those fields into XML attributes instead of
elements.

Next, we change the service contract definition. WCF’s default serialization method is
to use the DataContractSerializer. If you want WCF to use the XmlSerializer, we need
to annotate the method or the whole service contract with the XmlSerializerFormat
attribute:

[OperationContract]
[WebGet(UriTemplate = "/")]

Figure 3-3. Improved DataContract result

56 | Chapter 3: Programming Read-Only Services

[XmlSerializerFormat()]
DomainList GetRoot();

XmlSerializerFormat instructs the serialization infrastructure to use an XmlSerializer
instance to carry out the serialization of objects to XML. Figure 3-4 shows the results
of requesting the root resource when the XmlSerializer is used to serialize the return
value.

Figure 3-4. XmlSerializer usage

As with the DataContract XML, the XmlSerializer XML contains extra xmlns attributes.
These are nuisances I’d rather not see, but they shouldn’t affect any toolkits’ XML
processing since they are perfectly legal and correct.

Hybrid Approach
You can also use a hybrid approach, where you use Message for the return type and
DataContract for serialization. This works because the Message.CreateMessage static
factory method will use whatever serialization is appropriate, based on the data type
that is passed in. Note that DataContract also supports types that are marked with a
Serializable attribute like System.String.

The hybrid approach combines the flexibility of Message with the simpler programming
model of using serialization. Example 3-3 shows the GetRoot method again, this time
rewritten to use the DataContract types, but with Message as the return value.

Example 3-3. Serialization/Message hybrid

//hybrid version
public Message GetRoot()
{
 DomainList ret = new DomainList();
 string[] domains = new string[] { "Archaea", "Eubacteria", "Eukaryota" };
 foreach (string domain in domains)
 {
 ret.Add(new Domain { Name = domain, Uri = domain });

Data Formats | 57

 }
 Message realRet = Message.CreateMessage(MessageVersion.None, "*", ret);
 return realRet;
}

The result will be exactly the same as in the DataContract return value approach shown
in Example 3-2. This hybrid approach simply gives you more flexibility and is easier to
write (since you can avoid using the XML API directly).

There are two other special return types for WCF service methods:
Stream and byte[]. These allow you to send back arbitrary binary and
text data. See Chapter 7 on JSON for more information about using
those return types.

Summary
In this chapter, we discussed building up the read-only part of a service endpoint
(which, in some cases, might be the only part of an endpoint) using the WCF 3.5 web
programming model.

The first step is to determine which resources will be returned by the service, and then
model those resources with unique URIs. Next, create the WCF service contract and
add the WebGetAttribute to the CLR methods. Then modify the UriTemplate property
with the appropriate template value so that each CLR method can be called in response
to the correct URIs for each resource.

Next, decide on the resource representation. The format of the representation will dic-
tate which WCF serialization systems you can use. The DataContractSerializer is the
newest and probably fastest serialization method, but it is somewhat limited in terms
of the XML it can output. XmlSerializer is more flexible in terms of XML output, but
it is slightly more complex than using the DataContractSerializer. Use the Message type
if you want complete control over the serialization of the message.

In Chapter 4, we’ll examine the steps for creating read/write resources. The process is
very similar to the process outlined here for creating read-only resources: determine
the resources, model them using URIs, determine the representation, and decide on
which parts of the uniform interface to implement.

58 | Chapter 3: Programming Read-Only Services

CHAPTER 4

Programming Read/Write Services

In the previous chapter, you were introduced to the WCF 3.5 web programming model
and the major pieces of its infrastructure. You used the programming model to write a
read-only RESTful service, and used the infrastructure to deploy and expose it.

While it could be that some of the services you build will be read-only, it is more likely
that your services will include other parts of the uniform interface in addition to GET.
In this chapter, I’ll show you how to put the WCF 3.5 web programming model to
work in building a read/write service that allows user agents to create, modify, and
delete resources.

POST, PUT, and DELETE
Chapter 1 discussed REST and the architectural constraints of the uniform interface.
See Figure 4-1 to refresh your memory about the uniform interface and how it should
work.

GET
• Retrieves a resource
• Guaranteed not to cause side-effect (SAFE)
• Cacheable

POST • Creates a new resource
• Unsafe, effect of this verb isn’t defined by HTTP

PUT
• Updates an existing resource
• Used for resource creation when client knows URI
• Can call N times, same thing will always happen (idempotent)

DELETE • Removes a resource
• Can call N times, same thing will always happen (idempotent)

Figure 4-1. REST uniform interface

59

Recall from Chapter 3 that WCF enables a RESTful programming model by allowing
annotation on methods via attributes. These attributes specify which method should
be invoked for each URI, and which part of the uniform interface each method imple-
ments. For example, WebGetAttribute will implement GET, and its UriTemplate property
value specifies the URI to which the method will respond.

All other verbs in the uniform interface (POST, PUT, and DELETE) are implemented using
the WebInvokeAttribute. WebInvokeAttribute also allows you to customize the URI that
the method will respond to through its own UriTemplate property. It also allows you
to set the HTTP verb so that you can not only implement the remainder of the uniform
interface, but you can implement HTTP verbs that are not part of the uniform interface.
Because we already examined GET and WebGetAttribute at length in Chapter 3, this
chapter will focus on WebInvokeAttribute.

Using WebInvokeAttribute
For this discussion, we will revisit the user/membership system example from Chap-
ter 1 by creating the code to implement that service using WCF, instead of just discus-
sing it in the abstract. The service from the last chapter is really a read-only service for
the most part (although not being overly familiar with the biological taxonomy system
perhaps there are more changes than I am aware of), so I think this example is better
for a read/write service. To refresh your memory, the sample service is a membership
system that stores information about users. First, let’s walk through the RESTful design
steps for this service in a slightly abbreviated fashion.

Resources
Our example service will expose the following resources:

• All users

• A particular user delineated by the user’s unique identifier

URIs and Uniform Interface
Table 4-1 shows the URIs and the parts of the uniform interface that we will implement
for each URI in our example.

Table 4-1. User service URIs

URI Method Description Output Input

/users GET Returns a representation of all users in the

system

users

collection

n/a

/users POST Creates a new user in the system, expects a

representation of the user in the HTTP body

user user (without the

user_id specified)

60 | Chapter 4: Programming Read/Write Services

URI Method Description Output Input

/users/

{user_id}

GET Returns the representation of a particular user,

based on the user’s identifier in the system

user n/a

/users/

{user_id}

PUT Modifies a user resource user user

/users/

{user_id}

DELETE Deletes a user from the system n/a n/a

It is important to reiterate here that you don’t have to implement the entire uniform
interface for all resources; the same service may expose read-only resources alongside
read/write resources. For example, the /users resource is read-only and does not im-
plement the DELETE method, because even if there aren’t any users, we still want that
resource to be there.

Representations
For this particular application, let’s use a custom XML format. The following code
defines two .NET classes you’ll use to represent the data: User represents each user,
and Users represents the collection of users.

[CollectionDataContract(Name = "users", Namespace = "")]
public class Users : List<User>
{
}
[DataContract(Name = "user", Namespace = "")]
public class User
{
 [DataMember(Name="id",Order=1)]
 public string UserId;
 [DataMember(Name = "firstname", Order = 2)]
 public string FirstName;
 [DataMember(Name = "lastname", Order = 3)]
 public string LastName;
 [DataMember(Name = "email", Order = 4)]
 public string Email;
}

Implementation
Next, we need a class annotated with the ServiceContractAttribute that has the ability
to keep track of users. For this example we’ll use a static data member with the list of
users:

[ServiceContract]
public class UserService
{
 static Users _users = new Users();
 //rest of the implementation to follow
}

Using WebInvokeAttribute | 61

Yes, this implementation flies in the face of the concept of statelessness in REST because
the service holds onto state (the list of users). Right now, however, we need to focus
on the semantics of writing the service infrastructure pieces of code with WCF. Instead
of this stateful implementation, imagine instead that we are storing the list of users in
a backend database and that the service implementation is totally stateless.

POST

POST is the part of the uniform interface that is typically used to create a new resource.
To implement POST as part of our RESTful WCF service, we annotate the CLR method
with the WebInvokeAttribute. We set the WebInvokeAttribute.Method property to the
string “POST” (although POST is the default, being explicit is usually a better policy)
and then we set the UriTemplate property to the template we want this method to
respond to. This will cause WCF to call the method on our service instance when a
request comes to the endpoint with a URI that matches the template when the HTTP
verb used in the request is POST.

The UriTemplate follows the same rules on the WebInvokeAttribute as it does on
WebGetAttribute. In fact, all of the UriTemplate definitions from all methods are parsed
and added to the endpoint’s UriTemplateTable in exactly the same way. When matching
against the UriTemplateTable, not only does the WCF web-dispatching infrastructure
look at the URI, it also looks at the HTTP verb from the request. This is why the
UriTemplate value can be the same for multiple service methods, as long as each ac-
cepted HTTP verb is different. Example 4-1 shows the first part of the UserService
definition, which relates to the top-level URI ("/users").

Example 4-1. Top-level URI implementation

[WebGet(UriTemplate = "/users")]
[OperationContract]
public Users GetAllUsers()
{
 return _users;
}
[WebInvoke(UriTemplate = "/users", Method = "POST")]
[OperationContract]
public User AddNewUser(User u)
{
 u.UserId = Guid.NewGuid().ToString();
 _users.Add(u);
 return u;
}
[WebGet(UriTemplate = "/users/{user_id}")]
[OperationContract]
public User GetUser(string user_id)
{
 User u = FindUser(user_id);
 return u;
}

62 | Chapter 4: Programming Read/Write Services

Note that UriTemplate value is the same for both GetAllUsers and AddNewUser, but one
uses the WebGetAttribute and one uses WebInvokeAttribute. The Method property of
WebInvokeAttribute on AddNewUser is POST, which is the method we’re most interested
in at the moment. The WCF web-dispatching infrastructure will use the HTTP verb to
differentiate requests to this URI and will route them to the appropriate method.

The code in Example 4-1 sets WebInvokeAttribute.Method to POST, even
though POST is the default. Explicitly defining default values (which
would be used even if you left them out) makes it easier to scan a contract
for the uniform interface.

Another interesting thing about this design is that it does not allow the service client
to set the resource identifier (in this case User.UserId). This is why the URI for both
getting all users and creating a new user is the same. In this case, the "/users" resource
acts like a factory when POST is used, and even if the UserId property is set, it will be
overwritten.

Your own design might end up being different in this regard. If you decide to allow
users to select the identifier for the resource, the URI for creating the new resource will
include the identifier and will thus be different from the collection URI. If the design
used here followed that pattern, the UriTemplate for the AddNewUser method would be
"/users/{user_id}". It would also be expected that the HTTP verb would be PUT instead
of POST to create the user resource. In most cases, it is difficult to design a service that
allows clients to decide on the identifiers because each identifier must be unique.

Because of this choice, the AddNewUser method in Example 4-1 doesn’t have a
UriTemplate-based parameter for user_id, but it does have a parameter: the complex
User type, which we defined earlier. It’s expected that when you implement POST and
PUT from the uniform interface you will accept a request body as part of the incoming
HTTP request message (DELETE on the other hand isn’t expected to have a request body).
When you use the WebInvokeAttribute on a method, the first parameter(s) of the
method are expected to be the template matches from the UriTemplate definition if
there are any. The last parameter is expected to be deserialized from the incoming HTTP
message body.

In Chapter 1, we looked at hypothetical images of what the requests and responses to
this service would look like. Let’s now look at images of actual interactions between a
user agent and the service, using a special user agent called Fiddler.

Fiddler is an incredibly useful tool for carrying out complex interactions between web-
sites and web services. Not only can it spy on requests going from a user agent to a
server, it can also allow you to build arbitrary HTTP requests using its Request Builder
functionality. See http://www.fiddlertool.com/ for more information about this useful
tool.

Using WebInvokeAttribute | 63

http://www.fiddlertool.com/

The Fiddler Request Builder tab allows you to create arbitrary HTTP
requests using different HTTP verbs and different representations as the
request body. It also allows you to see the response that the service
returned from those requests. This is an invaluable tool when building
services of any kind, but with RESTful services it can become the first
path testing client.

In Chapter 10, I’ll show you how to implement clients using WCF. For
now, we will concentrate on the service syntax and programming model
using the Fiddler tool.

The first thing we will do is view the current collection of users by passing a GET request
to the root URI. Figure 4-2 shows the Request Builder HTTP GET request, and Fig-
ure 4-3 shows the Session Inspector tab view for the same request.

Figure 4-2. Using Fiddler to GET to root URI

Figure 4-3. Fiddler Session Inspector view of GET request

64 | Chapter 4: Programming Read/Write Services

In this case we are hosting the WCF RESTful service inside of IIS, using
the .svc file capabilities instead of self-hosting, primarily for ease of de-
ployment and because using Fiddler is slightly easier when using port
80 for HTTP requests. See Chapter 5 for more details about hosting
options.

In Figure 4-3, you can see that the response to the HTTP GET request is an empty
collection. Our next step, then, is to add a user to the collection using a POST request
to the same URI, including an entity body of the right media type. Figure 4-4 shows
this request, and Figure 4-5 shows the response.

One important thing to note in Figure 4-4 is the Content-Type header. The Content-
Type header is essential when using RESTful services in general, but is especially

Figure 4-4. Creating a new user resource with HTTP POST to the root URI

Figure 4-5. POST request and result in Fiddler Session Inspector

Using WebInvokeAttribute | 65

important when making requests to RESTful services. If you don’t have a Content-Type
header in your HTTP request to a WCF service, you’ll always get a “415 Missing Con-
tent Type” status code. You don’t need the Content-Type header when making a GET
request, since there isn’t any entity body when making a GET request.

201 status code
I said in Chapter 1 that a call to POST should return a “201 Created” status code. This
is a pretty typical convention for RESTful services. In general, it is a good idea to take
advantage of the range of available HTTP status codes and be very explicit.

Unfortunately, WCF always returns either a “200 OK” HTTP status code (if a method
completes with no exceptions, regardless of the part of the uniform interface being
invoked) or a “400 Bad Request” code (if an exception is thrown).

You may want to be more expressive with the code you return to your clients. I’ll show
you how to customize status codes in Chapter 11.

In Figure 4-5 you can see the Fiddler Session Inspector tab. The raw option is selected,
and the service responded with a user resource (as shown by the new unique value in
the id element).

If we make another GET request to the root URI, we will see the newly added member.
Notice that in Figure 4-6 in the response content body that the id element now has a
value, and the unique identifier that is now part of the newly created user resource.

We can now use this identifier as part of a GET request for that particular resource
(Figure 4-7).

PUT

At this point, the service has one user resource, created via a POST request. Let’s now
turn our attention to using PUT.

Figure 4-6. Fiddler Session Inspector view of a GET request showing a newly added user resource

66 | Chapter 4: Programming Read/Write Services

Example 4-2 shows the service method that implements PUT and modifies a specific
user resource.

Example 4-2. Service method that implements PUT

[WebInvoke(UriTemplate = "/users/{user_id}", Method = "PUT")]
[OperationContract]
public User UpdateUser(string user_id,User update)
{
 User u = FindUser(user_id);
 UpdateUserInternal(u, update);
 return u;
}

The details of the UpdateUserInternal aren’t very important as it’s just a simple copy
of fields from the new user resource into the old, except for the UserId field. The more
interesting bit of code from Example 4-2 is that the UriTemplate value of this
WebInvokeAttribute is the same as the UriTemplate value on the single user resource
GET method (the GetUser method from Example 4-1). Remember, you can have multiple
methods with the same UriTemplate value, as long as the HTTP verb is different. The
GetUser method uses the WebGetAttribute; its method will inherently implement GET,
so requests to a particular user’s URI will be routed to the GetUser method when the
HTTP verb in the request is GET. The UpdateUser method will be called when a request
arrives for a specific user’s URI when the HTTP verb is PUT because the
WebInvokeAttribute.Method on the UpdateUser method is set to PUT.

To modify a resource, we can make a PUT request to the user’s URI, passing the correct
user resource representation (which in this case is XML). On success, the service returns
the same resource as the body of its response. You can see the request in Figure 4-8 and
the response in Figure 4-9.

Figure 4-7. Single resource GET request

Using WebInvokeAttribute | 67

You can see in Figure 4-8 that we changed the resource by modifying the email address.
The service returns a “200 OK” response code and returns the newly modified resource
as the response body.

DELETE

At this point, you probably have a pretty good idea of how the implementation of
DELETE is going to progress. Example 4-3 shows the code used to implement DELETE.

Figure 4-8. Using a PUT request to modify a user resource

Figure 4-9. PUT request and response in the Fiddler Session Inspector view

68 | Chapter 4: Programming Read/Write Services

Example 4-3. Implementing DELETE

[WebInvoke(UriTemplate = "/users/{user_id}", Method = "DELETE")]
[OperationContract]
public void DeleteUser(string user_id)
{
 User u = FindUser(user_id);
 _users.Remove(u);
}

You can see the interaction between the client and the service using DELETE in Figures
4-10 and 4-11.

RESTful convention dictates that DELETE will not accept or return a representation.
There really isn’t anything else special about implementing DELETE, other than making
sure to set the WebInvokeAttribute.Method property appropriately.

Full service implementation

Example 4-4 shows the entire service implementation from top to bottom.

Figure 4-10. Using DELETE in Fiddler

Figure 4-11. DELETE request and response in the Fiddler Session Inspector view

Using WebInvokeAttribute | 69

Example 4-4. Full read/write service implementation

[ServiceContract]
public class UserService
{
 static Users _users = new Users();

 [WebGet(UriTemplate = "/users")]
 [OperationContract]
 public Users GetAllUsers()
 {
 return _users;
 }
 [WebInvoke(UriTemplate = "/users", Method = "POST")]
 [OperationContract]
 public User AddNewUser(User u)
 {
 u.UserId = Guid.NewGuid().ToString();
 _users.Add(u);
 return u;
 }
 [WebGet(UriTemplate = "/users/{user_id}")]
 [OperationContract]
 public User GetUser(string user_id)
 {
 User u = FindUser(user_id);
 return u;
 }
 User FindUser(string user_id)
 {
 User ret = null;
 var result = (from u in _users
 where u.UserId == user_id
 select u).Single();
 if (result != null)
 ret = result;
 else
 ret = new User();
 return ret;

 }
 [WebInvoke(UriTemplate = "/users/{user_id}", Method = "PUT")]
 [OperationContract]
 public User UpdateUser(string user_id, User update)
 {
 User u = FindUser(user_id);
 UpdateUserInternal(u, update);
 return u;
 }

 private void UpdateUserInternal(User u, User update)
 {
 u.Email = update.Email;
 u.FirstName = update.FirstName;
 u.LastName = update.LastName;

70 | Chapter 4: Programming Read/Write Services

 }
 [WebInvoke(UriTemplate = "/users/{user_id}", Method = "DELETE")]
 [OperationContract]
 public void DeleteUser(string user_id)
 {
 User u = FindUser(user_id);
 _users.Remove(u);

 }
}

Summary
In this chapter, you learned how to finish implementing the uniform interface using
WCF. Use WebInvokeAttribute to implement any HTTP method other than GET, and
use the WebInvokeAttribute.Method property to specify which HTTP method the CLR
method should respond to. You can customize the URI using the
WebInvokeAttribute.UriTemplate property. WCF routes messages to the methods on
instances of your service type by looking for a match based on the URI and the HTTP
verb.

There is still more that you can do to make your services compliant with the constraints
of REST. Chapter 11 has more information about extending beyond the basic infra-
structure of the WCF web-programming model and using the full breadth of HTTP in
your service.

Summary | 71

CHAPTER 5

Hosting WCF RESTful Services

Once you’re ready to deploy your RESTful service using WCF, you’ll need to make a
decision faced by every WCF service developer: where to host your service. The
decision-making process should revolve around the capabilities that different hosting
options can provide your endpoint. Those capabilities include process lifetime, process
token, and security management, as well as general process management capabilities.
In this chapter, we’ll examine the issues around hosting WCF services in your own
process, which is known as self-hosting. We’ll also look at managed hosting, the name
used to describe hosting WCF services inside of Internet Information Server (IIS).

WCF REST Hosting Isn’t a Special Case
Hosting a WCF service involves loading and running endpoints inside of an executable
process. Because WCF is a CLR-based technology, you can host your endpoint inside
of any executable process that can load the CLR. The main options are Windows Serv-
ices, Windowed applications (like Windows Forms or Windows Presentation Foun-
dation), or IIS.

WCF processes messages through a construct known as an endpoint. To start a WCF
endpoint in a particular process, you must create a channel listener. Although there are
a few ways to do this, by far the most common is to rely on the ServiceHost class to
provide the infrastructure for loading up and starting channel listeners for endpoints
configured on the ServiceHost instance.

An important thing to keep in mind when thinking about hosting your WCF REST
endpoint is that it is simply a WCF endpoint. By this I mean that an endpoint using
the WebHttpBinding is just like any other WCF binding. From a technical aspect, hosting
a WebHttpBinding endpoint is exactly the same as hosting any other WCF endpoint.

ServiceHost, or its web counterpart WebServiceHost, is the mechanism for getting your
service up and running. You can load ServiceHost/WebServiceHost into any process that
has loaded the CLR. You can load ServiceHost/WebServiceHost into any CLR
AppDomain, and there is no limit to the number of ServiceHost instances you can have

73

in a particular AppDomain; you can have as many as necessary based on your configura-
tion needs. Even though WebServiceHost is specialized for use with RESTful endpoints,
it isn’t any different from the general WCF ServiceHost case from this point of view.

On the other hand, there are some special considerations you need to keep in mind
when planning to host a WebHttpBinding that aren’t pertinent when thinking about
hosting other WCF bindings. Most of these considerations, in my opinion at least, end
up pointing toward hosting your endpoints inside of IIS. First we’ll discuss the respon-
sibilities you’ll have as a developer during self-hosting, and then we’ll wrap up with the
capabilities you get when you host in IIS.

Self-Hosting
Self-hosting is when you write the code that creates at least one instance of
ServiceHost and calls ServiceHost.Open on that instance. The process that contains this
code can be any kind of process that can load the CLR. The options are a Console
Application, a Windows Form, Windows Presentation Foundation (WPF) application,
or a Windows Service. Of course, your application might create and manage more than
one ServiceHost instance, which is perfectly legal.

The flexibility of using different processes for your ServiceHost is one of the reasons to
adopt self-hosting instead of managed hosting. The main responsibilities you will have
when self-hosting are creating, configuring, and opening your instances of ServiceHost.

Because you will be writing all the code, you will also have to manage the process
lifetime, including making sure the ServiceHost closes appropriately when the process
shuts down. Another issue you’ll have to deal with is process identity: Who does the
process run as? It’s pretty common for your service to access secure resources (e.g.,
files, databases) and depending on how your code is written, the user your process is
running as may become the user that is accessing the secure resources.

Configuring, Opening, and Closing a ServiceHost
In earlier chapters, you learned the basics of hosting WebHttpBinding endpoints, and if
you’ve worked with WCF before reading this book, you’re probably already familiar
with the ServiceHost class. The ServiceHost class is used for hosting WCF channel
listeners, which listen for messages over a particular address and protocol. Service
Host is used explicitly in the self-hosting case and implicitly in the managed hosting
case. We’ll get to the implicit usage later in this chapter.

To configure a ServiceHost instance, you call ServiceHost.AddServiceEndpoint once
for each endpoint you want to expose from that service. You can configure endpoints
using code, a configuration file, or both. You may also want to configure other parts
of ServiceHost, such as service or endpoint behaviors, before you call ServiceHost.Open.

74 | Chapter 5: Hosting WCF RESTful Services

It is important to remember that the configuration of the ServiceHost is
based on the type passed to the ServiceHost’s constructor, generally
known as the service type. The fully qualified type name of the service
type must match the name attribute on the service element in the con-
figuration file to make the configuration happen. It is also important to
note that it happens during the execution of the constructor of the
ServiceHost. This means anything you do with code will overwrite
whatever is in the configuration file.

When configuring each ServiceHost endpoint you must specify the binding. Recall that
the binding indicates how the WCF hosting infrastructure should build the channel
stack.

When hosting RESTful services you must also use WebHttpBehavior on each endpoint
so that the WCF dispatching layer will appropriately route HTTP messages to the
methods on your service instance. If you don’t configure this behavior on each end-
point, the WebGetAttribute/WebInvokeAttribute routing declarations won’t work.

Example 5-1 shows a simple example of hosting a WebHttpBinding endpoint inside of a
Console Application using ServiceHost, rather than WebServiceHost.

Example 5-1. Simple use of ServiceHost

ServiceHost sh =
 new ServiceHost(typeof(HostingExample));
ServiceEndpoint se = sh.AddServiceEndpoint(typeof(HostingExample),
 new WebHttpBinding(),
 "http://localhost:8080/Hosting");
se.Behaviors.Add(new WebHttpBehavior());
sh.Open();
Console.WriteLine("Service is running...");
Console.ReadLine();
sh.Close();

The code in Example 5-1 is pretty straightforward and simple. First, you create the
ServiceHost passing in the service type to the constructor (in this case the type is named
HostingExample). Next you call AddServiceEndpoint, specifying the contract (which is
the same as the service type in this case), binding (WebHttpBinding), and address (which
needs to use HTTP).

Next, get the ServiceEndpoint object back from the call to AddServiceEndpoint. You
need this object reference so you can add the WebHttpBehavior to the
ServiceEndpoint.Behaviors collection.

Finally, a call to ServiceHost.Open is necessary to get the communication up and run-
ning. In this case we also need a way to keep the process alive while we want to process
messages. A simple way to do this when using a Console Application is to call
Console.ReadLine. When the service stops (after pressing Enter on the console in this
particular case), we call ServiceHost.Close to clean up any remaining resources.

Self-Hosting | 75

This code isn’t very robust, because when it calls ServiceHost.Open or
ServiceHost.Close all sorts of bad things could happen. What if the binding isn’t com-
patible with a particular contract? What if the URI is already being listened on? The
typical response to this problem would be to put the call to ServiceHost.Open in a try
block and just call ServiceHost.Close inside of the finally block. That would be the
correct way to write this code except for the fact that ServiceHost.Close is only to be
used when gracefully shutting down a service (i.e., it will block and wait for currently
executing requests to finish before shutting down). Calling ServiceHost.Close when
something has gone wrong will actually cause another exception to be thrown, so we
can’t use a typical try/catch/finally block to deal with ServiceHost lifetime.

The way to deal with this problem is to write code that takes the various states of
ServiceHost into account. The ServiceHost.State property will show you the current
state of your ServiceHost instance. In fact, this property is part of an interface named
ICommunicationObject. Each WCF communication class (each class that uses some sort
of communication stack) implements this interface, including of course ServiceHost
(inherited from the ServiceHostBase base class). Each ICommunicationObject imple-
mentation acts like a state-machine, and you can always check a communication ob-
ject’s state by using the State property. Table 5-1 shows the values for Communication
State, which is the type of ICommunicationObject.State property. Note that Service
Host also fires an event for all of its states except Created, so you can subscribe to those
events on your ServiceHost instance if you are interested.

Table 5-1. CommunicationState values

Value Description Event

Created The object has been created, but is not yet being used for communication n/a

Opening The object has started, but has not completed the process of opening Opening

Opened The object is open and ready for communication Opened

Closing The object has started, but has not completed the process of closing Closing

Closed The object is closed Closed

Faulted The object has faulted Faulted

This can help us with the robustness issue because ICommunicationObject implemen-
tations allow some state transitions and disallow others. For example, you can’t move
from Faulted to Open because once an ICommunicationObject is in the Faulted state, it
can’t perform any communication. This rule also applies to the ServiceHost.Close
method, since it initiates an ordered shutdown of a ServiceHost. The ServiceHost in-
stance tries to perform communication cleanup when ServiceHost.Close is called, and
if the ServiceHost is in the Faulted state, ServiceHost.Close will throw an exception
(although it will move the state to Closed in the process).

But even if a ServiceHost instance is in the Faulted state, you can call
ServiceHost.Abort, which is kind of like pulling the power cord on your computer

76 | Chapter 5: Hosting WCF RESTful Services

(where calling Close is like shutting down your computer normally). You should only
resort to ServiceHost.Abort when calling ServiceHost.Close would throw an exception,
which is when the ServiceHost instance is in the Faulted state.

A more appropriate way to write the code to open a ServiceHost is shown in Exam-
ple 5-2.

Example 5-2. More robust use of ServiceHost

ServiceHost sh =
 new ServiceHost(typeof(HostingExample));
//flag to check if call to Open succeeded
bool openSucceeded = false;
try
{
 ServiceEndpoint se = sh.AddServiceEndpoint(typeof(HostingExample),
 new WebHttpBinding(),
 "http://localhost:8080/Hosting");
 se.Behaviors.Add(new WebHttpBehavior());
 sh.Open();
 openSucceeded = true;
}
catch (Exception ex)
{
 Console.WriteLine("ServiceHost failed to open {0}",ex.ToString());
}
finally
{ //call Abort since the object will be in the Faulted state
 if (!openSucceeded)
 sh.Abort();
}
if (openSucceeded)
{
 Console.WriteLine("Service is running...");
 Console.ReadLine();
}
else
 Console.WriteLine("Service failed to open");

I used a Boolean value in this code to check for success rather than
checking the state of the object because when working with
ICommunicationObject implementations (not ServiceHost, however),
there can sometimes be failures without the object changing states. Al-
though this isn’t the case here, I have used the typical and
well-documented pattern for consistency with other samples you might
see.

The code in Example 5-2 calls ServiceHost.Open inside of a try block. Inside of the
finally block we call ServiceHost.Abort if the call to ServiceHost.Open failed (indicated
in this case by a local Boolean variable).

Self-Hosting | 77

Another thing you can do to make this code more robust is to put in an
automatic retry code that will attempt to open the ServiceHost if it fails
initially (or a specified number of times). Whether you want to do this
or simply log the failure for human intervention is up to you.

The call to ServiceHost.Close should be put inside of similarly robust code, as shown
in Example 5-3.

Example 5-3. Robust ServiceHost.Close

bool closeSucceeded = false;
try
{//try to close
 sh.Close();
 closeSucceeded = true;
}
catch (Exception ex)
{
 Console.WriteLine("ServiceHost failed to close {0}",ex.ToString());
}
finally
{//abort if the call to close failed because we'll be in the Faulted state
 if (!closeSucceeded)
 sh.Abort();
}

The code in Example 5-3 follows the same pattern as the code we used to call
ServiceHost.Open. This code places the call to ServiceHost.Close inside a try block
and, if successful, will check the finally block to see if the call to ServiceHost.Close
succeeded or not (again based on a local Boolean value set to true only if the call to
ServiceHost.Close succeeds). If the ServiceHost is in the Faulted state, the code ap-
propriately calls ServiceHost.Abort.

This pattern illustrates why you shouldn’t put ServiceHost inside of a using block, even
though your .NET development habits tell you to do this. ServiceHost implements
IDisposable, and if we follow good .NET habits, this means we should always put
objects that implement IDisposable in a using block like the one shown in Example 5-4.

Example 5-4. Incorrect management of ServiceHost lifetime

static void DontDoThis()
{
 try
 {
 //DON'T DO THIS - THIS IS AN EXAMPLE OF BAD CODE!!!!!
 using (ServiceHost sh =
 new ServiceHost(typeof(HostingExample)))
 {

 ServiceEndpoint se = sh.AddServiceEndpoint(typeof(HostingExample),
 new WebHttpBinding(),

78 | Chapter 5: Hosting WCF RESTful Services

 "http://localhost:8080/Hosting");
 se.Behaviors.Add(new WebHttpBehavior());
 //what if call to Open fails? We move to Faulted
 sh.Open();
 //This code never executes
 Console.WriteLine("Service is running...");
 Console.ReadLine();
 sh.Close();
 //when the using block exits,
 //IDisposable.Dispose will be called
 //ServiceHostBase.Dispose calls Close
 //Calling Close on a Faulted object causes
 //an exception to be thrown
 }
 }
 catch (Exception ex)
 {
 //this will be the wrong exception - the one that caused
 //ServiceHost.Open will be lost
 Console.WriteLine("Service host didn't open {0}", ex.Message);
 }
}

The comments in Example 5-4 lay out what is wrong with the code, but the basic
problem is that if ServiceHost.Open or ServiceHost.Close fails, that exception will be
lost, and the same exception (the one about not being able to use a communication
object when it is in the faulted state) will always be available outside of the using block.

The communication object, System.ServiceModel.ServiceHost, cannot be used for com-
munication because it is in the Faulted state.

Seeing this generic exception instead of the real exception will lead to confusion since
it is difficult to debug the real source of the problem, so the rule is, never put Service
Host in a using block.

Base Addresses
When you are self-hosting, you can set up base addresses. Base addresses are just URIs,
but rather than being the full URI that your service will be listening on, they are what
their name implies: addresses that are used as the base path for a URI that will have
additional relative path segments added after the base path. When you configure base
addresses on your ServiceHost instance, you can specify relative URIs for your end-
points instead of fully qualified URIs. The WCF hosting infrastructure will then add
the relative URIs to the base URIs, and the new full URIs will be used as the address
for the endpoint. You can configure base addresses in the code or in the configuration
file. In code, they are passed to the constructor of ServiceHost, as you can see in
Example 5-5.

Self-Hosting | 79

Example 5-5. Adding base addresses using code

//pass in a base address
ServiceHost sh =
 new ServiceHost(typeof(HostingExample),
 new Uri("http://localhost:8080/"));
ServiceEndpoint se = sh.AddServiceEndpoint(typeof(HostingExample),
 new WebHttpBinding(),
 "Hosting");
//"Hosting"will be added to base address to form the full URI

If you are using the configuration file to add base addresses, place them under the host/
baseAddresses element under each service element, as shown in Example 5-6.

Example 5-6. Configuring base addresses in the configuration file

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
 <system.serviceModel>
 <services>
 <service name="SimpleWebHosting.HostingExample">
 <host>
 <baseAddresses>
 <add baseAddress="http://localhost:8080"/>
 </baseAddresses>
 </host>
 </service>
 </services>
 </system.serviceModel>
</configuration>

ServiceHost will look at the scheme of each endpoint’s binding and attempt to match
a relative address from an endpoint to a base address based on the scheme the binding
exposes (each binding object has a Binding.Scheme property). Since we are using
WebHttpBinding, its scheme is used, which is HTTP.

There are some rules to follow when using base addresses. First, you can have only one
base address per scheme, which means when using WebHttpBinding you can have only
one base address that uses HTTP. The result is that when building RESTful services,
you can have only one base address, unless you are hosting endpoints that use other
bindings on the ServiceHost instance you are using to host WebHttpBinding endpoints.

The second rule is that, if you use a relative address when configuring an endpoint,
there must be a scheme match in the base addresses, otherwise the call to
ServiceHost.Open will fail.

ServiceHost Versus WebServiceHost
So far in this chapter, we have discussed the ServiceHost type. .NET 3.5 includes a new
WebServiceHost type that derives from ServiceHost. You will almost always use
WebServiceHost as the ServiceHost type when hosting RESTful endpoints.

80 | Chapter 5: Hosting WCF RESTful Services

WebServiceHost has some extra functionality, but everything I’ve told you so far about
ServiceHost (like how to properly call Open/Close/Abort) also applies when using
WebServiceHost.

WebServiceHost does the following:

• Disables metadata (e.g., WSDL and mex) to make sure the metadata URIs won’t
interfere with your UriTemplate definitions. This only happens if code or configu-
ration mistakenly tried to enable metadata publishing.

• Automatically creates endpoints for all your contract types using the
WebHttpBinding so you don’t have to call AddServiceEndpoint or add configuration
to the configuration file.

• Adds the WebHttpBehavior to all endpoints so the URI+Verb routing of messages
to service instance methods will work.

When choosing between using ServiceHost or WebServiceHost, the determining factor
will typically be whether or not you have non-WebHttpBinding endpoints exposed via
your service. If you do, use ServiceHost. See Figure 5-1.

ServiceHost

WebHttpBinding

WebHttpBinding

XBinding

WebServiceHost

WebHttpBinding

WebHttpBinding

WebHttpBinding

Host Process

Figure 5-1. Self-hosting ServiceHost/WebServiceHost

You should only use ServiceHost if you are hosting RESTful and non-
RESTful endpoints from the same service (a practice that you might
want to avoid in the first place, due to its complex nature).

If you are hosting WebHttpBinding endpoints only, WebServiceHost is the way to go.
Example 5-7 shows the earlier “robust” open and close cases from Examples 5-4 and
5-5 with WebServiceHost. This allows us to remove the call to AddServiceEndpoint and
ServiceEndpoint.Behaviors.Add.

Self-Hosting | 81

Example 5-7. Using WebServiceHost

ServiceHost sh =
 new WebServiceHost(typeof(HostingExample),
 new Uri("http://localhost:8080/Hosting"));
bool openSucceeded = false;
try
{
 sh.Open();
 openSucceeded = true;
}
catch (Exception ex)
{
 Console.WriteLine("ServiceHost failed to open {0}", ex.ToString());
}
finally
{
 if (!openSucceeded)
 sh.Abort();
}
if (sh.State == CommunicationState.Opened)
{
 Console.WriteLine("Service is running...");
 Console.ReadLine();
}
else
 Console.WriteLine("Service failed to open");
bool closeSucceeded = false;
try
{
 sh.Close();
 closeSucceeded = true;
}
catch (Exception ex)
{
 Console.WriteLine("ServiceHost failed to close {0}", ex.ToString());
}
finally
{
 if (!closeSucceeded)
 sh.Abort();
}

If you are hosting multiple contracts (e.g., if your service type implements more than
one contract interface type), the WebServiceHost auto-configuration of the service type
will fail. When you are implementing multiple contracts on a service type and using
WebServiceHost, you must use either AddServiceEndpoint or the configuration file ex-
plicitly for all your endpoints. An exception will be thrown on the call to WebService
Host.Open in Example 5-8. Note that this sample doesn’t use correct robust hosting
code.

82 | Chapter 5: Hosting WCF RESTful Services

Example 5-8. Multiple contracts with WebServiceHost

class Program
{
 static void Main(string[] args)
 {
 WebServiceHost sh =
 new WebServiceHost(typeof(ServiceType),
 new Uri("http://localhost:8080/Hosting"));
 sh.Open();
 Console.WriteLine("Service is running");
 Console.ReadLine();
 }
}

public class ServiceType : IWebOne, IWebTwo
{
 string IWebOne.One()
 {
 return "One";
 }
 string IWebTwo.Two()
 {
 return "Two";
 }
}
[ServiceContract]
public interface IWebOne
{
 [OperationContract]
 [WebGet(UriTemplate = "/conflict")]
 string One();
}
[ServiceContract]
public interface IWebTwo
{
 [OperationContract]
 [WebGet(UriTemplate="/conflict")]
 string Two();
}

Example 5-8 illustrates why WebServiceHost can’t auto-configure both endpoints using
the base address. There isn’t anything in a RESTful service contract that would allow
both sets of URIs to exist at the same base URI.

The specific exception thrown is:

Service ServiceType implements multiple ServiceContract types and no endpoints are
defined in the configuration file. WebServiceHost can set up default endpoints, but only
if the service implements only a single ServiceContract. Either change the service to only
implement a single ServiceContract, or else define endpoints for the service explicitly in
the configuration file.

To resolve this issue, you must either use the configuration file or use
AddServiceEndpoint explicitly from the code.

Self-Hosting | 83

The only way to avoid this problem altogether is to be specific on each endpoint and
create two unique URIs so that there won’t be a URI conflict. When using WebService
Host, I have to be explicit about using AddServiceEndpoint or the endpoint configuration
element when my service type implements multiple service contracts.

Unfortunately, WebServiceHost has an implementation detail relating to this problem,
which I consider to be a bug. When working with multiple contracts, you can’t use a
base address at all. Even if the relative addresses of the endpoints would create unique
URIs for each endpoint, using a base address will result in the above-mentioned ex-
ception. This occurs whether you use code or configuration to create the endpoints.
You can use the code in Example 5-9 to work around the bug.

Example 5-9. Using explicit addresses with multiple contracts

WebServiceHost sh =
 new WebServiceHost(typeof(ServiceType));
//Can't use base addresses if more than one contract
//new Uri("http://localhost:8080/Hosting"));
sh.AddServiceEndpoint(typeof(IWebOne),
 new WebHttpBinding(),
 "http://localhost:8080/Hosting/webone");
sh.AddServiceEndpoint(typeof(IWebTwo),
 new WebHttpBinding(),
 "http://localhost:8080/Hosting/webtwo");
sh.Open();
Console.WriteLine("Service is running");
Console.ReadLine();

Notice that in Example 5-9 the URIs for each contract actually use the same base ad-
dress, so the endpoint addresses are exactly the same as if you were allowed to use a
base address. This bug is annoying, but it isn’t a show-stopping problem because there
is a work-around, and since having multiple contracts shouldn’t come up very often.

You might think that WebServiceHost loses some of its shininess if you have to use
AddServiceEndpoint explicitly. Although that’s probably true, it still performs two other
main tasks: removing metadata URIs (if necessary) and adding the WebHttpBehavior to
all the endpoints. The adding of the WebHttpBehavior automatically is the functionality
I find most useful, since it’s pretty easy to call AddServiceEndpoint or use the configu-
ration file and forget to add the WebHttpBehavior.

Custom ServiceHost
Another technique you might use when self-hosting is to simplify the configuration of
your ServiceHost even further by creating a class that derives from ServiceHost or
WebServiceHost. You can then use that class instead of ServiceHost/WebServiceHost.
This is advantageous when you find some repeatable pattern of configuration or usage
that you can codify into a ServiceHost subclass, which will make your hosting code
more compact and less error-prone.

84 | Chapter 5: Hosting WCF RESTful Services

Examples of things you might do with a custom ServiceHost/WebServiceHost type:

• Always add a particular behavior to the ServiceHost or to individual endpoints

• Validate configuration

• Override Dispose (you can modify Dispose to have correct behavior when your
ServiceHost is created inside of a using block)

• Handle events in a consistent way

This is not an exhaustive list of things you can control in your hosting environment
when you create a custom ServiceHost, merely a few examples. If you are building
multiple services, or using multiple ServiceHost instances inside of a particular host
process, you might find a custom ServiceHost very useful.

For example, suppose you were using WebServiceHost for its ease of configuration. In-
stead of having developers on the team write all the “safe” opening and closing code
(which also means that code will have to be reviewed for those issues as well), you can
simply build a “safe” WebServiceHost. See Example 5-10.

Example 5-10. “Safe” WebServiceHost-derived class

public class SafeCloseWebServiceHost : WebServiceHost
{
 public SafeCloseWebServiceHost(Type t, params Uri[] baseAddys)
 : base(t, baseAddys)
 {

 }
 public bool SafeOpen()
 {
 bool openSucceeded = false;
 try
 {
 this.Open();
 openSucceeded = true;
 }
 catch (Exception ex)
 {
 Console.WriteLine("ServiceHost failed to open {0}", ex.ToString());
 }
 finally
 {
 if (!openSucceeded)
 this.Abort();
 }
 if (this.State == CommunicationState.Opened)
 {
 Console.WriteLine("Service is running...");
 Console.ReadLine();
 }
 else
 Console.WriteLine("Service failed to open");
 return openSucceeded;

Self-Hosting | 85

 }
 public bool SafeClose()
 {
 bool closeSucceeded = false;
 try
 {
 this.Close();
 closeSucceeded = true;
 }
 catch (Exception ex)
 {
 Console.WriteLine("ServiceHost failed to close nicely {0}",
 ex.ToString());
 }
 finally
 {
 if (!closeSucceeded)
 this.Abort();
 }
 return closeSucceeded;
 }
}

If I built and mandated the use of SafeCloseWebServiceHost from Example 5-10 in my
project instead of the WebServiceHost class, all the code that opens and closes Service
Host instances would be greatly simplified.

Building a custom ServiceHost is probably overkill for a small project, but for a larger
project (or several small projects), it can certainly be worthwhile to have your desired
usage of ServiceHost codified into a custom ServiceHost class.

Hosting in IIS
The other way to host your WCF services is to configure them to run inside of IIS. This
is referred to as managed hosting, since IIS is managing all of the following:

• Process startup and shutdown

• Process pooling and recycling

• AppDomain restart when code or configuration is changed

• Security identity

There are two additional significant advantages to hosting in IIS (there could be more,
but I’m fixated on these two). One is that IIS has management capabilities already built
in, both in terms of a management UI (the IIS Manager tool) and in terms of API
(accessible from WMI and .NET code).

86 | Chapter 5: Hosting WCF RESTful Services

When discussing WCF in general, it’s common to refer to managed
hosting as hosting in IIS/WAS. WAS is the acronym for Windows Process
Activation Services (I guess the acronym is really WPAS, but most peo-
ple still refer to it by its early name, Windows Activation Services or
WAS).

WAS is connected to IIS in that it uses the same process model
(w3wp.exe) and the same administration tool. You can use WAS with-
out having IIS installed. WAS allows you to use HTTP-type activation
semantics for protocols other than HTTP (TCP and MSMQ, for exam-
ple). Since in this book we are only concerned with HTTP, I’m not dis-
cussing WAS, but I wanted to address it briefly to be thorough.

The other advantage is the ease with which you can configure caching behavior for
REST endpoints using IIS (for a more detailed discussion of caching see Chapter 11).

When hosting your services inside of IIS, you remove some of the responsibilities you
have when self-hosting. The IIS infrastructure handles the creation, configuring, open-
ing, and closing of the ServiceHost type.

WCF integrates with IIS using the same method ASP.NET uses to integrate with IIS.
Although ASP.NET integrates into IIS differently depending on the version (ASP.NET
and IIS are much more tightly integrated in IIS7 than in IIS6), conceptually IIS routes
HTTP requests to ASP.NET based on the URI of the request being made. ASP.NET
registers itself to handle particular URIs. If the URI being requested is registered as one
that ASP.NET will handle, IIS transfers the request to ASP.NET.

In IIS, URIs are typically configured to be routed to ASP.NET based only on the file
extension part of the URI (although it is possible to do wildcard and literal path map-
pings as well). Once ASP.NET receives a request, it uses a list of registered managed
handlers to choose the .NET type to create to process the incoming request.

To host WCF inside of IIS, it must be registered to handle requests for particular URIs
in both the IIS and ASP.NET configuration. This happens automatically when you
install .NET 3.5, but WCF also comes with a command-line tool
(ServiceModelReg.exe) that can be used to control and modify the WCF configuration
with IIS/ASP.NET.

ASP.NET is an extensible framework for handling HTTP requests and routing them to
instances of .NET types. A type handles requests inside of ASP.NET by registering itself
as a handler for particular URIs. Handlers inside of ASP.NET are also generally based
on the file extension of a particular URI. All handlers in ASP.NET implement the same
interface, IHttpHandler. To get integrated with ASP.NET, WCF has registered
the .svc file extension to be handled by its IHttpHandler implementation
(System.ServiceModel.Activation.HttpHandler if you are interested). The .svc file map-
ping is also done in the IIS configuration to map requests to .svc files to be processed
by ASP.NET, and then ASP.NET hands the request off to WCF’s handler.

Hosting in IIS | 87

An .svc file is just a text file that is placed inside of an IIS virtual directory. In addition
to its handler, WCF also installs an IHttpModule implementation. IHttpModule is a
higher-level construct in ASP.NET than a handler, and is generally there to perform
functions such as authentication and caching, as a module can handle more than just
one type of request and generally doesn’t actually process the request or generate a
response. Modules register themselves to be called for various ASP.NET events before
and after a handler does the actual processing of each request.

In the case of WCF, its System.ServiceModel.Activation.HttpModule registers itself to
be notified of ASP.NET’s PostAuthenticateRequest event.

Authentication isn’t done by the module, but actually takes place at the
IIS/ASP.NET level (see Chapter 8 for more information about security).

In its event handler, the WCF module determines if the request is for an .svc file. If it
is, the module that causes the request is passed to the WCF Channel Stack. The main
purpose of the handler is to ensure that requests ending in .svc are actually sent to IIS/
ASP.NET. When ASP.NET compatibility mode is enabled the handler actually executes
the request (this is discussed in more detail later in this chapter). This configuration of
objects (where the module actually processes the request) isn’t typical when using
ASP.NET and that is why we are discussing it here.

When ASP.NET receives an HTTP request for the .svc file extension, the WCF infra-
structure that is loaded into ASP.NET will create, configure, and open a ServiceHost
instance. The configuration of the ServiceHost is implicitly handled by the WCF con-
figuration infrastructure when the ServiceHost instance is constructed.

The .svc file follows the ASP.NET convention of having a directive in the first line. In
the case of the .svc file, this is the ServiceHost directive. The only required attribute on
the directive line is Service, which has to point to a valid .NET type to implement one
or more ServiceContracts. Here is a sample .svc file:

<%@ ServiceHost Service="SimpleWebHosting.HostingExample, SimpleWebHosting" %>

When a request is made to this URI, WCF creates a ServiceHost based on the type
specified in the service attribute. This, of course, implies that this type can be loaded,
so the assembly that contains the type must either be in the bin directory or the GAC
(if it is fully qualified).

To make this service work an entry must be put into the web.config configuration file,
as shown in Example 5-11.

Example 5-11. Web.config entries for svc file

<system.serviceModel>
 <behaviors>
 <endpointBehaviors>

88 | Chapter 5: Hosting WCF RESTful Services

 <behavior name="web">
 <webHttp/>
 </behavior>
 </endpointBehaviors>
 </behaviors>
 <services>
 <service name="SimpleWebHosting.HostingExample ">
 <endpoint address="" binding="webHttpBinding"
 contract="SimpleWebHosting.HostingExample "
 behaviorConfiguration="web"/>
 </service>
 </services>
</system.serviceModel>

Because ServiceHost is created automatically based on the .svc, we can only configure
the endpoints using the web.config configuration file. The WCF infrastructure looks
for a match between the Service attribute in the .svc file and the name attribute of a
service element in the configuration file. If a service element match is found, an end-
point is configured according to the service/endpoint element (there can be multiple
endpoint elements under a single service element).

The Service attribute in the .svc file must have a more fully qualified
name than the entries in the configuration file. WCF requires the as-
sembly name as part of the service attribute in order to load the type
into memory. Once it loads the type, WCF looks for the type name
(without the assembly name) in the configuration file for both the
name and contract attributes.

The configuration in Example 5-11 causes the endpoint to be configured using
WebHttpBinding as the binding. The behaviorConfiguration attribute points to a
behavior element by name (under the endpointBehaviors element). The behaviors
found in that named behavior element will be added to the
ServiceEndpoint.Behaviors collection. The WebHttpBehavior is then added to this end-
point based on this configuration. This is the exact configuration we need to build a
RESTful endpoint (the WebHttpBinding and the WebHttpBehavior).

In this example, the service type is compiled into an assembly added to the bin directory
of the ASP.NET virtual directory. If we were using a “web project,” where ASP.NET
dynamically compiles the code the first time the site is hit, the service type could be
inside of a code file in the special App_Code directory. In this case, you can actually put
the service type definition inline inside of the .svc file itself. In that case (shown in
Example 5-12), WCF compiles the type on demand the first time the .svc file is reques-
ted (to do this, WCF has also registered a build provider with ASP.NET, which is how
it can get involved in the compilation step).

Hosting in IIS | 89

Example 5-12. Inline service type definition

<%@ ServiceHost Service="InlineService" Language="C#" %>
using System;
using System.ServiceModel;
using System.ServiceModel.Web;

[ServiceContract]
public class InlineService{

[OperationContract]
[WebGet(UriTemplate="*")]
public string InlineServiceMethod()
{
 return "I got compiled by WCF into " + this.GetType().AssemblyQualifiedName;
}
}

When we access this endpoint, we get the following result. This result will be slightly
different every time the page is recompiled based on AppDomain or a process restart.

<string xmlns="http://schemas.microsoft.com/2003/10/
Serialization/">I got compiled by WCF into InlineService, App_Web_ihhk0qkc,
 Version=0.0.0.0, Culture=neutral, PublicKeyToken=null</string>

This is a pretty interesting piece of functionality, but as is the case with the precompiled
service type in Example 5-11, we still need to add the appropriate entry into the
web.config file to make the code work as shown in Example 5-13.

Example 5-13. Inline service configuration

<system.serviceModel>
<behaviors>
 <endpointBehaviors>
 <behavior name="web">
 <webHttp/>
 </behavior>
 </endpointBehaviors>
</behaviors>
<services>
 <service name="SimpleWebHosting.HostingExample">
 <endpoint address=""
 binding="webHttpBinding"
 contract="SimpleWebHosting.HostingExample"
 behaviorConfiguration="web"/>
 </service>
<!—this is for the service that is inside of the .svc file -->
 <service name="InlineService">
 <endpoint address=""
 binding="webHttpBinding"
 contract="InlineService"
 behaviorConfiguration="web"/>
 </service>
</services>
</system.serviceModel>

90 | Chapter 5: Hosting WCF RESTful Services

Having to add configuration into the web.config file for each service becomes a little
tedious. It would be nice to not have to put the entries into the web.config file. We
already discussed how to use WebServiceHost to do this in the case of self-hosting. If we
could use WebServiceHost in the managed hosting case it could help simplify the con-
figuration of RESTful endpoints.

Earlier in this section, I described how the WCF infrastructure creates a ServiceHost
instance and calls ServiceHost.Open on that instance based on the first incoming HTTP
request. Neither the module nor the handler creates the ServiceHost directly; instead,
they go through a well-known layer of indirection. That layer of indirection is a classic
factory pattern that is implemented by a type named ServiceHostFactory.

WCF calls ServiceHostFactory.CreateServiceHost to access the ServiceHost instance.
It then calls ServiceHost.Open on that instance. This interaction is shown in Fig-
ure 5-2, along with a general view of the interaction between the http.sys kernel mode
HTTP listener built into Windows and how those requests are forwarded to the ap-
propriate W3WP.exe process.

Notice that in both of the .svc files, we only specified the service attribute (although for
the inline compiled example, Example 5-12, we also specified the language);
nowhere did we specify a ServiceHostFactory, which means we get the default
ServiceHostFactory type.

Other
modules

H
tt

p
.s

y
s

Kernel mode User mode

ServiceHostFactory

IIS hosting

W3WP.EXE

ServiceHost

WCF
module

WCF handler
(bypassed)

n
e

w

CreateServiceHost

WebHttpBinding

REQUEST/RESPONSE

H
TTP R/R FW

D

Figure 5-2. IIS WCF hosting architecture

Hosting in IIS | 91

There is also a ServiceHostFactoryBase that you can use to customize
the ServiceHost creation experience even more. Use this when you don’t
have a .NET type that implements your service. For example, the Work-
flow Services infrastructure in .NET 3.5 (see Chapter 8) has a
WebServiceHostFactory named WorkflowServiceHostFactory that derives
from ServiceHostFactoryBase.

We can specify a different ServiceHostFactory type by adding the Factory attribute to
the ServiceHost directive (note that in Visual Studio 2008 without SP1, the Factory
attribute is rejected by IntelliSense). You could create your own type that derives from
ServiceHostFactory and use it to create WebServiceHost instead of a
“regular” ServiceHost instance. It turns out you don’t need to do
that, though, because .NET 3.5 already includes one that does exactly what
we want: System.ServiceModel.Activation.WebServiceHostFactory. Using
System.ServiceModel.Activation.WebServiceHostFactory as the value of the Factory
attribute, we can remove the web.config entries for the two services. Everything will be
the same, but the configuration is much simpler, since we don’t require any entries in
the web.config file.

Example 5-14 shows the inline compiled .svc file (just the ServiceHost directive, since
the rest of the file is exactly the same) using System.ServiceModel.Activa

tion.WebServiceHostFactory.

Example 5-14. Using WebServiceHostFactory

<%@ ServiceHost Service="InlineService"
 Language="C#"
Factory="System.ServiceModel.Activation.WebServiceHostFactory" %>

For creating WCF service endpoints that return JSON-formatted messages instead of
XML messages, you can use WebScriptServiceHostFactory (see Chapter 7 for more in-
formation about JSON, AJAX, and WCF).

This covers the basics of managed hosting. Let’s see how these basics can apply to IIS-
specific hosting issues that you might run into.

ASP.NET Compatibility
The ASP.NET context isn’t available in the normal IIS WCF hosting mode. In fact, the
WCF HttpModule explicitly nulls out HttpContext.Current, which is where you’d gen-
erally find the HttpContext for the currently executing request. This means that you
don’t have to enter code that is specific to a particular hosting environment in your
services. Of course, WCF includes per-request context that you can use in a
host-agnostic way. In the RESTful case, we have both the standard WCF Operation
Context (available via OperationContext.Current) and the WebOperationContext (avail-
able via WebOperationContext.Current), with its various flavors of context

92 | Chapter 5: Hosting WCF RESTful Services

based on the execution context. WebOperationContext.IncomingRequestContext and
WebOperationContext.OutgoingResponseContext are available in the case of the execu-
tion of a service request (see Chapter 2 for a more detailed discussion of WebOperation
Context).

In some cases, you might only be hosting inside of IIS and have a need for functionality
that is available only on the HttpContext. This is probably more likely in the RESTful
service case than in other WCF scenarios because of the very nature of
WebHttpBinding, and friends might push you toward IIS hosting.

In the WCF context, the authentication information (see Chapter 8 for more informa-
tion about authentication) and the entire HTTP programming model are exposed (see
Chapter 11 for more information about interacting with HTTP), but the ASP.NET
processing pipeline is not. See Chapter 11 for an example of using ASP.NET’s pipeline
instead of the WebOperationContext. If you want to use the functionality of ASP.NET’s
HttpContext, turn on AspNetCompatibilityMode. This is a global switch per web.config,
which means that when you turn it on, it is turned on for all .svc files in that virtual
directory. This is shown in Example 5-15.

Example 5-15. AspNetCompatibilityMode enabled

<system.serviceModel>
 <serviceHostingEnvironment aspNetCompatibilityEnabled="true"/>
</system.serviceModel>

Once you enable AspNetCompatibilityMode, the WCF HttpHandler becomes the request
processor, rather than the HttpModule, and the HttpContext.Current becomes available
(see Figure 5-3).

Unfortunately, after adding this configuration, you will get an exception if you try to
use any of the services in the Virtual Directory:

The service cannot be activated because it does not support ASP.NET compatibility.
ASP.NET compatibility is enabled for this application. Turn off ASP.NET compatibility
mode in the web.config or add the AspNetCompatibilityRequirements attribute to the
service type with RequirementsMode setting as 'Allowed' or 'Required'.

Like many configuration settings in WCF, not only do we have to make the configu-
ration changes, the contract definition must be changed to be consistent with those
settings. In this case, the exception is pretty clear: you must add the
AspNetCompatibilityRequirementsAttribute to the service type, as shown in Exam-
ple 5-16. In a real deployment, you will have to add this attribute to each service in the
Virtual Directory.

Example 5-16. Adding AspNetCompatibilityRequirementsAttribute

[ServiceContract()]
[AspNetCompatibilityRequirements(RequirementsMode=
AspNetCompatibilityRequirementsMode.Allowed)]
public class HostingExample

Hosting in IIS | 93

{
 [OperationContract]
 [WebGet(UriTemplate = "*")]
 public string TheMethod()
 {
 string ret = "Just testing service hosting ";
 if (HttpContext.Current != null)
 ret += " and HttpContext.Current isn't null!!!";
 return ret;
 }
}

Notice that Example 5-16 also includes code that will indicate whether or not the
HttpContext is available. You can see the result of hitting this resource in Figure 5-4.

Figure 5-4. HttpContext enabled

Once you enable ASP.NET compatibility in both in the configuration file and the service
type, you will have full access to ASP.NET’s HttpContext.Current and all the

Other
modules

H
tt

p
.s

y
s

Kernel mode User mode

ServiceHostFactory

IIS hosting (AspNetCompatibility on)

W3WP.EXE

ServiceHost

WCF
module

WCF handler

n
e

w

CreateServiceHost

WebHttpBinding

REQUEST/RESPONSE

HTTP R/R FWD

Figure 5-3. IIS hosting using handler

94 | Chapter 5: Hosting WCF RESTful Services

functionality that is associated with that API. Using HttpContext means that you are
tied to being hosted inside of ASP.NET, but you can still write code to execute different
code paths depending on the availability of HttpContext. You can also check the
ServiceHostingEnvironment.AspNetCompatibilityEnabled property if you want to see if
AspNetCompatibilityEnabled has been turned on.

If your service is running in ASP.NET and you want to use some other feature of the
ASP.NET pipeline, but still have the ability to actually host outside of ASP.NET, you
can easily write the code to be conditional depending on whether the ASP.NET context
is there (one way is to see if HttpContext.Current is null before using it, as we did in
Example 5-16).

Multiple Hostnames
When building websites inside of IIS, it’s pretty common to have multiple hostnames.
When an HTTP client sends a request, it sends a host header value, which is set to the
domain name of the requested URI (HTTP 1.0 clients don’t send this value, so if you
are supporting older clients this technique won’t work). Most modern web servers
(including IIS) allow you to configure one server to route requests to different websites
based on the host header value. Figure 5-5 shows this configuration on an IIS 7.0 web-
site (IIS versions 5 and 6 also support this feature).

Unfortunately, this will not work with WCF services. ServiceHostFactory and Service
Host (and their derived versions) use the hostname for creating the HTTP listening
endpoint when hosted in IIS, and an exception is thrown when there are multiple host-
names. This is because multiple URIs will be passed into the call to ServiceHost
Factory.CreateServiceHost. Example 5-17 shows the exception details.

Figure 5-5. Multiple hostnames mapped to one site

Hosting in IIS | 95

Example 5-17. System.ArgumentException thrown when multiple hostnames exist

"This collection already contains an address with scheme http.
 There can be at most one address per scheme in this collection.
Parameter name: item

Description: An unhandled exception occurred during the execution
 of the current web request. Please review the stack trace for more information
 about the error and where it originated in the code.
Exception Details: System.ArgumentException: This collection
 already contains an address with scheme http. There can be
 at most one address per scheme in this collection.
Parameter name: item"

The way around this problem is to not use multiple hostnames on one website. Instead,
create multiple websites that all point to the same physical directory on the file system.
Perhaps not the most elegant solution, but it doesn’t really require any additional work
than the multiple host headers on one site, just a different configuration.

Removing the .svc File Extension
The architectural style of REST centers on URIs; some people view URIs as the key
piece of RESTful design. The REST architecture style is of course based on resources
that are addressable using unique URIs, and how to interact with them through the
uniform interface. URIs are a very important part of this style.

When creating RESTful services, it is important to design URIs very carefully. A lot of
the work your clients do revolves around working with URIs. Additionally, having nice
URIs is considered important in most REST circles.

This is why many people who use WCF inside of IIS find the .svc extension so abhorrent.
Using .svc generally just makes the URIs inelegant, and inelegant URIs are just not cool
(although technically speaking there isn’t anything necessarily unRESTful about in-
elegant URIs). One problem with using the .svc file is that a URI in REST is supposed
to represent the unique name of a resource. The .svc file extension does not look like
part of the name of a resource; it just looks like the leaking of a particular implemen-
tation detail.

To avoid the issues that come with using .svc files, we can build a module for IIS/
ASP.NET that rewrites URIs so that requests will come without the .svc file. Exam-
ple 5-18 shows one potential implementation for such a module.

Example 5-18. IHttpModule to remove the .svc extension

using System.Web;

public class RestModule : IHttpModule
{

 public void Dispose()

96 | Chapter 5: Hosting WCF RESTful Services

 { }

 public void Init(HttpApplication app)
 {
 app.BeginRequest += delegate
 {
 HttpContext ctx = HttpContext.Current;
 string path = ctx.Request.AppRelativeCurrentExecutionFilePath;

 int i = path.IndexOf('/', 2);
 if (i > 0)
 {
 string svc = path.Substring(0, i) + ".svc";
 string rest = path.Substring(i, path.Length - i);
 string qs = ctx.Request.QueryString.ToString();
 ctx.RewritePath(svc, rest,qs,false);
 }
 };
 }
}

After making the type available to an ASP.NET application (by compiling it and putting
it into the bin directory or using the App_Code functionality), you need to modify
web.config to use this module:

<httpModules>
 <add name="NoMoreSVC" type="RestModule, SimpleWebHostingIIS"/>
</httpModules>

Note that if you are using IIS 5 or 6 (XP or Windows Server 2003), you’ll
have to map a wildcard handler for aspnet_isapi.dll to make this module
work.

This module removes the .svc extension from the URI that the clients use. For example,
the URI http://host/album.svc/instance/ will be changed to http://host/album/instance/
after adding this module.

In a book like this, I generally avoid including my own custom infra-
structure code, because I think it takes away from learning about the
underlying technology. However, I’m making an exception here be-
cause you’re likely to need this functionality once you adopt REST using
WCF. I hope you find it useful. Don’t feel obligated to use it; if you are
happy with the .svc being part of your URIs, don’t bother.

Hosting in IIS | 97

http://host/album.svc/instance/
http://host/album/instance/

Custom ServiceHostFactory
Earlier in this chapter, we discussed building a custom ServiceHost in a self-hosting
scenario. There are compelling reasons to use a custom ServiceHost type when using
managed hosting as well.

Recall that there is no way to instruct the WCF hosting infrastructure in IIS to use a
custom ServiceHost type (there is no ServiceHost type attribute in the .svc file). For-
tunately, we can work around this issue using the Factory attribute.

Like ServiceHost, ServiceHostFactory is an open extensibility point. If you want WCF
to use a custom ServiceHost, you can create a custom ServiceHostFactory. If you are
only using managed hosting, you can often get the effect of a custom ServiceHost by
building a custom ServiceHostFactory, since the factory contains the code that will
build and configure a ServiceHost before it is opened by the WCF hosting
infrastructure.

The applications of a custom ServiceHostFactory are as expansive as the applications
of a custom ServiceHost. For example, suppose that your managed hosting environ-
ment doesn’t include a method for specifying when a ServiceHost has been opened or
closed. By implementing a custom ServiceHostFactory, you can hook up event handlers
to the events of the ServiceHost being created, and your service will be notified when
those lifetime events occur. See Example 5-19.

Example 5-19. Custom ServiceHostFactory

namespace SimpleWebHostingIIS
{
 public class EventHandlingServiceHostFactory : WebServiceHostFactory
 {
 public override ServiceHostBase CreateServiceHost(string constructorString,
 Uri[] baseAddresses)
 {
 //note that the base class returns ServiceHostBase, but its actually
 //WebServiceHost in this case
 ServiceHostBase sh =
 base.CreateServiceHost(constructorString, baseAddresses);
 //we can cast to WebServiceHost if we want
 WebServiceHost wsh = sh as WebServiceHost;
 //subscribe to events
 wsh.Opened += new EventHandler(wsh_Opened);
 wsh.Closed += new EventHandler(wsh_Closed);
 //I could subscribe to more events if needed
 return sh;
 }

 void wsh_Closed(object sender, EventArgs e)
 {
 Debug.WriteLine("WebServiceHost closed!");
 }

 void wsh_Opened(object sender, EventArgs e)

98 | Chapter 5: Hosting WCF RESTful Services

 {
 Debug.WriteLine("WebServiceHost opened!");
 }
 }
}

To use this ServiceHostFactory, you need only to change the value of the Factory at-
tribute in the .svc file like this:

<%@ ServiceHost Service="SimpleWebHosting.HostingExample,
 SimpleWebHosting" Factory="SimpleWebHostingIIS.EventHandlingServiceHostFactory" %>

There are a large number of WCF and WCF RESTful extensibility scenarios that can
be solved very simply by creating a custom ServiceHost and/or ServiceHostFactory.

Hosting Wrap-Up
In this chapter, I’ve laid out the issues you’ll face when using self- or managed hosting.
So which choice is the best? Obviously, there isn’t always one right answer, but there
are a couple of common pathways to the right choice.

One issue many developers run into is the lack of support some IT departments have
for IIS (to be honest, there are some shops that stay away from IIS like the plague). If
this is the case for you, self-hosting is obviously the only choice. Building a custom
Windows service is generally the way to deploy your services, because you get support
from the OS for startup, shutdown, management, and security identity. That’s one
pretty easy path.

What if your IT department does support IIS? What is the choice then? In general, I’d
stick with IIS. IIS has a better management and deployment story than a custom Win-
dows service would have. Another benefit of IIS is that it supports easy configuration
for kernel and user mode caching (see Chapter 11).

If given the choice, I’d side with IIS for hosting unless there is a compelling reason to
go with self-hosting.

Summary
In this chapter, we discussed the basics of hosting a WCF RESTful service. The two
choices are self-hosting and managed hosting.

With self-hosting, you get a fair amount of control over the hosting process, which
centers on the ServiceHost (or WebServiceHost) type for creating channel listeners with
WCF. In many ways, hosting WCF web endpoints is no different than hosting any
WCF endpoint from a self-hosting point of view. In both cases, you will be responsible
for creating, configuring, opening, and closing the ServiceHost inside of the process.
WebServiceHost is helpful in the RESTful case because its auto-configuration features
can greatly simplify your hosting code and infrastructure. Using a custom

Summary | 99

ServiceHost type can help encapsulate much of this infrastructure code into a nice,
easy-to-use type.

The other option is to use managed hosting, in which the WCF infrastructure that is
integrated into IIS/ASP.NET will manage interactions with the ServiceHost. The .svc
file tells WCF which service to host, and the configuration file tells WCF how to host
it. In the RESTful case, the WebServiceHostFactory helps to simplify managed config-
uration. For further customization in the managed hosting case, you can use a custom
ServiceHostFactory type to interject your code into the hosting infrastructure, enabling
you to customize the managed hosting experience when your scenario calls for devia-
tion from the norm.

100 | Chapter 5: Hosting WCF RESTful Services

CHAPTER 6

Programming Feeds

Exposing data through a “feed” on the Web isn’t a new idea. A machine-readable
format that can push or pull data to or from a client application so that users can receive
updated information about their favorite websites has been around for many years. In
fact, over the past few years, this capability has solidified into something so ubiquitous
that not only do bloggers and news sites expose feeds of their data, but many websites
do as well (even my airline has a feed I can subscribe to for news and fare information).

In this chapter, we’ll cover how you can use WCF 3.5 to build feeds. You may not be
building the next great blogging engine, but feeds are so mainstream today that enter-
prises are now adopting them to expose internal data that you might not think of as
classic feed data. Now that every browser has a feed reader, feeds can be an important
tool in your toolbox for building your systems, even if you aren’t building commercial
websites or blog engines.

If you haven’t had a lot of exposure to feeds, I highly recommend open-
ing your favorite browser and search engine and searching on “web
feeds” or “RSS and Atom,” which will likely turn up some pretty lively
sources of information regarding the history and current use of feeds.
Use your browser or download a feed reader (just search for “feed
reader” to find one), and try it out before reading the rest of this chapter.

Building a Feed with WCF
Let’s dive right into how to use the Web Programming Model in WCF 3.5 to build a
feed. Two important pieces of the WCF infrastructure make it possible and
easy-to-build feeds: the WebGetAttribute and a set of .NET types in the
System.ServiceModel.Syndication namespace that represent the structure of a feed in
memory and that WCF 3.5 can serialize into the correct XML formats for feed readers
to understand.

We covered the WebGetAttribute in Chapter 2. Since you retrieve feeds via HTTP GET
requests, the ability to build a service method that can return results based on such

101

requests is key to building a feed. The UriTemplate mechanism will also come in handy
if and when you want to do more than just expose a basic feed at a particular URI.

The second piece of the WCF 3.5 infrastructure you’ll use is a set of .NET types in the
System.ServiceModel.Syndication namespace that represents the structure of a feed in
memory, and more importantly, that the WCF serialization infrastructure can serialize
into the correct XML formats for feed readers to understand—namely, RSS 2.0 and
Atom 1.0. These types—the most important of which is SyndicationFeed—are also
extensible, which means that if new feed standards become available, or if you just
want to use the standard formats in a repeatable way, you can derive from the appro-
priate class and plug it into this WCF system. You also can use these classes to consume
feeds, which we’ll cover in Appendix A.

The object model implemented by SyndicationFeed and the other types in the
System.ServiceModel.Syndication namespace allows you take the data you want ex-
posed as part of your feed and push it into the WCF feed object model. The object
model will then take care of serializing those objects into the appropriate XML for your
feed. This frees you from having to do any of the heavy lifting in terms of generating
the appropriate XML for either feed format (or for other feed formats that might be
created in the future).

The top level of this feed object model is the SyndicationFeed class. SyndicationFeed is
modeled after the Atom 1.0 specification rather than RSS. Atom’s format is more com-
plex than the RSS specification, so the API is geared toward Atom so that it can represent
the richness of Atom. The infrastructure will happily serialize either format, although
when it serializes to RSS, the non-RSS data is serialized into the Atom 1.0 element names
(with an xmlns attribute added to reference the Atom namespace URI). To be honest,
the industry appears to be moving toward Atom and away from RSS, as every major
feed reader now supports Atom, and the Atom Publishing Protocol (discussed in Ap-
pendix A) is beginning to take hold as the RESTful protocol on top of feeds for updates.
Therefore, although we will spend some time talking about RSS, most of this chapter
will focus on Atom.

SyndicationFeed has a number of properties, each of which is a collection of another
type from the System.ServiceModel.Syndication namespace that represents a different
part of a feed, as depicted in Figure 6-1.

SyndicationFeed.Items is perhaps the most important of these properties, and it con-
tains the meat of the feed: the feed items. SyndicationFeed.Authors contains a list of
SyndicationPerson objects, which represent the author(s) of this feed. You can catego-
rize feeds and feed items for easy consumption (you may subscribe to a feed that exposes
different feeds for some or all of the categories used in entries), so
SyndicationFeed.Categories holds on to SyndicationCategory objects that represent
those categories. Also, SyndicationFeed includes a Links collection, which comprises
SyndicationLink objects that represent links to or from the feed. Table 6-1 lists the rest
of the SyndicationFeed properties.

102 | Chapter 6: Programming Feeds

All of these objects implement the IExtensibleSyndicationObject interface. This inter-
face defines two read-only properties: AttributeExtensions and ElementExtensions.
These two properties are like wildcards and support serializing objects into the feed
XML attributes or elements that aren’t “strongly typed” (i.e., known elements or at-
tributes of either RSS or Atom).

Another type that is fairly important in this system is SyndicationContent and its derived
classes. For each content-related item in a feed, the object model uses this class or one
of its derived classes to represent the data in the feed. This data could be text, XML
data, or a URI. Hence, the derived classes are TextSyndicationContent, XmlSyndication
Content, and UriSyndicationContent. These types are then serialized to the correct kind
of element in the feed. Every other feed type uses these types appropriately for each
piece of data to be serialized into the feed (we’ll discuss this in more detail in a moment,
when we look at the XML output from serialization).

Table 6-1 shows how all of the properties of SyndicationFeed are serialized into Atom
or RSS feeds. The “atom” namespace prefix refers back to the Atom namespace URI
(namely, http://www.w3.org/2005/Atom) inside an RSS document.

Table 6-1. How SyndicationFeed serializes/deserializes into RSS and Atom

Object/property Atom RSS

SyndicationFeed <feed/> <rss/>

AttributeExtensions Attribute on <feed/>; one per object in

the collection

Attribute on <channel/>; one per object in the

collection

Authors <author/>; one per object in the

collection

<managingEditor/> if one element, or

atom:author if multiple elements

SyndicationFeed

Authors Authors

Categories

Content

Links

Summary

Categories

Items

Links

Figure 6-1. SyndicationFeed object model

Building a Feed with WCF | 103

http://www.w3.org/2005/Atom

Object/property Atom RSS

Categories <category/>; one per object in the

collection

<category/>; one per object in the collection

Contributors <contributor/>; one per object in

the collection

<atom:contributor/>; one per object in the

collection

Copyright <rights/> <copyright/>

Description <subtitle/> <description/>

ElementExtensions Element written as a child of <feed/>;

one per object in the collection

Element written as a child of <channel/>; one

per object in the collection

Generator <generator/> <atom:generator/>

Id <id/> <atom:id/>

ImageUri <logo/> <image/>

Items <entry/>; one per object in the

collection

<item/>; one per object in the collection

Language Not serialized <language/>

LastUpdatedDate <updated/> <lastBuildDate/>

Links <link/>; one per object in the collection <link/> element; if the link is an “alternate” link

it uses <atom:link/>

Title <title/> <title/>

You can use the SyndicationFeed class to build up your feed without having to decide
which feed format to use. For the example in this chapter, you’ll build a feed on top of
the Windows Event Log.

The Event Log provides information regarding what is happening on a
particular machine, so it seems useful to have a feed of that information,
especially if we can subscribe to feeds from multiple machines.

Example 6-1 shows code for creating a top-level SyndicationFeed object from the
EventLog data.

Example 6-1. Creating an EventLog feed

EventLog el = new EventLog(logName);
SyndicationFeed feed = new SyndicationFeed();
feed.Title =
 new TextSyndicationContent(String.Format("{0} {1} EventLog Feed",
 Environment.MachineName,
 el.Log));
feed.Description = new TextSyndicationContent("A feed of data from the EventLog");
feed.Authors.Add(new SyndicationPerson{Name=Environment.MachineName});
feed.Id = "urn:uuid:" + Environment.MachineName + el.Log;

104 | Chapter 6: Programming Feeds

The code in Example 6-1 uses System.Diagnostic.EventLog to open a particular log by
name, and then sets the Title and Description properties and adds an author (i.e., the
machine where the data is coming from). Next is the Id property, which is a string that
will turn into the <id/> element inside an Atom feed. The Atom specification dictates
that the <id/> element must be a unique, permanent URI (well, really it states that it
must be an Internationalized Resource Identifier, or IRI, but we don’t need to go into
that much technical detail on the spec; suffice it to say that you can turn an IRI into a
URI). We used the machine name and log name to create a recreatable, retrievable
identifier.

Now that we’ve created the basic feed “envelope,” let’s move on to the data inside the
feed.

SyndicationItem
Since feeds are all about serving up data, the most used property of SyndicationFeed is
Items, which is a collection of SyndicationItem.

SyndicationItem is where most of the work with feeds is done, since each instance
represents an item in the feed (<entry/> in the case of Atom or <item/> in the case of
RSS). Table 6-2 shows the mapping between the properties of the SyndicationItem
object model and the Atom and RSS XML formats.

Table 6-2. How SyndicationItem serializes/deserializes into RSS and Atom

Object/property Atom RSS

SyndicationItem <entry/> <item/>

AttributeExtensions Attribute on <entry/>; one per ob-

ject in the collection

Attribute on <item/>; one per object in the

collection

Authors <author/>; one per object in the

collection

<managingEditor/> if one element, or

atom:author if multiple elements

Categories <category/>; one per object in the

collection

<category/>; one per object in the collection

Content <content/> If text and Summary are null,

<description/>; otherwise,

<atom:content/>

Contributors <contributor/>; one per object

in the collection

<atom:contributor/>; one per object in the

collection

Copyright <rights/> <copyright/>

ElementExtensions Element written as a child of

<entry/>; one per object in the

collection

Element written as a child of <item/>; one per object

in the collection

Id <id/> <atom:id/>

LastUpdatedDate <updated/> <atom:updated/>

Building a Feed with WCF | 105

Object/property Atom RSS

Links <link/>; one per object in the

collection

<link/>; if the link is an “alternate” link, it uses

<atom:link/>

PublishDate <published/> <pubDate/>

SourceFeed <source/> <source/>

Summary <summary/> <description/> if not null

Title <title/> <title/>

The most used property of SyndicationItem is Content. Content is a
SyndicationContent type, meaning that the Content of an item can be text, XML, or a
URI, depending on the kind of item you are creating. Most feed items are text-based
(e.g., news stories and blog entries), in which case you would use the TextSyndication
Content type. However, the data of your item might be a link to binary data, in which
case you would use the UriSyndicationContent type. Use the XmlSyndicationContent
type if your content data is formatted as XML.

The next issue of interest is whether to use the Content property at all. Because the
Content object model is modeled on Atom, when you format your feed as an Atom feed,
you can use the Content property as-is and you’re done.

The Summary property, which is a TextSyndicationContent type, is useful when you want
to show a snippet of your feed’s content. The Summary property is serialized to a
<summary/> element in Atom-formatted feeds. Note that feed validators (such as the one
located at http://www.feedvalidator.org/) will not function properly if the <content/>
element and the <summary/> element contain the same data.

If you are formatting your feed as RSS, set the Content property to a TextSyndication
Content object. The text of the Content property will be used to generate the
<description/> element, as RSS allows you to use the <description/> element as the
entire entry. This is the case only if the Summary property is null. If the Summary property
is not null, the <description/> will contain the text from the Summary property and the
Content property will be serialized as an <atom:content/> element inside the RSS item.

For our event log feed example, let’s leave the Summary property null so that when you
format the feed as RSS its value will be used to generate a complete <description/>.
Example 6-2 shows the code.

Example 6-2. Defining and populating a List of SyndicationItem

List<SyndicationItem> items = new List<SyndicationItem>();
feed.Items = items;

foreach (EventLogEntry e in el.Entries)
{
 items.Add(new SyndicationItem
 {
 Title = new TextSyndicationContent(String.Format

106 | Chapter 6: Programming Feeds

http://www.feedvalidator.org/

("{0}:{1}:{2}", e.Source, e.Category, e.EntryType.ToString())),
 Content = new TextSyndicationContent(e.Message),
 PublishDate = new DateTimeOffset(e.TimeGenerated),
 LastUpdatedTime = new DateTimeOffset(e.TimeGenerated),
 Id = "urn:uuid:" + e.Index.ToString()

 });

}

In this code, the SyndicationFeed.Items property is initially null, so we have to create
an object that is IEnumerable<SyndicationItem> (the type of the Items property) and set
the Items property to that object. For convenience, this code uses the generic List type.

The rest of the code is pretty simple; it just enumerates over each EventLogEntry in the
EventLog.Entries collection and creates a new SyndicationItem object for each entry.
The example uses the machine name, the source, and the category as the Title, and
uses the data inside the EventLogEntry for the Content of each item.

To create each SyndicationItem, you’ll use the new syntax introduced with .NET 3.5
for inline object instantiation; to allow the resource to be retrieved again, you’ll use the
EventLogEntry.Index property for the Id property, which is the unique index value of
the entry.

It is important to note that the LastUpdatedTime and the PublishDate are of type Date
TimeOffset. DateTimeOffset is a new type in .NET 3.5 that makes it easier to work with
exact dates and times, as well as timezones. To use this type, simply create new objects
and pass in the DateTime from the EventLogEntry.TimeGenerated property.

The basic idea behind using DateTimeOffset versus DateTime (besides
the fact that you’ll continue to use DateTime for APIs that require it) is
that DateTimeOffset is of higher fidelity and represents an exact point in
time in a way that is not specific to timezones. So, you would use Date
Time to represent whole dates, or times that must be the same across
multiple timezones (e.g., when referring to a TV show that starts at
10:00 a.m. regardless of timezone).

At this point, we have written code to initialize the SyndicationFeed object for the event
log feed and filled it with data. Now it’s time to turn that object into formatted XML.

Formatters
Recall that SyndicationFeed is not format-specific. Instead of requiring Syndication
Feed to know how to format its data, System.ServiceModel.Syndication uses another
object to do the formatting—one that derives from SyndicationFeedFormatter. As I
mentioned earlier, because SyndicationFeed supports two formats—RSS 2.0 and Atom

Building a Feed with WCF | 107

1.0—there are two SyndicationFeedFormatter-derived classes: Rss20FeedFormatter and
Atom10FeedFormatter.

This makes it possible to write code that conditionally formats a feed either as RSS or
as Atom using the same SyndicationFeed object. The code in Example 6-3 creates an
XML instance of both formats using the same SyndicationFeed instance.

Example 6-3. Formatting a feed with SyndicationFeed

SyndicationFeedFormatter formatter = new Atom10FeedFormatter(feed);
XmlWriter xw = XmlWriter.Create("eventlog.atom");
formatter.WriteTo(xw);
xw.Close();
formatter = new Rss20FeedFormatter(feed);
xw = XmlWriter.Create("eventlog.rss");
formatter.WriteTo(xw);
xw.Close();

WriteTo is the only public method on SyndicationFeedFormatter that is useful for writ-
ing feeds, and all it takes is an XmlWriter. Most of the time, however, the feed will be
created during serialization in the WCF return call; this happens because both
Rss20FeedFormatter and Atom10FeedFormatter implement IXmlSerializable.

Example 6-4 shows the Atom- and RSS-formatted XML, just so that you can get a feel
for what the formats look like in case you’re seeing them for the first time.

Example 6-4. Feed XML formatted as Atom and as RSS

<?xml version="1.0" encoding="utf-8"?>
<feed xmlns="http://www.w3.org/2005/Atom">
 <title type="text">JON-PC Application EventLog Feed</title>
 <subtitle type="text">A feed of data from the EventLog</subtitle>
 <id>urn:uuid:a0051924-dddb-4e3a-b340-c5ded7782b2d</id>
 <updated>2008-02-25T00:25:52Z</updated>
 <author>
 <name>JON-PC</name>
 </author>
 <entry>
 <id>urn:uuid:496b3acf-2168-4f27-8dca-6895f79c8446</id>
 <title type="text">EventLogTest:(2):Error</title>
 <published>2008-02-24T16:25:52-08:00</published>
 <updated>2008-02-24T16:25:52-08:00</updated>
 <content type="text">Testing Event Log API</content>
 </entry>
 <entry>
 <id>urn:uuid:dc0ccdfe-7ce0-49b4-acc7-702baa3d861c</id>
 <title type="text">EventLogTest:(2):Error</title>
 <published>2008-02-24T16:25:52-08:00</published>
 <updated>2008-02-24T16:25:52-08:00</updated>
 <content type="text">Testing Event Log API - again</content>
 </entry>
 <entry>
 <id>urn:uuid:468d86a1-6aae-411f-ae4a-4b675a5e11fb</id>
 <title type="text">EventLogTest:(2):Error</title>

108 | Chapter 6: Programming Feeds

 <published>2008-02-24T16:25:52-08:00</published>
 <updated>2008-02-24T16:25:52-08:00</updated>
 <content type="text">Testing Event Log API - yet again</content>
 </entry>
</feed>

<?xml version="1.0" encoding="utf-8"?>
<rss xmlns:a10="http://www.w3.org/2005/Atom" version="2.0">
 <channel>
 <title>JON-PC Application EventLog Feed</title>
 <description>A feed of data from the EventLog</description>
 <a10:author>
 <a10:name>JON-PC</a10:name>
 </a10:author>
 <a10:id>urn:uuid:a0051924-dddb-4e3a-b340-c5ded7782b2d</a10:id>
 <item>
 <guid isPermaLink="false">urn:uuid:496b3acf-
2168-4f27-8dca-6895f79c8446</guid>
 <title>EventLogTest:(2):Error</title>
 <description>Testing Event Log API</description>
 <pubDate>Sun, 24 Feb 2008 16:25:52 -0800</pubDate>
 <a10:updated>2008-02-24T16:25:52-08:00</a10:updated>
 </item>
 <item>
 <guid isPermaLink="false">urn:uuid:dc0ccdfe-
7ce0-49b4-acc7-702baa3d861c</guid>
 <title>EventLogTest:(2):Error</title>
 <description>Testing Event Log API - again</description>
 <pubDate>Sun, 24 Feb 2008 16:25:52 -0800</pubDate>
 <a10:updated>2008-02-24T16:25:52-08:00</a10:updated>
 </item>
 <item>
 <guid isPermaLink="false">urn:uuid:468d86a1-6aae-
411f-ae4a-4b675a5e11fb</guid>
 <title>EventLogTest:(2):Error</title>
 <description>Testing Event Log API - yet again</description>
 <pubDate>Sun, 24 Feb 2008 16:25:52 -0800</pubDate>
 <a10:updated>2008-02-24T16:25:52-08:00</a10:updated>
 </item>
 </channel>
</rss>

The last bit of code in Example 6-4 is interesting, although it probably does not repre-
sent what you’ll be doing with SyndicationFeed or SyndicationFeedFormatter most of
the time. Typically, you’ll be using these two classes in the context of a service, instead
of using SyndicationFeedFormatter.WriteTo.

Building a Feed with WCF | 109

Two additional feed formatters are Rss20FeedFormatter<T> and
Atom10FeedFormatter<T>. These are generic types, where T is a class that
must derive from SyndicationFeed. This extensibility point allows third
parties (e.g., you or ISVs) to build new SyndicationFeed-derived types,
and still have the formatters you want. You would use this primarily
when you are reading a feed, rather than writing one out. When you’re
reading a feed, the SyndicationFeed is created using a factory method,
so you must pass the type information to the infrastructure (we’ll ex-
amine this in Chapter 7 when we discuss consuming feeds in the context
of Silverlight, which has the same object model as the desktop CLR).

Exposing a Feed on a Live URI
Now that we’ve constructed the basic infrastructure for feed serialization, let’s build a
simple WCF service that exposes this feed data using both RSS and Atom.

I’ll make the point again that for the most part people seem to be moving
toward Atom as the format of choice for most feeds. Therefore, there
isn’t really any compelling reason to use RSS unless you must support
feed reader client(s) that can consume only RSS. I’m showing both for-
mats here just to emphasize the separation in WCF between the data
(SyndicationFeed) and the formatting (SyndicationFeedFormatter).

Also, you may see examples of methods that return SyndicationFeed
Formatter as the return type, and conditionally (often based on a query
string parameter) return either the Atom10FeedFormatter or the Rss20Feed
Formatter. If you choose to follow those examples, make sure you add
the ServiceKnownTypes attribute to your service Type for both of the de-
rived types. I am not in favor of this, since I’m not in favor of using a
query string to differentiate between different formats.

Example 6-5 shows the ServiceContract declaration.

Example 6-5. ServiceContract for the EventLogFeed

[ServiceContract]
public interface IEventLogFeed
{
 [OperationContract]
 [WebGet(UriTemplate = "/{log}/feed.rss")]
 Rss20FeedFormatter GetRSS(string log);
 [OperationContract]
 [WebGet(UriTemplate = "/{log}/feed.atom")]
 Atom10FeedFormatter GetAtom(string log);
}

Note that you do not have to specify special feed attributes; you only have to specify
WebGetAttribute, which enables the WCF routing mechanism to route GET requests to

110 | Chapter 6: Programming Feeds

these methods. The feed functionality is built on top of the WCF 3.5 Web Programming
Model. This code also uses the UriTemplateAttribute to create different URIs, which
can retrieve any Event Log by name, and the URI (feed.atom versus feed.rss) indicates
the format of the response.

The implementation of the service is simple; a private method creates the Syndication
Feed object, and then wraps that object in the appropriate formatter. When the for-
matter is returned, the WCF infrastructure serializes the formatter to the appropriate
feed type, as shown in Example 6-6.

Example 6-6. EventLogFeed implementation

public class EventLogFeed : IEventLogFeed
{

 public Rss20FeedFormatter GetRSS(string log)
 {
 SyndicationFeed feed = GetFeed(log);
 Rss20FeedFormatter formatter = new Rss20FeedFormatter(feed);
 return formatter;
 }

 public Atom10FeedFormatter GetAtom(string log)
 {
 SyndicationFeed feed = GetFeed(log);
 Atom10FeedFormatter formatter = new Atom10FeedFormatter(feed);
 return formatter;
 }
}

You can then host this service in any of the many WCF hosting options, either in code
with a WebServiceHost or with an .svc file inside ASP.NET/ IIS. The base URI of the
service will prefix the UriTemplates, so your URIs will look something like http://local
host/EventLogFeed/<Application>/feed.atom or http://localhost/EventLogFeed/<Appli
cation>/feed.rss (with <Application> replaced by any valid event log name).

It should now be clear that once you’ve decided which format(s) to support and what
your URI design is going to be (e.g., what templates you are going to put into the
UriTemplates), the major work consists of simply fitting your data into the Syndication
Feed object model. The WCF infrastructure really takes care of the rest.

Feed Validation
WCF doesn’t support feed validation; it serializes whatever data you set Syndication
Feed and SyndicationItem objects in to XML, even if you don’t set data that most feed
readers require. In general, you will probably want to generate feeds that most readers
will be able to deal with effectively. In many ways, HTML and feeds have a lot in
common, in that different feed generators can generate slightly different data and dif-
ferent readers display the data differently.

Feed Validation | 111

http://localhost/EventLogFeed/<Application>/feed.atom
http://localhost/EventLogFeed/<Application>/feed.atom
http://localhost/EventLogFeed/<Application>/feed.rss
http://localhost/EventLogFeed/<Application>/feed.rss

Of course, both RSS (http://feedvalidator.org/docs/rss2.html) and Atom (http://tools.ietf
.org/html/rfc4287) are standards, so you can create validators for them. Rather than
writing my own, I like to use the validator from http://www.feedvalidator.org/, written
by Mark Pilgrim and Sam Ruby. After downloading this validator, all you have to do
is install the Python runtime (http://www.python.org/). The feed validator website has
detailed instructions on how to do this and how to run the validator locally.

When you run the validator against your Atom feed URI, you get the following errors/
warnings:

line 1, column 0: Missing atom:link with rel="self"
line 1, column 749: Two entries with the same value for atom:updated (2 occurrences)

Both lines are just warnings (you know this from looking at the http://www.feedvalidator
.org/docs page, which lists all the errors and warnings). The second warning indicates
there is an error in the feed generator logic and that the updated element isn’t really
the same time for more than one entry. However, in this case, the entries actually do
have the same updated time, so you can safely ignore that warning.

The first warning is more important, however, as it indicates something that is often a
problem for feed readers. Although not required by the Atom specification, it is pretty
useful to have an atom:link element under your feed element with the rel (relation)
attribute set to "self" and the href attribute set to the feed’s own URI. Without that
URI inside the feed, a reader will have to store the base URI of the feed externally from
the feed itself. In other words, the link element with rel="self" is a self-referencing
link to the document, and it’s pretty useful to have that inside the document for future
use, which is why it’s recommended.

It turns out that adding this type of link is pretty easy, and you can do it in a fairly
generic way using WCF. When the SyndicationFeed object is created, add a Syndica
tionLink object to the SyndicationFeed.Links collection. SyndicationLink itself has a
static factory method for creating this particular type of link, as well as alternate and
media enclosure links, which are two other useful types of link elements. You can create
the same type of SyndicationLink object with the SyndicationLink constructor, but
these overloads are useful and they make your code easier to understand in terms of
what links are being created. Table 6-3 lists the SyndicationLink factory methods.

Table 6-3. SyndicationLink factory methods

Method Description

CreateSelfLink Creates a link element with rel="self" based on a URI object. An overload has a string

parameter that turns into the type attribute delineating the media/MIME type.

CreateAlternateLink Creates a link element with rel="alternate". This represents another URI that

contains the same data as the feed, but in a different media format (typically HTML). It

also has an overload, which takes a URI and the media type.

CreateMediaEnclosureLink Creates a link element with rel="enclosure". This kind of link points a related item

to an entry. Typically, this is a binary piece of data (an image, or an .mp3, or other audio

file) relating to the entry. This method has three parameters: a URI for the link, the media

112 | Chapter 6: Programming Feeds

http://feedvalidator.org/docs/rss2.html
http://tools.ietf.org/html/rfc4287
http://tools.ietf.org/html/rfc4287
http://www.feedvalidator.org/
http://www.python.org/
http://www.feedvalidator.org/docs
http://www.feedvalidator.org/docs

Method Description
type (required), and the length (which isn’t required, but which the Atom specification

recommends to prevent readers from automatically downloading large linked items).

So, using this method and the WebOperationContext.Current object, you can fill this
link dynamically with the URI of the feed being requested. Specifically, you can use
WebOperationContext.Current.IncomingRequest.UriTemplateMatch.RequestUri to get
the current URI of the request, which allows you to avoid having to hardcode the URI
of the feed into your code or configuration:

//the Uri being requested
Uri u = WebOperationContext.Current.IncomingRequest.UriTemplateMatch.RequestUri;
//use the factory method to create a self link
feed.Links.Add(SyndicationLink.CreateSelfLink(u));

Now the feed element of the Atom feed looks like Example 6-7.

Example 6-7. Atom feed example

<feed xmlns="http://www.w3.org/2005/Atom">
 <title type="text">JON-PC application EventLog Feed</title>
 <subtitle type="text">A feed of data from the EventLog</subtitle>
 <id>urn:uuid:4a4e2bb6-82a1-472a-a1fe-209880c77712</id>
 <updated>2008-02-26T21:09:16Z</updated>
 <author>
 <name>JON-PC</name>
 </author>
 <link rel="self" href="http://localhost/EventLogFeed/application/feed.atom"/>
 <!-- Other elements removed for brevity-->
</feed>

Notice that the link element now points to the URI of the feed document itself, fixing
the missing link warning. Although you still might receive the duplicate date warning,
if some of your entries do actually have the same updated time it’s really not a concern,
and your Atom feed is now valid.

Another way to deal with missing self link warnings is to set the BaseUri property of
SyndicationFeed. The BaseUri property, despite its important-sounding name, isn’t set
by default, although if you do set it, it must match the URI of the document itself. When
you set the BaseUri property of SyndicationFeed, the formatters will add an xml:base
attribute to the feed or channel elements with the value of that URI. Again,
WebOperationContext comes in handy here:

//the Uri being requested
Uri u = WebOperationContext.Current.IncomingRequest.UriTemplateMatch.RequestUri;
feed.BaseUri = u;

Setting the xml:base attribute at the feed level allows all the other URIs in the context
of the feed to be relative to the value of xml:base, so you can (but are not required to)
change your self-referencing link like this:

feed.Links.Add(SyndicationLink.CreateSelfLink(new Uri("", UriKind.Relative));

Feed Validation | 113

This changes the link element with rel="self" to look like this:

<link rel="self" href=""/>

This is a valid, relative, self-referencing URI.

SyndicationItem and SyndicationLink also have a BaseUri property you
can use in exactly the same way to set the xml:base attribute on their
generated elements.

This takes care of fixing up your Atom feed, but the feed validator has some problems
when it comes to the RSS feed. When you run the feed validator against your RSS feed,
you get the following:

line 1, column 0: Avoid Namespace Prefix: a10
line 1, column 1142: Missing channel element: link
line 1, column 1142: Missing atom:link with rel="self"

The first warning will be difficult to fix. A namespace prefix is being used because Atom
elements are being embedded inside the RSS XML (e.g., there is an xmlns:a10="http://
www.w3.org/2005/Atom" attribute on the rss root element). The validator warns you
about this because many feed readers have trouble dealing with prefixes for XML
namespace URIs. This is a common problem; although the WCF’s serialized XML is
certainly valid XML, all you can do to fix this is to rewrite the Rss20FeedFormatter.

This is not an ideal solution, however, because (in my opinion) improperly dealing with
XML namespace prefixes is the feed reader’s problem and not mine (at least that’s the
tack I’d like to take, but realistically it’s not always possible to blame the other party).
Not dealing with XML namespace prefixes is one of my bad-code pet peeves, and gen-
erally it happens because someone has embedded an XPath statement into the code with
an expected namespace prefix, and that’s just bad programming, so I feel justified in
ignoring this warning.

The second warning isn’t just a warning, but rather a true error, because the RSS 2.0
specification requires a link element as a child of the channel element. The link element
is supposed to point to the HTML representation of the feed. This is a slight problem
if you don’t actually have an HTML representation of your feed. Although it would be
possible to build a WCF operation that returns HTML, it would be more likely (and
more logical) that the URI to an HTML representation of your feed would be an
ASP.NET page on the same website as your feed service. This is one of the advantages
of being able to host WCF endpoints inside an ASP.NET application.

If you are using RSS and you don’t have an HTML representation of
your RSS feed, it’s fine to put the RSS feed URI in as the alternate link.
I’m mainly showing you the flexibility of the programming model by
using the feed validator as an example “reader.”

114 | Chapter 6: Programming Feeds

If you assume there is an ASP.NET page with the same path (except for the file exten-
sion), use the following code to set the alternate link (which is also Atom-compliant
since the Atom10FeedFormatter will serialize it into an atom:link):

//assume aspx page with same name
string aspxUri = u.AbsoluteUri.Replace(u.AbsoluteUri.Contains
(".atom")?"atom":"rss","aspx");
Uri nu = new Uri(aspxUri);
//create the alternate link
feed.Links.Add(SyndicationLink.CreateAlternateLink(nu, "text/html"));

To make this work, you do have to add a little conditional code that depends on
the .atom or .rss extension being on the URI. Having those extensions on the URI is
my convention, not WCF’s, so you might have to change this line depending on which
URI convention you are using. Example 6-8 shows the resultant RSS.

Example 6-8. RSS example feed

<rss version="2.0" xmlns:a10="http://www.w3.org/2005/Atom">
 <channel>
 <title>JON-PC application EventLog Feed</title>
 <link>http://localhost/EventLogFeed/application/feed.aspx</link>
 <description>A feed of data from the EventLog</description>
 <a10:author>
 <a10:name>JON-PC</a10:name>
 </a10:author>
 <a10:id>urn:uuid:faf27956-48aa-436a-8906-e2381af139ac</a10:id>
 <a10:link rel="self" href="http://localhost/
EventLogFeed/application/feed.rss"/>
 </channel>
 <!-- Rest omitted for clarity-->
</rss>

Now the alternate link error will go away, as well as the warning about not having an
atom:link with rel="self". Perhaps you, like I, will find it a little odd that the feed
validator is looking for an Atom element when validating an RSS feed, but this just
points out that extending RSS with Atom elements isn’t unique to WCF.

Adding Links to a Feed
So far, you’ve seen how to use SyndicationFeed to build up the data for your feed, how
to use a SyndicationFeedFormatter to get WCF to turn the feed data into the appropriate
XML format, and how to use WCF to set up the endpoints with a URI that you can
retrieve using an HTTP GET request (which will allow you to retrieve the WCF endpoint
from a feed reader, including most modern browsers). Now we’ll discuss the data of
the feed, specifically, how to use SyndicationItem to build up your item/entry data.

Table 6-2 enumerates all of the properties of SyndicationItem, so there’s no need to
cover them again. However, I do want to discuss a few important issues you need to
consider when generating feed item data. For the purposes of this discussion, let’s

Adding Links to a Feed | 115

change the example we have been developing in this chapter from an event log feed
generator to one that emulates a blog or news story feed. The feed validator we devel-
oped for the original example treats the event log feed as valid even though it isn’t what
most people would consider “traditional” feed data. We’re switching the example, not
because the earlier example was wrong in any way, but because the issues I want to
discuss regarding SyndicationItem don’t come up when syndicating that kind of data,
and blog data is the easiest example with which to illustrate those issues.

When creating SyndicationItem instances for a feed that consists of blog entries, news
stories, or similar data, there are a couple of properties you need to set carefully. Missing
on the SyndicationItem instances we created earlier, for instance, was any sort of link
property. As with SyndicationFeed, we can fix this in a couple of ways.

Most feed readers will look under the entry element (again, I am using Atom 1.0 ter-
minology) for a link element that has no relationship attribute. The href attribute of
the link element can be absolute or relative to the xml:base attribute of either the feed
itself or the entry (since the entry can have its own xml:base). The feed reader assumes
that this URI is the human-readable representation of the entry. Most readers create a
hyperlink that allows the user to click and follow the link to the specific entry.

One of the constructors to SyndicationItem takes a URI as a parameter
and will create a link with rel="alternate". This works for most readers
as well. Also, the Atom specification requires this kind of link if you are
not setting the Content property (and therefore, there will be no content
element inside the entry element).

If you plan to create other links inside your entry (for alternate formats for example),
I recommend setting the xml:base by setting the SyndicationItem.BaseUri property.
Then the links you add can be relative to that. If you are not adding multiple links, you
can just add the entry’s link, as shown in Example 6-9.

Example 6-9. Creating SyndicationItem links

SyndicationItem item = null;
SyndicationLink theLink = null;
for(int i=0;i<10;i++)
{
 item = new SyndicationItem
 {
 Title = new TextSyndicationContent("Blog entry #" + i.ToString()),
 Content = new TextSyndicationContent("This is the content
 of the blog entry numbered " + i.ToString()),
 PublishDate = DateTimeOffset.Now,
 LastUpdatedTime = DateTimeOffset.Now,
 Id = "urn:uuid:" + Guid.NewGuid().ToString()
 };
 theLink = new SyndicationLink(CreateLinkForItem(item));
 item.Links.Add(theLink);

116 | Chapter 6: Programming Feeds

 items.Add(item);

}

In this example, you are just dummying up the entries, but the main point of this code
is to illustrate the creation of a “main” link for each entry. The code calls another
method to accomplish this by running an algorithm on the item itself to generate the
right URI for the link.

How this is implemented is not part of any specification; readers don’t care what the
URI is, as long as they can follow it. A typical convention today is to use the year/month/
date/title as the link because it makes a nice URI (and the elegance of URIs does matter
in this world). Example 6-10 shows the CreateLinkForItem method implemented to do
just that.

Example 6-10. CreateLinkForItem method

private static Uri CreateLinkForItem(SyndicationItem item)
{
 string theUri = String.Format("/{0}/{1}/{2}/{3}",
 item.PublishDate.Year,
 item.PublishDate.Month,
 item.PublishDate.Day,
 item.Title.Text);
 return new Uri(theUri, UriKind.Relative);
}

Again, this is just an example of one kind of URI that you can create for the main link
of your entry. You might also use SyndicationLink.CreateMediaEnclosureLink or
SyndicationLink.CreateAlternateLink, as an entry can have as many links as necessary.

When implementing a feed, you should be keenly aware of your scala-
bility requirements. If you are building a feed that might be called often
(of course, the definition of often can vary wildly), you’ll want to seri-
ously consider using caching techniques. Chapter 11 discusses caching,
from both the IIS/ASP.NET point of view and the HTTP point of view
(using a conditional GET). Please read Chapter 11 before you implement
a feed so that you understand caching sufficiently.

Summary
In this chapter, you’ve seen how the WCF 3.5 Web Programming Model includes im-
portant extensions on top of the basic programming model to include support for cre-
ating feeds. You may or may not decide to create feeds for your applications that are
not traditional feed sources (such as blogs or news sites), but you should consider doing
so since feeds are a fairly well supported way to expose data where the end user, through
a feed reader or an application, can find out when your data is updated.

Summary | 117

SyndicationFeed abstracts away your need to specify a particular feed format, with
SyndicationItem providing the functionality necessary to round out your feed docu-
ments. With the SyndicationFeed/SyndicationFeedFormatter split, you can wait until
the last possible moment to turn your SyndicationFeed into the format you desire. We
also discussed how WCF supports both the RSS 2.0 and Atom 1.0 specifications
through the Rss20FeedFormatter and Atom10FeedFormatter classes.

118 | Chapter 6: Programming Feeds

CHAPTER 7

Programming Ajax and Silverlight
Clients

An Ajax application is a web browser-based application that relies heavily on JavaScript
and web services for its functionality. The idea is to bring some of the richness of desk-
top clients built directly on operating systems to applications built inside a web
browser.

Ajax used to stand for Asynchronous JavaScript and XML. However, the
industry has decided that Ajax is no longer an acronym, and instead is
now a word. It’s kind of odd how that happens, but it makes sense in
this case because most Ajax applications today use JavaScript, and fewer
and fewer use XML, as I’ll explain later in the chapter.

Gone are the days when browsers simply made HTTP requests and displayed the re-
sulting web pages. Nowadays, modern browsers support the use of client-side code
that allows users to access functions within a web page without having to make addi-
tional requests to the server. This code may be JavaScript, or it may be a more sophis-
ticated browser plug-in written in some other language. Applications that use plug-ins
are often called rich Internet applications, or RIAs. The calls back to the web server are
normally used to get data, which then can be used to update the HTML displayed in
the browser, via the browser’s API (usually referred to as the HTML Document Object
Model, or DOM). These applications are generally user-friendly, as the page in the
browser can change and respond to UI requests without having to be refreshed in its
entirety, which otherwise could lead to frustrated users.

Ajax applications are not really new (my friend and colleague, John Lam,
was helping people build them as long ago as 1998), and Outlook Web
Access was arguably the first commercial Ajax application.

119

WCF 3.5’s Web Programming Model supports this model. In fact, Ajax clients might
be the most ubiquitous type of REST client, and in this chapter you’ll see how you can
use the WCF Web Programming Model to implement a variety of Ajax clients.

WCF Web Services and Ajax
Since WCF web endpoints are opened via HTTP, you can call them from JavaScript
inside a browser without any modification on the service side. The endpoints provide
URI-accessible functionality, so accessing them from an Ajax application is simply a
matter of making the right calls using JavaScript (or whatever Ajax library you might
be using).

For example, you can call the biology service that you wrote in Chapter 2 from an Ajax
page without making changes to the service itself. All you have to do is change the URI
of the endpoint so that it will listen on the port your website is exposed on.

Example 7-1 shows the code for a simple HTML page that uses drop-down menus
(select elements in HTML) to select the hierarchical data returned from the afore-
mentioned biology service. Calling the service is just a matter of getting the URIs correct
for each request, and then parsing the XML that is returned. To create this page, start
by adding the HTML shown in Example 7-1 to a web project inside Visual Studio, and
then code away.

Example 7-1. A simple HTML page with drop-down lists for hierarchical data returned from the
biology service

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
 <title>Using WCF Service from "AJAX"</title>
 <script type="text/javascript">
 function getXmlHttp()
 {
 var xmlHttp;
 try {
 xmlHttp = new XMLHttpRequest();
 } catch (e) {
 try {
 xmlHttp = new ActiveXObject("Msxml2.XMLHTTP");
 } catch (e) {
 try {
 xmlHttp = new ActiveXObject("Microsoft.XMLHTTP");
 } catch (e) {
 alert("This sample only works in browsers with AJAX support");
 return false;
 }
 }
 }
 return xmlHttp;
 }

120 | Chapter 7: Programming Ajax and Silverlight Clients

 var serviceURI = "http://localhost/BioService/";
 function getDomains(){

 var xmlHttp = getXmlHttp();

 xmlHttp.onreadystatechange=function(){
 if(xmlHttp.readyState == 4){
 var doc = xmlHttp.responseXML;
 var nodes = doc.selectNodes("//Domain");
 var select = document.getElementById("domains");
 var opt = null;
 var name = null;
 var uri = null;
 for(var i=0;i<nodes.length;i++)
 {
 name = nodes[i].selectSingleNode("Name").text;
 uri = nodes[i].selectSingleNode("Uri").text;
 opt = new Option(name,uri,false);
 select.options[select.options.length] = opt;
 }
 }
 }

 xmlHttp.open("GET", serviceURI, true);
 xmlHttp.setRequestHeader("Content-type", "application/xml");
 xmlHttp.send();

 }

 function selectDomain(el)
 {
 var domainUri = serviceURI + el[el.selectedIndex].value;
 var xmlHttp = getXmlHttp();

 xmlHttp.onreadystatechange=function(){
 if(xmlHttp.readyState == 4){
 var doc = xmlHttp.responseXML;
 var nodes = doc.selectNodes("//Kingdom");
 var select = document.getElementById("Kingdoms");
 var opt = null;
 var name = null;
 var uri = null;
 select.options.length = 0;
 for(var i=0;i<nodes.length;i++)
 {
 name = nodes[i].selectSingleNode("Name").text;
 uri = nodes[i].selectSingleNode("Uri").text;
 opt = new Option(name,uri,false);
 select.options[select.options.length] = opt;
 }
 }
 }

WCF Web Services and Ajax | 121

 xmlHttp.open("GET", domainUri, true);
 xmlHttp.setRequestHeader("Content-type", "application/xml");
 xmlHttp.send();

 }
 </script>

</head>
<body onload="getDomains()">
 <h1>Life classification</h1>
 <p>
 Domain:<select id="domains" onchange="selectDomain(this)"></select>
 </p>
 <p>
 Kingdom:<select id="kingdoms"></select>
 </p>
 <p>
 Phylum:<select id="phylum"></select>
 </p>
 <p>
 Class:<select id="class"></select>
 </p>
 <p>
 Order:<select id="order"></select>
 </p>
 <p>
 Family:<select id="family"></select>
 </p>
 <p>
 Genus:<select id="genus"></select>
 </p>
 <p>
 Species:<select id="species"></select>
 </p>
</body>
</html>

The code given in Example 7-1 isn’t complex, and is similar to the code you might see
inside a typical Ajax page when the service returns XML. Reading through the example,
you can see that the code required to call a WCF web endpoint is no different from
what you might write to call an exposed endpoint using HTTP.

When this page is loaded, the getDomains JavaScript function will call the root URI of
the service, which will return the list of biological domains as XML. The function parses
the XML and uses it to populate an option element per Domain inside of the HTML
select element.

When the user selects a Domain, another function makes the call to the Kingdom URI,
concatenating the URI of Kingdom to the root URI. The selectDomains function then
populates the select for Kingdom dynamically, based on the result of the call to the
Kingdom URI.

Figures 7-1 and 7-2 show views of typical user interactions with this fairly simple page.

122 | Chapter 7: Programming Ajax and Silverlight Clients

This example isn’t really exciting, but it is here to reinforce the notion that WCF web
endpoints are general-purpose REST endpoints and can be called by any REST-enabled
client, including JavaScript in a browser.

The JavaScript code is also pretty mundane, and you could improve it by encapsulating
the XMLHttpRequest in a JavaScript object model. Many such libraries are available for
you to download and use, and they’re easy to use against a WCF service as well. How-
ever, most of these libraries have moved away from XML parsing to JavaScript Object
Notation (JSON) serialization as the preferred format for passing data between services
and Ajax clients.

JSON
The industry has moved to JSON for many reasons, including:

• JSON has smaller packets because the JSON format is smaller than XML

• JSON has a more natural programming mode for Ajax clients

• Parsing JSON is more efficient than parsing XML

Another reason (one that is often left unsaid) is that no one really likes to program
against XML APIs in the browser because of the general lack of XML API support (the
lack of updates to the XML APIs in browsers is probably a direct result of the popularity
of JSON).

Figure 7-1. Selecting a domain

JSON | 123

Example 7-2 shows the getDomains function from Example 7-1, rewritten to use JSON-
serialized responses (we’ll look at the service code in a moment).

Example 7-2. A simple HTML page after service is ported to use JSON-serialized responses

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0
 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
 <title>Using WCF Service from "AJAX"</title>
 <script type="text/javascript">
 window.onload = function()
 {
 getDomains();
 }
 function getXmlHttp()
 {
 var xmlHttp;
 try {
 xmlHttp = new XMLHttpRequest();
 } catch (e) {
 try {
 xmlHttp = new ActiveXObject("Msxml2.XMLHTTP");
 } catch (e) {
 try {
 xmlHttp = new ActiveXObject("Microsoft.XMLHTTP");
 } catch (e) {

Figure 7-2. Displaying the Kingdom

124 | Chapter 7: Programming Ajax and Silverlight Clients

 alert("This sample only works in browsers with AJAX support");
 return false;
 }
 }
 }
 return xmlHttp;
 }
 var serviceURI = "http://localhost/BioService/";
 function getDomains(){
 var xmlHttp = getXmlHttp();
 xmlHttp.onreadystatechange=function(){
 if(xmlHttp.readyState == 4){
 var result = (eval(xmlHttp.responseText));
 var domain = null;
 var select = document.getElementById("domains");
 var opt = null;
 var name = null;
 var uri = null;
 for(var i=0;i<result.length;i++)
 { domain = result[i];
 name = domain.Name;
 uri = domain.Uri;
 opt = new Option(name,uri,false);
 select.options[select.options.length] = opt;
 }
 }
 }
 xmlHttp.open("GET", serviceURI + "json", true);
 xmlHttp.setRequestHeader("Accept", "application/json");
 xmlHttp.send(null);
 }
 function selectDomain(el)
 {
 var domainUri = serviceURI + el[el.selectedIndex].value + "/json";
 var xmlHttp = getXmlHttp();
 xmlHttp.onreadystatechange=function(){
 if(xmlHttp.readyState == 4){
 var result = (eval(xmlHttp.responseText));
 var kingdom = null;
 var select = document.getElementById("kingdoms");
 var opt = null;
 var name = null;
 var uri = null;
 for(var i=0;i<result.length;i++)
 {
 kingdom = result[i];
 name = kingdom.Name;
 uri = kingdom.Uri;
 opt = new Option(name,uri,false);
 select.options[select.options.length] = opt;
 }
 }
 }
 xmlHttp.open("GET", domainUri, true);
 xmlHttp.setRequestHeader("Accept", "application/json");

JSON | 125

 xmlHttp.send(null);
 }
 </script>
</head>
<body>
 <h1>Life classification</h1>
 <p>
 Domain:<select id="domains" onchange="selectDomain(this)"></select>
 </p>
 <p>
 Kingdom:<select id="kingdoms"></select>
 </p>
 <p>
 Phylum:<select></select>
 </p>
 <p>
 Class:<select></select>
 </p>
 <p>
 Order:<select></select>
 </p>
 <p>
 Family:<select></select>
 </p>
 <p>
 Genus:<select></select>
 </p>
 <p>
 Species:<select></select>
 </p>
</body>
</html>

It is true that the code in Example 7-2 isn’t smaller than the code in Example 7-1, but
the code in Example 7-2 is much cleaner. Instead of parsing the response XML DOM,
you can just use the JavaScript eval function to parse the return into a full-fledged
JavaScript object (in this case, an array of objects that each have a Name and Uri prop-
erty). Programming against objects is generally preferable to programming against XML
(in my experience, most people feel this way), unless there is a big performance hit.

It’s often useful to look at the network packets moving between a user agent and a
service. Doing so can increase your understanding of how interactions work, and this
information can be invaluable when debugging. Many tools are available to do this; I
prefer the Web Development Helper from http://www.nikhilk.net/. If you are using
Firefox as your browser, Firebug does pretty much the same thing.

Figure 7-3 shows the results of using the Web Development Helper, and it’s easy to see
that JSON is the performance winner. The size of the JSON request is half the size of
the XML request, and the response time is also half.

126 | Chapter 7: Programming Ajax and Silverlight Clients

http://www.nikhilk.net/

When a page first loads, the browser makes two requests. The first is for the HTML
itself and the second is a call (made by the XMLHttpObject) for the list of Domains
(Figure 7-4).

If you click on the second line in the trace box, a Detail dialog box will appear, and you
can then click the Response tab to see the response data, encoded as a JavaScript object
by default. Figure 7-5 shows the expanded response data in its entirety.

Figure 7-6 shows the same data, but this time in a text view (which you can select from
the Viewer drop-down list). This view shows the actual JSON data as returned from
the server.

JSON-Enabling a Service Endpoint
How do you program a service endpoint to return JSON instead of XML? One way is
to use the WebGet.ResponseFormat property to change a single method at a time. The
other way is to use the WebScriptBehavior to modify the whole endpoint. We’ll look at
both of these techniques in this section.

One approach is to use the ResponseFormat property of the WebGet attribute. This prop-
erty specifies the format that the serializer will use when deserializing incoming mes-
sages and serializing outgoing messages. The default value for this property is

Figure 7-3. JSON size versus XML size using the Web Development Helper

JSON | 127

WebMessageFormat.Xml, which instructs the serializer to turn your objects into XML.
This is the setting that we’ve seen up to this point.

If you specify WebMessageFormat.Json for the ResponseFormat property, the serializer will
serialize objects into JSON format (you can set the ResponseFormat and
RequestFormat separately, but in general you’ll want them to be the same). Later in this
chapter, I’ll show you how you can have one operation/method return JSON or XML
conditionally.

Example 7-3 shows the methods that are called for the top two resources (the root
resource, represented by the URI /, and the Domain resource, represented by the
URI /{Domain}) in the biological taxonomy service hierarchy, modified to return JSON
for different URIs.

Example 7-3. XML and JSON responses

//XML responses
[OperationContract]
[WebGet(UriTemplate = "/",ResponseFormat=WebMessageFormat.Xml)]
DomainList GetRoot();
[OperationContract]
[WebGet(UriTemplate = "/{Domain}", ResponseFormat = WebMessageFormat.Xml)]
KingdomList GetDomain(string Domain);
//JSON responses
[OperationContract]
[WebGet(UriTemplate = "/json", ResponseFormat = WebMessageFormat.Json)]

Figure 7-4. Web Development Helper in browser

128 | Chapter 7: Programming Ajax and Silverlight Clients

DomainList GetRootJSON();
[OperationContract]
[WebGet(UriTemplate = "/{Domain}/json", ResponseFormat = WebMessageFormat.Json)]
KingdomList GetDomainJSON(string Domain);

Example 7-3 contains the addition of two methods to the service contract definition
(GetRootJSON and GetDomainJSON). These methods have the same return type and pa-
rameters as the methods that return XML (GetRoot and GetDomain). To satisfy the CLR
compiler, each method must have a different name because the return values and pa-
rameters are the same. The method names are irrelevant to WCF, because the WCF
web dispatcher cares only about the UriTemplate value associated with each method.
The two methods that return JSON include a new path segment on the end of each
UriTemplate: "/json". This allows the user agent to get JSON-encoded responses by
adding "/json" to the end of the requested URI, or to get XML by leaving "/json" off
the requested URI.

Figure 7-5. JSON view of response data

JSON | 129

In .NET 3.5 SP1, the UriTemplate parsing mechanism has been modified
to support URIs with special characters between template parameters
inside a path segment.

A URI such as http://localhost/BioService/Domain.json could be parsed
using a UriTemplate definition such as /{Domain}.{format}. This could
allow you to parse out the format automatically and then return JSON
or XML. Later in this chapter, we’ll discuss when it is possible to return
JSON or XML dynamically from the same method.

Any type that can be serialized as XML can also be serialized into JSON, with no ad-
ditional effort on your part. WCF 3.5 includes a DataContractJsonSerializer that per-
forms this “magic.” To make the service work overall, however, we have to add another
class-level method for each of the operations, but since each method is returning the
same types as the XML versions, we only have to delegate to those versions:

public DomainList GetRootJSON()
{
 return GetRoot();
}

public KingdomList GetDomainJSON(string Domain)
{
 return GetDomain(Domain);
}

If you want to return only JSON from an endpoint, you could use WebScriptEnabling
Behavior to make all the operations on the endpoint use JSON as the request and re-
sponse format. WebScriptEnablingBehavior is an EndpointBehavior that works by au-
tomatically modifying all the operations on the configured endpoint to use
WebMessageFormat.Json for both the request and the response. This is useful if you want
all of your operations to return (and accept) JSON. It is also useful if you want endpoints

Figure 7-6. Raw JSON response data

130 | Chapter 7: Programming Ajax and Silverlight Clients

http://localhost/BioService/Domain.json

on one host to use XML and endpoints on another host to use JSON, since you can
enable the behavior through configuration, requiring no changes to your code.

If you are hosting in IIS, you can use WebScriptServiceHostFactory as
the value of the Factory attribute in your .svc file to further simplify the
configuration of a JSON endpoint. It will automatically configure the
WebScriptEnablingBehavior for you.

To enable WebScriptEnablingBehavior, add the code in Example 7-4 to Web.config.

Example 7-4. Configuring WebScriptEnablingBehavior

<behaviors>
 <endpointBehaviors>
 <behavior name="JSONOnly">
 <enableWebScript/>
 </behavior>
 </endpointBehaviors>
</behaviors>
<services>
 <service name="JSONService">
 <endpoint address="/JSON" behaviorC
onfiguration="JSONOnly" binding="webHttpBinding" contract="TheContract"/>
 </service>

Because WebScriptEnablingBehavior derives from WebHttpBehavior, you don’t need to
add both WebHttpBehavior and WebScriptEnablingBehavior separately; you get a two-
for-one effect when adding WebScriptEnablingBehavior. WebScriptEnablingBehavior is
the name of the class and enableWebScript is the element name for adding this behavior
via the configuration file.

WebServiceHost sh =
 new WebServiceHost(typeof(Service));
Type t = typeof(Service);
Binding b = new WebHttpBinding();
string uri = "http://localhost/webtest/";
ServiceEndpoint se = sh.AddServiceEndpoint(t,b, uri);
se.Behaviors.Add(new WebScriptEnablingBehavior());
sh.Open();

WebScriptEnablingBehavior does have one fairly big restriction: the contracts on the
endpoint configured with this behavior can’t use UriTemplate to customize the URI-to-
method dispatching infrastructure built into WCF 3.5. Instead of the URI customiza-
tion enabled by using the UriTemplate property on WebGet and WebInvoke, the default
URI-to-method dispatching rules will apply. The default rules are that the URI will
include the endpoint of the service plus the name of the method. Inputs to a method
with a WebGetAttribute will have to be query string parameters (with the query string
variable names matching the parameter names). When using WebInvoke instead of
WebGet, the same URI and query string rules apply, although the last parameter of the

JSON | 131

method marked with WebInvoke can still be a complex type (i.e., the deserialized version
of the body of the HTTP request).

This restriction might not dissuade you from using WebScriptEnablingBehavior if your
clients will be using ASP.NET Ajax, because WebScriptEnablingBehavior will generate
a JavaScript proxy that you can use in the JavaScript environment of a browser running
the ASP.NET Ajax client runtime. This means that a developer using ASP.NET Ajax
in her browser-based application won’t have to use the XmlHttpRequest object directly
and will have a strongly typed JavaScript object model with which to work against your
service.

An extra benefit of this proxy integration is that Visual Studio 2008 is
aware of this proxy class and will give you IntelliSense inside your Java-
Script code as well.

ASP.NET Ajax
ASP.NET Ajax is a Microsoft runtime and set of tools that enable developers to build
Ajax-based applications in ASP.NET more quickly and easily than if they built raw Ajax
applications using JavaScript. It includes a cross-browser JavaScript client (which you
can use without using ASP.NET), as well as ASP.NET server-side functionality to help
typical ASP.NET developers jumpstart their use of Ajax.

For this section, we will build out the infrastructure of an ASP.NET web
application manually, bit by bit, so that you can see how the pieces fit
together. Note, however, that Visual Studio 2008 has templates for an
Ajax-enabled WCF service, as well as for an Ajax web form, so feel free
to use these templates after you have a grasp of what they do.

Let’s start by building a service endpoint that can be called by an ASP.NET Ajax client.
For consistency, let’s continue to use the biological taxonomy service we created in
Chapter 3 (the one that returns resources from the biological taxonomy service as a
read-only RESTful service) so that we can contrast the handwritten JavaScript .html
page with the ASP.NET Ajax-enabled version. I have an ASP.NET web application
named JSONWebTest already added to my local IIS, so we’ll build on top of that pre-
existing project.

First, you need a contract that is compatible with WebScriptEnablingBehavior. In this
case, we’ll keep our original non-WebScriptEnablingBehavior contract separate (so we
can have a more “pure” RESTful endpoint for non-ASP.NET Ajax clients) and we’ll
add a special one for WebScriptEnablingBehavior.

Instead of creating a separate interface (which you will probably never reuse, since the
contract is specialized for this particular ASP.NET application), we’ll implement the

132 | Chapter 7: Programming Ajax and Silverlight Clients

contract as a class. Example 7-5 includes the code for the service contract for the
BioWrapper endpoint and also includes implementations of two of its methods (Get
Root and GetDomain) rolled into one.

Example 7-5. Service contract for BioWrapper, including implementation of two methods

[ServiceContract(Namespace="")]
public class BioWrapper
{
 [OperationContract()]
 [WebGet()]
 public DomainList GetRoot()
 {
 BioTaxService realImpl = new BioTaxService();
 return realImpl.GetRoot();
 }
 [OperationContract()]
 [WebGet()]
 public KingdomList GetDomain(string Domain)
 {
 BioTaxService realImpl = new BioTaxService();
 return realImpl.GetDomain(Domain);
 }
 //other methods excluded for clarity

}

To keep things simple, Example 7-5 shows only the top two levels of the BioWrapper
service hierarchy. As you can see, the code does not make use of the UriTemplate prop-
erty of the WebGet attribute. If it did, WCF would throw the following exception:

Endpoints using 'UriTemplate' cannot be used with 'System.ServiceModel.Descrip
tion.WebScriptEnablingBehavior'.

This is about as straightforward an exception as you’ll ever get.

UriTemplate Customization and WebScriptEnablingBehavior
Why doesn’t WCF allow UriTemplate customization with
WebScriptEnablingBehavior? The underlying ASP.NET Ajax proxy code was already
written before WCF came out with the UriTemplate mechanism in .NET 3.5, and sup-
porting UriTemplate customization would have meant changing the underlying Java-
Script proxy model. This is annoying, but shouldn’t be problematic, since the proxy
class hides so much of the functionality anyway.

If you want to have a JSON endpoint that will expose UriTemplate to toolkits other
than ASP.NET Ajax, you’ll have to wrap the UriTemplate-specific functionality with a
new contract that doesn’t use UriTemplate specialization.

To get the endpoint up and running, one option is to use a typical WCF .svc file, put
it into your virtual directory, and point the Service attribute at the new BioWrapper

ASP.NET Ajax | 133

type. You can then put a service entry into the System.ServiceModel configuration ele-
ment inside the web.config file with a link to an endpoint behavior element that uses
the enableWebScript element (this is the same configuration you saw in the previous
section).

Instead of adding that configuration, however, we can take advantage of the fact
that .NET 3.5 includes a new ServiceHostFactory-derived type that will automatically
configure the service and its endpoint to use that particular configuration. Here are the
contents of the .svc file:

<% @ServiceHost
Factory="System.ServiceModel.Activation.WebScriptServiceHostFactory"
Service="BioWrapper" %>

Pointing the WebScriptServiceHostFactory at the BioWrapper service type allows it to
create an instance of the WebScriptServiceHost based on the BioWrapper type. Web
ScriptServiceHost is similar to the WebServiceHost we discussed in Chapter 5.
WebScriptServiceHost automatically configures this service with an endpoint using the
WebHttpBinding and applying the WebScriptEnablingBehavior to that endpoint. This
saves us from having to configure the service in the web.config file.

In order to call this service from a browser using the automatically generated proxy,
add the ASP.NET Ajax JavaScript runtime to the browser’s JavaScript environment. In
this case, we are using an ASP.NET .aspx page on the server to generate the browser
resource, so add the appropriate ASP.NET server-side controls to the .aspx file. Most
of the time, we think about ASP.NET server-side controls as generating viewable
HTML, but they can also generate JavaScript and hidden HTML elements such as the
script element.

The ASP.NET page requires a form element with the runat="Server" attribute. This is
necessary for setting up the server environment for the other ASP.NET controls that
we will add. This element is generally added automatically for you when you create a
new .aspx file using Visual Studio. The form element requires a ScriptManager element
(also with the runat="Server" attribute). The ScriptManager control generates the Java-
Script and script elements, which cause the browser to request the necessary JavaScript
files from the server, which loads the ASP.NET Ajax client runtime.

The ScriptManager allows us to add another server-side control to the page:
ServiceReference. ServiceReference injects another script element into the ASP.NET
Ajax-enabled page. The script element creates another request to the server for a Java-
Script file, which contains a JavaScript client “class” that extends the ASP.NET Ajax
client proxy class for calling services (which is a JavaScript “class” named
System.Net.WebServiceProxy). This new class will be automatically generated based on
the .NET metadata of the service (this is in some ways like the automatic proxy gen-
eration that many languages have for SOAP-based services using WSDL, except the
proxy is generated dynamically at runtime).

134 | Chapter 7: Programming Ajax and Silverlight Clients

The URI for the JavaScript file is added by WebScriptEnablingBehavior. This Web
ScriptEnablingBehavior adds an additional endpoint to the underlying service end-
point. The additional endpoint responds when an HTTP GET request is made to the
service endpoint that has the additional "/js" path segment added to the URI (or
"/jsdebug" when a debug build is used).

In our case, the JavaScript proxy’s URI will be http://localhost/JSONWebTest/BioWrap
perService.svc/js (or http://localhost/JSONWebTest/BioWrapperService.svc/jsdebug for
debug builds).

Example 7-6 shows the markup for an .aspx page that puts these features to work.

Example 7-6. ASP.NET Ajax page using autogenerated WCF JSON proxy

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0
 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
 <title>Using WCF Service from ASP.NET AJAX</title>

</head>
<body>
<form runat="server">
<asp:ScriptManager runat="server" id="_scriptMan">
<Services>
<asp:ServiceReference Path="~/BioWrapperService.svc" />
</Services>
</asp:ScriptManager>
 <h1>Life classification</h1>
 <p>
 Domain:<select id="domains" onchange="selectDomain(this)"></select>
 </p>
 <p>
 Kingdom:<select id="kingdoms"></select>
 </p>
 <p>
 Phylum:<select></select>
 </p>
 <p>
 Class:<select></select>
 </p>
 <p>
 Order:<select></select>
 </p>
 <p>
 Family:<select></select>
 </p>
 <p>
 Genus:<select></select>
 </p>
 <p>
 Species:<select></select>
 </p>
 </form>

ASP.NET Ajax | 135

http://localhost/JSONWebTest/BioWrapperService.svc/js
http://localhost/JSONWebTest/BioWrapperService.svc/js
http://localhost/JSONWebTest/BioWrapperService.svc/jsdebug

</body>
</html>

We can now modify the JavaScript code to integrate with ASP.NET Ajax. First, modify
the window.onload functionality in a method named pageLoad. This is a special method
known by ASP.NET Ajax that will be called after all the ASP.NET Ajax context is loaded
into the browser. Next, use the syntax of the JavaScript proxy generated by
WebScriptEnablingBehavior. Figure 7-7 shows a screenshot of that object in the Web
Development Helper.

It’s not necessary to dive into the code in detail, but clearly there is a class named
BioWrapper, which exposes a number of properties and methods. The two methods we
are most interested in are the GetRoot and GetDomain methods that correspond to the
methods on our service. The syntax to get the list of domains is BioWrapper.GetRoot.

Be careful: the class name will also be prefixed by the namespace URI
of the ServiceContract. In this case, I explicitly set the namespace to an
empty string, which is why the code doesn’t need that namespace. The
default namespace is tempuri.org, so if I hadn’t set the namespace to an
empty string, the JavaScript code would use tempuri.org.BioWrapper
Service. For RESTful service purposes, the namespace is irrelevant, so
setting it to an empty string is probably a good practice.

The proxy is inherently asynchronous, so we will specify the JavaScript function that
we want called when the initial call completes. The natural parameters to the method
would come before the function parameter, but since this particular “method” doesn’t
have any parameters, the function call comes first:

function pageLoad()
{
 BioWrapper.GetRoot(domainsDone);
}

Next, implement the domainsDone method, shown in Example 7-7, which will be called
after the GetRoot asynchronous call completes. This method takes one parameter,
which is the result of the asynchronous call. Note that you can also pass a JavaScript
object as a context object to the initial call, which can then be passed to the done call.
This is useful because the domainsDone call isn’t done in the context of the JavaScript
this reference (as in Example 7-3).

Example 7-7. domainsDone function (JavaScript)

function domainsDone(result)
{
 var domain = null;
 var select = document.getElementById("domains");
 var opt = null;
 var name = null;
 var uri = null;
 for(var i=0;i<result.length;i++)

136 | Chapter 7: Programming Ajax and Silverlight Clients

 { domain = result[i];
 name = domain.Name;
 uri = domain.Uri;
 opt = new Option(name,uri,false);
 select.options[select.options.length] = opt;
 }
}

Figure 7-7. WebScriptEnablingBehavior JavaScript proxy

ASP.NET Ajax | 137

The differences between this function and the earlier, non-ASP.NET Ajax version are
that this one doesn’t call the XmlHttpRequest object (because the generated proxy takes
care of that) and that it doesn’t parse the response into JSON using eval (because the
infrastructure has already done it). The rest of the JavaScript code follows in Exam-
ple 7-8; I modified it from the earlier version in the same way I modified the code in
Examples7-2 and 7-3 by removing the explicit XmlHttpRequest and eval calls.

Example 7-8. selectDomain function (Javascript)

function selectDomain(el)
{
 var domain = el[el.selectedIndex].value;
 BioWrapper.GetDomain(domain,kingdomDone);

}
function kingdomDone(result)
{
 var kingdom = null;
 var select = document.getElementById("kingdoms");
 var opt = null;
 var name = null;
 var uri = null;
 for(var i=0;i<result.length;i++)
 {
 kingdom = result[i];
 name = kingdom.Name;
 uri = kingdom.Uri;
 opt = new Option(name,uri,false);
 select.options[select.options.length] = opt;
 }
}

It is also interesting to look at the calls the browser made to the server during this
interaction. In Figure 7-8 you can see the calls the browser makes when the page first
loads.

The last two URLs in Figure 7-8 (in the Web Development Helper pane) are the requests
to load the debug version of the proxy and the call to the service endpoint itself, this
time to the GetRoot method. This call is made in response to the code inside the page
Load client-side function. Now look at Figure 7-9, which is the page displayed after a
Domain is selected from the first drop-down list.

You can see that the proxy automatically adds the parameter from the
call to GetDomain as a query string parameter. The advantage of the
WebScriptEnablingBehavior is that when you customize your ServiceContract explicitly
for ASP.NET Ajax clients, the programming model the clients must use is much
simplified.

Example 7-9 pulls the ASP.NET markup and code together into one sample.

138 | Chapter 7: Programming Ajax and Silverlight Clients

Example 7-9. Full ASP.NET markup and code

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0
 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
 <title>Using WCF Service from ASP.NET AJAX</title>
 <script type="text/javascript">
function pageLoad()
{
 BioWrapper.GetRoot(domainsDone);
}
function domainsDone(result)
{
 var domain = null;
 var select = document.getElementById("domains");
 var opt = null;
 var name = null;
 var uri = null;
 for(var i=0;i<result.length;i++)
 { domain = result[i];
 name = domain.Name;
 uri = domain.Uri;
 opt = new Option(name,uri,false);
 select.options[select.options.length] = opt;
 }
}
function selectDomain(el)

Figure 7-8. ASP.NET Ajax page loading

ASP.NET Ajax | 139

{
 var domain = el[el.selectedIndex].value;
 BioWrapper.GetDomain(domain,kingdomDone);

}
function kingdomDone(result)
{
 var kingdom = null;
 var select = document.getElementById("kingdoms");
 var opt = null;
 var name = null;
 var uri = null;
 for(var i=0;i<result.length;i++)
 {
 kingdom = result[i];
 name = kingdom.Name;
 uri = kingdom.Uri;
 opt = new Option(name,uri,false);
 select.options[select.options.length] = opt;
 }
}
 </script>

</head>
<body>
<form runat="server">
<asp:ScriptManager runat="server" id="_scriptMan">

Figure 7-9. GetDomain client-side call

140 | Chapter 7: Programming Ajax and Silverlight Clients

<Services>
<asp:ServiceReference Path="~/BioWrapperService.svc" />
</Services>
</asp:ScriptManager>
 <h1>Life classification</h1>
 <p>
 Domain:<select id="domains" onchange="selectDomain(this)"></select>
 </p>
 <p>
 Kingdom:<select id="kingdoms"></select>
 </p>
 <p>
 Phylum:<select></select>
 </p>
 <p>
 Class:<select></select>
 </p>
 <p>
 Order:<select></select>
 </p>
 <p>
 Family:<select></select>
 </p>
 <p>
 Genus:<select></select>
 </p>
 <p>
 Species:<select></select>
 </p>
 </form>
</body>
</html>

Silverlight 1.0
Silverlight 1.0 is a cross-browser, cross-platform web browser plug-in that allows you
to build interactive applications inside a browser. Silverlight 1.0 is targeted mainly at
media display (e.g., videos and images), along with the ability to use JavaScript to
interact with the plug-in to enable dynamic applications that can respond to user input.

In essence, Silverlight 1.0 is really an Ajax programming environment, since it doesn’t
have any executable language. Silverlight 1.0 pages are pure XML (specifically, they are
formatted using an XML dialect known as XAML, which stands for eXtensible Appli-
cation Markup Language).

You use WCF RESTful and JSON services with Silverlight 1.0 in much the same way
as you would with ASP.NET Ajax. The difference in using Silverlight 1.0 is that instead
of interacting with the HTML DOM, Silverlight 1.0 JavaScript code interacts with the
Silverlight 1.0 plug-in.

Silverlight 1.0 | 141

Silverlight 2.0
The more interesting runtime to look at is Silverlight 2.0. Unlike Silverlight 1.0, which
is really an Ajax programming environment, Silverlight 2.0 is actually a cross-platform
version of the CLR (a subset of the CLR, but with the same programming model and
ideas).

Silverlight 2.0 is also a more complete development experience in terms of common
programming paradigms such as controls and data binding (unlike Silverlight 1.0,
which is geared more toward media playback). Because of this, and because you can
write Silverlight 2.0 code in your favorite .NET language, it is a much friendlier envi-
ronment for calling services.

As in Silverlight 1.0, calling services with Silverlight 2.0 is always asynchronous to
prevent the browser’s UI from being locked while a service call is being made. For
reading from RESTful services (there are actually more facilities for calling SOAP serv-
ices from Silverlight 2.0), the typical pattern is to use the WebClient class, call either the
DownloadStringAsync or OpenReadAsync method, and set up the appropriate delegate,
which will be called when the async call is completed.

The WebClient class in Silverlight 2.0 uses the underlying browser functionality (à la
XmlHttpRequest from JSON). It allows you to make HTTP requests, although there are
some restrictions in terms of its interaction with the full HTTP stack. I’ll point these
out as we go along.

First, let’s use a simple example that isolates WebClient. We will then revisit the bio-
logical Domains sample and build a Silverlight application with a little more function-
ality. For this example, I have created a simple Silverlight application by using the
Silverlight project template with an associated Web Application project. I added a
Button to the Page.xaml file for invoking the code that uses WebClient and a Text
Block to hold the result (see Figure 7-10).

The following code will run when a user clicks on the button:

private void _getData_Click(object sender, RoutedEventArgs e)
{

Figure 7-10. A simple Silverlight page

142 | Chapter 7: Programming Ajax and Silverlight Clients

 WebClient wc = new WebClient();
 wc.DownloadStringCompleted +=delegate
(object o,DownloadStringCompletedEventArgs args)
 {
 _result.Text = args.Result;

 };
 wc.DownloadStringAsync(new Uri(_uri));
}

You can see that the WebClient programming model is fairly simple. You create a new
instance of WebClient, register for the Completed event that is appropriate for the
Begin call you are going to make, and then pass a URI to the Begin call. This code uses the
DownloadStringAsync Begin call, which makes an HTTP GET request to the URI passed
to it, and when the server or service returns the resource at that URI, the WebClient fires
the delegate associated with the Completed event. The Completed event passes in an
EventArgs type, which contains information about the request; most importantly, it
holds onto the result of the call on the aptly named Result property.

This example employs a simple WCF WebGet-enabled service endpoint on the server
that returns a string when called. Here is that service:

public class SimpleService : ISimpleService
{

 public string Simple()
 {
 Thread.Sleep(2000);
 return "Simple Silverlight Test";
 }

}

There is a Thread.Sleep in the code so that when you click the button on the Silverlight
page, the UI remains responsive. This is why the WebClient API is asynchronous only.
Figure 7-11 shows the page that is displayed when you click the button.

Figure 7-11. Result of WebClient async call

Silverlight 2.0 | 143

Table 7-1 lays out the rest of the WebClient API. Although DownloadStringAsync was
useful in this simple case, we will use the OpenReadAsync method throughout the rest of
this chapter to get a Stream as the return value, since a Stream is somewhat more useful
when you’re trying to parse the format of most resources. All of the WebClient methods
have a Progress event as well, which allows you to create UI effects such as progress
bars when downloading or uploading large resources.

Table 7-1. WebClient API

Method Completed event Progress event Comment

DownloadStringAsync DownloadStringCompleted DownloadStringProgressChanged Useful for

simple

cases

OpenReadAsync OpenReadCompleted OpenReadProgressChanged Useful for

read-only

REST calls

OpenWriteAsync OpenWriteCompleted OpenWriteProgressChanged Useful in

simple

POST

scenarios

UploadStringAsync UploadStringCompleted UploadStringProgressChanged Useful in

simple

POST

scenarios

Parsing XML in Silverlight 2.0
Once you get past the simple cases, you’ll need to parse the result of a WebClient call
into something useful, which will generally be XML, but might be JSON. In this section,
we’ll look at the different ways you can program against XML inside Silverlight.

For the rest of the examples in this section we’ll use the biological taxonomy service
when parsing service results. For this, we will set up another Silverlight application with
an associated Web Application project, although the Silverlight application will be
invoking the already-existing service endpoint (again, running on the same host and
port as the Web Application project; we’ll discuss cross-domain access later in this
chapter).

There are three basic ways to parse XML in Silverlight 2.0: via XmlReader, XDocument
(LinqToXml), or XmlSerialization. For these examples, I’ve created a Silverlight page
with buttons for each of these options. The event handlers for these buttons use the
WebClient.OpenReadAsync method to make the appropriate service call, and use different
forms of parsing the results in the delegate method associated with the
OpenReadCompleted event.

144 | Chapter 7: Programming Ajax and Silverlight Clients

In all cases, we’ll parse the results into a list of objects that can be data-bound to a
ListBox control in the Silverlight XAML. We will also use a few LINQ queries in the
code to further simplify the programming (taking advantage of the fact that Silverlight
2.0 is CLR implementation). We will bind the result of the top of the resource tree to
one ListBox (the list of Domains), and we will bind the result of the second level of the
hierarchy (the Kingdoms) to another ListBox.

We will use this same page later in this chapter when we discuss how to parse JSON
and feed formats, so there are tabs in the page for that functionality. You can see this
page in Figure 7-12 (please remember that this book is about REST programming with
WCF, and not about how to make a pleasing design with Silverlight; I’m not an
accomplished UI expert by any means).

Figure 7-12. Silverlight page for testing different response formats

The code samples from this book are available at http://www.rest-ful.net/book, so we
won’t discuss all of this code in detail here; instead, we will focus only on the pieces
that are relevant to our current topic.

Here is the code that is invoked whenever you click one of the buttons:

private void DoRest()
{
 _domainsListBox.DataContext = null;
 _kingdomsListBox.DataContext = null;
 WebClient c = new WebClient();
 c.OpenReadCompleted += DomainComplete;
 c.OpenReadAsync(new Uri(_baseUri));
}

The preceding code simply uses a URI to make a GET request using the WebClient class.
The DomainComplete method will be called when the result is available, and we can carry
out different types of XML parsing inside that method.

Before getting into the details of this parsing, let me remind you of the format of the
resources. Figure 7-13 shows the top-level XML of the list of Domains, and Fig-
ure 7-14 shows the result from the second level: a list of Kingdoms from a specific

Silverlight 2.0 | 145

http://www.rest-ful.net/book

Domain. These are here as a reference for you to understand what the code in the
following sections is parsing.

Each button causes a flag to be set in the Silverlight page so that code inside the Domain
Complete method will know which kind of parsing to perform. Example 7-10 shows the
DomainComplete method in full.

Example 7-10. DomainComplete method

void DomainComplete(object sender,
 OpenReadCompletedEventArgs e)
{
 Stream streamResult = e.Result;

 switch (_currentMode)
 {
 case Mode.XmlReader:
 WriteDomainsXmlReader(streamResult);
 break;
 case Mode.LinqToXML:
 WriteDomainsLinqToXML(streamResult);
 break;
 case Mode.XMlSerializer:
 WriteDomainsXmlSerializer(streamResult);
 break;
 default:
 break;
 }

}

Figure 7-13. Domains XML

146 | Chapter 7: Programming Ajax and Silverlight Clients

When you click a button, the ListBox will be displayed with the list of Domains. That
list is exactly the same no matter which kind of parsing you use; Figure 7-15 shows
what the page looks like after you click any of those buttons.

If you were to click on a Domain in the ListBox and then click the name of the Domain,
the page would respond by going back to the service to get the list of Kingdoms for that
Domain (in the XAML, there is a HyperlinkButton inside each ListItem in the List
Box). When you click a Domain, you will see a page that looks similar to the one shown
in Figure 7-16. The event handler for getting the Kingdoms for a particular Domain
will use the same form of XML parsing as the first call.

Now that we have set up the basic operation of the sample, let’s examine the different
parsing methods.

Using XmlReader

Probably the most straightforward way to read XML in Silverlight is to use the familiar
XmlReader. For the most part, the XmlReader works the same in Silverlight as it does in

Figure 7-14. Kingdoms XML

Silverlight 2.0 | 147

the regular CLR. Example 7-11 shows the code that will parse the result from the call
to the “root” of the resource tree (this is the code that is called in the DomainComplete
method when you click the XmlReader button).

Figure 7-15. Domains result

Figure 7-16. Kingdoms result

148 | Chapter 7: Programming Ajax and Silverlight Clients

Example 7-11. Parsing the result from the call to the root of the resource tree

private void WriteDomainsXmlReader(Stream streamResult)
{
 //create the collection for data binding
 List<BindingClass> bindingContext =
 new List<BindingClass>();
 string uri = null;
 //parse the result stream to an XmlReader
 using (XmlReader xr = XmlReader.Create(streamResult))
 {
 xr.MoveToContent();
 xr.Read();//Move past Domains
 while (xr.Read())
 {
 //pull the Uri result
 if (xr.Name == "Uri" &&
 xr.NodeType == XmlNodeType.Element)
 {
 //read out the value of the Uri element
 uri = xr.ReadElementContentAsString();
 //add a new Binding class
 bindingContext.Add(new BindingClass { Text = uri });
 }
 }
 }
 //give the collection to the ListBox for data binding
 _domainsListBox.DataContext = bindingContext;
}

The code is pretty straightforward, following one typical pattern of XmlReader usage,
which is to call XmlReader.Read a number of times based on the format of the XML
being parsed. In this case, we are currently viewing the Domain elements, so we can
just check to see whether the element name is Uri and that the current node isn’t the
end element. Once we find each Uri element, we can read the value using ReadElement
ContentAsString and use that value to create a new object to add to the list for data
binding against the ListBox. The ListBox will then automatically redraw itself with the
appropriate data.

Using XDocument

Another facility Silverlight 2.0 offers for parsing XML is LinqToXml. The LinqToXml API
centers on the XDocument type as the container for the XML stream, and allows you to
use the LINQ query syntax in your code to derive a set from the XML document itself.
The following code will parse the Domain XML resource using LinqToXml.

To use LinqToXml in Silverlight 2.0 you need to add a reference to the
System.Xml.Linq.dll assembly in your project.

Silverlight 2.0 | 149

private void WriteDomainsLinqToXML(Stream streamResult)
{
 XDocument xd =
 XDocument.Load(XmlReader.Create(streamResult));
 var results = from uris in xd.Descendants("Uri")
 select new BindingClass { Text = uris.Value };

 _domainsListBox.DataContext = results;
}

You can see that this code is significantly more compact than the XmlReader version.
This code loads the XML result into an XDocument instance using XDocument.Load. You
can then use a LINQ query to get all of the descendant nodes of the document element
named Uri in the XML by using XDocument.Descendants. This code uses LINQ to create
a new set of BindingClass objects, using the value of the Uri element to set the Text
property of the newly created BindingClass instances. Again, this collection is given to
the ListBox, which will automatically update the UI based on this new data.

Using XmlSerialization

The XmlSerialization API in Silverlight 2.0 is similar to the same API in the “regular”
CLR: it allows you to serialize an object into XML, or to serialize XML into a live object.
Here is the code from the Silverlight page that uses the XmlSerializer:

private void WriteDomainsXmlSerializer(Stream streamResult)
{
 Domains domains = (Domains)_domainSerializer.Deserialize(streamResult);
 var results = from domain in domains.Domain
 select new BindingClass { Text = domain.Uri };
 _domainsListBox.DataContext = results;

}

This code uses LINQ to build the list of objects for the ListBox to bind to. Note that,
as in the “regular” CLR, XmlSerializer.Deserialize returns an object that must be cast
into the type that fits the shape of the incoming XML stream. How, then, did I get this
type definition (in this case, a class named Domains for the collection of Domain objects),
since the RESTful service doesn’t have any metadata from which such a definition could
be generated (à la WSDL from a SOAP service endpoint)?

I went through a few manual but very easy steps. First, I used the browser to invoke
the service, and then I entered a View Source command in the browser to get the XML
text, which I copied into an XML file inside Visual Studio 2008. Visual Studio provides
an XML menu when you are editing an XML file, and from that menu I selected Create
Schema. Visual Studio then generated an XSD schema file for this XML. Next, I used
the XSD.exe command-line tool against the XSD to generate the class (using the /c
command-line switch).

150 | Chapter 7: Programming Ajax and Silverlight Clients

In order to use the XmlSerializer object in Silverlight 2.0 you need to
add a reference to the System.Xml.Serialization.dll assembly in your Sil-
verlight project.

XML parsing wrap-up

You are now familiar with the three basic options for parsing raw XML results in Sil-
verlight 2.0. You should pick whichever of those options is most comfortable for you
as a programmer, although I tend to prefer the LinqToXml approach since it generally
results in the most compact code.

Parsing JSON in Silverlight 2.0
Another format you may run into when programming using Silverlight 2.0 is JSON.
Many services are intended for use from multiple web clients. Earlier in the chapter we
discussed the advantage of using JSON as your resource format when building REST
services, and these apply just as much to a Silverlight application.

In order to use the JsonObject in Silverlight 2.0 you need to add a ref-
erence to the System.Json.dll.assembly in your project.

In Silverlight 2.0, there is a JSON serialization/deserialization layer centered on a class
named, appropriately, JsonObject. Unlike the JSON usage we saw earlier with Java-
Script clients, this is a weakly typed object model, because Silverlight 2.0 code is com-
piled instead of interpreted. For parsing JSON, we can set up a different tab in the
Silverlight page, but the functionality is exactly the same as the XML parsing tab: when
you click the Use Json button, the code uses WebClient to call to a RESTful endpoint
using an HTTP GET, and on the return, the stream is JSON-encoded. The code will then
parse the JSON stream using JsonObject.Load. In this case, JsonObject.Load returns a
JsonArray object that holds onto an array of Domain objects, since this is the format of
the returned resource (in other cases, JsonObject.Load may return only a single
JsonObject). Example 7-12 shows the three methods that, working together, provide
this functionality.

Example 7-12. Silverlight event handler code

//event handler for JSON button
private void _domainJSON_Click(object sender, RoutedEventArgs e)
{

 HyperlinkButton button = sender as HyperlinkButton;
 TextBlock text = button.Content as TextBlock;
 string domain = text.Text;
 ProcessDomainJSON(domain);

Silverlight 2.0 | 151

}
//WebClient call for JSON
private void ProcessDomainJSON(string domain)
{
 WebClient c = new WebClient();
 c.OpenReadCompleted += DomainCompleteJson;
 c.OpenReadAsync(new Uri(_baseUri + domain + "/json"));
}
//Complete event handler for JSON
void DomainCompleteJson(object sender,
 OpenReadCompletedEventArgs e)
{
 Stream streamResult = e.Result;
 JsonArray json = (JsonArray)JsonObject.Load(streamResult);
 var result = from j in json
 select new BindingClass { Text = j["Uri"] };
 _domainsListBoxJSON.DataContext = result;
}

Again, LINQ provides a fair amount of help in taking the result set and turning it into
the list of objects against which the ListBox control can data-bind.

Consuming Feeds in Silverlight 2.0
As discussed in Chapter 6, web feeds are quickly becoming a popular way to expose
various types of data (not just blogs). In that chapter, we wrote a service using WCF
that exposes the data from a computer’s event log using a RESTful API approach. If
you look at the Silverlight example in Figure 7-17, which admittedly is a very simple
UI, the Silverlight code will consume the event log feed when you click the button on
the third tab.

Since feeds are such a ubiquitous and well-known XML format, instead of parsing feed
data using one of the three XML parsing approaches, Silverlight 2.0 uses the same feed
object model as WCF does in the “regular” CLR. This model is based on the
SyndicationFeed class. Example 7-13 shows the code that supports the third tab of the
page.

Example 7-13. Parsing feed data in Silverlight

//event handler for button
private void _feed_Click(object sender, RoutedEventArgs e)
{
 WebClient c = new WebClient();
 c.OpenReadCompleted += FeedComplete;
 c.OpenReadAsync(new Uri(_feedUri));
}
//called when feed is delivered
void FeedComplete(object sender,
OpenReadCompletedEventArgs e)
{
 Stream streamResult = e.Result;
 XmlReader xr = XmlReader.Create(streamResult);

152 | Chapter 7: Programming Ajax and Silverlight Clients

 SyndicationFeed feed =
 SyndicationFeed.Load(xr);
 var result = from item in feed.Items
 select new BindingClass
 {
 Text =
 ((TextSyndicationContent)item.Content).Text
 };
 _feedListBox.DataContext = result;
}

The same basic object model for SyndicationFeed exists for Silverlight 2.0 (see Chap-
ter 6 for more information about the SyndicationFeed API).

OpenWriteAsync in Silverlight 2.0
The WebClient API in Silverlight 2.0 also includes the ability to send POST data to HTTP
endpoints. Unfortunately, to support multiple browser plug-in models, the WebClient
doesn’t allow you to change the HTTP method. Using Silverlight 2.0 against a RESTful
service that implements more than just the GET and POST parts of the uniform interface
is problematic. This means that, to support Silverlight 2.0 clients fully, you will have

Figure 7-17. Silverlight Feeds tab after button is clicked

Silverlight 2.0 | 153

to deal with the other parts of the uniform interface (PUT and DELETE) through POST (à
la a SOAP service).

Cross-Domain Security in Silverlight 2.0
One consideration when using web-based applications is cross-domain security. It can
be dangerous for clients whose pages came from one domain to call into a service from
another domain.

Silverlight 2.0 will look for either a clientaccesspolicy.xml or a crossdomain.xml file at
the root of your website’s virtual directory. (Silverlight 2.0 supports a subset of the
crossdomain.xml schema). Here is a clientaccesspolicy.xml file that enables access from
all client domains to all services in your virtual directory:

<?xml version="1.0" encoding="utf-8"?>
<access-policy>
 <cross-domain-access>
 <policy>
 <allow-from http-request-headers="*">
 <domain uri="*"/>
 </allow-from>
 <grant-to>
 <resource path="/" include-subpaths="true"/>
 </grant-to>
 </policy>
 </cross-domain-access>
</access-policy>

Adding restrictions to the domain element or resource elements can restrict the access
of Silverlight 2.0 clients to your services.

For the crossdomain.xml file, Silverlight 2.0 will respond correctly to the file only if it
allows full access from any domain:

<?xml version="1.0"?>
<!DOCTYPE cross-domain-policy SYSTEM
 "http://www.macromedia.com/xml/dtds/cross-domain-policy.dtd">
<cross-domain-policy>
 <allow-http-request-headers-from domain="*" headers="*"/>
</cross-domain-policy>

Again, Silverlight 2.0 was in beta at the time of this writing, so please verify these settings
with the current Silverlight 2.0 documentation.

Returning JSON and XML Conditionally with a Single Method
In this chapter, you’ve seen the power of JSON from an Ajax programming point of
view. WCF provides a nice model for returning either JSON or XML from a particular
method on your RESTful service class, but there isn’t an easy way to make a method
return either JSON or XML conditionally.

154 | Chapter 7: Programming Ajax and Silverlight Clients

Generally, you’d like to return JSON or XML based on one of two constructs. Clients
send an Accept HTTP header when making requests of your RESTful endpoints. It
would be nice to be able to return JSON when the Accept header value is “application/
json” and XML when the Accept header value is “text/xml”. Another thing to consider
is supporting different URIs for each resource format (e.g., http://server/Resource for
the XML version and http://server/Resource/json for a JSON-encoded resource). WCF
actually supports the latter fairly well because it is easy to add another method to your
ServiceContract and specify the same UriTemplate value as the XML resource URI, but
with “/json” concatenated at the end. This is what we did for the biological taxonomy
service used earlier in this chapter. This requires a bit of hand-coding, but in the end
it is fairly easy to build because the JSON version of your method can just call the XML
version, making the JSON version a shim that is necessary for the WCF web infra-
structure. Supporting this approach was actually necessary for the examples in this
chapter since you can’t change the Accept header of the Silverlight 2.0 WebClient object.

Supporting the former approach is possible in WCF, but it will require a bit more heavy
lifting on your part when you write the code for your methods. To return JSON or XML
based on the Accept header, you have to write your methods in WCF to return the
System.ServiceModel.Channels.Message type as your return parameter. For
WebInvokeAttribute methods, the HTTP body parameter will have to be Message. Note
that you can still use UriTemplate even when you are using this generic message seri-
alization functionality.

A special message property is added during the execution of a web request
in WCF (when using the WebHttpBehavior) that tells the underlying serialization
infrastructure whether to use DataContractSerializer, XmlSerializer, or
DataContractJsonSerializer for the message. This special message property is WebBody
FormatMessageProperty. The WebBodyFormatMessageProperty has a property named
Format, which is an enumeration value of type WebContentFormat. The values of this
enumeration are given in Table 7-2.

Table 7-2. WebContentFormat values

Value Description

Default The message formatter can’t be determined

Xml The message will be formatted using XML

Json The message will be formatted using JSON

Raw The message will be treated as a raw stream (used when the

type of the parameter is Stream)

When strongly typed messages (i.e., not System.ServiceModel.Channels.Message) are
used, the value of this WebContentFormat is configured for both the parameters and the
return values of each operation as the ServiceHost is opening its communication in-
frastructure. This property becomes read-only and can’t be changed dynamically at
runtime.

Returning JSON and XML Conditionally with a Single Method | 155

http://server/Resource
http://server/Resource/json

On the other hand, when using Message as the input and output type for your methods,
you can set this property dynamically based on whatever condition you like. The code
in Example 7-14 is a rewrite of the two methods that relate to the top two resources in
the biological taxonomy service hierarchy, using Message as the return value. Note that
we can still use the strongly typed objects to create the message; you just need to create
a WCF Message object by passing in the object to the Message.CreateMessage factory
method.

Example 7-14. Using Message as the return value

//"loosely" typed top-level method
public Message GetRoot()
{
 DomainList list = new DomainList();
 string[] domains = new string[] { "Archaea", "Eubacteria", "Eukaryota" };
 foreach (string domain in domains)
 {
 list.Add(new Domain { Name = domain, Uri = domain });

 }
 Message ret = CreateMessage(list);
 return ret;
}
//"loosely" typed method to get Kingdoms
public Message GetDomain(string Domain)
{
 KingdomList list = new KingdomList();
 switch (Domain)
 {
 case "Eukaryota":
 string[] kingdoms = new string[] { "Animalia", "Fungi",
 "Amoebozoa", "Plantae", "Chromalveolata", "Rhizaria", "Excavata" };
 list.AddRange((from s in kingdoms
 select new Kingdom { Name = s, Uri = s }));
 break;
 default:
 break;
 }
 Message ret = CreateMessage(list);
 return ret;
}
//method to create Message object
Message CreateMessage(object msg)
{
 //find the right serializer
 XmlObjectSerializer serializer = SetSerializer(msg);
 //create the message
 Message ret = Message.CreateMessage(MessageVersion.None,
 "*",
 msg, serializer);
 return ret;

}
//method that looks at the accept header to

156 | Chapter 7: Programming Ajax and Silverlight Clients

//determine the right serializer
XmlObjectSerializer SetSerializer(object msg)
{
 XmlObjectSerializer ret = null;
 if (WebOperationContext.Current.IncomingRequest.Accept == "application/json")
 {
 //set up the right formatter for the message
 WebBodyFormatMessageProperty formatter =
 new WebBodyFormatMessageProperty(WebContentFormat.Json);
 OperationContext.Current.OutgoingMessageProperties.Add(
 WebBodyFormatMessageProperty.Name,
 formatter);
 //set the right content-type header
 WebOperationContext.Current.OutgoingResponse.ContentType = "application/json";
 //create the right serializer
 ret = new DataContractJsonSerializer(msg.GetType());
 }
 else
 {
 //create the normal XML serializer
 ret = new DataContractSerializer(msg.GetType());
 }
 return ret;
}

The really important code in Example 7-14 is in the last method, SetSerializer, which
is a method we can use to dynamically determine, based on the value of the incoming
Accept header, which serializer to use for the outgoing message.

We can’t simply set this message property on the
OperationContext.Current.OutgoingMessageProperties because when a
strongly typed message is used, the WCF serialization infrastructure is
statically created to do either JSON or XML for a particular operation,
and won’t respond correctly on a case-by-case basis based on this value
being in the Message. When the loosely typed Message type is used, how-
ever, all of the serialization is done based on the Message itself, without
regard for how the operation was set up.

Summary
In this chapter, we looked at how the Web Programming Model in WCF 3.5 extends
its reach to multiple clients. The ability to use WCF RESTful services from Ajax is one
level of that reach, but the ability to deal with the JSON serialization format helps to
extend that reach even further, since so many programming environments provide
support for calling services that return and accept JSON.

Summary | 157

We also looked at how the WebScriptEnablingBehavior element tightly integrates WCF
services and the ASP.NET Ajax programming environment. Finally, the RIA environ-
ment of Silverlight brings a whole new dimension to web programming, and the WCF
RESTful services (including feed support) built into the Silverlight 2.0 programming
model make building interactive web applications even easier.

158 | Chapter 7: Programming Ajax and Silverlight Clients

CHAPTER 8

Securing REST Endpoints

Security is always an important consideration when you’re building any kind of system.
This is certainly true when you’re building services, perhaps more so because of the
nature of exposing endpoints that could be called using a variety of toolkits and pro-
tocols. Those who favor SOAP services (specifically the WS-* set of specifications) tend
to look down upon the security of RESTful services. In truth, though, enterprises have
much more experience managing security for web applications than they do for SOAP
service endpoints. Because RESTful services are just HTTP endpoints, all of the security
techniques (HTTPS, certificates, etc.) that have been used for years with web applica-
tions are the same techniques we use for REST. Although it is certainly true that REST
services don’t support end-to-end security over multiple protocols (as the suite of
WS-Security-related protocols allows), in the end are you really going to need that?

In this chapter, we’ll look at the out-of-the-box capabilities that WCF 3.5 provides for
building secure services with REST. First, we’ll discuss how to authenticate users of
your WCF web endpoints, and then I’ll delve into the several ways available to authorize
users once they’ve been authenticated.

Authenticating: Self-Hosted Endpoints
The security of an endpoint is set using properties of WebHttpBinding. Before we dive
into the security functionality WebHttpBinding, it’s important to digress for a moment
and consider hosting. For the purposes of this chapter, it’s useful to divide the options
for hosting endpoints into two categories: self-hosting and managed hosting (see
Chapter 5 for more information).

The distinction between the two is important because in managed hosting (inside IIS)
the configuration of WebHttpBinding endpoints is determined by the security settings of
IIS and ASP.NET. In the self-hosting case, most if not all of the security settings will be
controlled by your code and your application configuration file. For now, we will focus
on WebHttpBinding’s security from a self-hosting point of view. Later in this chapter
we’ll contrast it with what happens in IIS managed hosting.

159

Here is a simple RESTful service that helps to illustrate how security with
WebHttpBinding works. Example 8-1 shows the code for a service that generates a string
that reports current authentication information.

Example 8-1. SecureService

[ServiceContract(Namespace = "")]
public class SecureService
{
[OperationContract]
[WebGet(UriTemplate = "/")]
public string AuthType()
{
 ServiceSecurityContext securityCtx;
 securityCtx = OperationContext.Current.ServiceSecurityContext;
 string authType = "No security context";
 if (securityCtx != null)
 {
 if (securityCtx.IsAnonymous)
 authType = "Anonymous";
 else
 authType = securityCtx.PrimaryIdentity.Name;

 }
 return authType;

}
}

Example 8-1 is a pretty simple service definition, with just one method that listens for
HTTP GET requests and returns a string. Since the service’s UriTemplate value is \, it
will respond only to GET requests at the root of the URI (i.e., at the address of the
endpoint). Inside this method is some code that generates a string based on the current
authentication information.

This implementation will work inside any code executing in the context of a WCF
service (not just a REST service) because it is using WCF’s ServiceSecurityContext
class. The code accesses it through the ServiceSecurityContext.Current static property,
which always returns the correct instance for the currently executing request, assuming
the client has been authenticated. To get this service endpoint up and running you need
to fire up a WebServiceHost instance and add an endpoint using WebHttpBinding. This
is shown in Example 8-2.

Example 8-2. Hosting and adding an endpoint for SecureService

WebServiceHost sh = new WebServiceHost(typeof(SecureService));
string uri = "http://win2008/wcfrestsecoiis/";
WebHttpBinding wb = new WebHttpBinding();
sh.AddServiceEndpoint(typeof(SecureService),wb,uri);
sh.Open();
Console.WriteLine("Service running");
Console.ReadLine();

160 | Chapter 8: Securing REST Endpoints

When you make a request of this endpoint (using a browser in this case), you get the
result shown in Figure 8-1.

Figure 8-1. No security context by default with WebHttpBinding

The result shown in Figure 8-1 indicates that, by default, WebHttpBinding has no security
configured. So the question then becomes, “How can I configure security, and what
effect will that have on the execution of my service?” The answer is the Security prop-
erty of WebHttpBinding, which we’ll discuss next.

Setting Endpoint Security: WebHttpBinding.Security’s Mode Property
The security of an endpoint is set by the aptly named Security property of WebHttp
Binding. The Security property is of a type named WebHttpSecurity and is used to
determine the security mode required by the binding and the type of client credential
it requires. Table 8-1 lists WebHttpSecurity’s properties and their use.

Table 8-1. WebHttpSecurity properties

Property Type Description

Mode WebHttpSecurityMode Determines the security mode required

by the binding

Transport HttpTransportSecurity Determines the type of client credential

required by the binding

I’ll discuss the Mode property first, and the Transport property a bit later in this chapter.
Table 8-2 shows the three levels of security that can you can specify using the
WebHttpSecurityMode enumeration (WebHttpSecurity is a new type for WCF 3.5).

Table 8-2. WebHttpSecurityMode enumeration values

Value Description

None The endpoint will not require any sort of security (this is the

default)

Transport The endpoint will require SSL (i.e., the address of the endpoint

must start with https)

TransportCredentialOnly The endpoint will require a client to authenticate itself, but

will not require SSL

Authenticating: Self-Hosted Endpoints | 161

It is clear that an endpoint using WebHttpBinding has no security configured, since the
default value of WebHttpSecurityMode is None, which is why there is no ServerSecurity
Context when the service is invoked.

When the Mode property is set to WebHttpSecurityMode.Transport, the binding will re-
quire that the address of the endpoint start with https. As a logical corollary, in order
to use SSL, you will have to configure a valid certificate on the machine on which the
endpoint is running.

SSL stands for Secure Sockets Layer. SSL has been superseded by an-
other standard called Transport Layer Security (TLS). In this book I use
the terms interchangeably, and refer to SSL specifically for two reasons:
first, the configuration in IIS still refers to SSL even though newer clients
technically will use TLS instead of SSL when connecting, and second,
SSL is the more familiar term.

SSL is a well-known and well-tested protocol for securing the confidentiality of mes-
sages and, by so doing, also reducing the opportunity for certain types of security at-
tacks, such as the replay attack (whereby the attacker tries to replay the request of the
original sender). Although some attacks against SSL might be successful (isn’t that true
of all types of security?), SSL has become the de facto standard for secure conversations.

In order to use SSL you’ll need a certificate, and you’ll need to configure
your web server to use that certificate.

On my machine, which happens to be running Windows Server 2008
and IIS7, I’ve configured a certificate that can be used for SSL. You can
see this certificate in the certificate console shown in Figure 8-2. This
discussion would be almost identical if I were running Windows Server
2003 with IIS6, apart from some differences in the screenshots.

For ease of configuration in this example, I’m using a self-issued certif-
icate instead of a “real” certificate from one of the many SSL certificate
vendors.

Figure 8-2. The certificate MMC

162 | Chapter 8: Securing REST Endpoints

This certificate is installed inside the Personal store of the Computer account’s store.
Interestingly, to make WebHttpBinding able to use an address using HTTPS, you need
to use the IIS Manager tool to enable a binding at the Http.sys level for HTTPS (I could
use NetSh.exe, but I generally prefer a GUI tool).

In the IIS Manager, create a binding for HTTPS (which defaults to port 443); you can
see this in Figure 8-3.

To get to the screen shown in Figure 8-3, select Default Web Site in the tree view, and
then click on Bindings in the upper-right corner. When the Site Bindings dialog box is
displayed, click Add, select https from the Type list, and select the correct certificate
from the SSL certificate combo box. Now that this reservation has been made, you can
start using SSL with the WebHttpBinding endpoint.

To make this happen, set HttpWebSecurityMode on the WebHttpBinding.Security prop-
erty to Transport. You then change the scheme of the endpoint’s address to https. Note
that if you make only one of these changes without making the other, WCF will validate
the endpoint configuration and will produce an error when it tries to open the endpoint.
WCF assumes that if you want Transport security you must have intended to use
“https” instead of “http”. It also assumes that if you are using “https” in your address,
you intended to use HttpWebSecurityMode.Transport.

Here is the changed code (it also contains a call to Process.Start with the URI to make
an Internet Explorer window come up automatically and request the URI—just a small
timesaver):

Figure 8-3. The IIS HTTPS configuration

Authenticating: Self-Hosted Endpoints | 163

WebServiceHost sh = new WebServiceHost(typeof(SecureService));
string uri = "https://win2008/wcfrestsecoiis/";
WebHttpBinding wb = new WebHttpBinding();
wb.Security.Mode = WebHttpSecurityMode.Transport;
sh.AddServiceEndpoint(typeof(SecureService),wb,uri);
sh.Open();
Console.WriteLine("Service running");
Process.Start(uri);
Console.ReadLine();

When you start the service, you will see a screen similar to the one shown in Figure 8-4.

Figure 8-4. HTTPS-enabled REST endpoint with WCF

Not only does “https” appear in the address bar of the browser, indicating that the
connection is secured using SSL, the output also shows the string “Anonymous” instead
of “No Security Context.” This means there is a ServerSecurityContext object available
to the code running inside of IIS. When you make any configuration of an endpoint
with WCF that requires security (and this endpoint now requires that https be used),
the ServerSecurityContext becomes available. Also notice that no authentication is
occurring; any client can still make calls to the endpoint, and now the client can rest
assured that all the calls it makes to this service are encrypted and safe from prying eyes.
You can also think of SSL as the client authenticating the service, because the SSL
certificate must be a valid certificate and must be used by the site it was issued to. As
long as we trust the issuer of the certificate, we implicitly trust the site itself (this is why
I feel comfortable entering my credit card information when I am shopping at
Amazon.com, for example).

You can configure a WCF service contract definition so that the contract
will be used only with Transport-level security (such as SSL) by setting
the ProtectionLevel property on the ServiceContractAttribute. You
can set this to ProtectionLevel.EncryptAndSign to enforce and validate
that your contract is being used with SSL when used with the WebHttp
Binding object. If the Mode property isn’t set to Transport, WCF will
throw an exception when the endpoint attempts to open. This feature
isn’t limited to the WebHttpBinding object; it’s a universal feature in
WCF.

164 | Chapter 8: Securing REST Endpoints

Setting Authentication Requirements: WebHttpBinding’s Transport
Property
SSL makes the user agent feel better since it can be assured that the service is what it
says it is. The service might want to feel better as well, though, by identifying each client
and forcing it to authenticate before allowing it to use the service.

This is where the WebHttpBinding.Security.Transport property comes into play.
WebHttpBinding.Security.Transport is of a type named HttpTransportSecurity, which,
interestingly, isn’t new for .NET 3.5, but is the same type used in .NET 3.0 to configure
transport security on other HTTP-based bindings.

Table 8-3 lists the HttpTransportSecurity properties.

Table 8-3. HttpTransportSecurity properties

Property Type Description

ClientCredentialType HttpClientCredentialType Determines which type of client authentication will be

required

ProxyCredentialType HttpProxyCredentialType Determines which type of authentication will be used

against a proxy server (used only from a WCF client)

Realm String Used with Basic and Digest authentication to indicate

the scope of the authentication to the client

In most situations you’re likely to encounter, you really only need to be concerned
about the ClientCredentialType property. That’s because the ProxyCredentialType
property relates to client-side proxy configuration, and the Realm property is generally
not explicitly set. Table 8-4 lists the potential values for ClientCredentialType (which
is of type HttpClientCredentialType).

Table 8-4. HttpClientCredentialType enumeration

Value Description

None No client authentication is required (the default)

Basic The client is required to authenticate using the HTTP-based Basic authentication protocol (RFC 2617)

Digest The client is required to authenticate using the HTTP-based Digest authentication protocol (RFC 2617)

Ntlm The client is required to authenticate using the NTLM authentication protocol (Windows authentication)

Windows The client is required to authenticate using Kerberos (NTLM will be the fallback protocol if Kerberos can’t be used)

Certificate The client is required to present a valid certificate to the server when authenticating

As you can see, the ServiceSecurityContext.PrimaryIdentity.Name showed the au-
thenticated user as “Anonymous” because the default value of HttpClientCredential
Type.None was used for the ClientCredentialType property.

Authenticating: Self-Hosted Endpoints | 165

Let’s start at the bottom of this enumeration and go through each possibility for the
client credential (other than None). Note that these are the same options that are gen-
erally available for client authentication inside IIS. So, if you are familiar with these
possibilities from experience with web applications, you can be assured that the options
are exactly the same.

When the WebHttpSecurity.TransportOnlyCredential option is selected,
the client is forced to authenticate, but the service is not authenticated
by the client (i.e., there is no SSL). In this mode, if you were to use a
URI with HTTPS, WCF would throw an exception on opening. Except
for Certificate authentication, all the other HttpClientCredentialType
options are available for use.

Certificate authentication

One option for authenticating the client with a WebHttpBinding-based service is to re-
quire the client to submit a certificate of its own when using SSL. Again, note that SSL
is required for this option; you cannot use client certificates for authentication without
using SSL, so HttpClientCredentialType.Certificate isn’t compatible with
WebHttpSecurity.TransportCredentialOnly. You can enable this option by setting the
Transport property to HttpClientCredentialType.Certificate:

WebServiceHost sh = new WebServiceHost(typeof(SecureService));
string uri = "https://win2008/wcfrestsecoiis/";
WebHttpBinding wb = new WebHttpBinding();
wb.Security.Mode = WebHttpSecurityMode.Transport;
wb.Security.Transport.ClientCredentialType = HttpClientCredentialType.Certificate;
sh.AddServiceEndpoint(typeof(SecureService), wb, uri);
sh.Open();
Console.WriteLine("Service running");
Process.Start(uri);
Console.ReadLine();

In this mode, the client is required to send a certificate when making an HTTP request
to this service endpoint. We’ll look at the client code for doing this in a moment.

The advantage of client certificates is that you can be fairly confident that the client is
who she says she is, since only that client should have the certificate (of course, this
depends on the client not losing her computer or leaving it open for someone to steal
the certificate).

The disadvantage of client certificates is that if you have more than a handful of clients,
generating and distributing the client certificates is a big job. Again, this is just like
using certificates for client authentication for websites; it works well in some situations
but not so well in others.

Here’s an example of a WCF REST client calling the service endpoint using Certificate
authentication:

166 | Chapter 8: Securing REST Endpoints

Uri uri =
 new Uri("https://win2008/wcfrestsecoiis/");
WebChannelFactory<SecureService>
 cf = new WebChannelFactory<SecureService>(uri);
WebHttpBinding wb =
 cf.Endpoint.Binding as WebHttpBinding;
wb.Security.Transport.ClientCredentialType
 = HttpClientCredentialType.Certificate;
wb.Security.Mode =
 WebHttpSecurityMode.Transport;
cf.Credentials.ClientCertificate.SetCertificate(
StoreLocation.LocalMachine,
StoreName.My,
X509FindType.FindByThumbprint,
"930b54bb7e5a70ce11c1cef7d2ad9e5e557a3366");
SecureService service = cf.CreateChannel();
string auth = service.AuthType();
Console.WriteLine(auth);

Windows authentication

Under the covers, Windows and NTLM are different, but in most respects they behave
similarly when it comes to authentication and RESTful services with WCF.

The one major difference may concern authorization because with Kerberos it is pos-
sible to do constrained delegation, allowing a token to make more than one network
hop and still be valid. See the current documentation on constrained delegation and
Kerberos for more information.

Note that IIS 7.0 doesn’t enable Kerberos by default. To enable it, add the following
code to your application Host.config file (either at the global level or inside your par-
ticular location):

<windowsAuthentication enabled="true">
 <providers>
 <clear />
 <!-- the first element isn't here by default-->
 <add value="Negotiate"/>
 <add value="NTLM" />

 </providers>
</windowsAuthentication>

NTLM authentication

If all of your clients will be running Windows and your RESTful services will be exposed
only inside your enterprise, NTLM might be a viable option for client authentication.
Setting this option is fairly easy (for the rest of the examples in the chapter using the
ClientCredentialType property I’ll show you only a snippet of code that actually sets
the property):

Authenticating: Self-Hosted Endpoints | 167

WebHttpBinding wb = new WebHttpBinding();
wb.Security.Mode = WebHttpSecurityMode.TransportCredentialOnly;
wb.Security.Transport.ClientCredentialType = HttpClientCredentialType.Ntlm;

Remember that the Mode doesn’t have to be Transport for NTLM to work. In fact, the
NTLM protocol is inherently secure, although only the authentication is secure; once
the authentication takes place, all the traffic from the client to the service is not en-
crypted unless Transport is used as the Mode.

You can see the response to the call in Figure 8-5.

In this case, the authentication is happening automatically because the browser is con-
figured to send the proper credentials when an HTTP status of 401 is sent back to the
browser, where the type of authentication requested is NTLM (this is the default).

Here is the WCF client code to call this service using NTLM authentication:

Uri uri =
 new Uri("https://win2008/wcfrestsecoiis/");
WebChannelFactory<SecureService>
 cf = new WebChannelFactory<SecureService>(uri);
WebHttpBinding wb =
 cf.Endpoint.Binding as WebHttpBinding;
wb.Security.Transport.ClientCredentialType =
 HttpClientCredentialType.Ntlm;
wb.Security.Mode =
 WebHttpSecurityMode.Transport;
SecureService service = cf.CreateChannel();
string auth = service.AuthType();
Console.WriteLine(auth);

Notice that this code doesn’t require any credentials to be explicitly passed; it will use
the current user’s token to authenticate. You can provide an alternative Windows cre-
dential by setting the ChannelFactory’s Credential.WindowsUser property explicitly.

Digest authentication

Digest authentication is similar to Basic authentication, which is discussed next (in fact,
the client code is exactly the same). Digest authentication uses a more secure method
of embedding authentication information in the HTTP request than Basic does.

Despite this fact, Digest authentication is used less often than Basic because it requires
the web server to belong to a domain, which isn’t always possible or practical. Also,
the extra security provided by Digest authentication over Basic authentication isn’t
usually enough to make it a more popular option. In addition, most of the time when

Figure 8-5. NTLM client authentication

168 | Chapter 8: Securing REST Endpoints

we are worried about protecting client credentials, we turn to SSL. In the end, then,
Digest provides little in terms of actual security over Basic. For these reasons, I’ve limi-
ted the discussion of Digest authentication to just these points.

Basic authentication

Basic authentication is a well-known and popular HTTP standard. Like NTLM and
Digest, Basic authentication is a challenge-response authentication protocol whereby
the server will issue a 401 back to the client and ask the client to present credentials.

In the case of Basic authentication, the credential is a base64-encoded copy of the
username and password. Although it isn’t required, it’s a best practice to always use
SSL with Basic authentication to avoid having your user’s password stolen from the
clear text packets containing this base64-encoded string:

WebHttpBinding wb = new WebHttpBinding();
wb.Security.Mode = WebHttpSecurityMode.TransportCredentialOnly;
wb.Security.Transport.ClientCredentialType = HttpClientCredentialType.Basic;

When this endpoint is hit with a browser, the browser presents a username and pass-
word dialog box for the user to enter her credentials. Here is the WCF code for calling
a service using Basic authentication:

Uri uri =
 new Uri("https://win2008/wcfrestsecoiis/");
WebChannelFactory<SecureService>
 cf = new WebChannelFactory<SecureService>(uri);
WebHttpBinding wb =
 cf.Endpoint.Binding as WebHttpBinding;
wb.Security.Transport.ClientCredentialType =
 HttpClientCredentialType.Basic;
wb.Security.Mode =
 WebHttpSecurityMode.Transport;
cf.Credentials.UserName.UserName = "administrator";
cf.Credentials.UserName.Password = "P2ssw0rd";
SecureService service = cf.CreateChannel();
string auth = service.AuthType();
Console.WriteLine(auth);

Authenticating: Managed Hosting Endpoints
Everything you’ve seen so far in this chapter has applied to self-hosting. However, it
would behave exactly the same if we had used the managed hosting of IIS. The settings
would be the same, although with IIS you are more likely to be using the web.config
file to make these configuration changes than doing your configuration in code.

When hosting an endpoint inside IIS, you have to be acutely aware that the WCF
settings must match precisely (i.e., they don’t conflict) with those in web.config, and
vice versa. In reality you have to be concerned with more than just your local

Authenticating: Managed Hosting Endpoints | 169

web.config; you have to be aware of the settings all the way up to the IIS website level
and ensure that they are consistent.

For example, if you are hosting inside a virtual directory, you can’t disable Basic au-
thentication at the virtual directory level and then try to use HttpClientSecurity
Type.Basic as your .svc file configuration.

The Mode setting is another setting to watch out for. If the virtual directory inside which
your service is running isn’t configured correctly for SSL, using Transport as the value
of Mode will cause an exception. Conversely, if you have the virtual directory configured
to require SSL and then you try to use TransportClientCredentialOnly as the value for
the Mode property, you’ll get this error:

Could not find a base address that matches scheme http
 for the endpoint with binding WebHttpBinding. Registered base
 address schemes are [https].

This is one of the many things that must be consistent between your IIS settings and
the WCF settings for your service.

Authorizing Endpoints
Once you’ve sorted out authentication (figuring out how to tell which client is con-
necting), the next step is often to figure out authorization (what the client can and
cannot do inside your services).

This is another topic where the WCF Web Programming Model doesn’t deviate much
from that of any other WCF service. The options for specifying what a client can do
inside your RESTful service are almost the same as those for specifying what a client
can do with a SOAP-based web service in WCF.

Authorization with Impersonation
One way to provide authorization in WCF is to impersonate the client. When you
impersonate the client, you are essentially delegating the job of authorization down
one layer.

For example, if you are implementing the POST part of the uniform interface on a re-
source, you might be using System.Data.SqlClient.SqlConnection and friends to insert
a new record into a SQL Server database. If you impersonate the incoming client and
the client doesn’t have permissions to insert records into that table, an exception will
be thrown at the database level. You can choose to let this exception bubble back to
the client, or you can choose to catch the exception and return a more generic error.
The idea here is that it will be the responsibility of the system you are interacting with
to provide role-based security.

170 | Chapter 8: Securing REST Endpoints

In WCF, you have two options when using impersonation. One option is to
explicitly impersonate an incoming client using ServiceSecurityContext and its
WindowsIdentity property:

ServiceSecurityContext securityCtx;
securityCtx = OperationContext.Current.ServiceSecurityContext;
securityCtx.WindowsIdentity.Impersonate();

You can also get WindowsIdentity by using System.Threading.Thread.Current

Principal.Identity (although this requires an explicit case to WindowsIdentity).

The other way to do impersonation in WCF is to do it implicitly by using
OperationBehaviorAttribute on your service implementation, as shown in Exam-
ple 8-3.

Example 8-3. Impersonating with OperationBehaviorAttribute

[OperationContract]
[WebGet(UriTemplate = "/")]
[OperationBehavior(Impersonation
 = ImpersonationOption.Required)]//this causes impersonation to
//happen automatically
public string AuthType()
{
 ServiceSecurityContext securityCtx;
 securityCtx = OperationContext.Current.ServiceSecurityContext;
 string authType = "No security context";
 if (securityCtx != null)
 {
 if (securityCtx.IsAnonymous)
 authType = "Anonymous";
 else
 {

 authType = securityCtx.PrimaryIdentity.Name;
 }

 }
 return authType;

}

Role-Based Authorization
Another way to implement authorization with WCF is to restrict access to
operations to certain users or groups. You can do this either by using the
PrincipalPermissionAttribute on your service methods (which will enforce this auto-
matically at the operation level) or by using ServiceAuthorizationManager with WCF.
We’ll discuss these options in the next two sections.

Authorizing Endpoints | 171

Using the PrincipalPermissionAttribute

The values of the PrincipalPermissionAttribute can be explicitly defined as Windows
users and/or groups, or you can use Authorization Manager AzMan or even an
ASP.NET membership provider. The former may require less work if you are already
using Windows authentication (although maintaining the same values across different
deployments might complicate the usage); the latter is more flexible since you can scope
roles by application (rather than globally, based on Windows local or Domain groups).

AzMan is a role-based framework that you can download and install for
free from Microsoft. It can be used in many different types of applica-
tions including ASP.NET and WCF.

Instead of using the attribute, you can use the Thread.IsInRole API to evaluate a user’s
permissions dynamically. Using code inside your methods can also give you finer-
grained permission control than what you get with PrincipalPermissionAttribute
(which is applied at the operation level, so it’s fairly coarse-grained).

Example 8-4 shows code that uses PrincipalPermissionAttribute.

Example 8-4. Using PrincipalPermissionAttribute

[OperationContract]
[WebGet(UriTemplate = "/")]
[OperationBehavior(Impersonation
 = ImpersonationOption.Required)]
 [PrincipalPermission(SecurityAction.PermitOnly,
 Role="Administrators")]
public string AuthType()
{}

Example 8-5 shows code that implements IsInRole.

Example 8-5. Using IsInRole

[OperationContract]
[WebGet(UriTemplate = "/")]
[OperationBehavior(Impersonation
 = ImpersonationOption.Required)]
public string AuthType()
{
 if (Thread.CurrentPrincipal.IsInRole("Administrators"))
 {//omitted for clarity
 }
}

The ServiceAuthorizationManager class

Alternatively, you can provide role-based authorization to your WCF services by using
a ServiceAuthorizationManager-derived class. ServiceAuthorizationManager is a class

172 | Chapter 8: Securing REST Endpoints

you can plug into the WCF infrastructure on a particular ServiceHost (even
WebServiceHost) instance through the ServiceAuthorizationBehavior service behavior.
ServiceAuthorizationManager is called once for every message the service instance is
going to process. It returns a Boolean value based on whether the particular
ServiceAuthorizationManager instance decides the caller should be allowed to perform
the operation. Returning false means the caller will be rejected; returning true allows
the caller in through the rest of the WCF stack.

The advantage of using ServiceAuthorizationManager instead of
PrincipalPermissionAttribute or IsInRole is that ServiceAuthorizationManager deter-
mines whether a user can perform a particular operation before the deserialization or
method invocation on the service instance occurs. Why allow a method to be invoked
if you are just going to end up rejecting it because the user isn’t in the right group?

Another advantage of ServiceAuthorizationManager, since it is configured via Service
AuthorizationBehavior, is that you are separating the business logic of your service from
your authorization logic (since using PrincipalPermissionAttribute or IsInRole has
embedded your authorization logic inside your service code). This allows you to change
the authorization without having to recompile your service code.

The only notable issue in this area that is different for REST services versus SOAP
services is that many of the examples you will see will use the incoming Action header
as part of the logic inside ServiceAuthorizationManager. Since REST services aren’t
based on an Action header (in fact, the Action header will always be null when using
WCF and REST), you’ll want to use the URI being invoked along with the
HTTP method to make your determination. Example 8-6 includes
ServiceAuthorizationManager, which extracts the URI and method from the incoming
context.

Example 8-6. Using ServiceAuthorizationManager

public class RESTServiceAuthorizationManager :
 ServiceAuthorizationManager
{
 protected override bool CheckAccessCore(OperationContext operationContext)
 {
 Message msg = operationContext.RequestContext.RequestMessage;

 string uri = msg.Properties.Via.AbsoluteUri;
 HttpRequestMessageProperty http = null;
 http = msg.Properties[HttpRequestMessageProperty.Name]
 as HttpRequestMessageProperty;
 Console.WriteLine("CheckAccessCore");
 Console.WriteLine("Resource: {0} part of uniform interface: {1}",
 uri, http.Method);
 return base.CheckAccessCore(operationContext);
 }
}

Authorizing Endpoints | 173

This clearly isn’t a full implementation of ServiceAuthorizationManager, since the ex-
ample doesn’t actually return true or false based on the incoming claims. To fill out
the implementation you’d need to determine what heuristic you want to use to deter-
mine access control for your particular application.

Summary
In this chapter, we discussed the basics of security with WCF and its Web Programming
Model. First, we looked at how to secure the communications of your RESTful services
by using SSL (setting the WebHttpBinding.Security.Mode property to
WebHttpSecurity.Transport). Using SSL takes care of one of the biggest issues with
securing web endpoints: making sure the communication between a client and a service
is confidential.

Next we examined the built-in options for providing authentication. WebHttpBinding
supports all of the different security settings that IIS supports: Anonymous (i.e.,
HttpClientCredentialType.None), Basic, Digest, NTLM, Windows, and Certificate.
Which authentication you select will depend on the scope of what you are trying to
accomplish with your RESTful endpoint. Basic authentication has the widest reach
because more clients support it than any other credential type. Windows authentication
probably has the smallest reach, but it is a useful and convenient authentication mode
when you build services to be exposed only inside your enterprise.

Finally, we discussed how to perform authorization, which allows you to control which
users can do what inside your service. WCF has some built-in options for accomplishing
authorization based on the authenticated user’s identity or role. Another choice is to
use impersonation to push the authorization decisions down the stack to the resources
being accessed by your service. Perhaps the best choice for authorization is to use a
custom ServiceAuthorizationManager to put the authorization logic higher in the WCF
call stack. This is more efficient and provides more extensibility since the authorization
logic isn’t built into your code.

174 | Chapter 8: Securing REST Endpoints

CHAPTER 9

Using Workflow to Deliver REST
Services

WCF in .NET 3.0 provided a way for you to use and expose services using your favor-
ite .NET language. Also part of .NET 3.0, Windows Workflow Foundation (WF) pro-
vided a way to use a declarative language to create model-driven, reactive programs.
Both frameworks shipped in the same vehicle (.NET 3.0), but neither had any OOTB
integration with the other. Using them together in .NET 3.0 applications required a
fair amount of repetitive manual coding.

Along with the Web Programming Model, .NET 3.5 brings a layer of integration be-
tween WCF and WF in the form of a pair of WF activities to model the processes of
sending and receiving messages into workflows using WCF. .NET 3.5 also provides a
hosting environment that allows you to stand up a service endpoint using a workflow
in a way that is similar to how you can stand up a service endpoint using code. No
explicit integration between the Web Programming Model and WF was included in
this release, but it is still possible to use these two new frameworks together.

In this chapter, we’ll look at how to consume REST endpoints using WF. We’ll also
examine how to create stateless and long-running stateful workflows to expose REST
endpoints. As I discuss these options, I will raise the issue of whether melding the well-
understood advantages of statelessness on the server in a REST service with the po-
tential long-running nature of WF is a good idea. For the purposes of this chapter, I
will assume that you already have some knowledge of WF, so we will focus on using
WCF and WF together.

Consuming REST Services from WF
If you are using WF to build application logic, it is fairly common to consume services
from your workflows. Both REST and SOAP services are quickly becoming the de facto
way to expose functionality today. So, consuming services from workflows is just a side
effect of using WF, since any code you write today most likely consumes services.

175

Of course, some logic is more appropriate for a workflow framework and some logic
is more appropriate to write in raw source code. As an example for this chapter, I’ll
stick with business logic that is “classic workflow”: document approval. In this chapter
we’ll add a modern twist: making the document types blog entries.

You can imagine that some commercial bloggers might benefit from a workflow system
around their blog posts; I know I could use a grammar and spell-check before I submit
a live blog post. Later in this chapter we’ll discuss sending REST messages from WF
using SendActivity. In preparation for that, we’ll create a simple client application that
hosts a workflow called the “checklist of things to do before you post” workflow. We
will examine the implementation of the full approval scenario in the discussion of
ReceiveActivity toward the end of the chapter. Since this book is about REST and not
WF, we won’t spend much time on the workflow features being used, other than dis-
cussing the features surrounding SendActivity itself.

The SendActivity Instance
One of the two activities added in .NET 3.5 is SendActivity. From a WCF developer’s
point of view, SendActivity can be viewed as the workflow equivalent of an instance
of ChannelFactory. SendActivity acts as a WCF client for workflow instances, and will
use whatever address and binding have been configured for that particular
SendActivity instance.

First, you must have a WCF service contract to use as the basis for your SendActivity.
Example 9-1 contains the contract we will use. See Chapter 10 for more information
about creating client-side contracts for use with WebHttpBinding.

Example 9-1. WCF service contract for blog editing

namespace BlogCheckListContracts
{
 [ServiceContract(Namespace="")]
 public interface IBlogAPI
 {
 [OperationContract]
 [WebInvoke(UriTemplate="/blog",Method="POST")]
 Atom10ItemFormatter AddEntry(Atom10ItemFormatter entry);
 [OperationContract]
 [WebGet(UriTemplate = "/blog")]
 Atom10FeedFormatter GetBlog();
 //rest of the members omitted for clarity
 }
}

In this case, we’ll use a SequentialWorkflow to implement my logic. You can see the
workflow in Figure 9-1. The logic of the workflow is apparent in its model.

176 | Chapter 9: Using Workflow to Deliver REST Services

People often ask me why I would use WF when anything that I can
accomplish in WF could be written using just code. My typical answer
is that I think WF is a powerful model for some (perhaps many) use
cases because of the visibility it provides, both at development time and
at runtime. For instance, notice that I didn’t have to spend much time
explaining what this workflow does, as Figure 9-1 explains it well. In
fact, while I was writing this chapter, I asked my 15-year-old son (who
is not a developer) to look at the figure, and with no background knowl-
edge of WF he was able to discern the functionality of the workflow.
Using WF to explain application logic to a 15-year-old is probably a
stretch, but I think it illustrates the power of WF’s visibility-encouraging
modeling.

The workflow first checks the blog entry for any spelling errors. If there are errors, the
UI will notify the user and allow him to fix the errors. Then the workflow creates an
Atom entry, and finally it executes the last and most important activity in the workflow:
the AddEntry activity. This instance of SendActivity will call the RESTful endpoint that
implements the service function of the IBlogAPI contract (the code for the IBlogAPI
contract is included with the code samples for this book).

You can add a SendActivity instance to your workflow by dragging it from the Toolbox
and dropping it onto your workflow design surface in the appropriate area. To config-
ure it, double-click on it in the Designer (or go to the Property Grid and modify all the
required properties). When you double-click on SendActivity, the Choose Operation
dialog box will appear (see Figure 9-2).

Figure 9-1. Client “checklist” workflow

The SendActivity Instance | 177

In this dialog box, you can click the Import button in the upper-right corner to browse
for the contract definition you want to associate with this SendActivity. Once you’ve
selected IBlogAPI, you can select AddEntry as the operation you want this
SendActivity to use when calling the service. Note that the IBlogAPI contract definition
must be in the same project as the workflow, or in an assembly that is referenced in the
workflow project.

When you select AddEntry and click OK on the Choose Operation dialog box, two new
properties will be added to the SendActivity instance in the Properties window.
SendActivity’s Designer dynamically adds these properties, and they represent the re-
quest and response messages this operation will accept and return. You can data-bind
these properties to properties on other activities in your workflow, or to properties on
the workflow type itself. In this example, we’ll add a new property of type
Atom10ItemFormatter to the workflow definition. We can then use the WF activity
binding syntax to bind the input and output parameters of the AddEntry operation to
that property. You can see this configuration in Figure 9-3.

The other property to note in Figure 9-3 is the ChannelToken property of SendActivity.
ChannelToken is an identifier that the WCF/WF integration in WF 3.5 uses to determine

Figure 9-2. The SendActivity Choose Operation dialog box

178 | Chapter 9: Using Workflow to Deliver REST Services

what client endpoint configuration to use for a particular SendActivity. The first time
a particular ChannelToken is encountered inside a particular WorkflowRuntime,
SendActivity will create a new ChannelFactory. Any further SendActivity in a particular
workflow instance can reuse the same channel by using the same ChannelToken identi-
fier. The OwnerActivity property allows a ChannelToken to be scoped as a child activity
inside of a composite Activity, which facilitates advanced scenarios when there are
multiple SendActivity instances inside a workflow, and one set of activities is sharing
the same channel instance while another set of activities is using the same configuration
but another channel instance.

The basic upshot of ChannelToken is that multiple SendActivity instances can reuse the
same channel, thereby sharing things such as a common session.

A more important property of ChannelToken is the EndpointName property. The Endpoint
Name property must correspond to either a client endpoint entry in the application con-
figuration file or a named ServiceEndpoint instance inside a WorkflowRuntime-level serv-
ice known as the ChannelManagerService. Note that the ChannelManagerService isn’t
added to the WorkflowRuntime by default, but you can explicitly add it and avoid having
to rely on configuration file entries for your SendActivity configuration.

Just to avoid confusion, the concept of a WorkflowRuntime service is dif-
ferent from the notion of a REST service. The WorkflowRuntime in WF
delegates most of its functionality to objects known as services.

Figure 9-3. SendActivity properties

The SendActivity Instance | 179

If you want SendActivity to read its configuration from the application configuration
file, you simply specify the appropriate value on the name attribute in the client endpoint
configuration (i.e., the value must match the EndpointName property on the
ChannelToken). Example 9-2 shows the code used to do this.

Example 9-2. Workflow service configuration file

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
 <system.serviceModel>
 <client>
 <endpoint name="Web"
 address="http://localhost/BlogWorkflowWeb/blogengine.svc"
 binding="webHttpBinding"
 behaviorConfiguration="webBehavior"
 contract="BlogCheckListContracts.IBlogAPI"/>
 </client>
 <behaviors>
 <endpointBehaviors>
 <behavior name="webBehavior">
 <webHttp/>
 </behavior>
 </endpointBehaviors>
 </behaviors>
 </system.serviceModel>
</configuration>

The important thing here is that the WCF client endpoint configuration stays exactly
the same; the SendActivity doesn’t require any new syntax or entries.

If you want to use the ChannelManagerService to manage the endpoints, the code would
look like that shown in Example 9-3.

Example 9-3. Using ChannelManagerService to manage endpoints

//create the workflow runtime
WorkflowRuntime wr = new WorkflowRuntime();
List<ServiceEndpoint> listOfEndpoints
 = new List<ServiceEndpoint>();
//create the endpoint
WebHttpBinding b = new WebHttpBinding();
string uri = "http://localhost/BlogWorkflowWeb/blogengine.svc";
ContractDescription cd =
 ContractDescription.GetContract(typeof(IBlogAPI));
ServiceEndpoint webServiceEndpoint =
 new ServiceEndpoint(cd, b, new EndpointAddress(uri));
webServiceEndpoint.Behaviors.Add(new WebHttpBehavior());
//make sure to name it correctly
webServiceEndpoint.Name = "Web";
listOfEndpoints.Add(webServiceEndpoint);
ChannelManagerService cms =
 new ChannelManagerService(listOfEndpoints);
wr.AddService(cms);
wr.StartRuntime();

180 | Chapter 9: Using Workflow to Deliver REST Services

No matter how the SendActivity gets its channel (either from the configuration file or
from the ChannelManagerService), it will call the service just like any other WCF client.
Because we are using the WCF 3.5 attributes on the contract and specifying the
WebHttpBinding along with the WebHttpBehavior when configuring the client endpoint,
the WCF client channel infrastructure uses the correct URI and correct method when
invoking the service endpoint.

I should also point out that you can combine the two approaches, in which case the
SendActivity will first ask the ChannelManagerService for the correct named endpoint
configuration, and if the ChannelManagerService doesn’t have it available, the
SendActivity will try to find the named endpoint in the configuration file. If
SendActivity finds the configuration in the configuration file, that information will be
cached in the ChannelManagerService for future use.

The ReceiveActivity Instance
WCF 3.5 also includes an activity named ReceiveActivity. In Chapters 2 and 3, we
discussed how to use WCF to expose instances of a .NET class as a WCF service by
using attributes, configuration, and the WebServiceHost. In WCF 3.5, the same attrib-
utes, configuration, and WorkflowServiceHost (in conjunction with the
ReceiveActivity), can do the same thing with a workflow definition: expose instances
of it as a WCF service.

Conceptually, there’s no difference between hosting code as a service and hosting
workflow as a service, but there are some unique design decisions to consider when
implementing a service using WF. The first and arguably most important issue is what
to do with a message that comes into the service endpoint. There has to be some way
for the WCF infrastructure to determine whether it is supposed to create a new work-
flow instance for the message or route it to an existing instance. If the message is to be
routed to an existing instance, how should the runtime determine what that instance is?

Both of these issues exist when you’re writing certain types of code with WCF as well.
When you’re writing a code-based service with WCF, one of the decisions you have to
make is what your InstanceContextMode will be. If InstanceContextMode is left as the
default (InstanceContextMode.PerSession), a new instance of your service type is cre-
ated “per session,” and as long as that session is active, your instance is also active and
additional messages from the same client will be routed to the same object instance.

InstanceContextMode.PerCall is a stateless mode in which a new object is created per
message, and that instance is discarded after each operation (similar to the ASP.NET
page lifetime mode). PerCall is typically considered to be the most scalable mode, since
each call can safely be routed to any machine in your farm (assuming you are doing
load balancing), because PerCall forces you to stick with a stateless programming
model.

The ReceiveActivity Instance | 181

Although people typically think of WF as being a stateful way to write programs (and
to be honest, WF is somewhat geared toward that idea), you can actually write a WF
program to be stateless. Because one of the underlying tenets of REST is to keep the
server stateless, we will first create a workflow-based WCF service that is stateless. Then
we’ll create one that is stateful, after which we’ll discuss the issues that may arise when
taking this approach.

Stateless Workflow Services
To get your feet wet with Workflow Services, let’s use a simple example that allows us
to implement a service with a single operation using a workflow. I’ll admit that this
example is somewhat contrived, since it is unlikely you’d ever have a service with a
single operation, but it’s a good idea to start small here so that you can get the basics
of Workflow Services before we work on a workflow that implements a more realistic
contract.

For consistency, we’ll use the contract we used in the workflow as a client example
from earlier in this chapter. We will implement the IBlogAPI.GetBlog method in the
workflow.

ReceiveActivity (like SendActivity) has a ServiceOperationInfo property that has to
be associated with a particular service contract and operation. Instead of using the
contract and operation, as SendActivity does, ReceiveActivity is going to implement
it. It’s clear that this property is essential to ReceiveActivity’s functionality because
immediately after you drag it onto a workflow design surface from the Toolbox, it
shows you that it’s unhappy (indicated by a red dot with a white bang character inside
it) because it hasn’t been associated with a contract and operation.

To make ReceiveActivity happy, you can either double-click on it or go to the
ServiceOperationInfo property to configure the contract and operation, at which point
the Choose Operation dialog box will appear (this is the same dialog box you use to
configure SendActivity). Click Import to browse the references in the workflow project.
You are looking for the contract to implement with this activity (remember that each
ReceiveActivity implements only one method on the service).

The upper-right corner of the Choose Operation dialog box contains an
Add Contract button. In my opinion, you should never click this button.
When you click this button, you create a contract that you cannot reuse
without first going through a metadata (i.e., WSDL) generation process.
This would be a disaster, especially for RESTful service contracts. Fur-
thermore, there are no facilities for adding the WebGet/WebInvoke attrib-
utes to this “contract.” This generally is a button to avoid.

182 | Chapter 9: Using Workflow to Deliver REST Services

For this example, choose the IBlogAPI contract and the GetBlog operation. The pa-
rameters to the method become parameters on the ReceiveActivity and you can data-
bind those properties to other activities in your workflow.

One other property to note on ReceiveActivity is the CanCreateInstance property. This
is a Boolean value that tells the WCF/WF infrastructure when to create a new workflow
instance. For this particular ReceiveActivity, set CanCreateInstance to true; we are
building a stateless service and this will create a new instance whenever a new message
is received for this operation. Figure 9-4 shows the configured ReceiveActivity.

You can see that the (ReturnValue) property is bound to a property on a child activity
of ReceiveActivity. Both SendActivity and ReceiveActivity are composite activities,
which means that child activities can be placed inside those activities and they will
execute before either the SendActivity or ReceiveActivity is complete. Generally, the
child activities are the actual implementations of the operation on the server side, and
in this case the GenerateBlogActivity is equivalent to the code inside a service operation
method implementation.

We now have a workflow (note that this is a SequentialWorkflow) that can be deployed
as a service. Depending on your hosting environment, you have a few different options
for deploying the workflow.

If you are self-hosting, you must use the WorkflowServiceHost type to create an envi-
ronment where incoming messages are routed from the endpoint to workflow instances
instead of objects. In Chapter 2 we discussed how custom ServiceHost-derived types
can be extremely useful, and how the REST support in WCF 3.5 somewhat centers

Figure 9-4. IBlogAPI.GetBlog ReceiveActivity

Stateless Workflow Services | 183

around the WebServiceHost (and WebServiceHostFactory). WorkflowServiceHost is sim-
ilar in functionality because it replaces the object invocation infrastructure in the WCF
channel stack on the server side with an implementation that will invoke workflow
instances instead of class instances.

If you are hosting inside IIS, you still need a file in the virtual directory as the mechanism
to get your service loaded into the IIS hosting environment. As with a REST-based
service, WebServiceHostFactory uses a WorkflowServiceFactory. For this scenario, we’ll
host inside IIS, so the .svc file looks like this:

<%@ ServiceHost
Service="BlogChecklistLibrary.SimpleService"
Factory="System.ServiceModel.Activation.WorkflowServiceHostFactory" %>

I again feel obligated to point out a WF feature. The WorkflowService
Host will take a pure XAML file as the parameter to its constructor. This
means that not only can you drop an .xoml file inside a virtual directory
to get a Workflow Service, but also you can use an .svc file and point
the Service attribute in the ServiceHost directive to an .xoml file. Also,
when self-hosting you can pass an XmlReader to the WorkflowService
Host constructor, so there are many different ways, depending on your
application’s needs, to create a workflow service from XAML.

Of course, this type of ServiceHostFactory doesn’t automatically add an endpoint (as
WebServiceHostFactory will), so we will have to place a service configuration inside the
web.config file:

<services>
 <service name="BlogChecklistLibrary.SimpleService">
 <endpoint address="" binding="webHttpBinding"
 contract="BlogCheckListContracts.IBlogAPI"/>
 </service>
</services>

After setting these two necessary pieces of the IIS hosting infrastructure, we should be
able to hit this endpoint with a browser (since it is implementing the GET part of the
uniform interface). When you do hit the endpoint via a browser, however, you will get
a surprise (shown in Figure 9-5).

At the start of this section, I mentioned that it is more common to think about a work-
flow as a long-running stateful service than as a short-running stateless one. It appears
that implementation of WorkflowServiceHost thinks this way as well. WorkflowService
Host expects a context channel to be configured on this binding. A WCF 3.5 context
channel determines which workflow instance should get an incoming message when
that message is not intended for creating a new workflow.

184 | Chapter 9: Using Workflow to Deliver REST Services

So, is our only hope to add a context channel to the binding to make this exception go
away? No. In fact, we can do something much simpler to fix this issue: on the
IBlogAPI contract, simply declare that sessions are not allowed by setting the
ServiceContractAttribute.SessionMode property to SessionMode.NotAllowed:

[ServiceContract(Namespace="",
 SessionMode=SessionMode.NotAllowed)]
public interface IBlogAPI
{}

WorkflowServiceHost is now happy and the browser can successfully make a request for
this endpoint (see Figure 9-6).

To recap, getting a workflow up and running as the implementation of a stateless service
contract requires the following steps:

1. Modify the contract to specify SessionMode.NotAllowed.

2. Add the ReceiveActivity into a workflow and set CanCreateInstance to true.

3. Set the ServiceOperationInfo on the newly added ReceiveActivity to the correct
operation on the contract.

4. Put activities inside ReceiveActivity to “implement” the operation.

5. Bind the input and output parameters of the operation to appropriate fields or
properties.

Figure 9-5. WorkflowServiceHost expects a session

Stateless Workflow Services | 185

6. Use WorkflowServiceHost with the appropriate binding and behavior (in the REST-
ful case this will be WebHttpBinding and WebHttpBehavior).

7. In the IIS hosting case, add an .svc file that specifies WorkflowServiceHostFactory
and points to the workflow type (or to the .xoml file in the case of a XAML-activated
workflow).

8. Invoke the service.

To implement a more complex contract (e.g., one with more than one operation), you
must repeat steps 2 through 5 modifying the name and potentially the parameters.

There is, of course, one more complicating factor: the workflow execution model.

The simple example shown up to this point uses a SequentialWorkflow model to im-
plement the service, and since there was only one operation, a SequentialWorkflow
model made sense. However, to implement something that could activate a workflow
instance based on multiple operations, the StateMachineWorkflow is probably a more
useful model.

Figure 9-6. Workflow service returning a feed via REST

186 | Chapter 9: Using Workflow to Deliver REST Services

Selecting the workflow model for your service implementation is really
outside the scope of this chapter and book, but this rule of thumb can
probably help you: if your contract requires a particular order for in-
voking operations, the SequentialWorkflow model is probably the one
for you. If there isn’t an order to operation invocation (or if multiple
operations can be invoked at certain times during the execution of your
service), the StateMachineWorkflow model is probably the better of the
two OOTB “root” models.

In the StateMachineWorkflow model, multiple “events” can be listening at the same time.
Each “event” is really the invocation of an operation on a service (implemented using
ReceiveActivity). To more effectively illustrate this point, let’s implement the entire
uniform interface on the “blog” resource (this doesn’t implement the whole Atom
Publishing Protocol; it’s just a sample of a custom “blog” API). The new contract is
shown in Example 9-4.

Example 9-4. The new contract

public interface IBlogAPI
{
 [OperationContract]
 [WebInvoke(UriTemplate = "/blog")]
 Atom10ItemFormatter AddEntry(Atom10ItemFormatter entry);
 [OperationContract]
 [WebGet(UriTemplate = "/blog")]
 Atom10FeedFormatter GetBlog();
 [OperationContract]
 [WebGet(UriTemplate = "/blog/{id}")]
 Atom10ItemFormatter GetEntry(string id);
 [OperationContract]
 [WebInvoke(UriTemplate = "/blog/{id}", Method = "DELETE")]
 Atom10ItemFormatter DeleteEntry(string id);
 [OperationContract]
 [WebInvoke(UriTemplate = "/blog/{id}", Method = "PUT")]
 Atom10ItemFormatter UpateEntry(string id, Atom10ItemFormatter entry);
}

Figure 9-7 shows the StateMachineWorkflow implementation of this contract (which is
still stateless).

The key to making this implementation stateless is setting the CanCreateInstance prop-
erty on all of the ReceiveActivity instances in this workflow to true. You can’t see this
from the StateMachine designer, since it shows only the EventDrivenActivity instances.
The ReceiveActivity instances are the first activities inside each EventDrivenActivity
instance. Figure 9-8 shows the GetBlogEvent “implementation” to see inside one of the
EventDrivenActivity instances. This image doesn’t include the web.config file because
it’s the same as in Example 9-2 (except for the value of the name attribute).

Stateless Workflow Services | 187

At this point, the Workflow Service is just like a code-based service using
InstanceContextMode.PerCall. Because all the ReceiveActivity instances have their
CanCreateInstance property set to true, every message arriving to this service endpoint
causes a new instance of the workflow type to be created (just as a new .NET object is
created for each and every call in the PerCall case).

The message is routed to the correct EventDrivenActivity based on the URI and
method, which is also what would happen in a code-based REST service. Once the
operation completes (which happens after the activities under EventDrivenActivity
complete), StateMachineWorkflow transitions to the “Done” state, which causes the
workflow instance to complete. We could call this the PerCall Workflow Services
model.

This is one valid way to use Workflow Services with WCF 3.5’s Web Programming
Model. I like this model because it allows you to implement services using workflow
while maintaining the statelessness of the REST architecture. You can easily scale this
service out to multiple web servers with no ill effects, since any state management and
concurrency will have been dealt with at the data-store level (assuming the service is
backed by a database). See the note on visibility earlier in this chapter for reasons why
I think using workflow in general is useful. This usage is just a specialized case of that
general concept.

On the other hand, one of the most commonly cited reasons to use WF is that Work
flowRuntime (when used in conjunction with a persistence service) can provide a

Figure 9-7. StateMachine stateless workflow

188 | Chapter 9: Using Workflow to Deliver REST Services

simplified model to create stateful, long-running services. Of course, you can build this
style of workflow service with the WCF/WF integration in 3.5.

Stateful Workflow Services
The first issue you’ll face when moving to a stateful service model with Workflow
Services and REST concerns how WCF will determine when to create a new instance
and when to send a message to an existing instance.

This is where the concept of context comes into play in .NET 3.5. Context describes,
in general terms, how this problem is solved. Because each particular type of binding
or service might decide to manage the actual details in different ways, a general termi-
nology is actually helpful. Having an extra piece of “context” data associated with an
incoming message enables the infrastructure to provide an implementation to solve this
problem. Let’s walk through a basic abstract example.

Figure 9-8. GetBlog operation implementation with CanCreateInstance set to true

Stateful Workflow Services | 189

Imagine a case where a message arrives at a service endpoint implemented by a work-
flow and there isn’t any extra “context” information in the message. The WCF/WF
infrastructure determines which operation should be invoked based on this message
(it does this using the same mechanism used in a code-based service, so in the RESTful
case it will be based on the URI/method). If the ReceiveActivity instance that imple-
ments the operation has its CanCreateInstance set to true, a workflow instance is cre-
ated and the “context” is added back to the response message so that the client can
retrieve and store that “context” and use it again for another invocation.

If the ReceiveActivity instance that implements the operation has its
CanCreateInstance set to false, a fault will be returned to the client. Also note that as
I showed you in the stateless example,you can have multiple activities with Can
CreateInstance set to true, depending on which operation you expect or want to allow
a client to call to create the instance of the workflow.

When the client makes another call, it is responsible for sending this “context” back
to the endpoint, so the subsequent invocation will be routed to the already-created
workflow instance.

The WCF/WF integration doesn’t actually dictate what this “context” must be,
but the implementation of the context channel in WCF 3.5 uses the
WorkflowInstance.InstanceId value (the GUID that uniquely identifies each workflow
instance) as the context value.

The WCF/WF integration also doesn’t dictate the exact storage mechanism in the re-
sponse message to the initiating operation, but there are two places where the OOTB
context channel will store the context: either in a SOAP header (this is not an option
if you are building RESTful services) or in the form of an HTTP cookie. The HTTP
cookie option will work because we are using HTTP with REST, so clients in a RESTful
environment are usually able to reply on subsequent calls with the cookie value (most
do it automatically).

Without getting into a deep discussion of the propriety of using cookies with a RESTful
design, let’s enable this in a Workflow Service exposed using REST.

This potential discussion includes an argument against cookies with
special values in REST because it takes the state out of the two places
where clients expect state to be: in the resource itself and in the URI.

The key will be to create a custom binding for your endpoint, one that includes the
same binding elements as WebHttpBinding and adds the context binding element as well.
Here is the XML configuration for such a binding:

<customBinding>
 <binding name="WebWithContext">
 <context contextExchangeMechanism="HttpCookie" protectionLevel="None" />
 <textMessageEncoding messageVersion="None" />

190 | Chapter 9: Using Workflow to Deliver REST Services

 <httpTransport manualAddressing="true" />
 </binding>
</customBinding>

Recall from Chapter 2 that WebHttpBinding is just a custom binding wrapper that uses
HttpTransport and TextMessageEncoder with MessageVersion set to None. Adding in the
context binding element enables the context channel to be loaded into this channel
stack when the endpoint is opened. In the configuration, the context mechanism is
“cookies” so the requirement of having the cookie protected with an encrypted trans-
port (protectionLevel="None") has been turned off.

We must now create a contract that will allow us to build a stateful workflow (we’re
finally getting to the “document approval” scenario I mentioned at the beginning of
the chapter). Create a new service contract that includes approval by using inheritance:

[ServiceContract(Namespace = "")]
public interface IBlogApprovalAPI : IBlogAPI
{
 [OperationContract]
 [WebInvoke(UriTemplate = "/blog/{id}/approve",Method="PUT")]
 Atom10ItemFormatter ApproveEntry(string id,Atom10ItemFormatter entry);
}

By inheriting from IBlogAPI, your new IBlogApprovalAPI gets all the operations from
its base type and allows you to add the ApproveEntry operation. In this case, that ap-
proval will use PUT, since it is really modifying the state of an existing resource (the
entry). Next, add a literal value onto the end of the UriTemplate to disambiguate
ApproveEntry calls from UpdateEntry calls.

Before you implement this service contract using a stateful workflow model, design a
protocol that will dictate the order in which the operations can be called. Decide which
operation(s) start a workflow, which operation(s) cause a workflow to complete, and
which operation(s) can be called multiple times. This information can’t be expressed
fully in the service contract itself, but it will be embedded in the workflow model based
on the workflow design.

In a stateless (InstanceContextMode.PerCall) WCF code-based service (or in the state-
less workflow model in the preceding section), a service is always “ready” for any op-
eration to be called. There isn’t a particular order for calling operations; all operations
can be called at any time, so you don’t have to take this issue into consideration in a
stateless model.

If you move to a stateful workflow model, you will have to specify the order in which
the operations can be called. Which operations creates and which operation closes a
workflow instance has to be built into your service contract. The design of the workflow
will dictate the order the other operations can be called. This “operation order” infor-
mation will have to be passed along to clients in the form of documentation.

Stateful Workflow Services | 191

Because of the way ReceiveActivity.CanCreateInstance works (note the “can” part of
that property name) you can have multiple operations create an instance, but the rest
of the operations still have to be put into a particular order.

Our example scenario will use the following protocol:

• A call to GetBlog or AddEntry will result in the creation of a new workflow (i.e.,
CanCreateInstance is set to true for those two operations). A call to GetBlog will
cause an instance to complete, since there is no reason for that call to be stateful,
but I want that operation to be implemented on the same endpoint as the rest of
my API.

• Calls to either ApproveEntry or DeleteEntry will cause the workflow to complete
(since there will be no more work to do in either case).

• Calls to UpdateEntry or GetEntry can happen at any time during the lifetime of the
workflow.

Figure 9-9 shows the StateMachineWorkflow implementation.

The protocol used for this contract is embedded into the design of the workflow and
we cannot deviate from it. In some situations, this could be a compelling reason to
choose a stateful workflow as the implementation choice for a particular service—in a
stateless model, you would have to implement this kind of protocol using code and,
potentially, custom status code responses.

Figure 9-9. Stateful workflow service

192 | Chapter 9: Using Workflow to Deliver REST Services

The only other issue with this service (and with the concept of a stateful workflow
service) is ensuring the client automatically returns cookies. WebHttpBinding will do this
automatically.

Summary
This chapter covered the possible reasons you might integrate WF workflows into your
REST architecture, either as a client or as part of your service implementation.
SendActivity enables a workflow to become a RESTful client by using
WebHttpBinding from a WCF client’s point of view.

ReceiveActivity and WorkflowServiceHost make it possible to implement a service con-
tract using a workflow. When doing this you must decide whether you want to have a
stateful or stateless workflow service. Using a stateless workflow service is fairly
straightforward, whereas implementing a stateful workflow service means a little more
design work and ensuring your clients can successfully accept and send cookies to
manage the workflow instance context.

Summary | 193

CHAPTER 10

Consuming RESTful XML Services
Using WCF

One important feature of WCF is that the server and client programming models are
symmetrical. Unlike earlier technologies such as ASMX, a WCF service is defined the
same way a WCF client is defined (i.e., via ServiceContract et al.). There is no notion
in WCF of a “service binding”; there are just bindings. Bindings are used on both
listening endpoints (the service) and sending endpoints (the client).

WCF 3.5 and its Web Programming Model do not change this fundamental fact con-
cerning WCF. As in all other parts of WCF, the Web Programming Model works on
the client in exactly the same way it works on the server. Throughout most of this book,
we have focused on how to create RESTful services using WCF, and most of the time
we’ve been using a browser or a raw-HTTP API to consume those services. Using a
browser or a raw-HTTP API provides a big advantage to RESTful services in general,
but it is sometimes useful to have an abstraction on top of the client programming
model. In this chapter we’ll explore how to use the WCF Web Programming Model to
consume RESTful services.

Defining the Client
Unlike SOAP-based services that often expose metadata (via WSDL or Mex), RESTful
services don’t have any inherent metadata. This means that creating RESTful clients is
generally a manual process.

195

Many people look at the lack of metadata as one of the big downsides
of REST. Others look at the lack of metadata as an upside of REST, since
it makes the network boundary explicit. Lack of an explicit boundary
when using remote invocation has long been a perceived downside of
various RPC systems.

As discussed in Chapter 1, a faction of the RESTful world promotes a
metadata format known as Web Application Description Language
(WADL). Currently, WCF has no OOTB support for WADL on the
service or the client side.

There are a number of ways to create clients in .NET against RESTful services:

• Use System.Net.Sockets.Socket, which is a very low-level approach.

• Use System.Net.WebRequest and friends, which is an HTTP abstraction layer on top
of System.Net.Sockets.Socket. The downside of WebRequest is that you work with
both request and response entity bodies using a stream. There is no strongly typed
programming model available for use.

• Create a set of classes that use System.Net.WebRequest, which uses either
XmlSerializer or DataContractSerializer to create a more strongly typed model.

• Use the WCF client-side infrastructure.

Each of these options has pros and cons, although the Socket options probably have
only the advantage of total control. See Appendix B for an example of a strongly typed
approach on top of WebRequest in the ADO.NET Data Services client-side
infrastructure.

In this chapter you will use the WCF web programming infrastructure to build a client
against a non-WCF-based RESTful service by building a WCF contract from the
ground-up for use on the client-side. If you want to call a WCF-based RESTful service
you built yourself, you can just reuse the WCF metadata at the .NET level.

To be honest, I often reuse WCF metadata. In fact, I often reuse the
assemblies I create when I build SOAP-based services with WCF be-
tween the client and service as well. Especially during development,
while the contract is changing often, I find that directly using the .NET
metadata is more efficient than going through the metadata generation
process.

Everything we discuss in this chapter regarding building clients with WCF will apply
if you have direct access to the service contract and data contract types. We’ll start with
a discussion of how to decompose a RESTful service into a WCF service contract and
data contract so that you can invoke it via WCF.

196 | Chapter 10: Consuming RESTful XML Services Using WCF

Generating the Contract
Because WCF works exactly the same on both the client and server sides, the first thing
you need in order to call a RESTful service using WCF is a contract. To review WCF
basics, three things comprise an endpoint: an address, a binding, and a contract. The
address will be based on the service endpoint’s URI. The binding will likely be WebHttp
Binding or some custom variation of the parts that make up WebHttpBinding. The con-
tract is the part you have to create on the client side to call a random RESTful service.

For this chapter, we will use a particular RESTful service against which to build the
WCF contract definition: SQL Server Data Services (SSDS). SSDS is a new cloud-based
storage facility that Microsoft has built on top of Windows Server and SQL Server.

In RESTful Web Services (O’Reilly), Leonard Richardson and Sam Ruby
use Amazon.com’s S3 storage service as a RESTful consumption exam-
ple. I decided to use the Microsoft example for this book, not to be a
Microsoft shill, but because I thought the symmetry of using a similar
type of service would be useful if you read both books. Not to be a shill
for my publisher, either, but I highly recommend that you read RESTful
Web Services before you read this book. If you haven’t read it, please
read it after you read this book. Thanks.

SSDS is one way to store data in the “cloud” on a set of highly scalable and available
servers hosted at one of Microsoft’s many data centers. Storage is quickly becoming
one of those services that are advantageous to outsource to “cloud” providers. This
chapter isn’t about the concept of using this kind of service; it’s just about how to use
this particular one.

SSDS offers both SOAP and RESTful endpoints for you to call; the SOAP endpoint
exports WSDL, whereas the RESTful endpoint (appropriately) doesn’t. Since we’re
interested in the RESTful endpoint, we need to deconstruct the service and build our
WCF contract types. If you understand the concepts of REST regarding URIs and the
uniform interface, you’ll find that creating the contract is straightforward in most cases.
If a service endpoint follows the constraints of REST, creating the client-side metadata
is relatively simple. First I’ll explain SSDS from a conceptual point of view.

Since this is a book about REST and not SSDS, I’m going into only
enough detail on SSDS to explain how to build a WCF RESTful client
against it. If you want more information about SSDS, see http://www
.microsoft.com/sql/dataservices/default.mspx. Another thing I should
note is that SSDS is currently in beta.

If you are interested in learning how to use the WebRequest API to interact
with SSDS, consult the SSDS documentation, which contains an exten-
sive set of samples on how to do this.

Defining the Client | 197

http://www.microsoft.com/sql/dataservices/default.mspx
http://www.microsoft.com/sql/dataservices/default.mspx

SSDS exposes three core resources: Authorities, Containers, and Entities. An Author-
ity is conceptually similar to a database. An Authority has Containers, and Containers
can be compared to database tables. Entities are the raw pieces of data inside Contain-
ers, so they can be compared to rows in a table.

The big difference between Containers and database tables is that Containers are just
named constructs; they have no predefined schema and they enforce no schema. En-
tities can have any shape, and any Entity can be stored in any Container. The shape of
an Entity and the Container in which it should be stored are constraints that concern
the application using SSDS; SSDS itself doesn’t care.

An application that uses SSDS will first create one or more Authorities. Inside each
Authority it will create one or more Containers, and inside each Container it will store
the appropriate Entities. To get data from SSDS an application will ask a particular
Authority for a particular Entity from a particular Container. All resources have unique
identifiers, so addressability is fairly straightforward.

One interesting part of the SSDS implementation is that each Authority will get its own
unique URI based on the hostname rather than on part of the URI path. To scale out
and provide load balancing and failover, each Authority gets its own hostname.

For example, if you were to create an Authority with an identifier of “users”, your URI
would be:

https://users.data.beta.mssds.com/v1/

If you created another Authority with the identifier “foo”, that URI would be:

https://foo.data.beta.mssds.com/v1/

Identifiers must be unique only within the scope of a particular authentication context.
We’ll discuss how to authenticate to SSDS in a moment.

Another interesting thing about creating Authorities is that the “factory” URI (the URI
to which to POST a new Authority resource for creation by SSDS) is different from the
Authority URI. This makes sense in terms of implementation, since it would be difficult
for the SSDS infrastructure to respond to a unique URI based on the hostname without
knowing that hostname beforehand. The URI for Authority creation is the “base” SSDS
URI:

https://data.beta.mssds.com/v1/

In this version of SSDS, the only parts of the uniform interface available to Authorities
are POST and GET. You can probably guess that, to create an Authority using POST, you
POST the representation of the Authority to https://data.beta.mssds.com/v1/, and to GET
the representation of the Authority, you make a GET request to the Authority-specific
URI.

You also can create and retrieve Containers, so they also implement only POST and
GET. However, you can create, retrieve, modify, and delete Entities, so they implement

198 | Chapter 10: Consuming RESTful XML Services Using WCF

https://users.data.beta.mssds.com/v1/
https://foo.data.beta.mssds.com/v1/
https://data.beta.mssds.com/v1/
https://data.beta.mssds.com/v1/

the entire uniform interface. Table 10-1 lays out the resources of SSDS and which parts
of the uniform interface they implement. All of the URI column values are relative; the
first row’s URI is relative to the “base” SSDS URI of https://data.beta.mssds.com/v1/,
and all the subsequent rows are relative to an Authority-specific URI.

Table 10-1. SSDS resources and uniform interfaces

URI Method Description Input Output

/ (the root of the base SSDS URI) POST Creates an Authority Authority None

/ GET Retrieves an Authority N/A Authority

/ POST Creates a Container Container None

/{containerId} GET Retrieves a Container N/A Container

/{containerId} POST Creates an Entity Entity None

/{containerId}/{entityId} GET Retrieves an Entity N/A Entity

/{containerId}/{entityId} PUT Updates an Entity Entity None

/{containerId}/{entityId} DELETE Deletes an Entity N/A N/A

This table should look pretty familiar to you at this point in the book,
and one of the reasons I put this chapter near the end of the book is that
when I was learning about REST, the more I understood the creation
side of REST the easier it was for me to build clients. This table is some-
thing I’d also typically map out when creating a service that had the
functionality SSDS has, so I find it useful to use the same techniques to
deconstruct an existing service as to consume the service.

Creating the Resource Representations
With our discussion of SSDS under our belts, it’s time to create the resource represen-
tations. You will need definitions for three resources: the Authority, Container, and
Entity. In this section, I’ll walk you through how I created the class definitions to rep-
resent these resources.

The SSDS documentation provides a sample XML definition for Authority (I assume
an actual XML Schema will also be provided at some point, and that therefore you’ll
be able to skip the following steps, but I’m discussing all the steps here because many
RESTful services don’t provide schemas of any kind). The XML definition looks like
this:

<?xml version="1.0" encoding="utf-8"?>
<s:Authority xmlns:s='http://schemas.microsoft.com/sitka/2008/03/'>
 <s:Id>NewAuthorityId</s:Id>
 <s:Version/>
</s:Authority>

Defining the Client | 199

https://data.beta.mssds.com/v1/

Notice that the Version element doesn’t have a value. This is because when you submit
an Authority resource for creation, it must not have the Version element, but when you
get back an Authority via a GET request, it does have the Version element with a value.

Place this XML inside an XML file in Visual Studio 2008. Run the Generate Schema
command under the XML menu. Visual Studio 2008 will infer an XSD schema that is
similar to the one shown in Example 10-1.

Example 10-1. Visual Studio 2008 XSD schema

<?xml version="1.0" encoding="utf-8"?>
<xs:schema xmlns:s="http://schemas.microsoft.com/sitka/2008/03/"
 attributeFormDefault="unqualified" elementFormDefault="qualified"
 targetNamespace="http://schemas.microsoft.com/sitka/2008/03/"
 xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <xs:element name="Authority">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="Id" type="xs:string" />
 <xs:element name="Version" type="xs:string" nillable="true"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
</xs:schema>

Next, run this XSD definition through the WCF svcutil.exe tool. svcutil.exe is generally
used to create proxy definitions from WSDL, but you can also use it to create .NET
class definitions from schemas. Since this particular XSD is compatible with the Data
ContractSerializer in WCF, run the following command:

svcutil.exe /dconly Authority.xsd /out:Authority.cs

The output (in the Authority.cs file) is a class that you can use to represent the Authority
resource in the code, and it allows you to program against a .NET type rather than
using the XML APIs in .NET directly to use this resource. This type will have the ap-
propriate DataContractAttribute and DataMemberAttributes so that the DataContract
Serializer in WCF can turn an instance of the class into the appropriate XML, and
then turn a resource response from the service into the appropriate object instance.

As mentioned earlier, you can use the XML APIs in .NET along with WebRequest to
build your RESTful service clients, but in this case we will use the WCF programming
model instead, using these steps:

1. Get the XML definition into Visual Studio 2008.

2. Run the Generate Schema tool in the XML menu.

3. Run svcutil.exe on the command line to generate the DataContract type.

At some point, I assume Microsoft will simplify these three steps down to one; in fact,
the tools from Microsoft’s BizTalk Labs cloud service at http://labs.biztalk.net include
a Paste as XML Serializable command for Visual Studio that will automate these three
steps from XML held on the clipboard.

200 | Chapter 10: Consuming RESTful XML Services Using WCF

http://labs.biztalk.net

The generated class is fine, except for one interesting restriction that SSDS has placed
on the resource representation. To create an Authority resource, the Version element
must be absent. Since the schema element definition for Version has nillable set to
true, WCF will generate the follow XML if Version is null on the object being serialized:

<?xml version="1.0" encoding="utf-8"?>
<s:Authority xmlns:s='http://schemas.microsoft.com/sitka/2008/03/'
 xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance'>
 <s:Id>newauthorityid</s:Id>
 <s:Version xsi:nil='true'/>
</s:Authority>

SSDS doesn’t like this XML because it disallows the xsi:nil attribute. So, you’ll need
to tweak the DataContractAttribute type definition generated by svcutil.exe. Do this
by changing the DataMemberAttribute.EmitDefaultValue property to false. As a result
of that small change, WCF will now generate the following XML if the Version property
is not set:

<?xml version="1.0" encoding="utf-8"?>
<s:Authority xmlns:s='http://schemas.microsoft.com/sitka/2008/03/'
 xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance'>
 <s:Id>newauthorityid</s:Id>
</s:Authority>

Example 10-2 shows the generated class definition.

Example 10-2. The Authority class

//--
// <auto-generated>
// This code was generated by a tool.
// Runtime Version:2.0.50727.1434
//
// Changes to this file may cause incorrect behavior and will be lost if
// the code is regenerated.
// </auto-generated>
//--

[assembly: System.Runtime.Serialization.ContractNamespaceAttribute(
 "http://schemas.microsoft.com/sitka/2008/03/",
 ClrNamespace="schemas.microsoft.com.sitka._2008._03")]

namespace schemas.microsoft.com.sitka._2008._03
{
 using System.Runtime.Serialization;

 [System.Diagnostics.DebuggerStepThroughAttribute()]
 [System.CodeDom.Compiler.GeneratedCodeAttribute("System.Runtime.Serialization",
 "3.0.0.0")]
 [System.Runtime.Serialization.DataContractAttribute(Name="Authority",
 Namespace="http://schemas.microsoft.com/sitka/2008/03/")]
 public partial class Authority : object,
 System.Runtime.Serialization.IExtensibleDataObject
 {

Defining the Client | 201

 private System.Runtime.Serialization.ExtensionDataObject
 extensionDataField;

 private string IdField;

 private string VersionField;

 public System.Runtime.Serialization.ExtensionDataObject ExtensionData
 {
 get
 {
 return this.extensionDataField;
 }
 set
 {
 this.extensionDataField = value;
 }
 }
 [System.Runtime.Serialization.DataMemberAttribute(IsRequired=true,
 EmitDefaultValue=false)]
 public string Id
 {
 get
 {
 return this.IdField;
 }
 set
 {
 this.IdField = value;
 }
 }
 //I changed the EmitDefaultValue
 [System.Runtime.Serialization.DataMemberAttribute(IsRequired=false,
 EmitDefaultValue=false)]
 public string Version
 {
 get
 {
 return this.VersionField;
 }
 set
 {
 this.VersionField = value;
 }
 }
 }
}

In general, it’s preferable not to modify a code-generated file, since you will have to re-
create the change if you have to regenerate it for some reason. In this case, however,
it’s a necessary change, and the fact that you are generating the code file manually
reduces the chances of a regeneration whacking your changes.

202 | Chapter 10: Consuming RESTful XML Services Using WCF

You use the same steps to create the Container class definition. Take the XML from
the SSDS documentation, create the XML file, generate the schema, and use
svcutil.exe to generate the class.

The Entity definition is a bit more difficult. There is no set Entity XML definition from
SSDS. The Entity can be any valid XML with the following restrictions:

• The first child element of the document element must be the Id element from the
SSDS schema.

• The Version and Kind elements from the SSDS schema can follow Id, but they are
optional.

• You can place any number of additional child elements after Id, but they must be
scalar values and you must specify the types using the xsi:type attribute. These
are referred to in SSDS as flexible properties.

• The additional child elements are limited to the following scalar types: string,
base64binary, decimal, boolean, or dateTime.

This variable XML creates a slightly more complex scenario for serialization. One typ-
ical option is to use System.ServiceModel.Channels.Message to represent this resource.
However, this won’t work with the WCF Web Programming Model because when you
make a creation request for an Entity, you’ll be passing the identifiers of both the Au-
thority and the Container as part of the URI. Therefore, you need to use UriTemplate,
with the first two parameters of your method being the two path segments of the URI.
You can use Message as a parameter only if it is the only parameter to an operation.

If you were using a preset Entity type and you weren’t planning to change it, you could
do something like this:

[XmlTypeAttribute(AnonymousType = true, Namespace = "")]
[XmlRootAttribute(Namespace = "", IsNullable = false)]
public class MyEntityType
{
 [XmlElementAttribute(Namespace =
 "http://schemas.microsoft.com/sitka/2008/03/")]
 public string Id;
 public Title Title { get; set; }
}

Notice that this code uses XmlSerializer (you would also specify
XmlFormatterAttribute on the ServiceContract operation to make this work) because
DataContract won’t allow you to add an element from a different namespace. In this
case, the Entity will be an XML element with the root element name of MyEntityType,
and will have one scalar property of a type string named Title.

This will work, but is neither generic nor reusable. So, for the Entity resource, we can
use a method similar to the way that WCF deals with web feed data (see Chapter 6),
creating a .NET class to represent any Entity by having that class implement
IXmlSerializable. By implementing IXmlSerializable you can have tighter control over

Defining the Client | 203

the XML that is generated or parsed, and you can create a more general-purpose and
reusable type that can be used for any Entity, as shown in Example 10-3.

Example 10-3. Entity type using IXmlSerializable

public class SSDSEntityFormatter : IXmlSerializable
{

 public string Id { get; set; }
 public string Version { get; set; }
 public string Kind { get; set; }
 public string Name { get; set; }

 string _SSDSNS = "http://schemas.microsoft.com/sitka/2008/03/";
 public IList<SSDSEntityFlexibleProperty> FlexibleProperties { get; set; }
 #region IXmlSerializable Members

 public System.Xml.Schema.XmlSchema GetSchema()
 {
 return null;
 }

 public void ReadXml(XmlReader reader)
 {
 //omitted for clarity
 }

 public void WriteXml(XmlWriter writer)
 {
 writer.WriteAttributeString("xmlns", "xsi", null,
 "http://www.w3.org/2001/XMLSchema-instance");
 writer.WriteAttributeString("xmlns", "xsd", null,
 "http://www.w3.org/2001/XMLSchema");
 writer.WriteElementString("Id", _SSDSNS,this.Id);
 if (this.FlexibleProperties != null)
 {
 foreach (var item in this.FlexibleProperties)
 {
 item.WriteXml(writer);
 }
 }

 }

 #endregion
}

The SSDSEntityFlexibleProperty instances in the list of flexible properties do most of
the heavy lifting, except for writing out the two standard namespace URIs. There is one
SSDSEntityFlexibleProperty derived class for each allowable scalar type, as shown in
Example 10-4.

204 | Chapter 10: Consuming RESTful XML Services Using WCF

Example 10-4. SSDSEntityFlexibleProperty

public abstract class SSDSEntityFlexibleProperty
{
 public string Name { get; set; }
 protected string XSDType { get; set; }
 protected internal virtual void WriteXml(XmlWriter writer)
 {
 writer.WriteStartElement(this.Name);
 writer.WriteAttributeString(_attr,
 _ns,
 String.Format("xsd:{0}",this.XSDType));
 writer.WriteString(this.GetValue());
 writer.WriteEndElement();
 }
 protected internal abstract string GetValue();
 private string _ns = "http://www.w3.org/2001/XMLSchema-instance";
 private string _attr = "type";
}
public class StringProperty : SSDSEntityFlexibleProperty
{
 public string StringValue { get; set; }

 public StringProperty()
 {
 this.XSDType = "string";
 }

 protected internal override string GetValue()
 {
 return this.StringValue;
 }
}
public class Base64Property : SSDSEntityFlexibleProperty
{
 public Base64Property()
 {
 this.XSDType = "base64Binary";
 }
 public byte[] Base64Value { get; set; }
 protected internal override string GetValue()
 {
 return Convert.ToBase64String(this.Base64Value);
 }

}
public class BooleanProperty : SSDSEntityFlexibleProperty
{
 public BooleanProperty()
 {
 this.XSDType = "boolean";
 }
 protected internal override string GetValue()
 {
 return this.BooleanValue.ToString();
 }

Defining the Client | 205

 public bool BooleanValue { get; set; }
}
public class DecimalProperty : SSDSEntityFlexibleProperty
{
 public DecimalProperty()
 {
 this.XSDType = "decimal";
 }
 protected internal override string GetValue()
 {
 return this.DecimalValue.ToString();
 }
 public decimal DecimalValue { get; set; }
}
public class DateTimeProperty : SSDSEntityFlexibleProperty
{
 public DateTimeProperty()
 {
 this.XSDType = "dateTime";
 }
 protected internal override string GetValue()
 {
 return this.DateTimeValue.ToString();
 }
 public DateTime DateTimeValue { get; set; }

}

Each SSDSEntityFlexibleProperty derived type is responsible for returning a string
representation of its data, and the base class writes out the XML for the flexible property
itself using this string.

There is one additional catch with this implementation. Because of the way
IXmlSerializable works, the document element name is derived from the name of the
implementation type or via a value set with the XmlRootAttribute. If you want to have
different document element names for Entity resources (which is part of the point of
having a generic solution), we need to take the IXmlSerializable idea one step further
and create a new type derived from the SSDSEntityFormatter class, and add the
XmlRootAttribute to that class. Otherwise, the document element for all of your entities
will be SSDSEntityFormatter, which probably isn’t what you want. Here is one example:

[XmlRoot("Testing")]
public class DerivedSSDSEntityFormatter : SSDSEntityFormatter
{
}

It isn’t difficult to create this class. It’s the same pattern used by the SyndicationFeed
Formatter with the derived Atom10SyndicationFeedFormatter and Rss20Syndication
FeedFormatter. Each of the derived classes has an XmlRootAttribute indicating what the
root element name should be. The difference is that you must create a new type for

206 | Chapter 10: Consuming RESTful XML Services Using WCF

each Entity document element to use this technique, where the derived classes in the
syndication API are already set.

This can seem very complex, but the SSDS REST endpoint is a relatively complex end-
point, which is why it is a good example of how to consume a RESTful service. But in
general you’ll find that many of the resources you work with will be more like the
Authority and Container resources than like the Entity resource in terms of complexity.

Creating the ServiceContract
The next step in our quest to build a WCF client for SSDS is to define the
ServiceContract type that will use the resource types we just created. There is an in-
teresting dilemma here as well.

Remember the way SSDS works when creating resources: the Authority resource is
created at the “base” SSDS URI (http://data.beta.mSSDS.com), and the Authority then
gets its own URI (http://authorityid.data.beta.mSSDS.com). You then do a POST to the
Authority-specific host URI to create a Container.

This split forces us to create two different contracts: one for creating the Authority and
another for creating Containers and working with Entities. Because two operations
would have a method of POST and a UriTemplate of root (/), it is impossible to have both
operations on a single service contract interface. Here is the contract for creating
Authorities:

[ServiceContract]
public interface ICreateAuthority
{
 [WebInvoke(Method="POST",UriTemplate="/")]
 [OperationContract()]
 void CreateAuthority(Authority authority);
}

The other contract, shown in Example 10-5, will take care of getting an Authority,
creating or getting a Container, and handling the entire uniform interface on the Entity
resource.

Example 10-5. Contract for getting an Authority, creating or getting a Container, and handling the
entire uniform interface on the Entity resource

[ServiceContract]
[ServiceKnownType(typeof(DerivedSSDSEntityFormatter))]
public interface IContainer
{
 //gets an Authority
 [WebGet(UriTemplate = "/")]
 [OperationContract]
 Authority GetAuthority();
 //creates a Container
 [WebInvoke(UriTemplate = "/",Method="POST")]
 [OperationContract]

Defining the Client | 207

http://data.beta.mSSDS.com
http://authorityid.data.beta.mSSDS.com

 Container CreateContainer(Container container);
 //gets a Container
 [WebGet(UriTemplate="/{containerid}")]
 [OperationContract]
 Container GetContainer(string containerid);
 //Deletes a Container
 [WebInvoke(UriTemplate="/{containerid}",Method = "DELETE")]
 [OperationContract]
 void DeleteContainer(string containerid);
 //Creates an Entity
 [WebInvoke(UriTemplate = "/{containerid}", Method = "POST")]
 [OperationContract]
 [XmlSerializerFormat()]
 void CreateEntity(string containerid, SSDSEntityFormatter body);
 //Gets an Entity
 [WebGet(UriTemplate="/{containerid}/{entityid}")]
 [OperationContract]
 [XmlSerializerFormat()]
 SSDSEntityFormatter GetEntity(string containerid, string entityid);
 //Deletes an Entity
 [WebInvoke(UriTemplate = "/{containerid}/{entityid}", Method = "DELETE")]
 [OperationContract]
 void DeleteEntity(string containerid, string entityid);
 //Updates an Entity
 [WebInvoke(UriTemplate = "/{containerid}/{entityid}", Method = "UPDATE")]
 [OperationContract]
 [XmlSerializerFormat()]
 void UpdateEntity(string containerid, string entityid, SSDSEntityFormatter
 body);
}

Notice that there is an extra attribute on the interface: ServiceKnownTypeAttribute.
Remember from our discussion of SSDSEntityFormatter that you must create a derived
type for each Entity type. DerivedSSDSEntityFormatter is one of those types.

When it serializes types, WCF needs to know the exact data type being serialized or
deserialized. When using polymorphism (as we are here with the derived type), WCF
requires registration of the potential derived types that might be passed for a particular
base type. This is why you have to put this attribute on the service contract definition.

On the operations that deal with the SSDSEntityFormatter type, you must also specify
that you want WCF to use XmlSerializer by putting XmlSerializerFormatAttribute on
the operation.

Other than these two specializations, this contract is similar to all the other contracts
we’ve created so far. It uses WebGetAttribute or WebInvokeAttribute as appropriate and
it uses UriTemplate and template syntax to specify how to map the outgoing method
calls to the correct URIs. This thought process is opposite to the one we used when
creating contracts for implementing services. Looking at the contract from this angle
might be a little different, but it is in line with the concept of WCF client/service
symmetry.

208 | Chapter 10: Consuming RESTful XML Services Using WCF

Using the Service
At this point, we have all the data types to represent the desired resources. We also
have contracts that represent the URIs and parts of the uniform interface that we want
to interact with in relation to those resources. Now we can actually use these definitions
to interact with the service.

The first step is to create an Authority. To do this, use the ICreateAuthority interface
and create the client infrastructure. To host a RESTful endpoint, use the WebService
Host to create a ChannelListener in WCF to listen for messages on the service side.
ChannelListener is referred to as a Channel Manager, a type that can create live channel
stacks.

There is another kind of Channel Manager on the client side, known as a
ChannelFactory. To create client-side channel stacks, use a ChannelFactory and inform
the ChannelFactory of the appropriate binding and URI.

WCF’s Web Programming Model includes a type that is the client-side equivalent to
WebServiceHost, called WebChannelFactory. In the same way that WebServiceHost con-
figures service endpoints correctly to use a RESTful approach, WebChannelFactory
modifies each client endpoint (on the client there is only one endpoint per
ChannelManager, which is one of the few differences between the client and service
models).

Example 10-6 shows the helper method (as well as some of the static data from my
example), which uses the WebChannelFactory and the ICreateAuthority interface to call
SSDS and create an Authority.

Example 10-6. Creating an SSDS Authority

static void CreateAuthority(string authorityId)
{
 WebHttpBinding binding = new WebHttpBinding();
 binding.Security.Mode = WebHttpSecurityMode.TransportCredentialOnly;
 binding.Security.Transport.ClientCredentialType =
 HttpClientCredentialType.Basic;
 WebChannelFactory<ICreateAuthority> cf =
 new WebChannelFactory<ICreateAuthority>(binding,
 new Uri(ServiceUri));
 cf.Credentials.UserName.UserName = Username;
 cf.Credentials.UserName.Password = Password;
 Authority authority = new Authority { Id = authorityId };
 ICreateAuthority channel = cf.CreateChannel();
 using (new OperationContextScope((IContextChannel)channel))
 {
 OutgoingWebRequestContext ctx =
 WebOperationContext.Current.OutgoingRequest;
 ctx.ContentType = ContentType;
 channel.CreateAuthority(authority);
 IncomingWebResponseContext rctx =
 WebOperationContext.Current.IncomingResponse;
 if (rctx.StatusCode == System.Net.HttpStatusCode.Created)

Defining the Client | 209

 Console.WriteLine("Authority {0} created!", authorityId);
 }
}
static string ContentType = "application/x-ssds+xml";
static string Username = "getyourown";
static string Password = "getyourown";
static string ServiceUri = "http://data.beta.mssds.com/v1/";
static string AuthorityUri = "http://{0}.data.beta.mssds.com/v1/";

From the WCF point of view, the first thing to note here is the generic WebChannelFac
tory. With the generic WebChannelFactory, you can create any channel, where the chan-
nel is based on a WCF ServiceContractAttribute annotated interface. SSDS does use
Basic authentication, so you must set those properties appropriately (see Chapter 8 for
more information about using security with WCF and REST).

Next, the code creates an instance of OperationContextScope. OperationContextScope
creates an OperationContext around a WCF client call. Because we require the Out
goingWebRequestContext object, we need an OperationContext (since
WebOperationContext is built on top of OperationContext).

We also require the OutgoingWebRequestContext because we have to set the HTTP
Content-Type header. SSDS requires that this header be set to application/x-ssds
+xml, which is a new media type that was created for SSDS.

To create the Authority, create an instance of the DataContract-based type, and then
call ICreateAuthority.CreateAuthority.

After that call, use the IncomingWebResponseContext to determine the StatusCode. If the
call is successful, print out the string “Authority {0} created” with the format string
replaced by the Authority name.

With most “created” responses, you would expect to receive a Location
header (see Chapter 11 for more information about the Location
header).

The SSDS version being programmed against here doesn’t return the
Location header, although the SSDS team has stated that it plans to
implement this functionality in future beta versions, so by the time SSDS
is released, I expect that it will be doing this correctly.

Now that the Authority has been created, use the other interface you defined to interact
with it. You can also use that interface to get the Authority. The Authority is particularly
interesting; it’s a container for Containers, and Containers are just containers for En-
tities. It’s at the Entity level that things get a little more interesting.

It’s best to be methodical, though, so Example 10-7 shows the code to get an Authority,
as there is something interesting about it.

210 | Chapter 10: Consuming RESTful XML Services Using WCF

Example 10-7. Getting an Authority

private static void GetAuthority(string authority)
{
 WebChannelFactory<IContainer> cf = GetChannelFactory(authority);
 IContainer channel = cf.CreateChannel();
 using (new OperationContextScope((IContextChannel)channel))
 {
 OutgoingWebRequestContext ctx =
 WebOperationContext.Current.OutgoingRequest;
 ctx.Accept = ContentType;
 Authority auth = channel.GetAuthority();
 IncomingWebResponseContext rctx =
 WebOperationContext.Current.IncomingResponse;
 if (rctx.StatusCode == System.Net.HttpStatusCode.OK)
 Console.WriteLine("Authority {0} {1} retrieved!", auth.Id,
 auth.Version);
 }
}

Since all of the code in the program, except for the code to create the Authority, will
be using the same contract, this code wraps the creation of WebChannelFactory in a
helper method, which we’ll discuss in a moment. The only other interesting piece in
this code occurs where it sets the HTTP Accept header. This header isn’t strictly re-
quired by SSDS, but it is still a good practice to include it, and some services will require
it since those services might return different representations based on its value.

The interesting code is inside the GetChannelFactory method, shown in Example 10-8.

Example 10-8. GetChannelFactory method

static WebChannelFactory<IContainer> GetChannelFactory(string authority)
{
 //create the WebHttpBinding, and set its properties
 WebHttpBinding binding = new WebHttpBinding();
 binding.Security.Mode = WebHttpSecurityMode.TransportCredentialOnly;
 binding.Security.Transport.ClientCredentialType =
 HttpClientCredentialType.Basic;
 //SSDS sends back chunked responses
 binding.TransferMode = TransferMode.StreamedResponse;
 //Copy the WebHttpBinding into a CustomBinding
 CustomBinding custom = new CustomBinding(binding);
 //Get the encoding element
 WebMessageEncodingBindingElement be =
 custom.Elements.Find<WebMessageEncodingBindingElement>();
 //set the content type mapper
 be.ContentTypeMapper = new SSDSContentTypeMapper();
 //create the URI
 string uri = String.Format(AuthorityUri, authority);
 //create the WebChannelFactory
 WebChannelFactory<IContainer> cf =
 new WebChannelFactory<IContainer>(custom,
 new Uri(uri));
 //set the credentials
 cf.Credentials.UserName.UserName = Username;

Defining the Client | 211

 cf.Credentials.UserName.Password = Password;
 return cf;

The first few lines of code in Example 10-8 aren’t significantly different from Exam-
ple 10-6. The one difference is that this code sets the WebHttpBinding.TransferMode to
TransferMode.StreamedResponse, since SSDS is sending back responses using HTTP
chunking.

Next, take the WebHttpBinding instance you just configured and copy all the binding
elements in it into a new Custom Binding object. This is required because you have to
change something that isn’t exposed directly on WebHttpBinding: you need to set the
WebMessageEncodingBindingElement.ContentTypeMapper property.

ContentTypeMapper is of type WebContentTypeMapper. The job of WebContentTypeMapper
is to help the WCF message infrastructure determine the message type.
WebContentTypeMapper is passed the Content-Type header of an HTTP response, and it
returns a WebContentFormat-enumerated value. This informs the message-parsing layer
how to treat the data in the message. Here are the values of WebContentFormat:

public enum WebContentFormat
{
 Default,//the format can't be determined
 Xml,//the format of the message is XML
 Json,//the format of the message is Json encoded
 Raw//the format is binary
}

The message-encoding layer in WCF needs this information to know how to treat the
response message.

The default is to map application/xml to WebContentFormat.Xml, application/json to
Json, and everything else to Raw. Since SSDS always returns application/x-ssds+xml we
need a custom WebContentTypeMapper.

Here is the custom WebContentTypeMapper implementation:

public class SSDSContentTypeMapper : WebContentTypeMapper
{
 public override WebContentFormat GetMessageFormatForContentType(string
 contentType)
 {
 return WebContentFormat.Xml;
 }
}

The preceding code in the GetChannelFactory method has the code that reaches into
the WebHttpBinding configuration, pulls out the necessary configuration element (Web
MessageEncodingBindingElement), and modifies the appropriate property (ContentType
Mapper).

The only other usage of the IContainer service contract that is different from the sam-
ples shown so far is the IContainer.CreateEntity method. This method is more

212 | Chapter 10: Consuming RESTful XML Services Using WCF

interesting because it’s going to use the IXmlSerializable type you created especially
to represent the loosely typed Entity resource (see Example 10-9).

Example 10-9. CreateEntity method

private static void CreateEntity(string authority, string container, string entity)
{
 WebChannelFactory<IContainer> cf = GetChannelFactory(authority);
 IContainer channel = cf.CreateChannel();
 SSDSEntityFormatter flexEntity = new DerivedSSDSEntityFormatter();
 flexEntity.Name = "Test";
 flexEntity.Id = entity;
 StringProperty property = new StringProperty
 {
 StringValue = "Testing",
 Name = "TestElement"
 };
 List<SSDSEntityFlexibleProperty> props = new
 List<SSDSEntityFlexibleProperty>();
 props.Add(property);
 flexEntity.FlexibleProperties = props;
 using (new OperationContextScope((IContextChannel)channel))
 {
 OutgoingWebRequestContext ctx =
 WebOperationContext.Current.OutgoingRequest;
 ctx.ContentType = ContentType;
 channel.CreateEntity(container, flexEntity);
 IncomingWebResponseContext rctx =
 WebOperationContext.Current.IncomingResponse;
 if (rctx.StatusCode == System.Net.HttpStatusCode.Created)
 Console.WriteLine("Entity {0} created!", entity);

 }
}

To create an Entity, create an instance of an SSDSEntityFormatter class, which is the
base class created to wrap the functionality of creating the custom XML instance using
IXmlSerializable. Create an IList collection of SSDSEntityFlexibleProperty to which
to add the single property.

Here is what the resultant XML looks like:

<?xml version="1.0" encoding="utf-8"?>
<Testing xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">
<Id xmlns="http://schemas.microsoft.com/sitka/2008/03/"
>booktestentity7d0ddc98-b403-4465-9ab5-d3b3777ac26b</Id>
<TestElement xsi:type="xsd:string">Testing</TestElement>
</Testing>

This XML fits into the constraints that SSDS puts on Entity XML formats. Fig-
ure 10-1 shows the interaction between the client and SSDS.

Defining the Client | 213

Client Extensibility
One thing you might have noticed while reviewing the code in this chapter is that each
of the methods contains some repetitive code. What stood out to me after writing the
code in this chapter is that the code inside each method setting the outgoing Content-
Type header for all the calls that interact with resources where I need to send a message
body (POST and PUT, in this example) was the same.

Although it would be an advantage if the base Web Programming Model included a
Content-Type setting, WCF has a nice extensibility model that can wrap up that re-
petitive functionality into a reusable component.

The first thing you need is a behavior. We’ve seen behaviors in almost all of the chapters
in this book, but the WebHttpBehavior is the main behavior included with the Web
Programming Model. Behaviors are objects that change the way a service, operation,
or endpoint behaves or executes. In this case, we want to create an endpoint behavior
so that we can modify the way the client endpoint behaves when it sends a POST or PUT.

With an endpoint behavior (which is a class that implements the IEndpointBehavior
interface), you can add a Message inspector (a class that implements the
IClientMessageInspector interface). With a Message inspector in place, you can modify
the outgoing Content-Type header when needed.

Example 10-10 shows the behavior.

Example 10-10. ContentTypeBehavior

public class ContentTypeBehavior : IEndpointBehavior
{
 public string ContentType { get; set; }
 #region IEndpointBehavior Members

Figure 10-1. Fiddler view of the POST to create an Entity in SSDS

214 | Chapter 10: Consuming RESTful XML Services Using WCF

 public void AddBindingParameters(ServiceEndpoint endpoint,
 BindingParameterCollection bindingParameters)
 {

 }

 public void ApplyClientBehavior(ServiceEndpoint endpoint,
 ClientRuntime clientRuntime)
 {
 ContentTypeMessageInspector mi = null;
 mi = new ContentTypeMessageInspector { ContentType = this.ContentType };
 clientRuntime.MessageInspectors.Add(mi);
 }

 public void ApplyDispatchBehavior(ServiceEndpoint endpoint,
 EndpointDispatcher endpointDispatcher)
 {

 }

 public void Validate(ServiceEndpoint endpoint)
 {

 }

 #endregion
}

Since we plan to use this behavior only on the client side for now, you can just imple-
ment the ApplyClientBehavior method and add your Message inspector into the client
runtime stack. Notice that it contains a string property named ContentType so that we
can reuse this behavior and Message inspector for other endpoints and media types.

The message inspector code is also fairly simple, as shown in Example 10-11.

Example 10-11. MessageInspector implementation

public class ContentTypeMessageInspector : IClientMessageInspector
{
 public string ContentType { get; set; }
 #region IClientMessageInspector Members

 public void AfterReceiveReply(ref Message reply, object correlationState)
 {

 }

 public object BeforeSendRequest(ref Message request, IClientChannel channel)
 {
 HttpRequestMessageProperty prop =
 request.Properties[HttpRequestMessageProperty.Name] as
 HttpRequestMessageProperty;
 if (prop != null && (prop.Method=="POST"||prop.Method=="PUT"))
 {

Client Extensibility | 215

 prop.Headers["Content-Type"] = this.ContentType;
 }
 return null;
 }

 #endregion
}

In the BeforeSendRequest method, you’re looking for the
HttpRequestMessageProperty, and if it is there and the method is correct, you can add
the configured media type. The code where we created the WebChannelFactory also
needs one line of code, but now we can remove the explicit code before each appropriate
method call that sets the ContentType:

//create the WebChannelFactory
WebChannelFactory<IContainer> cf =
 new WebChannelFactory<IContainer>(custom,
 new Uri(uri));
cf.Endpoint.Behaviors.Add(new ContentTypeBehavior { ContentType = ContentType });

This behavior might not be applicable to every use case, but I put it here as an example
of how you might find parts of working with WCF tedious, and when you do, to make
sure that you look for an extensibility point because there almost always is one.

Summary
The major point of this chapter is to show you that WCF is symmetrical on the client
and server. The same constructs that enable building RESTful services enable building
RESTful clients.

You may be more comfortable with the raw WebRequest API, which is a fine way to
program against RESTful services, but using WCF as the client programming model
does have the advantage of having a built-in, strongly typed programming model with
rich facilities for URI templates.

216 | Chapter 10: Consuming RESTful XML Services Using WCF

CHAPTER 11

Working with HTTP

One of the benefits of programming in the world of REST is the ability to take advantage
of the maturity of HTTP and the established infrastructure of the Web. To do this
successfully in a programming environment, you need access to the underlying HTTP
constructs so that you can modify HTTP headers programmatically and take full
advantage of this rich platform.

In this chapter, you will learn how WCF exposes the world of HTTP through its pro-
gramming model, along with the most common ways you’ll likely end up interacting
with HTTP.

Programming HTTP with WCF
I introduced the WCF HTTP programming model in Chapter 2. Whenever you are
using HTTP with WCF, you can ask for the current WebOperationContext object through
the WebOperationContext.Current static property. The first time you ask for this prop-
erty, a new instance of the WebOperationContext object is created and attached to the
current WCF generic OperationContext object. On subsequent property accesses, of
course, the already-created instance is returned.

I should reiterate that WCF automatically modifies the HTTP requests
and responses based on the ServiceContract definition. An operation’s
WebGetAttribute or WebInvokeAttribute tell WCF a lot about what to do
with HTTP requests and responses. The URI and the HTTP method are
completely influenced by that mechanism.

The HTTP context I will discuss in this chapter illustrates how to go
beyond that base functionality.

WebOperationContext is the WCF wrapper around the HTTP programming model. The
WebOperationContext object itself (defined in Example 11-1) has no real functionality;
it is a wrapper for the four individual context objects that represent the different states
of an HTTP request.

217

Example 11-1. WebOperationContext

namespace System.ServiceModel.Web
{
 public class WebOperationContext : IExtension<OperationContext>
 {
 public static WebOperationContext Current { get; }
 public IncomingWebRequestContext IncomingRequest { get; }
 public IncomingWebResponseContext IncomingResponse { get; }
 public OutgoingWebRequestContext OutgoingRequest { get; }
 public OutgoingWebResponseContext OutgoingResponse { get; }

 }
}

At all four stages of an HTTP request-response interaction, the appropriate context
object is available and you can use it to modify the HTTP environment (see Table 11-1).

Table 11-1. WebOperationContext properties

Property Actor Description

OutgoingRequest Client The context that enables a client to change the HTTP headers that will be sent to a service

IncomingResponse Client Contains the HTTP headers for a response sent to a client from a service

IncomingRequest Server Contains the HTTP headers for an incoming request from a client

OutgoingResponse Server The context that enables a service to change the HTTP header that will be sent in response

to a client request

These context objects contain a number of useful properties and methods. They ac-
tually are just thin wrappers around HttpRequestMessageProperty and HttpResponseMes
sageProperty. WCF includes message properties that the HTTP transport channel will
use to modify the HTTP interactions in the case of a client request or a server response.

If you are plugging into the WCF extensibility model by creating objects
that will plug into parts of the WCF channel stack execution,
WebOperationContext will not be available (since OperationContext isn’t
generally available either).

For those cases, you will need to use the raw HTTP message properties
to perform HTTP inspection and customization. I’ll show you an ex-
ample of that later in this chapter.

You can retrieve these message properties via either the raw
System.ServiceModel.Channels.Message type if you are programming at that level, or
the standard OperationContext object (through a similar OperationContext.Current
property). The downside of the names, in my opinion, is that they are all so similar that
it can be hard to keep track of when each is available and useful (see Figure 11-1).

218 | Chapter 11: Working with HTTP

The client-side objects OutgoingWebRequestContext and IncomingWebResponseContext
are available before and after an HTTP request is made. The
IncomingWebRequestContext and OutgoingWebResponseContext objects are available
during execution of methods inside the service only.

These objects are only for programming against HTTP headers; they don’t enable you
to modify message bodies. However, there is one way in which you can affect whether
a body is in fact sent with a request or a response, and I’ll cover that later in this chapter.

Even though these objects provide a thin wrapper around lower-level constructs, it
doesn’t mean the objects aren’t useful. They are useful because they allow you to access
the message properties directly. They provide a nice programming model on top of
those lower-level objects. I’ll cover the basic shape of these objects first, and then talk
about different use cases.

IncomingWebRequestContext
The IncomingWebRequestContext object (defined in Example 11-2) is a wrapper around
the incoming HTTP request from a client, so you use it inside a service to get a read-
only view of the HTTP request headers.

Example 11-2. IncomingWebRequestContext

public class IncomingWebRequestContext
{
 public string Accept { get; }
 public long ContentLength { get; }
 public string ContentType { get; }
 public WebHeaderCollection Headers { get; }
 public string Method { get; }
 public UriTemplateMatch UriTemplateMatch { get; set; }

Figure 11-1. WebOperationContext

Programming HTTP with WCF | 219

 public string UserAgent { get; }
}

By the time you can use this context, the WCF dispatching layer will have already found
the correct method based on the URI and the HTTP method, but other HTTP request
headers may be of interest to you. Table 11-2 lists the properties on this object and the
usage of each.

Table 11-2. IncomingWebRequestContext properties

Property Type Description

Accept String Contains the value of the Accept header, which is a comma-delimited

list of media types the user agent will accept

ContentLength Long Contains the value of the Content-Length header, which indicates

the length in bytes of the incoming request body; this will be zero

when the method is GET or DELETE

ContentType String Contains the value of the Content-Type header, which indicates the

media type of the incoming request body; this will be null when the

method is GET or DELETE

Method String Contains the HTTP method

UriTemplateMatch UriTemplateMatch Contains the UriTemplateMatch object obtained from the Uri

TemplateTable built for this particular endpoint

UserAgent String Contains the User-Agent string that uniquely identifies the particular

user agent making the request

Headers WebHeaderCollection Contains a set of name/value pairs, which contain all the HTTP header

tokens and values

OutgoingWebResponseContext
When a service is processing an HTTP-based request, you may want or need to modify
the outgoing HTTP headers to more fully inform down-level actors (proxies, firewalls,
or user agents) about the response it is returning. Example 11-3 is shows the Outgoing
WebResponseContext definition that is used to do exactly that.

Example 11-3. OutgoingWebRequestContext

public class OutgoingWebResponseContext
{
 //Properties
 public long ContentLength { get; set; }
 public string ContentType { get; set; }
 public string ETag { get; set; }
 public WebHeaderCollection Headers { get; }
 public DateTime LastModified { get; set; }
 public string Location { get; set; }
 public HttpStatusCode StatusCode { get; set; }
 public string StatusDescription { get; set; }
 public bool SuppressEntityBody { get; set; }

220 | Chapter 11: Working with HTTP

 //Methods
 public void SetStatusAsCreated(Uri locationUri);
 public void SetStatusAsNotFound();
 public void SetStatusAsNotFound(string description);

}

Note that OutgoingWebResponseContext is the only one of the four web context objects
that has methods. These methods are like the objects themselves, just syntax sugar for
common modifications a service might want to make to the headers in the HTTP
response. Table 11-3 lists its properties and Table 11-4 lists its methods.

Table 11-3. OutgoingWebResponseContext properties

Property Type Description

ContentLength Long Specifies the length (in bytes) of the response. This will generally be

set by the WCF infrastructure.

ContentType String Specifies the Content-Type of the response. This is filled in automat-

ically with application/xml or application/json based on

WebMessageType.

ETag String Contains a hash value that represents the resource. You can use it to

implement conditional GET requests.

LastModified DateTime A timestamp indicating the last time the resource was modified. You

can use it for conditional GET requests.

Location String Specifies the Location header, which should contain a URI when a

new resource is created with POST.

StatusCode HttpStatusCode One of the enumerated values of HttpStatusCode to indicate the

effect of the request.

StatusDescription String The description to go along with the status code.

SuppressEntityBody Bool Indicates whether or not the HTTP channel should send the entity

body (if there is one); set to true by default.

It sets the

HttpResponseMessageProperty.SuppressEntityBody

property.

Headers WebHeaderCollection Contains a set of name/value pairs, which contain all the HTTP header

tokens and values.

Table 11-4. OutgoingWebResponseContext methods

Method Parameter Return Description

SetStatusAsCreated Uri Void Sets the StatusCode to 201 Created and sets the Location header

to the value of the URI

SetStatusAsNotFound None Void Sets the StatusCode to 404

SetStatusAsNotFound String Void Sets the StatusCode to 404 and sets the description to the value

of the parameter

Programming HTTP with WCF | 221

OutgoingWebRequestContext
The OutgoingWebRequestContext object (defined in Example 11-4) is available to a client
using WCF before a method call is made on the proxy/channel to an endpoint using
the HTTP channel. Table 11-5 describes its properties.

Example 11-4. OutgoingWebRequestContext

public class OutgoingWebRequestContext
{
 public string Accept { get; set; }
 public long ContentLength { get; set; }
 public string ContentType { get; set; }
 public WebHeaderCollection Headers { get; }
 public string IfMatch { get; set; }
 public string IfModifiedSince { get; set; }
 public string IfNoneMatch { get; set; }
 public string IfUnmodifiedSince { get; set; }
 public string Method { get; set; }
 public bool SuppressEntityBody { get; set; }
 public string UserAgent { get; set; }
}

Table 11-5. OutgoingWebRequestContext properties

Property Type Description

Accept String Sets the value of the Accept header.

Method String The value of the HTTP method. This is normally set by the infra-

structure automatically. It is not useful if you’re using WebHttp

Behavior.

UserAgent String Enables you to set the User-Agent header explicitly.

ContentType String The Content-Type header that is generally set by the infrastructure

on the client side.

ContentLength Long The Content-Length header that is generally set by the infrastruc-

ture on the client side.

IfMatch String Used when the client is asking for a conditional request other than

GET. It contains the ETag value of the resource.

IfModifiedSince String Used with conditional requests other than GET. It contains the

value of the Last-Modified value associated with a resource.

IfNoneMatch String Used when the client is asking for a conditional GET. It contains

the ETag value of the resource.

IfUnmodifiedSince String Used with conditional GET requests. It contains the value of the

Last-Modified value associated with a resource.

Headers WebHeaderCollection Contains a set of name/value pairs, which contain all the HTTP

header tokens and values.

222 | Chapter 11: Working with HTTP

IncomingWebResponseContext
The IncomingWebResponseContext property (defined in Example 11-5) is available to a
WCF client after a call has been made to an HTTP service endpoint. A client can use
this property to find out the status code of the response, as well as other potentially
useful information. Table 11-6 lists its properties.

Example 11-5. IncomingWebResponseContext

public class IncomingWebResponseContext
{
 public long ContentLength { get; }
 public string ContentType { get; }
 public string ETag { get; }
 public WebHeaderCollection Headers { get; }
 public string Location { get; }
 public HttpStatusCode StatusCode { get; }
 public string StatusDescription { get; }
}

Table 11-6. IncomingWebResponseContext properties

Property Type Description

ContentLength Long The value of the Content-Length header, which is the length in

bytes of the response representation.

ContentType String Specifies the media type of the response representation.

ETag String The ETag header is returned when the server wants the user agent

to be able to do conditional GETs.

Location String When a new resource has been created, the Location header con-

tains a URI to the new resource. This should be non-null when the

status code is 201.

StatusCode HttpStatusCode Contains an enumeration value based on the known HTTP response

codes.

StatusDescription String Contains the string associated with the status code.

Headers WebHeaderCollection Contains a set of name/value pairs, which contain all the HTTP

header tokens and values.

Context Wrap-Up
Now that you are familiar with the basic shape of the WebOperationContext properties,
we’ll discuss a number of common RESTful scenarios in which you may decide to go
further than the basic WCF infrastructure. I’ll start with returning status codes other
than 200 or 400 from a WCF RESTful service.

Programming HTTP with WCF | 223

Status Codes
Earlier chapters discussed the importance of the architectural constraints of REST and
how those constraints are based on the way the Web and HTTP work. One really
important feature of HTTP is status codes. You can increase your use of the principles
of REST by taking advantage of status codes. Since REST builds on the principles of
the Web, your client will generally find specific status codes very useful.

The first line of the HTTP response header for every HTTP response includes a status
code and a status description. Figure 11-2 shows the “200 OK” status code.

A status code of 200 indicates to the user agent that everything went fine when servicing
the request. Other status codes can provide a user agent with more detail regarding
what went right (or wrong) and can inform the user agent of what to do next. In many
cases, an HTTP response has no body and the status code is really the only clue the
client has to figure out what went right or wrong. Descriptions can be helpful for a
human sitting at a browser; they generally aren’t as helpful for programmatic
interaction.

WCF will set the status code automatically if you don’t set it. It will set the status code
to 200 if the service method executes without exception.

The most common status code is 200 (well, at least it is the most commonly under-
stood status code). HTTP status codes are classified into groups (based on number), as
shown in Table 11-7.

Figure 11-2. HTTP request with a “200 OK” status code

224 | Chapter 11: Working with HTTP

Table 11-7. HTTP status code classification

Status code range Description

200–299 Status codes in this range indicate a successful request.

300–399 These status codes indicate that the client needs to request a different URI to use the requested resource

successfully.

400–499 These status codes indicate that the client did something wrong, which caused an error condition on the

server.

500–599 This indicates that the server had an error not caused by the client’s bad request, but by some other class

of exception.

WCF will use some of these additional status codes automatically.

If an exception is thrown inside the service method and it isn’t caught (i.e., the exception
bubbles back up to the WCF channel stack), WCF will set the status code to 400 (“Bad
Request”). When this happens, it will also set the content type to text/html and return
a human-readable error message (see Figure 11-3).

The error message will include the exception and the call stack if the
ServiceDebugBehavior’s IncludeExceptionsInFaults property is set to true. You can do
this programmatically when self-hosting, as shown in Example 11-6.

Example 11-6. Setting fault details on with code

WebServiceHost sh = new WebServiceHost(typeof(EventLogFeed));
ServiceDebugBehavior sdb = null;
sdb = sh.Description.Behaviors.Find<ServiceDebugBehavior>();
if (sdb == null)
{

Figure 11-3. WCF’s 400 error and HTML page

Status Codes | 225

 //this should never be the case - but it *might* be so
 //better safe than sorry I say
 sdb = new ServiceDebugBehavior();
 sh.Description.Behaviors.Add(sdb);
}
sdb.IncludeExceptionDetailInFaults = true;

Or you can do it via a configuration file, as shown in Example 11-7.

Example 11-7. Setting fault details on with configuration

<system.serviceModel>
 <behaviors>
 <serviceBehaviors>
 <behavior name="faults">
 <serviceDebug includeExceptionDetailInFaults="true" />
 </behavior>
 </serviceBehaviors>
 </behaviors>
 <services>
 <service behaviorConfiguration="faults" name="ServiceName">
 <endpoint address="" binding="webHttpBinding" contract="IContract"/>
 </service>
 </services>
</system.serviceModel>

Unfortunately, if you are using WebServiceHostFactory with a simple .svc file, there is
no way to set this property to true without either adding a service element (which
defeats somewhat the purpose of WebServiceHostFactory) or creating your own
ServiceHostFactory that sets the property on ServiceHost creation.

If a request comes into the WCF dispatching layer and a UriTemplate match isn’t found
(e.g., the incoming URI doesn’t match any UriTemplate in the endpoint’s
UriTemplateTable), WCF will return a 404 response. As with the 400 status code, WCF
will set the content type to “text/html” and return a preset HTML response entity (see
Figure 11-4).

If the URI has a match in the UriTemplateTable but the request’s method doesn’t match
any of the URI matches, WCF returns a 405 response (“Method Not Allowed”).

On the client side, WCF never sets the status code, but you should be
aware that if the status code comes back as 500 (which indicates an
internal server error), it will throw an exception back up the client call
stack to the proxy/channel.

Other than the aforementioned cases, WCF doesn’t get involved in changing the status
code of a response. Let’s look at a few important status codes and how to get WCF to
return the correct status code based on the current context.

226 | Chapter 11: Working with HTTP

201 — Created
The 201 status code indicates a successful request for creating a new resource. The
method for resource creation will be POST if the client doesn’t know the URI of the new
resource, or PUT if the client does know the URI of the new resource.

Regardless of the method, two things should be set in the response when a new resource
is created. The Status-Code should be set to 201, and a Location header should be
added with an absolute URI that represents the newly created resource.

WCF doesn’t do either of these two things to the response automatically because the
WCF programming model has no high-level way to communicate the URI of a new
resource. It is considered a best practice to add this functionality to methods that create
a new resource.

In Chapter 3, I introduced a service that enables a user agent to create, retrieve, and
modify a “user” resource. In that example, the resource creation method was based on
POST instead of PUT because the user agent can’t know what the correct resource URI
will be for a new resource, since the unique identifier is generated on the server side.
As a refresher, Example 11-8 shows this method.

Example 11-8. AddNewUser method

[WebInvoke(UriTemplate = "/users", Method = "POST")]
[OperationContract]
public User AddNewUser(User u)
{
 u.UserId = Guid.NewGuid().ToString();
 _users.Add(u);

Figure 11-4. WCF’s standard 404 response

Status Codes | 227

 return u;
}

The URI of the Location header should resolve to the GetUser method shown in Ex-
ample 11-9.

Example 11-9. GetUser method

[WebGet(UriTemplate = "/users/{user_id}")]
[OperationContract]
public User GetUser(string user_id)
{
 User u = FindUser(user_id);
 return u;
}

You use OutgoingWebResponseContext to modify the status code and set the location to
a URI that represents this new resource. The GET URI for the user resource is the same
URI that activates this method, plus the UserId property (which is a GUID). Exam-
ple 11-10 shows the implementation to create this URI.

Example 11-10. Creating the URI of the new resource

private Uri CreateUri(User u)
{
 UriTemplate ut = new UriTemplate("/users/{user_id}");
 Uri baseUri =
 WebOperationContext.Current.IncomingRequest.UriTemplateMatch.BaseUri;
 Uri ret = ut.BindByPosition(baseUri, u.UserId);
 return ret;
}

Notice that the code in Example 11-10 uses a UriTemplate instance to generate the new
URI. The URI concatenation API in the .NET Framework isn’t very sophisticated. So,
in Example 11-8 I’m using UriTemplate as an easy way to build an absolute URI for the
newly created resource. For the template value, I am using the same template that is
associated with GetUser. To be clear, I am not using the UriTemplate class here to do
routing; I am using it to build up a URI of its component parts (this is how the UriTem
plate is used in the WCF client-side infrastructure).

To bind the template, I can use the absolute URI of the incoming request as the base
URI and the new GUID as a parameter to bind the new URI by position. The resultant
new URI now contains the correct value for the Location header. Notice that to get the
URI of the current request I am using IncomingWebRequestContext and its UriTemplate
Match property.

Once I have the correct absolute URI created for the Location header, I can set it and
the 201 status code on the OutgoingWebResponseContext. This would add two lines of
code to set the StatusCode and Location properties. I can instead write one line of code,
since the OutgoingWebResponseContext has the SetStatusAsCreated helper method. I

228 | Chapter 11: Working with HTTP

presume Microsoft added this method to help us avoid writing those same two lines of
code over and over.

Example 11-11 shows the new AddNewUser method.

Example 11-11. New AddNewUser method

[WebInvoke(UriTemplate = "/users", Method = "POST")]
[OperationContract]
public User AddNewUser(User u)
{
 u.UserId = Guid.NewGuid().ToString();
 OutgoingWebResponseContext ctx = WebOperationContext.Current.OutgoingResponse;
 ctx.SetStatusAsCreated(CreateUri(u));
 _users.Add(u);
 return u;
}

Figure 11-5 shows the interaction at the HTTP level (using the useful Fiddler tool).

You can see the Location header in Figure 11-6.

Doing the right thing by returning a 201 and a Location header for the methods that
create new resources when using WCF’s Web Programming Model isn’t just a simple
matter of configuration, but it is a fairly simple set of steps: create the absolute URI for
the new resource and call OutgoingWebResponseContext.SetStatusAsCreated.

404 — Not Found
The 404 status code’s typical description string is “Not Found”. A 404 status code
indicates to a client that the resource it is requesting isn’t available. Typically, this
occurs when you’re implementing GET while building a RESTful service.

Figure 11-5. 201 status code in Fiddler

Status Codes | 229

As I mentioned earlier in the chapter, WCF will set the status code to 404 if an incoming
request’s URI doesn’t match at least one UriTemplate from the UriTemplateTable sup-
porting the endpoint. A 405 status code is returned if at least one UriTemplate matches
but the incoming HTTP method doesn’t match the service operations associated with
the UriTemplate.

What if the UriTemplate and method both match, and a request is forwarded to one of
the methods, but the resource as requested doesn’t actually exist? Since UriTemplate is
simply a template, a match will be made based on the template, not based on the actual
existence of a resource.

Looking back at the user service sample introduced in Chapter 3, what if a request is
routed to the GetUser method, but the user resource that was requested doesn’t exist
in your system? This can happen pretty easily, since the UriTemplate can match without
the value of {user_id} being an actual identifier in your list of users. What if one client
does a DELETE on a resource, and then another client tries to do a GET on that same
resource?

If you write your code in an unsafe way, an exception might happen whereby you can’t
find a particular user. If you let that exception bubble back to the WCF call stack, WCF
will return a 400 (“Bad Request”), which is sort of, but not quite, correct. The 400
status code is generally reserved for when a user agent sends a request body that isn’t
formatted correctly via POST or PUT, although it is sort of the fallback code for a client
error if no other 4xx status code fits.

404 is generally considered the correct status code to send back based on a request for
a nonexistent resource. It is fairly simple to add this support to the GetUser method.
You can see this code in Example 11-12.

Figure 11-6. Location header displayed in Fiddler

230 | Chapter 11: Working with HTTP

Example 11-12. GetUser method retuning a 404 if the resource isn’t found

[WebGet(UriTemplate = "/users/{user_id}")]
[OperationContract]
public User GetUser(string user_id)
{
 User u = FindUser(user_id);
 if (u == null)
 {
 OutgoingWebResponseContext ctx =
 WebOperationContext.Current.OutgoingResponse;
 ctx.SetStatusAsNotFound();
 ctx.SuppressEntityBody = true;
 }
 return u;
}

The code in Example 11-12 first tries to find the resource in the data store. If the user
isn’t found, the local variable will be null, so the appropriate return code will be a 404.
To send the 404, you get a reference to the OutgoingWebResponseContext and call the
SetStatusAsNotFound method. For good measure, set the SuppressEntityBody property
to true, since a 404 shouldn’t include a response resource. If you want to add a human-
readable description of why the resource wasn’t found (which the client could put into
a log or some other place for a human to read at some point), you can change the
description on the 404 by calling the other overload of SetStatusAsNotFound.

Conditional GET
Web programmers and designers have long sought to make the Web more efficient. It
certainly appears that the capability to build more efficient, scalable websites and serv-
ices is increasing. Taking advantage of all of that work is one of the benefits of using
REST for building your services.

You can make the infrastructure of the Web more scalable in a few different ways. One
facility that is used extensively to increase the overall scalability of the Web is known
as conditional GET. Conditional GET enables a user agent to make a GET request for a
resource the user agent already has a copy of, and will have the server tell the user agent
that the resource is exactly the same as the version already held by the user agent if the
resource hasn’t changed. The efficiency benefit of conditional GET is a reduction in
bandwidth of the network between the server and the user agent, freeing up the band-
width to be used by requests for newly created or modified resources. In addition, it
saves the additional processing time to serialize the resource, just not the processing
time to generate or retrieve the resource (since you need a copy of the current resource
to compare it to the information sent by the user agent with the conditional GET).

Like most of the other “advanced” HTTP concepts, WCF doesn’t support conditional
GET automatically because the implementation of conditional GET is highly variable
among service implementations. However, as it does for other “advanced” HTTP

Conditional GET | 231

concepts, WCF does provide the tools to implement conditional GET. There are two
approaches to accomplish this: using the time the resource was last modified, or using
a special unique identifier.

LastModified
One way to implement conditional GET is to have a server return a Last-Modified header
in the HTTP response for a particular resource. The Last-Modified header value will
be a date/time value indicating the last time the resource was updated.

When sending an HTTP request for the same resource, the user agent presents the date/
time value in a special HTTP request header: If-Modified-Since. If the resource hasn’t
been modified since the date/time value presented by the user agent in the If-Modified-
Since header, a 304 (“Not Modified”) response will be sent back to the user agent. The
bandwidth reduction occurs because the server doesn’t return an entity body with a
304.

In the case of a browser, this cycle occurs often because it happens every time a user
refreshes the page. In a service context, this would happen when a user agent requests
the same resource more than once, which can be triggered by a user if the service is
being called from the context of a human-driven application, but can easily happen
when the user agent is a totally automated program as well.

So, for conditional GET to work based on the Last-Modified header, your service has to
know the last time the resource was modified. This seems logical, and that information
might already be at your fingertips, if your resource has something like a last-modified
date/time property or field, or if your resource resides in a database and it has a column
with the last-modified value in it. For our service, we’ll add a field to the user type
specifically to support conditional GET. Of course, having this information is useful
beyond conditional GET, which is why this information is often at your fingertips to
begin with.

When a new user resource is created, Example 11-13 shows the code that sets the newly
created property’s value to the current time.

Example 11-13. Setting the LastModified property

[WebInvoke(UriTemplate = "/users", Method = "POST")]
[OperationContract]
public User AddNewUser(User u)
{
 u.UserId = Guid.NewGuid().ToString();
 u.LastModified = DateTimeOffset.Now;
 OutgoingWebResponseContext ctx =
 WebOperationContext.Current.OutgoingResponse;
 ctx.SetStatusAsCreated(CreateUri(u));
 _users.Add(u);
 return u;
}

232 | Chapter 11: Working with HTTP

This example uses the new .NET 3.0 DateTimeOffset type instead of
good old DateTime. You can consult the documentation on DateTimeOff
set for more information, but know that DateTimeOffset is the best type
to use when you are trying to represent a particular moment in time.

LastModified is the field I added to my User data type and is used in Example 11-11
(although I am not showing the actually property itself).

Now that the resource’s modification time is available, you can use it to set the Last-
Modified header. To do this, create a method named SetLastModified as in Exam-
ple 11-14.

Example 11-14. SetLastModified

private void SetLastModified(User u)
{
 OutgoingWebResponseContext ctx =
 WebOperationContext.Current.OutgoingResponse;
 ctx.LastModified = u.LastModified.DateTime;
}

Figure 11-7 shows a request for a user resource using Fiddler, and you can see the Last-
Modified header being returned to the user agent.

Next, add code at the top of the GetUsers method to determine whether the incoming
request has an If-Modified-Since header. You can compare that value to the User.Last
Modified field value, and if If-Modified-Since has the same value, you can return a 304.
This method (named CheckLastModified) is shown in Example 11-15.

Figure 11-7. Last-Modified header

Conditional GET | 233

Example 11-15. CheckLastModified method

private bool CheckLastModified(User u)
{
 IncomingWebRequestContext ctx =
 WebOperationContext.Current.IncomingRequest;
 string lastModified =
 ctx.Headers[HttpRequestHeader.IfModifiedSince];
 if (lastModified != null)
 {
 DateTimeOffset dt = DateTimeOffset.Parse(lastModified);
 if (InternalDateTimeCompare(u.LastModified.UtcDateTime, dt))
 {
 SetNotModified();
 return true;
 }
 }
 return false;
}

This code gets the IncomingWebRequestContext so that you can check for the If-Modified-
Since header. If that header is there, compare the value to the LastModified field of the
User instance (this is done with another method I’ll show you in a moment).

The SetNotModified method does the work on the OutgoingWebResponseContext to en-
sure the 304:

private void SetNotModified()
{
 OutgoingWebResponseContext ctx =
 WebOperationContext.Current.OutgoingResponse;
 ctx.SuppressEntityBody = true;
 ctx.StatusCode = HttpStatusCode.NotModified;
}

The SuppressEntityBody is set to true again to ensure that no response body is sent
accidentally. This is a general-purpose method and could be called for any conditional
GET match.

Figure 11-8 shows another request made by a user agent, which is satisfied by a 304
for the user resource.

Using conditional GET based on Last-Modified and If-Modified-Since is generally con-
sidered a good thing, but it does have one limitation. The stated problem is with the
precision of the date/time value sent with Last-Modified, as it is precise down to only
one second. It is somewhat plausible that a resource could change with greater precision
than one second. The date comparison code illustrates this point because it can’t just
parse the incoming If-Modified-Since value into a DateTimeOffset. If it did, it would
never return a 304 because it would never match User.LastModified, since
DateTimeOffset and DateTime are more precise than to the second. Create two new
DateTime instances based on that precision level and compare them (Example 11-16).

234 | Chapter 11: Working with HTTP

Example 11-16. DateTime comparison

private bool InternalDateTimeCompare(DateTime dt1, DateTimeOffset dt2)
{
 DateTime nd1 =
 new DateTime(dt1.Year, dt1.Month,
 dt1.Day, dt1.Hour,
 dt1.Minute, dt1.Second);
 DateTime nd2 =
 new DateTime(dt2.Year, dt2.Month,
 dt2.Day, dt2.Hour,
 dt2.Minute, dt2.Second);
 return nd1 == nd2;
}

This code is a little silly, but necessary.

Another possible scenario is that a convenient “last modified” value isn’t available, but
you could compare property or field values between a presented and current resource
to determine which one was different or new. Because we are discussing GET, expecting
the user agent to present the resource again when making a GET request would contra-
dict one of the main tenets of REST (as well as the HTTP protocol itself). But what if
you could put a special value that represents the current state of the resource into the
HTTP response header after a GET request that could be presented again when a user
agent does a conditional GET? You could then use that value when another request is
made, and compare that value to the currently held special value associated with the
resource. This would solve both the precision and date/time availability problems. This
is why the HTTP specification was expanded in version 1.1 to include a value called
ETag.

Figure 11-8. 304 conditional GET response

Conditional GET | 235

ETags
An ETag is a per-resource, opaque, unique value. An ETag is generally a hashed value
generated by a server in response to a GET request for a resource that is based on some
information from the resource itself. When the user agent makes another request for
the same resource, the value of the ETag is presented in the If-None-Match header.

When the server receives the request, it has to generate the ETag for the resource again,
and if the current ETag matches the value of the If-None-Match header, the resource
hasn’t changed and a 304 is returned. ETag conditional GET is much like Last-Modified
conditional GET, but uses a different token for comparison.

Web servers are highly optimized to generate ETags for static content (e.g., images and
HTML pages), and generally do so based on particular file attributes.

For dynamic content generation, the ETag can be slightly more complex. Unfortu-
nately, many times the whole resource has to be generated and hashed for the com-
parison to work, which means you aren’t saving on CPU or memory usage by using
conditional GET in this way. You are, however, saving bandwidth, and in some cases
the ETag effort is more than paid off by the resultant savings.

To make use of ETags, add an ETag return to the GetUser method by hashing the
User.UserId property and the User.LastModified property. This uses LastModified
again, but remember that an ETag has a greater level of precision than the
Last-Modified/If-Modified-Since conditional GET scheme. Example 11-17 includes one
potential implementation for generating an ETag.

Example 11-17. Sample ETag generation

string GenerateETag(User u)
{
 byte[] bytes = Encoding.UTF8.GetBytes(u.UserId +
 u.LastModified.ToString());
 byte[] hash = MD5.Create().ComputeHash(bytes);
 string etag = Convert.ToBase64String(hash);
 return etag;
}

Now add code inside the GetUser method that is similar to the one in the Last-Modified
version (and you can use both Last-Modified and an ETag together). You can see a
sample implementation in Example 11-18.

Example 11-18. Checking for ETag

[WebGet(UriTemplate = "/users/{user_id}")]
[OperationContract]
public User GetUser(string user_id)
{
 User u = FindUser(user_id);
 if (CheckLastModified(u))
 return null;

236 | Chapter 11: Working with HTTP

 string etag = GenerateETag(u);
 if (CheckETag(etag))
 return null;
 if (u == null)
 {
 OutgoingWebResponseContext ctx =
 WebOperationContext.Current.OutgoingResponse;
 ctx.SetStatusAsNotFound();
 ctx.SuppressEntityBody = true;
 }
 SetLastModified(u);
 SetETag(etag);
 return u;
}

The basic steps to check for new values are to generate the ETag for the current resource,
and then to check whether the ETag matches the value of the If-None-Match header.
See Example 11-19.

Example 11-19. ETag comparison code

private bool CheckETag(string currentETag)
{
 IncomingWebRequestContext ctx =
 WebOperationContext.Current.IncomingRequest;
 string incomingEtag =
 ctx.Headers[HttpRequestHeader.IfNoneMatch];
 if (incomingEtag != null)
 {
 if (currentETag == incomingEtag)
 {
 SetNotModified();
 return true;
 }
 }
 return false;
}

If this method returns true, the request is over and the GetUser method returns null.
Notice that again the code calls the SetNotModified method inside the CheckETag
method, since setting the 304 is the same whether it uses an ETag or Last-Modified.

If the request doesn’t match on a conditional GET, the system must return the
resource. But before doing so, the GetUser method will set the ETag using the
OutgoingWebResponseContext using my method named SetETag, which is shown in Ex-
ample 11-20.

Example 11-20. Setting the ETag

void SetETag(string etag)
{
 OutgoingWebResponseContext ctx =
 WebOperationContext.Current.OutgoingResponse;

Conditional GET | 237

 ctx.ETag = etag;
}

The interaction is exactly the same as the Last-Modified conditional GET. The HTTP
response from WCF is shown in Figure 11-9, and the 304 conditional GET return based
on If-None-Match is shown in Figure 11-10.

The main savings from using conditional GET are based primarily on bandwidth. In
most cases of dynamic content, you will have to generate or retrieve the resource before
you can do the conditional comparison.

Another HTTP/web feature that can help immensely with scalability is caching. In some
cases caching can help to preserve bandwidth, and in other cases it can greatly decrease
CPU load. Next, I’ll discuss some of the caching options available when using WCF.

Figure 11-9. ETag HTTP response from WCF

Figure 11-10. 304 conditional GET return based on If-None-Match

238 | Chapter 11: Working with HTTP

Caching
One of the biggest benefits of using a RESTful design for your services over a SOAP-
based design is the ability to cache responses. SOAP responses can never safely be
cached since they are all based on POST, which isn’t safe to cache. No client or inter-
mediary (such as a proxy) will cache a response to an HTTP POST request.

Because many RESTful service requests are based on GET, we can cache responses. There
are many different ways to cause down-level actors to cache, but here we will focus on
the caching facility built into IIS.

For more information about general web caching semantics, see Mark
Nottingham’s excellent caching tutorial at http://www.mnot.net/cache
_docs/.

Output Caching
IIS provides two levels of built-in caching for GET responses under its Output Caching
feature. One level is called kernel-mode caching. In this mode, a resource representation
is cached inside the http.sys kernel driver for HTTP. If you’re using IIS, this means
that if you can get your responses cached inside of the kernel, the HTTP request never
even gets into user-mode code. The http.sys driver gets the HTTP request and imme-
diately returns the cached version of the resource. The second level is user-mode cach-
ing. User-mode caching is at the user level instead of the kernel level because user-mode
caching is more variable than kernel-mode caching (I’ll show you this in a moment).

Let’s look at a fairly simple scenario illustrating the benefits of caching with REST.
Imagine that you have a RESTful service with WCF, and inside an operation on your
service that implements GET, it takes 250 milliseconds to generate the resource repre-
sentation (assuming that’s the cost of going to the database and formatting the repre-
sentation correctly). To show the benefits of caching in this scenario, I used Visual
Studio Team System and its Web Test facility to put a small load on my service. Fig-
ure 11-11 shows the results from the first run of this test.

At this point, based on the hardware of the web server, there are 107 requests per second
in a one-minute test, with 6,437 total requests made.

To turn on kernel-mode caching, access the IIS Manager and configure the WCF ex-
tension (.svc) to be cached. The Output Caching feature is available on all websites and
virtual directories in the IIS Manager (see Figure 11-12).

Figure 11-12 shows a configuration in which kernel-mode caching is enabled and has
been configured to cache GET responses for 30 seconds (you can apply a more fine-
grained configuration as well—for one particular .svc file, for example). Figure 11-13
shows the results of running the stress test with the new caching configuration.

Caching | 239

http://www.mnot.net/cache_docs/
http://www.mnot.net/cache_docs/

I sat for a long time trying to figure out what to write here. I recommend taking a deep
breath and then looking over the two results again. Yes, the second result went to 1,253
requests per second from 107. I’m not really great at math, but I am pretty sure that
delta is significant.

Now, to be fair, not all of your services will be able to take advantage of kernel-mode
caching, which is significantly faster than user-mode caching. The limitation of kernel-
mode caching is that the response cannot be variable. The same response is returned
to each and every requestor regardless of any differences in the HTTP requests.

If you click the Advanced button after selecting user-mode caching in the Edit Cache
Rule dialog box, you can vary the cache based on a number of factors. You can use
query string variables, or HTTP headers to have multiple versions of your resource
cached based on unique values in the selected query string or HTTP headers. Obvi-
ously, there is a balance between memory usage (which increases with the number of
versions of a resource that are cached) and CPU (which is conserved when your code
doesn’t have to execute to generate a response).

There is much more to kernel- and user-mode caching. See the IIS documentation on
output caching for more information. This section will hopefully be enough for you to
glean this RESTful benefit, as well as set you on your way to cache as many parts of
your service as make sense.

Figure 11-11. Stress test of GET method before caching

240 | Chapter 11: Working with HTTP

HttpContext.Cache
Chapter 4 discussed different hosting options for your WCF RESTful service. One of
the concepts we discussed was using the AspNetCompatibilityMode setting when hosting
inside IIS. When AspNetCompatibilityMode is enabled, your WCF code gains access to
HttpContext as well as OperationContext and WebOperationContext.

One pretty interesting feature available on HttpContext that isn’t on either of the WCF
context objects is the HttpContext.Cache property. The HttpCache object is a
high-performance in-memory cache that you can use to store data that is used often
but expensive to retrieve. Among other things, the contents of files, data from a data-
base, and the results of expensive algorithms are all ripe for caching.

Object caching isn’t as beneficial to services as output caching can be, but it is a facility
that you should not overlook. This is one of the reasons I mentioned (in Chapter 4)
that you might choose to host inside IIS and turn on AspNetCompatibilityMode. See the
documentation on the HttpContext.Cache property for more information about using
this object. The usage model for WCF with AspNetCompatibilityMode enabled is exactly
the same as the usage model for ASP.NET applications.

Figure 11-12. IIS caching configuration

Caching | 241

Content-Type
Another area where WCF falls slightly short in its default behavior concerns Content-
Type. The default support for Content-Type is fairly static. You observed similar lim-
itations in the way it deals with status codes.

This isn’t a hugely critical use of HTTP, at least compared to conditional GET or ETags,
for example, but it’s nice to be complete when building a RESTful service, and setting
your Content-Type correctly is a useful exercise. Your clients will likely appreciate it.

By default, WCF supports two Content-Types automatically: application/xml

and application/json. If your method returns XML, the Content-Type will be set to
application/xml. If your method returns JSON, the Content-Type will be set to
application/json.

It’s interesting to note that the feed infrastructure in WCF doesn’t automatically sup-
port the correct Content-Types for RSS or Atom. Adding this support is relatively sim-
ple. Example 11-21 shows the code example from Chapter 6 with the added
Content-Type.

Example 11-21. Returning correct Content-Type with feeds

public Rss20FeedFormatter GetRSS(string log)
{
 SyndicationFeed feed = GetFeed(log);
 Rss20FeedFormatter formatter = new Rss20FeedFormatter(feed);
 //calling the new method
 SetContentType("application/rss+xml");

Figure 11-13. Stress test results with kernel-mode caching turned on

242 | Chapter 11: Working with HTTP

 return formatter;
}
//this is the new method
void SetContentType(string contentType)
{
 OutgoingWebResponseContext ctx =
 WebOperationContext.Current.OutgoingResponse;
 ctx.ContentType = contentType;
}
public Atom10FeedFormatter GetAtom(string log)
{
 SyndicationFeed feed = GetFeed(log);
 Atom10FeedFormatter formatter = new Atom10FeedFormatter(feed);
 //calling the new method
 SetContentType("application/atom+xml");
 return formatter;
}

The media type string will depend on your representation format, but setting it is sim-
ple, so it is probably worth doing.

Summary
This chapter presents a hodgepodge of different things you can do with the WCF HTTP
programming model. The full HTTP programming model is exposed via WebOperation
Context and is available on both the client and server sides.

Using OutgoingWebResponseContext to set the status code appropriately, depending on
the uniform interface of your service, is an important RESTful functionality. Another
important HTTP feature is conditional GET, which you can enable by using either the
LastModified or ETag headers to reduce bandwidth usage of your service.

Using the IIS kernel- or user-mode caching infrastructure is another way to leverage
the fact that REST enables caching because of the usage of GET.

Summary | 243

APPENDIX A

WCF 3.5 SP1

This book was written based on the shipping bits of WCF 3.5. Near the end of this
writing, WCF 3.5 SP1 was released. This version includes some improvements and new
features that are worth mentioning here. If you are already using WCF 3.5 SP1, you
can still use the information in this book—everything in the main chapters will work
exactly the same under SP1. In other words, SP1 doesn’t change the way anything in
the Web Programming Model works, it just adds a few very useful pieces of
functionality.

Atom Publishing Protocol
The Atom Syndication Format (Atom) is an XML vocabulary for describing a feed of
data, which can be used to publish or syndicate information out to end users through
a browser or a feed reader. Although many people think of Atom being useful only for
blogs or news content, it has also become a popular resource representation for RESTful
endpoints that deal with other types of content. See Chapter 6 for more detailed infor-
mation about Atom.

The Atom Publishing Protocol (AtomPub) is a specification for retrieving, creating, and
updating resources. AtomPub builds on the constraints of REST by defining an addi-
tional set of specific constraints above the constraints of REST. The constraints are
some very specific resource representations, as well as the specific uniform interface
interaction with those resources.

In Appendix B, I’ll show you a technology called ADO.NET Data Services, which uses
AtomPub to define the interaction between user agents and endpoints. AtomPub seems
to be moving up the ladder very quickly in terms of adoption as a general-purpose way
to expose RESTful resources. Like REST itself, AtomPub is useful because its set of
constraints (other than the resource format constraints) are really a codification of the
conventions that people have used for years in designing RESTful services.

245

AtomPub defines a hierarchy of resources. First, it defines a new resource called the
Service Document, which has the media type of application/atomsvc+xml. A Service
Document contains workspaces, which are named groupings of collections. Collections
contain Member Resources, each of which is represented by a feed. This part of the
AtomPub specification is really about organizing a related set of feeds together in a
standardized way for discovery.

AtomPub doesn’t have any requirements or constraints for the URIs that represent
these resources. There is no standard URI for a Service Document itself, or for any of
the hierarchy that may be contained within it. The specification relies on hrefs attrib-
utes in certain elements in the hierarchy to allow linking between the resources. Once
you have the URI of the Service Document, you can traverse its entire hierarchy (shown
in Figure A-1).

Hypermedia (linking) is an extremely important part of REST. This
book hasn’t covered much in terms of hypermedia because other than
the feed API, WCF doesn’t really have any inherent support for creating
links between different resources.

In many RESTful services, hyperlinking between different resources is
key because the hyperlinks represent the current state of the
resources.

AtomPub also defines a document called a Category Document. A Category Document
is a list of atom:category (classifications for feed entries) elements. Links to Category
Documents are optional elements inside of a collection. The atom:category elements
associated with a collection are used when adding entries into that collection.

Example A-1 shows a sample Service Document.

Figure A-1. AtomPub Service Document hierarchy

246 | Appendix A: WCF 3.5 SP1

Example A-1. ServiceDocument resources

<?xml version="1.0" encoding="utf-8"?>
<service xml:base="http://win2008/AtomPubSample/AtomPubService.svc/"
 xmlns="http://www.w3.org/2007/app" xmlns:a10="http://www.w3.org/2005/Atom">
 <app:workspace xmlns:app="http://www.w3.org/2007/app">
 <a10:title type="text">Main</a10:title>
 <app:collection href="blog">
 <a10:title type="text">Blog</a10:title>
 <app:accept>application/atom+xml;type=entry</app:accept>
 </app:collection>
 <app:collection href="pictures">
 <a10:title type="text">Pictures</a10:title>
 <app:accept>image/png</app:accept>
 <app:accept>image/jpeg</app:accept>
 <app:accept>image/gif</app:accept>
 </app:collection>
 </app:workspace>
 <app:workspace xmlns:app="http://www.w3.org/2007/app">
 <a10:title type="text">FoodBlog</a10:title>
 <app:collection href="foodblog">
 <a10:title type="text">Food</a10:title>
 <app:categories href="foodblogcats"/>
 </app:collection>
 </app:workspace>
</service>

The Service Document in Example A-1 contains two workspaces. The “Main” work-
space contains two Collections, one named “Blog” (with the relative URI “blog”) and
one named “Pictures” (with the relative URI “pictures”).

The “Blog” Collection has an explicit accept element with a value of application/atom
+xml;type=entry. The accept elements of a Collection indicate which media types the
resource will accept as new resources. The one inside of the “Blog” Collection is actually
the default, and if a Collection doesn’t have an accept element, the user agent is to
assume that application/atom+xml;type=entry is the only acceptable media type for
new resources.

The idea of a new resource should raise a question in your mind about how AtomPub
specifies the use of the uniform interface. Table A-1 lists the specified interactions for
each resource based on the uniform interface.

Table A-1. AtomPub uniform interface

Resource Uniform interface method Description

Service Document GET Once the user agent knows the URI, it can retrieve the Service Document

via GET

Category Document GET Used to retrieve the representation of the category

Collection GET Retrieves the representation, which will be an Atom feed

Collection POST Creates a new Atom entry

Atom Publishing Protocol | 247

Resource Uniform interface method Description

Member GET Retrieves an individual member, which can be an individual Atom entry

or a binary file

Member PUT Modifies a member

Member DELETE Deletes a member

AtomPub specifies that the value of the href attribute on each collection element is
the URI for creating new entries into the Collection resource. Creating new entries uses
POST. The default media type for new entries is application/atom+xml;type=entry,
which is used explicitly in Example A-1 under the collection element with the title of
“Blog”. This is the typical media type for an entry in an Atom feed.

The second collection element in Example A-1 (the one with the title “Pictures”) il-
lustrates that other media types are allowed other than application/atom

+xml;type=entry. This is another part of the AtomPub specification. Binary files (like
images or PDFs or any other binary file type that can’t be nicely embedded inside of an
Atom entry inside of the content element) can be added to each collection. Instead of
embedding the binary file inside of the entry/content element, AtomPub specifies that
the entry resource, which is returned from using POST to create a new binary entry, will
be an entry that contains a link to the binary resource.

Something that isn’t in the AtomPub specification is an explicit way to create a Service
Document. This is by design; the AtomPub specification leaves this and other issues
up to the implementer of a particular AtomPub-based service. The specification allows
you to use the uniform interface on resources in ways not explicitly covered, so if you
want to implement POST on a URI for user agents to create new Service Documents,
you can do so without violating the AtomPub specification.

The other new resource mentioned in the AtomPub specification is the Categories
Document. This document contains a list of categories that can be applied to entries
or modified in the member resources. The Atom specification defines categories, and
AtomPub simply reuses those elements but adds a collection around them, so a par-
ticular collection can be associated with particular Collections. The Categories Docu-
ment can either be referenced by its URI or be included in its entirety in the Collection:

<?xml version="1.0" encoding="utf-8"?>
<categories scheme="http://commonfoodcategories" fixed="yes"
xmlns="http://www.w3.org/2007/app" xmlns:a10="http://www.w3.org/2005/Atom">
 <a10:category term="sushi"/>
 <a10:category term="chinese"/>
 <a10:category term="deserts"/>
</categories>

The only new construct that AtomPub adds to the category system is the fixed attribute.
If the fixed attribute is set to yes, no other categories are allowed to be used inside of
a new entry resource. If the fixed attribute is missing, the value will automatically be
set to no.

248 | Appendix A: WCF 3.5 SP1

AtomPub in WCF 3.5 SP1
The preceding section should be enough background on AtomPub to give you the
grounding for looking at the details of WCF in WCF 3.5 SP1. As you’ve
probably already guessed, SP1 includes new types and formatters in the
System.ServiceModel.Syndication namespace to support generating the document
types from the AtomPub specification.

If you want to learn more about AtomPub, you can view the specifica-
tion at http://bitworking.org/projects/atom/rfc5023.html.

These new types work exactly like the types that were introduced in Chapter 6 for
dealing with feeds. There is an object model that represents the underlying data that
is required for creating Service and Category Documents. The WCF 3.5 SP1
formatters will automatically use the data in those objects to generate the proper
AtomPub-compliant XML. Even though there is just one version of the AtomPub spec-
ification at this point, they used this layer of indirection between data and formatting
to be consistent with the existing Syndication API in WCF, and also to be prepared for
future revisions of the specification (should they come to exist).

The code shown in Example A-2 will generate the Service Document shown in Exam-
ple A-1.

Example A-2. Generating a Service Document with WCF 3.5 SP1

[OperationContract]
[WebGet(UriTemplate = "/")]
[OperationContract]
[WebGet(UriTemplate = "/")]
public AtomPub10ServiceDocumentFormatter GetServiceDoc()
{
 OutgoingWebResponseContext ctx =
 WebOperationContext.Current.OutgoingResponse;
 ctx.ContentType = "application/atomsvc+xml";
 AtomPub10ServiceDocumentFormatter ret = null;
 //create the ServiceDocument type
 ServiceDocument doc =
 new ServiceDocument();
 IncomingWebRequestContext ictx =
 WebOperationContext.Current.IncomingRequest;
 //set the BaseUri to the current request URI
 doc.BaseUri =
 ictx.UriTemplateMatch.RequestUri;
 //create a Collection of resources
 List<ResourceCollectionInfo> resources =
 new List<ResourceCollectionInfo>();
 //create the Blog resource
 ResourceCollectionInfo mainBlog =

Atom Publishing Protocol | 249

http://bitworking.org/projects/atom/rfc5023.html

 new ResourceCollectionInfo("Blog",
 new Uri("blog",UriKind.Relative));
 //add the Accepts for this resource
 //remember this is the default if no accepts if present
 mainBlog.Accepts.Add("application/atom+xml;type=entry");
 resources.Add(mainBlog);
 //create the Pictures resource
 ResourceCollectionInfo mainPictures =
 new ResourceCollectionInfo("Pictures",
 new Uri("pictures", UriKind.Relative));
 //add the Accepts for this resource
 mainPictures.Accepts.Add("image/png");
 mainPictures.Accepts.Add("image/jpeg");
 mainPictures.Accepts.Add("image/gif");
 resources.Add(mainPictures);
 //create the Workspace
 Workspace main = new Workspace("Main", resources);
 //add the Workspace to the Service Document
 doc.Workspaces.Add(main);
 //create a new Collection for the next Workspace
 resources = new List<ResourceCollectionInfo>();
 ResourceCollectionInfo food =
 new ResourceCollectionInfo("Food",
 new Uri("foodblog", UriKind.Relative));
 resources.Add(food);
 //create the link to the Categories Document
 CategoriesDocument cat =
 CategoriesDocument.Create(new Uri("foodblogcats", UriKind.Relative));
 food.Categories.Add(cat);
 //create the second Workspace
 Workspace foodBlog =
 new Workspace("FoodBlog", resources);
 //add the Workspace to the Service Document
 doc.Workspaces.Add(foodBlog);
 //get the formatter
 ret = doc.GetFormatter()
 as AtomPub10ServiceDocumentFormatter;
 return ret;
}

One interesting thing to note in this code is that the Service Document will be returned
based on a GET request to the root URI (e.g., /). The AtomPub specification doesn’t
dictate any particular URI for the Service Document, so this is perfectly permissible,
and works for this implementation since there is only one Service Document. It is en-
tirely possible to have multiple Service Documents return from one endpoint, which is
part of the reason that the specification doesn’t dictate what the URI of a Service Docu-
ment should be.

Other than the AtomPub-specific elements and attributes, this code follows the same
basic pattern as the other parts of System.ServiceModel.Syndication, as does the Cat-
egory Document creation (shown in Example A-3).

250 | Appendix A: WCF 3.5 SP1

Example A-3. Creating categories

[OperationContract]
[WebGet(UriTemplate = "/foodblogcats")]
public AtomPub10CategoriesDocumentFormatter GetCats()
{
 AtomPub10CategoriesDocumentFormatter ret = null;
 //create the Collection of Categories
 Collection<SyndicationCategory> cats =
 new Collection<SyndicationCategory>();
 cats.Add(new SyndicationCategory("sushi"));
 cats.Add(new SyndicationCategory("chinese"));
 cats.Add(new SyndicationCategory("deserts"));
 //create the Categories Document
 //in this case I am specifying fixed="yes"
 //and providing the optional scheme
 CategoriesDocument cat =
 CategoriesDocument.Create(cats, true,
 "http://commonfoodcategories");
 ret = cat.GetFormatter()
 as AtomPub10CategoriesDocumentFormatter;
 return ret;
}

As mentioned earlier, AtomPub is an increasingly popular way of interacting with re-
sources, and many people are choosing it for general RESTful interaction—it isn’t just
for blogs anymore.

I already mentioned ADO.NET Data Services as one user of AtomPub.
Most of Google’s RESTful APIs use AtomPub. Microsoft’s Live services
are also starting to standardize on AtomPub. Live Mesh, which is a fairly
interesting service providing synchronization of files between different
machines and devices, is based on RESTful principles, and AtomPub is
its main mode of transporting data.

I should mention that, as in all of the other classes in System.ServiceModel.Syndica
tion, the object model is also available when you are working in a client environment.
Example A-4 illustrates this using the ServiceDocument type from SP1 to consume the
Service Document exposed by an ADO.NET Data Service. The Data Service happens
to be linked to an ADO.NET Entity Data Model on top of a Windows Workflow
Foundation (WF) tracking database. See Appendix B for more information about
ADO.NET Data Services.

Example A-4. Using the WCF 3.5 SP1 ServiceDocument type

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.ServiceModel.Syndication;
using System.Xml;

Atom Publishing Protocol | 251

namespace WCF35SP1Client
{
 class Program
 {
 static void Main(string[] args)
 {
 string uri =
 "http://win2008/AstoriaTest/WorkflowTrackingData.svc/";
 XmlReader xr =
 XmlReader.Create(uri);
 ServiceDocument sd
 = ServiceDocument.Load(xr);
 Console.WriteLine("Retrieved Service Document");
 foreach (var ws in sd.Workspaces)
 {
 Console.WriteLine("Workspace {0} found",ws.Title.Text);
 foreach (var coll in ws.Collections)
 {
 Console.WriteLine("Collection Name={0}, Uri={0}",
 coll.Title.Text,
 coll.Link.ToString());
 }
 }
 }
 }
}

This code, like its server-side counterpart, uses the same pattern as the System.Service
Model.Syndication API. Figure A-2 shows the result of running this code.

UriTemplate Changes
Chapter 2 discussed the basic rules of UriTemplate in WCF. Recall that UriTemplate is
a definition of a relative URI using static and (potentially) replaceable path segments.
The template gets associated with a method on a service type by using
WebGetAttribute or WebInvokeAttribute on each operation. All the UriTemplate defini-
tions from a particular service are added to a UriTemplateTable. When an HTTP request
arrives, WCF tries to match the URI against the UriTemplateTable. If a match is found
(and the HTTP method matches the HTTP verb associated with the service method),
the WCF WebHttpDispatchOperationSelector selects the method associated with the
UriTemplate definition, and the WCF invocation layer invokes the method. WCF Web
Programming Model routing works by associating methods on the service instance with
a URI+HTTP verb combination.

An example of this is /staticsegment/replaceablesegment. If the URI of the HTTP
request is /staticsegment/replaceablesegment, it would match the UriTemplate, and the
value of the replaceablesegment path segment would be passed into the service method
as a parameter. The method definition would look like this.

252 | Appendix A: WCF 3.5 SP1

[OperationContract]
[WebGet(UriTemplate = "/staticsegment/replaceablesegment")]
void TemplateTest(string replaceablesegment);

What was missing in WCF 3.5 was the ability to split a path segment into multiple
parts. Example A-5 shows some UriTemplate definitions that won’t work in WCF 3.5,
but will work in WCF 3.5 with SP1.

Example A-5. Multipart path segment definitions

[OperationContract]
[WebGet(UriTemplate = "/staticsegment/{seg1};{seg2}")]
void TemplateTest(string seg1,string seg2);
[OperationContract]
[WebGet(UriTemplate = "/staticsegment/{seg1}.json")]
void TemplateTest2(string seg1);
[OperationContract]
[WebGet(UriTemplate = "/staticsegment/{seg1}.{variableext}")]
void TemplateTest3(string seg1, string variableext);
OperationContract]
[WebGet(UriTemplate = "/staticsegment/{seg1}:{seg2}/additionalsegment")]
void TemplateTest4(string seg1,string seg2);

Figure A-2. AtomPub consumption with SP1

UriTemplate Changes | 253

This is a nice addition to WCF 3.5 SP1. It is not quite as significant as the AtomPub
functionality, but it is a very useful feature and was a blocking issue in using WCF for
some people with WCF 3.5.

Attribute-Free DataContract Serialization
Another new feature in WCF 3.5 SP1 is the ability to use the DataContract serialization
with Plain Old CLR Objects (POCOs). A POCO is a class that doesn’t have an attached
DataContractAttribute or SerializableAttribute. This feature wasn’t specifically
added for the Web Programming Model, but it might be a useful feature if you are
building RESTful services around existing CLR types.

When WCF first shipped in WCF 3.0, it included an optional serialization layer that
used the DataContractSerializer. To serialize a .NET type, the DataContract serializer
had to have the DataContractAttribute or SerializableAttribute. Without these at-
tributes, an exception would be thrown if an instance of a POCO was used in the WCF
serialization infrastructure. SP1 adds the ability to use the DataContract serializer on
any CLR type that has a default constructor.

Before SP1, of course, you could use a POCO that had a default con-
structor with the XmlSerializer. WCF supports the use of the XmlSer
ializer. The new functionality described in this section uses the Data
ContractSerializer, not the XmlSerializer.

Example A-6 shows this new functionality by using the DataContractSerializer
explicitly on a POCO named “User”.

Example A-6. Using the WCF 3.5 DataContractSerializer

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.IO;
using System.Runtime.Serialization;

namespace _35SP1Serialization
{
 class Program
 {
 static void Main(string[] args)
 {
 User u = new User
 {
 UserId = Guid.NewGuid().ToString(),
 FirstName = "Jon",
 LastName = "Flanders",
 Email = "jon.flanders@example.org",

254 | Appendix A: WCF 3.5 SP1

 LastModified = DateTimeOffset.Now
 };
 DataContractSerializer dcs =
 new DataContractSerializer(typeof(User));

 using (FileStream fs = new FileStream("user.xml", FileMode.Create))
 {

 dcs.WriteObject(fs, u);

 }

 }
 }
 public class User
 {
 public string UserId;
 public string FirstName;
 public string LastName;
 public string Email;
 public DateTimeOffset LastModified;
 }
}

The XML output from using the code in Example A-6 is shown in Example A-7.

Example A-7. DataContractSerializer output

<User xmlns="http://schemas.datacontract.org/2004/07
/_35SP1Serialization" xmlns:i="http://www.w3.org/2001/XMLSchema-instance">
 <Email>jon.flanders@gmail.com</Email>
 <FirstName>Jon</FirstName>
 <LastModified xmlns:a="http://schemas.datacontract.org/2004/07/System">
 <a:DateTime>2008-07-23T17:27:16.9832496Z</a:DateTime>
 <a:OffsetMinutes>-420</a:OffsetMinutes>
 </LastModified>
 <LastName>Flanders</LastName>
 <UserId>5d2764c9-90ce-4b1e-a45a-33b7ba46e56a</UserId>
</User>

This feature is useful when you are building a RESTful service around existing POCOs
and you can’t or don’t want to annotate those types with the DataContractAttribute.
The main downside of this feature is evident in the XML displayed in Example A-7. If
you don’t use DataContractAttribute you get the default namespace URI that is created
for POCOs. In general, it is preferable to have a very specific namespace or no name-
space at all. The POCO functionality doesn’t allow you to customize the namespace
URI or any other XML feature. Controlling the XML output is often important when
building any kind of service, but especially when building RESTful services, so using
the new POCO shouldn’t be your first choice.

Attribute-Free DataContract Serialization | 255

Summary
.NET 3.5 SP1 includes some very useful features for building RESTful services and
clients with WCF. The new AtomPub-related types greatly simplify the creation of
AtomPub-compliant service endpoints and provide the capability to consume Atom-
Pub endpoints.

The new UriTemplate syntax places more control in our hands to create URIs that are
more complex and more in tune with RESTful URI design principles.

256 | Appendix A: WCF 3.5 SP1

APPENDIX B

ADO.NET Data Services

In Appendix A, I showed you the AtomPub model for creating RESTful endpoints based
on the concepts of collections, feeds, and entries. I mentioned that AtomPub is quickly
becoming a standard way of building services even when those services don’t use the
traditional data for which AtomPub was created. .NET 3.5 SP1 also includes function-
ality outside the core WCF functionality, and one of those pieces of functionality is
called ADO.NET Data Services.

Code-named Astoria and released fairly early under that name, ADO.NET Data Serv-
ices is a WCF extension framework, built on the Web Programming Model, for building
AtomPub services. Specifically, it is used for building AtomPub services on top of an
in-memory data model. This data model can be, and often is, backed up by a relational
database, but it doesn’t have to be. You can think of ADO.NET Data Services as an
easy way to create a RESTful service endpoint based on AtomPub on top of a relational
database model, although it has possibilities beyond that.

Building an ADO.NET Data Service
Built on top of the core Web Programming Model of WCF, ADO.NET Data Services
is a framework for building RESTful services. Specifically, it is a framework for building
AtomPub-based RESTful services on top of data. In some ways, ADO.NET Data Serv-
ices provides a particular set of WCF programming constraints on top of AtomPub, as
AtomPub provides a particular set of constraints on top of REST.

Earlier versions of ADO.NET Data Services exposed AtomPub through
both the Atom Syndication Format (XML) and JSON. The JSON sup-
port isn’t in the release bits of .NET 3.5 SP1, but will continue to be
released as community technical previews until some future version. See
http://www.codeplex.com/aspnet/Wiki/View.aspx?title=AJAX&referring
Title=Home for current drops of this technology.

257

http://www.codeplex.com/aspnet/Wiki/View.aspx?title=AJAX&referringTitle=Home
http://www.codeplex.com/aspnet/Wiki/View.aspx?title=AJAX&referringTitle=Home

Even if you decide to use only ADO.NET Data Services for all of your service endpoints,
everything else in this book is still relevant and useful. And even if you decide not to
use ADO.NET Data Services, it’s interesting to look at it to see a generically extensible
programming model built on top of WCF.

Programming with WCF generally starts with building a service contract definition
(even if you don’t start with the service contract, you’ll eventually need one). With
ADO.NET Data Services, the service contract has already been provided for you. The
ADO.NET Data Services contract is named IRequestHandler and looks like Exam-
ple B-1.

Example B-1. ADO.NET Data Services IRequestHandler contract

namespace System.Data.Services
{
 [ServiceContract]
 public interface IRequestHandler
 {
 [WebInvoke(UriTemplate = "*", Method = "*")]
 [OperationContract]
 Message ProcessRequestForMessage(Stream messageBody);
 }
}

Based on what you have seen in earlier chapters of this book, the preceding code is
what would typically be referred to as a universal contract. All messages received at the
endpoint on which this contract is registered, regardless of HTTP method, will be
routed to the ProcessRequestForMessage method.

In addition, the format of the message body will be irrelevant since the parameter is
one of the WCF “generic” message types: System.IO.Stream. The return value is
Message, so the method is free to return a message that may be formatted as XML, JSON,
or perhaps some other future format (see Chapter 7 for a discussion of returning both
XML and JSON from a WCF method).

Every ADO.NET Data Services endpoint implements this contract (and only this con-
tract). One nice feature of ADO.NET Data Services is that you don’t have to implement
the contract; the contract is already implemented by a generic service types: the Data
Service of T (see Example B-2).

Example B-2. The DataService type

namespace System.Data.Services
{
 [ServiceBehavior(InstanceContextMode = InstanceContextMode.PerCall)]
 [AspNetCompatibilityRequirements(RequirementsMode =
 AspNetCompatibilityRequirementsMode.Allowed)]
 public class DataService<T> : IRequestHandler
 {
 public DataService();

258 | Appendix B: ADO.NET Data Services

 protected T CurrentDataSource { get; }

 protected virtual void ApplyingExpansions(IQueryable queryable,
 ICollection<ExpandSegmentCollection> expandPaths);
 public void AttachHost(IDataServiceHost host);
 protected virtual T CreateDataSource();
 protected virtual void HandleException(HandleExceptionArgs args);
 public void ProcessRequest();
 public Message ProcessRequestForMessage(Stream messageBody);
 }
}

We’ll get into some of the other methods on DataService of T later in this appendix,
but for now the most important thing to understand is that DataService implements
IRequestHandler.

Up to this point, we’ve looked at two constraints that ADO.NET Data Services provides
on top of WCF. First, all ADO.NET Data Service endpoints have a predetermined
contract type of IRequestHandler, and all service types will have a predetermined base
class of DataService of T.

That seems to beg the question of what T can be. There isn’t a generic restriction on
T, so you could specify T to be System.Object. That wouldn’t do very much, so what
does the ADO.NET Data Services infrastructure do with T? The key
interface is System.Linq.IQueryable<T>, which is the generic type derived from
System.Linq.IQueryable.

When objects want to provide LINQ query access on top of object data sources, they
implement the IQueryable interface. ADO.NET Data Services doesn’t look for IQuery
able on T; rather, it reflects against the type of T and looks for public properties that
return IQueryable<T>, and then it uses those properties to implement AtomPub on top
of those entities (the properties become the names of the AtomPub Collections inside
a single workspace; more on this later in this appendix). This top-level object of type
T is generically referred to as the data context.

If you haven’t had a chance to look at LINQ yet, see http://msdn.micro
soft.com/en-us/library/bb308959.aspx for more information. A general
discussion of LINQ is beyond the scope of this book.

Although IQueryable is fast becoming a commonly used interface, it’s not a common
interface to implement. It’s certainly useful and potentially important to know that you
can just create an object with public properties that return IQueryable<T> and that
ADO.NET Data Services will use that object as the data context. However, it’s much
more likely that you’ll use a data context object that is generated by some tool. In the
majority of cases, that tool will be the ADO.NET Entity Framework.

Building an ADO.NET Data Service | 259

http://msdn.microsoft.com/en-us/library/bb308959.aspx
http://msdn.microsoft.com/en-us/library/bb308959.aspx

With some modification, you also can use LINQ to SQL classes with
ADO.NET Data Services. But depending on the complexity of the
model, some features may not work.

ADO.NET Data Services supports any implementation of a data context, but it is really
optimized for the ADO.NET Entity Framework’s ObjectContext. See Appendix C for
a quick walkthrough of creating an ADO.NET Entity Framework data context.

So, the three constraints of ADO.NET Data Services that we have discussed so far are
as follows:

• The contract is always IRequestHandler

• The service type is always DataService of T

• T is always an object that has public properties of type IQueryable of T

The next constraint relates to hosting. ADO.NET Data Services has a special Service
Host type named DataServiceHost (see Chapter 4 for more details about custom
ServiceHost types). DataServiceHost is pretty simple; it just derives from WebService
Host with no additional functionality added. Of course, now that DataServiceHost is
the required ServiceHost, future versions of ADO.NET Data Services can add addi-
tional functionality (which is a good reason to create a custom ServiceHost type for
your own WCF projects). There is also a DataServiceHostFactory for IIS/Windows
Process Activation Services (WAS) hosting (for the Factory attribute of the .svc file).

Another interesting thing about DataServiceHost is that when it starts up it calls a static
method on the DataService type, which enables the DataService type to do some one-
time initialization. This static method has to be named InitializeService, and it takes
a single parameter, which is an interface: IDataServiceConfiguration (see Exam-
ple B-3).

Example B-3. The IDataServiceConfiguration interface

namespace System.Data.Services
{
 public interface IDataServiceConfiguration
 {
 int MaxExpandCount { get; set; }
 int MaxExpandDepth { get; set; }
 bool UseVerboseErrors { get; set; }

 void RegisterKnownType(Type type);
 void SetEntitySetAccessRule(string name, EntitySetRights rights);
 void SetServiceOperationAccessRule(string name,
 ServiceOperationRights rights);
 }
}

260 | Appendix B: ADO.NET Data Services

We’ll discuss the rest of the IDataServiceConfiguration interface later in this appendix
(since some members relate to things I haven’t shown you yet!), but the one member I
want to cover right now is SetEntitySetAccessRule. We will cover it before going any
further because, by default, ADO.NET Data Services doesn’t actually expose those
public IQueryable of T properties of the DataContext object into the AtomPub Service
Document. By default, ADO.NET Data Services assumes that no one gets access to
entities unless you specifically say so. To put it another way, before ADO.NET Data
Services will expose any of your entities, you have to tell it what authorization rights
users of your service endpoint receive. If you don’t add an entity via
SetEntitySetAccessRule, ADO.NET Data Services won’t expose it.

SetEntitySetAccessRule expects a name of an entity (i.e., the name of the IQueryable
of T property) and an EntitySetRights flag. Wildcards are allowed as well (* for all
entities). Assuming that you have a DataContext object named UserDataContext, a useful
InitializeService might look like this:

public class UserService : DataService<UserDataContext>
{
 public static void InitializeService(
 IDataServiceConfiguration config)
 {
 config.SetEntitySetAccessRule("user", EntitySetRights.All);
 config.SetEntitySetAccessRule("group", EntitySetRights.AllRead);
 }

}

In this example, all EntitySetRights are given to the user property, and all read access
is given to the group property. Here are the EntitySetRights flags:

namespace System.Data.Services
{
 [Flags]
 public enum EntitySetRights
 {
 None = 0,
 ReadSingle = 1,
 ReadMultiple = 2,
 AllRead = 3,
 WriteAppend = 4,
 WriteUpdate = 8,
 WriteDelete = 16,
 AllWrite = 28,
 All = 31,
 }
}

Here is the list of constraints that ADO.NET Data Services puts on top of WCF to use
its services:

• The contract is always IRequestHandler

• The service type is always DataService of T

Building an ADO.NET Data Service | 261

• T is always an object that has public properties of type IQueryable of T

• DataServiceHost is always used as the ServiceHost for DataService of T

• Entity access rights have to be set in the InitializeService static method on the
DataService of T type for all entities to be exposed

As I said earlier, ADO.NET Data Services provides an interesting look at customizing
functionality on top of WCF. The question is: what functionality do you get when you
use these constraints? The answer is that you get a full AtomPub implementation on
top of your data context, plus additional query capabilities not specified by the Atom-
Pub specification (but not disallowed; remember from Appendix A that AtomPub is
open on issues not stated explicitly in the specification).

ADO.NET Data Services and AtomPub
As mentioned earlier in this appendix, ADO.NET Data Services looks at the data con-
text type, reflects for properties that implement IQueryable of T, and uses those prop-
erties as the name of AtomPub Collection elements inside a single workspace when
returning the Service Document. The Service Document is returned based on a GET
request to the base URI of the service endpoint. Adding to the “user” example from
Chapter 2, if you had a database for your user data you could use the ADO.NET Entity
Framework to build an Entity Data Model (EDM) on top of that database, and then
configure an ADO.NET Data Services endpoint (using self- or managed hosting). For
the example in this chapter, I’ve also added groups and mapping between users and
groups to make the data a bit more interesting.

Assuming that your UserDataContext is an ADO.NET Entity Framework
ObjectContext-derived type, you can use the DataService type to build out an
ADO.NET Data Services endpoint. First, you’ll need to pick a hosting mechanism, and
since ADO.NET Data Services is built on top of WCF, all the WCF hosting options are
available to you (refer to Chapter 5 for more information about WCF hosting options).

This example uses managed hosting, so it requires an .svc file with the appropriate
entries:

<%@ ServiceHost
 Factory="System.Data.Services.DataServiceHostFactory,
 System.Data.Services, Version=3.5.0.0, Culture=neutral,
 PublicKeyToken=b77a5c561934e089"
 Service="UserService.UserService" %>

Given this .svc file, and based on the UserService definition in the preceding section,
you can now make an HTTP GET request to the base URI and get the AtomPub Service
Document (see Figure B-1).

Recall from Appendix A that one feature of AtomPub is the hyperlink capability among
different documents. Notice that each collection element has an href that is a relative
URI for each entity collection. If you make a request to the user URI, ADO.NET Data

262 | Appendix B: ADO.NET Data Services

Services will return a feed with all of the users in your data context (and since your data
context is an EDM mapped to a database, it will return all the rows in your user table).

Unfortunately, Internet Explorer isn’t programmed to know about the XML being re-
turned inside the Atom content element, so (as you can see in Figure B-2) it ceases to
be a useful exploration tool for ADO.NET Data Services after you get past the Service
Document.

Fortunately, Fiddler comes to the rescue. The Fiddler request and response are shown
in Figure B-3. Inside the Atom content element is an ADO.NET Data Services-specific
schema, which shows the data of one row out of my data table (or the value of the
properties of one entity, depending on how you like to think about it).

Figure B-1. ADO.NET Data Services AtomPub Service Document

Figure B-2. ADO.NET Data Services feed document in Internet Explorer

ADO NET Data Services and AtomPub | 263

Notice that the entity has a link element where the href is user(1) (1 is the value of the
key column of this entity). You can request that specific entity by doing a GET to that
further URI (see Figure B-4).

ADO.NET Data Services will implement all the appropriate parts of the uniform in-
terface based on the AtomPub specification and the access rights you set on the service
during the call to InitializeService.

Figure B-3. ADO.NET Data Services feed in Fiddler

Figure B-4. ADO.NET Data Services individual entry

264 | Appendix B: ADO.NET Data Services

For example, you can do an HTTP POST to the /user URI, passing in a new entry, and
you’ll get the expected HTTP status code of 201 with the Location header set to the
URI of the newly created entity. Figure B-5 shows the POST data, and Figure B-6 shows
the response from the ADO.NET Data Services endpoint.

Figure B-5. POST to entity endpoint

Figure B-6. ADO.NET Data Services POST response

ADO NET Data Services and AtomPub | 265

I could continue to rehash the whole AtomPub protocol, but I already covered that in
Appendix A. ADO.NET Data Services implements the AtomPub protocol in line with
the specification, so the remainder of ADO.NET Data Services’ basic capabilities can
be inferred from AtomPub. Next, we’ll look at ADO.NET Data Services features that
aren’t part of AtomPub.

Query Option
On top of the AtomPub functionality, ADO.NET Data Services also exposes advanced
query capabilities for GET requests. Specifically, it supports additional query string op-
tions that will modify the result entity set in some way. These options correspond
somewhat to the kinds of queries you might do if you were using relational data directly.

For example, if you want to see related entities when asking for a particular entity, you
can use the $expand option to see the data from the mapping table for the many-to-
many relationship between the user-to-group table (by using /user?

$expand=user_group_mapping). Of course, this isn’t as interesting as it would
be if we could see the actual group names, which we can with /user?

$expand=user_group_mapping/group (see Figure B-7).

Table B-1 shows the list of query options.

Figure B-7. Expand query option

266 | Appendix B: ADO.NET Data Services

Table B-1. ADO.NET Data Services query string options

Option Description Examples

expand Expands additional related entities /user(1)?$expand=user_group_mapping

/user(1)?$expand=user_group_mapping/group

orderby Orders returned entities /user?$orderby=user_email

/user?$orderby=user_email desc

/user?$orderby=user_email desc,

user_last_name

top Returns top N entities /user?top=5

skip Skips N entities /user?$skip=10

/user?$skip=10&$top=5

filter Returns a set of entities based on a filter

expression

/user?$filter=startswith(user_email,'j')

/user?$filter=user_first_name ne 'Jon'

The $filter query option introduces an expression syntax, which you can see in Ta-
ble B-2.

Table B-2. Expression syntax

Operator Description Type

eq Equals Logical

ne Not equal to Logical

gt Greater than Logical

gteq Greater than or equal to Logical

lt Less than Logical

lteq Less than or equal to Logical

not Logical negation Logical

or Logical or Logical

add Addition Math

sub Subtraction Math

mul Multiplication Math

div Division Math

mod Modulo Math

() Precedence Grouping

Tables B-3, B-4, and B-5 show the different functions you can use within the expression
syntax. Some are pretty self-explanatory, but I’ve added a description for each one.

ADO NET Data Services and AtomPub | 267

Table B-3. String functions

Function Description

bool contains(string p0, string p1) Returns true if p0 contains p1

bool endswith(string p0, string p1) Returns true if p0 ends with p1

bool startswith(string p0, string p1) Returns true if p0 starts with p1

int length(string p0) Returns the length of the string

int indexof(string arg) Returns the index of the specified string

string insert(string p0, int pos, string p1) Inserts p1 into p0 at the index of pos

string remove(string p0, int pos) Removes characters from pos in p0

string remove(string p0, int pos, int length) Removes the specified number of characters

from p0 starting at the specified position

string replace(string p0, string find, string replace) Finds the second parameter in p0 and repla-

ces it with the third parameter

string substring(string p0, int pos) Returns the substring from p0 from pos

string substring(string p0, int pos, int length) Returns the substring up to length from

p0 from pos

string tolower(string p0) Converts the string to lowercase

string toupper(string p0) Converts the string to uppercase

Table B-4. Date functions

Function Description

int day(DateTime p0) Gets the day of the week value from p0

int hour(DateTime p0) Gets the hour value from p0

int minute(DateTime p0) Gets the minute value from p0

int month(DateTime p0) Gets the month value from p0

int second(DateTime p0) Gets the second value from p0

int year(DateTime p0) Gets the year value from p0

Table B-5. Numeric functions

Function Description

double round(double p0) Rounds p0

decimal round(decimal p0) Rounds p0

double floor(double p0) Gets the floor of p0

decimal floor(decimal p0) Gets the floor of p0

double ceiling(double p0) Gets the ceiling of p0

decimal ceiling(decimal p0) Gets the ceiling of p0

268 | Appendix B: ADO.NET Data Services

Custom Service Operations
Another feature of ADO.NET is the capability to add additional methods to each end-
point. ADO.NET refers to these as custom service operations. Even though the
IRequestHandler contract is predetermined as the contract for each endpoint,
ADO.NET Data Services allows you to add additional “operations” to the
DataService derived type. You can use this mechanism to add “helper” methods that
simplify query functions you anticipate will be common.

In this example, imagine that a commonly performed query is to get the list of users
that are in the Admin group. Certainly, you could do that with a query string expression,
but a LINQ to Entities query could do this as well, and you can greatly simplify the
URI for getting all the admins by adding a custom operation:

[WebGet()]
public IQueryable<user> admins()
{
 var result = from gm in this.CurrentDataSource.user_group_mapping
 where gm.@group.group_name == "Admin"
 select gm.user;
 return result;
}

You should also notice that this method includes WebGetAttribute, but not
OperationContractAttribute. Since ServiceContractAttribute has already been applied
to the IRequestHandler contract type, we can’t use OperationContractAttribute here.
ADO.NET Data Services is looking at this method and using WebGetAttribute itself to
determine which messages to route to this method. For this to work, we have to add
an additional line of code to the InitializeService method:

config.SetServiceOperationAccessRule("admins", ServiceOperationRights.AllRead);

Like access to the entities of the DataContext object, additional operations must have
access rights turned on before they can be used.

An unfortunate limitation of this is that UriTemplate specialization can’t be used; only
the method name will be taken into account when routing messages to these special
“operations.” WebInvokeAttribute is supported, however, although without
UriTemplate support. In this case, the URI would be /admins, since I named the method
in the way I’d like the resource URI to look.

Also, note that in this case I am returning IQueryable of T as the return value of my
method. ADO.NET Data Services also supports additional operations that return
IEnumerable of T. An IQueryable return value will support the full set of additional query
operators on top of the return set, where IEnumerable will not.

ADO NET Data Services and AtomPub | 269

Intercepting
If you want to validate requests as they come into the ADO.NET Data Services endpoint
(instead of returning specialized pieces of data), you can add methods to the
DataService-derived class that will be called when particular entities are queried or
changed.

You add QueryInterceptorAttribute to a method on your class that you want called
when a particular entity is queried. You can add ChangeInterceptorAttribute to a
method you want called whenever an entity is changed (created, updated, or deleted).
Here is the code you can add to your DataService-derived type:

[ChangeInterceptor("user")]
public void OnChangeUser(user u, UpdateOperations operation)
{

}
[QueryInterceptor("user")]
public Expression<Func<user, bool>> InterceptQuery()
{
 return u => !String.IsNullOrEmpty(u.user_email);
}

Client Library
Another interesting piece of functionality ADO.NET Data Services offers is a client
programming model. Having a client programming model in itself may not seem so
interesting, but what makes it interesting is that it has a tool that will generate a proxy
from metadata to wrap using ADO.NET Data Services from .NET code. Note that the
metadata and the tool are not interoperable with any other languages or platforms; they
are for .NET 3.5 SP1 and later only.

The metadata is exposed from a special URI. If you hit the URI of your ADO.NET Data
Service with /$metadata, the service returns a special metadata document (see Fig-
ure B-8).

There isn’t much point in going into detail on this XML because you generally don’t
ever request this URI directly; it is requested and processed by the datasvcgen.exe tool.

Datasvcgen.exe generates a code file that contains a set of classes you can use to interact
with the ADO.NET Data Service:

datasvcgen.exe /out:proxy.cs /uri: http://win2008/UserService/UserService.svc

After the tool runs, the proxy.cs file contains entity types for all the different collections
from the service, as well as a class that derives from System.Data.Services.Client.Data
ServiceContext. This class is like the proxy that allows easy interaction with the service
endpoint. Here is the code that uses this class to create a new user entity.

270 | Appendix B: ADO.NET Data Services

Uri uri =
 new Uri("http://win2008/UserService/UserService.svc/");
UserDBEntities db = new UserDBEntities(uri);
user u = new user();
u.user_email = "jon.flander@gmail.com";
u.user_first_name = "Jon";
u.user_last_name = "Flanders";
u.user_last_modified = DateTime.Now;
db.AddTouser(u);
db.SaveChanges();

The UserDBEntities class is the main proxy and it contains a helper method to interact
with the service endpoint. Distinct versions of the entity classes are also generated on
the client side; the preceding code sample uses the user type.

Summary
ADO.NET Data Services is a rich framework for exposing data as an AtomPub-based
RESTful endpoint. It works against any data model, but it works with the ADO.NET
Entity Framework without any modification.

It enables you to expose entities from your data model as collections in an AtomPub
service, and, through authorization restrictions, to determine which parts of the
AtomPub RESTful model each entity will expose.

Figure B-8. ADO.NET Data Services metadata

Summary | 271

It builds on the AtomPub model with a sophisticated set of query operators for GET
requests, and has a rich extensibility model for creating new URIs on top of the base
URIs of the service. It also has hooks to enable you to get involved in query processing
and data updating.

ADO.NET Data Services adds a client programming model that generates a .NET-
callable class to simplify the interaction between your client code and the service
endpoint.

272 | Appendix B: ADO.NET Data Services

APPENDIX C

ADO.NET Entity Framework
Walkthrough

If you’ve read Appendix B and are interested in building an ADO.NET Entity Frame-
work Entity Data Model (EDM) on top of a database for use with ADO.NET Data
Services, this appendix provides a quick walkthrough of those steps.

Creating the Data Model
The first step is to add a new item to your Visual Studio 2008 SP1 project. The Add
New Item dialog box contains a template for an ADO.NET Data Model (see Fig-
ure C-1). Select this template to start the ADO.NET Entity Data Model Wizard (see
Figure C-2).

Figure C-1. ADO.NET EDM template

273

Figure C-2. Page 1 of the Entity Data Model Wizard

The first page of the wizard asks whether you want to generate an EDM on top of a
relational database or create an empty EDM that can be manually modeled and mapped
to a data source. Select Generate from Database. On the next page, specify the con-
nection string for the EDM generation, and whether you want the connection string
saved into the project’s configuration file (see Figure C-3).

Figure C-3. Entity Data Model Wizard connection string picker

274 | Appendix C: ADO.NET Entity Framework Walkthrough

After you select the connection string, the wizard moves on to a type picker page, where
you can select the entities from the database you want the wizard to use when generating
the model (see Figure C-4).

Figure C-4. Entity Data Model Wizard database object picker

In this case, I’ve selected all the tables I have in this database, and since I don’t have
any views or stored procedures, I can select Finish. After you click Finish, the wizard
generates an .edmx file, which is a file that has the ADO.NET EDM designer associated
with it. You can see this in Figure C-5.

Figure C-5. EDM designer

Creating the Data Model | 275

The .edmx file contains three pieces of XML relating to the EDM model. It contains the
storage model, the conceptual model, and the mapping of the conceptual model to the
storage model (see Figure C-6).

Figure C-6. The .edmx XML view

For more information on the details of the ADO.NET Entity Data Model and Entity
Framework (which is the first implementation of the EDM), see http://msdn.microsoft
.com/en-us/library/bb399572.aspx.

Once the .edmx file has been created, the ADO.NET ObjectContext-derived class will
be available to your project. Now you can create an ADO.NET Data Service from the
Add New Item dialog box (see Figure C-7).

When you add this template to your project, it creates the .svc file that references the
correct service type and uses the DataServiceHostFactory class as its factory. This class
must be modified before it can work, however, since the template leaves open the data
context type (the generic T). The code will look like Example C-1 when generated.

Example C-1. DataService generated code

using System;
using System.Data.Services;
using System.Collections.Generic;
using System.Linq;
using System.ServiceModel.Web;

public class UserService : DataService< /* TODO: put your data source
 class name here */ >
{
 // This method is called only once to initialize service-wide policies.
 public static void InitializeService(IDataServiceConfiguration config)

276 | Appendix C: ADO.NET Entity Framework Walkthrough

http://msdn.microsoft.com/en-us/library/bb399572.aspx
http://msdn.microsoft.com/en-us/library/bb399572.aspx

 {
 // TODO: set rules to indicate which entity sets and service operations are
 //visible, updatable, etc.
 // For testing purposes use "*" to indicate all entity sets/service
 //operations.
 // "*" should NOT be used in production systems.

 // Example for entity sets (this example uses "AllRead" which allows reads
 //but not writes)
 // config.SetEntitySetAccessRule("MyEntityset", EntitySetRights.AllRead);

 // Example for service operations
 // config.SetServiceOperationAccessRule("MyServiceOperation",
 // ServiceOperationRights.All);
 }

 // Query interceptors, change interceptors and service operations go here
}

To make the .svc file work, set the DataContext object on the DataService of T. Next,
call IDataServiceConfiguration.SetEntitySetAccessRule to authorize at least one en-
tity. See Example C-2.

Example C-2. DataService derived type

public class UserService : DataService<UserDataContext>
{
 public static void InitializeService(
 IDataServiceConfiguration config)
 {

Figure C-7. ADO.NET Data Services template

Creating the Data Model | 277

 config.SetEntitySetAccessRule("*", EntitySetRights.All);
 }
}

You can also remove all the comments for clarity. In this case, I used the * wildcard to
get all access rights to all entities, which the comments I deleted warned against doing.
I did this for development testing; you should stick with the comments and enable
specific access rights on specific entities. At this point, the ADO.NET Data Service
should work.

278 | Appendix C: ADO.NET Entity Framework Walkthrough

Index

Numbers
200 OK status code, 66, 224
201 Created status code, 66, 227–229
304 Not Modified status code, 232, 236
400 Bad Request status code, 66, 225
404 Not Found status code, 226, 229, 231
405 Method Not Allowed status code, 226,

230
500 Internal Server Error status code, 226

A
Accept header (HTTP), 211
actions (defined), 4
active listeners, 20
ADO.NET Data Services

AtomPub and, 262–271
building, 257–262

ADO.NET Entity Framework, 273–278
Ajax

ASP.NET, 132–141
WCF support, 120–123

APP (Atom Publishing Protocol)
overview, 245–255
resource representation, 10

AppDomain class, 74, 86
ASP.NET

IIS support, 87–95
PostAuthenticateRequest event, 88

ASP.NET Ajax, 132–141
AspNetCompatibilityRequirementsAttribute

class, 93
ASPX file format, 134
Atom Publishing Protocol (APP)

overview, 245–255

resource representation, 10
Atom Syndication Format

exposing feeds, 110
feed validation, 112
programming feeds, 102
resource representation, 10
SyndicationFeed class properties, 103, 104
SyndicationItem class properties, 105, 106

Atom10FeedFormatter class, 108, 115
Atom10SyndicationFeedFormatter class, 206
atom:link element, 112, 115
authentication

Basic, 169
certificate, 166
digest, 168
Kerberos, 167
managed hosting endpoints, 169
NTLM, 167
self-hosted endpoints, 159–169
Windows, 167

Authority
creating, 209
creating service contracts, 207
defined, 198
getting, 210
hostnames and, 198
XML definition, 199

Authorization Manager (see AzMan)
authorizing endpoints, 170–174
AzMan (Authorization Manager), 172

B
base addressess, 79, 80
Basic authentication, 169
BasicHttpBinding class, 21

We’d like to hear your suggestions for improving our indexes. Send email to index@oreilly.com.

279

behaviors (defined), 21
Binding class, 80
BindingElements class, 22, 23
bindings

creating custom, 22
defined, 21
endpoints and, 23, 75

blogs (web logs), 10

C
caching

Content-Type header, 242
GET support, 9
HttpContext.Cache property, 241
kernel-mode, 239
output, 239–240
SOAP restrictions, 4, 239
user-mode, 239

certificate authentication, 166
channel listeners

transport channels and, 20
WCF endpoints and, 73

channel stacks
defined, 21
required elements, 23

ChannelFactory class, 209
ChannelListener class, 209
ChannelManager class, 209
ChannelManagerService class, 180, 181
channels

context, 184
dispatching and, 19–22

ChannelToken class, 179, 180
clients

creating service contracts, 207, 208
defining, 195, 196
extensibility considerations, 214–216
generating contracts, 197–199
resource representations, 199–207
using services, 209–213

CollectionDataContract class, 55
compound path template syntax, 37
conditional GET verb (HTTP), 231–238
Containers

creating service contracts, 207
database tables and, 198
defined, 198

Content-Type header (HTTP)
caching and, 242

client extensibility, 214
media types and, 9
programming read-write services, 65

context channels, 184
contracts

endpoints and, 23
generating, 197–199
ServiceContract class, 207, 208

cookies (defined), 3
cross-domain security, 154
CustomBinding class, 22, 23

D
DataContractAttribute class, 200
DataContractJsonSerializer class, 130, 155
DataContractSerializer class

conditional returns, 155
read-only services, 50, 51, 52–55

DataMemberAttribute class, 200
DateTimeOffset structure, 107
DELETE verb (HTTP)

functionality, 7
read-write services, 61, 68–71
RESTful service example, 12, 13

Digest authentication, 168
dispatching layer, 21
dispatching, channels and, 19–22
Document Object Model (see DOM)
DOM (Document Object Model), 119

E
endpoints

ASP.NET Ajax, 132–141
authenticating managed hosting, 169
authenticating self-hosted, 159–169
authorizing, 170–174
bindings and, 23, 75
constructing, 23
hosting, 23, 73
JSON support, 127–132
starting, 73

Entities
creating service contracts, 207
defined, 198
reusable type for, 203

ETags, 236–238
EventLog class

Description property, 105

280 | Index

Entries property, 107
Id property, 105
Index property, 107
Title property, 105

EventLogEntry class, 107
eXtensible Application Markup Language (see

XAML)
Extensible Hypertext Markup Language (see

XHTML)
Extensible Hypertext Markup Language

(XHTML), 12

F
feed readers, 10
feeds

adding links, 115–117
building with WCF, 101–109
exposing in live URIs, 110, 111
parsing in Silverlight 2.0, 152, 153
validating, 111–115

Fiddler tool, 63–66
flexible properties, 203
Flickr web site, 6

G
GET verb (HTTP)

Authority support, 198
conditional, 231
ETags, 236–238
functionality, 2, 7–9
Last-Modifier header, 232–235
read-only services, 47–58
read-write services, 60, 61
RESTful service example, 12, 13
SOAP restrictions, 4

H
Host.config file, 167
hosting

endpoints, 73
IIS support, 86–97, 241
managed, 86, 169
self-hosting, 74–86
ServiceHostFactory class, 98–99
WCF, 73, 87

hostnames
Authorities and, 198
multiple, 95

HTTP (Hypertext Transfer Protocol)
caching, 239–243
conditional GET, 231–238
REST support, 5
SOAP support, 4
status codes, 66, 224–231
transport channel support, 20
uniform interface, 2, 7–9
WCF programming, 22–27, 217–223

HttpClientCredentialType enumeration, 165
HttpContext class

Cache property, 241
Current property, 92, 94

HttpProxyCredentialType enumeration, 165
HttpRequestMessageProperty class

client extensibility, 216
functionality, 218
Name property, 26

HttpResponseMessageProperty class, 218
HttpTransportBindingElement class, 23
HttpTransportSecurity class, 161
hyperlinking, 3
Hypertext Transfer Protocol (see HTTP)

I
IClientMessageInspector interface, 214
ICommunicationObject interface

hosting services, 76
State property, 76

ICreateAuthority interface, 209, 210
idempotent (defined), 8
IDispatchMessageFormatter interface, 21
IDispatchOperationSelector interface, 21
IEndpointBehavior interface, 214
IEnumerable interface, 107
IExtensibleSyndicationObject interface

AttributeExtensions property, 103
ElementExtensions property, 103

If-Modified-Since header (HTTP), 232
If-None-Match header (HTTP), 237
IHttpHandler interface, 87
IHttpModule interface, 88
IIS

hosting support, 86–92, 241
output caching, 239

IIS Manager tool, 163
impersonating client, 170
IncomingWebRequestContext class

Accept property, 220

Index | 281

ContentLength property, 220
ContentType property, 220
functionality, 219, 220
Headers property, 220
Method property, 220
UriTemplateMatch property, 220
UserAgent property, 220

IncomingWebResponseContext class
availability, 219
ContentLength property, 223
ContentType property, 223
ETag property, 223
functionality, 223
Headers property, 223
Location property, 223
StatusCode property, 223
StatusDescription property, 223
using services, 210

InstanceContextMode enumeration, 181, 191
Internationalized Resource Identifier (IRI),

105
IOperationInvoker interface, 21
IRI (Internationalized Resource Identifier),

105
ISerializable interface, 53
IXmlSerializable interface

programming feeds, 108
read-only services, 53
resource representations, 203, 204
using services, 213

J
JavaScript

eval function, 126, 138
getDomains function, 122, 124
selectDomains function, 122
XmlHttpRequest class, 123

JavaScript Object Notation (see JSON)
JSON (JavaScript Object Notation)

enabling service endpoints, 127–132
functionality, 123–127
hosting in IIS, 92
parsing in Silverlight 2.0, 151, 152
resource representation, 10
returning conditionally, 154–157

JsonObject class, 151

K
Kerberos authentication, 167
kernel-mode caching, 239

L
Last-Modified header (HTTP), 232–235

M
managed hosting

authenticating endpoints, 169
defined, 86

media types
defined, 9
microformats, 11
resource representations, 9–11, 12

Message class
CreateMessage method, 52, 57, 156
GetRoot method, 57
Headers property, 20
message encoders, 20
Properties property, 20, 26
read-only services, 50–52
resource representations, 203
Version property, 20

message encoders
binding and, 23
defined, 20

microformats (defined), 11
Microsoft BizTalk Labs, 200
MSMQ (Microsoft Message Queuing)

protocol, 20

N
NTLM authentication, 167

O
OperationContext class, 92, 218
OperationContextAttribute class, 47
OperationContextScope class, 210
OperationContractAttribute class

Action property, 24, 30
ReplyAction property, 30
SOAP support, 21

OutgoingWebRequestContext class
Accept property, 222
availability, 219
ContentLength property, 222

282 | Index

ContentType property, 222
functionality, 222
Headers property, 222
IfMatch property, 222
IfModifiedSince property, 222
IfNoneMatch property, 222
IfUnmodifiedSince property, 222
Method property, 222
UserAgent property, 222
using services, 210

OutgoingWebResponseContext class
ContentLength property, 221
ContentType property, 221
ETag property, 221
functionality, 220
Headers property, 221
LastModified property, 221
Location property, 221
SetStatusAsCreated method, 221
SetStatusAsNotFound method, 221
StatusCode property, 221
StatusDescription property, 221

output caching, 239–240

P
parsing

JSON, 151, 152
XML, 144–151

passive listeners, 20
POCOs, 254–255
POST verb (HTTP)

Authority support, 198
functionality, 2, 7–9
read-write services, 60, 62–66
RESTful service example, 12, 13
Silverlight 2.0 support, 153
SOAP support, 4

PostAuthenticateRequest event, 88
PrincipalPermissionAttribute class, 171, 172
protocol channels, 21
PUT verb (HTTP)

functionality, 7
read-write services, 61, 66–68
RESTful service example, 12, 13

Q
QueryString class, 43

R
Really Simple Syndication (see RSS)
ReceiveActivity instance

CanCreateInstance property, 183, 190, 192
ServiceOperationInfo property, 182
WF support, 181

Representational State Transfer (see REST)
Resource Oriented Architecture (ROA), 5
resource representations

creating, 199–207
overview, 9–11

resources
addressability, 1
Atom support, 10
defined, 1, 5
hyperlinking between, 3
JSON support, 10
read-write services, 60
RESTful services and, 5–7, 11
RSS support, 10
SSDS support, 198
standard formats, 2
uniform interface, 2, 7–9
XHTML support, 10, 12
XML support, 9, 12

REST (Representational State Transfer)
defined, 1
processing endpoint concept, 16

RESTful services
architectural overview, 5
resource representations, 9–11
resource support, 5–7, 11
uniform interface, 7–9, 11–13
URI support, 5–7, 11
WCF support, 195–216
WF support, 175, 176

rich Internet applications (RIAs), 119
ROA (Resource Oriented Architecture), 5
role-based authorization, 171–174
root template, 43
RSS (Really Simple Syndication)

exposing feeds, 110
feed validation, 112
programming feeds, 102
resource representation, 10
SyndicationFeed class properties, 103, 104
SyndicationItem class properties, 105, 106

Rss20FeedFormatter class, 108, 114
Rss20SyndicationFeedFormatter class, 206

Index | 283

S
ScriptManager class, 134
Secure Sockets Layer (SSL), 162
security

authorizing endpoints, 170–174
cross-domain, 154
managed hosting, 169
replay attack, 162
self-hosted endpoints, 159–169
Silverlight 2.0 support, 154

self-hosting
defined, 74
ServiceHost class, 74–79
setting up base addresses, 79, 80

SendActivity instance
ServiceOperationInfo property, 182
WF support, 176–181

SequentialWorkflow model, 176
ServiceAuthorizationManager class, 171, 172,

174
ServiceContract class, 207, 208
ServiceContractAttribute class

functionality, 23, 47
read-write services, 61
using services, 210

ServiceDebugBehavior class, 225
ServiceEndpoint class

Behaviors property, 89
functionality, 23

ServiceHost class
Abort method, 77–78
AddServiceEndpoint method, 29, 74, 75,

81–84
channel listeners and, 73
Close method, 75–79
closing, 75–79
configuring instances, 74, 75
custom, 84–86
functionality, 23
hosting in IIS, 87–92
Open method, 74, 75–79
opening, 74, 75–79
self-hosting, 74–79
setting up base addresses, 79, 80
State property, 76
WebServiceHost class and, 80–84

ServiceHostBase class
hosting services, 76
OnOpening method, 29

ServiceHostFactory class
CreateServiceHost method, 91, 95
custom, 98–99

ServiceHostFactoryBase class, 91
ServiceHostingEnvironment class, 95
ServiceKnownTypeAttribute class, 208
ServiceModelReg.exe tool, 87
ServiceReference class, 134
ServiceSecurityContext class

Current property, 160
WindowsIdentity property, 171

session states, 3
sgen.exe tool, 51
Silverlight 1.0, 141
Silverlight 2.0

consuming feeds, 152, 153
cross-domain security, 154
overview, 142–144
parsing JSON, 151, 152
parsing XML, 144–151

SimpleHTTPService class, 24
SOAP

BasicHttpBinding class, 21
caching and, 4, 239
OperationContractAttribute class, 21
overview, 4
REST comparison, 5
SSDS support, 197
WSDL support, 13
WsHttpBinding class, 21

SSDS (SQL Server Data Services), 197–199,
203

SSDSEntityFlexibleProperty instance, 204–
206

SSL (Secure Sockets Layer), 162
state management, 3
stateful workflow services, 189–193
stateless services

defined, 2
visibility into applications, 3
WF support, 182–189

StateMachineWorkflow model, 187, 192
status codes

200 OK, 66, 224
201 Created, 66
304 Not Modified, 232, 236
400 Bad Request, 66, 225
404 Not Found, 226, 229, 231
405 Method Not Allowed, 226, 230

284 | Index

500 Internal Server Error, 226
String class, 165
SVC file format, 87, 88, 96
svcutil.exe tool, 200
SyndicationContent class, 103
SyndicationFeed class

AttributeExtensions property, 103
Authors property, 102, 103
BaseUri property, 113
Categories property, 102, 104
Contributors property, 104
Copyright property, 104
Description property, 104
ElementExtensions property, 104
functionality, 102–105
Generator property, 104
Id property, 104
ImageUri property, 104
Items property, 102, 104, 107
Language property, 104
LastUpdatedDate property, 104
Links property, 102, 104, 112
Title property, 104

SyndicationFeedFormatter class
functionality, 107–109
resource representations, 206
WriteTo method, 108, 109

SyndicationItem class
adding links, 115
AttributeExtensions property, 105
Authors property, 105
BaseUri property, 116
Categories property, 105
Content property, 105, 106
Contributors property, 105
Copyright property, 105
ElementExtensions property, 105
Id property, 105
LastUpdatedDate property, 105
Links property, 106
programming feeds, 105–107
PublishDate property, 106
SourceFeed property, 106
Summary property, 106
Title property, 106

SyndicationLink class
CreateAlternateLink property, 112, 117
CreateMediaEnclosureLink property, 112,

117

CreateSelfLink property, 112
System.ServiceModel.Syndication namespace,

101, 102
System.ServiceModel.Web.dll assembly, 27

T
TextMessageEncoder class, 23
TextMessageEncodingBindingElement class,

23
TextSyndicationContent class, 103, 106
transport channels

bindings and, 23
channel listeners and, 20

U
uniform interface

HTTP and, 2
read-write services, 60
resources and, 2, 7–9
RESTful services and, 7–9, 11–13
SSDS support, 199

Uniform Resource Identifiers (see URIs)
URIs (Uniform Resource Identifiers)

defined, 1
design considerations, 96
exposing feeds, 110, 111
read-write services, 60
RESTful services and, 5–7, 11

UriSyndicationContent class, 103, 106
UriTemplate class

APP support, 252
BaseUri property, 37
BoundVariables property, 37
compound path segments, 37
Data property, 37
functionality, 34–36
literal values, 42
Match method, 36
QueryParameters property, 37
QueryString class support, 43
RelativePathSegments property, 37
RequestUri property, 37
special values, 43
UriTemplate property, 37
UriTemplateTable class, 39–42
wildcard support, 34
WildCardPathSegments property, 37

UriTemplateMatch class, 49

Index | 285

UriTemplateTable class
functionality, 38
KeyValuePairs property, 39
MakeTemplates method, 40, 41
MatchSingle method, 39

user agents
defined, 2
RESTful service example, 13

User class
LastModified property, 236
UserId property, 236

user-mode caching, 239

V
validating feeds, 111–115
Visual Studio 2008

Factory attribute, 92
XSD schemas, 200

W
W3WP.exe process, 91
WADL (Web Application Description

Language), 50
WAS (Windows Activation Services), 86
WCF

Ajax support, 120–123
building feeds, 101–109
dispatching layer, 21
feed validation, 111
functionality, 19
hosting, 73, 87
HTTP programming, 22–27, 217–243
message encoders, 20
protocol channels, 21
RESTful XML services, 195–216
transport channels, 20
UriTemplate class, 33–44
Web programming, 27–33

WCFLookupResult class, 42
Web Application Description Language

(WADL), 50
Web Development Helper, 126, 136
web logs (blogs), 10
Web Service Description Language (WSDL)

generating client code, 50
SOAP services, 13

web.config file
AspNetCompatibilityMode switch, 93

endpoint links, 134
hosting in IIS, 88–92

WebBehavior class, 28
WebChannelFactory class, 209–211
WebClient class

DomainComplete method, 145, 146
DownloadStringAsync method, 142, 143,

144
OpenReadAsync method, 142, 144
OpenWriteAsync method, 144
UploadStringAsync method, 144

WebContentFormat enumeration, 155, 212
WebContentTypeMapper class, 212
WebGet class, 127
WebGetAttribute class

BodyStyle property, 33
building feeds, 101
creating service contract, 208
exposing feeds, 110
functionality, 28, 32
GetDomain method, 49
RequestFormat property, 33
ResponseFormat property, 33
Search method, 49
UriTemplate property, 32, 33, 42, 47–49

WebHttpBehavior class
functionality, 30
hosting services, 75
WebServiceHost class and, 81

WebHttpBinding class
authenticating endpoints, 159
base addresses, 80
functionality, 27, 30
hosting services, 75
Security property, 161–164
stateful workflow services, 190
Transport property, 165–169
WCF endpoints and, 73
WebServiceHost class and, 81

WebHttpDispatchOperationSelector class, 41,
42

WebHttpSecurity class, 161
WebHttpSecurityMode enumeration, 161
WebInvokeAttribute class

BodyStyle property, 33
creating service contract, 208
functionality, 28, 32
Method property, 33, 62, 63
read-write services, 60–71

286 | Index

RequestFormat property, 33
ResponseFormat property, 33
UriTemplate property, 32, 33, 42

WebMessageEncodingBindingElement class,
212

WebOperationContext class
Current property, 32, 92, 217
exposing feeds, 113
functionality, 28, 31, 217
IncomingRequest property, 32, 93, 218
IncomingResponse property, 32, 218
OutgoingRequest property, 32, 218
OutgoingResponse property, 32, 93, 218

WebScriptBehavior class, 127
WebScriptEnablingBehavior class

endpoint support, 131–138, 135
UriTemplate customization and, 133

WebScriptServiceHostFactory class, 92
WebServiceHost class

functionality, 28, 31, 73
Open method, 29
ServiceHost class and, 80–84

WF (Windows Workflow Foundation)
consuming REST services, 175, 176
overview, 175
ReceiveActivity instance, 181
SendActivity instance, 176–181
stateful workflow services, 189–193
stateless workflow services, 182–189

wildcard template, 43
wildcards, 34
Windows Activation Services (WAS), 86
Windows authentication, 167
Windows Event Log, 104
Windows Presentation Foundation (WPF), 74
Windows Process Activation Services (WPAS),

87
Windows Workflow Foundation (see WF)
WorkflowInstance class, 190
WorkflowServiceHost class, 181, 183, 184
World Wide Web

architectural overview, 1–3
SOAP support, 4

WPAS (Windows Process Activation Services),
87

WPF (Windows Presentation Foundation), 74
WSDL (Web Service Description Language)

generating client code, 50
SOAP services, 13

WsHttpBinding class, 21

X
XAML (eXtensible Application Markup

Language), 141
XDocument class

Load method, 150
parsing XML, 144, 149

XDocuments class, 150
XHTML (Extensible Hypertext Markup

Language), 10, 12
XLINQ (Language Integrated Query for XML),

51
XML

Message class and, 51
message encoders, 20
parsing in Silverlight 2.0, 144–151
resource representation, 9, 12, 61
RESTful services using WCF, 195–216
returning conditionally, 154–157

xml:base attribute, 113, 116
XmlDictionaryReader class, 52
XMLHttpRequest class, 123
xmlns:a10 attribute, 114
XmlReader class

parsing XML, 144, 147–149
Read method, 149

XmlRootAttribute class, 206
XmlSerialization class, 144, 150
XmlSerializer class

conditional returns, 155
Deserialize method, 150
read-only services, 50, 51, 55, 57

XmlSerializerFormat class, 57
XmlSyndicationContent class, 103, 106
XSD schemas, 200
xsi:nil attribute, 201
xsi:type attribte, 203

Index | 287

About the Author
Although Jon Flanders spent the first few years of his professional life as an attorney,
he quickly found chasing bits more interesting than chasing ambulances. After working
with ASP and COM, he made the move to .NET. Jon is most at home spelunking and
trying to figure out exactly how .NET (specifically, ASP.NET and Visual Studio .NET)
works. Deducing the details and disseminating that information to other developers is
his passion.

Colophon
The animal on the cover of RESTful .NET is an electric catfish (Siluriformes malapter-
uridae). Located mainly in tropical Africa and the Nile River, the generally nocturnal
catfish can produce an electric shock of up to 350 volts, which it uses to stun or kill its
enemies (the shock is not fatal to humans).

Often seen in large display tanks at aquariums, the electric catfish has thick lips and a
cylinder-shaped, pinkish-brown body with several dark spots. The fish’s electric
organ—used to generate shocks—extends the length of its body, and, when lit, helps
the fish see through its murky surroundings.

In the normal course of its waking hours, the fish acts aggressively against other fish
and even against others of its own kind. Each successive shock its electric organ pro-
duces, however, weakens the fish, which then must rest in order to “recharge” its elec-
tricity, thus rendering it temporarily vulnerable to predators. The fish is also vulnerable
for another reason: its body has no scales or bony plates, making the fish relatively
defenseless against hot aquarium tanks or sharp rocks.

The cover image is from Dover’s Animals. The cover font is Adobe ITC Garamond. The
text font is Linotype Birka; the heading font is Adobe Myriad Condensed; and the code
font is LucasFont’s TheSansMonoCondensed.

	Table of Contents
	Foreword
	Preface
	Who This Book Is For
	How This Book Is Organized
	What You Need to Use This Book
	Conventions Used in This Book
	Using Code Examples
	How to Contact the Author
	Comments and Questions
	Acknowledgments

	Chapter 1. REST Basics
	Architecture of the World Wide Web
	SOAP
	REST
	Resources and URIs
	URI design

	Uniform Interface
	Resource Representations
	XML
	RSS/Atom
	XHTML
	JSON
	Other media types

	Implementing a Simple RESTful Service Example
	Resources
	URIs and Uniform Interface
	Representations
	Interaction
	Wrap-Up

	Processes
	Summary

	Chapter 2. WCF RESTful Programming Model
	Isn’t WCF All About SOAP?
	Channels and Dispatching
	HTTP Programming with WCF 3.0
	Web Programming in WCF 3.5
	WebHttpBinding
	WebHttpBehavior
	WebServiceHost
	WebOperationContext
	WebGetAttribute

	UriTemplate
	UriTemplate Literal Values
	UriTemplate Special Values
	UriTemplate QueryString

	Summary

	Chapter 3. Programming Read-Only Services
	Using WebGetAttribute and UriTemplate
	Data Formats
	Message
	DataContract
	XmlSerializer
	Hybrid Approach

	Summary

	Chapter 4. Programming Read/Write Services
	POST, PUT, and DELETE
	Using WebInvokeAttribute
	Resources
	URIs and Uniform Interface
	Representations
	Implementation
	POST
	PUT
	DELETE
	Full service implementation

	Summary

	Chapter 5. Hosting WCF RESTful Services
	WCF REST Hosting Isn’t a Special Case
	Self-Hosting
	Configuring, Opening, and Closing a ServiceHost
	Base Addresses
	ServiceHost Versus WebServiceHost
	Custom ServiceHost

	Hosting in IIS
	ASP.NET Compatibility
	Multiple Hostnames
	Removing the .svc File Extension

	Custom ServiceHostFactory
	Hosting Wrap-Up
	Summary

	Chapter 6. Programming Feeds
	Building a Feed with WCF
	SyndicationItem
	Formatters

	Exposing a Feed on a Live URI
	Feed Validation
	Adding Links to a Feed
	Summary

	Chapter 7. Programming Ajax and Silverlight Clients
	WCF Web Services and Ajax
	JSON
	JSON-Enabling a Service Endpoint

	ASP.NET Ajax
	Silverlight 1.0
	Silverlight 2.0
	Parsing XML in Silverlight 2.0
	Using XmlReader
	Using XDocument
	Using XmlSerialization
	XML parsing wrap-up

	Parsing JSON in Silverlight 2.0
	Consuming Feeds in Silverlight 2.0
	Cross-Domain Security in Silverlight 2.0

	Returning JSON and XML Conditionally with a Single Method
	Summary

	Chapter 8. Securing REST Endpoints
	Authenticating: Self-Hosted Endpoints
	Setting Endpoint Security: WebHttpBinding.Security’s Mode Property
	Setting Authentication Requirements: WebHttpBinding’s Transport Property
	Certificate authentication
	Windows authentication
	NTLM authentication
	Digest authentication
	Basic authentication

	Authenticating: Managed Hosting Endpoints
	Authorizing Endpoints
	Authorization with Impersonation
	Role-Based Authorization
	Using the PrincipalPermissionAttribute
	The ServiceAuthorizationManager class

	Summary

	Chapter 9. Using Workflow to Deliver REST Services
	Consuming REST Services from WF
	The SendActivity Instance
	The ReceiveActivity Instance
	Stateless Workflow Services
	Stateful Workflow Services
	Summary

	Chapter 10. Consuming RESTful XML Services Using
 WCF
	Defining the Client
	Generating the Contract
	Creating the Resource Representations
	Creating the ServiceContract
	Using the Service

	Client Extensibility
	Summary

	Chapter 11. Working with HTTP
	Programming HTTP with WCF
	IncomingWebRequestContext
	OutgoingWebResponseContext
	OutgoingWebRequestContext
	IncomingWebResponseContext
	Context Wrap-Up

	Status Codes
	201 — Created
	404 — Not Found

	Conditional GET
	LastModified
	ETags

	Caching
	Output Caching
	HttpContext.Cache
	Content-Type

	Summary

	Appendix A. WCF 3.5 SP1
	Atom Publishing Protocol
	AtomPub in WCF 3.5 SP1

	UriTemplate Changes
	Attribute-Free DataContract Serialization
	Summary

	Appendix B. ADO.NET Data Services
	Building an ADO.NET Data Service
	ADO.NET Data Services and AtomPub
	Query Option
	Custom Service Operations
	Intercepting
	Client Library

	Summary

	Appendix C. ADO.NET Entity Framework Walkthrough
	Creating the Data Model

	Index

