
www.allitebooks.com

http://www.allitebooks.org

PROGRAMMING WITH

MICROSOFT® V ISUAL BAS IC® 2012

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.www.allitebooks.com

http://www.allitebooks.org

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.www.allitebooks.com

http://www.allitebooks.org

PROGRAMMING

WITH MICROSOFT®

VISUAL BASIC® 2012

DIANE ZAK

S I X TH ED I T I ON

Australia l Brazil l Japan l Korea l Mexico l Singapore l Spain l United Kingdom l United States

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.www.allitebooks.com

http://www.allitebooks.org

This is an electronic version of the print textbook. Due to electronic rights restrictions, some third party content may be suppressed. Editorial
review has deemed that any suppressed content does not materially affect the overall learning experience. The publisher reserves the right to

remove content from this title at any time if subsequent rights restrictions require it. For valuable information on pricing, previous
editions, changes to current editions, and alternate formats, please visit www.cengage.com/highered to search by

ISBN#, author, title, or keyword for materials in your areas of interest.

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.www.allitebooks.com

http://www.allitebooks.org

Programming with Microsoft®

Visual Basic® 2012, Sixth Edition

Diane Zak

Executive Editor: Kathleen McMahon

Senior Product Manager: Alyssa Pratt

Editorial Assistant: Sarah Ryan

Brand Marketing Manager: Kay Stefanski

Senior Content Project Manager:
Matthew Hutchinson

Quality Assurance: Nicole Spoto

Art Director: Cheryl Pearl, GEX

Cover Designer: Cheryl Pearl, GEX

Print Buyer: Julio Esperas

Proofreader: Kathy Orrino

Indexer: Alexandra Nickerson

Compositor:
Integra Software Services Pvt. Ltd.

© 2014 Course Technology, Cengage Learning

ALL RIGHTS RESERVED. No part of this work covered by the copyright herein may be
reproduced, transmitted, stored, or used in any form or by any means graphic, electronic,
or mechanical, including but not limited to photocopying, recording, scanning, digitizing,
taping, Web distribution, information networks, or information storage and retrieval
systems, except as permitted under Section 107 or 108 of the 1976 United States
Copyright Act, without the prior written permission of the publisher.

For product information and technology assistance, contact us at
Cengage Learning Customer & Sales Support, 1-800-354-9706

For permission to use material from this text or product,
submit all requests online at www.cengage.com/permissions.

Further permissions questions can be emailed to
permissionrequest@cengage.com.

Library of Congress Control Number: 2012956117

ISBN-13: 978-1-285-07792-5

ISBN-10: 1-285-07792-X

Course Technology
20 Channel Center Street
Boston, MA 02210
USA

Cengage Learning is a leading provider of customized learning solutions with office
locations around the globe, including Singapore, the United Kingdom, Australia,
Mexico, Brazil and Japan. Locate your local office at international.cengage.com/region

Cengage Learning products are represented in Canada by Nelson Education, Ltd.

For your course and learning solutions, visit www.cengage.com.

Purchase any of our products at your local college store or at our preferred online store
www.cengagebrain.com.

Instructors: Please visit login.cengage.com and log in to access instructor-specific
resources.

Printed in the United States of America
1 2 3 4 5 6 18 17 16 15 14 13

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.www.allitebooks.com

http://www.allitebooks.org

Brief Contents

Preface . xviii

Read This Before You Begin xxii

OVERVIEW An Introduction to Programming 1

CHAPTER 1 An Introduction to Visual Basic 2012 9

CHAPTER 2 Designing Applications 59

CHAPTER 3 Using Variables and Constants113

CHAPTER 4 The Selection Structure183

CHAPTER 5 More on the Selection Structure255

CHAPTER 6 The Repetit ion Structure329

CHAPTER 7 Sub and Function Procedures409

CHAPTER 8 String Manipulation .469

CHAPTER 9 Arrays .525

CHAPTER 10 Structures and Sequential Access Fi les591

CHAPTER 11 Classes and Objects643

CHAPTER 12 Web Applications .707

CHAPTER 13 Working with Access Databases and LINQ763

CHAPTER 14 Access Databases and SQL821

v

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.www.allitebooks.com

http://www.allitebooks.org

APPENDIX A Finding and Fixing Program Errors877

APPENDIX B GUI Design Guidel ines895

APPENDIX C Visual Basic Conversion Functions899

APPENDIX D Visual Basic 2012 Cheat Sheet901

APPENDIX E Case Projects .917

APPENDIX F Applications with Mult iple Forms Online

Index .921

vi

B R I E F C ON T E N T S

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.www.allitebooks.com

http://www.allitebooks.org

Contents

Preface . xviii
Read This Before You Begin xxii

OVERVIEW An Introduction to Programming 1

Programming a Computer . 2
The Programmer’s Job . 2
Employment Opportunities . 2

Visual Basic 2012 . 3
A Visual Basic 2012 Demonstration . 4

Using the Chapters Effectively . 5
Summary . 6
Key Terms . 6

CHAPTER 1 An Introduction to Visual Basic 2012 9

LESSON A The Splash Screen Appl icat ion 11
Managing the Windows in the IDE . 15
The Windows Form Designer Window . 16
The Solution Explorer Window . 17
The Properties Window . 18

Properties of a Windows Form . 20
The Name Property . 21
The Text Property . 21
The StartPosition Property . 21
The Font Property . 22
The Size Property . 22

Setting and Restoring a Property’s Value . 22
Saving a Solution . 23
Closing the Current Solution . 24
Opening an Existing Solution . 24
Exiting Visual Studio 2012 . 24
Lesson A Summary . 24
Lesson A Key Terms . 26
Lesson A Review Questions . 27
Lesson A Exercises . 28

LESSON B The Toolbox Window . 29
The Label Tool . 30
Setting the Text Property . 32
Setting the Location Property . 32

vii

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.www.allitebooks.com

http://www.allitebooks.org

Changing a Property For Multiple Controls 33
Using the Format Menu . 33
The PictureBox Tool . 34
The Button Tool . 36
Starting and Ending an Application . 36
The Code Editor Window . 38
The Me.Close() Instruction . 40

Lesson B Summary . 42
Lesson B Key Terms . 43
Lesson B Review Questions . 44
Lesson B Exercises . 45

LESSON C Using the Timer Tool . 48
Setting the FormBorderStyle Property . 50
The MinimizeBox, MaximizeBox, and ControlBox Properties 50
Printing the Application’s Code and Interface 51
Lesson C Summary . 52
Lesson C Key Terms . 53
Lesson C Review Questions . 53
Lesson C Exercises . 54

CHAPTER 2 Designing Applications 59

LESSON A Creat ing an Object -Or iented Appl icat ion 62
Planning an Object-Oriented Application . 62
Identifying the Application’s Tasks . 63
Identifying the Objects . 64
Identifying the Events . 65
Drawing a Sketch of the User Interface 67

Lesson A Summary . 69
Lesson A Key Terms . 70
Lesson A Review Questions . 70
Lesson A Exercises . 71

LESSON B Bui ld ing the User Inter face . 72
Including Graphics in the User Interface 73
Selecting Fonts for the Interface . 73
Adding Color to the Interface . 74
The BorderStyle, AutoSize, and TextAlign Properties 74
Adding a Text Box Control to the Form 76

Locking the Controls on a Form . 77
Assigning Access Keys . 77
Controlling the Tab Order . 78
Lesson B Summary . 81
Lesson B Key Terms . 82
Lesson B Review Questions . 82
Lesson B Exercises . 83

LESSON C Coding the Appl icat ion . 86
Using Pseudocode to Plan a Procedure 87
Using a Flowchart to Plan a Procedure 88

Coding the btnClear Control’s Click Event Procedure 89
Assigning a Value to a Property during Run Time 89

viii

C O N T E N T S

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.www.allitebooks.com

http://www.allitebooks.org

Using the Focus Method . 91
Internally Documenting the Program Code 91

Coding the btnPrint Control’s Click Event Procedure 93
Writing Arithmetic Expressions . 95
Coding the btnCalc Control’s Click Event Procedure 97
The Val Function . 99
The Format Function . 100

Testing and Debugging the Application 101
Assembling the Documentation . 104
Lesson C Summary . 105
Lesson C Key Terms . 106
Lesson C Review Questions . 107
Lesson C Exercises . 107

CHAPTER 3 Using Variables and Constants113

LESSON A Using Var iab les to Store Informat ion 116
Selecting a Data Type for a Variable 116
Selecting a Name for a Variable . 118
Declaring a Variable . 119

Assigning Data to an Existing Variable . 120
The TryParse Method . 121
The Convert Class . 123

The Scope and Lifetime of a Variable . 124
Variables with Procedure Scope . 125
Variables with Class Scope . 128

Static Variables . 130
Named Constants . 132
Option Statements . 135
Option Explicit and Option Infer . 135
Option Strict . 135

Lesson A Summary . 138
Lesson A Key Terms . 139
Lesson A Review Questions . 140
Lesson A Exercises . 142

LESSON B Modify ing the Play I t Again Mov ies Appl icat ion 146
Modifying the Calculate Button’s Code . 147
Concatenating Strings . 154
The InputBox Function . 155
The ControlChars.Newline Constant . 159
Designating a Default Button . 160
Using the ToString Method to Format Numbers 161
Lesson B Summary . 164
Lesson B Key Terms . 165
Lesson B Review Questions . 165
Lesson B Exercises . 167

LESSON C Modi fy ing the Load and Cl ick Event Procedures 171
Coding the TextChanged Event Procedure 174
Associating a Procedure with Different Objects and Events 174

ix

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Lesson C Summary . 178
Lesson C Key Terms . 179
Lesson C Review Questions . 179
Lesson C Exercises . 180

CHAPTER 4 The Selection Structure183

LESSON A Making Decis ions in a Program 186
Flowcharting a Selection Structure . 189
Coding Selection Structures in Visual Basic 192
Comparison Operators . 195
Using Comparison Operators: Swapping Numeric Values 197
Using Comparison Operators: Displaying the Sum or Difference 200

Logical Operators . 203
Using the Truth Tables . 206
Using Logical Operators: Calculating Gross Pay 207

Comparing Strings Containing Letters . 209
Converting a String to Uppercase or Lowercase 211
Using the ToUpper and ToLower Methods: Displaying a Message 212

Summary of Operators . 215
Lesson A Summary . 216
Lesson A Key Terms . 217
Lesson A Review Questions . 218
Lesson A Exercises . 220

LESSON B Creat ing the Covington Resort App l icat ion 223
Adding a Group Box to the Form . 224

Coding the Covington Resort Application 226
Coding the btnCalc Control’s Click Event Procedure 226

The MessageBox.Show Method . 230
Completing the btnCalc_Click Procedure 233
Lesson B Summary . 236
Lesson B Key Terms . 237
Lesson B Review Questions . 237
Lesson B Exercises . 237

LESSON C Coding the KeyPress Event Procedures 240
Coding the Enter Event Procedures . 243
Lesson C Summary . 247
Lesson C Key Terms . 247
Lesson C Review Questions . 247
Lesson C Exercises . 248

CHAPTER 5 More on the Selection Structure255

LESSON A Nested Select ion Structures 258
Flowcharting a Nested Selection Structure 261
Coding a Nested Selection Structure . 263
Logic Errors in Selection Structures . 266
First Logic Error: Using a Compound Condition Rather
Than a Nested Selection Structure 268

Second Logic Error: Reversing the Outer and Nested Decisions 269

x

C ON T E N T S

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Third Logic Error: Using an Unnecessary Nested Selection Structure 270
Fourth Logic Error: Including an Unnecessary Comparison in a Condition 271

Multiple-Alternative Selection Structures 272
The Select Case Statement . 275
Specifying a Range of Values in a Case Clause 277

Lesson A Summary . 279
Lesson A Key Terms . 279
Lesson A Review Questions . 280
Lesson A Exercises . 283

LESSON B Modify ing the Cov ington Resort Appl icat ion 288
Adding a Radio Button to the Interface 290
Adding a Check Box to the Interface 291

Modifying the Calculate Button’s Code . 293
Comparing Boolean Values . 297

Modifying the ClearLabels Procedure . 300
Lesson B Summary . 305
Lesson B Key Terms . 305
Lesson B Review Questions . 305
Lesson B Exercises . 307

LESSON C Using the TryParse Method for Data Val idat ion 312
Generating Random Integers . 315
Showing and Hiding a Control . 319
Lesson C Summary . 322
Lesson C Key Terms . 322
Lesson C Review Questions . 322
Lesson C Exercises . 323

CHAPTER 6 The Repetit ion Structure329

LESSON A Repeat ing Program Instruct ions 331
The Savings Account Application . 334

The Do…Loop Statement . 337
Coding the Modified Savings Account Application 340

Counters and Accumulators . 343
The Addition Application . 345
The Sales Express Application . 349

Arithmetic Assignment Operators . 355
The For…Next Statement . 357
A Different Version of the Savings Account Application 360
Comparing the For…Next and Do…Loop Statements 363

Lesson A Summary . 364
Lesson A Key Terms . 365
Lesson A Review Questions . 366
Lesson A Exercises . 369

LESSON B Nested Repet i t ion Structures 375
The Refresh and Sleep Methods . 377
Trixie at the Diner . 377
Revisiting the Savings Account Application 379
A Caution about Real Numbers . 382

xi

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Lesson B Summary . 385
Lesson B Key Terms . 385
Lesson B Review Questions . 385
Lesson B Exercises . 386

LESSON C Creat ing the Gross Pay Appl icat ion 388
Including a List Box in an Interface . 388
Adding Items to a List Box . 389
The Sorted Property . 390

Coding the Gross Pay Application . 391
The SelectedItem and SelectedIndex Properties 393
The SelectedValueChanged and SelectedIndexChanged Events 395
Coding the Calculate Button’s Click Event Procedure 396

Lesson C Summary . 399
Lesson C Key Terms . 399
Lesson C Review Questions . 399
Lesson C Exercises . 400

CHAPTER 7 Sub and Function Procedures 409

LESSON A Sub Procedures . 412
Passing Variables . 414
Passing Variables by Value . 415
Passing Variables by Reference . 418

Function Procedures . 424
Lesson A Summary . 430
Lesson A Key Terms . 430
Lesson A Review Questions . 431
Lesson A Exercises . 434

LESSON B Inc lud ing a Combo Box in an Inter face 439
Lesson B Summary . 444
Lesson B Key Terms . 445
Lesson B Review Questions . 445
Lesson B Exercises . 445

LESSON C Creat ing the Cerrut i Company Appl icat ion 448
Coding the FormClosing Event Procedure 449
Coding the btnCalc_Click Procedure . 451
Creating the GetFwt Function . 453

Completing the btnCalc_Click Procedure 457
Rounding Numbers . 457

Lesson C Summary . 464
Lesson C Key Terms . 465
Lesson C Review Questions . 465
Lesson C Exercises . 466

CHAPTER 8 String Manipulat ion469

LESSON A Working with Str ings . 473
Determining the Number of Characters in a String 473
Removing Characters from a String . 474
The Product ID Application . 475

xii

C O N T E N T S

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Inserting Characters in a String . 476
Aligning the Characters in a String . 477
The Net Pay Application . 478

Searching a String . 480
The City and State Application . 481

Accessing the Characters in a String . 483
The Rearrange Name Application . 484

Using Pattern-Matching to Compare Strings 486
Modifying the Product ID Application 488

Lesson A Summary . 490
Lesson A Key Terms . 491
Lesson A Review Questions . 491
Lesson A Exercises . 494

LESSON B Adding a Menu to a Form . 497
Assigning Shortcut Keys to Menu Items 501
Coding the Exit Menu Item . 503
Coding the txtLetter Control’s KeyPress Event 503

Lesson B Summary . 504
Lesson B Key Terms . 504
Lesson B Review Questions . 504
Lesson B Exercises . 505

LESSON C Complet ing the Frankenste in Game Appl icat ion 506
Coding the FILE Menu’s New Game Option 507
Completing the Check Button’s Click Event Procedure 511

Lesson C Summary . 518
Lesson C Key Terms . 518
Lesson C Review Questions . 519
Lesson C Exercises . 519

CHAPTER 9 Arrays .525

LESSON A Arrays . 527
One-Dimensional Arrays . 528
Declaring a One-Dimensional Array . 528
Storing Data in a One-Dimensional Array 530
Determining the Number of Elements in a One-Dimensional Array 531
Determining the Highest Subscript in a One-Dimensional Array 531
Traversing a One-Dimensional Array . 532

The For Each…Next Statement . 533
Calculating the Total and Average Values 535
Finding the Highest Value . 537
Sorting a One-Dimensional Array . 542
Lesson A Summary . 545
Lesson A Key Terms . 546
Lesson A Review Questions . 546
Lesson A Exercises . 549

LESSON B Arrays and Col lect ions . 554
Accumulator and Counter Arrays . 558
Parallel One-Dimensional Arrays . 561

xiii

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

The Die Tracker Application . 567
Lesson B Summary . 571
Lesson B Key Terms . 571
Lesson B Review Questions . 572
Lesson B Exercises . 572

LESSON C Two-Dimensiona l Arrays . 576
Traversing a Two-Dimensional Array . 579

Totaling the Values Stored in a Two-Dimensional Array 580
Searching a Two-Dimensional Array . 582
Lesson C Summary . 586
Lesson C Key Term . 586
Lesson C Review Questions . 586
Lesson C Exercises . 588

CHAPTER 10 Structures and Sequential Access Fi les591

LESSON A Structures . 594
Declaring and Using a Structure Variable 595
Passing a Structure Variable to a Procedure 596
Creating an Array of Structure Variables 600
Lesson A Summary . 605
Lesson A Key Terms . 605
Lesson A Review Questions . 606
Lesson A Exercises . 606

LESSON B Sequent ia l Access Fi les . 610
Writing Data to a Sequential Access File 610
Closing an Output Sequential Access File 613
Reading Data from a Sequential Access File 614
Closing an Input Sequential Access File 617
Lesson B Summary . 621
Lesson B Key Terms . 621
Lesson B Review Questions . 622
Lesson B Exercises . 623

LESSON C Coding the CD Col lect ion Appl icat ion 626
Coding the Form’s Load Event Procedure 627
Coding the btnAdd_Click Procedure . 629
Aligning Columns of Information . 630
Coding the btnRemove_Click Procedure 633
Coding the Form’s FormClosing Event Procedure 634
Lesson C Summary . 638
Lesson C Key Terms . 638
Lesson C Review Questions . 638
Lesson C Exercises . 639

CHAPTER 11 Classes and Objects 643

LESSON A Object -Or iented Programming Termino logy 646
Creating a Class . 646
Example 1—A Class that Contains Public Variables Only 648

xiv

C ON T E N T S

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Example 2—A Class that Contains Private Variables, Public Properties,
and Methods . 652
Private Variables and Property Procedures 654
Constructors . 658
Methods Other than Constructors . 659
Coding the Carpets Galore Application 660

Example 3—A Class that Contains a Parameterized Constructor 664
Example 4—Reusing a Class . 668
Lesson A Summary . 672
Lesson A Key Terms . 673
Lesson A Review Questions . 674
Lesson A Exercises . 675

LESSON B Example 5—A Class that Conta ins a ReadOnly Property 680
Example 6—A Class that Contains Auto-Implemented Properties 685
Example 7—A Class that Contains Overloaded Methods 687
Lesson B Summary . 694
Lesson B Key Terms . 694
Lesson B Review Questions . 694
Lesson B Exercises . 695

LESSON C Example 8—Using a Base Class and a Der ived Class 698
Lesson C Summary . 704
Lesson C Key Terms . 704
Lesson C Review Questions . 704
Lesson C Exercises . 705

CHAPTER 12 Web Applicat ions .707

LESSON A Web Appl icat ions . 710
Creating a Web Application . 713
Adding the Default.aspx Web Page to the Application 715
Including a Title on a Web Page . 717
Adding Static Text to a Web Page . 717

Viewing a Web Page in Full Screen View 719
Adding Another Web Page to the Application 720
Adding a Link Button Control to a Web Page 720
Starting a Web Application . 722
Adding an Image to a Web Page . 724
Closing and Opening an Existing Web Application 726
Repositioning a Control on a Web Page 726
Lesson A Summary . 728
Lesson A Key Terms . 729
Lesson A Review Questions . 729
Lesson A Exercises . 730

LESSON B Dynamic Web Pages . 732
Coding the Submit Button’s Click Event Procedure 735
Validating User Input . 739
Lesson B Summary . 742
Lesson B Key Term . 742
Lesson B Review Questions . 742
Lesson B Exercises . 742

xv

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

LESSON C Creat ing the DJ Tom Appl icat ion 746
Creating a Columnar Layout . 747
Using an ASP Table . 748
Dragging Controls in Source View . 751

Adding Items to a DropDownList Control 754
Coding DJ Tom’s Web Page . 755
Using the
 Tag . 756

Lesson C Summary . 758
Lesson C Key Terms . 758
Lesson C Review Questions . 759
Lesson C Exercises . 760

CHAPTER 13 Working with Access Databases and LINQ763

LESSON A Database Terminology . 766
Connecting an Application to a Microsoft Access Database 768
Previewing the Contents of a Dataset 771

Binding the Objects in a Dataset . 772
Having the Computer Create a Bound Control 773
The DataGridView Control . 776

Visual Basic Code . 781
Handling Errors in the Code . 781

The Copy to Output Directory Property 784
Binding to an Existing Control . 786
Coding the Next Record and Previous Record Buttons 789
Lesson A Summary . 790
Lesson A Key Terms . 791
Lesson A Review Questions . 792
Lesson A Exercises . 794

LESSON B Creat ing a Query . 796
Customizing a BindingNavigator Control 800
Using the LINQ Aggregate Operators . 802
Lesson B Summary . 806
Lesson B Key Terms . 807
Lesson B Review Questions . 807
Lesson B Exercises . 809

LESSON C Complet ing the Parad ise Bookstore Appl icat ion 811
Coding the Paradise Bookstore Application 813
Lesson C Summary . 815
Lesson C Key Terms . 815
Lesson C Review Questions . 816
Lesson C Exercises . 817

CHAPTER 14 Access Databases and SQL821

LESSON A Adding Records to a Dataset 824
Sorting the Records in a Dataset . 831
Deleting Records from a Dataset . 833
Lesson A Summary . 837

xvi

C O N T E N T S

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Lesson A Key Terms . 837
Lesson A Review Questions . 838
Lesson A Exercises . 838

LESSON B Structured Query Language . 841
The SELECT Statement . 841
Creating a Query . 843
Lesson B Summary . 850
Lesson B Key Terms . 851
Lesson B Review Questions . 851
Lesson B Exercises . 853

LESSON C Parameter Quer ies . 855
Saving a Query . 858
Invoking a Query from Code . 861
The INSERT and DELETE Statements . 863
Lesson C Summary . 873
Lesson C Key Terms . 873
Lesson C Review Questions . 873
Lesson C Exercises . 874

APPENDIX A Finding and Fixing Program Errors 877

APPENDIX B GUI Design Guidel ines 895

APPENDIX C Visual Basic Conversion Functions 899

APPENDIX D Visual Basic 2012 Cheat Sheet 901

APPENDIX E Case Projects . 917

APPENDIX F Appl ications with Mult iple Forms Online

Index . 921

xvii

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Preface

Programming with Microsoft Visual Basic 2012, Sixth Edition uses Visual Basic 2012, an object-oriented
language, to teach programming concepts. This book is designed for a beginning programming course.
However, it assumes students are familiar with basic Windows skills and file management.

Organization and Coverage
Programming with Microsoft Visual Basic 2012, Sixth Edition contains an Overview and 14 chapters that present
hands-on instruction; it also contains five appendices (A through E). An additional appendix (Appendix F)
covering multiple-form applications and the FontDialog, ColorDialog, and TabControl tools is available online
at www.cengagebrain.com.

In the chapters, students with no previous programming experience learn how to plan and create their own
interactive Windows applications. GUI design skills, OOP concepts, and planning tools (such as TOE charts,
pseudocode, and flowcharts) are emphasized throughout the book. The chapters show students how to work
with objects and write Visual Basic statements such as If…Then…Else, Select Case, Do…Loop, For…Next,
and For Each…Next. Students also learn how to create and manipulate variables, constants, strings, sequential
access files, structures, classes, and arrays. Chapter 12 shows students how to create both static and dynamic
Web applications. In Chapter 13, students learn how to connect an application to a Microsoft Access database,
and then use Language Integrated Query (LINQ) to query the database. Chapter 14 continues the coverage
of databases, introducing the student to more advanced concepts and Structured Query Language (SQL).
Appendix A, which can be covered after Chapter 3, teaches students how to locate and correct errors in their
code. The appendix shows students how to step through their code and also how to create breakpoints.
Appendix B recaps the GUI design guidelines mentioned in the chapters, and Appendix C lists the Visual Basic
conversion functions. The Visual Basic 2012 Cheat Sheet contained in Appendix D summarizes important
concepts covered in the chapters, such as the syntax of statements, methods, and so on. The Cheat Sheet
provides a convenient place for students to locate the information they need as they are creating and coding
their applications. Appendix E contains Case Projects that can be assigned after completing specific chapters in
the book.

Approach
Programming with Microsoft Visual Basic 2012, Sixth Edition teaches programming concepts using a task-driven
rather than a command-driven approach. By working through the chapters, which are each motivated by a
realistic case, students learn how to develop applications they are likely to encounter in the workplace. This is
much more effective than memorizing a list of commands out of context. The book motivates students by
demonstrating why they need to learn the concepts and skills covered in each chapter.

Features
Programming with Microsoft Visual Basic 2012, Sixth Edition is an exceptional textbook because it also includes
the following features:

xviii

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.www.allitebooks.com

http://www.allitebooks.org

READ THIS BEFORE YOU BEGIN This section is consistent with Course Technology’s unequaled commitment to
helping instructors introduce technology into the classroom. Technical considerations and assumptions about
hardware, software, and default settings are listed in one place to help instructors save time and eliminate
unnecessary aggravation.

YOU DO IT! BOXES These boxes provide simple applications that allow students to demonstrate their
understanding of a concept before moving on to the next concept. The YOU DO IT! boxes are located almost
exclusively in Lesson A of each chapter.

VISUAL STUDIO 2012 METHODS The book focuses on Visual Studio 2012 methods rather than on Visual Basic
functions. This is because the Visual Studio methods can be used in any .NET language, whereas the Visual
Basic functions can be used only in Visual Basic. Exceptions to this are the Val and Format functions, which are
introduced in Chapter 2. These functions are covered in the book simply because it is likely that students will
encounter them in existing Visual Basic programs. However, in Chapter 3, the student is taught to use the
TryParse method and the Convert class methods rather than the Val function. Also in Chapter 3, the Format
function is replaced with the ToString method.

OPTION STATEMENTS All programs include the Option Explicit, Option Strict, and Option Infer statements.

START HERE ARROWS These arrows indicate the beginning of a tutorial steps section in the book.

DATABASES, LINQ, AND SQL The book includes two chapters (Chapters 13 and 14) on databases. LINQ is
covered in Chapter 13. SQL is covered in Chapter 14.

FIGURES Figures that introduce new statements, functions, or methods contain both the syntax and examples
of using the syntax. Including the syntax in the figures makes the examples more meaningful, and vice versa.

CHAPTER CASES Each chapter begins with a programming-related problem that students could reasonably
expect to encounter in business, followed by a demonstration of an application that could be used to solve
the problem. Showing the students the completed application before they learn how to create it is motivational
and instructionally sound. By allowing the students to see the type of application they will be able to create
after completing the chapter, the students will be more motivated to learn because they can see how the
programming concepts they are about to learn can be used and, therefore, why the concepts are important.

LESSONS Each chapter is divided into three lessons—A, B, and C. Lesson A introduces the programming
concepts that will be used in the completed application. The concepts are illustrated with code examples and
sample applications. The user interface for each sample application is provided to the student. Also provided are
tutorial-style steps that guide the student on coding, running, and testing the application. Each sample
application allows the student to observe how the current concept can be used before the next concept is
introduced. In Lessons B and/or C, the student creates the application required to solve the problem specified in
the Chapter Case.

APPENDICES Appendix A, which can be covered after Chapter 3, teaches students how to locate and correct
errors (syntax, logic, and run time) in their code. The appendix shows students how to step through their code
and also how to create breakpoints. Appendix B summarizes the GUI design guidelines taught in the chapters,
making it easier for the student to follow the guidelines when designing an application’s interface. Appendix C
lists the Visual Basic conversion functions. Appendix D contains a Cheat Sheet that summarizes important
concepts covered in the chapters, such as the syntax of statements, methods, and so on. The Cheat Sheet
provides a convenient place for students to locate the information they need as they are creating and coding
their applications. Appendix E contains Case Projects that can be assigned after completing specific chapters in
the book. Appendix F, which is available online at www.cengagebrain.com, covers multiple-form applications and
the FontDialog, ColorDialog, and TabControl tools.

GUI DESIGN TIP BOXES The GUI DESIGN TIP boxes contain guidelines and recommendations for designing
applications that follow Windows standards. Appendix B provides a summary of the GUI design guidelines
covered in the chapters.

xix

Organization and Coverage

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

TIP These notes provide additional information about the current concept. Examples include
alternative ways of writing statements or performing tasks, as well as warnings about common
mistakes made when using a particular command and reminders of related concepts learned in
previous chapters.

SUMMARY Each lesson contains a Summary section that recaps the concepts covered in the lesson.

KEY TERMS Following the Summary section in each lesson is a listing of the key terms introduced throughout
the lesson, along with their definitions.

REVIEW QUESTIONS Each lesson contains Review Questions designed to test a student’s understanding of the
lesson’s concepts.

EXERCISES The Review Questions in each lesson are followed by Exercises, which provide students with
additional practice of the skills and concepts they learned in the lesson. The Exercises are designated as
INTRODUCTORY, INTERMEDIATE, ADVANCED, DISCOVERY, and SWAT THE BUGS. The DISCOVERY
Exercises encourage students to challenge and independently develop their own programming skills while
exploring the capabilities of Visual Basic 2012. The SWAT THE BUGS Exercises provide an opportunity for
students to detect and correct errors in an application’s code.

New to This Edition!
VIDEOS These notes direct students to videos that accompany each chapter in the book. The videos
explain and/or demonstrate one or more of the chapter’s concepts. The videos have been revised
from the previous edition and are available via the optional CourseMate for this text.

NEW CHAPTER CASES, EXAMPLES, APPLICATIONS, REVIEW QUESTIONS, AND EXERCISES The chapters
contain new Chapter Cases, code examples, sample applications, Review Questions, and Exercises.

APPENDIX D (VISUAL BASIC 2012 CHEAT SHEET) This appendix summarizes important concepts covered in
the chapters (such as the syntax of statements, methods, and so on) and provides a quick reference for students.

APPENDIX E (CASE PROJECTS) This appendix contains Case Projects that can be assigned after completing
specific chapters in the book.

Chapters 4, 5, and 7
The following two topics were moved from Chapter 4 to Chapter 5: the TryParse method’s return value and
the comparison of Boolean values. The Financial.Pmt method was removed from Chapter 4. In the previous
edition of the book, independent Sub procedures were introduced in Chapter 5 and then covered more fully
in Chapter 7. In this edition, independent Sub procedures are now covered in one place: Chapter 7.

Steps and Figures
The tutorial-style steps in the book assume you are using Microsoft Visual Studio Professional 2012 and a
system running either Microsoft Windows 8 or Microsoft Windows 7. The figures in the book reflect how your
screen will look if you are using a Microsoft Windows 8 system. Your screen may appear slightly different in
some instances if you are using a Microsoft Windows 7 system. Any major differences between the screens for
both versions of Microsoft Windows are indicated in the figures.

Instructor Resources
The following teaching tools are available for download at our Instructor Companion Site. Simply search for this
text at login.cengage.com. An instructor login is required.

xx

P R E F A C E Instructor Resources

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

ELECTRONIC INSTRUCTOR’S MANUAL The Instructor’s Manual that accompanies this textbook includes
additional instructional material to assist in class preparation, including items such as Sample Syllabi, Chapter
Outlines, Technical Notes, Lecture Notes, Quick Quizzes, Teaching Tips, Discussion Topics, and Additional
Case Projects.

EXAMVIEW® This textbook is accompanied by ExamView, a powerful testing software package that allows
instructors to create and administer printed, computer (LAN-based), and Internet exams. ExamView includes
hundreds of questions that correspond to the topics covered in this text, enabling students to generate detailed
study guides that include page references for further review. The computer-based and Internet testing
components allow students to take exams at their computers, and also save the instructor time by grading each
exam automatically.

POWERPOINT PRESENTATIONS This book offers Microsoft PowerPoint slides for each chapter. These are
included as a teaching aid for classroom presentation, to make available to students on the network for chapter
review, or to be printed for classroom distribution. Instructors can add their own slides for additional topics
they introduce to the class.

SOLUTION FILES Solutions to the Lesson applications and the end-of-lesson Review Questions and Exercises
are provided.

DATA FILES Data Files are necessary for completing the computer activities in this book. Data Files can also be
downloaded by students at www.cengagebrain.com.

CourseMate

The more you study, the better the results. Make the most of your study time by accessing everything
you need to succeed in one place. Read your textbook, take notes, review flashcards, watch videos, and
take practice quizzes online. CourseMate goes beyond the book to deliver what you need! Learn more at
www.cengage.com/coursemate.

The Visual Basic CourseMate includes:

l Video Lessons: Each chapter is accompanied by several video lessons that help to explain important chapter
concepts. These videos were created and narrated by the author.

l An interactive eBook, quizzes, flashcards, and more!

Instructors may add CourseMate to the textbook package, or students may purchase CourseMate
directly at www.cengagebrain.com.

Acknowledgments

Writing a book is a team effort rather than an individual one. I would like to take this opportunity to thank my
team, especially Alyssa Pratt (Senior Project Manager), Sreejith Govindan (Full Service Project Manager), Nicole
Spoto (Quality Assurance), Matt Hutchinson (Content Project Manager), Kathy Orrino (Proofreader), and
the compositors at Integra. Thank you for your support, enthusiasm, patience, and hard work. Last, but
certainly not least, I want to thank the following reviewers for their invaluable ideas and comments: Mary Brock:
Mississippi University for Women; John Buerck: Saint Louis University; Jane Hammer: Valley City University;
Donna Petty: Wallace Community College; and Helen Schneider: The University of Findlay. And a special thank
you to Sally Douglas (College of Central Florida) for suggesting the YOU DO IT! boxes.

Diane Zak

xxi

Acknowledgments

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Read This Before
You Begin

Technical Information
Data Files
You will need data files to complete the computer activities in this book. Your instructor may provide the data
files to you. You may obtain the files electronically at www.cengagebrain.com, and then navigating to the page for
this book.

Each chapter in this book has its own set of data files, which are stored in a separate folder within the VB2012
folder. The files for Chapter 1 are stored in the VB2012\Chap01 folder. Similarly, the files for Chapter 2 are
stored in the VB2012\Chap02 folder. Throughout this book, you will be instructed to open files from or save
files to these folders.

You can use a computer in your school lab or your own computer to complete the steps and Exercises
in this book.

Using Your Own Computer
To use your own computer to complete the computer activities in this book, you will need the following:

l A Pentium® 4 processor, 1.6 GHz or higher, personal computer running Microsoft Windows. This book was
written using Microsoft Windows 8, and Quality Assurance tested using Microsoft Windows 7.

l Either Microsoft Visual Studio 2012 or the Express Editions of Microsoft Visual Studio 2012 (namely,
Microsoft Visual Studio Express 2012 for Windows Desktop and Microsoft Visual Studio Express 2012 for
Web) installed on your computer. This book was written and Quality Assurance tested using Microsoft
Visual Studio Professional 2012 and Microsoft Visual Studio Express 2012 for Web. At the time of this
writing, you can download a free copy of the Express Editions at www.microsoft.com/visualstudio/eng/
products/visual-studio-express-products.

Figures
The figures in this book reflect how your screen will look if you are using Microsoft Visual Studio Professional
2012 and a Microsoft Windows 8 system. Your screen may appear slightly different in some instances if you are
using another version of either Microsoft Visual Studio or Microsoft Windows.

Visit Our Web Site
Additional materials designed for this textbook might be available at www.cengagebrain.com. Search this site for
more details.

xxii

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

To the Instructor
To complete the computer activities in this book, your students must use a set of data files. These files can be
obtained electronically at www.cengagebrain.com.

The material in this book was written using Microsoft Visual Studio Professional 2012 on a Microsoft Windows
8 system. It was Quality Assurance tested using Microsoft Visual Studio Professional 2012 on a Microsoft
Windows 7 system, and using Microsoft Visual Studio Express 2012 for Web on a Microsoft Windows 8 system.

Technical Information

xxiii

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

OVERV I EW

An Introduction to
Programming

After studying the Overview, you should be able to:

Define the terminology used in programming

Explain the tasks performed by a programmer

Understand the employment opportunities for programmers and
software engineers

Run a Visual Basic 2012 application

Understand how to use the chapters effectively

All Microsoft screenshots used with permission from Microsoft Corporation.

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Programming a Computer
In essence, the word programming means giving a mechanism the directions to accomplish a
task. If you are like most people, you’ve already programmed several mechanisms, such as your
digital video recorder (DVR), cell phone, or coffee maker. Like these devices, a computer also is
a mechanism that can be programmed.

The directions given to a computer are called computer programs or, more simply, programs.
The people who write programs are called programmers. Programmers use a variety of special
languages, called programming languages, to communicate with the computer. Some popular
programming languages are Visual Basic, C#, C++, and Java. In this book, you will use the Visual
Basic programming language.

The Programmer’s Job
When a company has a problem that requires a computer solution, typically it is a programmer
who comes to the rescue. The programmer might be an employee of the company; or he or she
might be a freelance programmer, which is a programmer who works on temporary contracts
rather than for a long-term employer.

First the programmer meets with the user, which is the person (or persons) responsible for
describing the problem. In many cases, this person or persons also will eventually use the
solution. Depending on the complexity of the problem, multiple programmers may be involved,
and they may need to meet with the user several times. Programming teams often contain
subject matter experts, who may or may not be programmers. For example, an accountant
might be part of a team working on a program that requires accounting expertise. The purpose
of the initial meetings with the user is to determine the exact problem and to agree on a
solution.

After the programmer and user agree on the solution, the programmer begins converting the
solution into a computer program. During the conversion phase, the programmer meets
periodically with the user to determine whether the program fulfills the user’s needs and to
refine any details of the solution. When the user is satisfied that the program does what he or
she wants it to do, the programmer rigorously tests the program with sample data before
releasing it to the user. In many cases, the programmer also provides the user with a manual
that explains how to use the program. As this process indicates, the creation of a good computer
solution to a problem—in other words, the creation of a good program—requires a great deal of
interaction between the programmer and the user.

Employment Opportunities
When searching for a job in computer programming, you will encounter ads for “computer
programmers” as well as for “computer software engineers.” Although job titles and descriptions
vary, computer software engineers typically are responsible for designing an appropriate solution
to a user’s problem, while computer programmers are responsible for translating the solution
into a language that the computer can understand. The process of translating the solution is
called coding.

Keep in mind that, depending on the employer and the size and complexity of the user’s
problem, the design and coding tasks may be performed by the same employee, no matter what
his or her job title is. In other words, it’s not unusual for a software engineer to code her
solution, just as it’s not unusual for a programmer to have designed the solution he is coding.

Programmers and software engineers need to have strong problem-solving and analytical skills,
as well as the ability to communicate effectively with team members, end users, and other
nontechnical personnel. Typically, computer software engineers are expected to have at least a

Overview-
Programmers
video

Overview-
Programmer
Qualities
video

O V E R V I EW An Introduction to Programming

2

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

bachelor’s degree in software engineering, computer science, or mathematics, along with
practical work experience, especially in the industry in which they are employed. Computer
programmers usually need at least an associate’s degree in computer science, mathematics, or
information systems, as well as proficiency in one or more programming languages.

Computer programmers and software engineers are employed by companies in almost every
industry, such as telecommunications companies, software publishers, financial institutions,
insurance carriers, educational institutions, and government agencies. The Bureau of Labor
Statistics predicts that employment of computer software engineers will increase by 28% from
2010 to 2020. The employment of computer programmers, on the other hand, will increase
by 12% over the same period. In addition, consulting opportunities for freelance programmers
and software engineers are expected to increase as companies look for ways to reduce their
payroll expenses.

There is a great deal of competition for programming and software engineering jobs, so
jobseekers will need to keep up to date with the latest programming languages and technologies.
A competitive edge may be gained by obtaining vendor-specific or language-specific
certifications. More information about computer programmers and computer software
engineers can be found on the Bureau of Labor Statistics Web site at www.bls.gov.

Visual Basic 2012
In this book, you will learn how to create programs using the Visual Basic 2012 programming
language. Visual Basic 2012 is an object-oriented programming language, which is a language
that allows the programmer to use objects to accomplish a program’s goal. An object is anything
that can be seen, touched, or used. In other words, an object is nearly any thing. The objects in
an object-oriented program can take on many different forms. Programs written for the
Windows environment typically use objects such as check boxes, list boxes, and buttons. A
payroll program, on the other hand, might utilize objects found in the real world, such as a time
card object, an employee object, and a check object.

Every object in an object-oriented program is created from a class, which is a pattern that the
computer uses to create the object. The class contains the instructions that tell the computer
how the object should look and behave. An object created from a class is called an instance of
the class and is said to be instantiated from the class. An analogy involving a cookie cutter and
cookies is often used to describe a class and its objects: the class is the cookie cutter, and the
objects instantiated from the class are the cookies. You will learn more about classes and objects
throughout this book.

Visual Basic 2012 is one of the languages included in Visual Studio 2012, which is available
in many different editions. The most robust edition is Visual Studio Ultimate 2012, followed
by Visual Studio Premium 2012, Visual Studio Professional 2012, and then the Express
editions of Visual Studio 2012. Microsoft plans to release four different Express editions:
Visual Studio Express 2012 for Windows 8, Visual Studio Express 2012 for Web, Visual
Studio Express 2012 for Windows Desktop, and Visual Studio Express 2012 for Windows
Phone. Each of these products include an integrated development environment (IDE), which
is an environment that contains all of the tools and features you need to create, run, and
test your programs.

You can use Visual Basic to create programs, called applications, for the Windows environment
or for the Web. A Windows application has a Windows user interface and runs on a personal
computer. A user interface is what the user sees and interacts with while an application is
running. Examples of Windows applications include graphics programs, data-entry systems, and
games. A Web application, on the other hand, has a Web user interface and runs on a server.
You access a Web application using your computer’s browser. Examples of Web applications

Visual Basic 2012

3

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

include e-commerce applications available on the Internet, and employee handbook applications
accessible on a company’s intranet. You also can use Visual Basic to create applications for tablet
PCs and mobile devices, such as cell phones and PDAs (personal digital assistants).

A Visual Basic 2012 Demonstration
In the following set of steps, you will run a Visual Basic 2012 application that shows you some of
the objects you will learn about in the chapters. For now, it is not important for you to
understand how these objects were created or why the objects perform the way they do. Those
questions will be answered in the chapters.

To run the Visual Basic 2012 application:

1. Press and hold down the Windows logo key on your keyboard as you tap the letter r.
The Run dialog box opens. Release the logo key.

2. Click the Browse button to open the Browse dialog box. Locate and then open the
VB2012\Overview folder on your computer’s hard disk or on the device designated by
your instructor.

3. Click Monthly Payment Calculator (Monthly Payment Calculator.exe) in the list of
filenames. (Depending on how Windows is set up on your computer, you may see the
.exe extension on the filename.) Click the Open button. The Browse dialog box closes
and the Run dialog box appears again.

4. Click the OK button in the Run dialog box. After a few moments, the Monthly Payment
Calculator application shown in Figure 1 appears on the screen. The interface contains a
text box, list box, buttons, radio buttons, and labels. You can use the application to
calculate the monthly payment for a car loan.

text box

list box radio buttons

buttons

if you are using Windows 7,
the title bar text will be
left-aligned

if you are using Windows 7,
these buttons will look
different

labels

Figure 1 Monthly Payment Calculator application

The Windows
logo key looks
like this: .

START HERE

Don’t be
concerned if
some of the
letters on your
screen are

underlined. You can
show/hide the underlined
letters by pressing the
Alt key.

O V E R V I EW An Introduction to Programming

4

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.www.allitebooks.com

http://www.allitebooks.org

5. Use the application to calculate the monthly payment for a $20,000 loan at 6.75%
interest for five years. Type 20000 in the Principal text box and then click 6.75 % in
the Interest list box. The radio button corresponding to the five-year term is already
selected, so you just need to click the Calculate button to compute the monthly
payment. The application indicates that your monthly payment would be $393.67.
See Figure 2.

6. Now determine what your monthly payment would be if you borrowed $10,000 at 8%
interest for four years. Type 10000 in the Principal text box. Scroll down the Interest list
box and then click 8.00 %. Click the 4 years radio button and then click the Calculate
button. The Monthly payment box shows $244.13.

7. Click the Exit button to close the application.

Using the Chapters Effectively
This book is designed for a beginning programming course. However, it assumes students are
familiar with basic Windows skills and file management. The chapters in this book will help you
learn how to write programs using Microsoft Visual Basic 2012. The chapters are designed to be
used at your computer. Begin by reading the text that explains the concepts. When you come to
the numbered steps, follow the steps on your computer. Read each step carefully and completely
before you try it. As you work, compare your screen with the figures to verify your results. The
figures in this book reflect how your screen will look if you are using Visual Studio Professional
2012 and a Microsoft Windows 8 system. Your screen may appear slightly different in some
instances if you are using a different edition of Visual Studio or if you are using another version
of Microsoft Windows. Don’t worry if your screen display differs slightly from the figures. The
important parts of the screen display are labeled in each figure. Just be sure you have these parts
on your screen.

Do not worry about making mistakes; that’s part of the learning process. Tip notes identify
common problems and explain how to get back on track. They also provide additional
information about a procedure—for example, an alternative method of performing the
procedure.

Figure 2 Computed monthly payment

Tip notes are
designated by
the icon.

Using the Chapters Effectively

5

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Each chapter is divided into three lessons. You might want to take a break between lessons.
Following each lesson is a Summary section that lists the important elements of the lesson. After
the Summary section is a listing of the key terms (including definitions) covered in the lesson.
Following the Key Terms section are questions and exercises designed to review and reinforce
the lesson’s concepts. You should complete all of the end-of-lesson questions and several
exercises before continuing to the next lesson. It takes a great deal of practice to acquire the
skills needed to create good programs, and future chapters assume that you have mastered the
information found in the previous chapters.

Some of the end-of-lesson exercises are Discovery exercises, which allow you to both “discover”
the solutions to problems on your own and experiment with material that is not covered in the
chapter. Some lessons also contain one or more Debugging exercises. In programming, the term
debugging refers to the process of finding and fixing any errors, called bugs, in a program.
Debugging exercises provide opportunities for you to find and correct the errors in existing
applications. Appendix A, which can be covered along with Chapter 3, guides you through the
process of locating and correcting a program’s errors (bugs).

Throughout the book you will find GUI (graphical user interface) design tips. These tips contain
guidelines and recommendations for designing applications. You should follow these guidelines
and recommendations so that your applications follow the Windows standards.

Summary
l Programs are the step-by-step instructions that tell a computer how to perform a task.

l Programmers use various programming languages to communicate with the computer.

l The creation of a good program requires a great deal of interaction between the programmer
and the user.

l Programmers rigorously test a program with sample data before releasing the program to
the user.

l It’s not unusual for the same person to perform the duties of both a software engineer and a
programmer.

l An object-oriented programming language, such as Visual Basic 2012, allows programmers
to use objects to accomplish a program’s goal. An object is anything that can be seen,
touched, or used.

l Every object in an object-oriented program is instantiated (created) from a class, which is a
pattern that tells the computer how the object should look and behave. An object is referred
to as an instance of the class.

l The process of locating and correcting the errors (bugs) in a program is called debugging.

Key Terms
Applications—programs created for the Windows environment, the Web, or mobile devices

Class—a pattern that the computer uses to create (instantiate) an object

Coding—the process of translating a solution into a language that the computer can understand

Computer programs—the directions given to computers; also called programs

Debugging—the process of locating and correcting the errors (bugs) in a program

IDE—integrated development environment

O V E R V I EW An Introduction to Programming

6

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Instance—an object created (instantiated) from a class

Instantiated—the process of creating an object from a class

Integrated development environment—an environment that contains all of the tools and
features you need to create, run, and test your programs; also called an IDE

Object—anything that can be seen, touched, or used

Object-oriented programming language—a programming language that allows the programmer
to use objects to accomplish a program’s goal

Programmers—the people who write computer programs

Programming—the process of giving a mechanism the directions to accomplish a task

Programming languages—languages used to communicate with a computer

Programs—the directions given to computers; also called computer programs

User interface—what the user sees and interacts with while an application is running

Key Terms

7

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 1
An Introduction to
Visual Basic 2012

Creating a Splash Screen

In this chapter, you will use Visual Basic 2012, Microsoft’s newest
version of the Visual Basic language, to create a splash screen for the
Red Tree Inn. A splash screen is the first image that appears when an
application is started. It is used to introduce the application and to hold
the user’s attention while the application is being read into the
computer’s internal memory.

All Microsoft screenshots used with permission from Microsoft Corporation.

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Previewing the Splash Screen
Before you start the first lesson in this chapter, you will preview a completed splash screen.
The splash screen is contained in the VB2012\Chap01 folder.

To preview a completed splash screen:

1. Press and hold down the Windows logo key on your keyboard as you tap the letter r.
The Run dialog box opens. Release the logo key.

2. Click the Browse button to open the Browse dialog box. Locate and then open the
VB2012\Chap01 folder on your computer’s hard disk or on the device designated by
your instructor.

3. Click RTI Splash (RTI Splash.exe) in the list of filenames. (Depending on how
Windows is set up on your computer, you may see the .exe extension on the
filename.) Click the Open button. The Browse dialog box closes and the Run dialog
box appears again.

4. Click the OK button in the Run dialog box. After a few moments, the splash screen
shown in Figure 1-1 appears on the screen. The splash screen closes when six seconds
have elapsed.

Chapter 1 is designed to help you get comfortable with the Visual Studio 2012 integrated
development environment. As you learned in the Overview, an integrated development
environment (IDE) is an environment that contains all of the tools and features you need to
create, run, and test your programs. As do all the chapters in this book, Chapter 1 contains three
lessons. You should complete a lesson in full and do all of the end-of-lesson questions and
several exercises before continuing to the next lesson.

Figure 1-1 Splash screen for the Red Tree Inn
Photo courtesy of Diane Zak

The Windows
logo key looks
like this: .

You will learn
more about
splash screens
(such as how to
round their

corners) in Lesson C’s
Discovery Exercises 4, 5,
and 6.

START HERE

CH A P T E R 1 An Introduction to Visual Basic 2012

10

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

& LESSON A
After studying Lesson A, you should be able to:

l Start and customize Visual Studio 2012

l Create a Visual Basic 2012 Windows application

l Manage the windows in the IDE

l Set the properties of an object

l Restore a property to its default setting

l Save a solution

l Close and open an existing solution

The Splash Screen Application
In this chapter, you will create a splash screen using Visual Basic 2012. The following set of steps
will guide you in starting Visual Studio Professional 2012 from either Windows 8 or Windows 7.
Your steps may differ slightly if you are using a different edition of Visual Studio 2012.

To start Visual Studio Professional 2012:

1. Windows 8: If necessary, tap the Windows logo key to switch to the Windows 8
tile-based mode, and then click the Visual Studio 2012 tile.

Windows 7: Click the Start button on the Windows 7 taskbar and then point to All
Programs. Click Microsoft Visual Studio 2012 on the All Programs menu and then
click Visual Studio 2012.

2. If the Choose Default Environment Settings dialog box appears, click Visual Basic
Development Settings and then click Start Visual Studio.

3. Click WINDOW on the menu bar, click Reset Window Layout, and then click the Yes
button. When you start Visual Studio Professional 2012, your screen will appear similar
to Figure 1-2. However, your menu bar may contain underlined letters, called access
keys. You will learn about access keys in Chapter 2. (You can show/hide the access keys
by pressing the Alt key on your keyboard.)

The Ch01A
video
demon-
strates all of

the steps contained in
Lesson A. You can view
the video either before or
after completing the
lesson.

START HERE

11

The Splash Screen Application L E S SON A

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Note: To select a different window layout, click TOOLS on the menu bar, click Import and
Export Settings, select the Reset all settings radio button, click the Next button, select the
appropriate radio button, click the Next button, click the settings collection you want to use,
and then click the Finish button.

Next, you will configure Visual Studio so that your screen agrees with the figures and tutorial
steps in this book. As mentioned in the Overview, the figures reflect how your screen will look if
you are using Visual Studio Professional 2012 and a Microsoft Windows 8 system. Your screen
may appear slightly different in some instances if you are using a different edition of Visual
Studio or if you are using another version of Microsoft Windows. Don't worry if your screen
display differs slightly from the figures.

To configure Visual Studio:

1. Click TOOLS on the menu bar and then click Options to open the Options dialog box.
Click the Projects and Solutions node. Use the information shown in Figure 1-3 to
select and deselect the appropriate check boxes. (Your dialog box will look slightly
different if you are using Windows 7. For example, the title bar text will be left-aligned
rather than centered, and the buttons on the title bar will look different.) When you are
finished, click the OK button to close the Options dialog box.

Toolbox window’s tab

be sure these check
boxes are selected

Team Explorer
window’s tab

Solution Explorer
windowStart Page window

Figure 1-2 Microsoft Visual Studio Professional 2012 startup screen

START HERE

CH A P T E R 1 An Introduction to Visual Basic 2012

12

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

The splash screen will be a Windows application, which means it will have a Windows user
interface and run on a desktop computer. Recall that a user interface is what the user sees and
interacts with while an application is running. Windows applications in Visual Basic are
composed of solutions, projects, and files. A solution is a container that stores the projects and
files for an entire application. Although the solutions in this book contain only one project, a
solution can contain several projects. A project also is a container, but it stores only the files
associated with that particular project.

To create a Visual Basic 2012 Windows application:

1. Click FILE on the menu bar and then click New Project to open the New Project
dialog box.

2. If necessary, expand the Visual Basic node in the Installed Templates list, and then
(if necessary) click Windows.

3. If necessary, click Windows Forms Application in the middle column of the
dialog box.

4. Change the name entered in the Name box to Splash Project.

5. Click the Browse button to open the Project Location dialog box. Locate and then
click the VB2012\Chap01 folder. Click the Select Folder button to close the Project
Location dialog box.

6. If necessary, select the Create directory for solution check box in the New Project
dialog box. Change the name entered in the Solution name box to Splash Solution.
Figure 1-4 shows the completed New Project dialog box in Visual Studio Professional
2012. (Your dialog box will look slightly different if you are using Windows 7 or a
different edition of Visual Studio.) The drive letter may be different from the one shown

Projects and
Solutions node

select these five
check boxes

the title bar text will be
left-aligned in Windows 7

these buttons will look
different in Windows 7

deselect these
three check boxes

Figure 1-3 Options dialog box

START HERE

13

The Splash Screen Application L E S SON A

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

in the figure if you are saving to a device other than your computer’s hard drive—for
example, if you are saving to a flash drive.

7. Click the OK button to close the New Project dialog box. The computer creates a
solution and adds a Visual Basic project to the solution. The names of the solution and
project, along with other information pertaining to the project, appear in the Solution
Explorer window. See Figure 1-5. In addition to the windows shown earlier in Figure 1-2,
three other windows appear in the IDE: Windows Form Designer, Properties, and Data
Sources. (Don’t be concerned if different properties appear in your Properties window.)

your drive letter
might be different

Figure 1-4 Completed New Project dialog box in Visual Studio Professional 2012

CH A P T E R 1 An Introduction to Visual Basic 2012

14

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.www.allitebooks.com

http://www.allitebooks.org

Managing the Windows in the IDE
In most cases, you will find it easier to work in the IDE if you either close or auto-hide the
windows you are not currently using. The easiest way to close an open window is to click the
Close button on the window’s title bar. In most cases, the VIEW menu provides an appropriate
option for opening a closed window. Rather than closing a window, you also can auto-hide it.
You auto-hide a window using the Auto Hide button (refer to Figure 1-5) on the window’s title
bar. The Auto Hide button is a toggle button: clicking it once activates it, and clicking it again
deactivates it. The Toolbox and Data Sources windows in Figure 1-5 are auto-hidden windows.

To close, open, auto-hide, and display windows in the IDE:

1. Click the Close button on the Properties window’s title bar to close the window. Now,
click VIEW on the menu bar and then click Properties Window to open the window.

2. If your IDE contains the Team Explorer window, click the Team Explorer tab and then
click the Close button on the window’s title bar.

3. Click the Auto Hide (vertical pushpin) button on the Solution Explorer window. The
Solution Explorer window is minimized and appears as a tab on the edge of the IDE.

4. To temporarily display the Solution Explorer window, click the Solution Explorer tab.
Notice that the Auto Hide button is now a horizontal pushpin rather than a vertical

Data Sources
window’s tab

if you are using Windows 7,
Form1 will be left-aligned Auto Hide button

solution and
project names
and information

Properties window

Windows Form
Designer window

Figure 1-5 Solution and Visual Basic project

If you want
to size the
Solution Explorer
window to match
Figure 1-5,

position your mouse
pointer on the window’s
left border until the
mouse pointer becomes
a sizing pointer
(a horizontal line with
an arrowhead at each
end), and then drag the
border to either the left
or the right.

START HERE

15

The Splash Screen Application L E S SON A

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

pushpin. To return the Solution Explorer window to its auto-hidden state, click the
Solution Explorer tab again.

5. To permanently display the Solution Explorer window, click the Solution Explorer tab
and then click the Auto Hide (horizontal pushpin) button on the window’s title bar. The
vertical pushpin replaces the horizontal pushpin on the button.

6. If necessary, close the Data Sources window.

7. Figure 1-6 shows the current status of the windows in the IDE. Only the Windows Form
Designer, Solution Explorer, and Properties windows are open; the Toolbox window is
auto-hidden. If necessary, click Form1.vb in the Solution Explorer window. If the items
in the Properties window do not appear in alphabetical order, click the Alphabetical
button.

In the next several sections, you will take a closer look at the Windows Form Designer, Solution
Explorer, and Properties windows. (The Toolbox window is covered in Lesson B.)

The Windows Form Designer Window
Figure 1-7 shows the Windows Form Designer window, where you create (or design) your
application’s graphical user interface, more simply referred to as a GUI. Only a Windows Form
object appears in the designer window shown in the figure. A Windows Form object, or form, is
the foundation for the user interface in a Windows application. You create the user interface by
adding other objects, such as buttons and text boxes, to the form. Notice that a title bar appears
at the top of the form. The title bar contains a default caption (Form1) along with Minimize,
Maximize, and Close buttons. (The title bar text will be left-aligned in Windows 7.) At the top of

Alphabetical button

Figure 1-6 Current status of the windows in the IDE

To reset the
window layout in
the IDE, click
WINDOW on the
menu bar, click

Reset Window Layout,
and then click the Yes
button.

CH A P T E R 1 An Introduction to Visual Basic 2012

16

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

the designer window is a tab labeled Form1.vb [Design]. Form1.vb is the name of the file (on
your computer’s hard disk or on another device) that contains the Visual Basic instructions
associated with the form, and [Design] identifies the window as the designer window.

As you learned in the Overview, all objects in an object-oriented program are instantiated
(created) from a class. A form, for example, is an instance of the Windows Form class. The form
is automatically instantiated for you when you create a Windows application.

The Solution Explorer Window
The Solution Explorer window displays a list of the projects contained in the current solution and the
itemscontained in eachproject. Figure 1-8 shows theSolutionExplorerwindow for the Splash Solution,
which contains one project named Splash Project. Within the Splash Project are theMy Project folder
and two files named App.config and Form1.vb. The project also contains other items, which are
typically kept hidden. However, you can display the additional items by clicking the Show All Files
button. Youwould click the button again to hide the items. The .vb on the Form1.vb filename indicates
that the file is a Visual Basic source file. A source file is a file that contains program instructions, called
code. The Form1.vb file contains the code associated with the form displayed in the designer window.
You can view the code using the Code Editor window, which you will learn about in Lesson B.

form

name of the disk file
that contains the instructions
associated with the form

title bar (Form1 will be left-aligned
if you are using Windows 7)

Figure 1-7 Windows Form Designer window

Recall that a
class is a pattern
that the
computer uses
to create an
object.

17

The Splash Screen Application L E S SON A

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

The Form1.vb source file is referred to as a form file because it contains the code associated with
a form. The code associated with the first form included in a project is automatically stored in a
form file named Form1.vb. The code associated with the second form in the same project is
stored in a form file named Form2.vb, and so on. Because a project can contain many forms and,
therefore, many form files, it is a good practice to give each form file a more meaningful name.
Doing this will help you keep track of the various form files in the project. You can use the
Properties window to change the filename.

The Properties Window
As is everything in an object-oriented language, a file is an object. Each object has a set of
attributes that determine its appearance and behavior. The attributes are called properties and
are listed in the Properties window. When an object is created, a default value is assigned to each
of its properties. The Properties window shown in Figure 1-9 lists the default values assigned to
the properties of the Form1.vb file. (You do not need to widen your Properties window to match
Figure 1-9.) As indicated in the figure, the Properties window includes an Object box and a
Properties list. The Object box contains the name of the selected object. In this case, it contains
Form1.vb, which is the name of the form file. The Properties list has two columns. The left
column displays the names of the selected object’s properties. You can use the Alphabetical and
Categorized buttons to display the names either alphabetically or by category, respectively.
However, it’s usually easier to work with the Properties window when the properties are listed in
alphabetical order, as they are in Figure 1-9. The right column in the Properties list is called the
Settings box and displays the current value (or setting) of each of the object’s properties. A brief
description of the selected property appears in the Description pane.

Show All Files button

Figure 1-8 Solution Explorer window

To display the
properties of the
Form1.vb form
file, Form1.vb
must be

selected in the Solution
Explorer window.

CH A P T E R 1 An Introduction to Visual Basic 2012

18

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

To use the Properties window to change the form file’s name:

1. Form1.vb should be selected in the Solution Explorer window. Click File Name in the
Properties list and then type Splash Form.vb. Be sure to include the .vb extension on
the filename; otherwise, the computer will not recognize the file as a source file.

2. Press Enter. Splash Form.vb appears in the Solution Explorer and Properties windows
and on the designer window’s tab, as shown in Figure 1-10.

Properties list

Object box

Alphabetical button

Settings box

Description pane

Categorized button

Figure 1-9 Properties window

form file’s name

form file’s name

Figure 1-10 Form file’s name shown in various locations

You also can
change the File
Name property
by right-clicking
Form1.vb in the

Solution Explorer window
and then clicking Rename
on the context menu.

START HERE

19

The Splash Screen Application L E S SON A

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Properties of a Windows Form
Like a file, a Windows form also has a set of properties. The form’s properties will appear in the
Properties window when you select the form in the designer window.

To view the properties of the form:

1. Click the form in the designer window to display the form’s properties in the Properties
window. Figure 1-11 shows a partial listing of the properties of a Windows form.

Notice that Form1 System.Windows.Forms.Form appears in the Object box in Figure 1-11.
Form1 is the name of the form. The name is automatically assigned to the form when the form
is instantiated (created). In System.Windows.Forms.Form, Form is the name of the class used to
instantiate the form. System.Windows.Forms is the namespace that contains the Form class
definition. A class definition is a block of code that specifies (or defines) an object’s appearance
and behavior. All class definitions in Visual Basic 2012 are contained in namespaces, which you
can picture as blocks of memory cells inside the computer. Each namespace contains the code
that defines a group of related classes. The System.Windows.Forms namespace contains the
definition of the Windows Form class. It also contains the class definitions for objects you add to
a form, such as buttons and text boxes.

The period that separates each word in System.Windows.Forms.Form is called the dot
member access operator. Similar to the backslash (\) in a folder path, the dot member access
operator indicates a hierarchy, but of namespaces rather than folders. In other words, the
backslash in the path D:\VB2012\Chap01\Splash Solution\Splash Project\Splash Form.vb
indicates that the Splash Form.vb file is contained in (or is a member of) the Splash Project
folder, which is a member of the Splash Solution folder, which is a member of the Chap01
folder, which is a member of the VB2012 folder, which is a member of the D: drive. Likewise, the
name System.Windows.Forms.Form indicates that the Form class is a member of the Forms

form name
location of the
Form class class name

Figure 1-11 Properties window showing a partial listing of the form’s properties

START HERE

CH A P T E R 1 An Introduction to Visual Basic 2012

20

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

namespace, which is a member of the Windows namespace, which is a member of the
System namespace. The dot member access operator allows the computer to locate the Form
class in the computer’s internal memory, similar to the way the backslash (\) allows the
computer to locate the Splash Form.vb file on your computer’s disk.

The Name Property
As you do to a form file, you should assign a more meaningful name to a Windows form because
doing so will help you keep track of the various forms in a project. Unlike a file, a Windows form
has a Name property rather than a File Name property. You use the name entered in an object’s
Name property to refer to the object in code, so each object must have a unique name. The
name you assign to an object must begin with a letter and contain only letters, numbers, and the
underscore character. The name cannot include punctuation characters or spaces.

There are several conventions for naming objects in Visual Basic. In this book, you will use a
naming convention called Hungarian notation. Names in Hungarian notation begin with a three
(or more) character ID that represents the object’s type, with the remaining characters in the
name representing the object’s purpose. For example, using Hungarian notation, you might
assign the name frmSplash to the current form. The “frm” identifies the object as a form, and
“Splash” reminds you of the form’s purpose. Hungarian notation names are entered using camel
case, which means you enter the ID characters in lowercase and then capitalize the first letter of
each subsequent word in the name. Camel case refers to the fact that the uppercase letters
appear as “humps” in the name because they are taller than the lowercase letters.

To change the name of the form:

1. Drag the scroll box in the Properties window to the top of the vertical scroll bar. As you
scroll, notice the various properties associated with a form. Also notice that the items
within parentheses appear at the top of the Properties list.

2. Click (Name) in the Properties list. Type frmSplash and press Enter. An asterisk (*)
appears on the designer window’s tab. The asterisk indicates that the form has been
changed since the last time it was saved.

The Text Property
In addition to changing the form’s Name property, you also should change its Text property, which
controls the text displayed in the form’s title bar. Form1 is the default value assigned to the Text
property of the first form in a project. In this case, “Red Tree Inn”would be a more descriptive value.

To set the Text property of the form:

1. Scroll down the Properties window until you see the Text property in the Properties list
and then click Text.

2. Type Red Tree Inn and press Enter. The new text appears in the property’s Settings
box and also in the form’s title bar.

The Name and Text properties of a Windows form should always be changed to more
meaningful values. The Name property is used by the programmer when coding the application.
The Text property, on the other hand, is read by the user while the application is running.

The StartPosition Property
When an application is started, the computer uses the form’s StartPosition property to
determine the form’s initial position on the screen. The frmSplash form represents a splash
screen, which typically appears in the middle of the screen.

START HERE

START HERE

21

Properties of a Windows Form L E S SON A

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

To center a form on the screen when the application is started:

1. Click StartPosition in the Properties list and then click the list arrow in the
Settings box.

2. Click CenterScreen in the list.

The Font Property
A form’s Font property determines the type, style, and size of the font used to display the text
on the form. A font is the general shape of the characters in the text. Segoe UI, Tahoma, and
Microsoft Sans Serif are examples of font types. Font styles include regular, bold, and italic.
The numbers 9, 12, and 18 are examples of font sizes, which typically are measured in points,
with one point equaling 1 ⁄ 72 of an inch. The recommended font for applications created for
systems running Windows 8, Windows 7, or Windows Vista is Segoe UI because it offers
improved readability. Segoe is pronounced SEE-go, and UI stands for user interface. For most
of the elements in the interface, you will use a font size of 9-point. However, to make the
figures in the book more readable, some of the interfaces created in this book will use a larger
font size.

To set the form’s Font property:

1. Click Font in the Properties list and then click the … (ellipsis) button in the Settings box
to open the Font dialog box.

2. Locate and then click the Segoe UI font in the Font box. Click 9 in the Size box and then
click the OK button. (Don’t be concerned if the size of the form changes.)

The Size Property
As you can with any Windows object, you can size a form by selecting it and then dragging the
sizing handles that appear around it. You also can size an object by selecting it and then pressing
and holding down the Shift key as you press the up, down, right, or left arrow key on your
keyboard. In addition, you can set the object’s Size property.

To set the form’s Size property:

1. Click Size in the Properties list. Notice that the Size property contains two numbers
separated by a comma and a space. The first number represents the width of the form,
measured in pixels. The second number represents the height, also measured in pixels.
A pixel, which is short for “picture element,” is one spot in a grid of thousands of such
spots that form an image either produced on the screen by a computer or printed on a
page by a printer.

2. Type 605, 334 in the Size property’s Settings box and press Enter. Expand the Size
property by clicking the plus box that appears next to the property. Notice that the first
number listed in the property represents the width, and the second number represents
the height. Click the minus box to collapse the property.

Setting and Restoring a Property’s Value
In the next set of steps, you will practice setting and then restoring a property’s value. More
specifically, you will set and then restore the value of the form’s BackColor property, which
determines the background color of the form.

START HERE

START HERE

START HERE

CH A P T E R 1 An Introduction to Visual Basic 2012

22

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

To set and then restore the form’s BackColor property value:

1. Click BackColor in the Properties list and then click the list arrow in the Settings box.
Click the Custom tab and then click a red square to change the background color of the
form to red.

2. Now, right-click BackColor in the Properties list and then click Reset on the context
menu. The background color of the form returns to its default setting. Figure 1-12 shows
the status of the form in the IDE.

Saving a Solution
The asterisk (*) that appears on the designer tab in Figure 1-12 indicates that a change was made
to the form since the last time it was saved. It is a good idea to save the current solution every 10
or 15 minutes so that you will not lose a lot of your work if the computer loses power. You can
save the solution by clicking FILE on the menu bar and then clicking Save All. You also can click
the Save All button on the Standard toolbar. When you save the solution, the computer saves
any changes made to the files included in the solution. It also removes the asterisk that appears
on the designer window’s tab.

To save the current solution:

1. Click FILE on the menu bar and then click Save All. The asterisk is removed from the
designer window’s tab, indicating that all changes made to the form have been saved.

the asterisk indicates that the
form has been changed since
the last time it was saved

if you are using Windows 7,
the text in the title bar will be
left-aligned

Figure 1-12 Status of the form in the IDE

The Save All
button on the
Standard toolbar
looks like this:

.

START HERE

START HERE

23

Saving a Solution L E S SON A

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Closing the Current Solution
When you are finished working on a solution, you should close it. Closing a solution closes all
projects and files contained in the solution.

To close the Splash Solution:

1. Click FILE on the menu bar. Notice that the menu contains a Close option and a Close
Solution option. The Close option closes the designer window in the IDE; however, it
does not close the solution itself. Only the Close Solution option closes the solution.

2. Click Close Solution. The Solution Explorer window indicates that no solution is
currently open in the IDE.

Opening an Existing Solution
You can use the FILE menu to open an existing solution. The names of solution files end with
.sln. If a solution is already open in the IDE, you will be given the option of closing it before
another solution is opened.

To open the Splash Solution:

1. Click FILE on the menu bar and then click Open Project to open the Open Project
dialog box.

2. Locate and then open the VB2012\Chap01\Splash Solution folder. Click Splash
Solution (Splash Solution.sln) in the list of filenames and then click the Open button.

3. The Solution Explorer window indicates that the solution is open. If the designer
window is not open, right-click Splash Form.vb in the Solution Explorer window and
then click View Designer.

Exiting Visual Studio 2012
Finally, you will learn how to exit Visual Studio 2012. You will complete the splash screen in the
remaining two lessons. You can exit Visual Studio using either the Close button on its title bar
or the Exit option on its FILE menu.

To exit Visual Studio 2012:

1. Click FILE on the menu bar and then click Exit.

Lesson A Summary
l To start Visual Studio 2012:

If you are using Windows 8, tap the Windows logo key (if necessary) to switch to the
Windows 8 tile-based mode and then click the Visual Studio 2012 tile. If you are using
Windows 7, click the Start button on the Windows 7 taskbar, point to All Programs, click
Microsoft Visual Studio 2012, and then click Visual Studio 2012.

l To select a different window layout:

Click TOOLS on the menu bar, click Import and Export Settings, select the Reset all settings
radio button, click the Next button, select the appropriate radio button, click the Next
button, click the settings collection you want to use, and then click the Finish button.

START HERE

START HERE

START HERE

CH A P T E R 1 An Introduction to Visual Basic 2012

24

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.www.allitebooks.com

http://www.allitebooks.org

l To configure Visual Studio:

Click TOOLS, click Options, click the Projects and Solutions node, and then use the
information shown earlier in Figure 1-3 to select and deselect the appropriate check boxes.
Click the OK button.

l To create a Visual Basic 2012 Windows application:

Start Visual Studio 2012. Click FILE, click New Project, expand the Visual Basic node, click
Windows, and then click Windows Forms Application. Enter an appropriate name and
location in the Name and Location boxes, respectively. Select the Create directory for
solution check box. Enter an appropriate name in the Solution name box and then click
the OK button.

l To reset the window layout in the IDE:

Click WINDOW, click Reset Window Layout, and then click the Yes button.

l To close and open a window in the IDE:

Close the window by clicking the Close button on its title bar. Use the appropriate option on
the VIEW menu to open the window.

l To auto-hide a window in the IDE:

Click the Auto Hide (vertical pushpin) button on the window’s title bar.

l To temporarily display an auto-hidden window in the IDE:

Click the window’s tab.

l To permanently display an auto-hidden window in the IDE:

Click the window’s tab to display the window, and then click the Auto Hide (horizontal
pushpin) button on the window’s title bar.

l To set the value of a property:

Select the object whose property you want to set and then select the appropriate property in
the Properties list. Type the new property value in the selected property’s Settings box, or
choose the value from the list, color palette, or dialog box.

l To give a more meaningful name to an object:

Set the object’s Name property.

l To control the text appearing in the form’s title bar:

Set the form’s Text property.

l To specify the starting location of the form:

Set the form’s StartPosition property.

l To specify the type, style, and size of the font used to display text on the form:

Set the form’s Font property.

l To size a form:

Drag the form’s sizing handles. You also can set the form’s Size, Height, and Width values in
the Properties window. In addition, you can select the form and then press and hold down
the Shift key as you press the up, down, left, or right arrow key on your keyboard.

l To change the background color of a form:

Set the form’s BackColor property.

25

Lesson A Summary L E S SON A

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

l To restore a property to its default setting:

Right-click the property in the Properties list and then click Reset.

l To save a solution:

Click FILE on the menu bar and then click Save All. You also can click the Save All button
on the Standard toolbar.

l To close a solution:

Click FILE on the menu bar and then click Close Solution.

l To open an existing solution:

Click FILE on the menu bar and then click Open Project. Locate and then open
the application’s solution folder. Click the solution filename, which ends with .sln. Click
the Open button. If the designer window is not open, right-click the form file’s name in
the Solution Explorer window and then click View Designer.

l To exit Visual Studio 2012:

Click the Close button on the Visual Studio 2012 title bar. You also can click FILE on the
menu bar and then click Exit.

Lesson A Key Terms
Camel case—used when entering object names in Hungarian notation; the practice of entering
the object’s ID characters in lowercase and then capitalizing the first letter of each subsequent
word in the name

Class definition—a block of code that specifies (or defines) an object’s appearance and behavior

Code—program instructions

Dot member access operator—a period; used to indicate a hierarchy

Form—the foundation for the user interface in a Windows application; also called a Windows
Form object

Form file—a file that contains the code associated with a Windows form

GUI—acronym for graphical user interface

Namespace—a block of memory cells inside the computer; contains the code that defines a
group of related classes

Object box—the section of the Properties window that contains the name of the selected object

Point—used to measure font size; 1/72 of an inch

Properties—the attributes that control an object’s appearance and behavior

Properties list—the section of the Properties window that lists both the names and the values of
the selected object’s properties

Properties window—the window that lists an object’s attributes (properties)

Settings box—the right column of the Properties list; displays each property’s current value (setting)

Solution Explorer window—the window that displays a list of the projects contained in the
current solution and the items contained in each project

Source file—a file that contains code

Windows Form Designer window—the window in which you create an application’s GUI

Windows Form object—the foundation for the user interface in a Windows application; referred
to more simply as a form

CH A P T E R 1 An Introduction to Visual Basic 2012

26

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Lesson A Review Questions
1. When a form has been modified since the last time it was saved, what appears on its tab

in the designer window?

a. an ampersand (&)

b. an asterisk (*)

c. a percent sign (%)

d. a plus sign (+)

2. You use the window to set the characteristics that control an object’s
appearance and behavior.

a. Characteristics

b. Object

c. Properties

d. Toolbox

3. The window lists the projects and files included in a solution.

a. Object

b. Project

c. Properties

d. Solution Explorer

4. The names of solution files in Visual Basic 2012 end with .

a. .prg

b. .sln

c. .src

d. .vb

5. Which of the following statements is true?

a. You can auto-hide a window by clicking the Auto-Hide (vertical pushpin) button on
its title bar.

b. An auto-hidden window appears as a tab on the edge of the IDE.

c. You temporarily display an auto-hidden window by clicking its tab.

d. all of the above

6. The property controls the text displayed in a form’s title bar.

a. Caption

b. Text

c. Title

d. TitleBar

7. You give an object a more meaningful name by setting the object’s property.

a. Application

b. Caption

c. Name

d. Text

27

Lesson A Review Questions L E S SON A

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

8. The property determines the initial position of a form when the application
is started.

a. InitialLocation

b. Location

c. StartLocation

d. StartPosition

9. Explain the difference between a form’s Text property and its Name property.

10. Explain the difference between a form file and a form.

11. What does the dot member access operator indicate in the text System.Windows.Forms.
Label?

Lesson A Exercises

1. If necessary, start Visual Studio 2012 and permanently display the Solution Explorer
window. Use the FILE menu to open the Carter Solution (Carter Solution.sln) file, which
is contained in the VB2012\Chap01\Carter Solution folder. If necessary, right-click the
form file’s name in the Solution Explorer window and then click View Designer. Change
the form’s Name property to frmMain. Change the form’s BackColor property to light
purple. Change the form’s Font property to Segoe UI, 9pt. Change the form’s
StartPosition property to CenterScreen. Change the form’s Text property to Carter Sales.
Click FILE on the menu bar and then click Save All to save the solution. Click FILE on
the menu bar and then click Close Solution to close the solution.

2. If necessary, start Visual Studio 2012 and permanently display the Solution Explorer window.
Create a Visual Basic Windows application. Use the following names for the solution and
project, respectively: Turner Solution andTurner Project. Save the application in theVB2012
\Chap01 folder. Change the form file’s name to Main Form.vb. Change the form’s name to
frmMain. The form’s title bar should say Turner Inc.; set the appropriate property. The form
should be centered on the screen when it first appears; set the appropriate property. Change
the background color of the form to light pink. Any text on the form should appear in the
Segoe UI, 12pt font; set the appropriate property. Save and then close the solution.

3. If necessary, start Visual Studio 2012 and permanently display the Solution Explorer
window. Create a Visual Basic Windows application. Use the following names for the
solution and project, respectively: Hillside Solution and Hillside Project. Save the solution
in the VB2012\Chap01 folder. Change the form file’s name to Main Form.vb. Change the
form’s name to frmMain. The form’s title bar should say Hillside Shopping Center; set
the appropriate property. The form should be centered on the screen when it first
appears; set the appropriate property. Any text on the form should appear in the Segoe
UI, 9pt font; set the appropriate property. Save and then close the solution.

INTRODUCTORY

INTRODUCTORY

INTRODUCTORY

CH A P T E R 1 An Introduction to Visual Basic 2012

28

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

& LESSON B
After studying Lesson B, you should be able to:

l Add a control to a form

l Set the properties of a label, picture box, and button control

l Select multiple controls

l Center controls on the form

l Open the Project Designer window

l Start and end an application

l Enter code in the Code Editor window

l Terminate an application using the Me.Close() instruction

l Run the project’s executable file

The Toolbox Window
In Lesson A, you learned about the Windows Form Designer, Solution Explorer, and
Properties windows. In this lesson, you will learn about the Toolbox window, referred to more
simply as the toolbox. The toolbox contains the tools you use when creating your application’s
user interface. Each tool represents a class from which an object, such as a button or text box,
can be instantiated. The instantiated objects, called controls, will appear on the form.

To open the Splash Solution from Lesson A and then display the Toolbox window:

1. If necessary, start Visual Studio 2012 and open the Solution Explorer window.

2. Open the Splash Solution (Splash Solution.sln) file contained in the
VB2012\Chap01\Splash Solution folder. If necessary, open the designer window.

3. Permanently display the Properties and Toolbox windows and then auto-hide the
Solution Explorer window.

4. If necessary, expand the Common Controls node in the toolbox. Rest your mouse
pointer on the word Label in the toolbox. The tool’s purpose appears in a box. See
Figure 1-13.

The Ch01B
video
demon-
strates all of

the steps contained in
Lesson B. You can view
the video either before or
after completing the
lesson.

START HERE

29

The Toolbox Window L E S SON B

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

The Label Tool
You use the Label tool to add a label control to a form. The purpose of a label control is to
display text that the user is not allowed to edit while the application is running. In this case, for
example, you do not want the user to change the name of the inn or the “A relaxing place to
stay!” message. Therefore, you will display the information using two label controls.

To use the Label tool to instantiate a label control:

1. Click the Label tool in the toolbox, but do not release the mouse button. Hold down the
mouse button as you drag the mouse pointer to the lower-left corner of the form. As
you drag the mouse pointer, you will see a solid box, an outline of a rectangle, and a
plus box following the mouse pointer. The blue lines that appear between the form’s left
and bottom borders and the label’s left and bottom borders are called margin lines
because their size is determined by the contents of the label’s Margin property. The
purpose of the margin lines is to assist you in spacing the controls properly on the form.
See Figure 1-14.

Figure 1-13 Toolbox window showing the purpose of the Label tool

the length of the blue
horizontal and vertical
lines is determined by the
label’s Margin property

Figure 1-14 Label tool being dragged to the form

START HERE

CH A P T E R 1 An Introduction to Visual Basic 2012

30

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

START HERE

2. Release the mouse button. A label control appears on the form. See Figure 1-15.
(If the wrong control appears on the form, right-click the control, click Delete, and then
repeat Steps 1 and 2.) Notice that Label1 System.Windows.Forms.Label appears in the
Object box in the Properties window. (You may need to widen the Properties window
to view the entire contents of the Object box.) Label1 is the default name assigned to
the label control. System.Windows.Forms.Label indicates that the control is an
instance of the Label class, which is defined in the System.Windows.Forms namespace.

Recall from Lesson A that a default value is assigned to each of an object’s properties when the
object is created. Label1 is the default value assigned to the Text and Name properties of the
first label control added to a form. The value of the Text property appears inside the label
control, as indicated in Figure 1-15.

To add another label control to the form:

1. Click the Label tool in the toolbox and then drag the mouse pointer to the form,
positioning it above the existing label control. (Do not worry about the exact location.)

2. Release the mouse button. Label2 is assigned to the control’s Text and Name properties.

Some programmers assign meaningful names to all of the controls in an interface, while
others do so only for controls that are either coded or referred to in code. In subsequent
chapters in this book, you will follow the latter convention. In this chapter, however, you will
assign a meaningful name to each control in the interface. The three-character ID used for
naming labels is lbl.

Text property
value

Label object’s name location of the Label class class name

Figure 1-15 Label control added to the form

You also can add
a control to the
form by clicking
a tool in the
toolbox and then

clicking the form. In
addition, you can click a
tool in the toolbox, place
the mouse pointer on the
form, and then press the
left mouse button and
drag the mouse pointer
until the control is the
desired size. You also
can double-click a tool in
the toolbox.

31

The Label Tool L E S SON B

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

To assign meaningful names to the label controls:

1. Click the Label1 control on the form. This selects the control and displays its properties
in the Properties window. Click (Name) in the Properties list. Type lblName in the
Settings box and then press Enter.

2. Click the Label2 control on the form. Change the control’s name to lblMsg and then
press Enter.

Setting the Text Property
As you learned earlier, a label control’s Text property determines the value that appears inside
the control. In this application, you want the words “Red Tree Inn” to appear in the lblName
control, and the words “A relaxing place to stay!” to appear in the lblMsg control.

To set each label control’s Text property:

1. Currently, the lblMsg control is selected on the form. Click Text in the Properties list.
Type A relaxing place to stay! and then press Enter. The new text appears in the Text
property’s Settings box and in the lblMsg control. Notice that the designer automatically
sizes the lblMsg control to fit its current contents. This is because the default setting of a
Label control’s AutoSize property is True. (You can verify that fact by viewing the
AutoSize property in the Properties window.)

2. Click the lblName control on the form. Change its Text property to Red Tree Inn and
then press Enter. The lblName control stretches automatically to fit the contents of its
Text property.

Setting the Location Property
You can move a control to a different location on the form by placing your mouse pointer
on the control until it becomes a move pointer, and then dragging the control to the desired
location. You also can select the control and then press and hold down the Control (Ctrl)
key as you press the up, down, left, or right arrow key on your keyboard. In addition, you can
set the control’s Location property, which specifies the position of the upper-left corner of
the control.

To set each label control’s Location property:

1. Click the lblMsg control to select it. Click Location in the Properties list. Expand the
Location property by clicking its plus box. The X value specifies the number of pixels
from the left border of the form to the left border of the control. The Y value specifies
the number of pixels between the top border of the form and the top border of the
control. In other words, the X value refers to the control’s horizontal location on the
form, whereas the Y value refers to its vertical location.

2. Type 315, 175 in the Location property and then press Enter. The lblMsg control
moves to its new location. Click the minus box to collapse the property.

3. In addition to selecting a control by clicking it on the form, you also can select a
control by clicking its entry (name and class) in the Object box in the Properties window.
Click the list arrow in the Properties window’s Object box, and then click
lblName System.Windows.Forms.Label in the list. Set the control’s Location property
to 315, 130.

The move
pointer looks like
this:

.

START HERE

START HERE

START HERE

CH A P T E R 1 An Introduction to Visual Basic 2012

32

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Changing a Property For Multiple Controls
In Lesson A, you changed the form’s Font property to Segoe UI, 9pt. When you add a control to
the form, the control’s Font property is set to the same value as the form’s Font property. Using
object-oriented programming terminology, the control “inherits” the Font attribute of the form.
In this case, for example, the lblName and lblMsg controls inherit the form’s Font property
setting: Segoe UI, 9pt.

At times, you may want to use a different font type, style, or size for a control’s text. One reason
for doing this is to bring attention to a specific part of the screen. In the splash screen, for
example, you can make the text in the two label controls more noticeable by increasing the size
of the font used to display the text. You can change the font size for both controls at the same
time by clicking one control and then pressing and holding down the Ctrl (Control) key as you
click the other control on the form. You can use the Ctrl+click method to select as many
controls as you want. To cancel the selection of one of the selected controls, press and hold
down the Ctrl key as you click the control. To cancel the selection of all of the selected controls,
release the Ctrl key and then click the form or an unselected control on the form.

To easily select a group of controls on a form, place the mouse pointer slightly above and to the
left of the first control you want to select, and then press and hold down the left mouse button
as you drag the mouse pointer. A dotted rectangle will appear as you drag. When all of the
controls you want to select are within (or at least touched by) the dotted rectangle, release the
mouse button. All of the controls surrounded or touched by the dotted rectangle will be
selected.

To select both label controls and then set their Font property:

1. Verify that the lblName control is selected. Press and hold down the Ctrl (Control) key
as you click the lblMsg control, and then release the Ctrl key. Both controls are selected,
as shown in Figure 1-16.

2. Open the Font dialog box by clicking Font in the Properties list and then clicking the …
(ellipsis) button in the Settings box. Click 18 in the Size box, and then click the OK
button to close the Font dialog box. The text in the two label controls appears in the new
font size.

3. Click the form to deselect the label controls.

4. Click the lblName control and then use its Font property to change its font style to
Bold.

5. Click the lblMsg control and then use its Font property to change its font style to Italic.

Using the Format Menu
The Format menu provides options for manipulating the controls on the form. The Align
option, for example, allows you to align two or more controls by their left, right, top, or bottom
borders. You can use the Make Same Size option to make two or more controls the same width
and/or height. Before you can use the Format menu to change the alignment or size of two or
more controls, you first must select the controls. The first control you select should always be

both label controls
are selected

Figure 1-16 Label controls selected on the form

START HERE

To experiment
with the Align
and Make Same
Size options,
complete

Discovery Exercise 4 at
the end of this lesson.

33

Using the Format Menu L E S SON B

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

the one whose size and/or location you want to match. For example, to align the left border of
the Label2 control with the left border of the Label1 control, you first select the Label1 control
and then select the Label2 control. However, to make the Label1 control the same size as the
Label2 control, you must select the Label2 control before selecting the Label1 control. The first
control you select is referred to as the reference control. The reference control will have white
sizing handles, whereas the other selected controls will have black sizing handles.

The Format menu also has a Center in Form option that centers one or more controls either
horizontally or vertically on the form. In the next set of steps, you will use the Center in Form
option to center the two label controls vertically on the form.

To center the label controls vertically on the form:

1. Verify that the lblMsg control is selected. Ctrl+click the lblName control. Both label
controls are now selected.

2. Click FORMAT on the menu bar, point to Center in Form, and then click Vertically.

3. Click FILE on the menu bar and then click Save All to save the solution.

The PictureBox Tool
The splash screen you previewed at the beginning of the chapter showed two images. You can
include an image on a form using a picture box control, which you instantiate using the
PictureBox tool.

To add two picture box controls to the form:

1. Click the PictureBox tool in the toolbox and then drag the mouse pointer to the upper-
left corner of the form. Release the mouse button. The picture box control’s properties
appear in the Properties list, and a box containing a triangle appears in the upper-right
corner of the control. The box is referred to as the task box because, when you click it, it
displays a list of tasks associated with the control. Each task in the list is associated with
one or more properties. You can set the properties using the task list or the Properties
window.

2. Click the task box on the PictureBox1 control. See Figure 1-17.

3. Click Choose Image to open the Select Resource dialog box. The Choose Image task is
associated with the Image property in the Properties window.

4. To include the image file within the project itself, the Project resource file radio button
must be selected in the Select Resource dialog box. Verify that the radio button is
selected, and then click the Import button to open the Open dialog box.

task box

Figure 1-17 Open task list for a picture box

START HERE

START HERE

CH A P T E R 1 An Introduction to Visual Basic 2012

34

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.www.allitebooks.com

http://www.allitebooks.org

5. Open the VB2012\Chap01 folder. Click RedTreeInn (RedTreeInn.jpg) in the list of
filenames and then click the Open button. See Figure 1-18.

6. Click the OK button to close the Select Resource dialog box. A small portion of the
image appears in the picture box control on the form, and Splash_Project.My.Resources.
Resources.RedTreeInn appears in the control’s Image property in the Properties window.

7. Click the list arrow in the Size Mode box in the task list and then click StretchImage in
the list. Click the picture box control to close the task list.

8. The three-character ID used when naming picture box controls is pic. Use the Properties
window to change the picture box’s name to picRedTree.

9. If necessary, place your mouse pointer on the picture box control and then drag it to the
location shown in Figure 1-19 (on the next page). Then place your mouse pointer on the
sizing handle located in the lower-right corner of the picture box. Drag the sizing handle
until the picture box is the size shown Figure 1-19 and then release the mouse button.
(You also can set the Location and Size properties to 12, 12 and 245, 270, respectively.)

10. On your own, add another picture box control to the form. Position the picture box in
the upper-right corner of the form. The control should display the image stored in the
RTI.png file, which is contained in the VB2012\Chap01 folder. Change its size mode to
StretchImage. Change the control’s name to picRti. Position and size the control as
shown in Figure 1-19.

image file’s name

Figure 1-18 Completed Select Resource dialog box
Photo courtesy of Diane Zak

35

The PictureBox Tool L E S SON B

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

The Button Tool
Every application should give the user a way to exit the program. Most Windows applications
accomplish this task using either an Exit option on a FILE menu or an Exit button. In this lesson,
the splash screen will provide a button for ending the application. In Windows applications, a
button control is commonly used to perform an immediate action when clicked. The OK and
Cancel buttons are examples of button controls found in many Windows applications.

To add a button control to the form:

1. Use the Button tool in the toolbox to add a button control to the form. Position the
control in the lower-right corner of the form.

2. The three-character ID used when naming button controls is btn. Change the button
control’s name to btnExit.

3. The button control’s Text property determines the text that appears on the button’s face.
Set the button control’s Text property to Exit.

4. Save the solution.

Starting and Ending an Application
Now that the user interface is complete, you can start the splash screen application to see how it
will appear to the user. Before you start an application for the first time, you should open the
Project Designer window and verify the name of the startup form, which is the form that the
computer automatically displays each time the application is started. You can open the Project
Designer window by right-clicking My Project in the Solution Explorer window and then
clicking Open on the context menu. Or, you can click PROJECT on the menu bar and then click
<project name> Properties on the menu.

To verify the name of the startup form:

1. Auto-hide the Toolbox and Properties windows. Temporarily display the Solution
Explorer window. Right-click My Project in the Solution Explorer window and then
click Open to open the Project Designer window.

2. If necessary, click the Application tab to display the Application pane, which is shown
in Figure 1-20. If frmSplash does not appear in the Startup form list box, click the
Startup form list arrow and then click frmSplash in the list.

Figure 1-19 Picture boxes added to the form
Photo courtesy of Diane Zak

START HERE

START HERE

CH A P T E R 1 An Introduction to Visual Basic 2012

36

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

You can start an application by clicking DEBUG on the menu bar and then clicking Start
Debugging. You also can press the F5 key on your keyboard or click the Start button on the
Standard toolbar. When you start a Visual Basic application, the computer automatically creates
a file that can be run outside of the IDE (such as from the Run dialog box in Windows). The file
is referred to as an executable file. The executable file’s name is the same as the project’s name,
except it ends with .exe. The name of the executable file for the Splash Project, for example, is
Splash Project.exe. However, you can use the Project Designer window to change the executable
file’s name. The computer stores the executable file in the project’s bin\Debug folder. In this
case, the Splash Project.exe file is stored in the VB2012\Chap01\Splash Solution\Splash Project
\bin\Debug folder. When you are finished with an application, you typically give the user only
the executable file because it does not allow the user to modify the application’s code. To allow
someone to modify the code, you need to provide the entire solution.

To change the name of the executable file, and then start and end the application:

1. The Project Designer window should still be open. Change the filename in the Assembly
name box to Red Tree Splash. Save the solution and then close the Project Designer
window by clicking its Close button. (Refer to Figure 1-20 for the location of the Close
button.)

2. Click DEBUG on the menu bar and then click Start Debugging to start the application.
See Figure 1-21. (Do not be concerned about any windows that appear at the bottom of
the screen.)

Application tab

Project Designer
window’s Close button

name of the
executable file

name of the
startup form

Figure 1-20 Application pane in the Project Designer window

START HERE

37

Starting and Ending an Application L E S SON B

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

3. Recall that the purpose of the Exit button is to allow the user to end the application.
Click the Exit button on the splash screen. The button does not end the application; this
is because you have not yet entered the instructions that tell the button how to respond
when clicked.

4. Click the Close button on the form’s title bar to stop the application. (You also can click
the designer window to make it the active window, then click DEBUG on the menu bar,
and then click Stop Debugging.)

The Code Editor Window
After creating your application’s interface, you can begin entering the Visual Basic instructions
(code) that tell the controls how to respond to the user’s actions. Those actions—such as
clicking, double-clicking, or scrolling—are called events. You tell an object how to respond to an
event by writing an event procedure, which is a set of Visual Basic instructions that are
processed only when the event occurs. You enter the procedure’s code in the Code Editor
window. In this lesson, you will write a Click event procedure for the Exit button, which should
end the application when it is clicked.

To open the Code Editor window:

1. Right-click the form and then click View Code on the context menu. The Code
Editor window opens in the IDE, as shown in Figure 1-22. The Code Editor window
contains the Class statement, which is used to define a class in Visual Basic. In this
case, the Class statement begins with the Public Class frmSplash clause and
ends with the End Class clause. Within the Class statement you enter the code to
tell the form and its objects how to react to the user’s actions.

form’s Close buttonstartup form

Figure 1-21 Result of starting the splash screen application
Photo courtesy of Diane Zak

START HERE

CH A P T E R 1 An Introduction to Visual Basic 2012

38

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

If the Code Editor window contains many lines of code, you might want to hide the sections of
code that you are not presently working with or that you do not want to print. You hide a
section (or region) of code by clicking the minus box that appears next to it. To unhide a region
of code, you click the plus box that appears next to the code. Hiding and unhiding the code is
also referred to as collapsing and expanding the code, respectively.

To collapse and expand a region of code in the Code Editor window:

1. Click the minus box that appears next to the Public Class frmSplash clause in the
Code Editor window. Doing this collapses the Class statement, as shown in Figure 1-23.

2. Now click the plus box to expand the code.

As Figure 1-23 indicates, the Code Editor window contains a Class Name list box and a Method
Name list box. The Class Name list box lists the names of the objects included in the user
interface. The Method Name list box lists the events to which the selected object is capable of
responding. In object-oriented programming (OOP), an event is considered a behavior of an
object because it represents an action to which the object can respond. In the context of OOP,
the Code Editor window “exposes” an object’s behaviors to the programmer. You use the Class
Name and Method Name list boxes to select the object and event, respectively, that you want to
code. In this case, you will select btnExit in the Class Name list box and Click in the Method
Name list box. This is because you want the application to end when the Exit button is clicked.

you can use this list box
to increase or decrease
the size of the code font

click the minus box
to collapse the code

Code Editor
window’s tab

designer window’s
tab

Figure 1-22 Code Editor window opened in the IDE

click the plus box
to expand the code

Class Name
list box

Method Name
list box

Figure 1-23 Code collapsed in the Code Editor window

The Public
keyword in the
Class statement
indicates that the
class can be

used by code defined
outside of the class.

START HERE

39

The Code Editor Window L E S SON B

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

To select the btnExit control’s Click event:

1. Click the Class Name list arrow and then click btnExit in the list.

2. Click the Method Name list arrow and then click Click in the list. A code template for
the btnExit control’s Click event procedure appears in the Code Editor window. See
Figure 1-24.

The Code Editor provides the code template to help you follow the rules of the Visual Basic
language. The rules of a programming language are called its syntax. The first line in the code
template is called the procedure header, and the last line is called the procedure footer. The
procedure header begins with the two keywords Private Sub. A keyword is a word that has a
special meaning in a programming language. Keywords appear in a different color from the rest
of the code. The Private keyword in Figure 1-24 indicates that the button’s Click event
procedure can be used only within the current Code Editor window. The Sub keyword is an
abbreviation of the term sub procedure, which is a block of code that performs a specific task.
Following the Sub keyword is the name of the object, an underscore, the name of the event, and
parentheses containing some text. For now, you do not have to be concerned with the text that
appears between the parentheses. After the closing parenthesis is Handles btnExit.Click.
This part of the procedure header indicates that the procedure handles (or is associated with)
the btnExit control’s Click event. It tells the computer to process the procedure only when the
btnExit control is clicked.

The code template ends with the procedure footer, which contains the keywords End Sub.
You enter your Visual Basic instructions at the location of the insertion point, which appears
between the Private Sub and End Sub clauses in Figure 1-24. The Code Editor automatically
indents the line between the procedure header and footer. Indenting the lines within a
procedure makes the instructions easier to read and is a common programming practice. In this
case, the instruction you enter will tell the btnExit control to end the application when it is
clicked.

The Me.Close() Instruction
The Me.Close() instruction tells the computer to close the current form. If the current form is
the only form in the application, closing it terminates the entire application. In the instruction,
Me is a keyword that refers to the current form, and Close is one of the methods available in
Visual Basic. A method is a predefined procedure that you can call (or invoke) when needed.
For example, if you want the computer to close the current form when the user clicks the Exit
button, you enter the Me.Close() instruction in the button’s Click event procedure. Notice the
empty set of parentheses after the method’s name in the instruction. The parentheses are
required when calling some Visual Basic methods. However, depending on the method, the

procedure header
insertion point

procedure footer

Figure 1-24 btnExit control’s Click event procedure

START HERE

CH A P T E R 1 An Introduction to Visual Basic 2012

40

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

parentheses may or may not be empty. If you forget to enter the empty set of parentheses, the
Code Editor will enter them for you when you move the insertion point to another line in the
Code Editor window.

To code the btnExit control’s Click event procedure:

1. You can type the Me.Close() instruction on your own or use the Code Editor window’s
IntelliSense feature. In this set of steps, you will use the IntelliSense feature. Type me.
(be sure to type the period, but don’t press Enter). When you type the period, the
IntelliSense feature displays a list of properties, methods, and so on from which you can
select.

Note: If the list of choices does not appear, the IntelliSense feature may have been
turned off on your computer system. To turn it on, click TOOLS on the menu bar and
then click Options. Expand the Text Editor node and then click Basic. Select the Auto
list members check box and then click the OK button.

2. If necessary, click the Common tab. The Common tab displays the most commonly
used items, whereas the All tab displays all of the items. Type cl (but don’t press Enter).
The IntelliSense feature highlights the Close method in the list. See Figure 1-25.

3. Press Tab to include the Close method in the instruction and then press Enter.
See Figure 1-26.

the box contains a
description of the
selected item

Figure 1-25 List displayed by the IntelliSense feature

Figure 1-26 Completed Click event procedure for the btnExit control

START HERE

41

The Code Editor Window L E S SON B

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

It’s a good idea to test a procedure after you have coded it. By doing this, you’ll know where to
look if an error occurs. You can test the Exit button’s Click event procedure by starting the
application and then clicking the button. When the button is clicked, the computer will process
the Me.Close() instruction contained in the procedure.

To test the Exit button’s Click event procedure and the executable file:

1. Save the solution and then press the F5 key to start the application. The splash
screen appears.

2. Click the Exit button to end the application. Close the Code Editor window and then
close the solution.

3. Press and hold down the Windows logo key on your keyboard as you tap the letter r.
When the Run dialog box opens, release the logo key.

4. Click the Browse button. Locate and then open the VB2012\Chap01\Splash
Solution\Splash Project\bin\Debug folder. Click Red Tree Splash (Red Tree Splash.exe)
and then click the Open button.

5. Click the OK button in the Run dialog box. When the splash screen appears, click the
Exit button.

Lesson B Summary
l To add a control to a form:

Click a tool in the toolbox, but do not release the mouse button. Hold down the
mouse button as you drag the tool to the form, and then release the mouse button. You
also can click a tool in the toolbox and then click the form. In addition, you can click a tool
in the toolbox, place the mouse pointer on the form, and then press the left mouse button
and drag the mouse pointer until the control is the desired size. You also can double-click a
tool in the toolbox.

l To display text that the user cannot edit while the application is running:

Use the Label tool to instantiate a label control. Set the label control’s Text property.

l To move a control to a different location on the form:

Drag the control to the desired location. You also can set the control’s Location property. In
addition, you can select the control and then press and hold down the Ctrl (Control) key as
you press the up, down, right, or left arrow key on your keyboard.

l To specify the type, style, and size of the font used to display text in a control:

Set the control’s Font property.

l To select multiple controls on a form:

Click the first control you want to select, then Ctrl+click each of the other controls you want
to select. You also can select a group of controls on the form by placing the mouse pointer
slightly above and to the left of the first control you want to select, then pressing the left
mouse button and dragging. A dotted rectangle appears as you drag. When all of the controls
you want to select are within (or at least touched by) the dotted rectangle, release the mouse
button. All of the controls surrounded or touched by the dotted rectangle will be selected.

l To cancel the selection of one or more controls:

You cancel the selection of one control by pressing and holding down the Ctrl key as you
click the control. You cancel the selection of all of the selected controls by releasing the Ctrl
key and then clicking the form or an unselected control on the form.

START HERE

CH A P T E R 1 An Introduction to Visual Basic 2012

42

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

l To center one or more controls on the form:

Select the controls you want to center. Click FORMAT on the menu bar, point to Center in
Form, and then click either Horizontally or Vertically.

l To align the borders of two or more controls on the form:

Select the reference control and then select the other controls you want to align. Click
FORMAT on the menu bar, point to Align, and then click the appropriate option.

l To make two or more controls on the form the same size:

Select the reference control and then select the other controls you want to size. Click
FORMAT on the menu bar, point to Make Same Size, and then click the appropriate option.

l To display a graphic in a control in the user interface:

Use the PictureBox tool to instantiate a picture box control. Use the task box or Properties
window to set the control’s Image and SizeMode properties.

l To display a standard button that performs an action when clicked:

Use the Button tool to instantiate a button control.

l To verify or change the names of the startup form and/or executable file:

Use the Application pane in the Project Designer window. You can open the
Project Designer window by right-clicking My Project in the Solution Explorer window,
and then clicking Open on the context menu. Or, you can click PROJECT on the menu
bar and then click <project name> Properties on the menu.

l To start and stop an application:

You can start an application by clicking DEBUG on the menu bar and then clicking
Start Debugging. You also can press the F5 key on your keyboard or click the Start button
on the Standard toolbar. You can stop an application by clicking the form’s Close
button. You also can first make the designer window the active window, and then
click DEBUG on the menu bar and then click Stop Debugging.

l To open the Code Editor window:

Right-click the form and then click View Code on the context menu.

l To display an object’s event procedure in the Code Editor window:

Open the Code Editor window. Use the Class Name list box to select the object’s name, and
then use the Method Name list box to select the event.

l To allow the user to close the current form while an application is running:

Enter the Me.Close() instruction in an event procedure.

l To run a project’s executable file:

Open the Run dialog box in Windows. Click the Browse button. Locate and then open the
project’s bin\Debug folder. Click the executable file’s name. Click the Open button to close
the Browse dialog box, and then click the OK button.

Lesson B Key Terms
Button control—the control commonly used to perform an immediate action when clicked

Class Name list box—appears in the Code Editor window; lists the names of the objects
included in the user interface

Controls—objects (such as a label, a picture box, or a button) added to a form

43

Lesson B Key Terms L E S SON B

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Event procedure—a set of Visual Basic instructions that tell an object how to respond to an
event

Events—actions to which an object can respond; examples include clicking and double-clicking

Executable file—a file that can be run outside of the Visual Studio IDE, such as from the Run
dialog box in windows; the file has an .exe extension on its filename

Keyword—a word that has a special meaning in a programming language

Label control—the control used to display text that the user is not allowed to edit while an
application is running

Method—a predefined Visual Basic procedure that you can call (invoke) when needed

Method Name list box—appears in the Code Editor window; lists the events to which the
selected object is capable of responding

OOP—acronym for object-oriented programming

Picture box control—the control used to display an image on a form

Procedure footer—the last line in a procedure

Procedure header—the first line in a procedure

Reference control—the first control selected in a group of controls; this is the control whose
size and/or location you want the other selected controls to match

Startup form—the form that appears automatically when an application is started

Sub procedure—a block of code that performs a specific task

Syntax—the rules of a programming language

Toolbox—refers to the Toolbox window

Toolbox window—the window that contains the tools used when creating an interface; each tool
represents a class; referred to more simply as the toolbox

Lesson B Review Questions
1. The purpose of the control is to display text that the user is not allowed to edit

while the application is running.

a. Button

b. DisplayBox

c. Label

d. PictureBox

2. The text displayed on a button’s face is stored in the button’s property.

a. Caption

b. Label

c. Name

d. Text

3. The Format menu contains options that allow you to .

a. align two or more controls

b. center one or more controls horizontally on the form

c. make two or more controls the same size

d. all of the above

CH A P T E R 1 An Introduction to Visual Basic 2012

44

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.www.allitebooks.com

http://www.allitebooks.org

4. You can use the instruction to terminate a running application.

a. Me.Close()

b. Me.Done()

c. Me.Finish()

d. Me.Stop()

5. Define the term “syntax.”

Lesson B Exercises

1. Open the Carpenters Solution (Carpenters Solution.sln) file contained in the
VB2012\Chap01\Carpenters Solution folder. If necessary, open the designer window.

a. Change the form file’s name to Main Form.vb.

b. Change the form’s name to frmMain. Change its Font property to Segoe UI, 9pt. The
form’s title bar should say ICA; set the appropriate property. The form should be
centered on the screen when it first appears; set the appropriate property.

c. Add a label control to the form. The label should contain the text “International
Carpenters Association” (without the quotation marks); set the appropriate property.
Display the label’s text in italics using the Segoe UI, 16pt font. The label should be
located 20 pixels from the top of the form, and it should be centered horizontally on
the form.

d. Add a picture box control to the form. The control should display the image stored in
the ICA.png file, which is contained in the VB2012\Chap01 folder. Set the picture
box’s size mode to StretchImage. Change the size of the picture box to 290, 110.
Center the picture box on the form, both vertically and horizontally.

e. Add a button control to the form. Position the button in the lower-right corner of the
form. Change the button’s name to btnExit. The button should display the text “Exit”
(without the quotation marks); set the appropriate property.

f. Open the Code Editor window. Enter the Me.Close() instruction in the btnExit
control’s Click event procedure.

g. Display the Project Designer window. Verify that the name of the startup form is
frmMain. Also, use the Assembly name box to change the executable file’s name to
ICA. Close the Project Designer window.

h. Save the solution and then start the application. Use the Exit button to stop the
application. Close the Code Editor window and then close the solution.

i. Use the Run dialog box to run the project’s executable file, which is contained in the
project’s bin\Debug folder.

2. Create a Visual Basic Windows application. Use the following names for the solution and
project, respectively: Costello Solution and Costello Project. Save the application in the
VB2012\Chap01 folder. Change the form file’s name to Main Form.vb. Create the user
interface shown in Figure 1-27. The picture box should display the image stored in the
DollarSign.png file, which is contained in the VB2012\Chap01 folder. Change the form’s
Font property to Segoe UI, 9pt. You can use any font style and size for the label controls.
The form should be centered on the screen when the application is started. Code the Exit
button so that it closes the application when it is clicked. Use the Project Designer
window to verify that the name of the startup form is correct, and to change the
executable file’s name to Costello Motors. Save the solution and then start the
application. Use the Exit button to stop the application. Close the Code Editor window
and then close the solution. Use the Run dialog box to run the project’s executable file,
which is contained in the project’s bin\Debug folder.

INTRODUCTORY

INTERMEDIATE

45

Lesson B Exercises L E S SON B

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

3. Create a Visual Basic Windows application. Use the following names for the solution and
project, respectively: Tabatha Solution and Tabatha Project. Save the application in the
VB2012\Chap01 folder. Change the form file’s name to Main Form.vb. Create the user
interface shown in Figure 1-28. Change the form’s Font property to Segoe UI, 9pt. You
can use any font style and size for the label control. The form should be centered on the
screen when the application is started. Assign appropriate names to the form and button.
The picture box should display the image stored in the BandB.png file, which is
contained in the VB2012\Chap01 folder. Code the Exit button so that it closes the
application when it is clicked. Save the solution and then start the application. Use the
Exit button to stop the application. Close the Code Editor window and then close the
solution. Use the Run dialog box to run the project’s executable file, which is contained in
the project’s bin\Debug folder.

if you are using Windows 7,
your title bar text will be
left-aligned

Figure 1-28 User interface for the Tabatha’s Bed and Breakfast application

frmMain

btnExit

if you are using Windows 7,
your title bar text will be
left-aligned

Figure 1-27 User interface for the Costello Motors application

INTERMEDIATE

CH A P T E R 1 An Introduction to Visual Basic 2012

46

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

4. In this exercise, you learn about the FORMAT menu’s Align and Make Same Size
options.

a. Open the Format Solution (Format Solution.sln) file contained in the
VB2012\Chap01\Format Solution folder. If necessary, open the designer window.

b. Click the Button2 control, and then press and hold down the Ctrl (Control) key as
you click the other two button controls. Release the Ctrl key. Notice that the sizing
handles on the first button you selected (Button2) are white, while the sizing handles
on the other two buttons are black. The Align and Make Same Size options on the
FORMAT menu use the control with the white sizing handles as the reference
control when aligning and sizing the selected controls. First, you will practice with the
Align option by aligning the three buttons by their left borders. Click FORMAT,
point to Align, and then click Lefts. The left borders of the Button1 and Button3
controls are aligned with the left border of the Button2 control, which is the reference
control.

c. The Make Same Size option makes the selected objects the same height, width, or
both. Here again, the first object you select determines the size. Click the form to
deselect the three buttons. Click Button1, Ctrl+click Button2, and then Ctrl+click
Button3. Click FORMAT, point to Make Same Size, and then click Both. The height
and width of the Button2 and Button3 controls now match the height and width of
the reference control (Button1).

d. Click the form to deselect the buttons. Save and then close the solution.

DISCOVERY

47

Lesson B Exercises L E S SON B

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

& LESSON C
After studying Lesson C, you should be able to:

l Set the properties of a timer control

l Delete a control from the form

l Delete code from the Code Editor window

l Code a timer control’s Tick event procedure

l Prevent the user from sizing a form

l Remove and/or disable a form’s Minimize, Maximize, and Close buttons

l Print an application’s code and interface

Using the Timer Tool
In Lesson B, you added an Exit button to the splash screen created for the Red Tree Inn. Splash
screens usually do not contain an Exit button. Instead, they use a timer control to automatically
remove themselves from the screen after a set period of time. In this lesson, you will remove the
Exit button from the splash screen and replace it with a timer control.

To open the Splash Solution from Lesson B:

1. If necessary, start Visual Studio 2012 and open the Solution Explorer window.

2. Open the Splash Solution (Splash Solution.sln) file contained in the VB2012\Chap01\Splash
Solution folder. If necessary, open the designer window.

3. Permanently display the Properties and Toolbox windows and then auto-hide the
Solution Explorer window.

You instantiate a timer control using the Timer tool, which is located in the Components
section of the toolbox. When you drag the Timer tool to the form and then release the mouse
button, the timer control will be placed in the component tray rather than on the form. The
component tray is a special area of the IDE. Its purpose is to store controls that do not appear in
the user interface during run time, which occurs while an application is running. In other words,
the timer will not be visible to the user when the interface appears on the screen.

The purpose of a timer control is to process code at one or more regular intervals. The length
of each interval is specified in milliseconds and entered in the timer’s Interval property. A
millisecond is 1 ⁄ 1000 of a second; in other words, there are 1000 milliseconds in a second.
The timer’s state—either running or stopped—is determined by its Enabled property, which can
be set to either the Boolean value True or the Boolean value False. When its Enabled property is
set to True, the timer is running; when it is set to False, the timer is stopped. If the timer is
running, its Tick event occurs each time an interval has elapsed. Each time the Tick event
occurs, the computer processes any code contained in the Tick event procedure. If the timer is
stopped, the Tick event does not occur and, therefore, any code entered in the Tick event
procedure is not processed.

To add a timer control to the splash screen:

1. If necessary, expand the Components node in the toolbox. Click the Timer tool and
then drag the mouse pointer to the form. (Do not worry about the exact location.) When
you release the mouse button, a timer control appears in the component tray at the
bottom of the IDE.

The Ch01C
video
demonstrates
all of the

steps contained in
Lesson C. You can view
the video either before
or after completing
the lesson.

The Boolean
values (True and
False) are named
after the English
mathematician
George Boole.

START HERE

START HERE

CH A P T E R 1 An Introduction to Visual Basic 2012

48

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

2. The three-character ID used when naming timer controls is tmr. Change the timer’s
name to tmrExit, and then set its Enabled property to True.

3. You will have the timer end the application after six seconds, which are 6000
milliseconds. Set the timer’s Interval property to 6000 and press Enter. See Figure 1-29.

You no longer need the Exit button, so you can delete it and its associated code. You then will
enter the Me.Close() instruction in the timer’s Tick event procedure.

To delete the Exit button and its code, and then code and test the timer:

1. Auto-hide the Toolbox and Properties windows. Click the Exit button to select it and
then press Delete to delete the control from the form.

2. Deleting a control from the form does not delete the control’s code, which remains in
the Code Editor window. Open the Code Editor window by right-clicking the form and
then clicking View Code. Select (highlight) the entire Click event procedure for the
btnExit control, including the blank line above the procedure, as shown in Figure 1-30.

component tray

timer controlTimer tool

Figure 1-29 Timer control placed in the component tray
Photo courtesy of Diane Zak

highlight (select) the
entire Click event
procedure, including
the blank line above
the procedure

Figure 1-30 Exit button’s Click event procedure selected in the Code Editor window

START HERE

49

Using the Timer Tool L E S SON C

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

3. Press Delete to delete the selected code from the Code Editor window.

4. Use the Class Name and Method Name list boxes to open the code template for the
tmrExit control’s Tick event procedure. Type Me.Close() and press Enter.

5. Save the solution and then start the application. The splash form appears on the
screen.

6. Place your mouse pointer on the form’s right border until it becomes a horizontal sizing
pointer, and then drag the form’s border to the left. Notice that you can change the
form’s size during run time. Typically, a user is not allowed to change the size of a splash
screen. You can prevent the user from sizing the form by changing the form’s
FormBorderStyle property, which you will do in the next section.

7. When six seconds have elapsed, the application ends and the splash form disappears.
Click the Splash Form.vb [Design] tab to make the designer window the active
window.

Setting the FormBorderStyle Property
A form’s FormBorderStyle property determines the border style of the form. For most
applications, you will leave the property at its default setting, Sizable. Doing this allows the user
to change the form’s size by dragging its borders while the application is running. When a form
represents a splash screen, however, you typically set the FormBorderStyle property to either
None or FixedSingle. The None setting removes the form’s border, whereas the FixedSingle
setting draws a fixed, thin line around the form.

To change the FormBorderStyle property:

1. Click the form’s title bar to select the form. Temporarily display the Properties window,
and then set the FormBorderStyle property to FixedSingle.

2. Save the solution and then start the application. Try to size the form by dragging one of
its borders. You will notice that you cannot size the form using its border.

3. When six seconds have elapsed, the application ends. Start the application again. Notice
that the splash screen’s title bar contains a Minimize button, a Maximize button, and a
Close button. As a general rule, most splash screens do not contain these elements. You
will learn how to remove the elements, as well as the title bar itself, in the next section.
Here again, the application ends after six seconds have elapsed.

The MinimizeBox, MaximizeBox, and ControlBox Properties
You can use a form’s MinimizeBox property to disable the Minimize button that appears on
the form’s title bar. Similarly, you can use the MaximizeBox property to disable the Maximize
button. You will experiment with both properties in the next set of steps.

To experiment with the MinimizeBox and MaximizeBox properties:

1. If necessary, click the form’s title bar to select the form. First, you will disable the
Minimize button. Temporarily display the Properties window, and then set the
form’s MinimizeBox property to False. Notice that the Minimize button appears
dimmed (grayed-out) on the title bar. This indicates that the button is not available
for use.

2. Now you will enable the Minimize button and disable the Maximize button. Set the
MinimizeBox property to True, and then set the MaximizeBox property to False. Now
only the Maximize button appears dimmed (grayed-out) on the title bar.

START HERE

START HERE

The horizontal
sizing pointer
looks like this:

.

CH A P T E R 1 An Introduction to Visual Basic 2012

50

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

3. Now observe what happens if both the MinimizeBox and MaximizeBox properties are
set to False. Set the MinimizeBox property to False. (The MaximizeBox property is
already set to False.) Notice that when both properties are set to False, the buttons are
not disabled; instead, they are removed from the title bar.

4. Now return the buttons to their original state by setting the form’s MinimizeBox and
MaximizeBox properties to True.

Unlike most applications, splash screens typically do not contain a title bar. You can remove the
title bar by setting the form’s ControlBox property to False, and then removing the text from its
Text property. You will try this next.

To remove the title bar from the splash screen:

1. Set the form’s ControlBox property to False. Doing this removes the title bar elements
(icon and buttons) from the form; however, it does not remove the title bar itself.
To remove the title bar, you must delete the contents of the form’s Text property. Select
the text in the Text property. Press Delete and then press Enter.

2. Save the solution and then start the application. The splash screen appears without a title
bar. See Figure 1-31. The application ends after six seconds have elapsed.

Printing the Application’s Code and Interface
You should always print a copy of your application’s code because the printout will help you
understand and maintain the application in the future. To print the code, the Code Editor
window must be the active (current) window. You also should print a copy of the application’s
user interface.

To print the splash screen’s interface and code:

1. The designer window should be the active window. Tap the Print Screen (Prnt Scrn or
PrtSc) key on your keyboard; doing this places a picture of the interface on the
Clipboard. Start Microsoft Word (or any application that can display a picture) and open
a new document (if necessary). Press Ctrl+v to paste the contents of the Clipboard in the
document. If your computer is connected to a printer, use the application to print the
document. Close Microsoft Word (or the application you used to display the picture)
without saving the document.

Figure 1-31 Completed splash screen
Photo courtesy of Diane Zak

You will learn
more about
splash screens
(such as how to
round their

corners) in this lesson’s
Discovery Exercises 4, 5,
and 6.

START HERE

START HERE

51

Printing the Application’s Code and Interface L E S SON C

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Note: If the Print Screen key does not work on your computer, you may be able to use
the Windows Snipping Tool to take a picture of your interface and then save the picture
to a file for printing. See the Ch01C-Snipping Tool video.

2. Click the Splash Form.vb tab to make the Code Editor window the active window.
Click FILE on the menu bar, and then click Print to open the Print dialog box.
See Figure 1-32. Notice that you can include line numbers in the printout. You also
can choose to hide the collapsed regions of code. Currently, the Hide collapsed regions
check box is grayed-out because no code is collapsed in the Code Editor window.

3. If your computer is connected to a printer, click theOK button to begin printing; otherwise,
click the Cancel button. If you clicked the OK button, your printer prints the code.

4. Close the Code Editor window and then close the solution.

Lesson C Summary
l To process code at specified intervals of time:

Use the Timer tool to instantiate a timer control. Set the timer’s Interval property to the
number of milliseconds for each interval. Turn on the timer by setting its Enabled property
to True. Enter the timer’s code in its Tick event procedure.

l To delete a control:

Select the control you want to delete and then press Delete. If the control contains code, open
the Code Editor window and delete the code contained in the control’s event procedures.

allows you to include line
numbers in the printout

dimmed (grayed-out) because
no code is collapsed in the
Code Editor window

Figure 1-32 Print dialog box

Ch01C-
Snipping
Tool

CH A P T E R 1 An Introduction to Visual Basic 2012

52

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

l To control the border style of the form:

Set the form’s FormBorderStyle property.

l To enable/disable the Minimize button on the form’s title bar:

Set the form’s MinimizeBox property.

l To enable/disable the Maximize button on the form’s title bar:

Set the form’s MaximizeBox property.

l To control whether the icon and buttons appear in the form’s title bar:

Set the form’s ControlBox property.

l To print the user interface:

Make the designer window the active window. Tap the Print Screen (Prnt Scrn or PrtSc)
key. Start an application that can display a picture (such as Microsoft Word) and open a
new document (if necessary). Press Ctrl+v to paste the contents of the Clipboard in
the document. Use the application to print the document. Close the application you used
to display the picture.

l To print the Visual Basic code:

Make the Code Editor window the active window. Collapse any code you do not want to print.
Click FILE on the menu bar and then click Print. If you don’t want to print the collapsed code,
select the Hide collapsed regions check box. If you want to print line numbers, select the
Include line numbers check box. Click the OK button in the Print dialog box.

Lesson C Key Terms
Component tray—a special area in the IDE; stores controls that do not appear in the interface
during run time

Run time—the state of an application while it is running

Timer control—the control used to process code at one or more regular intervals

Lesson C Review Questions
1. If a timer is running, the code in its event procedure is processed each time an

interval has elapsed.

a. Interval

b. Tick

c. Timed

d. Timer

2. Which of the following is false?

a. When you add a timer control to a form, the control appears in the component tray.

b. The user can see a timer control during run time.

c. You stop a timer by setting its Enabled property to False.

d. The number entered in a timer’s Interval property represents the number of
milliseconds for each interval.

53

Lesson C Review Questions L E S SON C

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

3. To disable the Minimize button on a form’s title bar, set the form’s property to
False.

a. ButtonMinimize

b. Minimize

c. MinimizeBox

d. MinimizeButton

4. You can remove the Minimize, Maximize, and Close buttons from a form’s title bar by
setting the form’s property to False.

a. ControlBox

b. ControlButton

c. TitleBar

d. TitleBarElements

5. Explain how you delete a control that contains code.

Lesson C Exercises

1. In this exercise, you modify an existing form by replacing its Exit button with a timer.

a. Open the Williams Solution (Williams Solution.sln) file contained in the
VB2012\Chap01\Williams Solution folder. If necessary, open the designer window.

b. Delete the Exit button from the form and then delete the button’s code from the
Code Editor window.

c. Return to the designer window. Add a timer control to the form. Change the timer’s
name to tmrExit. Set the timer’s Enabled property to True. The timer should end the
application after eight seconds have elapsed; set the appropriate property. Enter the
Me.Close() instruction in the appropriate event procedure in the Code Editor
window.

d. Save the solution and then start the application. When eight seconds have elapsed,
the application ends.

e. Set the form’s FormBorderStyle property to FixedSingle. Also, remove the elements
(icon and buttons) and text from the form’s title bar.

f. Save the solution and then start the application. Close the Code Editor window and
then close the solution.

2. Create a Visual Basic Windows application. Use the following names for the solution
and project, respectively: Faces Solution and Faces Project. Save the application in the
VB2012\Chap01 folder. Change the form file’s name to Main Form.vb. Create the
interface shown in Figure 1-33. The picture boxes should display the images stored in the
Face1.png and Face2.png files, which are contained in the VB2012\Chap01 folder.
Include a timer that ends the application after five seconds have elapsed. Save the
solution and then start the application. Now, remove the icon and buttons from the
form’s title bar. Also, use the Project Designer window to change the executable file’s
name to Faces. Save the solution and then start the application. Close the Code Editor
window and then close the solution. Use the Run dialog box in Windows to run the
Faces.exe file, which is contained in the project’s bin\Debug folder.

INTRODUCTORY

INTERMEDIATE

CH A P T E R 1 An Introduction to Visual Basic 2012

54

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

3. Create a Visual Basic Windows application. Name the solution, project, and form file
My Splash Solution, My Splash Project, and Splash Form.vb. Save the application in the
VB2012\Chap01 folder. Create your own splash screen. Save the solution and then
start the application. Close the Code Editor window and then close the solution.

4. The Internet contains a vast amount of code snippets that you can use in your Visual
Basic applications. And in many cases, you can use the snippet without fully
understanding each line of its code. In this exercise, you will use a code snippet that
rounds the corners on a splash screen.

a. Open the Rounded Corners Solution (Rounded Corners Solution.sln) file contained in
the VB2012\Chap01\Rounded Corners Solution folder. If necessary, open the
designer window.

b. For the code snippet to work properly, the splash screen cannot have a border.
Therefore, change the form’s FormBorderStyle property to None.

c. Change the form’s BackColor property to black.

d. Save the application and then start the solution. Notice that the splash screen
contains the standard corners, which are not rounded. Click the Exit button to end
the application.

e. Open the Code Editor window. Select (highlight) the lines of code contained in the
form’s Load event procedure, which is processed when the application is run and the
form is loaded into the computer’s internal memory. See Figure 1-34.

if you are using Windows 7,
your title bar text will be
left-aligned

Figure 1-33 Interface for the Faces application

INTERMEDIATE

DISCOVERY

55

Lesson C Exercises L E S SON C

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

f. Click the Uncomment the selected lines button on the Standard toolbar. (Refer to
Figure 1-34 for the button’s location.) Save the solution and then start the application.
The splash screen now has rounded corners. See Figure 1-35.

Figure 1-35 Splash screen with rounded corners

Uncomment the
selected lines button

Figure 1-34 Form’s Load event procedure selected in the Code Editor window

CH A P T E R 1 An Introduction to Visual Basic 2012

56

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

g. Click the Exit button to end the application. Close the Code Editor window and then
close the solution.

5. In this exercise, you will create a splash screen that has a transparent background.

a. Open the Petal Solution (Petal Solution.sln) file contained in the VB2012\Chap01\Petal
Solution folder. If necessary, open the designer window.

b. Add a picture box control to the form. The picture box should display the image
stored in the PetalShop.png file, which is contained in the VB2012\Chap01 folder. Set
the picture box’s size mode to StretchImage. Set its name property to picPetal.
Position and size the picture box as shown in Figure 1-36.

c. Click the form’s title bar to select the form. Set the form’s FormBorderStyle property
to None.

d. Click TransparencyKey in the Properties window. The TransparencyKey property
determines the color that will appear transparent when the application is run. For
example, you can make the form transparent by setting its TransparencyKey property
to the same color as its BackColor property. Click the TransparencyKey property’s list
arrow, then click the System tab, and then click Control.

e. Open the Code Editor window. Open the code template for the picPetal control’s
Click event procedure. Type Me.Close() and press Enter.

f. Save the solution and then start the application. Because the color specified in the
form’s BackColor property is the same as the color specified in the TransparencyKey
property, the form appears transparent. As a result, the splash screen shows only the
image contained in the picture box. See Figure 1-37.

Figure 1-36 Correct location and size of picture box

DISCOVERY

57

Lesson C Exercises L E S SON C

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

g. Click the picture box to end the application. Close the Code Editor window and then
close the solution.

6. In this exercise, you will learn how to display a splash screen followed by another form.

a. Open the Two Form Solution (Two Form Solution.sln) file contained in the VB2012\
Chap01\Two Form Solution folder. If necessary, open the Solution Explorer and
designer windows. Notice that the project contains one form named Splash Form.vb.

b. Now you will add a new form to the project. Click PROJECT on the menu bar, then
click Add Windows Form, and then click the Add button. Change the new form file’s
name to Main Form.vb. Change the form’s name to frmMain, and then set its
StartPosition property to CenterScreen. Also set its Text property to Main Form.

c. Right-click My Project in the Solution Explorer window and then click Open. Change
the entry in the Startup form box to frmMain. Change the entry in the Splash screen
box to frmSplash. Close the Project Designer window.

d. Save the solution and then start the application. The splash screen (frmSplash)
appears first. After a few seconds, the splash screen disappears automatically and
the startup form (frmMain) appears. Click the Close button on the startup form’s title
bar, and then close the solution.

7. In this exercise, you learn how to display a tooltip. Open the ToolTip Solution (ToolTip
Solution.sln) file contained in the VB2012\Chap01\ToolTip Solution folder. If necessary,
open the designer window. Click the ToolTip tool in the toolbox and then drag the tool
to the form. Notice that a tooltip control appears in the component tray rather than on
the form. Set the btnExit control’s ToolTip on ToolTip1 property to “Ends the
application” (without the quotation marks). Save the solution and then start the
application. Hover your mouse pointer over the Exit button. The tooltip “Ends the
application” appears in a tooltip box. Click the Exit button and then close the solution.

8. Open the Debug Solution (Debug Solution.sln) file contained in the VB2012\Chap01\Debug
Solution folder. If necessary, open the designer window. Start the application. The
application is not working correctly because the splash screen does not disappear after four
seconds have elapsed. Click DEBUG on themenu bar and then click Stop Debugging. Locate
and then correct the error(s). Save the solution and then start the application again to verify
that it is working correctly. Close the Code Editor window and then close the solution.

Figure 1-37 Splash screen with a transparent background

SWAT THE BUGS

DISCOVERY

DISCOVERY

CH A P T E R 1 An Introduction to Visual Basic 2012

58

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 2
Designing Applications

Creating the Play It Again Movies Application

In this chapter, you create an application that prints a sales receipt for
Play It Again Movies, a small store that sells used movies in both DVD
and Blu-ray format. The DVD and Blu-ray discs sell for $7 each. The
application will allow the salesclerk to enter the current date and the
number of DVDs and Blu-rays sold to a customer. It then will calculate
and display the total number of discs sold and the total sales amount.

All Microsoft screenshots used with permission from Microsoft Corporation.

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Previewing the Play It Again Movies Application
Before you start the first lesson in this chapter, you will preview the completed application.
The application is contained in the VB2012\Chap02 folder.

To preview the completed application:

1. Use the Run dialog box to run the Play It Again (Play It Again.exe) file contained in
the VB2012\Chap02 folder. The interface shown in Figure 2-1 appears on the screen.
(The image in the picture box was downloaded from the Open Clip Art Library at
http://openclipart.org.) In addition to the picture box, label, and button controls that you
learned about in Chapter 1, the interface contains three text boxes. A text box gives a
user an area in which to enter data.

Note: If the underlined letters, called access keys, do not appear on your screen, press
the Alt key on your keyboard. You will learn about access keys in Lesson B.

2. The insertion point is located in the first text box. The label control to the left of the
text box identifies the information the user should enter. Type 11/15/2014 as the date,
and then press Tab twice to move the insertion point to the Blu-rays text box.

3. Type 5 in the Blu-rays box and then press Shift+Tab (press and hold down the Shift key
as you tap the Tab key) to move the insertion point to the DVDs text box.

4. Type 3 in the DVDs box and then click the Calculate button. The button’s Click event
procedure calculates and displays the total number of discs sold (8) and the total sales
($56.00).

5. Click the Blue-rays text box. Change the number 5 in the box to 2, and then click the
Calculate button. The button’s Click event procedure recalculates the total number of
discs sold (5) and the total sales ($35.00). See Figure 2-2.

label

text box

Figure 2-1 Play It Again Movies interface
OpenClipArt.org/John Diamond / diamonjohn

To open the Run
dialog box,
press and hold
down the
Windows logo

key as you tap the letter
r, and then release the
logo key.

START HERE

CH A P T E R 2 Designing Applications

60

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

6. Click the Print Receipt button. The sales receipt appears in the Print preview window.
(It may take a few seconds for the window to open.) Click the Zoom button’s list arrow
and then click 75%. If necessary, size the Print preview window to view the entire sales
receipt. See Figure 2-3.

7. If your computer is connected to a printer, click the Print button (the printer) on the
Print preview window’s toolbar to send the output to the printer.

8. Click the Close button on the Print preview window’s toolbar.

9. Click the Clear Screen button to remove the sales information (except the date) from
the form, and then click the Exit button to end the application.

The Play It Again Movies application is an object-oriented program because it uses objects (such
as buttons and text boxes) to accomplish its goal. In Lesson A, you will learn how a programmer
plans an object-oriented program. You will create the Play It Again Movies application in
Lessons B and C. Be sure to complete each lesson in full and do all of the end-of-lesson
questions and several exercises before continuing to the next lesson.

Print button Zoom button

Figure 2-3 Print preview window
OpenClipArt.org/John Diamond / diamonjohn

Figure 2-2 Completed sales receipt
OpenClipArt.org/John Diamond / diamonjohn

Previewing the Play It Again Movies Application

61

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

& LESSON A
After studying Lesson A, you should be able to:

l Plan an object-oriented Windows application in Visual Basic 2012

l Complete a TOE (Task, Object, Event) chart

l Follow the Windows standards regarding the layout and labeling of controls

Creating an Object-Oriented Application
As Figure 2-4 indicates, the process a programmer follows when creating an object-oriented
(OO) application is similar to the process a builder follows when building a home. Like a builder,
a programmer first meets with the client to discuss the client’s wants and needs; both then
create a plan for the project. After the client approves the plan, the builder builds the home’s
frame, whereas the programmer builds the user interface, which is the application’s frame. Once
the frame is built, the builder completes the home by adding the electrical wiring, walls, and so
on. The programmer, on the other hand, completes the application by adding the necessary
code to the user interface. When the home is complete, the builder makes a final inspection and
corrects any problems before the customer moves in. Similarly, the programmer tests the
completed application and fixes any problems, called bugs, before releasing the application to
the user. The final step in both processes is to assemble the project’s documentation
(paperwork), which then is given to the customer/user.

A builder’s process A programmer’s process
1. Meet with the client 1. Meet with the client
2. Plan the home (blueprint) 2. Plan the application (TOE chart)
3. Build the frame 3. Build the user interface
4. Complete the home 4. Code the application
5. Inspect the home and fix any problems 5. Test and debug the application
6. Assemble the documentation 6. Assemble the documentation

Figure 2-4 Processes used by a builder and a programmer
© 2013 Cengage Learning

You will learn how to plan an OO application in this lesson. Steps three through six of the
process are covered in Lessons B and C.

Planning an Object-Oriented Application
As any builder will tell you, the most important aspect of a home is not its beauty. Rather, it is
how closely the home matches the buyer’s wants and needs. The same is true of an OO
application. For an application to fulfill the wants and needs of the user, it is essential for the
programmer to plan the application jointly with the user. It cannot be stressed enough that the
only way to guarantee the success of an application is to actively involve the user in the planning
phase. The steps for planning an OO application are listed in Figure 2-5.

CH A P T E R 2 Designing Applications

62

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Planning an OO application

1. Identify the tasks the application needs to perform
2. Identify the objects to which you will assign the tasks
3. Identify the events required to trigger an object into performing its assigned tasks
4. Draw a sketch of the user interface

Figure 2-5 Steps for planning an OO application
© 2013 Cengage Learning

You can use a TOE (Task, Object, Event) chart to record the application’s tasks, objects, and
events, which are identified in the first three steps of the planning phase. In the next section, you
begin completing a TOE chart for the Play It Again Movies application. The first step is to
identify the application’s tasks.

Identifying the Application’s Tasks
Realizing that it is essential to involve the user when planning the application, you meet with the
store manager of Play It Again Movies, Ms. Kranz, to determine her requirements. You ask Ms.
Kranz to bring a sample of the store’s current sales receipt; the sample is shown in Figure 2-6.
Viewing a store’s (or company’s) current forms and procedures will help you gain a better
understanding of the application you need to create. You also can use the current form as a
guide when designing the user interface.

When identifying the major tasks an application needs to perform, it is helpful to ask the
questions italicized in the following bulleted items. The answers pertaining to the Play It Again
Movies application follow each question.

l What information will the application need to display on the screen and/or print on the
printer? The application should display and also print the following information: the date,
the number of DVDs sold, the number of Blu-rays sold, the total number of discs sold, and
the total sales amount.

l What information will the user need to enter into the user interface to display and/or print the
desired information? The salesclerk (the user) must enter the date, the number of DVDs
sold, and the number of Blu-rays sold.

l What information will the application need to calculate to display and/or print the desired
information? The application needs to calculate the total number of discs sold and the total
sales amount.

Date: 5/2/2014

DVDs: 2

Blu-rays: 3

Total discs: 5

Total sales: $35.00

Play It Again Movies
Sales Receipt

Figure 2-6 Sample of the store’s current sales receipt
© 2013 Cengage Learning

Planning an Object-Oriented Application L E S S ON A

63

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

l How will the user end the application? All applications should provide a way for the user
to end the application. The Play It Again Movies application will use an Exit button for
this task.

l Will previous information need to be cleared from the screen before new information is
entered? The sales information will need to be cleared from the screen before the next
customer’s sales information is entered.

Figure 2-7 shows the application’s tasks listed in a TOE chart. The tasks do not need to be
listed in any particular order. In this case, the data entry tasks are listed first, followed by the
calculation tasks, the display and printing tasks, the application ending task, and the screen
clearing task.

Task Object Event
Get the following sales information from the user:
Current date
Number of DVDs sold
Number of Blu-rays sold

Calculate total discs sold and total sales amount

Display the following information:
Current date
Number of DVDs sold
Number of Blu-rays sold
Total discs sold
Total sales amount

Print the sales receipt

End the application

Clear screen for the next sale

Figure 2-7 Tasks entered in a TOE chart
© 2013 Cengage Learning

Identifying the Objects
After completing the Task column of the TOE chart, you then assign each task to an object in
the user interface. For this application, the only objects you will use besides the Windows form
itself are the button, label, and text box controls. As you already know, you use a label to display
information that you do not want the user to change while the application is running, and you
use a button to perform an action immediately after the user clicks it. You use a text box to give
the user an area in which to enter data.

The first task listed in Figure 2-7 is to get the sales information from the user. For each order,
the salesclerk will need to enter the current date, the number of DVDs sold, and the number of
Blu-rays sold. Because you need to provide the salesclerk with areas in which to enter the
information, you will assign the first task to three text boxes—one for each item of information.
The three-character ID used when naming text boxes is txt, so you will name the text boxes
txtDate, txtDvd, and txtBluRay.

The second task listed in the TOE chart is to calculate both the total number of discs sold and
the total sales amount. So that the salesclerk can calculate these amounts at any time, you will
assign the task to a button named btnCalc.

You can draw a
TOE chart by
hand or use the
table feature in a
word processor

(such as Microsoft Word).

CH A P T E R 2 Designing Applications

64

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

The third task listed in the TOE chart is to display the sales information along with the
total number of discs sold and the total sales amount. The sales information is displayed
automatically when the user enters that information in the three text boxes. The total discs
sold and total sales amount, however, are not entered by the user. Instead, those amounts are
calculated by the btnCalc control. Because the user should not be allowed to change the
calculated results, you will have the btnCalc control display the total discs sold and total
sales amount in two label controls named lblTotalDiscs and lblTotalSales. If you look ahead
to Figure 2-8, you will notice that “(from btnCalc)” was added to the Task column for both
display tasks.

The fourth task listed in the TOE chart is to print the sales receipt. Here again, you will assign
the task to a button so that the salesclerk has control over when the sales receipt is printed. You
will name the button btnPrint.

The last two tasks listed in the TOE chart are “End the application” and “Clear screen for the
next sale.” You will assign the tasks to buttons named btnExit and btnClear; doing this gives the
user control over when the tasks are performed. Figure 2-8 shows the TOE chart with the Task
and Object columns completed.

Task Object Event
Get the following sales information from the user:
Current date txtDate
Number of DVDs sold txtDvds
Number of Blu-rays sold txtBluRays

Calculate total discs sold and total sales amount btnCalc

Display the following information:
Current date txtDate
Number of DVDs sold txtDvds
Number of Blu-rays sold txtBluRays
Total discs sold (from btnCalc) lblTotalDiscs
Total sales amount (from btnCalc) lblTotalSales

Print the sales receipt btnPrint

End the application btnExit

Clear screen for the next sale btnClear

Figure 2-8 Tasks and objects entered in a TOE chart
© 2013 Cengage Learning

Identifying the Events
After defining the application’s tasks and assigning the tasks to objects in the interface, you then
determine which event (if any) must occur for an object to carry out its assigned task. The three
text boxes listed in the TOE chart in Figure 2-8 are assigned the task of getting and displaying the
sales information. Text boxes accept and display information automatically, so no special event is
necessary for them to do their assigned task. The two label controls listed in the TOE chart are
assigned the task of displaying the total number of discs sold and the total sales amount. Label
controls automatically display their contents; so, here again, no special event needs to occur.
(Recall that the two label controls will get their values from the btnCalc control.) The remaining
objects listed in the TOE chart are the four buttons. You will have the buttons perform their
assigned tasks when the user clicks them. Figure 2-9 shows the completed TOE chart.

Planning an Object-Oriented Application L E S S ON A

65

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Task Object Event
Get the following sales information from the user:
Current date txtDate None
Number of DVDs sold txtDvds None
Number of Blu-rays sold txtBluRays None

Calculate total discs sold and total sales amount btnCalc Click

Display the following information:
Current date txtDate None
Number of DVDs sold txtDvds None
Number of Blu-rays sold txtBluRays None
Total discs sold (from btnCalc) lblTotalDiscs None
Total sales amount (from btnCalc) lblTotalSales None

Print the sales receipt btnPrint Click

End the application btnExit Click

Clear screen for the next sale btnClear Click

Figure 2-9 Completed TOE chart ordered by task
© 2013 Cengage Learning

If the application you are creating is small, as is the Play It Again Movies application, you can
use the TOE chart in its current form to help you write the Visual Basic code. When the
application is large, however, it is often helpful to rearrange the TOE chart so that it is ordered
by object rather than by task. To do so, you list all of the objects in the Object column of a new
TOE chart, being sure to list each object only once. Then list each object’s tasks and events in
the Task and Event columns, respectively. Figure 2-10 shows the rearranged TOE chart ordered
by object rather than by task.

Task Object Event
1. Calculate total discs sold and total sales amount btnCalc Click

2. Display total discs sold and total sales amount
in lblTotalDiscs and lblTotalSales

Print the sales receipt btnPrint Click

End the application btnExit Click

Clear screen for the next sale btnClear Click

Display total discs sold (from btnCalc) lblTotalDiscs None

Display total sales amount (from btnCalc) lblTotalSales None

Get and display the sales information txtDate, txtDvds, None
txtBluRays

Figure 2-10 Completed TOE chart ordered by object
© 2013 Cengage Learning

After completing the TOE chart, the next step is to draw a rough sketch of the user interface.

CH A P T E R 2 Designing Applications

66

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Drawing a Sketch of the User Interface
Although the TOE chart lists the objects to include in the interface, it does not indicate where
the objects should be placed on the form. While the design of an interface is open to creativity,
there are some guidelines to which you should adhere so that your interface is consistent with
the Windows standards. This consistency will give your interface a familiar look, which will
make your application easier to both learn and use. The guidelines are referred to as GUI
(graphical user interface) guidelines.

The first GUI guideline covered in this book pertains to the organization of the controls in the
interface. In Western countries, the user interface should be organized so that the information
flows either vertically or horizontally, with the most important information always located in the
upper-left corner of the interface. In a vertical arrangement, the information flows from top to
bottom: the essential information is located in the first column of the interface, while secondary
information is placed in subsequent columns. In a horizontal arrangement, on the other hand,
the information flows from left to right: the essential information is placed in the first row of the
interface, with secondary information placed in subsequent rows.

Related controls should be grouped together using either white (empty) space or one of the tools
located in the Containers section of the toolbox. Examples of tools found in the Containers
section include the GroupBox, Panel, and TableLayoutPanel tools. The difference between a
panel and a group box is that, unlike a group box, a panel can have scroll bars. However, unlike a
panel, a group box has a Text property that you can use to indicate the contents of the control.
Unlike the panel and group box controls, the table layout panel control provides a table
structure in which you place other controls.

Figures 2-11 and 2-12 show two different sketches of the Play It Again Movies interface.
In Figure 2-11 the information is arranged vertically, and white space is used to group related
controls together. In Figure 2-12 the information is arranged horizontally, with related
controls grouped together using a group box. Each box and button in both figures is labeled so
the user knows its purpose. For example, the “Date:” label tells the user the type of information
to enter in the box that appears to its right. Similarly, the “Calculate” caption on the first button
indicates the action the button will perform when it is clicked.

Play button
image

Sales Receipt

Date:
DVDs:
Blu-rays:

Total discs:
Total sales:

Calculate

Print Receipt

Clear Screen

Exit

Figure 2-11 Vertical arrangement of the Play It Again Movies application
© 2013 Cengage Learning

Some
companies have
their own
standards for
interfaces used

within the company. A
company’s standards
supersede the Windows
standards.

The Ch02A-
Containers
video
demonstrates

how to use the group box,
panel, and table layout
panel controls.

Planning an Object-Oriented Application L E S S ON A

67

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Most times, program output (such as the result of calculations) is displayed in a label control in
the interface. Label controls that display program output should be labeled to make their
contents obvious to the user. In the interfaces shown in Figures 2-11 and 2-12, the “Total discs:”
and “Total sales:” labels identify the contents of the lblTotalDiscs and lblTotalSales controls,
respectively.

The text contained in an identifying label should be meaningful and left-aligned within the label.
In most cases, an identifying label should be from one to three words only and appear on one
line. In addition, the identifying label should be positioned either above or to the left of the
control it identifies. An identifying label should end with a colon (:), which distinguishes it from
other text in the user interface (such as the heading text “Sales Receipt”). Some assistive
technologies, which are technologies that provide assistance to individuals with disabilities, rely
on the colons to make this distinction. The Windows standard is to use sentence capitalization
for identifying labels. Sentence capitalization means you capitalize only the first letter in the
first word and in any words that are customarily capitalized.

As you learned in Chapter 1, buttons are identified by the text that appears on the button’s face.
The text is often referred to as the button’s caption. The caption should be meaningful, be from
one to three words only, and appear on one line. A button’s caption should be entered using
book title capitalization, which means you capitalize the first letter in each word, except for
articles, conjunctions, and prepositions that do not occur at either the beginning or end of the
caption. If the buttons are stacked vertically, as they are in Figure 2-11, all the buttons should be
the same height and width. If the buttons are positioned horizontally, as they are in Figure 2-12,
all the buttons should be the same height, but their widths may vary if necessary. In a group of
buttons, the most commonly used button typically appears first—either on the top (in a vertical
arrangement) or on the left (in a horizontal arrangement).

When positioning the controls in the interface, place related controls close to each other and be
sure to maintain a consistent margin from the edges of the form. Also, it’s helpful to align the
borders of the controls wherever possible to minimize the number of different margins
appearing in the interface. Doing this allows the user to more easily scan the information. You
can align the borders using the snap lines that appear as you are building the interface. Or, you
can use the FORMAT menu to align (and also size) the controls.

In this lesson you learned some basic guidelines to follow when sketching a graphical user
interface (GUI). You will learn more GUI guidelines in the remaining lessons and in subsequent
chapters. You can find a complete list of the GUI guidelines in Appendix B of this book.

Play button
image

Sales Receipt

Date: DVDs: Blu-rays:

Total discs: Total sales:

Calculate Print Receipt Clear Screen Exit

Sales information

Figure 2-12 Horizontal arrangement of the Play It Again Movies application
© 2013 Cengage Learning

CH A P T E R 2 Designing Applications

68

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

GUI DESIGN TIP Layout and Organization of the User Interface

l Organize the user interface so that the information flows either vertically or
horizontally, with the most important information always located in the upper-left
corner of the interface.

l Group related controls together using either white (empty) space or one of the tools
from the Containers section of the toolbox.

l Use a label to identify each text box in the user interface. Also use a label to identify
other label controls that display program output. The label text should be meaningful,
be from one to three words only, and appear on one line. Left-align the text within the
label, and position the label either above or to the left of the control it identifies. Enter
the label text using sentence capitalization, and follow the label text with a colon (:).

l Display a meaningful caption on the face of each button. The caption should indicate
the action the button will perform when clicked. Enter the caption using book title
capitalization. Place the caption on one line and use from one to three words only.

l When a group of buttons are stacked vertically, each button in the group should be
the same height and width. When a group of buttons are positioned horizontally, each
button in the group should be the same height. In a group of buttons, the most
commonly used button is typically placed first in the group.

l Align the borders of the controls wherever possible to minimize the number of
different margins appearing in the interface.

Lesson A Summary
l To create an OO application:

1. Meet with the client

2. Plan the application

3. Build the user interface

4. Code the application

5. Test and debug the application

6. Assemble the documentation

l To plan an OO application in Visual Basic 2012:

1. Identify the tasks the application needs to perform

2. Identify the objects to which you will assign the tasks

3. Identify the events required to trigger an object into performing its assigned tasks

4. Draw a sketch of the user interface

l To assist you in identifying the major tasks an application needs to perform, ask the
following questions:

1. What information will the application need to display on the screen and/or print on the
printer?

2. What information will the user need to enter into the user interface to display and/or
print the desired information?

Lesson A Summary L E S S ON A

69

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

3. What information will the application need to calculate to display and/or print the
desired information?

4. How will the user end the application?

5. Will prior information need to be cleared from the screen before new information is
entered?

Lesson A Key Terms
Book title capitalization—the capitalization used for a button’s caption; refers to capitalizing the
first letter in each word, except for articles, conjunctions, and prepositions that do not occur at
either the beginning or end of the caption

Sentence capitalization—the capitalization used for identifying labels; refers to capitalizing only
the first letter in the first word and in any words that are customarily capitalized

Text box—a control that provides an area in the form for the user to enter data

Lesson A Review Questions
1. When designing a user interface, the most important information should be placed in

the corner of the interface.

a. lower-left

b. lower-right

c. upper-left

d. upper-right

2. A button’s caption should be entered using .

a. book title capitalization

b. sentence capitalization

c. either book title capitalization or sentence capitalization

3. Which of the following statements is false?

a. The text contained in identifying labels should be left-aligned within the label.

b. An identifying label should be positioned either above or to the right of the control it
identifies.

c. Identifying labels should be entered using sentence capitalization.

d. Identifying labels should end with a colon (:).

4. Listed below are the four steps you should follow when planning an OO application. Put
the steps in the proper order by placing a number (1 through 4) on the line to the left of
the step.

Identify the objects to which you will assign the tasks

Draw a sketch of the user interface

Identify the tasks the application needs to perform

Identify the events required to trigger an object into
performing its assigned tasks

CH A P T E R 2 Designing Applications

70

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

5. Listed below are the six steps you should follow when creating an OO application.
Put the steps in the proper order by placing a number (1 through 6) on the line to the left
of the step.

Test and debug the application

Build the user interface

Code the application

Assemble the documentation

Plan the application

Meet with the client

Lesson A Exercises

1. At the end of the year, each salesperson at Shiloh Products is paid a bonus of 1% of his
or her annual sales. The company’s payroll clerk wants an application that will compute
the bonus after he or she enters the salesperson’s ID and annual sales. Prepare a TOE
chart ordered by task, and then rearrange the TOE chart so that it is ordered by object.
Be sure to include buttons that allow the user to both clear and print the screen. Draw a
sketch of the user interface. (You will create the interface in Lesson B’s Exercise 1 and
then code the application in Lesson C’s Exercise 1.)

2. Carson Carpets wants an application that allows the salesclerk to enter a floor’s length
and width measurements in feet. The application should calculate the floor’s area in both
square feet and square yards. Prepare a TOE chart ordered by task, and then rearrange
the TOE chart so that it is ordered by object. Be sure to include buttons that allow
the user to both clear and print the screen. Draw a sketch of the user interface. (You
will create the interface in Lesson B’s Exercise 2 and then code the application in
Lesson C’s Exercise 4.)

3. KJ Inc. divides its sales territory into four regions: North, South, East, and West.
The sales manager wants an application that allows him to enter the current year’s sales
for each region and the projected increase (expressed as a decimal number) for each
region. He wants the application to compute the following year’s projected sales for each
region. As an example, if the sales manager enters 10000 as the current sales for the
South region, and then enters .05 (the decimal equivalent of 5%) as the projected
increase, the application should display 10500 as the next year’s projected sales. Prepare a
TOE chart ordered by task, and then rearrange the TOE chart so that it is ordered by
object. Be sure to include buttons that allow the user to both clear and print the screen.
(You will create the interface in Lesson B’s Exercise 3 and then code the application in
Lesson C’s Exercise 5.)

INTRODUCTORY

INTERMEDIATE

INTERMEDIATE

Lesson A Exercises L E S S ON A

71

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

& LESSON B
After studying Lesson B, you should be able to:

l Build the user interface using your TOE chart and sketch

l Follow the Windows standards regarding the use of graphics, fonts, and color

l Set a control’s BorderStyle, AutoSize, and TextAlign properties

l Add a text box to a form

l Lock the controls on the form

l Assign access keys to controls

l Set the TabIndex property

Building the User Interface
In Lesson A, you planned the Play It Again Movies application. Planning the application is
the second of the six steps involved in creating an OO application. Now you are ready to tackle
the third step, which is to build the user interface. You use the TOE chart and sketch you
created in the planning step as guides when building the interface, which involves placing
the appropriate controls on the form and setting the applicable properties of the controls.
To save you time, the VB2012\Chap02\Play It Again Solution folder contains a partially
completed application for Play It Again Movies. When you open the solution, you will find
that most of the user interface has been created and most of the properties have been set.
You will complete the interface in this lesson.

To open the partially completed application:

1. If necessary, start Visual Studio 2012 and open the Solution Explorer window.
Open the Play It Again Solution (Play It Again Solution.sln) file contained in the
VB2012\Chap02\Play It Again Solution folder. If necessary, open the designer window.

2. Permanently display the Properties and Toolbox windows and then auto-hide the
Solution Explorer window. Figure 2-13 shows the partially completed interface, which
resembles the sketch shown in Figure 2-11 in Lesson A.

if you are using Windows 7, the
title bar text will be left-aligned

Figure 2-13 Partially completed interface for the Play It Again Movies application
OpenClipArt.org/John Diamond / diamonjohn

START HERE

CH A P T E R 2 Designing Applications

72

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

The application’s user interface follows the GUI guidelines covered in Lesson A. The
information is arranged vertically, and the controls are aligned wherever possible. Each text box
and button, as well as each label control that displays program output, is labeled so the user
knows the control’s purpose. The text contained in the identifying labels is entered using
sentence capitalization. In addition, the text ends with a colon and is left-aligned within the
label. The identifying labels are positioned to the left of the controls they identify. Each button’s
caption is entered using book title capitalization. The button captions and identifying labels
appear on one line and do not exceed the three-word limit. Because the buttons are stacked in
the interface, each button has the same height and width, and the most commonly used button
(Calculate) is placed at the top of the button group.

When building the user interface, keep in mind that you want to create a screen that no one notices.
Interfaces that contain a lot of different colors, fonts, and graphics may get “oohs” and “aahs” during
their initial use, but they become tiresome after a while. The most important point to remember is
that the interface should not distract the user from doing his or her work. The next three sections
provide some guidelines to follow regarding the use of these elements in an interface.

Including Graphics in the User Interface
The human eye is attracted to pictures before text, so use graphics sparingly. Designers typically
include graphics to either emphasize or clarify a portion of the screen. However, a graphic also
can be used merely for aesthetic purposes, as long as it is small and placed in a location that does
not distract the user. The small graphic in the Play It Again Movies interface is included for
aesthetics only. The graphic is purposely located in the upper-left corner of the interface, which
is where you want the user’s eye to be drawn first anyway. The graphic adds a personal touch to
the sales receipt form without being distracting to the user.

GUI DESIGN TIP Adding Graphics

l Use graphics sparingly. If the graphic is used solely for aesthetics, use a small
graphic and place it in a location that will not distract the user.

Selecting Fonts for the Interface
As you learned in Chapter 1, an object’s Font property determines the type, style, and size of the
font used to display the object’s text. You should use only one font type (typically Segoe UI) for all
of the text in the interface, and use no more than two different font sizes. In addition, avoid using
italics and underlining in an interface because both font styles make text difficult to read. The use
of bold text should be limited to titles, headings, and key items that you want to emphasize.

GUI DESIGN TIP Selecting Font Types, Styles, and Sizes

l Use only one font type (typically Segoe UI) for all of the text in the interface.

l Use no more than two different font sizes in the interface.

l Avoid using italics and underlining because both font styles make text difficult to read.

l Limit the use of bold text to titles, headings, and key items that you want to emphasize.

The graphics,
font, and color
guidelines do not
pertain to game
applications.

Building the User Interface L E S S ON B

73

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Adding Color to the Interface
The human eye is attracted to color before black and white; therefore, use color sparingly in an
interface. It is a good practice to build the interface using black, white, and gray first, and then
add color only if you have a good reason to do so. Keep the following three points in mind when
deciding whether to include color in an interface:

1. People who have some form of either color blindness or color confusion will have
trouble distinguishing colors.

2. Color is very subjective: A color that looks pretty to you may be hideous to someone
else.

3. A color may have a different meaning in a different culture.

Usually, it is best to use black text on a white, off-white, or light gray background because dark
text on a light background is the easiest to read. You should never use a dark color for the
background or a light color for the text. This is because a dark background is hard on the eyes,
and light-colored text can appear blurry.

If you are going to include color in an interface, limit the number of colors to three, not including
white, black, and gray. Be sure that the colors you choose complement each other. Although color
can be used to identify an important element in the interface, you should never use it as the only
means of identification. In the Play It Again Movies interface, for example, the colored box helps
the salesclerk quickly locate the total sales amount. However, color is not the only means of
identifying the contents of that box; the box also has an identifying label (Total sales:).

GUI DESIGN TIP Selecting Colors

l Build the interface using black, white, and gray. Only add color if you have a good
reason to do so.

l Use white, off-white, or light gray for the background. Use black for the text.

l Never use a dark color for the background or a light color for the text. A dark
background is hard on the eyes, and light-colored text can appear blurry.

l Limit the number of colors in an interface to three, not including white, black, and
gray. The colors you choose should complement each other.

l Never use color as the only means of identification for an element in the interface.

The BorderStyle, AutoSize, and TextAlign Properties
A control’s border is determined by its BorderStyle property, which can be set to None,
FixedSingle, or Fixed3D. Controls with a BorderStyle property set to None have no border.
Setting the BorderStyle property to FixedSingle surrounds the control with a thin line, and
setting it to Fixed3D gives the control a three-dimensional appearance. In most cases, a text
box’s BorderStyle property should be left at the default setting: Fixed3D. The BorderStyle
property for each text box in the Play It Again Movies interface follows this convention.

The appropriate setting for a label control’s BorderStyle property depends on the control’s
purpose. Label controls that identify other controls (such as those that identify text boxes)
should have a BorderStyle property setting of None, which is the default setting. This is the
setting for each identifying label in the Play It Again Movies interface. Label controls that display

You can change
the background
color of a control
by setting its
BackColor
property.

CH A P T E R 2 Designing Applications

74

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

program output, such as those that display the result of a calculation, typically have a
BorderStyle property setting of FixedSingle. The BorderStyle property of the lblTotalSales
control in the Play It Again Movies interface is set to FixedSingle. You should avoid setting a
label control’s BorderStyle property to Fixed3D because, in Windows applications, a control
with a three-dimensional appearance implies that it can accept user input.

A label control’s AutoSize property determines whether the control automatically sizes to fit its
current contents. The appropriate setting depends on the label’s purpose. Label controls that
identify other controls use the default setting: True. However, you typically set to False the
AutoSize property of label controls that display program output.

A label control’s TextAlign property determines the alignment of the text within the label. The
TextAlign property can be set to nine different values, such as TopLeft, MiddleCenter, and
BottomRight. In the next set of steps, you will change the AutoSize, BorderStyle, and TextAlign
properties of the lblTotalDiscs control. (The AutoSize, BorderStyle, and TextAlign properties of
the lblTotalSales control have already been set.) You also will delete the contents of the control’s
Text property and then size the control to match the lblTotalSales control.

To change the properties of the lblTotalDiscs control and then size the control:

1. Click the lblTotalDiscs control, which contains the text Label7. Set the following
properties:

AutoSize False

BorderStyle FixedSingle

2. Click TextAlign in the Properties list and then click the list arrow in the Settings box.
Click the center button to change the property’s setting to MiddleCenter.

3. Click Text in the Properties list and then select (highlight) Label7. Press Delete (or
Backspace) and then press Enter.

4. Click the lblTotalSales control and then press and hold down the Ctrl key as you click
the lblTotalDiscs control. Click FORMAT on the menu bar, point to Make Same Size,
and then click Both.

5. Click the form to deselect the two labels.

GUI DESIGN TIP Setting the BorderStyle Property of a Text Box or Label

l Keep the BorderStyle property of text boxes at the default setting: Fixed3D.

l Keep the BorderStyle property of identifying labels at the default setting: None.

l Set to FixedSingle the BorderStyle property of labels that display program output,
such as those that display the result of a calculation.

l In Windows applications, a control that contains data that the user is not allowed to
edit does not usually appear three-dimensional. Therefore, avoid setting a label
control’s BorderStyle property to Fixed3D.

START HERE

Building the User Interface L E S S ON B

75

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

GUI DESIGN TIP Setting the AutoSize Property of a Label

l Keep the AutoSize property of identifying labels at the default setting: True.

l In most cases, set to False the AutoSize property of label controls that display
program output.

Adding a Text Box Control to the Form
As mentioned earlier, a text box provides an area in the form for the user to enter data. Missing
from the Play It Again Movies interface is the text box for entering the number of Blu-rays sold.
You will add the missing text box in the next set of steps.

To add the missing text box to the form:

1. Use the TextBox tool in the toolbox to add a text box to the form. Position the text box
immediately below the text box labeled DVDs.

2. Change the text box’s name to txtBluRays and press Enter.

3. Next, you will make the Blu-rays text box the same size as the DVDs text box. Click the
txtDvds control and then Ctrl+click the txtBluRays control. Click FORMAT on the
menu bar, point to Make Same Size, and then click Both.

4. You can align the Blu-rays text box using either the FORMAT menu or the snap lines.
You will use the snap lines. Click the form to deselect the DVDs and Blu-rays text boxes.
Place your mouse pointer on the txtBluRays control, and then press and hold down
the left mouse button as you drag the control to the location shown in Figure 2-14.
The blue snap lines help you align the Blu-rays text box with the DVDs text box.
The pink snap line allows you to align the text in the Blu-rays text box with the text in its
identifying label.

5. When the Blu-rays text box is in the correct location, release the mouse button.

blue snap line

pink snap line

Figure 2-14 Snap lines shown in the interface
OpenClipArt.org/John Diamond / diamonjohn

A text box is an
instance of the
TextBox class.

START HERE

CH A P T E R 2 Designing Applications

76

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Locking the Controls on a Form
After placing all of the controls in their appropriate locations, it is a good idea to lock the
controls on the form. Locking the controls prevents them from being moved inadvertently as
you work in the IDE. You can lock the controls by clicking the form (or any control on the form)
and then clicking the Lock Controls option on the FORMAT menu; you can follow the same
procedure to unlock the controls. You also can lock and unlock the controls by right-clicking
the form (or any control on the form) and then clicking Lock Controls on the context menu.
When a control is locked, a small lock appears in the upper-left corner of the control.

To lock the controls on the form and then save the solution:

1. Right-click the form and then click Lock Controls. A small lock appears in the
upper-left corner of the form.

2. Save the solution. Try dragging one of the controls to a different location on the form.
You will not be able to do so.

Assigning Access Keys
The text in many of the controls shown in Figure 2-14 contains an underlined letter. The underlined
letter is called an access key, and it allows the user to select an object using the Alt key in
combination with a letter or number. For example, you can select the Exit button in the Play It Again
Movies interface by pressing Alt+x because the letter x is the Exit button’s access key. Access keys are
not case sensitive. Therefore, you can select the Exit button by pressing either Alt+x or Alt+X. If you
do not see the underlined access keys while an application is running, you can show them temporarily
by pressing the Alt key. (To always display access keys inWindows 7, see the Summary section at the
end of this lesson.)

You should assign access keys to each of the controls (in the interface) that can accept user
input. Examples of such controls include text boxes and buttons. This is because the user can
enter information in a text box and click a button. The only exceptions to this rule are the OK
and Cancel buttons, which typically do not have access keys in Windows applications. It is
important to assign access keys for the following reasons:

1. They allow a user to work with the application even when their mouse becomes
inoperative.

2. They allow users who are fast typists to keep their hands on the keyboard.

3. They allow people who cannot work with a mouse, such as people with disabilities, to
use the application.

You assign an access key by including an ampersand (&) in the control’s caption or identifying
label. If the control is a button, you include the ampersand in the button’s Text property, which
is where a button’s caption is stored. If the control is a text box, you include the ampersand in
the Text property of its identifying label. (As you will learn later in this lesson, you also must set
the TabIndex properties of the text box and its identifying label appropriately.) You enter the
ampersand to the immediate left of the character you want to designate as the access key. For
example, to assign the letter x as the access key for the Exit button, you enter E&xit in the
button’s Text property. To assign the letter D as the access key for the txtDvds control, you
enter &DVDs: in the Text property of its identifying label.

Each access key in an interface should be unique. The first choice for an access key is the
first letter of the caption or identifying label, unless another letter provides a more meaningful
association. For example, the letter x is the access key for an Exit button because it provides
a more meaningful association than does the letter E. If you can’t use the first letter (perhaps

A locked control
can be deleted.
It also can be
moved by setting
its Location
property.

START HERE

Assigning Access Keys L E S S ON B

77

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

because it is already used as the access key for another control) and no other letter provides a
more meaningful association, then use a distinctive consonant in the caption or label. The last
choices for an access key are a vowel or a number.

Missing from the interface shown in Figure 2-14 are the access keys for the Calculate button and
Date text box. You will assign those access keys in the next set of steps. However, notice that the
Total discs: and Total sales: labels also do not have access keys. This is because those labels do
not identify controls that accept user input; rather, they identify other label controls. Recall that
users cannot access label controls while an application is running, so it is inappropriate to assign
an access key to their identifying labels.

To assign access keys to the Calculate button and Date text box:

1. Click the Calculate button. Change the button’s Text property to &Calculate and then
press Enter. The letter C in the button’s caption is now underlined.

2. Click the Date: label, which identifies the txtDate control. Change the label’s Text
property to Da&te: and then press Enter. The letter t is now underlined.

GUI DESIGN TIP Assigning Access Keys

l Assign a unique access key to each control that can accept user input.

l When assigning an access key to a control, use the first letter of the control’s caption
or identifying label, unless another letter provides a more meaningful association.
If you can’t use the first letter and no other letter provides a more meaningful
association, then use a distinctive consonant. Lastly, use a vowel or a number.

Controlling the Tab Order
While you are creating the interface, each control’s TabIndex property contains a number
that represents the order in which the control was added to the form. The first control added
to a form has a TabIndex value of 0; the second control has a TabIndex value of 1, and so on.
The TabIndex values determine the tab order, which is the order in which each control receives
the focus when the user either presses the Tab key or employs an access key while an
application is running. A control whose TabIndex is 2 will receive the focus immediately
after the control whose TabIndex is 1, and so on. When a control has the focus, it can accept
user input. Not all controls have a TabIndex property; a PictureBox control, for example, does
not have a TabIndex property.

Most times, you will need to reset the TabIndex values for an interface. This is because controls
rarely are added to a form in the desired tab order. To determine the appropriate TabIndex
values, you first make a list of the controls that can accept user input. The list should reflect the
order in which the user will want to access the controls. In the Play It Again Movies interface,
the user typically will want to access the txtDate control first, followed by the txtDvds control,
the txtBluRays control, the btnCalc control, and so on.

If a control that accepts user input is identified by a label control, you also include the label
control in the list. (A text box is an example of a control that accepts user input and is identified
by a label control.) You place the name of the label control immediately above the name of the
control it identifies in the list. In the Play It Again Movies interface, the Label2 control (which
contains Date:) identifies the txtDate control. Therefore, Label2 should appear immediately
above txtDate in the list.

START HERE

When a text box
has the focus, an
insertion point
appears inside it.
When a button

has the focus, a dotted
rectangle appears inside
its darkened border.

CH A P T E R 2 Designing Applications

78

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

The names of controls that do not accept user input and are not used to identify controls that
do should be listed at the bottom of the list; these names do not need to appear in any specific
order. After listing the control names, you then assign each control in the list a TabIndex value,
beginning with the number 0. If a control does not have a TabIndex property, you do not assign
it a TabIndex value in the list. You can tell whether a control has a TabIndex property by
viewing its Properties list.

Figure 2-15 shows the list of controls and TabIndex values for the Play It Again Movies
interface. Notice that the TabIndex value assigned to each text box’s identifying label is one
number less than the value assigned to the text box itself. For example, the Label2 control has a
TabIndex value of 0 and its corresponding text box (txtDate) has a TabIndex value of 1. For a
text box’s access key (which is defined in the identifying label) to work appropriately, you must
be sure to set the identifying label’s TabIndex property to a value that is one number less than
the value stored in the text box’s TabIndex property.

Controls that accept user input,
along with their identifying labels TabIndex value
Label2 (Date:) 0
txtDate 1
Label3 (DVDs:) 2
txtDvds 3
Label4 (Blu-rays:) 4
txtBluRays 5
btnCalc 6
btnPrint 7
btnClear 8
btnExit 9

Other controls
Label1 (Sales Receipt) 10
Label5 (Total discs:) 11
Label6 (Total sales:) 12
lblTotalDiscs 13
lblTotalSales 14
PictureBox1 N/A

Figure 2-15 List of controls and TabIndex values
© 2013 Cengage Learning

You can set each control’s TabIndex property using either the Properties window or the Tab
Order option on the VIEW menu. The Tab Order option is available only when the designer
window is the active window.

To set the TabIndex values and then verify the tab order:

1. Click the form to make the designer window the active window. Click VIEW on the
menu bar and then click Tab Order. The current TabIndex values appear in blue boxes
on the form. (The picture box does not have a TabIndex property.)

2. You begin specifying the desired tab order by clicking the first control you want in the
tab order. According to Figure 2-15, the first control in the tab order should be the
Label2 control, which displays the Date: text. Click the blue box that contains the
number 1. (You also can click the Label2 control directly.) The number 0 replaces the
number 1 in the box, and the color of the box changes from blue to white to indicate
that you have set the control’s TabIndex value.

START HERE

Controlling the Tab Order L E S S ON B

79

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

3. The second control in the tab order should be the txtDate control, which currently
has a TabIndex value of 10. Click the blue box that contains the number 10. The
number 1 replaces the number 10 in the box, and the color of the box changes from
blue to white.

4. Use the information shown in Figure 2-16 to set the TabIndex properties for the
remaining controls, which have TabIndex values of 2 through 14. Be sure to set the
values in numerical order. If you make a mistake, press the Esc key to remove the
TabIndex boxes from the form, and then repeat Steps 1 through 4. When you have
finished setting all of the TabIndex values, the color of the boxes will automatically
change from white to blue, as shown in Figure 2-16.

5. Press Esc to remove the TabIndex boxes from the form.

6. Save the solution and then start the application. If the access keys do not appear in
the interface, press the Alt key. When you start an application, the computer sends the
focus to the control whose TabIndex is 0. In the Play It Again Movies interface, that
control is the Label2 (Date:) control. However, because label controls cannot receive the
focus, the computer sends the focus to the next control in the tab order sequence
(txtDate). The blinking insertion point indicates that the text box has the focus and
is ready to receive input from you. See Figure 2-17.

Figure 2-16 TabIndex boxes showing the correct TabIndex values
OpenClipArt.org/John Diamond / diamonjohn

TabIndex is 1

TabIndex is 0

Figure 2-17 Play It Again Movies interface
OpenClipArt.org/John Diamond / diamonjohn

You also can
remove the
TabIndex boxes
using the Tab
Order option on
the VIEW menu.

CH A P T E R 2 Designing Applications

80

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

7. Type 5/6/2014 in the Date text box. The information you entered is recorded in the text
box’s Text property.

8. In Windows applications, the Tab key moves the focus forward, and the Shift+Tab key
combination moves the focus backward. Press Tab to move the focus to the DVDs text
box, and then press Shift+Tab to move the focus back to the Date text box.

9. Nowuse theTab key to verify the tab order of the controls in the interface. PressTab, slowly,
three times. The focusmoves to theDVDs text box, then to theBlu-rays text box, and then to
the Calculate button. Notice that when a button has the focus, a dotted rectangle appears
inside its darkened border. PressTab, slowly, threemore times. The focusmoves to the Print
Receipt button, then to the Clear Screen button, and finally to the Exit button.

10. Pressing the Enter key when a button has the focus invokes the button’s Click event,
causing the computer to process any code contained in the Click event procedure. Press
Enter to have the computer process the Exit button’s Click event procedure, which
contains the Me.Close() instruction. The application ends.

11. You also can move the focus using a text box’s access key. Start the application. If the
access keys do not appear in the interface, press the Alt key to display them. Now, press
Alt+b to move the focus to the Blu-rays text box. Then press Alt+t to move the focus to
the Date text box. Lastly, press Alt+d to move the focus to the DVDs text box.

12. Unlike pressing a text box’s access key, which moves the focus, pressing a button’s access
key invokes the button’s Click event. Press Alt+x to invoke the Exit button’s Click event,
which ends the application.

13. Close the solution.

GUI DESIGN TIP Using the TabIndex Property to Control the Focus

l Assign a TabIndex value (starting with 0) to each control in the interface, except for
controls that do not have a TabIndex property. The TabIndex values should reflect the
order in which the user will want to access the controls.

l To allow users to access a text box using the keyboard, assign an access key to the
text box’s identifying label. Set the identifying label’s TabIndex property to a value that
is one number less than the value stored in the text box’s TabIndex property.

Lesson B Summary
l To use appropriate graphics, fonts, and colors in an interface:

Refer to the GUI guidelines listed in Appendix B for this chapter’s lesson.

l To specify a control’s border:

Set the control’s BorderStyle property.

l To specify whether a label control should automatically size to fit its current contents:

Set the label control’s AutoSize property.

l To specify the alignment of the text within a label control:

Set the label control’s TextAlign property.

Lesson B Summary L E S S ON B

81

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

l To lock/unlock the controls on the form:

Right-click the form or any control on the form and then select Lock Controls on the
context menu. You also can click the Lock Controls option on the FORMAT menu.

l To assign an access key to a control:

Type an ampersand (&) in the Text property of the control or identifying label. The
ampersand should appear to the immediate left of the character that you want to designate
as the access key.

l To provide keyboard access to a text box:

Assign an access key to the text box’s identifying label. Set the identifying label’s TabIndex
property to a value that is one number less than the text box’s TabIndex value.

l To employ an access key:

If necessary, press the Alt key to display the access keys, and then release the key. Press and
hold down the Alt key as you tap the access key.

l To set the tab order:

Set each control’s TabIndex property to a number (starting with 0) that represents the order
in which the control should receive the focus. You can set the TabIndex property using
either the Properties window or the Tab Order option on the VIEW menu.

l To always display access keys in Windows 7:

Click the Start button on the Windows 7 taskbar. Click Control Panel and then click
Appearance and Personalization. In the Ease of Access Center section, click Turn on easy
access keys. Select the Underline keyboard shortcuts and access keys check box, and then
click the OK button. Close the Control Panel window.

Lesson B Key Terms
Access key—the underlined character in an object’s identifying label or caption; allows the user
to select the object using the Alt key in combination with the underlined character

AutoSize property—determines whether a control automatically sizes to fit its current contents

BorderStyle property—determines the appearance of a control’s border

Focus—indicates that a control is ready to accept user input

Tab order—the order in which each control receives the focus when the user either presses the
Tab key or employs an access key while an application is running

TabIndex property—specifies a control’s position in the tab order

TextAlign property—determines the alignment of the text within a control

Lesson B Review Questions
1. Which property determines the tab order for the controls in an interface?

a. SetOrder

b. SetTab

c. TabIndex

d. TabOrder

CH A P T E R 2 Designing Applications

82

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

2. An Exit button’s access key is always the letter .

a. E

b. x

c. i

d. t

3. You assign an access key using a control’s property.

a. Access

b. Caption

c. Key

d. Text

4. Which of the following specifies the letter D as the access key?

a. &Display

b. #Display

c. ^Display

d. D&isplay

5. Explain the method for providing keyboard access to a text box.

Lesson B Exercises

1. Open the Shiloh Solution (Shiloh Solution.sln) file contained in the VB2012\Chap02\
Shiloh Solution folder. If necessary, open the designer window. Figure 2-18 shows the
completed interface. Add the missing txtSales and lblBonus controls to the form. Set the
lblBonus control’s TextAlign property to MiddleCenter. Lock the controls on the form.
Assign the access keys (shown in the figure) to the text boxes and buttons. Set the
TabIndex values appropriately. Save the solution and then start the application. Verify
that the tab order is correct. Also verify that the access keys work appropriately. Use the
Exit button to end the application. Close the solution. (You will code the Calculate, Print,
and Clear Screen buttons in Lesson C’s Exercise 1.)

Figure 2-18 Shiloh Products user interface

INTRODUCTORY

Lesson B Exercises L E S S ON B

83

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

2. Create a Visual Basic Windows application. Use the following names for the solution and
project respectively: Carson Solution and Carson Project. Save the application in the
VB2012\Chap02 folder. Change the form file’s name to Main Form.vb. Change the form’s
name to frmMain. The form should be centered on the screen when it first appears; set
the appropriate property. Create the interface shown in Figure 2-19. Use the following
names for the text boxes, labels, and buttons: txtLength, txtWidth, lblAreaSqFt,
lblAreaSqYd, btnCalc, btnPrint, btnClear, and btnExit. (Or, use the names from the TOE
chart you created in Lesson A’s Exercise 2.) The contents of the lblAreaSqFt and
lblAreaSqYd controls should be centered; set the appropriate property. Lock the controls
on the form. Set the TabIndex values appropriately. The Exit button should end the
application when it is clicked; code the appropriate event procedure. Save the solution
and then start the application. Verify that the tab order is correct. Also verify that the
access keys work appropriately. Use the Exit button to end the application. Close the
solution. (You will code the Calculate, Print, and Clear buttons in Lesson C’s Exercise 4.)

3. Create a Visual Basic Windows application. Use the following names for the solution
and project respectively: KJ Solution and KJ Project. Save the application in the
VB2012\Chap02 folder. Change the form file’s name to Main Form.vb. Change the form’s
name to frmMain. The form should be centered on the screen when it first appears; set
the appropriate property. Create the interface shown in Figure 2-20. Use the following
names for the text boxes, labels, and buttons: txtNsales, txtSsales, txtEsales, txtWsales,
txtNincrease, txtSincrease, txtEincrease, txtWincrease, lblNorth, lblSouth, lblEast,
lblWest, btnCalc, btnPrint, btnClear, and btnExit. (Or, use the names from the TOE
chart you created in Lesson A’s Exercise 3.) The contents of the four label controls that
display the projected sales should be right-aligned; set the appropriate property. Lock the
controls on the form. Set the TabIndex values appropriately. The Exit button should end
the application when it is clicked; code the appropriate event procedure. Save the solution
and then start the application. Verify that the tab order is correct. Also verify that the
access keys work appropriately. Use the Exit button to end the application. Close the
solution. (You will code the Calculate, Print, and Clear buttons in Lesson C’s Exercise 5.)

Figure 2-19 Carson Carpets user interface

INTERMEDIATE

INTERMEDIATE

CH A P T E R 2 Designing Applications

84

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

4. Open the Age Solution (Age Solution.sln) file contained in the VB2012\Chap02\Age
Solution folder. If necessary, open the designer window. The application allows the user
to enter the year you were born and the current year. When it is coded, the Calculate
button will calculate your age by subtracting your birth year from the current year. Lay
out and organize the interface so that it follows all of the GUI design guidelines you have
learned so far. (Refer to Appendix B for a listing of the guidelines covered in Chapter 1
and in Lessons A and B of Chapter 2.) Lock the controls on the form. Code the Exit
button’s Click event procedure so it ends the application. Save the solution and then start
the application. Verify that the tab order is correct. Also verify that the access keys work
appropriately. Use the Exit button to end the application. Close the solution. (You will
code the Calculate and Print buttons in Lesson C’s Exercise 2.)

Figure 2-20 KJ Inc. user interface

INTERMEDIATE

Lesson B Exercises L E S S ON B

85

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

& LESSON C
After studying Lesson C, you should be able to:

l Code an application using its TOE chart

l Plan an object’s code using either pseudocode or a flowchart

l Write an assignment statement

l Send the focus to a control during run time

l Include internal documentation in the code

l Write arithmetic expressions

l Use the Val and Format functions

l Print an interface from code

l Locate and correct syntax errors

Coding the Application
In Lessons A and B, you created a TOE chart and user interface for the Play It Again Movies
application. The user interface and TOE chart are shown in Figures 2-21 and 2-22, respectively.

Task Object Event
1. Calculate total discs sold and total sales amount btnCalc Click
2. Display total discs sold and total sales amount in

lblTotalDiscs and lblTotalSales

Print the sales receipt btnPrint Click

End the application btnExit Click

Clear screen for the next sale btnClear Click

Display total discs sold (from btnCalc) lblTotalDiscs None

Display total sales amount (from btnCalc) lblTotalSales None

Get and display the sales information txtDate, txtDvds, txtBluRays None

Figure 2-22 TOE chart (ordered by object) for Play It Again Movies
© 2013 Cengage Learning

Figure 2-21 Play It Again Movies user interface from Lesson B
OpenClipArt.org/John Diamond / diamonjohn

CH A P T E R 2 Designing Applications

86

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

After planning an application and building its user interface, you then can begin coding the
application. You code an application so that the objects in the interface perform their assigned
tasks when the appropriate event occurs. The objects and events that need to be coded, as well
as the tasks assigned to each object and event, are listed in the application’s TOE chart. The
TOE chart in Figure 2-22 indicates that only the four buttons require coding, as they are the
only objects with an event listed in the third column of the chart.

Before you begin coding an object’s event procedure, you should plan it. Many programmers use
planning tools such as pseudocode or flowcharts. You do not need to create both a flowchart
and pseudocode for a procedure; you need to use only one of these planning tools. The tool you
use is really a matter of personal preference. For simple procedures, pseudocode works just fine.
When a procedure becomes more complex, however, the procedure’s steps may be easier to
understand in a flowchart. The programmer uses either the procedure’s pseudocode or its
flowchart as a guide when coding the procedure.

Using Pseudocode to Plan a Procedure
Pseudocode uses short phrases to describe the steps a procedure must take to accomplish its
goal. Even though the word “pseudocode” might be unfamiliar to you, you have already written
pseudocode without even realizing it. Consider the last time you gave directions to someone. You
wrote each direction down on paper, in your own words; your directions were a form of pseudocode.

Figure 2-23 shows the pseudocode for the procedures that need to be coded in the Play
It Again Movies application. Notice that the btnExit control’s Click event procedure will
simply end the application. The btnCalc control’s Click event procedure will calculate the
total discs sold and the total sales amount, and then display the calculated results in the
appropriate label controls in the interface. The btnPrint control’s Click event procedure will
print the sales receipt. The btnClear control’s Click event procedure will prepare the screen
for the next sale. It will do this by removing the previous sale’s information—in this case, the
number of DVDs sold, the number of Blu-rays sold, the total number of discs sold, and
the total sales—from the appropriate controls in the interface. It then will send the focus
to the txtDvds control so the user can begin entering the next sale. You may be wondering
why the event procedure doesn’t clear the date entered in the txtDate control, and why it
sends the focus to the txtDvds control rather than to the txtDate control. After the salesclerk
enters the date the first time, there is no reason to have him or her enter it again for
subsequent sales because the date will be the same.

btnExit Click event procedure
end the application

btnCalc Click event procedure
1. calculate total discs sold = DVDs sold + Blu-rays sold
2. calculate total sales = total discs sold * disc price
3. display total discs sold and total sales in lblTotalDiscs and lblTotalSales

btnPrint Click event procedure
print the sales receipt

btnClear Click event procedure
1. clear the contents of the txtDvds and txtBluRays text boxes
2. clear the contents of the lblTotalDiscs and lblTotalSales controls
3. send the focus to the txtDvds control so the user can begin entering the next sale

Figure 2-23 Pseudocode for the Play It Again Movies application
© 2013 Cengage Learning

Coding the Application L E S S ON C

87

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Using a Flowchart to Plan a Procedure
Unlike pseudocode, which consists of short phrases, a flowchart uses standardized symbols to
show the steps a procedure must follow to reach its goal. Figure 2-24 shows the flowcharts for
the procedures that need to be coded in the Play It Again Movies application. The logic
illustrated in the flowcharts is the same as the logic shown in the pseudocode in Figure 2-23.
The flowcharts contain three different symbols: an oval, a rectangle, and a parallelogram. The
oval symbol is called the start/stop symbol. The start and stop ovals indicate the beginning and
end, respectively, of the flowchart. The rectangles are called process symbols. You use the
process symbol to represent tasks such as making assignments and calculations. The
parallelogram in a flowchart is called the input/output symbol and is used to represent input
tasks (such as getting information from the user) and output tasks (such as displaying
information). The parallelograms in Figure 2-24 represent output tasks. The lines connecting
the symbols in a flowchart are called flowlines.

btnExit Click event procedure btnPrint Click event procedure

btnCalc Click event procedure btnClear event procedure

start

clear the contents of
txtDvds and txtBluRays

clear the contents of
lblTotalDiscs and
lblTotalSales

send the focus to txtDvds

stop

end the application

start

stop

start

total discs sold = DVDs
sold + Blu-rays sold

total sales = total discs
sold * disc price

display total
discs sold in
lblTotalDiscs

display total
sales in
lblTotalSales

stop

start

stop

print the
sales receipt

Figure 2-24 Flowcharts for Play It Again Movies
© 2013 Cengage Learning

CH A P T E R 2 Designing Applications

88

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Coding the btnClear Control’s Click Event Procedure
According to its pseudocode and flowchart, the btnClear control’s Click event procedure should
clear the Text property of two of the three text boxes and two of the labels in the interface. It
then should send the focus to the txtDvds control. You can clear the Text property of an object
by assigning a zero-length string to it. A string is defined as zero or more characters enclosed in
quotation marks. The word “Jones” is a string. Likewise, “45” is a string, but 45 (without the
quotes) is a number. “Jones” is a string with a length of five because there are five characters
between the quotation marks. “45” is a string with a length of two because there are two
characters between the quotation marks. Following this logic, a zero-length string, also called an
empty string, is a set of quotation marks with nothing between them, like this: "". Assigning a
zero-length string to the Text property of an object during run time removes the contents of the
object. You also can clear an object’s Text property by assigning the value String.Empty to it
while an application is running. When you do this, the computer assigns an empty string to the
Text property, thereby removing its contents.

Assigning a Value to a Property during Run Time
In Chapter 1, you learned how to use the Properties window to set an object’s properties during
design time, which is when you are building the interface. You also can set an object’s properties
during run time; you do this using an assignment statement. An assignment statement is one of
many different types of Visual Basic instructions. Its purpose is to assign a value to something
(such as to the property of an object) while an application is running.

The syntax of an assignment statement is shown in Figure 2-25 along with examples of using the
syntax. In the syntax, object and property are the names of the object and property, respectively,
to which you want the value of the expression assigned. The expression can be a string, a
keyword, a number, or a calculation. You use a period to separate the object name from the
property name. Recall that the period is the dot member access operator. In this case, the
operator indicates that the property is a member of the object. You use an equal sign between the
object.property information and the expression. The equal sign in an assignment statement is
called the assignment operator.

When the computer processes an assignment statement, it assigns the value of the expression
that appears on the right side of the assignment operator to the object and property that appear
on the left side of the assignment operator. The assignment statement txtState.Text =
"Montana", for example, assigns the string “Montana” to the txtState control’s Text property.
Similarly, the assignment statement txtName.Text = String.Empty assigns the empty string to
the Text property of the txtName control. You will use assignment statements to code the
btnClear control’s Click event procedure.

Assigning a Value to a Property during Run Time

Syntax
object.property = expression

Examples
txtState.Text = "Montana"
txtName.Text = String.Empty
btnCalc.Visible = False
lblDue.Width = 120
lblProduct.Text = 6 + 3

Figure 2-25 Syntax and examples of assigning a value to a property during run time
© 2013 Cengage Learning

You also can use
the Clear
method to clear
the contents of a
text box. The

Clear method is covered
in Discovery Exercise 14
at the end of this lesson.

Coding the btnClear Control’s Click Event Procedure L E S S ON C

89

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

To open the btnClear control’s Click event procedure:

1. If necessary, start Visual Studio 2012 and open the Solution Explorer window. Open
the Play It Again Solution (Play It Again Solution.sln) file from Lesson B. The file is
contained in the VB2012\Chap02\Play It Again Solution folder. If necessary, open the
designer window.

2. Auto-hide the Solution Explorer window. If necessary, auto-hide the Properties and
Toolbox windows.

3. Open the Code Editor window. Notice that the btnExit control’s Click event procedure
has already been coded.

4. Use the Class Name and Method Name list boxes to open the code template for the
btnClear control’s Click event procedure.

5. Press Enter to insert a blank line below the procedure header.

According to its pseudocode and flowchart (shown earlier in Figures 2-23 and 2-24), the
procedure should clear the contents of the txtDvds and txtBluRays text boxes. You can do this
using either the textbox.Text = String.Empty instruction or the textbox.Text = "" instruction,
where textbox is the name of the appropriate text box. You will assign the String.Empty value to
the Text property of both text boxes. As you learned in Chapter 1, you can either type the Visual
Basic instructions on your own or use the IntelliSense feature that is built into the Code Editor.
In the next set of steps, you will use the IntelliSense feature.

To begin coding the btnClear control’s Click event procedure:

1. First, you will enter the txtDvds.Text = String.Empty assignment statement in the
procedure. Type the two letters tx and then (if necessary) click the Common tab. The
IntelliSense feature lists the names of the three text boxes. See Figure 2-26.

2. Type tdv to highlight txtDvds in the list and then press Tab to enter txtDvds in the
assignment statement.

3. Now type . (a period) to display a listing of the properties and methods of the
txtDvds control. If Text is not highlighted in the list, type te. At this point, you can either
press the Tab key to enter the Text property in the assignment statement, or you can
type the character that follows Text in the statement. In this case, the next character is
the assignment operator. Type = to enter the Text property and an equal sign in the
statement.

4. Next, type st to highlight String in the list, and then type .e to highlight Empty. Press
Enter. The txtDvds.Text = String.Empty statement appears in the Code Editor
window. See Figure 2-27.

Figure 2-26 Listing of text box names

START HERE

START HERE

CH A P T E R 2 Designing Applications

90

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

When entering code, you can type the names of commands, objects, and properties in lowercase
letters. When you move to the next line in the Code Editor window, the Code Editor
automatically changes your code to reflect the proper capitalization of those elements. This
provides a quick way of verifying that you entered an object’s name and property correctly, and
that you entered the code using the correct syntax. If the capitalization does not change, it
means that the Code Editor does not recognize the object, command, or property. In this book
you will always be given the complete instruction to enter, including the appropriate
capitalization. Keep in mind that you can either type the instruction on your own or use the
IntelliSense feature to enter the instruction.

To continue coding the btnClear control’s Click event procedure:

1. Type txtBluRays.Text = String.Empty and press Enter.

2. Next, the procedure should clear the contents of the lblTotalDiscs and lblTotalSales
controls. Enter the following two assignment statements. Press Enter twice after typing
the last statement.

lblTotalDiscs.Text = String.Empty
lblTotalSales.Text = String.Empty

The last step in the procedure’s pseudocode and flowchart is to send the focus to the txtDvds
control. You can accomplish this task using the Focus method. Recall that a method is a
predefined Visual Basic procedure that you can call (or invoke) when needed.

Using the Focus Method
You can use the Focus method to move the focus to a specified control while an application is
running. As you learned in Lesson B, a control that has the focus can accept user input. The
Focus method’s syntax is object.Focus(), in which object is the name of the object to which you
want the focus sent.

To enter the Focus method in the btnClear control’s Click event procedure:

1. Type txtDvds.Focus() and press Enter.

2. Save the solution.

Internally Documenting the Program Code
It is a good practice to include comments, called internal documentation, as reminders in
the Code Editor window. Programmers use comments to indicate a procedure’s purpose and
also to explain various sections of a procedure’s code. Including comments in your code will
make the code more readable and easier to understand by anyone viewing it. You create a
comment in Visual Basic by placing an apostrophe (') before the text that represents the
comment. The computer ignores everything that appears after the apostrophe on that line.

Figure 2-27 First assignment statement entered in the procedure

START HERE

START HERE

Coding the btnClear Control’s Click Event Procedure L E S S ON C

91

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Although it is not required, some programmers use a space to separate the apostrophe from the
comment text; you will follow that convention in this book.

To add comments to the btnClear control’s Click event procedure:

1. Click the blank line above the txtDvds.Text = String.Empty statement. Type
' prepare screen for the next sale (be sure to type the apostrophe followed by a
space) and press Enter. Notice that comments appear in a different color from the rest
of the code.

2. Click the blank line above the txtDvds.Focus() statement. Type ' send the focus to
the DVDs box and then click the blank line above the procedure’s End Sub clause. See
Figure 2-28.

It is a good idea to test a procedure after you have coded it because, by doing so, you will know
where to look if an error occurs.

To test the btnClear control’s Click event procedure:

1. Save the solution and then start the application. Type 5 in the Date, DVDs, and Blu-rays
boxes. You haven’t coded the Calculate button yet, so the Total discs and Total sales
boxes are empty at this point. Therefore, you will only be able to observe whether the
Clear Screen button clears the two text boxes and moves the focus appropriately. You
will need to test the Clear Screen button again after the Calculate button is coded.

2. Click the Clear Screen button. The computer processes the instructions contained in
the button’s Click event procedure. The instructions remove the contents of the two text
boxes (and also the contents of the two labels, which are currently empty), and then send
the focus to the DVDs box. Click the Exit button to end the application.

Many programmers also use comments to document the project’s name and purpose, the
programmer’s name, and the date the code was either created or modified. Such comments are
placed above the Public Class clause in the Code Editor window. The area above the Public Class
clause is called the General Declarations section.

To include comments in the General Declarations section:

1. Click before the letter P in the Public Class frmMain line and then press Enter to
insert a blank line. Now, click the blank line.

2. Type the comments shown in Figure 2-29 and then save the solution. In the comments,
replace <your name> and <current date> with your name and the current date,
respectively.

Figure 2-28 btnClear control’s Click event procedure

START HERE

START HERE

START HERE

CH A P T E R 2 Designing Applications

92

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Coding the btnPrint Control’s Click Event Procedure
Visual Basic provides the PrintForm tool for printing an interface from code. The tool is
contained in the Visual Basic PowerPacks section of the toolbox. When you drag the PrintForm
tool to a form, the instantiated print form control appears in the component tray. You can use
the control to send the printout either to the Print preview window or directly to the printer.
The syntax for printing the interface from code is shown in Figure 2-30 along with examples of
using the syntax. As the figure indicates, the printing task requires two statements. The first
statement specifies the output destination, and the second statement tells the computer to start
the print operation.

General Declarations
section

enter these five
comments

Figure 2-29 Comments entered in the General Declarations section

Printing the Interface from Code

Syntax
object.PrintAction = Printing.PrintAction.destination
object.Print()

destination
PrintToPreview
PrintToPrinter

Purpose
sends the printout to the Print preview window
sends the printout to the printer

Example 1
PrintForm1.PrintAction =
 Printing.PrintAction.PrintToPreview
PrintForm1.Print()
sends the output to the Print preview window

Example 2
PrintForm1.PrintAction =
 Printing.PrintAction.PrintToPrinter
PrintForm1.Print()
sends the output directly to the printer

Figure 2-30 Syntax and examples of printing the interface from code
© 2013 Cengage Learning

Coding the btnPrint Control’s Click Event Procedure L E S S ON C

93

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

To add a print form control to the application:

1. Click the designer window’s tab to make the designer window the active window.

2. Temporarily display the toolbox. Scroll down the toolbox until you see the Visual Basic
PowerPacks section. If necessary, expand the section’s node. Click PrintForm, and then
drag your mouse pointer to the form. When you release the mouse button, a print form
control appears in the component tray.

Youwill have the Print Receipt button send the sales receipt to the Print previewwindow rather than
directly to the printer. By doing so, the user will have more control over when the receipt is printed.

To begin coding the btnPrint control’s Click event procedure:

1. Return to the Code Editor window. Open the code template for the btnPrint control’s
Click event procedure, and then enter the comment and statements shown in Figure 2-31.

2. Save the solution and then start the application. If necessary, press Alt to display the
access keys. Click the Print Receipt button. A printout of the interface appears in the
Print preview window. (It may take a few seconds for the window to open.) Click the
Zoom button’s list arrow and then click 75%. See Figure 2-32. Notice that the four
buttons appear on the sales receipt. You will fix that problem in the next set of steps.

3. You won’t need to print the sales receipt, so click the Close button on the Print preview
window’s toolbar, and then click the Exit button in the interface.

Zoom button’s
list arrow

Figure 2-32 Print preview window
OpenClipArt.org/John Diamond / diamonjohn

enter this comment
and two lines of code

Figure 2-31 Comment and printing instructions entered in the procedure

START HERE

START HERE

CH A P T E R 2 Designing Applications

94

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

You can prevent the buttons from appearing on the printed receipt by hiding them on
the form before the receipt is printed, and then showing them again after the receipt is
printed. In this case, you will hide the buttons by reducing the width of the form by 165
pixels. You can do this using the statement Me.Width = Me.Width – 165. As you learned
in Chapter 1, Me is a keyword that refers to the current form. After the sales receipt is
printed, you will increase the form’s width by the same amount so that the buttons appear
once again on the form.

To finish coding the btnPrint control’s Click event procedure:

1. Enter the additional two assignment statements shown in Figure 2-33.

2. Save the solution and then start the application. Enter 5 in the Date, DVDs, and Blu-rays
boxes.

3. Click the Print Receipt button to display the sales receipt in the Print preview window.
Notice that the four buttons do not appear on the sales receipt.

4. If your computer is connected to a printer, click the Print button (the printer) on the
Print preview window’s toolbar.

5. Click the Close button on the Print preview window’s toolbar, and then click the Exit
button in the interface.

Before you can code the btnCalc control’s Click event procedure, you need to learn how to write
arithmetic expressions in Visual Basic. Note: You have learned a lot so far in this lesson. You
may want to take a break at this point before continuing.

Writing Arithmetic Expressions
Most applications require the computer to perform at least one calculation. You instruct the
computer to perform a calculation by writing an arithmetic expression, which is an expression
that contains one or more arithmetic operators. Figure 2-34 lists the most commonly used
arithmetic operators available in Visual Basic, along with their precedence numbers. The
precedence numbers indicate the order in which the computer performs the operation in an
expression. Operations with a precedence number of 1 are performed before operations with a
precedence number of 2, and so on. However, you can use parentheses to override the order of
precedence because operations within parentheses are always performed before operations
outside parentheses.

enter these two
assignment statements

Figure 2-33 Completed Click event procedure for the btnPrint control

START HERE

Writing Arithmetic Expressions L E S S ON C

95

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Operator Operation Precedence number
^ exponentiation (raises a number to a power) 1
– negation (reverses the sign of a number) 2
*, / multiplication and division 3
\ integer division 4
Mod modulus (remainder) arithmetic 5
+, – addition and subtraction 6

Figure 2-34 Most commonly used arithmetic operators
© 2013 Cengage Learning

Although the negation and subtraction operators listed in Figure 2-34 use the same symbol (a
hyphen), there is a difference between both operators: the negation operator is unary, whereas the
subtraction operator is binary. Unary and binary refer to the number of operands required by the
operator. Unary operators require one operand; binary operators require two operands. For
example, the expression –10 uses the negation operator to turn its one operand (the positive
number 10) into a negative number. The expression 8 – 2, on the other hand, uses the subtraction
operator to subtract its second operand (the number 2) from its first operand (the number 8).

Two of the arithmetic operators listed in Figure 2-34 might be less familiar to you: the integer
division operator (\) and the modulus (remainder) operator (Mod). You use the integer division
operator to divide two integers (whole numbers) and then return the result as an integer. For
instance, the expression 211 \ 4 results in 52, which is the integer result of dividing 211 by 4.
(If you use the standard division operator [/] to divide 211 by 4, the result is 52.75 rather than 52.)
You might use the integer division operator in a program that determines the number of quarters,
dimes, and nickels to return as change to a customer. For example, if a customer should receive 53
cents in change, you could use the expression 53 \ 25 to determine the number of quarters to
return; the expression evaluates to 2.

The modulus operator (sometimes referred to as the remainder operator) is also used to divide
two numbers, but the numbers do not have to be integers. After dividing the numbers, the
modulus operator returns the remainder of the division. For instance, 211 Mod 4 equals 3,
which is the remainder of 211 divided by 4. A common use for the modulus operator is to
determine whether a number is even or odd. If you divide the number by 2 and the remainder is
0, the number is even; if the remainder is 1, however, the number is odd. Figure 2-35 shows
several examples of using the integer division and Mod operators.

Examples Results

211 \ 4 52
211 Mod 4 3
53 \ 25 2
53 Mod 25 3
75 \ 2 37
75 Mod 2 1
100 \ 2 50
100 Mod 2 0

Figure 2-35 Examples of the integer division and Mod (remainder) operators
© 2013 Cengage Learning

You may have noticed that some of the operators listed in Figure 2-34, like the addition and
subtraction operators, have the same precedence number. When an expression contains more
than one operator having the same priority, those operators are evaluated from left to right.

CH A P T E R 2 Designing Applications

96

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

In the expression 7 – 8 / 2 + 5, for instance, the division (/) is performed first, then the
subtraction (–), and then the addition (+). The result of the expression is the number 8, as
shown in Example 1 in Figure 2-36. You can use parentheses to change the order in which the
operators in an expression are evaluated. For instance, as Example 2 in Figure 2-36 shows, the
expression 7 – (8 / 2 + 5) evaluates to –2 rather than to 8. This is because the parentheses tell
the computer to perform the division first, then the addition, and then the subtraction.

Example 1
Original expression 7 – 8 / 2 + 5
The division is performed first 7 – 4 + 5
The subtraction is performed next 3 + 5
The addition is performed last 8

Example 2
Original expression 7 – (8 / 2 + 5)
The division is performed first 7 – (4 + 5)
The addition is performed next 7 – 9
The subtraction is performed last –2

Figure 2-36 Expressions containing more than one operator having the same precedence
© 2013 Cengage Learning

When entering an arithmetic expression in code, you do not enter a comma or special characters,
such as the dollar sign or percent sign. If you want to include a percentage in an arithmetic
expression, you do so using its decimal equivalent; for example, you enter .05 rather than 5%.

Coding the btnCalc Control’s Click Event Procedure
According to its pseudocode and flowchart (shown earlier in Figures 2-23 and 2-24), the btnCalc
control’s Click event should calculate the total number of discs sold by adding together the
number of DVDs sold and the number of Blu-rays sold. The number of DVDs sold is recorded
in the txtDvds control’s Text property as the user enters that information in the interface.
Likewise, the number of Blu-rays sold is recorded in the txtBluRays control’s Text property. You
can use an assignment statement to first add together the Text property of the two text boxes,
and then assign the sum to the Text property of the lblTotalDiscs control. The total discs sold
calculation is illustrated in Figure 2-37.

Next, the procedure should calculate the total sales by multiplying the total number of discs sold
(which is recorded in the lblTotalDiscs control) by the disc price ($7). The total sales should be
displayed in the lblTotalSales control. The total sales calculation is illustrated in Figure 2-38.

Pseudocode: total discs sold = DVDs sold + Blu-rays sold

Assignment statement: lblTotalDiscs.Text = txtDvds.Text + txtBluRays.Text

Figure 2-37 Illustration of the total discs sold calculation
© 2013 Cengage Learning

The Ch02C-
Arithmetic
Operators
video

provides more examples
of using arithmetic
operators.

Coding the btnCalc Control’s Click Event Procedure L E S S ON C

97

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Finally, the procedure should display the total discs sold and total sales amount in the
appropriate label controls. The assignment statements shown in Figures 2-37 and 2-38
accomplish this task.

To code the btnCalc control’s Click event procedure and then test it:

1. Open the code template for the btnCalc control’s Click event procedure. Type
' calculate number of discs sold and total sales and press Enter twice.

2. Next, enter the following two assignment statements:

lblTotalDiscs.Text = txtDvds.Text + txtBluRays.Text

lblTotalSales.Text = lblTotalDiscs.Text * 7

3. Save the solution and then start the application. Click the DVDs text box. Type 2 and
then press Tab. Type 5 as the number of Blu-rays sold and then click the Calculate
button. The button’s Click event procedure calculates the total number of discs sold and
total sales, displaying the results in the two label controls. As Figure 2-39 indicates, the
displayed results are incorrect. Instead of mathematically adding the two sales quantities
together, giving 7, the second sales quantity was appended to the first sales quantity,
giving 25. When the total discs sold amount is incorrect, the total sales will also be
incorrect because the total discs sold amount is used in the total sales calculation.

4. Click the Exit button to end the application.

Even though you do not see the quotation marks around the value, a value stored in the Text
property of an object is treated as a string rather than as a number. Adding strings together does
not give you the same result as adding numbers together. For example, adding the string “2” to
the string “5” results in the string “25”, whereas adding the number 2 to the number 5 results in
the number 7. To add together the contents of two text boxes, you need to tell the computer to
treat the contents as numbers rather than as strings. The easiest way, although not one of the

Pseudocode: total sales = total discs sold ∗ disc price

Assignment statement: lblTotalSales.Text = lblTotalDiscs.Text ∗ 7

Figure 2-38 Illustration of the total sales calculation
© 2013 Cengage Learning

both amounts
are incorrect

Figure 2-39 Interface showing the incorrect results of the calculations
OpenClipArt.org/John Diamond / diamonjohn

START HERE

Remember that
you can use the
Alt key to show/
hide the access
keys.

CH A P T E R 2 Designing Applications

98

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

preferred ways, is to use the Val function. However, because this lesson’s topics are difficult for
many beginning programmers, we’ll use the Val function in this lesson (and only in this lesson)
so as not to complicate those topics.

The Val Function
A function is a predefined procedure that performs a specific task and then returns a value after
completing the task. The Val function, for instance, temporarily converts a string to a number
and then returns the number. The number is stored in the computer’s internal memory only
while the function is processing.

The syntax of the Val function is shown in Figure 2-40. The item within the parentheses is called
an argument and represents information that the function needs to perform its task. In this case,
the string argument represents the string you want treated as a number. Because the Val
function must be able to interpret the string as a numeric value, the string cannot include a
letter, a comma, or a special character (such as the dollar sign or percent sign); it can, however,
include a period or a space. When the Val function encounters an invalid character in its string
argument, it stops converting the string to a number at that point. Figure 2-40 shows some
examples of how the Val function converts various strings.

To include the Val function in the btnCalc control’s code:

1. Change the two assignment statements as follows:

lblTotalDiscs.Text = Val(txtDvds.Text) + Val(txtBluRays.Text)
lblTotalSales.Text = Val(lblTotalDiscs.Text) * 7

2. Save the solution. The changes made to the procedure are highlighted in Figure 2-41.

Figure 2-41 Val function entered in the assignment statements

Val Function

Syntax
Val(string)

Example
Val("456")
Val("24,500")
Val("123X")
Val("25%")
Val(" 12 34 ")
Val("$56.88")
Val("Abc")
Val("")

Numeric result
456

24
123

25
1234

0
0
0

Figure 2-40 Syntax and examples of the Val function
© 2013 Cengage Learning

START HERE

Coding the btnCalc Control’s Click Event Procedure L E S S ON C

99

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

3. Start the application. Enter 2 in the DVDs box and enter 5 in the Blu-rays box. Click the
Calculate button. The application correctly calculates and displays the total number of
discs sold (7) and total sales amount (49). See Figure 2-42.

4. In the next section, you will improve the appearance of the total sales amount by
including a dollar sign, a thousands separator, and two decimal places. Click the Exit
button.

The Format Function
You can use the Format function to improve the appearance of numbers in an interface. The
function’s syntax is shown in Figure 2-43. The expression argument specifies the number, date,
time, or string whose appearance you want to format. The style argument can be a predefined
Visual Basic format style, some of which are explained in the figure. It also can be a string
containing special symbols that indicate how you want the expression displayed. (You can
display the Help screen for the Format function to learn more about these special symbols.) In
this case, you will use one of the predefined format styles.

Format Function
Syntax
Format(expression, style)

Format style Description
Currency Formats the number with a dollar sign, two decimal places, and (if appropriate) a

thousands separator; negative numbers are enclosed in parentheses

Fixed Formats the number with at least one digit to the left of the decimal point and two
digits to the right of the decimal point

Standard Formats the number with at least one digit to the left of the decimal point, two
digits to the right of the decimal point, and (if appropriate) a thousands separator

Percent Multiplies the number by 100 and then formats the result with a percent sign and
two digits to the right of the decimal point

Figure 2-43 Format function’s syntax and some of the predefined format styles
© 2013 Cengage Learning

both amounts
are correct

Figure 2-42 Interface showing the correct results of the calculations
OpenClipArt.org/John Diamond / diamonjohn

CH A P T E R 2 Designing Applications

100

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

To format the total sales amount:

1. Enter the following statement in the blank line below the total sales assignment
statement:

lblTotalSales.Text = Format(lblTotalSales.Text, "Currency")

2. Save the solution. The change made to the procedure is highlighted in Figure 2-44.

3. Start the application. Enter 4/16/2014 in the Date box, 100 in the DVDs box, and 100 in
the Blu-rays box. Click the Calculate button. See Figure 2-45.

4. Click the Exit button.

You have completed the first four of the six steps involved in creating an OO application:
meeting with the client, planning the application, building the user interface, and coding the
application. The fifth step is to test and debug the application.

Testing and Debugging the Application
You test an application by starting it and entering some sample data. The sample data should
include both valid and invalid data. Valid data is data that the application is expecting the user to
enter, whereas invalid data is data that the application is not expecting the user to enter. The
Play It Again Movies application, for instance, expects the user to enter a numeric value in the
DVDs box; it does not expect the user to enter a letter. In most cases, invalid data is a result of a
typing error made by the user. You should test an application as thoroughly as possible to ensure
that it displays the correct output when valid data is entered, and does not end abruptly when
invalid data is entered.

result of formatting the
total sales amount to
Currency

Figure 2-45 Formatted total sales amount shown in the interface
OpenClipArt.org/John Diamond / diamonjohn

Figure 2-44 Format function entered in the procedure

START HERE

You also can
include the
Format function
in the statement
that calculates

the total sales, like this:
lblTotalSales.
Text = Format(Val
(lblTotalDiscs.
Text) * 7,
"Currency").

Testing and Debugging the Application L E S S ON C

101

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Debugging refers to the process of locating and correcting the errors, called bugs, in a
program. Program bugs are typically categorized as syntax errors, logic errors, or run time
errors. As you learned in Chapter 1, the term “syntax” refers to the set of rules you must follow
when using a programming language. A syntax error occurs when you break one of the
language’s rules. Most syntax errors are a result of typing errors that occur when entering
instructions, such as typing Me.Clse() instead of Me.Close(). The Code Editor detects
most syntax errors as you enter the instructions.

Logic errors, on the other hand, are much more difficult to find because the Code Editor cannot
detect them for you. A logic error can occur for a variety of reasons, such as forgetting to enter
an instruction or entering the instructions in the wrong order. Some logic errors occur as a
result of calculation statements that are correct syntactically but incorrect mathematically. For
example, consider the statement lblSquared.Text = Val(txtNum.Text) + Val(txtNum.Text),
which is supposed to square the number entered in the txtNum control. The statement’s syntax is
correct; however, the statement is incorrect mathematically because you square a value by
multiplying it by itself, not by adding it to itself.

A run time error is an error that occurs while an application is running. An expression that
attempts to divide a value by the number 0 will result in a run time error. You will learn more
about run time errors as you progress through this book.

To test and debug the Play It Again Movies application:

1. Start the application. First, test the application by clicking the Calculate button without
entering any data. The application displays 0 and $0.00 as the total number of discs sold
and total sales, respectively. (Recall that the Val function converts the empty string to
the number 0.)

2. Now you will test the application using a letter for the number of DVDs and Blu-rays
sold. Click the Clear Screen button to clear the calculated results from the label
controls. Enter p in the DVDs and Blu-rays boxes. Click the Calculate button. The
application displays 0 and $0.00 as the total number of discs sold and total sales,
respectively. (Recall that the Val function converts a letter to the number 0.)

3. Finally, test the application with valid data. Click theClear Screen button. Enter 6/10/2014
in the Date box, 6 in the DVDs box, and 3 in the Blu-rays box. Click the Calculate button.
The application correctly calculates and displays the total number of discs sold (9) and total
sales amount ($63.00).

4. Click the Print Receipt button. If your computer is connected to a printer, print the
sales receipt. Close the Print preview window.

5. Click the Clear Screen button and then practice with other entries to see how the
application responds. When you are finished testing the application, click the Exit
button to end the application.

In the following set of steps, you will introduce syntax errors in the application’s code. You also
will learn how to locate and correct the errors.

To introduce syntax errors in the code and also debug the code:

1. Change the statement in the btnExit control’s Click event procedure to Me.Clse() and
then click the blank line above the procedure header. The jagged blue line indicates that
the statement contains a syntax error. To debug the code, change the statement to
Me.Close() and then click the blank line above the procedure header. The jagged blue
line disappears.

2. In the btnCalc control’s Click event procedure, delete the ending parenthesis in the last
assignment statement and then click the blank line below the statement. The jagged

START HERE

START HERE

CH A P T E R 2 Designing Applications

102

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

blue line indicates that the statement contains a syntax error. The red rectangle indicates
that the Code Editor has some suggestions for fixing the error.

3. Hover your mouse pointer over the red rectangle until you see the Error Correction
Options box, and then click the list arrow in the box. A suggestion for fixing the error
appears in the Error Correction window. See Figure 2-46. [Don’t be concerned if your
Error Correction window appears above (rather than below) the red rectangle.]

4. Move the scroll bar in the Error Correction window all the way to the right. The window
indicates that the missing parenthesis will be inserted at the end of the assignment
statement that contains the syntax error. You can type the missing parenthesis yourself.
Or, you can simply click the suggestion in the Error Correction window. Click the Insert
the missing ‘)’. suggestion to insert the missing parenthesis.

5. In this step, you will observe what happens when you start an application whose code
contains a syntax error. First, delete the ending parenthesis in the last assignment
statement in the btnCalc control’s Click event procedure, and then click the blank line
below the statement. Save the solution and then start the application. The message
dialog box shown in Figure 2-47 appears.

6. Click the No button. The Error List window shown in Figure 2-48 opens at the bottom
of the IDE. The window indicates that the code contains one error, and it provides both
a description and the location of the error in the Code Editor window.

Error Correction
Options box

Error Correction
window

Figure 2-46 Suggestion for fixing the error

Figure 2-47 Message dialog box

Testing and Debugging the Application L E S S ON C

103

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Figure 2-49 Play It Again Movies code (continues)

7. Double-click the error message in the Error List window. The Code Editor opens the
Error Correction window shown earlier in Figure 2-46. Click the Insert the missing ‘)’.
suggestion to insert the missing parenthesis. The Code Editor inserts the missing
parenthesis and then removes the error message from the Error List window.

8. Close the Error List window. Save the solution and then start the application. Test the
application to verify that it works correctly, and then click the Exit button to end the
application.

9. Close the Code Editor window and then close the solution.

Assembling the Documentation
After you have tested an application thoroughly, you can move to the last step involved in
creating an OO application: assemble the documentation. Assembling the documentation refers
to putting your planning tools and a printout of the application’s interface and code in a safe
place, so you can refer to them if you need to change the application in the future. Your
planning tools include the TOE chart, a sketch of the user interface, and either the flowcharts or
pseudocode. The code for the Play It Again Movies application is shown in Figure 2-49.

1 ' Name: Play It Again Project
2 ' Purpose: Calculates the total number
3 ' of discs sold and the total
4 ' sales amount
5 ' Programmer: <your name> on <current date>
6
7 Public Class frmMain
8
9 Private Sub btnExit_Click(sender As Object,

e As EventArgs) Handles btnExit.Click
10 Me.Close()
11 End Sub
12
13 Private Sub btnClear_Click(sender As Object,

e As EventArgs) Handles btnClear.Click
14 ' prepare screen for the next sale
15
16 txtDvds.Text = String.Empty
17 txtBluRays.Text = String.Empty
18 lblTotalDiscs.Text = String.Empty
19 lblTotalSales.Text = String.Empty
20 ' send the focus to the DVDs box
21 txtDvds.Focus()
22
23 End Sub
24

Error List window

Figure 2-48 Error List window in the IDE

CH A P T E R 2 Designing Applications

104

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

25 Private Sub btnPrint_Click(sender As Object,
e As EventArgs) Handles btnPrint.Click

26 ' print the sales receipt
27
28 Me.Width = Me.Width - 165
29 PrintForm1.PrintAction =

Printing.PrintAction.PrintToPreview
30 PrintForm1.Print()
31 Me.Width = Me.Width + 165
32
33 End Sub
34
35 Private Sub btnCalc_Click(sender As Object,

e As EventArgs) Handles btnCalc.Click
36 ' calculate number of discs sold and total sales
37
38 lblTotalDiscs.Text = Val(txtDvds.Text) +

Val(txtBluRays.Text)
39 lblTotalSales.Text = Val(lblTotalDiscs.Text) * 7
40 lblTotalSales.Text =

Format(lblTotalSales.Text, "Currency")
41
42 End Sub
43 End Class

Figure 2-49 Play It Again Movies code
© 2013 Cengage Learning

Lesson C Summary
l To plan an object’s code:

Use pseudocode or a flowchart.

l To clear the text property of an object while an application is running:

Assign either the String.Empty value or the empty string ("") to the object’s Text property.

l To assign a value to an object’s property while an application is running:

Use an assignment statement that follows the syntax object.property = expression.

l To move the focus to an object while an application is running:

Use the Focus method. The method’s syntax is object.Focus().

l To create a comment in Visual Basic:

Begin the comment text with an apostrophe (').

l To divide two integers and then return the result as an integer:

Use the integer division operator (\).

l To divide two numbers and then return the remainder:

Use the modulus (remainder) operator (Mod).

l To print the interface during run time:

Use the PrintForm tool to instantiate a print form control. The tool is located in the Visual
Basic PowerPacks section of the toolbox.

(continued)

Lesson C Summary L E S S ON C

105

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

l To temporarily convert a string to a number:

Use the Val function. The function’s syntax is Val(string).

l To improve the appearance of numbers in the user interface:

Use the Format function. The function’s syntax is Format(expression, style).

Lesson C Key Terms
Assignment operator—the equal sign in an assignment statement

Assignment statement—an instruction that assigns a value to something, such as to the
property of an object

Bugs—the errors in a program

Debugging—the process of locating and correcting the bugs (errors) in a program

Empty string—a set of quotation marks with nothing between them (""); also called a zero-
length string

Flowchart—a planning tool that uses standardized symbols to show the steps a procedure must
take to accomplish its goal

Flowlines—the lines connecting the symbols in a flowchart

Focus method—moves the focus to a specified control during run time

Format function—used to improve the appearance of numbers in an interface

Function—a procedure that processes a specific task and returns a value

General Declarations section—the area above the Public Class clause in the Code Editor
window

Input/output symbol—the parallelogram in a flowchart; used to represent input and output tasks

Integer division operator—represented by a backslash (\); divides two integers and then returns
the quotient as an integer

Invalid data—data that an application is not expecting the user to enter

Logic error—occurs when you neglect to enter an instruction or enter the instructions in the
wrong order; also occurs as a result of calculation statements that are correct syntactically but
incorrect mathematically

Modulus operator—represented by the keyword Mod; divides two numbers and returns the
remainder of the division

PrintForm tool—used to instantiate a print form control; located in the Visual Basic PowerPacks
section of the toolbox

Process symbols—the rectangle symbols in a flowchart; used to represent assignment and
calculation tasks

Pseudocode—a planning tool that uses phrases to describe the steps a procedure must take to
accomplish its goal

Run time error—an error that occurs while an application is running; an example is an
expression that attempts to divide by zero

Start/stop symbol—the oval symbol in a flowchart; used to indicate the beginning and end of
the flowchart

String—zero or more characters enclosed in quotation marks

String.Empty—the value that represents the empty string in Visual Basic

CH A P T E R 2 Designing Applications

106

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Syntax error—occurs when an instruction in an application’s code breaks one of a programming
language’s rules

Val function—temporarily converts a string to a number and then returns the number

Valid data—data that an application is expecting the user to enter

Zero-length string—a set of quotation marks with nothing between them (""); also called an
empty string

Lesson C Review Questions
1. Which of the following assignment statements will not calculate correctly?

a. lblTotal.Text = Val(txtSales1.Text) + Val(txtSales2.Text)

b. lblTotal.Text = 4 – Val(txtSales1.Text)

c. lblTotal.Text = Val(txtQuantity.Text + 3)

d. All of the above assignment statements will calculate correctly.

2. The function temporarily converts a string to a number, and then
returns the number.

a. Format

b. FormatNumber

c. StringToNumber

d. Val

3. Which symbol is used in a flowchart to represent an output task?

a. circle

b. oval

c. parallelogram

d. rectangle

4. What value is assigned to the lblNum control when the lblNum.Text = 99 \ 25
instruction is processed by the computer?

5. What value is assigned to the lblNum control when the lblNum.Text = 99 Mod 25
instruction is processed by the computer?

Lesson C Exercises

Note: In several of the exercises in this lesson, you perform the second through sixth steps
involved in creating an OO application. Recall that the six steps are:

1. Meet with the client.

2. Plan the application. (Prepare a TOE chart that is ordered by object, and then draw a
sketch of the user interface.)

3. Build the user interface. (Refer to Appendix B for a listing of the GUI guidelines you have
learned so far. To help you remember the names of the controls as you are coding, print
the application’s interface and then write the names next to each object.)

4. Code the application. (Write pseudocode for each of the objects that will be coded.
Include appropriate comments in the code.)

5. Test and debug the application.

6. Assemble the documentation (your planning tools and a printout of the interface and code).

Lesson C Exercises L E S S ON C

107

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

1. In this exercise, you complete the application saved in Lesson B’s Exercise 1. Open the
Shiloh Solution (Shiloh Solution.sln) file contained in the VB2012\Chap02\Shiloh
Solution folder. If necessary, open the designer window.

a. At the end of the year, each salesperson at Shiloh Products is paid a bonus of 1% of
his or her annual sales. Code the Calculate button using the Val function. Use the
Format function to display the bonus with a dollar sign, a thousands separator, and
two decimal places.

b. Code the Clear Screen button. Send the focus to the ID text box.

c. Add a print form control to the application, and then code the Print button. Send
the printout to the Print preview window. To hide the buttons in the printout,
reduce the form’s height by 75 pixels before printing, and then increase the height by
the same amount after printing.

d. Add appropriate comments in the General Declarations section and in the coded
procedures.

e. Save the solution and then start the application. Enter the following valid ID and
sales amount: AB65 and 5000. The bonus should be $50.00. If your computer is
connected to a printer, print the interface.

f. Clear the screen. Now test the application using invalid data. More specifically, test
it without entering any data. Then test it using a letter as the sales amount.

g. Close the Code Editor window and then close the solution.

2. In this exercise, you complete the application saved in Lesson B’s Exercise 4. Open the
Age Solution (Age Solution.sln) file contained in the VB2012\Chap02\Age Solution
folder. If necessary, open the designer window. The Calculate button should calculate
your age by subtracting your birth year from the current year. Code the Calculate
button using the Val function. Add a print form control to the application, and then
code the Print button. Send the printout (which should not include the buttons) to the
Print preview window. Add appropriate comments in the General Declarations section
and in the coded procedures. Save the solution and then start the application. Test the
application using your birth year and the current year. Also test it without entering any
data. Finally, test it using a $ sign for the birth year and a % sign for the current year.
Close the Code Editor window and then close the solution.

3. ABC Company wants an application that displays the company’s net annual profit or
loss. The company’s accountant will enter the following two pieces of information: the
company’s total annual revenue and its total annual expenses.

a. Create a Visual Basic Windows application. Use the following names for the solution
and project, respectively: ABC Solution and ABC Project. Save the application in the
VB2012\Chap02 folder. Change the form file’s name to Main Form.vb. Change the
form’s name to frmMain.

b. Perform the steps involved in creating an OO application. (See the Note at the
beginning of the Exercises section.) Include buttons that allow the user to both clear
and print the screen. Send the printout (which should not include the buttons) to
the Print preview window. Code the application using the Val and Format functions.
Add appropriate comments in the General Declarations section and in the coded
procedures.

INTRODUCTORY

INTRODUCTORY

INTRODUCTORY

CH A P T E R 2 Designing Applications

108

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

c. Test the application using the following revenue and expenses, respectively: 115000 and
64500. Then test it without entering any data. Also test it using a letter as the revenue
and expenses. Finally, test it using 50 and 75 as the revenue and expenses, respectively.

d. Close the Code Editor window and then close the solution.

4. In this exercise, you complete the application saved in Lesson B’s Exercise 2. Open the
Carson Solution (Carson Solution.sln) file contained in the VB2012\Chap02\Carson
Solution folder. If necessary, open the designer window.

a. The Carson Carpets application should calculate the area of a floor in both square
feet and square yards. Code the Calculate button using the Val function. Use the
Format function to display the calculated results using the Standard format style.

b. Code the Clear button. Send the focus to the Length text box.

c. Add a print form control to the application, and then code the Print button. Send
the printout (which should include the buttons) to the Print preview window.

d. Add appropriate comments in the General Declarations section and in the coded
procedures.

e. Save the solution and then start the application. Test the application using 10 as the
length and 12 as the width. If your computer is connected to a printer, print the interface.

f. Clear the screen. Now test the application using invalid data. More specifically, test
it without entering any data. Then test it using a letter as the length and width
measurements.

g. Close the Code Editor window and then close the solution.

5. In this exercise, you complete the application saved in Lesson B’s Exercise 3. Open the
KJ Solution (KJ Solution.sln) file contained in the VB2012\Chap02\KJ Solution folder. If
necessary, open the designer window.

a. The KJ Inc. application should calculate the projected sales for each sales region.
Code the Calculate button using the Val function. Use the Format function to
display the calculated results using the Standard format style.

b. Code the Clear button. Send the focus to the Current sales text box in the North
column.

c. Add a print form control to the application, and then code the Print button. Send
the printout (which should not include the buttons) to the Print preview window.

d. Add appropriate comments in the General Declarations section and in the coded
procedures.

e. Save the solution and then start the application. Test the application using the
following valid data:

North sales and percentage: 25000, .1
South sales and percentage: 10000, .05
East sales and percentage: 10000, .04
West sales and percentage: 15000, .11

f. Test the application without entering any data. Also test it using letters as the sales
and percentage amounts.

g. Close the Code Editor window and then close the solution.

INTERMEDIATE

INTERMEDIATE

Lesson C Exercises L E S S ON C

109

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

6. In this exercise, you modify the Play It Again Movies application from the chapter.
Use Windows to make a copy of the Play It Again Solution folder contained in the
VB2012\Chap02 folder. Rename the copy Modified Play It Again Solution. Open the
Play It Again Solution (Play It Again Solution.sln) file contained in the Modified Play It
Again Solution folder. Open the designer window. Modify the interface so that it allows
the user to enter the disc price. Also modify the application’s code. Save the solution
and then start and test the application. Close the Code Editor window and then close
the solution.

7. Create a Visual Basic Windows application. Use the following names for the solution
and project, respectively: Average Solution and Average Project. Save the application in
the VB2012\Chap02 folder. Change the form file’s name to Main Form.vb. Change the
form’s name to frmMain. The application should display the average of any three
numbers entered by the user. Perform the steps involved in creating an OO application.
(See the Note at the beginning of the Exercises section.) Include buttons that allow the
user to both clear and print the screen. Send the printout (which should include the
buttons) to the Print preview window. Display the average with two decimal places.
Code the application using the Val and Format functions. Add appropriate comments in
the General Declarations section and in the coded procedures. Use the following three
numbers to test the application: 27, 9, and 18. Also test it without entering any data.
Finally, test it using letters for the input. Close the Code Editor window and then close
the solution.

8. Timbers is having a 20% off sale. The store manager wants an application that allows the
clerk to enter the original price of an item. The application should display the discount
and new price. Create a Visual Basic Windows application. Use the following names for
the solution and project, respectively: Timbers Solution and Timbers Project. Save the
application in the VB2012\Chap02 folder. Change the form file’s name to Main Form.vb.
Change the form’s name to frmMain. Perform the steps involved in creating an OO
application. (See the Note at the beginning of the Exercises section.) Include buttons that
allow the user to both clear and print the screen. Send the printout (which should not
include the buttons) to the Print preview window. Code the application using the Val
function. Format the discount and new price using the Standard format style. Add
appropriate comments in the General Declarations section and in the coded procedures.
Test the application using valid and invalid data. Close the Code Editor window and then
close the solution.

9. The store manager of Reader Haven needs an inventory application. The application
should allow him to enter the title of a book, the number of paperback versions of the
book currently in inventory, the number of hardcover versions of the book currently in
inventory, the cost of the paperback version, and the cost of the hardcover version. The
application should display the value of the paperback versions of the book, the value of
the hardcover versions of the book, the total number of paperback and hardcover
versions, and the total value of the paperback and hardcover versions combined. Create
a Visual Basic Windows application. Use the following names for the solution and
project, respectively: Reader Haven Solution and Reader Haven Project. Save the
application in the VB2012\Chap02 folder. Change the form file’s name to Main Form.vb.
Change the form’s name to frmMain. Perform the steps involved in creating an OO
application. (See the Note at the beginning of the Exercises section.) Include buttons
that allow the user to both clear and print the screen. Send the printout (which should
not include the buttons) to the Print preview window. Code the application using the Val
and Format functions. Format the calculated dollar amounts to show a dollar sign,

INTERMEDIATE

INTERMEDIATE

INTERMEDIATE

INTERMEDIATE

CH A P T E R 2 Designing Applications

110

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

thousands separator, and two decimal places. Add appropriate comments in the General
Declarations section and in the coded procedures. Use the valid and invalid data shown
here when testing the application. Close the Code Editor window and then close the
solution.

Book Title: Summer Nights
Paperback versions: 100 Paperback cost: 40
Hardcover versions: 50 Hardcover cost: 75

Book Title: Kitchen Helpers
Paperback versions: A Paperback cost: B
Hardcover versions: C Hardcover cost: D

10. Carol’s favorite crackers have 50 calories per serving. In this case, a serving is
10 crackers. Carol wants an application that displays the number of calories she
consumes during her midnight snack of crackers. Create a Visual Basic Windows
application. Use the following names for the solution and project, respectively: Calories
Solution and Calories Project. Save the application in the VB2012\Chap02 folder.
Change the form file’s name to Main Form.vb. Change the form’s name to frmMain.
Perform the steps involved in creating an OO application. (See the Note at the
beginning of the Exercises section.) Include buttons that allow the user to both clear
and print the screen. Send the printout (which should not include the buttons) to the
Print preview window. Code the application using the Val function. Add appropriate
comments in the General Declarations section and in the coded procedures. Test
the application using both valid and invalid data. Close the Code Editor window
and then close the solution.

11. Zander Typing Services charges $0.12 per typed envelope and $0.40 per typed page.
The company accountant wants an application to help her prepare bills. She will
enter the customer’s name, the number of typed envelopes, and the number of
typed pages. The application should calculate and display the customer’s total bill.
Create a Visual Basic Windows application. Use the following names for the
solution and project, respectively: Zander Solution and Zander Project. Save the
application in the VB2012\Chap02 folder. Change the form file’s name to Main
Form.vb. Change the form’s name to frmMain. Perform the steps involved in
creating an OO application. (See the Note at the beginning of the Exercises section.)
Test the application using both valid and invalid data. Close the Code Editor
window and then close the solution.

12. Yardley Company needs an application that allows the shipping clerk to enter the
quantity of an item in inventory and the number of the items that can be packed in a
box for shipping. When the shipping clerk clicks a button, the application should
compute and display both the number of full boxes that can be packed and the number of
items left over. Create a Visual BasicWindows application. Use the following names for the
solution and project, respectively: Yardley Solution and Yardley Project. Save the
application in the VB2012\Chap02 folder. Change the form file’s name to Main Form.vb.
Change the form’s name to frmMain. Perform the steps involved in creating an OO
application. (See the Note at the beginning of the Exercises section.) Save the solution and
then start the application. Yardley Company has 73 items in inventory. If five of the items
can fit into a box for shipping, how many full boxes can the company ship and how many
items will remain in inventory? Close the Code Editor window and then close the solution.

13. The payroll clerk at Lawry Inc. wants an application that displays an employee’s net pay.
The application should allow the payroll clerk to enter the employee’s name, hours
worked, and rate of pay. For this application, you do not have to worry about overtime
because this company does not allow anyone to work more than 40 hours. The

INTERMEDIATE

INTERMEDIATE

ADVANCED

ADVANCED

Lesson C Exercises L E S S ON C

111

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

application should calculate and display the gross pay, the federal withholding tax
(FWT), the Social Security tax (FICA), the state income tax, and the net pay. The FWT
is 20% of the gross pay. The FICA tax is 8% of the gross pay. The state income tax is 3%
of the gross pay. Create a Visual Basic Windows application. Use the following names
for the solution and project, respectively: Lawry Solution and Lawry Project. Save the
application in the VB2012\Chap02 folder. Change the form file’s name to Main Form.vb.
Change the form’s name to frmMain. Perform the steps involved in creating an OO
application. (See the Note at the beginning of the Exercises section.) Format the
calculated amounts using the Standard format style. Test the application using both
valid and invalid data. Close the Code Editor window and then close the solution.

14. In this exercise, you learn about a text box’s Clear method, which can be used to remove
the contents of the text box while an application is running. Use Windows to make a
copy of the Play It Again Solution folder from the chapter. Rename the copy Discovery
Play It Again Solution. Open the Play It Again Solution (Play It Again Solution.sln) file
contained in the Discovery Play It Again Solution folder. Open the designer window.
The Clear method’s syntax is textbox.Clear(). Use the Clear method in the btnClear
control’s Click event procedure to remove the contents of the txtDvds and txtBluRays
controls. (You cannot use the Clear method to remove the contents of label controls.)
Save the solution and then start the application. Enter any date and sales amounts, and
then click the Calculate button. Click the Clear Screen button to verify that the Clear
method worked correctly. Close the Code Editor window and then close the solution.

15. Open the Debug Solution (Debug Solution.sln) file contained in the VB2012\Chap02\
Debug Solution folder. If necessary, open the designer window. Open the Code Editor
window. Locate and then correct the syntax errors in the code. Save the solution and
then start and test the application. If necessary, correct any other errors in the code.
Close the Code Editor window and then close the solution.

DISCOVERY

SWAT THE BUGS

CH A P T E R 2 Designing Applications

112

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 3
Using Variables
and Constants

Revising the Play It Again Movies Application

In this chapter, you modify the Play It Again Movies application from
Chapter 2. The modified application will calculate a 3% sales tax and
then display the result in the interface. It also will display the name of the
salesclerk who entered the sales information.

All Microsoft screenshots used with permission from Microsoft Corporation.

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Previewing the Modified Play It Again Movies Application
Before you start the first lesson in this chapter, you will preview the completed application
contained in the VB2012\Chap03 folder.

To preview the completed application:

1. Use the Run dialog box to run the Play It Again (Play It Again.exe) file contained in the
VB2012\Chap03 folder. A sales receipt similar to the one created in Chapter 2 appears
on the screen.

2. Type 8/8/2014 in the Date box, 5 in the DVDs box, and 8 in the Blu-rays box.

3. Although the Calculate button does not have the focus, you can select it by pressing the
Enter key because it is the default button in the interface. You will learn how to designate
a default button in Lesson B. Press Enter to calculate both the total number of discs sold
and the total sales amount. A Name Entry dialog box appears and requests the
salesclerk’s name, as shown in Figure 3-1.

4. Type Kevin Cooper and then press Enter to select the dialog box’s OK button.
The completed sales receipt is shown in Figure 3-2. The application uses string
concatenation, which is covered in Lesson B, to display the sales tax amount and
salesclerk’s name on the receipt.

Figure 3-1 Name Entry dialog box

if the underlined letters do
not appear in your interface,
press the Alt key

Figure 3-2 Completed sales receipt
OpenClipArt.org/John Diamond / diamonjohn

START HERE

To open the Run
dialog box,
press and hold
down the
Windows logo

key as you tap the letter
r, and then release the
logo key.

CH A P T E R 3 Using Variables and Constants

114

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

5. Change the number of DVDs sold to 4. The application clears the contents of the label
controls that display the total number of discs sold, the total sales amount, and the
message. In Lesson C, you will learn how to clear the contents of a control when a
change is made to the value stored in a different control.

6. Click the Calculate button. The Name Entry dialog box appears and displays the
salesclerk’s name. Press Enter to select the dialog box’s OK button. The application
recalculates the total number of discs sold, the total sales amount, and the sales tax
amount, and then displays the information on the sales receipt.

7. Click the Clear Screen button to clear the sales information (except the date) from the
form, and then click the Exit button to end the application.

In Lesson A, you will learn how to store information, temporarily, in memory locations inside
the computer. You will modify the Play It Again Movies application in Lessons B and C. Be sure
to complete each lesson in full and do all of the end-of-lesson questions and several exercises
before continuing to the next lesson.

Previewing the Modified Play It Again Movies Application

115

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

& LESSON A
After studying Lesson A, you should be able to:

l Declare variables and named constants

l Assign data to an existing variable

l Convert string data to a numeric data type using the TryParse method

l Convert numeric data to a different data type using the Convert class methods

l Explain the scope and lifetime of variables and named constants

l Explain the purpose of Option Explicit, Option Infer, and Option Strict

Using Variables to Store Information
In the Play It Again Movies application from Chapter 2, all of the sales information is
temporarily stored in the properties of the controls on the sales receipt form. For example, the
numbers of DVDs and Blu-rays sold are stored in the Text properties of the txtDvds and
txtBluRays controls, respectively. Recall that the btnCalc control’s Click event procedure uses
the Text properties of those controls to calculate the total number of discs sold, like this:
lblTotalDiscs.Text = Val(txtDvds.Text) + Val(txtBluRays.Text). The application then
uses the lblTotalDiscs control’s Text property to calculate the total sales amount, like this:
lblTotalSales.Text = Val(lblTotalDiscs.Text) * 7.

Besides storing data in the properties of controls, a programmer also can temporarily store data
in memory locations inside the computer. The memory locations are called variables because
the contents of the locations can change (vary) as the application is running. It may be helpful to
picture a variable as a small box inside the computer. You can enter and store data in the box,
but you cannot actually see the box. One use for a variable is to hold information that is not
stored in a control on the form. For example, if you didn’t need to display the total number of
discs sold on the Play It Again Movies sales receipt, you could eliminate the lblTotalDiscs
control from the form and store the total number of discs sold in a variable instead. You then
would use the value stored in the variable, rather than the value stored in the Text property of
the lblTotalDiscs control, in the total sales calculation.

You also can use a variable to store the data contained in a control’s property, such as the data
contained in a control’s Text property. Programmers typically do this when the data is a
numeric amount that will be used in a calculation. As you will learn in the next section,
assigning numeric data to a variable allows you to control the preciseness of the data. It also
makes your code run more efficiently because the computer can process data stored in a variable
much faster than it can process data stored in the property of a control.

Every variable has a data type, name, scope, and lifetime. First, you will learn how to select an
appropriate data type for a variable.

Selecting a Data Type for a Variable
Each variable used in an application should be assigned a data type by the programmer. The
data type determines the type of data the variable can store. Figure 3-3 describes most of the
basic data types available in Visual Basic 2012. Each data type is a class, which means that each
data type is a pattern from which one or more objects—in this case, variables—are instantiated
(created).

Ch03A-
Variables
video

Don’t be
overwhelmed by
the number of
data types listed
in Figure 3-3.

This book will use only
the Boolean, Decimal,
Double, Integer, and
String data types.

CH A P T E R 3 Using Variables and Constants

116

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Data type Stores Memory Required

Boolean a logical value (True, False) 2 bytes

Char one Unicode character 2 bytes

Date date and time information 8 bytes
Date range: January 1, 0001 to December 31, 9999
Time range: 0:00:00 (midnight) to 23:59:59

Decimal a number with a decimal place 16 bytes
Range with no decimal place:
+/–79,228,162,514,264,337,593,543,950,335
Range with a decimal place:
+/–7.9228162514264337593543950335

Double a number with a decimal place 8 bytes
Range: +/–4.94065645841247 X 10–324 to
+/–1.79769313486231 X 10308

Integer integer 4 bytes
Range: –2,147,483,648 to 2,147,483,647

Long integer 8 bytes
Range: –9,223,372,036,854,775,808 to
9,223,372,036,854,775,807

Object data of any type 4 bytes

Short integer 2 bytes
Range: –32,768 to 32,767

Single a number with a decimal place 4 bytes
Range: +/–1.401298 X 10–45 to +/–3.402823 X 1038

String text; 0 to approximately 2 billion characters

Figure 3-3 Basic data types in Visual Basic
© 2013 Cengage Learning

As Figure 3-3 indicates, variables assigned the Integer, Long, or Short data type can store
integers, which are whole numbers. A whole number is a positive or negative number that does
not have any decimal places. The differences among these three data types are in the range of
integers each type can store and the amount of memory each type needs to store the integer.

TheDecimal, Double, and Single variables can store numbers containing a decimal place.Here again,
the differences among these three data types are in the range of numbers each type can store and the
amount of memory each type needs to store the numbers. However, calculations involving Decimal
variables are not subject to the small rounding errors that may occur when using Double or Single
variables. Inmost cases, the small rounding errors do not create any problems in an application. One
exception to this is when the application contains complex equations dealingwithmoney, where you
need accuracy to the penny. In those cases, the Decimal data type is the best type to use.

The Char data type can store one Unicode character, while the String data type can store from
zero to approximately two billion Unicode characters. Unicode is the universal coding scheme
for characters. It assigns a unique numeric value to each character used in the written languages
of the world. (For more information, see The Unicode Standard at www.unicode.org.)

Also listed in Figure 3-3 are the Boolean, Date, and Object data types. You use a Boolean variable
to store a Boolean value (either True or False), and a Date variable to store date and time
information. The Object data type can store any type of data. However, your application will pay a

Using Variables to Store Information L E S S ON A

117

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

price for this flexibility: It will run more slowly because the computer has to determine the type of
data currently stored in an Object variable. It is best to avoid using the Object data type.

The applications in this book will use the Integer data type for variables that will store integers
used in calculations, even when the integers are small enough to fit into a Short variable. This is
because a calculation containing Integer variables takes less time to process than the equivalent
calculation containing Short variables. Either the Decimal data type or the Double data type will
be used for numbers that contain decimal places and are used in calculations. The applications
will use the String data type for variables that contain either text or numbers not used in
calculations, and the Boolean data type to store Boolean values.

Selecting a Name for a Variable
In addition to assigning a data type to an application’s variables, the programmer also must
assign a name to each variable. The name, also called the identifier, should describe the contents
of the variable. A good variable name is one that is meaningful right after you finish a program
and also years later when you (or perhaps a co-worker) need to modify the program. There are
several conventions for naming variables in Visual Basic. In this book, you will use Hungarian
notation, which is the same naming convention used for controls. Variable names in Hungarian
notation begin with a three-character ID that represents the variable’s data type. The three-
character IDs for the most commonly used data types are listed in Figure 3-4 along with
examples of variable names. Like control names, variable names are entered using camel case,
which means you lowercase the ID and then uppercase the first letter of each word in the name.

Figure 3-5 lists the rules for naming variables and includes examples of valid and invalid variable
names.

Rules for Naming Variables

1. The name must begin with a letter or an underscore.
2. The name can contain only letters, numbers, and the underscore character. No punctuation
 characters, special characters, or spaces are allowed in the name.
3. Although the name can contain thousands of characters, 32 characters is the recommended
 maximum number of characters to use.
4. The name cannot be a reserved word, such as Sub or Double.

Valid names
intFeb_Income, decSales2014, dblEastRegion, strName, blnIsValid

Invalid names
4thQuarter
dblWest Region
strFirst.Name
decSales$East

Problem
the name must begin with a letter or an underscore
the name cannot contain a space
the name cannot contain punctuation
the name cannot contain a special character

Figure 3-5 Variable naming rules and examples
© 2013 Cengage Learning

Data type
Boolean
Decimal
Double
Integer
String

ID
bln
dec
dbl
int
str

Example
blnInsured
decGrossPay
dblSales
intNumSold
strFirstName

Figure 3-4 Three-character IDs and examples
© 2013 Cengage Learning

CH A P T E R 3 Using Variables and Constants

118

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Declaring a Variable
Now that you know how to select an appropriate data type and name for a variable, you can
learn how to declare a variable in code. Declaring a variable tells the computer to set aside a
small section of its internal memory, and it allows you to refer to the section by the variable’s
name. The size of the section is determined by the variable’s data type. You declare a variable
using a declaration statement. Figure 3-6 shows the syntax of a declaration statement and
includes examples of declaring variables. The {Dim | Private | Static} portion of the syntax
indicates that you can select only one of the keywords appearing within the braces. In most
instances, you declare a variable using the Dim keyword. (You will learn about the Private and
Static keywords later in this lesson.)

In the syntax, variableName and dataType are the variable’s name and data type, respectively.
As mentioned earlier, a variable is considered an object in Visual Basic and is an instance of the
class specified in the dataType information. The Dim intNumSold As Integer statement, for
example, creates a variable (object) named intNumSold. The intNumSold variable (object) is an
instance of the Integer class.

InitialValue in the syntax is the value you want stored in the variable when it is created in the
computer’s internal memory. The square brackets in the syntax indicate that the “= initialValue”
part of a variable declaration statement is optional. If you do not assign an initial value to a
variable when it is declared, the computer stores a default value in the variable. The default value
depends on the variable’s data type. A variable declared using one of the numeric data types is
automatically initialized to—in other words, given a beginning value of—the number 0. The
computer automatically initializes a Boolean variable using the keyword False, and a Date
variable to 1/1/0001 12:00:00 AM. Object and String variables are automatically initialized using
the keyword Nothing. Variables initialized to Nothing do not actually contain the word
“Nothing”; rather, they contain no data at all.

Variable Declaration Statement

Syntax
{Dim | Private | Static} variableName As dataType [= initialValue]

Example 1
Dim intNumSold As Integer
Dim dblTaxRate As Double
declares an Integer variable named intNumSold and a Double variable named dblTaxRate;
the variables are automatically initialized to 0

Example 2
Dim decPay As Decimal
declares a Decimal variable named decPay; the variable is automatically initialized to 0

Example 3
Dim blnInsured As Boolean = True
declares a Boolean variable named blnInsured and initializes it using the keyword True

Example 4
Dim strMsg As String = "Good Night"
declares a String variable named strMsg and initializes it using the string “Good Night”

Figure 3-6 Syntax and examples of a variable declaration statement
© 2013 Cengage Learning

Dim comes from
the word
“dimension,”
which is how
programmers in

the 1960s referred to
the process of allocating
the computer’s memory.
“Dimension” refers to the
“size” of something.

Using Variables to Store Information L E S S ON A

119

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Assigning Data to an Existing Variable
In Chapter 2, you learned how to use an assignment statement to assign a value to a control’s
property during run time. An assignment statement is also used to assign a value to a variable
during run time; the syntax for doing this is shown in Figure 3-7. In the syntax, expression can
contain items such as literal constants, object properties, variables, keywords, or arithmetic
operators. A literal constant is an item of data whose value does not change while the
application is running; examples include the string literal constant “Mary” and the numeric
literal constant 500. When the computer processes an assignment statement, it assigns the value
of the expression that appears on the right side of the assignment operator (=) to the variable
(memory location) whose name appears on the left side of the assignment operator. In other
words, the computer evaluates the expression and then stores the result in the variable.

The data type of the expression assigned to a variable should be the same data type as the
variable itself; this is the case in all of the examples included in Figure 3-7. The assignment
statement in Example 1 stores the numeric literal constant 25 (an integer) in an Integer variable
named intNumber. Similarly, the assignment statement in Example 2 stores the string literal
constant “Karen” in a String variable named strName. Notice that string literal constants are
enclosed in quotation marks, but numeric literal constants and variable names are not. The
quotation marks differentiate a string from both a number and a variable name. In other words,
“500” is a string, but 500 is a number. Similarly, “Karen” is a string, but Karen (without the
quotation marks) would be interpreted by the computer as the name of a variable. When the

Assigning a Value to a Variable during Run Time

Syntax
variableName = expression

Note: In each of the following examples, the data type of the expression assigned to the variable
 is the same as the data type of the variable itself.

Example 1
intNumber = 25
assigns the integer 25 to the intNumber variable

Example 2
strName = "Karen"
assigns the string “Karen” to the strName variable

Example 3
strCity = txtCity.Text
assigns the string contained in the txtCity control’s Text property to the strCity variable

Example 4
dblInterestRate = .09
assigns the Double number .09 to the dblInterestRate variable

Example 5
decTaxRate = .06D
converts the Double number .06 to Decimal and then assigns the result to the decTaxRate
variable

Example 6
dblBonus = dblSales * .05
multiplies the contents of the dblSales variable by the Double number .05 and then assigns the
result to the dblBonus variable

Figure 3-7 Syntax and examples of assigning a value to a variable during run time
© 2013 Cengage Learning

CH A P T E R 3 Using Variables and Constants

120

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

computer processes an assignment statement that assigns a string to a String variable, it assigns
only the characters that appear between the quotation marks; it does not assign the quotation
marks themselves.

The assignment statement in Example 3 assigns the string contained in the txtCity control’s Text
property to a String variable named strCity. (Recall that the value stored in the Text property
of an object is always treated as a string.) The assignment statement in Example 4 assigns the
Double number .09 to a Double variable named dblInterestRate. This is because a numeric
literal constant that has a decimal place is automatically treated as a Double number in Visual
Basic. When entering a numeric literal constant, you do not enter a comma or special characters,
such as the dollar sign or percent sign. If you want to include a percentage in an assignment
statement, you do so using its decimal equivalent; for example, you enter .09 rather than 9%.

The decTaxRate = .06D statement in Example 5 shows how you convert a numeric literal
constant of the Double data type to the Decimal data type, and then assign the result to a
Decimal variable. The D that follows the number .06 in the statement is one of the literal type
characters in Visual Basic. A literal type character forces a literal constant to assume a data type
other than the one its form indicates. In this case, the D forces the Double number .06 to
assume the Decimal data type.

Finally, the dblBonus = dblSales * .05 statement in Example 6 in Figure 3-7 multiplies the
contents of the dblSales variable by the Double number .05 and then assigns the result to the
dblBonus variable. When an assignment statement’s expression contains the name of a variable,
the computer uses the value stored inside the variable to evaluate the expression.

A variable can store only one value at any one time. When you use an assignment statement to
assign another value to the variable, the new value replaces the existing value. The code shown
in Figure 3-8 illustrates this point. The declaration statement in the code creates the
intQuantity variable and initializes it to the number 0. The first assignment statement then
replaces the number 0 with the number 25. The second assignment statement multiplies the
contents of the intQuantity variable (25) by the number 2, giving 50. It then replaces the
number 25 stored in the variable with the number 50. Notice that the calculation appearing on
the right side of the assignment operator is performed first, and then the result is assigned to the
variable whose name appears on the left side of the assignment operator.

In all of the assignment statements shown in Figures 3-7 and 3-8, the expression’s data type is
the same as the variable’s data type. At times, however, you may need to store a value of a
different data type in a variable. You can change the value’s data type to match the variable’s
data type using either the TryParse method or one of the methods in the Convert class.

The TryParse Method
Like the Val function, which you learned about in Chapter 2, the TryParse method converts a
string to a number. However, unlike the Val function, which returns a Double number, the
TryParse method allows the programmer to specify the number’s data type; for this reason, most

initializes the variable to 0

replaces the 0 with 25

replaces the 25 with 50

Figure 3-8 Assignment statements entered in the btnCalc_Click procedure

You will learn
about another
literal type
character, the
letter C, in
Chapter 8.

You will learn
more about the
TryParse
method in
Chapter 5.

Assigning Data to an Existing Variable L E S S ON A

121

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

programmers prefer to use the TryParse method. Every numeric data type in Visual Basic has a
TryParse method that converts a string to that particular data type.

Figure 3-9 shows the basic syntax of the TryParse method and includes examples of using the
method. In the syntax, dataType is one of the numeric data types available in Visual Basic. The
dot member access operator in the TryParse method’s syntax indicates that the method is a
member of the dataType class. The method’s arguments (string and numericVariableName)
represent information that the method needs to perform its task. The string argument is the string
you want converted to a number of the dataType type. The string argument is typically either the
Text property of a control or the name of a String variable. The numericVariableName argument
is the name of a numeric variable in which the TryParse method can store the number. The
numeric variable must have the same data type as specified in the dataType portion of the syntax.
For example, when using the TryParse method to convert a string to a Double number, you need
to provide the method with the name of a Double variable in which to store the number.

The TryParse method parses its string argument to determine whether the string can be
converted to a number. In this case, the term “parse” means to look at each character in the
string. If the string can be converted, the TryParse method converts the string to a number and
then stores the number in the variable specified in the numericVariableName argument. If the
TryParse method determines that the string cannot be converted to the appropriate data type, it
assigns the number 0 to the variable.

Figure 3-10 shows how the TryParse method of the Double, Decimal, and Integer data types
would convert various strings. As the figure indicates, the three methods can convert a string
that contains only numbers. They also can convert a string that contains a leading sign, as
well as one that contains leading or trailing spaces. In addition, the Double.TryParse and
Decimal.TryParse methods can convert a string that contains a decimal point or a comma.
However, none of the three methods can convert a string that contains a dollar sign, a percent
sign, a letter, or a space within the string.

TryParse Method

Basic syntax
dataType.TryParse(string, numericVariableName)

Example 1
Double.TryParse(txtDue.Text, dblDue)
If the string contained in the txtDue control’s Text property can be converted to a Double
number, the TryParse method converts the string and then stores the result in the dblDue
variable; otherwise, it stores the number 0 in the variable.

Example 2
Decimal.TryParse(txtNetPay.Text, decNetPay)
If the string contained in the txtNetPay control’s Text property can be converted to a Decimal
number, the TryParse method converts the string and then stores the result in the decNetPay
variable; otherwise, it stores the number 0 in the variable.

Example 3
Integer.TryParse(strScore, intScore)
If the string contained in the strScore variable can be converted to an Integer number, the
TryParse method converts the string and then stores the result in the intScore variable; otherwise, it
stores the number 0 in the variable.

Figure 3-9 Basic syntax and examples of the TryParse method
© 2013 Cengage Learning

CH A P T E R 3 Using Variables and Constants

122

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

string Double.TryParse Decimal.TryParse Integer.TryParse

"62" 62 62 62

"–9" –9 –9 –9

"12.55" 12.55 12.55 0

"–4.23" –4.23 –4.23 0

"1,457" 1457 1457 0

" 33 " 33 33 33

"$5" 0 0 0

"7%" 0 0 0

"122a" 0 0 0

"1 345" 0 0 0

empty string 0 0 0

Figure 3-10 Results of the TryParse method for the Double, Decimal, and Integer data types
© 2013 Cengage Learning

The Convert Class
At times, you may need to convert a number (rather than a string) from one data type to
another. Visual Basic provides several ways of accomplishing this task. One way is to use the
Visual Basic conversion functions, which are listed in Appendix C in this book. You also can use
one of the methods defined in the Convert class. In this book you will use the Convert class
methods because they can be used in any of the languages built into Visual Studio. The
conversion functions, on the other hand, can be used only in the Visual Basic language. The
more commonly used methods in the Convert class are the ToDecimal, ToDouble, ToInt32, and
ToString methods. The methods convert a value to the Decimal, Double, Integer, and String
data types, respectively.

The syntax for using the Convert class methods is shown in Figure 3-11 along with examples of
using the methods. The dot member access operator in the syntax indicates that the method is a
member of the Convert class. In most cases, the value argument is a numeric value that you
want converted either to the String data type or to a different numeric data type (for example,
from Double to Decimal). Although you can use the Convert methods to convert a string to a
numeric data type, the TryParse method is the recommended method to use for that task. This
is because, unlike the Convert methods, the TryParse method does not produce an error when it
tries to convert the empty string. Instead, the TryParse method assigns the number 0 to its
numericVariableName argument.

You can
experiment with
the Visual Basic
conversion
functions by

completing Exercise 7 at
the end of Lesson C.

Assigning Data to an Existing Variable L E S S ON A

123

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

In the statement shown in Example 1, the Convert.ToDecimal method converts the Double
number .15 to Decimal. (Recall that a number with a decimal place is automatically treated as a
Double number in Visual Basic.) The statement then assigns the result to the decRate variable.
You also could write the statement as decRate = .15D. However, many programmers would
argue that using the Convert.ToDecimal method, rather than the literal type character D, makes
the code clearer.

In Example 2’s statement, the Convert.ToString method converts the integer stored in the
intQuantity variable to String before the statement assigns the result to the lblQuantity
control’s Text property. The statement in Example 3 uses the Convert.ToDecimal method to
convert the Double number .05 to Decimal. The statement multiplies the result by the contents
of the decSales variable and then assigns the product to the decBonus variable. You also could
write this statement as decBonus = decSales * .05D.

YOU DO IT 1!

Create a Visual Basic Windows application named YouDoIt 1. Save the application in the
VB2012\Chap03 folder. Add a text box, a label, and a button to the form. The button’s
Click event procedure should store the contents of the text box in a Double variable
named dblCost. It then should display the variable’s contents in the label. Code the
procedure. Save the solution and then start and test the application. Close the solution.

Note: You have learned a lot so far in this lesson. You may want to take a break at this point
before continuing.

The Scope and Lifetime of a Variable
Besides a name, data type, and initial value, every variable also has a scope and a lifetime. A
variable’s scope indicates where the variable can be used in an application’s code, and its lifetime
indicates how long the variable remains in the computer’s internal memory. Variables can have

Convert Class Methods

Syntax
Convert.method(value)

Example 1
decRate = Convert.ToDecimal(.15)
converts the Double number .15 to Decimal and then assigns the result to the decRate variable

Example 2
lblQuantity.Text = Convert.ToString(intQuantity)
converts the integer stored in the intQuantity variable to String and then assigns the result to
the lblQuantity control’s Text property

Example 3
decBonus = decSales * Convert.ToDecimal(.05)
converts the Double number .05 to Decimal, then multiplies the result by the contents of the
decSales variable, and then assigns that result to the decBonus variable

Figure 3-11 Syntax and examples of the Convert class methods
© 2013 Cengage Learning

Ch03A-
Scope and
Lifetime

CH A P T E R 3 Using Variables and Constants

124

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

class scope, procedure scope, or block scope. However, most of the variables used in an
application will have procedure scope. This is because fewer unintentional errors occur in
applications when the variables are declared using the minimum scope needed, which usually is
procedure scope.

A variable’s scope and lifetime are determined by where you declare the variable—in other
words, where you enter the variable’s declaration statement. Typically, you enter the declaration
statement either in a procedure (such as an event procedure) or in the Declarations section of a
form. A form’s Declarations section is not the same as the General Declarations section, which
you learned about in Chapter 2. The General Declarations section is located above the Public
Class clause in the Code Editor window, whereas the form’s Declarations section is located
between the Public Class and End Class clauses. Variables declared in a form’s Declarations
section have class scope. Variables declared in a procedure, on the other hand, have either
procedure scope or block scope, depending on where in the procedure they are declared. In the
next two sections, you will learn about procedure scope variables and class scope variables.
Variables having block scope are covered in Chapter 4.

Variables with Procedure Scope
When you declare a variable in a procedure, the variable is called a procedure-level variable.
Procedure-level variables have procedure scope because they can be used only by the procedure
in which they are declared. Procedure-level variables are typically declared at the beginning of a
procedure, and they remain in the computer’s internal memory only while the procedure is
running. Procedure-level variables are removed from memory when the procedure in which
they are declared ends. In other words, a procedure-level variable has the same lifetime as the
procedure that declares it. As mentioned earlier, most of the variables in your applications will
be procedure-level variables.

The Discount Calculator application that you view next illustrates the use of procedure-level
variables. As the interface shown in Figure 3-12 indicates, the application allows the user to
enter a sales amount. It then calculates and displays either a 15% discount or a 20% discount,
depending on the button selected by the user.

Figure 3-13 shows the Click event procedures for the 15% Discount and 20% Discount buttons.
The comments in the figure indicate the purpose of each line of code. When each procedure
ends, its procedure-level variables are removed from the computer’s memory. The variables will
be created again the next time the user clicks the button.

Figure 3-12 User interface for the Discount Calculator application

Variables can
also have
namespace
scope and are
referred to as

namespace variables,
global variables, or
public variables.
Such variables can
lead to unintentional
errors in a program and
should be avoided, if
possible. For this reason,
they are not covered in
this book.

Procedure-level
variables are
also called local
variables and
their scope is

often referred to as local
scope.

In the Static

Variables section
of this chapter,
you will learn
how to declare a

procedure-level variable
that remains in the
computer’s memory even
when the procedure in
which it is declared ends.

The Scope and Lifetime of a Variable L E S S ON A

125

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Private Sub btnDisc15_Click(sender As Object, e As EventArgs)
Handles btnDisc15.Click

' calculates and displays a 15% discount

' the Dim statements declare two procedure-level
' variables that can be used only within the
' btnDisc15_Click procedure
Dim dblSales As Double
Dim dblDiscount15 As Double

' the TryParse method converts the contents of the
' txtSales control to Double and then stores the
' result in the procedure-level dblSales variable
Double.TryParse(txtSales.Text, dblSales)

' the assignment statement multiplies the value
' stored in the procedure-level dblSales variable
' by the Double number 0.15 and then assigns the
' result to the procedure-level dblDiscount15 variable
dblDiscount15 = dblSales * 0.15

' the Convert method converts the value stored in the
' procedure-level dblDiscount15 variable to String, and
' the assignment statement assigns the result to the
' lblDiscount control's Text property
lblDiscount.Text = Convert.ToString(dblDiscount15)

End Sub

Private Sub btnDisc20_Click(sender As Object, e As EventArgs)
Handles btnDisc20.Click

' calculates and displays a 20% discount

' the Dim statements declare two procedure-level
' variables that can be used only within the
' btnDisc20_Click procedure
Dim dblSales As Double
Dim dblDiscount20 As Double

' the TryParse method converts the contents of the
' txtSales control to Double and then stores the
' result in the procedure-level dblSales variable
Double.TryParse(txtSales.Text, dblSales)

' the assignment statement multiplies the value
' stored in the procedure-level dblSales variable
' by the Double number 0.2 and then assigns the
' result to the procedure-level dblDiscount20 variable
dblDiscount20 = dblSales * 0.2

' the Convert method converts the value stored in the
' procedure-level dblDiscount20 variable to String, and

these variables will be
removed from memory
when the btnDisc15_Click
procedure ends

these variables will be
removed from memory
when the btnDisc20_Click
procedure ends

' the assignment statement assigns the result to the
' lblDiscount control's Text property
lblDiscount.Text = Convert.ToString(dblDiscount20)

End Sub

Figure 3-13 Click event procedures using procedure-level variables
© 2013 Cengage Learning

CH A P T E R 3 Using Variables and Constants

126

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Notice that both procedures in Figure 3-13 declare a variable named dblSales. When you use
the same name to declare a variable in more than one procedure, each procedure creates its own
variable when the procedure is invoked. Each procedure also destroys its own variable when the
procedure ends. In other words, although both procedures in Figure 3-13 declare a variable
named dblSales, each dblSales variable will refer to a different section in the computer’s
internal memory, and each will be both created and destroyed independently from the other.

To code and then test the Discount Calculator application:

1. If necessary, start Visual Studio 2012. Open the Discount Calculator Solution (Discount
Calculator Solution.sln) file contained in the VB2012\Chap03\Discount Calculator
Solution-Procedure-level folder. If necessary, open the designer window and auto-hide
the Solution Explorer, Properties, and Toolbox windows. The user interface shown
earlier in Figure 3-12 appears on the screen.

2. Open the Code Editor window. See Figure 3-14. For now, do not be concerned about the
three Option statements that appear in the window. You will learn about the Option
statements later in this lesson. Replace <your name> and <current date> in the
comments with your name and the current date, respectively.

3. Open the code template for the btnDisc15 control’s Click event procedure. Also open
the code template for the btnDisc20 control’s Click event procedure. In the procedures,
enter the comments and code shown earlier in Figure 3-13.

4. Save the solution and then start the application. If necessary, press Alt to display the
access keys in the interface.

5. First, calculate and display a 15% discount on $600. If you do not see the blinking
insertion point in the Sales box, click the Sales box. Type 600 in the Sales box and then
click the 15% Discount button. The number 90 appears in the Discount box, as shown
in Figure 3-15.

you will learn about
these statements later
in this lesson

Figure 3-14 Code Editor window for the Discount Calculator application

START HERE

The Scope and Lifetime of a Variable L E S S ON A

127

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

6. Change the sales amount to the letter a and then click the 15% Discount button.
The number 0 appears in the Discount box.

7. Change the sales amount to 1000 and then click the 20% Discount button. The number
200 appears in the Discount box.

8. Change the sales amount to the letter s and then click the 20% Discount button.
The number 0 appears in the Discount box.

9. Click the Exit button. Close the Code Editor window and then close the solution.

Variables with Class Scope
In addition to declaring a variable in a procedure, you also can declare a variable in the form’s
Declarations section, which begins with the Public Class clause and ends with the End Class clause.
When you declare a variable in the form’s Declarations section, the variable is called a class-level
variable and it has class scope. Class-level variables can be used by all of the procedures in the
form, including the procedures associated with the controls contained on the form. Class-level
variables retain their values and remain in the computer’s internal memory until the application
ends. In other words, a class-level variable has the same lifetime as the application itself.

Unlike a procedure-level variable, which is declared using the Dim keyword, you declare a class-
level variable using the Private keyword. You typically use a class-level variable when you need
more than one procedure in the same form to use the same variable. However, a class-level
variable can also be used when a procedure needs to retain a variable’s value after the procedure
ends. The Total Scores application, which you view next, illustrates this use of a class-level
variable. The application’s interface is shown in Figure 3-16. As the interface indicates, the
application calculates and displays the total of the scores entered by the user.

Figure 3-17 shows the Total Scores application’s code. The code uses a class-level variable
named decTotal to accumulate (add together) the scores entered by the user. Class-level
variables are declared after the Public Class clause, but before the first Private Sub clause, in the
form’s Declarations section.

Figure 3-16 User interface for the Total Scores application

Figure 3-15 Discount shown in the interface

Although you
also can use the
Dim keyword to
declare a class-
level variable,

most Visual Basic
programmers use the
Private keyword so
that the scope is more
obvious to anyone
reading the code.

CH A P T E R 3 Using Variables and Constants

128

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

When the user starts the Total Scores application, the computer will process the Private
decTotal As Decimal statement first. The statement creates and initializes the class-level
decTotal variable. The variable is created and initialized only once, when the application starts.
It remains in the computer’s internal memory until the application ends.

Each time the user clicks the Add to Total button, the button’s Click event procedure creates
and initializes a procedure-level variable named decScore. The TryParse method then converts
the contents of the txtScore control to Decimal, storing the result in the decScore variable. The
first assignment statement in the procedure adds the contents of the procedure-level decScore
variable to the contents of the class-level decTotal variable. At this point, the decTotal
variable contains the sum of all of the scores entered so far. The last assignment statement in the
procedure converts the contents of the decTotal variable to String and then assigns the result
to the lblTotal control. The procedure then sends the focus to the txtScore control. When the
procedure ends, the computer removes the procedure-level decScore variable from its memory.
However, it does not remove the class-level decTotal variable. The decTotal variable is
removed from the computer’s memory only when the application ends.

To code and then test the Total Scores application:

1. Open the Total Scores Solution (Total Scores Solution.sln) file contained in the VB2012
\Chap03\Total Scores Solution-Class-level folder. If necessary, open the designer
window. The user interface shown earlier in Figure 3-16 appears on the screen.

2. Open the Code Editor window. Here again, do not be concerned about the three Option
statements that appear in the window. You will learn about the Option statements later
in this lesson. Replace <your name> and <current date> in the comments with your
name and the current date, respectively.

Public Class frmMain

' class-level variable used
' to accumulate the scores
Private decTotal As Decimal

Private Sub btnExit_Click(sender As Object,
e As EventArgs) Handles btnExit.Click

Me.Close()
End Sub

Private Sub btnAdd_Click(sender As Object,
e As EventArgs) Handles btnAdd.Click

' totals the scores entered by the user

' declare variable
Dim decScore As Decimal

' total the scores
Decimal.TryParse(txtScore.Text, decScore)
decTotal = decTotal + decScore
' display the total
lblTotal.Text = Convert.ToString(decTotal)
' set the focus
txtScore.Focus()

End Sub
End Class

class-level variable
declared in the form’s
Declarations section

procedure-level
variable declared in
the btnAdd_Click
procedure

Figure 3-17 Total Scores application’s code using a class-level variable
© 2013 Cengage Learning

START HERE

The Scope and Lifetime of a Variable L E S S ON A

129

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

3. First, declare the class-level decTotal variable in the form’s Declarations section. Click
the blank line below the ' to accumulate the scores comment and then enter the
following declaration statement:

Private decTotal As Decimal

4. Open the code template for the btnAdd control’s Click event procedure. In the
procedure, enter the comments and code shown earlier in Figure 3-17.

5. Save the solution and then start the application. If necessary, press Alt to display the
access keys.

Note: The figures in this book will usually show the interface’s access keys. However,
from now on, you will not be instructed to press Alt to display the access keys. Instead,
you can choose whether or not to display them.

6. Type 95 as the score and then click the Add to Total button. The number 95 appears in
the Total scores box.

7. Change the score to 87 and then click the Add to Total button. The number 182
appears in the Total scores box.

8. Change the score to 100 and then click the Add to Total button. The number 282
appears in the Total scores box, as shown in Figure 3-18.

9. Click the Exit button. Close the Code Editor window and then close the solution.

Static Variables
Recall that you can declare a variable using the Dim, Private, or Static keywords. You already
know how to use the Dim and Private keywords to declare procedure-level and class-level
variables, respectively. In this section, you will learn how to use the Static keyword to declare a
special type of procedure-level variable, called a static variable.

A static variable is a procedure-level variable that remains in memory, and also retains its value,
even when the procedure in which it is declared ends. Like a class-level variable, a static variable
is not removed from the computer’s internal memory until the application ends. However,
unlike a class-level variable, which can be used by all of the procedures in a form, a static
variable can be used only by the procedure in which it is declared. In other words, a static
variable has a narrower (or more restrictive) scope than does a class-level variable. As
mentioned earlier, you can prevent many unintentional errors from occurring in an application
by declaring the variables using the minimum scope needed.

In the previous section, you viewed the interface and code for the Total Scores application,
which uses a class-level variable to accumulate the scores entered by the user. Rather than using
a class-level variable for that purpose, you also can use a static variable, as shown in the code in
Figure 3-19.

Figure 3-18 Interface showing the total of the scores you entered

The Static
keyword can be
used only in a
procedure.

CH A P T E R 3 Using Variables and Constants

130

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

The first time the user clicks the Add to Total button, the button’s Click event procedure
creates and initializes (to 0) a procedure-level variable named decScore and a static variable
named decTotal. The TryParse method then converts the contents of the txtScore control to
Decimal, storing the result in the decScore variable. The first assignment statement in the
procedure adds the contents of the decScore variable to the contents of the decTotal variable.
The last assignment statement in the procedure converts the contents of the decTotal variable
to String and assigns the result to the lblTotal control. The procedure then sends the focus to
the txtScore control. When the procedure ends, the computer removes the variable declared
using the Dim keyword (decScore) from its internal memory. But it does not remove the
variable declared using the Static keyword (decTotal).

Each subsequent time the user clicks the Add to Total button, the computer re-creates and re-
initializes the decScore variable declared in the button’s Click event procedure. However, it
does not re-create or re-initialize the decTotal variable because that variable, as well as its
current value, is still in the computer’s memory. After re-creating and re-initializing the
decScore variable, the computer processes the remaining instructions contained in the button’s
Click event procedure. Here again, each time the procedure ends, the decScore variable is
removed from the computer’s internal memory. The decTotal variable is removed only when
the application ends.

To use a static variable in the Total Scores application:

1. Open the Total Scores Solution (Total Scores Solution.sln) file contained in the Total
Scores Solution-Static folder. If necessary, open the designer window. The user interface
shown earlier in Figure 3-16 appears on the screen.

2. Open the Code Editor window. (Recall that you will learn about the Option statements
later in this lesson.) Replace <your name> and <current date> in the comments with
your name and the current date, respectively.

Public Class frmMain

Private Sub btnExit_Click(sender As Object,
e As EventArgs) Handles btnExit.Click

Me.Close()
End Sub

Private Sub btnAdd_Click(sender As Object,
e As EventArgs) Handles btnAdd.Click

' totals the scores entered by the user

' declare variables
Dim decScore As Decimal
Static decTotal As Decimal

' total the scores
Decimal.TryParse(txtScore.Text, decScore)
decTotal = decTotal + decScore
' display the total
lblTotal.Text = Convert.ToString(decTotal)
' set the focus
txtScore.Focus()

End Sub
End Class

modified comment

static variable declared
in the btnAdd_Click
procedure

Figure 3-19 Total Scores application’s code using a static variable
© 2013 Cengage Learning

START HERE

Static Variables L E S S ON A

131

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

3. Delete the comments and Private declaration statement entered in the form’s
Declarations section.

4. Modify the btnCalc control’s Click event procedure so that it uses a static variable rather
than a class-level variable. Use the code shown in Figure 3-19 as a guide.

5. Save the solution and then start the application.

6. Use the application to total the following three scores: 95, 87, and 100. Be sure to click
the Add to Total button after typing each score. Also be sure to delete the previous score
before entering the next score. When you are finished entering the scores, the number
282 appears in the Total scores box, as shown earlier in Figure 3-18.

7. Click the Exit button. Close the Code Editor window and then close the solution.

YOU DO IT 2!

Create a Visual Basic Windows application named YouDoIt 2. Save the application in the
VB2012\Chap03 folder. Add a label and a button to the form. The button’s Click event
procedure should add the number 1 to the contents of a class-level Integer variable
named intNumber. It then should display the variable’s contents in the label. Code the
application. Save the solution and then start and test the application. Now change
the class-level variable to a static variable. Save the solution and then start and test
the application. Close the solution.

Named Constants
In addition to using literal constants and variables in your code, you also can use named
constants. Like a variable, a named constant is a memory location inside the computer.
However, unlike the value stored in a variable, the value stored in a named constant cannot be
changed while the application is running. You create a named constant using the Const
statement. The statement’s syntax is shown in Figure 3-20. In the syntax, expression is the value
you want stored in the named constant when it is created in the computer’s internal memory.
The expression’s value must have the same data type as the named constant. The expression can
contain a literal constant, another named constant, or an arithmetic operator; however, it
cannot contain a variable or a method.

CH A P T E R 3 Using Variables and Constants

132

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

To differentiate the name of a constant from the name of a variable, many programmers
lowercase the three-character ID that represents the constant’s data type and then uppercase
the remaining characters in the name, as shown in the examples in Figure 3-20. When entered
in a procedure, the Const statements shown in the first three examples create procedure-level
named constants. To create a class-level named constant, you precede the Const keyword with
the Private keyword, as shown in Example 4. In addition, you enter the Const statement in the
form’s Declarations section. Notice that Example 4 uses the literal type character D to convert
the Double number .025 to Decimal. The Convert.ToDecimal method was not used for this
purpose because, as mentioned earlier, the expression assigned to a named constant cannot
contain a method.

Named constants make code more self-documenting and easier to modify because they allow
you to use meaningful words in place of values that are less clear. The named constant dblPI,
for example, is much more meaningful than the number 3.141593, which is the value of pi
rounded to six decimal places. Once you create a named constant, you then can use the
constant’s name, rather than its value, in the application’s code. Unlike the value stored in a
variable, the value stored in a named constant cannot be inadvertently changed while the
application is running. Using a named constant to represent a value has another advantage: If
the value changes in the future, you will need to modify only the Const statement in the
program, rather than all of the program statements that use the value.

The Area Calculator application that you view next illustrates the use of a named constant. As
the interface shown in Figure 3-21 indicates, the application allows the user to enter the radius
of a circle. It then calculates and displays the circle’s area. The formula for calculating the area of
a circle is πr2, where π stands for pi (3.141593).

Declaring a Named Constant

Syntax
[Private] Const constantName As dataType = expression

Example 1
Const dblPI As Double = 3.141593
declares dblPI as a Double named constant and initializes it to the Double number 3.141593

Example 2
Const intLIMIT As Integer = 70
declares intLIMIT as an Integer named constant and initializes it to the integer 70

Example 3
Const strCOMPANY As String = "Merring Co."
declares strCOMPANY as a String named constant and initializes it to the string “Merring Co.”

Example 4
Private Const decTAX_RATE As Decimal = .025D
declares decTAX_RATE as a Decimal named constant and initializes it to the Decimal number
.025

the D literal type
character changes the
number from Double to
Decimal

Figure 3-20 Syntax and examples of the Const statement
© 2013 Cengage Learning

Named Constants L E S S ON A

133

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Figure 3-22 shows the code for the Calculate Area button’s Click event procedure. The
declaration statements in the procedure declare and initialize a named constant and two
variables. The TryParse method converts the contents of the txtRadius control to Double,
storing the result in the dblRadius variable. The first assignment statement in the procedure
calculates the circle’s area using the values stored in the dblPI named constant and dblRadius
variable; it then assigns the result to the dblArea variable. The Format function in the second
assignment statement formats the contents of the dblArea variable and then displays the
resulting string in the lblArea control. When the procedure ends, the computer removes the
named constant and two variables from its internal memory.

To code and then test the Area Calculator application:

1. Open the Area Calculator Solution (Area Calculator Solution.sln) file contained in the
VB2012\Chap03\Area Calculator Solution folder. If necessary, open the designer
window. The user interface shown earlier in Figure 3-21 appears on the screen.

2. Open the Code Editor window. (You will learn about the Option statements in the next
section.) Replace <your name> and <current date> in the comments with your name and
the current date, respectively.

3. Open the code template for the btnCalc control’s Click event procedure, and then enter
the comments and code shown earlier in Figure 3-22.

4. Save the solution and then start the application.

5. Type 10 in the Circle’s radius box and then click the Calculate Area button. The
number 314.16 appears in the Circle’s area box, as shown in Figure 3-23.

Private Sub btnCalc_Click(sender As Object, e As EventArgs)
Handles btnCalc.Click

' calculates the area of a circle

' declare named constant and variables
Const dblPI As Double = 3.141593
Dim dblRadius As Double
Dim dblArea As Double

' calculate and display the area
Double.TryParse(txtRadius.Text, dblRadius)
dblArea = dblPI * dblRadius * dblRadius
lblArea.Text = Format(dblArea, "Standard")

End Sub

named constant
declaration statement

assignment statement
containing the named
constant

Figure 3-22 Calculate Area button’s Click event procedure
© 2013 Cengage Learning

Figure 3-21 User interface for the Area Calculator application
You also can
calculate the area
using the
expression
dblPI *
dblRadius^ 2.

The Format
function, which
you learned
about in Chapter
2, returns a
string.

START HERE

CH A P T E R 3 Using Variables and Constants

134

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

6. Click the Exit button. Close the Code Editor window and then close the solution.

Option Statements
Finally, you will learn about the three Option statements shown earlier in Figure 3-14. The
Option statements appeared in the Code Editor window for all of the applications you viewed in
this lesson—namely, the Discount Calculator, Total Scores, and Area Calculator applications.
You will learn about the Option Explicit and Option Infer statements first.

Option Explicit and Option Infer
It is important to declare every variable used in your code. This means every variable should
appear in a declaration statement, such as a Dim or Private statement. The declaration
statement is important because it allows you to control the variable’s data type. Declaration
statements also make your code more self-documenting. However, a word of caution is in order
at this point: In Visual Basic you can create variables “on the fly.” This means that if a statement
in your code refers to an undeclared variable, Visual Basic will create the variable for you and
assign the Object data type to it. Recall that the Object type is not a very efficient data type, and
its use should be limited.

Because it is so easy to forget to declare a variable—and so easy to misspell a variable’s name
while coding, thereby inadvertently creating an undeclared variable—Visual Basic provides a
statement that tells the Code Editor to flag any undeclared variables in your code. The
statement, Option Explicit On, must be entered in the General Declarations section of the
Code Editor window. When you also enter the Option Infer Off statement in the General
Declarations section, the Code Editor ensures that every variable and named constant is
declared with a data type. In other words, the statement tells the computer not to infer (or
assume) a memory location’s data type based on the data assigned to the memory location.

Option Strict
As you learned earlier, the data type of the value assigned to a memory location should be the
same as the data type of the memory location itself. If the value’s data type does not match the
memory location’s data type, the computer uses a process called implicit type conversion to
convert the value to fit the memory location. For example, when processing the statement Dim
dblLength As Double = 9, the computer converts the integer 9 to the Double number 9.0 before
storing the value in the dblLength variable. When a value is converted from one data type to
another data type that can store either larger numbers or numbers with greater precision, the
value is said to be promoted. In this case, if the dblLength variable is used subsequently in a
calculation, the results of the calculation will not be adversely affected by the implicit promotion
of the number 9 to the number 9.0.

Figure 3-23 Interface showing the circle’s area

Recall that the
General
Declarations
section is
located above

the Public Class clause in
the Code Editor window.

Option Statements L E S S ON A

135

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

On the other hand, if you inadvertently assign a Double number to a memory location that can
store only integers, the computer converts the Double number to an integer before storing the
value in the memory location. It does this by rounding the number to the nearest whole number
and then truncating (dropping off) the decimal portion of the number. When processing the
statement Dim intScore As Integer = 78.4, for example, the computer converts the Double
number 78.4 to the integer 78 before storing the integer in the intScore variable. When a value
is converted from one data type to another data type that can store only smaller numbers or
numbers with less precision, the value is said to be demoted. If the intScore variable is used
subsequently in a calculation, the implicit demotion of the number 78.4 to the number 78 will
probably cause the calculated results to be incorrect.

With implicit type conversions, data loss can occur when a value is converted from one data
type to a narrower data type, which is a data type with less precision or smaller capacity. You
can eliminate the problems that occur as a result of implicit type conversions by entering the
Option Strict On statement in the General Declarations section of the Code Editor window.
When the Option Strict On statement appears in an application’s code, the computer uses the
type conversion rules listed in Figure 3-24. The figure also includes examples of these rules.

According to the first rule, the computer will not implicitly convert a string to a number. As a
result, the Code Editor will issue the warning message “Option Strict On disallows implicit
conversions from 'String' to 'Double'” when your code contains the statement dblSales =
txtSales.Text. This is because the statement tells the computer to store a string in a Double
variable. As you learned earlier, you should use the TryParse method to explicitly convert a
string to the Double data type before assigning it to a Double variable. In this case, the
appropriate statement to use is Double.TryParse(txtSales.Text, dblSales).

Type Conversion Rules

1. Strings will not be implicitly converted to numbers. The Code Editor will display a warning
 message when a statement attempts to use a string where a number is expected.

Incorrect: dblSales = txtSales.Text
Correct: Double.TryParse(txtSales.Text, dblSales)

2. Numbers will not be implicitly converted to strings. The Code Editor will display a warning
 message when a statement attempts to use a number where a string is expected.

Incorrect: lblBonus.Text = decBonus
Correct: lblBonus.Text = Convert.ToString(decBonus)

3. Wider data types will not be implicitly demoted to narrower data types. The Code Editor will
 display a warning message when a statement attempts to use a wider data type where a
 narrower data type is expected.

Incorrect: Dim decRate As Decimal = .05
Correct: Dim decRate As Decimal =.05D
Correct: Dim decRate As Decimal = Convert.ToDecimal(.05)

4. Narrower data types will be implicitly promoted to wider data types.

Correct: dblAverage = dblTotal / intNum

Figure 3-24 Rules and examples of type conversions
© 2013 Cengage Learning

CH A P T E R 3 Using Variables and Constants

136

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

According to the second rule, the computer will not implicitly convert a number to a string.
Therefore, the Code Editor will issue an appropriate warning message when your code contains
the statement lblBonus.Text = decBonus; this is because the statement assigns a number to a
string. Recall that you can use the Convert class methods to explicitly convert a number to the
String data type. An appropriate statement to use here is lblBonus.Text = Convert.ToString
(decBonus).

The third rule states that wider data types will not be implicitly demoted to narrower data types.
A data type is wider than another data type if it can store either larger numbers or numbers with
greater precision. Because of this rule, a Double number will not be implicitly demoted to the
Decimal or Integer data types. If your code contains the statement Dim decRate As Decimal = .05,
the Code Editor will issue an appropriate warning message because the statement assigns a
Double number to a Decimal variable. The correct statement to use in this case is either Dim
decRate As Decimal = .05D or Dim decRate As Decimal = Convert.ToDecimal(.05).

According to the last rule listed in Figure 3-24, the computer will implicitly convert narrower
data types to wider data types. For example, when processing the statement dblAverage =
dblTotal / intNum, the computer will implicitly promote the integer stored in the intNum
variable to Double before dividing it into the contents of the dblTotal variable. The result, a
Double number, will be assigned to the dblAverage variable.

Figure 3-25 shows the three Option statements entered in the General Declarations section of
the Code Editor window. If a project contains more than one form, the statements must be
entered in each form’s Code Editor window.

Rather than entering the Option statements in the Code Editor window, you also can set the
options using either the Project Designer window or the Options dialog box. However, it is
strongly recommended that you enter the Option statements in the Code Editor window
because doing so makes your code more self-documenting and ensures that the options are set
appropriately. The steps for setting the options in the Project Designer window and Options
dialog box are listed in the Lesson A Summary section.

General Declarations section

Option statements

Figure 3-25 Option statements entered in the General Declarations section
In Visual Basic
2012, the
default setting
for Option
Explicit and

Option Infer is On,
whereas the default
setting for Option Strict
is Off.

Option Statements L E S S ON A

137

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

YOU DO IT 3!

Create a Visual Basic Windows application named YouDoIt 3. Save the application in the
VB2012\Chap03 folder. Add a text box, a label, and a button to the form. In the General
Declarations section of theCodeEditorwindow, enter the following threeOption statements:
Option Explicit On, Option Strict Off, and Option Infer Off. In the button’s Click
event procedure, declare aDouble variable named dblNum. Use an assignment statement to
assign the contents of the text box to the Double variable. Then, use an assignment
statement to assign the contents of the Double variable to the label. Save the solution and
then start and test the application. Stop the application. Now change the Option Strict
Off statement to Option Strict On, and then make the necessary modifications to the
code. Save the solution and then start and test the application. Close the solution.

Lesson A Summary
l To declare a variable:

The syntax of a variable declaration statement is {Dim | Private | Static} variableName
As dataType [= initialValue]. Use camel case for a variable’s name.

l To declare a procedure-level variable:

Enter the variable declaration statement in a procedure; use the Dim keyword to declare a
procedure-level variable that will be removed from the computer’s internal memory when
the procedure ends; use the Static keyword to declare a procedure-level variable that
remains in the computer’s internal memory, and also retains its value, until the application
ends.

l To declare a class-level variable:

Enter the variable declaration statement in a form’s Declarations section; use the Private
keyword.

l To use an assignment statement to assign data to an existing variable:

Use the syntax variableName = expression.

l To force a Double literal constant to assume the Decimal data type:

Append the letter D to the end of the Double literal constant.

l To convert a string to a numeric data type:

Use the TryParse method. The method’s syntax is dataType.TryParse(string, numeric-
VariableName).

l To convert a numeric value to a different data type:

Use one of the Convert methods. Each method’s syntax is Convert.method(value).

l To create a named constant:

Use the Const statement. The statement’s syntax is [Private] Const constantName As
dataType = expression. Enter the three-character ID in lowercase, and the remainder of
the name in uppercase.

l To create a procedure-level named constant:

Enter the Const statement (without the Private keyword) in a procedure.

CH A P T E R 3 Using Variables and Constants

138

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

l To create a class-level named constant:

Enter the Const statement, preceded by the keyword Private, in a form’s Declarations
section.

l To prevent the computer from creating an undeclared variable:

Enter the Option Explicit On statement in the General Declarations section of the Code
Editor window.

l To prevent the computer from inferring a variable’s data type:

Enter the Option Infer Off statement in the General Declarations section of the Code
Editor window.

l To prevent the computer from making implicit type conversions that may result in a loss of
data:

Enter the Option Strict On statement in the General Declarations section of the Code
Editor window.

l To use the Project Designer window to set Option Explicit, Option Strict, and Option Infer
for an entire project:

Open the solution that contains the project. Right-click My Project in the Solution Explorer
window and then click Open to open the Project Designer window. Click the Compile tab.
Use the Option explicit, Option strict, and Option infer boxes to set the options. Save the
solution and then close the Project Designer window.

l To use the Options dialog box to set Option Explicit, Option Strict, and Option Infer for all
of the projects you create:

Click TOOLS on the Visual Studio menu bar and then click Options. When the Options
dialog box opens, expand the Projects and Solutions node and then click VB Defaults. Use
the Option Explicit, Option Strict, and Option Infer boxes to set the options. Click the OK
button to close the Options dialog box.

Lesson A Key Terms
Class scope—the scope of a class-level variable; refers to the fact that the variable can be used
by any procedure in the form

Class-level variable—a variable declared in a form’s Declarations section; the variable has class
scope

Const statement—the statement used to create a named constant

Convert class—contains methods that return the result of converting a value to a specified data
type

Data type—indicates the type of data a memory location (variable or named constant) can store

Demoted—the process of converting a value from one data type to another data type that can
store only smaller numbers or numbers with less precision

Form’s Declarations section—located between the Public Class and End Class clauses in the
Code Editor window; the section of the Code Editor window where class-level variables are
declared

Implicit type conversion—the process by which a value is automatically converted to fit the
memory location to which it is assigned

Lifetime—indicates how long a variable or named constant remains in the computer’s internal
memory

Lesson A Key Terms L E S S ON A

139

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Literal constant—an item of data whose value does not change during run time

Literal type character—a character (such as the letter D) appended to a literal constant for the
purpose of forcing the literal constant to assume a different data type (such as Decimal)

Named constant—a computer memory location whose contents cannot be changed during run
time; created using the Const statement

Procedure scope—the scope of a procedure-level variable; refers to the fact that the variable
can be used only by the procedure in which it is declared

Procedure-level variable—a variable declared in a procedure; the variable has procedure scope

Promoted—the process of converting a value from one data type to another data type that can
store either larger numbers or numbers with greater precision

Scope—indicates where a memory location (variable or named constant) can be used in an
application’s code

Static variable—a procedure-level variable that remains in memory, and also retains its value,
until the application (rather than the procedure) ends

TryParse method—used to convert a string to a number of a specified data type

Unicode—the universal coding scheme that assigns a unique numeric value to each character
used in the written languages of the world

Variables—computer memory locations where programmers can temporarily store data, as well
as change the data, while an application is running

Lesson A Review Questions
1. Which of the following keywords is used to declare a class-level variable?

a. Class

b. Dimension

c. Global

d. Private

2. Which of the following is a data item whose value does not change during run time?

a. literal constant

b. literal variable

c. named constant

d. variable

3. Which of the following statements declares a procedure-level variable that remains in the
computer’s memory until the application ends?

a. Dim Static intScore As Integer

b. Private Static intScore As Integer

c. Static intScore As Integer

d. both b and c

4. Which of the following keywords can be used to declare a procedure-level variable?

a. Dim

b. Procedure

c. Static

d. both a and c

CH A P T E R 3 Using Variables and Constants

140

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

5. Which of the following statements declares a class-level variable?

a. Class intNum As Integer

b. Private intNum As Integer

c. Private Class intNum As Integer

d. Private Dim intNum As Integer

6. Which of the following declares a procedure-level String variable?

a. Dim String strCity

b. Dim strCity As String

c. Private strCity As String

d. String strCity

7. Which of the following are computer memory locations that can temporarily store
information?

a. Literal constants

b. Named constants

c. Variables

d. both b and c

8. If Option Strict is set to On, which of the following statements will assign the contents of
the txtSales control to a Double variable named dblSales?

a. dblSales = txtSales.Text

b. dblSales = txtSales.Text.Convert.ToDouble

c. Double.TryParse(txtSales.Text, dblSales)

d. TryParse.Double(txtSales.Text, dblSales)

9. Which of the following declares a named constant having the Double data type?

a. Const dblRATE As Double = .09

b. Const dblRATE As Double

c. Constant dblRATE = .09

d. both a and b

10. If Option Strict is set to On, which of the following statements assigns the sum of two
Integer variables to the Text property of the lblTotal control.

a. lblTotal.Text = Convert.ToInteger(intN1 + intN2)

b. lblTotal.Text = Convert.ToInt32(intN1 + intN2)

c. lblTotal.Text = Convert.ToString(intN1) + Convert.ToString(intN2)

d. none of the above

11. Which of the following statements prevents data loss due to implicit type conversions?

a. Option Explicit On

b. Option Strict On

c. Option Implicit Off

d. Option Convert Off

Lesson A Review Questions L E S S ON A

141

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Lesson A Exercises

1. A procedure needs to store an employee’s name and net pay amount (which may have
decimal places). Write the appropriate Dim statements to declare the necessary
procedure-level variables.

2. A procedure needs to store a person’s height and weight. The height may have a
decimal place; the weight will always be a whole number. Write the appropriate Dim
statements to declare the necessary procedure-level variables.

3. A procedure needs to store the name of an inventory item, the number of units in stock
at the beginning of the current month, the number of units purchased during the
current month, the number of units sold during the current month, and the number of
units in stock at the end of the current month. The number of units is always a whole
number. Write the appropriate Dim statements to declare the necessary procedure-level
variables.

4. Write an assignment statement that assigns Alabama to a String variable named
strState.

5. Write an assignment statement that assigns the word July to a String variable named
strMonth. Also write assignment statements that assign the numbers 4 and 20 to
Integer variables named intMomBirthday and intDadBirthday, respectively.

6. Write the statement to declare the procedure-level decINTEREST_RATE named constant
whose value is .075.

7. Write the statement to store the contents of the txtQuantity control in an Integer
variable named intQuantity.

8. Write the statement to assign the contents of an Integer variable named
intPopulation to the lblPopulation control.

9. An application needs to store the name of an item and its price (which may contain a
decimal place). Write the appropriate Private statements to declare the necessary class-
level variables.

10. Write an assignment statement that subtracts the contents of the dblExpenses variable
from the contents of the dblIncome variable and then assigns the result to the dblNet
variable.

11. Open the Shiloh Solution (Shiloh Solution.sln) file contained in the VB2012\Chap03\Shiloh
Solution folder. If necessary, open the designer window. At the end of the year, each
salesperson at Shiloh Products is paid a bonus of 1% of his or her annual sales.

a. Open the Code Editor window. In the General Declarations section, enter your
name, the current date, and the three Option statements. Use variables and the
TryParse method to code the Calculate button. Use the Format function to display
the bonus with a dollar sign, a thousands separator, and two decimal places.

b. Save the solution and then start the application. Enter the following valid ID and
sales amount: DB12 and 9500. The bonus should be $95.00. If your computer is
connected to a printer, print the interface.

c. Clear the screen. Now test the application using invalid data. More specifically, test
it without entering any data. Then test it using a letter as the sales amount.

d. Close the Code Editor window and then close the solution.

12. Open the Age Solution (Age Solution.sln) file contained in the VB2012\Chap03\Age
Solution folder. If necessary, open the designer window. The Calculate button should

INTRODUCTORY

INTRODUCTORY

INTRODUCTORY

INTRODUCTORY

INTRODUCTORY

INTRODUCTORY

INTRODUCTORY

INTRODUCTORY

INTRODUCTORY

INTRODUCTORY

INTRODUCTORY

INTRODUCTORY

CH A P T E R 3 Using Variables and Constants

142

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

calculate your age this year by subtracting your birth year from the current year. Open
the Code Editor window. In the General Declarations section, enter your name, the
current date, and the three Option statements. Use variables, the TryParse method, and
the Convert.ToString method to code the Calculate button. Save the solution and then
start the application. Test the application without entering any data. Then test it using
your birth year and the current year. Finally, test it using a $ sign for the birth year and a
% sign for the current year. Close the Code Editor window and then close the solution.

13. Write an assignment statement that increases the contents of the decSalary variable
by 2%.

14. Write an assignment statement that adds together the values stored in the decRegion1
and decRegion2 variables, and then assigns the result to a String variable named
strTotalSales.

15. Write the statement to declare a String variable that can be used by two procedures in
the same form. Name the variable strEmployeeName. Also specify where you will need
to enter the statement in the Code Editor window and whether the variable is a
procedure-level or class-level variable.

16. Open the Happy Flooring Solution (Happy Flooring Solution.sln) file contained in the
VB2012\Chap03\Happy Flooring Solution folder. If necessary, open the designer
window. The application should calculate the area of a floor in square yards. Open the
Code Editor window. In the General Declarations section, enter your name, the current
date, and the three Option statements. Use variables and the TryParse method to code
the Calculate button. Use the Format function to display the calculated results using the
Standard format style. Save the solution and then start the application. Test the
application using 10 as the length and 12 as the width. Now test the application using
invalid data. More specifically, test it without entering any data. Then test it using a
letter as the length and width measurements. Close the Code Editor window and then
close the solution.

17. Open theMason Solution (Mason Solution.sln) file contained in the VB2012\Chap03\Mason
Solution folder. If necessary, open the designer window. The application should
calculate the projected sales for each sales region.

a. Open the Code Editor window. In the General Declarations section, enter your
name, the current date, and the three Option statements. Use variables and the
TryParse method to code the Calculate button. Use the Format function to display
the calculated results using the Standard format style.

b. Save the solution and then start the application. Test the application using the
following valid sales and increase percentage amounts. The percentage amounts
are shown in decimal form.

Region 1 sales and percentage: 150000, .15
Region 2 sales and percentage: 175500, .12
Region 3 sales and percentage: 100300, .11

c. Test the application without entering any data. Also test it using letters as the sales
and percentage amounts.

d. Close the Code Editor window and then close the solution.

INTERMEDIATE

INTERMEDIATE

INTERMEDIATE

INTERMEDIATE

INTERMEDIATE

Lesson A Exercises L E S S ON A

143

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

18. In this exercise, you experiment with procedure-level and class-level variables. Open the
Scope Solution (Scope Solution.sln) file contained in the VB2012\Chap03\Scope
Solution folder. The Scope application allows the user to calculate either a 5% or 10%
commission on a sales amount. It displays the sales and commission amounts in the
lblSales and lblCommission controls, respectively.

a. Open the Code Editor window and then open the code template for the btnSales
control’s Click event procedure. Code the procedure so that it declares a variable
named dblSales. The procedure also should use an assignment statement to assign
the number 500 to the variable. In addition, the procedure should display the
contents of the variable in the lblSales control on the form.

b. Save the solution and then start the application. Click the Display Sales button.
What does the button’s Click event procedure display in the lblSales control? When
the Click event procedure ends, what happens to the dblSales variable? Click the
Exit button.

c. Open the code template for the btnComm5 control’s Click event procedure. In the
procedure, enter an assignment statement that multiplies a variable named
dblSales by .05, assigning the result to the lblCommission control. When you press
the Enter key after typing the assignment statement, a jagged line appears below
dblSales in the instruction. The jagged line indicates that the code contains a
syntax error. To determine the problem, rest your mouse pointer on the variable
name, dblSales. The message in the box indicates that the variable is not declared.
In other words, the btnComm5 control’s Click event procedure cannot locate the
variable’s declaration statement, which you previously entered in the btnSales
control’s Click event procedure. As you learned in Lesson A, only the procedure in
which a variable is declared can use the variable. No other procedure is even aware
that the variable exists.

d. Now observe what happens when you use the same name to declare a variable in
more than one procedure. Insert a blank line above the assignment statement in the
btnComm5 control’s Click event procedure. In the blank line, type a statement that
declares the dblSales variable, and then click the assignment statement to move
the insertion point away from the current line. Notice that the jagged line disappears
from the assignment statement. Save the solution and then start the application.
Click the Display Sales button. The contents of the dblSales variable declared in the
btnSales control’s Click event procedure (500) appears in the lblSales control. Click
the 5% Commission button. Why does the number 0 appear in the lblCommission
control? What happens to the dblSales variable declared in the btnComm5 control’s
Click event procedure when the procedure ends? Click the Exit button. As this
example shows, when you use the same name to declare a variable in more than one
procedure, each procedure creates its own procedure-level variable. Although the
variables have the same name, each refers to a different location in memory.

e. Next, you use a class-level variable in the application. Click the blank line above
the btnExit control’s Click event procedure. The Class Name and Method Name
boxes show frmMain and (Declarations), respectively. Press Enter to insert a
blank line. In the blank line, enter a statement that declares a class-level variable
named dblSales.

f. Delete the Dim statement from the btnSales control’s Click event procedure. Also
delete the Dim statement from the btnComm5 control’s Click event procedure.

g. Open the code template for the btnComm10 control’s Click event procedure. In the
procedure, enter an assignment statement that multiplies the dblSales variable
by .1, assigning the result to the lblCommission control.

DISCOVERY

CH A P T E R 3 Using Variables and Constants

144

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

h. Save the solution and then start the application. The variable declaration statement
in the form’s Declarations section creates the dblSales variable and initializes it to 0.
Click the Display Sales button. The button’s Click event procedure stores the number
500 in the dblSales variable and then displays the contents of the variable (500) in
the lblSales control. Click the 5% Commission button. The button’s Click event
procedure multiplies the contents of the dblSales variable (500) by .05 and then
displays the result (25) in the lblCommission control. Click the 10% Commission
button. The button’s Click event procedure multiplies the contents of the dblSales
variable (500) by .1 and then displays the result (50) in the lblCommission control. As
this example shows, any procedure in the form can use a class-level variable. Click
the Exit button. What happens to the class-level dblSales variable when the
application ends? Close the Code Editor window and then close the solution.

19. Open the Debug Solution (Debug Solution.sln) file contained in the VB2012\Chap03\
Debug Solution-Lesson A folder. The application is supposed to display the number of
times the Count button is pressed, but it is not working correctly.

a. Start the application. Click the Count button. The message indicates that you have
pressed the Count button once, which is correct. Click the Count button several
more times. The message still displays the number 1. Click the Exit button.

b. Open the Code Editor window and study the code. What are two ways that you can
use to correct the code? Which way is the preferred way? Modify the code using the
preferred way. Save the solution and then start the application. Click the Count
button several times. Each time you click the Count button, the message should
change to indicate the number of times the button was pressed.

c. Click the Exit button. Close the Code Editor window and then close the solution.

SWAT THE BUGS

Lesson A Exercises L E S S ON A

145

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

& LESSON B
After studying Lesson B, you should be able to:

l Include procedure-level and class-level variables in an application

l Concatenate strings

l Get user input using the InputBox function

l Include the ControlChars.NewLine constant in code

l Designate the default button for a form

l Format numbers using the ToString method

Modifying the Play It Again Movies Application
Your task in this chapter is to modify the Play It Again Movies application created in Chapter 2.
The modified application will calculate and display a 3% sales tax. It also will display the name of
the salesclerk who entered the sales information. Before making modifications to an
application’s existing code, you should review the application’s documentation and revise the
necessary documents. In this case, you need to revise the application’s TOE chart and also the
pseudocode for the Calculate button. The revised TOE chart is shown in Figure 3-26. The
changes made to the original TOE chart from Chapter 2 are shaded in the figure. (You will view
the revised pseudocode for the Calculate button later in this lesson.)

Task Object Event
1. Calculate total discs sold and total sales amount btnCalc Click
2. Display total discs sold and total sales amount

in lblTotalDiscs and lblTotalSales
3. Calculate the sales tax
4. Display sales tax and salesclerk’s name in lblMessage

Print the sales receipt btnPrint Click

End the application btnExit Click

Clear screen for the next sale btnClear Click

Display total discs sold (from btnCalc) lblTotalDiscs None

Display total sales amount (from btnCalc) lblTotalSales None

Get and display the sales information txtDate, txtDvds, txtBluRays None

Get the salesclerk’s name frmMain Load

Display sales tax and salesclerk’s name (from btnCalc) lblMessage None

Figure 3-26 Revised TOE chart for the Play It Again Movies application
© 2013 Cengage Learning

Notice that the revised TOE chart includes two additional objects (the form and a label control),
as well as an additional event (Load). A form’s Load event occurs when the application is started
and the form is displayed the first time. According to the TOE chart, the Load event is
responsible for getting the salesclerk’s name. Also notice that the btnCalc control’s Click event
procedure now has two additional tasks: It must calculate the sales tax and also display the sales
tax and salesclerk’s name in the lblMessage control.

CH A P T E R 3 Using Variables and Constants

146

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

To open the Play It Again Movies application:

1. If necessary, start Visual Studio 2012. Open the Play It Again Solution (Play It Again
Solution.sln) file contained in the VB2012\Chap03\Play It Again Solution folder. If
necessary, open the designer window. Figure 3-27 shows the application’s user interface.

Two modifications were made to the application created in Chapter 2: The lblMessage control
was added to the interface and the statement lblMessage.Text = String.Empty was added to
the btnClear control’s Click event procedure. The statement will remove the contents of the
lblMessage control when the user clicks the Clear Screen button.

Modifying the Calculate Button’s Code
Currently, the Calculate button uses the Val function and the Text properties of controls to
calculate the total number of discs sold and total sales amount. In this lesson, you will modify
the button’s code to use the TryParse method and variables.

To begin modifying the application’s code:

1. Open the Code Editor window. Replace <your name> and <current date> with your
name and the current date, respectively.

2. The code will contain variables, so you will enter the three Option statements in the
Code Editor window. Click the blank line above the Public Class frmMain clause and
then press Enter to insert another blank line. Enter the following three statements:

Option Explicit On
Option Strict On
Option Infer Off

3. Scroll down the Code Editor window until the entire btnCalc_Click procedure is visible.
Notice that jagged blue lines appear below the expressions in the two calculations. The
jagged lines indicate that the expressions contain one or more syntax errors.

4. Position your mouse pointer on the first jagged blue line, as shown in Figure 3-28. An
error message appears in a box. (If the box does not appear after a few seconds have

START HERE

lblMessage

Figure 3-27 Modified user interface for the Play It Again Movies application
OpenClipArt.org/John Diamond / diamonjohn

START HERE

START HERE

Modifying the Calculate Button’s Code L E S S ON B

147

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

elapsed, try moving your mouse pointer to a different location on the jagged blue line.)
The error message says “Option Strict On disallows implicit conversions from 'Double' to
'String'.” You received this error message because the expression on the right side of the
assignment operator results in a Double number, and the assignment statement is
attempting to assign that Double number to the Text property of a control. (Recall that the
Val function returns a Double number, and the Text property of a control is a string.)

5. Highlight (select) the three lines of code and the blank line that appears below them, as
shown in Figure 3-29. Press Delete to remove the highlighted (selected) lines from the
procedure.

Figure 3-30 shows the revised pseudocode and flowchart for the btnCalc control’s Click event
procedure. Changes made to the original pseudocode and flowchart from Chapter 2 are shaded
in the figure. The Click event procedure includes two additional calculations: one for the
subtotal and one for the sales tax. The subtotal is computed by multiplying the total number of
discs sold by the disc price. The sales tax is computed by multiplying the subtotal by the sales
tax rate. Notice that the total sales expression has changed; it now adds the subtotal to the sales
tax. Lastly, the Click event procedure displays the sales tax and the salesclerk’s name in the
lblMessage control.

mouse pointer

Figure 3-28 A jagged blue line indicates a syntax error

highlight (select)
these lines and
then press Delete

Figure 3-29 Lines to delete from the procedure

CH A P T E R 3 Using Variables and Constants

148

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Before you begin coding a procedure, you first study the procedure’s pseudocode to determine
the variables and named constants (if any) the procedure will use. When determining the named
constants, look for items whose value should be the same each time the procedure is invoked. In
the btnCalc control’s Click event procedure, the disc price and sales tax rate will always be $7
and .03 (the decimal equivalent of 3%), respectively; therefore, you will assign both values to
Decimal named constants. At this point, you may be wondering why the disc price is assigned to
a Decimal constant rather than to an Integer constant. Although the disc price does not
currently contain any decimal places, it is possible that the price may include a decimal place in
the future. By using the Decimal data type now, you can change the constant’s value to include a
decimal place without having to remember to also change its data type.

When determining a procedure’s variables, look in the pseudocode for items whose value is
allowed to change each time the procedure is processed. In the btnCalc control’s Click event
procedure, the numbers of DVDs and Blu-rays sold will likely be different each time the
procedure is processed. As a result, the total number of discs sold, subtotal, sales tax, and total
sales amounts will also vary because they are based on the numbers of DVDs and Blu-rays sold.

btnCalc Click event procedure
1. calculate total discs sold = DVDs sold + Blu-rays sold
2. calculate subtotal = total discs sold * disc price
3. calculate sales tax = subtotal * sales tax rate
4. calculate total sales = subtotal + sales tax
5. display total discs sold and total sales in lblTotalDiscs and lblTotalSales
6. display sales tax and salesclerk’s name in lblMessage

start

total discs sold = DVDs
sold + Blu-rays sold

subtotal = total discs sold
* disc price

sales tax = subtotal *
sales tax rate

total sales = subtotal +
sales tax

display total discs
sold in lblTotalDiscs

stop

display sales tax and
salesclerk’s name in
lblMessage

display total sales
in lblTotalSales

Figure 3-30 Revised pseudocode and flowchart for the btnCalc control’s Click event procedure
© 2013 Cengage Learning

Modifying the Calculate Button’s Code L E S S ON B

149

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Therefore, you will assign those six values to variables. Integer variables are a good choice for
storing the number of DVDs sold, the number of Blu-rays sold, and the total number of discs
sold because a customer can buy only a whole number of discs. You will use Decimal variables
to store the subtotal, sales tax, and total price because these amounts may contain a decimal
place. Figure 3-31 lists the names and data types of the two named constants and six variables
you will use in the btnCalc control’s Click event procedure.

To declare the named constants and variables:

1. The insertion point should be located in the blank line above the End Sub clause in the
btnCalc control’s Click event procedure. If necessary, press Tab twice to align the
blinking insertion point with the apostrophe in the comment.

2. First, you will declare the named constants. When declaring named constants and
variables, be sure to enter the name using the exact capitalization you want. Then, any
time you want to refer to the named constant or variable in the code, you can enter its
name using any case. The Code Editor will automatically adjust the name to match the
case used in the declaration statement. Enter the following declaration statements. (For
now, don’t be concerned about the jagged green line that appears below each statement
after you press Enter.)

Const decDISC_PRICE As Decimal = 7D
Const decTAX_RATE As Decimal = .03D

3. Next, enter the following six variable declaration statements. Press Enter twice after
typing the last statement.

Dim intDvds As Integer
Dim intBluRays As Integer
Dim intTotalDiscs As Integer
Dim decSubtotal As Decimal
Dim decSalesTax As Decimal
Dim decTotalSales As Decimal

4. Place your mouse pointer on the jagged green line that appears below the last Dim
statement. A warning message appears in a box, as shown in Figure 3-32. The message
alerts you that the decTotalSales variable has been declared but has not been used yet.
In other words, the variable name does not appear in any other statement in the code.
The jagged green line will disappear when you include the variable name in another
statement in the procedure.

Named constant/Variable Data type
decDISC_PRICE Decimal
decTAX_RATE Decimal
intDvds Integer
intBluRays Integer
intTotalDiscs Integer
decSubtotal Decimal
decSalesTax Decimal
decTotalSales Decimal

Figure 3-31 List of named constants and variables
© 2013 Cengage Learning

START HERE

CH A P T E R 3 Using Variables and Constants

150

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

After declaring the named constants and variables, you can begin coding either each step in the
procedure’s pseudocode or each symbol (other than the start and stop ovals) in its flowchart.
Keep in mind that some steps and symbols may require more than one line of code. You will use
the pseudocode shown earlier in Figure 3-30 to code the procedure. The first step in the
pseudocode calculates the total number of discs sold by adding the number of DVDs sold to the
number of Blu-rays sold. The numbers of DVDs and Blu-rays sold are stored in the Text
properties of the txtDvds and txtBluRays controls, respectively. You will use the TryParse
method to convert the Text properties to integers and then store the results in the intDvds and
intBluRays variables. You then will use an assignment statement to add together the contents
of both variables, assigning the sum to the intTotalDiscs variable.

To continue coding the btnCalc control’s Click event procedure:

1. The insertion point should be positioned as shown earlier in Figure 3-32. Enter the
following comment and TryParse methods. When you press Enter after typing each
TryParse method, the Code Editor removes the jagged green line that appears below the
respective variable’s Dim statement.

' calculate total number of discs sold
Integer.TryParse(txtDvds.Text, intDvds)
Integer.TryParse(txtBluRays.Text, intBluRays)

2. Next, you will enter an assignment statement that calculates the total number of discs
sold. Type the following assignment statement and then press Enter twice. (Notice that
all of the variables in the assignment statement have the same data type: Integer.)

intTotalDiscs = intDvds + intBluRays

3. The second step in the pseudocode calculates the subtotal by multiplying the total
number of discs sold by the disc price. You will assign the subtotal to the decSubtotal
variable. Enter the following comment and assignment statement. Press Enter twice
after typing the assignment statement. When processing the assignment statement, the
computer will implicitly convert the integer stored in the intTotalDiscs variable to
Decimal before multiplying it by the decimal number stored in the decDISC_PRICE
constant. It then will assign the result to the decSubtotal variable.

' calculate the subtotal
decSubtotal = intTotalDiscs * decDISC_PRICE

insertion point

warning message

Figure 3-32 Const and Dim statements entered in the procedure

START HERE

Modifying the Calculate Button’s Code L E S S ON B

151

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

4. The third step in the pseudocode calculates the sales tax by multiplying the subtotal by
the sales tax rate. You will assign the sales tax to the decSalesTax variable. Enter the
following comment and assignment statement. Press Enter twice after typing the
assignment statement. (Notice that the variables and named constant in the assignment
statement have the same data type: Decimal.)

' calculate the sales tax
decSalesTax = decSubtotal * decTAX_RATE

5. The fourth step in the pseudocode calculates the total sales by adding together the
subtotal and the sales tax. You will assign the result to the decTotalSales variable.
Enter the following comment and assignment statement. Press Enter twice after typing
the assignment statement. (Notice that all of the variables in the assignment statement
have the same data type: Decimal.)

' calculate the total sales
decTotalSales = decSubtotal + decSalesTax

6. Step 5 in the pseudocode displays the total number of discs sold and total sales in their
respective label controls. The total number of discs sold and total sales are stored in the
intTotalDiscs and decTotalSales variables, respectively. Because both variables have
a numeric data type, you will need to convert their contents to the String data type
before assigning the contents to the label controls. You can use the ToString method of
the Convert class to make the conversions. Enter the following comment and assignment
statements. Press Enter twice after typing the last assignment statement.

' display total amounts
lblTotalDiscs.Text = Convert.ToString(intTotalDiscs)
lblTotalSales.Text = Convert.ToString(decTotalSales)

7. The last step in the pseudocode displays both the sales tax and the salesclerk’s name in
the lblMessage control. For now, you will display only the sales tax. Enter the following
comment and assignment statement:

' display tax and salesclerk’s name
lblMessage.Text = Convert.ToString (decSalesTax)

8. Save the solution. Figure 3-33 shows the code entered in the btnCalc control’s Click
event procedure.

Private Sub btnCalc_Click(sender As Object, e As EventArgs)
Handles btnCalc.Click

' calculate number of discs sold and total sales

Const decDISC_PRICE As Decimal = 7D
Const decTAX_RATE As Decimal = 0.03D
Dim intDvds As Integer
Dim intBluRays As Integer
Dim intTotalDiscs As Integer
Dim decSubtotal As Decimal
Dim decSalesTax As Decimal
Dim decTotalSales As Decimal

' calculate total number of discs sold
Integer.TryParse(txtDvds.Text, intDvds)
Integer.TryParse(txtBluRays.Text, intBluRays)
intTotalDiscs = intDvds + intBluRays

Figure 3-33 Code entered in the btnCalc control’s Click event procedure (continues)

CH A P T E R 3 Using Variables and Constants

152

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

To start and then test the application:

1. Start the application. Type 4/9/2014 in the Date box, 5 in the DVDs box, and 3 in the
Blu-rays box. Click the Calculate button. The total number of discs sold, total sales, and
sales tax appear in the interface, as shown in Figure 3-34. However, it’s not obvious to
the user that the 1.68 is the sales tax. You can fix this problem by displaying the message
“The sales tax was” before the sales tax amount. Before you can accomplish this task, you
need to learn how to concatenate (link together) strings. String concatenation is covered
in the next section.

2. Click the Clear Screen button to clear the sales receipt (except for the date), and then
click the Exit button.

sales tax amount

Figure 3-34 Calculated amounts shown in the interface
OpenClipArt.org/John Diamond / diamonjohn

' calculate the subtotal
decSubtotal = intTotalDiscs * decDISC_PRICE

' calculate the sales tax
decSalesTax = decSubtotal * decTAX_RATE

' calculate the total sales
decTotalSales = decSubtotal + decSalesTax

' display total amounts
lblTotalDiscs.Text = Convert.ToString(intTotalDiscs)
lblTotalSales.Text = Convert.ToString(decTotalSales)

' display tax and salesclerk's name
lblMessage.Text = Convert.ToString(decSalesTax)

End Sub

Figure 3-33 Code entered in the btnCalc control’s Click event procedure
© 2013 Cengage Learning

(continued)

START HERE

Modifying the Calculate Button’s Code L E S S ON B

153

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Concatenating Strings
You use the concatenation operator, which is the ampersand (&), to concatenate (connect or
link together) strings. For the Code Editor to recognize the ampersand as the concatenation
operator, the ampersand must be both preceded and followed by a space. Figure 3-35 shows
some examples of string concatenation.

You will use the concatenation operator to concatenate the following three strings: “The sales tax
was ”, the contents of the decSalesTax variable after it has been converted to a string, and “.”.
Using the examples shown in Figure 3-35 as a guide, the correct assignment statement is
lblMessage.Text = "The sales tax was " & Convert.ToString(decSalesTax) & ".". The
assignment statement is rather long and, depending on the size of the font used in your Code
Editor window, you may not be able to view the entire statement without scrolling the window.
The Code Editor allows you to break a line of code into two or more physical lines, as long as the
break comes either before a closing parenthesis or after one of the following: a comma, an
opening parenthesis, or an operator (arithmetic, assignment, comparison, logical, or
concatenation). If you want to break a line of code anywhere else, you will need to use the
line continuation character, which is an underscore (_) that is immediately preceded by a space.
However, if you use the line continuation character, it must appear at the end of a physical line of
code. In this case, you will break the assignment statement after the first concatenation operator.

To concatenate the strings and then test the code:

1. Change the last assignment statement in the procedure as shown in Figure 3-36. The
modifications are shaded in the figure.

space

modify this
assignment
statement

Figure 3-36 String concatenation included in the assignment statement

Concatenating Strings

Variables Contents
Nashville
Tennessee
43500

strCity
strState
intPop

Concatenated string
strCity & strState
strState & " " & strCity
strCity & ", " & strState
"He lives in " & strCity & ".""
"Population: " & Convert.ToString(intPop)

Result
NashvilleTennessee
Tennessee Nashville
Nashville, Tennessee
He lives in Nashville.
Population: 43500

Figure 3-35 Examples of string concatenation
© 2013 Cengage Learning

You also can use
the plus sign (+)
to concatenate
strings. To avoid
confusion,

however, you should use
the plus sign for addition
and the ampersand for
concatenation.

START HERE

CH A P T E R 3 Using Variables and Constants

154

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

2. Save the solution and then start the application. Type 4/9/2014 in the Date box, 5 in the
DVDs box, and 3 in the Blu-rays box. Click the Calculate button. The lblMessage
control contains the sentence “The sales tax was 1.68.”. See Figure 3-37.

3. Click the Exit button.

You also need to display the salesclerk’s name in the lblMessage control. You can use the
InputBox function to obtain the name from the user.

The InputBox Function
The InputBox function displays an input dialog box, which is one of the standard dialog boxes
available in Visual Basic. An example of an input dialog box is shown in Figure 3-38. Themessage in
the dialog box should prompt the user to enter the appropriate information in the input area. The
user closes the dialog box by clicking the OK button, Cancel button, or Close button. The value
returned by the InputBox function depends on the button the user chooses. If the user clicks the
OK button, the function returns the value contained in the input area of the dialog box; the return
value is always treated as a string. If the user clicks either the Cancel button in the dialog box or the
Close button on the dialog box’s title bar, the function returns an empty (or zero-length) string.

prompt message

if you are using Windows 7, the
title bar text will be left-aligned

input area

Figure 3-38 Example of an input dialog box

message and
sales tax amount

Figure 3-37 Concatenated strings displayed in the lblMessage control
OpenClipArt.org/John Diamond / diamonjohn

The InputBox Function L E S S ON B

155

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Figure 3-39 shows the basic syntax of the InputBox function. The prompt argument contains the
message to display inside the dialog box. The optional title and defaultResponse arguments
control the text that appears in the dialog box’s title bar and input area, respectively. If you omit
the title argument, the project name appears in the title bar. If you omit the defaultResponse
argument, a blank input area appears when the dialog box opens. The prompt, title, and
defaultResponse arguments can be string literal constants, String named constants, or String
variables. The Windows standard is to use sentence capitalization for the prompt, but book title
capitalization for the title. The capitalization (if any) you use for the defaultResponse depends on
the text itself. In most cases, you assign the value returned by the InputBox function to a String
variable, as shown in the first three examples in Figure 3-39.

GUI DESIGN TIP InputBox Function’s Prompt and Title Capitalization

l Use sentence capitalization for the prompt, but book title capitalization for the title.

The InputBox
function’s syntax
also includes
optional XPos
and YPos

arguments for specifying
the dialog box’s
horizontal and vertical
positions, respectively. If
both arguments are
omitted, the dialog box
appears centered on the
screen.

Using the InputBox Function

Syntax
InputBox(prompt[, title][, defaultResponse])

Example 1
strSales =
 InputBox("Enter a sales amount. Click Cancel to end.",
 "Sales Entry", "0.00")
Displays the input dialog box shown in Figure 3-38. When the user closes the dialog box, the
assignment statement assigns the function’s return value to the strSales variable.

Example 2
strCity = InputBox("City name:", "City")
Displays an input dialog box that shows City name: as the prompt, City in the title bar, and an
empty input area. When the user closes the dialog box, the assignment statement assigns the
function’s return value to the strCity variable.

Example 3
Const strPROMPT As String = "Enter the discount rate:"
Const strTITLE As String = "Discount Rate"
strRate = InputBox(strPROMPT, strTITLE, ".00")
Displays an input dialog box that shows the contents of the strPROMPT constant as the prompt,
the contents of the strTITLE constant in the title bar, and .00 in the input area. When the user closes
the dialog box, the assignment statement assigns the function’s return value to the strRate variable.

Example 4
Integer.TryParse(InputBox("How old are you?",
 "Discount Verification"), intAge)
Displays an input dialog box that shows How old are you? as the prompt, Discount Verification
in the title bar, and an empty input area. When the user closes the dialog box, the TryParse
method converts the function’s return value from String to Integer and then stores the result in the
intAge variable.

Figure 3-39 Basic syntax and examples of the InputBox function
© 2013 Cengage Learning

CH A P T E R 3 Using Variables and Constants

156

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

You will use the InputBox function to prompt the salesclerk to enter his or her name. The
function should be entered in the form’s Load event procedure because that is the procedure
responsible for getting the salesclerk’s name. Recall that a form’s Load event occurs before the
form appears on the screen. After the Load event procedure obtains the salesclerk’s name, you
will have the Calculate button’s Click event procedure concatenate the name to the message
displayed in the lblMessage control.

Before entering the InputBox function in the Load event procedure, you must decide where to
declare the String variable that will store the function’s return value. In other words, should the
variable have procedure scope or class scope? When deciding, consider the fact that the form’s
Load event procedure needs to store a value in the variable, and the Calculate button’s Click
event procedure needs to display the variable’s value in the lblMessage control. Recall from
Lesson A that when two procedures in the same form need access to the same variable, you
declare the variable as a class-level variable by entering its declaration statement in the form’s
Declarations section.

To continue coding the Play It Again Movies application:

1. Scroll to the top of the Code Editor window. Click the blank line immediately below the
Public Class frmMain clause. When you do so, frmMain and (Declarations) appear in
the Class Name and Method Name boxes, respectively. Press Enter to insert a blank line.

2. First, you will declare a class-level String variable named strClerk. Enter the comment
and declaration statement shown in Figure 3-40.

3. Now you will enter the InputBox function in the form’s Load event procedure. You
access the form’s procedures by selecting (frmMain Events) in the Class Name list box.
Click the Class Name list arrow and then click (frmMain Events) in the list. Click the
Method Name list arrow to view a list of the form’s procedures. Scroll down the list
until you see Load, and then click Load in the list. The frmMain Load event procedure
appears in the Code Editor window.

4. To make the assignment statement that contains the InputBox function shorter and
easier to understand, you will create named constants for the function’s prompt and title
arguments, and then use the named constants (rather than the longer strings) in the

START HERE

enter this comment and
declaration statement

Figure 3-40 Class-level variable declared in the form’s Declarations section

The InputBox Function L E S S ON B

157

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

function. You are using named constants rather than variables because the prompt and
title will not change as the application is running. Enter the comments and code shown
in Figure 3-41.

5. Next, you will concatenate the strClerk variable to the message assigned to the
lblMessage control. Locate the btnCalc control’s Click event procedure. Click
immediately after the closing quotation mark in the Convert.ToString
(decSalesTax) & "." line. Press the spacebar to enter a space character after the
closing quotation mark. Type & and then press Enter. Now type strClerk and then click
the blank line above the End Sub clause. The modified assignment statement is shown
here: lblMessage.Text = "The sales tax was " & Convert.ToString(decSalesTax)
& "." & strClerk.

6. Save the solution and then start the application. The Name Entry dialog box created by
the InputBox function appears first. See Figure 3-42.

7. Type your name in the input area of the dialog box and then click the OK button. The
sales receipt appears. Type 4 in the DVDs box and then click the Calculate button.
Notice that your name appears much too close to the period in the lblMessage
control. You can correct the spacing problem by replacing the period (".") in the
assignment statement with a period and two spaces (". "). Or, you can use the
ControlChars.NewLine constant to display the salesclerk’s name on the next line in
the lblMessage control. Click the Exit button.

enter these two comments
and three lines of code

Figure 3-41 frmMain Load event procedure

if you are using Windows 7, the
title bar text will be left-aligned

Figure 3-42 Dialog box created by the InputBox function

CH A P T E R 3 Using Variables and Constants

158

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

The ControlChars.Newline Constant
The ControlChars.NewLine constant instructs the computer to advance the insertion point to
the next line in a control. (You also can use it to advance the insertion point in a file or on the
printer.) Whenever you want to start a new line, you simply enter the ControlChars.NewLine
constant at the appropriate location in your code. In this case, you want to advance to a new line
after displaying the period—in other words, before displaying the salesclerk’s name—in the
lblMessage control.

To display the salesclerk’s name on a separate line in the lblMessage control:

1. In the btnCalc control’s Click event procedure, modify the last assignment statement as
indicated in Figure 3-43. The modifications are shaded in the figure.

2. Save the solution and then start the application. The Name Entry dialog box shown in
Figure 3-44 appears first. The blinking insertion point indicates that the dialog box’s
input area has the focus. However, notice that the OK button in the dialog box has a
darkened border, even though it does not have the focus. In Windows terminology, a
button that has a darkened border when it does not have the focus is called the default
button. You can select a default button by pressing Enter at any time.

3. Type Martin Lapinski and then press Enter. The sales receipt appears.

4. Type 10/10/2014 in the Date box and 5 in the DVDs box. Click the Calculate button.
The salesclerk’s name now appears on a separate line in the lblMessage control, as
shown in Figure 3-45. Click the Exit button.

the default button has
a darkened border

the input area
has the focus

Figure 3-44 Name Entry input dialog box

make the shaded
modifications

Figure 3-43 Modified assignment statement

START HERE

The
ControlChars.
NewLine
constant is an
intrinsic

constant, which is a
named constant
built into
Visual Basic.

The ControlChars.Newline Constant L E S S ON B

159

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Designating a Default Button
As you already know from using Windows applications, you can select a button either by
clicking it or by pressing the Enter key when the button has the focus. If you make a button the
default button, you also can select it by pressing the Enter key even when the button does not
have the focus. When a button is selected, the computer processes the code contained in the
button’s Click event procedure.

An interface does not have to have a default button. However, if one is used, it should be the
button that is most often selected by the user, except in cases where the tasks performed by the
button are both destructive and irreversible. For example, a button that deletes information
should not be designated as the default button unless the application provides a way for the
information to be restored. If you assign a default button in an interface, it typically is the first
button on the left when the buttons are positioned horizontally, but the first button on the top
when they are stacked vertically. A form can have only one default button. You specify the
default button (if any) by setting the form’s AcceptButton property to the name of the button.

GUI DESIGN TIP Assigning a Default Button

l The default button should be the button that is most often selected by the user,
except in cases where the tasks performed by the button are both destructive and
irreversible. If a form contains a default button, it typically is the first button.

To make the Calculate button the default button:

1. Return to the designer window and then set the form’s AcceptButton property to
btnCalc. A darkened border appears around the Calculate button.

2. Save the solution and then start the application. Type your name in the Name Entry
dialog box and then press Enter. The sales receipt appears.

3. Click the DVDs box. Type 5 and then press Enter to select the Calculate button. The
numbers 5 and 36.05 appear in the Total discs and Total sales boxes, respectively. In
addition, the message “The sales tax was 1.05.” and your name appear in the lblMessage
control. Click the Exit button.

Finally, you will modify the btnCalc control’s Click event procedure so that it displays a dollar
sign and comma (if appropriate) in the total sales amount.

the salesclerk’s name
appears on a separate line

Figure 3-45 Salesclerk’s name shown on the sales receipt

Forms also have
a CancelButton
property that
specifies the
button whose

Click event procedure is
processed when the user
presses the Esc key. This
property is covered in
Exercise 12 at the end of
this lesson.

START HERE

CH A P T E R 3 Using Variables and Constants

160

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Using the ToString Method to Format Numbers
Numbers representing monetary amounts are usually displayed with either zero or two decimal
places and may include a dollar sign and a thousands separator. Similarly, numbers representing
percentage amounts are usually displayed with zero or more decimal places and a percent sign.
Specifying the number of decimal places and the special characters to display in a number is
called formatting. In Chapter 2, you learned how to use the Format function to format a number
for output as a string. Although you can still use the Format function in Visual Basic 2012, many
programmers now use the ToString method because the method can be used in any of the
languages built into Visual Studio.

The ToString method’s syntax is shown in Figure 3-46. In the syntax, numericVariableName is
the name of a numeric variable. The ToString method formats the number stored in the
numeric variable and then returns the result as a string. The formatString argument in the
syntax specifies the format you want to use. The formatString argument must take the form
“Axx”, where A is an alphabetic character called the format specifier, and xx is a sequence of
digits called the precision specifier. The format specifier must be one of the built-in format
characters. The most commonly used format characters are listed in Figure 3-46. Notice that
you can use either an uppercase letter or a lowercase letter as the format specifier. When used
with one of the format characters listed in the figure, the precision specifier controls the number
of digits that will appear after the decimal point in the formatted number. Also included in
Figure 3-46 are examples of using the ToString method.

Using the ToString Method to Format a Number

Syntax
numericVariableName.ToString(formatString)

Format specifier (Name)
C or c (Currency)

Description
formats the string with a dollar sign; includes a thousands
separator (if appropriate); negative values are enclosed in
parentheses

N or n (Number) similar to the Currency format, but does not include a dollar sign
and negative values are preceded by a minus sign

F or f (Fixed-point) same as the Number format, but does not include a thousands
separator

P or p (Percent) multiplies the numeric variable’s value by 100 and formats the result
with a percent sign; negative values are preceded by a minus sign

Example 1
Dim intPropertyTax As Integer = 1250
lblTax.Text = intPropertyTax.ToString("C2")
assigns the string “$1,250.00” to the lblTax control’s Text property

Example 2
Dim decDue As Decimal = 63.775D
lblDue.Text = decDue.ToString("N2")
assigns the string “63.78” to the lblDue control’s Text property

Example 3
Dim dblRate As Double = .04
lblRate.Text = dblRate.ToString("P0")
assigns the string “4 %” to the lblRate control’s Text property

Figure 3-46 Syntax and examples of the ToString method
© 2013 Cengage Learning

Using the ToString Method to Format Numbers L E S S ON B

161

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

In the Play It Again Movies application, you will display the total sales amount with a dollar sign,
thousands separator, and two decimal places.

To format the total sales:

1. Return to the Code Editor window. In the btnCalc_Click procedure, change the
lblTotalSales.Text = Convert.ToString(decTotalSales) statement as follows:

lblTotalSales.Text = decTotalSales.ToString("C2")

2. Save the solution and then start the application. Type Kate Hansen and then press
Enter. The sales receipt appears.

3. Type 7/20/2014 in the Date box, 4 in the DVDs box, and 10 in the Blu-rays box. Press
Enter to select the Calculate button. The total sales amount appears with a dollar sign, a
thousands separator, and two decimal places. See Figure 3-47.

4. Click the Exit button. Close the Code Editor window and then close the solution.

Figure 3-48 shows the application’s code at the end of Lesson B.

START HERE

1 ' Name: Play It Again Project
 2 ' Purpose: Calculates the total number
 3 ' of discs sold and the total
 4 ' sales amount
 5 ' Programmer: <your name> on <current date>
 6
 7 Option Explicit On
 8 Option Strict On
 9 Option Infer Off
10
11 Public Class frmMain
12
13 ' declare class-level variable
14 Private strClerk As String
15
16 Private Sub btnExit_Click(sender As Object,

e As EventArgs) Handles btnExit.Click
17 Me.Close()
18 End Sub
19
20 Private Sub btnClear_Click(sender As Object,

e As EventArgs) Handles btnClear.Click
21 ' prepare screen for the next sale
22

Figure 3-48 Play It Again Movies application’s code at the end of Lesson B (continues)

formatted price

Figure 3-47 Formatted total sales amount shown on the sales receipt

CH A P T E R 3 Using Variables and Constants

162

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

23 txtDvds.Text = String.Empty
24 txtBluRays.Text = String.Empty
25 lblTotalDiscs.Text = String.Empty
26 lblTotalSales.Text = String.Empty
27 lblMessage.Text = String.Empty
28 ' send the focus to the DVDs box
29 txtDvds.Focus()
30
31 End Sub
32
33 Private Sub btnPrint_Click(sender As Object,

e As EventArgs) Handles btnPrint.Click
34 ' print the sales receipt
35
36 Me.Width = Me.Width - 165
37 PrintForm1.PrintAction =

Printing.PrintAction.PrintToPreview
38 PrintForm1.Print()
39 Me.Width = Me.Width + 165
40
41 End Sub
42
43 Private Sub btnCalc_Click(sender As Object,

e As EventArgs) Handles btnCalc.Click
44 ' calculate number of discs sold and total sales
45
46 Const decDISC_PRICE As Decimal = 7D
47 Const decTAX_RATE As Decimal = 0.03D
48 Dim intDvds As Integer
49 Dim intBluRays As Integer
50 Dim intTotalDiscs As Integer
51 Dim decSubtotal As Decimal
52 Dim decSalesTax As Decimal
53 Dim decTotalSales As Decimal
54
55 ' calculate total number of discs sold
56 Integer.TryParse(txtDvds.Text, intDvds)
57 Integer.TryParse(txtBluRays.Text, intBluRays)
58 intTotalDiscs = intDvds + intBluRays
59
60 ' calculate the subtotal
61 decSubtotal = intTotalDiscs * decDISC_PRICE
62
63 ' calculate the sales tax
64 decSalesTax = decSubtotal * decTAX_RATE
65
66 ' calculate the total sales
67 decTotalSales = decSubtotal + decSalesTax
68
69 ' display total amounts
70 lblTotalDiscs.Text = Convert.ToString(intTotalDiscs)
71 lblTotalSales.Text = decTotalSales.ToString("C2")
72
73 ' display tax and salesclerk's name
74 lblMessage.Text = "The sales tax was " &
75 Convert.ToString(decSalesTax) & "." &
76 ControlChars.NewLine & strClerk
77
78 End Sub
79

Figure 3-48 Play It Again Movies application’s code at the end of Lesson B (continues)

(continued)

Using the ToString Method to Format Numbers L E S S ON B

163

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Lesson B Summary
l To concatenate strings:

Use the concatenation operator (&). Be sure to include a space before and after the
ampersand.

l To display an input dialog box:

Use the InputBox function. The function’s syntax is InputBox(prompt[, title]
[, defaultResponse]). The prompt, title, and defaultResponse arguments can be string literal
constants, String named constants, or String variables. Use sentence capitalization for the
prompt, but book title capitalization for the title.

If the user clicks the OK button, the InputBox function returns the value contained in the
input area of the dialog box. The return value is always treated as a string. If the user clicks
either the dialog box’s Cancel button or its Close button, the InputBox function returns an
empty string.

l To advance the insertion point to the next line:

Use the ControlChars.NewLine constant in code.

l To break up a long instruction into two or more physical lines in the Code Editor window:

Break the line after a comma, after an opening parenthesis, before a closing parenthesis, or
after an operator (arithmetic, assignment, comparison, logical, or concatenation). You also
can use the line continuation character, which is an underscore (_). The line continuation
character must be immediately preceded by a space and appear at the end of a physical line
of code.

l To make a button the default button:

Set the form’s AcceptButton property to the name of the button.

l To format a number for output as a string:

Use the ToString method. The method’s syntax is numericVariableName.ToString
(formatString).

80 Private Sub frmMain_Load(sender As Object,
e As EventArgs) Handles Me.Load

81 ' gets the salesclerk's name
82
83 Const strPROMPT As String = "Salesclerk's name:"
84 Const strTITLE As String = "Name Entry"
85 ' assign the name to the class-level variable
86 strClerk = InputBox(strPROMPT, strTITLE)
87
88 End Sub
89 End Class

Figure 3-48 Play It Again Movies application’s code at the end of Lesson B
© 2013 Cengage Learning

(continued)

CH A P T E R 3 Using Variables and Constants

164

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Lesson B Key Terms
&—the concatenation operator

Concatenation operator—the ampersand (&); used to concatenate strings; must be both
preceded and followed by a space character

ControlChars.NewLine constant—used to advance the insertion point to the next line

Default button—a button that can be selected by pressing the Enter key even when the button
does not have the focus

Formatting—specifying the number of decimal places and the special characters to display in a
number

InputBox function—a Visual Basic function that displays an input dialog box containing a
message, OK and Cancel buttons, and an input area

Line continuation character—an underscore that is immediately preceded by a space and
located at the end of a physical line of code; used to split a long instruction into two or more
physical lines in the Code Editor window

Load event—an event associated with a form; occurs when the application is started and the
form is displayed the first time

ToString method—formats a number stored in a numeric variable and then returns the result as
a string

Lesson B Review Questions
1. The name of a form’s default button is specified in the property.

a. button’s AcceptButton

b. button’s DefaultButton

c. form’s AcceptButton

d. form’s DefaultButton

2. The InputBox function displays a dialog box containing which of the following?

a. input area

b. OK and Cancel buttons

c. prompt

d. all of the above

3. Which of the following is the concatenation operator?

a. @

b. &

c. $

d. #

4. Which of the following Visual Basic constants advances the insertion point to the
next line?

a. Advance

b. ControlChars.Advance

c. ControlChars.NewLine

d. none of the above

Lesson B Review Questions L E S S ON B

165

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

5. The strWord1 and strWord2 variables contain the strings “Input” and “Box”,
respectively. Which of the following will display the string “InputBox” (one word) in the
lblWord control?

a. lblWord.Text = strWord1 & strWord2

b. lblWord.Text = "strWord1 " & "strWord2 "

c. lblWord.Text = strWord1 @ strWord2

d. lblWord.Text = strWord1 # strWord2

6. The strCity and strState variables contain the strings “Tampa” and “Florida”,
respectively. Which of the following will display the string “Tampa, Florida” (the city, a
comma, a space, and the state) in the lblCityState control?

a. lblCityState.Text = strCity , & strState

b. lblCityState.Text = strCity & "," & strState

c. lblCityState.Text = "strCity" & ", " & "strState"

d. none of the above

7. Which of the following statements correctly assigns the InputBox function’s return value
to a Double variable named dblNum?

a. Double.TryParse(InputBox(strMSG,
"Number"), dblNum)

b. dblNum = Double.TryParse(
InputBox(strMSG, "Number"))

c. dblNum = InputBox(strMSG, "Number")

d. TryParse.Double(InputBox(strMSG,
"Number"), dblNum)

8. Which of the following statements correctly assigns the InputBox function’s return value
to a String variable named strCity?

a. String.TryParse(InputBox(strMSG,
"City"), strCity)

b. strCity = String.TryParse(
InputBox(strMSG, "City"))

c. strCity = InputBox(strMSG, "City")

d. none of the above

9. The InputBox function’s prompt argument should be entered using .

a. book title capitalization

b. sentence capitalization

10. If the decPay variable contains the number 1200.76, which of the following statements
displays the number as $1,200.76?

a. lblPay.Text = decPay.ToString("N2")

b. lblPay.Text = decPay.ToString("F2")

c. lblPay.Text = decPay.ToString("D2")

d. lblPay.Text = decPay.ToString("C2")

CH A P T E R 3 Using Variables and Constants

166

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Lesson B Exercises

1. The strFirst and strLast variables contain the strings “Dolly” and “Pershing”,
respectively. Write an assignment statement to display the string “Pershing, Dolly” in
the lblName control.

2. The strCity variable contains the string “Bowling Green”. Write an assignment
statement to display the string “Our office is in Bowling Green, KY.” in the lblMsg
control.

3. In this exercise, you modify the Play It Again Movies application from this lesson. Use
Windows to make a copy of the Play It Again Solution folder. Rename the copy
Modified Play It Again Solution. Open the Play It Again Solution (Play It Again
Solution.sln) file contained in the Modified Play It Again Solution folder. Open the
designer window. Modify the btnCalc control’s Click event procedure so that it displays
the sales tax amount with a dollar sign, two decimal places, and a thousands separator
(if necessary). Save the solution and then start and test the application. Close the Code
Editor window and then close the solution.

4. Open the Gross Pay Solution (Gross Pay Solution.sln) file contained in the VB2012
\Chap03\Gross Pay Solution folder. If necessary, open the designer window. The
application calculates and displays an employee’s gross pay. Make the Calculate button
the default button. Open the Code Editor window and enter the three Option
statements in the General Declarations section. Review the code in the Calculate
button’s Click event procedure. Modify the procedure’s code to use variables. (Do not
use the Val function.) Use the ToString method to display the gross pay amount with a
dollar sign, two decimal places, and a thousands separator (if necessary). Save the
solution and then start the application. Test the application by calculating the gross pay
for an employee working 35 hours at $9.75 per hour. Close the Code Editor window and
then close the solution.

5. The strFirst, strMiddle, strLast, and strNickname variables contain the strings
“Karl”, “G.”, “Perillo”, and “KG”, respectively. Write an assignment statement that will
display the string “My name is Karl G. Perillo, but you can call me KG.” in the lblMsg
control.

6. Open the Fairmont Solution (Fairmont Solution.sln) file contained in the VB2012
\Chap03\Fairmont Solution folder. If necessary, open the designer window. The
application allows the sales manager to enter the sales made in three states. It then
calculates and displays both the total sales made and the total commission earned in the
three states.

a. Make the Calculate button the default button.

b. Enter the appropriate Option statements in the Code Editor window.

c. Code the Exit button so that it ends the application when it is clicked.

d. Use the pseudocode shown in Figure 3-49 to code the Calculate button’s Click event
procedure. Be sure to use variables. (Do not use the Val function.) The commission
rate is 3%. Use the ToString method to display a thousands separator (if necessary)
and two decimal places in the total sales and commission amounts.

e. Save the solution and then start the application. Test the application by calculating
the total sales and commission for the following amounts: Illinois sales of 36000,
Indiana sales of 34500, and Alaska sales of 23675.

f. Close the Code Editor window and then close the solution.

INTRODUCTORY

INTRODUCTORY

INTRODUCTORY

INTRODUCTORY

INTERMEDIATE

INTERMEDIATE

Lesson B Exercises L E S S ON B

167

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

btnCalc Click event procedure

1. calculate total sales = Illinois sales + Indiana sales + Alaska sales
2. calculate commission = total sales * commission rate
3. display total sales and commission in lblTotalSales and lblTotalComm
4. send the focus to the txtIll control

Figure 3-49 Pseudocode for Exercise 6
© 2013 Cengage Learning

7. In this exercise, you modify the Fairmont application from Exercise 6. Use Windows to
make a copy of the Fairmont Solution folder. Rename the copy Modified Fairmont
Solution. Open the Fairmont Solution (Fairmont Solution.sln) file contained in the
Modified Fairmont Solution folder. Open the designer window. Code the form’s Load
event procedure so that it uses the InputBox function to ask the user for the
commission rate before the form appears. Modify the code in the btnCalc control’s
Click event procedure so that it uses the commission rate entered by the user. Save the
solution and then start the application. When you are prompted to enter the
commission rate, type .1 (the decimal equivalent of 10%) and then click the OK button.
Test the application using 56000 as the Illinois sales, 64000 as the Indiana sales, and
39000 as the Alaska sales. Close the Code Editor window and then close the solution.

8. Open the Turner Solution (Turner Solution.sln) file contained in the VB2012\Chap03
\Turner Solution folder. If necessary, open the designer window. The application
calculates the new hourly pay for each of three job codes, given the current hourly pay
for each job code and the raise percentage (entered as a decimal number). The
application should display the message “Raise percentage: XX” in a label control on the
form. The XX in the message should be replaced by the actual raise percentage.

a. Code the Exit button so that it ends the application when it is clicked.

b. Before the form appears, use the InputBox function to prompt the personnel clerk to
enter the raise percentage in decimal form. You will use the raise percentage to
calculate the new hourly pay for each job code.

c. Use the pseudocode shown in Figure 3-50 to code the Calculate button’s Click event
procedure. Be sure to use variables. (Do not use the Val function.) Create a named
constant for the “Raise percentage:” message. Format the new hourly pay amounts
using the “N2” formatString. Format the raise rate (in the message) using the “P0”
formatString.

d. Save the solution and then start the application. When you are prompted to enter
the raise percentage, type .05 (the decimal equivalent of 5%) and then click the OK
button. Use the following information to calculate the new hourly pay for each job
code:

Current hourly pay for job code 1: 5
Current hourly pay for job code 2: 6.5
Current hourly pay for job code 3: 8.75

e. Close the Code Editor window and then close the solution.

INTERMEDIATE

INTERMEDIATE

CH A P T E R 3 Using Variables and Constants

168

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

btnCalc Click event procedure
1. calculate each new hourly pay = current hourly pay * raise rate + current hourly pay
2. display the new hourly pays in the appropriate label controls
3. display the message and raise rate in the lblMessage control
4. send the focus to the txtCurrent1 control

Figure 3-50 Pseudocode for Exercise 8
© 2013 Cengage Learning

9. Create a Visual Basic Windows application. Use the following names for the solution
and project, respectively: Red Lion Solution and Red Lion Project. Save the application
in the VB2012\Chap03 folder. Change the form file’s name to Main Form.vb. Change
the form’s name to frmMain. The application’s interface should allow the owner of the
Red Lion photo studio to enter the studio’s quarterly sales amount. The application
should display the amount of state, county, and city sales tax the studio must pay. It also
should display the total sales tax. The sales tax rates for the state, county, and city are
3%, 1%, and 0.5%, respectively. Be sure to use variables. (Do not use the Val function.)
Use the ToString method to display a thousands separator (if necessary) and two
decimal places in each of the sales tax amounts. Also include a dollar sign in the total
sales tax amount. Save the solution and then start and test the application. Close the
Code Editor window and then close the solution.

10. Create a Visual Basic Windows application. Use the following names for the solution and
project, respectively: Martin Motors Solution and Martin Motors Project. Save the
application in the VB2012\Chap03 folder. Change the form file’s name to Main Form.vb.
Change the form’s name to frmMain. Jerry Martin of Martin Motors wants an
application that allows him to enter the annual sales made at each of three dealerships.
The application should calculate the total annual sales and also the percentage that each
dealership contributed to the total annual sales. Save the solution and then start and test
the application. Close the Code Editor window and then close the solution.

11. In this exercise, you modify the Turner application from Exercise 8. The modified
application will allow the user to enter a separate raise percentage for each job code. Use
Windows to make a copy of the Turner Solution folder. Rename the copy Modified
Turner Solution. Open the Turner Solution (Turner Solution.sln) file contained in the
Modified Turner Solution folder. Open the designer window.

a. Modify the application’s code so that it asks the personnel clerk to enter the raise for
each job code separately. Display the following information on separate lines in the
lblMessage control. Be sure to replace the XX in each line with the appropriate raise
percentage. (You may need to change the size of the form and/or lblMessage
control.)

Job Code 1: XX %
Job Code 2: XX %
Job Code 3: XX %

INTERMEDIATE

INTERMEDIATE

ADVANCED

Lesson B Exercises L E S S ON B

169

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

b. Save the solution and then start the application. When you are prompted to enter
the raise percentages for the job codes, use .03 for job code 1, .05 for job code 2, and
.04 for job code 3. Use the following information to calculate the new hourly pay for
each job code:

Current hourly pay for job code 1: 5
Current hourly pay for job code 2: 6.5
Current hourly pay for job code 3: 8.75

c. Close the Code Editor window and then close the solution.

12. In this exercise, you learn about the CancelButton property of a Windows form. Open
the Cancel Solution (Cancel Solution.sln) file contained in the VB2012\Chap03\Cancel
Solution folder.

a. Open the Code Editor window and review the existing code. Start the application.
Type your first name in the text box and then press Enter to select the Clear button,
which is the form’s default button. The Clear button removes your name from the
text box. Click the Undo button. Your name reappears in the text box. Click the Exit
button.

b. Return to the designer window. Set the form’s CancelButton property to btnUndo.
Doing this tells the computer to process the code in the Undo button’s Click event
procedure when the user presses the Esc key. Save the solution and then start the
application. Type your first name in the text box and then press Enter to select the
Clear button. Press Esc to select the Undo button. Your name reappears in the text
box. Close the Code Editor window and then close the solution.

DISCOVERY

CH A P T E R 3 Using Variables and Constants

170

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

& LESSON C
After studying Lesson C, you should be able to:

l Include a static variable in code

l Code the TextChanged event procedure

l Create a procedure that handles more than one event

Modifying the Load and Click Event Procedures
Currently, the Play It Again Movies application allows the user to enter the salesclerk’s name
only when the application first starts. In this lesson you will modify the code so that it asks for
the name each time the Calculate button is clicked. This will allow another salesclerk to enter
his or her name on the sales receipt without having to start the application again.

As you learned in Lesson B, you should review an application’s documentation and revise the
necessary documents before making modifications to the code. Figure 3-51 shows the revised
TOE chart. Changes made to the TOE chart from Lesson B are shaded in the figure. Notice that
the Calculate button’s Click event procedure, rather than the form’s Load event procedure, is
now responsible for getting the salesclerk’s name.

Task Object Event
1. Get the salesclerk’s name btnCalc Click
2. Calculate total discs sold and total sales amount
3. Display total discs sold and total sales amount

in lblTotalDiscs and lblTotalSales
4. Calculate the sales tax
5. Display sales tax and salesclerk’s name in lblMessage

Print the sales receipt btnPrint Click

End the application btnExit Click

Clear screen for the next sale btnClear Click

Display total discs sold (from btnCalc) lblTotalDiscs None

Display total sales amount (from btnCalc) lblTotalSales None

Get and display the sales information txtDate, txtDvds, txtBluRays None

Get the salesclerk’s name frmMain Load

Display sales tax and salesclerk’s name (from btnCalc) lblMessage None

Figure 3-51 Revised TOE chart for the Play It Again Movies application in Lesson C
© 2013 Cengage Learning

Figure 3-52 shows the revised pseudocode for the Calculate button’s Click event procedure.
Changes made to the pseudocode from Lesson B are shaded in the figure.

Modifying the Load and Click Event Procedures L E S S ON C

171

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

btnCalc Click event procedure
1. get the salesclerk’s name
2. calculate total discs sold = DVDs sold + Blu-rays sold
3. calculate subtotal = total discs sold * disc price
4. calculate sales tax = subtotal * sales tax rate
5. calculate total sales = subtotal + sales tax
6. display total discs sold and total sales in lblTotalDiscs and lblTotalSales
7. display sales tax and salesclerk’s name in lblMessage

Figure 3-52 Revised pseudocode for the Calculate button in Lesson C
© 2013 Cengage Learning

First, you will open the Play It Again Movies application from Lesson B. You then will move the
code contained in the form’s Load event procedure to the btnCalc control’s Click event
procedure.

To open the Play It Again Movies application and then move some of the code:

1. If necessary, start Visual Studio 2012. Open the Play It Again Solution (Play It Again
Solution.sln) file from Lesson B. The file is contained in the VB2012\Chap03\Play It
Again Solution folder. If necessary, open the designer window.

2. Open the Code Editor window. Locate the form’s Load event procedure, and then
highlight the two Const statements in the procedure. Press Ctrl+x to cut the two Const
statements from the procedure.

3. Locate the btnCalc_Click procedure. Click the blank line above the first Const
statement in the procedure, and then press Enter to insert a new blank line. With the
insertion point in the new blank line, press Ctrl+v. The two Const statements that you
cut from the Load event procedure now appear in the Click event procedure. (Don’t be
concerned about the jagged green lines that appear below the two Const statements. The
lines will disappear when you use the constants in another statement within the
procedure.)

4. Return to the form’s Load event procedure. Highlight the second comment and the
assignment statement. Press Ctrl+x to remove the comment and the assignment
statement from the procedure.

5. Return to the btnCalc_Click procedure. Click the blank line below the last Dim
statement, and then press Enter to insert a new blank line. With the insertion point in
the new blank line, press Ctrl+v. The comment and assignment statement that you cut
from the Load event procedure now appear in the Click event procedure. Press Enter to
insert a new blank line below the assignment statement, and then delete the class-
level text from the comment.

6. Return to the form’s Load event procedure and then delete the entire procedure from
the Code Editor window.

Now that you have moved the InputBox function from the form’s Load event procedure to the
btnCalc_Click procedure, only one procedure—the btnCalc_Click procedure—needs to use the
strClerk variable. Therefore, you should change the variable from a class-level variable to a
procedure-level variable. You can do this by moving the variable’s declaration statement from
the form’s Declarations section to the btnCalc_Click procedure. In addition, you will need to
change the keyword in the declaration statement from Private to Dim. Recall that you use the
Private keyword to declare class-level variables, but you use the Dim keyword to declare
procedure-level variables.

START HERESTART HERE

CH A P T E R 3 Using Variables and Constants

172

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

To move the declaration statement and then modify it:

1. Delete the ' declare class-level variable comment from the form’s Declarations
section. Highlight the Private strClerk As String statement, and then press Ctrl+x
to cut the statement from the Declarations section.

2. Click the blank line below the last Dim statement in the btnCalc_Click procedure. Press
Ctrl+v to paste the Private statement in the procedure, and then press Enter to insert a
blank line below the statement.

3. The jagged blue line below the Private keyword indicates that the statement contains a
syntax error. Rest your mouse pointer on the Private keyword. The error message
indicates that the Private keyword is not valid on a local variable declaration. Change
Private in the variable declaration statement to Dim.

4. Save the solution and then start the application. Click the Calculate button. Type your
name in the Name Entry dialog box and then press Enter. The message “The sales tax
was 0.00.” and your name appear in the lblMessage control.

5. Click the Calculate button again. Notice that the Name Entry dialog box requires the
user to enter the salesclerk’s name again. It would be more efficient for the user if the
salesclerk’s name appeared as the default response the second and subsequent times the
Calculate button is clicked.

6. Click the Cancel button in the dialog box. The InputBox function returns an empty
string, so no name appears in the lblMessage control. Click the Exit button.

To display the salesclerk’s name in the dialog box when the Calculate button is clicked the
second and subsequent times, you can declare the strClerk variable as either a class-level
variable or a static variable, and then use the variable as the defaultResponse argument in the
InputBox function. In this case, a static variable is a better choice because static variables have a
lesser (more restrictive) scope than class-level variables. Recall that a static variable is really just
a special type of procedure-level variable. As you learned in Lesson A, fewer unintentional errors
occur in applications when variables are declared using the minimum scope needed. In this case,
the minimum scope required for the strClerk variable is procedure scope because only one
procedure needs to use the variable.

To declare the strClerk variable as a static variable and then modify the InputBox

function:

1. In the btnCalc_Click procedure, change the Dim in the Dim strClerk As String
statement to Static.

2. Now change the statement that contains the InputBox function as follows, and then click
the blank line below the statement:

strClerk = InputBox(strPROMPT, strTITLE, strClerk)

3. Save the solution and then start the application. Type 1/25/2014 in the Date box, 5 in
the DVDs box, and 3 in the Blu-rays box. Press Enter. Type your name in the Name
Entry dialog box and then press Enter. The application calculates and displays the total
discs sold (8) and total sales ($57.68). In addition, the message “The sales tax was 1.68.”
and your name appear in the lblMessage control.

4. Change the number of DVDs sold to 2. At this point, the calculated amounts on the sales
receipt are incorrect because they do not reflect the change in the number of DVDs sold.
To display the correct amounts, you will need to recalculate the amounts by selecting the
Calculate button. Press Enter to select the Calculate button. Your name appears
highlighted in the input area of the Name Entry dialog box.

START HERE

START HERE

Modifying the Load and Click Event Procedures L E S S ON C

173

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

5. Press Enter to select the dialog box’s OK button. The application calculates and displays
the total discs sold (5) and total sales ($36.05). The message “The sales tax was 1.05.” and
your name appear in the lblMessage control. Click the Exit button.

Having the previously calculated amounts remain on the screen when a change is made to the
interface could be misleading. A better approach is to clear the amounts when a change is made
to either the number of DVDs sold or the number of Blu-rays sold.

Coding the TextChanged Event Procedure
A control’s TextChanged event occurs when a change is made to the contents of the control’s
Text property. This can happen as a result of either the user entering data into the control or the
application’s code assigning data to the control’s Text property. In the next set of steps, you will
code the txtDvds_TextChanged event procedure so that it clears the contents of the
lblTotalDiscs, lblTotalSales, and lblMessage controls when the user changes the number of
DVDs sold.

To code the txtDvds_TextChanged event procedure:

1. Open the code template for the txtDvds control’s TextChanged event procedure. Type
the following comment and then press Enter twice.

' clears the total discs, total sales, and message

2. Enter the following three assignment statements:

lblTotalDiscs.Text = String.Empty
lblTotalSales.Text = String.Empty
lblMessage.Text = String.Empty

3. Save the solution and then start the application. Type 1/25/2014 in the Date box, 5 in
the DVDs box, and 3 in the Blu-rays box. Press Enter. Type your name in the Name
Entry dialog box and then press Enter. The application calculates and displays the total
discs sold (8), total sales ($57.68), and sales tax (1.68).

4. Change the number of DVDs sold to 2. When you make this change, the
txtDvds_TextChanged procedure clears the total discs sold, total sales, and message
information from the form. Click the Exit button.

Recall that you also want to clear the calculated amounts when a change is made to the number
of Blu-rays sold. You could code the TextChanged event procedure for the txtBluRays control
separately, as you did with the txtDvds control. However, you also can create one procedure for
the computer to process when the TextChanged event of either of the two controls occurs.

Associating a Procedure with Different Objects and Events
The Handles clause in an event procedure’s header indicates the object and event associated
with the procedure. The Handles clause in Figure 3-53, for example, indicates that the
procedure is associated with the TextChanged event of the txtDvds control. As a result, the
procedure will be processed when the txtDvds control’s TextChanged event occurs.

START HERE

CH A P T E R 3 Using Variables and Constants

174

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Although an event procedure’s name contains the names of its associated object and event,
separated by an underscore, that is not a requirement. You can change the name of an event
procedure to almost anything you like, as long as the name follows the same rules for naming
variables. Unlike variable names, however, procedure names are usually entered using Pascal
case, which means you capitalize the first letter in the name and the first letter of each
subsequent word in the name. For example, you can change the name of the procedure in
Figure 3-53 from txtDvds_TextChanged to ClearLabels and the procedure will still work
correctly. This is because the Handles clause, rather than the event procedure’s name,
determines when the procedure is invoked.

You can associate a procedure with more than one object and event, as long as each event
contains the same parameters in its procedure header. To do so, you list each object and event
in the procedure’s Handles clause. You separate the object and event with a period, like this:
object.event. You use a comma to separate each object.event from the next object.event. In the
next set of steps, you will change the name of the txtDvds_TextChanged procedure to
ClearLabels. You then will associate the ClearLabels procedure with the txtDvds.TextChanged
and txtBluRays.TextChanged events.

To change the procedure’s name and then associate the procedure with different

objects and events:

1. Change txtDvds_TextChanged, which appears after Private Sub in the procedure
header, to ClearLabels.

2. In the ClearLabels procedure header, click immediately before the letter H in the
keyword Handles. Type _ (an underscore, which is the line continuation character).
Be sure there is a space between the ending parenthesis and the underscore.

3. Press Enter to move the Handles clause to the next line in the procedure.

4. Click immediately after TextChanged in the Handles clause. The ClearLabels
procedure is already associated with the txtDvds.TextChanged event. You just need to
associate it with the txtBluRays.TextChanged event. Type , (a comma). Scroll the list of
object names until you see txtBluRays. Click txtBluRays in the list, and then press Tab
to enter the object name in the Handles clause.

5. Type . (a period). Scroll the list of event names (if necessary) until you see TextChanged.
Click TextChanged and then press Tab. Figure 3-54 shows the completed ClearLabels
procedure.

Private Sub txtDvds_TextChanged(sender As Object,
e As EventArgs) Handles txtDvds.TextChanged

procedure name

Handles keyword followed
by object and event names

Figure 3-53 TextChanged event procedure associated with the txtDvds control
© 2013 Cengage Learning

START HERE

Coding the TextChanged Event Procedure L E S S ON C

175

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

6. Save the solution and then start the application. Type 8/8/2014 in the Date box, 5 in the
DVDs box, and 3 in the Blu-rays box. Press Enter. Type your name in the Name Entry
dialog box and then press Enter. The application calculates and displays the total discs
sold (8), total sales ($57.68), and sales tax (1.68).

7. Change the number of DVDs sold to 2. The ClearLabels procedure clears the total discs
sold, total sales, and message information from the form.

8. Press Enter to select the Calculate button, and then press Enter to select the OK button
in the Name Entry dialog box. The application calculates and displays the total discs sold
(5), total sales ($36.05), and sales tax (1.05).

9. Change the number of Blu-rays sold to 4. The ClearLabels procedure clears the total
discs sold, total sales, and message information from the form.

10. Press Enter to select the Calculate button. Type Sarah Wilson in the Name Entry dialog
box, and then press Enter to select the OK button. The application calculates and
displays the total discs sold (6), total sales ($43.26), and sales tax (1.26). See Figure 3-55.

Figure 3-55 Completed Sales Receipt
OpenClipArt.org/John Diamond / diamonjohn

Handles clause

line continuation
character

Figure 3-54 Completed ClearLabels procedure

CH A P T E R 3 Using Variables and Constants

176

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

11. Click the Exit button. Close the Code Editor window and then close the solution.

Figure 3-56 shows the application’s code at the end of Lesson C.

 1 ' Name: Play It Again Project
 2 ' Purpose: Calculates the total number
 3 ' of discs sold and the total
 4 ' sales amount
 5 ' Programmer: <your name> on <current date>
 6
 7 Option Explicit On
8 Option Strict On

 9 Option Infer Off
10
11 Public Class frmMain
12
13 Private Sub btnExit_Click(sender As Object,

e As EventArgs) Handles btnExit.Click
14 Me.Close()
15 End Sub
16
17 Private Sub btnClear_Click(sender As Object,

e As EventArgs) Handles btnClear.Click
18 ' prepare screen for the next sale
19
20 txtDvds.Text = String.Empty
21 txtBluRays.Text = String.Empty
22 lblTotalDiscs.Text = String.Empty
23 lblTotalSales.Text = String.Empty
24 lblMessage.Text = String.Empty
25 ' send the focus to the DVDs box
26 txtDvds.Focus()
27
28 End Sub
29
30 Private Sub btnPrint_Click(sender As Object,

e As EventArgs) Handles btnPrint.Click
31 ' print the sales receipt
32
33 Me.Width = Me.Width - 165
34 PrintForm1.PrintAction =

Printing.PrintAction.PrintToPreview
35 PrintForm1.Print()
36 Me.Width = Me.Width + 165
37
38 End Sub
39
40 Private Sub btnCalc_Click(sender As Object,

e As EventArgs) Handles btnCalc.Click
41 ' calculate number of discs sold and total sales
42
43 Const strPROMPT As String = "Salesclerk's name:"
44 Const strTITLE As String = "Name Entry"
45 Const decDISC_PRICE As Decimal = 7D

Figure 3-56 Play It Again Movies application’s code at the end of Lesson C (continues)

Coding the TextChanged Event Procedure L E S S ON C

177

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Lesson C Summary
l To create a procedure-level variable that retains its value until the application ends:

Declare the variable in a procedure, using the Static keyword. The variable will remain in
memory until the application ends.

l To process code when a change is made to the contents of a control’s Text property:

Enter the code in the control’s TextChanged event procedure.

46 Const decTAX_RATE As Decimal = 0.03D
47 Dim intDvds As Integer
48 Dim intBluRays As Integer
49 Dim intTotalDiscs As Integer
50 Dim decSubtotal As Decimal
51 Dim decSalesTax As Decimal
52 Dim decTotalSales As Decimal
53 Static strClerk As String
54
55 ' assign the name to the variable
56 strClerk = InputBox(strPROMPT, strTITLE, strClerk)
57
58 ' calculate total number of discs sold
59 Integer.TryParse(txtDvds.Text, intDvds)
60 Integer.TryParse(txtBluRays.Text, intBluRays)
61 intTotalDiscs = intDvds + intBluRays
62
63 ' calculate the subtotal
64 decSubtotal = intTotalDiscs * decDISC_PRICE
65
66 ' calculate the sales tax
67 decSalesTax = decSubtotal * decTAX_RATE
68
69 ' calculate the total sales
70 decTotalSales = decSubtotal + decSalesTax
71
72 ' display total amounts
73 lblTotalDiscs.Text = Convert.ToString(intTotalDiscs)
74 lblTotalSales.Text = decTotalSales.ToString("C2")
75
76 ' display tax and salesclerk's name
77 lblMessage.Text = "The sales tax was " &
78 Convert.ToString(decSalesTax) & "." &
79 ControlChars.NewLine & strClerk
80
81 End Sub
82
83 Private Sub ClearLabels(sender As Object, e As EventArgs) _
84 Handles txtDvds.TextChanged, txtBluRays.TextChanged
85 ' clears the total discs, total sales, and message
86
87 lblTotalDiscs.Text = String.Empty
88 lblTotalSales.Text = String.Empty
89 lblMessage.Text = String.Empty
90
91 End Sub
92 End Class

Figure 3-56 Play It Again Movies application’s code at the end of Lesson C
© 2013 Cengage Learning

(continued)

CH A P T E R 3 Using Variables and Constants

178

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

l To associate a procedure with more than one object or event:

List each object and event (using the syntax object.event) after the Handles keyword in the
procedure header. Use a comma to separate each object and event from the previous object
and event.

Lesson C Key Terms
Pascal case—used when entering procedure names; the process of capitalizing the first letter in
the name and the first letter of each subsequent word in the name

TextChanged event—occurs when a change is made to the contents of a control’s Text property

Lesson C Review Questions
1. Which of the following events occurs when a change is made to the contents of a

text box?

a. Change

b. Changed

c. TextChanged

d. TextChange

2. A variable is a procedure-level variable that retains its value after the
procedure in which it is declared ends.

a. constant

b. static

c. stationary

d. term

3. Which of the following clauses associates a procedure with the TextChanged event of the
txtMid and txtFinal controls?

a. Associates txtMid_TextChanged, txtFinal_TextChanged

b. Handled txtMid_TextChanged, txtFinal_TextChanged

c. Controls txtMid.TextChanged And txtFinal.TextChanged

d. Handles txtMid.TextChanged, txtFinal.TextChanged

4. Which of the following statements declares a procedure-level variable that is removed
from the computer’s memory when the procedure ends?

a. Const intCounter As Integer

b. Dim intCounter As Integer

c. Local intCounter As Integer

d. Static intCounter As Integer

5. Which of the following statements declares a procedure-level variable that retains its
value after the procedure in which it is declared ends?

a. Const intCounter As Integer

b. Dim intCounter As Constant

c. Dim intCounter As Integer

d. Static intCounter As Integer

Lesson C Review Questions L E S S ON C

179

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Lesson C Exercises

1. Open the CityState Solution (CityState Solution.sln) file contained in the VB2012
\Chap03\CityState Solution folder. Code the form’s Load event procedure so that it uses
two InputBox functions to prompt the user to enter the name of a city and the name of a
state. Assign the results of both functions to variables. Code the Display button’s Click
event procedure so that it displays the city name followed by a comma, a space, and the
state name in the lblCityState control. Save the solution and then start and test the
application. Close the Code Editor window and then close the solution.

2. In this exercise, you create an application that converts American dollars to the Euro, the
Swiss franc, and the South African rand. Create a Visual Basic Windows application. Use
the following names for the solution and project, respectively: Converter Solution and
Converter Project. Save the application in the VB2012\Chap03 folder. Change the form
file’s name to Main Form.vb. Change the form’s name to frmMain. Create the interface
shown in Figure 3-57. Make the Convert button the default button. Code the application
appropriately. Use the Internet to determine the appropriate conversion rates. Be sure to
use variables in your code. (Do not use the Val function.) The calculated amounts should
be displayed with two decimal places. Clear the calculated amounts when a change is
made to the number of dollars. Save the solution and then start and test the application.
Close the Code Editor window and then close the solution.

3. In this exercise, you create an application that allows your friend Miranda to enter the
number of pennies she has in a jar. The application should calculate the number of
dollars, quarters, dimes, nickels, and pennies she will receive when she cashes in the
pennies at a bank. Create a Visual Basic Windows application. Use the following names
for the solution and project, respectively: Pennies Solution and Pennies Project. Save the
application in the VB2012\Chap03 folder. Change the form file’s name to Main Form.vb.
Change the form’s name to frmMain. Create the interface shown in Figure 3-58. Make
the Calculate button the default button. Code the application appropriately. (It might be
helpful to review the information in Figures 2-34 and 2-35 in Chapter 2.) Clear the
calculated amounts when a change is made to the number of pennies entered by the user.
Save the solution and then start the application. Test the application twice, using the
following data: 706 pennies and 533 pennies. Close the Code Editor window and then
close the solution.

Figure 3-57 Interface for Exercise 2

INTRODUCTORY

INTRODUCTORY

INTERMEDIATE

CH A P T E R 3 Using Variables and Constants

180

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

4. Create a Visual Basic Windows application. Use the following names for the solution
and project, respectively: Car Solution and Car Project. Save the application in the
VB2012\Chap03 folder. Change the form file’s name to Main Form.vb. Change the form’s
name to frmMain. The application’s interface should allow the user to enter his or her
monthly car expenses. The expenses should include the loan payment, insurance
payment, oil change, maintenance, car washes, and gas. You will need a text box for each
individual expense for each month. The application should calculate and display each
month’s total expenses, as well as the total expenses for the year. Save the solution and
then start and test the application.

5. Create a Visual Basic Windows application. Use the following names for the solution and
project, respectively: Credit Card Solution and Credit Card Project. Save the application
in the VB2012\Chap03 folder. Change the form file’s name to Main Form.vb. Change the
form’s name to frmMain. Create an interface that allows the user to enter the total
monthly amount charged to his or her credit card for the following five categories of
expenses: Merchandise, Restaurants, Gasoline, Travel/Entertainment, Services, and
Supermarkets. The application should calculate and display each month’s total charges,
as well as the total annual amount he or she charged. The application also should
calculate and display the percentage that each category contributed to the total annual
amount charged. Save the solution and then start and test the application.

6. In this exercise, you create an application that can help students in grades 1 through 6
learn how to make change. The application should allow the student to enter the amount
of money a customer owes and the amount of money the customer paid. It then should
calculate the amount of change, as well as the number of dollars, quarters, dimes, nickels,
and pennies to return to the customer. For now, you do not have to worry about the
situation where the amount owed is greater than the amount paid. You can assume that
the customer pays either the exact amount or more than the exact amount. Create a
Visual Basic Windows application. Use the following names for the solution, project, and
form file, respectively: Change Solution, Change Project, and Main Form.vb. Save the
application in the VB2012\Chap03 folder. Create the interface shown in Figure 3-59.
Make the Calculate Change button the default button. Code the application
appropriately. (It might be helpful to review the information in Figures 2-34 and 2-35 in
Chapter 2.) Clear the calculated amounts when a change is made to either the amount
owed or amount paid. Save the solution and then start the application. Test the
application three times, using the following data: 75.33 as the amount owed and 80.00 as
the amount paid, 39.67 as the amount owed and 50.00 as the amount paid, and 45.55 as
the amount owed and 45.55 as the amount paid. Close the Code Editor window and then
close the solution.

Figure 3-58 Interface for Exercise 3

INTERMEDIATE

INTERMEDIATE

ADVANCED

Lesson C Exercises L E S S ON C

181

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

7. In this exercise, you experiment with the Visual Basic conversion functions listed in
Appendix C. Open the Conversion Functions Solution (Conversion Functions Solution.
sln) file contained in the VB2012\Chap03\Conversion Functions Solution folder. Start
the application. Test the application using 4 and 10 as the item price and number
purchased, respectively. What appears in the Total price box when you click the
Calculate button? Now delete the number 10 from the Number purchased box. What
appears in the Total price box when you click the Calculate button? Stop the application.
Modify the code so that it uses the Visual Basic conversion functions listed in Appendix C.
For example, to convert the item price to Decimal, use decPrice = CDec(txtPrice.Text).
Save the solution and then start the application. Test the application using 4 and 10
as the item price and number purchased, respectively. What appears in the Total
price box when you click the Calculate button? Now delete the number 10 from the
Number purchased box. What happens when you click the Calculate button? Stop
the application by clicking DEBUG on the menu bar and then clicking Stop Debugging.
What does this exercise tell you about the difference between the TryParse methods
and the Visual Basic conversion functions? Close the Code Editor window and then
close the solution.

8. Open the Debug Solution (Debug Solution.sln) file contained in the VB2012\Chap03\
Debug Solution-Lesson C folder. If necessary, open the designer window. Start and then
test the application. Locate and correct any errors. When the application is working
correctly, close the Code Editor window and then close the solution.

Figure 3-59 Interface for Exercise 6

DISCOVERY

SWAT THE BUGS

CH A P T E R 3 Using Variables and Constants

182

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 4
The Selection Structure

Creating the Covington Resort Application

In this chapter, you will create a reservation application for Covington
Resort. The application should allow the user to enter the following
information: the number of rooms to reserve, the length of stay (in
nights), the number of adult guests, and the number of child guests.
Each room can accommodate a maximum of six guests. The resort
charges $284 per room per night. It also charges a 15.25% sales and
lodging tax, which is based on the room charge. In addition, there is a
$15 resort fee per room per night. The application should display the
total room charge, the sales and lodging tax, the resort fee, and the
total due.

All Microsoft screenshots used with permission from Microsoft Corporation.

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Previewing the Covington Resort Application
Before you start the first lesson in this chapter, you will preview the completed application. The
application is contained in the VB2012\Chap04 folder.

To preview the completed application:

1. Use the Run dialog box to run the Covington (Covington.exe) file contained in the
VB2012\Chap04 folder. The application’s user interface appears on the screen.

2. Type 1 in the Rooms box, 2 in the Nights box, 2 in the Adults box, and 3 in the Children
box. Click the Calculate button. The application calculates and displays the charges
shown in Figure 4-1.

3. Recall that only 6 guests are allowed in a room. Change the number of adults to 4 and
then click the Calculate button. The message box shown in Figure 4-2 appears on the
screen. You will learn how to create a message box in Lesson B.

4. Click the OK button to close the message box. Try typing a $ in the Nights box. Notice
that the text box does not accept the $ key. You will learn how to prevent a text box
from accepting unwanted characters in Lesson C.

a message box
appears on top
of the form

Figure 4-2 Message box

Figure 4-1 Interface showing the calculated amounts

START HERE

CH A P T E R 4 The Selection Structure

184

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

5. Change the number of nights and number of adults to 1 and 2, respectively. Also change
the number of children to 2. Click the Calculate button. The application calculates and
displays the charges shown in Figure 4-3.

6. Click the Exit button to end the application.

The Covington Resort application uses the selection structure, which you will learn about in
Lesson A. In Lesson B, you will complete the application’s interface and also begin coding the
application. You will finish coding the application in Lesson C. Be sure to complete each lesson
in full and do all of the end-of-lesson questions and several exercises before continuing to the
next lesson.

Figure 4-3 New charges shown in the interface

Previewing the Covington Resort Application

185

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

& LESSON A
After studying Lesson A, you should be able to:

l Write pseudocode for the selection structure

l Create a flowchart to help you plan an application’s code

l Write an If…Then…Else statement

l Include comparison operators in a selection structure’s condition

l Include logical operators in a selection structure’s condition

l Change the case of a string

Making Decisions in a Program
All of the procedures in an application are written using one or more of three basic control
structures: sequence, selection, and repetition. The procedures in the previous three chapters
used the sequence structure only. When one of the procedures was invoked during run time, the
computer processed its instructions sequentially—in other words, in the order the instructions
appeared in the procedure. Every procedure you write will contain the sequence structure.
Many times, however, a procedure will need the computer to make a decision before selecting
the next instruction to process. A procedure that calculates an employee’s gross pay, for
example, typically has the computer determine whether the number of hours an employee
worked is greater than 40. The computer then would select either an instruction that computes
regular pay only or an instruction that computes regular pay plus overtime pay. Procedures that
need the computer to make a decision require the use of the selection structure (also called the
decision structure).

The selection structure indicates that a decision (based on some condition) needs to be
made, followed by an appropriate action derived from that decision. But how does a
programmer determine whether a problem’s solution requires a selection structure? The
answer to this question is by studying the problem specification. The first problem
specification you will examine in this lesson involves an evil scientist named Dr. N. The
problem specification and an illustration of the problem are shown in Figure 4-4 along with a
solution to the problem. The solution, which is written in pseudocode, requires only the
sequence structure.

Ch04A video

CH A P T E R 4 The Selection Structure

186

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Now we’ll make a slight change to the problem specification from Figure 4-4. In this case, Dr. N
should open the door only if the visitor knows the secret password. The modified problem
specification and solution are shown in Figure 4-5. The solution contains both the sequence and
selection structures. The selection structure’s condition directs Dr. N to make a decision about
the visitor’s password. More specifically, he needs to determine whether the visitor’s password
matches the secret password. The condition in a selection structure must be phrased so that it
evaluates to an answer of either true or false. In this case, either the visitor’s password matches
the secret password (true) or it doesn’t match the secret password (false). Only if both
passwords are the same does Dr. N need to follow the two indented instructions. The selection
structure in Figure 4-5 is referred to as a single-alternative selection structure because it
requires one or more actions to be taken only when its condition evaluates to true. Other
examples of single-alternative selection structures include “if it’s raining, take an umbrella” and
“if you are driving your car at night, turn your car’s headlights on”.

Problem Specification
Dr. N is sitting in a chair in his lair, facing a control deck and an electronic screen. At times, visitors
come to the door located at the rear of the lair. Before pressing the blue button on the control deck to
open the door, Dr. N likes to view the visitor on the screen. He can do so by pressing the orange button
on the control deck. Write the instructions that direct Dr. N to view the visitor first, and then open the
door and say “Welcome”.

Solution
1. press the orange button on the control deck to view the visitor on the screen
2. press the blue button on the control deck to open the door
3. say “Welcome”

Figure 4-4 A problem that requires the sequence structure only
Image by Diane Zak; Created with Reallusion CrazyTalk Animator

Making Decisions in a Program L E S S ON A

187

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Figure 4-6 shows a modified version of the previous problem specification. In this version,
Dr. N will say “Sorry, you are wrong” and then destroy the visitor if the passwords do not
match. Also shown in Figure 4-6 are two possible solutions to the problem; both solutions
produce the same result. The condition in Solution 1’s selection structure determines
whether the visitor’s password is correct. If it is correct, Dr. N will open the door and
welcome the visitor to his lair. Otherwise, he will tell the visitor that the password is wrong
and then destroy the visitor. The condition in Solution 2’s selection structure, on the other
hand, determines whether the visitor’s password is incorrect. If it is incorrect, Dr. N will tell
the visitor that the password is wrong and then destroy the visitor; otherwise, he will open
the door and welcome the visitor to his lair.

Problem Specification
Dr. N is sitting in a chair in his lair, facing a control deck and an electronic screen. At times, visitors
come to the door located at the rear of the lair. Before pressing the blue button on the control deck to
open the door, Dr. N likes to view the visitor on the screen. He can do so by pressing the orange button
on the control deck. Write the instructions that direct Dr. N to view the visitor first, and then ask the
visitor for the password. He should open the door and say “Welcome” only if the visitor knows the secret
password.

Solution
1. press the orange button on the control deck to view the visitor on the screen
2. ask the visitor for the password

3. if the visitor’s password matches the secret password
 press the blue button on the control deck to open the door
 say “Welcome”
 end if

condition

followed only when
the condition is true

Figure 4-5 A problem that requires the sequence structure and a single-alternative selection structure
ª 2013 Cengage Learning

In pseudocode,
most
programmers
use the words
“if” and “end if”

to denote the beginning
and end, respectively, of
a selection structure.
They also indent the
instructions within the
selection structure.

CH A P T E R 4 The Selection Structure

188

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Unlike the selection structure in Figure 4-5, which provides instructions for Dr. N to follow only
when the selection structure’s condition is true, the selection structures in Figure 4-6 require
Dr. N to perform one set of instructions when the condition is true but a different set of
instructions when the condition is false. The instructions to follow when the condition evaluates
to true are called the true path. The true path begins with the “if ” and ends with either the “else”
(if there is one) or the “end if ”. The instructions to follow when the condition evaluates to false
are called the false path. The false path begins with the “else” and ends with the “end if ”. For
clarity, the instructions in each path should be indented as shown in Figure 4-6. Selection
structures that contain instructions in both paths, like the ones in Figure 4-6, are referred to as
dual-alternative selection structures.

Flowcharting a Selection Structure
As you learned in Chapter 2, many programmers use flowcharts (rather than pseudocode) when
planning solutions to problems. Figures 4-7 and 4-8 show two problem specifications along with the
correct solutions in flowchart form. (So that you can compare both planning tools, the
corresponding pseudocode is also included in the figures.) The diamond in a flowchart is called the
decision symbol because it is used to represent the condition (decision) in both the selection and

Problem Specification
Dr. N is sitting in a chair in his lair, facing a control deck and an electronic screen. At times, visitors
come to the door located at the rear of the lair. Before pressing the blue button on the control deck to
open the door, Dr. N likes to view the visitor on the screen. He can do so by pressing the orange button
on the control deck. Write the instructions that direct Dr. N to view the visitor first, and then ask the
visitor for the password. He should open the door and say “Welcome” only if the visitor knows the
secret password. If the visitor does not know the secret password, Dr. N should say “Sorry, you are
wrong” and then destroy the visitor by pressing the big red button on the control deck.
Solution 1
1. press the orange button on the control deck to view the visitor on the screen
2. ask the visitor for the password

3. if the visitor’s password matches the secret password
 press the blue button on the control deck to open the door
 say “Welcome”
 else
 say “Sorry, you are wrong”
 press the big red button on the control deck to destroy the visitor
 end if
Solution 2
1. press the orange button on the control deck to view the visitor on the screen
2. ask the visitor for the password

3. if the visitor’s password does not match the secret password
 say “Sorry, you are wrong”
 press the big red button on the control deck to destroy the visitor
 else
 press the blue button on the control deck to open the door
 say “Welcome”
 end if

condition

condition

true path

true path

false path

false path

Figure 4-6 A problem that requires the sequence structure and a dual-alternative selection structure
ª 2013 Cengage Learning

Flowcharting a Selection Structure L E S S ON A

189

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

repetition structures. The diamonds in Figures 4-7 and 4-8 represent the condition in a selection
structure. The flowchart in Figure 4-7 contains a single-alternative selection structure. You can tell
that it’s a single-alternative selection structure because it requires a set of actions to be taken only
when its condition evaluates to true. Figure 4-8’s flowchart contains a dual-alternative selection
structure. You can tell that it’s a dual-alternative selection structure because it requires two different
sets of actions: one to be taken only when its condition evaluates to true, and the other to be taken
only when its condition evaluates to false.

Problem Specification

Jerrili’s Trading Store wants an application that allows a salesclerk to enter an item’s price and the
quantity purchased by a customer. When the quantity purchased is over 10, the customer is given a
20% discount. The application should calculate and display the total amount the customer owes.

Pseudocode for the Calculate button’s Click event procedure
1. store price and quantity purchased in variables
2. total owed = price * quantity purchased
3. if the quantity purchased is over 10
 discount = total owed * .2
 total owed = total owed – discount
 end if
4. display total owed in lblTotal

Flowchart for the Calculate button’s Click event procedure

start

total owed = price *
quantity purchased

quantity
purchased
over 10

TF

discount = total
owed * .2

display total
owed in lblTotal

stop

total owed = total
owed – discount

store price and quantity
purchased in variables

Figure 4-7 Pseudocode and flowchart showing a single-alternative selection structure
ª 2013 Cengage Learning

CH A P T E R 4 The Selection Structure

190

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

The condition in Figure 4-7’s diamond checks whether the customer purchased more than
10 items. It’s necessary to do this because the customer receives a 20% discount when more
than 10 items are purchased. The condition in Figure 4-8’s diamond, on the other hand,
determines whether Mary’s sales are over $15,000. In this case, the result (either true or
false) determines whether Mary receives a 2% or 1.5% bonus. Notice that the conditions in
both diamonds evaluate to either true or false only. Also notice that both diamonds have
one flowline entering the symbol and two flowlines leaving the symbol. One of the flowlines
leading out of a diamond in a flowchart should be marked with a “T” (for true) and the
other should be marked with an “F” (for false). The “T” flowline points to the next
instruction to be processed when the condition evaluates to true. In Figure 4-7, the next
instruction calculates the 20% discount; in Figure 4-8, it calculates the 2% bonus. The “F”
flowline points to the next instruction to be processed when the condition evaluates to
false. In Figure 4-7, that instruction displays the total owed; in Figure 4-8, it calculates
the 1.5% bonus. You also can mark the flowlines leading out of a diamond with a “Y” and
an “N” (for yes and no).

Problem Specification
Mary Kettleson wants an application that calculates and displays her annual bonus, given her annual
sales amount. Mary receives a 2% bonus when her annual sales are over $15,000; otherwise, she
receives a 1.5% bonus.

Pseudocode for the Calculate button’s Click event procedure
1. store sales in a variable
2. if the sales are over 15000
 bonus = sales * .02
 else
 bonus = sales * .015
 end if
3. display bonus in lblBonus

Flowchart for the Calculate button’s Click event procedure

start

TF

bonus =
sales * .02

display bonus
in lblBonus

bonus =
sales * .015

sales
over
15000

store sales in a variable

stop

Figure 4-8 Pseudocode and flowchart showing a dual-alternative selection structure
ª 2013 Cengage Learning

Flowcharting a Selection Structure L E S S ON A

191

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Coding Selection Structures in Visual Basic
Visual Basic provides the If…Then… Else statement for coding single-alternative and dual-
alternative selection structures. The statement’s syntax is shown in Figure 4-9. The square
brackets in the syntax indicate that the Else portion, referred to as the Else clause, is optional.
Recall, however, that boldfaced items in a statement’s syntax are required. In this case, the
keywords If, Then, and End If are required. The Else keyword is necessary only in a dual-
alternative selection structure.

Italicized items in the syntax indicate where the programmer must supply information. In the
If…Then…Else statement, the programmer must supply the condition that the computer needs
to evaluate before further processing can occur. The condition must be a Boolean expression,
which is an expression that results in a Boolean value (True or False). Besides providing the
condition, the programmer must provide the statements to be processed in the true path and
(optionally) in the false path. The set of statements contained in each path is referred to as a
statement block. (In Visual Basic, a statement block is a set of statements terminated by an
Else, End If, Loop, or Next clause. You will learn about the Loop and Next clauses in Chapters 6
and 7.)

Also included in Figure 4-9 are two examples of using the If…Then…Else statement to
code selection structures. Example 1 shows how you use the statement to code the single-
alternative selection structure shown earlier in Figure 4-7. Example 2 shows how you use
the statement to code the dual-alternative selection structure shown earlier in Figure 4-8.
Both examples contain the greater-than comparison operator (>), which you will learn
about in the next section.

If…Then…Else Statement

Syntax
If condition Then
 statement block to be processed when the condition is true
[Else
 statement block to be processed when the condition is false]
End If

Figure 4-9 Syntax and examples of the If…Then… Else statement (continues)

CH A P T E R 4 The Selection Structure

192

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Example 1
Private Sub btnCalc_Click(sender As Object,
e As EventArgs) Handles btnCalc.Click
 ' calculate total owed

 Dim dblPrice As Double
 Dim intQuantity As Integer
 Dim dblTotal As Double
 Dim dblDiscount As Double

 ' store user input in variables
 Double.TryParse(txtPrice.Text, dblPrice)
 Integer.TryParse(txtQuantity.Text, intQuantity)

 ' calculate total owed
 dblTotal = dblPrice * intQuantity
 ' subtract discount, if necessary
 If intQuantity > 10 Then
 dblDiscount = dblTotal * 0.2
 dblTotal = dblTotal - dblDiscount
 End If
 ' display total owed
 lblTotal.Text = dblTotal.ToString("C2")
End Sub

Example 2
Private Sub btnCalc_Click(sender As Object,
e As EventArgs) Handles btnCalc.Click
 ' calculate the annual bonus

 Dim dblSales As Double
 Dim dblBonus As Double

 ' store sales in a variable
 Double.TryParse(txtSales.Text, dblSales)

 ' calculate and display bonus
 If dblSales > 15000 Then
 dblBonus = dblSales * 0.02
 Else
 dblBonus = dblSales * 0.015
 End If
 lblBonus.Text = dblBonus.ToString("C2")
End Sub

dual-alternative
selection
structure

single-alternative
selection structure

Figure 4-9 Syntax and examples of the If…Then… Else statement
ª 2013 Cengage Learning

(continued)

Coding Selection Structures in Visual Basic L E S S ON A

193

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

To code and then test the Jerrili and Kettleson applications:

1. If necessary, start Visual Studio 2012. Open the Jerrili Solution (Jerrili Solution.sln) file
contained in the VB2012\Chap04\Jerrili Solution folder. If necessary, open the designer
window.

2. Open the Code Editor window. Replace <your name> and <current date> in the
comments with your name and the current date, respectively.

3. Open the code template for the btnCalc control’s Click event procedure. Enter the
comments and code shown in Example 1 in Figure 4-9.

4. Save the solution and then start the application. First, calculate the total owed when the
customer purchases 9 items at $5 per item; the total owed should be $45.00. Type 5 in
the Item’s price box and then type 9 in the Quantity purchased box. Click the Calculate
button. The button’s Click event procedure displays $45.00 in the Total owed box, as
shown in Figure 4-10.

5. Now, calculate the total owed when the customer purchases 20 items at $5 per item; the
total owed should be $80.00. Change the quantity purchased to 20 and then click the
Calculate button. $80.00 appears in the Total owed box.

6. Click the Exit button. Close the Code Editor window and then close the solution.

7. Open the Kettleson Solution (Kettleson Solution.sln) file contained in the
VB2012\Chap04\Kettleson Solution folder. If necessary, open the designer window.

8. Open the Code Editor window. Replace <your name> and <current date> in the
comments with your name and the current date, respectively.

9. Open the code template for the btnCalc control’s Click event procedure. Enter the
comments and code shown in Example 2 in Figure 4-9.

10. Save the solution and then start the application. First, calculate the bonus when the sales
are $25,000; the bonus should be $500.00. Type 25000 in the Annual sales box and then
click the Calculate button. The button’s Click event procedure displays $500.00 in the
Annual bonus box, as shown in Figure 4-11.

Figure 4-10 Jerrili’s interface showing the total owed

START HERE

CH A P T E R 4 The Selection Structure

194

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

11. Now, calculate the bonus when the sales are $10,000; the bonus should be $150.00.
Change the annual sales to 10000 and then click the Calculate button. $150.00 appears
in the Annual bonus box.

12. Click the Exit button. Close the Code Editor window and then close the solution.

YOU DO IT 1!

Create a Visual Basic Windows application named YouDoIt 1. Save the application in the
VB2012\Chap04 folder. Add a text box, a label, and a button to the form. The button’s
Click event procedure should display the string “Over 1” in the label when the value in the
text box is greater than the number 1; otherwise, it should display the string “Not Over 1”.
Code the procedure. Save the solution and then start and test the application. Close the
solution.

As mentioned earlier, an If…Then…Else statement’s condition must be a Boolean expression,
which is an expression that evaluates to either True or False. The expression can contain
variables, constants, properties, methods, keywords, arithmetic operators, comparison operators,
and logical operators. You already know about variables, constants, properties, methods,
keywords, and arithmetic operators. You will learn about comparison operators and logical
operators in this lesson. We’ll begin with comparison operators.

Comparison Operators
Figure 4-12 lists the most commonly used comparison operators in Visual Basic. Comparison
operators (also referred to as relational operators) are used in expressions to compare two
values. When making comparisons, keep in mind that equal to (=) is the opposite of not equal to
(<>), greater than (>) is the opposite of less than or equal to (<=), and less than (<) is the
opposite of greater than or equal to (>=). Expressions containing a comparison operator always
evaluate to a Boolean value: either True or False. Also included in Figure 4-12 are examples of
using comparison operators in an If…Then…Else statement’s condition.

Figure 4-11 Kettleson interface showing the bonus

Comparison Operators L E S S ON A

195

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Unlike arithmetic operators, comparison operators in Visual Basic do not have an order of
precedence. When an expression contains more than one comparison operator, the computer
evaluates the comparison operators from left to right in the expression. Comparison operators
are evaluated after any arithmetic operators in an expression. For example, when processing the
expression 3 + 6 < 16 / 2, the computer will evaluate the two arithmetic operators before it
evaluates the comparison operator. The result of the expression is the Boolean value False, as
shown in Figure 4-13. Also included in the figure are the evaluation steps for two other
expressions that contain arithmetic and comparison operators.

Comparison Operators

Operator Operation
= equal to
> greater than
>= greater than or equal to
< less than
<= less than or equal to
<> not equal to

Example 1
If decNorthSales = decSouthSales Then
The condition evaluates to True when both variables contain the same value; otherwise, it evaluates to
False.

Example 2
If intAge >= 65 Then
The condition evaluates to True when the value stored in the intAge variable is greater than or equal
to 65; otherwise, it evaluates to False.

Example 3
If decTotal < 500.75D Then
The condition evaluates to True when the value stored in the decTotal variable is less than
500.75; otherwise, it evaluates to False. You also can write the condition as decTotal <
Convert.ToDecimal(500.75).

Example 4
If dblCommission <= 1500 Then
The condition evaluates to True when the value stored in the dblCommission variable is less than
or equal to 1500; otherwise, it evaluates to False.

Example 5
If strState <> "KY" Then
The condition evaluates to True when the strState variable does not contain the string “KY”;
otherwise, it evaluates to False.

Figure 4-12 Listing and examples of commonly used comparison operators
ª 2013 Cengage Learning

Evaluation Steps Result
Original expression 3 + 6 < 16 / 2
The division is performed first 3 + 6 < 8
The addition is performed next 9 < 8
The < comparison is performed last False

Figure 4-13 Evaluation steps for expressions containing arithmetic and comparison operators (continues)

CH A P T E R 4 The Selection Structure

196

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

YOU DO IT 2!

On a piece of paper, write down the answers to the following four expressions:

4 + 3 * 2 > 2 * 10 – 11

8 + 3 – 6 + 85 < 5 * 26

10 / 5 + 3 – 6 * 2 > 0

75 / 25 + 2 * 5 * 6 <= 8 * 8

Next, create a Visual Basic Windows application named YouDoIt 2. Save the application in
the VB2012\Chap04 folder. Add four labels and a button to the form. The button’s Click
event procedure should display the results of the four expressions shown here. Code the
procedure. Save the solution and then start and test the application. Compare the
application’s results with your answers. Close the solution.

In the next two sections, you will view two procedures that contain a comparison
operator in an If…Then…Else statement’s condition. The first procedure uses a single-
alternative selection structure, and the second procedure uses a dual-alternative selection
structure.

Using Comparison Operators: Swapping Numeric Values
Figure 4-14 shows a sample run of an application that displays the lowest and highest of
two scores entered by the user. Figure 4-15 shows the pseudocode and flowchart for the
Display button’s Click event procedure. The procedure contains a single-alternative
selection structure whose condition determines whether the first score entered by the user
is greater than the second score. If it is, the selection structure’s true path takes the
appropriate action.

Evaluation Steps Result
Original expression 6 * 2 * 3 >= 6 * 6
The first multiplication is performed first 12 * 3 >= 6 * 6
The second multiplication is performed next 36 >= 6 * 6
The remaining multiplication is performed next 36 >= 36
The >= comparison is performed last True

Original expression 7 + 6 * 4 * 2 – 1 > 50
The first multiplication is performed first 7 + 24 * 2 – 1 > 50
The remaining multiplication is performed next 7 + 48 – 1 > 50
The addition is performed next 55 – 1 > 50
The subtraction is performed next 54 > 50
The > comparison is performed last True

Figure 4-13 Evaluation steps for expressions containing arithmetic and comparison operators
ª 2013 Cengage Learning

(continued)

Comparison Operators L E S S ON A

197

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Figure 4-14 Sample run of the Lowest and Highest application

Pseudocode for the Display button’s Click event procedure
1. store the two scores in two variables
2. if the score in the first variable is greater than the score in the second variable
 swap both scores so that the first variable contains the lowest of the two scores
 end if
3. display the lowest and highest scores (and appropriate messages) in lblMessage

Flowchart for the Display button’s Click event procedure

score in first
variable > score in
second variable

swap both scores so that
the first variable contains
the lowest of the two scores

TF

stop

start

store the two scores in two variables

display the lowest and
highest scores (and
appropriate messages)
in lblMessage

Figure 4-15 Pseudocode and flowchart containing a single-alternative selection structure
ª 2013 Cengage Learning

CH A P T E R 4 The Selection Structure

198

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Figure 4-16 shows the code entered in the Display button’s Click event procedure.
The condition in the If clause compares the contents of the intScore1 variable with the
contents of the intScore2 variable. If the value in the intScore1 variable is greater than the
value in the intScore2 variable, the condition evaluates to True and the four instructions in the
If…Then…Else statement’s true path swap both values. Swapping the values places the smaller
number in the intScore1 variable and places the larger number in the intScore2 variable. If
the condition evaluates to False, on the other hand, the true path instructions are skipped over
because the intScore1 variable already contains a number that is smaller than (or possibly
equal to) the number stored in the intScore2 variable.

The first instruction in the If…Then…Else statement’s true path declares and initializes a
variable named intTemp. Like a variable declared at the beginning of a procedure, a
variable declared within a statement block—referred to as a block-level variable—remains
in memory until the procedure ends. However, unlike a variable declared at the beginning
of a procedure, block-level variables have block scope rather than procedure scope.
A variable that has block scope can be used only within the statement block in which it is
declared. More specifically, it can be used only below its declaration statement within the
statement block. In this case, the procedure-level intScore1 and intScore2 variables can
be used anywhere below their Dim statements within the Display button’s Click event
procedure, but the block-level intTemp variable can be used only after its Dim statement
within the If…Then…Else statement’s true path.

You may be wondering why the intTemp variable was not declared at the beginning of the
procedure, along with the other variables. Although there is nothing wrong with declaring the
intTemp variable in that location, there is no reason to create the variable until it is needed,
which (in this case) is only when a swap is necessary.

Private Sub btnDisplay_Click(sender As Object,
e As EventArgs) Handles btnDisplay.Click
 ' display the lowest and highest scores

 Dim intScore1 As Integer
 Dim intScore2 As Integer

 ' store input in variables
 Integer.TryParse(txtScore1.Text, intScore1)
 Integer.TryParse(txtScore2.Text, intScore2)

 ' swap scores, if necessary
 If intScore1 > intScore2 Then
 Dim intTemp As Integer
 intTemp = intScore1
 intScore1 = intScore2
 intScore2 = intTemp
 End If

 ' display lowest and highest scores
 lblMessage.Text = "Lowest score: " &
 Convert.ToString(intScore1) &
 ControlChars.NewLine &
 "Highest score: " &
 Convert.ToString(intScore2)
 End Sub

single-alternative
selection structure

comparison
operator

Figure 4-16 Display button’s Click event procedure
ª 2013 Cengage Learning

Comparison Operators L E S S ON A

199

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

The second instruction in the If…Then…Else statement’s true path assigns the value in the
intScore1 variable to the intTemp variable. If you do not store the intScore1 variable’s value
in the intTemp variable, the value will be lost when the computer processes the next statement,
intScore1 = intScore2, which replaces the contents of the intScore1 variable with the
contents of the intScore2 variable. Finally, the intScore2 = intTemp instruction assigns the
intTemp variable’s value to the intScore2 variable; this completes the swap. Figure 4-17
illustrates the concept of swapping, assuming the user enters the numbers 95 and 83 in the
txtScore1 and txtScore2 controls, respectively.

To code and then test the Lowest and Highest application:

1. Open the Lowest and Highest Solution (Lowest and Highest Solution.sln) file contained
in the VB2012\Chap04\Lowest and Highest Solution folder. If necessary, open the
designer window.

2. Open the Code Editor window. Replace <your name> and <current date> in the
comments with your name and the current date, respectively.

3. Open the code template for the btnDisplay control’s Click event procedure. Enter the
comments and code shown earlier in Figure 4-16.

4. Save the solution and then start the application. Type 95 in the Score 1 box and then
type 83 in the Score 2 box. Click the Display button. The button’s Click event procedure
displays the lowest and highest scores, as shown earlier in Figure 4-14.

5. Click the Exit button. Close the Code Editor window and then close the solution.

Using Comparison Operators: Displaying the Sum or Difference
Figure 4-18 shows a sample run of an application that displays either the sum of two
numbers entered by the user or the difference between both numbers. Figure 4-19 shows
the pseudocode and flowchart for the Calculate button’s Click event procedure. The
procedure uses a dual-alternative selection structure to determine the appropriate operation
to perform.

intScore1 intScore2 intTemp

values stored in the variables immediately
before the intTemp = intScore1 statement
is processed

 95

result of the intTemp = intScore1 statement 95

result of the intScore1 = intScore2 statement 83

result of the intScore2 = intTemp statement 83

 83

 83

 83

 95

0

95

95

95

the values were
swapped

Figure 4-17 Illustration of the swapping concept
ª 2013 Cengage Learning

Ch04A-
Swapping
video

START HERE

CH A P T E R 4 The Selection Structure

200

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Figure 4-20 shows the code entered in the Calculate button’s Click event procedure. The Dim
statements in the procedure declare four procedure-level variables. The next three statements
store the contents of the text boxes in the appropriate variables. The condition in the If clause

stop

display “Sum:” and
sum in lblAnswer

display “Difference:”
and difference in
lblAnswer

Pseudocode for the Calculate button’s Click event procedure
1. store operation, first number, and second number in variables
2. if the operation is “1”, which indicates Addition
 calculate the sum by adding together the first number and the second number
 display the message “Sum:” along with the sum in lblAnswer
 else
 calculate the difference by subtracting the second number from the first number
 display the message “Difference:” along with the difference in lblAnswer
 end if

Flowchart for the Calculate button’s Click event procedure

store operation, first number, and
second number in variables

operation is
“1” (Addition)

TF

difference = first number – second
number

sum = first number + second
number

start

Figure 4-19 Flowchart and pseudocode containing a dual-alternative selection structure
ª 2013 Cengage Learning

Figure 4-18 Sample run of the Sum or Difference application

Comparison Operators L E S S ON A

201

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

compares the contents of the strOperation variable with the string “1”. If the condition
evaluates to True, the statements in the selection structure’s true path calculate the sum of the
numbers entered by the user and then display the sum in the lblAnswer control. If the condition
evaluates to False, the statements in the selection structure’s false path calculate the difference
between both numbers and then display the difference in the lblAnswer control.

To code and then test the Sum or Difference application:

1. Open the Sum or Difference Solution (Sum or Difference Solution.sln) file contained in
the VB2012\Chap04\Sum or Difference Solution folder. If necessary, open the designer
window.

2. Open the Code Editor window. Replace <your name> and <current date> in the
comments with your name and the current date, respectively.

3. Open the code template for the btnCalc control’s Click event procedure. Enter the
comments and code shown in Figure 4-20.

4. Save the solution and then start the application. Type 1 in the Enter 1 (Addition) or 2
(Subtraction) box, 45 in the First number box, and 67 in the Second number box. Click
the Calculate button. The button’s Click event procedure displays the sum of both
numbers, as shown earlier in Figure 4-18.

5. Change the 1 in the Enter 1 (Addition) or 2 (Subtraction) box to 2 and then click the
Calculate button. The button’s Click event procedure displays the difference between
both numbers (–22).

6. Click the Exit button. Close the Code Editor window and then close the solution.

Private Sub btnCalc_Click(sender As Object,
e As EventArgs) Handles btnCalc.Click
 ' calculate either a sum or a difference

 Dim strOperation As String
 Dim dblNum1 As Double
 Dim dblNum2 As Double
 Dim dblAnswer As Double

 ' store input in variables
 strOperation = txtOperation.Text
 Double.TryParse(txtFirst.Text, dblNum1)
 Double.TryParse(txtSecond.Text, dblNum2)

 ' calculate and display the sum or difference
 If strOperation = "1" Then
 dblAnswer = dblNum1 + dblNum2
 lblAnswer.Text =
 "Sum: " & Convert.ToString(dblAnswer)
 Else
 dblAnswer = dblNum1 - dblNum2
 lblAnswer.Text =
 "Difference: " & Convert.ToString(dblAnswer)
 End If
End Sub

dual-alternative
selection structure

comparison
operator

Figure 4-20 Calculate button’s Click event procedure
ª 2013 Cengage Learning

START HERE

CH A P T E R 4 The Selection Structure

202

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

YOU DO IT 3!

Create a Visual Basic Windows application named YouDoIt 3. Save the application
in the VB2012\Chap04 folder. Add a text box, a label, and a button to the form. If
the user enters the number 1 in the text box, the button’s Click event procedure
should display the result of multiplying the number 20 by the number 5; otherwise,
it should display the result of dividing the number 20 by the number 5. Code the
procedure. Save the solution and then start and test the application. Close the
solution.

YOU DO IT 4!

Create a Visual Basic Windows application named YouDoIt 4. Save the application in the
VB2012\Chap04 folder. Add two text boxes, a label, and a button to the form. The
button’s Click event procedure should assign the contents of the text boxes to Double
variables named dblNum1 and dblNum2. It then should divide the contents of the dblNum1
variable by the contents of the dblNum2 variable, assigning the result to a Double variable
named dblAnswer. Display the answer in the label. Code the procedure. Save the
solution and then start the application. Test the application using the numbers 6 and
2; the number 3 appears in the label control. Now test it using the numbers 6 and 0. The
word “Infinity” appears in the label control because, as in math, division by 0 is not
possible. Add a selection structure to the procedure. The selection structure should
perform the division only if the contents of the dblNum2 variable is not 0. Save the
solution and then start and test the application. Close the solution.

Logical Operators
An If…Then… Else statement’s condition can also contain logical operators. Visual Basic
provides six logical operators, which are listed along with their order of precedence in
Figure 4-21. Keep in mind, however, that logical operators are evaluated after any
arithmetic or comparison operators in an expression. All of the logical operators, with the
exception of the Not operator, allow you to combine two or more conditions, called sub-
conditions, into one compound condition. The compound condition will always evaluate
to either True or False, which is why logical operators are often referred to as Boolean
operators. Also included in Figure 4-21 are examples of using logical operators in the
If…Then…Else statement’s condition.

Logical Operators L E S S ON A

203

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

You already are familiar with logical operators because you use them on a daily basis. Examples
of this include the following:

if you finished your homework and you studied for tomorrow’s exam, watch a movie

if your cell phone rings and (it’s your spouse calling or it’s your child calling), answer the
phone

if you are driving your car and (it’s raining or it’s foggy or there is bug splatter on your
windshield), turn your car’s wipers on

Logical Operators

Operator Operation Precedence number

Not reverses the truth-value of the condition;
True becomes False, and False becomes True

1

And all sub-conditions must be true for the
compound condition to evaluate to True

2

AndAlso same as the And operator, except performs
short-circuit evaluation

2

Or only one of the sub-conditions needs to be true
for the compound condition to evaluate to True

3

OrElse same as the Or operator, except performs
short-circuit evaluation

3

Xor one and only one of the sub-conditions can be
true for the compound condition to evaluate to True

4

Example 1
If Not blnIsInsured Then
The condition evaluates to True when the blnIsInsured variable contains the Boolean value False;
otherwise, it evaluates to False. The clause also could be written more clearly as If
blnIsInsured = False Then.

Example 2
If dblRate > 0 AndAlso dblRate < 0.15 Then
The compound condition evaluates to True when the value in the dblRate variable is greater than 0
and, at the same time, less than 0.15; otherwise, it evaluates to False.

Example 3
If strState = "AK" AndAlso decSales > 1999.99D Then
The compound condition evaluates to True when the strState variable contains the string “AK”
and, at the same time, the value in the decSales variable is greater than 1999.99; otherwise, it
evaluates to False.

Example 4
If strState = "AK" OrElse decSales > 1999.99D Then
The compound condition evaluates to True when the strState variable contains the string “AK” or
when the value in the decSales variable is greater than 1999.99; otherwise, it evaluates to False.

Example 5
If strCoupon1 = "USE" Xor strCoupon2 = "USE" Then
The compound condition evaluates to True when only one of the variables contains the string “USE”;
otherwise, it evaluates to False.

Figure 4-21 Listing and examples of logical operators
ª 2013 Cengage Learning

CH A P T E R 4 The Selection Structure

204

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

As mentioned earlier, all expressions containing a logical operator evaluate to either True or
False only. The tables shown in Figure 4-22, called truth tables, summarize how the computer
evaluates the logical operators in an expression.

Truth Tables

Not operator
value of condition value of Not condition
True False
False True

And operator
sub-condition1 sub-condition2 sub-condition1 And sub-condition2
True True True
True False False
False True False
False False False

AndAlso operator
sub-condition1 sub-condition2 sub-condition1 AndAlso sub-condition2
True True True
True False False
False (not evaluated) False

Or operator
sub-condition1 sub-condition2 sub-condition1 Or sub-condition2
True True True
True False True
False True True
False False False

OrElse operator
sub-condition1 sub-condition2 sub-condition1 OrElse sub-condition2
True (not evaluated) True
False True True
False False False

Xor operator
sub-condition1 sub-condition2 sub-condition1 Xor sub-condition2
True True False
True False True
False True True
False False False

Figure 4-22 Truth tables for the logical operators
ª 2013 Cengage Learning

As the figure indicates, the Not operator reverses the truth-value of the condition. If the value of
the condition is True, then the value of Not condition is False. Likewise, if the value of the
condition is False, then the value of Not condition is True.

When you use either the And operator or the AndAlso operator to combine two sub-conditions,
the resulting compound condition evaluates to True only when both sub-conditions are True.
If either sub-condition is False or if both sub-conditions are False, then the compound condition
evaluates to False. The difference between the And and AndAlso operators is that the And
operator always evaluates both sub-conditions, while the AndAlso operator performs a
short-circuit evaluation, which means it does not always evaluate sub-condition2. Because both

Logical Operators L E S S ON A

205

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

sub-conditions combined with the AndAlso operator need to be True for the compound
condition to evaluate to True, the AndAlso operator does not evaluate sub-condition2 when
sub-condition1 is False; this makes the AndAlso operator more efficient than the And operator.

Notice that when you combine two sub-conditions using either the Or operator or the OrElse
operator, the compound condition evaluates to True when either one or both of the sub-conditions is
True. The compound condition will evaluate to False only when both sub-conditions are False. The
difference between the Or and OrElse operators is that the Or operator always evaluates both sub-
conditions, while the OrElse operator performs a short-circuit evaluation. In this case, because only
one of the sub-conditions combined with the OrElse operator needs to be True for the compound
condition to evaluate to True, the OrElse operator does not evaluate sub-condition2 when sub-
condition1 is True. As a result, the OrElse operator is more efficient than the Or operator.

Finally, when you combine conditions using the Xor operator, the compound condition
evaluates to True only when one and only one sub-condition is True. If both sub-conditions are
True or both sub-conditions are False, then the compound condition evaluates to False. In
the next section, you will use the truth tables to determine which logical operator to use in an
If…Then…Else statement’s condition.

Using the Truth Tables
When ordering from Warren’s Web site, customers using their Warren credit card to pay for their
order receive free shipping on order amounts over $100. In the procedure that determines the free-
shipping eligibility, the order amount and credit card name are stored in variables named
dblOrderAmount and strCreditCard, respectively. Therefore, you can phrase sub-condition1 in
the If…Then…Else statement as dblOrderAmount > 100, and phrase sub-condition2 as
strCreditCard = "Warren". Which logical operator should you use to combine both sub-conditions
into one compound condition? We’ll use the truth tables from Figure 4-22 to answer this question.

For a customer to receive free shipping at Warren’s, both sub-condition1 (dblOrderAmount > 100)
and sub-condition2 (strCreditCard = "Warren") must be True at the same time. If either one or
both of the sub-conditions are False, then the compound condition should be False and the
customer should not receive free shipping. According to the truth tables, all of the logical operators
except Xor evaluate a compound condition as True when both sub-conditions are True. However,
only the And and AndAlso operators evaluate the compound condition as False when either one or
both of the sub-conditions are False. In this case, we’ll use the AndAlso operator because it is more
efficient than the And operator. Therefore, the correct compound condition to use here is
dblOrderAmount > 100 AndAlso strCreditCard = "Warren".

Unlike Warren’s Web site, Houston’s Web site has the following shipping policy: Customers
who belong to Houston’s free shipping club are always entitled to free shipping; all other
customers receive free shipping only when their order amount is over $100. In the procedure
that determines the free-shipping eligibility, the order amount and club information are stored
in variables named dblOrderAmount and strClub, respectively. Therefore, you can phrase
sub-condition1 in the If…Then…Else statement as dblOrderAmount > 100, and phrase
sub-condition2 as strClub = "Member". Now which logical operator should you use to
combine both sub-conditions into one compound condition? Here again, we’ll use the truth
tables from Figure 4-22 to answer this question.

For a customer to receive free shipping at Houston’s, at least one of the sub-conditions needs to
be True. In other words, either the customer’s order needs to be over $100 or the customer
needs to be a member of the free shipping club. As the truth tables indicate, the Or and OrElse
operators are the only operators that evaluate the compound condition as True when at least
one of the sub-conditions is True. In this case, we’ll use the OrElse operator because it is more
efficient than the Or operator. Therefore, the correct compound condition to use here is
dblOrderAmount > 100 OrElse strClub = "Member".

CH A P T E R 4 The Selection Structure

206

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Finally, assume that when placing an order at Houston’s, a customer is allowed to use only one
of two coupons. If a procedure uses the variables strCoupon1 and strCoupon2 to keep track of
the coupons, you can phrase sub-condition1 as strCoupon1 = "USE" and phrase sub-condition2
as strCoupon2 = "USE". Now which operator should you use to combine both sub-conditions?
According to the truth tables, the Xor operator is the only operator that evaluates the
compound condition as True when one and only one condition is True. Therefore, the correct
compound condition to use here is strCoupon1 = "USE" Xor strCoupon2 = "USE".

Using Logical Operators: Calculating Gross Pay
A procedure needs to calculate and display an employee’s gross pay. To keep this example
simple, no one at the company works more than 40 hours per week and everyone earns the
same hourly rate, $10.75. Before making the gross pay calculation, the procedure should verify
that the number of hours entered by the user is greater than or equal to 0 but less than or equal
to 40. Programmers refer to the process of verifying that the input data is within the expected
range as data validation. In this case, if the number of hours is valid, the procedure should
calculate and display the gross pay. Otherwise, it should display an error message alerting the
user that the number of hours is incorrect.

Figure 4-23 shows two examples of code that calculates and displays the gross pay. Both
examples contain a dual-alternative selection structure whose compound condition includes a
logical operator. The compound condition in Example 1 uses the AndAlso operator to
determine whether the value stored in the dblHours variable is greater than or equal to 0 and, at
the same time, less than or equal to 40. If the compound condition evaluates to True, the
selection structure’s true path calculates and displays the gross pay; otherwise, its false path
displays the “Incorrect number of hours” message. The compound condition in Example 2, on
the other hand, uses the OrElse operator to determine whether the value stored in the
dblHours variable is either less than 0 or greater than 40. If the compound condition evaluates
to True, the selection structure’s true path displays the “Incorrect number of hours” message;
otherwise, its false path calculates and displays the gross pay. Both examples in Figure 4-23
produce the same result and simply represent two different ways of performing the same task.

Procedures Containing Logical Operators

Example 1– using the AndAlso operator
PrivateSub btnCalc_Click(sender As Object,
e As EventArgs) Handles btnCalc.Click
 ' calculate the gross pay

 Const dblRATE As Double = 10.75
 Dim dblHours As Double
 Dim dblGross As Double

 ' store hours in a variable
 Double.TryParse(txtHours.Text, dblHours)

 If dblHours >= 0 AndAlso dblHours <= 40 Then
 ' calculate and display gross pay
 dblGross = dblHours * dblRATE
 lblGross.Text = dblGross.ToString("C2")
 Else
 lblGross.Text = "Incorrect number of hours"
 End If
End Sub

Figure 4-23 Examples of using the AndAlso and OrElse logical operators (continues)

Logical Operators L E S S ON A

207

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

To code and then test the Gross Pay Calculator application:

1. Open the Gross Pay Solution (Gross Pay Solution.sln) file contained in the
VB2012\Chap04\Gross Pay Solution folder. If necessary, open the designer window.

2. Open the Code Editor window. Replace <your name> and <current date> in the
comments with your name and the current date, respectively.

3. Locate the code template for the btnCalc control’s Click event procedure. Enter the
comments and code from either of the two examples shown in Figure 4-23.

4. Save the solution and then start the application. Type 30 in the Hours worked box and
then press Enter to select the Calculate button. The button’s Click event procedure
displays the gross pay amount in the Gross pay box. See Figure 4-24.

5. Change the number of hours worked to 43 and then press Enter. The Calculate button’s
Click event procedure displays the “Incorrect number of hours” message in the Gross
pay box. See Figure 4-25.

Example 2– using the OrElse operator
Private Sub btnCalc_Click(sender As Object,
e As EventArgs) Handles btnCalc.Click
 ' calculate the gross pay

 Const dblRATE AsDouble = 10.75
 Dim dblHours AsDouble
 Dim dblGross AsDouble

 ' store hours in a variable
 Double.TryParse(txtHours.Text, dblHours)

 If dblHours < 0 OrElse dblHours > 40 Then
 lblGross.Text = "Incorrect number of hours"
 Else
 ' calculate and display gross pay
 dblGross = dblHours * dblRATE
 lblGross.Text = dblGross.ToString("C2")
 End If
End Sub

Figure 4-23 Examples of using the AndAlso and OrElse logical operators
ª 2013 Cengage Learning

(continued)

Figure 4-24 Sample run of the application using valid data

START HERE

CH A P T E R 4 The Selection Structure

208

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

6. Click the Exit button. Close the Code Editor window and then close the solution.

YOU DO IT 5!

Create a Visual Basic Windows application named YouDoIt 5. Save the application in the
VB2012\Chap04 folder. Add a text box, a label, and a button to the form. If the user
enters a number that is either less than 0 or greater than 100, the button’s Click event
procedure should display the string “Invalid number” in the label; otherwise, it should
display the string “Valid number”. Code the procedure. Save the solution and then start
and test the application. Close the solution.

In addition to comparing numeric values, as well as comparing numbers treated as strings, an
If…Then…Else statement’s condition also can compare strings containing letters.

Comparing Strings Containing Letters
A procedure needs to display the words “Senior discount” when the user enters the letter Y in
the txt65AndOver control, and the words “No discount” when the user enters anything else.
Figure 4-26 shows four ways of writing the procedure’s code.

Figure 4-25 Sample run of the application using invalid data

Procedures Containing String Comparisons

Example 1 – using the OrElse operator
Private Sub btnDisplay_Click(sender As Object,
e As EventArgs) Handles btnDisplay.Click
 ' display appropriate message

 Dim strSenior As String
 ' store input in a variable
 strSenior = txt65AndOver.Text
 ' display message
 If strSenior = "Y" OrElse strSenior = "y" Then
 lblMsg.Text = "Senior discount"
 Else
 lblMsg.Text = "No discount"
 End If
End Sub

Figure 4-26 Examples of using string comparisons in a procedure (continues)

Comparing Strings Containing Letters L E S S ON A

209

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

The compound condition in Example 1 determines whether the value stored in the
strSenior variable is either the uppercase letter Y or the lowercase letter y. When the
variable contains one of those two letters, the compound condition evaluates to True and
the selection structure’s true path displays the words “Senior discount” on the screen;
otherwise, its false path displays the words “No discount”. You may be wondering why you
need to compare the contents of the strSenior variable with both the uppercase and
lowercase forms of the letter Y. As is true in many programming languages, string

Example 3 – inefficient solution
Private Sub btnDisplay_Click(sender As Object,
e As EventArgs) Handles btnDisplay.Click
 ' display appropriate message

 Dim strSenior As String
 ' store input in a variable
 strSenior = txt65AndOver.Text
 ' display message
 If strSenior = "Y" OrElse strSenior = "y" Then
 lblMsg.Text = "Senior discount"
 End If
 If strSenior <> "Y" AndAlso strSenior <> "y" Then
 lblMsg.Text = "No discount"
 End If
End Sub

Example 4 – using the ToUpper method
PrivateSub btnDisplay_Click(sender As Object,
e As EventArgs) Handles btnDisplay.Click
 ' display appropriate message

 Dim strSenior As String
 ' store input in a variable
 strSenior = txt65AndOver.Text
 ' display message
 If strSenior.ToUpper = "Y" Then
 lblMsg.Text = "Senior discount"
 Else
 lblMsg.Text = "No discount"
 End If
End Sub

unnecessary
evaluation

Example 2 – using the AndAlso operator
Private Sub btnDisplay_Click(sender As Object,
e As EventArgs) Handles btnDisplay.Click
 ' display appropriate message

 Dim strSenior As String
 ' store input in a variable
 strSenior = txt65AndOver.Text
 ' display message
 If strSenior <> "Y" AndAlso strSenior <> "y" Then
 lblMsg.Text = "No discount"
 Else
 lblMsg.Text = "Senior discount"
 End If
End Sub

Figure 4-26 Examples of using string comparisons in a procedure
ª 2013 Cengage Learning

(continued)

CH A P T E R 4 The Selection Structure

210

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

comparisons in Visual Basic are case sensitive, which means that the uppercase version of a
letter is not the same as its lowercase counterpart. So, although a human being recognizes
Y and y as being the same letter, a computer does not; to a computer, a Y is different from
a y. The reason for this differentiation is that each character on the computer keyboard is
stored using a different Unicode character in the computer’s internal memory.

In Example 2 in Figure 4-26, the compound condition determines whether the value
stored in the strSenior variable is not equal to the uppercase letter Y and also not equal
to the lowercase letter y. When the variable does not contain either of those two letters,
the compound condition evaluates to True and the selection structure’s true path displays
the words “No discount” on the screen; otherwise, its false path displays the words “Senior
discount”.

Rather than using a dual-alternative selection structure, as in Examples 1 and 2, Example 3 uses
two single-alternative selection structures. Although the selection structures in Example 3
produce the same results as the ones in Examples 1 and 2, they do so less efficiently. To illustrate
this point, assume that the user enters the letter Y in the txt65AndOver control. The compound
condition in the first selection structure in Example 3 determines whether the value stored in
the strSenior variable is equal to either Y or y. The compound condition evaluates to True, so
the first selection structure’s true path displays the words “Senior discount”. Although the
appropriate words (“Senior discount”) already appear in the interface, the procedure still
evaluates the second selection structure’s compound condition to determine whether to display
the “No discount” message. The second evaluation is unnecessary and makes Example 3’s code
less efficient than the code shown in Examples 1 and 2.

The selection structure in Example 4 in Figure 4-26 also contains a string comparison
in its condition. However, notice that the condition does not use a logical operator;
rather, it uses the ToUpper method. You will learn about the ToUpper method in the
next section.

Converting a String to Uppercase or Lowercase
As already mentioned, string comparisons in Visual Basic are case-sensitive, which means
that the string “Yes” is not the same as either the string “YES” or the string “yes”. Because
of this, a problem may occur when you need to compare strings that are either entered by
the user or read from a file. This is due to the fact that you cannot always control the case
of the string. Although you can change a text box’s CharacterCasing property from its
default value of Normal to either Upper (which converts the user’s entry to uppercase) or
Lower (which converts the user’s entry to lowercase), you may not want to change the case
of the user’s entry as he or she is typing it. And it’s entirely possible that you may not be
aware of the case of strings that are read from a file. To fix the comparison problem, you
can use either the ToUpper method or the ToLower method to temporarily convert the
string to either uppercase or lowercase, respectively, and then use the converted string in
the comparison.

Figure 4-27 shows the syntax of the ToUpper and ToLower methods and includes examples
of using the methods. In each syntax, string is usually either the name of a String variable
or the Text property of an object. Both methods copy the contents of the string to a
temporary location in the computer’s internal memory. The methods convert the temporary
string to the appropriate case (if necessary) and then return the temporary string. Keep in
mind that the ToUpper and ToLower methods do not change the contents of the string;
they change the contents of the temporary location only. In addition, the ToUpper and
ToLower methods affect only letters of the alphabet, which are the only characters that
have uppercase and lowercase forms.

You will use the
CharacterCasing
property in
Exercise 16 at
the end of this

lesson.

Converting a String to Uppercase or Lowercase L E S S ON A

211

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

When using the ToUpper method in a comparison, be sure that everything you are comparing is
uppercase, as shown in Examples 1 and 2; otherwise, the comparison will not evaluate correctly. For
instance, the clause If strSenior.ToUpper = "y" Then is not correct: The condition will always
evaluate to False because the uppercase version of a letter will never be equal to its lowercase
counterpart. Likewise, when using the ToLower method in a comparison, be sure that everything
you are comparing is lowercase, as shown in Examples 3 and 4. The statement in Example 5
temporarily converts the contents of the strCustomer variable to uppercase and then assigns the
result to the lblName control. As Example 6 indicates, you also can use the ToUpper and ToLower
methods to permanently convert the contents of either a String variable or a control’s Text property
to uppercase or lowercase, respectively.

Using the ToUpper and ToLower Methods: Displaying a Message
A procedure needs to display the message “On Mount Rushmore” when the user enters the
name of any of the four Mount Rushmore presidents; otherwise, the procedure should display
the message “Not on Mount Rushmore”. Figure 4-28 shows three ways of writing the
procedure’s code.

ToUpper and ToLower Methods

Syntax
string.ToUpper
string.ToLower

Example 1
If strSenior.ToUpper = "Y" Then
compares the uppercase version of the string stored in the strSenior variable with the uppercase
letter Y

Example 2
If strName1.ToUpper = strName2.ToUpper Then
compares the uppercase version of the string stored in the strName1 variable with the uppercase
version of the string stored in the strName2 variable

Example 3
If strSenior.ToLower <> "y" Then
compares the lowercase version of the string stored in the strSenior variable with the lowercase
letter y

Example 4
If "london" = txtCity.Text.ToLower Then
compares the lowercase string “london” with the lowercase version of the string stored in the txtCity
control’s Text property

Example 5
lblName.Text = strCustomer.ToUpper
assigns the uppercase version of the string stored in the strCustomer variable to the lblName
control’s Text property

Example 6
strName = strName.ToUpper
txtState.Text = txtState.Text.ToLower
changes the contents of the strName variable to uppercase, and changes the contents of the txtState
control’s Text property to lowercase

Figure 4-27 Syntax and examples of the ToUpper and ToLower methods
ª 2013 Cengage Learning

CH A P T E R 4 The Selection Structure

212

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Procedures Containing the ToUpper and ToLower Methods

Example 1 – using the ToUpper method in a condition
Private Sub btnDisplay_Click(sender As Object,
e As EventArgs) Handles btnDisplay.Click
 ' display an appropriate message

 Dim strName As String

 strName = txtName.Text
 If strName.ToUpper = "GEORGE WASHINGTON" OrElse
 strName.ToUpper = "THOMAS JEFFERSON" OrElse
 strName.ToUpper = "ABRAHAM LINCOLN" OrElse
 strName.ToUpper = "THEODORE ROOSEVELT" Then
 lblMsg.Text = "On Mount Rushmore"
 Else
 lblMsg.Text = "Not on Mount Rushmore"
 End If
EndSub

Example 2 – using the ToUpper method in an assignment statement
Private Sub btnDisplay_Click(sender As Object,
e As EventArgs) Handles btnDisplay.Click
 ' display an appropriate message

 Dim strName As String

 strName = txtName.Text.ToUpper
 If strName = "GEORGE WASHINGTON" OrElse
 strName = "THOMAS JEFFERSON" OrElse
 strName = "ABRAHAM LINCOLN" OrElse
 strName = "THEODORE ROOSEVELT" Then
 lblMsg.Text = "On Mount Rushmore"
 Else
 lblMsg.Text = "Not on Mount Rushmore"
 End If
End Sub

Example 3 – using the ToLower method in an assignment statement
Private Sub btnDisplay_Click(sender As Object,
e As EventArgs) Handles btnDisplay.Click
 ' display an appropriate message

 Dim strName AsString

 strName = txtName.Text.ToLower
 If strName <> "george washington" AndAlso
 strName <> "thomas jefferson" AndAlso
 strName <> "abraham lincoln" AndAlso
 strName <> "theodore roosevelt" Then
 lblMsg.Text = "Not on Mount Rushmore"
 Else
 lblMsg.Text = "On Mount Rushmore"
 End If
End Sub

Figure 4-28 Examples of using the ToUpper and ToLower methods in a procedure
ª 2013 Cengage Learning

Converting a String to Uppercase or Lowercase L E S S ON A

213

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

When the computer processes the compound condition in Example 1, it temporarily
converts the contents of the strName variable to uppercase and then compares the result
to the string “GEORGE WASHINGTON”. If the comparison evaluates to False, the
computer again temporarily converts the contents of the variable to uppercase, this time
comparing the result to the string “THOMAS JEFFERSON”. If the comparison evaluates to
False, the computer again temporarily converts the contents of the variable to uppercase;
this time, it compares the result to the string “ABRAHAM LINCOLN”. If the comparison
evaluates to False, the computer once again temporarily converts the contents of the
variable to uppercase, comparing the result to the string “THEODORE ROOSEVELT”.
Notice that, depending on the result of each condition, the computer might need to
temporarily convert the contents of the strName variable to uppercase four times.

Example 2 in Figure 4-28 provides a more efficient way of writing Example 1’s code. The
strName = txtName.Text.ToUpper statement in Example 2 temporarily converts the
contents of the txtName control’s Text property to uppercase and then assigns the result
to the strName variable. The compound condition then compares the contents of the
strName variable (which now contains uppercase letters) to the string “GEORGE
WASHINGTON”. If the comparison evaluates to False, the computer compares the
variable’s contents to the string “THOMAS JEFFERSON”. If this comparison evaluates to
False, the computer compares the variable’s contents to the string “ABRAHAM
LINCOLN”. If this comparison evaluates to False, the computer compares the variable’s
contents to the string “THEODORE ROOSEVELT”. Notice that the value in the txtName
control’s Text property is converted to uppercase only once, rather than four times.
However, although Example 2’s code is more efficient than Example 1’s code, there may be
times when you will not want to change the case of the string stored in a variable. For
example, you may need to display (on the screen or in a printed report) the variable’s
contents using the exact case entered by the user.

The strName = txtName.Text.ToLower statement in Example 3 in Figure 4-28 temporarily
converts the contents of the txtName control’s Text property to lowercase and then assigns the
result to the strName variable. The compound condition in Example 3 is processed similarly to
the compound condition in Example 2. However, the comparisons are made using lowercase
letters rather than uppercase letters, and the comparisons test for inequality rather than
equality. The three examples in Figure 4-28 produce the same result and simply represent
different ways of performing the same task.

To code and then test the Mount Rushmore application:

1. Open the Mount Rushmore Solution (Mount Rushmore Solution.sln) file contained in
the VB2012\Chap04\ Mount Rushmore Solution folder. If necessary, open the designer
window.

2. Open the Code Editor window. Replace <your name> and <current date> in the
comments with your name and the current date, respectively.

3. Open the code template for the btnDisplay control’s Click event procedure. Enter the
code shown in any of the three examples shown earlier in Figure 4-28.

4. Save the solution and then start the application. Type george washington in the
Name box and then press Enter to select the Display button. The button’s Click
event procedure displays the “On Mount Rushmore” message in the lblMsg
control. See Figure 4-29.

START HERE

CH A P T E R 4 The Selection Structure

214

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

5. Change the name to john adams and then press Enter. The button’s Click event
procedure displays the “Not on Mount Rushmore” message.

6. On your own, test the code using the names of the other three presidents on Mount
Rushmore.

7. When you are finished testing the code, click the Exit button. Close the Code Editor
window and then close the solution.

YOU DO IT 6!

Create a Visual Basic Windows application named YouDoIt 6. Save the application in the
VB2012\Chap04 folder. Add a text box, a label, and a button to the form. If the user
enters the letter A (in either uppercase or lowercase), the button’s Click event procedure
should display the string “Addition” in the label; otherwise, it should display the string
“Subtraction”. Code the procedure. Save the solution and then start and test the
application. Close the solution.

Summary of Operators
Figure 4-30 shows the order of precedence for the arithmetic, concatenation, comparison,
and logical operators you have learned so far. Recall that operators with the same
precedence number are evaluated from left to right in an expression. Notice that logical
operators are evaluated after any arithmetic operators or comparison operators in an
expression. As a result, when the computer processes the expression 30 > 75 / 3 AndAlso
5 < 10 * 2, it evaluates the arithmetic operators first, followed by the comparison operators
and then the logical operator. The expression evaluates to True, as shown in the example
included in Figure 4-30. (Keep in mind that you can use parentheses to override the order
of precedence.)

Figure 4-29 Message shown in the interface

Ch04A-
Operators
video

Summary of Operators L E S S ON A

215

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Operator Operation Precedence number

^ exponentiation (raises a number to a power) 1

– negation (reverses the sign of a number) 2

*, / multiplication and division 3

\ integer division 4

Mod modulus (remainder) arithmetic 5

+, – addition and subtraction 6

& concatenation 7

=, >, >=,
<, <=, <>

equal to, greater than, greater than or equal to,
less than, less than or equal to, not equal to

8

Not reverses the truth-value of the condition; True 9
becomes False, and False becomes True

AndAlso, And all sub-conditions must be True for the 10
compound condition to evaluate to True

OrElse, Or only one of the sub-conditions needs to be True 11
for the compound condition to evaluate to True

Xor one and only one of the sub-conditions can be 12
True for the compound condition to evaluate to True

Example
Evaluation steps Result

Original expression 30 > 75 / 3 AndAlso 5 < 10 * 2
75 / 3 is evaluated first 30 > 25 AndAlso 5 < 10 * 2
10 * 2 is evaluated second 30 > 25 AndAlso 5 < 20
30 > 25 is evaluated third True AndAlso 5 < 20
5 < 20 is evaluated fourth True AndAlso True
True AndAlso True is evaluated last True

Figure 4-30 Listing of arithmetic, concatenation, comparison, and logical operators
ª 2013 Cengage Learning

Lesson A Summary
l To code single-alternative and dual-alternative selection structures:

Use the If…Then…Else statement. The statement’s syntax is shown in Figure 4-9.

l To compare two values:

Use the comparison operators listed in Figure 4-12.

l To swap the values contained in two variables:

Assign the first variable’s value to a temporary variable. Assign the second variable’s value to
the first variable, and then assign the temporary variable’s value to the second variable. An
illustration of the swapping concept is shown in Figure 4-17.

l To create a compound condition:

Use the logical operators and truth tables listed in Figures 4-21 and 4-22, respectively.

l To convert the user’s text box entry to either uppercase or lowercase as the user is
typing the text:

Change the text box’s CharacterCasing property from Normal to either Upper or
Lower.

CH A P T E R 4 The Selection Structure

216

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

l To temporarily convert a string to uppercase:

Use the ToUpper method. The method’s syntax is string.ToUpper.

l To temporarily convert a string to lowercase:

Use the ToLower method. The method’s syntax is string.ToLower.

l To evaluate an expression containing arithmetic, comparison, and logical operators:

Evaluate the arithmetic operators first, followed by the comparison operators and then the
logical operators. Figure 4-30 shows the order of precedence for the arithmetic,
concatenation, comparison, and logical operators you have learned so far.

Lesson A Key Terms
And operator—one of the logical operators; when used to combine two sub-conditions, the
resulting compound condition evaluates to True only when both sub-conditions are True; it
evaluates to False when one or both of the sub-conditions are False

AndAlso operator—one of the logical operators; same as the And operator, but more efficient
because it performs a short-circuit evaluation

Block scope—the scope of a variable declared within a statement block; a variable with block
scope can be used only within the statement block in which it is declared, and only after its
declaration statement

Block-level variable—a variable declared within a statement block; the variable has block scope

Comparison operators—operators used to compare values in an expression; also called
relational operators

Condition—specifies the decision you are making and must be phrased so that it evaluates to an
answer of either true or false

Data validation—the process of verifying that a program’s input data is within the expected range

Decision symbol—the diamond in a flowchart; used to represent the condition in selection and
repetition structures

Dual-alternative selection structure—a selection structure that requires one set of actions to be
performed when the structure’s condition evaluates to True, but a different set of actions to be
performed when the structure’s condition evaluates to False

False path—contains the instructions to be processed when a selection structure’s condition
evaluates to False

If…Then…Else statement—used to code single-alternative and dual-alternative selection
structures in Visual Basic

Logical operators—operators used to combine two or more sub-conditions into one compound
condition; also called Boolean operators

Not operator—one of the logical operators; reverses the truth-value of a condition

Or operator—one of the logical operators; when used to combine two sub-conditions, the
resulting compound condition evaluates to True when at least one of the sub-conditions is True;
it evaluates to False only when both sub-conditions are False

OrElse operator—one of the logical operators; same as the Or operator, but more efficient
because it performs a short-circuit evaluation

Selection structure—one of the three basic control structures; tells the computer to make a
decision based on some condition and then select the appropriate action; also called the decision
structure

Lesson A Key Terms L E S S ON A

217

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Short-circuit evaluation—refers to the way the computer evaluates two sub-conditions
connected by either the AndAlso or OrElse operators; when the AndAlso operator is used, the
computer does not evaluate sub-condition2 when sub-condition1 is False; when the OrElse
operator is used, the computer does not evaluate sub-condition2 when sub-condition1 is True

Single-alternative selection structure—a selection structure that requires a special set of actions
to be performed only when the structure’s condition evaluates to True

Statement block—in a selection structure, the set of statements terminated by an Else or
End If clause

ToLower method—temporarily converts a string to lowercase

ToUpper method—temporarily converts a string to uppercase

True path—contains the instructions to be processed when a selection structure’s condition
evaluates to True

Truth tables—tables that summarize how the computer evaluates the logical operators in an
expression

Lesson A Review Questions
1. What is the scope of variables declared in an If…Then…Else statement’s true path?

a. only the true path in the If…Then…Else statement

b. the entire application

c. the procedure in which the If…Then…Else statement appears

d. the entire If…Then…Else statement

2. Which of the following is a valid condition for an If…Then…Else statement?

a. intQuantity > 0 AndAlso < 500

b. intQuantity < 0 AndAlso intQuantity > 5000

c. intQuantity < 0 OrElse intQuantity > 5000

d. intQuantity > 0 OrElse > 500

3. Which of the following If clauses compares the string contained in the txtId control with
the state abbreviation Tx? (Be sure the clause will handle Tx, TX, tx, and tX.)

a. If txtId.Text = ToUpper("TX") Then

b. If txtId.Text = ToLower("tx") Then

c. If ToUpper(txtId.Text) = "TX" Then

d. If txtId.Text.ToUpper = "TX" Then

4. The six logical operators are listed below. Indicate their order of precedence by placing a
number (1, 2, and so on) on the line to the left of the operator. (If two or more operators
have the same precedence, assign the same number to each.)

Xor

And

Not

Or

AndAlso

OrElse

CH A P T E R 4 The Selection Structure

218

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

5. An expression can contain arithmetic, comparison, and logical operators. Indicate the
order of precedence for the three types of operators by placing a number (1, 2, or 3) on
the line to the left of the operator type.

Arithmetic

Logical

Comparison

6. The expression 6 > 12 OrElse 4 < 5 evaluates to .

a. True

b. False

7. The expression 6 + 3 > 7 AndAlso 11 > 2 * 5 evaluates to .

a. True

b. False

8. The expression 8 >= 4 + 6 OrElse 5 > 6 AndAlso 4 < 7 evaluates to .

a. True

b. False

9. The expression 7 + 3 * 2 > 5 * 3 AndAlso True evaluates to .

a. True

b. False

10. The expression 5 * 4 > 6 ˆ 2 evaluates to .

a. True

b. False

11. The expression 5 * 4 > 6 ˆ 2 AndAlso True OrElse False evaluates to .

a. True

b. False

Use the selection structure shown in Figure 4-31 to answer Questions 12 through 14.

If intNum >= 500 Then
intNum = intNum * 5

Else
intNum = intNum * 3

End If

Figure 4-31 Code for Review Questions 12 through 14
ª 2013 Cengage Learning

Lesson A Review Questions L E S S ON A

219

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

12. If the intNum variable contains the number 90, what value will be in the variable after
the selection structure in Figure 4-31 is processed?

a. 0

b. 90

c. 270

d. 450

13. If the intNum variable contains the number 1000, what value will be in the variable after
the selection structure in Figure 4-31 is processed?

a. 0

b. 1000

c. 3000

d. 5000

14. If the intNum variable contains the number 500, what value will be in the variable after
the selection structure in Figure 4-31 is processed?

a. 0

b. 500

c. 1500

d. 2500

Lesson A Exercises

1. Draw the flowchart corresponding to the pseudocode shown in Figure 4-32.

if the sales are less than or equal to 10,000

display “3% bonus”

else

display “5% bonus”

end if

Figure 4-32 Pseudocode for Exercise 1
ª 2013 Cengage Learning

2. Write an If…Then…Else statement that displays the string “Vegetable” in the lblType
control when the txtFood control contains the string “Corn” (in any case).

3. Write an If…Then…Else statement that displays the string “Please enter the invoice
number” in the lblMsg control when the txtInvoiceNum control does not contain any data.

4. Write an If…Then…Else statement that displays the string “Incorrect quantity” in the
lblMsg control when the intQuantity variable contains a number that is less than 0;
otherwise, display the string “Valid quantity”.

5. Write an If…Then…Else statement that displays the string “Time to reorder” in the
lblMsg control when the intNumUnits variable contains a number that is less than 5;
otherwise, display the string “We have enough in stock”.

6. Write an If…Then…Else statement that assigns the number 35 to the intCommission
variable when the decSales variable contains a number that is less than or equal to
$250; otherwise, assign the number 50.

INTRODUCTORY

INTRODUCTORY

INTRODUCTORY

INTRODUCTORY

INTRODUCTORY

INTRODUCTORY

CH A P T E R 4 The Selection Structure

220

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

7. Write an If…Then…Else statement that displays the value 25 in the lblShipping
control when the strState variable contains the string “Alaska” (in any case);
otherwise, display the value 15.

8. Write an If…Then…Else statement that displays the string “Cat” in the lblAnimal
control when the strAnimal variable contains the letter “C” (in any case); otherwise,
display the string “Dog”. Also draw the flowchart.

9. A procedure should calculate a 2.5% commission when the strCommType variable contains
the string “Prime” (in any case); otherwise, it should calculate a 2% commission. The
commission is calculated by multiplying the commission rate by the contents of the
dblSales variable. Display the commission in the lblComm control. Draw the flowchart
and then write the Visual Basic code.

10. In this exercise, you modify the Kettleson application from this lesson. Use Windows to
make a copy of the Kettleson Solution folder. Rename the copy Modified Kettleson
Solution. Open the Kettleson Solution (Kettleson Solution.sln) file contained in the
Modified Kettleson Solution folder. Open the designer and Code Editor windows.
Locate the btnCalc_Click procedure. Change the selection structure’s condition so that
it tests for the opposite of what it does now, then make the appropriate modifications to
the selection structure’s true and false paths. Save the solution and then start the
application. Test the application twice, using 25000 and 15000 as the annual sales. Close
the Code Editor window and then close the solution.

11. Assume that a customer purchases either a Harris Brothers item or a Jacob Co.
item. If the item is a sweater manufactured by Harris Brothers, the customer is
entitled to a 5% discount. Write the Visual Basic code for a procedure that
calculates and displays the discount (if any) and the new price. Use the variables
strManufacturer, strItem, dblPrice, and dblDiscount. Format the discount and
new price using the “C2” format. Display the calculated amounts in the lblDiscount
and lblNewPrice controls.

12. Write the Visual Basic code that swaps the values stored in the decLow and decHigh
variables, but only if the value stored in the decHigh variable is less than the value
stored in the decLow variable.

13. In this exercise, you modify the Sum or Difference application from this lesson. Use
Windows to make a copy of the Sum or Difference Solution folder. Rename the copy
Modified Sum or Difference Solution. Open the Sum or Difference Solution (Sum or
Difference Solution.sln) file contained in the Modified Sum or Difference Solution
folder. Open the designer window. Change the Label1’s text from “Enter 1 (Addition)
or 2 (Subtraction):” to “Enter A (Addition) or S (Subtraction):”. Open the Code Editor
window. Make the appropriate modifications to the btnCalc_Click procedure. The user
should be able to enter the operation letter in either uppercase or lowercase. Save the
solution and then start and test the application. Close the Code Editor window and then
close the solution.

14. In this exercise, you modify the Jerrili application from this lesson. Use Windows to
make a copy of the Jerrili Solution folder. Rename the copy Modified Jerrili Solution.
Open the Jerrili Solution (Jerrili Solution.sln) file contained in the Modified Jerrili
Solution folder. Open the designer and Code Editor windows. Jerrili’s now gives a
discount to all of its customers. The discount rate is 20% when the quantity purchased is
at least 10, and 15% when the quantity purchased is less than 10. Make the appropriate
modifications to the btnCalc_Click procedure. Save the solution and then start and test
the application. Close the Code Editor window and then close the solution.

15. Open the Shipping Solution (Shipping Solution.sln) file contained in the
VB2012\Chap04\Shipping Solution folder. If necessary, open the designer window.

INTRODUCTORY

INTRODUCTORY

INTRODUCTORY

INTRODUCTORY

INTERMEDIATE

INTERMEDIATE

INTERMEDIATE

INTERMEDIATE

INTERMEDIATE

Lesson A Exercises L E S S ON A

221

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

The Display button’s Click event procedure should display the message “We ship to
this state.” if the user enters one of the following state IDs: TN, KY, or IN. If the
user enters an ID other than these, the procedure should display the “We don’t ship
to this state.” message. The user should be able to enter the ID in uppercase,
lowercase, or a combination of uppercase and lowercase. Code the procedure. Save
the solution and then start and test the application. Close the Code Editor window
and then close the solution.

16. In this exercise, you learn how to use a text box’s CharacterCasing property.
Open the CharCase Solution (CharCase Solution.sln) file contained in the
VB2012\Chap04\CharCase Solution folder. If necessary, open the designer window.

a. Open the Code Editor window and study the code contained in the
btnDisplay_Click procedure. The code compares the contents of the txtId control
with the strings “AB12”, “XY59”, and “TV45”. However, it does not convert the
contents of the text box to uppercase. Start the application. Enter ab12 as the ID and
then click the Display button. The button’s Click event procedure displays the
“Invalid ID” message, which is incorrect. Click the Exit button.

b. Use the Properties window to change the txtId control’s CharacterCasing property
to Upper. Save the solution and then start the application. Enter ab12 as the ID.
Notice that the letters appear in uppercase in the text box. Click the Display button.
The button’s Click event procedure displays the “Valid ID” message, which is
correct. Click the Exit button. Close the Code Editor window and then close the
solution.

DISCOVERY

CH A P T E R 4 The Selection Structure

222

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

& LESSON B
After studying Lesson B, you should be able to:

l Group objects using a GroupBox control

l Create a message box using the MessageBox.Show method

l Determine the value returned by a message box

Creating the Covington Resort Application
Recall that your task in this chapter is to create a reservation application for Covington
Resort. The application will allow the user to enter the following information: the number
of rooms to reserve, the length of stay (in nights), the number of adults, and the number of
children. As you may remember, each room can accommodate a maximum of six people.
The resort charges $284 per room per night. It also charges a 15.25% sales and lodging tax,
which is based on the room charge. In addition, there is a $15 resort fee per room per
night. The application should display the total room charge, the sales and lodging tax, the
total resort fee, and the total due.

To open the partially completed Covington Resort application:

1. If necessary, start Visual Studio 2012. Open the Covington Resort Solution
(Covington Resort Solution.sln) file contained in the VB2012\Chap04\Covington
Resort Solution folder. If necessary, open the designer window. The interface
contains one group box. In the next section, you will add another group box to the
interface. See Figure 4-33.

this group box contains
the controls associated
with the input

these controls and
their identifying labels
will be placed in their
own group box

Figure 4-33 Partially completed interface for Covington Resort

Ch04B video

START HERE

Creating the Covington Resort Application L E S S ON B

223

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Adding a Group Box to the Form
You use the GroupBox tool, which is located in the Containers section of the toolbox, to
add a group box to the interface. A group box serves as a container for other controls and
is typically used to visually separate related controls from other controls on the form. For
example, the group box shown in Figure 4-33 visually separates the input controls from
the rest of the controls. You can include an identifying label on a group box by setting the
group box’s Text property. Labeling a group box is optional; but if you do label it, the label
should be entered using sentence capitalization. Keep in mind that a group box and its
controls are treated as one unit. When you move a group box, the controls inside the
group box also move. Likewise, when you delete a group box, the controls inside the group
box are also deleted.

GUI DESIGN TIP Labeling a Group Box

l Use sentence capitalization for the optional identifying label, which is entered in the
group box’s Text property.

To add a group box to the interface:

1. If necessary, expand the Containers node in the toolbox. Click the GroupBox tool and
then drag the mouse pointer to the form. You do not need to worry about the exact
location. Release the mouse button. The GroupBox1 control appears on the form.

2. Change the group box’s Text property to Charges, then position and size the group box
as shown in Figure 4-34.

3. Next, you will drag the eight controls related to the calculated amounts into the Charges
group box. You then will center the controls within the group box. Place your mouse
pointer slightly above and to the left of the Room: label. Press and hold down the left
mouse button as you drag the mouse pointer down and to the right. A dotted rectangle
appears as you drag. Continue to drag until the dotted rectangle surrounds the eight
controls, as shown in Figure 4-35.

Figure 4-34 Interface showing the location and size of the additional group box

START HERE

CH A P T E R 4 The Selection Structure

224

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

4. When the dotted rectangle surrounds the eight controls, release the mouse button
to select the eight controls. Place your mouse pointer on one of the selected
controls. The mouse pointer turns into the move pointer. Press and hold down the
left mouse button as you drag the selected controls into the Charges group box,
then release the mouse button.

5. Use the Format menu to center the selected controls both horizontally and vertically in
the group box.

6. Click the form to deselect the controls. Use the sizing handle to move the form’s bottom
border closer to the buttons (you can look ahead to Figure 4-36), and then lock the
controls on the form.

7. Click View on the menu bar and then click Tab Order. Notice that the TabIndex values
of the controls contained within each group box begin with the TabIndex value of the
group box itself. This indicates that the controls belong to the group box rather than to
the form. As mentioned earlier, if you move or delete the group box, the controls that
belong to the group box will also be moved or deleted. The numbers that appear after
the period in the TabIndex values indicate the order in which each control was added to
the group box.

8. Use the information shown in Figure 4-36 to set each control’s TabIndex value.

9. When you are finished setting the TabIndex values, press Esc to remove the TabIndex
boxes, and then save the solution.

dotted rectangle

Figure 4-35 Dotted rectangle surrounding the eight controls

Figure 4-36 Correct TabIndex values for the interface

You also can
select more than
one control by
clicking the first
control and then

pressing and holding
down the Ctrl (Control)
key as you click the other
controls you want to
select. The move pointer
mentioned in Step 4
looks like this: .

Creating the Covington Resort Application L E S S ON B

225

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Coding the Covington Resort Application
According to the application’s TOE chart, which is shown in Figure 4-37, the Click event
procedures for the two buttons need to be coded. The TextChanged, KeyPress, and Enter
events for the four text boxes also need to be coded. When you open the Code Editor
window, you will notice that the btnExit control’s Click event procedure and the
TextChanged event procedures for the four text boxes have been coded for you. In this
lesson, you will code the btnCalc control’s Click event procedure. You will code the KeyPress
and Enter event procedures in Lesson C.

Task Object Event
1. Calculate the total room charge, tax, total resort fee,

and total due
btnCalc Click

2. Display the calculated amounts in lblRoomChg, lblTax,
lblResortFee, and lblTotalDue

End the application btnExit Click

Display the total room charge (from btnCalc) lblRoomChg None

Display the tax (from btnCalc) lblTax None

Display the total resort fee (from btnCalc) lblResortFee None

Display the total due (from btnCalc) lblTotalDue None

Get and display the number of rooms reserved, number
of nights, number of adults, and number of children

txtRooms, txtNights,
txtAdults, txtChildren

None

Clear the contents of lblRoomChg, lblTax, lblResortFee,
and lblTotalDue

txtRooms, txtNights,
txtAdults, txtChildren

TextChanged

Allow the text box to accept only numbers and the
Backspace key

txtRooms, txtNights,
txtAdults, txtChildren

KeyPress

Select the contents of the text box txtRooms, txtNights,
txtAdults, txtChildren

Enter

Figure 4-37 TOE chart for the Covington Resort application
ª 2013 Cengage Learning

Coding the btnCalc Control’s Click Event Procedure
The btnCalc control’s Click event procedure is responsible for calculating and displaying the
total room charge, tax, total resort fee, and total due. The procedure’s pseudocode is shown in
Figure 4-38.

CH A P T E R 4 The Selection Structure

226

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

btnCalc Click event procedure

1. store user input (numbers of rooms reserved, nights, adults, and children) in variables

2. calculate the total number of guests = number of adults + number of children

3. calculate the number of rooms required = total number of guests / maximum number of guests
per room, which is 6

4. if the number of rooms reserved < number of rooms required

display the message “You have exceeded the maximum guests per room.”

else
calculate total room charge = number of rooms reserved * number of nights
* daily room charge of $284

calculate tax = total room charge * tax rate of 15.25%

calculate total resort fee = number of rooms reserved * number of nights
* daily resort fee of $15

calculate total due = total room charge + tax + total resort fee

display total room charge, tax, total resort fee, and total due

end if

Figure 4-38 Pseudocode for the btnCalc control’s Click event procedure
ª 2013 Cengage Learning

To begin coding the btnCalc control’s Click event procedure:

1. Open the Code Editor window. Replace <your name> and <current date> in the
comments with your name and the current date, respectively.

2. Open the code template for the btnCalc control’s Click event procedure. Type the
comments shown in Figure 4-39, and then position the insertion point as shown in
the figure.

Now, study the procedure’s pseudocode to determine any named constants or variables the
procedure will use. When determining the named constants, look for items whose value should
remain the same each time the procedure is invoked. In the btnCalc_Click procedure, those
items are the maximum number of guests per room, the daily room charge, the tax rate, the
daily resort fee, and the message. Figure 4-40 shows the named constants that the procedure will
use for these items. The named constants will make the code easier to understand. In addition,

enter these three
comments

position the
insertion point here

Figure 4-39 Comments and Dim statements entered in the procedure

START HERE

Coding the Covington Resort Application L E S S ON B

227

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

they will allow you (or another programmer) to quickly locate those values should they need to
be changed in the future.

When determining the procedure’s variables, look in the pseudocode for items whose value is
allowed to change each time the procedure is processed. In the btnCalc_Click procedure, those
values are the four input items, the number of guests, the number of rooms required, the room
charge, the tax, the resort fee, and the total due. Figure 4-41 shows the variables that the
procedure will use for these items.

To continue coding the btnCalc control’s Click event procedure:

1. Enter the Const and Dim statements shown in Figure 4-42, and then position the
insertion point as shown in the figure.

Named constants Values
intMAX_PER_ROOM 6
intDAILY_ROOM_CHG 284
dblTAX_RATE 0.1525 (the decimal equivalent of 15.25%)
intDAILY_RESORT_FEE 15
strMSG “You have exceeded the maximum guests per room.”

Figure 4-40 Listing of named constants and their values
ª 2013 Cengage Learning

START HERE

Variable names Stores
intRoomsReserved the number of rooms to reserve
intNights the number of nights
intAdults the number of adult guests
intChildren the number of child guests
intNumGuests the total number of guests, which is calculated by adding together the

number of adult guests and the number of child guests
dblRoomsRequired the number of rooms required, which is calculated by dividing the

total number of guests by the maximum guests per room (may contain a
decimal place)

intTotalRoomChg the total room charge, which is calculated by multiplying the number
of rooms to reserve by the number of nights and then multiplying the
result by the daily room charge

dblTax the tax, which is calculated by multiplying the total room charge by
the tax rate

intTotalResortFee the total resort fee, which is calculated by multiplying the number of
rooms to reserve by the number of nights and then multiplying the result by
the daily resort fee

dblTotalDue the total due, which is calculated by adding together the total room
charge, tax, and total resort fee

Figure 4-41 Listing of variables and what each stores
ª 2013 Cengage Learning

CH A P T E R 4 The Selection Structure

228

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

2. Step 1 in the pseudocode is to store the input items in variables. Enter the following
comment and TryParse methods. Press Enter twice after typing the last TryParse
method.

' store input in variables
Integer.TryParse(txtRooms.Text, intRoomsReserved)
Integer.TryParse(txtNights.Text, intNights)
Integer.TryParse(txtAdults.Text, intAdults)
Integer.TryParse(txtChildren.Text, intChildren)

3. Step 2 in the pseudocode calculates the total number of guests by adding together the
number of adult guests and the number of child guests. Enter the following comment
and assignment statement:

' calculate total number of guests
intNumGuests = intAdults + intChildren

4. Step 3 in the pseudocode calculates the number of rooms required by dividing the total
number of guests by the maximum number of guests per room. Enter the following
comment and assignment statement. Press Enter twice after typing the assignment
statement.

' calculate number of rooms required
dblRoomsRequired = intNumGuests / intMAX_PER_ROOM

5. Step 4 in the pseudocode is a selection structure that determines whether the number of
rooms reserved is adequate for the number of guests. If the number of reserved rooms is less
than the number of required rooms, the selection structure’s true path displays an
appropriate message. In the next section, you will learn how to display the message in a
message box. For now, enter the following comments and If clause. When you press Enter
after typing the If clause, the Code Editor will automatically enter the End If clause for you.

' determine whether number of reserved
' rooms is adequate and then either display a
' message or calculate and display the charges
If intRoomsReserved < dblRoomsRequired Then

6. Save the solution.

enter these Const and
Dim statements

position the insertion
point here

Figure 4-42 Const and Dim statements entered in the procedure

Using a blank
line to separate
related blocks of
code in the Code
Editor window

makes the code easier to
read and understand.

Coding the Covington Resort Application L E S S ON B

229

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

The MessageBox.Show Method
At times, an application may need to communicate with the user during run time; one
means of doing this is through a message box. You display a message box using the
MessageBox.Show method. The message box contains text, one or more buttons, and an
icon. Figure 4-43 shows the method’s syntax and also lists the meaning of each argument.
The figure also includes examples of using the method. Figures 4-44 and 4-45 show the
message boxes created by the two examples. (Your message boxes will look slightly different
if you are using Windows 7.)

MessageBox.Show Method

Syntax
MessageBox.Show(text, caption, buttons, icon[, defaultButton])

Argument Meaning
text text to display in the message box; use sentence capitalization

caption text to display in the message box’s title bar; use book title capitalization

buttons buttons to display in the message box; can be one of the following constants:
MessageBoxButtons.AbortRetryIgnore
MessageBoxButtons.OK (default setting)
MessageBoxButtons.OKCancel
MessageBoxButtons.RetryCancel
MessageBoxButtons.YesNo
MessageBoxButtons.YesNoCancel

icon icon to display in the message box; typically, one of the following constants:
MessageBoxIcon.Exclamation
MessageBoxIcon.Information
MessageBoxIcon.Stop

defaultButton button automatically selected when the user presses Enter; can be
one of the following constants:
MessageBoxDefaultButton.Button1 (default setting)
MessageBoxDefaultButton.Button2
MessageBoxDefaultButton.Button3

Example 1
MessageBox.Show("Record deleted.", "Payroll",
 MessageBoxButtons.OK, MessageBoxIcon.Information)
displays an information message box that contains the message “Record deleted.”

Example 2
MessageBox.Show("Delete this record?", "Payroll",
 MessageBoxButtons.YesNo, MessageBoxIcon.Exclamation,
 MessageBoxDefaultButton.Button2)
displays a warning message box that contains the message “Delete this record?”

Figure 4-43 Syntax and examples of the MessageBox.Show method
ª 2013 Cengage Learning

CH A P T E R 4 The Selection Structure

230

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

GUI DESIGN TIP MessageBox.Show Method

l Use sentence capitalization for the text argument, but book title capitalization for the
caption argument.

l Display the Exclamation icon to alert the user that he or she must make a decision
before the application can continue. You can phrase the message as a question.
These message boxes typically contain more than one button.

l Display the Information icon along with an OK button in a message box that displays
an informational message.

l Display the Stop icon to alert the user of a serious problem that must be corrected
before the application can continue.

l The default button in the message box should be the one that represents the user’s
most likely action, as long as that action is not destructive.

After displaying the message box, the MessageBox.Show method waits for the user to choose
one of the buttons. It then closes the message box and returns an integer indicating the
button chosen by the user. Sometimes you are not interested in the value returned by the
MessageBox.Show method. This is the case when the message box is for informational purposes
only, like the message box shown in Figure 4-44. Many times, however, the button selected by
the user determines the next task performed by the computer. Selecting the Yes button in the
message box shown in Figure 4-45 tells the application to delete the record; selecting the No
button tells it not to delete the record.

Figure 4-46 lists the integer values returned by the MessageBox.Show method. Each value is
associated with a button that can appear in a message box. The figure also lists the DialogResult

the Close button is
automatically disabled

the user must select
one of these two
buttons to close a
warning message box

Figure 4-45 Message displayed by the code in Example 2 in Figure 4-43

the user can close an
information message
box using either the
OK button or the
Close button

Figure 4-44 Message displayed by the code in Example 1 in Figure 4-43

The MessageBox.Show Method L E S S ON B

231

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

values assigned to each integer, and the meaning of the integers and DialogResult values. As the
figure indicates, the MessageBox.Show method returns the integer 6 when the user selects the
Yes button. The integer 6 is represented by the DialogResult value, Windows.Forms.
DialogResult.Yes. When referring to the method’s return value in code, you should use the
DialogResult values rather than the integers because the values make the code more self-
documenting and easier to understand. Figure 4-46 also shows two examples of using the
MessageBox.Show method’s return value.

In the first example in Figure 4-46, the MessageBox.Show method’s return value is assigned to a
DialogResult variable named dlgButton. The selection structure in the example compares the
contents of the dlgButton variable with the Windows.Forms.DialogResult.Yes value. In the
second example, the method’s return value is not stored in a variable. Instead, the method
appears in the selection structure’s condition, where its return value is compared with the
Windows.Forms.DialogResult.Yes value. The selection structure in Example 2 performs one
set of tasks when the user selects the Yes button in the message box, but a different set of tasks
when the user selects the No button. Many programmers document the Else portion of the
selection structure as shown in Figure 4-46 because it makes it clear that the Else portion is
processed only when the user selects the No button.

In the Covington Resort application, the btnCalc_Click procedure should display an appropriate
message when the number of rooms reserved is less than the number of rooms required. You
will use the MessageBox.Show method to display the message in a message box. The message
box is for informational purposes only. Therefore, it should contain the Information icon and
the OK button, and you do not need to be concerned with its return value.

MessageBox.Show Method’s Return Values

Integer DialogResult value Meaning
1 Windows.Forms.DialogResult.OK user chose the OK button
2 Windows.Forms.DialogResult.Cancel user chose the Cancel button
3 Windows.Forms.DialogResult.Abort user chose the Abort button
4 Windows.Forms.DialogResult.Retry user chose the Retry button
5 Windows.Forms.DialogResult.Ignore user chose the Ignore button
6 Windows.Forms.DialogResult.Yes user chose the Yes button
7 Windows.Forms.DialogResult.No user chose the No button

Example 1
Dim dlgButton As DialogResult
dlgButton =
 MessageBox.Show("Delete this record?", "Payroll",
 MessageBoxButtons.YesNo, MessageBoxIcon.Exclamation,
 MessageBoxDefaultButton.Button2)
If dlgButton = Windows.Forms.DialogResult.Yes Then
 instructions to delete the record
End If

Example 2
If MessageBox.Show("Play another game?", "Math Monster",
 MessageBoxButtons.YesNo,
 MessageBoxIcon.Exclamation) = Windows.Forms.DialogResult.Yes Then
 instructions to start another game
Else ' No button
 instructions to close the game application
End If

Figure 4-46 Values returned by the MessageBox.Show method
ª 2013 Cengage Learning

CH A P T E R 4 The Selection Structure

232

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

To add the MessageBox.Show method to the btnCalc_Click procedure:

1. The insertion point should be positioned in the blank line above the End If clause. Enter
the following lines of code:

MessageBox.Show(strMSG, "Covington Resort",
MessageBoxButtons.OK,
MessageBoxIcon.Information)

Completing the btnCalc_Click Procedure
Recall that Step 4 in the btnCalc_Click procedure’s pseudocode is a selection structure that
determines whether the number of rooms reserved is adequate for the number of guests. In the
previous section, you completed the selection structure’s true path. You will complete the false
path in this section. According to the pseudocode, the false path should calculate and display the
total room charge, tax, total resort fee, and total due.

To complete the btnCalc_Click procedure and then test it:

1. In the blank line above the End If clause, type else and press Enter.

2. The total room charge is calculated by first multiplying the number of rooms reserved by
the number of nights and then multiplying the result by the daily room charge of $284.
Enter the following comment and assignment statement:

' calculate charges
intTotalRoomChg = intRoomsReserved *

intNights * intDAILY_ROOM_CHG

3. The tax is calculated by multiplying the total room charge by the tax rate of 15.25%.
Enter the following assignment statement:

dblTax = intTotalRoomChg * dblTAX_RATE

4. The total resort fee is calculated by first multiplying the number of rooms reserved by
the number of nights and then multiplying the result by the daily resort fee of $15. Enter
the following assignment statement:

intTotalResortFee = intRoomsReserved *
intNights * intDAILY_RESORT_FEE

5. The total due is calculated by adding together the total room charge, tax, and total resort
fee. Enter the following assignment statement:

dblTotalDue = intTotalRoomChg +
dblTax + intTotalResortFee

6. Finally, you will display the calculated amounts in the interface. Press Enter to insert
another blank line below the last assignment statement. Enter the following comment
and assignment statements:

' display charges
lblRoomChg.Text = intTotalRoomChg.ToString("N2")
lblTax.Text = dblTax.ToString("N2")
lblResortFee.Text = intTotalResortFee.ToString("N2")
lblTotalDue.Text = dblTotalDue.ToString("C2")

7. If necessary, delete the blank line above the End If clause.

START HERE

START HERE

Completing the btnCalc_Click Procedure L E S S ON B

233

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

8. Save the solution and then start the application. Type 1 in the Rooms box, 2 in the
Nights box, 4 in the Adults box, and 4 in the Children box. Click the Calculate button.
The message box shown in Figure 4-47 opens.

9. Click the OK button to close the message box. Change the number of adults to 2. Also
change the number of children to 2. Click the Calculate button. The total room charge,
tax, total resort fee, and total due appear in the interface. See Figure 4-48.

10. Click the Exit button.

Figure 4-48 Calculated amounts shown in the interface

Figure 4-47 Message box created by the MessageBox.Show method

CH A P T E R 4 The Selection Structure

234

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Figure 4-49 shows the application’s code at the end of Lesson B.

 1 ' Name: Covington Resort Project
 2 ' Purpose: Display the total room charge, tax,
 3 ' total resort fee, and total due
 4 ' Programmer: <your name> on <current date>
 5
 6 Option Explicit On
 7 Option Strict On
 8 Option Infer Off
 9
10 Public Class frmMain
11
12 Private Sub btnExit_Click(sender As Object,
 e As EventArgs) Handles btnExit.Click
13 Me.Close()
14 End Sub
15
16 Private Sub ClearLabels(sender As Object, e As EventArgs) _
17 Handles txtRooms.TextChanged, txtNights.TextChanged,
18 txtAdults.TextChanged, txtChildren.TextChanged
19 ' clear calculated amounts
20
21 lblRoomChg.Text = String.Empty
22 lblTax.Text = String.Empty
23 lblResortFee.Text = String.Empty
24 lblTotalDue.Text = String.Empty
25 End Sub
26
27 Private Sub btnCalc_Click(sender As Object,
 e As EventArgs) Handles btnCalc.Click
28 ' calculate and display total room charge,
29 ' tax, total resort fee, and total due
30
31 ' declare named constants and variables
32 Const intMAX_PER_ROOM As Integer = 6
33 Const intDAILY_ROOM_CHG As Integer = 284
34 Const dblTAX_RATE As Double = 0.1525
35 Const intDAILY_RESORT_FEE As Integer = 15
36 Const strMSG As String =
 "You have exceeded the maximum guests per room."
37 Dim intRoomsReserved As Integer
38 Dim intNights As Integer
39 Dim intAdults As Integer
40 Dim intChildren As Integer
41 Dim intNumGuests As Integer
42 Dim dblRoomsRequired As Double
43 Dim intTotalRoomChg As Integer
44 Dim dblTax As Double
45 Dim intTotalResortFee As Integer
46 Dim dblTotalDue As Double
47
48 ' store input in variables

Figure 4-49 Covington Resort application’s code at the end of Lesson B (continues)

Completing the btnCalc_Click Procedure L E S S ON B

235

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Lesson B Summary
l To group controls together using a group box:

Use the GroupBox tool to add a group box to the form. Drag controls from either the form
or the toolbox into the group box. To include an optional identifying label on a group box,
set the group box’s Text property. The TabIndex value of a control contained within a group
box is composed of two numbers separated by a period. The number to the left of the period
is the TabIndex value of the group box itself. The number to the right of the period indicates
the order in which the control was added to the group box.

l To display a message box that contains text, one or more buttons, and an icon:

Use the MessageBox.Show method. The method’s syntax is MessageBox.Show(text,
caption, buttons, icon[, defaultButton]). Refer to Figure 4-43 for a description of each
argument. The figure also contains examples of using the method to display a message box.
Refer to Figure 4-46 for a listing and description of the method’s return values.

49 Integer.TryParse(txtRooms.Text, intRoomsReserved)
50 Integer.TryParse(txtNights.Text, intNights)
51 Integer.TryParse(txtAdults.Text, intAdults)
52 Integer.TryParse(txtChildren.Text, intChildren)
53
54 ' calculate total number of guests
55 intNumGuests = intAdults + intChildren
56 ' calculate number of rooms required
57 dblRoomsRequired = intNumGuests / intMAX_PER_ROOM
58
59 ' determine whether number of reserved
60 ' rooms is adequate and then either display a
61 ' message or calculate and display the charges
62 If intRoomsReserved < dblRoomsRequired Then
63 MessageBox.Show(strMSG, "Covington Resort",
64 MessageBoxButtons.OK,
65 MessageBoxIcon.Information)
66 Else
67 ' calculate charges
68 intTotalRoomChg = intRoomsReserved *
69 intNights * intDAILY_ROOM_CHG
70 dblTax = intTotalRoomChg * dblTAX_RATE
71 intTotalResortFee = intRoomsReserved *
72 intNights * intDAILY_RESORT_FEE
73 dblTotalDue = intTotalRoomChg +
74 dblTax + intTotalResortFee
75
76 ' display charges
77 lblRoomChg.Text = intTotalRoomChg.ToString("N2")
78 lblTax.Text = dblTax.ToString("N2")
79 lblResortFee.Text = intTotalResortFee.ToString("N2")
80 lblTotalDue.Text = dblTotalDue.ToString("C2")
81 End If
82 End Sub
83 End Class

Figure 4-49 Covington Resort application’s code at the end of Lesson B
ª 2013 Cengage Learning

(continued)

CH A P T E R 4 The Selection Structure

236

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Lesson B Key Terms
Group box—a control that is used to contain other controls; instantiated using the GroupBox
tool, which is located in the Containers section of the toolbox

MessageBox.Show method—displays a message box that contains text, one or more buttons,
and an icon; allows an application to communicate with the user while the application is
running

Lesson B Review Questions
1. Which of the following statements is false?

a. When you delete a group box, the controls contained within the group box are also
deleted.

b. Moving a group box also moves all of the controls contained within the group box.

c. A group box’s Label property specifies its identifying label.

d. You can drag a control from the form into a group box.

2. What is the TabIndex value of the first control added to a group box whose TabIndex
value is 3?

a. 3

b. 3.0

c. 3.1

d. none of the above

3. You use the constant to include the Exclamation icon in a message box.

a. MessageBox.Exclamation

b. MessageBox.IconExclamation

c. MessageBoxIcon.Exclamation

d. MessageBox.WarningIcon

4. If a message is for informational purposes only and does not require the user to make a
decision, the message box should display which of the following?

a. an OK button and the Information icon

b. an OK button and the Exclamation icon

c. a Yes button and the Information icon

d. any button and the Information icon

5. If the user clicks the Yes button in a message box, the message box returns the number 6,
which is equivalent to which value?

a. Windows.Forms.DialogResultButton.Yes

b. Windows.Forms.DialogResult.Yes

c. Windows.Forms.DialogResult.YesButton

d. none of the above

Lesson B Exercises

1. In this exercise, you create an application for Jonas Manufacturing. Create a Visual Basic
Windows application. Use the following names for the solution and project, respectively:
Jonas Solution and Jonas Project. Save the application in the VB2012\Chap04 folder. Change

INTRODUCTORY

Lesson B Exercises L E S S ON B

237

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

the form file’s name to Main Form.vb. Change the form’s name to frmMain. The
application’s interface, which is shown in Figure 4-50, allows the user to enter an employee’s
current salary and pay grade. The application should display the employee’s raise and new
salary in a message box. Employees having a pay grade of 1 receive a 3% raise; all other
employees receive a 2% raise. Use the ToString method to display a thousands separator
(if necessary) and two decimal places in the raise and new salary. Code the application.
(Be sure to use variables. Do not use the Val function.) Save the solution and then start and
test the application. Close the Code Editor window and then close the solution.

2. In this exercise, you modify the application from Exercise 1. Use Windows to make a
copy of the Jonas Solution folder. Rename the copy Modified Jonas Solution. Open the
Jonas Solution (Jonas Solution.sln) file contained in the Modified Jonas Solution folder.
Open the designer window. Modify the code so that employees having a pay grade of 1, 2,
or 3 receive a 3% raise. All other employees should receive a 2% raise. Save the solution
and then start and test the application. Close the Code Editor window and then close the
solution.

3. Tea Time Company wants an application that allows a clerk to enter the number of
pounds of tea ordered, the price per pound, and whether the customer should be charged
a $15 shipping fee. The application should calculate and display the total amount the
customer owes. Create a Visual Basic Windows application. Use the following names for
the solution and project, respectively: Tea Time Solution and Tea Time Project. Save the
application in the VB2012\Chap04 folder. Change the form file’s name to Main Form.vb.
Change the form’s name to frmMain. The total amount owed should be removed from
the interface when a change is made to the contents of a text box in the interface. Use the
MessageBox.Show method to determine whether the user should be charged for
shipping. (Use the examples in Figure 4-46 as a guide.) Code the application. (Be sure to
use variables. Do not use the Val function.) Save the solution and then start and test the
application. Close the Code Editor window and then close the solution.

4. Marcy’s Department store is having a BoGoHo (Buy One, Get One Half Off) sale. The
store manager wants an application that allows the salesclerk to enter the prices of two
items. The application should calculate and display the total amount the customer owes.
The half-off should always be taken on the item having the lowest price. Use the
MessageBox.Show method to display the amount the customer saved. For example, if the
two items cost $24.99 and $10, the half-off would be taken on the $10 item, and the
message box would indicate that the customer saved $5.00. Create a Visual Basic
Windows application. Use the following names for the solution and project, respectively:
Marcy Solution and Marcy Project. Save the application in the VB2012\Chap04 folder.
Change the form file’s name to Main Form.vb. Change the form’s name to frmMain. The
total amount owed should be removed from the interface when a change is made to the
contents of a text box in the interface. Code the application. (Be sure to use variables. Do
not use the Val function.) Save the solution and then start and test the application. Close
the Code Editor window and then close the solution.

Figure 4-50 Interface for Exercise 1

INTRODUCTORY

INTERMEDIATE

INTERMEDIATE

CH A P T E R 4 The Selection Structure

238

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

5. In this exercise, you create an application for Corondo Industries. Create a Visual Basic
Windows application. Use the following names for the solution and project, respectively:
Corondo Solution and Corondo Project. Save the application in the VB2012\Chap04
folder. Change the form file’s name to Main Form.vb. Change the form’s name to
frmMain. The application’s interface, which is shown in Figure 4-51, allows the user to
enter the quantity ordered and product price. The application should calculate the
discount (if any) and total due. Before calculating the discount, the btnCalc control’s
Click event procedure should display the message “Are you a wholesaler?” in a message
box. Only wholesalers receive a discount, which is 10%. The discount and total due
should be removed from the interface when a change is made to the contents of a text
box in the interface. Code the application. Save the solution and then start the
application. Test the application by calculating the total due for a wholesaler ordering 4
units of product at $10 per unit. Then, test the application by calculating the total due for
a non-wholesaler ordering 2 units of product at $5 per unit. Close the Code Editor
window and then close the solution.

6. Open the Division Solution (Division Solution.sln) file contained in the
VB2012\Chap04\Division Solution folder. If necessary, open the designer window.
The interface allows the user to enter two numbers. The Calculate button’s Click event
procedure should calculate and display the result of dividing the larger number by the
smaller number. However, keep in mind that an application will end abruptly if a
statement attempts to divide a number by zero. This is because, as in math, division by
zero is not allowed. Therefore, if the smaller number is 0, the application should display
the “Cannot divide by 0” message. Code the application. (Be sure to use variables. Do
not use the Val function.) Save the solution and then start the application. Test the
application using 150.72 and 3 as the two numbers, then test it using 4 and 100. Also test
it using 0 and 5, and then using 0 and –3. Close the Code Editor window and then close
the solution.

Figure 4-51 Interface for Exercise 2

INTERMEDIATE

ADVANCED

Lesson B Exercises L E S S ON B

239

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

& LESSON C
After studying Lesson C, you should be able to:

l Prevent the entry of unwanted characters in a text box

l Select the existing text in a text box

Coding the KeyPress Event Procedures
To complete the Covington Resort application, you need to code the KeyPress and
Enter event procedures for the four text boxes. You will code the KeyPress event
procedures first.

To open the Covington Resort application:

1. If necessary, start Visual Studio 2012. Open the Covington Resort Solution
(Covington Resort Solution.sln) file from Lesson B. The file is contained in the
VB2012\Chap04\Covington Resort Solution folder. If necessary, open the designer window.

The application provides text boxes for the user to enter the numbers of rooms, nights, adults,
and children. The user should enter those items using only numbers. The items should not
contain any letters, spaces, punctuation marks, or special characters. Unfortunately, you can’t
stop the user from trying to enter an inappropriate character into a text box. However, you can
prevent the text box from accepting the character; you do this by coding the text box’s KeyPress
event procedure.

To view the code template for the txtRooms control’s KeyPress event procedure:

1. Open the Code Editor window and then open the code template for the txtRooms
control’s KeyPress event procedure. See Figure 4-52.

A control’s KeyPress event occurs each time the user presses a key while the control has the
focus. The procedure associated with the KeyPress event has two parameters, which appear
within the parentheses in the procedure header: sender and e. A parameter represents
information that is passed to the procedure when the event occurs. When the KeyPress event
occurs, a character corresponding to the pressed key is sent to the KeyPress event’s e parameter.
For example, when the user presses the period (.) while entering data into a text box, the text
box’s KeyPress event occurs and a period is sent to the event’s e parameter. Similarly, when the
Shift key along with a letter is pressed, the uppercase version of the letter is sent to the e
parameter.

To prevent a text box from accepting an inappropriate character, you first use the e parameter’s
KeyChar property to determine the pressed key. (KeyChar stands for “key character.”) You then
use the e parameter’s Handled property to cancel the key if it is an inappropriate one. You
cancel the key by setting the Handled property to True, like this: e.Handled = True.

sender parameter e parameter

Figure 4-52 Code template for the txtRooms control’s KeyPress event procedure

Ch04C video

START HERE

START HERE

CH A P T E R 4 The Selection Structure

240

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Figure 4-53 shows examples of using the KeyChar and Handled properties in the KeyPress
event procedure. The condition in Example 1’s selection structure compares the contents
of the KeyChar property with a dollar sign. If the condition evaluates to True, the
e.Handled = True instruction in the selection structure’s true path cancels the $ key
before it is entered in the txtSales control. You can use the selection structure in Example
2 to allow the text box to accept only numbers and the Backspace key (which is used for
editing). You refer to the Backspace key on your keyboard using Visual Basic’s
ControlChars.Back constant.

According to the application’s TOE chart, each text box’s KeyPress event procedure should
allow the text box to accept only numbers and the Backspace key. All other keys should be
canceled. (The TOE chart is shown in Figure 4-37 in Lesson B.)

To allow the four text boxes to accept only numbers and the Backspace key:

1. Change txtRooms_KeyPress in the procedure header to CancelKeys.

2. Click immediately before the) (closing parenthesis) in the procedure header and then
press Enter to move the parenthesis and Handles clause to the next line in the
procedure. (You can look ahead to Figure 4-54.)

3. Click at the end of the Handles clause. Type the following text and press Enter. (Be
sure to type the comma before and after txtNights.KeyPress.)

, txtNights.KeyPress,

4. Now type the following text and press Enter:

txtAdults.KeyPress, txtChildren.KeyPress

Controlling the Characters Accepted by a Text Box

Example 1
Private Sub txtSales_KeyPress(sender As Object,
e As KeyPressEventArgs) Handles txtSales.KeyPress
 ' prevents the text box from accepting the dollar sign

 If e.KeyChar = "$" Then
 e.Handled = True
 End If
End Sub

Example 2
Private Sub txtAge_KeyPress(sender As Object,
e As KeyPressEventArgs) Handles txtAge.KeyPress
 ' allows the text box to accept only numbers
 ' and the Backspace key

 If (e.KeyChar < "0" OrElse e.KeyChar > "9") AndAlso
 e.KeyChar <> ControlChars.Back Then
 e.Handled = True
 End If
End Sub

Figure 4-53 Examples of using the KeyChar and Handled properties in the KeyPress event procedure
ª 2013 Cengage Learning

The KeyPress
event
automatically
allows the use of
the Delete key

for editing.

START HERE

Coding the KeyPress Event Procedures L E S S ON C

241

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

5. Enter the following comments. Press Enter twice after typing the second comment.

' allows the text box to accept only numbers and
' the Backspace key

6. Enter the following If clause. When you press Enter after typing Then, the Code Editor
will automatically enter the End If clause for you.

If (e.KeyChar < "0" OrElse e.KeyChar > "9") AndAlso
e.KeyChar <> ControlChars.Back Then

7. Enter the following comment and assignment statement:

' cancel the key
e.Handled = True

8. If necessary, delete the blank lines above the End If and End Sub clauses. Figure 4-54
shows the completed CancelKeys procedure, which is associated with each text box’s
KeyPress event.

In the next set of steps, you will test the CancelKeys procedure to verify that it allows the text
boxes to accept only numbers and the Backspace key.

To test the CancelKeys procedure:

1. Save the solution and then start the application.

2. Try entering a letter in the Rooms box, and then try entering a dollar sign. Now, type 10
in the Rooms box and then press Backspace to delete the 0. The Rooms box now
contains only the number 1.

3. Try entering a letter in the Nights box, and then try entering a percent sign. Now, type
21 in the Nights box and then press Backspace to delete the 1. The Nights box now
contains only the number 2.

4. Try entering a letter in the Adults box, and then try entering an ampersand. Now, type
20 in the Adults box and then press Backspace to delete the 0. The Adults box now
contains only the number 2.

5. Try entering a letter in the Children box, and then try entering a period. Now, type 13 in
the Children box and then press Backspace to delete the 3. The Children box now
contains only the number 1.

the procedure is
associated with
each text box’s
KeyPress event

Figure 4-54 CancelKeys procedure

START HERE

CH A P T E R 4 The Selection Structure

242

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

6. Click the Calculate button to display the calculated amounts in the interface.

7. Press Tab twice to move the focus to the Rooms box. Notice that the insertion point
appears at the end of the number 1. It is customary in Windows applications to have a
text box’s existing text selected (highlighted) when the text box receives the focus. You
will learn how to select the existing text in the next section. Click the Exit button to end
the application.

Coding the Enter Event Procedures
To complete the Covington Resort application, you just need to code the Enter event
procedures for the four text boxes. A text box’s Enter event occurs when the text box receives
the focus, which can happen as a result of the user tabbing to the control or using the control’s
access key. It also occurs when the Focus method is used to send the focus to the control. In the
current application, the Enter event procedure for each text box is responsible for selecting
(highlighting) the contents of the text box. When the text is selected in a text box, the user can
remove the text simply by pressing a key on the keyboard, such as the letter n; the pressed key—
in this case, the letter n—replaces the selected text.

Visual Basic provides the SelectAll method for selecting a text box’s existing text. The method’s
syntax is shown in Figure 4-55 along with an example of using the method. In the syntax,
textbox is the name of the text box whose contents you want to select.

You will use the SelectAll method to select the contents of the four text boxes in the Covington
Resort application. You will enter the method in each text box’s Enter event procedure so that
the method is processed when the text box receives the focus.

To code each text box’s Enter event procedure and then test the procedures:

1. Open the code template for the txtRooms control’s Enter event procedure. Type the
following comments and then press Enter twice:

' selects the contents when the
' text box receives the focus

2. Type txtRooms.SelectAll() and then click the blank line below the last comment.

3. Open the code template for the txtNights control’s Enter event procedure. Copy the
comments and SelectAll method from the txtRooms_Enter procedure to the
txtNights_Enter procedure. Change txtRooms in the SelectAll method to txtNights and
then click the blank line below the last comment.

4. Open the code template for the txtAdults control’s Enter event procedure. Copy the
comments and SelectAll method from the txtRooms_Enter procedure to the

SelectAll Method
Syntax
textbox.SelectAll()

Example
txtId.SelectAll()
selects the contents of the txtId control

Figure 4-55 Syntax and an example of the SelectAll method
ª 2013 Cengage Learning

START HERE

Coding the Enter Event Procedures L E S S ON C

243

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

txtAdults_Enter procedure. Change txtRooms in the SelectAll method to txtAdults and
then click the blank line below the last comment.

5. Open the code template for the txtChildren control’s Enter event procedure. Copy the
comments and SelectAll method from the txtRooms_Enter procedure to the
txtChildren_Enter procedure. Change txtRooms in the SelectAll method to txtChildren
and then click the blank line below the last comment.

6. Save the solution and then start the application. Type 1 in the Rooms box, 1 in the
Nights box, 2 in the Adults box, and 2 in the Children box. Click the Calculate button
to display the calculated amounts in the interface.

7. Press Tab twice to move the focus to the Rooms box. The txtRooms_Enter procedure
selects the contents of the text box, as shown in Figure 4-56.

8. Press Tab three times, slowly, to move the focus to each of the other three text boxes.
Each text box’s Enter event procedure selects the contents of the text box.

9. Click the Exit button. Close the Code Editor window and then close the solution.

Figure 4-57 shows the application’s code at the end of Lesson C.

the existing text is
selected when the
text box receives
the focus

Figure 4-56 Existing text selected in the txtRooms control

 1 ' Name: Covington Resort Project
 2 ' Purpose: Display the total room charge, tax,
 3 ' total resort fee, and total due
 4 ' Programmer: <your name> on <current date>
 5
 6 Option Explicit On
 7 Option Strict On
 8 Option Infer Off
 9
 10 Public Class frmMain
 11
 12 Private Sub btnExit_Click(sender As Object,
 e As EventArgs) Handles btnExit.Click
 13 Me.Close()
 14 End Sub
 15

Figure 4-57 Covington Resort application’s code at the end of Lesson C (continues)

CH A P T E R 4 The Selection Structure

244

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

 45) Handles txtRooms.KeyPress, txtNights.KeyPress,
 46 txtAdults.KeyPress, txtChildren.KeyPress
 47 ' allows the text box to accept only numbers and
 48 ' the Backspace key
 49
 50 If (e.KeyChar < "0" OrElse e.KeyChar > "9") AndAlso
 51 e.KeyChar <> ControlChars.Back Then
 52 ' cancel the key
 53 e.Handled = True
 54 End If
 55 End Sub
 56
 57 Private Sub ClearLabels(sender As Object, e As EventArgs) _
 58 Handles txtRooms.TextChanged, txtNights.TextChanged,
 59 txtAdults.TextChanged, txtChildren.TextChanged
 60 ' clear calculated amounts
 61
 62 lblRoomChg.Text = String.Empty
 63 lblTax.Text = String.Empty
 64 lblResortFee.Text = String.Empty
 65 lblTotalDue.Text = String.Empty
 66 End Sub
 67

 16 Private Sub txtRooms_Enter(sender As Object,
 e As EventArgs) Handles txtRooms.Enter
 17 ' selects the contents when the
 18 ' text box receives the focus
 19
 20 txtRooms.SelectAll()
 21 End Sub
 22
 23 Private Sub txtNights_Enter(sender As Object,
 e As EventArgs) Handles txtNights.Enter
 24 ' selects the contents when the
 25 ' text box receives the focus
 26
 27 txtNights.SelectAll()
 28 End Sub
 29
 30 Private Sub txtAdults_Enter(sender As Object,
 e As EventArgs) Handles txtAdults.Enter
 31 ' selects the contents when the
 32 ' text box receives the focus
 33
 34 txtAdults.SelectAll()
 35 End Sub
 36
 37 Private Sub txtChildren_Enter(sender As Object,
 e As EventArgs) Handles txtChildren.Enter
 38 ' selects the contents when the
 39 ' text box receives the focus
 40
 41 txtChildren.SelectAll()
 42 End Sub
 43
 44 Private Sub CancelKeys(sender As Object,
 e As KeyPressEventArgs

Figure 4-57 Covington Resort application’s code at the end of Lesson C (continues)

(continued)

Coding the Enter Event Procedures L E S S ON C

245

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

93 Integer.TryParse(txtChildren.Text, intChildren)
94
95 ' calculate total number of guests
96 intNumGuests = intAdults + intChildren
97 ' calculate number of rooms required
98 dblRoomsRequired = intNumGuests / intMAX_PER_ROOM
99

100 ' determine whether number of reserved
101 ' rooms is adequate and then either display a
102 ' message or calculate and display the charges
103 If intRoomsReserved < dblRoomsRequired Then
104 MessageBox.Show(strMSG, "Covington Resort",
105 MessageBoxButtons.OK,
106 MessageBoxIcon.Information)
107 Else
108 ' calculate charges
109 intTotalRoomChg = intRoomsReserved *
110 intNights * intDAILY_ROOM_CHG
111 dblTax = intTotalRoomChg * dblTAX_RATE
112 intTotalResortFee = intRoomsReserved *
113 intNights * intDAILY_RESORT_FEE
114 dblTotalDue = intTotalRoomChg +
115 dblTax + intTotalResortFee
116
117 ' display charges
118 lblRoomChg.Text = intTotalRoomChg.ToString("N2")
119 lblTax.Text = dblTax.ToString("N2")
120 lblResortFee.Text = intTotalResortFee.ToString("N2")
121 lblTotalDue.Text = dblTotalDue.ToString("C2")
122 End If
123 End Sub
124 End Class

 68 Private Sub btnCalc_Click(sender As Object,
 e As EventArgs) Handles btnCalc.Click
 69 ' calculate and display total room charge,
 70 ' tax, total resort fee, and total due
 71
 72 ' declare named constants and variables
 73 Const intMAX_PER_ROOM As Integer = 6
 74 Const intDAILY_ROOM_CHG As Integer = 284
 75 Const dblTAX_RATE As Double = 0.1525
 76 Const intDAILY_RESORT_FEE As Integer = 15
 77 Const strMSG As String =
 "You have exceeded the maximum guests per room."
 78 Dim intRoomsReserved As Integer
 79 Dim intNights As Integer
 80 Dim intAdults As Integer
 81 Dim intChildren As Integer
 82 Dim intNumGuests As Integer
 83 Dim dblRoomsRequired As Double
 84 Dim intTotalRoomChg As Integer
 85 Dim dblTax As Double
 86 Dim intTotalResortFee As Integer
 87 Dim dblTotalDue As Double
 88
 89 ' store input in variables
 90 Integer.TryParse(txtRooms.Text, intRoomsReserved)
 91 Integer.TryParse(txtNights.Text, intNights)
 92 Integer.TryParse(txtAdults.Text, intAdults)

Figure 4-57 Covington Resort application’s code at the end of Lesson C

(continued)

CH A P T E R 4 The Selection Structure

246

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Lesson C Summary
l To allow a text box to accept only certain keys:

Code the text box’s KeyPress event procedure. The key the user pressed is stored in the e.KeyChar
property. You use the e.Handled = True statement to cancel the key pressed by the user.

l To select the existing text in a text box:

Use the SelectAll method. The method’s syntax is textbox.SelectAll().

l To process code when a control receives the focus:

Enter the code in the control’s Enter event procedure.

Lesson C Key Term
ControlChars.Back constant—the Visual Basic constant that represents the Backspace key on
your keyboard

Enter event—occurs when a control receives the focus, which can happen as a result of the user
either tabbing to the control or using the control’s access key; also occurs when the Focus
method is used to send the focus to the control

Handled property—a property of the KeyPress event procedure’s e parameter; when assigned
the value True, it cancels the key pressed by the user

KeyChar property—a property of the KeyPress event procedure’s e parameter; stores the
character associated with the key pressed by the user

KeyPress event—occurs each time the user presses a key while a control has the focus

Parameter—an item contained within parentheses in a procedure header; represents
information passed to the procedure when the procedure is invoked

SelectAll method—used to select all of the text contained in a text box

Lesson C Review Questions
1. A control’s event occurs each time a user presses a key while the

control has the focus.

a. Focus

b. Key

c. KeyFocus

d. KeyPress

2. When entered in the appropriate event procedure, which of the following statements
cancels the key pressed by the user?

a. e.Cancel = True

b. e.Cancel = False

c. e.Handled = True

d. e.Handled = False

3. Which of the following If clauses determines whether the user pressed the Backspace key?

a. If e.KeyChar = ControlChars.Back Then

b. If e.KeyChar = Backspace Then

c. If e.KeyChar = ControlChars.Backspace Then

d. If ControlChars.BackSpace = True Then

Lesson C Review Questions L E S S ON C

247

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

4. Which of the following If clauses determines whether the user pressed the % key?

a. If ControlChars.PercentSign = True Then

b. If e.KeyChar = "%" Then

c. If e.KeyChar = Chars.PercentSign Then

d. If KeyChar.ControlChars = "%" Then

5. When a user tabs to a text box, the text box’s event occurs.

a. Access

b. Enter

c. TabOrder

d. TabbedTo

6. Which of the following tells the computer to highlight all of the text contained in the
txtName control?

a. txtName.SelectAll()

b. txtName.HighlightAll()

c. Highlight(txtName)

d. SelectAll(txtName.Text)

Lesson C Exercises

1. Open the State ID Solution (State ID Solution.sln) file contained in the
VB2012\Chap04\State ID Solution folder. If necessary, open the designer window.
The txtState control should accept only letters and the Backspace key; code the
appropriate procedure. When the txtState control receives the focus, its existing text
should be selected; code the appropriate procedure. Save the solution and then start
the application. Test the application with both valid data (uppercase and lowercase
letters and the Backspace key) and invalid data (numbers and special characters).
Close the Code Editor window and then close the solution.

2. Use Windows to make a copy of the Play It Again Solution folder contained in the
VB2012\Chap04 folder. Rename the copy Play It Again Solution-Introductory. Open
the Play It Again Solution (Play It Again Solution.sln) file contained in the Play It Again
Solution-Introductory folder. Open the designer window. When a text box receives the
focus, its existing text should be selected; code the appropriate procedures. The Date
text box should accept only numbers, the slash (/), the hyphen (-), and the Backspace
key; code the appropriate procedure. The DVDs and Blu-rays boxes should accept only
numbers and the Backspace key; code the appropriate procedures. Save the solution and
then start and test the application. Close the Code Editor window and then close the
solution.

3. Open the MessageBox Value Solution (MessageBox Value Solution.sln) file contained in
the VB2012\Chap04\MessageBox Value Solution folder. If necessary, open the designer
window. Open the Code Editor window. The btnCalc control’s Click event procedure
should use the MessageBox.Show method to ask whether the user wants to include a
dollar sign in the gross pay amount. Include Yes and No buttons in the message box. If
the user clicks the Yes button, the procedure should display the gross pay amount using
the “C2” format. If the user clicks the No button, the procedure should display the gross
pay amount using the “N2” format. Modify the btnCalc control’s code. In addition,
when the text box receives the focus, its existing text should be selected; code the
appropriate procedure. Save the solution and then start and test the application. Close
the Code Editor window and then close the solution.

INTRODUCTORY

INTRODUCTORY

INTRODUCTORY

CH A P T E R 4 The Selection Structure

248

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

4. Create a Visual Basic Windows application. Use the following names for the solution
and project, respectively: Concert Solution and Concert Project. Save the application in
the VB2012\Chap04 folder. Change the form file’s name to Main Form.vb. Change the
form’s name to frmMain. The interface, which is shown in Figure 4-58, allows the user
to enter the number of concert tickets purchased. Each concert ticket costs $75.50. A
customer is allowed to purchase a maximum of 25 tickets at a time. The application
displays the total amount a customer owes for the concert tickets. Code the application.
Allow the text box to accept only numbers and the Backspace key. Clear the total due
when a change is made to the number of tickets purchased. When the text box receives
the focus, select its existing text. The Calculate button’s Click event procedure should
display the “You can purchase up to 25 tickets only.” message when the number of
tickets is greater than 25. It should display the total due with a dollar sign and two
decimal places. Save the solution and then start and test the application. Close the Code
Editor window and then close the solution.

5. Create a Visual Basic Windows application. Use the following names for the solution
and project, respectively: Mortgage Solution and Mortgage Project. Save the application
in the VB2012\Chap04 folder. Change the form file’s name to Main Form.vb. Change
the form’s name to frmMain. Generally speaking, most prospective homeowners can
afford a mortgage that is between 2 and 2.5 times their annual gross income. Create an
interface that allows the user to enter his or her annual gross income. The application
should display the lower and upper ends of the mortgage range. The text box in which
the user enters the gross income should accept only numbers, the period, and the
Backspace key, and it should have its existing text highlighted when it receives the focus.
Save the solution and then start and test the application. Close the Code Editor window
and then close the solution.

6. Create a Visual Basic Windows application. Use the following names for the solution and
project, respectively: Hinsbrook Solution and Hinsbrook Project. Save the application in
the VB2012\Chap04 folder. Change the form file’s name to Main Form.vb. Change the
form’s name to frmMain. A third-grade teacher at Hinsbrook Elementary School wants an
application that allows a student to enter the amount of money a customer owes and the
amount of money the customer paid. The application should calculate and display the
amount of change. Display an appropriate message when the amount paid is less than the
amount owed. The text boxes in which the user enters the amounts owed and paid should
accept only numbers, the period, and the Backspace key, and they should have their
existing text highlighted when they receive the focus. Save the solution and then start and
test the application. Close the Code Editor window and then close the solution.

Figure 4-58 Interface for Exercise 4

INTRODUCTORY

INTRODUCTORY

INTRODUCTORY

Lesson C Exercises L E S S ON C

249

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

7. In this exercise, you modify the application from Exercise 6. Use Windows to make a
copy of the Hinsbrook Solution folder. Rename the copy Modified Hinsbrook Solution.
Open the Hinsbrook Solution (Hinsbrook Solution.sln) file contained in the Modified
Hinsbrook Solution folder. Open the designer window. Modify the interface and code so
that they also display the number of dollars, quarters, dimes, nickels, and pennies to
return to the customer. Save the solution and then start and test the application. Close
the Code Editor window and then close the solution.

8. Open the Zip Shipping Solution (Zip Shipping Solution.sln) file contained in the
VB2012\Chap04\Zip Shipping Solution folder. If necessary, open the designer window.
Code the Display Shipping Charge button’s Click event procedure. The procedure
should display $15.00 as the shipping charge for the following ZIP codes: 42164, 45134,
60345, and 42544. All other ZIP codes are charged $17.75 for shipping. Save the
solution and then start and test the application. Close the Code Editor window and then
close the solution.

9. In this exercise, you create an application designed to teach the Spanish words for red,
blue, and green. The Spanish words are rojo, azul, and verde, respectively. Create a
Visual Basic Windows application. Use the following names for the solution and project,
respectively: Spanish Colors Solution and Spanish Colors Project. Save the application
in the VB2012\Chap04 folder. Change the form file’s name to Main Form.vb. Change
the form’s name to frmMain. Create the interface shown in Figure 4-59. The interface
contains three text boxes, five buttons, and one label. After entering the Spanish word
corresponding to a button’s color, the user should click the button to verify the entry. If
the Spanish word is correct, the button’s Click event procedure should change the color
of the text box to match the button’s color. (Hint: Assign the button’s BackColor
property to the text box’s BackColor property.) Otherwise, the Click event procedure
should display the appropriate Spanish word in a message box. The Clear button should
change each text box’s background color to white, using the Visual Basic constant
Color.White; it also should clear the contents of each text box. Save the solution and
then start and test the application. Close the Code Editor window and then close the
solution.

10. Create a Visual Basic Windows application. Use the following names for the solution
and project, respectively: Allenton Solution and Allenton Project. Save the application in
the VB2012\Chap04 folder. Change the form file’s name to Main Form.vb. Change the
form’s name to frmMain. Allenton Water Department wants an application that
calculates a customer’s monthly water bill. The application’s interface, which is shown
in Figure 4-60, allows the user to enter the current and previous meter readings. The

Figure 4-59 Interface for Exercise 9

INTERMEDIATE

INTERMEDIATE

INTERMEDIATE

INTERMEDIATE

CH A P T E R 4 The Selection Structure

250

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

application should calculate and display the number of gallons of water used and the
total charge for the water. The charge for water is $1.75 per 1000 gallons. However,
there is a minimum charge of $16.67. (In other words, every customer must pay at least
$16.67.) Display the total charge with a dollar sign and two decimal places. The text
boxes should accept only numbers and the Backspace key. Clear the number of gallons
used and the total charge when a change is made to the contents of a text box on the
form. When a text box receives the focus, select its existing text. Save the solution and
then start and test the application. Close the Code Editor window and then close the
solution.

11. In this exercise, you modify the application from Exercise 2. Use Windows to make a
copy of the Play It Again Solution-Introductory folder. Rename the copy Play It Again
Solution-Intermediate. Open the Play It Again Solution (Play It Again Solution.sln) file
contained in the Play It Again Solution-Intermediate folder. Open the designer and
Code Editor windows. If the txtDvds control does not contain any data, the btnCalc
control’s Click event procedure should assign the number 0 to the text box’s Text
property. Likewise, if the txtBluRays control does not contain any data, the btnCalc
control’s Click event procedure should assign the number 0 to the text box’s Text
property. Modify the procedure’s code. Save the solution and then start and test the
application. Close the Code Editor window and then close the solution.

12. Create a Visual Basic Windows application. Use the following names for the solution
and project, respectively: Treasures Solution and Treasures Project. Save the application
in the VB2012\Chap04 folder. Change the form file’s name to Main Form.vb. Change
the form’s name to frmMain. Create the interface shown in Figure 4-61. When the user
clicks the Calculate button, the button’s Click event procedure should add the item
price to the total of the prices already entered; this amount represents the subtotal owed
by the customer. The procedure should display the subtotal on the form. It also should
display a 2% sales tax, the shipping charge, and the grand total owed by the customer.
The grand total is calculated by adding together the subtotal, the 2% sales tax, and a $10
shipping charge. For example, if the user enters 30.55 as the price and then clicks the
Calculate button, the button’s Click event procedure should display 30.55 as the
subtotal, 0.61 as the sales tax, 10.00 as the shipping charge, and 41.16 as the total due. If
the user subsequently enters 20 as the price and then clicks the Calculate button, the
button’s Click event procedure should display 50.55 as the subtotal, 1.01 as the sales tax,
10.00 as the shipping charge, and 61.56 as the total due. However, when the subtotal is
at least $100, the shipping charge is 0.00. Code the application. Save the solution and
then start and test the application. Close the Code Editor window and then close the
solution.

Figure 4-60 Interface for Exercise 10

INTERMEDIATE

ADVANCED

Lesson C Exercises L E S S ON C

251

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

13. In this exercise, you learn how to specify the maximum number of characters that can
be entered in a text box. Open the Zip Solution (Zip Solution.sln) file contained in the
VB2012\Chap04\Zip Solution folder. If necessary, open the designer window. Click
the txtZip control. Look in the Properties list for a property that allows you to specify
the maximum number of characters that can be entered in the text box. When you
locate the property, set its value to 10. Save the solution and then start the application.
Test the application by trying to enter more than 10 characters in the text box. Close
the solution.

14. Open the Debug Solution (Debug Solution.sln) file contained in the
VB2012\Chap04\Debug Solution folder. Open the Code Editor window and review
the existing code. The btnCalc control’s Click event procedure should calculate a 5%
commission when the code entered by the user is 1, 2, or 3 and, at the same time,
the sales amount is greater than $5,000; otherwise, the commission rate is 3%. Also, the
CancelKeys procedure should allow the two text boxes to accept only numbers,
the period, and the Backspace key.

a. Start the application. Type the number 1 in the Code box and then press the
Backspace key. Notice that the Backspace key is not working correctly. Stop the
application and then make the appropriate change to the CancelKeys procedure.

b. Save the solution and then start the application. Type the number 12 in the Code
box and then press the Backspace key to delete the 2. The Code box now contains
the number 1.

c. Type 2000 in the Sales amount box and then click the Calculate button. A message
box appears and indicates that the commission amount is $100.00 (5% of $2,000),
which is incorrect; it should be $60.00 (3% of $2,000). Close the message box. Stop
the application and then make the appropriate change to the btnCalc control’s Click
event procedure.

d. Save the solution and then start the application. Type the number 1 in the Code box.
Type 2000 in the Sales amount box and then click the Calculate button. The message
box should indicate that the commission amount is $60.00. Close the message box.

Figure 4-61 Interface for Exercise 12

DISCOVERY

SWAT THE BUGS

CH A P T E R 4 The Selection Structure

252

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

e. Test the application using the following codes and sales amounts:

Code Sales amount
1 7000
2 5000
2 5000.75
3 175.55
3 9000.65
4 2000
4 6700

f. When you are finished testing the application, close the Code Editor window and
then close the solution.

Lesson C Exercises L E S S ON C

253

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 5
More on the Selection
Structure

Revising the Covington Resort Application

In this chapter, you will modify the Covington Resort application from
Chapter 4. In addition to the previous input data, the application’s
interface will now allow the user to select the number of beds (either two
queen beds or one king bed), the view (either standard or atrium), and
whether the guest should be charged a vehicle parking fee. The resort
charges $284 for two queen beds with a standard view, $325 for two
queen beds with an atrium view, $290 for one king bed with a standard
view, and $350 for one king bed with an atrium view. The vehicle parking
fee is $12.75 per night. In addition to displaying the total room charge,
the sales and lodging tax, the resort fee, and the total due, the
application should now also display the total parking fee.

All Microsoft screenshots used with permission from Microsoft Corporation.

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Previewing the Modified Covington Resort Application
Before you start the first lesson in this chapter, you will preview the completed application. The
application is contained in the VB2012\Chap05 folder.

To preview the completed application:

1. Use the Run dialog box to run the Covington (Covington.exe) file contained in
the VB2012\Chap05 folder. The application’s user interface appears on the screen.
Type 1, 1, 2, and 2 in the Rooms, Nights, Adults, and Children boxes, respectively.
Click the Calculate button. See Figure 5-1.

2. The interface contains radio buttons and a check box. These controls are covered in
Lesson B. Click the One king and Atrium radio buttons to select both. Also click the
Vehicle parking fee check box to select it. A check mark appears inside the check box.
Click the Calculate button. See Figure 5-2.

radio button check box

Figure 5-1 Interface showing the calculated amounts

START HERE

CH A P T E R 5 More on the Selection Structure

256

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

3. Click the Exit button to end the application.

The modified Covington Resort application uses nested selection structures, which you will
learn about in Lesson A. You also will learn about multiple-alternative selection structures.
In Lesson B, you will add a radio button and a check box to the Covington Resort application’s
interface; you also will modify the application’s code. In Lesson C, you will learn how to use the
TryParse method for data validation. You also will learn how to generate random integers and
how to hide and show controls during runtime. Be sure to complete each lesson in full and do all
of the end-of-lesson questions and several exercises before continuing to the next lesson.

Figure 5-2 Recalculated amounts shown in the interface

Previewing the Modified Covington Resort Application

257

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

& LESSON A
After studying Lesson A, you should be able to:

l Include a nested selection structure in pseudocode and in a flowchart

l Code a nested selection structure

l Desk-check an algorithm

l Recognize common logic errors in selection structures

l Include a multiple-alternative selection structure in pseudocode and in a flowchart

l Code a multiple-alternative selection structure

Nested Selection Structures
In Chapter 4, you learned that you use the selection structure when you want the computer
to make a decision and then select the appropriate path—either the true path or the false
path—based on the result. Both paths in a selection structure can include instructions that
declare variables, perform calculations, and so on. In this chapter, you will learn that both
paths can also include other selection structures. When either a selection structure’s true path
or its false path contains another selection structure, the inner selection structure is referred
to as a nested selection structure because it is contained (nested) within the outer selection
structure.

A programmer determines whether a problem’s solution requires a nested selection structure by
studying the problem specification. The first problem specification you will examine in this
chapter involves a basketball player named Maleek. The problem specification and an
illustration of the problem are shown in Figure 5-3, along with an appropriate solution. The
solution requires a selection structure, but not a nested one. This is because only one decision—
whether the basketball went through the hoop—is necessary.Ch05A video

CH A P T E R 5 More on the Selection Structure

258

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Now we’ll make a slight change to the problem specification shown in Figure 5-3. This time,
Maleek should say either one or two phrases, depending not only on whether or not the ball
went through the hoop, but also on where he was standing when he made the basket. Figure 5-4
shows the modified problem specification and solution. The modified solution contains an outer
dual-alternative selection structure and a nested dual-alternative selection structure. The outer
selection structure begins with “if the basketball went through the hoop”, and it ends with the
last “end if”. The last “else” belongs to the outer selection structure and separates the structure’s
true path from its false path. Notice that the instructions in both paths are indented within the
outer selection structure. Indenting in this manner clearly indicates the instructions to be
followed when the basketball went through the hoop, as well as the ones to be followed when
the basketball did not go through the hoop.

The nested selection structure in Figure 5-4 appears in the outer selection structure’s true path.
The nested selection structure begins with “if Maleek was either inside or on the 3-point line”,
and it ends with the first “end if”. The indented “else” belongs to the nested selection structure
and separates the nested structure’s true path from its false path. For clarity, the instructions
in the nested selection structure’s true and false paths are indented within the structure. For
a nested selection structure to work correctly, it must be contained entirely within either

Problem Specification

Maleek is practicing for an upcoming basketball game. Write the instructions that direct Maleek to shoot
the basketball and then say one of two phrases, depending on whether or not the basketball went
through the hoop.

Result of shot
Basketball went through the hoop
Basketball did not go through the hoop

Phrase
I did it !
Missed it !

Solution
1. shoot the basketball

2. if the basketball went through the hoop
 say “I did it !”
 else
 say “Missed it !”
 end if

condition

true path

false path

Figure 5-3 A problem that requires the selection structure
Image by Diane Zak; Created with Reallusion CrazyTalk Animator; OpenClipArt.org/Tom Kolter/tawm1972

Nested Selection Structures L E S S ON A

259

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

the outer selection structure’s true path or its false path. The nested selection structure in
Figure 5-4, for example, appears entirely within the outer selection structure’s true path.

Figure 5-5 shows a modified version of the previous problem specification, along with
the modified solution. In this version of the problem, Maleek should still say “Missed it!”
when the basketball misses its target. However, if the basketball hits the rim, he also should say
“So close”. In addition to the nested dual-alternative selection structure from the previous
solution, the modified solution also contains a nested single-alternative selection structure,
which appears in the outer selection structure’s false path. The nested single-alternative
selection structure begins with “if the basketball hit the rim”, and it ends with the second
“end if”. Notice that the nested single-alternative selection structure is contained entirely within
the outer selection structure’s false path.

Problem Specification
Maleek is practicing for an upcoming basketball game. Write the instructions that direct Maleek to shoot
the basketball and then say either one or two of four phrases, depending on whether or not the
basketball went through the hoop and also where Maleek was standing when he made the basket.

Result of shot
Basketball went through the hoop
Maleek made the basket from either inside or on the 3-point line
Maleek made the basket from behind the 3-point line
Basketball did not go through the hoop

Phrase
I did it !
2 points for me
3 points for me
Missed it !

Solution
1. shoot the basketball
2. if the basketball went through the hoop
 say “I did it !”
 if Maleek was either inside or on the 3-point line
 say “2 points for me”
 else
 say “3 points for me”
 end if
 else
 say “Missed it !”
 end if

nested dual-alternative
selection structure outer dual-alternative

selection structure

Figure 5-4 A problem that requires a nested selection structure
ª 2013 Cengage Learning

CH A P T E R 5 More on the Selection Structure

260

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Flowcharting a Nested Selection Structure
Figure 5-6 shows a problem specification for a voter eligibility application. The application
determines whether a person can vote and then displays one of three messages. The appropriate
message depends on the person’s age and voter registration status. For example, if the person is
younger than 18 years old, the program should display the message “You are too young to vote.”
However, if the person is at least 18 years old, the program should display one of two messages.
The correct message to display is determined by the person’s voter registration status. If the
person is registered, then the appropriate message is “You can vote.”; otherwise, it is “You must
register before you can vote.” Notice that determining the person’s voter registration status is
important only after his or her age is determined. Because of this, the decision regarding the age
is considered the primary decision, while the decision regarding the registration status is
considered the secondary decision because whether it needs to be made depends on the result of
the primary decision. A primary decision is always made by an outer selection structure, while a
secondary decision is always made by a nested selection structure.

Also included in Figure 5-6 is a correct solution to the voter eligibility problem in flowchart
form. The first diamond in the flowchart represents the outer selection structure’s condition,
which checks whether the age entered by the user is greater than or equal to 18. If the condition
evaluates to false, it means that the person is not old enough to vote. In that case, the outer
selection structure’s false path will display the “You are too young to vote.” message before the
outer selection structure ends. However, if the outer selection structure’s condition evaluates to
true, it means that the person is old enough to vote. Before displaying the appropriate message,
the outer selection structure’s true path gets the registration status from the user. It then uses a
nested selection structure to determine whether the person is registered and then take the
appropriate action. The nested selection structure’s condition is represented by the second

Problem Specification
Maleek is practicing for an upcoming basketball game. Write the instructions that direct Maleek to shoot
the basketball and then say either one or two of five phrases, depending on whether or not the
basketball went through the hoop and also where Maleek was standing when he made the basket.

Result of shot
Basketball went through the hoop
Maleek made the basket from either inside or on the 3-point line
Maleek made the basket from behind the 3-point line
Basketball did not go through the hoop
Maleek’s missed shot hit the rim

Phrase
I did it !
2 points for me
3 points for me
Missed it !
So close

Solution
1. shoot the basketball
2. if the basketball went through the hoop
 say “I did it !”
 if Maleek was either inside or on the 3-point line
 say “2 points for me”
 else
 say “3 points for me”
 end if
 else
 say “Missed it !”
 if the basketball hit the rim
 say “So close”
 end if
 end if

nested dual-alternative
selection structure

nested single-alternative
selection structure

outer dual-alternative
selection structure

Figure 5-5 A problem that requires two nested selection structures
ª 2013 Cengage Learning

Flowcharting a Nested Selection Structure L E S S ON A

261

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

diamond in Figure 5-6. If the person is registered, the nested selection structure’s true path
displays the “You can vote.” message; otherwise, its false path displays the “You must register
before you can vote.” message. After the appropriate message is displayed, the nested and outer
selection structures end. Notice that the nested selection structure is processed only when the
outer selection structure’s condition evaluates to true.

Even small problems can have more than one solution. Figure 5-7 shows another correct
solution, also in flowchart form, for the voter eligibility problem. As in the previous solution,
the outer selection structure in this solution determines the age (the primary decision), and the
nested selection structure determines the voter registration status (the secondary decision). In
this solution, however, the outer selection structure’s condition is the opposite of the one in
Figure 5-6: It checks whether the age is less than 18, rather than checking if it is greater than or
equal to 18. (Recall that less than is the opposite of greater than or equal to.) In addition, the
nested selection structure appears in the outer selection structure’s false path in this solution,

Problem Specification
The Danville city manager wants an application that determines voter eligibility and displays one of three
messages. The messages and the criteria for displaying each message are shown here. The application’s
interface will provide a text box for entering the prospective voter’s age. It will use a message box to ask
the user whether the person is registered to vote.

Message
You are too young to vote.
You can vote.
You must register before you can vote.

Criteria
person is younger than 18 years old
person is at least 18 years old and is registered to vote
person is at least 18 years old but is not registered to vote

ask whether person
is registered

display “You are too
young to vote.”

TF

registered
TF

display “You must
register before you
can vote.”

display “You
can vote.”

store age in a variable

start

stop

age >= 18

Figure 5-6 Problem specification and a correct solution for the voter eligibility problem
ª 2013 Cengage Learning

CH A P T E R 5 More on the Selection Structure

262

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

which means it will be processed only when the outer selection structure’s condition evaluates
to false. The solutions in Figures 5-6 and 5-7 produce the same results. Neither solution is better
than the other. Each simply represents a different way of solving the same problem.

Coding a Nested Selection Structure
Figure 5-8 shows examples of code that could be used for the voter eligibility application. The
first example corresponds to the flowchart in Figure 5-6, and the second example corresponds
to the flowchart in Figure 5-7.

Problem Specification
The Danville city manager wants an application that determines voter eligibility and displays one of three
messages. The messages and the criteria for displaying each message are shown here. The application’s
interface will provide a text box for entering the prospective voter’s age. It will use a message box to ask
the user whether the person is registered to vote.

Message
You are too young to vote.
You can vote.
You must register before you can vote.

Criteria
person is younger than 18 years old
person is at least 18 years old and is registered to vote
person is at least 18 years old but is not registered to vote

store age in a variable

ask whether
person is
registered

TF

TF

start

display “You
are too young
to vote.”

stop

age < 18

display “You must
register before
you can vote.”

display “You
can vote.”

registered

Figure 5-7 Another correct solution for the voter eligibility problem
ª 2013 Cengage Learning

Coding a Nested Selection Structure L E S S ON A

263

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

To code and then test the Voter Eligibility application:

Example 1: Code for the flowchart in Figure 5-6
Const strTOO_YOUNG As String = "You are too young to vote."
Const strMUST_REGISTER As String =
 " You must register before you can vote."
Const strCAN_VOTE As String = "You can vote."
Const strPROMPT As String = "Are you registered to vote?"
Dim intAge As Integer
Dim dlgButton As DialogResult

Integer.TryParse(txtAge.Text, intAge)

If intAge >= 18 Then
 dlgButton = MessageBox.Show(strPROMPT,
 "Voter Eligibility",
 MessageBoxButtons.YesNo,
 MessageBoxIcon.Exclamation)
 If dlgButton = Windows.Forms.DialogResult.Yes Then
 lblMsg.Text = strCAN_VOTE
 Else
 lblMsg.Text = strMUST_REGISTER
 End If
Else
 lblMsg.Text = strTOO_YOUNG
End If

Example 2: Code for the flowchart in Figure 5-7
Const strTOO_YOUNG As String = "You are too young to vote."
Const strMUST_REGISTER As String =
 " You must register before you can vote."
Const strCAN_VOTE As String = "You can vote."
Const strPROMPT As String = "Are you registered to vote?"
Dim intAge As Integer
Dim dlgButton As DialogResult

Integer.TryParse(txtAge.Text, intAge)

If intAge < 18 Then
 lblMsg.Text = strTOO_YOUNG
Else
 dlgButton = MessageBox.Show(strPROMPT,
 "Voter Eligibility",
 MessageBoxButtons.YesNo,
 MessageBoxIcon.Exclamation)
 If dlgButton = Windows.Forms.DialogResult.Yes Then
 lblMsg.Text = strCAN_VOTE
 Else
 lblMsg.Text = strMUST_REGISTER
 End If
End If

Figure 5-8 Code for the flowcharts in Figures 5-6 and 5-7
ª 2013 Cengage Learning

START HERE

1. If necessary, start Visual Studio 2012. Open the Voter Solution (Voter Solution.sln) file
contained in the VB2012\Chap05\Voter Solution folder. If necessary, open the designer
window.

2. Open the Code Editor window. Replace <your name> and <current date> in the
comments with your name and the current date, respectively.

CH A P T E R 5 More on the Selection Structure

264

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

3. Locate the btnDisplay_Click procedure. Enter the code shown in either of the examples
in Figure 5-8.

4. Save the solution and then start the application. Type 17 in the Age box and then click
the Display Message button. The “You are too young to vote.” message appears in the
lblMsg control. See Figure 5-9.

5. Change the age to 21 and then press Enter. A message box opens and displays the “Are
you registered to vote?” message. Press Enter to select the Yes button. The “You can
vote.” message appears in the lblMsg control.

6. Click the Display Message button and then click the No button in the message box.
The “You must register before you can vote.” message appears in the lblMsg control.

7. Click the Exit button. Close the Code Editor window and then close the solution.

YOU DO IT 1!

Create a Visual Basic Windows application named YouDoIt 1. Save the application in the
VB2012\Chap05 folder. Add a label and two buttons to the form. The application should
display the price of a CD (compact disc) in the label. The prices are shown here. Code
the first button’s Click event procedure using a nested selection structure in the outer
selection structure’s true path. Code the second button’s Click event procedure using a
nested selection structure in the outer selection structure’s false path. Use message
boxes with Yes and No buttons to get the coupon information from the user. Save the
solution and then start and test the application. Close the solution.

Price Criteria

$12 customer does not have a coupon
$10 customer has a $2 coupon
$ 8 customer has a $4 coupon

recall that you can
press Alt to either
show or hide the
access keys

Figure 5-9 Sample run of the Voter Eligibility application

Coding a Nested Selection Structure L E S S ON A

265

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Logic Errors in Selection Structures
In the next few sections, you will observe some of the common logic errors made when writing
selection structures. Being aware of these errors will help prevent you from making them. In
most cases, logic errors in selection structures are a result of one of the following four mistakes:

1. using a compound condition rather than a nested selection structure

2. reversing the decisions in the outer and nested selection structures

3. using an unnecessary nested selection structure

4. including an unnecessary comparison in a condition

To better understand these four logic errors, we’ll demonstrate the first three using a procedure
that displays the appropriate fee to charge a golfer. We’ll demonstrate the last error using a
procedure that displays a bonus rate. We’ll begin with the golf fee procedure.

Harper Golf Club charges every golfer a basic fee of $25 per round of golf. However, if the golfer
is not a member of the golf club, he or she is charged an additional fee of either $15 on a
weekday or $20 on a weekend. Notice that the golfer’s membership status determines whether
the golfer is charged an additional amount. If the golfer is not a member of the club, then
whether it’s either a weekday or a weekend determines the appropriate additional amount. In
this case, the decision regarding the membership status is the primary decision, while the
decision regarding where the day falls in the week is the secondary decision. The pseudocode
shown in Figure 5-10 represents a correct algorithm for the golf fee procedure. An algorithm is
the set of step-by-step instructions for accomplishing a task.

Problem Specification

Harper Golf Club wants an application that displays the appropriate fee to charge a golfer.
The club’s fees are as follows:

Basic fee for members and non-members $25
Additional fee for non-members on a weekday 15
Additional fee for non-members on a weekend 20

Correct algorithm

1. golf fee = 25

2. if non-member
if weekday
add 15 to the golf fee

else
add 20 to the golf fee

end if
end if

3. display the golf fee

Figure 5-10 A correct algorithm for the golf fee procedure
ª 2013 Cengage Learning

You also can
write the nested
selection
structure’s
if clause in

Figure 5-10 as follows:
if weekend. However, you
then would need to
reverse the instructions
in the true and false
paths.

CH A P T E R 5 More on the Selection Structure

266

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

You can verify that the algorithm in Figure 5-10 works correctly by desk-checking it. Desk-
checking refers to the process of reviewing the algorithm while seated at your desk rather than
in front of the computer. Desk-checking is also called hand-tracing because you use a pencil and
paper to follow each of the algorithm’s instructions by hand. You desk-check an algorithm to
verify that it is not missing any instructions and that the existing instructions are correct and in
the proper order.

Before you begin the desk-check, you first choose a set of sample data for the input values,
which you then use to manually compute the expected output values. Figure 5-11 shows the
input values you will use to desk-check Figure 5-10’s algorithm four times; it also includes the
expected output values.

Desk-check Membership Status Day Information Expected Golf Fee
1 member weekday $25
2 member weekend $25
3 non-member weekday $40
4 non-member weekend $45

Figure 5-11 Sample data and expected results for the algorithm shown in Figure 5-10
ª 2013 Cengage Learning

Step 1 in Figure 5-10’s algorithm assigns $25 as the golf fee. Next, the condition in the outer
selection structure in Step 2 determines whether the golfer is not a club member. For the first
desk-check, the condition evaluates to False because the golfer is a club member. As a result, the
outer selection structure ends. Notice that the nested selection structure is not processed when
the outer selection structure’s condition is false. This is because the day of the week information
is not important when the golfer is a club member. The last step in the algorithm displays the
expected golf fee of $25.

Now we’ll desk-check the algorithm using the second set of test data: member and weekend.
Step 1 in Figure 5-10’s algorithm assigns $25 as the golf fee. Next, the condition in the outer
selection structure in Step 2 determines whether the golfer is not a club member. Here again,
the condition evaluates to False because the golfer is a club member. As a result, the outer
selection structure ends. The last step in the algorithm displays the expected golf fee, $25.

Next, we’ll desk-check the algorithm using the third set of test data: non-member and weekday.
Step 1 in Figure 5-10’s algorithm assigns $25 as the golf fee. Next, the condition in the outer
selection structure in Step 2 determines whether the golfer is not a club member. In this case,
the condition evaluates to True, so the nested selection structure’s condition checks whether the
person is golfing on a weekday. This condition also evaluates to True, so the nested selection
structure’s true path adds $15 to the basic golf fee, giving $40; after doing this, both selection
structures end. The last step in the algorithm displays the expected golf fee, $40.

Finally, we’ll desk-check the algorithm using the fourth set of test data: non-member and
weekend. Step 1 in Figure 5-10’s algorithm assigns $25 as the golf fee. Next, the condition in the
outer selection structure in Step 2 determines whether the golfer is not a club member. The
condition evaluates to True, so the nested selection structure’s condition checks whether the
person is golfing on a weekday. This condition evaluates to False, so the nested selection
structure’s false path adds $20 to the basic golf fee, giving $45; after doing this, both selection
structures end. The last step in the algorithm displays the expected golf fee of $45. The results of
desk-checking the algorithm using the data from Figure 5-11 agree with the expected values also
shown in the figure.

Ch05A-
Harper
Correct
Desk-Check
video

Logic Errors in Selection Structures L E S S ON A

267

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

First Logic Error: Using a Compound Condition Rather Than a Nested
Selection Structure
A common error made when writing selection structures is to use a compound condition in the
outer selection structure when a nested selection structure is needed. Figure 5-12 shows an
example of this error in the golf fee algorithm. The correct algorithm is included in the figure for
comparison. Notice that the incorrect algorithm uses one selection structure rather than two
selection structures and that the selection structure contains a compound condition. Consider
why the selection structure in the incorrect algorithm cannot be used in place of the selection
structures in the correct one. In the correct algorithm, the outer and nested selection structures
indicate that a hierarchy exists between the membership status and day of the week decisions:
The status decision is always made first, followed by the day of the week decision (if necessary).
In the incorrect algorithm, the compound condition indicates that no hierarchy exists between
the status and day decisions. Consider how this difference changes the algorithm.

To understand why the incorrect algorithm in Figure 5-12 will not work correctly, you will desk-
check it using the same test data used to desk-check the correct algorithm. Step 1 in the
incorrect algorithm assigns $25 as the golf fee. Next, the compound condition in Step 2
determines whether the golfer is not a club member and, at the same time, the person is golfing
on a weekday. Using the first set of test data (member and weekday), the compound condition
evaluates to False because the golfer is a club member. As a result, the selection structure’s false
path adds $20 to the golf fee, giving $45, and then the selection structure ends. The last step in
the incorrect algorithm displays $45 as the golf fee, which is not correct; the correct fee is $25, as
shown earlier in Figure 5-11.

Now we’ll desk-check the incorrect algorithm using the second set of test data: member and
weekend. Step 1 in the incorrect algorithm assigns $25 as the golf fee. Next, the compound
condition in Step 2 determines whether the golfer is not a club member and, at the same time,
the person is golfing on a weekday. Here again, the compound condition evaluates to False: this
time because the golfer is a club member and is not golfing on a weekday. As a result, the
selection structure’s false path adds $20 to the golf fee, giving $45, and then the selection
structure ends. The last step in the incorrect algorithm displays $45 as the golf fee, which is not
correct; the correct fee is $25, as shown earlier in Figure 5-11.

Next, we’ll desk-check the incorrect algorithm using the third set of test data: non-member and
weekday. Step 1 in the incorrect algorithm assigns $25 as the golf fee. Next, the compound
condition in Step 2 determines whether the golfer is not a club member and, at the same time,
the person is golfing on a weekday. In this case, the compound condition evaluates to True, so
the selection structure’s true path adds $15 to the golf fee, giving $40, and then the selection
structure ends. The last step in the incorrect algorithm displays the expected golf fee, $40. Even

Correct algorithm
1. golf fee = 25
2. if non-member
 if weekday
 add 15 to the golf fee
 else
 add 20 to the golf fee
 end if
 end if
3. display the golf fee

Incorrect algorithm
1. golf fee = 25
2. if non-member and weekday
 add 15 to the golf fee
 else
 add 20 to the golf fee
 end if
3. display the golf fee

uses a compound
condition instead of
a nested selection
structure

Figure 5-12 Correct algorithm and an incorrect algorithm containing the first logic error
ª 2013 Cengage Learning

Ch05A-First
Logic Error
Desk-Check
video

CH A P T E R 5 More on the Selection Structure

268

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

though its selection structure is phrased incorrectly, the incorrect algorithm produces the same
result as the correct algorithm using the third set of test data.

Finally, we’ll desk-check the incorrect algorithm in Figure 5-12 using the fourth set of test
data: non-member and weekend. Step 1 in the incorrect algorithm assigns $25 as the golf fee.
Next, the compound condition in Step 2 determines whether the golfer is not a club member
and, at the same time, the person is golfing on a weekday. The compound condition evaluates to
False because the person is not golfing on a weekday. As a result, the selection structure’s false
path adds $20 to the golf fee, giving $45, and then the selection structure ends. The last step in
the incorrect algorithm displays the expected golf fee, $45. Here again, even though its selection
structure is phrased incorrectly, the incorrect algorithm produces the same result as the
correct algorithm using the fourth set of test data.

Figure 5-13 shows the desk-check table for the incorrect algorithm from Figure 5-12.
As indicated in the figure, the results of the third and fourth desk-checks are correct, but the
results of the first and second desk-checks are not correct.

Desk-check
Membership
Status

Day
Information

Expected
Golf Fee Actual Result

1 member weekday $25 $45 (incorrect)
2 member weekend $25 $45 (incorrect)
3 non-member weekday $40 $40 (correct)
4 non-member weekend $45 $45 (correct)

Figure 5-13 Results of desk-checking the incorrect algorithm from Figure 5-12
ª 2013 Cengage Learning

The importance of desk-checking an algorithm several times using different data cannot be
emphasized enough. In this case, if you had used only the last two sets of data to desk-check the
incorrect algorithm, you would not have discovered that the algorithm did not work as
intended.

Second Logic Error: Reversing the Outer and Nested Decisions
Another common error made when writing selection structures is to reverse the decisions made
by the outer and nested structures. Figure 5-14 shows an example of this error in the golf fee
algorithm. The correct algorithm is included in the figure for comparison. Unlike the selection
structures in the correct algorithm, which determine the membership status before determining
the day of the week, the selection structures in the incorrect algorithm determine the day of the
week before determining the membership status. Consider how this difference changes the
algorithm. In the correct algorithm, the selection structures indicate that only non-members pay
an additional amount. The selection structures in the incorrect algorithm, on the other hand,
indicate that the additional amount is paid by anyone golfing on a weekday. Figure 5-15 shows
the results of desk-checking the incorrect algorithm. As indicated in the figure, only two of the
four results are correct.

Ch05A-
Second
Logic Error
Desk-Check
video

Logic Errors in Selection Structures L E S S ON A

269

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Desk-check
Membership
Status

Day
Information

Expected
Golf Fee Actual Result

1 member weekday $25 $45 (incorrect)
2 member weekend $25 $25 (correct)
3 non-member weekday $40 $40 (correct)
4 non-member weekend $45 $25 (incorrect)

Figure 5-15 Results of desk-checking the incorrect algorithm from Figure 5-14
ª 2013 Cengage Learning

Third Logic Error: Using an Unnecessary Nested Selection Structure
Another common error made when writing selection structures is to include an unnecessary
nested selection structure. In most cases, a selection structure containing this error will still
produce the correct results. However, it will do so less efficiently than selection structures that
are properly structured. Figure 5-16 shows an example of this error in the golf fee algorithm.
The correct algorithm is included in the figure for comparison. Unlike the correct algorithm,
which contains two selection structures, the inefficient algorithm contains three selection
structures. The condition in the third selection structure determines whether the day is a
weekend and is processed only when the second selection structure’s condition evaluates to
False. In other words, it is processed only when the day is not a weekday. However, if the day is
not a weekday, then it would have to be a weekend, so the third selection structure is
unnecessary. Figure 5-17 shows the results of desk-checking the inefficient algorithm. Although
the results of the four desk-checks are correct, the result of the second desk-check is obtained in
a less efficient manner.

Correct algorithm
1. golf fee = 25
2. if non-member
 if weekday
 add 15 to the golf fee
 else
 add 20 to the golf fee
 end if
 end if
3. display the golf fee

Incorrect algorithm
1. golf fee = 25
2. if weekday
 if non-member
 add 15 to the golf fee
 else
 add 20 to the golf fee
 end if

 end if
3. display the golf fee

the outer and nested
decisions are reversed

Figure 5-14 Correct algorithm and an incorrect algorithm containing the second logic error
ª 2013 Cengage Learning

Correct algorithm
1. golf fee = 25
2. if non-member
 if weekday
 add 15 to the golf fee
 else
 add 20 to the golf fee
 end if
 end if
3. display the golf fee

Inefficient algorithm
1. golf fee = 25
2. if non-member

 if weekday
 add 15 to the golf fee
 else
 if weekend
 add 20 to the golf fee
 end if
 end if
 end if
3. display the golf fee

unnecessary nested
selection structure

Figure 5-16 Correct algorithm and an inefficient algorithm containing the third logic error
ª 2013 Cengage Learning

Ch05A-Third
Logic Error
Desk-Check
video

CH A P T E R 5 More on the Selection Structure

270

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Fourth Logic Error: Including an Unnecessary Comparison
in a Condition
Another common error made when writing selection structures is to include an unnecessary
comparison in a condition. Like selection structures containing the third logic error, selection
structures containing this error also produce the correct results in an inefficient way. We’ll
demonstrate this error using the bonus rate procedure created for the Carrington Company.
Figure 5-18 shows the problem specification, a correct algorithm, and an inefficient algorithm
that contains the fourth logic error.

Unlike the nested selection structure in the correct algorithm, the nested selection structure in
the inefficient algorithm contains a compound condition that compares the sales to both 0 and
5000. Consider why the comparison to 0 in the compound condition is unnecessary. If the sales
are less than 0, the outer selection structure’s condition will evaluate to True. As a result, the
outer selection structure’s true path will assign the number 0 as the rate before the outer
selection structure ends. In other words, sales that are less than 0 will be handled by the outer
selection structure’s true path. The nested selection structure’s condition will be evaluated only

Membership
Status

member
member
non-member
non-member

Day
Information
weekday
weekend
weekday
weekend

Expected
Golf Fee
$25
$25
$40
$45

Actual Result
$25 (correct)
$25 (correct)
$40 (correct)
$45 (correct)

Desk-check

1
2
3
4

result obtained
in a less efficient
manner

Figure 5-17 Results of desk-checking the inefficient algorithm from Figure 5-16
Credit to Come

Problem Specification
Carrington Company wants an application that displays the rate to use when calculating a salesperson’s
bonus. The rates are as follows:

Sales ($)
Less than 0
0 – 5,000
Over 5,000

Bonus Rate
0

1.5%
1%

Correct algorithm
1. if sales < 0
 rate = 0
 else
 if sales <= 5000
 rate = .01
 else
 rate = .015
 end if
 end if
2. display the rate

Inefficient algorithm
1. if sales < 0
 rate = 0
 else
 if sales >= 0 and sales <= 5000
 rate = .01
 else
 rate = .015
 end if
 end if
2. display the rate

unnecessary
comparison

Figure 5-18 Problem specification, a correct algorithm, and an inefficient algorithm
ª 2013 Cengage Learning

Ch05A-
Fourth Logic
Error Desk-
Check video

In Figure 5-18,
you also can
write the nested
selection
structure’s if

clause in the correct
algorithm as follows: if
sales > 5000. However,
you then would need to
reverse the instructions
in the true and false
paths.

Logic Errors in Selection Structures L E S S ON A

271

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

when the sales are greater than or equal to 0. Therefore, the comparison to 0 is unnecessary in the
compound condition. Figure 5-19 shows the results of desk-checking the correct and inefficient
algorithms. Although the results of the three desk-checks for the inefficient algorithm are correct,
the results of the second and third desk-checks are obtained in a less efficient manner.

Note: You have learned a lot so far in this lesson. You may want to take a break at this point
before continuing.

Multiple-Alternative Selection Structures
Figure 5-20 shows the problem specification for the Allen High School application. The
application’s solution requires a selection structure that can choose from several different
letter grades. As the figure indicates, when the letter grade is A, the selection structure should
display the message “Excellent”. When the letter grade is B, the selection structure should
display the message “Above Average”, and so on. Selection structures containing several
alternatives are referred to as multiple-alternative selection structures or extended selection
structures.

Problem Specification

Mrs. Jackson teaches math at Allen High School. She wants an application that displays a message based
on a letter grade she enters. The valid letter grades and their corresponding messages are shown here.
If the letter grade is not valid, the application should display the “Incorrect Grade” message.
Letter grade Message
A Excellent
B Above Average
C Average
D Below Average
F Below Average

Figure 5-20 Problem specification for the Allen High School problem
ª 2013 Cengage Learning

Correct
Algorithm
Desk-check
1
2
3

Expected
Rate
0
.01
.015

Actual
Result
0 (correct)
.01 (correct)
.015 (correct)

Sales
–300
1000
5001

Inefficient
Algorithm
Desk-check
1
2
3

Expected
Rate
0
.01
.015

Actual
Result
0 (correct)
.01 (correct)
.015 (correct)

Sales
–300
1000
5001

results obtained in
a less efficient manner

Figure 5-19 Results of desk-checking the algorithms from Figure 5-18
ª 2013 Cengage Learning

CH A P T E R 5 More on the Selection Structure

272

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Figure 5-21 shows the pseudocode and flowchart for a procedure in the Allen High School
application. The diamond in the flowchart represents a multiple-alternative selection structure’s
condition. Recall that the diamond is also used to represent the condition in both the single-
alternative and dual-alternative selection structures. However, unlike the diamond in both of
those selection structures, the diamond in a multiple-alternative selection structure has several
flowlines (rather than only two flowlines) leading out of the symbol. Each flowline represents a
possible path and must be marked appropriately, indicating the value or values necessary for the
path to be chosen.

Figure 5-22 shows two versions of the code corresponding to the multiple-alternative selection
structure from Figure 5-21; both versions use If…Then…Else statements. Although both
versions produce the same result, Version 2 provides a more convenient way of coding a
multiple-alternative selection structure.

start

stop

grade

A

change the grade entered
by the user to uppercase

B C Other

display
“Above
Average”

display
“Average”

display
“Below
Average”

display
“Incorrect
Grade”

D, F

display
“Excellent”

1. change the grade entered by the user to uppercase
2. if the grade is one of the following:
 A display “Excellent”
 B display “Above Average”
 C display “Average”
 D, F display “Below Average”
 else
 display “Incorrect Grade”
 end if

Figure 5-21 Pseudocode and flowchart containing a multiple-alternative selection structure
ª 2013 Cengage Learning

Multiple-Alternative Selection Structures L E S S ON A

273

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

To code and then test the Allen High School application:

1. Open the Grade Solution (Grade Solution.sln) file contained in the VB2012\Chap05\
Grade Solution-If folder. If necessary, open the designer window.

2. Open the Code Editor window. Replace <your name> and <current date> in the
comments with your name and the current date, respectively.

3. Locate the btnDisplay_Click procedure. Enter the code from Version 2 in Figure 5-22.

4. Save the solution and then start the application. Type the letter a and then press Enter.
The “Excellent” message appears in the interface. See Figure 5-23.

only one End If
clause is required

four End If clauses
are required

you get here when
the grade is not A,
B, C, D, or F

you get here when
the grade is not A
and not B

you get here when
the grade is not A,
B, or C

you get here when
the grade is not A

Version 1
Dim strGrade As String

strGrade = txtGrade.Text.ToUpper
If strGrade = "A" Then
 lblMsg.Text = "Excellent"
Else
 If strGrade = "B" Then
 lblMsg.Text = "Above Average"
 Else
 If strGrade = "C" Then
 lblMsg.Text = "Average"
 Else
 If strGrade = "D" OrElse strGrade = "F" Then
 lblMsg.Text = "Below Average"
 Else
 lblMsg.Text = "Incorrect Grade"
 End If
 End If
 End If
End If

Version 2
Dim strGrade As String

strGrade = txtGrade.Text.ToUpper
If strGrade = "A" Then
 lblMsg.Text = "Excellent"
ElseIf strGrade = "B" Then
 lblMsg.Text = "Above Average"
ElseIf strGrade = "C" Then
 lblMsg.Text = "Average"
ElseIf strGrade = "D" OrElse strGrade = "F" Then
 lblMsg.Text = "Below Average"
Else
 lblMsg.Text = "Incorrect Grade"
 End If

Figure 5-22 Two versions of the code containing a multiple-alternative selection structure
ª 2013 Cengage Learning

START HERE

CH A P T E R 5 More on the Selection Structure

274

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

5. On your own, test the application using the following grades: b, c, d, x, and f. When
you are finished testing, click the Exit button. Close the Code Editor window and then
close the solution.

YOU DO IT 2!

Create a Visual Basic Windows application named YouDoIt 2. Save the application in the
VB2012\Chap05 folder. Add a text box, a label, and a button to the form. The button’s
Click event procedure should display (in the label) either the price of a concert ticket or
an error message. The ticket price is based on the code entered in the text box, as
shown here. Code the procedure. Save the solution and then start and test the applica-
tion. Close the solution.

Code Ticket price

1 $15
2 $15
3 $25
4 $35
5 $37
Other Invalid code

The Select Case Statement
When a multiple-alternative selection structure has many paths from which to choose, it is often
simpler and clearer to code the selection structure using the Select Case statement rather than
several If…Then…Else statements. The Select Case statement’s syntax is shown in Figure 5-24.
The figure also shows how you can use the statement to code the multiple-alternative selection
structure from Figure 5-22.

Figure 5-23 Excellent message shown in the interface

The Select Case Statement L E S S ON A

275

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

The Select Case statement begins with the keywords Select Case, followed by a
selectorExpression. The selectorExpression can contain any combination of variables, constants,
keywords, functions, methods, operators, and properties. In the example in Figure 5-24, the
selectorExpression is a String variable named strGrade. The Select Case statement ends with
the End Select clause. Between the Select Case and End Select clauses are the individual Case
clauses. Each Case clause represents a different path that the computer can follow. It is
customary to indent each Case clause and the instructions within each Case clause, as shown in
the figure. You can have as many Case clauses as necessary in a Select Case statement. However,
if the Select Case statement includes a Case Else clause, the Case Else clause must be the last
clause in the statement.

Each of the individual Case clauses, except the Case Else clause, must contain an expressionList,
which can include one or more expressions. To include more than one expression in an
expressionList, you separate each expression with a comma, as in the expressionList Case "D",
"F". The selectorExpression needs to match only one of the expressions listed in an
expressionList. The data type of the expressions must be compatible with the data type of the
selectorExpression. If the selectorExpression is numeric, the expressions in the Case clauses
should be numeric. Likewise, if the selectorExpression is a string, the expressions should be
strings. In the example in Figure 5-24, the selectorExpression (strGrade) is a string, and so are
the expressions "A", "B", "C", "D", and "F".

The Select Case statement looks more complicated than it really is. When processing the
statement, the computer simply compares the value of the selectorExpression with the value or

Select Case Statement
Syntax
Select Case selectorExpression
 Case expressionList1

 instructions for the first Case
[Case expressionList2
 instructions for the second Case]
[Case expressionListN
 instructions for the Nth Case]
[Case Else
 instructions for when the selectorExpression does not match any of the expressionLists]

End Select

Example

Dim strGrade As String

strGrade = txtGrade.Text.ToUpper
Select Case strGrade
 Case "A"
 lblMsg.Text = "Excellent"
 Case "B"
 lblMsg.Text = "Above Average"
 Case "C"
 lblMsg.Text = "Average"
 Case "D", "F"
 lblMsg.Text = "Below Average"
 Case Else
 lblMsg.Text = "Incorrect Grade"
End Select

the selectorExpression
needs to match only
one of these values

Figure 5-24 Syntax and an example of the Select Case statement
ª 2013 Cengage Learning

CH A P T E R 5 More on the Selection Structure

276

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

values listed in each of the Case clauses, one Case clause at a time beginning with the first.
If the selectorExpression matches at least one of the values listed in a Case clause, the computer
processes only the instructions contained in that Case clause. After the Case clause instructions
are processed, the Select Case statement ends and the computer skips to the instruction
following the End Select clause. For instance, if the strGrade variable in the example shown in
Figure 5-24 contains the letter A, the computer will display the “Excellent” message and then
skip to the instruction following the End Select clause. Similarly, if the strGrade variable
contains the letter F, the computer will display the “Below Average” message and then skip to
the instruction following the End Select clause. Keep in mind that if the selectorExpression
matches a value in more than one Case clause, only the instructions in the first match’s Case
clause are processed.

If the selectorExpression does not match any of the values listed in any of the Case clauses, the
next instruction processed depends on whether the Select Case statement contains a Case Else
clause. If there is a Case Else clause, the computer processes the instructions in that clause and
then skips to the instruction following the End Select clause. (Recall that the Case Else clause
and its instructions immediately precede the End Select clause.) If there isn’t a Case Else clause,
the computer just skips to the instruction following the End Select clause.

To use the Select Case statement to code the Allen High School application:

1. Open the Grade Solution (Grade Solution.sln) file contained in the VB2012\Chap05\
Grade Solution-Select Case folder. If necessary, open the designer window.

2. Open the Code Editor window. Replace <your name> and <current date> in the
comments with your name and the current date, respectively.

3. Locate the btnDisplay_Click procedure. Enter the code shown in Figure 5-24.

4. Save the solution and then start the application. Type the letter a and then press Enter.
The “Excellent” message appears in the interface, as shown earlier in Figure 5-23.

5. On your own, test the application using the following grades: b, c, d, x, and f. When you
are finished testing, click the Exit button. Close the Code Editor window and then close
the solution.

Specifying a Range of Values in a Case Clause
In addition to specifying one or more discrete values in a Case clause, you also can specify
a range of values, such as the values 1 through 4 or values greater than 10. You do this using
either the keyword To or the keyword Is. You use the To keyword when you know both the
upper and lower values in the range. The Is keyword is appropriate when you know only one
end of the range (either the upper or lower end). Figure 5-25 shows the syntax for using both
keywords. It also contains an example of a Select Case statement that assigns a price based
on the number of items ordered. According to the price chart shown in the figure, the price for
1 to 5 items is $25 each. Using discrete values, the first Case clause would look like this: Case 1,
2, 3, 4, 5. However, a more convenient way of writing that range of numbers is to use the To
keyword, like this: Case 1 To 5. The expression 1 To 5 specifies the range of numbers from 1 to 5,
inclusive. The expression 6 To 10 in the second Case clause in the example specifies the range of
numbers from 6 through 10. Notice that both Case clauses state both the lower (1 and 6) and
upper (5 and 10) values in each range.

The third Case clause, Case Is > 10, contains the Is keyword rather than the To keyword. Recall
that you use the Is keyword when you know only one end of the range of values. In this case,
you know only the lower end of the range, 10. The Is keyword is always used in combination
with one of the following comparison operators: =, <, <=, >, >=, <>. The Case Is > 10 clause
specifies all numbers greater than the number 10. Because intQuantity is an Integer variable,
you also can write this Case clause as Case Is >= 11. The Case Else clause in the example in

Ch05A-
Select Case
video

START HERE

If you neglect to
type the Is
keyword in an
expressionList—
for example, if

you enter Case > 10—
the Code Editor will
change the clause to
Case Is > 10.

The Select Case Statement L E S S ON A

277

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Figure 5-25 is processed only when the intQuantity variable contains a value that is not
included in any of the previous Case clauses.

To code and then test the ABC Corporation application:

1. Open the ABC Solution (ABC Solution.sln) file contained in the VB2012\Chap05\ABC
Solution folder. If necessary, open the designer window.

2. Open the Code Editor window. Replace <your name> and <current date> in the
comments with your name and the current date, respectively.

3. Locate the btnDisplay_Click procedure. Click the blank line below the ' determine
the price per item comment and then enter the Select Case statement shown in
Figure 5-25.

4. Save the solution and then start the application. Type 7 in the Quantity ordered box and
then press Enter. $23.00 appears in the Price per item box. See Figure 5-26.

Specifying a Range of Values in a Case Clause
Syntax
Case smallest value in the range To largest value in the range
Case Is comparisonOperator value

Example
The ABC Corporation’s price chart is shown here:

Quantity ordered
1 – 5
6 – 10
More than 10
Less than 1

Price per item
$25
$23
$20
$0

Select Case intQuantity
 Case 1 To 5
 intPrice = 25
 Case 6 To 10
 intPrice = 23
 Case Is > 10
 intPrice = 20
 Case Else
 intPrice = 0
End Select

Figure 5-25 Syntax and an example of specifying a range of values
ª 2013 Cengage Learning

Figure 5-26 Price per item shown in the interface

Be sure to test
your code
thoroughly
because the
computer will not

display an error message
when the value preceding
To in a Case clause is
greater than the value
following To. Instead, the
Select Case statement
will not give the correct
results.

START HERE

CH A P T E R 5 More on the Selection Structure

278

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

5. On your own, test the application using 6, 11, and 0 as the quantity ordered. When you
are finished testing, click the Exit button. Close the Code Editor window and then close
the solution.

YOU DO IT 3!

Create a Visual Basic Windows application named YouDoIt 3. Save the application in the
VB2012\Chap05 folder. Add a text box, a label, and a button to the form. The button’s
Click event procedure should display (in the label) either the price of a concert ticket or
an error message. The ticket price is based on the code entered in the text box, as
shown here. Code the procedure using the Select Case statement. Save the solution and
then start and test the application. Close the solution.

Code Ticket price

1 $15
2 $15
3 $25
4 $35
5 $37
Other Invalid code

Lesson A Summary
l To create a selection structure that evaluates both a primary and a secondary decision:

Place (nest) the secondary decision’s selection structure within either the true or false path of
the primary decision’s selection structure.

l To verify that an algorithm works correctly:

Desk-check (hand-trace) the algorithm.

l To code a multiple-alternative selection structure:

Use either If…Then…Else statements or the Select Case statement.

l To specify a range of values in a Select Case statement’s Case clause:
Use the To keyword when you know both the upper and lower values in the range. Use the
Is keyword when you know only one end of the range. The Is keyword is used in
combination with one of the following comparison operators: =, <, <=, >, >=, <>.

Lesson A Key Terms
Algorithm—a set of step-by-step instructions for accomplishing a task

Desk-checking—the process of using sample data to manually walk through the steps in an
algorithm; also called hand-tracing

Extended selection structures—another name for multiple-alternative selection structures

Hand-tracing—another term for desk-checking

Lesson A Key Terms L E S S ON A

279

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Multiple-alternative selection structures—selection structures that contain several alternatives;
also called extended selection structures; can be coded using either If…Then…Else statements
or the Select Case statement

Nested selection structure—a selection structure that is wholly contained (nested) within either
the true or false path of another selection structure

Select Case statement—used to code a multiple-alternative selection structure in Visual Basic

Lesson A Review Questions
Use the code shown in Figure 5-27 to answer Review Questions 1 through 4.

1. If the intNum variable contains the number 600, what value will be in the variable after
the code in Figure 5-27 is processed?

a. 0

b. 600

c. 1200

d. 1800

2. If the intNum variable contains the number 1000, what value will be in the variable after
the code in Figure 5-27 is processed?

a. 0

b. 1000

c. 2000

d. 3000

3. If the intNum variable contains the number 500, what value will be in the variable after
the code in Figure 5-27 is processed?

a. 0

b. 500

c. 1000

d. 1500

4. If the intNum variable contains the number 2000, what value will be in the variable after
the code in Figure 5-27 is processed?

a. 0

b. 2000

c. 4000

d. 6000

If intNum > 1000 Then
 intNum = intNum * 3
ElseIf intNum > 500 Then
 intNum = intNum * 2
End If

Figure 5-27 Code for Review Questions 1 through 4
ª 2013 Cengage Learning

CH A P T E R 5 More on the Selection Structure

280

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Use the code shown in Figure 5-28 to answer Review Questions 5 through 8.

5. What will the code in Figure 5-28 display when the intId variable contains
the number 2?

a. Janet

b. Jerry

c. Mark

d. Sue

6. What will the code in Figure 5-28 display when the intId variable contains
the number 4?

a. Janet

b. Jerry

c. Mark

d. Sue

7. What will the code in Figure 5-28 display when the intId variable contains the
number 3?

a. Janet

b. Jerry

c. Mark

d. Sue

8. What will the code in Figure 5-28 display when the intId variable contains the
number 8?

a. Janet

b. Jerry

c. Mark

d. Sue

9. A nested selection structure can appear .

a. only in an outer selection structure’s false path

b. only in an outer selection structure’s true path

c. in either an outer selection structure’s true path or its false path

If intId = 1 Then
 lblName.Text = "Janet"
ElseIf intId = 2 Then
 lblName.Text = "Mark"
ElseIf intId = 3 OrElse intId = 4 Then
 lblName.Text = "Jerry"
Else
 lblName.Text = "Sue"
End If

Figure 5-28 Code for Review Questions 5 through 8
ª 2013 Cengage Learning

Lesson A Review Questions L E S S ON A

281

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

10. Which of the following Case clauses is valid in a Select Case statement whose
selectorExpression is an Integer variable named intCode?

a. Case Is > 7

b. Case 3, 5

c. Case 1 To 4

d. all of the above

Use the code shown in Figure 5-29 to answer Review Questions 11 through 13.

11. What will the code in Figure 5-29 display when the intId variable contains the
number 2?

a. Janet

b. Mark

c. Jerry

d. Sue

12. What will the code in Figure 5-29 display when the intId variable contains the
number 3?

a. Janet

b. Mark

c. Jerry

d. Sue

13. What will the code in Figure 5-29 display when the intId variable contains the
number 6?

a. Janet

b. Mark

c. Jerry

d. Sue

14. List the four errors commonly made when writing selection structures. Which errors
produce the correct results, but in a less efficient way?

15. Explain the meaning of the term “desk-checking.”

Select Case intId
 Case 1
 lblName.Text = "Janet"
 Case 2 To 4
 lblName.Text = "Mark"
 Case 5, 7
 lblName.Text = "Jerry"
 Case Else
 lblName.Text = "Sue"
End Select

Figure 5-29 Code for Review Questions 11 through 13
ª 2013 Cengage Learning

CH A P T E R 5 More on the Selection Structure

282

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Lesson A Exercises

1. Travis is standing in front of two containers: one marked Trash and the other marked
Recycle. In his right hand, he is holding a bag that contains either trash or recyclables.
Travis needs to lift the lid from the appropriate container (if necessary), then drop the
bag in the container, and then put the lid back on the container. Write an appropriate
algorithm, using only the instructions listed in Figure 5-30.

else

end if

drop the bag of recyclables in the Recycle container

drop the bag of trash in the Trash container

if the bag contains trash

if the lid is on the Recycle container

if the lid is on the Trash container

lift the Recycle container’s lid using your left hand

lift the Trash container’s lid using your left hand

put the lid back on the Recycle container using your left hand

put the lid back on the Trash container using your left hand

Figure 5-30 Instructions for Exercise 1
ª 2013 Cengage Learning

2. Caroline is at a store’s checkout counter. She’d like to pay for her purchase using one of
her credit cards—either her Discovery card or her Vita card, but preferably her
Discovery card. However, she is not sure whether the store accepts either card. If the
store doesn’t accept either card, she will need to pay cash for the items. Write an
appropriate algorithm, using only the instructions listed in Figure 5-31.

else

end if

pay for your items using your Vita card

pay for your items using your Discovery card

pay for your items using cash

if the store accepts the Vita card

if the store accepts the Discovery card

ask the store clerk whether the store accepts the Vita card

ask the store clerk whether the store accepts the Discovery card

Figure 5-31 Instructions for Exercise 2
ª 2013 Cengage Learning

INTRODUCTORY

INTRODUCTORY

Lesson A Exercises L E S S ON A

283

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

3. What is wrong with the algorithm shown in Figure 5-32?

1. shoot the basketball

2. if the basketball went through the hoop

say “I did it!”

else

if the basketball did not go through the hoop

say “Missed it!”

end if

end if

Figure 5-32 Algorithm for Exercise 3
ª 2013 Cengage Learning

4. Write the Visual Basic code for the algorithm shown in Figure 5-10 in this lesson.
The membership status (either N for non-member or M for member) is stored, in
uppercase, in a variable named strStatus. The day of the week information (either D
for weekday or E for weekend) is stored, in uppercase, in a variable named strDay.
Assign the fee to a variable named intFee. Display the fee in the lblFee control.

5. Write the Visual Basic code that displays the message “Highest honors” when a
student’s test score is 90 or above. When the test score is 70 through 89, display
the message “Good job”. For all other test scores, display the message “Retake the test”.
The test score is stored in the intScore variable. Display the appropriate message
in the lblMsg control. Code the multiple-alternative selection structure using the
If…Then…Else statement.

6. Rewrite the code from Exercise 5 using the Select Case statement.

7. Open the Movie Ticket Solution (Movie Ticket Solution.sln) file contained in the
VB2012\Chap05\Movie Ticket Solution folder. If necessary, open the designer window.
Use the If…Then…Else statement to code the If…Then…Else button’s Click event
procedure. Use the Select Case statement to code the Select Case button’s Click
event procedure. Both procedures should display the appropriate ticket price, which
is based on the customer’s age as shown here. Save the solution and then start the
application. Test each button’s Click event procedure five times, using the numbers
1, 3, 64, 65, and 70.

Age Price ($)

Under 3 0
3 to 64 9
65 and over 6

INTRODUCTORY

INTRODUCTORY

INTRODUCTORY

INTRODUCTORY

INTRODUCTORY

CH A P T E R 5 More on the Selection Structure

284

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

8. Does the algorithm in Figure 5-33 give you the same results as the solution shown in
Figure 5-4 in this lesson? If not, why not?

1. shoot the basketball

2. if the basketball went through the hoop and Maleek was either inside or on the 3-point line

say “I did it!”

say “2 points for me”

else

if Maleek was behind the 3-point line

say “I did it!”

say “3 points for me”

else

say “Missed it!”

end if

end if

Figure 5-33 Algorithm for Exercise 8
ª 2013 Cengage Learning

9. Does the algorithm in Figure 5-34 give you the same results as the solution shown in
Figure 5-4 in this lesson? If not, why not?

1. shoot the basketball

2. if the basketball did not go through the hoop

say “Missed it!”

else

say “I did it!”

if Maleek was either inside or on the 3-point line

say “2 points for me”

else

say “3 points for me”

end if

end if

Figure 5-34 Algorithm for Exercise 9
ª 2013 Cengage Learning

10. Open the Rate Solution (Rate Solution.sln) file contained in the VB2012\Chap05\Rate
Solution folder. If necessary, open the designer window. Use the Select Case statement
to finish coding the Display button’s Click event procedure. Use the partial flowchart
shown in Figure 5-35 as a guide. Display the rate formatted with a percent sign and no
decimal places. Save the solution and then start and test the application. Close the Code
Editor window and then close the solution.

INTERMEDIATE

INTERMEDIATE

INTERMEDIATE

Lesson A Exercises L E S S ON A

285

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

11. Open the Kettleson Solution (Kettleson Solution.sln) file contained in the
VB2012\Chap05\Kettleson Solution folder. Open the Code Editor window. The
txtSales control should accept only numbers, the period, and the Backspace key; code
the appropriate procedure. Now, locate the btnCalc_Click procedure. The procedure
calculates a 2% bonus when the annual sales are over $15,000; otherwise, it calculates a
1.5% bonus. Modify the procedure to use the bonus rates shown here. Use the
If…Then…Else statement to code the multiple-alternative selection structure. Save the
solution and then start the application. Test the application seven times, using 2500,
16000, 15000, 15000.99, 20000, 50000, and 65000 as the annual sales. Close the Code
Editor window and then close the solution.

Annual sales ($) Bonus rate

0 – 15,000 1.5%
15,000.01 – 25,000 2%
25,000.01 – 50,000 3%
Over 50,000 4%

12. In this exercise, you modify the Kettleson application from Exercise 11. Use Windows to
make a copy of the Kettleson Solution folder. Rename the copy Modified Kettleson
Solution. Open the Kettleson Solution (Kettleson Solution.sln) file contained in the
Modified Kettleson Solution folder. Open the designer and Code Editor windows.
Locate the btnCalc_Click procedure. Code the multiple-alternative selection structure
using the Select Case statement rather than the If…Then…Else statement. Save the
solution and then start the application. Test the application seven times, using 2500,
16000, 15000, 15000.99, 20000, 50000, and 65000 as the annual sales. Close the Code
Editor window and then close the solution.

13. Open the Jerrili Solution (Jerrili Solution.sln) file contained in the VB2012\Chap05\
Jerrili Solution folder. Open the Code Editor window. The txtPrice control should
accept only numbers, the period, and the Backspace key; code the appropriate

code

1, 2, 3 4, 5 6 Other

rate = .03 rate = .07 rate = .12

7

rate = .14 rate = –1

rate = –1 TF

display rate in
lblRate

display
“Invalid code”
in lblRate

Figure 5-35 Flowchart for Exercise 10
ª 2013 Cengage Learning

INTERMEDIATE

INTERMEDIATE

INTERMEDIATE

CH A P T E R 5 More on the Selection Structure

286

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

procedure. The txtQuantity control should accept only numbers and the Backspace key;
code the appropriate procedure. Jerrili’s now uses the discount rates shown here. Make
the appropriate modifications to the btnCalc_Click procedure. Save the solution and
then start and test the application. Close the Code Editor window and then close the
solution.

Quantity purchased Discount rate

0 – 5 0
6 – 15 2%
16 – 30 3%
Over 30 4%

14. Open the Bonus Solution (Bonus Solution.sln) file contained in the VB2012\Chap05\
Bonus Solution folder. If necessary, open the designer window. Open the Code Editor
window. The Calculate button’s Click event procedure should assign the number 25 to
the intBonus variable when the user enters a sales amount that is greater than or equal
to $100, but less than or equal to $250. When the user enters a sales amount that is
greater than $250, the procedure should assign the number 50 to the variable. When the
user enters a sales amount that is less than $100, the procedure should assign the
number 0 as the bonus. Use the If…Then…Else statement to code the multiple-
alternative selection structure. Save the solution and then start the application. Test the
Calculate button’s code three times, using sales amounts of 100, 300, and 40. Close the
Code Editor window and then close the solution.

15. In this exercise, you modify the Bonus application from Exercise 14. Use Windows to
make a copy of the Bonus Solution folder. Rename the copy Modified Bonus Solution.
Open the Bonus Solution (Bonus Solution.sln) file contained in the Modified Bonus
Solution folder. Open the designer and Code Editor windows. Locate the btnCalc_Click
procedure. Code the multiple-alternative selection structure using the Select Case
statement rather than the If…Then…Else statement. Save the solution and then start the
application. Test the Calculate button’s code three times, using sales amounts of 100,
300, and 40. Close the Code Editor window and then close the solution.

16. Open the Blane Solution (Blane Solution.sln) file contained in the VB2012\Chap05\
Blane Solution folder. If necessary, open the designer window. Blane Ltd. sells
economic development software to cities around the country. The company is having its
annual user’s forum next month. The price per person depends on the number of people
a user registers. The first 3 people a user registers are charged $150 per person.
Registrants 4 through 10 are charged $100 per person. Registrants over 10 are charged
$60 per person. For example, if a user registers 8 people, then the total amount owed is
$950. The $950 is calculated by first multiplying 3 by 150, giving 450. You then multiply
5 by 100, giving 500. You then add the 500 to the 450, giving 950. Display the total
amount owed in the lblTotalOwed control. Use the Select Case statement to complete
the Calculate button’s Click event procedure. Save the solution and then start and test
the application. Close the Code Editor window and then close the solution.

INTERMEDIATE

INTERMEDIATE

ADVANCED

Lesson A Exercises L E S S ON A

287

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

& LESSON B
After studying Lesson B, you should be able to:

l Include a group of radio buttons in an interface

l Designate a default radio button

l Include a check box in an interface

l Compare Boolean values

Modifying the Covington Resort Application
Your task in this chapter is to modify the Covington Resort application created in Chapter 4.
In addition to the previous input data, the application’s interface will now allow the user to
select the number of beds (either two queen beds or one king bed), the view (either standard or
atrium), and whether the guest should be charged a vehicle parking fee of $12.75 per night.
In addition to displaying the total room charge, the sales and lodging tax, the resort fee, and
the total due, the application should now also display the total parking fee. Figure 5-36
shows the application’s revised TOE chart. The changes made to the original TOE chart from
Chapter 4 are shaded in the figure.

Task Object Event
1. Calculate the total room charge, tax, total resort

fee, total parking fee, and total due
btnCalc Click

2. Display the calculated amounts in lblRoomChg,
lblTax, lblResortFee, lblParkingFee, and
lblTotalDue

End the application btnExit Click

Display the total room charge (from btnCalc) lblRoomChg None

Display the tax (from btnCalc) lblTax None

Display the total resort fee (from btnCalc) lblResortFee None

Display the total parking fee (from btnCalc) lblParkingFee None

Display the total due (from btnCalc) lblTotalDue None

Specifies whether the guest should be charged
the vehicle parking fee

chkParkingFee None

Get and display the number of rooms reserved,
number of nights, number of adults, and number
of children

txtRooms, txtNights,
txtAdults, txtChildren,

None

Get number of beds radQueen, radKing None

Get room view radStandard, radAtrium None

Figure 5-36 Revised TOE chart for the Covington Resort application (continues)

CH A P T E R 5 More on the Selection Structure

288

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Task Object Event

Clear the contents of lblRoomChg, lblTax,
lblResortFee, lblParkingFee, and lblTotalDue

txtRooms, txtNights,
txtAdults, txtChildren

TextChanged

radQueen, radKing,
radStandard, radAtrium,
chkParkingFee

CheckedChanged

Allow the text box to accept only numbers
and the Backspace key

txtRooms, txtNights,
txtAdults, txtChildren

KeyPress

Select the contents of the text box txtRooms, txtNights,
txtAdults, txtChildren

Enter

Figure 5-36 Revised TOE chart for the Covington Resort application
ª 2013 Cengage Learning

The revised TOE chart indicates that the interface will now include six additional controls: a
label, a check box, and four radio buttons. The additional label will be used to display the total
parking fee. The check box will allow the user to specify whether the vehicle parking fee is
applicable to the guest. Two of the four radio buttons will allow the user to specify the number
of beds, while the other two will allow him or her to specify the room view.

To open the Covington Resort application:

1. If necessary, start Visual Studio 2012. Open the Covington Resort Solution (Covington
Resort Solution.sln) file contained in the VB2012\Chap05\Covington Resort Solution
folder. If necessary, open the designer window. See Figure 5-37. Four of the additional
six controls listed in the TOE chart have already been added to the interface.
The interface also includes two group boxes that will serve as containers for the radio
buttons. (Controls whose purpose is to contain other controls are usually not listed
in the TOE chart.) Missing from the interface are the Atrium radio button and the
Vehicle parking fee check box.

START HERE

(continued)

Modifying the Covington Resort Application L E S S ON B

289

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Adding a Radio Button to the Interface
You create a radio button using the RadioButton tool in the toolbox. Radio buttons allow you to
limit the user to only one choice from a group of two or more related but mutually exclusive
choices. Each radio button in an interface should be labeled so the user knows the choice it
represents. You enter the label using sentence capitalization in the radio button’s Text property.
Each radio button should also have a unique access key that allows the user to select the button
using the keyboard. The three-character ID for a radio button’s name is rad.

The Covington Resort interface will use two groups of radio buttons: one for selecting the
number of beds and one for selecting the room view. To include two groups of radio buttons in
an interface, at least one of the groups must be placed within a container, such as a group box.
Otherwise, the radio buttons are considered to be in the same group and only one can be
selected at any one time. In this case, the radio buttons pertaining to the number of beds are
contained in the Type group box, and the radio buttons pertaining to the room view are
contained in the View group box. Placing each group of radio buttons in a separate group box
allows the user to select one button from each group. During run time, you can determine
whether a radio button is selected or unselected by looking at the value in its Checked property.
If the property contains the Boolean value True, the radio button is selected. If it contains
the Boolean value False, the radio button is not selected.

Keep in mind that the minimum number of radio buttons in a group is two; this is because
the only way to deselect a radio button is to select another radio button. The recommended
maximum number of radio buttons in a group is seven. In the next set of steps, you will add the
missing Atrium radio button to the View group box.

To add the Atrium radio button to the View group box:

1. Click the RadioButton tool in the toolbox and then drag the mouse pointer into the
View group box, placing it below the Standard radio button. Release the mouse button.
The RadioButton1 control appears in the group box.

this group box
contains the
radQueen and
radKing controls

this group box
contains the
radStandard
control

lblParkingFee

Figure 5-37 Partially completed interface for the Covington Resort application

START HERE

Ch05B video

CH A P T E R 5 More on the Selection Structure

290

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

2. Change the RadioButton1 control’s name to radAtrium, and then change its Text
property to A&trium. If necessary, position the radio button as shown in Figure 5-38.

It is customary in Windows applications to have one of the radio buttons in each group already
selected when the user interface first appears. The automatically selected radio button is called
the default radio button and is either the radio button that represents the user’s most likely
choice or the first radio button in the group. You designate the default radio button by setting
the button’s Checked property to the Boolean value True.

To designate a default radio button in each group:

1. Click the Two queen radio button and then use the Properties window to set the radio
button’s Checked property to True. When you do this, a colored dot appears inside the
button’s circle to indicate that the button is selected.

2. Now set the Standard radio button’s Checked property to True.

GUI DESIGN TIP Radio Button Standards

l Use radio buttons to limit the user to one choice in a group of related but mutually
exclusive choices.

l The minimum number of radio buttons in a group is two and the recommended
maximum number is seven.

l The label in the radio button’s Text property should be entered using sentence
capitalization.

l Assign a unique access key to each radio button in an interface.

l Use a container (such as a group box) to create separate groups of radio buttons.
Only one button in each group can be selected at any one time.

l Designate a default radio button in each group of radio buttons.

Adding a Check Box to the Interface
You create a check box using the CheckBox tool in the toolbox. Like radio buttons, check
boxes can be either selected or deselected. Also like radio buttons, you can determine whether a
check box is selected by looking at the value in its Checked property during run time: A True
value indicates that the check box is selected, whereas a False value indicates that it is not
selected. However, unlike radio buttons, check boxes provide one or more independent and
nonexclusive items from which the user can choose. Whereas only one button in a group

radAtrium
control

Figure 5-38 Atrium radio button added to the View group box

START HERE

Modifying the Covington Resort Application L E S S ON B

291

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

of radio buttons can be selected at any one time, any number of check boxes on a form can be
selected at the same time. Each check box in an interface should be labeled to make its
purpose obvious. You enter the label using sentence capitalization in the check box’s Text
property. Each check box should also have a unique access key that allows the user to select it
using the keyboard. The three-character ID for a check box’s name is chk.

To add a check box to the interface:

1. Click the CheckBox tool in the toolbox and then drag the mouse pointer onto the form.
Position it to the right of the View group box and then release the mouse button.

2. Change the CheckBox1 control’s name to chkParkingFee, and then change its Text
property to &Vehicle parking fee. Position the check box as shown in Figure 5-39.

GUI DESIGN TIP Check Box Standards

l Use check boxes to allow the user to select any number of choices from a group of
one or more independent and nonexclusive choices.

l The label in the check box’s Text property should be entered using sentence
capitalization.

l Assign a unique access key to each check box in an interface.

Now that you have completed the user interface, you can lock the controls in place and then set
each control’s TabIndex property.

To lock the controls and then set each control’s TabIndex property:

1. Right-click the form and then click Lock Controls on the context menu.

2. Click VIEW on the menu bar and then click Tab Order. Use the information shown in
Figure 5-40 to set the TabIndex values for the controls. (As you learned in Chapter 2,
picture boxes do not have a TabIndex property.) When you are finished, press Esc to
remove the TabIndex boxes from the form.

START HERE

chkParkingFee
control

Figure 5-39 Vehicle parking fee check box added to the interface

START HERE

CH A P T E R 5 More on the Selection Structure

292

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Next, you will start the application to observe how you select and deselect radio buttons and
check boxes.

To select and deselect radio buttons and check boxes:

1. Save the solution and then start the application. Notice that the Two queen and
Standard radio buttons are already selected.

2. You can select a different radio button by clicking it. You can click either the circle or
the text that appears inside the radio button. Click the One king radio button. The
computer selects the One king radio button as it deselects the Two queen radio button.
This is because both radio buttons belong to the same group and only one radio button
in a group can be selected at any one time.

3. Click the Atrium radio button. The computer selects the Atrium radio button as it
deselects the Standard radio button. Here again, the radio buttons associated with the
room view belong to the same group, so selecting one deselects the other.

4. You can select a check box by clicking either the square or the text that appears inside
the control. Click the Vehicle parking fee check box to select it. A check mark appears
inside the check box to indicate that the check box is selected. Now, click the Vehicle
parking fee check box again. This time the check box is deselected, as the absence of the
check mark indicates.

5. Click the Exit button.

Modifying the Calculate Button’s Code
According to the application’s TOE chart (shown earlier in Figure 5-36), the Calculate button’s
Click event procedure will now need to calculate and display the total parking fee. However, that
is not the only modification you will need to make to the procedure. You will also need to
change the way it calculates the total room charge because the daily room charge now depends
on both the number of beds and the room view. Figure 5-41 shows the modified pseudocode for
the btnCalc_Click procedure. The changes made to the original pseudocode from Chapter 4 are
shaded in the figure. Notice that the outer selection structure’s false path now includes a nested

Figure 5-40 Correct TabIndex values

START HERE

Modifying the Calculate Button’s Code L E S S ON B

293

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

dual-alternative selection structure and a nested single-alternative selection structure. Each path
in the nested dual-alternative selection structure also contains a nested dual-alternative selection
structure.

Figure 5-42 contains a list of the named constants and variables the btnCalc_Click
procedure will now use. The changes made to the list of named constants and variables
from Chapter 4 are shaded in the figure. Notice that the procedure will no longer use the
intDAILY_ROOM_CHG named constant, whose value is $284. In the modified Covington
Resort application, the daily room charge varies depending on the radio buttons selected in
the interface. Therefore, the btnCalc_Click procedure will need four named constants to
represent the four different daily room charges ($284, $325, $290, and $350). The fifth
named constant you will add to the procedure, dblDAILY_PARKING_FEE, will store the daily
vehicle parking fee, which is $12.75. The two additional variables added to the procedure
will store the total parking fee and the appropriate daily room charge.

nested dual-
alternative
selection
structure

nested single-
alternative
selection
structure

nested dual-alternative
selection structure

nested dual-alternative
selection structure

btnCalc Click event procedure
1. store user input (numbers of rooms reserved, nights, adults, and children) in variables
2. calculate the total number of guests = number of adults + number of children
3. calculate the number of rooms required = total number of guests / maximum number
 of guests per room, which is 6
4. if the number of rooms reserved < number of rooms required
 display the message “You have exceeded the maximum guests per room.”
 else

 if the Two queen radio button is selected
 if the Standard radio button is selected
 daily room charge is $284
 else
 daily room charge is $325
 end if
 else
 if the Standard radio button is selected
 daily room charge is $290
 else
 daily room charge is $350
 end if
 end if
 calculate total room charge = number of rooms reserved * number of nights
 * daily room charge
 calculate tax = total room charge * tax rate of 15.25%
 calculate total resort fee = number of rooms reserved * number of nights
 * daily resort fee of $15
 if the Vehicle parking fee check box is selected
 calculate total parking fee = number of nights * 12.75
 end if
 calculate total due = total room charge + tax + total resort fee + total parking fee
 display total room charge, tax, total resort fee, total parking fee, and total due
end if

Figure 5-41 Modified pseudocode for the btnCalc_Click procedure
ª 2013 Cengage Learning

CH A P T E R 5 More on the Selection Structure

294

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

To begin modifying the btnCalc_Click procedure:

1. Open the Code Editor window. Replace <your name> and <current date> in the
comments with your name and the current date, respectively.

2. Locate the btnCalc_Click procedure. First, you’ll modify the Const section of the
procedure. Delete the second Const statement, which says Const intDAILY_ROOM_CHG
As Integer = 284, and then enter the five Const statements indicated in Figure 5-43.

Named constants Values
intMAX_PER_ROOM 6
intDAILY_ROOM_CHG 284
intDAILY_ROOM_CHG_QUEEN_STAND 284
intDAILY_ROOM_CHG_QUEEN_ATRIUM 325
intDAILY_ROOM_CHG_KING_STAND 290
intDAILY_ROOM_CHG_KING_ATRIUM 350
dblDAILY_PARKING_FEE 12.75
dblTAX_RATE 0.1525 (the decimal equivalent of 15.25%)
intDAILY_RESORT_FEE 15
strMSG “You have exceeded the maximum guests per

room.”

Variable names Stores
intRoomsReserved the number of rooms to reserve
intNights the number of nights
intAdults the number of adult guests
intChildren the number of child guests
intNumGuests the total number of guests, which is calculated by adding together the

number of adult guests and the number of child guests
dblRoomsRequired the number of rooms required, which is calculated by dividing the total

number of guests by the maximum guests per room (may contain a
decimal place)

dblParkingFee the total parking fee, which is calculated by multiplying the number
of nights by the daily parking fee

intDailyRoomChg the daily room charge, which depends on the number of beds and
room view

intTotalRoomChg the total room charge, which is calculated by multiplying the number
of rooms to reserve by the number of nights and then multiplying the
result by the daily room charge

dblTax the tax, which is calculated by multiplying the total room charge by
the tax rate

intTotalResortFee the total resort fee, which is calculated by multiplying the number of
rooms to reserve by the number of nights and then multiplying the
result by the daily resort fee

dblTotalDue the total due, which is calculated by adding together the total
room charge, tax, total resort fee, and total parking fee

Figure 5-42 Modified list of named constants and variables
ª 2013 Cengage Learning

START HERE

Modifying the Calculate Button’s Code L E S S ON B

295

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

3. Next, you’ll modify the Dim section of the procedure. Insert a blank line below the
Dim dblRoomsRequired As Double statement, and then enter the two Dim statements
indicated in Figure 5-44.

According to the pseudocode shown earlier in Figure 5-41, you need to add three nested dual-
alternative selection structures to the outer selection structure’s false path. The conditions in the
nested selection structures will determine whether the Two queen and Standard radio buttons
are selected. As you learned earlier, you can determine whether a radio button is selected or
unselected by looking at the value in its Checked property. If the property contains the Boolean
value True, the radio button is selected. If it contains the Boolean value False, the radio button is
not selected.

enter these
Const statements

Figure 5-43 Named constants added to the procedure

enter these Dim
statements

Figure 5-44 Variables added to the procedure

CH A P T E R 5 More on the Selection Structure

296

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Comparing Boolean Values
In addition to comparing numbers and strings, you also can compare Boolean values
in If…Then…Else and Select Case statements. Examples of such comparisons are shown
in Figure 5-45.

The first two examples in Figure 5-45 use a Boolean variable named blnIsInsured. You learned
about the Boolean data type in Chapter 3. Recall that a Boolean variable can store either the
Boolean value True or the Boolean value False. The condition in Example 1 will evaluate to True
when the blnIsInsured variable contains the Boolean value True. As the figure indicates, you
also can write the condition as blnIsInsured = True. The condition in Example 2, on the other
hand, will evaluate to True when the blnIsInsured variable contains the Boolean value False.

Comparing Boolean Values
Example 1
If blnIsInsured Then
The condition evaluates to True when the blnIsInsured variable contains the Boolean value
True; otherwise, it evaluates to False. You also can write the If clause like this: If blnIsInsured
= True Then.

Example 2
If Not blnIsInsured Then
The condition evaluates to True when the blnIsInsured variable contains the Boolean value
False; otherwise, it evaluates to True. You also can write the If clause like this: If blnIsInsured
= False Then.

Example 3
If chkParkingFee.Checked Then
The condition evaluates to True when the chkParkingFee check box is selected; otherwise, it
evaluates to False. You also can write the If clause like this: If chkParkingFee.Checked
= True Then.

Example 4
Select Case chkParkingFee.Checked
 Case True
 instructions to process when the check box is selected
 Case False
 instructions to process when the check box is not selected
End Select
The instructions in the first Case clause will be processed when the chkParkingFee check box is
selected; the instructions in the second Case clause will be processed when the check box is not
selected.

Example 5
Select Case True
 Case radStandard.Checked

 instructions to process when the radStandard radio button is selected
 Case radAtrium.Checked

 instructions to process when the radAtrium radio button is selected
End Select
The instructions in the first Case clause will be processed when the radStandard radio button is
selected; the instructions in the second Case clause will be processed when the radAtrium radio
button is selected.

Figure 5-45 Examples of comparing Boolean values
ª 2013 Cengage Learning

Modifying the Calculate Button’s Code L E S S ON B

297

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

This is because the Not operator, which you learned about in Chapter 4, reverses the truth-value
of a condition. In other words, if blnIsInsured is True, then Not blnIsInsured would have to
be False because False is the opposite of True. Although most programmers would use the Not
operator in this condition, you also can write the condition as blnIsInsured = False.

The condition in Example 3 in Figure 5-45 will evaluate to True when the chkParkingFee check
box is selected. Notice that you also can phrase the condition as chkParkingFee.Checked =
True. Examples 4 and 5 show how you can use a Boolean value in a Select Case statement. In
Example 4, the check box’s Checked property is used as the selectorExpression. Recall that the
value in the Checked property indicates whether the check box is selected (True) or unselected
(False). The instructions in the Case True clause will be processed when the check box is
selected; otherwise, the instructions in the Case False clause will be processed. Because a check
box’s Checked property can only be either True or False, you can replace the Case False clause
with Case Else.

In Example 5 in Figure 5-45, the Boolean value True is used as the selectorExpression. The first
Case clause compares the selectorExpression with the radStandard control’s Checked property.
If the Standard radio button is selected, the computer processes only the instructions in the first
Case clause. If the Standard radio button is not selected, the second Case clause compares the
selectorExpression with the radAtrium control’s Checked property. If the Atrium radio button is
selected, the computer processes only the instructions in the second Case clause. Because the
Standard and Atrium radio buttons are the only buttons in their group, you can replace the
second Case clause with Case Else.

To finish modifying the btnCalc_Click procedure:

1. First, you’ll enter the three nested dual-alternative selection structures. Insert a
blank line below the ' calculate charges comment, and then enter the nested
selection structures indicated in Figure 5-46. The nested selection structures
determine the selected radio buttons and then assign the appropriate daily room
charge to the intDailyRoomChg variable.

enter these
selection structures

Figure 5-46 Nested dual-alternative selection structures entered in the procedure

START HERE

You can also
write the If
clauses in Figure
5-46 as If
radQueen.

Checked = True Then
and If radStandard.
Checked = True.

CH A P T E R 5 More on the Selection Structure

298

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

2. In the line below the nested selection structures, change intDAILY_ROOM_CHG to
intDailyRoomChg.

3. You also need to include a single-alternative selection structure that determines whether
the Vehicle parking fee check box is selected. If it is, the procedure should calculate the
total parking fee by multiplying the number of nights by the daily parking fee. Insert a
blank line above the statement that calculates the total due, and then enter the selection
structure indicated in Figure 5-47.

4. Finally, you need to add the total parking fee to the total due and also display the
total parking fee in the lblParkingFee control. Make the modifications indicated in
Figure 5-48.

5. Save the solution and then start the application. Type 1, 1, and 2 in the Rooms, Nights,
and Adults boxes, respectively, and then click the Calculate button. See Figure 5-49.

enter this selection
structure

Figure 5-47 Nested single-alternative selection structure entered in the procedure

enter this
statement

enter this
code

Figure 5-48 Final modifications made to the procedure

You can also
write the If
clause in
Figure 5-47 as
follows: If

chkParkingFee.

Checked = True Then.

Modifying the Calculate Button’s Code L E S S ON B

299

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

6. Now click the Atrium radio button. Notice that the calculated amounts still appear in
the interface. You will fix that problem in the next section. Change the number of nights
to 2 and then click the Calculate button. The total due is now $779.13.

7. Click the Vehicle parking fee check box. Here too, the calculated amounts still appear
in the interface. You will fix this problem in the next section. Click the Calculate button.
The total due is now $804.63.

8. Click the Exit button.

Modifying the ClearLabels Procedure
According to the application’s TOE chart (shown earlier in Figure 5-36), the
CheckedChanged events of the radio buttons and check box need to be coded.
The CheckedChanged event occurs when the value in a control’s Checked property
changes. For example, when you select a check box, its Checked property changes from
False to True; this change invokes the check box’s CheckedChanged event. Likewise, when
you deselect a check box, its Checked property changes from True to False, thereby
invoking its CheckedChanged event. When you select a radio button, its Checked
property changes from False to True and its CheckedChanged event occurs. In addition,
the Checked property of the previously selected radio button in the same group changes
from True to False, thereby invoking that radio button’s CheckedChanged event.

The TOE chart indicates that the CheckedChanged events should clear the contents of five label
controls in the interface; the ClearLabels procedure that you created in Chapter 4 will perform
that task. All you need to do is add the lblParkingFee.Text = String.Empty statement to the
procedure, and then include the CheckedChanged events for the radio buttons and check box in
the procedure’s Handles cause.

recall that you can
press Alt to either
show or hide the
access keys

Figure 5-49 Calculated amounts shown in the interface

CH A P T E R 5 More on the Selection Structure

300

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

To modify and then test the ClearLabels procedure:

1. Locate the ClearLabels procedure and then make the modifications indicated in
Figure 5-50. (Be sure to type the comma after txtChildren.TextChanged in the
Handles clause.)

2. Save the solution and then start the application. Type 1, 1, and 2 in the Rooms, Nights,
and Adults boxes, respectively, and then click the Calculate button. The total due is
$342.31, as shown earlier in Figure 5-49.

3. Click the Atrium radio button. The ClearLabels procedure removes the calculated
amounts from the interface. Click the Calculate button. The total due is now $389.56.

4. Click the Vehicle parking fee check box. The ClearLabels procedure removes the
calculated amounts from the interface. Click the Calculate button. The total due is now
$402.31.

5. On your own, verify that the ClearLabels procedure removes the calculated amounts
when the One king radio button is clicked, and also when the Standard radio button
is clicked.

6. Click the Exit button. Close the Code Editor window and then close the solution.

Figure 5-51 shows the application’s code at the end of Lesson B.

be sure to type
the comma

enter this code

enter this statement

Figure 5-50 ClearLabels procedure

START HERE

Modifying the ClearLabels Procedure L E S S ON B

301

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

 1 ' Name: Covington Resort Project
 2 ' Purpose: Display the total room charge, tax,
 3 ' total resort fee, total parking fee,
 4 ' and total due
 5 ' Programmer: <your name> on <current date>
 6
 7 Option Explicit On
 8 Option Strict On
 9 Option Infer Off
 10
 11 Public Class frmMain
 12
 13 Private Sub btnExit_Click(sender As Object,
 e As EventArgs) Handles btnExit.Click
 14 Me.Close()
 15 End Sub
 16
 17 Private Sub txtRooms_Enter(sender As Object,
 e As EventArgs) Handles txtRooms.Enter
 18 ' selects the contents when the
 19 ' text box receives the focus
 20
 21 txtRooms.SelectAll()
 22 End Sub
 23
 24 Private Sub txtNights_Enter(sender As Object,
 e As EventArgs) Handles txtNights.Enter
 25 ' selects the contents when the
 26 ' text box receives the focus
 27
 28 txtNights.SelectAll()
 29 End Sub
 30
 31 Private Sub txtAdults_Enter(sender As Object,
 e As EventArgs) Handles txtAdults.Enter
 32 ' selects the contents when the
 33 ' text box receives the focus
 34
 35 txtAdults.SelectAll()
 36 End Sub
 37
 38 Private Sub txtChildren_Enter(sender As Object,
 e As EventArgs) Handles txtChildren.Enter
 39 ' selects the contents when the
 40 ' text box receives the focus
 41
 42 txtChildren.SelectAll()
 43 End Sub
 44
 45 Private Sub CancelKeys(sender As Object,
 e As KeyPressEventArgs
 46) Handles txtRooms.KeyPress, txtNights.KeyPress,

Figure 5-51 Covington Resort application’s code at the end of Lesson B (continues)

CH A P T E R 5 More on the Selection Structure

302

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

 47 txtAdults.KeyPress, txtChildren.KeyPress
 48 ' allows the text box to accept only numbers and
 49 ' the Backspace key
 50
 51 If (e.KeyChar < "0" OrElse e.KeyChar > "9") AndAlso
 52
 53 ' cancel the key
 54
 55 End If
 56 End Sub
 57
 58 Private Sub ClearLabels(sender As Object,
 e As EventArgs) _
 59 Handles txtRooms.TextChanged, txtNights.TextChanged,
 60 txtAdults.TextChanged, txtChildren.TextChanged,
 61 radQueen.CheckedChanged, radKing.CheckedChanged,
 62 radStandard.CheckedChanged, radAtrium.CheckedChanged,
 63 chkParkingFee.CheckedChanged
 64 ' clear calculated amounts
 65
 66 lblRoomChg.Text = String.Empty
 67 lblTax.Text = String.Empty
 68 lblResortFee.Text = String.Empty
 69 lblParkingFee.Text = String.Empty
 70 lblTotalDue.Text = String.Empty
 71 End Sub
 72
 73 Private Sub btnCalc_Click(sender As Object,
 e As EventArgs) Handles btnCalc.Click
 74 ' calculate and display total room charge,
 75 ' tax, total resort fee, total parking fee,
 76 ' and total due
 77
 78 ' declare named constants and variables
 79 Const intMAX_PER_ROOM As Integer = 6
 80 Const intDAILY_ROOM_CHG_QUEEN_STAND As Integer = 284
 81 Const intDAILY_ROOM_CHG_QUEEN_ATRIUM As Integer = 325
 82 Const intDAILY_ROOM_CHG_KING_STAND As Integer = 290
 83 Const intDAILY_ROOM_CHG_KING_ATRIUM As Integer = 350
 84 Const dblDAILY_PARKING_FEE As Double = 12.75
 85 Const dblTAX_RATE As Double = 0.1525
 86 Const intDAILY_RESORT_FEE As Integer = 15
 87 Const strMSG As String =
 "You have exceeded the maximum guests per room."
 88 Dim intRoomsReserved As Integer
 89 Dim intNights As Integer
 90 Dim intAdults As Integer
 91 Dim intChildren As Integer
 92 Dim intNumGuests As Integer
 93 Dim dblRoomsRequired As Double
 94 Dim dblParkingFee As Double
 95 Dim intDailyRoomChg As Integer

e.Handled = True

e.KeyChar <> ControlChars.Back Then

Figure 5-51 Covington Resort application’s code at the end of Lesson B (continues)

(continued)

Modifying the ClearLabels Procedure L E S S ON B

303

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

96 Dim intTotalRoomChg As Integer
97 Dim dblTax As Double
98 Dim intTotalResortFee As Integer
99 Dim dblTotalDue As Double
100
101 ' store input in variables
102 Integer.TryParse(txtRooms.Text, intRoomsReserved)
103 Integer.TryParse(txtNights.Text, intNights)
104 Integer.TryParse(txtAdults.Text, intAdults)
105 Integer.TryParse(txtChildren.Text, intChildren)
106
107 ' calculate total number of guests
108 intNumGuests = intAdults + intChildren
109 ' calculate number of rooms required
110 dblRoomsRequired = intNumGuests / intMAX_PER_ROOM
111
112 ' determine whether number of reserved
113 ' rooms is adequate and then either display a
114 ' message or calculate and display the charges
115 If intRoomsReserved < dblRoomsRequired Then
116 MessageBox.Show(strMSG, "Covington Resort",
117 MessageBoxButtons.OK,
118 MessageBoxIcon.Information)
119 Else
120 ' calculate charges
121 If radQueen.Checked Then
122 If radStandard.Checked Then
123 intDailyRoomChg = intDAILY_ROOM_CHG_QUEEN_STAND
124 Else
125 intDailyRoomChg = intDAILY_ROOM_CHG_QUEEN_ATRIUM
126 End If
127 Else
128 If radStandard.Checked Then
129 intDailyRoomChg = intDAILY_ROOM_CHG_KING_STAND
130 Else
131 intDailyRoomChg = intDAILY_ROOM_CHG_KING_ATRIUM
132 End If
133 End If
134 intTotalRoomChg = intRoomsReserved *
135 intNights * intDailyRoomChg
136 dblTax = intTotalRoomChg * dblTAX_RATE
137 intTotalResortFee = intRoomsReserved *
138 intNights * intDAILY_RESORT_FEE
139 If chkParkingFee.Checked Then
140 dblParkingFee = intNights * dblDAILY_PARKING_FEE
141 End If
142 dblTotalDue = intTotalRoomChg +
143 dblTax + intTotalResortFee + dblParkingFee
144
145 ' display charges
146 lblRoomChg.Text = intTotalRoomChg.ToString("N2")
147 lblTax.Text = dblTax.ToString("N2")
148 lblResortFee.Text = intTotalResortFee.ToString("N2")
149 lblParkingFee.Text = dblParkingFee.ToString("N2")
150 lblTotalDue.Text = dblTotalDue.ToString("C2")
151 End If
152 End Sub
153 End Class

Figure 5-51 Covington Resort application’s code at the end of Lesson B
ª 2013 Cengage Learning

(continued)

CH A P T E R 5 More on the Selection Structure

304

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Lesson B Summary
l To limit the user to only one choice in a group of two or more related but mutually exclusive

choices:

Use the RadioButton tool to add two or more radio buttons to the form. To include two
groups of radio buttons on a form, at least one of the groups must be placed within a
container, such as a group box.

l To allow the user to select any number of choices from a group of one or more independent
and nonexclusive choices:

Use the CheckBox tool to add one or more check box controls to the form.

l To determine whether a radio button or check box is selected or unselected:

Use the Checked property of the radio button or check box. The property will contain
the Boolean value True if the control is selected; otherwise, it will contain the Boolean
value False.

l To process code when the value in the Checked property of a radio button or check box
changes:

Enter the code in the radio button’s or check box’s CheckedChanged event procedure.

Lesson B Key Terms
Check boxes—controls used to offer the user one or more independent and nonexclusive
choices

Checked property—the property of radio button and check box controls that indicates whether
or not the control is selected; contains either the Boolean value True or the Boolean value False

CheckedChanged event—an event associated with radio buttons and check boxes; occurs when
the value in a control’s Checked property changes

Default radio button—the radio button that is automatically selected when an interface first
appears

Radio buttons—controls used to limit the user to only one choice from a group of two or more
related but mutually exclusive choices

Lesson B Review Questions
1. What is the minimum number of radio buttons in a group?

a. one

b. two

c. three

d. There is no minimum number of radio buttons.

2. If a check box is not selected, what value is contained in its Checked property?

a. True

b. Unchecked

c. False

d. Unselected

Lesson B Review Questions L E S S ON B

305

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

3. The text appearing in check boxes and radio buttons should be entered
using .

a. sentence capitalization

b. book title capitalization

c. either book title capitalization or sentence capitalization

4. It is customary in Windows applications to designate a default check box.

a. True

b. False

5. A form contains six radio buttons. Three of the radio buttons are contained in a group
box. How many of the radio buttons on the form can be selected at the same time?

a. one

b. two

c. three

d. six

6. A form contains six check boxes. Three of the check boxes are contained in a group box.
How many of the check boxes on the form can be selected at the same time?

a. one

b. two

c. three

d. six

7. If a radio button is selected, its property contains the Boolean
value True.

a. Checked

b. On

c. Selected

d. Selection

8. Which of the following If clauses will evaluate to True when the Bonus check box is selected?

a. If chkBonus.Check = True Then

b. If chkBonus.Checked Then

c. If chkBonus.Selected = True Then

d. If chkBonus.Selected Then

9. Which of the following events occurs when a check box is clicked?

a. Check

b. Checked

c. CheckedChange

d. CheckedChanged

10. If the blnSenior variable contains the Boolean value False, then the Not blnSenior
condition will evaluate to .

a. True

b. False

CH A P T E R 5 More on the Selection Structure

306

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Lesson B Exercises

1. In this exercise, you modify the Covington Resort application from this lesson.
Use Windows to make a copy of the Covington Resort Solution folder. Rename the
copy Covington Resort Solution-Select Case. Open the Covington Resort Solution
(Covington Resort Solution.sln) file contained in the Covington Resort Solution-Select
Case folder. Open the designer and Code Editor windows. In the btnCalc_Click
procedure, replace the If…Then…Else statement that determines the number of beds
with the Select Case statement. Save the solution and then start and test the application.
Close the Code Editor window and then close the solution.

2. In this exercise, you create an application for Moonbucks Coffee. Create a Visual
Basic Windows application. Use the following names for the solution and project,
respectively: Moonbucks Solution and Moonbucks Project. Save the application in the
VB2012\Chap05 folder. Change the form file’s name to Main Form.vb. Change the
form’s name to frmMain. The application’s interface, which is shown in Figure 5-52,
allows the user to specify the size of the coffee a customer is ordering and whether the
coffee should be decaffeinated. The price for each coffee size is shown in the interface;
however, the store must also charge a 5% sales tax. The Calculate button should
calculate the total price of a cup of coffee. It then should display (in the label control) a
message that indicates the coffee size, total price, and whether the coffee is decaf or
regular. Use the If…Then…Else statement to code the multiple-alternative selection
structure. The Print button should print the interface. The CheckedChanged event
procedures for the radio buttons and check box should clear the message from the label
control. Code the application. Save the solution and then start and test the application.
Close the Code Editor window and then close the solution.

INTRODUCTORY

INTRODUCTORY

label

Figure 5-52 Interface for Exercise 2

Lesson B Exercises L E S S ON B

307

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

3. In this exercise, you modify the Moonbucks Coffee application from Exercise 2.
Use Windows to make a copy of the Moonbucks Solution folder. Rename the copy
Modified Moonbucks Solution. Open the Moonbucks Solution (Moonbucks Solution.sln)
file contained in the Modified Moonbucks Solution folder. Open the designer and Code
Editor windows. Use the Select Case statement to code the multiple-alternative
selection structure in the Calculate button’s Click event procedure. Save the solution
and then start and test the application. Close the Code Editor window and then close
the solution.

4. In this exercise, you code an application that allows the user to select one radio button
from each of two groups: a State group and a City group. Open the Geography Solution
(Geography Solution.sln) file contained in the VB2012\Chap05\Geography Solution
folder. If necessary, open the designer window. When a radio button is selected, its
CheckedChanged event procedure should clear the contents of the lblMsg control. The
Verify Answer button’s Click event procedure should verify that the selected city is the
capital of the selected state. If it is, the procedure should display the message “Correct”;
otherwise, it should display the message “Incorrect”. Code the procedure using one
dual-alternative selection structure. Save the solution and then start and test the
application. Close the Code Editor window and then close the solution.

5. In this exercise, you create an application that allows the user to enter both the number
of calories and the number of grams of fat contained in a specific food. Create a Visual
Basic Windows application. Use the following names for the solution and project,
respectively: Fat Solution and Fat Project. Save the application in the VB2012\Chap05
folder. Change the form file’s name to Main Form.vb. Change the form’s name to
frmMain. Create the interface shown in Figure 5-53. The application should calculate
and display two values: the food’s fat calories (the number of calories attributed to fat)
and its fat percentage (the ratio of the food’s fat calories to its total calories). You
calculate the number of fat calories in a food by multiplying the number of fat grams
contained in the food by the number 9 because each gram of fat contains 9 calories.
To calculate the fat percentage, you divide the food’s fat calories by its total calories and
then multiply the result by 100. If the Display message check box is selected when the
Calculate button is clicked, the button’s Click event procedure should display one of
two messages in a message box: either “This food is high in fat” or “This food is not high
in fat”. The first message is appropriate when the fat percentage is over 30%. The second
message is appropriate when the fat percentage is not over 30%. If the check box is not
selected when the user clicks the Calculate button, no message should be displayed.
Code the application. Save the solution and then start and test the application. Close the
Code Editor window and then close the solution.

INTRODUCTORY

INTERMEDIATE

INTERMEDIATE

Figure 5-53 Interface for Exercise 5

CH A P T E R 5 More on the Selection Structure

308

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

6. In this exercise, you modify the Covington Resort application from this lesson. Use
Windows to make a copy of the Covington Resort Solution folder. Rename the copy
Modified Covington Resort Solution. Open the Covington Resort Solution (Covington
Resort Solution.sln) file contained in the Modified Covington Resort Solution folder.
Open the designer window.

a. Currently, the application calculates the total parking fee by multiplying the
daily parking fee by the number of nights. However, this calculation is based on
the assumption that the guest will have only one vehicle to park, when it is entirely
possible that he or she may have two or more vehicles. Add a label control and a
text box to the form, positioning both below the check box. Change the label’s Text
property to N&umber of vehicles:. The user will enter the number of vehicles in
the additional text box. When the user selects the check box, display the number 1
in the text box. When the user deselects the check box, clear the contents of the
text box. (Hint: A check box also has a Click event.)

b. Open the Code Editor window. The code should now calculate the total parking fee
by multiplying the daily parking fee by the number of nights, and then multiplying
that result by the number of vehicles. As is currently done, the parking fee should be
charged only when the check box is selected. If the check box is selected and the text
box is empty, display the number 1 in the text box. Make the appropriate
modifications to the code. Save the solution and then start and test the application.
Close the Code Editor window and then close the solution.

7. In this exercise, you create an application for Hinsbrook Health Club. Create a Visual
Basic Windows application. Use the following names for the solution and project,
respectively: Hinsbrook Solution and Hinsbrook Project. Save the application in the
VB2012\Chap05 folder. Change the form file’s name to Main Form.vb. Change the
form’s name to frmMain. The application should display the number of daily calories
needed to maintain a person’s current weight. The formulas for calculating the number
of daily calories are shown in Figure 5-54. Create a suitable interface, and then code the
application. Save the solution and then start and test the application. Close the Code
Editor window and then close the solution.

Gender Activity Level Total Daily Calories Formula
Female Moderately active weight * 12 calories per pound
Female Relatively inactive weight * 10 calories per pound
Male Moderately active weight * 15 calories per pound
Male Relatively inactive weight * 13 calories per pound

Figure 5-54 Formulas for Exercise 7
ª 2013 Cengage Learning

8. In this exercise, you create an application that converts U.S. dollars (entered as a whole
number) to a different currency. Create a Visual Basic Windows application. Use the
following names for the solution and project, respectively: Currency Solution and
Currency Project. Save the application in the VB2012\Chap05 folder. Change the form
file’s name to Main Form.vb. Change the form’s name to frmMain. The number of U.S.
dollars should always be an integer that is greater than or equal to 0. Create an interface
that allows the user to select from the listing of currencies shown in Figure 5-55. Use
the Internet to research the current exchange rates. Code the application. Save the
solution and then start and test the application. Close the Code Editor window and then
close the solution.

INTERMEDIATE

INTERMEDIATE

ADVANCED

Lesson B Exercises L E S S ON B

309

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Currency
Canadian dollar
Euro
Indian rupee
Japanese yen
Mexican peso
South African rand
British pound

Figure 5-55 Currencies for Exercise 8
ª 2013 Cengage Learning

9. Shopper Stoppers wants an application that displays the number of reward points a
customer earns each month. The reward points are based on the customer’s
membership type and total monthly purchase amount, as shown in Figure 5-56.
Create a Visual Basic Windows application. Use the following names for the solution
and project, respectively: Shopper Solution and Shopper Project. Save the application
in the VB2012\Chap05 folder. Change the form file’s name to Main Form.vb. Change
the form’s name to frmMain. Create a suitable interface. Code the application.
Display the reward points as whole numbers. Save the solution and then start and test
the application. Close the Code Editor window and then close the solution.

Membership Type
Total Monthly
Purchase ($) Reward Points

Basic Less than 100 5% of the total monthly purchase
100 and over 7% of the total monthly purchase

Standard Less than 150 6% of the total monthly purchase
150 – 299.99 8% of the total monthly purchase
300 and over 10% of the total monthly purchase

Premium Less than 200 7% of the total monthly purchase
200 and over 15% of the total monthly purchase

Figure 5-56 Reward points for Exercise 9
ª 2013 Cengage Learning

10. Create a Visual Basic Windows application. Use the following names for the solution
and project, respectively: Songs Solution and Songs Project. Save the application in the
VB2012\Chap05 folder. Change the form file’s name to Main Form.vb. Change the
form’s name to frmMain.

a. Create the interface shown in Figure 5-57. The four radio buttons contain song
titles. The Artist Name button’s Click event procedure should display the name of
the artist associated with the selected radio button. The names of the artists are
Andrea Bocelli, Michael Jackson, Beyonce, and Josh Groban. Code the application.
Save the solution and then start and test the application.

ADVANCED

DISCOVERY

CH A P T E R 5 More on the Selection Structure

310

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

b. Now, remove the Artist Name button from the interface. Also remove the button’s
code from the Code Editor window. Code the application so that the artist name
automatically appears when a radio button is selected. Save the solution and then
start the application. The name Andrea Bocelli should appear in the Artist box
because the Because We Believe radio button is selected. Click the Billie Jean radio
button. The name Michael Jackson should appear in the Artist box. Close the Code
Editor window and then close the solution.

Figure 5-57 Interface for Exercise 10

Lesson B Exercises L E S S ON B

311

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

& LESSON C
After studying Lesson C, you should be able to:

l Determine the success of the TryParse method

l Generate random numbers

l Show and hide a control while an application is running

Using the TryParse Method for Data Validation
In Chapter 3, you learned how to use the TryParse method to convert a string to a number
of a specific data type. Recall that if the conversion is successful, the TryParse method stores the
number in the variable specified in the method’s numericVariableName argument; otherwise,
it stores the number 0 in the variable. What you didn’t learn in Chapter 3 was that in addition
to storing a number in the variable, the TryParse method also returns a Boolean value that
indicates whether the conversion was successful (True) or unsuccessful (False). You can
assign the value returned by the TryParse method to a Boolean variable, as shown in the syntax
and example in Figure 5-58. You then can use a selection structure to take the appropriate
action based on the result of the conversion. For example, you might want a selection structure’s
true path to calculate an employee’s gross pay only when the user’s input (hours worked and
pay rate) can be converted to numbers; otherwise, its false path should display an “Input Error”
message.

Study the assignment statement shown in the example in Figure 5-58. The TryParse method in
the statement will attempt to convert the string stored in the txtSales control’s Text property to
a Double number. If the conversion is successful, the method stores the Double number in the
dblSales variable and also returns the Boolean value True. If the conversion is not successful,
the method stores the number 0 in the dblSales variable and returns the Boolean value False.
The assignment statement assigns the return value (either True or False) to the blnIsValid
variable.

Now look at the test data and results shown in Figure 5-58. Notice that the TryParse method
can convert, to the Double data type, a string composed of numbers and an optional period.
Also notice that when the conversion is successful, the dblSales variable contains the numeric
equivalent of the string, and the blnIsValid variable contains the Boolean value True. On the

Using the Boolean Value Returned by the TryParse Method
Syntax
booleanVariable = dataType.TryParse(string, numericVariableName)

Example
blnIsValid = Double.TryParse(txtSales.Text, dblSales)

Result of assignment statement
Test data
“12”
“25.7”
“Ab”
“25%”
“”

dblSales
12.0
25.7
0
0
0

blnIsValid
True
True
False
False
Falseempty string

Figure 5-58 Syntax and an example of using the Boolean value returned by the TryParse method
ª 2013 Cengage Learning

CH A P T E R 5 More on the Selection Structure

312

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

other hand, the TryParse method will fail if the string contains a letter or a special character,
or if the string is the empty string. Notice that when the conversion is unsuccessful, the
dblSales variable contains the number 0, and the blnIsValid variable contains the Boolean
value False.

To use the Boolean value returned by the TryParse method:

1. If necessary, start Visual Studio 2012. Open the New Pay Solution (New Pay Solution.sln)
file contained in the VB2012\Chap05\New Pay Solution folder. If necessary, open the
designer window.

2. Open the Code Editor window. Replace <your name> and <current date> in the
comments with your name and the current date, respectively.

3. Locate the btnCalc_Click procedure. Before modifying the code to use the Boolean value
returned by the TryParse method, you will observe how the procedure currently works.
Start the application. Type 10 in the Old pay box and then click the Calculate button.
Even though no raise rate was entered, the button’s Click event procedure displays an
amount in the New pay box; in this case, it displays the old pay amount of $10.00.

4. Type a in the Raise rate box and then click the Calculate button. Here again, the
procedure displays $10.00 in the New pay box, even though the raise rate is invalid.
See Figure 5-59. (Recall that you can press Alt to either show or hide the access keys.)

5. Change the raise rate to .05 and then click the Calculate button. The procedure displays
$10.50 in the New pay box, which is correct. Click the Exit button.

6. Use the code shown in Figure 5-60 to modify the btnCalc_Click procedure. The
modifications are shaded in the figure.

START HERE

the original procedure
displays the old pay
amount when the raise
rate is invalid

Figure 5-59 Sample run of the original Click event procedure

Using the TryParse Method for Data Validation L E S S ON C

313

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

7. Save the solution and then start the application. Type 10 in the Old pay box and then
click the Calculate button. Because no raise rate was entered, the procedure displays the
“Invalid data” message in the New pay box.

8. Type .05 in the Raise rate box and then click the Calculate button. The procedure
calculates and displays $10.50 as the new pay amount, which is correct.

9. Change the old pay to the letter a and then click the Calculate button. The procedure
displays the “Invalid data” message, which is correct.

10. Click the Exit button. Close the Code Editor window and then close the solution.

YOU DO IT 4!

Create a Visual Basic Windows application named YouDoIt 4. Save the application in the
VB2012\Chap05 folder. Add a text box, a label, and a button to the form. If the user
enters a value that can be converted to the Integer data type, the button’s Click event
procedure should display the integer in the label; otherwise, it should display the string
“Can’t be converted”. Code the procedure. Save the solution and then start the applica-
tion. Test the application using the following values: 12, 12.75, 2, $45, 3, 5%, 6, and the
empty string. Close the solution.

Private Sub btnCalc_Click(sender As Object,
e As EventArgs) Handles btnCalc.Click
 ' calculates and displays the new pay

Dim dblOld As Double
Dim dblRate As Double
Dim dblNew As Double
Dim blnIsOldOk As Boolean
Dim blnIsRateOk As Boolean

' convert the input to numbers
blnIsOldOk = Double.TryParse(txtOld.Text, dblOld)
blnIsRateOk = Double.TryParse(txtRate.Text, dblRate)

' determine whether the conversions were successful
If blnIsOldOk AndAlso blnIsRateOk Then
 ' calculate and display the new pay
 dblNew = dblOld + dblOld * dblRate
 lblNew.Text = dblNew.ToString("C2")
Else
 lblNew.Text = "Invalid data"
End If

' set the focus
txtOld.Focus()

End Sub

Figure 5-60 Modified btnCalc_Click procedure
ª 2013 Cengage Learning

CH A P T E R 5 More on the Selection Structure

314

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Generating Random Integers
Most computer game programs contain at least one multiple-alternative selection structure;
most also use random numbers. You already know how to write multiple-alternative selection
structures. In this section, you will learn how to generate random integers. If you want to learn
how to generate random numbers containing a decimal place, refer to Exercise 13 at the end of
this lesson.

Most programming languages provide a pseudo-random number generator, which is a device
that produces a sequence of numbers that meet certain statistical requirements for randomness.
Pseudo-random numbers are chosen with equal probability from a finite set of numbers. The
chosen numbers are not completely random because a definite mathematical algorithm is used
to select them. However, they are sufficiently random for practical purposes. The pseudo-
random number generator in Visual Basic is an object whose data type is Random.

Figure 5-61 shows the syntax for generating random integers in Visual Basic, and it includes
examples of using the syntax. As the figure indicates, you first create a Random object to
represent the pseudo-random number generator in your application’s code. You create the
Random object by declaring it in a Dim statement. You enter the Dim statement in the
procedure that will use the number generator. After the Random object is created, you can use
the object’s Random.Next method to generate random integers. In the method’s syntax,
randomObjectName is the name of the Random object. The minValue and maxValue
arguments in the syntax must be integers, and minValue must be less than maxValue. The
Random.Next method returns an integer that is greater than or equal to minValue, but less than
maxValue. You will use random integers to code the Roll 'Em Game application, which
simulates the rolling of two dice.

To open the Roll 'Em Game application:

1. Open the Roll Em Solution (Roll Em Solution.sln) file contained in the VB2012\Chap05\
Roll Em Solution folder. If necessary, open the designer window. The interface is shown
in Figure 5-62. (The die images were downloaded from the Open Clip Art Library at
http://openclipart.org.)

Generating Random Integers
Syntax
Dim randomObjectName As New Random
randomObjectName.Next(minValue, maxValue)

Example 1
Dim randGen As New Random
intNum = randGen.Next(1, 51)
The Dim statement creates a Random object named randGen. The randGen.Next(1, 51)
expression generates a random integer that is greater than or equal to 1, but less than 51. The
assignment statement assigns the random integer to the intNum variable.

Example 2
Dim randGen As New Random
intNum = randGen.Next(-10, 0)
The Dim statement creates a Random object named randGen. The randGen.Next(-10, 0)
expression generates a random integer that is greater than or equal to –10, but less than 0. The
assignment statement assigns the random integer to the intNum variable.

Figure 5-61 Syntax and examples of generating random integers
ª 2013 Cengage Learning

START HERE

Generating Random Integers L E S S ON C

315

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

2. Open the Code Editor window. Replace <your name> and <current date> in the
comments with your name and the current date, respectively.

When the user clicks the Roll the Dice button, the button’s Click event procedure will generate
two random integers from 1 through 6. It will use the random integers to select one of the
images located below the buttons in the interface. The images are named picOneDot,
picTwoDots, picThreeDots, picFourDots, picFiveDots, and picSixDots. The procedure will
display the selected images in the picDie1 and picDie2 controls. It also will total the number of
dots appearing on both dice and then display the total in the lblTotal control. Figure 5-63 shows
the pseudocode for the Roll the Dice button’s Click event procedure.

btnRoll Click event procedure

1. generate a random integer from 1 through 6 and assign to a variable named intNum1

2. generate a random integer from 1 through 6 and assign to a variable named intNum2

3. use the intNum1 variable’s value to display the appropriate image in the picDie1 control
if intNum1 contains:
1 display the picOneDot image
2 display the picTwoDots image
3 display the picThreeDots image
4 display the picFourDots image
5 display the picFiveDots image
6 display the picSixDots image

Figure 5-63 Pseudocode for the Roll the Dice button’s Click event procedure (continues)

picDie2

lblTotal

picDie1

Figure 5-62 Roll 'Em Game application’s interface
OpenClipArt.org/orsonj

CH A P T E R 5 More on the Selection Structure

316

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

4. use the intNum2 variable’s value to display the appropriate image in the picDie2 control
if intNum2 contains:
1 display the picOneDot image
2 display the picTwoDots image
3 display the picThreeDots image
4 display the picFourDots image
5 display the picFiveDots image
6 display the picSixDots image

5. calculate the total number of dots on both dice by adding together the integers stored in the intNum1
and intNum2 variables

6. display the total in the lblTotal control

Figure 5-63 Pseudocode for the Roll the Dice button’s Click event procedure
ª 2013 Cengage Learning

To code the Roll the Dice button’s Click event procedure:

1. Open the code template for the btnRoll control’s Click event procedure. Type the
following comment and then press Enter twice:

' simulates a game of rolling dice

2. First, you will declare the random number generator. Type the following Dim statement
and then press Enter:

Dim randGen As New Random

3. Next, you will declare the intNum1 and intNum2 variables, which will store the random
integers. You also will declare an Integer variable to store the total of the dots on both
dice. Enter the following three Dim statements. Press Enter twice after typing the last
Dim statement.

Dim intNum1 As Integer
Dim intNum2 As Integer
Dim intTotal As Integer

4. The first two steps in the pseudocode are to generate two random integers from 1
through 6 and assign them to the intNum1 and intNum2 variables. To generate integers
in that range, you will need to use 1 for the Random.Next method’s minValue argument,
and 7 for its maxValue argument. Enter the following comment and two assignment
statements. Press Enter twice after typing the second assignment statement.

' assign random integer from 1 through 6
intNum1 = randGen.Next(1, 7)
intNum2 = randGen.Next(1, 7)

START HERE

(continued)

Generating Random Integers L E S S ON C

317

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

5. Step 3 in the pseudocode uses the intNum1 variable’s value to display the appropriate
image in the picDie1 control. Enter the following comment and Select Case statement:

' display appropriate image in picDie1
Select Case intNum1
Case 1

picDie1.Image = picOneDot.Image
Case 2

picDie1.Image = picTwoDots.Image
Case 3

picDie1.Image = picThreeDots.Image
Case 4

picDie1.Image = picFourDots.Image
Case 5

picDie1.Image = picFiveDots.Image
Case 6

picDie1.Image = picSixDots.Image
End Select

6. Similarly, Step 4 uses the intNum2 variable’s value to display the appropriate image in the
picDie2 control. Insert another blank line above the End Sub clause and then enter the
following comment and Select Case statement:

' display appropriate image in picDie2
Select Case intNum2
Case 1

picDie2.Image = picOneDot.Image
Case 2

picDie2.Image = picTwoDots.Image
Case 3

picDie2.Image = picThreeDots.Image
Case 4

picDie2.Image = picFourDots.Image
Case 5

picDie2.Image = picFiveDots.Image
Case 6

picDie2.Image = picSixDots.Image
End Select

7. The last two steps in the pseudocode calculate the total number of dots on both dice and
then display the result in the lblTotal control. Insert another blank line above the End
Sub clause and then enter the following comment and assignment statements:

' calculate and display total number of dots
intTotal = intNum1 + intNum2
lblTotal.Text = intTotal.ToString()

8. Save the solution and then start the application. Click the Roll the Dice button. See
Figure 5-64. Because random numbers are used to select the appropriate images for the
picDie1 and picDie2 controls, your dice and total might be different from the dice and
total shown in the figure.

CH A P T E R 5 More on the Selection Structure

318

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

9. Click the Roll the Dice button several more times to verify that different images appear
in the picDie1 and picDie2 controls. Also verify that the number in the Total box is
correct. When you are finished testing the application, click the Exit button.

YOU DO IT 5!

Create a Visual Basic Windows application named YouDoIt 5. Save the application in the
VB2012\Chap05 folder. Add a label and a button to the form. The button’s Click event
procedure should display an integer from 1 through 10 in the label. Code the procedure.
Save the solution and then start and test the application. Close the solution.

Showing and Hiding a Control
The six picture boxes located at the bottom of the form should not appear while the application
is running. You can hide them by changing their Visible property from True to False. Setting a
control’s Visible property to False makes the control invisible during runtime. However, you will
still be able to see the control in the designer window.

To hide the six picture boxes and then resize the form:

1. Close the Code Editor window. Select the six picture boxes located at the bottom of the
form, and then use the Properties window to change the Visible property to False. Click
the form to deselect the picture boxes.

total number of dots
on the two dice

Figure 5-64 Result of clicking the Roll the Dice button
OpenClipArt.org/orsonj

START HERE

Showing and Hiding a Control L E S S ON C

319

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

2. Drag the form’s bottom sizing handle up until the form is approximately the size shown
in Figure 5-65. Don’t be concerned that you can still see a portion of the picOneDot,
picTwoDots, and picThreeDots controls. Because their Visible property is set to False,
the controls won’t appear while the application is running.

3. Lock the controls on the form. Save the solution and then start the application. Click
the Roll the Dice button. See Figure 5-66. Notice that the picture boxes located at the
bottom of the form are hidden from view.

4. Click the Exit button and then close the solution.

Figure 5-67 shows the code entered in the Roll the Dice button’s Click event procedure.

Figure 5-65 Resized form
OpenClipArt.org/orsonj

Figure 5-66 Interface with six of the picture boxes hidden
OpenClipArt.org/orsonj

CH A P T E R 5 More on the Selection Structure

320

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Private Sub btnRoll_Click(sender As Object,
e As EventArgs) Handles btnRoll.Click
 ' simulates a game of rolling dice

Dim randGen As New Random
Dim intNum1 As Integer
Dim intNum2 As Integer
Dim intTotal As Integer

' assign random integer from 1 through 6
intNum1 = randGen.Next(1, 7)
intNum2 = randGen.Next(1, 7)

' display appropriate image in picDie1
Select Case intNum1
 Case 1
 picDie1.Image = picOneDot.Image
 Case 2
 picDie1.Image = picTwoDots.Image
 Case 3
 picDie1.Image = picThreeDots.Image
 Case 4
 picDie1.Image = picFourDots.Image
 Case 5
 picDie1.Image = picFiveDots.Image
 Case 6
 picDie1.Image = picSixDots.Image
End Select

' display appropriate image in picDie2
Select Case intNum2
 Case 1
 picDie2.Image = picOneDot.Image
 Case 2
 picDie2.Image = picTwoDots.Image
 Case 3
 picDie2.Image = picThreeDots.Image
 Case 4
 picDie2.Image = picFourDots.Image
 Case 5
 picDie2.Image = picFiveDots.Image
 Case 6
 picDie2.Image = picSixDots.Image
End Select

' calculate and display total number of dots
intTotal = intNum1 + intNum2
lblTotal.Text = intTotal.ToString()

End Sub

Figure 5-67 Roll the Dice button’s Click event procedure
ª 2013 Cengage Learning

Showing and Hiding a Control L E S S ON C

321

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Lesson C Summary
l To determine whether the TryParse method converted a string to a number of the specified

data type:

Use the syntax booleanVariable = dataType.TryParse(string, numericVariableName). The
TryParse method returns the Boolean value True when the string can be converted to the numeric
dataType; otherwise, it returns the Boolean value False.

l To generate random integers:

Create a Random object to represent the pseudo-random number generator. Typically, the
syntax for creating a Random object is Dim randomObjectName As New Random. You
then use the Random.Next method to generate a random integer. The method’s syntax is
randomObjectName.Next(minValue, maxValue). The Random.Next method returns an
integer that is greater than or equal to minValue, but less than maxValue. In most cases,
the Random.Next method’s return value is assigned to a variable.

l To show or hide a control while an application is running:

Set the control’s Visible property to the Boolean value True to show the control during
runtime. Set the control’s Visible property to the Boolean value False to hide the control
during runtime.

Lesson C Key Terms
Pseudo-random number generator—a device that produces a sequence of numbers that meet
certain statistical requirements for randomness; the pseudo-random generator in Visual Basic is
an object whose data type is Random

Random object—represents the pseudo-random number generator in Visual Basic

Random.Next method—used to generate a random integer that is greater than or equal to a
minimum value, but less than a maximum value

Visible property—determines whether a control is visible in the interface while an application is
running

Lesson C Review Questions
1. If the txtPrice control contains the value 75, what value will the

Decimal.TryParse(txtPrice.Text, decPrice) method return?

a. False

b. True

c. 75

d. 75.00

2. Which of the following statements will hide the picCar control?

a. picCar.Hide

b. picCar.Hide = True

c. picCar.Invisible = True

d. picCar.Visible = False

CH A P T E R 5 More on the Selection Structure

322

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

3. Which of the following statements declares an object to represent the pseudo-random
number generator in a procedure?

a. Dim randGen As New RandomNumber

b. Dim randGen As New Generator

c. Dim randGen As New Random

d. Dim randGen As New RandomObject

4. Which of the following statements generates a random integer from 1 to 25, inclusive?

a. intNum = randGen.Next(1, 25)

b. intNum = randGen.Next(1, 26)

c. intNum = randGen(1, 25)

d. intNum = randGen.NextNumber(1, 26)

5. If the txtAge control is empty, the blnIsOk = Integer.TryParse(txtAge.Text,
intAge) statement will store in the intAge variable and also
assign to the blnIsOk variable.

a. 0, True

b. 0, False

c. False, the empty string

d. the empty string, False

Lesson C Exercises

1. Open the Kelley Solution (Kelley Solution.sln) file contained in the VB2012\Chap05\
Kelley Solution folder. If necessary, open the designer and Code Editor windows. Locate
the btnCalc_Click procedure. The procedure should display the message “Please enter a
number” in the lblBonus control when the contents of the txtSales control cannot be
converted to a Double number. Otherwise, it should multiply the contents of the
dblSales variable by 10% and display the result in the lblBonus control. Make the
appropriate modifications to the procedure’s code. Save the solution and then start and
test the application. Close the Code Editor window and then close the solution.

2. Create a Visual Basic Windows application. Use the following names for the solution
and project, respectively: Lottery Solution and Lottery Project. Save the application in
the VB2012\Chap05 folder. Change the form file’s name to Main Form.vb. Change the
form’s name to frmMain. Create the interface shown in Figure 5-68. The image for the
picture box is stored in the VB2012\Chap05\BagOfMoney.png file. (The image was
downloaded from the Open Clip Art Library at http://openclipart.org.) The Select
Numbers button should display six lottery numbers. Each lottery number can range
from 1 through 54 only. (An example of six lottery numbers would be: 4 8 35 15 20 3.)
Code the application. For now, do not worry if the lottery numbers are not unique. You
will learn how to display unique numbers in Chapter 9. Save the solution and then start
and test the application. Close the Code Editor window and then close the solution.

INTRODUCTORY

INTRODUCTORY

Lesson C Exercises L E S S ON C

323

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

3. Open the Sum Solution (Sum Solution.sln) file contained in the VB2012\Chap05\Sum
Solution folder. If necessary, open the designer window. The Calculate button’s Click
event procedure should calculate the sum of the two values entered by the user, and
then display the result in the lblSum control. Calculate and display the sum only when
both values can be converted to the Integer data type; otherwise, display the message
“Please enter two integers” in a message box. Code the procedure. Save the solution and
then start and test the application. Close the Code Editor window and then close the
solution.

4. Create a Visual Basic Windows application. Use the following names for the solution
and project, respectively: Concert Solution and Concert Project. Save the application in
the VB2012\Chap05 folder. Change the form file’s name to Main Form.vb. Change the
form’s name to frmMain. Create the interface shown in Figure 5-69. The three text
boxes should be invisible when the application starts. When the user selects a check
box, its corresponding text box should appear in the interface and remain visible until
the user deselects the check box. The user will enter the number of tickets he or she
wants to purchase in the appropriate text box. Keep in mind that the user can purchase
any combination of tickets, such as 3 box tickets and 5 lawn tickets, or 2 pavilion tickets,
1 box ticket, and 2 lawn tickets. The application should calculate and display the total
number of tickets purchased and the total price. The tickets for box, pavilion, and lawn
seats are $75, $30, and $21, respectively. Save the solution and then start and test the
application. Close the Code Editor window and then close the solution.

the three text boxes
should be invisible when
the application starts

Figure 5-69 Interface for Exercise 4

INTRODUCTORY

INTERMEDIATE

Figure 5-68 Interface for Exercise 2
OpenClipArt.org/johnny_automatic

CH A P T E R 5 More on the Selection Structure

324

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

5. Create a Visual Basic Windows application. Use the following names for the solution and
project, respectively: Guessing Game Solution and Guessing Game Project. Save the
application in the VB2012\Chap05 folder. Change the form file’s name to Main Form.vb.
Change the form’s name to frmMain. The application should generate a random integer
from 1 through 25, inclusive. It then should give the user as many chances as necessary to
guess the integer. If the user guesses the integer, the application should display the “You
are correct. The random integer is x.”message, where x is the random integer. If the user’s
guess is less than the random integer, the application should display the “Guess higher”
message. If the user’s guess is greater than the random integer, the application should
display the “Guess lower” message. Create a suitable interface, and then code the
application. Save the solution and then start and test the application. Close the Code
Editor window and then close the solution.

6. In this exercise, you modify the application from Exercise 5. Use Windows to make
a copy of the Guessing Game Solution folder. Rename the copy Modified Guessing
Game Solution. Open the Guessing Game Solution (Guessing Game Solution.sln) file
contained in the Modified Guessing Game Solution folder. Open the designer and
Code Editor windows. Allow the user to make only five incorrect guesses. When the
user has made the fifth incorrect guess, display the random integer. Save the solution
and then start and test the application. Close the Code Editor window and then close
the solution.

7. Create a Visual Basic Windows application. Use the following names for the solution
and project, respectively: Willowbrook Solution and Willowbrook Project. Save the
application in the VB2012\Chap05 folder. Change the form file’s name to Main Form.vb.
Change the form’s name to frmMain. Create the interface shown in Figure 5-70. The
application should calculate and display a club member’s monthly dues, which includes
the basic monthly fee and any additional monthly charges for tennis ($30), golf ($25), and
racquetball ($20). Code the application. Save the solution and then start and test the
application. Close the Code Editor window and then close the solution.

8. Open the Juarez Solution (Juarez Solution.sln) file contained in the VB2012\Chap05\
Juarez Solution folder. If necessary, open the designer window.

a. The Display Grade button’s Click event procedure should display a letter grade that
is based on the average of three test scores. See Figure 5-71. Each test is worth 100
points. The procedure should display an appropriate message if any of the test scores
cannot be converted to the Double data type. Code the Click event procedure.

Figure 5-70 Interface for Exercise 7

INTERMEDIATE

INTERMEDIATE

INTERMEDIATE

INTERMEDIATE

Lesson C Exercises L E S S ON C

325

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

b. When the user makes a change to the contents of a text box, the application should
remove the contents of the lblGrade control. Code the appropriate event
procedures.

c. The application should select a text box’s existing text when the text box receives
the focus. Code the appropriate event procedures.

d. Save the solution and then start and test the application. Use the following scores
for the first test: 90, 95, and 100. The grade should be an A. Use the following scores
for the second test: 83, 72, and 65. Use the following scores for the third test: 40, 30,
and 20. Next, test the application using letters, and then test it using an empty text
box. Close the Code Editor window and then close the solution.

Average Grade
90 – 100 A
80 – 89 B
70 – 79 C
60 – 69 D
Below 60 F

Figure 5-71 Grade information for Exercise 8
ª 2013 Cengage Learning

9. Open the Gross Pay Solution (Gross Pay Solution.sln) file contained in the VB2012\
Chap05\Gross Pay Solution folder. If necessary, open the designer window. The
Calculate button’s Click event procedure should calculate an employee’s gross pay.
Employees working more than 40 hours receive time and one-half for the hours over 40.
The procedure should display an appropriate message if the user’s input cannot be
converted to a Decimal number. Code the procedure. Save the solution and then start
and test the application. Close the Code Editor window and then close the solution.

10. Create a Visual Basic Windows application. Use the following names for the solution
and project, respectively: Marshall Solution and Marshall Project. Save the application
in the VB2012\Chap05 folder. Change the form file’s name to Main Form.vb. Change
the form’s name to frmMain. Create the interface shown in Figure 5-72. Each
salesperson at Marshall Sales Corporation receives a commission based on the amount
of his or her sales. The commission rates are shown in Figure 5-73. If the salesperson
has been with the company more than 10 years, he or she receives an additional $500.
If the salesperson is classified as a traveling salesperson, he or she receives an additional
$700. Code the application. Save the solution and then start and test the application.
Close the Code Editor window and then close the solution.

default button

Figure 5-72 Interface for Exercise 10

INTERMEDIATE

INTERMEDIATE

CH A P T E R 5 More on the Selection Structure

326

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Sales ($) Commission
1 – 100,000.99 2% of sales
100,001 – 400,000.99 $2,000 plus 5% of the sales over $100,000
400,001 and over $17,000 plus 10% of the sales over $400,000

Figure 5-73 Commission rates for Exercise 10
ª 2013 Cengage Learning

11. In this exercise, you create an application for Sunnyside Products. The application
calculates and displays the price of an order, based on the number of units ordered and
the customer’s status (either wholesaler or retailer). The price per unit is shown in
Figure 5-74. Create a Visual Basic Windows application. Use the following names for the
solution and project, respectively: Sunnyside Solution and Sunnyside Project. Save the
application in the VB2012\Chap05 folder. Change the form file’s name to Main Form.vb.
Change the form’s name to frmMain. Design an appropriate interface. Use radio buttons
to determine the customer’s status. Code the application. Save the solution and then
start and test the application. Close the Code Editor window and then close the solution.

Wholesaler Retailer
Number of Units Price per Unit ($) Number of Units Price per Unit ($)
1–10 20 1–5 30
11 and over 15 6 –15 28

16 and over 25

Figure 5-74 Pricing chart for Exercise 11
ª 2013 Cengage Learning

12. In this exercise, you modify the Covington Resort application from Lesson B’s Exercise 6.
Use Windows to make a copy of the Modified Covington Resort Solution folder. Rename
the copy Modified Covington Resort Solution-Advanced. Open the Covington Resort
Solution (Covington Resort Solution.sln) file contained in the Modified Covington Resort
Solution-Advanced folder. Open the designer window. Change the Visible property of the
Number of vehicles: label and its associated text box to False in the Properties window.
The label and text box should appear in the interface only when the check box is selected.
If the check box is subsequently deselected, the application should hide the label and text
box once again. Save the solution and then start and test the application. Close the Code
Editor window and then close the solution.

13. This exercise will show you how to generate and display random numbers containing
decimal places. Open the Random Double Solution (Random Double Solution.sln) file
contained in the VB2012\Chap05\Random Double Solution folder. If necessary, open
the designer window.

a. Open the Code Editor window. You can use the Random.NextDouble method
to return a random number that is greater than or equal to 0.0, but less than 1.0. The
syntax of the Random.NextDouble method is randomObjectName.NextDouble. Code
the btnDisplay_Click procedure so that it displays a random number in the lblNumber
control. Save the solution and then start the application. Click the Display Random
Number button several times. Each time you click the button, a random number that is
greater than or equal to 0.0, but less than 1.0, appears in the lblNumber control.

ADVANCED

ADVANCED

DISCOVERY

Lesson C Exercises L E S S ON C

327

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

b. You can use the following formula to generate random numbers within a
specified range: (maxValue – minValue + 1) * randomObjectName.NextDouble
+ minValue. For example, if the Random object’s name is randGen, the formula
(10 – 1 + 1) * randGen.NextDouble + 1 generates random numbers that are greater
than or equal to 1.0, but less than 11.0. Modify the btnDisplay_Click procedure to
display a random number that is greater than or equal to 25.0, but less than 51.0.
Display two decimal places in the number.

c. Save the solution and then start the application. Click the Display Random Number
button several times. Each time you click the button, a random number that is
greater than or equal to 25.0, but less than 51.0, appears in the lblNumber control.
Close the Code Editor window and then close the solution.

14. The purpose of this exercise is to demonstrate the importance of testing an application
thoroughly. Open the Debug Solution (Debug Solution.sln) file contained in the
VB2012\Chap05\Debug Solution folder. If necessary, open the designer and Code Editor
windows. The application displays a shipping charge, which is based on the total
price entered by the user. If the total price is greater than or equal to $100 but less than
$501, the shipping charge is $10. If the total price is greater than or equal to $501 but
less than $1,001, the shipping charge is $7. If the total price is greater than or equal to
$1,001, the shipping charge is $5. No shipping charge is due if the total price is less
than $100. Start the application. Test the application using the following total prices:
100, 501, 1500, 500.75, 30, 1000.33, and 2000. Notice that the application does not
always display the correct shipping charge. Correct the application’s code. Save the
solution and then start and test the application again. Close the Code Editor window
and then close the solution.

SWAT THE BUGS

CH A P T E R 5 More on the Selection Structure

328

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 6
The Repetition Structure

Creating the Gross Pay Application

In this chapter, you create an application that allows the user to enter
the number of hours an employee worked and his or her rate of pay. The
number of hours worked and pay rate will be entered using list boxes.
The hours worked list box will display numbers from 0.5 through 40.0 in
increments of 0.5 (for example, 0.5, 1.0, 1.5, 2.0, and so on). The pay
rate list box will display numbers from 8.00 through 15.00, also in
increments of 0.5. The application will calculate and display the
employee’s gross pay.

All Microsoft screenshots used with permission from Microsoft Corporation.

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Previewing the Gross Pay Application
Before you start the first lesson in this chapter, you will preview the completed application.
The application is contained in the VB2012\Chap06 folder.

To preview the completed application:

1. Use the Run dialog box to run the Gross Pay (Gross Pay.exe) file contained in
the VB2012\Chap06 folder. The application’s user interface appears on the screen.
The interface contains two list boxes. List box controls are covered in Lesson C.

2. Click 38.5 in the Hours list box, and then click the Calculate button. The gross
pay amount ($385.00) appears in the interface. See Figure 6-1.

3. Click the Exit button to end the application.

The Gross Pay application uses the repetition structure, which is covered in Lessons A and B.
You will code the Gross Pay application in Lesson C. Be sure to complete each lesson in full and
do all of the end-of-lesson questions and several exercises before continuing to the next lesson.

START HERE

list box list box

Figure 6-1 Gross pay shown in the interface
OpenClipArt.org/johnny_automatic

CH A P T E R 6 The Repetition Structure

330

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

& LESSON A
After studying Lesson A, you should be able to:

l Differentiate between a looping condition and a loop exit condition

l Explain the difference between a pretest loop and a posttest loop

l Include pretest and posttest loops in pseudocode and in a flowchart

l Write a Do…Loop statement

l Stop an infinite loop

l Utilize counters and accumulators

l Explain the purpose of the priming and update reads

l Abbreviate assignment statements using the arithmetic assignment operators

l Code a counter-controlled loop using the For…Next statement

Repeating Program Instructions
Recall that all of the procedures in an application are written using one or more of three control
structures: sequence, selection, and repetition. You learned about the sequence and selection
structures in previous chapters. This chapter covers the repetition structure. Programmers use
the repetition structure, referred to more simply as a loop, when they need the computer to
repeatedly process one or more program instructions. The loop contains a condition that
controls whether the instructions are repeated. In many programming languages, the condition
can be phrased in one of two ways. It can either specify the requirement for repeating the
instructions or specify the requirement for not repeating them. The requirement for repeating
the instructions is referred to as the looping condition because it indicates when the computer
should continue “looping” through the instructions. The requirement for not repeating the
instructions is referred to as the loop exit condition because it tells the computer when to exit
(or stop) the loop. Every looping condition has an opposing loop exit condition; one is the
opposite of the other.

Some examples may help illustrate the difference between the looping condition and the loop
exit condition. You’ve probably heard the old adage “Make hay while the sun shines.” The “while
the sun shines” is the looping condition because it tells you when to continue making hay. The
adage could also be phrased as “Make hay until the sun is no longer shining.” In this case, the
“until the sun is no longer shining” is the loop exit condition because it indicates when you
should stop making hay. In the phrase, “Keep your car’s windshield wipers on while it is raining,”
the “while it is raining” is the looping condition. To use the loop exit condition, you would
change the phrase to “Keep your car’s windshield wipers on until it stops raining.” Similarly, the
idiom “While the cat’s away, the mice will play” uses the looping condition “While the cat’s
away” to indicate when the mice will continue playing. You could also phrase the idiom using a
loop exit condition, like this: “Until the cat returns, the mice will play.” In this case, the loop exit
condition indicates when the mice will stop playing. As mentioned earlier, the looping and loop
exit conditions are the opposite of each another.

The programmer determines whether a problem’s solution requires a loop by studying the
problem specification. The first problem specification you will examine in this chapter involves a
superheroine named Isis. The problem specification and an illustration of the problem are
shown in Figure 6-2, along with a correct solution written in pseudocode. The solution uses only
the sequence and selection structures because no instructions need to be repeated.

Ch06A video

Repeating Program Instructions L E S S ON A

331

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Now let’s change the problem specification slightly. This time, rather than taking only one shot,
Isis can take as many shots as needed to destroy the poisonous yellow spider. Because of this, she
will never need to tell the king and queen to run for their lives again. Figure 6-3 shows the
modified problem specification along with two solutions. (As mentioned in Chapter 5, even
small problems can have more than one solution.) Both solutions contain the sequence and
repetition structures. The repetition structure in Solution 1 begins with the “repeat while the
laser beam did not hit the spider” clause and ends with the “end repeat while” clause. The
repetition structure in Solution 2, on the other hand, begins with the “repeat until the laser
beam hits the spider” clause and ends with the “end repeat until” clause. The instructions
between both clauses are called the loop body and are indented to indicate that they are part of
the repetition structure.

Problem Specification
A superheroine named Isis must prevent a poisonous yellow spider from attacking King Khafra and
Queen Rashida. Isis has one weapon at her disposal: a laser beam that shoots out from her right hand.
Unfortunately, Isis gets only one shot at the spider, which is flying around the palace looking for the
king and queen. Before taking the shot, she needs to position both her right arm and her right hand
toward the spider. After taking the shot, she should return her right arm and right hand to their original
positions. In addition, she should say “You are safe now. The spider is dead.” if the laser beam hit the
spider; otherwise, she should say “Run for your lives, my king and queen!”

Solution

1. position both your right arm and your right hand toward the spider
2. shoot a laser beam at the spider
3. return your right arm and right hand to their original positions
4. if the laser beam hit the spider
 say “You are safe now. The spider is dead.”
 else
 say “Run for your lives, my king and queen!”
 end if

Figure 6-2 A problem that requires the sequence and selection structures
Image by Diane Zak; Created with Reallusion CrazyTalk Animator

CH A P T E R 6 The Repetition Structure

332

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

The shaded portion in each solution in Figure 6-3 specifies the repetition structure’s condition.
The condition in Solution 1 is phrased as a looping condition because it tells Isis when to
continue repeating the instructions. In this case, she should repeat the instructions as long as (or
while) the laser beam did not hit the spider. The condition in Solution 2 is phrased as a loop exit
condition because it tells Isis when to stop repeating the instructions. In this case, she should
stop when the laser beam hits the spider. Notice that the loop exit condition is the opposite of
the looping condition. Whether you use a looping condition or a loop exit condition, the
condition must evaluate to a Boolean value.

YOU DO IT 1!

Using only the seven instructions shown here, write two solutions for printing the
pages in a document that contains at least one page. Use a looping condition in
the first solution. Use a loop exit condition in the second solution.

end repeat until
end repeat while
print the next page
print the first page
repeat until there are no more pages to print
repeat while there is another page to print
say “Done printing”

Problem Specification
A superheroine named Isis must prevent a poisonous yellow spider from attacking King Khafra and
Queen Rashida. Isis has one weapon at her disposal: a laser beam that shoots out from her right
hand. Isis can take as many shots as needed to destroy the spider, which is flying around the palace
looking for the king and queen. Before taking each shot, she needs to position both her right arm and
her right hand toward the spider. When the laser beam hits the spider, she should return her right arm
and right hand to their original positions and then say “You are safe now. The spider is dead.”

Solution 1

1. position both your right arm and your right hand toward the spider
2. shoot a laser beam at the spider
3. repeat while the laser beam did not hit the spider
 position both your right arm and your right hand toward the spider
 shoot a laser beam at the spider
 end repeat while
4. return your right arm and right hand to their original positions
5. say “You are safe now. The spider is dead.”

Solution 2

1. position both your right arm and your right hand toward the spider
2. shoot a laser beam at the spider
3. repeat until the laser beam hits the spider
 position both your right arm and your right hand toward the spider
 shoot a laser beam at the spider
 end repeat until
4. return your right arm and right hand to their original positions
5. say “You are safe now. The spider is dead.”

looping condition
specifies when to
continue

loop body

loop exit condition
specifies when to
stop

loop body

Figure 6-3 A problem that requires the sequence and repetition structures
ª 2013 Cengage Learning

Repeating Program Instructions L E S S ON A

333

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

The Savings Account Application
Figure 6-4 shows the next problem specification you will examine in this chapter, along with
the pseudocode and code for the Calculate button’s Click event procedure. The procedure
requires only the sequence structure. It does not need a selection structure or a loop because no
decisions need to be made and no instructions need to be repeated to calculate and display
the account balance at the end of the year.

To run the Savings Account application:

1. If necessary, start Visual Studio 2012. Open the Savings Solution (Savings Solution.sln)
file contained in the VB2012\Chap06\Savings Solution folder. If necessary, open the
designer window.

2. Open the Code Editor window. Replace <your name> and <current date> in the
comments with your name and the current date, respectively.

3. Locate the btnCalc_Click procedure. The procedure contains the code shown in
Figure 6-4.

4. Save the solution and then start the application. Enter 5000 as the deposit and .03 as the
annual interest rate. Click the Calculate button. The button’s Click event procedure
displays the message shown in Figure 6-5.

Problem Specification
Create an application that displays the balance in a savings account at the end of the year, given the
amount of money deposited into the savings account at the beginning of the year and the annual
interest rate. The interest is compounded annually and no withdrawals or additional deposits are made
during the year. The interest rate will be entered in decimal form. The application’s interface should
provide a Calculate button for displaying the account balance.

Pseudocode for the Calculate button’s Click event procedure
1. store deposit in balance variable
2. store interest rate in rate variable
3. interest = balance * rate
4. add interest to balance
5. display balance

Code for the Calculate button’s Click event procedure
Dim dblBalance As Double
Dim dblRate As Double
Dim dblInterest As Double
Double.TryParse(txtDeposit.Text, dblBalance)
Double.TryParse(txtRate.Text, dblRate)
dblInterest = dblBalance * dblRate
dblBalance = dblBalance + dblInterest
lblBalance.Text = "You will have " &
 dblBalance.ToString("C2") &
 " at the end of 1 year."

Figure 6-4 Problem specification, pseudocode, and code for the Savings Account application
ª 2013 Cengage Learning

START HERE

CH A P T E R 6 The Repetition Structure

334

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

5. Click the Exit button.

Now we’ll make a slight change to the problem specification from Figure 6-4. The Savings
Account application will now need to display the number of years required for the savings
account to reach one-quarter of a million dollars, and the balance in the account at that time.
Consider the changes you will need to make to the Calculate button’s original pseudocode.

The first two steps in the original pseudocode are to store the input items (deposit and interest
rate) in variables; the modified pseudocode will still need both of these steps. Steps 3 and 4
calculate the interest and then add the interest to the savings account balance. The modified
pseudocode will need to repeat both of those steps either while the balance is less than one-
quarter of a million dollars (looping condition) or until the balance is greater than or equal to
one-quarter of a million dollars (loop exit condition). Here too, notice that the loop exit
condition is the opposite of the looping condition. The loop in the modified pseudocode will also
need to keep track of the number of times the instructions in Steps 3 and 4 are processed
because each time represents a year. The last step in the original pseudocode displays the
account balance. The modified pseudocode will need to display the account balance as well as
the number of years.

The modified problem specification is shown in Figure 6-6 along with four versions of the
modified pseudocode for the Calculate button’s Click event procedure. (Here again, notice that
even small procedures can have many solutions.) Only the loop is different in each version.

you can press Alt
to either show or
hide the access
keys

Figure 6-5 Sample run of the Savings Account application

Repeating Program Instructions L E S S ON A

335

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

The loops in Versions 1 and 2 in Figure 6-6 are pretest loops. In a pretest loop, the condition
appears at the beginning of the loop, indicating that it is evaluated before the instructions within
the loop are processed. The condition in Version 1 is a looping condition because it tells the
computer when to continue repeating the loop instructions. Version 2’s condition, on the other
hand, is a loop exit condition because it tells the computer when to stop repeating the
instructions. Depending on the result of the evaluation, the instructions in a pretest loop may
never be processed. For example, if the original deposit entered by the user is greater than or
equal to 250,000 (one-quarter of a million), the “while balance < 250,000” looping condition in
Version 1 will evaluate to False and the loop instructions will be skipped over. Similarly, the
“until balance >= 250,000” loop exit condition in Version 2 will evaluate to True, causing the
loop instructions to be bypassed.

The loops in Versions 3 and 4 in Figure 6-6, on the other hand, are posttest loops. In a posttest
loop, the condition appears at the end of the loop, indicating that it is evaluated after the
instructions within the loop are processed. The condition in Version 3 is a looping condition,
whereas the condition in Version 4 is a loop exit condition. Unlike the instructions in a pretest
loop, the instructions in a posttest loop will always be processed at least once. In this case, if the
original deposit entered by the user is greater than or equal to 250,000, the instructions in the
two posttest loops will be processed once before the loop ends. Posttest loops should be used
only when you are certain that the loop instructions should be processed at least once.

Problem Specification

Create an application that displays the number of years required for the balance in a savings account to
reach at least one-quarter of a million dollars, given the amount of money deposited into the savings
account at the beginning of the year and the annual interest rate. The application should also display the
account balance at that time. The interest is compounded annually and no withdrawals or additional
deposits are made during any of the years. The interest rate will be entered in decimal form. The
application’s interface should provide a Calculate button for displaying the number of years and the
account balance.

Pseudocode for the Calculate button’s Click event procedure

Version 1 – pretest loop
1. store deposit in balance variable
2. store interest rate in rate variable
3. repeat while balance < 250,000
 interest = balance * rate
 add interest to balance
 add 1 to number of years
 end repeat while
4. display balance and number of years

Version 2 – pretest loop
1. store deposit in balance variable
2. store interest rate in rate variable
3. repeat until balance >= 250,000
 interest = balance * rate
 add interest to balance
 add 1 to number of years
 end repeat until
4. display balance and number of years

Version 3 – posttest loop
1. store deposit in balance variable
2. store interest rate in rate variable
3. repeat
 interest = balance * rate
 add interest to balance
 add 1 to number of years
 end repeat while balance < 250,000
4. display balance and number of years

Version 4 – posttest loop
1. store deposit in balance variable
2. store interest rate in rate variable
3. repeat
 interest = balance * rate
 add interest to balance
 add 1 to number of years
 end repeat until balance >= 250,000
4. display balance and number of years

looping condition
specifies when to
continue

loop exit condition
specifies when to
stop

loop exit condition
specifies when to
stop

looping condition
specifies when to
continue

Figure 6-6 Modified problem specification and pseudocode for the Calculate button’s Click event
procedure
ª 2013 Cengage Learning

Pretest and
posttest loops
are also called
top-driven and
bottom-driven
loops,
respectively.

Like selection
structures,
repetition
structures
(loops) can be
nested.

CH A P T E R 6 The Repetition Structure

336

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

The Visual Basic language provides three different statements for coding loops: Do…Loop,
For…Next, and For Each…Next. The Do…Loop statement can be used to code both pretest
and posttest loops, whereas the For…Next and For Each…Next statements are used only for
pretest loops. You will learn about the Do…Loop and For…Next statements in this lesson.
The For Each…Next statement is covered in Chapter 9.

The Do…Loop Statement
Figure 6-7 shows two versions of the syntax for the Do…Loop statement: one for coding a
pretest loop and the other for coding a posttest loop. In both versions of the syntax, the
statement begins with the Do clause and ends with the Loop clause. Between both clauses, you
enter the instructions you want the computer to repeat. The {While | Until} portion in each
syntax indicates that you can select only one of the keywords appearing within the braces. You
follow the keyword with a condition, which can be phrased as either a looping condition or a
loop exit condition. You use the While keyword in a looping condition to specify that the loop
body should be processed while (in other words, as long as) the condition is true. You use the
Until keyword in a loop exit condition to specify that the loop body should be processed until
the condition becomes true, at which time the loop should stop. Like the condition in an
If…Then…Else statement, the condition in a Do…Loop statement can contain variables,
constants, properties, methods, keywords, and operators; it also must evaluate to a Boolean
value. The condition is evaluated with each repetition of the loop and determines whether the
computer processes the loop body. Notice that the keyword (either While or Until) and the
condition appear in the Do clause in a pretest loop, but they appear in the Loop clause in a
posttest loop.

You can use the
Exit Do
statement to exit
the Do…Loop
statement

before the loop has
finished processing. You
may need to do this if the
computer encounters an
error when processing
the loop instructions.

Do…Loop Statement
Syntax for a pretest loop
Do {While | Until} condition
 loop body instructions to be
 processed either while
 the condition is true or until
 the condition becomes true
Loop

Syntax for a posttest loop
Do
loop body instructions to be
processed either while
the condition is true or until
the condition becomes true
Loop {While | Until} condition

Pretest loop example
Dim intNum As Integer = 1
Do While intNum <= 3
 lblNums.Text =
 lblNums.Text &
 intNum & " "
 intNum = intNum + 1
Loop

Posttest loop example
Dim intNum As Integer = 1
Do
 lblNums.Text =
 lblNums.Text &
 intNum & " "
 intNum = intNum + 1
Loop Until intNum > 3

Result of using either of the above examples

loop body loop body

Figure 6-7 Syntax versions and examples of the Do…Loop statement
ª 2013 Cengage Learning

The Do…Loop Statement L E S S ON A

337

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Figure 6-7 also shows examples of using both syntax versions to display the numbers 1, 2, and 3
in a label control, and it includes a sample run of an application that contains either example.
Figure 6-8 describes the way the computer processes the code shown in the examples.

Processing steps for the pretest loop example
1. The intNum variable is created and initialized to 1.
2. The Do clause checks whether the value in the intNum variable (1) is less than or equal to 3.

It is, so the loop body instructions display the number 1 in the lblNums control and then add 1
to the contents of the intNum variable, giving 2.

3. The Loop clause returns processing to the Do clause (the beginning of the loop).
4. The Do clause checks whether the value in the intNum variable (2) is less than or equal to 3. It is,

so the loop body instructions display the numbers 1 and 2 (separated by spaces) in the lblNums
control and then add 1 to the contents of the intNum variable, giving 3.

5. The Loop clause returns processing to the Do clause (the beginning of the loop).
6. The Do clause checks whether the value in the intNum variable (3) is less than or equal to 3. It is, so

the loop body instructions display the numbers 1, 2, and 3 (separated by spaces) in the lblNums
control and then add 1 to the contents of the intNum variable, giving 4.

7. The Loop clause returns processing to the Do clause (the beginning of the loop).
8. The Do clause checks whether the value in the intNum variable (4) is less than or equal to 3. It isn’t,

so the loop ends. Processing will continue with the statement following the Loop clause.

Processing steps for the posttest loop example
1. The intNum variable is created and initialized to 1.
2. The Do clause marks the beginning of the posttest loop.
3. The loop body instructions display the number 1 in the lblNums control and then add 1 to the

contents of the intNum variable, giving 2.
4. The Loop clause checks whether the value in the intNum variable (2) is greater than 3. It isn’t,

so processing returns to the Do clause (the beginning of the loop).
5. The loop body instructions display the numbers 1 and 2 (separated by spaces) in the lblNums

control and then add 1 to the contents of the intNum variable, giving 3.
6. The Loop clause checks whether the value in the intNum variable (3) is greater than 3. It isn’t,

so processing returns to the Do clause (the beginning of the loop).
7. The loop body instructions display the numbers 1, 2, and 3 (separated by spaces) in the lblNums

control and then add 1 to the contents of the intNum variable, giving 4.
8. The Loop clause checks whether the value in the intNum variable (4) is greater than 3. It is,

so the loop ends. Processing will continue with the statement following the Loop clause.

Figure 6-8 Processing steps for the loop examples from Figure 6-7
ª 2013 Cengage Learning

Although both examples in Figure 6-7 produce the same results, pretest and posttest loops are
not always interchangeable. For instance, if the intNum variable in the pretest loop in Figure 6-7
is initialized to 10 rather than to 1, the instructions in the pretest loop will not be processed
because the intNum <= 3 condition (which is evaluated before the instructions are processed)
evaluates to False. However, if the intNum variable in the posttest loop is initialized to 10 rather
than to 1, the instructions in the posttest loop will be processed one time because the intNum > 3
condition is evaluated after (rather than before) the loop instructions are processed.

It’s often easier to understand loops when viewed in flowchart form. Figure 6-9 shows the
flowcharts associated with the loop examples from Figure 6-7. The diamond in each
flowchart indicates the beginning of a repetition structure (loop). Like the diamond in a
selection structure, the diamond in a repetition structure contains a condition that evaluates

Ch06A-Do
Loop video

CH A P T E R 6 The Repetition Structure

338

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

to either True or False only. The condition determines whether the instructions within the
loop are processed. Also like the diamond in a selection structure, the diamond in a
repetition structure has one flowline entering the symbol and two flowlines leaving the
symbol. The two flowlines leading out of the diamond should be marked so that anyone
reading the flowchart can distinguish the true path from the false path. Typically, the
flowlines are marked with a “T” (for true) and an “F” (for false); however, they also can be
marked with a “Y” (for yes) and an “N” (for no). In the pretest loop’s flowchart, a circle or
loop is formed by the flowline entering the diamond combined with the diamond and the
symbols and flowlines within the true path. In the posttest loop’s flowchart, the loop (circle)
is formed by all of the symbols in the false path. It is this loop (circle) that distinguishes the
repetition structure from the selection structure in a flowchart.

F

Pretest loop example

Posttest loop example

T

F

add 1 to the variable’s value

start

stop

variable’s
value <= 3

T

display variable’s
value

assign 1 to a variable

add 1 to the variable’s value

start

stop

variable’s
value > 3

assign 1 to a variable

display variable’s
value

Figure 6-9 Flowcharts for the loop examples from Figure 6-7
ª 2013 Cengage Learning

The Do…Loop Statement L E S S ON A

339

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

YOU DO IT 2!

Close the Savings Account application's solution, if necessary. Create a Visual Basic
Windows application named YouDoIt 2. Save the application in the VB2012\Chap06 folder.
Add two buttons to the form. Both buttons should display the following numbers in
message boxes: 1, 3, 5, and 7. Code the first button’s Click event procedure using a
pretest loop. Code the second button’s Click event procedure using a posttest loop. Save
the solution and then start and test the application. Close the solution.

Coding the Modified Savings Account Application
Earlier, in Figure 6-6, you viewed four versions of the modified pseudocode for the
Calculate button’s Click event procedure in the Savings Account application. Figure 6-10
shows the pseudocode from Version 1. It also shows the corresponding Visual Basic code. The
changes made to the original pseudocode and code, shown earlier in Figure 6-4, are shaded
in Figure 6-10. The looping condition in the Do…Loop statement tells the computer to
repeat the loop body as long as (or while) the number in the dblBalance variable is less
than 250,000 (one-quarter of a million). You also can use a loop exit condition in the Do
clause, like this: Do Until dblBalance >= 250000. (Recall that >= is the opposite of <.)

Problem Specification
Create an application that displays the number of years required for the balance in a savings account to
reach at least one-quarter of a million dollars, given the amount of money deposited into the savings
account at the beginning of the year and the annual interest rate. The application should also display the
account balance at that time. The interest is compounded annually and no withdrawals or additional
deposits are made during any of the years. The interest rate will be entered in decimal form. The
application’s interface should provide a Calculate button for displaying the number of years and the
account balance.

Pseudocode for the Calculate button’s Click event procedure
1. store deposit in balance variable
2. store interest rate in rate variable
3. repeat while balance < 250,000
 interest = balance * rate
 add interest to balance
 add 1 to number of years
 end repeat while
 4. display balance and number of years

Code for the Calculate button’s Click event procedure
Dim dblBalance As Double
Dim dblRate As Double
Dim dblInterest As Double
Dim intYears As Integer
Double.TryParse(txtDeposit.Text, dblBalance)
Double.TryParse(txtRate.Text, dblRate)
Do While dblBalance < 250000
 dblInterest = dblBalance * dblRate
 dblBalance = dblBalance + dblInterest
 intYears = intYears + 1
Loop
lblBalance.Text = "You will have " &
 dblBalance.ToString("C2") &
 " in " & intYears.ToString & " years."

version 1 from
Figure 6-6

Figure 6-10 Problem specification, pseudocode, and code for the modified Savings Account application
ª 2013 Cengage Learning

CH A P T E R 6 The Repetition Structure

340

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

To modify the Savings Account application:

1. If necessary, open the Savings Solution (Savings Solution.sln) file contained in the
VB2012\Chap06\Savings Solution folder. Then, if necessary, open the designer and Code
Editor windows and then locate the btnCalc_Click procedure.

2. Make the modifications shaded in Figure 6-10 to the btnCalc_Click procedure.

3. Save the solution and then start the application. Enter 50000 as the deposit and .04 as
the annual interest rate. Click the Calculate button. The button’s Click event procedure
displays the message shown in Figure 6-11.

4. Now, delete the 50000 in the Deposit box and then click the Calculate button.
After a short period of time, a run time error occurs and the error message box shown in
Figure 6-12 appears on the screen. (It may take as long as 30 seconds for the error
message box to appear.) Place your mouse pointer on intYears, as shown in the figure.

START HERE

error message box

place your mouse
pointer here

Figure 6-12 Screen showing the error message box

Figure 6-11 Sample run of the modified Savings Account application

The Do…Loop Statement L E S S ON A

341

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

The error message informs you that an arithmetic operation—in this case, adding 1 to the
intYears variable—resulted in an overflow. An overflow error occurs when the value assigned
to a memory location is too large for the location’s data type. (An overflow error is similar to
trying to fill an 8 ounce glass with 10 ounces of water.) In this case, the intYears variable
already contains the highest value that can be stored in an Integer variable (2,147,483,647
according to Figure 3-3 in Chapter 3). Therefore, when the intYears = intYears + 1 statement
attempts to increase the variable’s value by 1, an overflow error occurs. But why does the
intYears variable contain 2,147,483,647? In this case, because you didn’t provide the initial
deposit amount, the loop’s condition (dblBalance < 250000) always evaluated to True; it never
evaluated to False, which is required for stopping the loop. A loop that has no way to end is
called an infinite loop or an endless loop. An infinite loop will also occur if you enter an initial
deposit that is less than 250,000, but you neglect to enter an interest rate. You can stop a
program that has an infinite loop by clicking DEBUG on the menu bar and then clicking Stop
Debugging.

To continue testing the application:

1. Click DEBUG on the menu bar and then click Stop Debugging.

2. Add the shaded selection structure shown in Figure 6-13 to the btnCalc_Click
procedure.

3. Save the solution and then start the application. Click the Calculate button. Notice that
no overflow error occurs. Instead, the Calculate button’s Click event procedure displays
the message “You will have $0.00 in 0 years.”

START HERE

Private Sub btnCalc_Click(sender As Object,
e As EventArgs) Handles btnCalc.Click
 ' calculate account balance

 Dim dblBalance As Double
 Dim dblRate As Double
 Dim dblInterest As Double
 Dim intYears As Integer

 Double.TryParse(txtDeposit.Text, dblBalance)
 Double.TryParse(txtRate.Text, dblRate)

 If dblBalance > 0 AndAlso dblRate > 0 Then
 Do While dblBalance < 250000
 dblInterest = dblBalance * dblRate
 dblBalance = dblBalance + dblInterest
 intYears = intYears + 1
 Loop
 End If

 lblBalance.Text = "You will have " &
 dblBalance.ToString("C2") &
 " in " & intYears.ToString & " years."
End Sub

Figure 6-13 Selection structure added to the procedure
ª 2013 Cengage Learning

CH A P T E R 6 The Repetition Structure

342

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

4. Enter 50000 as the deposit and .04 as the annual interest rate. Click the Calculate
button. The button’s Click event procedure displays the message shown earlier in
Figure 6-11.

5. On your own, test the application using different deposits and annual interest rates.
When you are finished, click the Exit button. Close the Code Editor window and then
close the solution.

The Click event procedure shown in Figure 6-13 used a counter to keep track of the number
of years. It also used an accumulator to keep track of the account balance. Counters and
accumulators are covered in the next section.

Counters and Accumulators
Some procedures require you to calculate a subtotal, a total, or an average. You make these
calculations using a loop that includes a counter, an accumulator, or both. A counter is a
numeric variable used for counting something, such as the number of employees paid in a week.
An accumulator is a numeric variable used for accumulating (adding together) something, such
as the total dollar amount of a week’s payroll. The intYears variable in the code shown earlier
in Figure 6-13 is a counter because it keeps track of the number of years required for the
account balance to reach 250,000. The dblBalance variable in the code is an accumulator
because it adds together the annual interest amounts.

Two tasks are associated with counters and accumulators: initializing and updating. Initializing
means to assign a beginning value to the counter or accumulator. Typically, counters and
accumulators are initialized to the number 0. However, they can be initialized to any number,
depending on the value required by the procedure’s code. The initialization task is performed
before the loop is processed because it needs to be performed only once. Updating refers to the
process of either adding a number to (called incrementing) or subtracting a number from (called
decrementing) the value stored in the counter or accumulator. The number can be either
positive or negative, integer or non-integer. A counter is always updated by a constant amount—
typically the number 1. An accumulator, on the other hand, is usually updated by an amount
that varies. Accumulators are usually updated by incrementing rather than by decrementing.
The assignment statement that updates a counter or an accumulator is placed in the body of a
loop. This is because the update task must be performed each time the loop instructions are
processed.

Figure 6-14 shows the syntax used for updating counters and accumulators, and it
includes examples of using the syntax. (You also can use arithmetic assignment operators to
update counters and accumulators. You will learn about those operators later in this lesson.)
In the syntax for counters, notice that counterVariable appears on both sides of the assignment
operator (=). The syntax tells the computer to add (or subtract) the constantValue to (from) the
counterVariable first, and then place the result back in the counterVariable. If the intYears
variable contains the number 1, then the update statement intYears = intYears + 1 will
change the variable’s contents to 2. In the syntax for accumulators, accumulatorVariable
appears on both sides of the assignment operator (=). This syntax tells the computer to
add the value to (or subtract the value from) the accumulatorVariable first, and then place
the result back in the accumulatorVariable. If the dblBalance and dblInterest variables
contain the numbers 2015.41 and 10.15, respectively, then the update statement
dblBalance = dblBalance + dblInterest will change the dblBalance variable’s contents
to 2025.56.

Counters and Accumulators L E S S ON A

343

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Game programs make extensive use of counters and accumulators. The partial game program
shown in Figure 6-15, for example, uses a counter to keep track of the number of smiley faces
that Eddie (the character in the figure) destroys. After he destroys three smiley faces and then
jumps through the manhole, he advances to the next level in the game, as shown in the figure.

Problem Specification
To advance to the next level in the game, Eddie must destroy the three smiley faces by jumping on each
one. He then must jump through the manhole.

Solution
1. initialize destroyed counter to 0
2. repeat while destroyed counter is less than 3
 jump on smiley face to destroy it
 add 1 to destroyed counter
 end repeat while
3. jump into manhole to advance to the next level

initialization
task next level

counter

update task

counter

Figure 6-15 Example of a partial game program that uses a counter
Image by Diane Zak; Created with Reallusion CrazyTalk Animator

Updating Counters and Accumulators

Syntax for counters
counterVariable = counterVariable {+ | –} constantValue

Examples for counters
intYears = intYears + 1
intStudents = intStudents – 1
intEvenNum = intEvenNum + 2

Syntax for accumulators
accumulatorVariable = accumulatorVariable {+ | –} value

Examples for accumulators
dblBalance = dblBalance + dblInterest
intSum = intSum + intNum
dblTotalSales = dblTotalSales + dblSales

Figure 6-14 Syntax and examples of update statements for counters and accumulators
ª 2013 Cengage Learning

Ch06-Eddie
Game video

CH A P T E R 6 The Repetition Structure

344

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

The Addition Application
Figure 6-16 shows the problem specification for the Addition application. The application
uses an accumulator to add together (accumulate) the numbers entered by the user. In this
application, the accumulator is a class-level variable named intSum. The figure also shows
the pseudocode for the Add and Start Over buttons’ Click event procedures. In addition,
it shows a sample run of the application.

The txtList control in the interface has its Multiline and ReadOnly properties set to True, and its
ScrollBars property set to Vertical. When a text box’s Multiline property is set to True, the text
box can both accept and display multiple lines of text; otherwise, only one line of text can be
entered in the text box. Changing a text box’s ReadOnly property from its default value (False)
to True prevents the user from changing the contents of the text box during run time. A text
box’s ScrollBars property specifies whether the text box has no scroll bars (the default), a

Problem Specification
Create an application that calculates the sum of the integers entered by the user, and also displays a
list of the integers and their sum. The application’s interface should provide a text box for entering the
integers, and another text box for displaying the list of integers entered. It also should provide a label
for displaying the sum. In addition to an Exit button, the interface should provide an Add button and a
Start Over button. The Add button’s Click event procedure should perform the calculation and display
tasks, using an accumulator to total the integers. The accumulator should be a class-level Integer
variable.The Start Over button should reset the accumulator to 0 and also clear the existing data from
the screen. Use the following names for the controls in the interface: txtNumber, txtList, lblSum, btnAdd,
btnStartOver, and btnExit. Use the following names for the variables: intNum and intSum (accumulator).

Add button’s Click event procedure
1. display (in the txtList control) the integer entered by the user
2. add the integer entered by the user to the intSum accumulator
3. display the intSum accumulator’s value in the lblSum control
4. send the focus to the txtNumber control and select its existing text

Start Over button’s Click event procedure
1. reset intSum accumulator to 0
2. clear the contents of the txtNumber, txtList, and lblSum controls
3. send the focus to the txtNumber control

Sample run

txtList

Figure 6-16 Problem specification, pseudocode, and a sample run for the Addition application
ª 2013 Cengage Learning

Counters and Accumulators L E S S ON A

345

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

horizontal scroll bar, a vertical scroll bar, or both horizontal and vertical scroll bars. The txtList
control also has its TextAlign property set to Right.

First, you will code the Add button’s Click event procedure.

To code the Add button’s Click event procedure:

1. Open the Addition Solution (Addition Solution.sln) file contained in the VB2012\
Chap06\Addition Solution folder. If necessary, open the designer window.

2. Open the Code Editor window. Replace <your name> and <current date> in the
comments with your name and the current date, respectively.

3. Open the code template for the btnAdd control’s Click event procedure. Enter the
following comments. Press Enter twice after typing the second comment.

' accumulates the numbers
' entered by the user

4. Now type the following Dim statement and then press Enter twice:

Dim intNum As Integer

5. Step 1 in the pseudocode for the Add button is to display (in the txtList control) the
integer entered by the user. Enter the following comment and assignment statement.
Press Enter twice after typing the assignment statement.

' display number in the list
txtList.Text = txtList.Text &

txtNumber.Text & ControlChars.NewLine

6. Step 2 is to add the integer entered by the user to the intSum accumulator. Before you
can enter the appropriate assignment statement, you need to convert the user’s input to
a number. You also need to declare the intSum variable, which should be a class-level
Integer variable. A class-level variable is appropriate in this case because the variable will
need to be used by two different procedures: the Add button’s Click event procedure and
the Start Over button’s Click event procedure. First, you’ll convert the user’s input to a
number. Enter the following comment and TryParse method:

' convert input to a number
Integer.TryParse(txtNumber.Text, intNum)

7. Next, you’ll declare the class-level variable. Locate the ' class-level accumulator
comment in the form’s Declarations section. In the blank line below the comment,
enter the following declaration statement:

Private intSum As Integer

8. Now you can enter the assignment statement to add the integer to the accumulator.
Return to the btnAdd_Click procedure. Click the blank line above the End Sub clause.
Enter the following comment and assignment statement:

' add the number to the sum
intSum = intSum + intNum

9. The last two steps in the Add button’s pseudocode are to display the accumulator’s value
in the appropriate label control and then send the focus to the txtNumber control and
select its existing text. Enter the comments and lines of code indicated in Figure 6-17.

START HERE

CH A P T E R 6 The Repetition Structure

346

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

In the next set of steps, you will test the btnAdd_Click procedure to verify that it is working
correctly.

To test the Add button’s Click event procedure:

1. Save the solution and then start the application. Type the following three numbers,
pressing Enter after typing each one: 100, 45, and 38. The three numbers appear in the
txtList control, and 183 appears in the Sum box, as shown earlier in Figure 6-16.

2. Now type the following three numbers, pressing Enter after typing each one: 87, 450,
and 7. The number 727 appears in the Sum box, and a scroll box appears on the txtList
control. The scroll box allows you to view the numbers that are not currently displayed
in the control. See Figure 6-18.

scroll box

Figure 6-18 Scroll box on the txtList control

START HERE

Private Sub btnAdd_Click(sender As Object,
e As EventArgs) Handles btnAdd.Click
 ' accumulates the numbers
 ' entered by the user

 Dim intNum As Integer

 ' display number in the list
 txtList.Text = txtList.Text &
 txtNumber.Text & ControlChars.NewLine

 ' convert input to a number
 Integer.TryParse(txtNumber.Text, intNum)
 ' add the number to the sum
 intSum = intSum + intNum
 ' display the sum
 lblSum.Text = intSum.ToString()
 ' send the focus and select the text
 txtNumber.Focus()
 txtNumber.SelectAll()
End Sub

enter these comments
and lines of code

Figure 6-17 Completed btnAdd_Click procedure
ª 2013 Cengage Learning

Counters and Accumulators L E S S ON A

347

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

3. Use the scroll box on the txtList control to scroll through the list of numbers contained
in the txtList control, and then click the Exit button.

Next, you will complete the Addition application by coding its Start Over button’s Click event
procedure.

To code and then test the Start Over button’s Click event procedure:

1. Open the code template for the btnStartOver control’s Click event procedure. Type the
following comment and then press Enter twice:

' resets accumulator, clears screen, sets focus

2. According to its pseudocode (shown earlier in Figure 6-16), the procedure should
reset the accumulator variable to 0. It also should clear the contents of the two text
boxes and the lblSum control, and then send the focus to the txtNumber control.
Enter the five lines of code indicated in Figure 6-19.

3. Save the solution and then start the application. Type any three numbers, pressing Enter
after typing each one. Then click the Start Over button. The button’s Click event
procedure clears the contents of the txtNumber, txtList, and lblSum controls.

4. Recall that the Start Over button’s Click event procedure also resets the intSum
accumulator variable to 0. To verify that fact, type the following two numbers, pressing
Enter after typing each one: 2 and 5. The correct sum, 7, appears in the Sum box.

5. Click the Exit button. Close the Code Editor window and then close the solution.

YOU DO IT 3!

Create a Visual Basic Windows application named YouDoIt 3. Save the application in
the VB2012\Chap06 folder. Add a label and two buttons to the form. The first button’s
Click event procedure should keep track of the number of times the button is
clicked, always displaying the current count in the label. The second button’s Click
event procedure should clear the label’s contents and also allow the user to start
counting from 0 again. Code each button’s Click event procedure. Save the solution and
then start and test the application. Close the solution.

START HERE

Private Sub btnStartOver_Click(sender As Object,
e As EventArgs) Handles btnStartOver.Click

' resets accumulator, clears screen, sets focus

intSum = 0
txtNumber.Text = String.Empty
txtList.Text = String.Empty
lblSum.Text = String.Empty
txtNumber.Focus()

End Sub

enter these five
lines of code

Figure 6-19 Completed btnStartOver_Click procedure
ª 2013 Cengage Learning

CH A P T E R 6 The Repetition Structure

348

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

The Sales Express Application
Figure 6-20 shows the problem specification for the Sales Express application, which uses a loop,
a counter, and an accumulator to calculate the average sales amount entered by the sales
manager. The figure also shows the pseudocode for the Calculate and Start Over buttons’ Click
event procedures. In addition, it shows a sample run of the application.

Problem Specification
Sales Express wants an application that allows the sales manager to enter each salesperson’s
annual sales amount, and then calculate and display the average sales amount. The application’s
interface should provide a Calculate button for these tasks. The button’s Click event procedure should
use the InputBox function for entering the sales amounts; it should display the amounts in a text box in
the interface. The procedure should use a counter to keep track of the number of sales amounts
entered and an accumulator to total the amounts. When the sales manager has finished entering the
sales amounts, the procedure should calculate the average amount by dividing the value stored in the
accumulator by the value stored in the counter. It then should display the average amount in a label
control. If the sales manager does not enter any sales amounts, the procedure should display the
message “N/A” (for “not available”) in the label control. The interface should also provide a Start Over
button that clears the previous sales amounts entered by the user and also the average sales amount.
Use the following names for the controls in the interface: txtList, lblAvg, btnCalc, btnStartOver, and
btnExit. Use the following names for the variables: strInputSales, decSales, intNumSales (counter),
decTotalSales (accumulator), and decAvg.

Calculate button’s Click event procedure
1. initialize the intNumSales counter to 0
2. initialize the decTotalSales accumulator to 0
3. get a sales amount from the user
4. repeat while the user entered a sales amount
 display the sales amount in the txtlist control
 add 1 to the intNumSales counter
 add the sales amount to the decTotalSales accumulator
 get a sales amount from the user
 end repeat while
5. if the value in the intNumSales counter is greater than 0
 average sales = decTotalSales accumulator / intNumSales counter
 display average sales in lblAvg control
 else
 display “N/A” in lblAvg control
 end if

Start Over button’s Click event procedure
clear the contents of the txtList and lblAvg controls

priming read

update read

Figure 6-20 Problem specification, pseudocode, and a sample run for the Sales Express
application (continues)

Counters and Accumulators L E S S ON A

349

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Notice that the Calculate button’s pseudocode contains two “get a sales amount from the user”
instructions. One of the instructions appears above the loop, and the other appears as the last
instruction in the loop body. The “get a sales amount from the user” instruction above the
loop is referred to as the priming read because it is used to prime (prepare or set up) the loop.
The priming read initializes the loop condition by providing its first value. In this case, the
priming read gets only the first sales amount from the user. Because the loop is a pretest loop,
the first sales amount determines whether the instructions in the loop body are processed at
all. If the loop body instructions are processed, the “get a sales amount from the user”
instruction in the loop body gets the remaining sales amounts (if any) from the user. This
instruction is referred to as the update read because it allows the user to update the value of
the input item (in this case, the sales amount) associated with the loop’s condition. The update
read is often an exact copy of the priming read.

The importance of the update read cannot be stressed enough. If you don’t include the
update read in the loop body, there will be no way to enter a value that will stop the loop after
it has been processed the first time. This is because the priming read is processed only
once and gets only the first sales amount from the user. Without the update read, the loop will
have no way of stopping on its own. As you learned earlier, a loop that has no way to end
is called an infinite (or endless) loop. Recall that you can stop an infinite loop by clicking
DEBUG on the menu bar and then clicking Stop Debugging.

Figure 6-21 shows the Calculate button’s Click event procedure in flowchart form, with the
priming and update reads shaded. Notice that the priming read’s parallelogram is located above
the diamond that represents the loop’s condition, while the update read’s parallelogram is
located at the end of the loop body.

Sample run

Figure 6-20 Problem specification, pseudocode, and a sample run for the Sales Express application
ª 2013 Cengage Learning

(continued)

CH A P T E R 6 The Repetition Structure

350

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

To open the Sales Express application:

1. Open the Sales Express Solution (Sales Express Solution.sln) file contained in the
VB2012\Chap06\Sales Express Solution folder. If necessary, open the designer window.

2. Open the Code Editor window. Replace <your name> and <current date> in the
comments with your name and the current date, respectively.

3. Locate the btnCalc_Click procedure. The procedure declares the two named constants
and five variables shown in Figure 6-22. The named constants and strInputSales
variable will be used, along with the InputBox function, to get a sales amount from the
user. The decSales variable will store the sales amount after it has been converted to
Decimal. The intNumSales variable will be the counter that keeps track of the number
of sales amounts entered, and the decTotalSales variable will accumulate the sales
amounts. The decAvgSales variable will store the average sales amount after it has been
calculated.

display sales amount
in txtList

TF

intNumSales
counter > 0

TF

display “N/A” in
lblAvg

display average sales
in lblAvg

get a sales amount
from the user

start

stop

sales amount
entered

initialize intNumSales
counter to 0

initialize decTotalSales
accumulator to 0

add 1 to intNumSales
counter

add sales amount
to decTotalSales
accumulator

average sales = decTotalSales
accumulator / intNumSales
counter

get a sales amount
from the user

Figure 6-21 Flowchart for the Calculate button’s Click event procedure
ª 2013 Cengage Learning

START HERE

Counters and Accumulators L E S S ON A

351

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

The first two steps in the Calculate button’s pseudocode and flowchart are to initialize the
counter and accumulator variables to 0. Because the Dim statement automatically assigns
the number 0 to Integer and Decimal variables when the variables are created, you do not
need to enter any additional code to initialize the intNumSales and decTotalSales variables.
In cases where you need to initialize a counter or accumulator to a value other than 0, you
can do so either in the Dim statement that declares the variable or in an assignment statement.
For example, to initialize the intNumSales variable to the number 1, you could use either
the declaration statement Dim intNumSales As Integer = 1 or the assignment statement
intNumSales = 1 in your code. However, to use the assignment statement, the intNumSales
variable must be declared before the assignment statement is processed.

To code and then test the Calculate button’s Click event procedure:

1. The next step in the pseudocode and flowchart gets the first sales amount from the user.
Click the blank line below the ' get first sales amount comment and then enter the
following assignment statement:

strInputSales = InputBox(strPROMPT, strTITLE, "0")

2. Next, you need to enter a pretest loop whose condition determines whether the user
entered a sales amount. If no sales amount was entered, the InputBox function will
return the empty string. In this case, you want the loop body instructions processed only
when the function returns a value other than the empty string. Click the blank line
below the ' repeat as long as the user enters a sales amount comment and then
enter the following Do While clause. When you press Enter after typing the clause, the
Code Editor will automatically enter a Loop clause for you.

Do While strInputSales <> String.Empty

3. If the user entered a sales amount, the instructions in the loop body should display the
sales amount in the txtList control, then update the counter and accumulator, and then
get another sales amount from the user. Enter the loop body indicated in Figure 6-23.

Figure 6-22 Named constants and variables declared in the btnCalc_Click procedure

START HERE

CH A P T E R 6 The Repetition Structure

352

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

4. When the user has finished entering sales amounts, the loop ends and processing
continues with Step 5 in the pseudocode (or the second diamond in the flowchart).
Step 5 is a selection structure whose condition verifies that the value stored in the
intNumSales variable is greater than the number 0. This verification is necessary
because the first instruction in the selection structure’s true path uses the variable as
the divisor when calculating the average sales amount. Before using a variable as the
divisor in an expression, you should always verify that the variable does not contain the
number 0 because, as in mathematics, division by zero is not possible. Dividing by
zero in a procedure will cause the application to end abruptly with an error. Click the
blank line below the ' verify that the counter is greater than 0 comment. Enter
the following If clause. When you press Enter after typing the clause, the Code Editor
will automatically enter an End If clause for you.

If intNumSales > 0 Then

5. If the counter’s value is greater than 0, the selection structure’s true path should
calculate and display the average sales amount; otherwise, it should display the string
“N/A”. Complete the selection structure’s true and false paths as indicated in
Figure 6-24.

enter these comments
and lines of code

Figure 6-23 Loop entered in the btnCalc_Click procedure

You can also
write the loop
condition in
Figure 6-23 as
Do While

strInputSales<>"".

Counters and Accumulators L E S S ON A

353

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

6. Save the solution and then start the application. Click the Calculate button. Use the
Sales Entry dialog box to enter the following four sales amounts, one at a time: 7000,
15000, 4575, and 23400.

7. Click the Cancel button in the dialog box. The sales amounts appear in the txtList
control, and the number $12,493.75 appears in the Average sales amount box, as shown
earlier in Figure 6-20.

8. Click the Exit button.

To complete the application, you just need to code the Start Over button’s Click event
procedure. According to its pseudocode, shown earlier in Figure 6-20, the procedure is
responsible for clearing the contents of the txtList and lblAvg controls.

Private Sub btnCalc_Click(sender As Object,
e As EventArgs) Handles btnCalc.Click

' calculates the average sales amount

Const strPROMPT As String =
"Enter a sales amount. " &
ControlChars.NewLine &
"Click Cancel or leave blank to end."

Const strTITLE As String = "Sales Entry"
Dim strInputSales As String
Dim decSales As Decimal
Dim intNumSales As Integer
Dim decTotalSales As Decimal
Dim decAvgSales As Decimal

' get first sales amount
strInputSales = InputBox(strPROMPT, strTITLE, "0")

' repeat as long as the user enters a sales amount
Do While strInputSales <> String.Empty

' convert the sales amount to a number
Decimal.TryParse(strInputSales, decSales)

' display the sales amount in the text box
txtList.Text = txtList.Text &

decSales.ToString("N2") & ControlChars.NewLine

' update the counter and accumulator
intNumSales = intNumSales + 1
decTotalSales = decTotalSales + decSales

' get next sales amount
strInputSales = InputBox(strPROMPT, strTITLE)

Loop

' verify that the counter is greater than 0
If intNumSales > 0 Then

decAvgSales = decTotalSales / intNumSales
lblAvg.Text = decAvgSales.ToString("C2")

Else
lblAvg.Text = "N/A"

End If
End Sub

enter these four
lines of code

Figure 6-24 Completed btnCalc_Click procedure
ª 2013 Cengage Learning

CH A P T E R 6 The Repetition Structure

354

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

To code and then test the Start Over button’s Click event procedure:

1. Open the code template for the btnStartOver control’s Click event procedure. Enter
the comment and code shown in Figure 6-25.

2. Save the solution and then start the application. Click the Calculate button. Use
the Sales Entry dialog box to enter any two sales amounts, one at a time, and then
click the Cancel button. The sales amounts and average sales amount appear in the
interface.

3. Click the Start Over button to clear the sales amounts and average sales amount from
interface. Click the Exit button. Close the Code Editor window and then close the
solution.

YOU DO IT 4!

Create a Visual Basic Windows application named YouDoIt 4. Save the application
in the VB2012\Chap06 folder. Add three labels and a button to the form. The button’s
Click event procedure should allow the user to enter one or more prices. It then
should display (in the labels) the number of prices entered, the total of the prices
entered, and the average price entered. If the user does not enter any numbers,
the procedure should display the string “None” in the three labels. Code the button’s
Click event procedure using a pretest loop and the InputBox function. Save the
solution and then start and test the application. Close the solution.

Arithmetic Assignment Operators
In addition to the standard arithmetic operators listed in Figure 2-34 in Chapter 2, Visual Basic
also provides several arithmetic assignment operators. You can use the arithmetic assignment
operators to abbreviate an assignment statement that contains an arithmetic operator.
However, the assignment statement must have the following format, in which variableName is
the name of the same variable: variableName = variableName arithmeticOperator value. For
example, you can use the multiplication assignment operator (*=) to abbreviate the statement
dblPrice = dblPrice * 1.05 as follows: dblPrice *= 1.05. Both statements tell the computer
to multiply the contents of the dblPrice variable by 1.05 and then store the result in the
dblPrice variable.

Figure 6-26 shows the syntax for using an arithmetic assignment operator. Notice that each
arithmetic assignment operator consists of an arithmetic operator followed immediately by the
assignment operator (=). The arithmetic assignment operators do not contain a space; in other
words, the multiplication assignment operator is *=, not * =. Including a space in an arithmetic
assignment operator is a common syntax error. Figure 6-26 also includes examples of using

enter this comment and
these two lines of code

Figure 6-25 Completed btnStartOver_Click procedure

START HERE

Arithmetic Assignment Operators L E S S ON A

355

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

arithmetic assignment operators to abbreviate assignment statements. To abbreviate an
assignment statement, you simply remove the variable name that appears on the left side of the
assignment operator (=), and then put the assignment operator immediately after the arithmetic
operator.

To use the arithmetic assignment operators in the Sales Express application:

1. Use Windows to make a copy of the Sales Express Solution folder. Rename the
copy Sales Express Solution-Arithmetic Assignment.

2. Open the Sales Express Solution (Sales Express Solution.sln) file contained in the
Sales Express Solution-Arithmetic Assignment folder. Open the designer window.

3. Open the Code Editor window. Locate the btnCalc_Click procedure. Modify
the statements that update the counter and accumulator variables as shown in
Figure 6-27.

Arithmetic Assignment Operators
Syntax
variableName arithmeticAssignmentOperator value

Operator Purpose
addition assignment
subtraction assignment
multiplication assignment
division assignment

+=
–=
*=
/=

Example 1
Original statement: intAge = intAge + 1
Abbreviated statement: intAge += 1
Both statements add 1 to the number stored in the intAge variable and then assign the result to
the variable.

Example 2
Original statement: decPrice = decPrice - decDiscount
Abbreviated statement: decPrice –= decDiscount
Both statements subtract the number stored in the decDiscount variable from the number
stored in the decPrice variable and then assign the result to the decPrice variable.

Example 3
Original statement: dblPrice = dblPrice * 1.05
Abbreviated statement: dblPrice *= 1.05
Both statements multiply the number stored in the dblPrice variable by 1.05 and then assign
the result to the variable.

Example 4
Original statement: dblNum = dblNum / 2
Abbreviated statement: dblNum /= 2
Both statements divide the number stored in the dblNum variable by 2 and then assign the result
to the variable.

Figure 6-26 Syntax and examples of the arithmetic assignment operators
ª 2013 Cengage Learning

START HERE

CH A P T E R 6 The Repetition Structure

356

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

4. Save the solution and then start the application. Click the Calculate button. Use the
Sales Entry dialog box to enter the following three sales amounts: 100, 140, and 220.
Click the Cancel button in the dialog box. The sales amounts appear in the txtList
control, and the number $153.33 appears in the Average sales amount box.

5. Click the Exit button. Close the Code Editor window and then close the solution.

Note: You have learned a lot so far in this lesson. You may want to take a break at this point
before continuing.

The For…Next Statement
Unlike the Do…Loop statement, which can be used to code both pretest and posttest loops, the
For…Next statement can be used to code only a specific type of pretest loop, called a counter-
controlled loop. A counter-controlled loop is a loop whose processing is controlled by a counter.
You use a counter-controlled loop when you want the computer to process the loop instructions
a precise number of times. Although you can also use the Do…Loop statement to code a
counter-controlled loop, the For…Next statement provides a more compact and convenient way
of writing that type of loop.

Figure 6-28 shows the For…Next statement’s syntax and includes examples of using the
statement. It also shows the tasks performed by the computer when processing the statement.
You enter the loop body, which contains the instructions you want the computer to repeat,
between the statement’s For and Next clauses. The counterVariableName that appears in both
clauses is the name of a numeric variable. The computer will use the variable to keep track of (in
other words, count) the number of times the loop body instructions are processed. Although,
technically, you do not need to specify the name of the counter variable in the Next clause,
doing so is highly recommended because it makes your code more self-documenting.

modify these two
statements as shown

Figure 6-27 Modified update statements using arithmetic assignment operators

The For…Next Statement L E S S ON A

357

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

You can use the As dataType portion of the For clause to declare the counter variable, as shown
in the first two examples in Figure 6-28. When you declare a variable in the For clause, the
variable has block scope and can be used only within the For…Next loop. Alternatively, you can
declare the counter variable in a Dim statement, as shown in Example 3. As you know, a variable
declared in a Dim statement at the beginning of a procedure has procedure scope and can be
used within the entire procedure. When deciding where to declare the counter variable, keep in

For…Next Statement
Syntax
For counterVariableName [As dataType] = startValue To endValue [Step stepValue]
 loop body instructions
Next counterVariableName

stepValue
positive number
negative number

Loop body processed when
counter’s value <= endValue
counter’s value >= endValue

Loop ends when
counter’s value > endValue
counter’s value < endValue

Example 1
For intNum As Integer = 10 To 12
 MessageBox.Show(intNum.ToString)
Next intNum
displays 10, 11, and 12 in message boxes

Example 2
Dim strCity As String
For intX As Integer = 5 To 1 Step -1
 strCity = InputBox("City:", "City Entry")
 txtCities.Text = txtCities.Text &
 strCity & ControlChars.NewLine
Next intX
displays five city names in the txtCities control

Example 3
Dim dblRate As Double
For dblRate = 0.05 To 0.1 Step 0.01
 lblRates.Text = lblRates.Text &
 dblRate.ToString("P0") &
 ControlChars.NewLine
Next dblRate
displays 5 %, 6 %, 7 %, 8 %, 9 %, and 10 % in the lblRates control

Processing tasks
1. If the counter variable is declared in the For clause, the variable is created and then initialized
 to the startValue; otherwise, it is just initialized to the startValue. The initialization task is done
 only once, at the beginning of the loop.
2. The counter’s value is compared with the endValue to determine whether the loop should end.
 If the stepValue is a positive number, the comparison determines whether the counter’s value is
 greater than the endValue. If the stepValue is a negative number, the comparison determines
 whether the counter’s value is less than the endValue. Notice that the computer evaluates the
 loop condition before processing the instructions within the loop.
3. If the comparison from task 2 evaluates to True, the loop ends and processing continues with
 the statement following the Next clause. Otherwise, the loop body instructions are processed
 and then task 4 is performed.
4. Task 4 is performed only when the comparison from task 2 evaluates to False. In this task, the
 stepValue is added to the counter’s value, and then tasks 2, 3, and 4 are repeated until the loop
 condition evaluates to True.

loop body

loop body

loop body

Figure 6-28 For…Next statement’s syntax, examples, and processing tasks
ª 2013 Cengage Learning

CH A P T E R 6 The Repetition Structure

358

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

mind that if the variable is needed only by the For…Next loop, then it is a better programming
practice to declare the variable in the For clause. As mentioned in Chapter 3, fewer
unintentional errors occur in applications when the variables are declared using the minimum
scope needed. Block-level variables have the smallest scope, followed by procedure-level
variables and then class-level variables. You should declare the counter variable in a Dim
statement only when its value is required by statements outside the For…Next loop in the
procedure.

The startValue, endValue, and stepValue items in the For clause control the number of times
the loop body is processed. The startValue and endValue tell the computer where to begin and
end counting, respectively. The stepValue tells the computer how much to count by—in other
words, how much to add to the counter variable each time the loop body is processed. If you
omit the stepValue, a stepValue of positive 1 is used. In Example 1 in Figure 6-28, the startValue
is 10, the endValue is 12, and the stepValue (which is omitted) is 1. Those values tell the
computer to start counting at 10 and, counting by 1s, stop at 12—in other words, count 10, 11,
and 12. The computer will process the instructions in Example 1’s loop body three times.

The startValue, endValue, and stepValue items must be numeric and can be either positive
or negative, integer or non-integer. As indicated in Figure 6-28, if the stepValue is a
positive number, the startValue must be less than or equal to the endValue for the loop
instructions to be processed. For instance, the For intNum As Integer = 10 To 12 clause is
correct, but the For intNum As Integer = 12 To 10 clause is not correct because you cannot
count from 12 (the startValue) to 10 (the endValue) by adding increments of 1 (the stepValue).
If, on the other hand, the stepValue is a negative number, then the startValue must be greater
than or equal to the endValue for the loop instructions to be processed. As a result, the
For intNum As Integer = 5 To 1 Step -1 clause is correct, but the For intNum As Integer = 1
To 5 Step -1 clause is not correct because you cannot count from 1 to 5 by adding increments
of negative 1. Adding increments of a negative 1 is the same as decrementing by 1.

Figure 6-29 describes the steps the computer follows when processing the loop shown in
Example 1 in Figure 6-28. As Step 2 indicates, the loop’s condition is evaluated before the loop
body is processed. This is because the loop created by the For…Next statement is a pretest loop.
Notice that the intNum variable contains the number 13 when the For…Next statement ends.
The number 13 is the first integer that is greater than the loop’s endValue of 12.

Processing steps for Example 1
1. The For clause creates the intNum variable and initializes it to 10.
2. The For clause compares the intNum value (10) with the endValue (12) to determine whether

the loop should end. 10 is not greater than 12, so the MessageBox.Show method displays the
number 10 in a message box, and then the For clause increments intNum by 1, giving 11.

3. The For clause compares the intNum value (11) with the endValue (12) to determine whether
the loop should end. 11 is not greater than 12, so the MessageBox.Show method displays the
number 11 in a message box, and then the For clause increments intNum by 1, giving 12.

4. The For clause compares the intNum value (12) with the endValue (12) to determine whether
the loop should end. 12 is not greater than 12, so the MessageBox.Show method displays the
number 12 in a message box, and then the For clause increments intNum by 1, giving 13.

5. The For clause compares the intNum value (13) with the endValue (12) to determine whether
the loop should end. 13 is greater than 12, so the loop ends. Processing will continue with the
statement following the Next clause.

Figure 6-29 Processing steps for Example 1 in Figure 6-28
ª 2013 Cengage Learning

You can use the
Exit For
statement to exit
the For…Next
statement

before the loop has
finished processing. You
may need to do this if the
computer encounters an
error when processing
the loop instructions.

Ch06A-For
Next video

The For…Next Statement L E S S ON A

359

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

You will use the For…Next statement to code a different version of the Saving Account
application coded earlier in this lesson.

A Different Version of the Savings Account Application
The problem specification for the original Savings Account application is shown earlier
in Figure 6-4, along with the pseudocode and code for the Calculate button’s Click event
procedure. As you may remember, the procedure calculates and displays the balance in a savings
account at the end of the year, given the amount of money deposited into the savings account at
the beginning of the year and the annual interest rate. A sample run of the original application is
shown earlier in Figure 6-5.

Figure 6-30 shows the problem specification for a slightly different version of the Savings
Account application. In this version, the Calculate button’s Click event procedure will need to
display the balance in the savings account at the end of each of five years. Figure 6-30 also
shows the modified pseudocode and corresponding code for the Calculate button’s Click event
procedure. The modifications made to the original problem specification, pseudocode, and
code are shaded in the figure. In addition, the figure shows a sample run of the modified
application.

Problem Specification
Create an application that displays the balance in a savings account at the end of each of five years,
given the amount of money deposited into the savings account at the beginning of the year and the
annual interest rate. The interest is compounded annually and no withdrawals or additional deposits are
made during any of the years. The interest rate will be entered in decimal form. The application’s
interface should provide a Calculate button for displaying the account balances.

Pseudocode for the Calculate button’s Click event procedure
1. store deposit in balance variable
2. store interest rate in rate variable
3. display Year and Balance column headings
4. repeat for years from 1 to 5 in increments of 1
 interest = balance * rate
 add interest to balance
 display year number and balance
 end repeat for

Code for the Calculate button’s Click event procedure
Dim dblBalance As Double
Dim dblRate As Double
Dim dblInterest As Double
Double.TryParse(txtDeposit.Text, dblBalance)
Double.TryParse(txtRate.Text, dblRate)
lblBalance.Text = "Year Balance" &
 ControlChars.NewLine
For intYear As Integer = 1 To 5
 dblInterest = dblBalance * dblRate
 dblBalance = dblBalance + dblInterest
 lblBalance.Text = lblBalance.Text &
 intYear.ToString & " " &
 dblBalance.ToString("C2") &
 ControlChars.NewLine
Next intYear

Figure 6-30 Problem specification, pseudocode, code, and sample run for another version of the
Savings Account application (continues)

CH A P T E R 6 The Repetition Structure

360

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Figure 6-31 shows the flowchart for the Calculate button’s Click event procedure. Many
programmers use a hexagon, which is a six-sided figure, to represent the For clause in a
flowchart. Within the hexagon, you record the four items contained in a For clause:
counterVariableName, startValue, endValue, and stepValue. The counterVariableName and
stepValue are placed at the top and bottom, respectively, of the hexagon. The startValue and
endValue are placed on the left and right side, respectively. The hexagon in Figure 6-31 indicates
that the counterVariableName is intYear, the startValue is 1, the endValue is 5, and the
stepValue is 1. Notice that a greater than sign (>) precedes the endValue in the hexagon.
The > sign indicates that the loop will end when the counter variable’s value is greater than 5.

T

F

display Year and Balance
column headings

store rate in
rate variable

store deposit in
balance variable

1

intYear

> 5

1

stop

start

interest = balance * rate

add interest to balance

display year number
and balance

Figure 6-31 Flowchart for the Calculate button’s Click event procedure
ª 2013 Cengage Learning

Sample run

Figure 6-30 Problem specification, pseudocode, code, and sample run for another version of the
Savings Account application
ª 2013 Cengage Learning

(continued)

The For…Next Statement L E S S ON A

361

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

To code and then test this version of the Savings Account application:

1. Open the Savings Solution (Savings Solution.sln) file contained in the VB2012\
Chap06\Savings Solution-For Next folder. If necessary, open the designer window.

2. Open the Code Editor window. The window contains the code for the original Savings
Account application. Replace <your name> and <current date> in the comments with
your name and the current date, respectively. Also change the comment that describes
the application’s purpose to Display a savings account balance for each of five years.

3. Locate the btnCalc_Click procedure. First, you will enter an assignment statement that
will display the Year and Balance column headings in the lblBalance control. Click the
blank line below the last TryParse method and then press Enter to insert another
blank line. Type the following assignment statement and then press Enter twice. Be sure
to include eight space characters between the word “Year” and the word “Balance”.

lblBalance.Text = "Year Balance" &
ControlChars.NewLine

4. Now, enter the following For clause. When you press Enter after typing the clause, the
Code Editor will automatically enter a Next clause for you.

For intYear As Integer = 1 To 5

5. Change the Next clause to Next intYear.

6. Move the three assignment statements that appear below the Next intYear clause into
the For…Next loop, as shown in Figure 6-32. Then modify the last assignment statement
as indicated in the figure. Include eight space characters between the quotation marks in
the last assignment statement.

START HERE

Private Sub btnCalc_Click(sender As Object,
e As EventArgs) Handles btnCalc.Click

' calculate account balance

Dim dblBalance As Double
Dim dblRate As Double
Dim dblInterest As Double

Double.TryParse(txtDeposit.Text, dblBalance)
Double.TryParse(txtRate.Text, dblRate)

lblBalance.Text = "Year Balance" &
ControlChars.NewLine

For intYear As Integer = 1 To 5
dblInterest = dblBalance * dblRate
dblBalance = dblBalance + dblInterest

lblBalance.Text = lblBalance.Text &
intYear.ToString & " " &
dblBalance.ToString("C2") &
ControlChars.NewLine

Next intYear
End Sub

move these three
statements into the
loop, then modify the
last statement

Figure 6-32 Completed btnCalc_Click procedure
ª 2013 Cengage Learning

CH A P T E R 6 The Repetition Structure

362

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

7. Save the solution and then start the application. Type 5000 and .03 in the Deposit and
Annual interest rate boxes and then click the Calculate button. The savings account
balance at the end of each of the five years appears in the interface, as shown earlier in
Figure 6-30.

8. Click the Exit button. Close the Code Editor window and then close the solution.

Comparing the For…Next and Do…Loop Statements
As mentioned earlier, you can code a counter-controlled loop using either the For…Next
statement or the Do…Loop statement; however, the For…Next statement is more convenient to
use. Figure 6-33 shows an example of using both loops to display the string “Hi” three times.
Notice that, when using the Do…Loop statement to code a counter-controlled loop, you must
include a statement to declare and initialize the counter variable, as well as a statement to
update the counter variable. In addition, you must include the appropriate comparison in the
Do clause. In a For…Next statement, the declaration, initialization, update, and comparison
tasks are handled by the For clause.

YOU DO IT 5!

Create a Visual Basic Windows application named YouDoIt 5. Save the application in
the VB2012\Chap06 folder. Add two labels and a button to the form. The button’s Click
event procedure should display the number of integers from 14 through 23 in one of
the labels, and the sum of those integers in the other label. Code the procedure using the
For…Next statement. Save the solution and then start and test the application. Close
the solution.

For…Next Statement
For intX As Integer = 1 To 3
 MessageBox.Show("Hi")
Next intX

Do…Loop Statement
Dim intX As Integer = 1
Do While intX <= 3
 MessageBox.Show("Hi")
 intX = intX + 1
Loop

declares, initializes,
compares, and updates
the counter variable

declares and initializes
the counter variable

compares the counter
variable

updates the counter
variable (can also be
written as intX += 1)

Figure 6-33 Comparison of the For…Next and Do…Loop statements
ª 2013 Cengage Learning

The For…Next Statement L E S S ON A

363

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Lesson A Summary
l To have the computer repeatedly process one or more program instructions while the

looping condition is true (or until the loop exit condition has been met):

Use a repetition structure (loop). You can code a repetition structure in Visual Basic using
one of the following statements: For…Next, Do…Loop, and For Each…Next. (The For
Each…Next statement is covered in Chapter 9.)

l To use the Do…Loop statement to code a loop:

Refer to Figure 6-7 for the two versions of the Do…Loop statement’s syntax. The Do…Loop
statement can be used to code both pretest and posttest loops. In a pretest loop, the
loop condition appears in the Do clause; it appears in the Loop clause in a posttest loop.
The loop condition must evaluate to a Boolean value.

l To represent the loop condition in a flowchart:

Use the decision symbol, which is a diamond.

l To stop an endless (infinite) loop:

Click DEBUG on the menu bar and then click Stop Debugging.

l To use a counter:

Initialize and update the counter. The initialization is done outside of the loop that uses the
counter; the update is done within the loop. You update a counter by either incrementing or
decrementing its value by a constant amount, which can be either positive or negative,
integer or non-integer.

l To use an accumulator:

Initialize and update the accumulator. The initialization is done outside of the loop that
uses the accumulator; the update is done within the loop. In most cases, you update an
accumulator by incrementing (rather than by decrementing) its value by an amount that
varies. The amount can be either positive or negative, integer or non-integer.

l To abbreviate an assignment statement:

Use the arithmetic assignment operators listed in Figure 6-26. The assignment statement
you want to abbreviate must follow this format, in which variableName is the name of the
same variable: variableName = variableName arithmeticOperator value.

l To use the For…Next statement to code a counter-controlled loop:

Refer to Figure 6-28 for the For…Next statement’s syntax. The statement can be used to
code pretest loops only. In the syntax, counterVariableName is the name of a numeric
variable that the computer will use to keep track of the number of times the loop body
instructions are processed. The number of iterations is controlled by the For clause’s
startValue, endValue, and stepValue. The startValue, endValue, and stepValue must be
numeric and can be positive or negative, integer or non-integer. If you omit the stepValue,
a stepValue of positive 1 is used.

l To flowchart a For…Next loop:

Many programmers use a hexagon to represent the For clause. Inside the hexagon, you
record the counter variable’s name and its startValue, stepValue, and endValue.

CH A P T E R 6 The Repetition Structure

364

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Lesson A Key Terms
Accumulator—a numeric variable used for accumulating (adding together) something

Arithmetic assignment operators—composed of an arithmetic operator followed by the
assignment operator; used to abbreviate an assignment statement that has the following format,
in which variableName is the name of the same variable: variableName = variableName
arithmeticOperator value

Counter—a numeric variable used for counting something

Counter-controlled loop—a loop whose processing is controlled by a counter; the loop body will
be processed a precise number of times

Decrementing—decreasing a value

Do…Loop statement—a Visual Basic statement that can be used to code both pretest loops and
posttest loops

Endless loop—a loop whose instructions are processed indefinitely; also called an infinite loop

For…Next statement—a Visual Basic statement that is used to code a specific type of pretest
loop, called a counter-controlled loop

Incrementing—increasing a value

Infinite loop—another name for an endless loop

Initializing—the process of assigning a beginning value to a memory location, such as a counter
or accumulator variable

Loop—another name for the repetition structure

Loop body—the instructions within a loop

Loop exit condition—the requirement that must be met for the computer to stop processing the
loop body instructions

Looping condition—the requirement that must be met for the computer to continue processing
the loop body instructions

Multiline property—determines whether a text box can accept and display only one line of text
or multiple lines of text

Posttest loop—a loop whose condition is evaluated after the instructions in its loop body
are processed

Pretest loop—a loop whose condition is evaluated before the instructions in its loop body
are processed

Priming read—the input instruction that appears above the loop that it controls; used to get the
first input item from the user

ReadOnly property—controls whether the user is allowed to change the contents of a text box
during run time

Repetition structure—the control structure used to repeatedly process one or more program
instructions; also called a loop

ScrollBars property—a property of a text box; specifies whether the text box has scroll bars

Update read—the input instruction that appears within a loop and is associated with the
priming read

Updating—the process of either adding a number to or subtracting a number from the value
stored in a counter or accumulator variable

Lesson A Key Terms L E S S ON A

365

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Lesson A Review Questions
1. Which of the following clauses stops the loop when the value in the intPopulation

variable is less than the number 5000?

a. Do While intPopulation >= 5000

b. Do Until intPopulation < 5000

c. Loop While intPopulation >= 5000

d. all of the above

2. Which of the following statements can be used to code a loop whose instructions you
want processed 10 times?

a. Do…Loop

b. For…Next

c. either a or b

3. The instructions in a loop might not be processed at all, whereas the
instructions in a loop are always processed at least once.

a. posttest, pretest

b. pretest, posttest

4. How many times will the MessageBox.Show method in the following code be processed?

Dim intCount As Integer
Do While intCount > 4

MessageBox.Show("Hello")
intCount = intCount + 1

Loop

a. 0

b. 1

c. 4

d. 5

5. How many times will the MessageBox.Show method in the following code be processed?

Dim intCount As Integer
Do

MessageBox.Show("Hello")
intCount += 1

Loop While intCount > 4

a. 0

b. 1

c. 4

d. 5

CH A P T E R 6 The Repetition Structure

366

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

6. How many times will the MessageBox.Show method in the following code be processed?

For intCount As Integer = 6 To 13 Step 2
MessageBox.Show("Hello")

Next intCount

a. 3

b. 4

c. 5

d. 8

7. The computer will stop processing the loop in Review Question 6 when the intCount
variable contains the number .

a. 11

b. 12

c. 13

d. 14

8. A procedure allows the user to enter one or more values. The first input instruction will
get the first value only and is referred to as the read.

a. entering

b. initializer

c. priming

d. starter

Refer to Figure 6-34 to answer Review Questions 9 through 12.

A

F

F

T T

B

Figure 6-34 Flowcharts for Review Questions 9 through 12 (continues)

Lesson A Review Questions L E S S ON A

367

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

9. Which of the following control structures are used in flowchart A in Figure 6-34?
(Select all that apply.)

a. sequence

b. selection

c. repetition

10. Which of the following control structures are used in flowchart B in Figure 6-34?
(Select all that apply.)

a. sequence

b. selection

c. repetition

11. Which of the following control structures are used in flowchart C in Figure 6-34?
(Select all that apply.)

a. sequence

b. selection

c. repetition

F T

F

F

T

T

C D

Figure 6-34 Flowcharts for Review Questions 9 through 12
ª 2013 Cengage Learning

(continued)

CH A P T E R 6 The Repetition Structure

368

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

12. Which of the following control structures are used in flowchart D in Figure 6-34?
(Select all that apply.)

a. sequence

b. selection

c. repetition

13. Which of the following statements is equivalent to the statement dblTotal = dblTotal +
dblScore?

a. dblTotal += dblScore

b. dblScore += dblTotal

c. dblTotal =+ dblScore

d. dblScore =+ dblTotal

14. Which of the following For clauses indicates that the loop instructions should be
processed as long as the intX variable’s value is less than 100?

a. For intX As Integer = 10 To 100

b. For intX As Integer = 10 To 99

c. For intX As Integer = 10 To 101

d. all of the above

15. The loop controlled by the correct For clause from Review Question 14 will end when
the intX variable contains the number .

a. 100

b. 111

c. 101

d. 110

Lesson A Exercises

1. Write a Visual Basic Do clause that processes the loop instructions as long as the value
in the intTotal variable is greater than the number 0. Use the While keyword. Now
rewrite the Do clause using the Until keyword.

2. Write a Visual Basic Do clause that stops the loop when the value in the intQuantity
variable is less than or equal to the value in the intOrdered variable. Use the Until
keyword. Now rewrite the Do clause using the While keyword.

3. Write a Visual Basic Loop clause that processes the loop instructions as long as the
value in the strAnswer variable is either Y or y. Use the While keyword. Now rewrite
the Loop clause using the Until keyword.

4. Write a Visual Basic Do clause that processes the loop instructions as long as the value
in the strState variable is not “Finished” (in any case). Use the While keyword. Now
rewrite the Do clause using the Until keyword.

5. What will the following code display in message boxes?

Dim intX As Integer
Do While intX < 4

MessageBox.Show(intX.ToString)
intX += 1

Loop

INTRODUCTORY

INTRODUCTORY

INTRODUCTORY

INTRODUCTORY

INTRODUCTORY

Lesson A Exercises L E S S ON A

369

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

6. What will the following code display in message boxes?

Dim intX As Integer
Do

MessageBox.Show(intX.ToString)
intX = intX + 1

Loop Until intX > 4

7. Write a Visual Basic assignment statement that updates the intTotal counter
variable by 2.

8. Write a Visual Basic assignment statement that updates the decTotal accumulator
variable by the value stored in the decSales variable.

9. Figure 6-35 shows a problem specification, two illustrations, and two solutions
containing loops.

a. Will both loops work when Sherri is one or more steps away from the fountain, as
shown in Illustration A? If not, why not?

b. Will both loops work when Sherri is directly in front of the fountain, as shown in
Illustration B? If not, why not?

10. Write a Visual Basic assignment statement that updates the intTotal counter
variable by –3.

11. Write a Visual Basic assignment statement that subtracts the contents of the
decReturns variable from the contents of the decSales accumulator variable.

Problem Specification
Sherri is standing an unknown number of steps away from the Burlington Fountain. Write the instructions
that direct Sherri to walk from her current location to the fountain.

Illustration A Illustration B

Solution 1– pretest loop
repeat while you are not directly in front of the fountain
 walk forward
end repeat while

Solution 2 – posttest loop
repeat
 walk forward
end repeat while you are not directly in front of the fountain

Figure 6-35 Information for Exercise 9
Image by Diane Zak; Created with Reallusion CrazyTalk Animator

INTRODUCTORY

INTRODUCTORY

INTRODUCTORY

INTERMEDIATE

INTERMEDIATE

INTERMEDIATE

CH A P T E R 6 The Repetition Structure

370

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

12. Modify Solution 2 shown earlier in Figure 6-3. The solution should now keep track of
the number of times Isis’s laser beam missed the spider. After saying “You are safe now.
The spider is dead”, Isis should say one of the following: “I got him immediately.”, “I
missed him one time.”, or “I missed him x times.” (where x is the value in the counter).

13. Write the Visual Basic code for a pretest loop that uses an Integer variable named
intOdd to display the odd integers from 7 through 19 in the lblOddNums control.
Use the For…Next statement. Display each number on a separate line in the control.
Now create a Visual Basic Windows application to test your code. Use the following
names for the solution and project, respectively: Odd Numbers Solution and Odd
Numbers Project. Save the application in the VB2012\Chap06 folder. Add a button and
a label to the interface. Enter your code in the button’s Click event procedure. Save
the solution and then start and test the application. Close the Code Editor window
and then close the solution.

14. Rewrite the pretest loop from Exercise 13 using the Do…Loop statement. Add another
button to the interface created in Exercise 13. Enter your code from this exercise in the
button’s Click event procedure. Save the solution and then start and test the application.
Close the Code Editor window and then close the solution.

15. Change the pretest loop from Exercise 13 to a posttest loop. Add another button to the
interface used in Exercise 14. Enter your code from this exercise in the button’s Click
event procedure. Save the solution and then start and test the application. Close the
Code Editor window and then close the solution.

16. Write the Visual Basic code that corresponds to the flowchart shown in Figure 6-36.
Display the calculated results on separate lines in the lblCount control.

17. Write a For…Next statement that displays the numbers from 9 through 81, in
increments of 9, in the lblNums control. Display each number on a separate line in the
control.

18. Write a For…Next statement that calculates and displays the squares of the even
numbers from 2 through 26. Display the results in the lblNums control. Display each
number on a separate line in the control.

F

T

initialize counter
to 15

display counter
multiplied by 2

start

stop

counter < 100 add 20 to
counter

Figure 6-36 Flowchart for Exercise 16
ª 2013 Cengage Learning

INTERMEDIATE

INTERMEDIATE

INTERMEDIATE

INTERMEDIATE

INTERMEDIATE

INTERMEDIATE

INTERMEDIATE

Lesson A Exercises L E S S ON A

371

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

19. What will the following code display?

Dim intTotal As Integer
Do While intTotal <= 5

MessageBox.Show(intTotal.ToString)
intTotal += 2

Loop

20. What will the following code display?

Dim intTotal As Integer = 1
Do

MessageBox.Show(intTotal.ToString)
intTotal = intTotal + 2

Loop Until intTotal >= 3

21. In this exercise, you modify one of the Savings Account applications from this lesson.
Use Windows to make a copy of the Savings Solution folder. Rename the copy Savings
Solution-Intermediate. Open the Savings Solution (Savings Solution.sln) file contained
in the Savings Solution-Intermediate folder. Open the designer window. Rather than
using $250,000 as the savings goal, the user should be able to enter any savings goal.
Modify the interface and code appropriately. Save the solution and then start and test
the application. Close the Code Editor window and then close the solution.

22. In this exercise, you modify the Addition application from this lesson. Use Windows
to make a copy of the Addition Solution folder. Rename the copy Addition Solution-
Intermediate. Open the Addition Solution (Addition Solution.sln) file contained in the
Addition Solution-Intermediate folder. Open the designer window. The application
should also keep track of the number of integers entered and the average integer
entered; both numbers should be displayed in the interface. Modify the interface and
code appropriately. Save the solution and then start and test the application. Close the
Code Editor window and then close the solution.

23. In this exercise, you modify one of the Savings Account applications from this lesson.
Use Windows to make a copy of the Savings Solution-For Next folder. Rename the
copy Savings Solution-Do While. Open the Savings Solution (Savings Solution.sln)
file contained in the Savings Solution-Do While folder. Open the designer and Code
Editor windows. Change the For…Next statement in the btnCalc_Click procedure to
a Do…Loop statement. Save the solution and then start and test the application.
Close the Code Editor window and then close the solution.

24. In this exercise, you create an application for Koby Coffee House. Create a Visual Basic
Windows application. Use the following names for the solution and project, respectively:
Koby Solution and Koby Project. Save the application in the VB2012\Chap06 folder.
Change the form file’s name to Main Form.vb. Change the form’s name to frmMain.
The application’s interface is shown in Figure 6-37. The Add to Total button’s Click
event procedure should accumulate the prices entered in the text box, always displaying
the accumulated value plus a 3% sales tax in the Total due box. In other words, if the
user enters the number 5 in the text box, the Total due box should say $5.15. If the user
subsequently enters the number 10, the Total due box should say $15.45. The Next
Order button should allow the user to start accumulating the values for the next order.
Create the interface and then code the application. Save the solution and then start and
test the application. Close the Code Editor window and then close the solution.

INTERMEDIATE

INTERMEDIATE

INTERMEDIATE

INTERMEDIATE

INTERMEDIATE

INTERMEDIATE

CH A P T E R 6 The Repetition Structure

372

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

25. In this exercise, you create an application for Sharon’s Chocolates. Create a Visual Basic
Windows application. Use the following names for the solution and project, respectively:
Sharon Solution and Sharon Project. Save the application in the VB2012\Chap06 folder.
Change the form file’s name to Main Form.vb. Change the form’s name to frmMain.
The application’s interface is shown in Figure 6-38. The Calculate button’s Click event
procedure should use a loop and the InputBox function to get the prices of the
chocolates purchased by the user. It then should accumulate the prices. When the user
has finished entering the prices for the current order, the procedure should display the
accumulated value, plus a 5% sales tax, in the Total due box. Create the interface and
then code the application. Save the solution and then start and test the application.
Close the Code Editor window and then close the solution.

26. In this exercise, you modify the Sales Express application from this lesson. Use Windows
to make a copy of the Sales Express Solution folder. Rename the copy Sales Express
Solution-Advanced. Open the Sales Express Solution (Sales Express Solution.sln) file
contained in the Sales Express Solution-Advanced folder. Open the designer and Code
Editor windows. Each time the Calculate button is clicked, the user will enter five sales
amounts. Change the Do…Loop statement in the btnCalc_Click procedure to a For…
Next statement. If a sales amount cannot be converted to a number, use the Exit For
statement to exit the loop. (Hint: Refer to Chapter 5’s Lesson C for how to use the

Figure 6-38 Interface for Exercise 25

Figure 6-37 Interface for Exercise 24

INTERMEDIATE

ADVANCED

Lesson A Exercises L E S S ON A

373

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

TryParse method for data validation.) Calculate the average only when the user enters
five valid sales amounts; otherwise, display an appropriate message in a message box and
the number 0 in the lblAvg control. Save the solution and then start and test the
application. Close the Code Editor window and then close the solution.

27. Open the Debug Solution (Debug Solution.sln) file contained in the VB2012\Chap06\
Debug Solution-Lesson A-27 folder. The code should display a 10% bonus for each sales
amount that is entered, but it is not working correctly. Correct the code.

28. Open the Debug Solution (Debug Solution.sln) file contained in the VB2012\Chap06\
Debug Solution-Lesson A-28 folder. The code should display the numbers 1 through 4,
but it is not working correctly. Correct the code.

29. Open the Debug Solution (Debug Solution.sln) file contained in the VB2012\Chap06\
Debug Solution-Lesson A-29 folder. The code should display the numbers 10 through 1,
but it is not working correctly. Correct the code.

30. Open the Debug Solution (Debug Solution.sln) file contained in the VB2012\Chap06\
Debug Solution-Lesson A-30 folder. The code should display a 5% commission for each
sales amount that is entered, but it is not working correctly. Correct the code.

SWAT THE BUGS

SWAT THE BUGS

SWAT THE BUGS

SWAT THE BUGS

CH A P T E R 6 The Repetition Structure

374

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

& LESSON B
After studying Lesson B, you should be able to:

l Nest repetition structures

l Refresh the screen

l Delay program execution

Nested Repetition Structures
Like selection structures, repetition structures can be nested, which means you can place one
loop (called the nested or inner loop) within another loop (called the outer loop). Both loops can
be pretest loops, or both can be posttest loops. Or, one can be a pretest loop and the other a
posttest loop.

A clock uses nested loops to keep track of the time. For simplicity, consider a clock’s minute and
second hands only. The second hand on a clock moves one position, clockwise, for every second
that has elapsed. After the second hand moves 60 positions, the minute hand moves one
position, also clockwise. The second hand then begins its journey around the clock again.
Figure 6-39 shows the logic used by a clock’s minute and second hands. As the figure indicates,
an outer loop controls the minute hand, while the inner (nested) loop controls the second hand.
Notice that the entire nested loop is contained within the outer loop; this must be true for the
loop to be nested and for it to work correctly. The next iteration of the outer loop (which
controls the minute hand) occurs only after the nested loop (which controls the second hand)
has finished processing.

To code and then test the Clock application:

1. If necessary, start Visual Studio 2012. Open the Clock Solution (Clock Solution.sln) file
contained in the VB2012\Chap06\Clock Solution folder. If necessary, open the designer
window. See Figure 6-40.

START HERE

repeat for minutes from 0 through 59
 repeat for seconds from 0 through 59
 move second hand 1 position, clockwise
 end repeat for seconds
 move minute hand 1 position, clockwise
end repeat for minutes

nested loop

Figure 6-39 Logic used by a clock’s minute and second hands
ª 2013 Cengage Learning

Nested Repetition Structures L E S S ON B

375

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

2. Open the Code Editor window. Replace <your name> and <current date> in the
comments with your name and the current date, respectively.

3. Open the code template for the btnStart control’s Click event procedure. The procedure
will use an outer loop to display the number of minutes, and a nested loop to display the
number of seconds. For simplicity in watching the minutes and seconds tick away, you
will display minute values from 0 through 2, and display second values from 0 through 5.
Enter the following comments. Press Enter twice after typing the last comment.

' displays minutes (from 0 through 2 only)
' and seconds (from 0 through 5 only)

4. Now enter the following outer and nested loops:

For intMinutes As Integer = 0 To 2
lblMinutes.Text = intMinutes.ToString
For intSeconds As Integer = 0 To 5

lblSeconds.Text = intSeconds.ToString
Next intSeconds

Next intMinutes

5. Save the solution and then start the application. Click the Start button. The computer
processes the code entered in the button’s Click event procedure so quickly that you
don’t get a chance to see each of the values assigned to the labels. Instead, only the final
values (2 and 5) appear in the interface. You can fix this problem by refreshing the
interface and then delaying program execution each time the value in the lblSeconds
control changes.

Figure 6-40 Clock application’s interface
OpenClipArt.org/filtre

CH A P T E R 6 The Repetition Structure

376

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

The Refresh and Sleep Methods
You can refresh (or redraw) the interface using the form’s Refresh method. The Refresh method
ensures that the computer processes any previous lines of code that affect the interface’s
appearance. The Refresh method’s syntax is Me.Refresh(), in which Me refers to the current
form. You can delay program execution using the Sleep method in the following syntax:
System.Threading.Thread.Sleep(milliseconds). The milliseconds argument is the number of
milliseconds to suspend the program. A millisecond is 1/1000 of a second; in other words, there
are 1000 milliseconds in a second. In the Clock application, you will delay program execution for
a half of a second, which is 500 milliseconds.

To include the Refresh and Sleep methods in the procedure and then test the code:

1. Enter the additional comment and two lines of code indicated in Figure 6-41.

2. Save the solution and then start the application. Click the Start button. The number 0
appears in the lblMinutes control, and the numbers 0 through 5 appear (one at a time) in
the lblSeconds control. Notice that the number of minutes is increased by 1 when the
number of seconds changes from 5 to 0. When the procedure ends, the lblMinutes and
lblSeconds controls contain the numbers 2 and 5, respectively. (If you want to end the
procedure before it has finished processing, click the form in the designer window, click
DEBUG on the menu bar, and then click Stop Debugging.)

3. Click the Exit button. Close the Code Editor window and then close the solution.

Trixie at the Diner
A programmer determines whether a problem’s solution requires a nested loop by studying the
problem specification. The first problem specification you will examine in this chapter involves a
waitress named Trixie. The problem specification and an illustration of the problem are shown
in Figure 6-42, along with an appropriate solution. The solution requires a loop because the
instructions for telling each table about the daily specials must be repeated for every table that
needs to be waited on. However, the solution does not require a nested loop. This is because the
instructions within the loop should be followed only once per table.

START HERE

enter this comment and
these two lines of code

Figure 6-41 Refresh and Sleep methods added to the procedure

Trixie at the Diner L E S S ON B

377

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Now we’ll add some additional tasks for Trixie to perform. This time, after telling the customers
at a table about the daily specials, Trixie should take each customer’s order and then submit the
order for the entire table to the cook. Figure 6-43 shows the modified problem specification
along with the modified solution, which requires a nested loop. The outer loop begins with
“repeat for each table that needs to be waited on”, and it ends with the last “end repeat for”. The
nested loop begins with “repeat for each customer at the table”, and it ends with the first “end
repeat for”. Here again, notice that the entire nested loop is contained within the outer loop.
Recall that this is a requirement for the loop to be nested and work correctly.

Problem Specification
A waitress named Trixie works at a local diner. The diner just opened for the day and there are
customers already sitting at several of the tables. Write the instructions that direct Trixie to go over to
each table that needs to be waited on and tell the customers about the daily specials.

Solution
repeat for each table that needs to be waited on
 go to a table that needs to be waited on
 tell the customers at the table about the daily specials
end repeat for

follow these instructions
for each table

Figure 6-42 Problem specification and solution that requires a loop
Image by Diane Zak; Created with Reallusion CrazyTalk Animator

CH A P T E R 6 The Repetition Structure

378

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Revisiting the Savings Account Application
In this section, you will code another version of the Savings Account application from Lesson A.
In this version, the application will display the balance in the savings account at the end of each
of five years, using rates from 3% to 7%. The solution to this problem will require two loops, one
nested within the other. The outer loop will control the years, which range from 1 to 5 in
increments of 1. The inner loop will control the rates, which range from 3% to 7% in increments
of 1%. Figure 6-44 shows the problem specification for this version of the application. It also
shows the modified pseudocode and corresponding code for the Calculate button’s Click event
procedure. The modifications made to the problem specification, pseudocode, and code from
Figure 6-30 in Lesson A are shaded in Figure 6-44. In addition, the figure shows a sample run of
this version of the application. Notice that this version displays the output in a text box rather
than in a label. A text box is used in this case because the output will contain many lines of text.
Rather than using a large label to display the output, you can use a smaller text box that provides
a vertical scroll bar. The scroll bar will allow the user to view the output that is not currently
showing in the text box.

Problem Specification
A waitress named Trixie works at a local diner. The diner just opened for the day and there are
customers already sitting at several of the tables. Write the instructions that direct Trixie to go over to
each table that needs to be waited on and tell the customers about the daily specials. While at each
table, Trixie should take each customer’s order. She then should submit the order for the entire table
to the cook.

Solution
repeat for each table that needs to be waited on
 go to a table that needs to be waited on
 tell the customers at the table about the daily specials
 repeat for each customer at the table
 ask the customer for his or her order
 record the order on the order slip for that table
 end repeat for
 go over to the cook at the counter
 tear the appropriate order slip from the order pad
 give the order slip to the cook
end repeat for

follow these
instructions for
each table

follow these instructions
for each customer at the
current table

Figure 6-43 Modified problem specification and solution that requires a nested loop
ª 2013 Cengage Learning

Revisiting the Savings Account Application L E S S ON B

379

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Problem Specification
Create an application that displays the balance in a savings account at the end of each of five years,
given the amount of money deposited into the savings account at the beginning of the year and using
annual interest rates of 3% to 7% in increments of 1%. The interest is compounded annually and no
withdrawals or additional deposits are made during any of the years. The interest rate will be entered in
decimal form.The application’s interface should provide a Calculate button for displaying the account
balances.

Pseudocode for the Calculate button’s Click event procedure
1. store deposit in balance variable
2. store interest rate in rate variable
3. display Year, Rate, and Balance column headings
4. repeat for years from 1 to 5 in increments of 1
 display year number
 repeat for rates from 3% to 7% in increments of 1%
 interest = balance * rate
 add interest to balance
 display rate and balance
 end repeat for
 end repeat for

Code for the Calculate button’s Click event procedure
Dim dblBalance As Double
Dim dblInterest As Double
Double.TryParse(txtDeposit.Text, dblBalance)
txtBalance.Text = "Year" & ControlChars.Tab &
 "Rate" & ControlChars.Tab & "Balance" &
 ControlChars.NewLine
For intYear As Integer = 1 To 5
 txtBalance.Text = txtBalance.Text &
 intYear.ToString & ControlChars.NewLine
 For dblRate As Double = 0.03 To 0.07 Step 0.01
 dblInterest = dblBalance * dblRate
 dblBalance = dblBalance + dblInterest
 txtBalance.Text = txtBalance.Text &
 ControlChars.Tab & dblRate.ToString("P0") &
 ControlChars.Tab & dblBalance.ToString("C2") &
 ControlChars.NewLine
 Next dblRate
Next intYear

Sample run

use the text box control's
scroll box to view the
remaining account balances

Figure 6-44 Problem specification, pseudocode, code, and sample run for another version of the
Savings Account application
ª 2013 Cengage Learning

CH A P T E R 6 The Repetition Structure

380

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

To code this version of the Savings Account application:

1. Open the Savings Solution (Savings Solution.sln) file contained in the VB2012\Chap06\
Savings Solution-Nested folder. If necessary, open the designer window.

2. Open the Code Editor window. Replace <your name> and <current date> in the
comments with your name and the current date, respectively.

3. Locate the btnCalc_Click procedure. The procedure contains the Dim statements that
declare the dblBalance and dblInterest variables. It also contains the TryParse
method that converts the user’s input (the deposit) to the Double data type. In addition,
it contains an assignment statement that displays the “Year”, “Rate”, and “Balance”
headings in the txtBalance control. Notice that the assignment statement uses the
ControlChars.Tab and ControlsChars.NewLine constants, which represent the Tab and
Enter keys, respectively.

4. Click the blank line below the ' calculate and display account balances comment.
First, you will enter the loop that controls the years. Enter the following For clause:

For intYear As Integer = 1 To 5

5. Change the Next clause to Next intYear.

6. According to its pseudocode, the procedure should display the year number next. Click
the blank line below the For clause, and then enter the following lines of code:

txtBalance.Text = txtBalance.Text &
intYear.ToString & ControlChars.NewLine

7. Next, you will enter the loop that controls the interest rates. Enter the following For
clause:

For dblRate As Double = .03 To .07 Step .01

8. Change the Next clause to Next dblRate.

9. According to its pseudocode, the procedure should calculate the interest and balance
next. Click the blank line below the nested For clause, and then enter the following
assignment statements. Press Enter twice after typing the second assignment statement.

dblInterest = dblBalance * dblRate
dblBalance = dblBalance + dblInterest

10. The last step in the procedure’s pseudocode displays the rate and balance. Type the lines
of code indicated in Figure 6-45.

START HERE

Revisiting the Savings Account Application L E S S ON B

381

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

In the next set of steps, you will test the btnCalc_Click procedure to verify that it is working
correctly.

To test this version of the Savings Account application:

1. Save the solution and then start the application. Type 5000 in the Deposit box and then
click the Calculate button. The account balances appear in the txtBalance control, as
shown earlier in Figure 6-44.

2. Use the control’s scroll box to verify that the control contains the account balances for
five years, using rates from 3% to 7%.

3. Click the Exit button. Close the Code Editor window and then close the solution.

A Caution about Real Numbers
Numbers with a decimal place are called real numbers. Unfortunately, not all real numbers
can be stored precisely in the computer’s internal memory. Many can be stored only as an
approximation, which may lead to unexpected results when two real numbers are compared
with each other. For example, sometimes a Double number that is the result of a calculation
doesn’t compare precisely with the same number stored as a literal constant. This is the reason
it is so important to test your application’s code thoroughly. In the next set of steps, you
will observe how the comparison problem would affect the Savings Account application that
you completed in the previous section.

Private Sub btnCalc_Click(sender As Object,
e As EventArgs) Handles btnCalc.Click

' calculate account balances for each of
' five years, using rates from 3% to 7%
' in increments of 1%

Dim dblBalance As Double
Dim dblInterest As Double

Double.TryParse(txtDeposit.Text, dblBalance)

txtBalance.Text = "Year" & ControlChars.Tab &
"Rate" & ControlChars.Tab & "Balance" &
ControlChars.NewLine

' calculate and display account balances
For intYear As Integer = 1 To 5

txtBalance.Text = txtBalance.Text &
intYear.ToString & ControlChars.NewLine

For dblRate As Double = 0.03 To 0.07 Step 0.01
dblInterest = dblBalance * dblRate
dblBalance = dblBalance + dblInterest

txtBalance.Text = txtBalance.Text &
ControlChars.Tab & dblRate.ToString("P0") &
ControlChars.Tab & dblBalance.ToString("C2") &
ControlChars.NewLine

Next dblRate
Next intYear

End Sub

enter these four
lines of code

Figure 6-45 Completed btnCalc_Click procedure
ª 2013 Cengage Learning

Although
both loops in
Figure 6-45 are
pretest loops,
you also can use

two posttest loops or a
combination of a pretest
and a posttest loop.

START HERE

CH A P T E R 6 The Repetition Structure

382

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

To modify the Savings Account application from the previous section:

1. Use Windows to make a copy of the Savings Solution-Nested folder. Rename the copy
Modified Savings Solution-Nested.

2. Open the Savings Solution (Savings Solution.sln) file contained in the Modified Savings
Solution-Nested folder. Open the designer window.

3. Open the Code Editor window. Locate the btnCalc_Click procedure. Now let’s assume
that the user still wants to display the account balances for each of the five years, but for
rates from 3% to 6% (rather than from 3% to 7%). In the nested For clause, change 0.07
to 0.06.

4. Save the solution and then start the application. Click the Calculate button. See
Figure 6-46. Notice that the information associated with the 6% rate is missing
from the txtBalance control.

5. Click the Exit button.

Consider why the loop that controls the interest rates failed to display the 6% rate information.
Recall that the For clause in that loop looks like this: For dblRate As Double = 0.03 To 0.06
Step 0.01. The clause tells the computer to stop processing the loop instructions when the
value in the dblRate variable is greater than 0.06 (the endValue). This indicates that when the
For clause updates the dblRate variable to 0.06 and then compares that value with the 0.06
literal constant (the clause’s endValue), the value in the dblRate variable is viewed as greater
than the literal constant, so the loop ends prematurely. To fix this problem, you can either
increase the literal constant’s value slightly (for example, you can use 0.0600001) or use the
Decimal data type for the loop that controls the rates. You will try both methods in the next set
of steps.

To fix the comparison problem in the Savings Account application:

1. First, you’ll increase the literal constant’s value. Change 0.06 in the nested For clause to
0.0600001. Save the solution and then start the application. Click the Calculate button.
See Figure 6-47. The txtBalance control now includes the information pertaining to the
6% rate.

the information associated
with the 6% rate is missing

Figure 6-46 Interface showing that the 6% information is missing

START HERE

START HERE

Revisiting the Savings Account Application L E S S ON B

383

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

2. Click the Exit button. Now you’ll try the second method of fixing the problem, which is
to use the Decimal data type for the interest rates. Modify the nested loop as indicated in
Figure 6-48. The modifications are shaded in the figure.

3. Save the solution and then start the application. Click the Calculate button. The 6% rate
information appears in the txtBalance control, as shown earlier in Figure 6-47.

4. Click the Exit button. Close the Code Editor window and then close the solution.

make the shaded
modifications

Figure 6-48 Modifications made to the nested loop that controls the interest rates

the text box now includes
the information associated
with the 6% rate

Figure 6-47 Interface showing the 6% information

CH A P T E R 6 The Repetition Structure

384

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Lesson B Summary
l To nest a repetition structure (loop):

Place the entire inner loop within the outer loop.

l To refresh the interface:

Use the Refresh method. The method’s syntax is Me.Refresh().

l To pause program execution:

Use the Sleep method. The method’s syntax is
System.Threading.Thread.Sleep(milliseconds).

Lesson B Key Terms
Real numbers—numbers with a decimal place

Refresh method—can be used to refresh (redraw) a form

Sleep method—can be used to delay program execution

Lesson B Review Questions
1. What will the following code display in the lblAsterisks control?

For intX As Integer = 1 To 2
For intY As Integer = 1 To 3

lblAsterisks.Text = lblAsterisks.Text & "*"
Next intY
lblAsterisks.Text = lblAsterisks.Text &

ControlChars.NewLine
Next intX

a. ***

b. ***

c. **
**
**

d. ***

2. What will the following code display in the lblSum control?

Dim intSum As Integer
Dim intY As Integer
Do While intY < 3

For intX As Integer = 1 To 4
intSum = intSum + intX

Next intX
intY = intY + 1

Loop
lblSum.Text = Convert.ToString(intSum)

a. 5

b. 8

c. 15

d. 30

Lesson B Review Questions L E S S ON B

385

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

3. Which of the following statements pauses program execution for 1 second?

a. System.Threading.Thread.Pause(1000)

b. System.Threading.Thread.Pause(1)

c. System.Threading.Thread.Sleep(1000)

d. System.Threading.Thread.Sleep(100)

Lesson B Exercises

1. In this exercise, you modify the Clock application from this lesson. Use Windows to make a
copy of the Clock Solution folder. Rename the copy Clock Solution-Introductory. Open the
Clock Solution (Clock Solution.sln) file contained in the Clock Solution-Introductory folder.
Open the designer and Code Editor windows. Change the outer For…Next statement to a
Do…Loop statement. Save the solution and then start and test the application. Close the
Code Editor window and then close the solution.

2. In this exercise, you modify one of the Savings Account applications from this lesson.
Use Windows to make a copy of the Modified Savings Solution-Nested folder. Rename the
copy Savings Solution-Nested-Introductory. Open the Savings Solution (Savings Solution.sln)
file contained in the Savings Solution-Nested-Introductory folder. Open the designer and Code
Editor windows. Change the For…Next statement that controls the rates to a Do…Loop
statement. Save the solution and then start and test the application. Close the Code Editor
window and then close the solution.

3. In this exercise, you modify the Clock application from this lesson. Use Windows to make a
copy of the Clock Solution folder. Rename the copy Clock Solution-Intermediate. Open the
Clock Solution (Clock Solution.sln) file contained in the Clock Solution-Intermediate folder.
Open the designer and Code Editor windows. Change both For…Next statements to Do…
Loop statements. Save the solution and then start and test the application. Stop the
application. Close the Code Editor window, then close the solution.

4. In this exercise, you modify one of the Savings Account applications from this lesson.
Use Windows to make a copy of the Modified Savings Solution-Nested folder. Rename the
Savings Solution-Nested-Intermediate. Open the Savings Solution (Savings Solution.sln)
file contained in the Savings Solution-Nested-Intermediate folder. Open the designer and
Code Editor windows. Change both For…Next statements to Do…Loop statements. Save
the solution and then start and test the application. Close the Code Editor window and then
close the solution.

5. Professor Arkins wants an application that allows him to assign a grade to any number of
students. Each student’s grade is based on three test scores, with each test worth 100 points.
The application should total the test scores and then assign the appropriate grade using the
information shown in Figure 6-49. Open the Grade Calculator Solution (Grade Calculator
Solution.sln) file contained in the VB2012\Chap06\Grade Calculator Solution folder. If
necessary, open the designer window. Code the application. Save the solution and then start
and test the application. Close the Code Editor window and then close the solution.

Total points earned Grade
270–300 A
240–269 B
210–239 C
180–209 D
below 180 F

Figure 6-49 Grade information for Exercise 5
ª 2013 Cengage Learning

INTRODUCTORY

INTRODUCTORY

INTERMEDIATE

INTERMEDIATE

INTERMEDIATE

CH A P T E R 6 The Repetition Structure

386

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

6. Create a Visual Basic Windows application. Use the following names for the solution
and project, respectively: Table Solution and Table Project. Save the application in the
VB2012\Chap06 folder. Change the form file’s name to Main Form.vb. Change the form’s
name to frmMain. The application should display a table consisting of four rows and five
columns. The first column should contain the numbers 1 through 4. The second and
subsequent columns should contain the result of multiplying the number in the first
column by the numbers 2 through 5. Create a suitable interface and then code the
application. Save the solution and then start and test the application. Close the Code
Editor window and then close the solution.

7. Create a Visual Basic Windows application. Use the following names for the solution
and project, respectively: Raises Solution and Raises Project. Save the application in the
VB2012\Chap06 folder. Change the form file’s name to Main Form.vb. Change the form’s
name to frmMain. At the beginning of every year, Khalid receives a raise on his previous
year’s salary. He wants a program that calculates and displays the amount of his annual
raises for the next three years, using rates of 3%, 4%, 5%, and 6%. Create a suitable interface
and then code the application. Save the solution and then start and test the application.
Close the Code Editor window and then close the solution.

8. Create a Visual Basic Windows application. Use the following names for the solution and
project, respectively: Bar Chart Solution and Bar Chart Project. Save the application in the
VB2012\Chap06 folder. Change the form file’s name to Main Form.vb. Change the form’s
name to frmMain. The application should allow the user to enter the ratings for five
different movies. Each rating should be a number from 1 through 10 only. The application
should graph the ratings using a horizontal bar chart consisting of five rows, one row for
each movie. Each row should contain from one to 10 plus signs (+). The number of plus
signs depends on the movie’s rating. Create a suitable interface and then code the
application. Save the solution and then start and test the application. Close the Code Editor
window and then close the solution.

9. Open the Car Solution (Car Solution.sln) file contained in the VB2012\Chap06\Car Solution
folder. (The image in the picture box was downloaded from the Open Clip Art Library at
http://openclipart.org.) The Click Me button’s Click event procedure should make the “I
WANT THIS CAR!” message blink 10 times. In other words, the message should disappear
and then reappear, disappear and then reappear, and so on. Use the For…Next statement.
Save the solution and then start and test the application. Close the Code Editor window and
then close the solution.

INTERMEDIATE

INTERMEDIATE

ADVANCED

ADVANCED

Lesson B Exercises L E S S ON B

387

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

& LESSON C
After studying Lesson C, you should be able to:

l Include a list box on a form

l Select a list box item from code

l Determine the selected item in a list box

Creating the Gross Pay Application
Your task in this chapter is to create an application that allows the user to enter the number
of hours an employee worked and his or her rate of pay. The number of hours worked and pay
rate will be entered using list boxes. The hours worked list box will display numbers from 0.5
through 40.0 in increments of 0.5. The pay rate list box will display numbers from 8.00
through 15.00, also in increments of 0.5. The application will calculate and display the
employee’s gross pay. Figure 6-50 shows the application’s TOE chart.

Task Object Event
End the application btnExit Click

1. Calculate the gross pay btnCalc Click
2. Display the grossPay in lblGross

1. Fill lstHours and lstRates with values frmMain Load
2. Select a default value in lstHours and lstRates

Display the gross pay (from btnCalc) lblGross None

Get and display the hours worked and pay rate lstHours, lstRates None
Clear lblGross SelectedValueChanged

Figure 6-50 TOE chart for the Gross Pay application
ª 2013 Cengage Learning

To open the partially-completed Gross Pay application:

1. If necessary, start Visual Studio 2012. Open the Gross Pay Solution (Gross Pay Solution.sln)
file contained in the VB2012\Chap06\Gross Pay Solution folder. If necessary, open the
designer window. The interface contains four labels, two buttons, a picture box, and a list
box. Missing from the interface is the list box for entering the pay rates.

Including a List Box in an Interface
You add a list box to an interface using the ListBox tool in the toolbox. A list box displays a list
of items from which the user can select zero items, one item, or multiple items. The number of
items the user can select is controlled by the list box’s SelectionMode property. The default
value for the property, One, allows the user to select only one item at a time. In the Gross Pay
application, you will use the default value for each list box’s SelectionMode property. (You can
learn more about the property in Exercise 13 at the end of this lesson.)

Although you can make a list box any size you want, you should follow the Windows standard,
which is to display a minimum of three items and a maximum of eight items at a time. If you
have more items than can fit into the list box, the control automatically displays a scroll bar for
viewing the complete list of items. You should use a label control to provide keyboard access to
the list box. For the access key to work correctly, you must set the label’s TabIndex property to a
value that is one number less than the list box’s TabIndex value.

START HERE

If you have only
two items to
offer the user,
you should
use two radio

buttons rather than
a list box.

CH A P T E R 6 The Repetition Structure

388

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

To complete the user interface:

1. Click the ListBox tool in the toolbox and then drag the mouse pointer to the form.
Position the mouse pointer below the Rates: label and then release the mouse button.

2. The three-character ID for list box names is lst. Change the list box’s name to lstRates.
Do not be concerned that the list box’s name appears inside the control. The name will
not appear when the application is started.

3. Use the FORMAT menu to make the lstRates control the same size as the lstHours
control. Then use the FORMAT menu to align the tops of both list boxes.

4. Lock the controls on the form and then use the information in Figure 6-51 to set the
TabIndex values. When you are finished, press Esc to remove the TabIndex boxes from
the form, and then save the solution.

Adding Items to a List Box
The items in a list box belong to a collection called the Items collection. A collection is a group
of individual objects treated as one unit. The first item in the Items collection appears as the first
item in the list box. The second item in the collection appears as the second item in the list box,
and so on. A unique number identifies each item in the Items collection; the unique number is
called an index. The first item in the collection (which also is the first item in the list box) has an
index of 0, the second item has an index of 1, and so on. You specify each item to display in a list
box using the Items collection’s Add method.

Figure 6-52 shows the Add method’s syntax and includes examples and the results of using the
method. In the syntax, object is the name of the list box control, and the item argument is the
text you want to add to the control’s list. The three Add methods in Example 1 will add the
strings “Dog”, “Cat”, and “Horse” to the lstAnimal control. In Example 2, the Add method
appears in the body of a pretest loop that repeats its instructions for intCode values of 100
through 105. As a result, the Add method will add the values 100, 101, 102, 103, 104, and 105
(each converted to the String data type) to the lstCode control. You also can write the Add

Figure 6-51 Correct TabIndex values
OpenClipArt.org/johnny_automatic

START HERE

Including a List Box in an Interface L E S S ON C

389

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

method in Example 2 as follows: lstCode.Items.Add(Convert.ToString(intCode)).
In most cases, you enter the Add methods in a form’s Load event procedure because you
typically want the list box to display its values when the form first appears on the screen.

The Sorted Property
The position of an item in a list box depends on the value stored in the list box’s Sorted
property. When the Sorted property is set to False (the default value), the item is added at the
end of the list. The Sorted property of both list boxes in Figure 6-52 is set to False. When the
Sorted property is set to True, the item is sorted along with the existing items and then placed in
its proper position in the list. Visual Basic sorts the list box items in dictionary order, which
means that numbers are sorted before letters, and a lowercase letter is sorted before its
uppercase equivalent. The items in a list box are sorted based on the leftmost characters in each
item. As a result, the items “Personnel”, “Inventory”, and “Payroll” will appear in the following
order when the lstDepartment control’s Sorted property is set to True: Inventory, Payroll,
Personnel. Likewise, the items 1, 2, 3, and 10 will appear in the following order when the
lstNumber control’s Sorted property is set to True: 1, 10, 2, 3. Both list boxes are shown in
Figure 6-53.

Add Method (Items Collection)
Syntax
object.Items.Add(item)

Example 1
lstAnimal.Items.Add("Dog")
lstAnimal.Items.Add("Cat")
lstAnimal.Items.Add("Horse")
adds Dog, Cat, and Horse to the lstAnimal control

Example 2
For intCode As Integer = 100 To 105

lstCode.Items.Add(intCode.ToString)
Next intCode
adds 100, 101, 102, 103, 104, and 105 to the lstCode control

Results

you can use the
scroll box to view the
other codes

Figure 6-52 Syntax, examples, and results of the Items collection’s Add method
ª 2013 Cengage Learning

To learn more
about list boxes,
complete
Exercises 13, 14,
and 15 at the end
of this lesson.

CH A P T E R 6 The Repetition Structure

390

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

The requirements of the application you are creating determine whether you display the list box
items in either sorted order or the order in which they are added to the list box. If several list
items are selected much more frequently than other items, you typically leave the list box’s
Sorted property set to False and then add the frequently used items first to ensure that they
appear at the beginning of the list. However, if the list box items are selected fairly equally, you
typically set the list box’s Sorted property to True because it is easier to locate items when they
appear in a sorted order.

GUI DESIGN TIP List Box Standards

l A list box should contain a minimum of three items.

l A list box should display a minimum of three items and a maximum of eight items
at a time.

l Use a label control to provide keyboard access to the list box. Set the label’s
TabIndex property to a value that is one number less than the list box’s TabIndex
value.

l List box items are either arranged by use, with the most used entries appearing
first in the list, or sorted in ascending order.

Coding the Gross Pay Application
When the Gross Pay interface appears on the screen, the appropriate hours and rates should be
listed in the lstHours and lstRates controls, respectively. You can accomplish this by entering the
appropriate Add methods in the form’s Load event procedure.

To specify the hours and rates to display in the list boxes:

1. Open the Code Editor window. Replace <your name> and <current date> in the
comments with your name and the current date, respectively.

2. Click the Class Name list arrow and then click (frmMain Events). Click the Method
Name list arrow and then click Load. Enter the comment and For…Next loops shown in
Figure 6-54. (Be sure to change the Next clauses as shown in the figure.)

Figure 6-53 Examples of the list box’s Sorted property

START HERE

Coding the Gross Pay Application L E S S ON C

391

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

3. Save the solution and then start the application. Scroll down the Hours list box to
verify that it contains numbers from 0.5 through 40.0, in increments of 0.5. Also scroll
down the Rates list box to verify that it contains numbers from 8.00 through 15.00, also
in increments of 0.5.

4. Scroll to the top of the Rates list box and then click 8.00 in the list. Now scroll to the top
of the Hours list box and then click 2.0 in the list. When you select an item in a list box,
the item appears highlighted in the list, as shown in Figure 6-55. In addition, the item’s
value and index are stored in the list box’s SelectedItem property and SelectedIndex
property, respectively. Click the Exit button.

the computer stores “2.0”
and 3 in the SelectedItem
and SelectedIndex properties,
respectively

the computer stores “8.00”
and 0 in the SelectedItem
and SelectedIndex properties,
respectively

Figure 6-55 Items selected in the list boxes
OpenClipArt.org/johnny_automatic

enter this comment
and these six lines
of code

Figure 6-54 For…Next loops entered in the Load event procedure

CH A P T E R 6 The Repetition Structure

392

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

The SelectedItem and SelectedIndex Properties
You can use either the SelectedItem property or the SelectedIndex property to determine
whether an item is selected in a list box. When no item is selected, the SelectedItem property
contains the empty string, and the SelectedIndex property contains the number –1 (negative 1).
Otherwise, the SelectedItem and SelectedIndex properties contain the value of the selected item
and the item’s index, respectively. Figure 6-56 shows examples of using the SelectedItem and
SelectedIndex properties. (The examples refer to the list boxes shown earlier in Figure 6-52.)

If a list box allows the user to make only one selection, it is customary in Windows applications
to have one of the list box items already selected when the interface appears. The selected item,
called the default list box item, should be either the item selected most frequently or the first
item in the list. You can use either the SelectedItem property or the SelectedIndex property to
select the default list box item from code, as shown in the examples in Figure 6-57. (The
examples refer to the list boxes shown earlier in Figure 6-52.) In most cases, you enter the
appropriate code in the form’s Load event procedure.

SelectedItem and SelectedIndex Properties
Example 1 (SelectedItem property)
lblAnimal.Text = Convert.ToString(lstAnimal.SelectedItem)
The item selected in the lstAnimal control is converted to String before being assigned to the
lblAnimal control’s Text property.

Example 2 (SelectedItem property)
If Convert.ToInt32(lstCode.SelectedItem) = 103 Then
The item selected in the lstCode control is converted to Integer before being compared to the
integer 103. You also can convert the selected item to String and then compare the result with the
string “103” as follows: If Convert.ToString(lstCode.SelectedItem) = "103".

Example 3 (SelectedItem property)
If Convert.ToString(lstCode.SelectedItem) <> String.Empty Then
The item selected in the lstCode control is converted to String before being compared with the
empty string.

Example 4 (SelectedIndex property)
MessageBox.Show(lstAnimal.SelectedIndex.ToString)
The index of the item selected in the lstAnimal control is converted to String and then displayed in
a message box. You also can use the following statement:
MessageBox.Show(Convert.ToString(lstAnimal.SelectedIndex)).

Example 5 (SelectedIndex property)
If lstCode.SelectedIndex = 0 Then
The index of the item selected in the lstCode control is compared with the number 0.

Figure 6-56 Examples of the list box’s SelectedItem and SelectedIndex properties
ª 2013 Cengage Learning

Coding the Gross Pay Application L E S S ON C

393

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

To select a default item in the lstHours and lstRates controls:

1. Click the blank line below the Next decHours clause in the form’s Load event
procedure. Most employees work 40 hours per week, so you’ll have the Load event
procedure automatically select that value in the Hours list box. Enter the following
assignment statement:

lstHours.SelectedItem = "40.0"

2. In the Rates list box, you will have the procedure automatically select the 10.00 value.
That value is the fifth item in the list box, which means its index is 4. You can select
the item using either the lstRates.SelectedItem = "10.00" statement or the
lstRates.SelectedIndex = 4 statement. Click the blank line below the Next
decRates clause, and then enter the following assignment statement:

lstRates.SelectedIndex = 4

3. Save the solution and then start the application. The form’s Load event procedure fills
the list boxes with values and then selects the default item in each list. See Figure 6-58.

START HERE

Selecting the Default List Box Item
Example 1 (SelectedItem property)
lstAnimal.SelectedItem = "Cat"
selects the Cat item in the lstAnimal control

Example 2 (SelectedItem property)
lstCode.SelectedItem = "101"
selects the 101 item in the lstCode control

Example 3 (SelectedIndex property)
lstCode.SelectedIndex = 2
selects the third item in the lstCode control

Figure 6-57 Examples of selecting the default list box item
ª 2013 Cengage Learning

CH A P T E R 6 The Repetition Structure

394

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

4. Click the Exit button.

GUI DESIGN TIP Default List Box Item

l If a list box allows the user to make only one selection, a default item should be
selected when the interface first appears. The default item should be either the
item selected most frequently or the first item in the list. However, if a list box allows
more than one selection at a time, you do not select a default item.

The SelectedValueChanged and SelectedIndexChanged Events
Each time either the user or a statement selects an item in a list box, the list box’s
SelectedValueChanged event and its SelectedIndexChanged event occur. You can use
the procedures associated with these events to perform one or more tasks when the selected
item has changed. In the Gross Pay application, for example, you will use each list box’s
SelectedValueChanged procedure to clear the gross pay amount from the interface.

To code each list box’s SelectedValueChanged event procedure:

1. Open the code template for the lstHours control’s SelectedValueChanged event
procedure. Type ' clear the gross pay and then press Enter twice. Now type
lblGross.Text = String.Empty and press Enter.

2. Change lstHours_SelectedValueChanged in the Public Sub clause to ClearLabel,
and then type the following at the end of the Handles clause (be sure to type the
comma): , lstRates.SelectedValueChanged.

3. Save the solution.

default item

default item

Figure 6-58 Default item selected in each list box
OpenClipArt.org/johnny_automatic

START HERE

Coding the Gross Pay Application L E S S ON C

395

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Coding the Calculate Button’s Click Event Procedure
In this section, you will complete the Gross Pay application by coding the btnCalc_Click
procedure. The procedure’s pseudocode is shown in Figure 6-59.

btnCalc Click event procedure
1. store the user input (hours and pay rate) in variables
2. calculate the gross pay = hours * pay rate
3. display the gross pay in the lblGross control

Figure 6-59 Pseudocode for the btnCalc_Click procedure
ª 2013 Cengage Learning

To code and then test the btnCalc_Click procedure:

1. Open the code template for the btnCalc control’s Click event procedure. Type the
following comment and then press Enter twice:

' calculate gross pay

2. Recall that before you begin coding a procedure, you first study the procedure’s
pseudocode to determine the variables and named constants (if any) the procedure
will use. In this case, the procedure will not use any named constants; however, it
will use three variables. The decHours and decRate variables will store the items
selected in the Hours and Rates list boxes, respectively. The decGross variable will
store the gross pay amount. Enter the following three Dim statements. Press Enter
twice after typing the last Dim statement.

Dim decHours As Decimal
Dim decRate As Decimal
Dim decGross As Decimal

3. The first step in the pseudocode is to store the user input in variables. Enter the
TryParse methods shown in Figure 6-60, and then position the insertion point as shown
in the figure.

4. The second step in the pseudocode calculates the gross pay. Enter the following
assignment statement:

decGross = decHours * decRate

START HERE

enter these
statements

position
insertion
point here

Figure 6-60 TryParse methods entered in the btnCalc_Click procedure

CH A P T E R 6 The Repetition Structure

396

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

5. The last step in the pseudocode displays the gross pay in the lblGross control. Enter the
following assignment statement:

lblGross.Text = decGross.ToString("C2")

6. Save the solution and then start the application. Click the Calculate button. $400.00
appears in the Gross pay box. See Figure 6-61.

7. Click 38.5 in the Hours list box. The list box’s SelectedValueChanged procedure
removes the gross pay from the lblGross control. Click the Calculate button. $385.00
appears in the Gross pay box.

8. Click 13.50 in the Rates list box. The list box’s SelectedValueChanged procedure
removes the gross pay from the lblGross control. Click the Calculate button. $519.75
appears in the Gross pay box.

9. Click the Exit button. Close the Code Editor window and then close the solution.

Figure 6-62 shows the application’s code.

Figure 6-61 Gross pay shown in the interface
OpenClipArt.org/johnny_automatic

Coding the Gross Pay Application L E S S ON C

397

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

1 ' Name: Gross Pay Project
 2 ' Purpose: Displays an employee's gross pay
 3 ' Programmer: <your name> on <current date>
 4
 5 Option Explicit On
 6 Option Strict On
 7 Option Infer Off
 8
 9 Public Class frmMain
10
11 Private Sub btnExit_Click(sender As Object,

e As EventArgs) Handles btnExit.Click
12 Me.Close()
13 End Sub
14
15 Private Sub frmMain_Load(sender As Object,

e As EventArgs) Handles Me.Load
16 ' fill list boxes with values
17
18 For decHours As Decimal = 0.5D To 40D Step 0.5D
19 lstHours.Items.Add(decHours.ToString("N1"))
20 Next decHours
21 lstHours.SelectedItem = "40.0"
22
23 For decRates As Decimal = 8D To 15D Step 0.5D
24 lstRates.Items.Add(decRates.ToString("N2"))
25 Next decRates
26 lstRates.SelectedIndex = 4
27
28 End Sub
29
30 Private Sub ClearLabel(sender As Object,

e As EventArgs) Handles lstHours.SelectedValueChanged,
lstRates.SelectedValueChanged

31 ' clear the gross pay
32
33 lblGross.Text = String.Empty
34
35 End Sub
36
37 Private Sub btnCalc_Click(sender As Object,

e As EventArgs) Handles btnCalc.Click
38 ' calculate gross pay
39
40 Dim decHours As Decimal
41 Dim decRate As Decimal
42 Dim decGross As Decimal
43
44 Decimal.TryParse(lstHours.SelectedItem.ToString,

decHours)
45 Decimal.TryParse(lstRates.SelectedItem.ToString,

decRate)
46
47 decGross = decHours * decRate
48 lblGross.Text = decGross.ToString("C2")
49
50 End Sub
51 End Class

Figure 6-62 Gross Pay application’s code
ª 2013 Cengage Learning

CH A P T E R 6 The Repetition Structure

398

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Lesson C Summary
l To add a list box to a form:

Use the ListBox tool in the toolbox.

l To specify whether the user can select zero items, one item, or multiple items in a list box:

Set the list box’s SelectionMode property.

l To add items to a list box:

Use the Items collection’s Add method. The method’s syntax is object.Items.Add(item).
In the syntax, object is the name of the list box control, and the item argument is the text
you want to add to the control’s list.

l To automatically sort the items in a list box:

Set the list box’s Sorted property to True.

l To determine the item selected in a list box, or to select a list box item from code:

Use either the list box’s SelectedItem property or its SelectedIndex property.

l To perform tasks when a different item is selected in a list box:

Enter the code in either the list box’s SelectedValueChanged procedure or its
SelectedIndexChanged procedure.

Lesson C Key Terms
Add method—the Items collection’s method used to add items to a list box

Collection—a group of individual objects treated as one unit

Default list box item—the item automatically selected in a list box when the interface appears
on the screen

Items collection—the collection composed of the items in a list box

List box—a control used to display a list of items from which the user can select zero items, one
item, or multiple items

SelectedIndex property—stores the index of the item selected in a list box

SelectedIndexChanged event—occurs when an item is selected in a list box

SelectedItem property—stores the value of the item selected in a list box

SelectedValueChanged event—occurs when an item is selected in a list box

SelectionMode property—determines the number of items that can be selected in a list box

Sorted property—specifies whether the list box items should appear in the order they are
entered or in sorted order

Lesson C Review Questions
1. Which of the following methods is used to add items to a list box?

a. Add

b. AddList

c. Item

d. ItemAdd

Lesson C Review Questions L E S S ON C

399

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

2. The items in a list box belong to the collection.

a. Items

b. List

c. ListItems

d. Values

3. Which of the following properties stores the index of the item selected in a list box?

a. Index

b. SelectedIndex

c. Selection

d. SelectionIndex

4. Which of the following statements selects the “Horse” item, which appears third in the
lstAnimal control?

a. lstAnimal.SelectedIndex = 2

b. lstAnimal.SelectedIndex = 3

c. lstAnimal.SelectedItem = 2

d. lstAnimal.SelectedItem = 3

5. The event occurs when the user selects a different item in a list box.

a. SelectionChanged

b. SelectedItemChanged

c. SelectedValueChanged

d. none of the above

Lesson C Exercises

1. In this exercise, you modify the Gross Pay application from this lesson. Use Windows
to make a copy of the Gross Pay Solution folder. Rename the copy Modified Gross
Pay Solution. Open the Gross Pay Solution (Gross Pay Solution.sln) file contained in
the Modified Gross Pay Solution folder. Open the designer and Code Editor windows.
Locate the form’s Load event procedure. Change both For…Next statements to
Do…Loop statements. Save the solution and then start and test the application.
Close the Code Editor window and then close the solution.

2. In this exercise, you create an application that displays the ZIP code (or codes)
corresponding to the city name selected in a list box. The city names and ZIP codes are
shown in Figure 6-63. Create a Visual Basic Windows application. Use the following
names for the solution and project, respectively: Zip Solution and Zip Project. Save
the application in the VB2012\Chap06 folder. Change the form file’s name to Main
Form.vb. Change the form’s name to frmMain.

a. Create the interface shown in Figure 6-64. The items in the list box should be sorted;
set the appropriate property.

b. Code the application. The form’s Load event procedure should add the city names
shown in Figure 6-63 to the list box and then select the first name in the list. The list
box’s SelectedValueChanged event procedure should assign the item selected in the
list box to a variable. It then should use the Select Case statement to display the
city’s ZIP code(s).

INTRODUCTORY

INTRODUCTORY

CH A P T E R 6 The Repetition Structure

400

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

c. Save the solution and then start and test the application. Close the Code Editor
window and then close the solution.

City ZIP Code(s)
Park Ridge 60068
Barrington 60010, 60011
Glen Ellyn 60137, 60138
Algonquin 60102
Crystal Lake 60012

Figure 6-63 Information for Exercise 2
ª 2013 Cengage Learning

3. In this exercise, you modify the application from Exercise 2. Use Windows to make a
copy of the Zip Solution folder. Rename the copy Modified Zip Solution. Open the Zip
Solution (Zip Solution.sln) file contained in the Modified Zip Solution folder. Open the
designer and Code Editor windows. Modify the list box’s SelectedValueChanged event
procedure so that it assigns the index of the item selected in the list box to a variable.
Modify the Select Case statement so that it displays the ZIP code(s) corresponding to
the index stored in the variable. Save the solution and then start and test the application.
Close the Code Editor window and then close the solution.

4. In this exercise, you create an application that displays the name of the state
corresponding to the area code selected in a list box. Create a Visual Basic Windows
application. Use the following names for the solution and project, respectively: Area
Code Solution and Area Code Project. Save the application in the VB2012\Chap06
folder. Change the form file’s name to Main Form.vb. Change the form’s name to
frmMain. Add five area codes of your choosing to the list box. When the user clicks an
area code, the name of its corresponding state should appear in a label control. Create a
suitable interface and then code the application. Save the solution and then start and
test the application. Close the Code Editor window and then close the solution.

5. In this exercise, you create an application that displays a multiplication table similar
to the one shown in Figure 6-65. Open the Multiplication Solution (Multiplication
Solution.sln) file contained in the VB2012\Chap06\Multiplication Solution folder.

Figure 6-64 Interface for Exercise 2

INTRODUCTORY

INTRODUCTORY

INTRODUCTORY

Lesson C Exercises L E S S ON C

401

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Code the application. Save the solution and then start and test the application. Close the
Code Editor window and then close the solution.

6. In this exercise, you create an application for Discount Warehouse. The interface
should allow the user to enter an item’s original price and its discount rate. The
discount rates should range from 10% through 40% in increments of 5%. Use a text box
for entering the original price, and use a list box for entering the discount rates. The
application should display the amount of the discount and also the discounted price.
Create a Visual Basic Windows application. Use the following names for the solution
and project, respectively: Discount Solution and Discount Project. Save the application
in the VB2012\Chap06 folder. Change the form file’s name to Main Form.vb. Change
the form’s name to frmMain. Create a suitable interface and then code the application.
Save the solution and then start and test the application. Close the Code Editor window
and then close the solution.

7. In this exercise, you modify the Gross Pay application from this lesson. Use Windows to
make a copy of the Gross Pay Solution folder. Rename the copy Gross Pay Solution-
Intermediate. Open the Gross Pay Solution (Gross Pay Solution.sln) file contained in the
Gross Pay Solution-Intermediate folder. Open the designer and Code Editor windows.
Modify the form’s Load event procedure to display hours from 0.5 through 50.0 in the
lstHours control. If an employee worked more than 40 hours, he or she should receive
time and one-half for the hours worked over 40. Make the appropriate modifications to
the btnCalc control’s Click event procedure. Save the solution and then start and test
the application. Close the Code Editor window and then close the solution.

8. Mills Skating Rink holds a weekly ice-skating competition. Competing skaters must
perform a two-minute program in front of a panel of judges. The number of judges
varies from week to week. At the end of a skater’s program, each judge assigns a score of
0 through 10 to the skater. The manager of the ice rink wants an application that allows
him to enter each judge’s score for a specific skater. The application should calculate
and display the skater’s average score. It also should display the skater’s total score and

Figure 6-65 Sample run of the Multiplication Table application from Exercise 5

INTERMEDIATE

INTERMEDIATE

INTERMEDIATE

CH A P T E R 6 The Repetition Structure

402

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

the number of scores entered. Figure 6-66 shows a sample run of the application,
assuming the manager entered two scores: 8 and 6. (You enter a score by selecting it
from the list box and then clicking the Record Score button.) Create a Visual Basic
Windows application. Use the following names for the solution and project,
respectively: Mills Solution and Mills Project. Save the application in the VB2012\
Chap06 folder. Change the form file’s name to Main Form.vb. Change the form’s name
to frmMain. Create the interface shown in Figure 6-66 and then code the application.
Save the solution and then start and test the application. Close the Code Editor window
and then close the solution.

9. In this exercise, you create an application that allows the user to enter the gender
(either F or M) and GPA for any number of students. The application should calculate
the average GPA for all students, the average GPA for male students, and the average
GPA for female students. The list box should list GPAs from 1.0 through 4.0 in
increments of 0.1. (For example, 1.0, 1.1, 1.2, 1.3, and so on.) Create a Visual Basic
Windows application. Use the following names for the solution and project,
respectively: GPA Solution and GPA Project. Save the application in the VB2012\
Chap06 folder. Change the form file’s name to Main Form.vb. Change the form’s name
to frmMain. Create the interface shown in Figure 6-67 and then code the application.
Save the solution and then start and test the application. Close the Code Editor window
and then close the solution.

Figure 6-66 Sample run of the Mills Skating Rink application from Exercise 8

INTERMEDIATE

Lesson C Exercises L E S S ON C

403

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

10. In this exercise, you code an application that allows the user 10 chances to guess a
random number generated by the computer. The random number should be an integer
from 1 through 50, inclusive. Each time the user makes an incorrect guess, the
application should display a message that tells the user either to guess a higher number
or to guess a lower number. When the user guesses the random number, the application
should display a “Congratulations!” message. If the user is not able to guess the random
number after 10 tries, the application should display the random number in a message.
Open the Random Solution (Random Solution.sln) file contained in the VB2012\
Chap06\Random Solution folder. If necessary, open the designer window. Code the
application. Save the solution and then start and test the application. Close the Code
Editor window and then close the solution.

11. In this exercise, you code an application that displays the first 10 Fibonacci numbers: 1,
1, 2, 3, 5, 8, 13, 21, 34, and 55. Notice that, beginning with the third number in the
series, each Fibonacci number is the sum of the prior two numbers. In other words, 2 is
the sum of 1 plus 1, 3 is the sum of 1 plus 2, 5 is the sum of 2 plus 3, and so on. Open the
Fibonacci Solution (Fibonacci Solution.sln) file contained in the VB2012\Chap06\
Fibonacci Solution folder. If necessary, open the designer window. Code the application.
Display the numbers in the lblNumbers control. Save the solution and then start and
test the application. Close the Code Editor window and then close the solution.

12. The accountant at Sonheim Manufacturing Company wants an application that
calculates an asset’s annual depreciation. The accountant will enter the asset’s cost,
useful life (in years), and salvage value (which is the value of the asset at the end of its
useful life). Use a list box to display the useful life, which should range from 3 through
20 years. The application should use the double-declining balance method to calculate
the annual depreciation amounts; it then should display the amounts in the interface.

Figure 6-67 Interface for Exercise 9

ADVANCED

ADVANCED

ADVANCED

CH A P T E R 6 The Repetition Structure

404

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

You can use the Financial.DDB method to calculate the depreciation. The method’s
syntax is Financial.DDB(cost, salvage, life, period). In the syntax, the cost, salvage, and
life arguments are the asset’s cost, salvage value, and useful life, respectively. The period
argument is the period for which you want the depreciation amount calculated. The
method returns the depreciation amount as a Double number. Figure 6-68 shows a
sample depreciation schedule for an asset with a cost of $1000, a useful life of 4 years,
and a salvage value of $100. Create a Visual Basic Windows application. Use the
following names for the solution and project, respectively: Sonheim Solution and
Sonheim Project. Save the application in the VB2012\Chap06 folder. Change the form
file’s name to Main Form.vb. Change the form’s name to frmMain. Create the interface
shown in Figure 6-68. Set the txtSchedule control’s Multiline and ReadOnly properties
to True, and set its ScrollBars property to Vertical. Code the application. Save the
solution and then start and test the application. Close the Code Editor window and then
close the solution.

13. In this exercise, you learn how to create a list box that allows the user to select more
than one item at a time. Open the Multi Solution (Multi Solution.sln) file contained in
the VB2012\Chap06\Multi Solution folder. If necessary, open the designer window. The
interface contains a list box named lstNames. The list box’s Sorted and SelectionMode
properties are set to True and One, respectively.

a. Open the Code Editor window. The form’s Load event procedure adds five names to
the lstNames control. Code the btnSingle control’s Click event procedure so that it

txtSchedule
control

Figure 6-68 Sample run of the Sonheim Manufacturing Company application for Exercise 12

DISCOVERY

Lesson C Exercises L E S S ON C

405

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

displays, in the lblResult control, the item selected in the list box. For example,
if the user clicks Debbie in the list box and then clicks the Single Selection
button, the name Debbie should appear in the lblResult control. (Hint: Use the
Convert.ToString method.)

b. Save the solution and then start the application. Click Debbie in the list box, then
click Ahmad, and then click Bill. Notice that when the list box’s SelectionMode
property is set to One, you can select only one item at a time in the list.

c. Click the Single Selection button. The name Bill appears in the lblResult control.
Click the Exit button.

d. Change the list box’s SelectionMode property to MultiSimple. Save the solution and
then start the application. Click Debbie in the list box, then click Ahmad, then click
Bill, and then click Ahmad. Notice that when the list box’s SelectionMode property
is set to MultiSimple, you can select more than one item at a time in the list. Also
notice that you click to both select and deselect an item. (You also can use Ctrl+click
and Shift+click, as well as press the Spacebar, to select and deselect items when the
list box’s SelectionMode property is set to MultiSimple.) Click the Exit button.

e. Change the list box’s SelectionMode property to MultiExtended. Save the solution
and then start the application. Click Debbie in the list, and then click Jim. Notice
that in this case, clicking Jim deselects Debbie. When a list box’s SelectionMode
property is set to MultiExtended, you use Ctrl+click to select multiple items in the
list. You also use Ctrl+click to deselect items in the list. Click Debbie in the list, then
Ctrl+click Ahmad, and then Ctrl+click Debbie.

f. Next, click Bill in the list, and then Shift+click Jim; this selects all of the names from
Bill through Jim. Click the Exit button.

g. As you know, when a list box’s SelectionMode property is set to One, the item
selected in the list box is stored in the SelectedItem property, and the item’s index is
stored in the SelectedIndex property. However, when a list box’s SelectionMode
property is set to either MultiSimple or MultiExtended, the items selected in the list
box are stored (as strings) in the SelectedItems property, and the indices of the items
are stored (as integers) in the SelectedIndices property. Code the btnMulti control’s
Click event procedure so that it first clears the contents of the lblResult control.
The procedure should then display the selected names (which are stored in the
SelectedItems property) on separate lines in the lblResult control.

h. Save the solution and then start the application. Click Ahmad in the list box, and
then Shift+click Jim. Click the Multi-Selection button. The five names should appear
on separate lines in the lblResult control. Click the Exit button. Close the Code
Editor window and then close the solution.

14. In this exercise, you learn how to use the Items collection’s Insert, Remove, RemoveAt,
and Clear methods. You also learn how to use the Items collection’s Count property.
Open the Items Solution (Items Solution.sln) file contained in the VB2012\Chap06\
Items Solution folder. If necessary, open the designer window.

a. The Items collection’s Insert method allows you to add an item at a
desired position in a list box during run time. The Insert method’s syntax is
object.Items.Insert(position, item), where position is the index of the item. Code the
Insert button’s Click event procedure so it adds your name as the fourth item
in the list box.

b. The Items collection’s Remove method allows you to remove an item from a list box
during run time. The Remove method’s syntax is object.Items.Remove(item), where

DISCOVERY

CH A P T E R 6 The Repetition Structure

406

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

item is the item’s value. Code the Remove button’s Click event procedure so it
removes your name from the list box.

c. Like the Remove method, the Items collection’s RemoveAt method also allows you
to remove an item from a list box while an application is running. However, in the
RemoveAt method, you specify the item’s index rather than its value. The RemoveAt
method’s syntax is object.Items.RemoveAt(index), where index is the item’s index.
Code the Remove At button’s Click event procedure so it removes the second name
from the list box.

d. You can use the Items collection’s Clear method to remove all items from a list box
during run time. The Clear method’s syntax is object.Items.Clear(). Code the Clear
button’s Click event procedure so it clears the items from the list box.

e. The Items collection’s Count property stores the number of items contained in a list
box. Code the Count button’s Click event procedure so it displays (in a message box)
the number of items listed in the lstNames control.

f. Save the solution and then start and test the application. Close the Code Editor
window and then close the solution.

15. In this exercise, you learn how to use the String Collection Editor window to fill a list
box with values. Open the ListBox Solution (ListBox Solution.sln) file contained in the
VB2012\Chap06\ListBox Solution folder. If necessary, open the designer window. Open
the Code Editor window. Remove the Add methods and the For…Next statement from
the form’s Load event procedure. Close the Code Editor window. Click the lstAnimal
control on the form. Click the Items property in the Properties list and then click the
ellipsis (…) button in the Settings box. The String Collection Editor window opens. Type
Dog and then press Enter. Type Cat and then press Enter. Finally, type Horse and then
press Enter. Click the OK button to close the dialog box. Use the String Collection
Editor window to enter the following codes in the lstCode control: 100, 101, 102, 103,
104, and 105. Save the solution and then start the application. Close the solution.

16. Open the Debug Solution (Debug Solution.sln) file contained in the VB2012\Chap06\
Debug Solution-Lesson C folder. If necessary, open the designer window. Open the
Code Editor window and review the existing code. Start and then test the application. Be
sure to include non-integers in your test data. (If you need to stop an endless loop, click
DEBUG on the menu bar and then click Stop Debugging.) Correct any errors in the
code. Save the solution and then start and test the application again. Close the Code
Editor window and then close the solution.

DISCOVERY

SWAT THE BUGS

Lesson C Exercises L E S S ON C

407

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 7
Sub and Function
Procedures

Creating the Cerruti Company Application

In this chapter, you create an application for Lucy Malkin, the payroll
manager at Cerruti Company. Currently, Ms. Malkin manually calculates
each employee’s weekly gross pay, federal withholding tax (FWT), Social
Security and Medicare (FICA) tax, and net pay. Making these calculations
manually is both time-consuming and prone to mathematical errors. Ms.
Malkin has asked you to create an application that she can use to
perform the payroll calculations both efficiently and accurately.

All Microsoft screenshots used with permission from Microsoft Corporation.

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Previewing the Cerruti Company Application
Before you start the first lesson in this chapter, you will preview the completed application.
The application is contained in the VB2012\Chap07 folder.

To preview the completed application:

1. Use the Run dialog box to run the Cerruti (Cerruti.exe) file contained in the
VB2012\Chap07 folder. The application’s user interface appears on the screen.

2. Type Georgia Manero in the Name box and then click the Married radio button.

3. Scroll down the Hours list box and then click 41.0 in the list. Scroll down the Rate
list box and then click 13.00 in the list.

4. The interface contains a combo box that allows you to either type the number of
withholding allowances or select the number from a list. Click the list arrow in the
Allowances combo box and then click 3 in the list.

5. Click the Calculate button. The gross pay, taxes, and net pay appear in the interface.
See Figure 7-1.

combo box

you can press Alt to
either show or hide
the access keys

Figure 7-1 Interface showing the payroll calculations

START HERE

CH A P T E R 7 Sub and Function Procedures

410

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

6. Click the Exit button. The “Do you want to exit?” message appears in a message box.
See Figure 7-2.

7. Click the No button. Notice that the form remains on the screen. In Lesson C, you will
learn how to prevent the computer from closing a form.

8. Click the Exit button and then click the Yes button in the message box. The application
ends.

The Cerruti Company application uses a combo box and a Function procedure. You will learn
about Function procedures, more simply referred to as functions, in Lesson A. Combo boxes are
covered in Lesson B. You will code the Cerruti Company application in Lesson C. Be sure to
complete each lesson in full and do all of the end-of-lesson questions and several exercises
before continuing to the next lesson.

Figure 7-2 Message box containing a confirmation message

Previewing the Cerruti Company Application

411

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

& LESSON A
After studying Lesson A, you should be able to:

l Create and call an independent Sub procedure

l Explain the difference between a Sub procedure and a Function procedure

l Create a procedure that receives information passed to it

l Explain the difference between passing data by value and passing data by reference

l Create a Function procedure

Sub Procedures
There are two types of Sub procedures in Visual Basic: event procedures and independent
Sub procedures. All of the procedures coded in the previous chapters were event procedures.
As you already know, an event procedure is a Sub procedure that is associated with a specific
object and event, such as a button’s Click event or a text box’s TextChanged event. The
computer automatically processes an event procedure’s code when the event occurs. An
independent Sub procedure, on the other hand, is a procedure that is independent of any object
and event. An independent Sub procedure is processed only when called (invoked) from code.
In Visual Basic, you invoke an independent Sub procedure using the Call statement.

Programmers use independent Sub procedures for several reasons. First, they allow the
programmer to avoid duplicating code when different sections of a program need to perform the
same task. Rather than enter the code in each of those sections, the programmer can enter the
code in a procedure and then have each section call the procedure to perform its task when
needed. Second, consider an event procedure that must perform many tasks. To keep the event
procedure’s code from getting unwieldy and difficult to understand, the programmer can assign
some of the tasks to one or more independent Sub procedures. Doing this makes the event
procedure easier to code because it allows the programmer to concentrate on one small piece of
the code at a time. And finally, independent Sub procedures are used extensively in large and
complex programs, which typically are written by a team of programmers. The programming
team will break up the program into small and manageable tasks, and then assign some of the
tasks to different team members to be coded as independent Sub procedures. Doing this allows
more than one programmer to work on the program at the same time, decreasing the time it
takes to write the program.

Figure 7-3 shows the syntax of both an independent Sub procedure and the Call statement in
Visual Basic. Like event procedures, independent Sub procedures have a procedure header and a
procedure footer. In most cases, the procedure header begins with the Private keyword, which
indicates that the procedure can be used only within the current Code Editor window. Following
the Private keyword is the Sub keyword, which identifies the procedure as a Sub procedure.
After the Sub keyword is the procedure name. The rules for naming an independent Sub
procedure are the same as those for naming variables; however, procedure names are usually
entered using Pascal case. The Sub procedure’s name should indicate the task the procedure
performs. It is a common practice to begin the name with a verb. For example, a good name for
a Sub procedure that displays two random integers is DisplayRandomIntegers.

Using Pascal
case, you
capitalize the
first letter in the
procedure name

and the first letter of
each subsequent word in
the name.

CH A P T E R 7 Sub and Function Procedures

412

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Following the procedure name in the procedure header is a set of parentheses that contains
an optional parameterList. The parameterList lists the data type and name of one or more
parameters. As you learned in Chapter 4, a parameter represents information that is passed
to a procedure when the procedure is invoked. Each parameter in the parameterList has
procedure scope and each stores an item of data. The data is passed to the procedure
through the Call statement’s argumentList. The number of arguments should agree with the
number of parameters. If the parameterList does not contain any parameters, as shown in
Example 1 in Figure 7-3, then an empty set of parentheses follows the procedure name in
the Call statement. However, if the parameterList contains one parameter, then the
argumentList should have one argument. Similarly, a procedure that contains three
parameters requires three arguments in the Call statement that invokes it. (Refer to the Tip
on this page for an exception to this general rule.)

In addition to having the same number of arguments as parameters, the data type and order
(or position) of each argument should agree with the data type and order (position) of its
corresponding parameter. If the first parameter has a data type of String and the second a
data type of Double, then the first argument in the Call statement should have the String data
type and the second should have the Double data type. This is because when the procedure is
called, the computer stores the value of the first argument in the procedure’s first parameter,
the value of the second argument in its second parameter, and so on. For instance, when
processing the first Call statement shown in Example 2 in Figure 7-3, the computer will store
the Double number 45.9 in the dblScore1 parameter and then store the Double number 73.6 in
the dblScore2 parameter.

Independent Sub Procedure and Call Statement

Syntax of an independent Sub procedure
Private Sub procedureName([parameterList])
 statements
End Sub

Syntax of the Call statement
Call procedureName([argumentList])

Example 1
Private Sub DisplayRandomIntegers()
 Dim randGen As New Random
 lblNum1.Text = randGen.Next(1, 11).ToString
 lblNum2.Text = randGen.Next(1, 11).ToString
End Sub

Call DisplayRandomIntegers()

Example 2
Private Sub DisplaySum(dblScore1 As Double,
 dblScore2 As Double)
 Dim dblSum As Double
 dblSum = dblScore1 + dblScore2
 lblSum.Text = dblSum.ToString
End Sub

Call DisplaySum(45.9, 73.6)
or
Call DisplaySum(dblMidterm, dblFinal)

calls (invokes) the
DisplayRandomIntegers
procedure

either of these Call
statements can be
used to invoke the
DisplaySum procedure

Figure 7-3 Syntax and examples of an independent Sub procedure and the Call statement
ª 2013 Cengage Learning

Visual Basic
allows you to
specify that an
argument in the
Call statement is

optional. To learn more
about optional
arguments, complete
Exercise 20 at the end of
this lesson.

Sub Procedures L E S S ON A

413

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

An argument can be a literal constant (as shown in the first Call statement in Example 2 in
Figure 7-3), a named constant, a keyword, or a variable (as shown in the second Call statement
in Example 2 in Figure 7-3). However, in most cases, the argument will be a variable.

Passing Variables
Each variable declared in a program has both a value and a unique address that represents the
location of the variable in the computer’s internal memory. Visual Basic allows you to pass either
a copy of the variable’s value or its address to the receiving procedure. Passing a copy of a
variable’s value is referred to as passing by value, whereas passing its address is referred to as
passing by reference. The method you choose—by value or by reference—depends on whether
you want the receiving procedure to have access to the variable in memory. In other words, it
depends on whether you want to allow the receiving procedure to change the variable’s
contents.

Although the idea of passing information by value and by reference may sound confusing at
first, it is a concept with which you are already familiar. We’ll use the illustrations shown in
Figure 7-4 to demonstrate this fact. Assume you have a savings account at a local bank.
(Think of the savings account as a variable.) During a conversation with your friend Joan, you
mention the amount of money you have in the account, as shown in Illustration A. Sharing
this information with Joan is similar to passing a variable by value. Knowing the balance in
your savings account does not give Joan access to the account. It merely provides information
that she can use to compare with the amount of money she has saved.

Now we’ll use the savings account example to demonstrate passing information by reference.
(Here again, think of your savings account as a variable.) To either deposit money in your
account or withdraw money from your account, you must provide the bank teller with your
account number, as shown in Illustration B in Figure 7-4. The account number represents the
location of your account at the bank and allows the teller to change the account balance. Giving
the teller your bank account number is similar to passing a variable by reference. The account
number allows the teller to change the contents of your bank account, similar to the way a
variable’s address allows the receiving procedure to change the contents of the variable.

Illustration A Illustration B

Figure 7-4 Illustrations of passing by value and passing by reference
Image by Diane Zak; Created with Reallusion CrazyTalk Animator

The internal
memory of a
computer is
similar to a large
post office. Like

each post office box,
each memory cell has a
unique address.

Ch07A video

CH A P T E R 7 Sub and Function Procedures

414

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Passing Variables by Value
To pass a variable by value, you include the keyword ByVal before the name of its
corresponding parameter in the receiving procedure’s parameterList. When you pass a
variable by value, the computer passes a copy of the variable’s contents to the receiving
procedure. When only a copy of the contents is passed, the receiving procedure is not
given access to the variable in memory. Therefore, it cannot change the value stored inside
the variable. It is appropriate to pass a variable by value when the receiving procedure needs
to know the variable’s contents, but it does not need to change the contents. In this section,
you will finish coding the Favorite Title application, which passes two variables by value to an
independent Sub procedure.

To begin coding the Favorite Title application:

1. If necessary, start Visual Studio 2012. Open the Favorite Title Solution (Favorite
Title Solution.sln) file contained in the VB2012\Chap07\Favorite Title Solution folder.
If necessary, open the designer window. See Figure 7-5.

2. Open the Code Editor window. Replace <your name> and <current date> in the
comments with your name and the current date, respectively.

3. Locate the btnDisplay_Click event procedure. See Figure 7-6. Depending on which radio
button is selected, the event procedure gets the title of the user’s favorite movie or song.

Figure 7-5 Favorite Title application’s interface

START HERE

Recall that it
is a common
practice to begin
a procedure’s
name with a verb

and to enter the name
using Pascal case.

Passing Variables L E S S ON A

415

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

4. Before the event procedure ends, it will call an independent Sub procedure named
DisplayMsg to display the message “Your favorite category is title.” In the message,
category is either “movie” or “song”, and title is the movie or song title. The Call
statement will need to pass the appropriate category and title, which are stored in the
strCategory and strTitle variables, respectively. You should pass both variables by
value because the DisplayMsg procedure does not need to change their values. Click the
blank line above the End Sub clause and then enter the following Call statement. (Don’t
be concerned about the jagged line that appears below DisplayMsg; it will disappear
when you create the procedure in the next set of steps.)

Call DisplayMsg(strCategory, strTitle)

Next, you will create the DisplayMsg procedure. The procedure will store the two String values
it receives from the Call statement in two parameters named strType and strName. Some
programmers enter independent Sub procedures above the first event procedure, while others
enter them below the last event procedure. Still others enter them either immediately above or
immediately below the procedure from which they are invoked. Whichever way is chosen,
however, all independent Sub procedures must appear between the Public Class and End Class
clauses and outside of any other procedure. In this book, the independent Sub procedures will
be entered above the first event procedure in the Code Editor window.

To finish coding the Favorite Title application:

1. If necessary, scroll to the top of the Code Editor window. Click the blank line below the
' independent Sub procedure clause and then enter the DisplayMsg procedure shown
in Figure 7-7. Notice that when you press Enter after typing the procedure header, the
Code Editor automatically enters the procedure footer (End Sub) for you.

Figure 7-6 Partially-coded btnDisplay_Click event procedure

START HERE

CH A P T E R 7 Sub and Function Procedures

416

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

2. Save the solution and then start the application. Click the Display Favorite button.
The InputBox function in the button’s Click event procedure prompts you to enter the
name of your favorite movie. Type Gone with the Wind in the Movie dialog box and
then press Enter. The Call statement in the event procedure invokes the DisplayMsg
procedure, passing it a copy of the value stored in the strCategory variable (movie)
and a copy of the value stored in the strTitle variable (Gone with the Wind). The
DisplayMsg procedure header stores the values passed to it in its strType and strName
parameters. The assignment statement in the procedure then displays the message
shown in Figure 7-8 in the lblMsg control.

3. Click the Song radio button and then click the Display Favorite button. Type the name
of your favorite song in the Song dialog box and then press Enter. A message containing
the name of your favorite song appears in the lblMsg control.

4. Click the Exit button. Close the Code Editor window and then close the solution.

Figure 7-9 shows the DisplayMsg procedure header and the Call statement that invokes the
procedure. Notice that the number, data type, and order (position) of the arguments in the Call
statement match the number, data type, and order (position) of the corresponding parameters in
the DisplayMsg procedure header. Also notice that the names of the arguments do not need to
be identical to the names of the corresponding parameters. In fact, to avoid confusion, you
should use different names for the arguments and parameters.

you can press Alt
to either show or
hide the access keys

Figure 7-8 Message shown in the interface

enter the
DisplayMsg
procedure

Figure 7-7 DisplayMsg procedure

Passing Variables L E S S ON A

417

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

YOU DO IT 1!

Create a Visual Basic Windows application named YouDoIt 1. Save the application
in the VB2012\Chap07 folder. Add a text box, a label, and a button to the
form. The button’s Click event procedure should assign the text box value to a
Double variable and then pass a copy of the variable’s value to an independent Sub
procedure named ShowDouble. The ShowDouble procedure should multiply the
variable’s value by 2 and then display the result in the label control. Code the button’s
Click event procedure and the ShowDouble procedure. Save the solution and then
start and test the application. Close the solution.

Passing Variables by Reference
Instead of passing a copy of a variable’s value to a procedure, you can pass its address. In other
words, you can pass the variable’s location in the computer’s internal memory. As you learned
earlier, passing a variable’s address is referred to as passing by reference, and it gives the receiving
procedure access to the variable being passed. You pass a variable by reference when you want
the receiving procedure to change the contents of the variable.

To pass a variable by reference in Visual Basic, you include the keyword ByRef before the name
of the corresponding parameter in the receiving procedure’s header. The ByRef keyword tells
the computer to pass the variable’s address rather than a copy of its contents. In this section, you
will modify the Gross Pay application from Chapter 6. The application will now use an
independent Sub procedure named CalcGross to calculate the gross pay. The Call statement
that invokes the CalcGross procedure will have three variables in its argumentList. The first two
variables will be passed by value; the third will be passed by reference.

To open the Gross Pay application from Chapter 6:

1. Open the Gross Pay Solution (Gross Pay Solution.sln) file contained in the VB2012\
Chap07\Gross Pay Solution-Sub folder. If necessary, open the designer window.
See Figure 7-10. Recall that the application calculates and displays an employee’s gross
pay, which is based on the hours worked and pay rate entered by the user.

Private Sub DisplayMsg(ByVal strType As String,
ByVal strName As String)

Call DisplayMsg(strCategory, strTitle)

parameterList

argumentList

Figure 7-9 DisplayMsg procedure header and Call statement
ª 2013 Cengage Learning

The Call
statement does
not indicate
whether a
variable is being

passed by value or by
reference. To make that
determination, you need
to look at the receiving
procedure’s header.

START HERE

CH A P T E R 7 Sub and Function Procedures

418

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

2. Open the Code Editor window. Replace <your name> and <current date> in the
comments with your name and the current date, respectively.

3. Locate the btnCalc_Click procedure. The procedure’s code from Chapter 6 is shown in
Figure 7-11.

Before displaying the gross pay, the btnCalc_Click procedure will call an independent Sub
procedure named CalcGross to calculate the gross pay. For the CalcGross procedure to perform
its task, it needs to know the number of hours worked and the pay rate; those values are stored
in the decHours and decRate variables, respectively. The CalcGross procedure will not need to
change the values stored in the variables, so you will pass the variables by value. However, the
CalcGross procedure also needs to know where to store the gross pay after it has been
calculated. To have the procedure store the gross pay in the decGross variable, you will need to
pass the variable’s address to the procedure. In other words, you will need to pass the variable by
reference.

this assignment
statement calculates
the gross pay

Figure 7-11 btnCalc_Click procedure from Chapter 6

Figure 7-10 Gross Pay application’s interface
OpenClipArt.org/johnny_automatic

Passing Variables L E S S ON A

419

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

To modify the application’s code and then test the code:

1. Replace the assignment statement that calculates the gross pay with the Call statement
shown in Figure 7-12, and then click the blank line above the End Sub clause.

2. Now you will create the CalcGross procedure. The procedure will need to receive a
copy of the values stored in the decHours and decRate variables, as well as the address
of the decGross variable. The procedure will use the following names for its parameters:
decHoursWkd, decPayRate, and decGrossPay. Click the blank line below the Public
Class frmMain clause and then press Enter to insert another blank line. Enter the
CalcGross procedure shown in Figure 7-13.

3. Save the solution and then start the application. Click 38.5 in the Hours list box, and
then click 9.00 in the Rates list box. Click the Calculate button. $346.50 appears in the
Gross pay box, as shown in Figure 7-14.

replace the assignment
statement with this Call
statement

Figure 7-12 Call statement entered in the procedure

enter the CalcGross
procedure

Figure 7-13 CalcGross procedure

START HERE

CH A P T E R 7 Sub and Function Procedures

420

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

4. Click the Exit button. Close the Code Editor window and then close the solution.

Figure 7-15 shows the CalcGross and btnCalc_Click procedures. Here again, notice that the
number, data type, and order (position) of the arguments in the Call statement match the
number, data type, and order (position) of the corresponding parameters in the CalcGross
procedure header. Also notice that the names of the arguments are not identical to the names of
their corresponding parameters. The ByVal in the parameterList indicates that the first two
variables in the argumentList are passed by value. The ByRef in the parameterList indicates that
the third variable is passed by reference.

Figure 7-14 Gross pay shown in the interface
OpenClipArt.org/johnny_automatic

Passing Variables L E S S ON A

421

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Desk-checking the procedures shown in Figure 7-15 will help clarify the difference between
passing by value and passing by reference. When the user clicks the Calculate button after
selecting 38.5 and 9.00 as the hours and pay rate, respectively, the Dim statements in the
btnCalc_Click procedure create and initialize three Decimal variables. Next, the two TryParse
methods store the hours and pay rate in the decHours and decRate variables. Figure 7-16
shows the contents of the variables before the Call statement is processed.

The computer processes the Call statement next. The statement invokes the CalcGross
procedure, passing it three arguments. At this point, the computer temporarily leaves the
Click event procedure to process the code contained in the CalcGross procedure; the procedure
header is processed first. The ByVal keyword indicates that the first two parameters are
receiving values from the Call statement—in this case, copies of the numbers stored in the
decHours and decRate variables. As a result, the computer creates the decHoursWkd and
decPayRate variables listed in the parameterList, and stores the numbers 38.5 and 9,
respectively, in the variables.

decHours decRate decGross
0 0 0

38.5 9

these variables belong
to the btnCalc_Click
procedure

the Dim statements
initialize the variables

Figure 7-16 Desk-check table before the Call statement is processed
ª 2013 Cengage Learning

Private Sub CalcGross(ByVal decHoursWkd As Decimal,
ByVal decPayRate As Decimal,
ByRef decGrossPay As Decimal)

' calculate gross pay for btnCalc_Click

decGrossPay = decHoursWkd * decPayRate
End Sub

Private Sub btnCalc_Click(sender As Object,
e As EventArgs) Handles btnCalc.Click

' calculate gross pay

Dim decHours As Decimal
Dim decRate As Decimal
Dim decGross As Decimal

Decimal.TryParse(lstHours.SelectedItem.ToString, decHours)
Decimal.TryParse(lstRates.SelectedItem.ToString, decRate)

Call CalcGross(decHours, decRate, decGross)

lblGross.Text = decGross.ToString("C2")

End Sub

arguments
passed by value

argument passed
by reference

parameterList

Figure 7-15 CalcGross and btnCalc_Click procedures
ª 2013 Cengage Learning

The Call
statement does
not indicate
whether a
variable is being

passed by value or by
reference. To make that
determination, you need
to look at the receiving
procedure’s header.

CH A P T E R 7 Sub and Function Procedures

422

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

The ByRef keyword indicates that the third parameter is receiving the address of a variable.
When you pass a variable’s address to a procedure, the computer uses the address to locate
the variable in its internal memory. It then assigns the parameter name to the memory location.
In this case, the computer locates the decGross variable in memory and assigns the name
decGrossPay to it. As indicated in the desk-check table shown in Figure 7-17, the memory
location now has two names: one assigned by the btnCalc_Click procedure and the other
assigned by the CalcGross procedure. Although both procedures can access the memory
location, each procedure uses a different name to do so. The btnCalc_Click procedure uses the
name decGross, whereas the CalcGross procedure uses the name decGrossPay.

After processing the CalcGross procedure header, the computer processes the statement
contained in the procedure. The statement calculates the gross pay by multiplying the
contents of the decHoursWkd variable (38.5) by the contents of the decPayRate variable (9), and
then assigns the result (346.5) to the decGrossPay variable. Figure 7-18 shows the desk-check
table after the calculation statement is processed. Notice that changing the value in the
decGrossPay variable also changes the value in the decGross variable. This is because both
variable names refer to the same location in memory.

decGrossPay [CalcGross]
decGross [btnCalc_Click]decHours decRate

0 0 0
38.5 9

decHoursWkd decPayRate
38.5 9

these variables belong to
the btnCalc_Click procedure

these variables belong to
the CalcGross procedure

this memory location
belongs to both procedures

Figure 7-17 Desk-check table after the Call statement and CalcGross procedure header are processed
ª 2013 Cengage Learning

decGrossPay [CalcGross]
decHours decRate decGross [btnCalc_Click]

0 0 0
38.5 9 346.5

decHoursWkd decPayRate
38.5 9

changing the value in decGrossPay
also changes the value in decGross

Figure 7-18 Desk-check table after the statement in the CalcGross procedure is processed
ª 2013 Cengage Learning

The decGross
variable is
recognized only
within the
btnCalc_Click

procedure, and the
decGrossPay variable
is recognized only within
the CalcGross
procedure.

Passing Variables L E S S ON A

423

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

The CalcGross procedure’s End Sub clause is processed next and ends the procedure. At this
point, the computer removes the decHoursWkd and decPayRate variables from memory. It also
removes the decGrossPay name from the appropriate location in memory, as indicated in
Figure 7-19. Notice that the decGross memory location now has only one name: the name
assigned to it by the btnCalc_Click procedure.

After the CalcGross procedure ends, the computer returns to the btnCalc_Click procedure
to finish processing the event procedure’s code. More specifically, it returns to the assignment
statement located below the Call statement. After processing the assignment statement, which
displays the gross pay in the lblGross control, the computer processes the Click event
procedure’s End Sub clause. When the Click event procedure ends, the computer removes the
procedure’s variables (decHours, decRate, and decGross) from memory.

YOU DO IT 2!

Create a Visual Basic Windows application named YouDoIt 2. Save the application in the
VB2012\Chap07 folder. Add a text box, a label, and a button to the form. The button’s
Click event procedure should assign the text box value to an Integer variable and then
pass a copy of the variable’s value, along with the address of a different Integer variable,
to an independent Sub procedure named CalcDouble. The CalcDouble procedure should
multiply the first Integer variable’s value by 2 and then store the result in the second
Integer variable. The button’s Click event procedure should display the contents of the
second Integer variable in the label control. Code the button’s Click event procedure and
the CalcDouble procedure. Save the solution and then start and test the application.
Close the solution.

Function Procedures
In addition to creating Sub procedures in Visual Basic, you also can create Function procedures.
The difference between both types of procedures is that a Function procedure returns a value
after performing its assigned task, whereas a Sub procedure does not return a value. Function
procedures are referred to more simply as functions. The illustration shown in Figure 7-20
may help clarify the difference between Sub procedures and functions. Sarah and her two
siblings are planning a surprise birthday party for their mother. Being the oldest of the three
children, Sarah will handle most of the party plans herself. However, she does need to delegate
some tasks to her brother (Jacob) and sister (Sonja). She delegates the task of putting up the

decGrossPay [CalcGross]
decHours decRate decGross [btnCalc_Click]

0 0 0
38.5 9 346.5

decHoursWkd decPayRate
38.5 9

Figure 7-19 Desk-check table after the CalcGross procedure ends
ª 2013 Cengage Learning

CH A P T E R 7 Sub and Function Procedures

424

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

decorations (streamers, balloons, and so on) to Jacob, and delegates the task of getting the
birthday present (a bottle of perfume) to Sonja. Like a Sub procedure, Jacob will perform his task
but won’t need to return anything to Sarah after doing so. However, like a function, Sonja will
perform her task and then return a value (the bottle of perfume) to Sarah for wrapping.

Figure 7-21 provides another example of the difference between a Sub procedure and a function.
In Illustration A, Helen is at the ticket counter in her local movie theater, requesting a ticket for
the current movie. Helen gives the ticket agent a $5 bill and expects a ticket in return. The ticket
agent is similar to a function in that he performs his task (fulfilling Helen’s request for a ticket)
and then returns a value (a ticket) to Helen. Compare that with Illustration B, where Helen and
her granddaughter, Penelope, are at the Blast Off Games arcade. Helen wants Penelope to have
fun, so she gives Penelope a $5 bill to play some games. But, unlike with the ticket agent, Helen
expects nothing from Penelope in return. This is similar to the way a Sub procedure works.
Penelope performs her task (having fun by playing games), but doesn’t need to return any value
to her grandmother.

Figure 7-20 Illustration of a Sub procedure and a function
Image by Diane Zak; Created with Reallusion CrazyTalk Animator

Function Procedures L E S S ON A

425

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Figure 7-22 shows the syntax and examples of functions in Visual Basic. Notice that unlike a Sub
procedure, a function’s header and footer contain the Function keyword rather than the Sub
keyword. A function’s header also includes the As dataType section, which specifies the data
type of the value the function will return. The value is returned by the Return statement, which
typically is the last statement within a function. The statement’s syntax is Return expression,
where expression represents the one and only value that will be returned to the statement that
invoked the function. The data type of the expression must agree with the data type specified in
the As dataType section of the header. Like a Sub procedure, a function can receive information
either by value or by reference. The information it receives is listed in its parameterList.

Illustration A Illustration B

Helen:
1. ask ticket agent for a senior ticket
2. give ticket agent $5
3. receive senior ticket from ticket agent

Helen:
1. tell Penelope to have fun playing games
2. give Penelope $5

Ticket agent (function):
1. take $5 from Helen
2. give Helen a senior ticket

Penelope (Sub procedure):
1. take $5 from Helen
2. buy game tickets with the $5
3. play games and have fun

Figure 7-21 Another example of the difference between a Sub procedure and a function
Image by Diane Zak; Created with Reallusion CrazyTalk Animator; OpenClipArt.org/rg1024

CH A P T E R 7 Sub and Function Procedures

426

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

As with Sub procedures, you can enter your functions anywhere in the Code Editor window, as
long as you enter them between the Public Class and End Class clauses and outside of any other
procedure. In this book, the functions will be entered above the first event procedure in the
Code Editor window. Like Sub procedure names, function names are entered using Pascal case
and typically begin with a verb. The name should indicate the task the function performs. The
GetNewPrice name used in the examples in Figure 7-22 indicates that each function returns a
new price.

You can invoke a function from one or more places in an application’s code. You invoke
a function that you create in exactly the same way as you invoke one of Visual Basic’s built-in
functions, such as the InputBox function. You do this by including the function’s name
and arguments (if any) in a statement. The number, data type, and position of the arguments
should agree with the number, data type, and position of the function’s parameters. In most
cases, the statement that invokes a function assigns the function’s return value to a variable.
However, it also may use the return value in a calculation or simply display the return value.
Figure 7-23 shows examples of invoking the GetNewPrice function from Figure 7-22. The
GetNewPrice(dblPrice) entry in each example invokes the function, passing it the value
stored in the dblPrice variable.

Function Procedure

Syntax
Private Function procedureName([parameterList]) As dataType
 statements
 Return expression
End Function

Example 1
Private Function GetNewPrice(ByVal dblOld As Double) As Double
 ' increases current price by 5% and returns new price

 Dim dblNew As Double
 dblNew = dblOld * 1.05
 Return dblNew
End Function

Example 2
Private Function GetNewPrice(ByVal dblOld As Double) As Double
 ' increases current price by 5% and returns new price
 Return dblOld * 1.05
End Function

specifies the data type
of the return value

returns the dblNew
variable’s value to the
statement that invoked
the function

calculates and returns
the new price to the
statement that invoked
the function

Figure 7-22 Syntax and examples of functions
ª 2013 Cengage Learning

Function Procedures L E S S ON A

427

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

In the next set of steps, you will modify the Gross Pay application that you completed in the
previous section. The modified application will use a function (rather than a Sub procedure) to
calculate and return the gross pay.

To modify the Gross Pay application to use a function:

1. Use Windows to make a copy of the Gross Pay Solution-Sub folder. Rename the copy
Gross Pay Solution-Function. Open the Gross Pay Solution (Gross Pay Solution.sln) file
contained in the Gross Pay Solution-Function folder. Open the designer window.

2. Open the Code Editor window. First, you will change the CalcGross Sub procedure
to a function. Change the Sub keyword in the CalcGross procedure header to Function
and then click the blank line above the procedure. The Code Editor automatically
changes the procedure’s footer to End Function.

3. The CalcGross function will return the gross pay to the statement that invoked the
function. Therefore, unlike the CalcGross Sub procedure, it won’t need the address of a
variable in which to store the gross pay. Delete the entire third line from the function
header. The third line contains ByRef decGrossPay As Decimal). Then replace the
comma in the second line of the function header with) (a closing parenthesis).

4. Recall that the data type of the function’s return value is specified at the end of the
procedure header. The CalcGross function will return the gross pay as a Decimal
number. The insertion point should be located after the closing parenthesis in the
function header. Press the Spacebar, type As Decimal, and then click the blank line
below the comment in the procedure.

5. When you removed ByRef decGrossPay As Decimal from the function header, the
decGrossPay variable was no longer declared. As a result, a jagged line appears below
the variable’s name in the assignment statement. In order to use the variable, the
function will need to declare it in a Dim statement. The insertion point should be located
below the comment in the function. Press Enter to insert another blank line and then
enter the following Dim statement:

Dim decGrossPay As Decimal

6. Finally, you need to tell the function to return the gross pay to the statement that
invoked the function. Insert a blank line above the End Function clause. In the blank line,
enter the following Return statement:

Return decGrossPay

Invoking a Function
Example 1 – assigning the return value to a variable
dblNewPrice = GetNewPrice(dblPrice)

Example 2 – using the return value in a calculation
dblTotalDue = intQuantity * GetNewPrice(dblPrice)
the assignment statement multiplies the function’s return value by the value in the intQuantity
variable and then assigns the result to the dblTotalDue variable

Example 3 – displaying the return value
lblNewPrice.Text = GetNewPrice(dblPrice).ToString("C2")

Figure 7-23 Examples of invoking the GetNewPrice function
ª 2013 Cengage Learning

START HERE

CH A P T E R 7 Sub and Function Procedures

428

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

7. The CalcGross function is now complete, but you still need to modify the btnCalc_Click
procedure. Locate the btnCalc_Click procedure. You will need to replace the Call
statement with a statement that invokes the CalcGross function (rather than the
CalcGross Sub procedure). The statement will assign the function’s return value to the
decGross variable. Like the Sub procedure, the function will need the statement to pass
the values stored in the decHours and decRate variables because those values are
needed to calculate the gross pay. However, the function will not need the statement to
pass the address of the decGross variable because the statement itself will store the
gross pay in the variable. Change the Call statement to the following assignment
statement and then click the blank line above the End Sub clause:

decGross = CalcGross(decHours, decRate)

8. Save the solution and then start the application. Click 38.5 in the Hours list box and
9.00 in the Rates list box. Click the Calculate button. The gross pay is $346.50, as shown
earlier in Figure 7-14.

9. Click the Exit button. Close the Code Editor window and then close the solution.

Figure 7-24 shows the code entered in the CalcGross function and btnCalc_Click procedure.
The modified lines of code are shaded in the figure.

Private Function CalcGross(ByVal decHoursWkd As Decimal,
ByVal decPayRate As Decimal) As Decimal

 ' calculate gross pay for btnCalc_Click

Dim decGrossPay As Decimal

 decGrossPay = decHoursWkd * decPayRate
Return decGrossPay

End Function

Private Sub btnCalc_Click(sender As Object,
e As EventArgs) Handles btnCalc.Click
 ' calculate gross pay

 Dim decHours As Decimal
 Dim decRate As Decimal
 Dim decGross As Decimal

 Decimal.TryParse(lstHours.SelectedItem.ToString, decHours)
 Decimal.TryParse(lstRates.SelectedItem.ToString, decRate)

decGross = CalcGross(decHours, decRate)
 lblGross.Text = decGross.ToString("C2")

End Sub

invokes the function
and assigns the
return value to the
decGross variable

Figure 7-24 CalcGross function and btnCalc_Click procedure
ª 2013 Cengage Learning

Function Procedures L E S S ON A

429

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

YOU DO IT 3!

Create a Visual Basic Windows application named YouDoIt 3. Save the application in
the VB2012\Chap07 folder. Add a text box, a label, and a button to the form.
The button’s Click event procedure should assign the text box value to an Integer variable
and then pass a copy of the variable’s value to a function named GetBonus.
The GetBonus function should multiply the integer it receives by 10% and then return
the result. The button’s Click event procedure should display the function’s return value in
the label control. Code the GetBonus function and the button’s Click event procedure.
Save the solution and then start and test the application. Close the solution.

Lesson A Summary
l To create an independent Sub procedure:

Refer to the syntax shown in Figure 7-3.

l To call an independent Sub procedure:

Use the Call statement. The statement’s syntax is Call procedureName([argumentList]).

l To pass information to a Sub or Function procedure:

Include the information in the Call statement’s argumentList. In the parameterList in
the procedure header, include the names of memory locations that will store the
information. The number, data type, and order (position) of the arguments in the argumentList
should agree with the number, data type, and order (position) of the parameters in
the parameterList.

l To pass a variable by value to a procedure:

Include the ByVal keyword before the parameter name in the procedure header’s
parameterList. Because only a copy of the variable’s value is passed, the receiving
procedure cannot access the variable.

l To pass a variable by reference:

Include the ByRef keyword before the parameter name in the procedure header’s
parameterList. Because the variable’s address is passed, the receiving procedure can change
the contents of the variable.

l To create a Function procedure:

Refer to the syntax shown in Figure 7-22.

Lesson A Key Terms
Call statement—the Visual Basic statement used to invoke (call) an independent Sub procedure

Function procedure—a procedure that returns a value after performing its assigned task

Functions—another name for Function procedures

Independent Sub procedure—a procedure that is independent of any object and event; the
procedure is processed only when called (invoked) from code

Passing by reference—refers to the process of passing a variable’s address to a procedure so
that the value in the variable can be changed

CH A P T E R 7 Sub and Function Procedures

430

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Passing by value—refers to the process of passing a copy of a variable’s value to a procedure

Return statement—the Visual Basic statement that returns a function’s value to the statement
that invoked the function

Lesson A Review Questions
1. Which of the following is false?

a. A function can return only one value to the statement that invoked it.

b. A Sub procedure can accept only one item of data passed to it.

c. The parameterList in a procedure header is optional.

d. At times, a memory location inside the computer’s internal memory may have more
than one name.

2. The items listed in the Call statement are referred to as .

a. arguments

b. parameters

c. passers

d. none of the above

3. Each memory location listed in the parameterList in the procedure header is referred
to as .

a. an address

b. a constraint

c. a parameter

d. a value

4. To determine whether a variable is being passed to a procedure by value or by reference,
you will need to examine .

a. the Call statement

b. the procedure header

c. the statements entered in the procedure

d. either a or b

5. Which of the following statements invokes the GetArea Sub procedure, passing it two
variables by value?

a. Call GetArea(dblLength, dblWidth)

b. Call GetArea(ByVal dblLength, ByVal dblWidth)

c. Invoke GetArea(dblLength, dblWidth)

d. GetArea(dblLength, dblWidth) As Double

6. Which of the following is a valid header for a procedure that receives a copy of the value
stored in a String variable?

a. Private Sub DisplayName(ByContents strName As String)

b. Private Sub DisplayName(ByValue strName As String)

c. Private Sub DisplayName ByVal(strName As String)

d. none of the above

Lesson A Review Questions L E S S ON A

431

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

7. Which of the following is a valid header for a procedure that receives an integer followed
by a number with a decimal place?

a. Private Sub GetFee(intBase As Integer, decRate As Decimal)

b. Private Sub GetFee(ByRef intBase As Integer, ByRef decRate As Decimal)

c. Private Sub GetFee(ByVal intBase As Integer, ByVal decRate As Decimal)

d. none of the above

8. Which of the following is false?

a. The order of the arguments listed in the Call statement should agree with the order
of the parameters listed in the receiving procedure’s header.

b. The data type of each argument in the Call statement should match the data type of
its corresponding parameter in the procedure header.

c. The name of each argument in the Call statement should be identical to the name of
its corresponding parameter in the procedure header.

d. When you pass information to a procedure by value, the procedure stores the value
of each item it receives in a separate memory location.

9. Which of the following instructs a function to return the contents of the dblBonus
variable?

a. Return dblBonus

b. Return ByVal dblBonus

c. Send dblBonus

d. SendBack dblBonus

10. Which of the following is a valid header for a procedure that receives the address of a
Decimal variable followed by an integer?

a. Private Sub GetFee(ByVal decX As Decimal, ByAdd intY As Integer)

b. Private Sub GetFee(decX As Decimal, intY As Integer)

c. Private Sub GetFee(ByRef decX As Decimal, ByRef intY As Integer)

d. none of the above

11. Which of the following is a valid header for a procedure that is passed the number 15?

a. Private Function GetTax(ByVal intRate As Integer) As Decimal

b. Private Function GetTax(ByAdd intRate As Integer) As Decimal

c. Private Sub CalcTax(ByVal intRate As Integer)

d. both a and c

12. If the statement Call CalcNet(decNetPay) passes the variable’s address, the variable is
said to be passed .

a. by address

b. by content

c. by reference

d. by value

CH A P T E R 7 Sub and Function Procedures

432

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

13. Which of the following is false?

a. When you pass a variable by reference, the receiving procedure can change its
contents.

b. To pass a variable by reference in Visual Basic, you include the ByRef keyword before
the variable’s name in the Call statement.

c. When you pass a variable by value, the receiving procedure creates a procedure-level
variable that it uses to store the value passed to it.

d. Unless you specify otherwise, a variable in Visual Basic will be passed by value.

14. A Sub procedure named GetEndingInventory is passed four Integer variables named
intBegin, intSales, intPurchases, and intEnding. The procedure should calculate
the ending inventory using the beginning inventory, sales, and purchase amounts passed
to the procedure. The result should be stored in the intEnding variable. Which of the
following procedure headers is correct?

a. Private Sub GetEndingInventory(ByVal intB As Integer, ByVal intS As
Integer, ByVal intP As Integer, ByRef intFinal As Integer)

b. Private Sub GetEndingInventory(ByVal intB As Integer, ByVal intS As
Integer, ByVal intP As Integer, ByVal intFinal As Integer)

c. Private Sub GetEndingInventory(ByRef intB As Integer, ByRef intS As
Integer, ByRef intP As Integer, ByVal intFinal As Integer)

d. Private Sub GetEndingInventory(ByRef intB As Integer, ByRef intS As
Integer, ByRef intP As Integer, ByRef intFinal As Integer)

15. Which of the following statements should you use to call the GetEndingInventory
procedure described in Review Question 14?

a. Call GetEndingInventory(intBegin, intSales, intPurchases, intEnding)

b. Call GetEndingInventory(ByVal intBegin, ByVal intSales, ByVal
intPurchases, ByRef intEnding)

c. Call GetEndingInventory(ByRef intBegin, ByRef intSales, ByRef
intPurchases, ByRef intEnding)

d. Call GetEndingInventory(ByVal intBegin, ByVal intSales,
ByVal intPurchases, ByVal intEnding)

16. The memory locations listed in the parameterList in a procedure header have procedure
scope and are removed from the computer’s internal memory when the procedure ends.

a. True

b. False

17. Which of the following statements invokes the GetDiscount function, passing it the
contents of two Decimal variables named decSales and decRate? The statement
should assign the function’s return value to the decDiscount variable.

a. decDiscount = Call GetDiscount(decSales, decRate)

b. Call GetDiscount(decSales, decRate, decDiscount)

c. decDiscount = GetDiscount(decSales, decRate)

d. none of the above

Lesson A Review Questions L E S S ON A

433

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

18. Explain the difference between a Sub procedure and a Function procedure.

19. Explain the difference between passing a variable by value and passing it by reference.

20. Explain the difference between invoking a Sub procedure and invoking a function.

Lesson A Exercises

1. Write the code for a Sub procedure that receives a Double number passed to it.
The procedure should divide the number by 2 and then display the result in the lblNum
control. Name the procedure DivideByTwo. Then write a statement to invoke the
procedure, passing it the number 87.8.

2. Write the code for a Sub procedure named GetCountry. The procedure should prompt
the user to enter the name of a country, storing the user’s response in its strName
parameter. Then write a statement to invoke the procedure, passing it the strCountry
variable.

3. Write the code for a function named GetCountry. The function should prompt the user
to enter the name of a country and then return the user’s response. Then write a
statement to invoke the GetCountry function. Display the function’s return value in a
message box.

4. Write the code for a Sub procedure that receives three Double variables: the first two by
value and the last one by reference. The procedure should divide the first variable by the
second variable and then store the result in the third variable. Name the procedure
CalcQuotient.

5. Write the code for a function that receives a copy of the value stored in an Integer
variable. The function should divide the value by 2 and then return the result,
which may contain a decimal place. Name the function GetQuotient. Then write an
appropriate statement to invoke the function, passing it the intNumber variable.
Assign the function’s return value to the dblAnswer variable.

6. In this exercise, you experiment with passing variables by value and by reference. Open
the Passing Solution (Passing Solution.sln) file contained in the VB2012\Chap07\Passing
Solution folder. If necessary, open the designer window.

a. Open the Code Editor window and review the existing code. Notice that
the strMyName variable is passed by value to the GetName procedure. Start the
application. Click the Display Name button. When prompted to enter a name,
type your name and press Enter. Explain why the btnDisplay control’s Click event
procedure does not display your name in the lblName control. Stop the application.

b. Modify the btnDisplay control’s Click event procedure so that it passes the
strMyName variable by reference to the GetName procedure. Save the solution and
then start the application. Click the Display Name button. When prompted to enter
a name, type your name and press Enter. This time, your name appears in the
lblName control. Explain why the btnDisplay control’s Click event procedure now
works correctly. Stop the application. Close the Code Editor window and then close
the solution.

7. In this exercise, you modify the Favorite Title application from this lesson. Use
Windows to make a copy of the Favorite Title Solution folder. Rename the copy
Modified Favorite Title Solution. Open the Favorite Title Solution (Favorite Title
Solution.sln) file contained in the Modified Favorite Title Solution folder. Open the
designer window. Modify the interface and code to allow the user to also enter the title
of his or her favorite book. Save the solution and then start and test the application.
Close the Code Editor window and then close the solution.

INTRODUCTORY

INTRODUCTORY

INTRODUCTORY

INTRODUCTORY

INTRODUCTORY

INTRODUCTORY

INTRODUCTORY

CH A P T E R 7 Sub and Function Procedures

434

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

8. In this exercise, you modify one of the Gross Pay applications from this lesson.
Use Windows to make a copy of the Gross Pay Solution-Sub folder. Rename the copy
Modified Gross Pay Solution-Sub. Open the Gross pay Solution (Gross Pay Solution.sln)
file contained in the Modified Gross Pay Solution-Sub folder. Open the designer
window. Modify the code to display hours from 0.5 to 60.0 (rather than to 40.0), and
pay rates from 8.00 to 30.00 (rather than to 15.00). Also modify the code to give
employees double-time for the hours worked over 40. Save the solution and then start
and test the application. Close the Code Editor window and then close the solution.

9. In this exercise, you modify one of the Gross Pay applications from this lesson. Use
Windows to make a copy of the Gross Pay Solution-Function folder. Rename the copy
Modified Gross Pay Solution-Function. Open the Gross pay Solution (Gross Pay
Solution.sln) file contained in the Modified Gross Pay Solution-Function folder. Open
the designer window. Modify the code to display hours from 0.5 to 60.0 (rather than to
40.0). Also modify the code to give employees time and one-half for the hours worked
over 37.5. However, if the employee worked more than 50 hours, he or she should
receive time and one-half for the hours from 38 through 50, and then double-time for
the hours over 50. Save the solution and then start and test the application. Close the
Code Editor window and then close the solution.

10. Open the Average Solution (Average Solution.sln) file contained in the VB2012\Chap07\
Average Solution folder. If necessary, open the designer window. Open the Code Editor
window and review the existing code. The btnAvg_Click procedure should use a function
to calculate and return the average score. Complete the application’s code. Save the
solution and then start and test the application. Close the Code Editor window and then
close the solution.

11. Open the Math Solution (Math Solution.sln) file contained in the VB2012\Chap07\
Math Solution folder. If necessary, open the designer window. Open the Code Editor
window and review the existing code. The btnCalc_Click procedure should use an
independent Sub procedure to calculate both the sum of and the difference between the
two numbers entered by the user. When calculating the difference, always subtract the
smaller number from the larger number. Complete the application’s code. Save the
solution and then start and test the application. Close the Code Editor window and then
close the solution.

12. Open the Temperature Solution (Temperature Solution.sln) file contained in the
VB2012\Chap07\Temperature Solution-Sub folder. If necessary, open the designer
window. Code the application so that it uses two independent Sub procedures: one to
convert a temperature from Fahrenheit to Celsius, and the other to convert a
temperature from Celsius to Fahrenheit. Save the solution and then start and test the
application. Close the Code Editor window and then close the solution.

13. Open the Temperature Solution (Temperature Solution.sln) file contained in the
VB2012\Chap07\Temperature Solution-Function folder. If necessary, open the designer
window. Code the application so that it uses two functions: one to convert a
temperature from Fahrenheit to Celsius, and the other to convert a temperature from
Celsius to Fahrenheit. Save the solution and then start and test the application. Close
the Code Editor window and then close the solution.

14. Create a Visual Basic Windows application. Use the following names for the solution
and project, respectively: Pine Lodge Solution and Pine Lodge Project. Save the
application in the VB2012\Chap07 folder. Change the form file’s name to Main Form.vb.
Change the form’s name to frmMain. Create the interface shown in Figure 7-25. The
lstRates control should display three nightly room rates: 125.00, 175.00, and 220.00.
The lstPercents control should display numbers from 10 through 20 in increments of 5.
The label that displays the discounted rate should be cleared when a change is made to

INTERMEDIATE

INTERMEDIATE

INTERMEDIATE

INTERMEDIATE

INTERMEDIATE

INTERMEDIATE

INTERMEDIATE

Lesson A Exercises L E S S ON A

435

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

either list box. The Calculate button’s Click event procedure should use a function to
calculate and return the discounted nightly room rate. The Click event procedure should
display the discounted rate with a dollar sign and two decimal places. Code the
application. Save the solution and then start the application. First, calculate the discounted
rate based on a nightly rate of 125.00 and a discount percentage of 10. The discounted
rate should be $112.50. Now test the application using the other nightly rates and
discount percentages. Close the Code Editor window and then close the solution.

15. In this exercise, you modify the application from Exercise 14. Use Windows to make a
copy of the Pine Lodge Solution folder. Rename the copy Modified Pine Lodge Solution.
Open the Pine Lodge Solution (Pine Lodge Solution.sln) file contained in the Modified
Pine Lodge Solution folder. Open the designer and Code Editor windows. Change the
function to a Sub procedure and then make the necessary modifications to the Calculate
button’s Click event procedure. Save the solution and then start and test the application.
Close the Code Editor window and then close the solution.

16. In this exercise, you modify one of the Savings Account applications that you coded
in Chapter 6’s Lesson A. Use Windows to copy the Savings Solution folder from the
VB2012\Chap06 folder to the VB2012\Chap07 folder. Open the Savings Solution
(Savings Solution.sln) file contained in the VB2012\Chap07\Savings Solution folder.
Open the designer and Code Editor windows. Modify the code so it uses a function
to calculate and return the account balance. Save the solution and then start and test the
application. Close the Code Editor window and then close the solution.

17. In this exercise, you modify the application from Exercise 16. Use Windows to make
a copy of the Savings Solution folder. Rename the copy Modified Savings Solution.
Open the Savings Solution (Savings Solution.sln) file contained in the Modified Savings
Solution folder. Open the designer and Code Editor windows. Change the function to
a Sub procedure and then make the necessary modifications to the code. Save the
solution and then start and test the application. Close the Code Editor window and then
close the solution.

Figure 7-25 Interface for Exercise 14

INTERMEDIATE

INTERMEDIATE

INTERMEDIATE

CH A P T E R 7 Sub and Function Procedures

436

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

18. Create a Visual Basic Windows application. Use the following names for the solution
and project, respectively: Rainfall Solution and Rainfall Project. Save the application in
the VB2012\Chap07 folder. Change the form file’s name to Main Form.vb. Change the
form’s name to frmMain. Create the interface shown in Figure 7-26. The user will enter
one or more monthly rainfall amounts, one at a time, in the text box. The button’s Click
event procedure should use a Sub procedure to calculate both the total and the average
of the rainfall amounts entered so far. The Click event procedure should display the
calculated results in the label controls. Code the application. Save the solution and then
start and test the application. Close the Code Editor window and then close the solution.

19. In this exercise, you modify the application from Exercise 18. Use Windows to make
a copy of the Rainfall Solution folder. Rename the copy Modified Rainfall Solution.
Open the Rainfall Solution (Rainfall Solution.sln) file contained in the Modified Rainfall
Solution folder. Open the designer and Code Editor windows. Modify the code to
use two Function procedures (rather than one Sub procedure) to calculate the total
and average rainfall amounts. Save the solution and then start and test the application.
Close the Code Editor window and then close the solution.

20. In this exercise, you learn how to specify that one or more arguments are optional in a
Call statement. Open the Optional Solution (Optional Solution.sln) file contained in the
VB2012\Chap07\Optional Solution folder. If necessary, open the designer window.

a. Open the Code Editor window and review the existing code. The btnCalc_Click
procedure contains two Call statements. The first Call statement passes three
variables to the CalcBonus procedure. The second call statement, however, passes
only two variables to the procedure. (Do not be concerned about the jagged line that
appears below the second Call statement.) Notice that the dblRate variable is
omitted from the second Call statement. You indicate that the dblRate variable
is optional in the Call statement by including the keyword Optional before the
variable’s corresponding parameter in the procedure header. You enter the
Optional keyword before the ByVal keyword. You also assign a default value that
the procedure will use for the missing parameter when the procedure is called. You
assign the default value by entering the assignment operator and the default value
after the parameter. In this case, you will assign the number .1 as the default value
for the dblRate variable. (Optional parameters must be listed at the end of the
procedure header.)

default button

Figure 7-26 Interface for Exercise 18

ADVANCED

ADVANCED

DISCOVERY

Lesson A Exercises L E S S ON A

437

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

b. Change the ByVal dblBonusRate As Double in the procedure header appropriately.
Save the solution and then start the application. Enter a and 1000 in the Code
and Sales boxes, respectively. Click the Calculate button. Type .05 and press Enter.
The Call CalcBonus(dblSales, dblBonus, dblRate) statement calls the
CalcBonus procedure, passing it the number 1000, the address of the dblBonus
variable, and the number .05. The CalcBonus procedure stores the number 1000 in
the dblTotalSales variable. It also assigns the name dblBonusAmount to the
dblBonus variable and stores the number .05 in the dblBonusRate variable.
The procedure then multiplies the contents of the dblTotalSales variable (1000)
by the contents of the dblBonusRate variable (.05), assigning the result (50)
to the dblBonusAmount variable. The lblBonus.Text = dblBonus.ToString("C2")
statement then displays $50.00 in the lblBonus control.

c. Now enter b and 2000 in the Code and Sales boxes, respectively. Click the Calculate
button. The Call CalcBonus(dblSales, dblBonus) statement calls the CalcBonus
procedure, passing it the number 2000 and the address of the dblBonus variable.
The CalcBonus procedure stores the number 2000 in the dblTotalSales variable
and assigns the name dblBonusAmount to the dblBonus variable. Because the Call
statement did not supply a value for the dblBonusRate parameter, the default value
(.1) is assigned to the variable. The procedure then multiplies the contents of the
dblTotalSales variable (2000) by the contents of the dblBonusRate variable (.1),
assigning the result (200) to the dblBonusAmount variable. The lblBonus.Text =
dblBonus.ToString("C2") statement then displays $200.00 in the lblBonus
control. Stop the application. Close the Code Editor window and then close the
solution.

21. Open the Debug Solution (Debug Solution.sln) file contained in the VB2012\Chap07\
Debug Solution-Lesson A folder. If necessary, open the designer window. Open the
Code Editor window and review the existing code. Start the application. Enter 100,
200.55, and .04 in the Store 1 sales, Store 2 sales, and Commission rate boxes,
respectively. Click the Calculate Commission button. Notice that the application is not
working properly. Correct the application’s code. Save the solution and then start and
test the application again. Close the Code Editor window and then close the solution.

SWAT THE BUGS

CH A P T E R 7 Sub and Function Procedures

438

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

& LESSON B
After studying Lesson B, you should be able to:

l Include a combo box in an interface

l Add items to a combo box

l Select a combo box item from code

l Determine the number of items in the list portion of a combo box

l Sort the items in the list portion of a combo box

l Determine the item either selected or entered in a combo box

l Code a combo box’s TextChanged event procedure

Including a Combo Box in an Interface
In many interfaces, combo boxes are used in place of list boxes. You use the ComboBox tool in
the toolbox to add a combo box to an interface. A combo box is similar to a list box in that it
allows the user to select from a list of choices. However, unlike a list box, the full list of choices
in a combo box can be hidden, allowing you to save space on the form. Also unlike a list box, a
combo box contains a text field. Depending on the style of the combo box, the text field may or
may not be editable by the user.

Three styles of combo boxes are available in Visual Basic. The style is controlled by the combo
box’s DropDownStyle property, which can be set to Simple, DropDown (the default), or
DropDownList. Each style of combo box contains a text portion and a list portion. When the
DropDownStyle property is set to either Simple or DropDown, the text portion of the combo
box is editable. However, in a Simple combo box the list portion is always displayed, while in a
DropDown combo box the list portion appears only when the user clicks the combo box’s list
arrow. When the DropDownStyle property is set to the third style, DropDownList, the text
portion of the combo box is not editable and the user must click the combo box’s list arrow to
display the list of choices.

Figure 7-27 shows an example of each combo box style. You should use a label control to
provide keyboard access to the combo box, as shown in the figure. For the access key to work
correctly, you must set the label’s TabIndex property to a value that is one number less than the
combo box’s TabIndex value. Like the items in a list box, the items in the list portion of a combo
box are either arranged by use, with the most used entries listed first, or sorted in ascending
order. To sort the items in the list portion of a combo box, you set the combo box’s Sorted
property to True.

Including a Combo Box in an Interface L E S S ON B

439

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Figure 7-28 shows the code used to fill the combo boxes in Figure 7-27 with values. As you do
with a list box, you use the Items collection’s Add method to add an item to a combo box. Like
the first item in a list box, the first item in a combo box has an index of 0. You can use any of the
following properties to select a default item, which will appear in the text portion of the combo
box: SelectedIndex, SelectedItem, or Text. If no item is selected, the SelectedItem and Text
properties contain the empty string, and the SelectedIndex property contains –1 (negative one).
If you need to determine the number of items in the list portion of a combo box, you can use the
Items collection’s Count property. The property’s syntax is object.Items.Count, in which object
is the name of the combo box.

Figure 7-27 Examples of the combo box styles

Private Sub frmMain_Load(sender As Object,
e As EventArgs) Handles Me.Load

' fills the combo boxes with values

cboName.Items.Add("Amy")
cboName.Items.Add("Beth")
cboName.Items.Add("Carl")
cboName.Items.Add("Dan")
cboName.Items.Add("Jan")
cboName.SelectedIndex = 0

cboCity.Items.Add("London")
cboCity.Items.Add("Madrid")
cboCity.Items.Add("Paris")
cboCity.SelectedItem = "Madrid"

cboState.Items.Add("Alabama")
cboState.Items.Add("Maine")
cboState.Items.Add("New York")
cboState.Items.Add("South Dakota")
cboState.Text = "New York"

End Sub

you can use any of these
three properties to select the
default item in a combo box

Figure 7-28 Code associated with the combo boxes in Figure 7-27
ª 2013 Cengage Learning

If you want to
experiment with
the combo
boxes shown in
Figure 7-27,

open the application
contained in the Combo
Box Styles solution
folder.

CH A P T E R 7 Sub and Function Procedures

440

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

GUI DESIGN TIP Combo Box Standards

l Use a label control to provide keyboard access to a combo box. Set the label’s
TabIndex property to a value that is one number less than the combo box’s TabIndex
value.

l Combo box items are either arranged by use, with the most used entries appearing
first in the list, or sorted in ascending order.

It is easy to confuse a combo box’s SelectedItem property with its Text property. The
SelectedItem property contains the value of the item selected in the list portion of the
combo box, whereas the Text property contains the value that appears in the text portion.
A value can appear in the text portion as a result of the user either selecting an item in the list
portion of the control or typing an entry in the text portion itself. It also can appear in the text
portion as a result of a statement that assigns a value to the control’s SelectedIndex,
SelectedItem, or Text property.

If the combo box is a DropDownList style, where the text portion is not editable, you can use
the SelectedItem and Text properties interchangeably. However, if the combo box is either a
Simple or DropDown style, where the user can type an entry in the text portion, you should use
the Text property because it contains the value either selected or entered by the user. When
the value in the text portion of a combo box changes, the combo box’s TextChanged event
occurs. In the next set of steps, you will modify one of the Gross Pay applications from Lesson A.
The modified application will use a combo box rather than a list box.

To modify one of the Gross Pay applications from Lesson A:

1. Use Windows to make a copy of the Gross Pay Solution-Function folder from Lesson A.
Rename the copy Gross Pay Solution-Function-ComboBox.

2. If necessary, start Visual Studio 2012. Open the Gross Pay Solution (Gross Pay
Solution.sln) file contained in the Gross Pay Solution-Function-ComboBox folder. Open
the designer window.

3. First, you will replace the Rates list box with a DropDownList combo box. Unlock
the controls on the form. Click the lstRates control and then press Delete. Click the
ComboBox tool in the toolbox and then drag the mouse pointer to the form. Position
the mouse pointer below the Rates: label and then release the mouse button. Change the
combo box’s DropDownStyle property to DropDownList.

4. The three-character ID for combo box names is cbo. Change the combo box’s name to
cboRates.

5. Now use the FORMAT menu to make the combo box the same width as the lstHours
control.

6. Lock the controls on the form and then use the information shown in Figure 7-29 to set
the TabIndex values.

START HERE

Including a Combo Box in an Interface L E S S ON B

441

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

7. Press Esc to remove the TabIndex boxes from the form.

8. Open the Code Editor window and locate the form’s Load event procedure. Change both
occurrences of lstRates to cboRates. In addition, change list boxes in the first
comment to a list box and a combo box.

9. Locate the btnCalc_Click procedure. Replace lstRates.SelectedItem.ToString in
the second TryParse method with cboRates.Text.

10. Locate the ClearLabel procedure. Enter , cboRates.TextChanged at the end of the
Handles clause. (Be sure to type the comma.)

11. Save the solution and then start the application. Click the list arrow in the Rates combo
box and then click 9.00 in the list. Click the Calculate button. $360.00 appears in the
Gross pay box, as shown in Figure 7-30.

Figure 7-29 Correct TabIndex values
OpenClipArt.org/johnny_automatic

CH A P T E R 7 Sub and Function Procedures

442

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

12. Click the Exit button. Close the Code Editor window and then close the solution.

Figure 7-31 shows the code entered in the form’s Load event procedure, the ClearLabel
procedure, and the btnCalc_Click procedure. The modifications made to the original code from
Lesson A are shaded in the figure.

you can press Alt to
either show or hide
the access keys

Figure 7-30 Gross pay amount shown in the interface
OpenClipArt.org/johnny_automatic

Private Sub frmMain_Load(sender As Object,
e As EventArgs) Handles Me.Load
 ' fill a list box and a combo box with values

For decHours As Decimal = 0.5D To 40D Step 0.5D
lstHours.Items.Add(decHours.ToString("N1"))

Next decHours
lstHours.SelectedItem = "40.0"

For decRates As Decimal = 8D To 15D Step 0.5D
cboRates.Items.Add(decRates.ToString("N2"))

Next decRates
cboRates.SelectedIndex = 4

End Sub

Private Sub ClearLabel(sender As Object,
e As EventArgs) Handles lstHours.SelectedValueChanged,
cboRates.TextChanged
 ' clear the gross pay

lblGross.Text = String.Empty

End Sub

Figure 7-31 Modified code for the Gross Pay application (continues)

Including a Combo Box in an Interface L E S S ON B

443

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Lesson B Summary
l To add a combo box to a form:

Use the ComboBox tool in the toolbox.

l To specify the style of a combo box:

Set the combo box’s DropDownStyle property.

l To add items to a combo box:

Use the Items collection’s Add method. The method’s syntax is object.Items.Add(item).
In the syntax, object is the name of the combo box, and item is the text you want added to
the list portion of the control.

l To automatically sort the items in the list portion of a combo box:

Set the combo box’s Sorted property to True.

l To determine the number of items in the list portion of a combo box:

Use the Items collection’s Count property. Its syntax is object.Items.Count, in which object
is the name of the combo box.

l To select a combo box item from code:

Use any of the following properties: SelectedIndex, SelectedItem, or Text.

l To determine the item either selected in the list portion of a combo box or entered in the
text portion:

Use the combo box’s Text property. However, if the combo box is a DropDownList style,
you also can use the SelectedIndex or SelectedItem property.

l To process code when the value in a combo box’s Text property changes:

Enter the code in the combo box’s TextChanged event procedure.

Private Sub btnCalc_Click(sender As Object,
e As EventArgs) Handles btnCalc.Click
 ' calculate gross pay

Dim decHours As Decimal
Dim decRate As Decimal
Dim decGross As Decimal

Decimal.TryParse(lstHours.SelectedItem.ToString, decHours)
Decimal.TryParse(cboRates.Text, decRate)

decGross = CalcGross(decHours, decRate)
lblGross.Text = decGross.ToString("C2")

End Sub

Figure 7-31 Modified code for the Gross Pay application
ª 2013 Cengage Learning

(continued)

CH A P T E R 7 Sub and Function Procedures

444

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Lesson B Key Terms
Combo box—a control that allows the user to select from a list of choices and also has a text
field that may or may not be editable

DropDownStyle property—determines the style of a combo box

Lesson B Review Questions
1. Which property is used to specify a combo box’s style?

a. ComboBoxStyle

b. DropDownStyle

c. DropStyle

d. Style

2. The items in a combo box belong to which collection?

a. Items

b. List

c. ListBox

d. Values

3. Which of the following selects the Cat item, which appears third in the cboAnimal
control?

a. cboAnimal.SelectedIndex = 2

b. cboAnimal.SelectedItem = "Cat"

c. cboAnimal.Text = "Cat"

d. all of the above

4. The item that appears in the text portion of a combo box is stored in which property?

a. SelectedText

b. SelectedValue

c. Text

d. TextItem

5. The event occurs when the user either types a value in the text portion
of a combo box or selects a different item in the list portion.

a. ChangedItem

b. ChangedValue

c. SelectedItemChanged

d. TextChanged

Lesson B Exercises

1. Use Windows to make a copy of the Gross Pay Solution-Sub folder from Lesson A.
Rename the copy Gross Pay Solution-Sub-ComboBox. Open the Gross Pay Solution
(Gross Pay Solution.sln) file contained in the Gross Pay Solution-Sub-ComboBox folder.
Open the designer window. Replace the Hours list box with a DropDownList combo box.
Make the necessary modifications to the code. Save the solution and then start and test
the application. Close the Code Editor window and then close the solution.

INTRODUCTORY

Lesson B Exercises L E S S ON B

445

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

2. In this exercise, you create an application that displays the name of the state
corresponding to the area code selected in a combo box. Create a Visual Basic
Windows application. Use the following names for the solution and project,
respectively: Area Code Solution and Area Code Project. Save the application in the
VB2012\Chap07 folder. Change the form file’s name to Main Form.vb. Change the form’s
name to frmMain. Add any five area codes to a combo box whose DropDownStyle
property is set to DropDownList. When the user clicks an area code, the name of its
corresponding state should appear in a label control. Create a suitable interface and
then code the application. Save the solution and then start and test the application.
Close the Code Editor window and then close the solution.

3. Create a Visual Basic Windows application. Use the following names for the solution
and project, respectively: Planets Solution and Planets Project. Save the application in
the VB2012\Chap07 folder. Change the form file’s name to Main Form.vb. Change
the form’s name to frmMain. Create the interface shown in Figure 7-32. The combo
box should have the DropDownList style and contain the following planet names:
Mercury, Venus, Mars, Jupiter, Saturn, Uranus, Neptune, and Pluto. When the user
clicks a planet name, the application should convert the earth weight to the weight
on that planet, and then display the converted weight in the label control. Use the
Internet to research the formula for making the conversions. Save the solution and
then start and test the application. Close the Code Editor window and then close the
solution.

INTRODUCTORY

combo box

Figure 7-32 Interface for Exercise 3

INTERMEDIATE

CH A P T E R 7 Sub and Function Procedures

446

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

4. In this exercise, you modify the application from Exercise 3. Use Windows to make a
copy of the Planets Solution folder. Rename the copy Planets Solution-Sub. Open the
Planets Solution (Planets Solution.sln) file contained in the Planets Solution-Sub folder.
Open the designer and Code Editor windows. Modify the code to use an independent
Sub procedure to calculate the weight on another planet. Save the solution and then
start and test the application. Close the Code Editor window and then close the
solution.

5. In this exercise, you modify the application from Exercise 3. Use Windows to make a
copy of the Planets Solution folder. Rename the copy Planets Solution-Function. Open
the Planets Solution (Planets Solution.sln) file contained in the Planets Solution-Function
folder. Open the designer and Code Editor windows. Modify the code to use a function to
calculate and return the weight on another planet. Save the solution and then start and
test the application. Close the Code Editor window and then close the solution.

INTERMEDIATE

INTERMEDIATE

Lesson B Exercises L E S S ON B

447

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

& LESSON C
After studying Lesson C, you should be able to:

l Prevent a form from closing

l Round a number

Creating the Cerruti Company Application
Your task in this chapter is to create an application that calculates an employee’s weekly gross
pay, federal withholding tax (FWT), Social Security and Medicare (FICA) tax, and net pay. The
application’s TOE chart is shown in Figure 7-33.

Task Object Event
End the application btnExit Click

1. Calculate gross pay, FWT, FICA, and net pay btnCalc Click
2. Display calculated amounts in appropriate labels

Display calculated amounts (from btnCalc) lblGross, lblFwt,
lblFica, lblNet

None

Clear lblGross, lblFwt, lblFica, and lblNet txtName,
cboAllowances

TextChanged

lstHours, lstRates SelectedValueChanged

radMarried,
radSingle

CheckedChanged

Select the existing text txtName Enter

Allow only numbers and the Backspace key cboAllowances KeyPress

Get and display the name, hours worked, pay rate,
marital status, and withholding allowances

txtName,
lstHours,
lstRates,
radMarried,
radSingle,
cboAllowances

None

Fill lstHours, lstRates, and cboAllowances with
values and then select a default item

frmMain Load

Verify that the user wants to close the application,
and then take the appropriate action based on the
user’s response

FormClosing

Figure 7-33 TOE chart for the Cerruti Company application
ª 2013 Cengage Learning

To open the Cerruti Company application:

1. If necessary, start Visual Studio 2012. Open the Cerruti Solution (Cerruti Solution.sln)
file contained in the VB2012\Chap07\Cerruti Solution folder. If necessary, open the
designer window. See Figure 7-34.

START HERE

CH A P T E R 7 Sub and Function Procedures

448

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

The interface in Figure 7-34 provides a text box for entering the employee’s name, and radio
buttons for entering his or her marital status. It also provides list boxes for specifying the hours
worked and rate of pay. The combo box in the interface allows the user to either select the
number of withholding allowances from the list portion of the control or type a number in the
text portion. To complete the Cerruti Company application, you will need to code the btnCalc
control’s Click event procedure and the form’s FormClosing event procedure.

Coding the FormClosing Event Procedure
A form’s FormClosing event occurs when a form is about to be closed. In most cases, this
happens when the computer processes the Me.Close() statement in the application’s code.
However, it also occurs when the user clicks the Close button on the form’s title bar. According
to the application’s TOE chart, the FormClosing event procedure is responsible for verifying
that the user wants to close the application, and then taking the appropriate action based on the
user’s response. Figure 7-35 shows the procedure’s pseudocode.

frmMain FormClosing event procedure

1. use a message box to ask the user whether he or she wants to exit the application
2. if the user does not want to exit the application

prevent the form from closing
end if

Figure 7-35 Pseudocode for the FormClosing event procedure
ª 2013 Cengage Learning

cboAllowances

Figure 7-34 User interface for the Cerruti Company application

Coding the FormClosing Event Procedure L E S S ON C

449

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

To begin coding the FormClosing event procedure:

1. Open the Code Editor window. Replace <your name> and <current date> in the
comments with your name and the current date, respectively.

2. Click (frmMain Events) and FormClosing in the Class Name and Method Name list
boxes, respectively. (Be sure to click FormClosing and not FormClosed.) The code
template for the FormClosing event procedure appears above the Load event procedure
in the Code Editor window.

3. Type the following comment and then press Enter twice:

' verify that the user wants to exit the application

4. The procedure will use the MessageBox.Show method to display the appropriate
message in a message box. The method’s return value will be assigned to a variable
named dlgButton. Enter the following Dim statement:

Dim dlgButton As DialogResult

5. The message box will contain the “Do you want to exit?” message, Yes and No buttons,
and the Exclamation icon. Enter the following statement. Press Enter twice after typing
the last line in the statement.

dlgButton =
MessageBox.Show("Do you want to exit?",
"Cerruti Company", MessageBoxButtons.YesNo,
MessageBoxIcon.Exclamation)

If the user selects the No button in the message box, the FormClosing procedure should
stop the computer from closing the form. You prevent the computer from closing a form by
setting the Cancel property of the FormClosing event procedure’s e parameter to True.

To complete the FormClosing event procedure and then test it:

1. Enter the following comment and selection structure:

' if the No button was selected, don't close the form
If dlgButton = Windows.Forms.DialogResult.No Then

e.Cancel = True
End If

2. Save the solution and then start the application. Click the Close button on the form’s
title bar. Doing this invokes the FormClosing event procedure, which displays the
message box shown in Figure 7-36.

START HERE

START HERE

CH A P T E R 7 Sub and Function Procedures

450

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

3. Click the No button in the message box. Notice that the form remains on the screen.

4. Click the Exit button. This time, click the Yes button in the message box. The
application ends.

Coding the btnCalc_Click Procedure
According to the application’s TOE chart, the btnCalc control’s Click event procedure is
responsible for calculating and displaying the gross pay, FWT (federal withholding tax), FICA
tax, and net pay. The procedure’s pseudocode is shown in Figure 7-37.

btnCalc Click event procedure

1. store user input (hours, pay rate, and allowances) in variables
2. if the Single radio button is selected

assign “S” as the marital status
else

assign “M” as the marital status
end if

3. if the number of hours is less than or equal to 40
calculate the gross pay = hours * pay rate

else
calculate the gross pay = 40 * pay rate + (hours – 40) * pay rate * 1.5

end if
4. use a function named GetFwt to calculate and return the FWT
5. calculate the FICA tax = gross pay * the FICA rate of 7.65%
6. round the gross pay, FWT, and FICA tax to two decimal places
7. calculate the net pay = gross pay – FWT – FICA tax
8. display the gross pay, FWT, FICA tax, and net pay in the appropriate labels

Figure 7-37 Pseudocode for the btnCalc_Click procedure
ª 2013 Cengage Learning

you can press Alt to
either show or hide
the access keys

Figure 7-36 Message box displayed by the code in the FormClosing event procedure

Coding the btnCalc_Click Procedure L E S S ON C

451

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

To begin coding the btnCalc_Click procedure:

1. Open the code template for the btnCalc control’s Click event procedure. Type the
following comment and then press Enter twice:

' displays gross pay, taxes, and net pay

2. First, determine the variables and named constants (if any) the procedure will use. The
named constants and variables are listed in Figure 7-38.

To continue coding the btnCalc_Click procedure:

1. Enter the following nine declaration statements. Press Enter twice after typing the last
declaration statement.

Const dblFICA_RATE As Double = .0765
Dim strStatus As String
Dim dblHours As Double
Dim dblPayRate As Double
Dim intAllowances As Integer
Dim dblGross As Double
Dim dblFwt As Double
Dim dblFica As Double
Dim dblNet As Double

2. The first step in the procedure’s pseudocode is to store the user input in variables. Enter
the following statements. Press Enter twice after typing the last statement.

dblHours = Convert.ToDouble(lstHours.SelectedItem.ToString)
dblPayRate = Convert.ToDouble(lstRates.SelectedItem.ToString)
intAllowances = Convert.ToInt32(cboAllowances.Text)

3. The second step in the pseudocode is a selection structure whose condition determines
the employee’s marital status. Type the selection structure shown in Figure 7-39 and
then position the insertion point as indicated in the figure.

Named constants Value
dblFICA_RATE .0765

Variable names Stores
strStatus either the letter S (Single radio button is selected) or the letter M

(Married radio button is selected)
dblHours the number of hours worked selected in the lstHours control
dblPayRate the pay rate selected in the lstRates control
intAllowances the number of withholding allowances either selected or entered in the

cboAllowances control
dblGross the gross pay
dblFwt the federal withholding tax calculated and returned by the GetFwt

function
dblFica the FICA tax
dblNet the net pay

Figure 7-38 Listing of named constants and variables for the btnCalc_Click procedure
ª 2013 Cengage Learning

START HERE

START HERE

CH A P T E R 7 Sub and Function Procedures

452

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

4. The third step in the pseudocode is another selection structure. This selection
structure’s condition compares the number of hours worked with the number 40.
If the number of hours worked is less than or equal to 40, the selection structure’s true
path should calculate the gross pay by multiplying the number of hours worked by
the pay rate. Enter the following comment, If clause, and assignment statement:

' calculate gross pay
If dblHours <= 40 Then

dblGross = dblHours * dblPayRate

5. If the number of hours worked is greater than 40, the employee is entitled to his or her
regular pay rate for the hours worked up to and including 40, and then time and one-half
for the hours worked over 40. Enter the Else clause and assignment statement shown in
Figure 7-40, and then save the solution.

The fourth step in the procedure’s pseudocode uses a function named GetFwt to calculate and
return the FWT (federal withholding tax). Before entering the appropriate instruction, you will
create the function.

Creating the GetFwt Function
The amount of federal withholding tax (FWT) to deduct from an employee’s weekly gross pay
is based on his or her weekly taxable wages and filing status, which is either single (including
head of household) or married. You calculate the weekly taxable wages by first multiplying the
number of withholding allowances by $73.08 (the value of a withholding allowance in 2012),

enter this selection
structure

position the
insertion point here

Figure 7-39 Selection structure entered in the procedure

enter the Else clause
and the assignment
statement

Figure 7-40 Second selection structure entered in the procedure

Coding the btnCalc_Click Procedure L E S S ON C

453

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

and then subtracting the result from the weekly gross pay. For example, if your weekly gross
pay is $400 and you have two withholding allowances, your weekly taxable wages are $253.84.
The $253.84 is calculated by multiplying 73.08 by 2 and then subtracting the result (146.16)
from 400. You use the weekly taxable wages, along with the filing status and the appropriate
weekly Federal Withholding Tax table, to determine the amount of FWT to withhold. The
weekly tax tables for the year 2012 are shown in Figure 7-41.

FWT Tables – Weekly Payroll Period

Single person (including head of household)
If the taxable
wages are: The amount of income tax to withhold is:

Over But not over Base amount Percentage Of excess over
$ 41 0

$ 41 $ 209 0 10% $ 41
$ 209 $ 721 $ 16.80 plus 15% $ 209
$ 721 $1,688 $ 93.60 plus 25% $ 721
$1,688 $3,477 $ 335.35 plus 28% $1,688
$3,477 $7,510 $ 836.27 plus 33% $3,477
$7,510 $2,167.16 plus 35% $7,510

Married person
If the taxable
wages are: The amount of income tax to withhold is

Over But not over Base amount Percentage Of excess over
$ 156 0

$ 156 $ 490 0 10% $ 156
$ 490 $1,515 $ 33.40 plus 15% $ 490
$1,515 $2,900 $ 187.15 plus 25% $1,515
$2,900 $4,338 $ 533.40 plus 28% $2,900
$4,338 $7,624 $ 936.04 plus 33% $4,338
$7,624 $2,020.42 plus 35% $7,624

Figure 7-41 Weekly FWT tables for the year 2012
ª 2013 Cengage Learning

Each table in Figure 7-41 contains five columns of information. The first two columns list
various ranges, also called brackets, of taxable wage amounts. The first column (Over) lists the
amount that a taxable wage in that bracket must be over, and the second column (But not over)
lists the maximum amount included in the bracket. The remaining three columns (Base amount,
Percentage, and Of excess over) tell you how to calculate the tax for each range. For example,
assume that you are married and your weekly taxable wages are $388.46. Before you can
calculate the amount of your tax, you need to locate your taxable wages in the first two columns
of the Married table. Taxable wages of $388.46 fall within the $156 through $490 bracket. After
locating the bracket that contains your taxable wages, you then use the remaining three columns
in the table to calculate your tax. In this case, you calculate the tax by first subtracting 156 (the
amount shown in the Of excess over column) from your taxable wages of 388.46, giving 232.46.
You then multiply 232.46 by 10% (the amount shown in the Percentage column), giving 23.25.
You then add that amount to the amount shown in the Base amount column (in this case, 0),
giving $23.25 as your tax. The calculations are shown in Figure 7-42.

CH A P T E R 7 Sub and Function Procedures

454

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Married with Weekly Taxable Wages of $388.46
Taxable wages $ 388.46
Of excess over – 156.00

232.46
Percentage * .10

23.25
Base amount + 0.00
Tax $ 23.25

Figure 7-42 Example of a FWT calculation
ª 2013 Cengage Learning

Now calculate the tax for a single taxpayer whose weekly taxable wages are $600. Figure 7-43
shows how the tax amount ($75.45) is calculated.

Single with Weekly Taxable Wages of $600
Taxable wages $ 600.00
Of excess over – 209.00

391.00
Percentage * .15

58.65
Base amount + 16.80
Tax $ 75.45

Figure 7-43 Another example of a FWT calculation
ª 2013 Cengage Learning

To calculate the federal withholding tax, the GetFwt function needs to know the employee’s
gross pay amount, number of withholding allowances, and marital status. The gross pay amount
and number of withholding allowances are necessary to calculate the taxable wages, and the
marital status indicates the appropriate FWT table to use when calculating the tax. The function
will receive the necessary information from the btnCalc_Click procedure, which will pass the
information when it invokes the function. Recall that the information is stored in the
btnCalc_Click procedure’s dblGross, intAllowances, and strStatus variables. Figure 7-44
shows the function’s pseudocode.

GetFwt function
1. calculate the taxable wages = gross pay – number of withholding allowances * 73.08
2. if the marital status is Single

calculate the FWT using the Single FWT table
else

calculate the FWT using the Married FWT table
end if

3. return the FWT

Figure 7-44 Pseudocode for the GetFwt function
ª 2013 Cengage Learning

Coding the btnCalc_Click Procedure L E S S ON C

455

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

To create the GetFwt function:

1. Scroll to the top of the Code Editor window. Click the blank line below the ' GetFwt
function comment.

2. When it invokes the GetFwt function, the btnCalc_Click procedure will pass the values
stored in its strStatus, intAllowances, and dblGross variables. You do not want the
GetFwt function to change the contents of the variables, so you will pass a copy of each
variable’s value (rather than its address). You will store the values passed to the function
in three parameters named strMarital, intNumAllow, and dblWeekPay. The GetFwt
function will use the information it receives to calculate and return the FWT as a Double
number. Type the function header and comment shown in Figure 7-45 and then position
the insertion point as indicated in the figure. (Notice that the Code Editor automatically
enters the procedure footer for you.)

3. The function will use a named constant for the withholding allowance amount ($73.08).
It also will use two additional variables: one to store the taxable wages and the other to
store the FWT. Enter the following declaration statements. Press Enter twice after
typing the last declaration statement.

Const dblONE_ALLOW As Double = 73.08
Dim dblTaxWages As Double
Dim dblTax As Double

4. The first step in the function’s pseudocode calculates the taxable wages. Enter the
following comment and assignment statement. Press Enter twice after typing the
assignment statement.

' calculate taxable wages
dblTaxWages =

dblWeekPay – intNumAllow * dblONE_ALLOW

5. The second step in the pseudocode is a selection structure whose condition determines
the marital status. Enter the following comment and If clause:

' determine marital status and then calculate FWT
If strMarital = "S" Then

6. If the strMarital variable contains the letter S, the selection structure’s true path
should calculate the federal withholding tax using the information from the Single tax
table. You will find the appropriate code in the Single.txt file. Click FILE on the menu
bar and then click Open File. If necessary, open the Cerruti Company Project folder.
Click Single.txt in the list of filenames and then click the Open button. The Single.txt
file appears in a separate window in the IDE. Click EDIT on the menu bar and then click

START HERE

enter the function header
and the comment

position the
insertion point here

Figure 7-45 GetFwt function header and footer

CH A P T E R 7 Sub and Function Procedures

456

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Select All. Press Ctrl+c to copy the selected text to the Windows Clipboard, and then
close the Single.txt window.

7. The insertion point should be in the blank line below the If clause in the GetFwt
function. Press Ctrl+v to paste the copied text into the selection structure’s true path.

8. Type Else and then press Tab twice. Type ' strMarital = "M" and then press Enter.

9. If the strMarital variable does not contain the letter S, the selection structure’s false
path should calculate the federal withholding tax using the information from the
Married tax table. You will find the appropriate code in the Married.txt file. Click
FILE and then click Open File. Click Married.txt in the list of filenames and then click
the Open button. Click EDIT and then click Select All. Press Ctrl+c to copy the
selected text to the Windows Clipboard, and then close the Married.txt window.

10. The insertion point should be in the blank line below the Else clause. Press Ctrl+v to
paste the copied text into the selection structure’s false path.

11. The last step in the function’s pseudocode returns the federal withholding tax amount
to the statement that invoked the function. The tax amount is stored in the dblTax
variable. Click after the letter f in the End If clause and then press Enter twice.
Type Return dblTax and then click the blank line above the Return statement. Save
the solution. (You can look ahead to Figure 7-50 to view the function’s code.)

Completing the btnCalc_Click Procedure
Now that you have created the GetFwt function, you can invoke the function from the
btnCalc_Click procedure. Invoking the GetFwt function is the fourth step listed in the
procedure’s pseudocode (shown earlier in Figure 7-37).

To continue coding the btnCalc_Click event procedure:

1. Locate the btnCalc_Click procedure. Click after the letter f in the second End If clause
and then press Enter twice.

2. Recall that the procedure needs to send the GetFwt function a copy of the values stored
in the strStatus, intAllowances, and dblGross variables. The value returned by the
function will be assigned to the dblFwt variable. Enter the following comment and
assignment statement. Press Enter twice after typing the assignment statement.

' get the FWT
dblFwt = GetFwt(strStatus, intAllowances, dblGross)

3. The next step in the procedure’s pseudocode calculates the FICA tax by multiplying the
gross pay amount by the FICA rate. Enter the following comment and assignment
statement. Press Enter twice after typing the assignment statement.

' calculate FICA tax
dblFica = dblGross * dblFICA_RATE

4. Save the solution.

Rounding Numbers
The sixth step in the procedure’s pseudocode rounds the gross pay, FWT, and FICA tax
amounts to two decimal places. Rounding these amounts before making the net pay calculation
will prevent the “penny off” error from occurring. (You can observe the “penny off” error by
completing Exercise 1 at the end of this lesson.) You can use the Math.Round function to return
a number rounded to a specific number of decimal places. The function’s syntax and examples
are shown in Figure 7-46. In the syntax, value is a numeric expression, and digits (which is

START HERE

Completing the btnCalc_Click Procedure L E S S ON C

457

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

optional) is an integer indicating how many places to the right of the decimal point are included
in the rounding. If the digits argument is omitted, the Math.Round function returns an integer.

To complete the btnCalc_Click procedure:

1. Enter the following comment and assignment statements. Press Enter twice after typing
the last assignment statement.

' round gross pay, FWT, and FICA tax
dblGross = Math.Round(dblGross, 2)
dblFwt = Math.Round(dblFwt, 2)
dblFica = Math.Round(dblFica, 2)

2. Next, the procedure should calculate the net pay by subtracting the two tax amounts
from the gross pay amount. Enter the following comment and assignment statement.
Press Enter twice after typing the assignment statement.

' calculate net pay
dblNet = dblGross – dblFwt – dblFica

3. The last step in the procedure’s pseudocode displays the calculated amounts in the
appropriate label controls. Enter the following comment and assignment statements:

' display calculated amounts
lblGross.Text = dblGross.ToString(“N2”)
lblFwt.Text = dblFwt.ToString(“N2”)
lblFica.Text = dblFica.ToString(“N2”)
lblNet.Text = dblNet.ToString(“N2”)

4. Save the solution.

You will test the application twice, using the data shown in Figure 7-47. The figure also shows
the correct amounts for the gross pay, taxes, and net pay.

Math.Round Function

Syntax
Math.Round(value[, digits])

Examples Result
Math.Round(3.235, 2) 3.24
Math.Round(6.517, 1) 6.5
Math.Round(8.99) 9

Figure 7-46 Syntax and examples of the Math.Round function
ª 2013 Cengage Learning

START HERE

CH A P T E R 7 Sub and Function Procedures

458

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Test Data
First test
Name: Sara Huntington
Marital status: Single
Hours: 40
Pay rate: $10
Allowances: 1

Gross wages $ 400.00
Allowance deduction – 73.08
Taxable wages 326.92
Of excess over – 209.00

117.92
Percentage * .15

17.688
Base amount + 16.80
FWT tax $ 34.49 (rounded to 2 decimal places)

FICA tax (400 * .0765) $ 30.60
Net pay (400 – 34.49 – 30.60) $ 334.91

Second test
Name: James Perkins
Marital status: Married
Hours: 42
Pay rate: $15
Allowances: 2

Gross wages $ 645.00
Allowance deduction – 146.16
Taxable wages 498.84
Of excess over – 490.00

8.84
Percentage * .15

1.326
Base amount + 33.40
FWT tax $ 34.73 (rounded to 2 decimal places)

FICA tax (645 * .0765) $ 49.34 (rounded to 2 decimal places)
Net pay (645 – 34.73 – 49.34) $ 560.93

Figure 7-47 Data for testing the Cerruti Company’s application
ª 2013 Cengage Learning

To test the Cerruti Company’s application:

1. Start the application. Type Sara Huntington in the Name box. Click 10.00 in the Rate
list box and then click 1 in the Allowances combo box. Click the Calculate button. See
Figure 7-48. The gross pay, taxes, and net pay agree with the manual calculations from
Figure 7-47.

START HERE

Completing the btnCalc_Click Procedure L E S S ON C

459

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

2. Change the name entered in the Name box to James Perkins. Click the Married radio
button, click 42 in the Hours list box, and then click 15.00 in the Rate list box. Press Tab
to move the focus to the Allowances combo box. In addition to selecting the number of
allowances in the list portion of the combo box, the user also can type the number in the
text portion. Type 2 and then click the Calculate button. See Figure 7-49. The gross pay,
taxes, and net pay agree with the manual calculations from Figure 7-47.

Figure 7-48 Payroll calculations using the first set of test data

Figure 7-49 Payroll calculations using the second set of test data

CH A P T E R 7 Sub and Function Procedures

460

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

3. Click the Exit button and then click the Yes button. Close the Code Editor window and
then close the solution.

Figure 7-50 shows the Cerruti Company application’s code.

 1 ' Name: Cerruti Project
 2 ' Purpose: Displays gross pay, taxes, and net pay
 3 ' Programmer: <your name> on <current date>

 4
 5 Option Explicit On
 6 Option Strict On
 7 Option Infer Off
 8
 9 Public Class frmMain
10
11 ' GetFwt function
12 Private Function GetFwt(ByVal strMarital As String,

 13 ByVal intNumAllow As Integer,
 14 ByVal dblWeekPay As Double) As Double
 15 ' calculates and returns the FWT
 16
 17 Const dblONE_ALLOW As Double = 73.08
 18 Dim dblTaxWages As Double
 19 Dim dblTax As Double
 20
 21 ' calculate taxable wages
 22 dblTaxWages =
 23 dblWeekPay - intNumAllow * dblONE_ALLOW
 24
 25 ' determine marital status and then calculate FWT
 26 If strMarital = "S" Then
 27 Select Case dblTaxWages
 28 Case Is <= 41
 29 dblTax = 0
 30 Case Is <= 209
 31 dblTax = 0.1 * (dblTaxWages - 41)
 32 Case Is <= 721
 33 dblTax = 16.8 + 0.15 * (dblTaxWages - 209)
 34 Case Is <= 1688
 35 dblTax = 93.6 + 0.25 * (dblTaxWages - 721)
 36 Case Is <= 3477
 37 dblTax = 335.35 + 0.28 * (dblTaxWages - 1688)
 38 Case Is <= 7510
 39 dblTax = 836.27 + 0.33 * (dblTaxWages - 3477)
 40 Case Else
 41 dblTax = 2167.16 + 0.35 * (dblTaxWages - 7510)
 42 End Select
 43 Else ' strMarital = "M"
 44 Select Case dblTaxWages
 45 Case Is <= 156
 46 dblTax = 0
 47 Case Is <= 490
 48 dblTax = 0.1 * (dblTaxWages - 156)
 49 Case Is <= 1515
 50 dblTax = 33.4 + 0.15 * (dblTaxWages - 490)
 51 Case Is <= 2900
 52 dblTax = 187.15 + 0.25 * (dblTaxWages - 1515)

Figure 7-50 Cerruti Company application’s code (continues)

Completing the btnCalc_Click Procedure L E S S ON C

461

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

53 Case Is <= 4338
 54 dblTax = 533.4 + 0.28 * (dblTaxWages - 2900)
 55 Case Is <= 7624
 56 dblTax = 936.04 + 0.33 * (dblTaxWages - 4338)
 57 Case Else
 58 dblTax = 2020.42 + 0.35 * (dblTaxWages - 7624)
 59 End Select
 60 End If
 61
 62 Return dblTax
 63 End Function
 64
 65 Private Sub btnExit_Click(sender As Object,
 e As EventArgs) Handles btnExit.Click
 66 Me.Close()
 67 End Sub
 68
 69 Private Sub txtName_Enter(sender As Object,
 e As EventArgs) Handles txtName.Enter
 70 ' select the existing text
 71
 72 txtName.SelectAll()
 73 End Sub
 74
 75 Private Sub cboAllowances_KeyPress(sender As Object,
 e As Windows.Forms.KeyPressEventArgs)
 Handles cboAllowances.KeyPress
 76 ' allow only numbers and the Backspace key
 77
 78 If (e.KeyChar < "0" OrElse e.KeyChar > "9")
 AndAlso e.KeyChar <> ControlChars.Back Then
 79 e.Handled = True
 80 End If
 81 End Sub
 82
 83 Private Sub ClearLabels(sender As Object,
 e As EventArgs) Handles lstHours.SelectedValueChanged,
 84 lstRates.SelectedValueChanged,
 radSingle.CheckedChanged, radMarried.CheckedChanged,
 85 txtName.TextChanged, cboAllowances.TextChanged
 86
 87 lblGross.Text = String.Empty
 88 lblFwt.Text = String.Empty
 89 lblFica.Text = String.Empty
 90 lblNet.Text = String.Empty
 91 End Sub
 92
 93 Private Sub frmMain_FormClosing(sender As Object,
 e As FormClosingEventArgs) Handles Me.FormClosing
 94 ' verify that the user wants to exit the application
 95
 96 Dim dlgButton As DialogResult

Figure 7-50 Cerruti Company application’s code (continues)

(continued)

CH A P T E R 7 Sub and Function Procedures

462

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

97 dlgButton =
 98 MessageBox.Show("Do you want to exit?",
 99 "Cerruti Company", MessageBoxButtons.YesNo,
100 MessageBoxIcon.Exclamation)
101
102 ' if the No button was selected, don't close the form
103 If dlgButton = Windows.Forms.DialogResult.No Then
104 e.Cancel = True
105 End If
106 End Sub
107
108 Private Sub frmMain_Load(sender As Object,
 e As EventArgs) Handles Me.Load
109 ' fill list boxes and combo box with values
110 ' then select a default value in each
111
112 For dblHours As Double = 0 To 55 Step 0.5
113 lstHours.Items.Add(dblHours.ToString("N1"))
114 Next dblHours
115
116 For dblRates As Double = 7.5 To 15.5 Step 0.5
117 lstRates.Items.Add(dblRates.ToString("N2"))
118 Next dblRates
119
120 For intAllow As Integer = 0 To 10
121 cboAllowances.Items.Add(intAllow.ToString)
122 Next intAllow
123
124 lstHours.SelectedItem = "40.0"
125 lstRates.SelectedItem = "9.50"
126 cboAllowances.SelectedIndex = 0
127 End Sub
128
129 Private Sub btnCalc_Click(sender As Object,
 e As EventArgs) Handles btnCalc.Click
130 ' displays gross pay, taxes, and net pay
131
132 Const dblFICA_RATE As Double = 0.0765
133 Dim strStatus As String
134 Dim dblHours As Double
135 Dim dblPayRate As Double
136 Dim intAllowances As Integer
137 Dim dblGross As Double
138 Dim dblFwt As Double
139 Dim dblFica As Double
140 Dim dblNet As Double
141
142 dblHours =
 Convert.ToDouble(lstHours.SelectedItem.ToString)
143 dblPayRate =
 Convert.ToDouble(lstRates.SelectedItem.ToString)
144 intAllowances = Convert.ToInt32(cboAllowances.Text)

Figure 7-50 Cerruti Company application’s code (continues)

(continued)

Completing the btnCalc_Click Procedure L E S S ON C

463

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Lesson C Summary
l To process code when a form is about to be closed:

Enter the code in the form’s FormClosing event procedure. The FormClosing event occurs
when the user clicks the Close button on a form’s title bar or when the computer processes
the Me.Close() statement.

l To prevent a form from being closed:

Set the Cancel property of the FormClosing event procedure’s e parameter to True, like this:
e.Cancel = True.

145
146 If radSingle.Checked Then
147 strStatus = "S"
148 Else
149 strStatus = "M"
150 End If
151
152 ' calculate gross pay
153 If dblHours <= 40 Then
154 dblGross = dblHours * dblPayRate
155 Else
156 dblGross = 40 * dblPayRate +
157 (dblHours - 40) * dblPayRate * 1.5
158 End If
159
160 ' get the FWT
161 dblFwt = GetFwt(strStatus, intAllowances, dblGross)
162
163 ' calculate FICA tax
164 dblFica = dblGross * dblFICA_RATE
165
166 ' round gross pay, FWT, and FICA tax
167 dblGross = Math.Round(dblGross, 2)
168 dblFwt = Math.Round(dblFwt, 2)
169 dblFica = Math.Round(dblFica, 2)
170
171 ' calculate net pay
172 dblNet = dblGross - dblFwt - dblFica
173
174 ' display calculated amounts
175 lblGross.Text = dblGross.ToString("N2")
176 lblFwt.Text = dblFwt.ToString("N2")
177 lblFica.Text = dblFica.ToString("N2")
178 lblNet.Text = dblNet.ToString("N2")
179
180 End Sub
181 End Class

Figure 7-50 Cerruti Company application’s code
ª 2013 Cengage Learning

(continued)

CH A P T E R 7 Sub and Function Procedures

464

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

l To round a number to a specific number of decimal places:

Use the Math.Round function. The function’s syntax is Math.Round(value[, digits]), where
value is a numeric expression, and digits (which is optional) is an integer indicating how
many places to the right of the decimal point are included in the rounding. If the digits
argument is omitted, the Math.Round function returns an integer.

Lesson C Key Terms
Cancel property—a property of the e parameter in the form’s FormClosing event procedure;
when set to True, it prevents the form from closing

FormClosing event—occurs when a form is about to be closed, which can happen as a result of
the computer processing the Me.Close() statement or the user clicking the Close button on the
form’s title bar

Math.Round function—rounds a number to a specific number of decimal places

Lesson C Review Questions
1. A form’s event is triggered when you click the Close button on its

title bar.

a. Close

b. CloseForm

c. FormClose

d. FormClosing

2. A form’s event is triggered when the computer processes the
Me.Close() statement.

a. Close

b. Closing

c. FormClose

d. FormClosing

3. Which of the following statements prevents a form from being closed?

a. e.Cancel = False

b. e.Cancel = True

c. e.Close = False

d. sender.Close = False

4. Which of the following rounds the contents of the dblNum variable to three decimal
places?

a. Math.Round(3, dblNum)

b. Math.Round(dblNum, 3)

c. Round.Math(dblNum, 3)

d. Round.Math(3, dblNum)

Lesson C Review Questions L E S S ON C

465

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Lesson C Exercises

1. In this exercise, you will remove the Math.Round function from the payroll application
created in the lesson; doing this will allow you to observe the “penny off” error. Use
Windows to make a copy of the Cerruti Solution folder. Rename the copy No Rounding
Cerruti Solution. Open the Cerruti Solution (Cerruti Solution.sln) file contained in the
No Rounding Cerruti Solution folder. Open the designer and Code Editor windows. The
Math.Round function appears in three statements in the btnCalc_Click procedure. Type
an apostrophe at the beginning of each of the three statements, making them comments.
Save the solution and then start the application. Test the application by clicking 38.5 in
the Hours list box and 10.50 in the Rate list box. Click the Calculate button. What is
wrong with the calculated amounts? Stop the application. Close the Code Editor window
and then close the solution.

2. In this exercise, you modify one of the Gross Pay applications completed in Lesson A.
Use Windows to make a copy of the Gross Pay Solution-Sub folder. Rename the copy
Gross Pay Solution-Sub-FormClosing. Open the Gross Pay Solution (Gross Pay
Solution.sln) file contained in the Gross Pay Solution-Sub- FormClosing folder. Open the
designer and Code Editor windows. Code the form’s FormClosing event procedure so
that it asks the user whether he or she wants to exit the application. Take the appropriate
action based on the user’s response. Save the solution and then start and test the
application. Close the Code Editor window and then close the solution.

3. In this exercise, you modify the Cerruti Company application from this lesson. Use
Windows to make a copy of the Cerruti Solution folder. Rename the copy Cerruti
Solution-Sub. Open the Cerruti Solution (Cerruti Solution.sln) file contained in the
Cerruti Solution-Sub folder. Open the designer and Code Editor windows. Change
the GetFwt function to an independent Sub procedure and then modify the statement
that calls the procedure. Save the solution and then start and test the application.
Close the Code Editor window and then close the solution.

4. In this exercise, you modify the Cerruti Company application from this lesson. Use
Windows to make a copy of the Cerruti Solution folder from this lesson. Rename the
copy Modified Cerruti Solution. Open the Cerruti Solution (Cerruti Solution.sln) file
contained in the Modified Cerruti Solution folder. Open the designer and Code Editor
windows. Modify the code so that the GetFwt function (rather than btnCalc_Click
procedure) determines the selected radio button. Save the solution and then start and
test the application. Close the Code Editor window and then close the solution.

5. The Sweet Life Shoppe sells four varieties of doughnuts: Glazed ($.65), Sugar ($.65),
Chocolate ($.85), and Filled ($1.00). It also sells regular coffee ($1.80) and cappuccino
($2.50). The store manager wants an application that she can use to calculate and display
a customer’s subtotal, 3% sales tax, and total due. Create a Visual Basic Windows
application. Use the following names for the solution and project, respectively: Sweet Life
Solution and Sweet Life Project. Save the application in the VB2012\Chap07 folder.
Change the form file’s name to Main Form.vb. Change the form’s name to frmMain.
Create the interface shown in Figure 7-51. The image for the picture box is stored in the
VB2012\Chap07\DonutCoffee.png file. (The image was downloaded from the Open Clip
Art Library at http://openclipart.org.) Code the application. Use one function to calculate
and return the cost of the doughnut. Use another function to calculate and return the
cost of the coffee. Use a third function to calculate and return the 3% sales tax. Save the
solution and then start and test the application. Close the Code Editor window and then
close the solution.

INTRODUCTORY

INTRODUCTORY

INTERMEDIATE

INTERMEDIATE

INTERMEDIATE

CH A P T E R 7 Sub and Function Procedures

466

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

6. Create a Visual Basic Windows application. Use the following names for the solution and
project, respectively: Cable Direct Solution and Cable Direct Project. Save the application
in the VB2012\Chap07 folder. Change the form file’s name to Main Form.vb. Change the
form’s name to frmMain. Create the interface shown in Figure 7-52. The list boxes are
named lstPremium and lstConnections. Display numbers from 0 through 20 in the
lstPremium control. Display numbers from 0 through 100 in the lstConnections control.
The Calculate Total Due button’s Click event procedure should calculate and display a
customer’s cable bill. The cable rates are shown in Figure 7-53. Business customers must
have at least one connection. Use two functions: one to calculate and return the total due
for business customers, and the other to calculate and return the total due for residential
customers. The form’s FormClosing event procedure should verify that the user wants to
close the application. Code the application. Save the solution and then start and test the
application. Close the Code Editor window and then close the solution.

Figure 7-51 User interface for Exercise 5
OpenClipArt.org/gnokii

Figure 7-52 User interface for Exercise 6

ADVANCED

Lesson C Exercises L E S S ON C

467

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Residential customers:
Processing fee: $4.50
Basic service fee: $30
Premium channels: $5 per channel

Business customers:
Processing fee: $16.50
Basic service fee: $80 for the first 10 connections; $4 for each

additional connection
Premium channels: $50 per channel for any number of connections

Figure 7-53 Cable rates for Exercise 6
ª 2013 Cengage Learning

7. The purpose of this exercise is to demonstrate a common error made when using
functions. Open the Debug Solution (Debug Solution.sln) file contained in the
VB2012\Chap07\Debug Solution-Lesson C folder. If necessary, open the designer
window. Start the application. Click 20 in the Length list box and then click 30 in the
Width list box. Click the Calculate Area button, which should display the area of a
rectangle having a length of 20 feet and a width of 30 feet. Notice that the application is
not working properly. Stop the application. Correct the application’s code. Save the
solution and then start and test the application again. Close the Code Editor window and
then close the solution.

SWAT THE BUGS

CH A P T E R 7 Sub and Function Procedures

468

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 8
String Manipulation

Creating the Frankenstein Game Application

In this chapter, you create the Frankenstein game for Ms. Carlsen, who
teaches second grade at Jefferson Elementary School. The game
requires two people to play. Currently, Ms. Carlsen thinks of a word that
has five letters. She then draws five dashes on the chalkboard—one for
each letter in the word. One student is then chosen to guess the word,
letter by letter. When the student guesses a correct letter, Ms. Carlsen
replaces the appropriate dash or dashes with the letter. For example, if
the original word is moose and the student guesses the letter o, Ms.
Carlsen changes the five dashes on the chalkboard to -oo--. If the
student’s letter does not appear in the word, Ms. Carlsen begins drawing
a Frankenstein image that contains six parts: a head, a torso, a right
arm, a left arm, a right leg, and a left leg. The game is over when the
student either guesses all of the letters in the word or makes six
incorrect guesses, whichever comes first.

All Microsoft screenshots used with permission from Microsoft Corporation.

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Previewing the Frankenstein Game Application
Before you start the first lesson in this chapter, you will preview the completed application.
The application is contained in the VB2012\Chap08 folder.

To preview the completed application:

1. Use the Run dialog box to run the Frankenstein (Frankenstein.exe) file contained
in the VB2012\Chap08 folder. The application’s interface appears on the screen. See
Figure 8-1. (The Frankenstein image was downloaded from the Open Clip Art Library at
http://openclipart.org.) As indicated in the figure, the interface contains a FILE menu.
Menus are covered in Lesson B.

2. Click FILE on the menu bar and then click New Game. An input dialog box opens and
prompts you to enter a five-letter word.

3. Typemoose and then press Enter. Five dashes (hyphens) appear in the Secret word box.
Each dash represents a letter in the word “moose”.

4. Type e in the Enter a letter text box. The lowercase letter e is changed to its uppercase
equivalent because the text box’s CharacterCasing property is set to Upper. Press Enter
to select the Check button, which is the default button on the form. The last dash in the
Secret word box is replaced with the uppercase letter E. This indicates that the letter E is
the last letter in the secret word.

5. Type x in the text box and then press Enter. The word “moose” does not contain
the letter x, so the application displays X in the Incorrect letters box. It also displays a
picture box that contains an image of Frankenstein’s head.

File menu (you can use Alt to
show/hide the access keys)

Figure 8-1 Interface for the Frankenstein Game application
OpenClipArt.org/Merlin2525

START HERE

CH A P T E R 8 String Manipulation

470

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

6. Type a in the text box and then press Enter. The application displays A in the Incorrect
letters box. It also displays a picture box that contains an image of Frankenstein’s head
and torso.

7. Type b in the text box and then press Enter. The application displays B in the Incorrect
letters box. It also displays a picture box that contains an image of Frankenstein’s head,
torso, and right arm.

8. Type o in the text box and then press Enter. The application replaces the second and
third dashes in the Secret word box with the letter O.

9. Now type m and s in the text box, pressing Enter after typing each letter. The
application replaces the first and fourth dashes in the Secret word box with the letters M
and S, respectively. It also displays the “Great guessing!” message in a message box.
See Figure 8-2.

10. Close the message box. Click FILE on the menu bar and then click New Game. Type
moo in the input dialog box and then press Enter. The message “5 letters are required”
appears in a message box. Close the message box.

11. Press Ctrl+N to open the input dialog box. Type glass and then press Enter. Type g in
the text box and then press Enter. The application replaces the first dash in the Secret
word box with the letter G.

Figure 8-2 Interface after guessing the secret word
OpenClipArt.org/Merlin2525

Previewing the Frankenstein Game Application

471

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

12. Now, type the letters e, d, p, x, y, and z in the text box, pressing Enter after typing each
letter. The letters you entered do not appear in the word “glass”, so the application
displays the letters in the Incorrect letters box. It also displays Frankenstein’s full body
and the message “Sorry, the word is GLASS”. See Figure 8-3.

13. Close the message box. Click FILE on the menu bar and then click Exit to end the
application.

Before you can begin coding the Frankenstein Game application, you need to learn how to
manipulate strings in Visual Basic; string manipulation is covered in Lesson A. You also need to
learn how to create a menu. You will learn about the MenuStrip tool in Lesson B, and then use it
to add a menu to the Frankenstein Game application’s interface. You will code the application in
Lessons B and C. Be sure to complete each lesson in full and do all of the end-of-lesson
questions and several exercises before continuing to the next lesson.

Figure 8-3 Interface after not guessing the secret word
OpenClipArt.org/Merlin2525

CH A P T E R 8 String Manipulation

472

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

& LESSON A
After studying Lesson A, you should be able to:

l Determine the number of characters in a string

l Remove characters from a string

l Insert characters in a string

l Align the characters in a string

l Search a string

l Access characters in a string

l Compare strings using pattern-matching

Working with Strings
Many times, an application will need to manipulate (process) string data in some way. For
example, it may need to look at the first character in an inventory part number to determine the
part’s location in the warehouse. Or, it may need to search an address to determine the street
name. Or, it may need to verify that the input entered by the user is in the expected format. In
this lesson, you will learn several ways of manipulating strings in Visual Basic. You will begin by
learning how to determine the number of characters in a string.

Determining the Number of Characters in a String
If an application expects the user to enter a seven-digit phone number or a five-digit ZIP code, the
application’s code should verify that the user’s input contains the required number of characters. The
number of characters contained in a string is stored as an integer in the string’s Length property.
Figure 8-4 shows the property’s syntax and includes examples of using the property. In the syntax,
string can be a String variable, a String named constant, or the Text property of a control.

Determining the Number of Characters in a String

Syntax
string.Length

Example 1
strCityState = "Bowling Green, KY"
intNumChars = strCityState.Length
assigns the number 17 to the intNumChars variable

Example 2
intNumChars = txtPhone.Text.Length
assigns the number of characters in the txtPhone control’s Text property to the intNumChars
variable

Example 3
Do
 strZip = InputBox("5-digit ZIP code", "ZIP")
Loop Until strZip.Length = 5
continues prompting the user for a ZIP code until the user enters exactly five characters

Figure 8-4 Syntax and examples of the Length property
© 2013 Cengage Learning

Determining the Number of Characters in a String L E S S ON A

473

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Removing Characters from a String
Visual Basic provides the Trim and Remove methods for removing characters from a string. The
Trim method removes (trims) any space characters from both the beginning and end of a string.
The Remove method, on the other hand, removes a specified number of characters located
anywhere in a string. Figure 8-5 shows the syntax of both methods and includes examples of
using the methods. In each syntax, string can be a String variable, a String named constant, or
the Text property of a control. When processing the Trim and Remove methods, the computer
first makes a temporary copy of the string in memory. It then performs the specified removal on
the copy only. In other words, neither method removes any characters from the original string.
Both methods return a string with the appropriate characters removed.

The startIndex argument in the Remove method is the index of the first character you want
removed from the copy of the string. A character’s index is an integer that indicates the
character’s position in the string. The first character in a string has an index of 0; the second
character has an index of 1, and so on. The optional numCharsToRemove argument is the
number of characters you want removed. To remove only the first character from a string, you
use 0 as the startIndex and 1 as the numCharsToRemove. To remove the fourth through eighth
characters, you use 3 as the startIndex and 5 as the numCharsToRemove. If the
numCharsToRemove argument is omitted, the Remove method removes all of the characters
from the startIndex position through the end of the string, as shown in Example 3 in Figure 8-5.

The Trim method
can also remove
other characters
from the
beginning and

end of a string. To learn
more about the Trim
method, as well as its
companion TrimStart and
TrimEnd methods,
complete Exercises 17
and 18 at the end of
this lesson.

Removing Characters from a String

Syntax
string.Trim
string.Remove(startIndex [, numCharsToRemove])

Example 1
strName = txtName.Text.Trim
assigns the contents of the txtName control’s Text property, excluding any leading and trailing
spaces, to the strName variable

Example 2
strCityState = "Dallas, Texas"
txtState.Text = strCityState.Remove(0, 8)
assigns the string “Texas” to the txtState control’s Text property

Example 3
strCityState = "Dallas, Texas"
txtCity.Text = strCityState.Remove(6)
assigns the string “Dallas” to the txtCity control’s Text property; you can also write the assignment
statement as txtCity.Text = strCityState.Remove(6, 7)

Example 4
strFirst = "John"
strFirst = strFirst.Remove(2, 1)
assigns the string “Jon” to the strFirst variable

Figure 8-5 Syntax and examples of the Trim and Remove methods
© 2013 Cengage Learning

CH A P T E R 8 String Manipulation

474

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

The Product ID Application
You will use the Length property and the Trim method in the Product ID application. The
application displays a listing of the product IDs entered by the user. Each product ID must
contain exactly five characters.

To code and then test the Product ID application:

1. If necessary, start Visual Studio 2012. Open the Product Solution (Product Solution.sln)
file contained in the VB2012\Chap08\Product Solution folder. If necessary, open the
designer window. The interface provides a text box for entering the product ID.

2. Open the Code Editor window. Replace <your name> and <current date> in the
comments with your name and the current date, respectively.

3. Locate the btnAdd_Click procedure. Before verifying the product ID’s length, you will
remove any leading and trailing spaces from the ID. Click the blank line below the
' remove any leading and trailing spaces comment and then enter the following
assignment statement:

strId = txtId.Text.Trim

4. Now you will determine whether the ID contains exactly five characters. Click the blank
line below the ' verify length comment and then enter the following If clause:

If strId.Length = 5 Then

5. If the ID contains exactly five characters, the selection structure’s true path should add
the ID to the lstId control; otherwise, its false path should display an appropriate
message. Enter the five lines of code indicated in Figure 8-6. (The Trim and Length
methods are shaded in the figure.)

Private Sub btnAdd_Click(sender As Object,
e As EventArgs) Handles btnAdd.Click

' adds a product ID to a list

Dim strId As String

' remove any leading and trailing spaces
strId = txtId.Text.Trim

' verify length
If strId.Length = 5 Then

lstId.Items.Add(strId.ToUpper)
Else

MessageBox.Show("The ID must contain 5 characters.",
"Product ID", MessageBoxButtons.OK,
MessageBoxIcon.Information)

End If

txtId.Focus()
End Sub

enter these five
lines of code

Figure 8-6 btnAdd control’s Click event procedure
© 2013 Cengage Learning

START HERE

Removing Characters from a String L E S S ON A

475

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

6. Save the solution and then start the application. First, you will enter an ID that contains
four characters. Type bcd2 as the product ID and then click the Add to List button. A
message box opens and displays the message “The ID must contain 5 characters.” Close
the message box.

7. Now you will include two leading spaces in the ID. Click immediately before the letter
b in the text box. Press the Spacebar twice and then type the letter a. The text box now
contains two space characters followed by abcd2. Click the Add to List button. ABCD2
appears in the listing of product IDs. See Figure 8-7.

8. On your own, test the application using an ID that contains nine characters. Also test
it using an ID that contains both leading and trailing spaces. When you are finished
testing the application, click the Exit button. Close the Code Editor window and then
close the solution.

YOU DO IT 1!

Create a Visual Basic Windows application named YouDoIt 1. Save the application in
the VB2012\Chap08 folder. Add a text box, a label, and a button to the form. The
button’s Click event procedure should remove any leading or trailing spaces from the
text entered in the text box. If the remaining text contains more than four characters, the
button’s Click event procedure should display only the first four characters in the label;
otherwise, it should display the remaining text in the label. Code the procedure. Save the
solution and then start and test the application. Close the solution.

Inserting Characters in a String
Visual Basic’s Insert method allows you to insert characters anywhere in a string. The method’s
syntax is shown in Figure 8-8 along with examples of using the method. In the syntax, string can
be a String variable, a String named constant, or the Text property of a control. When
processing the Insert method, the computer first makes a temporary copy of the string in
memory. It then performs the specified insertion on the copy only. The Insert method does not

you can press Alt
to show/hide the
access keys

Figure 8-7 Sample run of the Product ID application

CH A P T E R 8 String Manipulation

476

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

affect the original string. The startIndex argument in the Insert method is an integer that
specifies where in the string’s copy you want the value inserted. The integer represents the
character’s index—in other words, its position in the string. To insert the value at the beginning
of a string, you use a startIndex of 0, as shown in Example 1 in Figure 8-8. To insert the value
beginning with the eighth character in the string, you use a startIndex of 7, as shown in
Example 2. The Insert method returns a string with the appropriate characters inserted.

Aligning the Characters in a String
You can use Visual Basic’s PadLeft and PadRight methods to align the characters in a string.
The methods do this by inserting (padding) the string with zero or more characters until the
string is a specified length; each method then returns the padded string. The PadLeft method
pads the string on the left, which means it inserts the padded characters at the beginning of the
string; doing this right-aligns the characters within the string. The PadRight method, on the
other hand, pads the string on the right, which means it inserts the padded characters at the end
of the string and left-aligns the characters within the string.

Figure 8-9 shows the syntax of both methods and includes examples of using them. In each
syntax, string can be a String variable, a String named constant, or the Text property of a
control. When processing the PadLeft and PadRight methods, the computer first makes a
temporary copy of the string in memory; it then pads the copy only. The totalChars argument in
each syntax is an integer that represents the total number of characters you want the string’s
copy to contain. The optional padCharacter argument is the character that each method uses to
pad the string until the desired number of characters is reached. If the padCharacter argument is
omitted, the default padding character is the space character.

Inserting Characters in a String

Syntax
string.Insert(startIndex, value)

Example 1
strPhone = "111-2222"
txtPhone.Text = strPhone.Insert(0, "(877) ")
assigns the string “(877) 111-2222” to the txtPhone control’s Text property

Example 2
strName = "Joanne Hashem"
strName = strName.Insert(7, "C. ")
assigns the string “Joanne C. Hashem” to the strName variable

Figure 8-8 Syntax and examples of the Insert method
© 2013 Cengage Learning

Inserting Characters in a String L E S S ON A

477

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Notice that the expression in Example 3 in Figure 8-9 contains the ToString and PadLeft
methods. When an expression contains more than one method, the computer processes the
methods from left to right. In this case, the computer will process the ToString method before
processing the PadLeft method. Also notice the letter c that appears at the end of the
padCharacter argument in Example 3. The letter c is one of the literal type characters in Visual
Basic. As you learned in Chapter 3, a literal type character forces a literal constant to assume a
data type other than the one its form indicates. In this case, the letter c forces the "*" string in
the padCharacter argument to assume the Char (character) data type.

The Net Pay Application
The Net Pay application, which you code in this section, uses the Insert and PadLeft methods.
The application allows the user to enter the amount of an employee’s net pay. It then displays
the net pay with a leading dollar sign, asterisks, and two decimal places. For example, if the net
pay is 500, the application will display the net pay as $****500.00.

To code and then test the Net Pay application:

1. Open the Net Pay Solution (Net Pay Solution.sln) file contained in the VB2012\Chap08\
Net Pay Solution folder. If necessary, open the designer window. The interface provides a
text box for entering the net pay.

2. Open the Code Editor window. Replace <your name> and <current date> in the
comments with your name and the current date, respectively.

3. Locate the btnFormat_Click procedure. First, you will format the net pay to include two
decimal places. Click the blank line below the ' format the net pay with two decimal
places comment and then enter the following assignment statement:

strFormatted = decNet.ToString("N2")

Aligning the Characters in a String

Syntax
string.PadLeft(totalChars[, padCharacter])
string.PadRight(totalChars[, padCharacter])

Example 1
strNumber = "100"
txtNum.Text = strNumber.PadLeft(6)
assigns the string “ 100” to the txtNum control’s Text property

Example 2
strFirst = "Amy"
strFirst = strFirst.PadRight(10)
assigns the string “Amy ” to the strFirst variable

Example 3
dblNet = 495.84
strFormattedNet =
 dblNet.ToString("C2").PadLeft(10, "*"c)
assigns the string “***$495.84” to the strFormattedNet variable (Many companies use this type
of formatting on their employee paychecks because it makes it more difficult for someone to change
the amount.)

three space
characters

seven space
characters

Figure 8-9 Syntax and examples of the PadLeft and PadRight methods
© 2013 Cengage Learning

Recall that the
literal type
character D
forces a number
to assume the
Decimal data
type.

START HERE

CH A P T E R 8 String Manipulation

478

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

4. Next, you will use the PadLeft method to pad the net pay with asterisks until it contains
10 characters. Click the blank line below the ' pad the net pay with asterisks until
its length is 10 comment and then enter the following assignment statement:

strFormatted = strFormatted.PadLeft(10, "*"c)

5. Finally, you will insert a dollar sign at the beginning of the formatted net pay. Click the
blank line below the ' insert a dollar sign as the first character comment and
then enter the assignment statement indicated in Figure 8-10.

6. Save the solution and then start the application. Type 1097 as the net pay and then click
the Format button. The button’s Click event procedure displays $**1,097.00 in the
interface, as shown in Figure 8-11. Click the Exit button. Close the Code Editor window
and then close the solution.

Private Sub btnFormat_Click(sender As Object,
e As EventArgs) Handles btnFormat.Click
 ' format the net pay with two decimal places, then
 ' pad with asterisks and insert a dollar sign as the
 ' first character

 Dim decNet As Decimal
 Dim strFormatted As String

 Decimal.TryParse(txtNetPay.Text, decNet)

 ' format the net pay with two decimal places
 strFormatted = decNet.ToString("N2")

 ' pad the net pay with asterisks until its length is 10
 strFormatted = strFormatted.PadLeft(10, "*"c)

 ' insert a dollar sign as the first character
 strFormatted = strFormatted.Insert(0, "$")

 ' display the net pay, then set the focus
 lblFormatted.Text = strFormatted
 txtNetPay.Focus()
End Sub

enter this
assignment
statement

Figure 8-10 btnFormat_Click procedure
© 2013 Cengage Learning

Figure 8-11 Interface showing the formatted net pay

Inserting Characters in a String L E S S ON A

479

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

YOU DO IT 2!

Create a Visual Basic Windows application named YouDoIt 2. Save the application in the
VB2012\Chap08 folder. Add a text box, a label, and a button to the form. Set the text
box’s MaxLength property to 5. The button’s Click event procedure should assign the
contents of the text box to a String variable. It then should remove any leading or trailing
spaces from the string stored in the variable. If the variable contains more than three
characters, the procedure should insert a number sign (#) as the second character and
then pad the variable’s value with asterisks until the variable contains 10 characters.
Insert the asterisks at the end of the string stored in the variable. Finally, the procedure
should display the variable’s contents in the label. Code the procedure. Save the solution
and then start and test the application. Close the solution.

Searching a String
If you need to determine whether a string contains a specific sequence of characters, you can use
either the Contains method or the IndexOf method. Figure 8-12 shows the syntax of both
methods. In each syntax, string can be a String variable, a String named constant, or the Text
property of a control. When processing the methods, the computer first makes a temporary
copy of the string in memory. It then performs the specified search on the copy only. The
subString argument in each syntax represents the sequence of characters for which you are
searching. Both methods perform a case-sensitive search, which means the case of the subString
must match the case of the string in order for both to be considered equal.

Searching a String

Syntax
string.Contains(subString)
string.IndexOf(subString[, startIndex])

Example 1
strLocation = "Louisville, KY"
blnIsContained = strLocation.Contains("KY")
assigns True to the blnIsContained variable because the string “KY” appears in the
strLocation variable

Example 2
strLocation = "Louisville, KY"
blnIsContained = strLocation.Contains("Ky")
assigns False to the blnIsContained variable because the string “Ky” does not appear in the
strLocation variable

the Contains method
performs a case-sensitive
search

Figure 8-12 Syntax and examples of the Contains and IndexOf methods (continues)

CH A P T E R 8 String Manipulation

480

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

The Contains method, which appears in Examples 1 through 3 in Figure 8-12, returns the
Boolean value True when the subString is contained anywhere in the string; otherwise, it returns
the Boolean value False. The Contains method always begins the search with the first character
in the string.

The IndexOf method, on the other hand, returns an integer: either ‒1 or a number that is greater
than or equal to 0. The ‒1 indicates that the subString is not contained in the string. A number
other than ‒1 is the character index of the subString’s starting position in the string. Unless you
specify otherwise, the IndexOf method starts the search with the first character in the string. To
specify a different starting location, you use the optional startIndex argument. The IndexOf
method appears in Examples 4 through 6 in Figure 8-12.

Notice that the expression in Example 3 in Figure 8-12 contains two methods: ToUpper and
Contains. Two methods also appear in the expression in Example 6: ToLower and IndexOf.
Recall that when an expression contains more than one method, the computer processes the
methods from left to right. In this case, the computer will process the ToUpper method before
the Contains method in Example 3, and process the ToLower method before the IndexOf
method in Example 6.

The City and State Application
The City and State application coded in this section uses the IndexOf method. The application
allows the user to enter a string composed of a city name, followed by a comma, a space, and a
state name. It then displays the index of the comma contained in the string.

Example 3
strAddress = "123 Elm Ave."
If strAddress.ToUpper.Contains("ELM AVE.") Then
the condition evaluates to True because the string “ELM AVE.” appears in the strAddress
variable when the variable’s contents are temporarily converted to uppercase

Example 4
strLocation = "Louisville, KY"
intCharIndex = strLocation.IndexOf("KY")
assigns the number 12 to the intCharIndex variable because the string “KY” appears in the
strLocation variable, beginning with the character whose index is 12

Example 5
strLocation = "Louisville, KY"
intCharIndex = strLocation.IndexOf("Ky")
assigns the number –1 to the intCharIndex variable because the string “Ky” does not
appear in the strLocation variable

Example 6
strAddress = "123 Elm Ave."
intCharIndex =
 strAddress.ToLower.IndexOf("elm ave.", 6)
assigns the number –1 to the intCharIndex variable because the string “elm ave.” does
not appear in the strAddress variable when the search starts with the character whose
index is 6 (the letter m)

the ToUpper method will
be evaluated before the
Contains method

character index 12

the IndexOf method
performs a case-sensitive
search

the ToLower method will
be evaluated before the
IndexOf method

Figure 8-12 Syntax and examples of the Contains and IndexOf methods
© 2013 Cengage Learning

(continued)

Searching a String L E S S ON A

481

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

To code and then test the City and State application:

1. Open the City State Solution (City State Solution.sln) file contained in the VB2012\
Chap08\City State Solution folder. If necessary, open the designer window. The interface
provides a text box for entering the string.

2. Open the Code Editor window. Replace <your name> and <current date> in the
comments with your name and the current date, respectively.

3. Locate the btnLocate_Click procedure. Click the blank line below the ' determine the
comma's index comment.

4. To begin the search with the first character in the string, you can use either
strCityState.IndexOf(",", 0) or strCityState.IndexOf(","). You will assign
the IndexOf method’s return value to the intCommaIndex variable. Enter the additional
assignment statement shown in Figure 8-13.

5. Save the solution and then start the application. Type Louisville, KY in the text box and
then click the Locate the Comma button. As Figure 8-14 shows, the comma’s index is
10. Click the Exit button. Close the Code Editor window and then close the solution.

Private Sub btnLocate_Click(sender As Object,
e As EventArgs) Handles btnLocate.Click

' locates the comma in a string and then
' displays its index

Dim strCityState As String
Dim intCommaIndex As Integer

strCityState = txtCityState.Text

' determine the comma's index
intCommaIndex = strCityState.IndexOf(",")

lblCommaIndex.Text = intCommaIndex.ToString
txtCityState.Focus()

End Sub

enter this assignment
statement

Figure 8-13 btnLocate_Click procedure
© 2013 Cengage Learning

START HERE

Figure 8-14 Interface showing the comma’s index

CH A P T E R 8 String Manipulation

482

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

YOU DO IT 3!

Create a Visual Basic Windows application named YouDoIt 3. Save the application in
the VB2012\Chap08 folder. Add a text box, a label, and a button to the form. The
button’s Click event procedure should determine whether the number 9 appears any-
where in the text box and then display the result (either True or False) in the label. Code
the procedure. Save the solution and then start and test the application. Close the
solution.

Accessing the Characters in a String
Visual Basic provides the Substring method for accessing any number of characters in a string.
Figure 8-15 shows the method’s syntax and includes examples of using the method. In the
syntax, string can be a String variable, a String named constant, or the Text property of a
control. When processing the Substring method, the computer first makes a temporary copy of
the string in memory. It then accesses the specified number of characters in the copy only. The
startIndex argument in the syntax is the index of the first character you want to access in the
string’s copy. As you already know, the first character in a string has an index of 0. The optional
numCharsToAccess argument specifies the number of characters you want to access. The
Substring method returns a string that contains the number of characters specified in the
numCharsToAccess argument, beginning with the character whose index is startIndex. If you
omit the numCharsToAccess argument, the Substring method returns all characters from the
startIndex position through the end of the string.

Accessing the Characters in a String

Syntax
string.Substring(startIndex[, numCharsToAccess])

Example 1
strFull = "Jose Gutierez"
strFirst = strFull.Substring(0, 4)
strLast = strFull.Substring(5)
assigns the string “Jose” to the strFirst variable and the string “Gutierez” to the
strLast variable; you also can write the last assignment statement as strLast =
strFull.Substring(5, 8)

Example 2
strEmployeeNum = "38F45"
strDepartment = strEmployeeNum.Substring(2, 1)
assigns the string “F” to the strDepartment variable

character index 0
character index 5

character index 2

Figure 8-15 Syntax and examples of the Substring method
© 2013 Cengage Learning

Accessing the Characters in a String L E S S ON A

483

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

The Rearrange Name Application
You will use the Substring method in the Rearrange Name application. The application’s
interface provides a text box for entering a person’s first name followed by a space and the
person’s last name. The application rearranges the name so that the last name comes first,
followed by a comma, a space, and the first name.

To code and then test the Rearrange Name application:

1. Open the Rearrange Name Solution (Rearrange Name Solution.sln) file contained in
the VB2012\Chap08\Rearrange Name Solution folder. If necessary, open the designer
window.

2. Open the Code Editor window. Replace <your name> and <current date> in the
comments with your name and the current date, respectively.

3. Locate the btnRearrange_Click procedure. The procedure assigns the name entered by
the user, excluding any leading or trailing spaces, to the strName variable.

4. Before you can rearrange the name stored in the strName variable, you need to separate
the first name from the last name. To do this, you first search for the space character
that appears between the names. Click the blank line below the ' search for the
space in the name comment and then enter the following assignment statement, being
sure to include a space character between the quotation marks:

intIndex = strName.IndexOf(" ")

5. If the value in the intIndex variable is not –1, it means that the IndexOf method
found a space character in the strName variable. In that case, the selection structure’s
true path should continue rearranging the name; otherwise, its false path should display
the “Invalid name format” message. Notice that the statement to display the message is
already entered in the selection structure’s false path. Change the If clause in the
procedure to the following:

If intIndex <> –1 Then

6. Now you will use the value stored in the intIndex variable to separate the first name
from the last name. Click the blank line below the ' separate the first and last
names comment. All of the characters to the left of the space character represent the
first name, and all of the characters to the right of the space character represent the last
name. Enter the following assignment statements:

strFirstName = strName.Substring(0, intIndex)
strLastName = strName.Substring(intIndex + 1)

7. Finally, you will display the rearranged name in the interface. Click the blank line above
the Else clause. Enter the additional assignment statement indicated in Figure 8-16. Be
sure to include a space character after the comma.

START HERE

Ch08A video

CH A P T E R 8 String Manipulation

484

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

8. Save the solution and then start the application. Type Harold Iberson as the name and
then click the Rearrange Name button. The rearranged name appears in the interface,
as shown in Figure 8-17. Click the Exit button. Close the Code Editor window and then
close the solution.

Private Sub btnRearrange_Click(sender As Object,
e As EventArgs) Handles btnRearrange.Click

' rearranges and then displays a name

Dim strName As String
Dim strFirstName As String
Dim strLastName As String
Dim intIndex As Integer

' assign the input to a variable
strName = txtName.Text.Trim

' search for the space in the name
intIndex = strName.IndexOf(" ")

' if the input contains a space
If intIndex <> -1 Then

' separate the first and last names
strFirstName = strName.Substring(0, intIndex)
strLastName = strName.Substring(intIndex + 1)

' display last name, comma, space, and first name
lblRearrangedName.Text =

strLastName & ", " & strFirstName

Else ' the name does not contain a space
MessageBox.Show("Invalid name format",

"Rearrange Name",
MessageBoxButtons.OK,
MessageBoxIcon.Information)

End If
End Sub

enter this assignment
statement

Figure 8-16 btnRearrange_Click procedure
© 2013 Cengage Learning

Figure 8-17 Interface showing the rearranged name

Accessing the Characters in a String L E S S ON A

485

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

YOU DO IT 4!

Create a Visual Basic Windows application named YouDoIt 4. Save the application in
the VB2012\Chap08 folder. Add a label and a button to the form. The button’s Click
event procedure should declare a String variable named strMessage and initialize it to
the 26 uppercase letters of the alphabet. It then should use the Substring method to
display only the letters K, L, M, N, and O in the label. Code the procedure. Save the
solution and then start and test the application. Close the solution.

Using Pattern-Matching to Compare Strings
The Like operator allows you to use pattern-matching characters to determine whether one
string is equal to another string. Figure 8-18 shows the operator’s syntax and examples of using
the operator. In the syntax, string can be a String variable, a String named constant, or the Text
property of a control. Pattern is a String expression containing one or more of the pattern-
matching characters listed in the figure.

Using Pattern-Matching to Compare Strings

Syntax
string Like pattern

Pattern-matching characters Matches in string
? any single character

* zero or more characters

any single digit (0 through 9)

[characterList] any single character in the characterList (for example, “[A5T]”
matches A, 5, or T, whereas “[a–z]” matches any lowercase letter)

[!characterList] any single character not in the characterList (for example, “[!A5T]”
matches any character other than A, 5, or T, whereas “[!a–z]”
matches any character that is not a lowercase letter)

Example 1
If strFirst.ToUpper Like "B?LL" Then
The condition evaluates to True when the string stored in the strFirst variable (converted to
uppercase) begins with the letter B followed by one character and then the two letters LL; otherwise,
it evaluates to False. Examples of strings that would make the condition evaluate to True include
“Bill”, “Ball”, “bell”, and “bull”. Examples of strings for which the condition would evaluate to False
include “BPL”, “BLL”, and “billy”.

Example 2
If txtState.Text Like "K*" Then
The condition evaluates to True when the value in the txtState control’s Text property begins with the
letter K followed by zero or more characters; otherwise, it evaluates to False. Examples of strings that
would make the condition evaluate to True include “KANSAS”, “Ky”, and “Kentucky”. Examples of
strings for which the condition would evaluate to False include “kansas” and “ky”.

Figure 8-18 Syntax and examples of the Like operator (continues)

CH A P T E R 8 String Manipulation

486

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

As Figure 8-18 indicates, the question mark (?) character in a pattern represents one character
only, whereas the asterisk (*) character represents zero or more characters. To represent a single
digit in a pattern, you use the number sign (#) character. The last two pattern-matching
characters listed in Figure 8-18 contain a characterList, which is simply a listing of characters.
“[A9M]” is a characterList that contains three characters: A, 9, and M. You also can include a
range of values in a characterList. You do this using a hyphen to separate the lowest value in the

(continued)

Example 3
Do While strId Like "###*"
The condition evaluates to True when the string stored in the strId variable begins with three digits
followed by zero or more characters; otherwise, it evaluates to False. Examples of strings that would
make the condition evaluate to True include “178” and “983Ab”. Examples of strings for which the
condition would evaluate to False include “X34” and “34Z5”.

Example 4
If strFirst.ToUpper Like "T[OI]M" Then
The condition evaluates to True when the string stored in the strFirst variable (converted to
uppercase) is either “TOM” or “TIM”. When the variable does not contain “TOM” or “TIM”—for
example, when it contains “Tam” or “Tommy”—the condition evaluates to False.

Example 5
If strLetter Like "[a-z]" Then
The condition evaluates to True when the string stored in the strLetter variable is one lowercase
letter; otherwise, it evaluates to False.

Example 6
For intIndex As Integer = 0 To strInput.Length – 1
 strChar = strInput.Substring(intIndex, 1)
 If strChar Like "[!a-zA-Z]" Then
 intNonLetter = intNonLetter + 1
 End If
Next intIndex
Compares each character contained in the strInput variable with the lowercase and uppercase
letters of the alphabet, and counts the number of characters that are not letters.

Example 7
If strInput Like "*.*" Then
The condition evaluates to True when a period appears anywhere in the strInput variable;
otherwise, it evaluates to False.

Example 8
If strInput.ToUpper Like "[A-Z][A-Z]##" Then
The condition evaluates to True when the value in the strInput variable (converted to uppercase)
is two letters followed by two numbers; otherwise, it evaluates to False.

Figure 8-18 Syntax and examples of the Like operator
© 2013 Cengage Learning

Using Pattern-Matching to Compare Strings L E S S ON A

487

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

range from the highest value in the range. For example, to include all lowercase letters in a
characterList, you use “[a-z]”. To include both lowercase and uppercase letters in the
characterList, you use “[a-zA-Z]”.

The Like operator compares the string to the pattern; the comparison is case-sensitive. If
the string matches the pattern, the Like operator returns the Boolean value True; otherwise,
it returns the Boolean value False.

Modifying the Product ID Application
Earlier in this lesson, you coded the Product ID application, which displayed a listing of the
product IDs entered by the user. As you may remember, each product ID contained exactly five
characters. In the following set of steps, you will modify the application to ensure that the five
characters are three letters followed by two numbers.

To modify and then test the Product ID application:

1. Use Windows to make a copy of the Product Solution folder. Save the copy in the
VB2012\Chap08 folder. Rename the copy Modified Product Solution.

2. Open the Product Solution (Product Solution.sln) file contained in the Modified Product
Solution folder. Open the designer window.

3. Open the Code Editor window and locate the btnAdd_Click procedure. Change the
' remove any leading and trailing spaces comment to the following:

' remove any leading and trailing spaces and
' then convert to uppercase

4. Change the strId = txtId.Text.Trim statement to the following:

strId = txtId.Text.Trim.ToUpper

5. Replace the ' verify length comment with the following comments:

' verify that the ID contains 3 letters
' followed by 2 numbers

6. Change the If clause to the following:

If strId Like "[A-Z][A-Z][A-Z]##" Then

7. In the statement below the If clause, change strId.ToUpper to strId. Finally, change
the message in the MessageBox.Show method to “Invalid product ID”. Figure 8-19
shows the modified procedure. The modified comments and code are shaded in the
figure.

START HERE

CH A P T E R 8 String Manipulation

488

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

8. Save the solution and then start the application. First, you will test the application using
an invalid ID. Type abc2f as the product ID and then click the Add to List button. The
“Invalid product ID” message appears in a message box. Close the message box.

9. Now you will enter a valid ID. Change the product ID to abc23 and then click the Add
to List button. ABC23 appears in the listing of product IDs, as shown in Figure 8-20.

10. On your own, test the application using different valid and invalid IDs. When you are
finished testing the application, click the Exit button. Close the Code Editor window and
then close the solution.

Figure 8-20 Product ID added to the list box

Private Sub btnAdd_Click(sender As Object,
e As EventArgs) Handles btnAdd.Click

' adds a product ID to a list

Dim strId As String

' remove any leading and trailing spaces and
' then convert to uppercase
strId = txtId.Text.Trim.ToUpper

' verify that the ID contains 3 letters
' followed by 2 numbers
If strId Like "[A-Z][A-Z][A-Z]##" Then

lstId.Items.Add(strId)
Else

MessageBox.Show("Invalid product ID",
"Product ID", MessageBoxButtons.OK,
MessageBoxIcon.Information)

End If

txtId.Focus()
End Sub

Figure 8-19 Modified Click event procedure for the btnAdd control
© 2013 Cengage Learning

Using Pattern-Matching to Compare Strings L E S S ON A

489

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

YOU DO IT 5!
Create a Visual Basic Windows application named YouDoIt 5. Save the application in
the VB2012\Chap08 folder. Add a text box, a label, and a button to the form. The
button’s Click event procedure should display the message “OK” when the text box
contains two numbers followed by zero or more characters; otherwise, it should display
the message “Not OK”. Display the message in the label control. Code the procedure.
Save the solution and then start and test the application. Close the solution.

Lesson A Summary
l To manipulate strings in Visual Basic:

Use one of the string manipulation techniques listed in Figure 8-21.

Technique Syntax Purpose

Length property string.Length stores an integer that represents the number
of characters contained in a string

Trim method string.Trim removes any spaces from both the beginning
and end of a string

Remove method string.Remove(startIndex[,
numCharsToRemove])

removes characters from a string

Insert method string.Insert(startIndex, value) inserts characters in a string

Contains method string.Contains(subString) determines whether a string contains a
specific sequence of characters; returns a
Boolean value

IndexOf method string.IndexOf(subString[,
startIndex])

determines whether a string contains a
specific sequence of characters; returns
either –1 or an integer that indicates the
starting position of the characters in the string

Substring method string.Substring(startIndex[,
numCharsToAccess])

accesses one or more characters in a string

PadLeft method string.PadLeft(totalChars[,
padCharacter])

pads the beginning of a string with a character
until the string has the specified number of
characters; right-aligns the string

PadRight method string.PadRight(totalChars[,
padCharacter])

pads the end of a string with a character until
the string has the specified number of
characters; left-aligns the string

Like operator string Like pattern uses pattern-matching to compare strings

Important note: The following additional techniques are covered in the Discovery Exercises at the
end of this lesson: the StartsWith and EndsWith methods, the Replace method, the full syntax of the
Trim method, the TrimStart and TrimEnd methods, and the Mid statement.

Figure 8-21 String manipulation techniques
© 2013 Cengage Learning

CH A P T E R 8 String Manipulation

490

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Lesson A Key Terms
Contains method—determines whether a string contains a specific sequence of characters;
returns a Boolean value

IndexOf method—determines whether a string contains a specific sequence of characters;
returns either –1 (if the string does not contain the sequence of characters) or an integer that
represents the starting position of the sequence of characters

Insert method—inserts characters anywhere in a string

Length property—stores an integer that represents the number of characters contained in a
string

Like operator—uses pattern-matching characters to determine whether one string is equal to
another string

PadLeft method—right-aligns a string by inserting characters at the beginning of the string

PadRight method—left-aligns a string by inserting characters at the end of the string

Remove method—removes a specified number of characters located anywhere in a string

Substring method—used to access any number of characters contained in a string

Trim method—removes spaces from both the beginning and end of a string

Lesson A Review Questions
1. The txtCity control contains the word “London” followed by two spaces. Which of the

following statements removes the two spaces from the control’s contents?

a. txtCity.Text = txtCity.Trim

b. txtCity.Text = Trim(txtCity.Text)

c. txtCity.Text = txtCity.Text.Trim

d. none of the above

2. Which of the following statements assigns the first three characters in the strPart
variable to the strCode variable?

a. strCode = strPart.Assign(0, 3)

b. strCode = strPart.Assign(3, 1)

c. strCode = strPart.Sub(0, 3)

d. strCode = strPart.Substring(0, 3)

3. The strWord variable contains the string “Chairs”. Which of the following statements
changes the contents of the variable to “Chair”?

a. strWord = strWord.Remove(5)

b. strWord = strWord.Remove(6, 1)

c. strWord = strWord.Trim(5)

d. strWord = strWord.Trim(6)

Lesson A Review Questions L E S S ON A

491

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

4. Which of the following statements changes the contents of the strZip variable from
60521 to 60561?

a. strZip = strZip.Insert(3, "6")
strZip = strZip.Remove(4, 1)

b. strZip = strZip.Insert(4, "6")
strZip = strZip.Remove(3, 1)

c. strZip = strZip.Remove(3, 1)
strZip = strZip.Insert(3, "6")

d. all of the above

5. Which of the following methods can be used to determine whether the strAmount
variable contains the dollar sign?

a. blnResult = strAmount.Contains("$")

b. intResult = strAmount.IndexOf("$")

c. intResult = strAmount.IndexOf("$", 0)

d. all of the above

6. Which of the following statements changes the contents of the strWord variable from
“sting” to “string”?

a. strWord = strWord.AddTo(2, "r")

b. strWord = strWord.Insert(2, "r")

c. strWord = strWord.Insert(3, "r")

d. strWord = strWord.Insert(3, "r"c)

7. If the strName variable contains the string “George Washington”, what value will the
strName.IndexOf("Washington") method return?

a. –1

b. 0

c. 7

d. 8

8. If the strWord variable contains the string “chimes”, which of the following statements
assigns the fourth character in the variable to the strLetter variable?

a. strLetter = strWord.Substring(3)

b. strLetter = strWord.Substring(3, 1)

c. strLetter = strWord(4).Substring

d. none of the above

9. Which of the following expressions evaluates to True when the strPart variable
contains the string “123X45”?

a. strPart Like "999[A-Z]99"

b. strPart Like "######"

c. strPart Like "###[A-Z]##"

d. none of the above

CH A P T E R 8 String Manipulation

492

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

10. Which of the following changes the contents of the strCityState variable from Austin
Texas to Austin, Texas?

a. strCityState = strCityState.Insert(6, ",")

b. strCityState = strCityState.Insert(7, ",")

c. strCityState = strCityState.Insert(8, ",")

d. none of the above

11. If the strMsg variable contains the string “Today is Monday”, which of the following
assigns the number 9 to the intNum variable?

a. intNum = strMsg.Substring(0, "M")

b. intNum = strMsg.Contains("M")

c. intNum = strMsg.IndexOf("M")

d. intNum = strMsg.IndexOf(0, "M")

12. If the strName variable contains the string “Sydney Hart”, which of the following
changes the contents of the variable to “Sydney D. Hart”?

a. strName = strName.Insert(6, "D. ")

b. strName = strName.Insert(7, "D. ")

c. strName = strName.Insert(7, " D.")

d. both a and c

13. The strAmount variable contains the string “300.89”. Which of the following statements
changes the contents of the variable to “300.89!!!!”?

a. strAmount = strAmount.PadLeft(4, "!"c)

b. strAmount = strAmount.PadRight(4, "!"c)

c. strAmount = strAmount.PadRight(10, "!"c)

d. none of the above

14. If the strAddress variable contains the string “123 Maple Street”, what will the
strAddress.IndexOf("Maple") method return?

a. –1

b. 4

c. 5

d. True

15. If the strAddress variable contains the string “34 Elm Street”, what will the
strAddress.IndexOf("Elm", 4) method return?

a. –1

b. 3

c. 4

d. False

Lesson A Review Questions L E S S ON A

493

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Lesson A Exercises

1. Write a Visual Basic statement that removes the leading and trailing spaces from the
txtAddress control.

2. Write a Visual Basic statement that uses the Insert method to change the contents of
the strWord variable from “In” to “Indiana”.

3. Using the Insert and Remove methods, write the Visual Basic statements to change the
contents of the strWord variable from “door” to “floor”.

4. The strPartNum variable contains the string “456ANK6”. Write a Visual Basic
statement that assigns the string “6ANK” from the strPartNum variable to the strCode
variable.

5. Write the Visual Basic statements to accomplish the following tasks:

a. Display in the lblSize control the number of characters contained in the strMsg
variable.

b. Remove the leading and trailing spaces from the strCity variable.

c. Use the Insert and Remove methods to change the contents of the strWord variable
from “cater” to “cattle”.

d. Use the Insert method to change the contents of the strWord variable from “men”
to “women”.

e. Change the contents of the strPay variable from “667.99” to “**667.99”.

6. The strAmount variable contains the string “3,123,560”. Write the Visual Basic
statements to change the contents of the variable to “3123560”; use the Remove
method.

7. Write the Visual Basic statement that uses the Contains method to determine whether
the strAddress variable contains the string “Jefferson Street” (entered in uppercase,
lowercase, or a combination of uppercase and lowercase). Assign the method’s return
value to a Boolean variable named blnIsContained.

8. Open the City Names Solution (City Names Solution.sln) file contained in the
VB2012\Chap08\City Names Solution folder. If necessary, open the designer window.
The interface allows the user to enter a city name. Code the Add Name button’s Click
event procedure so that it removes any leading and/or trailing spaces from the city name.
If the city name contains at least one character, add the name to the combo box. The
procedure should also send the focus to the combo box. Save the solution and then start
the application. Test the application by entering spaces before and after the following city
names: New York and Miami. Close the Code Editor window and then close the solution.

9. Open the Item Prices Solution (Item Prices Solution.sln) file contained in the
VB2012\Chap08\Item Prices Solution folder. If necessary, open the designer window.
Open the Code Editor window. Modify the form’s Load event procedure so that it
right-aligns the prices listed in the cboRight control and then selects the first price. Save
the solution and then start the application. (The prices listed in the cboLeft control
should still be left-aligned.) Close the Code Editor window and then close the solution.

10. Open the Date Solution (Date Solution.sln) file contained in the VB2012\Chap08\Date
Solution folder. If necessary, open the designer window. The interface allows the user to
enter a date. Code the Change Date button’s Click event procedure so that it uses the
Insert method to change the year number from yy to 20yy before displaying the year
number in the lblDate control. Save the solution and then start and test the application.
Close the Code Editor window and then close the solution.

INTRODUCTORY

INTRODUCTORY

INTRODUCTORY

INTRODUCTORY

INTRODUCTORY

INTRODUCTORY

INTRODUCTORY

INTRODUCTORY

INTRODUCTORY

INTRODUCTORY

CH A P T E R 8 String Manipulation

494

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

11. The strAmount variable contains the string “3123560”. Write the Visual Basic
statements to change the variable’s contents to “$3,123,560”.

12. Open the Sales Tax Solution (Sales Tax Solution.sln) file contained in the VB2012\
Chap08\Sales Tax Solution folder. If necessary, open the designer window. The interface
allows the user to enter a sales amount and a tax rate. Open the Code Editor window.
The btnCalc_Click procedure should determine whether the tax rate ends with a
percent sign. If it does, the procedure should remove the percent sign from the rate.
Make the appropriate modifications to the code. Save the solution and then start the
application. Test the application using the following data: a sales amount of 1000 and a
tax rate of 5%, and then a sales amount of 5000 and a tax rate of 7. Close the Code
Editor window and then close the solution.

13. Open the Zip Solution (Zip Solution.sln) file contained in the VB2012\Chap08\Zip
Solution folder. If necessary, open the designer window. The Display Shipping Charge
button’s Click event procedure should display the appropriate shipping charge based
on the ZIP code entered by the user. To be valid, the ZIP code must contain exactly
five digits and the first three digits must be either “605” or “606”. The shipping charge
for “605” ZIP codes is $25. The shipping charge for “606” ZIP codes is $30. Display an
appropriate message if the ZIP code is invalid. Code the procedure. Save the solution
and then start the application. Test the application using the following ZIP codes:
60677, 60511, 60344, and 7130. Close the Code Editor window and then close the
solution.

14. Open the Social Security Solution (Social Security Solution.sln) file contained in the
VB2012\Chap08\Social Security Solution-Remove folder. If necessary, open the designer
window. The interface allows the user to enter a Social Security number. Code the
Remove Dashes button’s Click event procedure so that it first verifies that the Social
Security number contains three numbers followed by a hyphen, two numbers, a hyphen,
and four numbers. If the Social Security number is in the correct format, the procedure
should remove the dashes from the number before displaying the number in the
lblNumber control. Save the solution and then start and test the application. Close the
Code Editor window and then close the solution.

15. Visual Basic provides the StartsWith and EndsWith methods for determining whether
a specific sequence of characters occurs at the beginning or end, respectively, of a
string. The StartsWith method’s syntax is string.StartsWith(subString), and the
EndsWith method’s syntax is string.EndsWith(subString). Open the City Solution (City
Solution.sln) file contained in the VB2012\Chap08\City Solution folder. If necessary,
open the designer window. The interface provides a text box for the user to enter the
name of a city. The Add to List button’s Click event procedure should add the city name
to the list box, but only if the city name begins with either the letter L or the letters Ch.
The letters can be entered in uppercase, lowercase, or a combination of uppercase and
lowercase. Code the procedure. Save the solution and then start and test the application.
Close the Code Editor window and then close the solution.

16. Visual Basic provides the Replace method for replacing a sequence of characters
in a string with another sequence of characters. The method’s syntax is
string.Replace(oldValue, newValue). When processing the Replace method, the
computer makes a temporary copy of the string in memory; it then replaces the
characters in the copy only. The Replace method returns a string with all occurrences of
oldValue replaced with newValue. Open the Social Security Solution (Social Security
Solution.sln) file contained in the VB2012\Chap08\Social Security Solution-Replace
folder. If necessary, open the designer window. The interface allows the user to enter a
Social Security number. Code the Remove Dashes button’s Click event procedure so
that it first verifies that the Social Security number is in the correct format. If it is, the
procedure should remove the dashes from the number before displaying the number in

INTERMEDIATE

INTERMEDIATE

INTERMEDIATE

INTERMEDIATE

DISCOVERY

DISCOVERY

Lesson A Exercises L E S S ON A

495

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

the lblNumber control. Save the solution and then start and test the application. Close
the Code Editor window and then close the solution.

17. In this lesson, you learned how to use the Trim method to remove space characters
from both the beginning and end of a string. You also can use the Trim method to
remove other characters. The syntax for doing this is string.Trim[(trimChars)].
The optional trimChars argument is a comma-separated list of characters that you
want removed (trimmed). For example, if the txtInput control contains the string
“#$456#”, you can remove the number signs and dollar sign from the control’s Text
property using the statement txtInput.Text = txtInput.Text.Trim("#"c, "$"c).
When processing the Trim method, the computer makes a temporary copy of the string
in memory; it then removes the characters in the copy only. Open the Trim Method
Solution (Trim Method Solution.sln) file contained in the VB2012\Chap08\Trim
Method Solution folder. If necessary, open the designer window. Open the Code
Editor window and code the btnTrim control’s Click event procedure. Save the solution
and then start and test the application. Close the Code Editor window and then close
the solution.

18. Visual Basic provides the TrimStart and TrimEnd methods for removing one or
more characters from the beginning or end, respectively, of a string. The TrimStart
method’s syntax is string.TrimStart[(trimChars)], and the TrimEnd method’s syntax is
string.TrimEnd[(trimChars)]. The optional trimChars argument is a comma-separated
list of characters that you want removed (trimmed). For example, if the txtSales control
contains the string “$56.80”, you can remove the dollar sign from the control’s Text
property using the statement txtSales.Text = txtSales.Text.TrimStart("$"c).
The default value for the trimChars argument is the space character (" "c). When
processing the TrimStart and TrimEnd methods, the computer makes a temporary copy
of the string in memory; it then removes the characters from the copy only. Open the
Tax Calculator Solution (Tax Calculator Solution.sln) file contained in the VB2012\
Chap08\Tax Calculator Solution folder. If necessary, open the designer window. The
Calculate button’s Click event procedure should calculate and display the sales tax,
using the amount entered in the text box and the rate selected in the list box. Code the
procedure. Save the solution and then start and test the application. Close the Code
Editor window and then close the solution.

19. Visual Basic provides the Mid statement for replacing a specified number of characters
in a string with another string. The statement’s syntax is Mid(targetString, start[, count]) =
replacementString. In the syntax, the targetString argument is the string in which you want
characters replaced, and replacementString contains the replacement characters. The start
argument is the position of the first character you want replaced in the targetString. The
first character in the targetString is in position 1; the second is in position 2, and so on. The
optional count argument specifies the number of characters to replace in the targetString.
If the count argument is omitted, the Mid statement replaces the lesser of either the
number of characters in the replacementString or the number of characters in the
targetString from position start through the end of the targetString. Open the Area Code
Solution (Area Code Solution.sln) file contained in the VB2012\ Chap08\Area Code
Solution folder. If necessary, open the designer window. The interface allows the user to
enter a phone number, including the area code. Code the Change Area Code button’s Click
event procedure so that it first verifies that the phone number is in the proper format. If
the format is valid, the procedure should use the Mid statement to change the area code to
800 before displaying the phone number in the lblNew control. Save the solution and then
start and test the application. Close the Code Editor window and then close the solution.

DISCOVERY

DISCOVERY

DISCOVERY

CH A P T E R 8 String Manipulation

496

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

& LESSON B
After studying Lesson B, you should be able to:

l Include a MenuStrip control on a form

l Add elements to a menu

l Assign access keys to menu elements

l Enable and disable a control

l Assign shortcut keys to commonly used menu items

l Code a menu item’s Click event procedure

l Include the Like operator in a procedure

Adding a Menu to a Form
The Menus and Toolbars section of the toolbox contains a MenuStrip tool for instantiating a
menu strip control. You use a menu strip control to include one or more menus on a Windows
form. Each menu contains a menu title, which appears on the menu bar at the top of the form.
When you click a menu title, its corresponding menu opens and displays a list of options, called
menu items. The menu items can be commands (such as Open or Exit), separator bars, or
submenu titles. As in all Windows applications, clicking a command on a menu executes the
command, and clicking a submenu title opens an additional menu of options. Each of the
options on a submenu is referred to as a submenu item. You can use a separator bar to visually
group together related items on a menu or submenu. Figure 8-22 identifies the location of these
menu elements. Although you can create many levels of submenus, it is best to use only one
level in your application because too many layers of submenus can be confusing to the user.

Each menu element is considered an object; therefore, each has a set of properties associated
with it. The most commonly used properties for a menu element are the Name and Text
properties. The programmer uses the Name property to refer to the menu element in code. The
Text property stores the menu element’s caption, which is the text that the user sees when he or
she is working with the menu. The caption indicates the purpose of the menu element.
Examples of familiar captions for menu elements include Edit, Save As, Copy, and Exit.

Menu title captions should be one word only and entered using uppercase letters. Each menu
title should have a unique access key. The access key allows the user to open the menu by
pressing the Alt key in combination with the access key. Unlike the captions for menu titles, the
captions for menu items typically consist of one to three words. The Windows standard is to use

separator bar

Figure 8-22 Location of menu elements

Adding a Menu to a Form L E S S ON B

497

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

book title capitalization for the menu item captions. Each menu item should have an access key
that is unique within its menu. The access key allows the user to select the item by pressing the
access key when the menu is open. If a menu item requires additional information from the user,
the Windows standard is to place an ellipsis (…) at the end of the caption. The ellipsis alerts the
user that the menu item requires more information before it can perform its task.

The menus included in your application should follow the standard Windows conventions. For
example, if your application uses a FILE menu, it should be the first menu on the menu bar.
FILE menus typically contain commands for opening, saving, and printing files, as well as exiting
the application. If your application requires Cut, Copy, and Paste commands, the commands
should be placed on an EDIT menu, which is usually the second menu on the menu bar.

Recall that your task in this chapter is to create the Frankenstein Game application. Most of the
application’s interface has been created for you. Missing from the interface is a FILE menu that
contains three menu items: a New Game command, a separator bar, and an Exit command.

To complete the Frankenstein Game application’s interface:

1. If necessary, start Visual Studio 2012. Open the Frankenstein Solution (Frankenstein
Solution.sln) file contained in the VB2012\Chap08\Frankenstein Solution folder. If
necessary, open the designer, Toolbox, and Properties windows. The interface contains
five labels, six picture boxes, one text box, and one button.

2. Click the picHead control to select it as the reference control. Then Ctrl+Click the
other five picture boxes. See Figure 8-23.

3. Use the Format menu to align the controls by their left and top margins. Click the
form and change its Size property to 694,486. Then, lock the controls on the form. See
Figure 8-24.

Ch08B video

START HERE

picHead

Figure 8-23 Six picture boxes selected in the interface
OpenClipArt.org/Merlin2525

CH A P T E R 8 String Manipulation

498

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

4. Click the MenuStrip tool, which is located in the Menus & Toolbars section of the
toolbox. Drag the mouse pointer to the form and then release the mouse button. A
MenuStrip control named MenuStrip1 appears in the component tray, and the words
“Type Here” appear in a box below the form’s title bar. See Figure 8-25.

the other five
picture boxes are
behind this one

the txtLetter’s MaxLength
and CharacterCasing
properties are set to 1
and Upper, respectively

Figure 8-24 Current status of the form
OpenClipArt.org/Merlin2525

type the first
menu title here

MenuStrip tool
a MenuStrip control
appears in the
component tray

Figure 8-25 MenuStrip control added to the form
OpenClipArt.org/Merlin2525

Adding a Menu to a Form L E S S ON B

499

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

5. Auto-hide the toolbox. Click the Type Here box on the menu bar and then type
&FILE. See Figure 8-26. You use the Type Here box that appears below the menu title to
add a menu item to the FILE menu. You use the Type Here box that appears to the right
of the menu title to add another menu title to the menu bar.

6. Press Enter and then click the FILE menu title. Scroll the Properties window until you
see the Text property, which contains &FILE. Now, scroll to the top of the Properties
window and then click (Name). Type mnuFile and then press Enter.

7. Click the Type Here box that appears below the FILE menu title. Type &New Game
and then press Enter. Click the New Game menu item. Change the menu item’s name
to mnuFileNew.

8. Next, you will add a separator bar to the FILE menu. Place your mouse pointer on the
Type Here box that appears below the New Game menu item, but don’t click the box.
Instead, click the list arrow that appears inside the box. See Figure 8-27.

9. Click Separator in the list. A horizontal line, called a separator bar, appears below the
New Game menu item.

10. Click the Type Here box that appears below the separator bar. Type E&xit and then
press Enter. Click the Exit menu item. Change the menu item’s name to mnuFileExit.

11. Save the solution and then start the application. Click FILE on the menu bar. The FILE
menu opens and offers two options separated by a separator bar. See Figure 8-28.

Figure 8-26 Menu title included on the form

Figure 8-27 Drop-down list

CH A P T E R 8 String Manipulation

500

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

12. Click the Close button on the form’s title bar.

As indicated in Figure 8-28, the btnCheck control is disabled, which means it is not currently
available to the user. You disable a control by setting its Enabled property to False either in the
Properties window or in code; you enable it by setting the property to True (the default value).
When a control is disabled, it appears dimmed (grayed out) during run time, as shown in the
figure. The btnCheck control will remain disabled until the user selects the New Game option
on the FILE menu.

Assigning Shortcut Keys to Menu Items
Commonly used menu items should be assigned shortcut keys. The shortcut keys appear to the
right of a menu item and allow the user to select the item without opening the menu. Examples
of familiar shortcut keys include Ctrl+X and Ctrl+V. In Windows applications that have an
EDIT menu, Ctrl+X and Ctrl+V are used to select the Cut and Paste commands, respectively,
when the EDIT menu is closed. In the Frankenstein Game application, you will assign shortcut
keys to the New Game option on the FILE menu.

To assign shortcut keys to the New Game menu item:

1. Click the New Game menu item on the FILE menu. Click ShortcutKeys in the
Properties window and then click the list arrow in the Settings box. A box opens and
allows you to specify a modifier and a key. In this case, the modifier and key will be Ctrl
and N, respectively. Click the Ctrl check box to select it, and then click the list arrow
that appears in the Key combo box. An alphabetical list of keys appears. Scroll the list
until you see the letter N, and then click N in the list. See Figure 8-29.

press Alt to either
show/hide the
access keys

the btnCheck
control is disabled

Figure 8-28 File menu opened during run time
OpenClipArt.org/Merlin2525

A menu item’s
access key can
be used only
when the menu
is open. A menu

item’s shortcut key can
be used only when the
menu is closed.

START HERE

Adding a Menu to a Form L E S S ON B

501

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

2. Press Enter. Ctrl+N appears in the ShortcutKeys property in the Properties list. It also
appears to the right of the New Game menu item.

3. Auto-hide the Properties window. Save the solution and then start the application. Click
FILE on the menu bar. See Figure 8-30.

4. Click the Close button on the form’s title bar.

Figure 8-29 Shortcut keys specified in the ShortcutKeys box

shortcut keys

Figure 8-30 Location of the shortcut keys on the menu

GUI DESIGN TIP Menu Standards

l Menu title captions should be one word and entered using uppercase letters.
Each menu title should have a unique access key.

l Menu item captions can be from one to three words. Use book title capitalization
and assign a unique access key to each menu item on the same menu.

l Assign unique shortcut keys to commonly used menu items.

l If a menu item requires additional information from the user, place an ellipsis
(…) at the end of the item’s caption, which is entered in the item’s Text property.

l Follow the Windows standards for the placement of menu titles and items.

l Use a separator bar to separate groups of related menu items.

CH A P T E R 8 String Manipulation

502

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Coding the Exit Menu Item
When the user clicks the Exit option on the FILE menu, the option’s Click event procedure
should end the application.

To code and then test the Exit menu item:

1. Open the Code Editor window, which already contains some code. Replace <your name>
and <current date> in the comments with your name and the current date, respectively.

2. Open the code template for the mnuFileExit_Click procedure. Type Me.Close() and
press Enter.

3. Save the solution and then start the application. Click FILE on the Frankenstein Game
application’s menu bar and then click Exit to end the application.

Coding the txtLetter Control’s KeyPress Event
As indicated earlier in Figure 8-24, the txtLetter’s MaxLength and CharacterCasing properties are
set to 1 and Upper, respectively. As a result, the text box will accept one character only. If the
character is a letter of the alphabet, it will be converted to uppercase. In the next set of steps,
you will prevent the text box from accepting a character that is not either a letter of the alphabet
or the Backspace key. You can do this using an If…Then…Else statement with the following
condition: e.KeyChar Like "[!A-Za-z]" AndAlso e.KeyChar <> ControlChars.Back. The
sub-condition on the left side of the AndAlso operator will evaluate to True if the user’s entry is
not one of the uppercase or lowercase letters of the alphabet. The sub-condition on the right side
of the AndAlso operator will evaluate to True if the user’s entry is not the Backspace key. If both
sub-conditions evaluate to True, the compound condition evaluates to True and the text box
should not accept the user’s entry.

To code and then test the txtLetter control’s KeyPress event procedure:

1. Open the code template for the txtLetter_KeyPress procedure. Enter the comment and
selection structure shown in Figure 8-31.

2. Save the solution and then start the application. Type a in the text box. Notice that the
letter is changed to its uppercase equivalent, A. Press the Backspace key to delete the
letter A.

3. Now, try entering a character other than a letter of the alphabet or the Backspace key;
you won’t be able to do so. Also try entering more than one letter; here, too, you won’t
be able to do so.

4. Click FILE on the Frankenstein Game application’s menu bar and then click Exit to end
the application. Close the Code Editor window and then close the solution.

START HERE

START HERE

enter this comment
and selection structure

Figure 8-31 txtLetter_KeyPress procedure

Adding a Menu to a Form L E S S ON B

503

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Lesson B Summary
l To add a MenuStrip control to a form:

Use the MenuStrip tool, which is located in the Menus & Toolbars section of the toolbox.

l To create a menu:

Replace the words “Type Here” with the menu element’s caption. Assign a meaningful name
and a unique access key to each menu element, with the exception of separator bars.

l To include a separator bar on a menu:

Place your mouse pointer on a Type Here box and then click the list arrow that appears
inside the box. Click Separator on the list.

l To enable/disable a control during run time:

Set its Enabled property to True (enable) or False (disable) either in the Properties window
or in code.

l To assign shortcut keys to a menu item:

Set the menu item’s ShortcutKeys property.

Lesson B Key Terms
Enabled property—used to enable (True) or disable (False) a control during run time

Menu strip control—used to include one or more menus on a form

Shortcut keys—appear to the right of a menu item and allow the user to select the item without
opening the menu

Lesson B Review Questions
1. The horizontal line in a menu is called .

a. a menu bar

b. a separator bar

c. an item separator

d. none of the above

2. The underlined letter in a menu element’s caption is called .

a. an access key

b. a menu key

c. a shortcut key

d. none of the above

3. Which of the following allows the user to access a menu item without opening the menu?

a. an access key

b. a menu key

c. shortcut keys

d. none of the above

CH A P T E R 8 String Manipulation

504

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

4. Which of the following is false?

a. Menu titles should be one word only.

b. Each menu title should have a unique access key.

c. You should assign shortcut keys to commonly used menu titles.

d. Menu items should be entered using book title capitalization.

5. Which property determines whether a control is available to the user during run time?

a. Available

b. Enabled

c. Unavailable

d. Disabled

6. Explain the difference between a menu item’s access key and its shortcut keys.

Lesson B Exercises

1. Open the Bonus Solution (Bonus Solution.sln) file contained in the VB2012\Chap08\
Bonus Solution folder. If necessary, open the designer window. Add a FILE menu to the
form. The FILE menu should contain an Exit menu item that ends the application. Enter
the appropriate code in the menu item’s Click event procedure. Save the solution and
then start the application. Use the Exit option on the FILE menu to end the application.
Close the Code Editor window and then close the solution.

2. Open the Commission Solution (Commission Solution.sln) file contained in the VB2012\
Chap08\Commission Solution folder. If necessary, open the designer window. Add a
FILE menu and a CALCULATE menu to the form. Include an Exit menu item on the
FILE menu. Include two menu items on the CALCULATE menu: 2% Commission and
5% Commission. Assign shortcut keys to the CALCULATE menu’s items. When the user
clicks the Exit menu item, the application should end. When the user clicks the 2%
Commission menu item, the application should calculate and display a 2% commission
on the sales entered by the user. When the user clicks the 5% Commission menu item,
the application should calculate and display a 5% commission on the sales entered by the
user. Enter the appropriate code in each menu item’s Click event procedure. Save the
solution and then start and test the application. Close the Code Editor window and then
close the solution.

INTRODUCTORY

INTERMEDIATE

Lesson B Exercises L E S S ON B

505

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

& LESSON C
After studying Lesson C, you should be able to:

l Include the Length property in a procedure

l Include the Substring method in a procedure

l Include the Remove method in a procedure

l Include the Insert method in a procedure

l Include the Contains method in a procedure

Completing the Frankenstein Game Application
Figure 8-32 shows the Frankenstein Game application’s TOE chart. You coded the
mnuFileExit_Click and txtLetter_KeyPress procedures in Lesson B. In this lesson, you will
complete the application by coding the mnuFileNew_Click and btnCheck_Click procedures.

Task Object Event

1. Get a five–letter word from player 1, trim spaces,
and convert to uppercase

mnuFileNew Click

2. Determine whether the word contains 5 letters
3. If the word contains 5 letters, hide the 6 picture boxes,

display 5 dashes in lblWord, clear lblIncorrect,
set incorrect guesses counter to 0, clear txtLetter,
enable btnCheck, and send focus to txtLetter

4. If the word doesn’t contain 5 letters, display “5 letters
are required” in a message box

1. Search the word for the letter entered by player 2 btnCheck Click
2. If the letter is contained in the word, replace the

appropriate dashes in lblWord; if there aren’t any
other dashes in the word, the game is over because
player 2 guessed the word, so display “Great guessing!”
in a message box, disable btnCheck, and set incorrect
guesses counter to 0

3. If the letter is not contained in the word, display the
letter in lblIncorrect, add 1 to the incorrect guesses counter,
and show the appropriate picture box; if player 2 made 6
incorrect guesses, the game is over, so display “Sorry,
the word is word.” in a message box, disable btnCheck,
and set incorrect guesses counter to 0

4. Clear txtLetter and send focus to it

End the application mnuFileExit Click

Display the Frankenstein images picHead,
picHeadTorso,
picHeadTorsoOneArm,
picHeadTorsoTwoArms,
picHeadTorsoArmsOneLeg,
picFullBody

None

Allow only letters and the Backspace key txtLetter KeyPress

Display dashes and letters (from mnuFileNew and btnCheck) lblWord None

Display the incorrect letters (from mnuFileNew and btnCheck) lblIncorrect None

Figure 8-32 TOE chart for the Frankenstein Game application
© 2013 Cengage Learning

CH A P T E R 8 String Manipulation

506

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

To open the Frankenstein Game application from Lesson B:

1. If necessary, start Visual Studio 2012. Open the Frankenstein Solution (Frankenstein
Solution.sln) file contained in the VB2012\Chap08\Frankenstein Solution folder. If
necessary, open the designer window. See Figure 8-33.

2. Open the Code Editor window, which already contains some code. The form’s
Declarations section declares two class-level variables, as shown in Figure 8-34. The
strWord variable will store the word entered by player 1. The intIncorrect variable
will keep track of the number of incorrect letters entered by player 2.

Coding the FILE Menu’s New Game Option
The mnuFileNew_Click procedure is invoked when the user either clicks the New Game option
on the FILE menu or presses Ctrl+N (the option’s shortcut keys). The procedure should get a
five-letter word from player 1 and then verify that the word contains five letters. The
procedure’s pseudocode is shown in Figure 8-35.

Figure 8-33 Interface for the Frankenstein Game application from Lesson B
OpenClipArt.org/Merlin2525

START HERE

class-level variables

Figure 8-34 Declaration statements for the class-level variables

Completing the Frankenstein Game Application L E S S ON C

507

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

mnuFileNew Click event procedure
1. get a 5-letter word from player 1, trim leading and trailing spaces and convert to uppercase
2. if the word contains 5 letters

hide the 6 picture boxes
display 5 dashes in lblWord
clear contents of lblIncorrect
assign 0 to the intIncorrect counter variable
clear contents of txtLetter
enable btnCheck
send focus to txtLetter

else
display “5 letters are required” message in a message box

end if

Figure 8-35 Pseudocode for the mnuFileNew_Click procedure
© 2013 Cengage Learning

To begin coding the mnuFileNew_Click procedure:

1. Open the code template for the mnuFileNew_Click procedure. Type the following
comment and then press Enter twice:

' start a new game

2. According to its pseudocode, the procedure should begin by getting a five-letter word
from player 1. It should trim any leading and trailing spaces from the word and also
convert the word to uppercase. Enter the following comment and lines of code. Press
Enter twice after typing the last line.

' get a 5-letter word from player 1
' and then trim and convert to uppercase
strWord = InputBox("Enter a 5-letter word:",

"Frankenstein Game").Trim.ToUpper

Next, the procedure should verify that player 1’s word contains exactly five letters. Figure 8-36
shows two ways of accomplishing this task. Example 1 in the figure uses the Length property
and the Substring method; both are shaded in the figure. Example 2 uses the Like operator,
which also is shaded in the figure. Although the code in both examples produces the same
result, Example 2’s code is much more concise and easier to understand.

START HERE

CH A P T E R 8 String Manipulation

508

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

To complete and then test the mnuFileNew_Click procedure:

1. Enter the following comment and If clause:

' determine whether the word contains 5 letters
If strWord Like "[A-Z][A-Z][A-Z][A-Z][A-Z]" Then

2. If player 1’s word contains five letters, the selection structure’s true path should hide the
six picture boxes. Enter the following comment and six assignment statements. Press
Enter twice after typing the last assignment statement.

' hide the picture boxes
picHead.Visible = False
picHeadTorso.Visible = False
picHeadTorsoOneArm.Visible = False
picHeadTorsoTwoArms.Visible = False
picHeadTorsoArmsOneLeg.Visible = False
picFullBody.Visible = False

START HERE

Example 1
Dim blnValidWord As Boolean

' determine whether the word contains 5 letters
blnValidWord = True ' assume word is valid
If strWord.Length <> 5 Then

blnValidWord = False
Else

Dim intIndex As Integer
Do While intIndex < 5 AndAlso blnValidWord = True

If strWord.Substring(intIndex, 1) Like "[!A-Z]" Then
blnValidWord = False

End If
intIndex = intIndex + 1

Loop
End If

If blnValidWord = True Then
instructions to be processed when the word is valid

Else
instructions to be processed when the word is not valid

End If

Example 2
If strWord Like "[A-Z][A-Z][A-Z][A-Z][A-Z]" Then

instructions to be processed when the word is valid
Else

instructions to be processed when the word is not valid
End If

Figure 8-36 Two ways of determining whether the word contains five letters
© 2013 Cengage Learning

Completing the Frankenstein Game Application L E S S ON C

509

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

3. Next, the true path should display five dashes (one for each letter in the word) in the
lblWord control. It then should clear the contents of the lblIncorrect control, which
displays the incorrect letters entered by the user. It also should assign the number 0 to
the intIncorrect variable, which is a class-level variable that keeps track of the number
of incorrect letters entered by the user. Enter the following comments and assignment
statements. Press Enter twice after typing the last statement.

' display 5 dashes in lblWord, clear
' lblIncorrect, and assign 0 to intIncorrect
lblWord.Text = "-----"
lblIncorrect.Text = String.Empty
intIncorrect = 0

4. The final three tasks in the selection structure’s true path are to clear the contents of
the txtLetter control, enable the btnCheck control, and send the focus to the txtLetter
control. Enter the following comments and assignment statements:

' clear the text box, enable the
' button, set the focus
txtLetter.Text = String.Empty
btnCheck.Enabled = True
txtLetter.Focus()

5. Now you need to code the selection structure’s false path. According to the pseudocode,
the false path should display the “5 letters are required” message when player 1’s word
does not contain five letters. Enter the following lines of code:

Else
MessageBox.Show("5 letters are required",

"Frankenstein Game",
MessageBoxButtons.OK,
MessageBoxIcon.Information)

6. If necessary, delete the blank line above the End If clause.

7. Save the solution and then run the application. Click FILE on the menu bar and then click
New Game. The Frankenstein Game input dialog box opens and prompts you to enter a
five-letter word. First, you will enter a valid word. Type chair in the dialog box and then
press Enter. The picture boxes are hidden from view and five dashes appear in the Secret
word box. In addition, the Check button is enabled for the user. See Figure 8-37.

CH A P T E R 8 String Manipulation

510

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

8. Next, you will enter a word that does not contain five letters. Press Ctrl+n, which are
the shortcut keys for the New Game option. Type cars3 in the dialog box and then
press Enter. The message “5 letters are required” appears in a message box. Close the
message box.

9. On your own, test the procedure using a word that has less than five letters. Also test it
using a word that has more than five letters. In both cases, the message “5 letters are
required” should appear in a message box. When you are finished testing the procedure,
use the Exit option on the game’s FILE menu to end the application.

Completing the Check Button’s Click Event Procedure
Figure 8-38 shows the pseudocode for the btnCheck_Click procedure. It also shows
the pseudocode for two independent Sub procedures named DisplayPicture and
DetermineGameOver. Both independent Sub procedures are used by the btnCheck_Click
procedure.

btnCheck Click event procedure
1. repeat for each letter in player 1’s word

if the current letter is the same as the letter entered by player 2
replace the corresponding dash in lblWord
assign True to the blnDashReplaced variable

end if
end repeat

Figure 8-38 Pseudocode for the btnCheck_Click, DisplayPicture, and DetermineGameOver procedures
(continues)

five dashes

button is enabled

Figure 8-37 Result of entering a valid word

Completing the Frankenstein Game Application L E S S ON C

511

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

2. if the blnDashReplaced variable contains True
call the DetermineGameOver procedure to determine whether player 2 guessed the word;
pass the blnDashReplaced variable

else
display player 2’s letter in lblIncorrect
add 1 to the intIncorrect counter variable
call DisplayPicture procedure to display the appropriate picture box
call the DetermineGameOver procedure to determine whether player 2 made 6 incorrect
guesses; pass the blnDashReplaced variable

end if

DisplayPicture procedure
use the intIncorrect variable’s value to display the appropriate picture box

if intNum1 contains:
1 display picHead
2 display picHeadTorso
3 display picHeadTorsoOneArm
4 display picHeadTorsoTwoArms
5 display picHeadTorsoArmsOneLeg
6 display picFullBody

DetermineGameOver procedure
if a dash was replaced in player 1’s word

if there aren’t any other dashes in the word
display “Great guessing!” in a message box
disable btnCheck
assign 0 to the intIncorrect counter variable

end if
else

if the user entered 6 incorrect letters
display “Sorry, the word is word.” in a message box
disable btnCheck
assign 0 to the intIncorrect counter variable

end if
end if

Figure 8-38 Pseudocode for the btnCheck_Click, DisplayPicture, and DetermineGameOver procedures
© 2013 Cengage Learning

The DisplayPicture and DetermineGameOver procedures have already been coded for you. The
Code Editor window also contains most of the btnCheck_Click procedure’s code. You will
complete the procedure in the next set of steps.

To complete the btnCheck_Click procedure:

1. Locate the btnCheck_Click procedure. The first step in the procedure’s pseudocode is a
loop that performs its instructions for each letter in player 1’s word. The word, which is
stored in the strWord variable, contains five letters whose indexes are 0, 1, 2, 3, and 4.
Click the blank line below the ' look at each letter in the word comment and then
enter the following For clause:

For intIndex As Integer = 0 To 4

(continued)

START HERE

CH A P T E R 8 String Manipulation

512

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

2. Change the Next clause to Next intIndex and then click the blank line below the
For clause.

3. According to the pseudocode, the first instruction in the loop is a selection structure that
compares the current letter in the strWord variable with the letter entered by player 2.
Recall from Lesson A that you can use the Substring method to access an individual
character in a string. The method’s startIndex argument is the index of the first
character you want to access, and its optional numCharsToAccess argument specifies the
number of characters you want to access. Enter the following comments and If clause:

' if the letter appears in the word,
' replace the letter
If strWord.Substring(intIndex, 1) = strLetter Then

4. If the current letter in the strWord variable matches player 2’s letter, the selection
structure’s true path should replace the corresponding dash in the lblWord control with
player 2’s letter. You can use the Remove and Insert methods to make the replacement.
Enter the following assignment statements:

lblWord.Text =
lblWord.Text.Remove(intIndex, 1)

lblWord.Text =
lblWord.Text.Insert(intIndex, strLetter)

5. Finally, the selection structure’s true path should assign the Boolean value True to the
blnDashReplaced variable to indicate that a replacement was made. Type the additional
assignment statement shown in Figure 8-39 and then click the blank line below the
Next clause.

enter this assignment
statement

Figure 8-39 Additional code entered in the btnCheck_Click procedure

Completing the Frankenstein Game Application L E S S ON C

513

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

6. Save the solution. Before testing the btnCheck_Click procedure, review the code
contained in the DisplayPicture and DetermineGameOver procedures. Notice that the
DetermineGameOver procedure uses the Contains method to determine whether there
are any dashes in the lblWord control.

To test the btnCheck_Click procedure:

1. Start the application. Click FILE on the application’s menu bar and then click New
Game. Type happy in the input dialog box and then press Enter.

2. Type p in the Enter a letter text box and then press Enter. The letter P replaces two of
the dashes in the Secret word box.

3. Type x in the text box and then press Enter. The letter X appears in the Incorrect letters
box. In addition, the picHead control, which shows an image of Frankenstein’s head, is
now visible.

4. Type the following letters in the text box, pressing Enter after typing each one: a, e, t, y,
and h. See Figure 8-40.

Figure 8-40 Result of guessing the secret word
OpenClipArt.org/Merlin2525

START HERE

CH A P T E R 8 String Manipulation

514

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

5. Close the message box. Now, press Ctrl+n and then type chair in the input dialog box.
Type the following letters in the text box, pressing Enter after typing each one: c, e, t, y,
a, b, x, and z. See Figure 8-41.

6. Close the message box. Click FILE on the Frankenstein Game application’s menu bar and
then click Exit. Close the Code Editor window and then close the solution. Figure 8-42
shows the application’s code.

Figure 8-41 Result of not guessing the secret word
OpenClipArt.org/Merlin2525

1 ' Name: Frankenstein Project
 2 ' Purpose: A game that allows the user to guess a
 3 ' word letter-by-letter
 4 ' Programmer: <your name> on <current date>
 5
 6 Public Class frmMain
 7
 8 Private strWord As String

9 Private intIncorrect As Integer
 10
 11 Private Sub DisplayPicture()
 12 ' display appropriate picture
 13
 14 Select Case intIncorrect
 15 Case 1
 16 picHead.Visible = True
 17 Case 2
 18 picHeadTorso.Visible = True
 19 Case 3
 20 picHeadTorsoOneArm.Visible = True

Figure 8-42 Frankenstein Game application’s code (continues)

Completing the Frankenstein Game Application L E S S ON C

515

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

52 "Game Over",
 53 MessageBoxButtons.OK,
 54 MessageBoxIcon.Information)
 55 btnCheck.Enabled = False
 56 intIncorrect = 0
 57 End If
 58 End If
59 End Sub

 60
61 Private Sub btnCheck_Click(sender As Object,

e As EventArgs) Handles btnCheck.Click
 62 ' check if the letter appears in the word
 63
 64 Dim strLetter As String
 65 Dim blnDashReplaced As Boolean
 66
 67 strLetter = txtLetter.Text
 68
 69 ' look at each letter in the word
 70 For intIndex As Integer = 0 To 4
 71 ' if the letter appears in the word,
 72 ' replace the letter
 73 If strWord.Substring(intIndex, 1) = strLetter Then
 74 lblWord.Text =
 75 lblWord.Text.Remove(intIndex, 1)
 76 lblWord.Text =

 21 Case 4
 22 picHeadTorsoTwoArms.Visible = True
 23 Case 5
 24 picHeadTorsoArmsOneLeg.Visible = True
 25 Case 6
 26 picFullBody.Visible = True
 27 End Select
 28 End Sub
 29
 30 Private Sub DetermineGameOver(ByVal

blnADashWasReplaced As Boolean)
 31 ' determine whether the game is over and
 32 ' take the appropriate action
 33
 34 If blnADashWasReplaced = True Then
 35 ' if the word does not contain any dashes,
 36 ' the game is over because player 2
 37 ' guessed the word
 38 If lblWord.Text.Contains("-") = False Then
 39 MessageBox.Show("Great guessing!",
 40 "Game Over",
 41 MessageBoxButtons.OK,
 42 MessageBoxIcon.Information)
 43 btnCheck.Enabled = False
 44 intIncorrect = 0
 45 End If
 46 Else
 47 ' if the user made 6 incorrect guesses,
 48 ' the game is over
 49 If intIncorrect = 6 Then
 50 MessageBox.Show("Sorry, the word is " &
51 strWord & ".",

Figure 8-42 Frankenstein Game application’s code (continues)

(continued)

CH A P T E R 8 String Manipulation

516

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

 77 lblWord.Text.Insert(intIndex, strLetter)
 78 blnDashReplaced = True
 79 End If
 80 Next intIndex
 81
 82 If blnDashReplaced = True Then
 83 Call DetermineGameOver(blnDashReplaced)
 84 Else ' no dash was replaced
 85 lblIncorrect.Text =
 86 lblIncorrect.Text & " " & strLetter
 87 intIncorrect = intIncorrect + 1
 88 Call DisplayPicture()
 89 Call DetermineGameOver(blnDashReplaced)
 90 End If
 91
 92 ' clear text box and set focus
 93 txtLetter.Text = String.Empty
 94 txtLetter.Focus()
95 End Sub

 96
97 Private Sub mnuFileExit_Click(sender As Object,

e As EventArgs) Handles mnuFileExit.Click
 98 Me.Close()
 99
100 End Sub
101
102 Private Sub txtLetter_KeyPress(sender As Object,
 e As KeyPressEventArgs) Handles txtLetter.KeyPress
103 ' allows only letters and the Backspace key
104
105 If e.KeyChar Like "[!A-Za-z]" AndAlso
106 e.KeyChar <> ControlChars.Back Then
107 e.Handled = True
108 End If
109 End Sub
110
111 Private Sub mnuFileNew_Click(sender As Object,
 e As EventArgs) Handles mnuFileNew.Click
112 ' start a new game
113
114 ' get a 5-letter word from player 1
115 ' and then trim and convert to uppercase
116 strWord = InputBox("Enter a 5-letter word:",
117 "Frankenstein Game").Trim.ToUpper
118
119 ' determine whether the word contains 5 letters
120 If strWord Like "[A-Z][A-Z][A-Z][A-Z][A-Z]" Then
121 ' hide the picture boxes
122 picHead.Visible = False
123 picHeadTorso.Visible = False
124 picHeadTorsoOneArm.Visible = False
125 picHeadTorsoTwoArms.Visible = False
126 picHeadTorsoArmsOneLeg.Visible = False
127 picFullBody.Visible = False
128
129 ' display 5 dashes in lblWord, clear
130 ' lblIncorrect, and assign 0 to intIncorrect
131 lblWord.Text = "-----"

Figure 8-42 Frankenstein Game application’s code (continues)

(continued)

Completing the Frankenstein Game Application L E S S ON C

517

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Lesson C Summary
l To determine the length of a string:

Use the string’s Length property.

l To access one or more characters in a string:

Use the Substring method.

l To use pattern-matching to compare two strings:

Use the Like operator.

l To remove a specified number of characters located anywhere in a string:

Use the Remove method.

l To insert characters anywhere in a string:

Use the Insert method.

l To determine whether a specific character is contained in a string:

Use the Contains method.

Lesson C Key Terms
There are no key terms in Lesson C.

132 lblIncorrect.Text = String.Empty
133 intIncorrect = 0
134
135 ' clear the text box, enable the
136 ' button, set the focus
137 txtLetter.Text = String.Empty
138 btnCheck.Enabled = True
139 txtLetter.Focus()
140 Else
141 MessageBox.Show("5 letters are required",
142 "Frankenstein Game",
143 MessageBoxButtons.OK,
144 MessageBoxIcon.Information)
145 End If
146 End Sub
147 End Class

Figure 8-42 Frankenstein Game application’s code
© 2013 Cengage Learning

(continued)

CH A P T E R 8 String Manipulation

518

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Lesson C Review Questions
1. The strName variable contains 10 characters. Which of the following For clauses will

access each character contained in the variable, character by character?

a. For intIndex As Integer = 0 To 10

b. For intIndex As Integer = 1 To 10

c. For intIndex As Integer = 0 To strName.Length – 1

d. For intIndex As Integer = 1 To strName.Length – 1

2. Which of the following changes the contents of the strName variable from Tam
to Tammy?

a. strName = strName.Append(4, "my")

b. strName = strName.Append(3, "my")

c. strName = strName.Insert(4, "my")

d. strName = strName.Insert(3, "my")

3. If the strWord variable contains the string “Irene Turner”, what value will the
strWord.Contains("t") method return?

a. True

b. False

c. 6

d. 7

4. The strItem variable contains uppercase letters only. Which of the following determines
whether the variable contains either the word “SHIRT” or the word “SKIRT”?

a. If strItem Like "S[HK]IRT" Then

b. If strItem Like "S[H-K]IRT" Then

c. If strItem = "S[HK]IRT" Then

d. If strItem = "SHIRT" AndAlso strItem = "SKIRT" Then

5. Which of the following returns the Boolean value True when the strPetName variable
contains the string “Micki”?

a. strPetName.Contains("k")

b. strPetName Like "M*"

c. strPetName.Substring(2, 1) = "c"

d. all of the above

Lesson C Exercises

1. Open the Item Number Solution (Item Number Solution.sln) file contained in the
VB2012\Chap08\Item Number Solution folder. If necessary, open the designer window.
Open the Code Editor window. The btnVerify_Click procedure should determine
whether the item number was entered in the required format: three digits, a hyphen, a
letter, a hyphen, and two digits. Display an appropriate message indicating whether the
format is correct or incorrect. Code the procedure. Save the solution and then start and
test the application. Close the Code Editor window and then close the solution.

INTRODUCTORY

Lesson C Exercises L E S S ON C

519

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

2. Open the Color Solution (Color Solution.sln) file contained in the VB2012\Chap08\
Color Solution folder. If necessary, open the designer window. The Display Color
button’s Click event procedure should display the color of the item whose item number
is entered by the user. All item numbers contain exactly seven characters. All items are
available in four colors: blue, green, red, and white. The fourth character in the item
number indicates the item’s color, as follows: a B or b indicates Blue, a G or g indicates
Green, an R or r indicates Red, and a W or w indicates White. If the item number does
not contain exactly seven characters, or if the fourth character is not one of the valid
color characters, the procedure should display an appropriate message. Code the
procedure. Save the solution and then start and test the application. Close the Code
Editor window and then close the solution.

3. In this exercise, you modify the Frankenstein Game application completed in Lesson C.
Use Windows to make a copy of the Frankenstein Solution folder. Rename the copy
Modified Frankenstein Solution. Open the Frankenstein Solution (Frankenstein
Solution.sln) file contained in the Modified Frankenstein Solution folder. Open the
designer and Code Editor windows. Modify the code to allow player 1 to enter a word
that contains any number of letters, up to a maximum of 10 letters. Save the solution
and then start and test the application. Close the Code Editor window and then close
the solution.

4. Open the Reverse Letters Solution (Reverse Letters Solution.sln) file contained in the
VB2012\Chap08\Reverse Letters Solution folder. The interface provides a text box for
the user to enter a word. The Reverse Letters button’s Click event procedure should
display the letters in reverse order. In other words, if the user enters the word
“Programming”, the procedure should display “gnimmargorP”. Code the procedure.
Save the solution and then start and test the application. Close the Code Editor window
and then close the solution.

5. Open the Proper Case Solution (Proper Case Solution.sln) file contained in the VB2012\
Chap08\Proper Case Solution folder. The interface provides a text box for the user to
enter a person’s first and last names. The Proper Case button’s Click event procedure
should display the first and last names in the proper case. In other words, the first and
last names should begin with an uppercase letter and the remaining letters should be
lowercase. Code the procedure. Save the solution and then start and test the application.
Close the Code Editor window and then close the solution.

6. Open the Part Number Solution (Part Number Solution.sln) file contained in the
VB2012\Chap08\Part Number Solution folder. The interface allows the user to enter
a part number, which should consist of two numbers followed by either one or two
letters. The letter(s) represent the delivery method, as follows: MS represents Mail –
Standard, MP represents Mail – Priority, FS represents FedEx – Standard, FO
represents FedEx – Overnight, and U represents UPS. Code the Select Delivery button’s
Click event procedure so that it uses the Like operator to select the appropriate delivery
method in the list box. Display an appropriate message when the part number does not
contain two numbers followed by one or two letters, or when the letters do not
represent a valid delivery method. Save the solution and then start the application. Test
the application using the following data: 73mp, 34fs, 12u, 78h, 9FO, 88FO, and 34ms.
Close the Code Editor window and then close the solution.

7. Before completing this exercise, you should complete Lesson A’s Discovery Exercise 16.
Open the Jacobson Solution (Jacobson Solution.sln) file contained in the VB2012\
Chap08\Jacobson Solution folder. The interface provides a text box for entering a
password. The password can contain five, six, or seven characters; however, none of the
characters can be a space. The Display New Password button should create and display
a new password using the following three rules. First, replace all vowels (A, E, I, O, and
U) with the letter X. Second, replace all numbers with the letter Z. Third, reverse the

INTRODUCTORY

INTERMEDIATE

INTERMEDIATE

INTERMEDIATE

INTERMEDIATE

INTERMEDIATE

CH A P T E R 8 String Manipulation

520

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

characters in the password. Code the procedure. Save the solution and then start and
test the application. Close the Code Editor window and then close the solution.

8. Each salesperson at Huntington Motors is assigned an ID number that consists of four
characters. The first character is either the number 1 or the number 2. A 1 indicates
that the salesperson sells new cars, and a 2 indicates that the salesperson sells used cars.
The middle two characters are the salesperson’s initials, and the last character is either
the letter F or the letter P. The letter F indicates that the salesperson is a full-time
employee. The letter P indicates that he or she is a part-time employee. Create a Visual
Basic Windows application. Use the following names for the solution and project,
respectively: Huntington Solution and Huntington Project. Save the application in the
VB2012\Chap08 folder. Change the form file’s name to Main Form.vb. Change the
form’s name to frmMain. Create the interface shown in Figure 8-43. The car image in
the picture box is contained in the VB2012\Chap08\Car.png file. (The image was
downloaded from the Open Clip Art Library at http://openclipart.org.) Make the Calculate
button the default button. The application should allow the sales manager to enter the ID
and number of cars sold for as many salespeople as needed. The application should
calculate and display the total number of cars sold by each of the following four categories
of employees: full-time employees, part-time employees, employees selling new cars, and
employees selling used cars. Code the application. Save the solution and then start and
test the application. Close the Code Editor window and then close the solution.

9. Create a Visual Basic Windows application. Use the following names for the solution
and project, respectively: Pig Latin Solution and Pig Latin Project. Save the application
in the VB2012\Chap08 folder. Change the form file’s name to Main Form.vb. Change
the form’s name to frmMain. Create an interface that allows the user to enter a word.
The application should display the word in pig latin form. The rules for converting a
word into pig latin form are shown in Figure 8-44. Code the application. Save the
solution and then start and test the application. Close the Code Editor window and then
close the solution.

Figure 8-43 Sample interface for Exercise 8
OpenClipArt.org/yves_guillou

ADVANCED

ADVANCED

Lesson C Exercises L E S S ON C

521

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

1. If the word begins with a vowel (A, E, I, O, or U), then add the string “-way” (a dash followed by
the letters w, a, and y) to the end of the word. For example, the pig latin form of the word “ant”
is “ant-way”.

2. If the word does not begin with a vowel, first add a dash to the end of the word. Then continue moving
the first character in the word to the end of the word until the first character is the letter
A, E, I, O, U, or Y. Then add the string “ay” to the end of the word. For example, the pig latin form
of the word “Chair” is “air-Chay”.

3. If the word does not contain the letter A, E, I, O, U, or Y, then add the string “-way” to the end
of the word. For example, the pig latin form of “56” is “56-way”.

Figure 8-44 Pig latin rules for Exercise 9
© 2013 Cengage Learning

10. Credit card companies typically assign a special digit, called a check digit, to the end of
each customer’s credit card number. Many methods for creating the check digit have
been developed. One simple method is to multiply every other digit in the credit card
number by two. You then add the products to the remaining digits to get the total.
Finally, you take the last digit in the total and append it to the end of the credit card
number, as illustrated in Figure 8-45. Create a Visual Basic Windows application. Use
the following names for the solution and project, respectively: Georgetown Solution and
Georgetown Project. Save the application in the VB2012\Chap08 folder. Change the
form file’s name to Main Form.vb. Change the form’s name to frmMain. Create the
interface shown in Figure 8-46. Make the Verify button the default button. The
interface allows the user to enter a five-digit credit card number, with the fifth digit
being the check digit. The Verify button’s Click event procedure should use the method
illustrated in Figure 8-45 to verify that the credit card number is valid. The procedure
should display appropriate messages indicating whether the credit card number is valid
or invalid. Code the procedure. Save the solution and then start and test the application.
Close the Code Editor window and then close the solution.

Check Digit Algorithm

First four digits in credit card number: 1 3 5 7

Step 1: Multiply the second and fourth digits by 2: *2 *2

Result 1 6 5 14

Step 2: Add the numbers together: 1 + 6 + 5 + 14 = 26

Step 3: Take the last digit in the sum and append it to the
first four digits, resulting in the final credit card number: 13576

Figure 8-45 Illustration of a check digit algorithm
© 2013 Cengage Learning

ADVANCED

CH A P T E R 8 String Manipulation

522

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

11. Open the Count Solution (Count Solution.sln) file contained in the VB2012\Chap08\
Count Solution folder. If necessary, open the designer window. The interface allows the
user to enter a string. Code the Search button’s Click event procedure so that it prompts
the user to enter the sequence of characters for which he or she wants to search. The
procedure should determine the number of times the sequence of characters appears in
the string. Use the IndexOf method to search the string for the sequence of characters.
Save the solution and then start the application. Enter the string “The weather is
beautiful!” (without the quotes) and then click the Search button. Search for the two
characters “ea” (without the quotes). The two characters appear twice in the string. On
your own, test the application using other data. Close the Code Editor window and then
close the solution.

12. Open the Debug Solution (Debug Solution.sln) file contained in the VB2012\Chap08\
Debug Solution 1 folder. If necessary, open the designer window. Open the Code Editor
window and review the existing code. Start and then test the application. Notice that the
application is not working correctly. Correct the application’s code. Save the solution
and then start and test the application again. Close the Code Editor window and then
close the solution.

13. Open the Debug Solution (Debug Solution.sln) file contained in the VB2012\Chap08\
Debug Solution 2 folder. If necessary, open the designer window. Open the Code Editor
window and review the existing code. Start and then test the application. Notice that the
application is not working correctly. Correct the application’s code. Save the solution
and then start and test the application again. Close the Code Editor window and then
close the solution.

14. Open the Debug Solution (Debug Solution.sln) file contained in the VB2012\Chap08\
Debug Solution 3 folder. If necessary, open the designer window. Open the Code Editor
window and review the existing code. Start and then test the application. Notice that the
application is not working correctly. Correct the application’s code. Save the solution
and then start and test the application again. Close the Code Editor window and then
close the solution.

Figure 8-46 Sample interface for Exercise 10

ADVANCED

SWAT THE BUGS

SWAT THE BUGS

SWAT THE BUGS

Lesson C Exercises L E S S ON C

523

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 9
Arrays

Coding the Die Tracker Application

In this chapter, you will code an application that simulates the rolling of a
die. The application will display the number of times a die face appears.

All Microsoft screenshots used with permission from Microsoft Corporation.

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Previewing the Die Tracker Application
Before you start the first lesson in this chapter, you will preview the completed application. The
application is contained in the VB2012\Chap09 folder.

To preview the completed application:

1. Use the Run dialog box to run the Die Tracker (Die Tracker.exe) file contained in
the VB2012\Chap09 folder. The application’s user interface appears on the screen.
(The image in the picture box was downloaded from the Open Clip Art Library at
http://openclipart.org.)

2. Click the Roll button. A die face appears in the picRandDie control and its associated
counter label contains the number 1. See Figure 9-1. Because the Roll button’s Click
event procedure uses random numbers, your die face and counter label may be different
from those shown in the figure.

3. Click the Roll button several more times. Each time you click the Roll button, a die face
appears in the picRandDie control and its associated counter label is updated by 1.

4. Now, click the Start Over button and then click the Roll button. A die face appears in
the picRandDie control and its associated counter label contains the number 1.

5. Click the Exit button.

Before you can begin coding the Die Tracker application, you need to learn about arrays.
One-dimensional arrays are covered in Lessons A and B. Lesson C covers two-dimensional
arrays. You will code the Die Tracker application in Lesson B. Be sure to complete each lesson in
full and do all of the end-of-lesson questions and several exercises before continuing to the
next lesson.

picRandDie (your die
face might be different)

you can use the Alt
key to show/hide the
access keys

counter label (your
counter label might be
different)

Figure 9-1 Result of clicking the Roll button the first time
OpenClipArt.org/orsonj

START HERE

CH A P T E R 9 Arrays

526

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

& LESSON A
After studying Lesson A, you should be able to:

l Declare and initialize a one-dimensional array

l Store data in a one-dimensional array

l Determine the number of array elements and the highest subscript

l Traverse a one-dimensional array

l Code a loop using the For Each…Next statement

l Compute the total and average of a one-dimensional array’s contents

l Find the highest value in a one-dimensional array

l Sort a one-dimensional array

Arrays
All of the variables you have used so far have been simple variables. A simple variable, also
called a scalar variable, is one that is unrelated to any other variable in memory. At times,
however, you will encounter situations in which some of the variables are related to each other.
In those cases, it is easier and more efficient to treat the related variables as a group.

You already are familiar with the concept of grouping. The clothes in your closet are probably
separated into groups, such as coats, sweaters, shirts, and so on. Grouping your clothes in this
manner allows you to easily locate your favorite sweater because you just need to look through
the sweater group rather than through the entire closet. You also probably have your CD
(compact disc) collection grouped by either music type or artist. If your collection is grouped by
artist, it will take only a few seconds to find all of your Maroon 5 CDs and, depending on the
number of Maroon 5 CDs you own, only a short time after that to locate a particular CD.

When you group together related variables, the group is referred to as an array of variables
or, more simply, an array. You might use an array of 50 variables to store the population of each
U.S. state. Or, you might use an array of eight variables to store the sales made in each of your
company’s eight sales regions. Storing data in an array increases the efficiency of a program
because data can be both stored in and retrieved from the computer’s internal memory much
faster than it can be written to and read from a file on a disk. In addition, after the data is
entered into an array, which typically is done at the beginning of a program, the program can
use the data as many times as necessary without having to enter the data again. Your company’s
sales program, for example, can use the sales amounts stored in an array to calculate the total
company sales and the percentage that each region contributed to the total sales. It also can use
the sales amounts in the array either to calculate the average sales amount or to simply display
the sales made in a specific region. As you will learn in this lesson, the variables in an array can
be used just like any other variables. You can assign values to them, use them in calculations,
display their contents, and so on.

The most commonly used arrays in business applications are one-dimensional and two-
dimensional. You will learn about one-dimensional arrays in this lesson and in Lesson B.
Two-dimensional arrays are covered in Lesson C. Arrays having more than two dimensions
are beyond the scope of this book.

At this point, it is important to point out that arrays are one of the more challenging topics for
beginning programmers. Therefore, it is important for you to read and study each section in
each lesson thoroughly before moving on to the next section. If you still feel overwhelmed at the
end of a lesson, try reading the lesson again, paying particular attention to the examples and
procedures shown in the figures.

Arrays L E S S ON A

527

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

One-Dimensional Arrays
The variables in an array are stored in consecutive locations in the computer’s internal memory.
Each variable in an array has the same name and data type. You distinguish one variable in a
one-dimensional array from another variable in the same array using a unique number. The
unique number, which is always an integer, is called a subscript. The subscript indicates the
variable’s position in the array and is assigned by the computer when the array is created in
internal memory. The first variable in a one-dimensional array is assigned a subscript of 0, the
second a subscript of 1, and so on.

You refer to each variable in an array by the array’s name and the variable’s subscript,
which is specified in a set of parentheses immediately following the array name. Figure 9-2
illustrates a one-dimensional array named strMaroon that contains three variables. You use
strMaroon(0)—read “strMaroon sub zero”—to refer to the first variable in the array. You
use strMaroon(1) to refer to the second variable in the array, and use strMaroon(2) to refer
to the third (and last) variable in the array. The last subscript in an array is always one number
less than the total number of variables in the array; this is because array subscripts in Visual
Basic (and in many other programming languages) start at 0.

Declaring a One-Dimensional Array
Before you can use an array in a program, you first must declare (create) it. Figure 9-3 shows
two versions of the syntax for declaring a one-dimensional array in Visual Basic. The {Dim |
Private | Static} portion in each version indicates that you can select only one of the keywords
appearing within the braces. The appropriate keyword depends on whether you are creating a
procedure-level array or a class-level array. ArrayName is the name of the array, and dataType
is the type of data the array variables, referred to as elements, will store. In syntax Version 1,
highestSubscript is an integer that specifies the highest subscript in the array. Because the first
element in a one-dimensional array has a subscript of 0, the array will contain one element more
than the number specified in the highestSubscript argument. In other words, an array whose
highest subscript is 2 will contain 3 elements. In syntax Version 2, initialValues is a comma-
separated list of values you want assigned to the array elements. Also included in Figure 9-3 are
examples of using both versions of the syntax.

Figure 9-2 Illustration of the one-dimensional strMaroon array
Image by Diane Zak; Created with Reallusion CrazyTalk Animator

A subscript is
also called an
index.

CH A P T E R 9 Arrays

528

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

When you use syntax Version 1, the computer automatically initializes each array element when
the array is created. If the array’s data type is String, each element is initialized using the
keyword Nothing. As you learned in Chapter 3, variables initialized to Nothing do not actually
contain the word “Nothing”; rather, they contain no data at all. Elements in a numeric array are
initialized to the number 0, and elements in a Boolean array are initialized using the Boolean
keyword False. Date array elements are initialized to 12:00 AM January 1, 0001.

Rather than having the computer use a default value to initialize each array element, you can use
syntax Version 2 to specify each element’s initial value when the array is declared. Assigning
initial values to an array is often referred to as populating the array. You list the initial values in
the initialValues section of the syntax, using commas to separate the values, and you enclose the
list of values in braces ({}).

Notice that syntax Version 2 does not include the highestSubscript argument; instead, an empty
set of parentheses follows the array name. The computer automatically calculates the highest
subscript based on the number of values listed in the initialValues section. Because the first
subscript in a one-dimensional array is the number 0, the highest subscript is always one
number less than the number of values listed in the initialValues section. The Dim statement in
Example 3 in Figure 9-3, for instance, creates a four-element array with subscripts of 0, 1, 2, and
3. Similarly, the Private statement in Example 4 creates a five-element array with subscripts of 0,
1, 2, 3, and 4. The arrays are initialized as shown in Figure 9-4.

Declaring a One-Dimensional Array
Syntax – Version 1
{Dim | Private | Static} arrayName(highestSubscript) As dataType

Syntax – Version 2
{Dim | Private | Static} arrayName() As dataType = {initialValues}

Example 1
Dim strMaroon(2) As String
declares a three-element procedure-level array named strMaroon; each element is
automatically initialized using the keyword Nothing

Example 2
Static intNumbers(4) As Integer
declares a static, five-element procedure-level array named intNumbers; each element is
automatically initialized to 0

Example 3
Dim strStates() As String = {"Alaska", "Colorado",
 "Ohio", "Florida"}
declares and initializes a four-element procedure-level array named strStates

Example 4
Private dblPays() As Double = {13.55, 9.65,
 8.5, 9.75, 4.5}
declares and initializes a five-element class-level array named dblPays

Figure 9-3 Syntax versions and examples of declaring a one-dimensional array
© 2013 Cengage Learning

Like class-level
variables,
class-level arrays
are declared in
the form’s
Declarations
section.

One-Dimensional Arrays L E S S ON A

529

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Storing Data in a One-Dimensional Array
After an array is declared, you can use another statement to store a different value in an array
element. Examples of such statements include assignment statements and statements that
contain the TryParse method. Figure 9-5 shows examples of both types of statements.

Storing Data in a One-Dimensional Array
Example 1
strStates(0) = "Kentucky"
assigns the string “Kentucky” to the first element in the strStates array

Example 2
For intX As Integer = 1 To 5
 intNumbers(intX - 1) = intX * intX
Next intX
assigns the squares of the numbers from 1 through 5 to the intNumbers array

Example 3
Dim intSub As Integer
Do While intSub < 5
 intNumbers(intSub) = 100
 intSub += 1
Loop
assigns the number 100 to each element in the intNumbers array

Example 4
dblPays(1) = dblPays(1) * .1
multiplies the contents of the second element in the dblPays array by .1 and then assigns the
result to the element; you also can write this statement as dblPays(1) *= .1

Example 5
Double.TryParse(txtPay.Text, dblPays(2))
assigns either the value entered in the txtPay control (converted to Double) or the number 0 to the
third element in the dblPays array

Figure 9-5 Examples of statements used to store data in a one-dimensional array
© 2013 Cengage Learning

Alaska

Colorado

Ohio

Florida

strStates(0) dblPays(0)

dblPays(1)

dblPays(2)

dblPays(3)

dblPays(4)

strStates(1)

strStates(2)

strStates(3)

13.55

9.65

8.5

9.75

4.5

Figure 9-4 Illustration of the strStates and dblPays arrays
© 2013 Cengage Learning

CH A P T E R 9 Arrays

530

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Determining the Number of Elements in a One-Dimensional Array
The number of elements in a one-dimensional array is stored, as an integer, in the array’s
Length property. Figure 9-6 shows the property’s syntax and includes an example of using the
property. The Length property is shaded in the example.

Determining the Highest Subscript in a One-Dimensional Array
As you learned earlier, the highest subscript in a one-dimensional array is always one number
less than the number of array elements. Therefore, one way to determine the highest subscript is
by subtracting the number 1 from the array’s Length property. However, you also can use the
array’s GetUpperBound method. Figure 9-7 shows the method’s syntax and includes an example
of using the method; the method is shaded in the example. The GetUpperBound method returns
an integer that represents the highest subscript in the specified dimension in the array. When
used with a one-dimensional array, the specified dimension (which appears between the
parentheses after the method’s name) is always 0.

Using a One-Dimensional Array’s GetUpperBound Method

Syntax
arrayName.GetUpperBound(0)

Example
Dim strNames(3) As String
Dim intHighestSub As Integer
intHighestSub = strNames.GetUpperBound(0)
assigns the number 3 to the intHighestSub variable

the specified dimension
for a one-dimensional
array is always 0

Figure 9-7 Syntax and an example of a one-dimensional array’s GetUpperBound method
© 2013 Cengage Learning

Using a One-Dimensional Array’s Length Property

Syntax
arrayName.Length

Example
Dim strNames(3) As String
Dim intNumElements As Integer
intNumElements = strNames.Length
assigns the number 4 to the intNumElements variable

Figure 9-6 Syntax and an example of a one-dimensional array’s Length property
© 2013 Cengage Learning

One-Dimensional Arrays L E S S ON A

531

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

YOU DO IT 1!

Create a Visual Basic Windows application named YouDoIt 1. Save the application
in the VB2012\Chap09 folder. Add two labels and a button to the form. The button’s
Click event procedure should declare and initialize an Integer array named intNums.
Use the following numbers to initialize the array: 2, 4, 6, 8, 10, and 12. The procedure
should display the number of array elements in the label controls. Use the Length
property for one of the labels, and use the GetUpperBound method for the other
label. Code the procedure. Save the solution and then start and test the
application. Close the solution.

Traversing a One-Dimensional Array
At times, you may need to traverse an array, which means to look at each array element, one by
one, beginning with the first element and ending with the last element. You traverse an array
using a loop. Figure 9-8 shows two examples of loops that traverse the strStates array,
displaying each element’s value in the lstStates control.

To code and then test the States application:

1. If necessary, start Visual Studio 2012. Open the States Solution (States Solution.sln) file
contained in the VB2012\Chap09\States Solution folder. If necessary, open the designer
window.

2. Open the Code Editor window. Replace <your name> and <current date> in the
comments with your name and the current date, respectively.

3. Locate the code template for the form’s Load event procedure. Click the blank line
above the End Sub clause. Type the following array declaration statement and then press
Enter twice:

Dim strStates() As String = {"Alaska", "Colorado",
"Ohio", "Florida"}

Traversing a One-Dimensional Array
Example 1—For…Next
Dim intHighSub As Integer = strStates.GetUpperBound(0)
For intSub As Integer = 0 To intHighSub
 1stStates.Items.Add(strStates(intSub))
Next intSub

Example 2—Do…Loop
Dim intHighSub As Integer = strStates.Length - 1
Dim intSub As Integer
Do While intSub <= intHighSub
 lstStates.Items.Add(strStates(intSub))
 intSub = intSub + 1
Loop

you also can use the
Length property, as
shown in Example 2

you also can use the
GetUpperBound
method, as shown
in Example 1

you also can use
intSub += 1

Figure 9-8 Examples of loops used to traverse a one-dimensional array
© 2013 Cengage Learning

START HERE

CH A P T E R 9 Arrays

532

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

4. Next, you will fill the lstStates control with values. Enter the lines of code shown in
either Example 1 or Example 2 in Figure 9-8.

5. Now you will select the first item in the list box. Insert a blank line above the End Sub
clause and then enter the following assignment statement:

lstStates.SelectedIndex = 0

6. Save the solution and then start the application. The form’s Load event procedure is
processed first. The procedure creates and initializes the strStates array. The first time
the procedure’s loop is processed, the intSub variable contains the number 0. Therefore,
the Add method in the loop adds the contents of the strStates(0) element (Alaska) to
the lstStates control. The loop then increases the intSub variable’s value by 1, giving 1.
When the loop is processed the second time, the Add method in the loop adds the
contents of the strStates(1) element (Colorado) to the lstStates control, and so on.
The loop instructions will be repeated for each element in the strStates array. The
loop stops when the intSub variable contains the number 4, which is one number more
than the highest subscript in the array. The statement you entered in Step 5 invokes the
list box’s SelectedValueChanged event procedure. The procedure displays the selected
item in the You selected box, as shown in Figure 9-9.

7. Click Ohio in the list box. Ohio appears in the You selected box.

8. Click the Exit button. Close the Code Editor window and then close the solution.

As you learned in Chapter 6, the Visual Basic language provides three statements for coding a
loop. You already know how to use the Do…Loop and For…Next statements. You will learn
about the For Each…Next statement in the next section.

The For Each…Next Statement
Visual Basic’s For Each…Next statement provides a convenient way of coding a loop whose
instructions you want processed for each element in a group, such as for each variable in an
array. An advantage of using the For Each…Next statement to process an array is that your code
does not need to keep track of the array subscripts or even know the number of array elements.
However, unlike the loop instructions in a Do…Loop or For…Next statement, the instructions
in a For Each…Next statement can only read the array values; they cannot permanently modify
the values.

Figure 9-10 shows the For Each…Next statement’s syntax. The elementVariableName that
appears in the For Each and Next clauses is the name of a variable that the computer can use to
keep track of each element in the group. The variable’s data type is specified in the As dataType

you can use the
Alt key to show/hide
the access keys

Figure 9-9 Sample run of the States application

The For Each…Next Statement L E S S ON A

533

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

portion of the For Each clause and must be the same as the group’s data type. A variable
declared in the For Each clause has block scope and is recognized only by the instructions within
the For Each…Next loop. You enter the loop body, which contains the instructions you want the
computer to repeat, between the For Each and Next clauses. The example in Figure 9-10 shows
how to write the loops from Figure 9-8 using the For Each…Next statement.

To use the For Each…Next statement in the States application:

1. Open the States Solution (States Solution.sln) file contained in the VB2012\Chap09\
States Solution-ForEachNext folder. If necessary, open the designer window.

2. Open the Code Editor window. Replace <your name> and <current date> in the
comments with your name and the current date, respectively.

3. Locate the code template for the form’s Load event procedure. Click the blank line
above the assignment statement and then enter the lines of code shown in the example
in Figure 9-10.

4. Save the solution and then start the application. The four state names appear in the list
box, as shown earlier in Figure 9-9. Click each state name, one at a time, to verify that
the application works correctly.

5. Click the Exit button. Close the Code Editor window and then close the solution.

YOU DO IT 2!

Create a Visual Basic Windows application named YouDoIt 2. Save the application in
the VB2012\Chap09 folder. Add a button to the form. The button’s Click event
procedure should declare and initialize a one-dimensional String array. Use any
four names to initialize the array. The procedure should display the contents of the
array three times: first using the For Each…Next statement, then using the Do…Loop
statement, and then using the For…Next statement. Display the array contents
in message boxes. (Hint: The procedure will display 12 message boxes.) Code the
procedure. Save the solution and then start and test the application. Close
the solution.

For Each…Next Statement
Syntax
For Each elementVariableName As dataType In group
 loop body instructions
Next elementVariableName

Example
For Each strStateElement As String In strStates
 lstStates.Items.Add(strStateElement)
Next strStateElement

Figure 9-10 Syntax and an example of the For Each…Next statement
© 2013 Cengage Learning

Although you do
not need to
specify the
elementVariable-

Name in the Next
clause, doing so is highly
recommended because it
makes your code more
self-documenting.

You learned
about block
scope in
Chapter 4.

START HERE

CH A P T E R 9 Arrays

534

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Calculating the Total and Average Values
Figure 9-11 shows the problem specification for the Brewers Coffee application. The application
displays the total number of pounds of coffee sold during a six-month period and the average
number of pounds sold each month.

Problem Specification

The store manager at Brewers Coffee wants an application that displays the total number of pounds of
coffee sold during a six-month period and the average number of pounds sold each month. Last year, the
monthly amounts were as follows: 170.5, 224, 190.5, 193, 250.5, and 236. The application should store
the monthly amounts in a six-element one-dimensional array. It then should calculate and display the two
output items. The total number of pounds sold is calculated by accumulating the array values. The
average number of pounds sold each month is calculated by dividing the total number of pounds sold by
the number of array elements.

Figure 9-11 Problem specification for the Brewers Coffee application
© 2013 Cengage Learning

To begin coding the Brewers Coffee application:

1. Open the Brewers Solution (Brewers Solution.sln) file contained in the
VB2012\Chap09\Brewers Solution folder. If necessary, open the designer window.
(The image in the picture box was downloaded from the Open Clip Art Library at
http://openclipart.org.)

2. Open the Code Editor window. Replace <your name> and <current date> in the
comments with your name and the current date, respectively.

3. Locate the btnCalc_Click procedure. First, you will declare a one-dimensional array
to store the amounts sold during the six-month period. Click the blank line above the
End Sub clause. Enter the following Dim statement:

Dim dblPoundsPerMonth() As Double = {170.5, 224,
190.5, 193,
250.5, 236}

4. Next, you will declare the variables that will store the total number of pounds sold and
the average number of pounds sold. Enter the following Dim statements:

Dim dblTotal As Double
Dim dblAvg As Double

Figure 9-12 shows three examples of code you could use to accumulate the values stored in the
array. In each example, a loop is used to add each array element’s value to the dblTotal
variable. Notice that you need to specify the highest array subscript in the Do…Loop and
For…Next statements, but not in the For Each…Next statement. The Do…Loop and For…Next
statements must also keep track of the array subscripts; this task is not necessary in the For
Each…Next statement. When each loop has finished processing, the dblTotal variable contains
the total number of pounds sold during the six-month period.

START HERE

Calculating the Total and Average Values L E S S ON A

535

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

To finish coding the Brewers Coffee application:

1. In the btnCalc_Click procedure, enter the comment and code shown in any of the three
examples from Figure 9-12.

2. Next, you will calculate the average sold by dividing the value stored in the dblTotal
variable by the number of array elements. Insert a blank line above the End Sub clause
and then enter the following comment and assignment statement:

' calculate average
dblAvg = dblTotal / dblPoundsPerMonth.Length

3. Finally, you can display the total and average numbers of pounds sold. Enter the
following comment and assignment statements:

' display total and average
lblTotal.Text = dblTotal.ToString("N2")
lblAvg.Text = dblAvg.ToString("N2")

4. Save the solution and then start the application. Click the Calculate button.
See Figure 9-13.

Example 1—Do…Loop statement
Dim intHighSub As Integer =
 dblPoundsPerMonth.GetUpperBound(0)
Dim intSub As Integer

' accumulate pounds sold
Do While intSub <= intHighSub
 dblTotal += dblPoundsPerMonth(intSub)
 intSub += 1
Loop

Example 2—For…Next statement
Dim intHighSub As Integer =
 dblPoundsPerMonth.GetUpperBound(0)

' accumulate pounds sold
For intSub As Integer = 0 To intHighSub
 dblTotal += dblPoundsPerMonth(intSub)
Next intSub

Example 3—For Each…Next statement
' accumulate pounds sold
For Each dblMonth As Double In dblPoundsPerMonth
 dblTotal += dblMonth
Next dblMonth

Figure 9-12 Examples of accumulating the array values
© 2013 Cengage Learning

START HERE

CH A P T E R 9 Arrays

536

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

5. Click the Exit button. Close the Code Editor window and then close the solution.

YOU DO IT 3!

Create a Visual Basic Windows application named YouDoIt 3. Save the application
in the VB2012\Chap09 folder. Add three labels and a button to the form. The button’s
Click event procedure should declare and initialize a one-dimensional Integer array.
Use any five integers to initialize the array. The procedure should total the five integers
and then display the result in the labels. Use the Do…Loop statement to calculate the
total to display in the first label. Use the For Each…Next statement to calculate the total
to display in the second label. Use the For…Next statement to calculate the total
to display in the third label. Code the procedure. Save the solution and then start and
test the application. Close the solution.

Finding the Highest Value
Figure 9-14 shows the problem specification for the Car Emporium application. The application
displays the highest commission amount earned during the month and the number of
salespeople who earned that amount.

Problem Specification

The sales manager at Car Emporium wants an application that displays the highest commission earned
during the month and the number of salespeople who earned that commission. Last month, the 10
salespeople were paid the following commission amounts: 2500, 3400, 1000, 3400, 2500, 1000,
2850, 3000, 2780, and 1890. The application should store the commission amounts in a 10-element
one-dimensional array and then examine each element in the array, looking for the highest amount. The
application will need to use a counter variable to keep track of the number of salespeople who were paid
the highest commission.

Figure 9-14 Problem specification for the Car Emporium application
© 2013 Cengage Learning

Figure 9-13 Total and average amounts shown in the interface
OpenClipArt.org/speciwoman

Ch09A video

Finding the Highest Value L E S S ON A

537

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

To open the Car Emporium application:

1. Open the Car Emporium Solution (Car Emporium Solution.sln) file contained in
the VB2012\Chap09\Car Emporium Solution folder. If necessary, open the designer
window. (The image in the picture box was downloaded from the Open Clip Art
Library at http://openclipart.org.)

2. Open the Code Editor window. Replace <your name> and <current date> in the
comments with your name and the current date, respectively.

3. Locate the btnGet_Click procedure. The procedure already contains the statement
to declare and initialize the 10-element array. It also contains the statements to
display the two output items.

Figure 9-15 shows the pseudocode and flowchart for the btnGet_Click procedure. The
procedure is responsible for determining the highest commission amount stored in the array
and the number of salespeople who were paid that amount. You will code the procedure’s loop
using the For…Next statement; however, you also could use the For Each…Next or Do…Loop
statements.

btnGet Click event procedure
1. assign the commission stored in the first array element as the highest commission
2. set the number of salespeople counter to 1
3. repeat for each element in the array
 if the commission stored in the current element is equal to the highest commission
 add 1 to the number of salespeople counter
 else
 if the commission stored in the current element is greater than the highest
 commission
 assign the current element’s commission as the highest commission
 set the number of salespeople counter to 1
 end if
 end if
 end repeat
4. display the highest commission and the number of salespeople who were paid the highest
 commission

Figure 9-15 Pseudocode and flowchart for the btnGet_Click procedure (continues)

START HERE

CH A P T E R 9 Arrays

538

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

To code and then test the btnGet_Click procedure:

1. First, you will declare a variable named intLastSub and initialize it to the last subscript
in the array. The intLastSub variable will be used by the For…Next statement to
traverse the array. Click the blank line below the array declaration statement and then
enter the following Dim statement:

Dim intLastSub As Integer =
intCommissions.GetUpperBound(0)

set the number of
salespeople counter to 1

current array
commission =
highest
commission

TF

display
highest
commission

stop

assign the first array
element’s commission
as the highest
commission

start

intSub

1 > 9

1

F

current array
commission >
highest
commission

T

assign current array
commission as highest
commission

set the number of
salespeople counter to 1

F

T

display number
of salespeople
counter

add 1 to number of
salespeople counter

Figure 9-15 Pseudocode and flowchart for the btnGet_Click procedure
© 2013 Cengage Learning

START HERE

(continued)

Finding the Highest Value L E S S ON A

539

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

2. The procedure will use a variable named intHighest to keep track of the highest
commission amount in the array. When searching an array for the highest (or lowest)
value, it’s a common programming practice to initialize the variable to the value stored
in the first array element. Enter the following Dim statement:

Dim intHighest As Integer = intCommissions(0)

3. Next, you will declare and initialize a counter variable to keep track of the number of
salespeople whose commission amount matches the value stored in the intHighest
variable. You will initialize the variable to 1 because, at this point, one salesperson (the
first one) was paid the commission amount currently stored in the intHighest variable.
Type the following Dim statement and then press Enter twice:

Dim intSalespeople As Integer = 1

4. Now you will use the For…Next statement to traverse the second through the last
elements in the array. Each element’s value will be compared, one at a time, to the value
stored in the intHighest variable. You don’t need to look at the first element because its
value is already contained in the intHighest variable. Enter the following For clause:

For intSub As Integer = 1 To intLastSub

5. Change the Next clause to Next intSub.

6. The first instruction in the loop will determine whether the commission stored in the
current array element is equal to the commission stored in the intHighest variable.
Click the blank line below the For clause and then enter the following If clause:

If intCommissions(intSub) = intHighest Then

7. If both commission amounts are equal, the selection structure’s true path will add 1 to
the intSalespeople counter variable. Enter the following assignment statement:

intSalespeople += 1

8. If both commission amounts are not equal, the selection structure’s false path will
determine whether the commission stored in the current array element is greater
than the commission stored in the intHighest variable. Enter the following Else
and If clauses:

Else
If intCommissions(intSub) > intHighest Then

9. If the commission in the current array element is greater than the commission in the
intHighest variable, the nested selection structure’s true path should assign the higher
value to the intHighest variable. It also should reset the number of salespeople counter
to 1 because, at this point, only one salesperson was paid that commission amount. Enter
the following assignment statements:

intHighest = intCommissions(intSub)
intSalespeople = 1

10. If necessary, delete the blank line above the nested End If clause. Save the solution and
then start the application. Click the Get Highest button. See Figure 9-16.

CH A P T E R 9 Arrays

540

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

11. Click the Exit button. Close the Code Editor window and then close the solution.

Figure 9-17 shows the code entered in the Get Highest button’s Click event procedure.

Private Sub btnGet_Click(sender As Object,
e As EventArgs) Handles btnGet.Click
 ' displays the highest commission and the
 ' number who were paid that amount

 Dim intCommissions() As Integer = {2500, 3400, 1000,
 3400, 2500, 1000,
 2850, 3000, 2780, 1890}
 Dim intLastSub As Integer =
 intCommissions.GetUpperBound(0)
 Dim intHighest As Integer = intCommissions(0)
 Dim intSalespeople As Integer = 1

 For intSub As Integer = 1 To intLastSub
 If intCommissions(intSub) = intHighest Then
 intSalespeople += 1
 Else
 If intCommissions(intSub) > intHighest Then
 intHighest = intCommissions(intSub)
 intSalespeople = 1
 End If
 End If
 Next intSub
 lblHighest.Text = intHighest.ToString("C0")
 lblSalespeople.Text = intSalespeople.ToString
End Sub

assigns the first element’s
value and the number 1 to
the appropriate variables

searches the second
through the last array
elements

Figure 9-17 Get Highest button’s Click event procedure
© 2013 Cengage Learning

Figure 9-16 Sample run of the Car Emporium application
OpenClipArt.org/majkel

Finding the Highest Value L E S S ON A

541

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

YOU DO IT 4!

Create a Visual Basic Windows application named YouDoIt 4. Save the application in
the VB2012\Chap09 folder. Add a label and a button to the form. The button’s Click
event procedure should declare and initialize a one-dimensional Double array. Use any
six numbers to initialize the array. The procedure should display (in the label) the
lowest value stored in the array. Code the procedure using the For…Next statement.
Save the solution and then start and test the application. Close the solution.

Sorting a One-Dimensional Array
In some applications, you might need to arrange the contents of an array in either ascending or
descending order. Arranging data in a specific order is called sorting. When an array is sorted in
ascending order, the first element in the array contains the smallest value and the last element
contains the largest value. When an array is sorted in descending order, on the other hand, the
first element contains the largest value and the last element contains the smallest value.

You can use the Array.Sort method to sort the values in a one-dimensional array in ascending
order. To sort the values in descending order, you first use the Array.Sort method to sort
the values in ascending order, and then use the Array.Reverse method to reverse the values.
Figure 9-18 shows the syntax of both methods. In each syntax, arrayName is the name of a
one-dimensional array.

You will use the Array.Sort and Array.Reverse methods in the Continent application, which you
finish coding in the next set of steps. The application stores the names of the seven continents in
a one-dimensional array named strContinents. It then allows the user to display the names in
a list box, in either ascending or descending order.

Array.Sort and Array.Reverse Methods
Syntax
Array.Sort(arrayName)
Array.Reverse(arrayName)

Example 1
Dim intScores() As Integer = {78, 90, 75, 83}
Array.Sort(intScores)
sorts the contents of the array in ascending order, as follows: 75, 78, 83, and 90

Example 2
Dim intScores() As Integer = {78, 90, 75, 83}
Array.Reverse(intScores)
reverses the contents of the array, placing the values in the following order: 83, 75, 90, and 78

Example 3
Dim intScores() As Integer = {78, 90, 75, 83}
Array.Sort(intScores)
Array.Reverse(intScores)
sorts the contents of the array in ascending order and then reverses the contents, placing the
values in descending order as follows: 90, 83, 78, and 75

Figure 9-18 Syntax and examples of the Array.Sort and Array.Reverse methods
© 2013 Cengage Learning

CH A P T E R 9 Arrays

542

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

To open the Continent application:

1. Open the Continent Solution (Continent Solution.sln) file contained in the
VB2012\Chap09\Continent Solution folder. If necessary, open the designer
window. (The image in the picture box was downloaded from the Open Clip Art
Library at http://openclipart.org.)

2. Open the Code Editor window. Replace <your name> and <current date> in the
comments with your name and the current date, respectively.

As shown in Figure 9-19, the form’s Declarations section contains the statements to declare
and initialize the strContinents array and the intLastSub variable, which stores the highest
subscript in the array. The array and variable were declared as class-level memory locations
because both need to be accessed by more than one procedure. To complete the application,
you need to code the btnAscending_Click and btnDescending_Click procedures.

To code both Click event procedures:

1. Locate the btnAscending_Click procedure. The lstContinents.Items.Clear()
statement in the procedure clears the contents of the list box. Click the blank line below
the ' sort and display comment and then enter the following code:

Array.Sort(strContinents)
For intSub As Integer = 0 To intLastSub

lstContinents.Items.Add(strContinents(intSub))
Next intSub

2. Next, locate the btnDescending_Click procedure. Here, too, the
lstContinents.Items.Clear() statement clears the contents of the list box.
Click the blank line below the ' sort and display comment and then enter the
following code:

Array.Sort(strContinents)
Array.Reverse(strContinents)
For intSub As Integer = 0 To intLastSub

lstContinents.Items.Add(strContinents(intSub))
Next intSub

Figure 9-20 shows most of the Continent application’s code. The Array.Sort and Array.Reverse
methods are shaded in the figure.

Figure 9-19 Private statements in the form’s Declarations section

START HERE

START HERE

Sorting a One-Dimensional Array L E S S ON A

543

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

To test the Continent application:

1. Save the solution and then start the application. Click the Ascending Order button to
display the continent names in ascending order. See Figure 9-21. (The list box’s Enabled
property is set to False.)

' class-level array and variable
Private strContinents() As String = {"North America", "Africa",
 "South America", "Antarctica",
 "Australia", "Asia", "Europe"}
Private intLastSub As Integer = strContinents.GetUpperBound(0)

Private Sub btnAscending_Click(sender As Object,
e As EventArgs) Handles btnAscending.Click
 ' sorts the array values in ascending order

 ' clear the contents of the list box
 lstContinents.Items.Clear()

 ' sort and display
 Array.Sort(strContinents)
 For intSub As Integer = 0 To intLastSub
 lstContinents.Items.Add(strContinents(intSub))
 Next intSub
End Sub

Private Sub btnDescending_Click(sender As Object,
e As EventArgs) Handles btnDescending.Click
 ' sorts the array values in descending order

 ' clear the contents of the list box
 lstContinents.Items.Clear()

 ' sort and display
 Array.Sort(strContinents)
 Array.Reverse(strContinents)
 For intSub As Integer = 0 To intLastSub
 lstContinents.Items.Add(strContinents(intSub))
 Next intSub
End Sub

class-level array and
variable declared in
the form’s Declarations
section

Figure 9-20 Most of the Continent application’s code
© 2013 Cengage Learning

START HERE

CH A P T E R 9 Arrays

544

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

2. Click the Descending Order button to display the continent names in
descending order.

3. Click the Exit button. Close the Code Editor window and then close the solution.

Lesson A Summary
l To refer to an element in a one-dimensional array:

Use the array’s name followed by the element’s subscript. The subscript is specified in a set
of parentheses immediately following the array name.

l To declare a one-dimensional array:

Use either of the syntax versions shown below. The highestSubscript argument in Version 1
is an integer that specifies the highest subscript in the array. Using Version 1’s syntax, the
computer automatically initializes the array elements. The initialValues section in Version 2
is a list of values separated by commas and enclosed in braces. The values are used to
initialize each element in the array.

Version 1: {Dim | Private | Static} arrayName(highestSubscript) As dataType

Version 2: {Dim | Private | Static} arrayName() As dataType = {initialValues}

l To determine the number of elements in a one-dimensional array:

Use the array’s Length property as follows: arrayName.Length. Alternatively, you can add
the number 1 to the value returned by the array’s GetUpperBound method.

l To determine the highest subscript in a one-dimensional array:

Use the array’s GetUpperBound method as follows: arrayName.GetUpperBound(0).
Alternatively, you can subtract the number 1 from the value stored in the array’s
Length property.

l To traverse (or look at) each element in a one-dimensional array:

Use a loop coded with one of the following statements: Do…Loop, For…Next, or
For Each…Next.

the Enabled property
is set to False

Figure 9-21 Continent names displayed in ascending order
OpenClipArt.org/lyo

Lesson A Summary L E S S ON A

545

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

l To process instructions for each element in a group:

Use the For Each…Next statement. The statement’s syntax is shown in Figure 9-10.

l To sort the values stored in a one-dimensional array in ascending order:

Use the Array.Sort method. The method’s syntax is Array.Sort(arrayName).

l To reverse the order of the values stored in a one-dimensional array:

Use the Array.Reverse method. The method’s syntax is Array.Reverse(arrayName).

Lesson A Key Terms
Array—a group of related variables that have the same name and data type and are stored in
consecutive locations in the computer’s internal memory

Array.Reverse method—reverses the order of the values stored in a one-dimensional array

Array.Sort method—sorts the values stored in a one-dimensional array in ascending order

Elements—the variables in an array

For Each…Next statement—used to code a loop whose instructions you want processed for
each element in a group

GetUpperBound method—returns an integer that represents the highest subscript in a specified
dimension of an array; when used with a one-dimensional array, the dimension is 0

Length property—one of the properties of an array; stores an integer that represents the number
of array elements

One-dimensional array—an array whose elements are identified by a unique subscript

Populating the array—refers to the process of initializing the elements in an array

Scalar variable—another name for a simple variable

Simple variable—a variable that is unrelated to any other variable in the computer’s internal
memory; also called a scalar variable

Sorting—the process of arranging data in a specific order

Subscript—a unique integer that identifies the position of an element in an array

Lesson A Review Questions
1. Which of the following declares a five-element one-dimensional array?

a. Dim dblAmounts(4) As Double

b. Dim dblAmounts(5) As Double

c. Dim dblAmounts(4) As Double =
{3.55, 6.70, 8, 4, 2.34}

d. both a and c

2. The strItems array is declared as follows: Dim strItems(20) As String. The intSub
variable keeps track of the array subscripts and is initialized to 0. Which of the following
Do clauses will process the loop instructions for each element in the array?

a. Do While intSub > 20

b. Do While intSub < 20

c. Do While intSub >= 20

d. Do While intSub <= 20

CH A P T E R 9 Arrays

546

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

3. The intSales array is declared as follows: Dim intSales() As Integer = {10000,
12000, 900, 500, 20000}. The statement intSales(3) = intSales(3) + 10
will .

a. replace the 500 amount with 10

b. replace the 500 amount with 510

c. replace the 900 amount with 10

d. replace the 900 amount with 910

4. The intSales array is declared as follows: Dim intSales() As Integer = {10000,
12000, 900, 500, 20000}. Which of the following loops will correctly add 100 to each
array element? The intSub variable contains the number 0 before the loop is processed.

a. Do While intSub <= 4
intSub = intSub + 100

Loop

b. Do While intSub <= 4
intSales = intSales + 100

Loop

c. Do While intSub < 5
intSales(intSub) += 100

Loop

d. none of the above

5. The intNums array is declared as follows: Dim intNums() As Integer = {10, 5, 7, 2}.
Which of the following blocks of code correctly calculates the average value stored in the
array? The intTotal, intSub, and dblAvg variables contain the number 0 before the
loop is processed.

a. Do While intSub < 4
intNums(intSub) = intTotal + intTotal
intSub += 1

Loop
dblAvg = intTotal / intSub

b. Do While intSub < 4
intTotal += intNums(intSub)
intSub = intSub + 1

Loop
dblAvg = intTotal / intSub

c. Do While intSub < 4
intTotal += intNums(intSub)
intSub += 1

Loop
dblAvg = intTotal / intSub – 1

d. Do While intSub < 4
intTotal = intTotal + intNums(intSub)
intSub = intSub + 1

Loop
dblAvg = intTotal / (intSub – 1)

Lesson A Review Questions L E S S ON A

547

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

6. What will the code in Review Question 5’s answer a assign to the dblAvg variable?

a. 0

b. 5

c. 6

d. 8

7. What will the code in Review Question 5’s answer b assign to the dblAvg variable?

a. 0

b. 5

c. 6

d. 8

8. What will the code in Review Question 5’s answer c assign to the dblAvg variable?

a. 0

b. 5

c. 6

d. 8

9. What will the code in Review Question 5’s answer d assign to the dblAvg variable?

a. 0

b. 5

c. 6

d. 8

10. Which of the following statements sorts the intQuantities array in ascending order?

a. Array.Sort(intQuantities)

b. intQuantities.Sort

c. Sort(intQuantities)

d. SortArray(intQuantities)

11. Which of the following statements assigns (to the intElements variable) the number of
elements contained in the intNums array?

a. intElements = Len(intNums)

b. intElements = Length(intNums)

c. intElements = intNums.Len

d. intElements = intNums.Length

12. Which of the following assigns the string “Rover” to the fifth element in a
one-dimensional array named strPetNames?

a. strPetNames(4) = "Rover"

b. strPetNames[4] = "Rover"

c. strPetNames(5) = "Rover"

d. strPetNames.Items.Add(5) = "Rover"

CH A P T E R 9 Arrays

548

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

13. Which of the following assigns the number 1 to each element in a five-element,
one-dimensional Integer array named intCounters?

a. For intSub As Integer = 0 To 4
intCounters(intSub) = 1

Next intSub

b. Dim intSub As Integer
Do While intSub < 5

intCounters(intSub) = 1
intSub += 1

Loop

c. For intSub As Integer = 1 To 5
intCounters(intSub - 1) = 1

Next intSub

d. all of the above

14. The intNums array is declared as follows: Dim intNums() As Integer = {10, 5, 7, 2}.
Which of the following blocks of code correctly calculates the average value stored in
the array? The intTotal, intSub, and dblAvg variables contain the number 0 before
the loop is processed.

a. For Each intX As Integer In intNums
intTotal += intX

Next intX
dblAvg = intTotal / intNums.Length

b. For Each intX As Integer In intNums
intTotal += intNums(intX)

Next intX
dblAvg = intTotal / intX

c. For Each intX As Integer In intNums
intTotal += intNums(intX)
intX += 1

Next intX
dblAvg = intTotal / intX

d. none of the above

15. Which of the following statements assigns the strNames array’s highest subscript to the
intLastSub variable?

a. intLastSub = strNames.Length

b. intLastSub = strNames.GetUpperBound(0) - 1

c. intLastSub = strNames.GetUpperBound(0)

d. both a and b

Lesson A Exercises

1. Write the statement to declare a procedure-level one-dimensional array named
intQuantities. The array should be able to store 15 integers. Then write the
statement to store the number 10 in the second element.

2. Write the statement to declare a class-level one-dimensional array named
strFurniture. The array should be able to store 5 strings. Then write the statement to
store the string “Chair” in the third element.

3. Write the statement to declare and initialize a procedure-level one-dimensional array
named dblRates. Use the following numbers to initialize the array: 5.6, 7.5, and 3.4.

INTRODUCTORY

INTRODUCTORY

INTRODUCTORY

Lesson A Exercises L E S S ON A

549

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

4. In this exercise, you modify the Car Emporium application coded in the lesson. Use
Windows to make a copy of the Car Emporium Solution folder. Rename the copy
Modified Car Emporium Solution-DoLoop. Open the Car Emporium Solution (Car
Emporium Solution.sln) file contained in the Car Emporium Solution-DoLoop folder.
Open the designer window. Modify the btnGet_Click procedure to use the Do…Loop
statement rather than the For…Next statement. Save the solution and then start and
test the application. Close the Code Editor window and then close the solution.

5. In this exercise, you modify the Car Emporium application coded in the lesson.
Use Windows to make a copy of the Car Emporium Solution folder. Rename the
copy Modified Car Emporium Solution-ForEachNext. Open the Car Emporium
Solution (Car Emporium Solution.sln) file contained in the Car Emporium
Solution-ForEachNext folder. Open the designer window. Modify the btnGet_Click
procedure to use the For Each…Next statement rather than the For…Next statement.
Save the solution and then start and test the application. Close the Code Editor
window and then close the solution.

6. Open the Chocolate Solution (Chocolate Solution.sln) file contained in the VB2012\
Chap09\Chocolate Solution folder. If necessary, open the designer window. Open the
Code Editor window.

a. Enter the statement to declare and initialize a class-level one-dimensional
array named dblPounds. Use the following numbers to initialize the array: 35.6,
15, 67.9, 78.8, 2.5, and 7.

b. The btnForNext_Click procedure should display the contents of the
dblPounds array in the lstPounds control. Use the For…Next statement to
code the procedure. Save the solution and then start the application. Test
the procedure.

c. The btnForEachNext_Click procedure should display the contents of the
dblPounds array in the lstPounds control. Use the For Each…Next statement
to code the procedure. Save the solution and then start the application. Test
the procedure.

d. The btnDoLoop_Click procedure should display the contents of the
dblPounds array in the lstPounds control. Use the Do…Loop statement to
code the procedure. Save the solution and then start the application. Test the
procedure.

e. The btnAscend_Click procedure should sort the dblPounds array in
ascending order. Save the solution and then start the application. Click the
Ascending Sort button, and then click the For…Next button.

f. The btnDescend_Click procedure should sort the dblPounds array in descending
order. Save the solution and then start the application. Click the Descending Sort
button, and then click the Do…Loop button. Close the Code Editor window and
then close the solution.

7. Open the Tips Solution (Tips Solution.sln) file contained in the VB2012\Chap09\Tips
Solution folder. If necessary, open the designer window. Open the Code Editor window.

a. Enter the statement to declare and initialize a class-level one-dimensional
array named intTips. Use the following numbers to initialize the array: 101, 95,
67, and 83.

b. The btnForNext_Click procedure should display the average tip. Use the For…Next
statement to code the procedure. Save the solution and then start the application.
Test the procedure.

INTRODUCTORY

INTRODUCTORY

INTRODUCTORY

INTRODUCTORY

CH A P T E R 9 Arrays

550

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

c. The btnForEachNext_Click procedure should display the average tip. Use the For
Each…Next statement to code the procedure. Save the solution and then start the
application. Test the procedure.

d. The btnDoLoop_Click procedure should display the average tip. Use the Do…Loop
statement to code the procedure. Save the solution and then start the application.
Test the procedure. Close the Code Editor window and then close the solution.

8. In this exercise, you modify the Car Emporium application coded in the lesson. Use
Windows to make a copy of the Car Emporium Solution folder. Rename the copy
Modified Car Emporium Solution. Open the Car Emporium Solution (Car Emporium
Solution.sln) file contained in the Modified Car Emporium Solution folder. Open the
designer window. In addition to displaying the highest commission amount and the
number of salespeople who were paid the highest amount, the btnGet_Click procedure
should display the lowest commission amount and the number of salespeople who were
paid the lowest amount. Make the appropriate modifications to the interface and code.
Save the solution and then start and test the application. Close the Code Editor window
and then close the solution.

9. Open the Sales Solution (Sales Solution.sln) file contained in the VB2012\Chap09\Sales
Solution folder. If necessary, open the designer window. The interface allows the user to
enter a sales amount. The application should display the number of salespeople selling
at least that amount. Open the Code Editor window. The sales amounts are stored in
the intSales array. Finish coding the application. Save the solution and then start and
test the application. Close the Code Editor window and then close the solution.

10. Write the code to multiply by 3 the number stored in the first element in a one-
dimensional array named intNumbers. Store the result in the intResult variable.

11. Write the code to add together the numbers stored in the first and second elements in a
one-dimensional array named intNumbers. Display the sum in the lblSum control.

12. Open the Quantity Solution (Quantity Solution.sln) file contained in the VB2012\
Chap09\Quantity Solution folder. If necessary, open the designer window. Open the
Code Editor window. The btnAdd_Click procedure should add the number 1 to each
element in the intQuantities array and also display the array’s contents in the
lstQuantities control; use the Do…Loop statement. The btnSubtract_Click procedure
should subtract the number 1 from each element in the intQuantities array and also
display the array’s contents in the lstQuantities control; use the For…Next statement.
Save the solution and then start and test the application. Close the Code Editor window
and then close the solution.

13. Open the Test Scores Solution (Test Scores Solution.sln) file contained in the VB2012\
Chap09\Test Scores Solution folder. If necessary, open the designer window. The
Average button’s Click event procedure should display the number of test scores
contained in the one-dimensional array and also the average test score. Code the
procedure. Save the solution and then start and test the application. Close the Code
Editor window and then close the solution.

14. Open the Update Prices Solution (Update Prices Solution.sln) file contained in the
VB2012\Chap09\Update Prices Solution folder. If necessary, open the designer window.
The Increase Prices button’s Click event procedure should ask the user for a percentage
amount by which each price stored in the array should be increased. It then should
increase each price by that amount, displaying each increased price (right-aligned with
two decimal places) in the list box. (Hint: You can clear the contents of a list box using
the Items collection’s Clear method.) Save the solution and then start the application.
Click the Increase Prices button. Increase each price by 5%. Close the Code Editor
window and then close the solution.

INTRODUCTORY

INTERMEDIATE

INTERMEDIATE

INTERMEDIATE

INTERMEDIATE

INTERMEDIATE

INTERMEDIATE

Lesson A Exercises L E S S ON A

551

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

15. In this exercise, you modify the application from Exercise 14. The modified application
allows the user to update a specific price. Use Windows to make a copy of the Update
Prices Solution folder. Rename the folder Modified Update Prices Solution. Open the
Update Prices Solution (Update Prices Solution.sln) file contained in the Modified
Update Prices Solution folder. Open the designer window. Modify the Increase Prices
button’s Click event procedure so it also asks the user to enter a number from 1 through
10. If the user enters the number 1, the procedure should update the first price in the
array. If the user enters the number 2, the procedure should update the second price in
the array, and so on. Save the solution and then start the application. Click the Increase
Prices button. Increase the second price by 10%. Click the Increase Prices button again.
This time, increase the tenth price by 5%. (The second price in the list box should still
reflect the 10% increase.) Close the Code Editor window and then close the solution.

16. Open the Scores Solution (Scores Solution.sln) file contained in the VB2012\Chap09\
Scores Solution folder. If necessary, open the designer window. Open the Code Editor
window and then open the code template for the btnDisplay control’s Click event
procedure. Declare a 20-element, one-dimensional Integer array named intScores.
Assign the following 20 numbers to the array: 88, 72, 99, 20, 66, 95, 99, 100, 72, 88, 78,
45, 57, 89, 85, 78, 75, 88, 72, and 88. The procedure should prompt the user to enter a
score from 0 through 100. It then should display (in a message box) the number of
students who earned that score. Code the procedure. Save the solution and then start
the application. Use the application to answer the following questions, and then close
the Code Editor window and the solution:

How many students earned a score of 72?

How many students earned a score of 88?

How many students earned a score of 20?

How many students earned a score of 99?

17. In this exercise, you modify the application from Exercise 16. The modified application
allows the user to display the number of students earning a score within a specific range.
Use Windows to make a copy of the Scores Solution folder. Rename the folder Modified
Scores Solution. Open the Scores Solution (Scores Solution.sln) file contained in the
Modified Scores Solution folder. Open the designer and Code Editor windows. Modify
the btnDisplay control’s Click event procedure to prompt the user to enter both a
minimum score and a maximum score. The procedure then should display (in a
message box) the number of students who earned a score within that range. Save the
solution and then start the application. Use the application to answer the following
questions, and then close the Code Editor window and the solution:

How many students earned a score from 70 through 79?

How many students earned a score from 65 through 85?

How many students earned a score from 0 through 50?

18. In this exercise, you code an application that generates and displays six unique random
numbers for a lottery game. Each lottery number can range from 1 through 54 only.
Open the Lottery Game Solution (Lottery Game Solution.sln) file contained in the
VB2012\Chap09\Lottery Game Solution folder. If necessary, open the designer window.
(The image in the picture box was downloaded from the Open Clip Art Library at
http://openclipart.org.) Code the Display Lottery Numbers button’s Click event
procedure so that it displays six unique random numbers in the interface. (Hint: Store
the numbers in a one-dimensional array.) Save the solution and then start the

ADVANCED

ADVANCED

ADVANCED

ADVANCED

CH A P T E R 9 Arrays

552

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

application. Click the Display Lottery Numbers button several times. Each time you
click the button, six unique random numbers between 1 and 54 (inclusive) should
appear in the interface. Close the Code Editor window and then close the solution.

19. In this exercise, you learn about the ReDim statement.

a. Research the Visual Basic ReDim statement. What is the purpose of the statement?
What is the purpose of the Preserve keyword?

b. Open the ReDim Solution (ReDim Solution.sln) file contained in the VB2012\
Chap09\ReDim Solution folder. If necessary, open the designer window. Open the
Code Editor window and locate the btnDisplay control’s Click event procedure.
Study the existing code, and then modify the procedure so that it stores any number
of sales amounts in the intSales array. (Hint: Declare the array using empty sets of
parentheses and braces. Use the ReDim statement to add an element to the array.)

c. Save the solution and then start the application. Click the Display Sales button
and then enter the following sales amounts, one at a time: 700, 550, and 800. Click
the Cancel button in the input box. The three sales amounts should appear in
the list box.

d. Click the Display Sales button again and then enter the following sales amounts, one
at a time: 5, 9, 45, 67, 8, and 0. Click the Cancel button in the input box. This time,
six sales amounts should appear in the list box. Close the Code Editor window and
then close the solution.

DISCOVERY

Lesson A Exercises L E S S ON A

553

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

& LESSON B
After studying Lesson B, you should be able to:

l Associate a list box with a one-dimensional array

l Use a one-dimensional array as an accumulator or a counter

l Explain the relationship between the elements in parallel one-dimensional arrays

l Create parallel one-dimensional arrays

l Locate information in two parallel one-dimensional arrays

Arrays and Collections
It’s not uncommon for programmers to associate the items in a list box with the values stored in
an array. This is because the items in a list box belong to a collection, and collections and arrays
have several things in common. First, each is a group of individual objects treated as one unit.
Second, each individual object in the group is identified by a unique number. The unique
number is called an index when referring to a collection, but a subscript when referring to an
array. Third, both the first index in a collection and the first subscript in an array are 0. These
commonalities allow you to associate the list box items and array elements by their positions
within their respective groups. In other words, you can associate the first item in a list box with
the first element in an array, the second item with the second element, and so on.

To associate a list box with an array, you first add the appropriate items to the list box. You then
store each item’s related value in its corresponding position in the array. You will use a list box
and a one-dimensional array in the Rose Performing Arts Center application, which you code
next. Figure 9-22 shows the application’s problem specification.

Problem Specification

The manager at Rose Performing Arts Center wants an application that displays the price of a ticket.
The price is based on the seating section, as shown here. The application’s interface should provide a
list box from which the user can select the seating section. The application should store the prices in
a four-element one-dimensional array, and then use the index of the selected list box item to access
the appropriate price from the array.
Section Price ($)
A 103.00
B 95.00
C 75.50
D 32.50

Figure 9-22 Problem specification for the Rose Performing Arts Center application
© 2013 Cengage Learning

To begin coding the Rose Performing Arts Center application:

1. If necessary, start Visual Studio 2012. Open the Rose Solution (Rose Solution.sln) file
contained in the VB2012\Chap09\Rose Solution folder. If necessary, open the designer
window. (The image in the picture box was downloaded from the Open Clip Art Library
at http://openclipart.org.)

2. Open the Code Editor window. Replace <your name> and <current date> in the
comments with your name and the current date, respectively.

Recall that the
items in a list
box belong to
the Items
collection.

START HERE

CH A P T E R 9 Arrays

554

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

3. First, you will fill the list box with values and then select the first item in the list. Open
the code template for the form’s Load event procedure and then enter the following lines
of code:

lstSection.Items.Add("A")
lstSection.Items.Add("B")
lstSection.Items.Add("C")
lstSection.Items.Add("D")
lstSection.SelectedIndex = 0

4. As the problem specification states, the ticket prices should be stored in a one-
dimensional array. You can declare the array in the btnDisplay_Click procedure, making
it a procedure-level array. Or, you can declare it in the form’s Declarations section,
making it a class-level array. In this case, you will use a class-level array so that the array
will not need to be created each time the user clicks the Display Price button. Click the
blank line below the Public Class frmMain clause and then press Enter to insert
another blank line. Enter the following array declaration statement:

Private dblPrices() As Double = {103, 95, 75.5, 32.5}

The array declaration statement initializes the first array element to 103, which is the price
associated with the first item in the list box (A). The remaining array elements are initialized to
the prices corresponding to their list box items. The relationship between the list box items and
the array elements is illustrated in Figure 9-23.

To finish coding the Rose Performing Arts Center application:

1. When the user clicks the Display Price button, the button’s Click event procedure should
display the appropriate price in the Ticket price box. Open the code template for the
btnDisplay_Click procedure. Enter the following comments. Press Enter twice after
typing the second comment.

' displays the array price corresponding
' to the selected list box item

2. The procedure will use the index of the selected list box item to access the appropriate
price from the dblPrices array. Enter the following Dim statement:

Dim intSub As Integer = lstSection.SelectedIndex

3. If the first item is selected in the list box, the Dim statement you entered in Step 2
will initialize the intSub variable to 0. If the second item is selected, it will initialize
the variable to 1, and so on. As a result, you can use the intSub variable to access the
appropriate price from the array. Enter the following assignment statement:

lblPrice.Text = dblPrices(intSub).ToString("C2")

lstSection items dblPrices array
A
B
C
D

103.0
 95.0
 75.5
 32.5

the subscripts are
0, 1, 2, and 3

the indexes are
0, 1, 2, and 3

Figure 9-23 Illustration of the relationship between the list box and array
© 2013 Cengage Learning

START HERE

Arrays and Collections L E S S ON B

555

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Figure 9-24 shows most of the code for the Rose Performing Arts Center application.

To test the Rose Performing Arts Center application’s code:

1. Save the solution and then start the application. Click the Display Price button.
$103.00 appears in the Ticket price box, as shown in Figure 9-25.

2. On your own, verify that the application displays the appropriate ticket price for the
remaining list box items.

3. Click the Exit button.

If a new item is added to the lstSection control, the programmer will need to enter its
corresponding price in the dblPrices array. If the programmer neglects to do so, a run
time error will occur when the user selects the new item in the list and then clicks the Display
Price button. This is because the button’s Click event procedure will try to access a memory

Private dblPrices() As Double = {103, 95, 75.5, 32.5}

PrivateSub frmMain_Load(sender As Object,
e As EventArgs) Handles Me.Load
 lstSection.Items.Add("A")
 lstSection.Items.Add("B")
 lstSection.Items.Add("C")
 lstSection.Items.Add("D")
 lstSection.SelectedIndex = 0

End Sub

Private Sub btnDisplay_Click(sender As Object,
e As EventArgs) Handles btnDisplay.Click
 ' displays the array price corresponding
 ' to the selected list box item

 Dim intSub As Integer = lstSection.SelectedIndex
 lblPrice.Text = dblPrices(intSub).ToString("C2")
End Sub

class-level array
declared in the form’s
Declarations section

uses the selected
item’s index as the
array subscript

Figure 9-24 Most of the code for the Rose Performing Arts Center application
© 2013 Cengage Learning

you can use the
Alt key to show/hide
the access keys

Figure 9-25 Ticket price displayed in the interface
OpenClipArt.org/Merlin2525

START HERE

CH A P T E R 9 Arrays

556

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

location that is outside the bounds of the array. Before closing the Rose Performing Arts
Center application, you will observe this run time error.

To modify and then test the application’s code:

1. Click the blank line above the End Sub clause in the form’s Load event procedure, and
then enter the following statement:

lstSection.Items.Add(“E”)

2. Save the solution and then start the application. Click E in the Section list box and
then click the Display Price button. A run time error occurs because this seat section
does not have a corresponding price in the dblPrices array. An arrow points to the
statement where the error was encountered, and the statement is highlighted. In
addition, the Error Correction window opens and provides information pertaining to
the error. In this case, the information indicates that the statement is trying to access an
element that is outside the bounds of the array.

3. Place your mouse pointer on intSub in the highlighted statement, as shown in
Figure 9-26. The intSub variable contains the number 4, which is not a valid subscript
for the dblPrices array. The valid subscripts are 0, 1, 2, and 3.

4. Click DEBUG on the menu bar and then click Stop Debugging.

Before accessing an individual array element, you should verify that the subscript you are using
is within the acceptable range for the array. The acceptable range would be a number that is
greater than or equal to 0 but less than or equal to the highest subscript in the array. In this
application, the subscript will always be at least 0 because it is associated with the list box’s
index. Therefore, in this application, you only need to verify that the subscript is less than or
equal to the highest subscript in the array.

the valid array subscripts
are 0 through 3

Error Correction window

the intSub variable
contains 4, which is an
invalid subscript

Figure 9-26 Result of the run time error caused by an invalid subscript

START HERE

Arrays and Collections L E S S ON B

557

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

To continue modifying and testing the application’s code:

1. Modify the btnDisplay_Click procedure by adding the selection structure shown in
Figure 9-27. Be sure to move the lblPrice.Text = dblPrices(intSub).ToString("C2")
statement into the selection structure’s true path.

2. Save the solution and then start the application. Click E in the Section list box and
then click the Display Price button. This time, N/A appears in the Ticket price box.
Click the Exit button.

3. Delete the lstSection.Items.Add("E") statement from the form’s Load event
procedure.

4. Save the solution and then start and test the application to verify that it is still working
correctly.

5. Click the Exit button. Close the Code Editor window and then close the solution.

Accumulator and Counter Arrays
One-dimensional arrays are often used to either accumulate or count related values; such arrays
are commonly referred to as accumulator arrays and counter arrays, respectively. You will use
an accumulator array in the Warren School application, which you finish coding next. The
application’s problem specification is shown in Figure 9-28.

Problem Specification

Warren School is having its annual Chocolate Fund Raiser event. Students sell the following five types of
candy: Choco Bar, Choco Bar-Peanuts, Kit Kat, Peanut Butter Cups, and Take 5 Bar. The school principal
wants an application that allows her to enter the amount of each candy type sold by each student. The
application’s interface will provide a list box for entering the candy type, and a text box for entering the
amount sold. The application will use a five-element one-dimensional array to accumulate the amounts
sold. It will display the total number sold for each candy type in label controls in the interface.

Figure 9-28 Problem specification for the Warren School application
© 2013 Cengage Learning

add this selection
structure

Figure 9-27 Modified btnDisplay_Click procedure

START HERE

CH A P T E R 9 Arrays

558

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

To open the Warren School application:

1. Open the Warren Solution (Warren Solution.sln) file contained in the VB2012\
Chap09\Warren Solution folder. If necessary, open the designer window. (The image
in the picture box was downloaded from the Open Clip Art Library at
http://openclipart.org.)

2. Open the Code Editor window. Replace <your name> and <current date> in the
comments with your name and the current date, respectively.

The form’s Load event procedure fills the list box with the five candy types and then selects
the first item in the list. To complete the application, you just need to finish coding the
btnAdd_Click procedure, which should accumulate the amounts sold by candy type.
The procedure will accomplish its task using a one-dimensional accumulator array named
intCandies. The array will have five elements, each corresponding to an item listed in the
list box. The first array element will correspond to the Choco Bar item, the second array
element to the Choco Bar-Peanuts item, and so on. Each array element will be used to
accumulate the sales of its corresponding list box item.

To complete the btnAdd_Click procedure:

1. Locate the btnAdd_Click procedure. Click the blank line below the ' declare array
and variables comment.

2. First, you will declare the intCandies array. The array will need to retain its values until
the application ends. You can accomplish this by declaring the array in either the form’s
Declarations section (using the Private keyword to make it a class-level array) or in the
btnAdd_Click procedure (using the Static keyword to make it a static procedure-level
array); you will use the latter approach. Like static variables, which you learned about in
Chapter 3, static arrays remain in memory and retain their values until the application
ends. Enter the following declaration statement:

Static intCandies(4) As Integer

3. The procedure will also use two Integer variables: one to store the amount sold and
one to store the index of the item selected in the list box. Enter the following Dim
statements. Press Enter twice after typing the last Dim statement.

Dim intSold As Integer
Dim intSub As Integer

4. Now you will convert the contents of the txtSold control to Integer and then store the
result in the intSold variable. Enter the following TryParse method:

Integer.TryParse(txtSold.Text, intSold)

5. Next, you will assign the index of the selected list box item to the intSub variable. Enter
the following assignment statement:

intSub = lstCandy.SelectedIndex

6. You will use the number stored in the intSub variable to update the appropriate
array element, but only if the number is within the acceptable range for the array.
The acceptable range is from 0 through the highest array subscript. As in the
previous application, the subscript in this application will always be at least 0 because
it is associated with the list box’s index. Therefore, you only need to verify that the
subscript is less than or equal to the highest subscript in the array. Click the blank line
below the ' update array value comment and then enter the following If clause and
assignment statement:

START HERE

START HERE

Accumulator and Counter Arrays L E S S ON B

559

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

If intSub <= intCandies.GetUpperBound(0) Then
intCandies(intSub) += intSold

7. If the intSub variable’s value is not less than or equal to the highest array subscript, you
will display an appropriate message. Enter the following lines of code:

Else
MessageBox.Show("Can't update this candy's sales.",

"Warren School",
MessageBoxButtons.OK,
MessageBoxIcon.Information)

8. If necessary, delete the blank line above the End If clause.

9. Finally, you will enter the code to display the array values in the interface. Click the
blank line below the ' display array values comment and then enter the following
five assignment statements:

lblChocoBar.Text = intCandies(0).ToString
lblChocoBarPeanuts.Text = intCandies(1).ToString
lblKitKat.Text = intCandies(2).ToString
lblPeanutButCups.Text = intCandies(3).ToString
lblTake5Bar.Text = intCandies(4).ToString

Figure 9-29 shows the code entered in the btnAdd_Click procedure.

Private Sub btnAdd_Click(sender As Object,
e As EventArgs) Handles btnAdd.Click

' add amount sold to the appropriate total

' declare array and variables
Static intCandies(4) As Integer
Dim intSold As Integer
Dim intSub As Integer

Integer.TryParse(txtSold.Text, intSold)
intSub = lstCandy.SelectedIndex

' update array value
If intSub <= intCandies.GetUpperBound(0) Then

intCandies(intSub) += intSold
Else

MessageBox.Show("Can't update this candy's sales.",
"Warren School",
MessageBoxButtons.OK,
MessageBoxIcon.Information)

End If

' display array values
lblChocoBar.Text = intCandies(0).ToString
lblChocoBarPeanuts.Text = intCandies(1).ToString
lblKitKat.Text = intCandies(2).ToString
lblPeanutButCups.Text = intCandies(3).ToString
lblTake5Bar.Text = intCandies(4).ToString

txtSold.Focus()
End Sub

static procedure-level
array

uses the selected
item’s index as the
array subscript

Figure 9-29 btnAdd_Click procedure
© 2013 Cengage Learning

CH A P T E R 9 Arrays

560

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

To test the Warren School application:

1. Save the solution and then start the application. Type 100 in the Sold box and then click
the Add to Total button. The number 100 appears in the Choco Bar label.

2. Click Kit Kat in the Candy list box. Change the 100 in the Sold box to 45 and then
click the Add to Total button. Now change the 45 in the Sold box to 36 and then click
the Add to Total button. Finally, change the 36 in the Sold box to –6 (a negative
number 6) and then click the Add to Total button. See Figure 9-30.

3. On your own, test the application using different candy types and sales amounts.

4. Click the Exit button. Close the Code Editor window and then close the solution.

YOU DO IT 5!

Create a Visual Basic Windows application named YouDoIt 5. Save the application in
the VB2012\Chap09 folder. Add two list boxes and a button to the form. The button’s
Click event procedure should declare and initialize a one-dimensional Integer array.
Use any 10 numbers to initialize the array. The procedure should use the
For Each…Next statement to display the contents of the array in the first list box.
The procedure should then use the For…Next statement to increase each array
element’s value by 2. Finally, it should use the Do…Loop statement to display
the updated results in the second list box. Code the procedure. Save the solution
and then start and test the application. Close the solution.

Parallel One-Dimensional Arrays
Figure 9-31 shows the problem specification for the Treasures Gift Shoppe. The application
should display the price of the item corresponding to the ID entered by the gift shop’s owner.

START HERE

Figure 9-30 Array values displayed in the interface
OpenClipArt.org/kunto

Parallel One-Dimensional Arrays L E S S ON B

561

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Problem Specification

Takoda Tapahe, the owner of a small gift shop named Treasures Gift Shoppe, wants an application
that allows her to enter an item’s ID. The application should display the item’s price. A portion of the
gift shop’s price list is shown here. The application should store the price list in an array.
Item ID Price
BX35 13
CR20 10
FE15 12
KW10 24
MM67 4

Figure 9-31 Problem specification for the Treasures Gift Shoppe
© 2013 Cengage Learning

As you learned in Lesson A, all of the variables in an array have the same data type. So how can
you store a price list that includes a string (the ID) and a number (the price) in an array? One
solution is to use two one-dimensional arrays: a String array to store the IDs and an Integer
array to store the prices. Both arrays are illustrated in Figure 9-32.

The arrays in Figure 9-32 are referred to as parallel arrays, which are two or more arrays whose
elements are related by their positions in the arrays; in other words, they are related by their
subscripts. The arrays are parallel because each element in the strIds array corresponds to
the element located in the same position in the intPrices array. For example, the item
whose product ID is BX35 [strIds(0)] has a price of $13 [intPrices(0)]. Likewise, the
item whose product ID is CR20 [strIds(1)] has a price of $10 [intPrices(1)]. The same
relationship is true for the remaining elements in both arrays. To determine an item’s price, you
locate the item’s ID in the strIds array and then view its corresponding element in the
intPrices array.

To begin coding the Treasures Gift Shoppe application:

1. Open the Treasures Solution (Treasures Solution.sln) file contained in the
VB2012\Chap09\Treasures Solution-Parallel folder. If necessary, open the designer
window. The text box’s CharacterCasing and MaxLength properties are set to Upper
and 4, respectively. Recall that when a text box’s CharacterCasing property is set to
Upper, any letters the user types will appear in uppercase. When a text box’s
MaxLength property is set to 4, the user can enter a maximum of four characters in
the text box. See Figure 9-33. (The image in the picture box was downloaded from
the Open Clip Art Library at http://openclipart.org.)

BX35

CR20

FE15

KW10

MM67

strIds(0) intPrices(0)

intPrices(1)

intPrices(2)

intPrices(3)

intPrices(4)

strIds(1)

strIds(2)

strIds(3)

strIds(4)

13

10

12

24

4

Figure 9-32 Illustration of two parallel one-dimensional arrays
© 2013 Cengage Learning

START HERE

CH A P T E R 9 Arrays

562

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

2. Open the Code Editor window. Replace <your name> and <current date> in the
comments with your name and the current date, respectively.

3. First, you will declare and initialize the two parallel one-dimensional arrays. Click the
blank line below the ' declare parallel arrays comment in the form’s Declarations
section, and then enter the following array declaration statements:

Private strIds() As String =
{"BX35", "CR20", "FE15", "KW10", "MM67"}

Private intPrices() As Integer = {13, 10, 12, 24, 4}

Figure 9-34 shows the pseudocode and flowchart for the Display Price button’s Click event
procedure.

the CharacterCasing and
MaxLength properties are
set to Upper and 4,
respectively

Figure 9-33 User interface for the Treasures Gift Shoppe application
OpenClipArt.org/secretlondon

btnDisplay Click event procedure
1. assign ID to a variable
2. repeat until either the end of the strIds array is reached or the ID is located in the array
 add 1 to the array subscript to search the next element in the array
 end repeat
3. if the ID was located in the strIds array
 display the price contained in the same location in the intPrices array
 else
 display “Invalid ID” message in a message box
 end if

Figure 9-34 Pseudocode and flowchart for the btnDisplay_Click procedure (continues)

Parallel One-Dimensional Arrays L E S S ON B

563

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

To finish coding the Treasures Gift Shoppe application:

1. Open the btnDisplay_Click procedure. Type the following comment and then press
Enter twice:

' displays the price associated with an ID

2. The procedure will use a String variable to store the ID entered by the user, and use an
Integer variable to keep track of the array subscripts while the array is being searched.
Enter the following two declaration statements. Press Enter twice after typing the
second statement.

Dim strSearchForId As String
Dim intSub As Integer

3. The first step in the pseudocode and flowchart is to assign the ID to a variable. Type the
following assignment statement and then press Enter twice:

strSearchForId = txtId.Text

end of strIds
array reached
or ID located

TF

assign ID to a variable

start

add 1 to array subscript

ID located in
strIds array

T

display price from
same location in
intPrices array

F

display “Invalid
ID” message in
a message box

stop

Figure 9-34 Pseudocode and flowchart for the btnDisplay_Click procedure
© 2013 Cengage Learning

(continued)

START HERE

CH A P T E R 9 Arrays

564

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

4. Now you will use a loop to search each element in the strIds array, stopping either
when the end of the array is reached or when the ID is located in the array. Enter the
following comments and code:

' search the strIds array for the ID
' continue searching until the end of
' the array or the ID is found
Do Until intSub = strIds.Length OrElse

strSearchForId = strIds(intSub)
intSub += 1

Loop

5. Finally, you need to use a selection structure to determine why the loop ended. You can
make this determination by looking at the value in the intSub variable. If the loop ended
because it reached the end of the strIds array without locating the ID, the intSub
variable’s value will be equal to the array’s length. On the other hand, if the loop ended
because it located the ID in the strIds array, the intSub variable’s value will be less
than the array’s length. Insert two blank lines above the End Sub clause. In the blank line
immediately above the End Sub clause, enter the following If clause:

If intSub < strIds.Length Then

6. If the selection structure’s condition evaluates to True, it means that the ID was located
in the array. In that case, the structure’s true path should display the price located in the
same position in the intPrices array. Otherwise, its false path should display the
“Invalid ID” message in a message box. Enter the following lines of code:

lblPrice.Text = intPrices(intSub).ToString("C0")
Else

MessageBox.Show("Invalid ID", "Treasures",
MessageBoxButtons.OK,
MessageBoxIcon.Information)

7. If necessary, delete the blank line above the End If clause.

Figure 9-35 shows most of the application’s code.

Parallel One-Dimensional Arrays L E S S ON B

565

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

To test the Treasures Gift Shoppe application:

1. Save the solution and then start the application. Type cr20 in the ID box and then click
the Display Price button. $10 appears in the Price box. See Figure 9-36.

' declare parallel arrays
Private

Private

 strIds() As String =
{"BX35", "CR20", "FE15", "KW10", "MM67"}

 intPrices() As Integer = {13, 10, 12, 24, 4}

Private Sub btnDisplay_Click(sender As Object,
e As EventArgs) Handles btnDisplay.Click

' displays the price associated with an ID

Dim strSearchForId As String
Dim intSub As Integer

strSearchForId = txtId.Text

' search the strIds array for the ID
' continue searching until the end of
' the array or the ID is found
Do Until intSub = strIds.Length OrElse

strSearchForId = strIds(intSub)
intSub += 1

Loop

If intSub < strIds.Length Then
lblPrice.Text = intPrices(intSub).ToString("C0")

Else
MessageBox.Show("Invalid ID", "Treasures",

MessageBoxButtons.OK,
MessageBoxIcon.Information)

End If
End Sub

parallel one-dimensional
arrays declared in the
form’s Declarations
section

searches for the ID in
the strIds array

displays the
corresponding price
from the intPrices
array

Figure 9-35 Most of the code for the Treasures Gift Shoppe application
© 2013 Cengage Learning

START HERE

Figure 9-36 Sample run of the Treasures Gift Shoppe application
OpenClipArt.org/secretlondon

CH A P T E R 9 Arrays

566

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

2. Type xx44 in the ID box and then click the Display Price button. The “Invalid ID”
message appears in a message box. Close the message box.

3. On your own, test the application using other valid and invalid IDs. When you are
finished testing the application, click the Exit button.

4. Close the Code Editor window and then close the solution.

The Die Tracker Application
Recall that your task in this chapter is to create the Die Tracker application. The application
simulates the roll of a die and keeps track of the number of times each die face appears.

To open the Die Tracker application:

1. Open the Die Solution (Die Solution.sln) file contained in the VB2012\Chap09\
Die Solution folder. If necessary, open the designer window. See Figure 9-37.
(The images in the picture boxes were downloaded from the Open Clip Art Library
at http://openclipart.org.)

2. Open the Code Editor window. Replace <your name> and <current date> in the
comments with your name and the current date, respectively.

The Die Tracker application will use three parallel arrays: a PictureBox array named picDice,
a Label array named lblCounters, and an Integer array named intCounters. The arrays are
illustrated in Figure 9-38.

these six picture
boxes are named
picDie1through
picDie6

these six labels
are named lbl1
through lbl6

lblPlaceHolder

picPlaceHolder

Figure 9-37 User interface for the Die Tracker application
OpenClipArt.org/orsonj

START HERE

The Die Tracker Application L E S S ON B

567

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

You may be wondering why the arrays contain seven elements rather than six elements; after
all, there are only six faces on a die. However, the application’s code will be much easier
to understand if the number of dots on each die corresponds to location of the die’s
information in the arrays. In other words, the information pertaining to the one-dot die will
be contained in the array elements that have a subscript of 1, the two-dot die’s information
will be contained in the array elements that have a subscript of 2, and so on. When coding
the application, the first element in each array will be ignored. (Recall that the first element
in an array has a subscript of 0.)

To code the Die Tracker application:

1. First, you will declare the three parallel arrays. Click the blank line below the ' declare
arrays comment in the form’s Declarations section, and then enter the following
declaration statements:

Private picDice(6) As PictureBox
Private lblCounters(6) as Label
Private intCounters(6) As Integer

2. Now you will fill the picture box and label arrays with the appropriate controls. You will
use the picPlaceHolder and lblPlaceHolder controls for the first element in their
respective arrays. Click the blank line above the End Sub clause in the form’s Load event
procedure and then enter the following assignment statements:

picDice = {picPlaceHolder, picDie1, picDie2,
picDie3, picDie4, picDie5, picDie6}

lblCounters = {lblPlaceHolder, lbl1, lbl2,
lbl3, lbl4, lbl5, lbl6}

3. Next, you will code the btnRoll_Click procedure. The procedure will use a random
number to select one of the six picture boxes from the picDice array. Click the
blank line above the End Sub clause in the btnRoll_Click procedure and then enter the
following declaration statements. Press Enter twice after typing the second statement.

Dim randGen As New Random
Dim intRand As Integer

4. The procedure should generate a random number from 1 through 6. Enter the following
comment and assignment statement. Press Enter twice after typing the statement.

' generate a random number from 1 – 6
intRand = randGen.Next(1, 7)

Subscripts picDice array lblCounters array intCounters array

0
1
2
3
4
5
6

lblPlaceHolder
lbl1
lbl2
lbl3
lbl4
lbl5
lbl6

picPlaceHolder
picDie1
picDie2
picDie3
picDie4
picDie5
picDie6

0
0
0
0
0
0
0

Figure 9-38 Illustration of the three parallel arrays
© 2013 Cengage Learning

START HERE

CH A P T E R 9 Arrays

568

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

5. Now you can use the random number to display the appropriate die face in the
picRandDie control. Enter the following comment and assignment statement.
Press Enter twice after typing the statement.

' display current roll of the die
picRandDie.Image = picDice(intRand).Image

6. You also can use the random number to update the associated counter in the
intCounters array. Enter the following comment and assignment statement. Press
Enter twice after typing the statement.

' update associated counter
intCounters(intRand) += 1

7. Finally, you can use the random number to display the updated counter’s value in its
associated label control in the lblCounters array. Enter the following comment and
assignment statement. Press Enter twice after typing the statement.

' display updated counter
lblCounters(intRand).Text =

intCounters(intRand).ToString

8. The last procedure you need to code is the btnStartOver_Click procedure. The
procedure should reset the counters in the intCounters array to 0 and also clear
the contents of the label controls contained in the lblCounters array. Click the
blank line above the End Sub clause in the btnStartOver_Click procedure and then
enter the following loop:

For intSub As Integer = 1 To 6
intCounters(intSub) = 0
lblCounters(intSub).Text = String.Empty

Next intSub

Figure 9-39 shows most of the application’s code.

In Step 8, you
don’t need the
loop to access
the first element
in each array

because that element will
never change from its
initial value.

The Die Tracker Application L E S S ON B

569

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

To test the Die Tracker application:

1. Save the solution and then start the application. Click the Roll button. A die face appears
in the picRandDie control and its associated counter label contains the number 1. See
Figure 9-40. Because the btnRoll_Click procedure uses random numbers, your die face
and counter label might be different from those shown in the figure.

' declare arrays
Private picDice(6) As PictureBox
Private lblCounters(6) As Label
Private intCounters(6) As Integer

Private Sub frmMain_Load(sender As Object,
e As EventArgs) HandlesMe.Load
 ' fill picture box and label arrays

 picDice = {picPlaceHolder, picDie1, picDie2,
 picDie3, picDie4, picDie5, picDie6}
 lblCounters = {lblPlaceHolder, lbl1, lbl2,
 lbl3, lbl4, lbl5, lbl6}
End Sub

Private Sub btnRoll_Click(sender As Object,
e As EventArgs) Handles btnRoll.Click
 ' calculates and displays the number
 ' of times each die face appears

 Dim randGen As New Random
 Dim intRand As Integer

 ' generate a random number from 1 – 6
 intRand = randGen.Next(1, 7)

 ' display current roll of the die
 picRandDie.Image = picDice(intRand).Image

 ' update associated counter
 intCounters(intRand) += 1

 ' display updated counter
 lblCounters(intRand).Text =
 intCounters(intRand).ToString

End Sub

Private Sub btnStartOver_Click(sender As Object,
e As EventArgs) Handles btnStartOver.Click
 ' reset the counters and clear the
 ' counter labels

 For intSub As Integer = 1 To 6
 intCounters(intSub) = 0
 lblCounters(intSub).Text = String.Empty
 Next intSub
End Sub

Figure 9-39 Most of the code for the Die Tracker application
© 2013 Cengage Learning

START HERE

CH A P T E R 9 Arrays

570

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

2. Click the Roll button several more times. Each time you click the Roll button, a die face
appears in the picRandDie control and its associated counter label is updated by 1.

3. Now, click the Start Over button. The button’s Click event procedure resets the
counters in the intCounters array to 0 and also clears the contents of the labels in the
lblCounters array.

4. Click the Roll button. A die face appears in the picRandDie control and its associated
counter label contains the number 1.

5. Click the Exit button. Close the Code Editor window and then close the solution.

Lesson B Summary
l To associate the items in a list box with the elements in an array:

Use each list box item’s index and each array element’s subscript.

l To create parallel one-dimensional arrays:

Create two or more one-dimensional arrays. When assigning values to the arrays, be sure
that the value stored in each element in the first array corresponds to the values stored in the
same elements in the other arrays.

Lesson B Key Terms
Accumulator arrays—arrays whose elements are used to accumulate (add together) values

Counter arrays—arrays whose elements are used for counting something

Parallel arrays—two or more arrays whose elements are related by their subscripts (positions)
in the arrays

your die face might
be different

your counter label
might be different

Figure 9-40 Sample run of the Die Tracker application
OpenClipArt.org/orsonj

Lesson B Key Terms L E S S ON B

571

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Lesson B Review Questions
1. The intSales array is declared as follows: Dim intSales() As Integer = {10000,

12000, 900, 500, 20000}. Which of the following If clauses determines whether the
intSub variable contains a valid subscript for the array?

a. If intSub >= 0 AndAlso intSub <= 4 Then

b. If intSub >= 0 AndAlso intSub < 4 Then

c. If intSub >= 0 AndAlso intSub <= 5 Then

d. If intSub > 0 AndAlso intSub < 5 Then

2. If the elements in two arrays are related by their subscripts, the arrays are
called arrays.

a. associated

b. coupled

c. matching

d. parallel

3. The strStates and strCapitals arrays are parallel arrays. If Illinois is stored in the
second element in the strStates array, where is its capital (Springfield) stored?

a. strCapitals(1)

b. strCapitals(2)

4. The dblNums array is a six-element Double array. Which of the following If clauses
determines whether the entire array has been searched?

a. If intSub = dblNums.Length Then

b. If intSub <= dblNums.Length Then

c. If intSub > dblNums.GetUpperBound(0) Then

d. both a and c

Lesson B Exercises

1. Open the Months Solution (Months Solution.sln) file contained in the VB2012\
Chap09\Months Solution-Introductory folder. If necessary, open the designer
window. In the form’s Load event procedure, declare and initialize a one-dimensional
String array. Use the names of the 12 months to initialize the array. Use the For Each…
Next statement to display the contents of the array in the list box. The list box’s
SelectedValueChanged event procedure should display the name of the selected month
in the label control. Code the application. Save the solution and then start and test the
application. Close the Code Editor window and then close the solution.

2. Open the Salary Code Solution (Salary Code Solution.sln) file contained in the VB2012\
Chap09\Salary Code Solution folder. If necessary, open the designer window. The
application should allow the user to select a salary code from the list box. The list box’s
SelectedIndexChanged event procedure should display the salary associated with the
selected code. The salary codes and salaries are listed in Figure 9-41. Code the
application, using a class-level array to store the salaries. Save the solution and then
start and test the application. Close the Code Editor window and then close
the solution.

INTRODUCTORY

INTRODUCTORY

CH A P T E R 9 Arrays

572

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Salary code Salary
101 25000
102 35000
103 55000
104 75000
105 80500
106 83000
107 90500

Figure 9-41 Salary codes and salaries for Exercise 2
© 2013 Cengage Learning

3. Open the State Capitals Solution (State Capitals Solution.sln) file contained in the
VB2012\Chap09\State Capitals Solution folder. If necessary, open the designer window.
Open the Code Editor window. The form’s Declarations section declares and initializes
two parallel one-dimensional arrays named strStates and strCapitals. Locate the
btnDisplay_Click procedure. The procedure should display the contents of the arrays in
the list box. Display the information in the following format: the capital name followed
by a comma, a space, and the state name. Code the procedure. Save the solution
and then start and test the application. Close the Code Editor window and then close
the solution.

4. Open the Months Solution (Months Solution.sln) file contained in the
VB2012\Chap09\Months Solution-Intermediate folder. Display the names of the
12 months in the list box. Declare and initialize a one-dimensional Integer array named
intDaysInTheMonth. Use the following 12 integers to initialize the array: 31, 28, 31, 30,
31, 30, 31, 31, 30, 31, 30, and 31. The list box’s SelectedIndexChanged event procedure
should display (in the Days box) the number of days in the selected month. Code
the application. Save the solution and then start and test the application. Close the Code
Editor window and then close the solution.

5. In this exercise, you modify the Die Tracker application coded in the lesson.
Use Windows to make a copy of the Die Solution folder. Rename the copy Modified
Die Solution. Open the Die Solution (Die Solution.sln) file contained in the
Modified Die Solution folder. Code the application without using the picPlaceHolder
and lblPlaceHolder controls. Remove both controls from the interface. Be sure to
change the highestSubscript argument in the three array declaration statements to 5.
Save the solution and then start and test the application. Close the Code Editor window
and then close the solution.

6. Open the Car Sales Solution (Car Sales Solution.sln) file contained in the VB2012\
Chap09\Car Sales Solution folder. The interface allows the user to enter the number of
each car type sold by each salesperson. The Add to Total button should use an array to
accumulate the numbers sold by car type. It also should display (in the labels) the total
number sold for each car type. Code the application. Save the solution and then start
and test the application. Close the Code Editor window and then close the solution.

7. In this exercise, you code an application that allows Professor Jacoby to display a grade
based on the number of points he enters. The grading scale is shown in Figure 9-42.
Open the Jacoby Solution (Jacoby Solution.sln) file contained in the VB2012\Chap09\
Jacoby Solution folder. Store the minimum points in a one-dimensional Integer array
named intPoints. Store the grades in a one-dimensional String array named
strGrades. The arrays should be parallel arrays. The Display button’s Click event
procedure should search the intPoints array for the number of points entered by the

INTRODUCTORY

INTERMEDIATE

INTERMEDIATE

INTERMEDIATE

INTERMEDIATE

Lesson B Exercises L E S S ON B

573

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

user. It then should display the corresponding grade from the strGrades array. Save
the solution and then start and test the application. Close the Code Editor window and
then close the solution.

Minimum points Maximum points Grade
0 299 F
300 349 D
350 399 C
400 449 B
450 500 A

Figure 9-42 Grading scale for Exercise 7
© 2013 Cengage Learning

8. In this exercise, you code an application that allows Professor Kensington to display
a grade based on the number of points she enters. The grading scale is shown in
Figure 9-43. Open the Kensington Solution (Kensington Solution.sln) file contained in
the VB2012\Chap09\Kensington Solution folder. Professor Kensington will enter the
total possible points in the Possible points box. The Create Grading Scale button’s Click
event procedure should store the minimum number of points and the grades in two
parallel one-dimensional arrays. The Display Grade button’s Click event procedure
should display the grade corresponding to the number of points entered in the
Earned points box. Save the solution and then start the application. Enter 300 in the
Possible points box and then click the Create Grading Scale button. Enter 185 in the
Earned points box and then click the Display Grade button. The letter D should appear
in the Grade box. Now, enter 290 in the Earned points box and then click the Display
Grade button. The letter A should appear in the Grade box. Next, enter 500 in the
Possible points box and then click the Create Grading Scale button. Enter 363 in the
Earned points box and then click the Display Grade button. The letter C should appear
in the Grade box. Test the application using different values for the possible and earned
points. Close the Code Editor window and then close the solution.

Minimum points Grade
90% of the total possible points A
80% of the total possible points B
70% of the total possible points C
60% of the total possible points D
0 F

Figure 9-43 Grading scale for Exercise 8
© 2013 Cengage Learning

9. Open the Laury Solution (Laury Solution.sln) file contained in the VB2012\Chap09\
Laury Solution folder. The Display Shipping button’s Click event procedure should
display a shipping charge that is based on the number of items a customer orders. The
order amounts and shipping charges are listed in Figure 9-44. Store the minimum order
amounts and shipping charges in parallel arrays. Display the appropriate shipping
charge with a dollar sign and two decimal places. Code the application. Save the
solution and then start and test the application. Close the Code Editor window and then
close the solution.

INTERMEDIATE

INTERMEDIATE

CH A P T E R 9 Arrays

574

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Minimum order Maximum order Shipping charge
1 10 15
11 50 10
51 100 5
101 No maximum 0

Figure 9-44 Order amounts and shipping charges for Exercise 9
© 2013 Cengage Learning

10. In this exercise, you code a modified version of the Die Tracker application coded
in the lesson. Open the Dice Solution (Dice Solution.sln) file contained in the
VB2012\Chap09\Dice Solution-Advanced folder. The application should simulate the
roll of two dice (rather than one die). It also should display the total amount rolled. In
other words, if one die shows two dots and the other shows four dots, the number 6
should appear in the Total box. The application should keep track of the number of
times each total (from 2 through 12) is rolled. Code the application. Save the solution
and then start and test the application. Close the Code Editor window and then close
the solution.

11. Create a Visual Basic Windows application. Use the following names for the solution
and project, respectively: Stock Market Solution and Stock Market Project. Save the
application in the VB2012\Chap09 folder. Change the form file’s name to Main Form.vb.
Change the form’s name to frmMain. The application should declare a Double array
that contains 30 elements. Each element will store the price of a stock. Initialize the first
10 elements using the following values: 2.25, 2.4, 1.97, 1.97, 1.99, 1.97, 2.25, 2.87, 2.5,
and 2.4. Use your own values to initialize the remaining 20 elements. The application
should display the following items: the average price of the stock, the number of days
the stock price increased from the previous day, the number of days the stock price
decreased from the previous day, and the number of days the stock price stayed the
same as the previous day. Create a suitable interface and then code the application.
Display the average price with a dollar sign and two decimal places. Save the solution
and then start and test the application. Close the Code Editor window and then close
the solution.

ADVANCED

ADVANCED

Lesson B Exercises L E S S ON B

575

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

& LESSON C
After studying Lesson C, you should be able to:

l Declare and initialize a two-dimensional array

l Store data in a two-dimensional array

l Sum the values in a two-dimensional array

l Search a two-dimensional array

Two-Dimensional Arrays
As you learned in Lesson A, the most commonly used arrays in business applications are
one-dimensional and two-dimensional. You can visualize a one-dimensional array as a column
of variables in memory. A two-dimensional array, on the other hand, resembles a table in that
the variables (elements) are in rows and columns. You can determine the number of elements in
a two-dimensional array by multiplying the number of its rows by the number of its columns.
An array that has four rows and three columns, for example, contains 12 elements.

Each element in a two-dimensional array is identified by a unique combination of two subscripts
that the computer assigns to the element when the array is created. The subscripts specify
the element’s row and column positions in the array. Elements located in the first row in a
two-dimensional array are assigned a row subscript of 0, elements in the second row are
assigned a row subscript of 1, and so on. Similarly, elements located in the first column in a
two-dimensional array are assigned a column subscript of 0, elements in the second column are
assigned a column subscript of 1, and so on.

You refer to each element in a two-dimensional array by the array’s name and the element’s row
and column subscripts, with the row subscript listed first and the column subscript listed
second. The subscripts are separated by a comma and specified in a set of parentheses
immediately following the array name. For example, to refer to the element located in the first
row, first column in a two-dimensional array named strCds, you use strCds(0, 0)—read
“strCds sub zero comma zero.” Similarly, to refer to the element located in the second row,
third column, you use strCds(1, 2). Notice that the subscripts are one number less than the
row and column in which the element is located. This is because the row and column subscripts
start at 0 rather than at 1. You will find that the last row subscript in a two-dimensional array is
always one number less than the number of rows in the array. Likewise, the last column
subscript is always one number less than the number of columns in the array. Figure 9-45
illustrates the elements contained in the two-dimensional strCds array.

Overexposed
21
Speak Now

Adele
Taylor Swift

strCds(0, 0) strCds(0, 2)

strCds(1, 2)

strCds(2, 1)

Maroon 5 2012
2011
2010

Figure 9-45 Names of some of the elements in the strCds array
© 2013 Cengage Learning

CH A P T E R 9 Arrays

576

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Figure 9-46 shows two versions of the syntax for declaring a two-dimensional array
in Visual Basic. The figure also includes examples of using both syntax versions. In each
version, arrayName is the name of the array and dataType is the type of data the array
variables will store.

In Version 1’s syntax, highestRowSubscript and highestColumnSubscript are integers that specify
the highest row and column subscripts, respectively, in the array. When the array is created, it
will contain one row more than the number specified in the highestRowSubscript argument and
one column more than the number specified in the highestColumnSubscript argument. This is
because the first row and column subscripts in a two-dimensional array are 0. When you declare
a two-dimensional array using Version 1’s syntax, the computer automatically initializes each
element in the array when the array is created.

You would use Version 2’s syntax when you want to specify each variable’s initial value. You do
this by including a separate initialValues section, enclosed in braces, for each row in the array. If
the array has two rows, then the statement that declares and initializes the array should have
two initialValues sections. If the array has five rows, then the declaration statement should have
five initialValues sections. Within the individual initialValues sections, you enter one or more
values separated by commas. The number of values to enter corresponds to the number of
columns in the array. If the array contains 10 columns, then each individual initialValues section
should contain 10 values. In addition to the set of braces enclosing each individual initialValues

Declaring a Two-Dimensional Array
Syntax – Version 1
{Dim | Private | Static} arrayName(highestRowSubscript, highestColumnSubscript) As dataType

Syntax – Version 2
{Dim | Private | Static} arrayName(,) As dataType = {{initialValues},…{initialValues}}

Example 1
Dim strNames(5, 2) As String
declares a six-row, three-column procedure-level array named strNames; each element is
automatically initialized using the keyword Nothing

Example 2
Static intNumbers(4, 3) As Integer
declares a static, five-row, four-column procedure-level array named intNumbers; each
element is automatically initialized to 0

Example 3
Private strCds(,) As String =
 {{"Maroon 5", "Overexposed", "2012"},
 {"Adele", "21", "2011"},
 {"Taylor Swift", "Speak Now", "2010"}}
declares and initializes a three-row, three-column class-level array named strCds (the array is
illustrated in Figure 9-45)

Example 4
Private dblSales(,) As Double = {{75.33, 9.65},
 {23.55, 6.89},
 {4.5, 89.3}}
declares and initializes a three-row, two-column class-level array named dblPrices

Figure 9-46 Syntax versions and examples of declaring a two-dimensional array
© 2013 Cengage Learning

Two-Dimensional Arrays L E S S ON C

577

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

section, Version 2’s syntax also requires all of the initialValues sections to be enclosed in a set of
braces. When using Version 2’s syntax, be sure to include a comma within the parentheses that
follow the array’s name. The comma indicates that the array is a two-dimensional array. (Recall
that a comma is used to separate the row subscript from the column subscript in a two-
dimensional array.)

After an array is declared, you can use another statement to store a different value in an array
element. Examples of such statements include assignment statements and statements that
contain the TryParse method. Figure 9-47 shows examples of both types of statements, using
three of the arrays declared in Figure 9-46.

Storing Data in a Two-Dimensional Array
Example 1
strNames(0, 1) = "Sarah"
assigns the string “Sarah” to the element located in the first row, second column in the
strNames array

Example 2
For intRow As Integer = 0 To 4
 For intColumn As Integer = 0 To 3
 intNumbers(intRow, intColumn) += 1
 Next intColumn
Next intRow
adds the number 1 to the contents of each element in the intNumbers array

Example 3
Dim intRow As Integer
Dim intCol As Integer
Do While intRow <= 2
 intCol = 0
 Do While intCol <= 1
 dblSales(intRow, intCol) = 100
 intCol = intCol + 1
 Loop
 intRow = intRow + 1
Loop
assigns the number 100 to each element in the dblSales array

Example 4
dblSales(2, 1) = dblSales(2, 1) * .1
multiplies the value contained in the third row, second column in the dblSales array by .1 and
then assigns the result to the element; you can also write this statement as dblSales(2, 1)
*= .1

Example 5
Double.TryParse(txtSales.Text, dblSales(0, 0))
assigns either the value entered in the txtSales control (converted to Double) or the number 0 to
the element located in the first row, first column in the dblSales array

Figure 9-47 Examples of statements used to store data in a two-dimensional array
© 2013 Cengage Learning

CH A P T E R 9 Arrays

578

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

In Lesson A, you learned how to use the GetUpperBound method to determine the highest
subscript in a one-dimensional array. You can also use the GetUpperBound method to
determine the highest row and column subscripts in a two-dimensional array, as shown in
Figure 9-48.

Traversing a Two-Dimensional Array
Recall that you use a loop to traverse a one-dimensional array. To traverse a two-dimensional
array, you typically use two loops: an outer loop and a nested loop. One of the loops keeps track
of the row subscript and the other keeps track of the column subscript. You can code the loops
using either the For…Next statement or the Do…Loop statement. Rather than using two loops
to traverse a two-dimensional array, you can also use one For Each…Next loop. However, recall
that the instructions in a For Each…Next loop can only read the array values; they cannot
permanently modify the values.

Figure 9-49 shows examples of loops that traverse the strMonths array, displaying each
element’s value in the lstMonths control. Both loops in Example 1 are coded using the
For…Next statement. However, either one of the loops could be coded using the Do…Loop
statement instead. Or, both loops could be coded using the Do…Loop statement, as shown
in Example 2. The loop in Example 3 is coded using the For Each...Next statement.

Using a Two-Dimensional Array’s GetUpperBound Method
Syntax to determine the highest row subscript
arrayName.GetUpperBound(0)

Syntax to determine the highest column subscript
arrayName.GetUpperBound(1)

Example
Dim strOrders(10, 3) As String
Dim intHighestRowSub As Integer
Dim intHighestColumnSub As Integer
intHighestRowSub = strOrders.GetUpperBound(0)
intHighestColumnSub = strOrders.GetUpperBound(1)
assigns the numbers 10 and 3 to the intHighestRowSub and intHighestColumnSub
variables, respectively

the row dimension
is always 0

the column dimension
is always 1

Figure 9-48 Syntax and an example of a two-dimensional array’s GetUpperBound method
© 2013 Cengage Learning

Two-Dimensional Arrays L E S S ON C

579

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Totaling the Values Stored in a Two-Dimensional Array
Figure 9-50 shows the problem specification for the Jenko Booksellers application. The
application displays the total of the sales stored in a two-dimensional array.

Traversing a Two-Dimensional Array
Private strMonths(,) As String = {{"Jan", "31"},
 {"Feb", "28"},
 {"Mar", "31"},
 {"Apr", "30"}}

Example 1
Dim intHighRow As Integer = strMonths.GetUpperBound(0)
Dim intHighCol As Integer = strMonths.GetUpperBound(1)
For intR As Integer = 0 To intHighRow
 For intC As Integer = 0 To intHighCol
 lstMonths.Items.Add(strMonths(intR, intC))
 Next intC
Next intR
displays the contents of the strMonths array in the lstMonths control; the array values are
displayed row by row, as follows: Jan, 31, Feb, 28, Mar, 31, Apr, and 30

Example 2
Dim intHighRow As Integer = strMonths.GetUpperBound(0)
Dim intHighCol As Integer = strMonths.GetUpperBound(1)
Dim intR As Integer
Dim intC As Integer
Do While intC <= intHighCol
 intR = 0
 Do While intR <= intHighRow
 lstMonths.Items.Add(strMonths(intR, intC))
 intR += 1
 Loop
 intC += 1
Loop
displays the contents of the strMonths array in the lstMonths control; the array values are
displayed column by column, as follows: Jan, Feb, Mar, Apr, 31, 28, 31, and 30

Example 3
For Each strElement As String In strMonths
 lstMonths.Items.Add(strElement)
Next strElement
displays the contents of the strMonths array in the lstMonths control; the array values are
displayed as follows: Jan, 31, Feb, 28, Mar, 31, Apr, and 30

Figure 9-49 Examples of loops used to traverse a two-dimensional array
© 2013 Cengage Learning

CH A P T E R 9 Arrays

580

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Problem Specification

Jenko Booksellers sells paperback and hardcover books in each of its three stores. The sales manager
wants an application that displays the total sales made in the previous month. The sales amounts for the
previous month are shown here. The application will store the sales amounts in a two-dimensional array
that has three rows and two columns. Each row will contain the data pertaining to one of the three stores.
The sales amounts for paperback books will be stored in the first column. The second column will contain
the sales amounts for hardcover books. The application will need to total the values stored in the array.

Paperback sales ($) Hardcover sales ($)
Store 1 1200.33 2350.75
Store 2 3677.80 2456.05
Store 3 750.67 1345.99

Figure 9-50 Problem specification for the Jenko Booksellers application
© 2013 Cengage Learning

To code and then test the Jenko Booksellers application:

1. If necessary, start Visual Studio 2012. Open the Jenko Solution (Jenko Solution.sln)
file contained in the VB2012\Chap09\Jenko Solution folder. If necessary, open the
designer window. (The image in the picture box was downloaded from the Open Clip
Art Library at http://openclipart.org.)

2. Open the Code Editor window. Replace <your name> and <current date> in the
comments with your name and the current date, respectively.

3. Locate the btnCalc_Click procedure. First, you will declare and initialize a
two-dimensional array to store the sales amounts. The array will contain three rows
(one for each store) and two columns. The first column will contain the paperback
book sales, and the second column will contain the hardcover book sales. Click the
blank line immediately above the ' total the sales amounts stored in the array
comment and then enter the following array declaration statement:

Dim dblSales(,) As Double = {{1200.33, 2350.75},
{3677.8, 2456.05},
{750.67, 1345.99}}

4. Now you will declare a variable that the procedure can use to accumulate the sales
amounts stored in the array. Enter the following declaration statement:

Dim dblTotal As Double

5. Next, you will enter a loop that totals the values stored in the array. Click the blank line
below the ' total the sales amounts stored in the array comment and then enter
the following lines of code:

For Each dblElement As Double in dblSales
dblTotal = dblTotal + dblElement

Next dblElement

6. Finally, you will display the total sales. Insert a blank line below the Next dblElement
clause and then enter the additional assignment statement indicated in Figure 9-51.

START HERE

Totaling the Values Stored in a Two-Dimensional Array L E S S ON C

581

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

7. Save the solution and then start the application. Click the Calculate button. $11,781.59
appears in the Total sales box, as shown in Figure 9-52.

8. Click the Exit button. Close the Code Editor window and then close the solution.

Searching a Two-Dimensional Array
In Lesson B, you coded the Treasures Gift Shoppe application. As you may remember, the
application stores the gift shop’s price list in two parallel one-dimensional arrays: a String array
for the item IDs and an Integer array for the corresponding prices. It then searches the String
array for the ID entered by the user. If the ID is in the array, the application displays its
corresponding price from the Integer array; otherwise, it displays an appropriate message in a
message box. Instead of using two parallel one-dimensional arrays for the price list, you can use
a two-dimensional array. To do this, you store the IDs in the first column of the array, and store
the corresponding prices in the second column. However, you will need to treat the prices as
strings because all of the data in a two-dimensional array must have the same data type.

you can use the Alt key to
show/hide the access keys

Figure 9-52 Total sales displayed in the interface
OpenClipArt.org/johnny_automatic

you can also use
dblTotal +=
dblElement

enter this additional
assignment statement

Figure 9-51 btnCalc_Click procedure

CH A P T E R 9 Arrays

582

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

To use a two-dimensional array to code the Treasures Gift Shoppe application:

1. Open the Treasures Solution (Treasures Solution.sln) file contained in the VB2012\
Chap09\Treasures Solution-Two-Dimensional folder. If necessary, open the designer
window. The text box’s CharacterCasing and MaxLength properties are set to Upper and
4, respectively.

2. Open the Code Editor window. Replace <your name> and <current date> in the
comments with your name and the current date, respectively.

3. First, you will declare and initialize the two-dimensional array. Click the blank line
below the ' declare two-dimensional array comment in the form’s Declarations
section, and then enter the following array declaration statement:

Private strItems(,) As String = {{"BX35", "13"},
{"CR20", "10"},
{"FE15", "12"},
{"KW10", "24"},
{"MM67", "4"}}

4. Open the btnDisplay_Click procedure. Type the following comment and then press
Enter twice:

' displays the price associated with an ID

5. The procedure will use a String variable to store the ID entered by the user, and use an
Integer variable to keep track of the row subscripts while the array is being searched.
Enter the following two declaration statements. Press Enter twice after typing the
second statement.

Dim strSearchForId As String
Dim intRow As Integer

6. Now you will assign the ID to the strSearchForId variable. Type the following
assignment statement and then press Enter twice:

strSearchForId = txtId.Text

7. Next, you will use a loop to search each element in the first column in the strItems
array, stopping either when the end of the first column is reached or when the ID is
located in the first column. Enter the following comments and code:

' search the first column for the ID
' continue searching until the end of
' the first column or the ID is found
Do Until intRow > strItems.GetUpperBound(0) OrElse

strSearchForId = strItems(intRow, 0)
intRow += 1

Loop

8. Finally, you need to use a selection structure to determine why the loop ended. You can
make this determination by looking at the value in the intRow variable. If the loop ended
because it reached the end of the array’s first column without locating the ID, the
intRow variable’s value will be greater than the highest row subscript. On the other
hand, if the loop ended because it located the ID in the first column, the intRow
variable’s value will be less than or equal to the highest row subscript. Insert two blank
lines above the End Sub clause. In the blank line immediately above the End Sub clause,
enter the following If clause:

If intRow <= strItems.GetUpperBound(0) Then

START HERE

Searching a Two-Dimensional Array L E S S ON C

583

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

9. If the selection structure’s condition evaluates to True, it means that the ID was located
in the first column of the array. In that case, the structure’s true path should display the
price contained in the same row as the ID, but in the second column in the array. For
example, if the ID is contained in the strItems(3, 0) element, then its associated price
is contained in the strItems(3, 1) element. However, recall that the price is stored as a
string in the strItems array. In order to use the ToString method to format the price
with a dollar sign and zero decimal places, you first need to convert the price to a
numeric data type. (Recall that the ToString method is used with numeric variables.)
Enter the following lines of code:

Dim intPrice As Integer
Integer.TryParse(strItems(intRow, 1), intPrice)
lblPrice.Text = intPrice.ToString("C0")

10. On the other hand, if the selection structure’s condition evaluates to False, the
structure’s false path should display the “Invalid ID” message in a message box. Enter the
following lines of code:

Else
MessageBox.Show("Invalid ID", "Treasures",

MessageBoxButtons.OK,
MessageBoxIcon.Information)

11. If necessary, delete the blank line above the End If clause.

Figure 9-53 shows most of the application’s code.

CH A P T E R 9 Arrays

584

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

To test the Treasures Gift Shop application:

1. Save the solution and then start the application. Type kw10 in the ID box and then click
the Display Price button. $24 appears in the Price box. See Figure 9-54.

' declare two-dimensional array
Private strItems(,) As String = {{"BX35", "13"},
 {"CR20", "10"},
 {"FE15", "12"},
 {"KW10", "24"},
 {"MM67", "4"}}

Private Sub btnDisplay_Click(sender As Object,
e As EventArgs) Handles btnDisplay.Click
 ' displays the price associated with an ID

 Dim strSearchForId As String
 Dim intRow As Integer

 strSearchForId = txtId.Text

 ' search the first column for the ID
 ' continue searching until the end of
 ' the first column or the ID is found
 Do Until intRow > strItems.GetUpperBound(0) OrElse
 strSearchForId = strItems(intRow, 0)
 intRow += 1
 Loop

 If intRow <= strItems.GetUpperBound(0) Then
 Dim intPrice As Integer
 Integer.TryParse(strItems(intRow, 1), intPrice)
 lblPrice.Text = intPrice.ToString("C0")
 Else
 MessageBox.Show("Invalid ID", "Treasures",
 MessageBoxButtons.OK,
 MessageBoxIcon.Information)
 End If
End Sub

two-dimensional
array declaration

searches for the
ID in the array’s
first column

assigns the
corresponding
price from the
array’s second
column

Figure 9-53 Most of the code for the Treasures Gift Shoppe application
© 2013 Cengage Learning

Figure 9-54 Interface showing the price for item ID KW10
OpenClipArt.org/secretlondon

START HERE

Searching a Two-Dimensional Array L E S S ON C

585

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

2. Type xx44 in the ID box and then click the Display Price button. The “Invalid ID”
message appears in a message box. Close the message box.

3. On your own, test the application using other valid and invalid IDs. When you are
finished testing the application, click the Exit button.

4. Close the Code Editor window and then close the solution.

Lesson C Summary
l To declare a two-dimensional array:

Use either of the syntax versions shown below. In Version 1, the highestRowSubscript
and highestColumnSubscript arguments are integers that specify the highest row and
column subscripts, respectively, in the array. Using Version 1’s syntax, the computer
automatically initializes the array elements. In Version 2, the initialValues section is a
list of values separated by commas and enclosed in braces. You include a separate
initialValues section for each row in the array. Each initialValues section should contain
the same number of values as there are columns in the array.

Version 1: {Dim | Private | Static} arrayName(highestRowSubscript,
highestColumnSubscript) As dataType

Version 2: {Dim | Private | Static} arrayName(,) As dataType =
{{initialValues},…{initialValues}}

l To refer to an element in a two-dimensional array:

Use the syntax arrayName(rowSubscript, columnSubscript).

l To determine the highest row subscript in a two-dimensional array:

Use the GetUpperBound method as follows: arrayName.GetUpperBound(0).

l To determine the highest column subscript in a two-dimensional array:

Use the GetUpperBound method as follows: arrayName.GetUpperBound(1).

Lesson C Key Term
Two-dimensional array—an array made up of rows and columns; each element has the same
name and data type and is identified by a unique combination of two subscripts: a row subscript
and a column subscript

Lesson C Review Questions
1. Which of the following declares a two-dimensional array that has three rows and four

columns?

a. Dim decNums(2, 3) As Decimal

b. Dim decNums(3, 4) As Decimal

c. Dim decNums(3, 2) As Decimal

d. Dim decNums(4, 3) As Decimal

CH A P T E R 9 Arrays

586

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

2. The intSales array is declared as follows: Dim intSales(,) As Integer = {{1000,
1200, 900, 500, 2000}, {350, 600, 700, 800, 100}}. The intSales(1, 3) =
intSales(1, 3) + 10 statement will .

a. replace the 900 amount with 910

b. replace the 500 amount with 510

c. replace the 700 amount with 710

d. replace the 800 amount with 810

3. The intSales array is declared as follows: Dim intSales(,) As Integer = {{1000,
1200, 900, 500, 2000}, {350, 600, 700, 800, 100}}. The intSales(0, 4) =
intSales(0, 4 - 2) statement will .

a. replace the 500 amount with 1200

b. replace the 2000 amount with 900

c. replace the 2000 amount with 1998

d. result in an error

4. The intSales array is declared as follows: Dim intSales(,) As Integer = {{1000,
1200, 900, 500, 2000}, {350, 600, 700, 800, 100}}. Which of the following If
clauses determines whether the intRow and intCol variables contain valid row and
column subscripts, respectively, for the array?

a. If intSales(intRow, intCol) >= 0 AndAlso
intSales(intRow, intCol) < 5 Then

b. If intSales(intRow, intCol) >= 0 AndAlso
intSales(intRow, intCol) <= 5 Then

c. If intRow >= 0 AndAlso intRow < 3 AndAlso
intCol >= 0 AndAlso intCol < 6 Then

d. If intRow >= 0 AndAlso intRow < 2 AndAlso
intCol >= 0 AndAlso intCol < 5 Then

5. Which of the following statements assigns the string “California” to the element located
in the third column, fifth row in the two-dimensional strStates array?

a. strStates(3, 5) = "California"

b. strStates(5, 3) = "California"

c. strStates(4, 2) = "California"

d. strStates(2, 4) = "California"

6. Which of the following assigns the number 0 to each element in a two-row, four-column
Integer array named intSums?

a. For intRow As Integer = 0 To 1
For intCol As Integer = 0 To 3

intSums(intRow, intCol) = 0
Next intCol

Next intRow

Lesson C Review Questions L E S S ON C

587

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

b. Dim intRow As Integer
Dim intCol As Integer
Do While intRow < 2

intCol = 0
Do While intCol < 4

intSums(intRow, intCol) = 0
intCol += 1

Loop
intRow += 1

Loop

c. For intX As Integer = 1 To 2
For intY As Integer = 1 To 4

intSums(intX - 1, intY - 1) = 0
Next intY

Next intX

d. all of the above

7. Which of the following returns the highest column subscript in a two-dimensional array
named decPays?

a. decPays.GetUpperBound(1)

b. decPays.GetUpperBound(0)

c. decPays.GetUpperSubscript(0)

d. decPays.GetHighestColumn(0)

Lesson C Exercises

1. Write the statement to declare a procedure-level two-dimensional array named
intBalances. The array should have four rows and six columns. Then write the
statement to store the number 100 in the element located in the second row, fourth
column.

2. Write a loop to store the number 10 in each element in the intBalances array from
Exercise 1. Use the For…Next statement.

3. Rewrite the code from Exercise 2 using a Do…Loop statement.

4. Write the statement to assign the Boolean value True to the variable located in the third
row, first column of a two-dimensional Boolean array named blnAnswers.

5. Write the Private statement to declare a two-dimensional Integer array named
intOrders that has three rows and two columns. Use the following values to initialize
the array: 1, 2, 10, 20, 100, 200.

6. Write the statements that determine the highest row and highest column subscripts in a
two-dimensional array named strTypes. The statements should assign the subscripts
to the intHighRow and intHighCol variables, respectively.

7. Write the statement that determines the number of elements in a two-dimensional
array named strTypes. The statement should assign the number to the intNumTypes
variable.

8. Open the Westin Solution (Westin Solution.sln) file contained in the VB2012\
Chap09\Westin Solution folder. Open the Code Editor window. The btnForEach_Click
procedure should use the For Each…Next statement to display the contents of the
strParts array in the lstForEachParts control. The btnFor_Click procedure should
display the contents of the strParts array in the lstForParts control, column by
column. Save the solution and then start and test the application. Close the Code Editor
window and then close the solution.

INTRODUCTORY

INTRODUCTORY

INTRODUCTORY

INTRODUCTORY

INTRODUCTORY

INTRODUCTORY

INTRODUCTORY

INTERMEDIATE

CH A P T E R 9 Arrays

588

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

9. Open the Bonus Solution (Bonus Solution.sln) file contained in the VB2012\
Chap09\Bonus Solution folder. Open the Code Editor window. The btnCalc_Click
procedure should total the numbers stored in the following three array elements: the
first row, first column; the second row, third column; and the third row, fourth column.
Display the sum in the lblSum control. Save the solution and then start and test the
application. Close the Code Editor window and then close the solution.

10. Open the Inventory Solution (Inventory Solution.sln) file contained in the VB2012\
Chap09\Inventory Solution folder. Open the Code Editor window. The btnCalc_Click
procedure should multiply the value stored in each array element by 2 and then display
the result in the list box. Use two For…Next statements. Save the solution and then
start and test the application. Close the Code Editor window and then close the
solution.

11. Open the Laury Solution (Laury Solution.sln) file contained in the VB2012\
Chap09\Laury Solution-TwoDimensional folder. The application should display a
shipping charge that is based on the number of items a customer orders. The order
amounts and shipping charges are listed in Figure 9-55. Code the application. Store the
minimum order amounts and shipping charges in a two-dimensional array. Display
the appropriate shipping charge with a dollar sign and two decimal places. Save the
solution and then start and test the application. Close the Code Editor window and
then close the solution.

Minimum order Maximum order Shipping charge
1 10 15
11 50 10
51 100 5
101 No maximum 0

Figure 9-55 Order amounts and shipping charges for Exercise 11
© 2013 Cengage Learning

12. In this exercise, you code an application that allows Professor Carver to display a grade
based on the number of points he enters. The grading scale is shown in Figure 9-56.
Open the Carver Solution (Carver Solution.sln) file contained in the VB2012\Chap09\
Carver Solution-TwoDimensional folder. Code the application. Store the minimum
points and grades in a two-dimensional array. Save the solution and then start and test
the application. Close the Code Editor window and then close the solution.

Minimum points Maximum points Grade
0 299 F
300 349 D
350 399 C
400 449 B
450 500 A

Figure 9-56 Grading scale for Exercise 12
© 2013 Cengage Learning

INTERMEDIATE

INTERMEDIATE

INTERMEDIATE

ADVANCED

Lesson C Exercises L E S S ON C

589

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

13. The sales manager at Conway Enterprises wants an application that she can use to
display the total domestic, total international, and total company sales made during a
six-month period. The sales amounts are shown in Figure 9-57. Create a Visual Basic
Windows application. Use the following names for the solution and project, respectively:
Conway Solution and Conway Project. Save the application in the VB2012\Chap09
folder. Change the form file’s name to Main Form.vb. Change the form’s name to
frmMain. Create a suitable interface and then code the application. Store the sales
amounts in a two-dimensional array. Save the solution and then start and test the
application. Close the Code Editor window and then close the solution.

Month Domestic sales ($) International sales ($)
1 100,000 150,000
2 90,000 120,000
3 75,000 210,000
4 88,000 50,000
5 125,000 220,000
6 63,000 80,000

Figure 9-57 Sales amounts for Exercise 13
© 2013 Cengage Learning

14. Open the Harrison Solution (Harrison Solution.sln) file contained in the VB2012\
Chap09\Harrison Solution folder. The btnDisplay_Click procedure should display the
largest number stored in the first column of the array. Code the procedure using
the For…Next statement. Save the solution and then start and test the application.
Close the Code Editor window and then close the solution.

15. Open the Count Solution (Count Solution.sln) file contained in the VB2012\Chap09\
Count Solution folder. Code the Display button’s Click event procedure so that it
displays the number of times each of the numbers from 1 through 9 appears in the
intNumbers array. (Hint: Store the counts in a one-dimensional array.) Save the
solution and then start the application. Click the Display button to display the nine
counts. Close the Code Editor window and then close the solution.

16. Open the Debug Solution (Debug Solution.sln) file contained in the VB2012\Chap09\
Debug Solution folder. Open the Code Editor window and review the existing code. The
first column in the strNames array contains first names, and the second column
contains last names. The btnDisplay_Click procedure should display the first and last
names in the lstFirst and lstLast controls, respectively. Correct the code to remove the
jagged lines. Save the solution and then start the application. Click the Display button.
Notice that the application is not working correctly. Correct the errors in the
application’s code. Save the solution and then start and test the application. Close the
Code Editor window and then close the solution.

ADVANCED

ADVANCED

ADVANCED

SWAT THE BUGS

CH A P T E R 9 Arrays

590

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 10
Structures and
Sequential Access Files

Creating the CD Collection Application

In this chapter, you will create an application that keeps track of a person’s CD
collection. The application will save each CD’s name, the artist’s name,
and the CD price in a sequential access file named CDs.txt. When the
application is started, it will display the contents of the file in a list box. The
application will allow the user to add information to the file and also remove
information from the file.

All Microsoft screenshots used with permission from Microsoft Corporation.

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Previewing the CD Collection Application
Before you start the first lesson in this chapter, you will preview the completed application. The
application is contained in the VB2012\Chap10 folder.

To preview the completed application:

1. Use the Run dialog box to run the CD (CD.exe) file contained in the VB2012\Chap10
folder. The application’s user interface appears on the screen, with the contents of the
CDs.txt file displayed in the list box. Notice that the list box contains three columns. You
will learn how to align columns of information in Lesson C.

2. First, you will add a new CD to the list box. Click the Add button. Type Uncovered as
the CD name and then press Enter. Type Elvis Presley as the artist name and then press
Enter. Type 6.99 as the price and then press Enter. The information you entered
appears in the list box. See Figure 10-1.

3. Now you will remove the Own The Night CD from the list box. Click Own The Night
in the list box and then click the Remove button. The information pertaining to the CD
is removed from the list box.

4. Click the Exit button to end the application. The application saves the contents of the
list box in the CDs.txt sequential access file. You will learn about sequential access files
in Lesson B.

5. Use Windows to open the VB2012\Chap10 folder. Right-click CDs.txt in the list of
filenames. Point to Open with and then click Notepad. See Figure 10-2.

START HERE

the CD information
you entered

Figure 10-1 CD information added to the list box
OpenClipArt.org/ilnanny/Cristian Pozzessere

CH A P T E R 1 0 Structures and Sequential Access Files

592

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

6. Close Notepad. Start the application again. The list box displays the current contents
of the CDs.txt file, which includes the CD information added in Step 2 but does not
include the CD information removed in Step 3.

7. Click the Exit button to end the application.

In Lesson A, you will learn how to create a structure in Visual Basic. Lesson B covers sequential
access files. You will code the CD Collection application in Lesson C. Be sure to complete each
lesson in full and do all of the end-of-lesson questions and several exercises before continuing to
the next lesson.

Figure 10-2 Contents of the CDs.txt file

Previewing the CD Collection Application

593

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

& LESSON A
After studying Lesson A, you should be able to:

l Create a structure

l Declare and use a structure variable

l Pass a structure variable to a procedure

l Create an array of structure variables

Structures
The data types used in previous chapters, such as the Integer and Double data types, are built
into the Visual Basic language. You also can create your own data types in Visual Basic using the
Structure statement. Data types created by the Structure statement are referred to as user-
defined data types or structures. Figure 10-3 shows the statement’s syntax. The structure’s
name is typically entered using Pascal case. Between the Structure and End Structure clauses,
you define the members included in the structure. The members can be variables, constants, or
procedures. However, in most cases, the members will be variables; such variables are referred
to as member variables.

Each member variable’s definition contains the keyword Public followed by the variable’s name,
which is typically entered using camel case. Following the variable’s name is the keyword As and
the variable’s dataType. The dataType identifies the type of data the member variable will store
and can be any of the standard data types available in Visual Basic; it also can be another
structure (user-defined data type). The Employee structure shown in the example in Figure 10-3
contains four member variables: three String variables and one Double variable. In most
applications, you enter the Structure statement in the form’s Declarations section, which begins
with the Public Class clause and ends with the End Class clause.

The Structure statement allows the programmer to group related items into one unit: a
structure. However, keep in mind that the Structure statement merely defines the structure
members; it does not reserve any memory locations inside the computer. You reserve memory
locations by declaring a structure variable.

Most
programmers
use the Class
statement
(rather than the

Structure statement) to
create data types that
contain procedures. You
will learn about the Class
statement in Chapter 11.

You also can
include an array
in a structure.
This topic is
explored in

Exercises 9 and 10 at
the end of this lesson.

Structure Statement
Syntax
Structure structureName
 Public memberVariableName1 As dataType
 [Public memberVariableNameN As dataType]
End Structure

Example
Structure Employee
 Public strId As String
 Public strFirst As String
 Public strLast As String
 Public dblPay As Double
End Structure

Figure 10-3 Syntax and an example of the Structure statement
© 2013 Cengage Learning

CH A P T E R 1 0 Structures and Sequential Access Files

594

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Declaring and Using a Structure Variable
After entering the Structure statement in the Code Editor window, you then can use the
structure to declare a variable. Variables declared using a structure are often referred to as
structure variables. The syntax for creating a structure variable is shown in Figure 10-4. The
figure also includes examples of declaring structure variables using the Employee structure from
Figure 10-3.

Similar to the way the Dim intAge As Integer instruction declares an Integer variable
named intAge, the Dim hourly As Employee instruction in Example 1 declares an Employee
variable named hourly. However, unlike the intAge variable, the hourly variable contains
four member variables. In code, you refer to the entire structure variable by its name—in this
case, hourly. You refer to a member variable by preceding its name with the name of the
structure variable in which it is defined. You use the dot member access operator (a period)
to separate the structure variable’s name from the member variable’s name. For instance,
to refer to the member variables within the hourly structure variable, you use hourly.strId,
hourly.strFirst, hourly.strLast, and hourly.dblPay. The Private salaried As
Employee instruction in Example 2 in Figure 10-4 declares a class-level Employee variable
named salaried. The names of the member variables within the salaried variable are
salaried.strId, salaried.strFirst, salaried.strLast, and salaried.dblPay.

The member variables in a structure variable can be used just like any other variables.
You can assign values to them, use them in calculations, display their contents, and so on.
Figure 10-5 shows various ways of using the member variables created by the statements
shown in Figure 10-4.

The dot member
access operator
indicates that
strId,
strFirst,

strLast, and dblPay
are members of the
hourly and salaried
variables.

Declaring a Structure Variable
Syntax
{Dim | Private} structureVariableName As structureName

Example 1
Dim hourly As Employee
declares a procedure-level Employee structure variable named hourly

Example 2
Private salaried As Employee
declares a class-level Employee structure variable named salaried

Figure 10-4 Syntax and examples of declaring a structure variable
© 2013 Cengage Learning

Declaring and Using a Structure Variable L E S S ON A

595

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Programmers use structure variables when they need to pass a group of related items to a
procedure for further processing. This is because it’s easier to pass one structure variable rather
than many individual variables. Programmers also use structure variables to store related items
in an array, even when the members have different data types. In the next two sections, you
will learn how to pass a structure variable to a procedure and also store a structure variable in
an array.

Passing a Structure Variable to a Procedure
The sales manager at Norbert Pool & Spa Depot wants an application that determines the
amount of water required to fill a rectangular pool. To perform this task, the application will
need to calculate the volume of the pool. You calculate the volume by first multiplying the pool’s
length by its width and then multiplying the result by the pool’s depth. Assuming the length,
width, and depth are measured in feet, this gives you the volume in cubic feet. To determine
the number of gallons of water, you multiply the number of cubic feet by 7.48 because there are
7.48 gallons in one cubic foot.

To open and then test the Norbert application:

1. If necessary, start Visual Studio 2012. Open the Norbert Solution (Norbert Solution.sln)
file contained in the VB2012\Chap10\Norbert Solution folder. If necessary, open the
designer window. (The image in the picture box was downloaded from the Open Clip
Art Library at http://openclipart.org.)

2. Start the application. Type 100 in the Length box, 30 in the Width box, and 4 in the
Depth box. Click the Calculate button. The required number of gallons appears in
the interface. See Figure 10-6.

Using a Member Variable
Example 1
hourly.strLast = "Hamilton"
assigns the string “Hamilton” to the hourly.strLast member variable

Example 2
hourly.dblPay = hourly.dblPay * 1.02
multiplies the contents of the hourly.dblPay member variable by 1.02 and then assigns the
result to the member variable; you also can write the statement as hourly.dblPay *= 1.02

Example 3
lblSalary.Text = salaried.dblPay.ToString("C2")
formats the value contained in the salaried.dblPay member variable and then displays the
result in the lblSalary control

Figure 10-5 Examples of using a member variable
© 2013 Cengage Learning

START HERE

CH A P T E R 1 0 Structures and Sequential Access Files

596

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

3. Click the Exit button to end the application, and then open the Code Editor window.

Figure 10-7 shows the GetGallons function and the btnCalc_Click procedure. The procedure
calls the GetGallons function, passing it three variables by value. The GetGallons function uses
the values to calculate the number of gallons required to fill the pool. The function returns the
number of gallons as a Double number to the procedure, which assigns the value to the
dblGallons variable.

Public Function GetGallons(ByVal dblLen As Double,
 ByVal dblWid As Double,
 ByVal dblDep As Double) As Double
 ' calculates and returns the number of gallons

 Const dblGAL_PER_CUBIC_FOOT As Double = 7.48

 Return dblLen * dblWid * dblDep * dblGAL_PER_CUBIC_FOOT
End Function

Private Sub btnCalc_Click(sender As Object,
e As EventArgs) Handles btnCalc.Click
 ' displays the number of gallons

 Dim dblPoolLength As Double
 Dim dblPoolWidth As Double
 Dim dblPoolDepth As Double
 Dim dblGallons As Double

 Double.TryParse(txtLength.Text, dblPoolLength)
 Double.TryParse(txtWidth.Text, dblPoolWidth)
 Double.TryParse(txtDepth.Text, dblPoolDepth)

 dblGallons =
 GetGallons(dblPoolLength, dblPoolWidth, dblPoolDepth)
 lblGallons.Text = dblGallons.ToString("N0")

 txtLength.Focus()
End Sub

receives three
variables by value

returns the
number of gallons

declares three
variables to store
the input data

passes three
variables to the
GetGallons function

Figure 10-7 Code for the Norbert Pool & Spa Depot application (without a structure)
© 2013 Cengage Learning

Figure 10-6 Interface showing the required number of gallons
OpenClipArt.org/laobc

Passing a Structure Variable to a Procedure L E S S ON A

597

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

A more convenient way of coding the application is to use a structure to group together the
input items: length, width, and depth. It’s logical to group the three items because they are
related; each represents one of the three dimensions of a rectangular pool. A descriptive name
for the structure would be Dimensions.

To use a structure in the application:

1. Replace <your name> and <current date> in the comments with your name and the
current date, respectively.

2. First, you will declare the structure in the form’s Declarations section. Click the blank
line immediately below the Public Class clause and then press Enter to insert another
blank line. Enter the following Structure statement:

Structure Dimensions
Public dblLength As Double
Public dblWidth As Double
Public dblDepth As Double

End Structure

3. Locate the btnCalc_Click procedure. The procedure will use a structure variable (rather
than three separate variables) to store the input items. Replace the first three Dim
statements with the following Dim statement:

Dim poolSize As Dimensions

4. Now you will store each input item in its corresponding member in the structure
variable. In the three TryParse methods, change dblPoolLength, dblPoolWidth, and
dblPoolDepth to poolSize.dblLength, poolSize.dblWidth, and poolSize.dblDepth,
respectively.

5. Next, consider the changes you will need to make to the statement that invokes the
GetGallons function. Instead of sending three separate variables to the function, you now
need to send only one variable: the structure variable. When you pass a structure
variable to a procedure, all of its members are passed automatically. Although passing
one structure variable rather than three separate variables may not seem like a huge
advantage, consider the convenience of passing one structure variable rather than
10 separate variables! Change the statement that invokes the GetGallons function to
dblGallons = GetGallons(poolSize). Don’t be concerned about the jagged line that
appears below GetGallons(poolSize) in the statement. It will disappear when you
modify the GetGallons function in the next step.

6. Locate the GetGallons function. The function will now receive a Dimensions structure
variable rather than three Double variables. Like the Double variables, the structure
variable will be passed by value because the function does not need to change any
member’s value. Change the function’s header to the following:

Public Function GetGallons(ByVal pool As Dimensions) As Double

7. Now you will use the members of the structure variable to calculate the number of
gallons. Change the Return statement as follows:

Return pool.dblLength * pool.dblWidth *
pool.dblDepth * dblGAL_PER_CUBIC_FOOT

Figure 10-8 shows the Structure statement, the GetGallons function, and the btnCalc_Click
procedure. The procedure calls the GetGallons function, passing it a structure variable by value.
The GetGallons function uses the values contained in the structure variable to calculate the
number of gallons required to fill the pool. The function returns the number of gallons as a
Double number to the procedure, which assigns the value to the dblGallons variable.

START HERE

CH A P T E R 1 0 Structures and Sequential Access Files

598

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

To test the modified code:

1. Save the solution and then start the application. Type 100, 30, and 4 in the Length,
Width, and Depth boxes, respectively. Press Enter to select the Calculate button.
The required number of gallons (89,760) appears in the interface, as shown earlier in
Figure 10-6.

2. Click the Exit button. Close the Code Editor window and then close the solution.

YOU DO IT 1!

Create a Visual Basic Windows application named YouDoIt 1. Save the application in the
VB2012\Chap10 folder. Add two text boxes, a label, and a button to the form. Open the
Code Editor window. Create a structure named Rectangle. The structure should have two
members: one for the rectangle’s length and the other for its width. The button’s Click
event procedure should declare a Rectangle variable named myRectangle. It then should
assign the text box values to the variable’s members. Next, the procedure should pass
the myRectangle variable to a function that calculates and returns the area of the
rectangle. Finally, the procedure should display the function’s return value in the label.
Code the procedure. Save the solution and then start and test the application. Close the
solution.

Structure Dimensions
Public dblLength As Double
Public dblWidth As Double
Public dblDepth As Double

End Structure

Public Function GetGallons(ByVal pool As Dimensions) As Double
' calculates and returns the number of gallons

Const dblGAL_PER_CUBIC_FOOT As Double = 7.48

Return pool.dblLength * pool.dblWidth *
pool.dblDepth * dblGAL_PER_CUBIC_FOOT

End Function

Private Sub btnCalc_Click(sender As Object,
e As EventArgs) Handles btnCalc.Click

' displays the number of gallons

Dim poolSize As Dimensions
Dim dblGallons As Double

Double.TryParse(txtLength.Text, poolSize.dblLength)
Double.TryParse(txtWidth.Text, poolSize.dblWidth)
Double.TryParse(txtDepth.Text, poolSize.dblDepth)

dblGallons = GetGallons(poolSize)
lblGallons.Text = dblGallons.ToString("N0")

txtLength.Focus()
End Sub

entered in the form’s
Declarations section

declares a structure
variable to store the
input data

assigns the input
data to the structure
variable

passes the structure
variable to the
GetGallons function

receives a
structure
variable by
value

Figure 10-8 Code for the Norbert Pool & Spa Depot application (with a structure)
© 2013 Cengage Learning

START HERE

Passing a Structure Variable to a Procedure L E S S ON A

599

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Creating an Array of Structure Variables
As mentioned earlier, another advantage of using a structure is that a structure variable can be
stored in an array, even when its members have different data types. The Treasures Gift Shoppe
application from Chapter 9 can be used to illustrate this concept. The problem specification is
shown in Figure 10-9.

Problem Specification

Takoda Tapahe, the owner of a small gift shop named Treasures Gift Shoppe, wants an application that
allows her to enter an item’s ID. The application should display the item’s price. A portion of the gift shop’s
price list is shown here. The application should store the price list in an array.
Item ID Price
BX35 13
CR20 10
FE15 12
KW10 24
MM67 4

Figure 10-9 Problem specification for the Treasures Gift Shoppe
© 2013 Cengage Learning

In Chapter 9, you coded the Treasures Gift Shoppe application in two different ways. In Lesson
B, you coded it using two parallel one-dimensional arrays: one having the String data type and
the other having the Integer data type. In Lesson C, you coded it using a two-dimensional String
array. In this lesson, you will code the application using a one-dimensional array of structure
variables. (Notice that there are many different ways of solving the same problem.) Each
structure variable will contain two member variables: a String variable for the ID and an Integer
variable for the price.

To open the Treasures Gift Shoppe application:

1. Open the Treasures Solution (Treasures Solution.sln) file contained in the VB2012\
Chap10\Treasures Solution-Structure folder. If necessary, open the designer window.
See Figure 10-10. (The image in the picture box was downloaded from the Open Clip
Art Library at http://openclipart.org.)

START HERE

the CharacterCasing and
MaxLength properties are
set to Upper and 4,
respectively

Figure 10-10 Interface for the Treasures Gift Shoppe application
OpenClipArt.org/secretlondon

CH A P T E R 1 0 Structures and Sequential Access Files

600

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

2. Open the Code Editor window. Replace <your name> and <current date> in the
comments with your name and the current date, respectively.

Figure 10-11 shows the code entered in both the form’s Declarations section and the
btnDisplay_Click procedure. The code, which comes from Chapter 9’s Lesson B, uses two
parallel one-dimensional arrays. In the remainder of this lesson, you will modify the code to use
a structure.

To begin modifying the code to use a structure:

1. First, you will declare a structure named ProductInfo. The structure will contain two
members: one for the item ID and one for the price. Click the blank line immediately
below the Public Class clause and then press Enter to insert another blank line. Enter the
following Structure statement:

Structure ProductInfo
Public strId As String
Public intPrice As Integer

End Structure

2. If necessary, insert a blank line below the End Structure clause.

' declare parallel arrays
Private strIds() As String =

{"BX35", "CR20", "FE15", "KW10", "MM67"}
Private intPrices() As Integer = {13, 10, 12, 24, 4}

Private Sub btnDisplay_Click(sender As Object,
e As EventArgs) Handles btnDisplay.Click

' displays the price associated with an ID

Dim strSearchForId As String
Dim intSub As Integer

strSearchForId = txtId.Text

' search the strIds array for the ID
' continue searching until the end of
' the array or the ID is found
Do Until intSub = strIds.Length OrElse

strSearchForId = strIds(intSub)
intSub += 1

Loop

If intSub < strIds.Length Then
lblPrice.Text = intPrices(intSub).ToString("C0")

Else
MessageBox.Show("Invalid ID", "Treasures",

MessageBoxButtons.OK,
MessageBoxIcon.Information)

End If
End Sub

form’s Declarations
section

btnDisplay_Click

Figure 10-11 Code for the Treasures Gift Shoppe application (without a structure)
© 2013 Cengage Learning

START HERE

Creating an Array of Structure Variables L E S S ON A

601

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

3. Rather than using two parallel one-dimensional arrays to store the price list, the
procedure will use a one-dimensional array of ProductInfo structure variables. Change
the ' declare parallel arrays comment to ' declare array of structure variables.

4. Now, replace the two array declaration statements with the following statement:

Private priceList(4) As ProductInfo

Next, you need to store the five IDs and prices in the priceList array. You will have the form’s
Load event procedure perform that task. Keep in mind that each element in the array is a
structure variable, and each structure variable contains two member variables: strId and
intPrice. You refer to a member variable in an array element using the syntax shown in
Figure 10-12. The figure also indicates how you would refer to some of the member
variables contained in the priceList array. For example, to refer to the strId member
contained in the first array element, you use priceList(0).strId. Similarly, you use
priceList(4).intPrice to refer to the intPrice member contained in the last array element.

To continue modifying the code:

1. Open the form’s Load event procedure. Type the following comment and then press
Enter twice:

' fill array with IDs and prices

2. Enter the following comment and assignment statements:

priceList(0).strId = "BX35"
priceList(0).intPrice = 13
priceList(1).strId = "CR20"
priceList(1).intPrice = 10
priceList(2).strId = "FE15"
priceList(2).intPrice = 12
priceList(3).strId = "KW10"
priceList(3).intPrice = 24
priceList(4).strId = "MM67"
priceList(4).intPrice = 4

Referring to a Member Variable in an Array Element

Syntax
arrayName(subscript).memberVariableName

Examples using the priceList array

priceList(0).strId

priceList(1).intPrice

priceList(3).strId

priceList(4).intPrice

BX35
13
CR20
10
FE15
12
KW10
24
MM67
4

Figure 10-12 Syntax and examples of referring to member variables in an array
© 2013 Cengage Learning

START HERE

CH A P T E R 1 0 Structures and Sequential Access Files

602

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

3. Locate the btnDisplay_Click procedure. The loop now needs to search the priceList
array (rather than the strIds array). Change strIds in the ' search the strIds array
for the ID comment to priceList.

4. The loop should search each element in the priceList array, comparing the value
contained in the current element’s strId member with the value stored in the
strSearchForId variable. The loop should stop searching either when the end of
the array is reached or when the ID is found. Change the Do clause to the following:

Do Until intSub = priceList.Length OrElse
strSearchForId = priceList(intSub).strId

5. The selection structure in the procedure determines why the loop ended and then takes
the appropriate action. Currently, the statement’s condition compares the value
contained in the intSub variable with the value stored in the strIds array’s Length
property. Recall that a one-dimensional array’s Length property stores an integer that
represents the number of elements in the array. You will need to modify the condition so
that it compares the intSub variable’s value with the value stored in the priceList
array’s Length property. Change strIds.Length in the If clause to priceList.Length.

6. If the value contained in the intSub variable is less than the number of array elements,
the loop ended because the ID was located in the array. In that case, the selection
structure’s true path should display the corresponding price. Change the assignment
statement below the If clause as follows:

lblPrice.Text =
priceList(intSub).intPrice.ToString("C0")

7. On the other hand, if the value in the intSub variable is not less than the number of
array elements, the loop ended because it reached the end of the array without finding
the ID. In that case, the selection structure’s false path should display the “Invalid ID”
message in a message box. The appropriate code is already entered in the selection
structure’s false path.

Figure 10-13 shows the Structure statement, the btnDisplay_Click procedure, and the
frmMain_Load procedure. The code pertaining to the structure is shaded in the figure.

You can also
write the first
expression in the
Do loop’s
condition as

intSub >

priceList.

GetUpperBound(0).

Creating an Array of Structure Variables L E S S ON A

603

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

To test the application’s code:

1. Save the solution and then start the application. Type fe15 in the ID box and then click
the Display Price button. $12 appears in the Price box, as shown in Figure 10-14.

Structure ProductInfo
Public strId As String
Public intPrice As Integer

End Structure

' declare array of structure variables
Private priceList(4) As ProductInfo

Private Sub btnDisplay_Click(sender As Object,
e As EventArgs) Handles btnDisplay.Click

' displays the price associated with an ID

Dim strSearchForId As String
Dim intSub As Integer

strSearchForId = txtId.Text

' search the priceList array for the ID
' continue searching until the end of
' the array or the ID is found
Do Until intSub = priceList.Length OrElse

strSearchForId = priceList(intSub).strId
intSub += 1

Loop

If intSub < priceList.Length Then
lblPrice.Text =

priceList(intSub).intPrice.ToString("C0")
Else

MessageBox.Show("Invalid ID", "Treasures",
MessageBoxButtons.OK,
MessageBoxIcon.Information)

End If
End Sub

Private Sub frmMain_Load(sender As Object,
e As EventArgs) Handles Me.Load

' fill array with IDs and prices

pricelist(0).strId = "BX35"
pricelist(0).intPrice = 13
pricelist(1).strId = "CR20"
pricelist(1).intPrice = 10
pricelist(2).strId = "FE15"
pricelist(2).intPrice = 12
pricelist(3).strId = "KW10"
pricelist(3).intPrice = 24
pricelist(4).strId = "MM67"
pricelist(4).intPrice = 4

End Sub

form’s Declarations
section

btnDisplay_Click

frmMain_Load

Figure 10-13 Code for the Treasures Gift Shoppe application (with a structure)
© 2013 Cengage Learning

START HERE

CH A P T E R 1 0 Structures and Sequential Access Files

604

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

2. Click the Exit button. Close the Code Editor window and then close the solution.

Lesson A Summary
l To create a structure (user-defined data type):

Use the Structure statement. The statement’s syntax is shown in Figure 10-3. In most
applications, you enter the Structure statement in the form’s Declarations section.

l To declare a structure variable:

Use the following syntax: {Dim | Private} structureVariableName As structureName.

l To refer to a member within a structure variable:

Use the syntax structureVariableName.memberVariableName.

l To create an array of structure variables:

Declare the array using the structure as the data type.

l To refer to a member within a structure variable stored in an array:

Use the syntax arrayName(subscript).memberVariableName.

Lesson A Key Terms
Member variables—the variables contained in a structure

Structure statement—used to create user-defined data types, called structures

Structure variables—variables declared using a structure as the data type

Structures—data types created by the Structure statement; allow the programmer to group
related items into one unit; also called user-defined data types

User-defined data types—data types created by the Structure statement; also called structures

Figure 10-14 Interface showing the price for product ID FE15
OpenClipArt.org/secretlondon

Lesson A Key Terms L E S S ON A

605

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Lesson A Review Questions
1. Which statement is used to create a user-defined data type?

a. Declare

b. Define

c. Structure

d. UserType

2. A structure variable named course contains a member variable named strNum. Which
of the following statements assigns the string “CIS250” to the member variable?

a. course.strNum = "CIS250"

b. course&strNum = "CIS250"

c. strNum.course = "CIS250"

d. none of the above

3. An array is declared using the statement Dim onOrder(10) As Items. Which of the
following statements assigns the number 50 to the intQuantity member variable
contained in the last array element?

a. onOrder.intQuantity(10) = 50

b. Items.onOrder.intQuantity = 50

c. onOrder(9).intQuantity = 50

d. onOrder(10).intQuantity = 50

4. An application uses a structure named Employee. Which of the following statements
declares a five-element array of Employee structure variables?

a. Dim workers(4) As Employee

b. Dim workers(5) As Employee

c. Dim workers As Employee(4)

d. Dim workers As Employee(5)

5. In most applications, the Structure statement is entered in the form’s .

a. Declarations section

b. Definition section

c. Load event procedure

d. User-defined section

Lesson A Exercises

1. Write a Structure statement that defines a structure named Book. The structure
contains three member variables named strTitle, strAuthor, and decPrice. Then
write a Dim statement that declares a Book variable named fiction.

2. Write a Structure statement that defines a structure named Tape. The structure
contains four member variables named strName, strArtist, strSongLength, and
intSongNum. Then write a Private statement that declares a Tape variable named
blues.

3. An application contains the Structure statement shown here. Write a Dim statement
that declares a Computer variable named homeUse. Then, write an assignment
statement that assigns the string “IB-50” to the strModel member. Finally, write an
assignment statement that assigns the number 2400 to the dblCost member.

INTRODUCTORY

INTRODUCTORY

INTRODUCTORY

CH A P T E R 1 0 Structures and Sequential Access Files

606

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Structure Computer
Public strModel As String
Public dblCost As Double

End Structure

4. An application contains the Structure statement shown here. Write a Dim statement
that declares a MyFriend variable named school. Then, write assignment statements
that assign the value in the txtFirst control to the strFirst member and assign the
value in the txtLast control to the strLast member. Finally, write assignment
statements that assign the value in the strLast member to the lblLast control and
assign the value in the strFirst member to the lblFirst control.

Structure MyFriend
Public strLast As String
Public strFirst As String

End Structure

5. An application contains the Structure statement shown here. Write a Private statement
that declares a 10-element one-dimensional array of Computer variables. Name the
array business. Then, write an assignment statement that assigns the string “HPP405”
to the strModel member contained in the first array element. Finally, write an
assignment statement that assigns the number 3600 to the decCost member contained
in the first array element.

Structure Computer
Public strModel As String
Public decCost As Decimal

End Structure

6. An application contains the Structure statement shown here. Write a Dim statement
that declares a five-element one-dimensional array of MyFriend variables. Name the
array home. Then, write an assignment statement that assigns the value in the txtName
control to the strName member contained in the last array element. Finally, write an
assignment statement that assigns the value in the txtBirthday control to the
strBirthday member contained in the last array element.

Structure MyFriend
Public strName As String
Public strBirthday As String

End Structure

7. In this exercise, you modify the Treasures Gift Shoppe application completed in the
lesson. Use Windows to make a copy of the Treasures Solution-Structure folder.
Rename the folder Modified Treasures Solution-Structure. Open the Treasures Solution
(Treasures Solution.sln) file contained in the Modified Treasures Solution-Structure
folder. Open the designer window. The modified application should display both the
name and price corresponding to the ID entered by the user. Make the appropriate
modifications to the interface and the code (including the Structure statement). The
names of the products are shown in Figure 10-15. Save the solution and then start and
test the application. Close the Code Editor window and then close the solution.

INTRODUCTORY

INTERMEDIATE

INTERMEDIATE

INTERMEDIATE

Lesson A Exercises L E S S ON A

607

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Product ID Name
BX35 Necklace
CR20 Bracelet
FE15 Jewelry box
KW10 Doll
MM67 Ring

Figure 10-15 Product information for Exercise 7
© 2013 Cengage Learning

8. Open the Middleton Solution (Middleton Solution.sln) file contained in the VB2012\
Chap10\Middleton Solution folder. If necessary, open the designer window. The
application should display a grade based on the number of points entered by the user.
The grading scale is shown in Figure 10-16. Open the Code Editor window. Create a
structure that contains two members: an Integer variable for the minimum points
and a String variable for the grades. Use the structure to declare a class-level one-
dimensional array that has five elements. In the form’s Load event procedure, store the
minimum points and grades in the array. The application should search the array for
the number of points earned and then display the appropriate grade from the array.
Code the application. Save the solution and then start and test the application. Close the
Code Editor window and then close the solution.

Minimum Points Maximum Points Grade
0 299 F

300 349 D
350 419 C
420 469 B
470 500 A

Figure 10-16 Grade information for Exercise 8
© 2013 Cengage Learning

9. Open the Average Solution (Average Solution.sln) file contained in the VB2012\
Chap10\Average Solution folder. If necessary, open the designer window. The application
should display a student’s name and the average of five test scores entered by the user.

a. Open the Code Editor window. Create a structure named StudentInfo. The
structure should contain two members: a String variable for the student’s name
and a Double array for the test scores. An array contained in a structure cannot be
assigned an initial size, so you will need to include an empty set of parentheses after
the array name, like this: Public dblScores() As Double.

b. Open the code template for the btnCalc control’s Click event procedure. First, use
the StudentInfo structure to declare a structure variable. Next, research the Visual
Basic ReDim statement. Use the ReDim statement to declare the array’s size. The
array should have five elements.

c. The btnCalc_Click procedure should use the InputBox function to get the student’s
name. It should also use a repetition structure and the InputBox function to get the
five test scores from the user, storing each in the array. The procedure should
display the student’s name and average test score in the lblAverage control.

d. Save the solution and then start and test the application. Close the Code Editor
window and then close the solution.

INTERMEDIATE

DISCOVERY

CH A P T E R 1 0 Structures and Sequential Access Files

608

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

10. In this exercise, you modify the application from Exercise 9. Use Windows to make a
copy of the Average Solution folder. Rename the folder Modified Average Solution.
Open the Average Solution (Average Solution.sln) file contained in the Modified
Average Solution folder. Open the designer window. Change the font used in the
lblAverage control to Courier New. Change the control’s TextAlign property to TopLeft
and then resize the control to display four lines of text. Open the Code Editor window.
Modify the application to calculate the average of five test scores for each of four
students. (Hint: Use an array of structure variables.) Display each student’s name and
average test score in the lblAverage control. Save the solution and then start and test the
application. Close the Code Editor window and then close the solution.

DISCOVERY

Lesson A Exercises L E S S ON A

609

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

& LESSON B
After studying Lesson B, you should be able to:

l Open and close a sequential access file

l Write data to a sequential access file

l Read data from a sequential access file

l Determine whether a sequential access file exists

l Test for the end of a sequential access file

Sequential Access Files
In addition to getting data from the keyboard and sending data to the computer screen, an
application can also get data from and send data to a file on a disk. Getting data from a file is
referred to as “reading the file,” and sending data to a file is referred to as “writing to the file.”
Files to which data is written are called output files because the files store the output produced
by an application. Files that are read by the computer are called input files because an
application uses the data in these files as input.

Most input and output files are composed of lines of text that are both read and written
sequentially. In other words, they are read and written in consecutive order, one line at a time,
beginning with the first line in the file and ending with the last line in the file. Such files are
referred to as sequential access files because of the manner in which the lines of text are
accessed. They are also called text files because they are composed of lines of text. Examples of
text stored in sequential access files include an employee list, a memo, or a sales report.

Writing Data to a Sequential Access File
An item of data—such as the string “Robert”—is viewed differently by a human being and a
computer. To a human being, the string represents a person’s name; to a computer, it is merely
a sequence of characters. Programmers refer to a sequence of characters as a stream of
characters.

In Visual Basic, you use a StreamWriter object to write a stream of characters to a sequential
access file. Before you create the StreamWriter object, you first declare a variable to store the
object in the computer’s internal memory. Figure 10-17 shows the syntax and an example of
declaring a StreamWriter variable. The IO in the syntax stands for Input/Output.

Ch10B video

Declaring a StreamWriter Variable
Syntax
{Dim | Private} streamWriterVariableName As IO.StreamWriter

Example
Dim outFile As IO.StreamWriter
declares a StreamWriter variable named outFile

Figure 10-17 Syntax and an example of declaring a StreamWriter variable
© 2013 Cengage Learning

CH A P T E R 1 0 Structures and Sequential Access Files

610

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

You will use a StreamWriter variable in the Game Show Contestants application, which you
code in this lesson. The application will write the names of contestants to a sequential access file.
It also will subsequently read the names and display them in a list box.

To begin coding the Game Show Contestants application:

1. If necessary, start Visual Studio 2012. Open the Game Show Solution (Game Show
Solution.sln) file contained in the VB2012\Chap10\Game Show Solution folder. If
necessary, open the designer window. See Figure 10-18.

2. Open the Code Editor window. Replace <your name> and <current date> in the
comments with your name and the current date, respectively.

3. Locate the btnWrite_Click procedure. Click the blank line below the ' declare a
StreamWriter variable comment and then enter the following declaration statement:

Dim outFile As IO.StreamWriter

After declaring a StreamWriter variable, you can use the syntax shown in Figure 10-19 to create
a StreamWriter object. As the figure indicates, creating a StreamWriter object involves opening
a sequential access file using either the CreateText method or the AppendText method. You use
the CreateText method to open a sequential access file for output. When you open a file for
output, the computer creates a new, empty file to which data can be written. If the file already
exists, the computer erases the contents of the file before writing any data to it. You use the
AppendText method to open a sequential access file for append. When a file is opened for
append, new data is written after any existing data in the file. If the file does not exist, the
computer creates the file for you. In addition to opening the file, both methods automatically
create a StreamWriter object to represent the file in the application. You assign the
StreamWriter object to a StreamWriter variable, which you use to refer to the file in code.
Figure 10-19 also includes examples of using both methods.

START HERE

Figure 10-18 Interface for the Game Show Contestants application

Writing Data to a Sequential Access File L E S S ON B

611

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

When processing the statement in Example 1, the computer searches for the employee.txt file in
the default folder, which is the current project’s bin\Debug folder. If the file exists, its contents
are erased and the file is opened for output; otherwise, a new, empty file is created and opened
for output. The statement then creates a StreamWriter object and assigns it to the outFile
variable.

Unlike the fileName argument in Example 1, the fileName argument in Example 2 contains a folder
path. When processing the statement in Example 2, the computer searches for the report.txt file in
the Chap10 folder on the F drive. If the computer locates the file, it opens the file for append. If it
does not find the file, it creates a new, empty file and then opens the file for append. Like the
statement in Example 1, the statement in Example 2 creates a StreamWriter object and assigns it to
the outFile variable. When deciding whether to include the folder path in the fileName argument,
keep in mind that a USB drive may have a different letter designation on another computer.
Therefore, you should specify the folder path only when you are sure that it will not change.

When the user clicks the Write to File button in the Game Show Contestants interface, the
name entered in the Name box should be added to the end of the existing names in the file.
Therefore, you will need to open the sequential access file for append. A descriptive name for a
file that stores the names of contestants is contestants.txt. Although it is not a requirement, the
“txt” (short for “text”) filename extension is commonly used when naming sequential access files;
this is because the files contain text.

To continue coding the btnWrite_Click procedure:

1. Click the blank line below the ' open the file for append comment and then enter
the following statement:

outFile = IO.File.AppendText("contestants.txt")

After opening a file for either output or append, you can begin writing data to it using either the
Write method or the WriteLine method. The difference between both methods is that the
WriteLine method writes a newline character after the data. Figure 10-20 shows the syntax and
an example of both methods. As the figure indicates, when using the Write method, the next
character written to the file will appear immediately after the letter o in the string “Hello”. When
using the WriteLine method, however, the next character written to the file will appear on the
line immediately below the string. You do not need to include the file’s name in either method’s
syntax because the data will be written to the file associated with the StreamWriter variable.

CreateText and AppendText Methods
Syntax
IO.File.method(fileName)

method Description
CreateText opens a sequential access file for output
AppendText opens a sequential access file for append

Example 1
outFile = IO.File.CreateText("employee.txt")
opens the employee.txt file for output; creates a StreamWriter object and assigns it to the
outFile variable

Example 2
outFile = IO.File.AppendText("F:\Chap10\report.txt")
opens the report.txt file for append; creates a StreamWriter object and assigns it to the outFile
variable

Figure 10-19 Syntax and examples of the CreateText and AppendText methods
© 2013 Cengage Learning

START HERE

CH A P T E R 1 0 Structures and Sequential Access Files

612

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Each contestant’s name should appear on a separate line in the file, so you will use the WriteLine
method to write each name to the file.

To continue coding the btnWrite_Click procedure:

1. Click the blank line below the ' write the name on a separate line in the file
comment and then enter the following statement:

outFile.WriteLine(txtName.Text)

Closing an Output Sequential Access File
You should use the Close method to close an output sequential access file as soon as you are
finished using it. This ensures that the data is saved and it makes the file available for use
elsewhere in the application. The syntax to close an output sequential access file is shown in
Figure 10-21 along with an example of using the method. Here again, notice that you use the
StreamWriter variable to refer to the file you want to close.

To finish coding and then test the btnWrite_Click procedure:

1. Click the blank line below the ' close the file comment and then enter the following
statement:

outFile.Close()

Close Method (Output Sequential Access File)
Syntax
streamWriterVariableName.Close()

Example
outFile.Close()
closes the file associated with the outFile variable

Figure 10-21 Syntax and an example of closing an output sequential access file
© 2013 Cengage Learning

Write and WriteLine Methods

Syntax
streamWriterVariableName.Write(data)
streamWriterVariableName.WriteLine(data)

Example 1
outFile.Write("Hello")

Result
Hello|

Example 2
outFile.WriteLine("Hello")

Result
Hello
|

the next character will
appear immediately
after the o

the next character will
appear on the next line

Figure 10-20 Syntax and examples of the Write and WriteLine methods
© 2013 Cengage Learning

START HERE

START HERE

Closing an Output Sequential Access File L E S S ON B

613

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

2. Save the solution and then start the application. Type Sophie Jacoby in the Name box
and then click the Write to File button. Use the application to write the following four
names to the file:

Christopher Mills
Khalid Patel
Marsha Coffee
Sara Chen

3. Click the Exit button. Now you will open the contestants.txt file to verify its contents.
Click FILE on the menu bar and then click Open File. Open the project’s bin\Debug
folder. Click contestants.txt in the list of filenames and then click the Open button.
The contestants.txt window opens and shows the five names contained in the file. See
Figure 10-22.

4. Close the contestants.txt window by clicking its Close button.

Reading Data from a Sequential Access File
In Visual Basic, you use a StreamReader object to read data from a sequential access file. Before
creating the StreamReader object, you first declare a variable to store the object in the
computer’s internal memory. Figure 10-23 shows the syntax and an example of declaring a
StreamReader variable. As mentioned earlier, the IO in the syntax stands for Input/Output.

Declaring a StreamReader Variable
Syntax
{Dim | Private} streamReaderVariableName As IO.StreamReader

Example
Dim inFile As IO.StreamReader
declares a StreamReader variable named inFile

Figure 10-23 Syntax and an example of declaring a StreamReader variable
© 2013 Cengage Learning

each name appears
on a separate line
in the file

Close button

Figure 10-22 Names contained in the contestants.txt file

CH A P T E R 1 0 Structures and Sequential Access Files

614

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

To begin coding the Read from File button’s Click event procedure:

1. Locate the btnRead_Click procedure. Click the blank line below the ' declare
variables comment and then enter the following declaration statement:

Dim inFile As IO.StreamReader

After declaring a StreamReader variable, you can use the OpenText method to open a sequential
access file for input, which will automatically create a StreamReader object. When a file is
opened for input, the computer can read the lines of text stored in the file. Figure 10-24 shows
the OpenText method’s syntax along with an example of using the method. The fileName
argument in the example does not include a folder path, so the computer will search for the
employee.txt file in the default folder, which is the current project’s bin\Debug folder. If the
computer finds the file, it opens the file for input. If the computer does not find the file, a run
time error occurs. You assign the StreamReader object created by the OpenText method to a
StreamReader variable, which you use to refer to the file in code.

The run time error that occurs when the computer cannot locate the file you want opened for
input will cause the application to end abruptly. You can use the Exists method to avoid this run
time error. Figure 10-25 shows the method’s syntax and includes an example of using the
method. If the fileName argument does not include a folder path, the computer searches for the
file in the current project’s bin\Debug folder. The Exists method returns the Boolean value True
if the file exists; otherwise, it returns the Boolean value False.

To continue coding the btnRead_Click procedure:

1. Click the blank line below the ' determine whether the file exists comment and
then enter the following If clause:

If IO.File.Exists("contestants.txt") Then

Exists Method
Syntax
IO.File.Exists(fileName)

Example
If IO.File.Exists("employee.txt") Then
determines whether the employee.txt file exists in the current project’s bin\Debug folder; you also
can write the If clause as If IO.File.Exists("employee.txt") = True Then

Figure 10-25 Syntax and an example of the Exists method
© 2013 Cengage Learning

START HERE

START HERE

OpenText Method
Syntax
IO.File.OpenText(fileName)

Example
inFile = IO.File.OpenText("employee.txt")
opens the employee.txt file for input; creates a StreamReader object and assigns it to the inFile
variable

Figure 10-24 Syntax and an example of the OpenText method
© 2013 Cengage Learning

Reading Data from a Sequential Access File L E S S ON B

615

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

2. If the file exists, you will use the OpenText method to open the file. Enter the following
comment and assignment statement. Press Enter twice after typing the assignment
statement.

' open the file for input
inFile = IO.File.OpenText("contestants.txt")

3. If the file does not exist, you will display an appropriate message. Enter the additional
lines of code shown in Figure 10-26.

After opening a file for input, you can use the ReadLine method to read the file’s contents, one
line at a time. A line is defined as a sequence (stream) of characters followed by the newline
character. The ReadLine method returns a string that contains only the sequence of characters
in the current line. The returned string does not include the newline character at the end of the
line. In most cases, you assign the string returned by the ReadLine method to a String variable.
Figure 10-27 shows the ReadLine method’s syntax and includes an example of using the method.
The ReadLine method does not require you to provide the file’s name because it uses the file
associated with the StreamReader variable.

In most cases, an application will need to read each line of text contained in a sequential access
file, one line at a time. You can do this using a loop along with the Peek method. The Peek
method “peeks” into the file to determine whether the file contains another character to read. If
the file contains another character, the Peek method returns the character; otherwise, it returns
the number –1 (a negative 1). The Peek method’s syntax is shown in Figure 10-28 along with an
example of using the method. The Do clause in the example tells the computer to process the
loop instructions until the Peek method returns the number –1, which indicates that there are

enter these five
lines of code

Figure 10-26 Additional code entered in the procedure

ReadLine Method
Syntax
streamReaderVariableName.ReadLine

Example
Dim strMessage As String
strMessage = inFile.ReadLine
reads a line of text from the sequential access file associated with the inFile variable and
assigns the line, excluding the newline character, to the strMessage variable

Figure 10-27 Syntax and an example of the ReadLine method
© 2013 Cengage Learning

CH A P T E R 1 0 Structures and Sequential Access Files

616

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

no more characters to read. In other words, the Do clause tells the computer to process the loop
instructions until the end of the file is reached.

To continue coding the btnRead_Click procedure:

1. First, you will declare a variable to store the string returned by the ReadLine method.
Each line in the contestants.txt file represents a name, so you will call the variable
strName. Click the blank line below the Dim statement and then enter the following
declaration statement:

Dim strName As String

2. The Do clause is next. Click the blank line below the statement that opens the
contestants.txt file. Enter the following comment and Do clause, being sure to type the
minus sign before the number 1:

' process loop instructions until end of file
Do Until inFile.Peek = –1

3. The first instruction in the loop should read a line of text and assign it (excluding the
newline character) to the strName variable. Enter the following comment and
assignment statement:

' read a name
strName = inFile.ReadLine

4. Now, you will add the name to the Contestants list box. Enter the following comment
and statement:

' add name to list box
lstContestants.Items.Add(strName)

5. If necessary, delete the blank line above the Loop clause.

Closing an Input Sequential Access File
Just as you do with an output sequential access file, you should use the Close method to close an
input sequential access file as soon as you are finished using it. Doing this makes the file available
for use elsewhere in the application. The syntax to close an input sequential access file is shown
in Figure 10-29 along with an example of using the method. Notice that you use the
StreamReader variable to refer to the file you want to close.

Peek Method
Syntax
streamReaderVariableName.Peek

Example
Dim strLineOfText As String
Do Until inFile.Peek = –1
 strLineOfText = inFile.ReadLine
 MessageBox.Show(strLineOfText)
Loop
reads each line of text from the sequential access file associated with the inFile variable, line
by line; each line (excluding the newline character) is assigned to the strLineOfText variable
and is then displayed in a message box

Figure 10-28 Syntax and an example of the Peek method
© 2013 Cengage Learning

START HERE

Closing an Input Sequential Access File L E S S ON B

617

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

To finish coding the btnRead_Click procedure:

1. Click after the letter p in the Loop clause and then press Enter to insert a blank line.
Enter the following comment and statement:

' close the file
inFile.Close()

Figure 10-30 shows the code entered in the btnWrite_Click and btnRead_Click procedures.

START HERE

Close Method (Input Sequential Access File)
Syntax
streamReaderVariableName.Close()

Example
inFile.Close()
closes the file associated with the inFile variable

Figure 10-29 Syntax and an example of closing an input sequential access file
© 2013 Cengage Learning

Private Sub btnWrite_Click(sender As Object,
e As EventArgs) Handles btnWrite.Click
 ' writes a name to a sequential access file

 ' declare a StreamWriter variable
 Dim outFile As IO.StreamWriter

 ' open the file for append
 outFile = IO.File.AppendText("contestants.txt")

 ' write the name on a separate line in the file
 outFile.WriteLine(txtName.Text)

 ' close the file
 outFile.Close()

 ' clear the list box and then set the focus
 lstContestants.Items.Clear()
 txtName.Focus()
End Sub

Private Sub btnRead_Click(sender As Object,
e As EventArgs) Handles btnRead.Click
 ' reads names from a sequential access file
 ' and displays them in the interface

 ' declare variables
 Dim inFile As IO.StreamReader
 Dim strName As String

 ' clear previous names from the list box
 lstContestants.Items.Clear()

Figure 10-30 Click event procedures for the btnWrite and btnRead controls (continues)

CH A P T E R 1 0 Structures and Sequential Access Files

618

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

To test the application’s code:

1. Save the solution and then start the application. Click the Read from File button. The
five names contained in the contestants.txt file appear in the Contestants box, as shown
in Figure 10-31.

 ' determine whether the file exists
 If IO.File.Exists("contestants.txt") Then
 ' open the file for input
 inFile = IO.File.OpenText("contestants.txt")
 ' process loop instructions until end of file
 Do Until inFile.Peek = -1
 ' read a name
 strName = inFile.ReadLine
 ' add name to list box
 lstContestants.Items.Add(strName)
 Loop
 ' close the file
 inFile.Close()

 Else
 MessageBox.Show("Can't find the file",
 "Game Show Contestants",
 MessageBoxButtons.OK,
 MessageBoxIcon.Information)
 End If
End Sub

Figure 10-30 Click event procedures for the btnWrite and btnRead controls
© 2013 Cengage Learning

START HERE

Figure 10-31 Five contestant names listed in the Contestants box

(continued)

Closing an Input Sequential Access File L E S S ON B

619

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

2. Type James Miller in the Name box and then click the Write to File button.

3. On your own, add the following three names to the file:

Cheryl Smith
Serena Kaplan
Matthew Howenwald

4. Click the Read from File button to display the nine names in the list box. See
Figure 10-32.

5. Click the Exit button.

6. Next, you will modify the If clause in the btnRead_Click procedure. More specifically,
you will change the filename in the If clause from contestants.txt to contestant.txt. Doing
this will allow you to test the code entered in the selection structure’s false path. Change
contestants.txt in the If clause to contestant.txt.

7. Save the solution and then start the application. Click the Read from File button.
Because the contestant.txt file does not exist, the Exists method in the If clause returns
the Boolean value False. As a result, the instruction in the selection structure’s false path
displays the “Can’t find the file” message in a message box. Close the message box and
then click the Exit button.

8. Change contestant.txt in the If clause to contestants.txt. Save the solution and then
start the application. Click the Read from File button, which displays the nine names in
the list box.

9. Click the Exit button. Close the Code Editor window and then close the solution.

you can use the scroll bar
to view the other two names

Figure 10-32 Nine contestant names listed in the list box

CH A P T E R 1 0 Structures and Sequential Access Files

620

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

YOU DO IT 2!

Create a Visual Basic Windows application named YouDoIt 2. Save the application in the
VB2012\Chap10 folder. Add a label and two buttons to the form. The first button’s Click
event procedure should use the InputBox function to get one or more numbers from
the user. Each number should be saved on a separate line in a sequential access file. The
second button’s Click event procedure should total the numbers contained in
the sequential access file and then display the total in the label control. Code the
procedures. Save the solution and then start and test the application. Close the solution.

Lesson B Summary
l To write data to a sequential access file:

Declare a StreamWriter variable and then use either the CreateText method or the
AppendText method to open a sequential access file. Assign the method’s return value to
the StreamWriter variable. Use either the Write method or the WriteLine method to write
the data to the file. Close the file using the Close method.

l To read data from a sequential access file:

Declare a StreamReader variable. Use the Exists method to determine whether the sequential
access file exists. If the file exists, use the OpenText method to open the file. Assign the
method’s return value to the StreamReader variable. Use the ReadLine and Peek methods to
read the data from the file. Close the file using the Close method.

l To determine whether a sequential access file exists:

Use the Exists method. The method’s syntax is IO.File.Exists(fileName). The method
returns the Boolean value True if the file exists; otherwise, it returns the Boolean value False.

l To determine whether the end of a sequential access file has been reached:

Use the Peek method. The method’s syntax is streamReaderVariableName.Peek. The
method returns the number –1 when the end of the file has been reached; otherwise, it
returns the next character in the file.

Lesson B Key Terms
AppendText method—used with a StreamWriter variable to open a sequential access file for
append

Close method—used with either a StreamWriter variable or a StreamReader variable to close a
sequential access file

CreateText method—used with a StreamWriter variable to open a sequential access file for
output

Exists method—used to determine whether a file exists

Input files—files from which an application reads data

Line—a sequence (stream) of characters followed by the newline character

OpenText method—used with a StreamReader variable to open a sequential access file for input

Output files—files to which an application writes data

Lesson B Key Terms L E S S ON B

621

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Peek method—used with a StreamReader variable to determine whether a file contains another
character to read

ReadLine method—used with a StreamReader variable to read a line of text from a sequential
access file

Sequential access files—files composed of lines of text that are both read and written
sequentially; also called text files

Stream of characters—a sequence of characters

StreamReader object—used to read a sequence (stream) of characters from a sequential access
file

StreamWriter object—used to write a sequence (stream) of characters to a sequential access file

Text files—another name for sequential access files

Write method—used with a StreamWriter variable to write data to a sequential access file; differs
from the WriteLine method in that it does not write a newline character after the data

WriteLine method—used with a StreamWriter variable to write data to a sequential access file;
differs from the Write method in that it writes a newline character after the data

Lesson B Review Questions
1. Which of the following opens the employ.txt file and allows the computer to write new

data to the end of the file’s existing data?

a. outFile = IO.File.AddText("employ.txt")

b. outFile = IO.File.AppendText("employ.txt")

c. outFile = IO.File.InsertText("employ.txt")

d. outFile = IO.File.WriteText("employ.txt")

2. If the file to be opened exists, the method erases the file’s contents.

a. AppendText

b. CreateText

c. InsertText

d. OpenText

3. Which of the following reads a line of text from a sequential access file and assigns the
line (excluding the newline character) to the strText variable?

a. inFile.Read(strText)

b. inFile.ReadLine(strText)

c. strText = inFile.ReadLine

d. strText = inFile.Read(line)

4. The Peek method returns when the end of the file is reached.

a. –1

b. 0

c. the last character in the file

d. the newline character

CH A P T E R 1 0 Structures and Sequential Access Files

622

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

5. Which of the following can be used to determine whether the employ.txt file exists?

a. If IO.File.Exists("employ.txt") Then

b. If IO.File("employ.txt").Exists Then

c. If IO.Exists("employ.txt") = True Then

d. If IO.Exists.File("employ.txt") = True Then

6. The OpenText method creates a object.

a. File

b. SequenceReader

c. StreamWriter

d. none of the above

7. The AppendText method creates a object.

a. File

b. SequenceReader

c. StreamWriter

d. none of the above

Lesson B Exercises

1. Write the code to declare a variable named outFile that can be used to write data to a
sequential access file. Then write the statement to open a sequential access file named
sales.txt for output.

2. Write the code to declare a variable named inFile that can be used to read data from a
sequential access file. Then write the statement to open a sequential access file named
sales.txt for input.

3. Write the code to close the sequential access file associated with a StreamWriter
variable named outFile.

4. Write an If clause that determines whether a sequential access file exists. The file’s name
is sales.txt.

5. Write a Do clause that determines whether the end of a sequential access file has been
reached. The file is associated with a StreamReader variable named inFile.

6. Open the Gross Pay Solution (Gross Pay Solution.sln) file contained in the VB2012\
Chap10\Gross Pay Solution folder. If necessary, open the designer window. The
interface provides a text box for entering a gross pay amount. The Save button should
write the gross pay amount to a sequential access file named gross.txt. Save the file in
the project’s bin\Debug folder. The Display button should read the gross pay amounts
from the gross.txt file and display each (formatted with a dollar sign and two decimal
places) in the list box. Right-align the numbers in the list box. Open the Code Editor
window. Code the Click event procedures for the btnSave and btnDisplay controls. Save
the solution and then start the application. Write the following 10 gross pay amounts to
the file: 600, 1250, 750.67, 350.75, 2000, 450, 125.89, 560, 1400, and 555.78. Click the
Display button to display the gross pay amounts in the interface. Close the Code Editor
window and then close the solution.

7. Open the Name Solution (Name Solution.sln) file contained in the VB2012\Chap10\
Name Solution folder. If necessary, open the designer window. Open the Code Editor
window. Open the names.txt file contained in the project’s bin\Debug folder. The
sequential access file contains five names. Close the names.txt window. The btnDisplay

INTRODUCTORY

INTRODUCTORY

INTRODUCTORY

INTRODUCTORY

INTRODUCTORY

INTRODUCTORY

INTERMEDIATE

Lesson B Exercises L E S S ON B

623

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

control’s Click event procedure should read the five names contained in the names.txt
file, storing each in a five-element one-dimensional array. The procedure should sort
the array in descending order and then display the contents of the array in the list box.
Code the procedure. Save the solution and then start and test the application. Close the
Code Editor window and then close the solution. (If you need to recreate the names.txt
file, open the file in a window in the IDE. Delete the contents of the file and then type
the following five names, pressing Enter after typing each name: Joanne, Zelda, Abby,
Ben, and Linda.)

8. Open the Salary Solution (Salary Solution.sln) file contained in the VB2012\Chap10\
Salary Solution folder. If necessary, open the designer window. Open the Code Editor
window and study the existing code. The code stores six salary amounts in a one-
dimensional array named intSalaries. Each salary amount corresponds to a salary
code from 1 through 6. Code 1’s salary is stored in the intSalaries(0) element in
the array, code 2’s salary is stored in the intSalaries(1) element, and so on. The
btnDisplay_Click procedure prompts the user to enter a salary code. It then displays
the amount associated with the code. Currently, the Private statement assigns the six
salary amounts to the array. Modify the code so that the form’s Load event procedure
reads the salary amounts from the salary.txt file and stores each in the array. The
salary.txt file is contained in the project’s bin\Debug folder. Save the solution and then
start and test the application. Close the Code Editor window and then close the
solution.

9. Open the Test Scores Solution (Test Scores Solution.sln) file contained in the VB2012\
Chap10\Test Scores Solution folder. If necessary, open the designer window. Open the
Code Editor window. The btnSave control’s Click event procedure should allow the user
to enter an unknown number of test scores, saving each score in a sequential access file.
The btnCount control’s Click event procedure should display (in a message box) the
number of scores stored in the file. Code both procedures. Save the solution and then
start and test the application. Close the Code Editor window and then close the
solution.

10. In this exercise, you code an application that reads five numbers from a sequential
access file and stores the numbers in a one-dimensional array. The application then
increases each number by 1 and writes the numbers to the file. The application also
displays the current contents of the sequential access file. Open the Numbers Solution
(Numbers Solution.sln) file contained in the VB2012\Chap10\Numbers Solution folder.
If necessary, open the designer window. Open the Code Editor window. Code the
btnDisplay_Click procedure so it reads the five numbers stored in the numbers.txt file
and displays the numbers in the list box. The numbers.txt file is contained in the
project’s bin\Debug folder. Currently, the file contains the numbers 1 through 5. Code
the btnUpdate_Click procedure so it reads the five numbers from the numbers.txt file
and stores the numbers in an array. It then should increase each number in the array by
1 and write the array contents to an empty numbers.txt file. Save the solution and then
start the application. Click the Display button. The numbers 1 through 5 appear in the
interface. Click the Update button and then click the Display button. The numbers 2
through 6 appear in the interface. Close the Code Editor window and then close the
solution. (If you need to recreate the numbers.txt file, open the file in a window in the
IDE. Delete the contents of the file and then type the numbers 1 through 5, pressing
Enter after typing each number.)

11. During July and August of each year, the Political Awareness Organization (PAO) sends
a questionnaire to the voters in its district. The questionnaire asks the voter for his or
her political party (Democratic, Republican, or Independent) and age. From the
returned questionnaires, the organization’s secretary tabulates the number of
Democrats, Republicans, and Independents in the district. The secretary wants an

INTERMEDIATE

INTERMEDIATE

INTERMEDIATE

ADVANCED

CH A P T E R 1 0 Structures and Sequential Access Files

624

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

application that she can use to save each respondent’s information (political party and
age) to a sequential access file. The application should also calculate and display the
number of voters in each political party. Create a Visual Basic Windows application. Use
the following names for the solution and project, respectively: PAO Solution and PAO
Project. Save the application in the VB2012\Chap10 folder. Change the form file’s name
to Main Form.vb. Change the form’s name to frmMain. Create the interface shown in
Figure 10-33. The Party list box should contain three items: Democratic, Republican,
and Independent. The Age text box should accept only numbers and the Backspace key.
Code the Click event procedures for the Write to File and Display Totals buttons. Save
the solution and then start and test the application. Close the Code Editor window and
then close the solution.

12. In this exercise, you modify the application from Exercise 11. Use Windows to make a
copy of the PAO Solution folder. Rename the folder Modified PAO Solution. Open the
PAO Solution (PAO Solution.sln) file contained in the Modified PAO Solution folder.
Open the designer window and then open the Code Editor window. Modify the code to
use a structure in the btnDisplay_Click procedure. Save the solution and then start and
test the application. Close the Code Editor window and then close the solution.

13. Open the Debug Solution (Debug Solution.sln) file contained in the VB2012\Chap10\
Debug Solution folder. Open the Code Editor window and study the existing code.
Start the application. Test the application using Sue and 1000, and then using Pete and
5000. A run time error occurs. Read the error message. Click DEBUG on the menu bar
and then click Stop Debugging. Open the bonus.txt file contained in the project’s bin\
Debug folder. Notice that the file is empty. Close the bonus.txt window. Locate and
correct the error in the code. Save the solution and then start and test the application
again. Verify that the bonus.txt file contains the two names and bonus amounts. Close
the Code Editor window and then close the solution.

Figure 10-33 Interface for Exercise 11

ADVANCED

SWAT THE BUGS

Lesson B Exercises L E S S ON B

625

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

& LESSON C
After studying Lesson C, you should be able to:

l Add an item to a list box while an application is running

l Align columns of information

l Remove an item from a list box while an application is running

l Save list box items in a sequential access file

l Write records to a sequential access file

Coding the CD Collection Application
Recall that your task in this chapter is to create an application that uses a sequential access file to
keep track of a person’s CD collection. The application’s user interface is shown in Figure 10-34,
and its TOE chart is shown in Figure 10-35. (The image in the picture box was downloaded
from the Open Clip Art Library at http://openclipart.org.)

Task Object Event
Read the CDs.txt file and assign its contents to lstCds frmMain Load
Save the contents of lstCds in the CDs.txt file FormClosing

End the application btnExit Click

1. Get CD name, artist name, and price
2. Add CD name, artist name, and price to lstCds

btnAdd Click

Remove the selected line from lstCds btnRemove Click

Display the CD name, artist name, and price lstCds None

Figure 10-35 TOE chart for the CD Collection application
© 2013 Cengage Learning

the list box uses the
Courier New font

Figure 10-34 Interface for the CD Collection application
OpenClipArt.org/ilnanny/Cristian Pozzessere

CH A P T E R 1 0 Structures and Sequential Access Files

626

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

To open the CD Collection application and then view the CDs.txt file:

1. If necessary, start Visual Studio 2012. Open the CD Solution (CD Solution.sln)
file contained in the VB2012\Chap10\CD Solution folder. If necessary, open the
designer window.

2. Open the Code Editor window. Replace <your name> and <current date> in the
comments with your name and the current date, respectively.

3. Click FILE on the menu bar and then click Open File. Open the project’s bin\Debug
folder. Click CDs.txt in the list of filenames and then click the Open button. The
CDs.txt window shows the information contained in the file. The CD names are listed in
the first column, the artist names in the second column, and the CD prices in the third
column. See Figure 10-36.

4. Close the CDs.txt window by clicking its Close button.

The TOE chart indicates that five procedures need to be coded. The Code Editor window
already contains the code for the btnExit_Click procedure. You will need to code only the form’s
Load and FormClosing event procedures and the Click event procedures for the btnAdd and
btnRemove controls. You will code the form’s Load event procedure first.

Coding the Form’s Load Event Procedure
The form’s Load event procedure is responsible for displaying the contents of the CDs.txt file in
the list box. The procedure’s pseudocode is shown in Figure 10-37.

frmMain Load event procedure

if the CDs.txt sequential access file exists
open the file for input
repeat until the end of the file

read a line from the file
add the line to the lstCds control

end repeat
close the file
select the first line in the lstCds control

else
display the “Can’t find the CDs.txt file” message

end if

Figure 10-37 Pseudocode for the form’s Load event procedure
© 2013 Cengage Learning

Close button

Figure 10-36 CDs.txt window

START HERE

Coding the Form’s Load Event Procedure L E S S ON C

627

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

To code and then test the form’s Load event procedure:

1. As you learned in Lesson B, you use a StreamReader object to read data from a
sequential access file. Before creating the StreamReader object, you first declare a
variable to store the object in the computer’s internal memory. Locate the
frmMain_Load procedure. Click the blank line below the ' declare variables
comment and then enter the following declaration statement:

Dim inFile As IO.StreamReader

2. The procedure will also need a variable to store the string returned by the ReadLine
method when reading the file. Type the following declaration statement and then press
Enter twice:

Dim strInfo As String

3. According to its pseudocode, the procedure should display an appropriate message if the
CDs.txt file does not exist. Enter the comment and selection structure shown in Figure
10-38, and then position the insertion point as shown in the figure.

4. If the file exists, the procedure should open the file for input. Enter the following
comment and assignment statement:

' open the file for input
inFile = IO.File.OpenText("CDs.txt")

5. Next, the procedure should use a loop to read each line from the file, adding each to the
list box. Enter the following comment and lines of code:

' process loop instructions until end of file
Do Until inFile.Peek = –1

strInfo = inFile.ReadLine
lstCds.Items.Add(strInfo)

Loop

6. After the loop ends, the procedure should close the file. Click after the letter p in the
Loop clause and then press Enter. Type inFile.Close() and then press Enter.

START HERE

enter this comment
and selection structure

position the insertion
point here

Figure 10-38 Additional comment and code entered in the Load event procedure

CH A P T E R 1 0 Structures and Sequential Access Files

628

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

7. The last task in the selection structure’s true path is to select the first line in the list box.
Enter the following comment and line of code:

' select the first line in the list box
lstCds.SelectedIndex = 0

8. Save the solution and then start the application. The information contained in the
CDs.txt file appears in the list box, as shown in Figure 10-39. (Recall that you can use the
Alt key to show/hide the access keys.)

9. Click the Exit button.

Coding the btnAdd_Click Procedure
According to the application’s TOE chart, the btnAdd control’s Click event procedure should
get a CD name, an artist name, and a price from the user, and then display that information in
the list box. Figure 10-40 shows the procedure’s pseudocode.

btnAdd Click event procedure

1. use the InputBox function to get the CD name, artist name, and price
2. concatenate the CD name, artist name, and price, and then add the concatenated string to the

lstCds control

Figure 10-40 Pseudocode for the btnAdd_Click procedure
© 2013 Cengage Learning

To begin coding the btnAdd_Click procedure:

1. Locate the btnAdd_Click procedure and then click the blank line below the ' declare
variables comment. The procedure will use four String variables: three to store the
input items and one to store the concatenated string. It also will use a Double variable to
store the numeric equivalent of the CD price. Enter the following five declaration
statements:

Dim strName As String
Dim strArtist As String

Figure 10-39 Contents of the CDs.txt file shown in the list box
OpenClipArt.org/ilnanny/Cristian Pozzessere

START HERE

Coding the btnAdd_Click Procedure L E S S ON C

629

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Dim strPrice As String
Dim strConcatenatedInfo As String
Dim dblPrice As Double

2. Now you will use the InputBox function to get the CD information from the user. Click
the blank line below the ' get the CD information comment and then enter the
following assignment statements:

strName = InputBox("CD name:", "CD Collection")
strArtist = InputBox("Artist:", "CD Collection")
strPrice = InputBox("Price:", "CD Collection")

Step 2 in the procedure’s pseudocode is to concatenate the input items and then add the
concatenated string to the list box. Notice that each input item appears in a separate column in
the list box shown earlier in Figure 10-39. The CD names and artist names in the first two
columns are left-aligned within their respective column. The prices in the third column,
however, are right-aligned within the column. In the next section, you will learn how to align
columns of information.

Aligning Columns of Information
In Chapter 8, you learned how to use the PadLeft and PadRight methods to pad a string with a
character until the string is a specified length. Each method’s syntax is shown in Figure 10-41.
Recall that when processing the methods, the computer first makes a temporary copy of the
string in memory; it then pads the copy only. The totalChars argument in each syntax is an
integer that represents the total number of characters you want the string’s copy to contain.
The optional padCharacter argument is the character that each method uses to pad the string
until it reaches the desired number of characters. If the padCharacter argument is omitted, the
default padding character is the space character. You can use the PadLeft and PadRight methods
to align columns of information, as shown in the examples in Figure 10-41.

Aligning Columns of Information
Syntax
string.PadLeft(totalChars[, padCharacter])
string.PadRight(totalChars[, padCharacter])

Example 1
Dim strPrice As String
For dblPrice As Double = 9 To 11 Step 0.5
 strPrice = dblPrice.ToString("N2").PadLeft(5)
 lstPrices.Items.Add(strPrice)
Next dblPrice

Result
9.00
9.50
10.00
10.50
11.00

Figure 10-41 Examples of aligning columns of information (continues)

In Example 1,
you also need to
set the lstPrices
control’s Font
property to a

fixed-spaced font, such
as Courier New. A fixed-
spaced font uses the
same amount of space to
display each character.

CH A P T E R 1 0 Structures and Sequential Access Files

630

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Example 1’s code aligns a column of numbers by the decimal point. Notice that you first format
each number in the column to ensure that each has the same number of digits to the right of the
decimal point. You then use the PadLeft method to insert spaces at the beginning of the number
(if necessary); this right-aligns the number within the column. Because each number has the
same number of digits to the right of the decimal point, aligning each number on the right will
align each by its decimal point.

Example 2’s code shows how you can align the second column of information when the first
column contains strings with varying lengths. First, you use either the PadRight or PadLeft
method to ensure that each string in the first column contains the same number of characters.
You then concatenate the padded string to the information in the second column. Example 2’s
code, for instance, uses the PadRight method to ensure that each name in the first column
contains exactly 15 characters. It then concatenates the 15 characters with the string stored
in the strCity variable before writing the concatenated string to a sequential access file.
Because each name has 15 characters, each city entry will automatically appear beginning in
character position 16 in the file. Example 2 also shows how you can use the Strings.Space
method to include a specific number of space characters in a string. The method’s syntax is
Strings.Space(number), in which number is an integer representing the number of spaces
to include.

Example 2
Dim outFile As IO.StreamWriter
Dim strHeading As String =
 "Name" & Strings.Space(11) & "City"
Dim strName As String
Dim strCity As String

outFile = IO.File.CreateText("Example2.txt")
outFile.WriteLine(strHeading)

strName = InputBox("Enter name:", "Name")
Do While strName <> String.Empty
 strCity = InputBox("Enter city:", "City")
 outFile.WriteLine(strName.PadRight(15) & strCity)
 strName = InputBox("Enter name:", "Name")
Loop
outFile.Close()

Result (when the user enters the following: Janice, Paris, Sue, Rome)
Name
Janice
Sue

City
Paris
Rome

contains the
Strings.Space method

Figure 10-41 Examples of aligning columns of information
© 2013 Cengage Learning

(continued)

Aligning Columns of Information L E S S ON C

631

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

To complete and then test the btnAdd_Click procedure:

1. Click the blank line below the ' and 5 spaces for the price comment. First, you will
format the price to ensure that it contains two decimal places. Enter the following lines
of code:

Double.TryParse(strPrice, dblPrice)
strPrice = dblPrice.ToString("N2")

2. Now you will concatenate the three input items, reserving 40 characters for the CD
name, 25 characters for the artist name, and 5 characters for the price. You will left-align
the first two columns but right-align the last column. Enter the following assignment
statement:

strConcatenatedInfo = strName.PadRight(40) &
strArtist.PadRight(25) & strPrice.PadLeft(5)

3. Now you will add the concatenated string to the list box. Click the blank line below the
' add the information to the list box comment and then enter the following line
of code:

lstCds.Items.Add(strConcatenatedInfo)

4. Save the solution and then start the application. Click the Add button. Type Lotus as
the CD name and then press Enter. Type Christina Aguilera as the artist name and
then press Enter. Type 11.99 as the price and then press Enter. The Add button’s Click
event procedure adds the CD information to the list box. The list box’s Sorted property
is set to True, so the information you entered appears in the fourth line of the list box.
See Figure 10-42.

5. Click the Exit button.

START HERE

the CD information you
entered appears in
alphabetical order by the
CD name

Figure 10-42 CD information added to the list box
OpenClipArt.org/ilnanny/Cristian Pozzessere

CH A P T E R 1 0 Structures and Sequential Access Files

632

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Coding the btnRemove_Click Procedure
According to the application’s TOE chart, the btnRemove control’s Click event procedure
should remove the selected line from the lstCds control. The procedure’s pseudocode is shown
in Figure 10-43.

btnRemove Click event procedure

if a line is selected in the lstCds control
remove the line from the control

end if

Figure 10-43 Pseudocode for the btnRemove_Click procedure
© 2013 Cengage Learning

You remove an item from a list box using either the Items collection’s Remove method or its
RemoveAt method. Figure 10-44 shows each method’s syntax and includes an example of using
each method. In each syntax, object is the name of the list box control. The Remove method
removes the item whose value is specified in its item argument. The RemoveAt method removes
the item whose index is specified in its index argument.

To code and then test the btnRemove_Click procedure:

1. Locate the btnRemove_Click procedure. If a line is selected in the list box, the list box’s
SelectedIndex property will contain the line’s index; otherwise, it will contain –1.
Therefore, if the SelectedIndex property does not contain the number –1, the procedure
should remove the selected line from the list box. Click the blank line below the second
comment and then enter the following selection structure:

If lstCds.SelectedIndex <> –1 Then
lstCds.Items.RemoveAt(lstCds.SelectedIndex)

End If

2. Save the solution and then start the application. Click Red in the list box and then click
the Remove button. The button’s Click event procedure removes the Red CD from the
list box.

3. Click the Exit button.

Remove and RemoveAt Methods (Items Collection)

Syntax
object.Items.Remove(item)
object.Items.RemoveAt(index)

Example 1 – Remove
lstAnimal.Items.Remove("Cat")
removes the Cat item from the lstAnimal control

Example 2 – RemoveAt
lstAnimal.Items.RemoveAt(0)
removes the first item from the lstAnimal control

Figure 10-44 Syntax and examples of the Items collection’s Remove and RemoveAt methods
© 2013 Cengage Learning

START HERE

Coding the btnRemove_Click Procedure L E S S ON C

633

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Coding the Form’s FormClosing Event Procedure
The last procedure you need to code is the form’s FormClosing event procedure. According to
the application’s TOE chart, the procedure is responsible for saving the contents of the lstCds
control in the CDs.txt file. Figure 10-45 shows the procedure’s pseudocode.

frmMain FormClosing event procedure

1. open the CDs.txt file for output
2. repeat for each line in the list box

write the line to the file
end repeat

3. close the file

Figure 10-45 Pseudocode for the form’s FormClosing event procedure
© 2013 Cengage Learning

To code and then test the form’s FormClosing event procedure:

1. Locate the frmMain_FormClosing procedure. As you learned in Lesson B, you use a
StreamWriter object to write data to a sequential access file. Before creating the
StreamWriter object, you first declare a variable to store the object in the computer’s
internal memory. Click the blank line below the ' declare a StreamWriter variable
comment and then enter the following declaration statement:

Dim outFile As IO.StreamWriter

2. Step 1 in the pseudocode is to open the CDs.txt file for output. Click the blank line
below the ' open the file for output comment and then enter the following line
of code:

outFile = IO.File.CreateText("CDs.txt")

3. The next step in the pseudocode is a loop that will write each line from the list box to
the file. Click the blank line below the ' write each line in the list box
comment and then enter the following loop:

For intIndex As Integer = 0 To lstCds.Items.Count – 1
outFile.WriteLine(lstCds.Items(intIndex))

Next intIndex

4. The last step in the pseudocode is to close the file. Click the blank line below the
' close the file comment and then enter the following line of code:

outFile.Close()

5. Save the solution and then start the application. Click the Add button. Use the input
boxes to enter the following CD name, artist, and price: Lotus, Christina Aguilera, and
11.99. The Add button’s Click event procedure adds the CD information to the list box.

6. Click the Exit button. The computer processes the Me.Close() statement in the Exit
button’s Click event procedure; doing this invokes the form’s FormClosing event. The
FormClosing event procedure saves the contents of the list box to the CDs.txt file.

7. Now you will verify that the CD information you entered was saved to the CDs.txt file.
Click FILE on the menu bar and then click Open File. Open the project’s bin\Debug
folder. Click CDs.txt in the list of filenames and then click the Open button. The CD
information you entered appears in the fourth line in the file, as shown in Figure 10-46.

START HERE

CH A P T E R 1 0 Structures and Sequential Access Files

634

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

8. Close the CDs.txt window by clicking its Close button. Start the application again. Click
Lotus in the list box and then click the Remove button. The button’s Click event
procedure removes the CD information from the list box.

9. Click the Exit button. Now you will verify that the CDs.txt file does not contain the
CD information you removed from the list box. Open the CDs.txt file. See Figure 10-47.
Notice that the Lotus CD’s information does not appear in the file. Close the CDs.txt
window.

10. Close the Code Editor window and then close the solution.

Figure 10-48 shows the code for the CD Collection application.

the Lotus CD
information
appears in
the file

Figure 10-46 CD information saved in the CDs.txt file

the Lotus CD
information
doesn’t appear
in the file

Figure 10-47 Current contents of the CDs.txt file

Coding the Form’s FormClosing Event Procedure L E S S ON C

635

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

 1 ' Name: CD Project
2 ' Purpose: Adds and deletes list box entries

 3 ' Reads information from a sequential access file
4 ' Writes information to a sequential access file
5 ' Programmer: <your name> on <current date>
6
7 Option Explicit On

 8 Option Strict On
 9 Option Infer Off
10
11 Public Class frmMain
12
13 Private Sub btnExit_Click(sender As Object,

e As EventArgs) Handles btnExit.Click
14 Me.Close()
15 End Sub
16
17 Private Sub frmMain_FormClosing(sender As Object,

e As Windows.Forms.FormClosingEventArgs
) Handles Me.FormClosing

18 ' save the list box information
19

 20 ' declare a StreamWriter variable
 21 Dim outFile As IO.StreamWriter
 22
 23 ' open the file for output
 24 outFile = IO.File.CreateText("CDs.txt")
 25
 26 ' write each line in the list box
 27 For intIndex As Integer = 0 To lstCds.Items.Count - 1
 28 outFile.WriteLine(lstCds.Items(intIndex))
 29 Next intIndex
 30
 31 ' close the file
 32 outFile.Close()
 33
 34 End Sub
 35
 36 Private Sub frmMain_Load(sender As Object,

e As EventArgs) Handles Me.Load
 37 ' fills the list box with data
 38 ' stored in a sequential access file
 39
 40 ' declare variables
 41 Dim inFile As IO.StreamReader
 42 Dim strInfo As String
 43
 44 ' verify that the file exists
 45 If IO.File.Exists("CDs.txt") Then
 46 ' open the file for input
 47 inFile = IO.File.OpenText("CDs.txt")
 48 ' process loop instructions until end of file

Figure 10-48 Code for the CD Collection application (continues)

CH A P T E R 1 0 Structures and Sequential Access Files

636

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

49 Do Until inFile.Peek = -1
 50 strInfo = inFile.ReadLine
 51 lstCds.Items.Add(strInfo)
 52 Loop
 53 inFile.Close()
 54 ' select the first line in the list box
 55 lstCds.SelectedIndex = 0
 56
 57 Else
 58 MessageBox.Show("Can't find the CDs.txt file",
 59 "CD Collection",
 60 MessageBoxButtons.OK,
 61 MessageBoxIcon.Information)
 62 End If
63 End Sub
64
65 Private Sub btnAdd_Click(sender As Object,

e As EventArgs) Handles btnAdd.Click
 66 ' adds CD information to the list box
 67
 68 ' declare variables
 69 Dim strName As String
 70 Dim strArtist As String
 71 Dim strPrice As String
 72 Dim strConcatenatedInfo As String
 73 Dim dblPrice As Double
 74
 75 ' get the CD information
 76 strName = InputBox("CD name:", "CD Collection")
 77 strArtist = InputBox("Artist:", "CD Collection")
 78 strPrice = InputBox("Price:", "CD Collection")
 79
 80 ' format the price, then concatenate the
 81 ' input items, using 40 spaces for the
 82 ' CD name, 25 spaces for the artist name,
 83 ' and 5 spaces for the price
 84 Double.TryParse(strPrice, dblPrice)
 85 strPrice = dblPrice.ToString("N2")
 86 strConcatenatedInfo = strName.PadRight(40) &
 87 strArtist.PadRight(25) & strPrice.PadLeft(5)
 88
 89 ' add the information to the list box
 90 lstCds.Items.Add(strConcatenatedInfo)
 91
92 End Sub
93
94 Private Sub btnRemove_Click(sender As Object,

e As EventArgs) Handles btnRemove.Click
 95 ' removes the selected line from the list box
 96
 97 ' if a line is selected, remove the line
 98 If lstCds.SelectedIndex <> -1 Then
 99 lstCds.Items.RemoveAt(lstCds.SelectedIndex)
100
101
102

End If
End Sub

End Class

Figure 10-48 Code for the CD Collection application
© 2013 Cengage Learning

(continued)

Coding the Form’s FormClosing Event Procedure L E S S ON C

637

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Lesson C Summary
l To align columns of information:

Use the PadLeft and PadRight methods.

l To align a column of numbers by the decimal point:

Format each number in the column to ensure that each has the same number of digits to the
right of the decimal point, and then use the PadLeft method to right-align the numbers.

l To include a specific number of spaces in a string:

Use the Strings.Space method. The method’s syntax is Strings.Space(number), in which
number is an integer that represents the number of spaces to include.

l To remove an item from a list box:

Use either the Items collection’s Remove method or its RemoveAt method. The Remove
method’s syntax is object.Items.Remove(item), where item is the value of the item you want
to remove. The RemoveAt method’s syntax is object.Items.RemoveAt(index), where index
is the index of the item you want removed.

Lesson C Key Terms
Remove method—used to specify the value of the item to remove from a list box

RemoveAt method—used to specify the index of the item to remove from a list box

Strings.Space method—used to include a specific number of spaces in a string

Lesson C Review Questions
1. Which of the following opens a sequential access file named “MyFriends.txt” for input?

a. inFile = IO.File.Input("MyFriends.txt")

b. inFile = IO.InputFile("MyFriends.txt")

c. inFile = IO.File.InputText("MyFriends.txt")

d. inFile = IO.File.OpenText("MyFriends.txt")

2. Which of the following right-aligns the contents of the strNumbers variable?

a. strNumbers = strNumbers.PadLeft(10)

b. strNumbers = strNumbers.PadRight(10)

c. strNumbers = strNumbers.AlignLeft(10)

d. strNumbers = strNumbers.RightAlign(10)

3. Which of the following removes the fourth item from the lstFriends control?

a. lstFriends.Items.Remove(4)

b. lstFriends.Items.RemoveAt(4)

c. lstFriends.Items.RemoveIndex(3)

d. none of the above

4. Which of the following determines whether an item is selected in the lstFriends control?

a. If lstFriends.SelectedIndex >= 0 Then

b. If lstFriends.SelectedItem <> –1 Then

c. If lstFriends.IndexSelected = –1 Then

d. none of the above

CH A P T E R 1 0 Structures and Sequential Access Files

638

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

5. The lstFriends control contains five items. Which of the following writes the last item to
the file associated with the outFile variable?

a. outFile.WriteLine(lstFriends.Items(5))

b. outFile.WriteLine(lstFriends.Items(4))

c. outFile.WriteLine(lstFriends.Index(4))

d. none of the above

Lesson C Exercises

1. In this exercise, you modify the CD Collection application coded in the lesson.
Use Windows to make a copy of the CD Solution folder. Rename the copy CD
Solution-Verify Save. Open the CD Solution (CD Solution.sln) file contained in the
CD Solution-Verify Save folder. Open the designer and Code Editor windows.
The FormClosing event procedure should verify that the user wants to save the changes
made to the list box. It then should take the appropriate action based on the user’s
response. Modify the code accordingly. Save the solution and then start and test the
application. Close the Code Editor window and then close the solution.

2. In this exercise, you modify the CD Collection application coded in the lesson.
Use Windows to make a copy of the CD Solution folder. Rename the copy CD
Solution-Verify Remove. Open the CD Solution (CD Solution.sln) file contained in the
CD Solution-Verify Remove folder. Open the designer and Code Editor windows.
The btnRemove_Click procedure should verify that the user wants to remove the
selected CD information from the list box. Use the message “Do you want to remove
the x CD?”, where x is the name of the CD. The procedure should take the appropriate
action based on the user’s response. Modify the code accordingly. Save the solution
and then start and test the application. Close the Code Editor window and then close
the solution.

3. Open the Friends Solution (Friends Solution.sln) file contained in the VB2012\Chap10\
Friends Solution folder. If necessary, open the designer window. The Add button should
add the name entered in the text portion of the combo box to the list portion, but only if
the name is not already in the list. The Remove button should remove (from the list
portion of the combo box) the name either entered in the text portion or selected in the
list portion. The form’s FormClosing event procedure should save the combo box items
in a sequential access file named MyFriends.txt. The form’s Load event procedure
should read the names from the MyFriends.txt file and add each to the combo box.
Code the application. Save the solution and then start and test the application. Close the
Code Editor window and then close the solution.

4. In this exercise, you modify the CD Collection application coded in the lesson. Use
Windows to make a copy of the CD Solution folder. Rename the copy CD Solution-No
Duplicate. Open the CD Solution (CD Solution.sln) file contained in the CD Solution-
No Duplicate folder. Open the designer and Code Editor windows. Before getting the
artist name and price, the btnAdd_Click procedure should determine whether the CD
name is already included in the list box. If the list box contains the CD name, the
procedure should display an appropriate message and then not add the CD to the list.
Save the solution and then start and test the application. Close the Code Editor window
and then close the solution.

5. In this exercise, you modify the CD Collection application coded in the lesson. Use
Windows to make a copy of the CD Solution folder. Rename the copy CD Solution-
Undo. Open the CD Solution (CD Solution.sln) file contained in the CD Solution-Undo
folder. Open the designer window. Add an Undo Remove button to the form. The Undo
Remove button’s Click event procedure should restore the last line removed by the

INTRODUCTORY

INTERMEDIATE

INTERMEDIATE

INTERMEDIATE

INTERMEDIATE

Lesson C Exercises L E S S ON C

639

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Remove button. Open the Code Editor window and make the necessary modifications to
the code. Save the solution and then start and test the application. Close the Code
Editor window and then close the solution.

6. In this exercise, you modify the CD Collection application coded in the lesson. Use
Windows to make a copy of the CD Solution folder. Rename the copy CD Solution-
Structure. Open the CD Solution (CD Solution.sln) file contained in the CD Solution-
Structure folder. Open the designer and Code Editor windows. Create a structure for
the input information and then use the structure in the btnAdd_Click procedure. Save
the solution and then start and test the application. Close the Code Editor window and
then close the solution.

7. Glovers Industries stores the item numbers and prices of its products in a sequential
access file named ItemInfo.txt. The company’s sales manager wants an application that
displays the price corresponding to the item selected in a list box.

a. Open the Glovers Solution (Glovers Solution.sln) file contained in the VB2012\
Chap10\Glovers Solution folder. If necessary, open the designer window.

b. Open the Code Editor window. Open the ItemInfo.txt file, which is contained in the
project’s bin\Debug folder. Notice that the item number and price appear on
separate lines in the file. Close the ItemInfo.txt window.

c. Define a structure named Product. The structure should contain two member
variables: a String variable to store the item number and a Double variable to
store the price.

d. Declare a class-level array that contains five Product structure variables.

e. The form’s Load event procedure should read the item numbers and prices from the
ItemInfo.txt file and store them in the class-level array. It also should add the item
numbers to the list box. Code the procedure.

f. When the user selects an item in the list box, the item’s price should appear in the
lblPrice control. Code the appropriate procedure.

g. Save the solution and then start and test the application. Close the Code Editor
window and then close the solution.

8. Each year, WKRK-Radio polls its audience to determine the best Super Bowl
commercial. The choices are as follows: Budweiser, FedEx, E*TRADE, and Pepsi. The
station manager wants an application that allows him to enter a caller’s choice. The
choice should be saved in a sequential access file. The application also should display
the number of votes for each commercial. Create a Visual Basic Windows application.
Use the following names for the solution and project, respectively: WKRK Solution and
WKRK Project. Save the application in the VB2012\Chap10 folder. Change the form
file’s name to Main Form.vb. Change the form’s name to frmMain. Create the interface
shown in Figure 10-49, and then code the application. Save the solution and then start
and test the application. Close the Code Editor window and then close the solution.

INTERMEDIATE

INTERMEDIATE

ADVANCED

CH A P T E R 1 0 Structures and Sequential Access Files

640

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

9. Kensington Industries stores the item numbers and prices of the items it sells in a
sequential access file named ItemInfo.txt. The company’s sales manager wants an
application that displays the price corresponding to the item selected in a list box.

a. Open the Kensington Solution (Kensington Solution.sln) file contained in the VB2012\
Chap10\Kensington Solution folder. Open the Code Editor window and then open the
ItemInfo.txt file contained in the project’s bin\Debug folder. Each line contains an
item’s number followed by a comma and the price. Close the ItemInfo.txt window.

b. Define a structure named Item. The structure should contain two member variables:
a String variable to store the item number and a Decimal variable to store the price.

c. Declare a class-level array that contains five Item structure variables.

d. Code the form’s Load event procedure so that it reads the item numbers and prices
from the ItemInfo.txt file. The procedure should store the item numbers and prices
in the class-level array. It also should add the item numbers to the list box.

e. When the user selects an item in the list box, the item’s price should appear in the
lblPrice control. Code the appropriate procedure.

f. Save the solution and then start and test the application. Close the Code Editor
window and then close the solution.

Figure 10-49 Interface for Exercise 8

ADVANCED

Lesson C Exercises L E S S ON C

641

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 11
Classes and Objects

Creating the Woods Manufacturing Application

In this chapter, you will create an application that calculates and displays
the gross pay for salaried and hourly employees. Salaried employees
are paid twice per month. Therefore, each salaried employee’s gross
pay is calculated by dividing his or her annual salary by 24. Hourly
employees are paid weekly. The gross pay for an hourly employee is
calculated by multiplying the number of hours the employee worked
during the week by his or her hourly pay rate. The application will
also display a report showing each employee’s number, name, and
gross pay.

All Microsoft screenshots used with permission from Microsoft Corporation.

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Previewing the Woods Manufacturing Application
Before you start the first lesson in this chapter, you will preview the completed application.
The application is contained in the VB2012\Chap11 folder.

To preview the completed application:

1. Use the Run dialog box to run the Woods (Woods.exe) file contained in the VB2012\
Chap11 folder. The application’s user interface appears on the screen.

2. First, you will calculate the gross pay for Charika Jones. Charika worked 30 hours and
earns $10.50 per hour. Her employee number is 5618. Type 5618 and Charika Jones
in the Number and Name boxes, respectively. Scroll the Hours list box and then click
30.0 in the list. Click 10.50 in the Rate list box. Click the Calculate button. $315.00
appears in the Gross pay box, and Charika’s information appears in the Report box.
See Figure 11-1. (Recall that you can use the Alt key to show/hide the access keys.)

3. Now you will calculate the gross pay for a salaried employee earning $24,000 per year.
Type 9999 and Chris Beshier in the Number and Name boxes, respectively. Click
the Salaried employee radio button. Scroll the Annual salary list box and then click
24000 in the list. Click the Calculate button. $1,000.00 appears in the Gross pay box,
and Chris’s information appears below Charika’s information in the Report box.
See Figure 11-2.

START HERE

Figure 11-1 Interface showing Charika’s gross pay and information
OpenClipArt.org/Improulx

C H A P T E R 1 1 Classes and Objects

644

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

4. Click the Exit button to end the application.

In Lesson A, you will learn about object-oriented programming (OOP). More specifically, you
will learn how to define a class and how to use the class to instantiate an object. You will also
learn how to utilize the instantiated object in an application. Lesson B will teach you how to
include ReadOnly and auto-implemented properties in a class. You will also learn how to
overload a class method. You will code the Woods Manufacturing application in Lesson B.
Lesson C covers an advanced OOP topic: inheritance. Be sure to complete each lesson in full
and do all of the end-of-lesson questions and several exercises before continuing to the next
lesson.

Figure 11-2 Interface showing Chris’s gross pay and information
OpenClipArt.org/Improulx

Previewing the Woods Manufacturing Application

645

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

& LESSON A
After studying Lesson A, you should be able to:

l Explain the terminology used in object-oriented programming

l Create a class

l Instantiate an object

l Add Property procedures to a class

l Include data validation in a class

l Create a default constructor

l Create a parameterized constructor

l Include methods other than constructors in a class

Object-Oriented Programming Terminology
As you learned in the Overview, Visual Basic 2012 is an object-oriented programming
language, which is a language that allows the programmer to use objects to accomplish a
program’s goal. An object is anything that can be seen, touched, or used. In other words, an
object is nearly any thing. The objects used in an object-oriented program can take on many
different forms. The text boxes, list boxes, and buttons included in most Windows applications
are objects, and so are the application’s named constants and variables. An object also can
represent something found in real life, such as a wristwatch or a car.

Every object in an object-oriented program is created from a class, which is a pattern that the
computer uses to create the object. Using object-oriented programming (OOP) terminology,
objects are instantiated (created) from a class, and each object is referred to as an instance of
the class. A button control, for example, is an instance of the Button class. The button is
instantiated when you drag the Button tool from the toolbox to the form. A String variable, on
the other hand, is an instance of the String class and is instantiated the first time you refer to the
variable in code. Keep in mind that the class itself is not an object. Only an instance of a class is
an object.

Every object has attributes, which are the characteristics that describe the object. Attributes are
also called properties. Included in the attributes of buttons and text boxes are the Name and
Text properties. List boxes have a Name property as well as a Sorted property.

In addition to attributes, every object also has behaviors. An object’s behaviors include methods
and events. Methods are the operations (actions) that the object is capable of performing. For
example, a button can use its Focus method to send the focus to itself. Similarly, a String
variable can use its ToUpper method to temporarily convert its contents to uppercase. Events,
on the other hand, are the actions to which an object can respond. A button’s Click event, for
instance, allows the button to respond to a mouse click.

A class contains—or, in OOP terms, it encapsulates—all of the attributes and behaviors of the
object it instantiates. The term “encapsulate” means “to enclose in a capsule.” In the context of
OOP, the “capsule” is a class.

Creating a Class
In previous chapters, you instantiated objects using classes that are built into Visual Basic, such
as the TextBox and Label classes. You used the instantiated objects in a variety of ways in many
different applications. In some applications, you used a text box to enter a name, while in other

C H A P T E R 1 1 Classes and Objects

646

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

applications you used it to enter a sales tax rate. Similarly, you used label controls to identify text
boxes and also to display the result of calculations. The ability to use an object for more than
one purpose saves programming time and money—an advantage that contributes to the
popularity of object-oriented programming.

You also can define your own classes in Visual Basic and then create instances (objects) from
those classes. You define a class using the Class statement, which you enter in a class file. Figure
11-3 shows the statement’s syntax and lists the steps for adding a class file to an open project.
Although it is not a requirement, the convention is to use Pascal case for the class name.
The names of Visual Basic classes (for example, Integer and TextBox) also follow this naming
convention. Within the Class statement, you define the attributes and behaviors of the objects
the class will create. In most cases, the attributes are represented by Private variables and Public
properties. The behaviors are represented by methods, which are usually Sub or Function
procedures. (You also can include Event procedures in a Class statement. However, that topic
is beyond the scope of this book.)

Class Statement

Syntax
Public Class className

attributes section

behaviors section

End Class

Adding a class file to an open project

1. Click PROJECT on the menu bar and then click Add Class. The Add New Item dialog box opens with
Class selected in the middle column of the dialog box.

2. Type the name of the class followed by a period and the letters vb in the Name box, and then click
the Add button.

Figure 11-3 Syntax of the Class statement
© 2013 Cengage Learning

Figure 11-4 shows an example of the Class statement entered in a class file. The three Option
statements included in the figure have the same meaning in a class file as they have in a form file.

you enter the attributes
and behaviors sections
here

Figure 11-4 Class statement entered in the TimeCard.vb class file

The creation of
a good class,
which is one
whose objects
can be used in a

variety of ways by many
different applications,
requires a lot of planning.

Creating a Class L E S S ON A

647

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

After you define a class, you can use either of the syntax versions in Figure 11-5 to instantiate
one or more objects. In both versions, className is the name of the class, and variableName is
the name of a variable that will represent the object. The difference between both versions
relates to when the object is actually created. The computer creates the object only when it
processes the statement containing the New keyword. (You will learn more about the New
keyword later in this lesson.) Also included in Figure 11-5 is an example of using each version
of the syntax.

In Example 1, the Private hoursInfo As TimeCard instruction creates a class-level variable
that can represent a TimeCard object; however, it does not create the object. The object isn’t
created until the computer processes the hoursInfo = New TimeCard statement, which uses the
TimeCard class to instantiate a TimeCard object. The statement assigns the object to the
hoursInfo variable. In Example 2, the Dim hoursInfo As New TimeCard instruction creates a
procedure-level variable named hoursInfo. It also instantiates a TimeCard object and assigns
it to the variable.

In the remainder of this lesson, you will view examples of class definitions and also examples of
code in which objects are instantiated and used. The first example is a class that contains
attributes only, with each attribute represented by a Public variable.

Example 1—A Class that Contains Public Variables Only
In its simplest form, the Class statement can be used in place of the Structure statement,
which you learned about in Chapter 10. Like the Structure statement, the Class statement
groups related items into one unit. However, the unit is called a class rather than a structure.
In the following set of steps, you will modify the Norbert Pool & Spa Depot application from
Chapter 10 to use a class instead of a structure.

To begin modifying the Norbert Pool & Spa Depot application:

1. If necessary, start Visual Studio 2012. Open the Norbert Solution (Norbert Solution.sln)
file contained in the VB2012\Chap11\Norbert Solution folder. If necessary, open the

Instantiating an Object from a Class
Syntax – Version 1
{Dim | Private} variableName As className
variableName = New className

Syntax – Version 2
{Dim | Private} variableName As New className

Example 1 (using syntax version 1)
Private hoursInfo As TimeCard
hoursInfo = New TimeCard
the Private instruction creates a TimeCard variable named hoursInfo; the assignment statement
instantiates a TimeCard object and assigns it to the hoursInfo variable

Example 2 (using syntax version 2)
Dim hoursInfo As New TimeCard
the Dim instruction creates a TimeCard variable named hoursInfo and also instantiates a
TimeCard object, which it assigns to the hoursInfo variable

Figure 11-5 Syntax and examples of instantiating an object
© 2013 Cengage Learning

START HERE

C H A P T E R 1 1 Classes and Objects

648

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

designer window. (The image in the picture box was downloaded from the Open Clip
Art Library at http://openclipart.org.)

2. Open the Code Editor window. Figure 11-6 shows the Structure statement, the
GetGallons function, and the btnCalc_Click procedure. The Structure statement groups
together the three dimensions of a rectangular pool: length, width, and depth. The event
procedure declares a structure variable and then fills the variable’s members with values.
It then passes the structure variable to the GetGallons function, which calculates and
returns the number of gallons required to fill the pool. The event procedure displays the
returned value in the lblGallons control.

3. First, you will add a class file to the project. Click PROJECT on the menu bar and then
click Add Class. The Add New Item dialog box opens with Class selected in the middle
column of the dialog box. Type RectangularPool.vb in the Name box. As you learned in
Chapter 1, the .vb in a filename indicates that the file contains Visual Basic code.

4. Click the Add button. The computer adds the RectangularPool.vb file to the project. It
also opens the file, which contains the Class statement, in a separate window.
Temporarily display the Solution Explorer window, if necessary, to verify that the class
file’s name appears in the window.

Structure Dimensions
Public dblLength As Double
Public dblWidth As Double
Public dblDepth As Double

End Structure

Public Function GetGallons(ByVal pool As Dimensions) As Double
' calculates and returns the number of gallons

Const dblGAL_PER_CUBIC_FOOT As Double = 7.48

Return pool.dblLength * pool.dblWidth *
pool.dblDepth * dblGAL_PER_CUBIC_FOOT

End Function

Private Sub btnCalc_Click(sender As Object,
e As EventArgs) Handles btnCalc.Click

' displays the number of gallons

Dim poolSize As Dimensions
Dim dblGallons As Double

Double.TryParse(txtLength.Text, poolSize.dblLength)
Double.TryParse(txtWidth.Text, poolSize.dblWidth)
Double.TryParse(txtDepth.Text, poolSize.dblDepth)

dblGallons = GetGallons(poolSize)
lblGallons.Text = dblGallons.ToString("N0")

txtLength.Focus()
End Sub

entered in the form’s
Declarations section

receives a structure
variable by value

declares a structure
variable to store the
input data

assigns the input
data to the structure
variable

passes the structure
variable to the
GetGallons function

Figure 11-6 Code for the Norbert Pool & Spa Depot application (with a structure)
© 2013 Cengage Learning

Example 1—A Class that Contains Public Variables Only L E S S ON A

649

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

5. Insert a blank line above the Class statement and then enter the comments and Option
statements shown in Figure 11-7. (Replace <your name> and <current date> in the
comments with your name and the current date, respectively.) Also, position the
insertion point as shown in the figure.

A RectangularPool object has three attributes: length, width, and depth. In the Class statement,
each attribute will be represented by a Public variable. When a variable in a class is declared
using the Public keyword, it can be accessed by any application that contains an instance of the
class. The convention is to use Pascal case for the names of the Public variables in a class, and to
omit the three-character ID that indicates the variable’s data type. This is because Public
variables represent properties that will be seen by anyone using an object created from the class.
The properties of Visual Basic objects, such as the Text and StartPosition properties, also follow
this naming convention.

To enter the Public variables in the class definition:

1. Enter the following three Public statements:

Public Length As Double
Public Width As Double
Public Depth As Double

2. Delete the blank line above the End Class clause, if necessary, and then save the solution.

Now you will modify the application’s code to use the RectangularPool class rather than the
Dimensions structure.

To modify the code to use the RectangularPool class:

1. Click the Main Form.vb tab to return to the form’s Code Editor window. Replace
<your name> and <current date> in the comments with your name and the current
date, respectively.

2. First, delete the Structure statement from the form’s Declarations section.

3. Next, locate the btnCalc_Click procedure. The procedure will instantiate a
RectangularPool object. Replace the Dim poolSize As Dimensions instruction with the
following instruction:

Dim customerPool As New RectangularPool

enter these comments
and Option statements

position the insertion
point here

Figure 11-7 Comments and Option statements entered in the class file

START HERE

START HERE

C H A P T E R 1 1 Classes and Objects

650

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

4. Now you will modify the three TryParse methods to use the object’s Public variables.
Highlight (select) poolSize.dblLength in the first TryParse method. Type
customerPool. and then click the Common tab (if necessary). The Public variables
appear in the IntelliSense list, as shown in Figure 11-8.

5. Click Length and then press Tab. Now change poolSize.dblWidth and
poolSize.dblDepth in the remaining TryParse methods to customerPool.Width
and customerPool.Depth, respectively.

6. The procedure needs to pass the customerPool object (rather than the poolSize
structure) to the GetGallons function. Change poolSize in the dblGallons =
GetGallons(poolSize) statement to customerPool.

7. Locate the GetGallons function. The function will need to receive a RectangularPool
object rather than a Dimensions structure. Change Dimensions in the function header
to RectangularPool.

8. Finally, change dblLength, dblWidth, and dblDepth in the Return statement to
Length, Width, and Depth, respectively. Recall that Length, Width, and Depth are
the names of the RectangularPool object’s properties.

Figure 11-9 shows the Class statement, the GetGallons function, and the btnCalc_Click
procedure. The changes made to the original function and procedure (both of which are
shown earlier in Figure 11-6) are shaded in the figure.

IntelliSense list

Figure 11-8 Public variables included in the IntelliSense list

Class statement entered in the RectangularPool.vb file
Public Class RectangularPool
 Public Length As Double
 Public Width As Double
 Public Depth As Double
End Class

GetGallons function and btnCalc_Click procedure entered in the Main Form.vb file
Public Function GetGallons(ByVal pool As RectangularPool) As Double
 ' calculates and returns the number of gallons

 Const dblGAL_PER_CUBIC_FOOT As Double = 7.48

 Return pool.Length * pool.Width *
 pool.Depth * dblGAL_PER_CUBIC_FOOT
End Function

receives a
RectangularPool
object by value

Figure 11-9 Class statement, GetGallons function, and btnCalc_Click procedure (continues)

Example 1—A Class that Contains Public Variables Only L E S S ON A

651

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

To test the modified code:

1. Save the solution and then start the application. Type 60 in the Length box, 30 in the
Width box, and 5 in the Depth box. Click the Calculate button to display the required
number of gallons of water. See Figure 11-10.

2. Click the Exit button. Close the Main Form.vb and RectangularPool.vb windows and
then close the solution.

Example 2—A Class that Contains Private Variables, Public
Properties, and Methods
Although you can define a class that contains only attributes represented by Public variables—
like the RectangularPool class shown in Figure 11-9—that is rarely done. The disadvantage of
using Public variables in a class is that a class cannot control the values assigned to its Public
variables. As a result, the class cannot validate the values to ensure they are appropriate for the

Private Sub btnCalc_Click(sender As Object,
e As EventArgs) Handles btnCalc.Click
 ' displays the number of gallons

 Dim customerPool As New RectangularPool
 Dim dblGallons As Double

 Double.TryParse(txtLength.Text, customerPool.Length)
 Double.TryParse(txtWidth.Text, customerPool.Width)
 Double.TryParse(txtDepth.Text, customerPool.Depth)

 dblGallons = GetGallons(customerPool)
 lblGallons.Text = dblGallons.ToString("N0")

 txtLength.Focus()
End Sub

instantiates a RectangularPool
object and assigns it to the
customerPool variable

assigns values to the
object’s properties

passes the RectangularPool
object to the GetGallons
function

Figure 11-9 Class statement, GetGallons function, and btnCalc_Click procedure
© 2013 Cengage Learning

you can use the Alt key
to show/hide the
access keys

Figure 11-10 Interface showing the number of gallons
OpenClipArt.org/laobc

(continued)

START HERE

C H A P T E R 1 1 Classes and Objects

652

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

variables. Furthermore, most classes contain not only attributes, but behaviors as well. This is
because the purpose of a class in OOP is to encapsulate the properties that describe an object,
the methods that allow the object to perform tasks, and the events that allow the object to
respond to actions. In this section, you will create a class that contains data validation code and
methods. (Including events in a class is beyond the scope of this book.) The class will be used in
the Carpets Galore application, which calculates and displays the number of square yards of
carpeting required to carpet a rectangular floor. It also calculates and displays the cost of the
carpet.

To add a class file to the Carpets Galore application:

1. Open the Carpets Galore Solution (Carpets Galore Solution.sln) file contained in the
VB2012\Chap11\Carpets Galore Solution folder. If necessary, open the designer window.
The interface provides list boxes for the user to enter the length and width of a room’s
floor and the price of a square yard of carpet. See Figure 11-11. (The image in the picture
box was downloaded from the Open Clip Art Library at http://openclipart.org.)

2. Use the PROJECT menu to add a new class file to the project. Name the class file
Rectangle.vb. Insert a blank line above the Class statement and then enter the
comments and Option statements shown in Figure 11-12. (Replace <your name> and
<current date> in the comments with your name and the current date, respectively.)
Also, position the insertion point as shown in the figure.

Figure 11-11 Interface for the Carpets Galore application
OpenClipArt.org/Artmaker

enter these comments
and Option statements

position the insertion
point here

Figure 11-12 Comments and Option statements entered in the class file

START HERE

Example 2—A Class that Contains Private Variables, Public Properties, and Methods L E S S ON A

653

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

A room’s floor is a rectangular object that has two attributes: length and width. Rather than
using Public variables to represent both attributes, the Rectangle class will use Private variables
and Property procedures.

Private Variables and Property Procedures
Unlike a class’s Public variables, its Private variables are not visible to applications that contain
an instance of the class. Because of this, the names of the Private variables will not appear in
the IntelliSense list as you are coding, nor will they be recognized within the application’s
code. A class’s Private variables can be used only by instructions within the class itself. The
naming convention for a class’s Private variables is to use the underscore as the first
character in the name and then camel case for the remainder of the name. Following this
naming convention, you will use the names _dblLength and _dblWidth for the Private
variables in the Rectangle class.

To include Private variables in the Rectangle class:

1. Enter the following two Private statements. Press Enter twice after typing the last
statement.

Private _dblLength As Double
Private _dblWidth As Double

2. Save the solution.

When an application instantiates an object, only the Public members of the object’s class
are visible to the application. Using OOP terminology, the Public members are “exposed”
to the application, whereas the Private members are “hidden” from the application. For
an application to assign data to or retrieve data from a Private variable, it must use a
Public property. In other words, an application cannot directly refer to a Private variable
in a class. Rather, it must refer to the variable indirectly, through the use of a Public
property.

You create a Public property using a Property procedure, whose syntax is shown in
Figure 11-13. A Public Property procedure creates a property that is visible to any
application that contains an instance of the class. In most cases, a Property procedure
header begins with the keywords Public Property. However, as the syntax indicates, the
header can also include one of the following keywords: ReadOnly or WriteOnly. The
ReadOnly keyword indicates that the property’s value can be retrieved (read) by an
application, but the application cannot set (write to) the property. The property would
get its value from the class itself rather than from the application. The WriteOnly keyword
indicates that an application can set the property’s value, but it cannot retrieve the value. In
this case, the value would be set by the application for use within the class.

As Figure 11-13 shows, the name of the property follows the Property keyword in the
header. You should use nouns and adjectives to name a property and enter the name using
Pascal case, as in Side, Bonus, and AnnualSales. Following the property name is an optional
parameterList enclosed in parentheses, the keyword As, and the property’s dataType. The
dataType must match the data type of the Private variable associated with the Property
procedure.

START HERE

The Length
property of a
one-dimensional
array is an
example of a

ReadOnly property.

C H A P T E R 1 1 Classes and Objects

654

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Between a Property procedure’s header and footer, you include a Get block of code, a Set block
of code, or both Get and Set blocks of code. The appropriate block or blocks of code to include
depends on the keywords contained in the procedure header. If the header contains the
ReadOnly keyword, you include only a Get block of code in the Property procedure. The code
contained in the Get block allows an application to retrieve the contents of the Private variable
associated with the property. In the Property procedure shown in Example 2 in Figure 11-13, the
ReadOnly keyword indicates that an application can retrieve the contents of the Bonus property,
but it cannot set the property’s value.

Property Procedure
Syntax
Public [ReadOnly | WriteOnly] Property propertyName[(parameterList)] As dataType
 Get
 [instructions]
 Return privateVariable
 End Get
 Set(value As dataType)
 [instructions]
 privateVariable = {value | defaultValue}
 End Set
End Property

Example 1 – an application can both retrieve and set the Side property’s value
Private _intSide As Integer

Public Property Side As Integer
 Get
 Return _intSide
 End Get
 Set(value As Integer)
 If value > 0 Then
 _intSide = value
 Else
 _intSide = 0
 End If
 End Set
End Property

Example 2 – an application can retrieve, but not set, the Bonus property’s value
Private _dblBonus As Double

Public ReadOnly Property Bonus As Double
 Get
 Return _dblBonus
 End Get
End Property

Example 3 – an application can set, but not retrieve, the AnnualSales property’s value
Private _decAnnualSales As Decimal

Public WriteOnly Property AnnualSales As Decimal
 Set(value As Decimal)
 _decAnnualSales = value
 End Set
End Property

Figure 11-13 Syntax and examples of a Property procedure
© 2013 Cengage Learning

Example 2—A Class that Contains Private Variables, Public Properties, and Methods L E S S ON A

655

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

If the header contains the WriteOnly keyword, on the other hand, you include only a Set block
of code in the procedure. The code in the Set block allows an application to assign a value to the
Private variable associated with the property. In the Property procedure shown in Example 3 in
Figure 11-13, the WriteOnly keyword indicates that an application can assign a value to the
AnnualSales property, but it cannot retrieve the property’s contents.

If the Property procedure header does not contain the ReadOnly or WriteOnly keywords,
you include both a Get block of code and a Set block of code in the procedure, as shown in
Example 1 in Figure 11-13. In this case, an application can both retrieve and set the Side
property’s value.

The Get block in a Property procedure contains the Get statement, which begins with the
Get clause and ends with the End Get clause. Most times, you will enter only the Return
privateVariable instruction within the Get statement. The instruction returns the contents
of the Private variable associated with the property. In Example 1 in Figure 11-13, the
Return _intSide statement returns the contents of the _intSide variable, which is the
Private variable associated with the Side property. Similarly, the Return _dblBonus statement
in Example 2 returns the contents of the _dblBonus variable, which is the Private variable
associated with the Bonus property. Example 3 does not contain a Get statement because the
AnnualSales property is designated as a WriteOnly property.

The Set block contains the Set statement, which begins with the Set clause and ends
with the End Set clause. The Set clause’s value parameter temporarily stores the value
that is passed to the property by the application. The value parameter’s dataType must
match the data type of the Private variable associated with the Property procedure. You
can enter one or more instructions between the Set and End Set clauses. One of the
instructions should assign the contents of the value parameter to the Private variable
associated with the property. In Example 3 in Figure 11-13, the _decAnnualSales = value
statement assigns the contents of the property’s value parameter to the Private
_decAnnualSales variable.

In the Set statement, you often will include instructions to validate the value received from
the application before assigning it to the Private variable. The Set statement in Example 1 in
Figure 11-13 includes a selection structure that determines whether the side measurement
received from the application is greater than 0. If it is, the _intSide = value instruction assigns
the integer stored in the value parameter to the Private _intSide variable. Otherwise, the
_intSide = 0 instruction assigns a default value (in this case, 0) to the variable. The Property
procedure in Example 2 in Figure 11-13 does not contain a Set statement because the Bonus
property is designated as a ReadOnly property.

To enter a Property procedure for each Private variable in the Rectangle class:

1. The insertion point should be positioned in the blank line above the End Class clause.
Enter the following Property procedure header and Get clause. When you press Enter
after typing the Get clause, the Code Editor automatically enters the End Get clause, the
Set statement, and the End Property clause.

Public Property Length As Double
Get

2. Recall that in most cases, the Get statement simply returns the contents of the Private
variable associated with the Property procedure. Type the following statement, but don’t
press Enter:

Return _dblLength

3. The Set statement should assign either the contents of its value parameter or a default
value to the Private variable associated with the Property procedure. In this case, you will
assign the integer stored in the value parameter only when the integer is greater than 0;

START HERE

C H A P T E R 1 1 Classes and Objects

656

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

otherwise, you will assign the number 0. Click the blank line above the End Set clause
and then enter the following selection structure:

If value > 0 Then
_dblLength = value

Else
_dblLength = 0

End If

4. Save the solution. Figure 11-14 shows the Length Property procedure associated with
the _dblLength variable.

5. Now you will enter a Property procedure for the _dblWidth variable. Insert two blank
lines below the End Property clause, and then enter the following Property procedure
header and Get clause:

Public Property Width As Double
Get

6. Type the following Return statement, but don’t press Enter:

Return _dblWidth

7. Click the blank line above the End Set clause and then enter the following selection
structure:

If value > 0 Then
_dblWidth = value

Else
_dblWidth = 0

End If

8. Save the solution.

Private variable

Public property associated
with the _dblLength
Private variable

Figure 11-14 Length Property procedure entered in the class

Example 2—A Class that Contains Private Variables, Public Properties, and Methods L E S S ON A

657

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

You have finished entering the class’s Private variables and Property procedures. The class’s
methods are next. The first method you will learn about is a constructor.

Constructors
Most classes contain at least one constructor. A constructor is a class method, always named
New, whose sole purpose is to initialize the class’s Private variables. Constructors never
return a value, so they are always Sub procedures rather than Function procedures.
The syntax for creating a constructor is shown in Figure 11-15. Notice that a constructor’s
parameterList is optional. A constructor that has no parameters, like the constructor in
Example 1, is called the default constructor. A class can have only one default constructor.
A class that contains one or more parameters, like the constructor in Example 2, is called a
parameterized constructor. A class can have as many parameterized constructors as needed.
However, the parameterList in each parameterized constructor must be unique within the
class. The method name (in this case, New) combined with its optional parameterList is
called the method’s signature.

When an object is instantiated, the computer uses one of the class’s constructors to initialize
the class’s Private variables. If a class contains more than one constructor, the computer
determines the appropriate constructor by matching the number, data type, and position of
the arguments in the statement that instantiates the object with the number, data type, and
position of the parameters listed in each constructor’s parameterList. The statements in
Examples 1 and 2 in Figure 11-16 will invoke the default constructor because neither
statement contains any arguments. The statements in Examples 3 and 4 will invoke the
parameterized constructor because both statements contain two arguments whose data
type is Double.

Constructor
Syntax
Public Sub New([parameterList])
 instructions to initialize the class’s Private variables
End Sub

Example 1 (default constructor)
Public Sub New()
 _dblLength = 0
 _dblWidth = 0
End Sub

Example 2 (parameterized constructor)
Public Sub New (ByVal dblL As Double,
 ByVal dblW As Double)
 Length = dblL
 Width = dblW
End Sub

initializes the Private
variables directly

uses the Public properties
to initialize the Private
variables indirectly

Figure 11-15 Syntax and examples of a constructor
© 2013 Cengage Learning

C H A P T E R 1 1 Classes and Objects

658

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

A default constructor is allowed to initialize the class’s Private variables directly. The default
constructor shown earlier in Example 1 in Figure 11-15, for instance, assigns the number 0 to
the class’s Private _dblLength and _dblWidth variables. Parameterized constructors, on the
other hand, should use the class’s Public properties to access the Private variables indirectly.
This is because the values passed to a parameterized constructor come from the application
rather than from the class itself. Values that originate outside of the class should always be
assigned to the Private variables indirectly, through the Public properties. Doing this ensures
that the Property procedure’s Set block, which typically contains validation code, is processed.
The parameterized constructor shown earlier in Example 2 in Figure 11-15, for instance, uses
the Public Length property to initialize the Private _dblLength variable, thereby invoking the
validation code in the Length property. It also uses the Public Width property to initialize the
Private _dblWidth variable; doing this invokes the Width property’s validation code.

To include a default constructor in the Rectangle class:

1. Insert two blank lines below the Width property’s End Property clause, and then enter
the following default constructor:

Public Sub New()
_dblLength = 0
_dblWidth = 0

End Sub

Methods Other than Constructors
Except for constructors, which must be Sub procedures, the other methods in a class can be
either Sub procedures or Function procedures. Recall from Chapter 7 that the difference
between these two types of procedures is that a Function procedure returns a value after
performing its assigned task, whereas a Sub procedure does not return a value. Figure 11-17
shows the syntax for a method that is not a constructor. Like property names, method names
should be entered using Pascal case. However, unlike property names, the first word in a method
name should be a verb, and any subsequent words should be nouns and adjectives. Figure 11-17
also includes two examples of a method that allows a Rectangle object to calculate its area.
Notice that you can write the method as either a Function procedure or a Sub procedure.

Example 1 – invokes the default constructor
Dim floor As New Rectangle

Example 2 – invokes the default constructor
floor = New Rectangle

Example 3 – invokes the parameterized constructor
Dim floor As New Rectangle(10.5, 12.5)

Example 4 – invokes the parameterized constructor
floor = New Rectangle(dblRoomLen, dblRoomWid)

Figure 11-16 Statements that invoke the constructors shown in Figure 11-15
© 2013 Cengage Learning

The Dim

randGen As

New Random
statement from
Chapter 5

instantiates a Random
object and invokes the
class’s default
constructor.

START HERE

Example 2—A Class that Contains Private Variables, Public Properties, and Methods L E S S ON A

659

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

To enter the GetArea method from Example 1:

1. Insert two blank lines below the default constructor’s End Sub clause, and then enter the
following GetArea method:

Public Function GetArea() As Double
Return _dblLength * _dblWidth

End Function

2. The Rectangle class definition is now complete. Save the solution.

Coding the Carpets Galore Application
The Calculate button’s Click event procedure is the only procedure you need to code in the
Carpets Galore application. Figure 11-18 shows the procedure’s pseudocode.

btnCalc Click event procedure

1. instantiate a Rectangle object to represent the floor
2. declare variables to store the price per square yard, required number of square yards, and

carpet cost
3. assign the input data to the appropriate properties and variable
4. calculate the required number of square yards by dividing the floor’s area by 9
5. calculate the carpet cost by multiplying the price per square yard by the required number of

square yards
6. display the required number of square yards and the carpet cost

Figure 11-18 Pseudocode for the Calculate button’s Click event procedure
© 2013 Cengage Learning

To code the Calculate button’s Click event procedure:

1. Click the designer window’s tab and then open the Code Editor window. Replace
<your name> and <current date> in the comments with your name and the current date,
respectively.

Method That Is Not a Constructor
Syntax
Public {Sub | Function} methodName([parameterList]) [As dataType]
 instructions
End {Sub | Function}

Example 1 – Function procedure
Public Function GetArea() As Double
 Return _dblLength * _dblWidth
End Function

Example 2 – Sub procedure
Public Sub GetArea(ByRef dblA As Double)
 dblA = _dblLength * _dblWidth
End Sub

Figure 11-17 Syntax and examples of a method that is not a constructor
© 2013 Cengage Learning

START HERE

START HERE

C H A P T E R 1 1 Classes and Objects

660

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

2. Locate the btnCalc_Click procedure. The first step in the pseudocode is to instantiate a
Rectangle object to represent the room’s floor. Enter the following Dim statement in the
blank line below the ' instantiate a Rectangle object comment:

Dim floor As New Rectangle

3. Now you will declare variables to store the price of a square yard of carpet, the number
of square yards needed, and the cost of the carpet. You won’t need variables to store the
floor’s length and width measurements because the procedure will assign those values to
the Rectangle object’s Length and Width properties. Click the blank line below the
' declare variables comment, and then enter the following three Dim statements:

Dim dblPriceSqYd As Double
Dim dblSqYards As Double
Dim dblCost As Double

4. Next, you will assign the length and width entries to the Rectangle object’s Length
and Width properties, respectively. You also will assign the price entry to the
dblPriceSqYd variable. Click the blank line below the ' assign values to the
object's Public properties comment, and then enter the three TryParse methods
shown in Figure 11-19. Notice that when you press the period after typing floor in the
first two TryParse methods, the floor object’s Length and Width properties appear in
the IntelliSense list.

5. The fourth step in the pseudocode calculates the required number of square yards by
dividing the floor’s area (which is in square feet) by the number 9. You need to divide by
9 because there are 9 square feet in a square yard. You can use the Rectangle object’s
GetArea method to calculate and return the area of the floor. Click the blank line below
the ' calculate the square yards comment, and then enter the following assignment
statement. Here again, notice that when you press the period after typing floor, the
floor object’s GetArea method appears in the IntelliSense list.

dblSqYards = floor.GetArea / 9

6. The next step in the pseudocode calculates the cost of the carpet by multiplying the
price per square yard by the required number of square yards. Enter the following
assignment statement in the blank line below the ' calculate the carpet cost
comment:

dblCost = dblPriceSqYd * dblSqYards

7. The last step in the pseudocode displays the required number of square yards and the
carpet cost. Click the blank line below the ' display output comment, and then enter
the following assignment statements:

lblSquareYards.Text = dblSqYards.ToString("N1")
lblCost.Text = dblCost.ToString("C2")

8. Delete the blank line above the btnCalc_Click procedure’s End Sub clause, if necessary.

Figure 11-19 TryParse methods entered in the procedure

Example 2—A Class that Contains Private Variables, Public Properties, and Methods L E S S ON A

661

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Figure 11-20 shows the Rectangle class definition contained in the Rectangle.vb file. It also
shows the btnCalc_Click procedure contained in the Main Form.vb file.

Class statement entered in the Rectangle.vb file
Public Class Rectangle
 Private _dblLength As Double
 Private _dblWidth As Double

 Public Property Length As Double
 Get
 Return _dblLength
 End Get
 Set(value As Double)
 If value > 0 Then
 _dblLength = value
 Else
 _dblLength = 0
 End If
 End Set
 End Property

 Public Property Width As Double
 Get
 Return _dblWidth
 End Get
 Set(value As Double)
 If value > 0 Then
 _dblWidth = value
 Else
 _dblWidth = 0
 End If
 End Set
 End Property

 Public Sub New()
 _dblLength = 0
 _dblWidth = 0
 End Sub

 Public Function GetArea() As Double
 Return _dblLength * _dblWidth
 End Function
End Class

Figure 11-20 Rectangle class definition and btnCalc_Click procedure (continues)

C H A P T E R 1 1 Classes and Objects

662

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

To test the Carpets Galore application:

1. Save the solution and then start the application. Click 9.0 and 8.5 in the Length and
Width list boxes, respectively. Click 9.50 in the Price list box and then click the
Calculate button. The Dim floor As New Rectangle instruction in the button’s Click
event procedure instantiates a Rectangle object. At this point, the computer processes
the class’s default constructor, which initializes the object’s Private variables to the
number 0. The next three Dim statements in the procedure create and initialize three
Double variables. Next, the TryParse methods assign the appropriate values to the
Rectangle object’s Public properties and to the dblPriceSqYd variable. The procedure
then calculates the required number of square yards of carpet, using the Rectangle
object’s GetArea method to calculate and return the area of the floor. Finally, the
procedure calculates the cost of the carpet and then displays both the required number
of square yards and the cost. See Figure 11-21.

btnCalc_Click procedure entered in the Main Form.vb file
Private Sub btnCalc_Click(sender As Object,
e As EventArgs) Handles btnCalc.Click
 ' displays square yards and cost of carpet

 ' instantiate a Rectangle object
 Dim floor As New Rectangle

 ' declare variables
 Dim dblPriceSqYd As Double
 Dim dblSqYards As Double
 Dim dblCost As Double

 ' assign values to the object's Public properties
 Double.TryParse(lstLength.SelectedItem.ToString, floor.Length)
 Double.TryParse(lstWidth.SelectedItem.ToString, floor.Width)
 Double.TryParse(lstPrice.SelectedItem.ToString, dblPriceSqYd)

 ' calculate the square yards
 dblSqYards = floor.GetArea / 9

 ' calculate the carpet cost
 dblCost = dblPriceSqYd * dblSqYards

 ' display output
 lblSquareYards.Text = dblSqYards.ToString("N1")
 lblCost.Text = dblCost.ToString("C2")
End Sub

instantiates a
Rectangle object

assigns values to
the object’s
Public properties

invokes the
object’s GetArea
method

Figure 11-20 Rectangle class definition and btnCalc_Click procedure
© 2013 Cengage Learning

START HERE

(continued)

Example 2—A Class that Contains Private Variables, Public Properties, and Methods L E S S ON A

663

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

2. On your own, test the application using different lengths, widths, and prices. When you
are finished, click the Exit button. Close the Main Form.vb and Rectangle.vb windows
and then close the solution.

YOU DO IT 1!

Create a Visual Basic Windows application named YouDoIt 1. Save the application in
the VB2012\Chap11 folder. Add a text box, a label, and a button to the form. Add a
class file named Circle.vb to the project. Define a class named Circle. The class
should contain one attribute: the circle’s radius. It also should contain a default
constructor and a method that calculates and returns the circle’s area. Use the
following formula to calculate the area: 3.141592 * radius2. Open the form’s
Code Editor window. The button’s Click event procedure should display the circle’s
area, using the radius entered by the user. Code the procedure. Save the solution
and then start and test the application. Close the solution.

Example 3—A Class that Contains a Parameterized
Constructor
In this example, you will add a parameterized constructor to the Rectangle class created in
Example 2. Recall that a parameterized constructor is simply a constructor that has parameters.
You then will modify the Carpets Galore application to use the parameterized constructor.

To add a parameterized constructor to the Rectangle.vb file:

1. Use Windows to make a copy of the Carpets Galore Solution folder from Example 2.
Rename the copy Modified Carpets Galore Solution. Open the Carpets Galore Solution
(Carpets Galore Solution.sln) file contained in the Modified Carpets Galore Solution
folder. Open the designer window.

2. Right-click Rectangle.vb in the Solution Explorer window and then click View Code.

Figure 11-21 Interface showing the square yards and cost
OpenClipArt.org/Artmaker

START HERE

C H A P T E R 1 1 Classes and Objects

664

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

3. Locate the default constructor. Click the blank line below the default constructor’s End
Sub clause and then press Enter twice to insert two blank lines. Press the up arrow key
on your keyboard and then enter the following parameterized constructor:

Public Sub New(ByVal dblL As Double, ByVal dblW As Double)
Length = dblL
Width = dblW

End Sub

4. Save the solution and then close the Rectangle.vb window.

Figure 11-22 shows the Rectangle class’s default and parameterized constructors. Unlike
the default constructor, which automatically initializes the Private variables to 0 when a
Rectangle object is created, a parameterized constructor allows an application to specify the
object’s initial values. In this case, the initial values must have the Double data type because
the constructor’s parameterList contains two Double variables. You include the initial
values, enclosed in a set of parentheses, in the statement that instantiates the object. In
other words, you include them in the statement that contains the New keyword, such
as the Dim floor As New Rectangle(10.5, 12.5) statement or the
floor = New Rectangle(dblRoomLen, dblRoomWid) statement.

To use the parameterized constructor in the modified application:

1. Open the form’s Code Editor window. Locate the btnCalc_Click procedure. Change the
first comment in the procedure to ' declare a variable for a Rectangle object.

2. Delete the New keyword from the first Dim statement. The statement should now say
Dim floor As Rectangle.

3. Click the blank line below the last Dim statement, and then enter the following two
declaration statements:

Dim dblRoomLen As Double
Dim dblRoomWid As Double

4. In the first TryParse method, replace floor.Length with dblRoomLen. Then, in the
second TryParse method, replace floor.Width with dblRoomWid.

5. Click the blank line below the last TryParse method and then press Enter. Enter the
following comment and assignment statement:

' instantiate and initialize a Rectangle object
floor = New Rectangle(dblRoomLen, dblRoomWid)

Default constructor
Public Sub New()
 _dblLength = 0
 _dblWidth = 0
End Sub

Parameterized constructor
Public Sub New(ByVal dblL As Double, ByVal dblW As Double)
 Length = dblL
 Width = dblW
End Sub

accesses the Private
variables directly

uses the Public
properties to access
the Private variables

Figure 11-22 Default and parameterized constructors
© 2013 Cengage Learning

START HERE

Example 3—A Class that Contains a Parameterized Constructor L E S S ON A

665

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

The modifications made to the original code, shown earlier in Figure 11-20, are shaded in
Figure 11-23.

Modified Class statement entered in the Rectangle.vb file
Public Class Rectangle
 Private _dblLength As Double
 Private _dblWidth As Double

 Public Property Length As Double
 Get
 Return _dblLength
 End Get
 Set(value As Double)
 If value > 0 Then
 _dblLength = value
 Else
 _dblLength = 0
 End If
 End Set
 End Property

 Public Property Width As Double
 Get
 Return _dblWidth
 End Get
 Set(value As Double)
 If value > 0 Then
 _dblWidth = value
 Else
 _dblWidth = 0
 End If
 End Set
 End Property

 Public Sub New()
 _dblLength = 0
 _dblWidth = 0
 End Sub

 Public Sub New(ByVal dblL As Double, ByVal dblW As Double)
 Length = dblL
 Width = dblW
 End Sub

 Public Function GetArea() As Double
 Return _dblLength * _dblWidth
 End Function
End Class

parameterized
constructor

Figure 11-23 Modified Rectangle class definition and btnCalc_Click procedure (continues)

C H A P T E R 1 1 Classes and Objects

666

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

When the user clicks the Calculate button, the Dim floor As Rectangle instruction in the
btnCalc_Click procedure creates a variable that can store a Rectangle object; but it does not
create the object. The remaining Dim statements create and initialize five Double variables.
Next, the TryParse methods assign the input values to the dblRoomLen, dblRoomWid, and
dblPriceSqYd variables.

The next statement in the procedure, floor = New Rectangle(dblRoomLen, dblRoomWid),
instantiates a Rectangle object. The two Double arguments in the statement tell the computer to
use the parameterized constructor to initialize the Rectangle object’s Private variables. In this
case, the computer passes the two Double arguments (by value) to the parameterized
constructor, which stores them in its dblL and dblW parameters. The assignment statements in
the constructor then assign the parameter values to the Rectangle object’s Public Length and
Width properties.

When you assign a value to a property, the computer passes the value to the property’s Set
statement, where it is stored in the Set statement’s value parameter. In this case, the selection
structure in the Length property’s Set statement compares the value stored in the value
parameter with the number 0. If the value is greater than 0, the selection structure’s true path
assigns the value to the Private _dblLength variable; otherwise, its false path assigns the

Modified btnCalc_Click procedure entered in the Main Form.vb file
Private Sub btnCalc_Click(sender As Object,
e As EventArgs) Handles btnCalc.Click
 ' displays square yards and cost of carpet

 ' declare a variable for a Rectangle object
 Dim floor As Rectangle

 ' declare variables
 Dim dblPriceSqYd As Double
 Dim dblSqYards As Double
 Dim dblCost As Double
 Dim dblRoomLen As Double
 Dim dblRoomWid As Double

 ' assign values to the object's Public properties
 Double.TryParse(lstLength.SelectedItem.ToString, dblRoomLen)
 Double.TryParse(lstWidth.SelectedItem.ToString, dblRoomWid)
 Double.TryParse(lstPrice.SelectedItem.ToString, dblPriceSqYd)

 ' instantiate and initialize a Rectangle object
 floor = New Rectangle(dblRoomLen, dblRoomWid)

 ' calculate the square yards
 dblSqYards = floor.GetArea / 9

 ' calculate the carpet cost
 dblCost = dblPriceSqYd * dblSqYards

 ' display output
 lblSquareYards.Text = dblSqYards.ToString("N1")
 lblCost.Text = dblCost.ToString("C2")
End Sub

declares a variable
that can store a
Rectangle object

uses the parameterized
constructor to instantiate
and initialize a Rectangle
object

Figure 11-23 Modified Rectangle class definition and btnCalc_Click procedure
© 2013 Cengage Learning

(continued)

Example 3—A Class that Contains a Parameterized Constructor L E S S ON A

667

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

number 0 to the variable. Similarly, the selection structure in the Width property’s Set statement
compares the value stored in the value parameter with the number 0. If the value is greater
than 0, the selection structure’s true path assigns the value to the Private _dblWidth variable;
otherwise, its false path assigns the number 0 to the variable. Notice that a parameterized
constructor uses the class’s Public properties to access the Private variables indirectly. This is
because the values passed to a parameterized constructor come from the application rather than
from the class itself. As mentioned earlier, values that originate outside of the class should
always be assigned to the Private variables indirectly, through the Public properties. Doing this
ensures that the Property procedure’s Set block, which typically contains validation code, is
processed.

After the Rectangle object is instantiated and its Private variables are initialized, the
btnCalc_Click procedure uses the object’s GetArea method to calculate and return the area of
the floor. The procedure uses the area to calculate the required number of square yards of
carpet. Finally, the procedure calculates the cost of the carpet and then displays both the
required number of square yards and the cost.

To test the modified Carpets Galore application:

1. Save the solution and then start the application. Click 12.0 and 13.0 in the Length
and Width list boxes, respectively. Click 14.50 in the Price list box and then click the
Calculate button. See Figure 11-24.

2. On your own, test the application using different lengths, widths, and prices. When you
are finished, click the Exit button. Close the Main Form.vb window and then close
the solution.

Example 4—Reusing a Class
In Examples 2 and 3, you used the Rectangle class to create an object that represented the floor
in a room. In this example, you will use the Rectangle class to create an object that represents a
square pizza. A square is simply a rectangle that has four equal sides. As mentioned earlier, the
ability to use an object—in this case, a Rectangle object—for more than one purpose saves
programming time and money, which contributes to the popularity of object-oriented
programming.

Figure 11-24 Square yards and cost shown in the interface
OpenClipArt.org/Artmaker

START HERE

C H A P T E R 1 1 Classes and Objects

668

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

To add the Rectangle.vb file to the Pete’s Pizzeria application:

1. Open the Pizzeria Solution (Pizzeria Solution.sln) file contained in the VB2012\Chap11\
Pizzeria Solution folder. If necessary, open the designer window. The interface provides
text boxes for entering the side measurements of both the entire pizza and a pizza
slice. The application will use both measurements to calculate the number of pizza slices
that can be cut from the entire pizza. See Figure 11-25.

2. First, you will copy the Rectangle.vb class file from the modified Carpets Galore
application to the Pete’s Pizzeria application. Use Windows to copy the Rectangle.vb file
from the VB2012\Chap11\Modified Carpets Galore Solution\Carpets Galore Project
folder to the Pizzeria Solution\Pizzeria Project folder. (If you did not complete the
modified Carpets Galore application, you can copy the Rectangle.vb file contained in
the VB2012\Chap11 folder.)

3. Next, you will add the Rectangle.vb file to the Pete’s Pizzeria project. Click PROJECT on
the menu bar and then click Add Existing Item. Open the Pizzeria Project folder (if
necessary) and then click Rectangle.vb in the list of filenames. Click the Add button.
Temporarily display the Solution Explorer window (if necessary) to verify that the
Rectangle.vb file was added to the project.

Figure 11-26 shows the pseudocode for the Calculate button’s Click event procedure.

START HERE

Figure 11-25 Interface for the Pete’s Pizzeria application

Example 4—Reusing a Class L E S S ON A

669

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

btnCalc Click event procedure

1. instantiate a Rectangle object to represent the entire square pizza
2. instantiate a Rectangle object to represent a square pizza slice
3. declare variables to store the area of the entire pizza, the area of a pizza slice, and the number of

slices
4. assign the input data to the properties of the appropriate Rectangle object
5. calculate the area of the entire pizza
6. calculate the area of a pizza slice
7. if the area of a pizza slice is greater than 0

calculate the number of pizza slices by dividing the area of the entire pizza by the area of a
pizza slice

else
assign 0 as the number of pizza slices

end if
8. display the number of pizza slices

Figure 11-26 Pseudocode for the Calculate button’s Click event procedure
© 2013 Cengage Learning

To code the Calculate button’s Click event procedure:

1. Open the Code Editor window. Replace <your name> and <current date> in the
comments with your name and the current date, respectively.

2. Locate the btnCalc_Click procedure. The first two steps in the pseudocode are to
instantiate two Rectangle objects to represent the entire pizza and a pizza slice. Click
the blank line above the End Sub clause, and then enter the following Dim statements:

Dim entirePizza As New Rectangle
Dim pizzaSlice As New Rectangle

3. The third step in the pseudocode is to declare variables to store the area of the entire
pizza, the area of a pizza slice, and the number of slices. You won’t need variables to
store the side measurements entered by the user because the procedure will assign those
values to each Rectangle object’s Length and Width properties. Enter the following three
Dim statements. Press Enter twice after typing the last Dim statement.

Dim dblEntireArea As Double
Dim dblSliceArea As Double
Dim dblSlices As Double

4. The fourth step in the pseudocode assigns the side measurements to the properties of
the appropriate Rectangle object. Enter the following four lines of code. Notice that
when you press the period after typing either entirePizza or pizzaSlice, the object’s
Length and Width properties appear in the IntelliSense list. Press Enter twice after
typing the last line.

Double.TryParse(txtEntirePizza.Text, entirePizza.Length)
Double.TryParse(txtEntirePizza.Text, entirePizza.Width)
Double.TryParse(txtPizzaSlice.Text, pizzaSlice.Length)
Double.TryParse(txtPizzaSlice.Text, pizzaSlice.Width)

5. The fifth and sixth steps in the pseudocode calculate the areas of both the entire pizza
and a pizza slice, respectively. You can accomplish both tasks using the Rectangle
object’s GetArea method. Because the method already contains the code needed to
calculate the area of a rectangle, you do not need to waste time planning and then
reentering the code. Enter the following comment and assignment statements:

START HERE

C H A P T E R 1 1 Classes and Objects

670

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

' calculate areas
dblEntireArea = entirePizza.GetArea
dblSliceArea = pizzaSlice.GetArea

6. The seventh step in the pseudocode is a selection structure that determines whether the
pizza slice area is greater than 0. You need to make this determination because the area
is used as the divisor when calculating the number of pizza slices. If the area is greater
than 0, the selection structure’s true path should calculate the number of pizza slices;
otherwise, its false path should assign 0 as the number of pizza slices. Enter the following
comment and selection structure:

' calculate number of slices
If dblSliceArea > 0 Then

dblSlices = dblEntireArea / dblSliceArea
Else

dblSlices = 0
End If

7. The last step in the pseudocode displays the number of pizza slices. Insert a blank line
below the End If clause and then enter the following comment and assignment
statement:

' display number of slices
lblSlices.Text = dblSlices.ToString("N1")

8. Delete the blank line above the End Sub clause, if necessary.

The btnCalc_Click procedure is shown in Figure 11-27.

Private Sub btnCalc_Click(sender As Object,
e As EventArgs) Handles btnCalc.Click

' displays the number of square pizza slices
' that can be cut from a square pizza

Dim entirePizza As New Rectangle
Dim pizzaSlice As New Rectangle
Dim dblEntireArea As Double
Dim dblSliceArea As Double
Dim dblSlices As Double

Double.TryParse(txtEntirePizza.Text, entirePizza.Length)
Double.TryParse(txtEntirePizza.Text, entirePizza.Width)
Double.TryParse(txtPizzaSlice.Text, pizzaSlice.Length)
Double.TryParse(txtPizzaSlice.Text, pizzaSlice.Width)

' calculate areas
dblEntireArea = entirePizza.GetArea
dblSliceArea = pizzaSlice.GetArea
' calculate number of slices
If dblSliceArea > 0 Then

dblSlices = dblEntireArea / dblSliceArea
Else

dblSlices = 0
End If
' display number of slices
lblSlices.Text = dblSlices.ToString("N1")

End Sub

instantiates two
Rectangle objects

assigns values to
each object’s Public
properties

invokes each object’s
GetArea method

Figure 11-27 btnCalc_Click procedure
© 2013 Cengage Learning

Example 4—Reusing a Class L E S S ON A

671

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

To test the application’s code:

1. Save the solution and then start the application. First, you will determine the number
of 4-inch slices that can be cut from a 12-inch pizza. Type 12 in the Entire square
pizza box and then type 4 in the Square pizza slice box. Click the Calculate button.
As Figure 11-28 indicates, nine 4-inch square pizza slices can be cut from a 12-inch
square pizza.

2. On your own, test the application using different side measurements. When you are
finished, click the Exit button. Close the Code Editor window and then close the
solution.

Lesson A Summary
l To define a class:

Use the Class statement. The statement’s syntax is shown in Figure 11-3.

l To add a class file to a project:

Click PROJECT on the menu bar and then click Add Class. In the Name box, type the name
of the class followed by a period and the letters vb, and then click the Add button.

l To instantiate (create) an object from a class:

Use either of the syntax versions shown in Figure 11-5.

l To create a Property procedure:

Use the syntax shown in Figure 11-13. The Get block allows an application to retrieve
the contents of the Private variable associated with the Property procedure. The Set block
allows an application to assign a value to the Private variable associated with the Property
procedure.

l To create a constructor:

Use the syntax shown in Figure 11-15. A constructor that has no parameters is called
the default constructor. A class can have only one default constructor. A constructor that
has one or more parameters is called a parameterized constructor. A class can have as many

START HERE

Figure 11-28 Number of pizza slices shown in the interface

C H A P T E R 1 1 Classes and Objects

672

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

parameterized constructors as needed. All constructors are Sub procedures that are named
New. Each constructor must have a unique parameterList (if any) within the class.

l To create a method other than a constructor:

Use the syntax shown in Figure 11-17.

Lesson A Key Terms
Attributes—the characteristics that describe an object

Behaviors—an object’s methods and events

Class—a pattern that the computer follows when instantiating (creating) an object

Class statement—the statement used to define a class in Visual Basic

Constructor—a method whose instructions are automatically processed each time the class is
used to instantiate an object; used to initialize the class’s Private variables; always a Sub
procedure named New

Default constructor—a constructor that has no parameters; a class can have only one default
constructor

Encapsulates—an OOP term that means “contains”

Events—the actions to which an object can respond

Get block—the section of a Property procedure that contains the Get statement

Get statement—appears in a Get block in a Property procedure; contains the code that allows an
application to retrieve the contents of the Private variable associated with the property

Instance—an object created from a class

Instantiated—the process of creating an object from a class

Methods—the actions that an object is capable of performing

Object-oriented programming language—a programming language that allows the use of
objects to accomplish a program’s goal

OOP—an acronym for object-oriented programming

Parameterized constructor—a constructor that contains one or more parameters

Property procedure—creates a Public property that an application can use to access a Private
variable in a class

ReadOnly keyword—used when defining a Property procedure; indicates that the property’s
value can only be retrieved (read) by an application

Set block—the section of a Property procedure that contains the Set statement

Set statement—appears in a Set block in a Property procedure; contains the code that allows an
application to assign a value to the Private variable associated with the property; may also
contain validation code

Signature—a method’s name combined with its optional parameterList

WriteOnly keyword—used when defining a Property procedure; indicates that an application can
only set the property’s value

Lesson A Key Terms L E S S ON A

673

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Lesson A Review Questions
1. The name of a class file ends with .

a. .cla

b. .cls

c. .vb

d. none of the above

2. A constructor is .

a. a Function procedure

b. a Property procedure

c. a Sub procedure

d. either a Function procedure or a Sub procedure

3. The Item class contains a Private variable named _dblCost. The variable is associated
with the Public Cost property. An application instantiates an Item object and assigns it to
a variable named phone. Which of the following can be used by the application to assign
the number 150.65 to the _dblCost variable?

a. phone.Cost = 150.65

b. item.Cost = 150.65

c. phone._dblCost = 150.65

d. item._dblCost = 150.65

4. The Item class in Review Question 3 also contains a Public method named GetTax. The
method is a Function procedure. Which of the following can be used by the application
from Review Question 3 to invoke the GetTax method?

a. dblNewCost = Call GetTax

b. dblNewCost = phone.GetTax

c. dblNewCost = item.GetTax

d. dblNewCost = phone.GetTax(_dblCost)

5. Which of the following statements is false?

a. A class can contain only one constructor.

b. An example of a behavior is the SetTime method in a Time class.

c. An object created from a class is referred to as an instance of the class.

d. An instance of a class is considered an object.

6. A Private variable in a class can be accessed directly by a Public method in the same class.

a. True

b. False

7. An application can access the Private variables in a class .

a. directly

b. using properties created by Public Property procedures

c. through Private procedures contained in the class

d. none of the above

C H A P T E R 1 1 Classes and Objects

674

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

8. To hide a variable or method contained in a class, you declare the variable or method
using the keyword .

a. Hide

b. Invisible

c. Private

d. ReadOnly

9. Which of the following is the name of the Item class’s default constructor?

a. Item

b. ItemConstructor

c. Default

d. New

10. Which of the following instantiates an Item object and assigns it to the phone variable?

a. Dim phone As Item

b. Dim phone As New Item

c. Dim phone As Item
phone = New Item

d. both b and c

11. If you need to validate a value before assigning it to a Private variable, you enter the
validation code in the block in a Property procedure.

a. Assign

b. Get

c. Set

d. Validate

12. The Return statement is entered in the statement in a Property
procedure.

a. Get

b. Set

13. A class contains a Private variable named _strState. The variable is associated with a
Public property named State. Which of the following is the best way for a parameterized
constructor to assign the value stored in its strName parameter to the variable?

a. _strState = strName

b. State = strName

c. _strState = State.strName

d. State = _strName

Lesson A Exercises

1. A class contains more than one constructor. Explain how the computer determines the
appropriate constructor to use when instantiating an object.

2. Write a Class statement that defines a class named Book. The class contains three
Public variables named Title, Author, and Cost. The Title and Author variables are
String variables. The Cost variable is a Decimal variable. Then use the syntax shown in

INTRODUCTORY

INTRODUCTORY

Lesson A Exercises L E S S ON A

675

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Version 1 in Figure 11-5 to declare a variable that can store a Book object; name the
variable fiction. Also write a statement that instantiates the Book object and assigns it
to the fiction variable.

3. Rewrite the Class statement from Exercise 2 so that it uses Private variables rather
than Public variables. Be sure to include the Property procedures and default
constructor.

4. Write a Class statement that defines a class named Tape. The class contains four Private
String variables named _strName, _strArtist, _strSongNumber, and _strLength.
Name the corresponding properties TapeName, Artist, SongNumber, and Length.
Then, use the syntax shown in Version 2 in Figure 11-5 to create a Tape object,
assigning it to a variable named blues.

5. The Television class definition is shown in Figure 11-29. Write a Dim statement that
uses the default constructor to instantiate a Television object in an application. The
Dim statement should assign the object to a variable named flatScreen. Next, write
assignment statements that the application can use to assign the string “78XR5” and the
number 567.99 to the Model and Price properties, respectively. Finally, write an
assignment statement that the application can use to invoke the GetNewPrice function.
Assign the function’s return value to a variable named dblNewPrice.

INTRODUCTORY

INTRODUCTORY

INTRODUCTORY

Public Class Television
Private _strModel As String
Private _dblPrice As Double

Public Property Model As String
Get

Return _strModel
End Get
Set(value As String)

 _strModel = value
End Set

End Property

Public Property Price As Double
Get

Return _dblPrice
End Get
Set(value As Double)

 _dblPrice = value
End Set

End Property

Public Sub New()
 _strModel = String.Empty
 _dblPrice = 0

End Sub

Public Sub New(ByVal strM As String, ByVal dblP As Double)
 Model = strM

Price = dblP
End Sub

Public Function GetNewPrice() As Double
Return _dblPrice * 1.08

End Function
End Class

Figure 11-29 Television class definition
© 2013 Cengage Learning

C H A P T E R 1 1 Classes and Objects

676

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

6. Using the Television class shown in Figure 11-29, write a Dim statement that uses the
parameterized constructor to instantiate a Television object. Pass the parameterized
constructor the string “89MM5” and the number 699.99. The Dim statement should
assign the object to a variable named myTv.

7. An application contains the statement Dim myNewTv As Television. Using the
Television class shown in Figure 11-29, write an assignment statement that instantiates
a Television object and initializes it using the strName and dblPrice variables.
The statement should assign the object to the myNewTv variable.

8. In this exercise, you modify the Pete’s Pizzeria application completed in the lesson.
Use Windows to make a copy of the Pizzeria Solution folder. Rename the copy Pizzeria
Solution–Parameterized. Open the Pizzeria Solution (Pizzeria Solution.sln) file
contained in the Pizzeria Solution–Parameterized folder. Open the designer and
Code Editor windows. Modify the btnCalc_Click procedure to use the Rectangle class’s
parameterized constructor. Save the solution and then start and test the application.
Close the Code Editor window and then close the solution.

9. In this exercise, you modify the Norbert Pool & Spa Depot application completed in the
lesson. Use Windows to make a copy of the Norbert Solution folder. Rename the copy
Norbert Solution–Introductory. Open the Norbert Solution (Norbert Solution.sln) file
contained in the Norbert Solution–Introductory folder. Open the designer window and
then open the RectangularPool.vb file. Modify the RectangularPool class so that it uses
Private variables and Public Property procedures rather than Public variables. Include both a
default constructor and a parameterized constructor in the class. Save the solution and then
start and test the application. Close the Code Editor window and then close the solution.

10. In this exercise, you modify the Norbert Pool & Spa Depot application from Exercise 9.
Use Windows to make a copy of the Norbert Solution–Introductory folder. Rename the
copy Norbert Solution–Intermediate. Open the Norbert Solution (Norbert Solution.sln)
file contained in the Norbert Solution–Intermediate folder.

a. Open the designer window. Add two labels to the form. Position one of the labels below
the Gallons: label, and then change its Text property to Cost:. Position the other label
below the lblGallons control and then change its Name, TextAlign, AutoSize, and
BorderStyle properties to lblCost, MiddleCenter, False, and FixedSingle, respectively.
Remove the contents of its Text property and then size the control appropriately. Also
change the control’s Font and BackColor properties to match the lblGallons control.

b. Open the RectangularPool.vb file. Add a method named GetVolume to the
RectangularPool class. The method should calculate and return the volume of a
RectangularPool object. The formula for calculating the volume is length * width *
depth. Save the solution and then close the RectangularPool.vb window.

c. Open the form’s Code Editor window. The btnCalc_Click procedure should use the
RectangularPool object’s GetVolume method to determine the pool’s volume. It
then should pass only the pool’s volume to the GetGallons function. The procedure
should also calculate and display the cost of filling the pool with water. The charge
for water is $1.75 per 1000 gallons (or .00175 per gallon). Make the necessary
modifications to the code.

d. Save the solution and then start and test the application. Close the Code Editor
window and then close the solution.

11. In this exercise, you create an application that can be used to estimate the cost of laying
sod on a rectangular piece of property.

a. Create a Visual Basic Windows application. Use the following names for the solution
and project, respectively: Harston Solution and Harston Project. Save the application

INTRODUCTORY

INTRODUCTORY

INTRODUCTORY

INTRODUCTORY

INTERMEDIATE

INTERMEDIATE

Lesson A Exercises L E S S ON A

677

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

in the VB2012\Chap11 folder. Change the form file’s name to Main Form.vb.
Change the form’s name to frmMain.

b. Use Windows to copy the Rectangle.vb file from the VB2012\Chap11 folder to the
VB2012\Chap11\Harston Solution\Harston Project folder. Use the PROJECT menu
to add the Rectangle.vb class file to the project.

c. Create the interface shown in Figure 11-30. The image for the picture box is stored
in the VB2012\Chap11\Landscape.png file. (The image was downloaded from the
Open Clip Art Library at http://openclipart.org.)

d. Open the form’s Code Editor window and then code the application. Save the
solution and then start and test the application. Close the Code Editor window
and then close the solution.

12. In this exercise, you create an application that can be used to calculate the cost of
installing a fence around a rectangular area.

a. Create a Visual Basic Windows application. Use the following names for the solution
and project, respectively: Fence Solution and Fence Project. Save the application in
the VB2012\Chap11 folder. Change the form file’s name to Main Form.vb. Change
the form’s name to frmMain.

b. Use Windows to copy the Rectangle.vb file from the VB2012\Chap11 folder to the
Fence Solution\Fence Project folder. Use the PROJECT menu to add the
Rectangle.vb class file to the project. Add a method named GetPerimeter to the
Rectangle class. The GetPerimeter method should calculate and return the
perimeter of a rectangle. To calculate the perimeter, the method will need to add
together the length and width measurements and then multiply the sum by 2.

c. Create the interface shown in Figure 11-31. The image for the picture box is stored
in the VB2012\Chap11\Fence.png file. (The image was downloaded from the Open
Clip Art Library at http://openclipart.org.)

d. Open the form’s Code Editor window and then code the application, which should
calculate and display the cost of installing the fence.

e. Save the solution and then start the application. Test the application using 120 feet
as the length, 75 feet as the width, and 10 as the cost per linear foot of fencing. The
installation cost should be $3,900.00. Close the Main Form.vb and Rectangle.vb
windows and then close the solution.

Figure 11-30 Interface for Exercise 11
OpenClipArt.org/rg1024

INTERMEDIATE

C H A P T E R 1 1 Classes and Objects

678

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

13. In this exercise, you define a Triangle class. You also create an application that allows
the user to display either a Triangle object’s area or its perimeter. The formula for
calculating the area of a triangle is 1/2 * base * height. The formula for calculating the
perimeter of a triangle is a + b + c, where a, b, and c are the lengths of the sides.

a. Create a Visual Basic Windows application. Use the following names for the solution
and project, respectively: Math Triangle Solution and Math Triangle Project. Save
the application in the VB2012\Chap11 folder. Change the form file’s name to Main
Form.vb. Change the form’s name to frmMain.

b. Create the interface shown in Figure 11-32. The image for the picture box is stored
in the VB2012\Chap11\Triangle.png file. (The image was downloaded from the
Open Clip Art Library at http://openclipart.org.)

c. Add a class file to the project. Name the class file Triangle.vb. The Triangle class
should verify that the dimensions are greater than zero before assigning the values to
the Private variables. The class should also include a method to calculate the area of
a triangle and a method to calculate the perimeter of a triangle. Save the solution
and then close the Triangle.vb window.

d. Open the form’s Code Editor window. Use the InputBox function to get the
appropriate data from the user. Save the solution and then start and test the
application. Close the Code Editor window and then close the solution.

Figure 11-32 Interface for Exercise 13
OpenClipArt.org/10binary

ADVANCED

Figure 11-31 Interface for Exercise 12
OpenClipArt.org/liftarn

Lesson A Exercises L E S S ON A

679

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

& LESSON B
After studying Lesson B, you should be able to:

l Include a ReadOnly property in a class

l Create an auto-implemented property

l Overload a method in a class

Example 5—A Class that Contains a ReadOnly Property
In Lesson A, you learned that a Property procedure’s header can include the ReadOnly keyword.
Recall that the ReadOnly keyword indicates that the property’s value can be retrieved (read)
by an application, but the application cannot set (write to) the property. A ReadOnly property
gets its value from the class itself rather than from the application. In the next set of steps,
you will add a ReadOnly property to a class named CourseGrade. You will also add the default
constructor and a method that will assign the appropriate grade to the Private variable
associated with the ReadOnly property. You will use the ReadOnly property and the method
in the Grade Calculator application, which you will finish coding in the second set of steps.
The application displays a grade based on two test scores entered by the user.

To modify the CourseGrade class:

1. If necessary, start Visual Studio 2012. Open the Grade Solution (Grade Solution.sln) file
contained in the VB2012\Chap11\Grade Solution folder. If necessary, open the designer
window. The interface provides list boxes for entering two test scores that can range
from 0 to 100 points each. See Figure 11-33. (The image in the picture box was
downloaded from the Open Clip Art Library at http://openclipart.org.)

2. Right-click CourseGrade.vb in the Solution Explorer window and then click View
Code. Replace <your name> and <current date> in the comments with your name and
the current date, respectively.

3. The CourseGrade class should contain three attributes: two test scores and a letter
grade. The Private variable for the letter grade is missing from the code. Click the blank
line below the Private _intScore2 As Integer statement and then enter the following
Private statement:

Private _strGrade As String

START HERE

Figure 11-33 Interface for the Grade Calculator application
OpenClipArt.org/Minduka

C H A P T E R 1 1 Classes and Objects

680

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

4. Now you will create a Public property for the Private _strGrade variable. You will make
the property ReadOnly so that the class (rather than the Grade Calculator application)
determines the appropriate grade. By making the property ReadOnly, the application will
only be able to retrieve the grade; it will not be able to change the grade. Click the blank
line immediately above the End Class clause and then enter the following Property
procedure header. Notice that when you press Enter after typing the header, the Code
Editor automatically includes the Get block of code and the End Property clause in the
procedure. It does not enter the Set block of code because the header contains the
ReadOnly keyword.

Public ReadOnly Property Grade As String

5. Type the following Return statement in the blank line below the Get clause, but don’t
press Enter:

Return _strGrade

6. Next, you will enter the default constructor in the class. The default constructor will
initialize the Private variables when a CourseGrade object is instantiated. Insert two
blank lines above the End Class clause. Click the blank line immediately above the
clause (if necessary) and then enter the following default constructor:

Public Sub New()
_intScore1 = 0
_intScore2 = 0
_strGrade = String.Empty

End Sub

7. Finally, you will enter the DetermineGrade method, which will assign the appropriate
letter grade to the _strGrade variable. The method will be a Sub procedure because it
will not need to return a value to the application that calls it. Insert two blank lines above
the End Class clause, and then enter the following procedure header in the blank line
immediately above the clause:

Public Sub DetermineGrade()

8. Now enter the following Select Case statement:

Select Case _intScore1 + _intScore2
Case Is >= 180

_strGrade = "A"
Case Is >= 160

_strGrade = "B"
Case Is >= 140

_strGrade = "C"
Case Is >= 120

_strGrade = "D"
Case Else

_strGrade = "F"
End Select

9. Save the solution.

Now that you have finished defining the class, you can use the class to instantiate a CourseGrade
object in the Grade Calculator application.

Example 5—A Class that Contains a ReadOnly Property L E S S ON B

681

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

To complete the Grade Calculator application:

1. Click the designer window’s tab and then open the form’s Code Editor window.
Replace <your name> and <current date> in the comments with your name and the
current date, respectively.

2. Locate the btnDisplay_Click procedure. First, you will instantiate a CourseGrade object.
Click the blank line above the second comment in the procedure and then enter the
following Dim statement:

Dim studentGrade As New CourseGrade

3. Now you will assign the test scores, which are selected in the list boxes, to the object’s
properties. Click the blank line below the second comment in the procedure and then
enter the following TryParse methods:

Integer.TryParse(lstTest1.SelectedItem.ToString,
studentGrade.Score1)

Integer.TryParse(lstTest2.SelectedItem.ToString,
studentGrade.Score2)

4. Next, you will use the object’s DetermineGrade method to determine the appropriate
grade. Click the blank line below the ' object's DetermineGrade method comment
and then enter the following Call statement:

Call studentGrade.DetermineGrade()

5. Finally, you will display the grade, which is stored in the object’s ReadOnly Grade
property. Click the blank line below the ' object's ReadOnly property comment.
Type the following code, but don’t press Enter:

lblGrade.Text = studentGrade.

6. Click Grade in the IntelliSense list. If necessary, click the Common tab. See
Figure 11-34. The message that appears next to the IntelliSense list indicates that
the Grade property is ReadOnly.

7. Press Tab to include the Grade property in the assignment statement.

the message indicates
that the Grade property
is ReadOnly

Figure 11-34 ReadOnly property message

START HERE

C H A P T E R 1 1 Classes and Objects

682

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Figure 11-35 shows the CourseGrade class definition and the btnDisplay_Click procedure.

Class statement entered in the CourseGrade.vb file
Public Class CourseGrade

Private _intScore1 As Integer
Private _intScore2 As Integer
Private _strGrade As String

Public Property Score1 As Integer
Get

Return _intScore1
End Get
Set(value As Integer)

_intScore1 = value
End Set

End Property

Public Property Score2 As Integer
Get

Return _intScore2
End Get
Set(value As Integer)

_intScore2 = value
End Set

End Property

Public ReadOnly Property Grade As String
Get

Return _strGrade
End Get

End Property

Public Sub New()
_intScore1 = 0
_intScore2 = 0
_strGrade = String.Empty

End Sub

Public Sub DetermineGrade()
Select Case _intScore1 + _intScore2

Case Is >= 180
_strGrade = "A"

Case Is >= 160
_strGrade = "B"

Case Is >= 140
_strGrade = "C"

Case Is >= 120
_strGrade = "D"

Case Else
_strGrade = "F"

End Select
End Sub

End Class

Figure 11-35 CourseGrade class definition and btnDisplay_Click procedure (continues)

Example 5—A Class that Contains a ReadOnly Property L E S S ON B

683

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

To test the Grade Calculator application:

1. Save the solution and then start the application. Click 74 and 89 in the Test 1 and Test 2
list boxes, respectively, and then click the Display button. The letter B appears in the
Grade box, as shown in Figure 11-36. (Recall that you can use the Alt key to show/hide
the access keys.)

2. On your own, test the application using different test scores. When you are finished,
click the Exit button. Close the Main Form.vb and CourseGrade.vb windows and then
close the solution.

Figure 11-36 Grade shown in the interface
OpenClipArt.org/Minduka

btnDisplay_Click procedure entered in the Main Form.vb file
Private Sub btnDisplay_Click(sender As Object,
e As EventArgs) Handles btnDisplay.Click

' calculates and displays a letter grade

Dim studentGrade As New CourseGrade

' assign test scores to object's properties
Integer.TryParse(lstTest1.SelectedItem.ToString,

studentGrade.Score1)
Integer.TryParse(lstTest2.SelectedItem.ToString,

studentGrade.Score2)

' calculate the grade using the
' object's DetermineGrade method
Call studentGrade.DetermineGrade()

' object's ReadOnly property
' display the grade stored in the

lblGrade.Text = studentGrade.Grade
End Sub

calls the object’s
DetermineGrade
method

refers to the
object’s ReadOnly
Grade property

Figure 11-35 CourseGrade class definition and btnDisplay_Click procedure
© 2013 Cengage Learning

(continued)

START HERE

C H A P T E R 1 1 Classes and Objects

684

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Example 6—A Class that Contains Auto-Implemented
Properties
The auto-implemented properties feature in Visual Basic enables you to specify the property of
a class in one line of code, as shown in Figure 11-37. When you enter the line of code in the
Code Editor window, Visual Basic automatically creates a hidden Private variable that it
associates with the property. It also automatically creates hidden Get and Set blocks. The Private
variable’s name will be the same as the property’s name, but it will be preceded by an
underscore. For example, if you create an auto-implemented property named City, Visual Basic
will create a hidden Private variable named _City. The auto-implemented properties feature
provides a shorter syntax for you to use when creating a class: You don’t need to create the
Private variable associated with a property, nor do you need to enter the property’s Get and Set
blocks of code. However, keep in mind that you will need to use the standard syntax if you want
to add validation code to the Set block, or if you want the property to be either ReadOnly or
WriteOnly.

In the next set of steps, you will modify the CourseGrade class from Example 5 to use two
auto-implemented properties.

To modify the CourseGrade class:

1. Use Windows to make a copy of the Grade Solution folder from Example 5. Rename the
copy Modified Grade Solution. Open the Grade Solution (Grade Solution.sln) file
contained in the Modified Grade Solution folder. Open the designer window.

2. Open the CourseGrade.vb file’s Code Editor window. First, replace the
Private _intScore1 As Integer and Private _intScore2 As Integer
statements with the following statements:

Public Property Score1 As Integer
Public Property Score2 As Integer

3. Next, delete the Score1 and Score2 Property procedures. (Don’t delete the Grade
property procedure.)

Auto-Implemented Property
Syntax
Public Property propertyName As dataType

Example 1
Public Property City As Integer
creates a Public property named City, a hidden Private variable named _City, and hidden Get and
Set blocks

Example 2
Public Property Sales As Integer
creates a Public property named Sales, a hidden Private variable named _Sales, and hidden Get and
Set blocks

Figure 11-37 Syntax and examples of creating an auto-implemented property
© 2013 Cengage Learning

START HERE

Example 6—A Class that Contains Auto-Implemented Properties L E S S ON B

685

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

4. Now change _intScore1 and _intScore2 in the default constructor to _Score1 and
_Score2, respectively. (Recall that the name of the Private variable associated with an
auto-implemented property is the property’s name preceded by an underscore.)

5. Finally, change _intScore1 and _intScore2 in the DetermineGrade method to
_Score1 and _Score2, respectively.

Figure 11-38 shows the modified class definition. The code pertaining to the two auto-
implemented properties (Score1 and Score2) is shaded in the figure. You cannot use the
auto-implemented properties feature for the Grade property because that property is ReadOnly.

To test the modified Grade Calculator application:

1. Save the solution and then start the application. Click 86 and 95 in the Test 1 and Test 2
list boxes, respectively, and then click the Display button. The letter A appears in the
Grade box.

2. On your own, test the application using different test scores. When you are finished,
click the Exit button. Close the CourseGrade.vb window and then close the solution.

Public Class CourseGrade
Public Property Score1 As Integer
Public Property Score2 As Integer
Private _strGrade As String

Public ReadOnly Property Grade As String
Get

Return _strGrade
End Get

End Property

Public Sub New()
 _Score1 = 0
 _Score2 = 0
 _strGrade = String.Empty

End Sub

Public Sub DetermineGrade()
Select Case _Score1 + _Score2

Case Is >= 180
 _strGrade = "A"

Case Is >= 160
 _strGrade = "B"

Case Is >= 140
 _strGrade = "C"

Case Is >= 120
 _strGrade = "D"

Case Else
 _strGrade = "F"

End Select
End Sub

End Class

auto-implemented
properties

a ReadOnly property
cannot be an
auto-implemented
property

Figure 11-38 Modified CourseGrade class definition
© 2013 Cengage Learning

START HERE

C H A P T E R 1 1 Classes and Objects

686

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

YOU DO IT 2!

Create a Visual Basic Windows application named YouDoIt 2. Save the application in
the VB2012\Chap11 folder. Add a text box, a label, and a button to the form. Add a
class file named Square.vb to the project. Define a class named Square. The class
should contain an auto-implemented property that will store the side measurement of
a square. It also should contain a default constructor and a method that calculates
and returns the square’s perimeter. Use the following formula to calculate the
perimeter: 4 * side. Open the form’s Code Editor window. The button’s Click event
procedure should display the square’s perimeter, using the side measurement entered
by the user. Code the procedure. Save the solution and then start and test the
application. Close the solution.

Example 7—A Class that Contains Overloaded Methods
In this example, you will use a class named Employee to instantiate an object. Employee objects
have the attributes and behaviors listed in Figure 11-39.

Attributes of an Employee object
employee number
employee name

Behaviors of an Employee object
1. An employee object can initialize its attributes using values provided by the class.
2. An employee object can initialize its attributes using values provided by the application in which it

is instantiated.
3. An employee object can calculate and return the gross pay for salaried employees. The gross pay

is calculated by dividing the salaried employee’s annual salary by 24, because the salaried
employees are paid twice per month.

4. An employee object can calculate and return the gross pay for hourly employees. The gross pay
is calculated by multiplying the number of hours the employee worked during the week by his or
her pay rate.

Figure 11-39 Attributes and behaviors of an Employee object
© 2013 Cengage Learning

Figure 11-40 shows the Employee class defined in the Employee.vb file. The class contains two
auto-implemented properties and four methods. The two New methods are the class’s default
and parameterized constructors. Notice that the default constructor initializes the class’s Private
variables directly, while the parameterized constructor uses the class’s Public properties to
initialize the Private variables indirectly. As you learned in Lesson A, using a Public property in
this manner ensures that the computer processes any validation code associated with the
property. Even though the Number and EmpName properties in Figure 11-40 do not have any
validation code, you should use the properties in the parameterized constructor in case
validation code is added to the class in the future.

Example 7—A Class that Contains Overloaded Methods L E S S ON B

687

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

When two or more methods have the same name but different parameters, the methods are
referred to as overloaded methods. The two constructors in Figure 11-40 are considered
overloaded methods because each is named New and each has a different parameterList. You
can overload any of the methods contained in a class, not just constructors. The two GetGross
methods in the figure are also overloaded methods because they have the same name but a
different parameterList.

You already are familiar with overloaded methods because you have used several of the ones
built into Visual Basic. Examples of such methods include ToString, TryParse,
Convert.ToDecimal, and MessageBox.Show. The Code Editor’s IntelliSense feature displays a
box that allows you to view a method’s signatures, one signature at a time. Recall that a method’s
signature includes its name and optional parameterList. The box shown in Figure 11-41 displays
the first of the ToString method’s four signatures. You use the up and down arrows in the box to
display the other signatures. If a class you create contains overloaded methods, the signatures of
those methods will also be displayed in the IntelliSense box.

Public Class Employee
Public Property Number As String
Public Property EmpName As String

Public Sub New()
_Number = String.Empty
_EmpName = String.Empty

End Sub

Public Sub New(ByVal strNum As String,
ByVal strName As String)

Number = strNum
EmpName = strName

End Sub

Public Function GetGross(ByVal dblSalary As Double) As Double
' calculates the gross pay for salaried
' employees, who are paid twice per month

Return dblSalary / 24
End Function

Public Function GetGross(ByVal dblHours As Double,
ByVal dblRate As Double) As Double

' calculates the weekly gross pay for hourly employees

Return dblHours * dblRate
End Function

End Class

auto-implemented
properties

initializes the
Private variables
directly

uses the Public properties
to initialize the Private
variables

overloaded
constructors

overloaded GetGross
methods

Figure 11-40 Employee class definition
© 2013 Cengage Learning

Figure 11-41 First of the ToString method’s signatures

C H A P T E R 1 1 Classes and Objects

688

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Overloading is useful when two or more methods require different parameters to perform
essentially the same task. Both overloaded constructors in the Employee class, for example,
initialize the class’s Private variables. However, the default constructor does not need to be
passed any information to perform the task, whereas the parameterized constructor requires
two items of information (the employee number and name). Similarly, both GetGross methods
in the Employee class calculate and return a gross pay amount. However, the first GetGross
method performs its task for salaried employees and requires an application to pass it one item
of information: the employee’s annual salary. The second GetGross method performs its task for
hourly employees and requires two items of information: the number of hours the employee
worked and his or her rate of pay. Rather than using two overloaded GetGross methods, you
could have used two methods having different names, such as GetSalariedGross and
GetHourlyGross. The advantage of overloading the GetGross method is that you need to
remember the name of only one method.

You will use the Employee class when coding the Woods Manufacturing application, which
displays the gross pay for salaried and hourly employees. Salaried employees are paid twice per
month. Therefore, each salaried employee’s gross pay is calculated by dividing his or her annual
salary by 24. Hourly employees are paid weekly. The gross pay for an hourly employee is
calculated by multiplying the number of hours the employee worked during the week by his or
her hourly pay rate. The application also displays a report showing each employee’s number,
name, and gross pay.

To view the class file contained in the Woods Manufacturing application:

1. Open the Woods Solution (Woods Solution.sln) file contained in the VB2012\Chap11\
Woods Solution folder. If necessary, open the designer window. See Figure 11-42.
(The image in the picture box was downloaded from the Open Clip Art Library at
http://openclipart.org.)

Figure 11-42 Interface for the Woods Manufacturing application
OpenClipArt.org/Improulx

START HERE

Example 7—A Class that Contains Overloaded Methods L E S S ON B

689

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

2. Open the Employee.vb file in the Code Editor window. The class definition from
Figure 11-40 appears in the window.

3. Replace <your name> and <current date> in the comments with your name and the
current date, respectively. Save the solution and then close the Employee.vb window.

You will need to code only the Calculate button’s Click event procedure. The procedure’s
pseudocode is shown in Figure 11-43.

btnCalc Click event procedure
1. declare variables to store an Employee object, the annual salary, hours worked, hourly pay rate, and

gross pay
2. instantiate an Employee object to represent an employee; initialize the object’s variables using the

number and name entered in the text boxes
3. if the Hourly employee radio button is selected

assign the hours worked and hourly pay rate to the appropriate variables
use the Employee object’s GetGross method to calculate the gross pay for an hourly employee

else
assign the annual salary to the appropriate variable
use the Employee object’s GetGross method to calculate the gross pay for a salaried employee

end if
4. display the gross pay and the report
5. send the focus to the txtNum control

Figure 11-43 Pseudocode for the Calculate button’s Click event procedure
© 2013 Cengage Learning

To code the Calculate button’s Click event procedure:

1. Open the form’s Code Editor window. Replace <your name> and <current date> in the
comments with your name and the current date, respectively.

2. Locate the btnCalc_Click procedure. First, you will declare the necessary variables. Click
the blank line below the ' declare variables comment and then enter the following
five Dim statements:

Dim ourEmployee As Employee
Dim dblAnnualSalary As Double
Dim dblHours As Double
Dim dblHourRate As Double
Dim dblGross As Double

3. Now you will instantiate an Employee object, using the text box values to initialize the
object’s variables. Click the blank line below the ' instantiate and initialize an
Employee object comment in the procedure and then enter the following assignment
statement:

ourEmployee =
New Employee(txtNum.Text, txtName.Text)

START HERE

C H A P T E R 1 1 Classes and Objects

690

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

4. The third step in the pseudocode determines the selected radio button and then takes
the appropriate action. Click the blank line below the ' determine the selected
radio button comment and then enter the following If clause:

If radHourly.Checked Then

5. If the Hourly employee radio button is selected, the selection structure’s true path
should use the Employee object’s GetGross method to calculate the gross pay for an
hourly employee. Enter the following comment and lines of code:

' calculate the gross pay for an hourly employee
Double.TryParse(lstHours.SelectedItem.ToString, dblHours)
Double.TryParse(lstRate.SelectedItem.ToString, dblHourRate)
dblGross = ourEmployee.GetGross(dblHours, dblHourRate)

6. If the Salaried employee radio button is selected, the selection structure’s false path
should use the Employee object’s GetGross method to calculate the gross pay for
a salaried employee. Enter the additional comment and lines of code indicated in
Figure 11-44.

7. Next, you need to display the gross pay and the report. Click the blank line below the
' display the gross pay and report comment and then enter the following lines
of code:

lblGross.Text = dblGross.ToString("C2")
txtReport.Text = txtReport.Text &

ourEmployee.Number.PadRight(6) &
ourEmployee.EmpName.PadRight(25) &
dblGross.ToString("N2").PadLeft(9) & ControlChars.NewLine

8. The last step in the pseudocode is to set the focus. The code for this step has already
been entered in the Code Editor window.

enter this comment
and these lines of
code

Figure 11-44 Additional comment and code entered in the false path

Example 7—A Class that Contains Overloaded Methods L E S S ON B

691

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Figure 11-45 shows the btnCalc_Click procedure.

To test the Woods Manufacturing application:

1. Save the solution and then start the application. Type 1004 and Jake Johnson in the
Number and Name boxes, respectively. Click 9.00 in the Rate list box and then click the
Calculate button. $360.00 appears in the Gross pay box, and Jake’s information appears
in the Report box. See Figure 11-46.

Private Sub btnCalc_Click(sender As Object,
e As EventArgs) Handles btnCalc.Click

' displays the gross pay and a report

' declare variables
Dim ourEmployee As Employee
Dim dblAnnualSalary As Double
Dim dblHours As Double
Dim dblHourRate As Double
Dim dblGross As Double

' instantiate and initialize an Employee object
ourEmployee =

New Employee(txtNum.Text, txtName.Text)

' determine the selected radio button
If radHourly.Checked Then

' calculate the gross pay for an hourly employee
Double.TryParse(lstHours.SelectedItem.ToString, dblHours)
Double.TryParse(lstRate.SelectedItem.ToString, dblHourRate)
dblGross = ourEmployee.GetGross(dblHours, dblHourRate)

Else
' calculate the gross pay for a salaried employee
Double.TryParse(lstSalary.SelectedItem.ToString,

dblAnnualSalary)
dblGross = ourEmployee.GetGross(dblAnnualSalary)

End If

' display the gross pay and report
lblGross.Text = dblGross.ToString("C2")
txtReport.Text = txtReport.Text &

ourEmployee.Number.PadRight(6) &
ourEmployee.EmpName.PadRight(25) &
dblGross.ToString("N2").PadLeft(9) & ControlChars.NewLine

txtNum.Focus()
End Sub

declares a variable
to store an Employee
object

instantiates and initializes
an Employee object

calculates the gross pay
for an hourly employee

calculates the gross pay
for a salaried employee

Figure 11-45 btnCalc_Click procedure
© 2013 Cengage Learning

START HERE

C H A P T E R 1 1 Classes and Objects

692

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

2. Type 1009 and Sherri Hammel in the Number and Name boxes, respectively. Click
the Salaried employee radio button. Scroll the Annual salary list box and then click
32000 in the list. Click the Calculate button. The button’s Click event procedure
displays the gross pay amount ($1,333.33) in the Gross pay box. It also adds Sherri’s
information to the Report box. See Figure 11-47.

3. Click the Exit button. Close the Code Editor window and then close the solution.

Figure 11-47 Sherri’s gross pay and information shown in the interface
OpenClipArt.org/Improulx

Figure 11-46 Jake’s gross pay and information shown in the interface
OpenClipArt.org/Improulx

Example 7—A Class that Contains Overloaded Methods L E S S ON B

693

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Lesson B Summary
l To create a property whose value an application can only retrieve:

Include the ReadOnly keyword in the Property procedure’s header.

l To specify the property of a class in one line:

Create an auto-implemented property using the following syntax: Public Property
propertyName As dataType.

l To include a parameterized method in a class:

Enter the parameters between the parentheses that follow the method’s name.

l To create two or more methods that perform the same task but require different parameters:

Overload the methods by giving them the same name but different parameterLists.

Lesson B Key Terms
Auto-implemented properties—the feature that enables you to specify the property of a class
in one line

Overloaded methods—two or more class methods that have the same name but different
parameterLists

Lesson B Review Questions
1. Two or more methods that have the same name but different parameterLists are referred

to as methods.

a. loaded

b. overloaded

c. parallel

d. signature

2. The method name combined with the method’s optional parameterList is called the
method’s .

a. autograph

b. inscription

c. signature

d. statement

3. A class contains an auto-implemented property named Title. Which of the following is
the correct way for the default constructor to assign the string “Unknown” to the variable
associated with the property?

a. _Title = "Unknown"

b. _Title.strTitle = "Unknown"

c. Title = "Unknown"

d. none of the above

C H A P T E R 1 1 Classes and Objects

694

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

4. A ReadOnly property can be an auto-implemented property.

a. True

b. False

5. The Purchase class contains a ReadOnly property named Tax. The property is associated
with the Private _dblTax variable. A button’s Click event procedure instantiates a
Purchase object and assigns it to the currentSale variable. Which of the following is
valid in the Click event procedure?

a. lblTax.Text = currentSale.Tax.ToString("C2")

b. currentSale.Tax = 15

c. currentSale.Tax = dblPrice * .05

d. all of the above

Lesson B Exercises

1. What are overloaded methods and why are they used?

2. Write the Property procedure for a ReadOnly property named TaxRate. The property is
associated with the _decTaxRate variable.

3. Write the code for an auto-implemented property named Bonus. The property’s data
type is Decimal.

4. Write the class definition for a class named Worker. The class should include Private
variables and Property procedures for a Worker object’s name and salary. The salary
may contain a decimal place. The class also should contain two constructors: the default
constructor and a parameterized constructor.

5. Rewrite the code from Exercise 4 using auto-implemented properties.

6. Add a method named GetNewSalary to the Worker class from Exercise 5. The method
should calculate a Worker object’s new salary, which is based on a raise percentage
provided by the application using the object. Before calculating the new salary, the
method should verify that the raise percentage is greater than or equal to 0. If the raise
percentage is less than 0, the method should assign 0 as the new salary.

7. In this exercise, you modify the Norbert Pool & Spa Depot application completed in
Lesson A. Use Windows to make a copy of the Norbert Solution folder. Rename the
copy Norbert Solution–Auto–Implemented. Open the Norbert Solution (Norbert
Solution.sln) file contained in the Norbert Solution–Auto–Implemented folder. Open
the designer window. Modify the RectangularPool class so that it uses Public auto-
implemented properties rather than Public variables. Include a default constructor in
the class. Save the solution and then start and test the application. Close the Code
Editor window and then close the solution.

8. Open the Hire Date Solution (Hire Date Solution.sln) file contained in the VB2012\
Chap11\Hire Date Solution folder. Open the designer window.

a. Open the FormattedDate.vb file. Add a default constructor and a parameterized
constructor to the class. Also add a method that returns the month and day
numbers, separated by a slash (/).

b. Open the form’s Code Editor window. The btnDefault_Click and
btnParameterized_Click procedures should display the hire date in the following
format: month/day. For example, if the numbers 3 and 2 are selected in the Month

INTRODUCTORY

INTRODUCTORY

INTRODUCTORY

INTRODUCTORY

INTRODUCTORY

INTRODUCTORY

INTRODUCTORY

INTRODUCTORY

Lesson B Exercises L E S S ON B

695

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

and Day list boxes, respectively, the Click event procedures should display 3/2 in the
Hire date box. Code the btnDefault_Click procedure using the FormattedDate class’s
default constructor. Code the btnParameterized_Click procedure using the class’s
parameterized constructor.

c. Save the solution and then start and test the application. Close the Main Form.vb
and FormattedDate.vb windows and then close the solution.

9. Open the Salary Solution (Salary Solution.sln) file contained in the VB2012\Chap11\
Salary Solution folder. Open the Worker.vb class file and then enter the Worker class
definition from Exercises 5 and 6. Save the solution and then close the Worker.vb
window. Open the form’s Code Editor window. Use the comments in the btnCalc_Click
procedure to enter the missing instructions. Save the solution and then start the
application. Test the application by entering your name, a current salary amount of
54000, and a raise percentage of 10 (for 10%). The new salary should be $59,400.00.
Close the Code Editor window and then close the solution.

10. In this exercise, you modify the Grade Calculator application coded in the lesson. Use
Windows to make a copy of the Grade Solution folder. Rename the copy Grade
Solution–Intermediate. Open the Grade Solution (Grade Solution.sln) file contained in
the Grade Solution–Intermediate folder. Open the designer window.

a. Open the CourseGrade.vb file. Modify the DetermineGrade method so that it
accepts the maximum number of points that can be earned on both tests.
(Currently, the maximum number of points is 200: 100 points per test.) For an A
grade, the student must earn at least 90% of the total number of points. For a B, C,
and D grade, the student must earn at least 80%, 70%, and 60%, respectively. If the
student earns less than 60% of the total points, the grade is F. Make the appropriate
modifications to the class and then save the solution.

b. Add a label control and a text box to the form. Change the label control’s Text
property to “&Maximum points” (without the quotation marks). Change the text
box’s name to txtMax.

c. Open the form’s Code Editor window. The text box should accept only numbers and
the Backspace key. The maximum number allowed in the text box should be 400.
Each list box should display numbers from 0 through 200. Make the necessary
modifications to the code.

d. Save the solution and then start and test the application. Close the CourseGrade.vb
and Main Form.vb windows and then close the solution.

11. Each member of Glasgow Health Club must pay monthly dues that consist of a basic fee
and one or more optional charges. The basic monthly fee for a single membership is
$50; for a family membership, it is $90. If the member has a single membership, the
additional monthly charges are $30 for tennis, $25 for golf, and $20 for racquetball.
If the member has a family membership, the additional monthly charges are $50 for
tennis, $35 for golf, and $30 for racquetball. The application should display the
member’s basic fee, additional charges, and monthly dues. Create a Visual Basic
Windows application. Use the following names for the solution and project, respectively:
Glasgow Solution and Glasgow Project. Save the application in the VB2012\Chap11
folder. Change the form file’s name to Main Form.vb. Change the form’s name to
frmMain. Create the interface shown in Figure 11-48 and then code the application.
Be sure to use a class in your code. Save the solution and then start and test the
application. Close the Code Editor windows and then close the solution.

INTERMEDIATE

INTERMEDIATE

ADVANCED

C H A P T E R 1 1 Classes and Objects

696

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

12. Karen Miller, the manager of the Accounts Payable department at Serenity Photos,
wants an application that keeps track of the checks written by her department. More
specifically, she wants to record (in a sequential access file) the check number, date,
payee, and amount of each check. Create a Visual Basic Windows application. Use the
following names for the solution and project, respectively: Serenity Solution and
Serenity Project. Save the application in the VB2012\Chap11 folder. Change the form
file’s name to Main Form.vb. Change the form’s name to frmMain. Create the interface
shown in Figure 11-49. The image for the picture box is stored in the VB2012\Chap11\
Flower.png file. (The image was downloaded from the Open Clip Art Library at
http://openclipart.org.) Code the application. Be sure to use a class in your code. Save
the solution and then start and test the application. Close the Code Editor windows and
then close the solution.

Figure 11-49 Interface for Exercise 12
OpenClipArt.org/yves_guillou

Figure 11-48 Interface for Exercise 11

ADVANCED

Lesson B Exercises L E S S ON B

697

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

& LESSON C
After studying Lesson C, you should be able to:

l Create a derived class

l Refer to the base class using the MyBase keyword

l Override a method in the base class

Example 8—Using a Base Class and a Derived Class
You can create one class from another class; in OOP, this is referred to as inheritance. The new
class is called the derived class and it inherits the attributes and behaviors of the original class,
called the base class. You indicate that a class is a derived class by including the Inherits clause
in the derived class’s Class statement. The Inherits clause is simply the keyword Inherits
followed by the name of the class whose attributes and behaviors you want the derived class to
inherit. You enter the Inherits clause immediately below the Public Class clause in the derived
class.

You will use a base class named Square and a derived class named Cube to code the Area
Calculator application. The application calculates and displays either the area of a square or the
surface area of a cube.

To open the Area Calculator application and then view the class file:

1. If necessary, start Visual Studio 2012. Open the Area Solution (Area Solution.sln)
file contained in the VB2012\Chap11\Area Solution folder. If necessary, open the
designer window. The interface provides a text box for entering the side measurement.
See Figure 11-50.

2. Right-click Shapes.vb in the Solution Explorer window and then click View Code.
Replace <your name> and <current date> in the comments with your name and the
current date, respectively. The Shapes.vb file contains the Square class definition.
See Figure 11-51.

START HERE

Figure 11-50 Interface for the Area Calculator application

C H A P T E R 1 1 Classes and Objects

698

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

The Square class contains a Public property named Side, two constructors, and a method named
GetArea. The Side property represents an attribute of a Square object: its side measurement.
Each time a Square object is instantiated, the computer will use one of the two constructors to
initialize the object. An application can use the class’s GetArea method to calculate the area of a
Square object. Notice that you calculate the area by raising the Square object’s side
measurement to the second power. The GetArea method will return the area to the statement
that invoked the method.

In this section, you will create a derived class from the Square class. The derived class will
inherit only the base class’s Side attribute and GetArea method. It will not inherit the two
constructors because constructors are never inherited. You will name the derived class Cube.

To create a derived class named Cube:

1. Click the blank line below the ' derived class comment and then enter the following
two lines of code. Press Enter twice after typing the Inherits clause.

Public Class Cube
Inherits Square

2. As already mentioned, the Cube class will not inherit the Square class’s constructors.
Therefore, it will need its own constructors. Enter the following procedure header for
the default constructor:

Public Sub New()

3. Insert two blank lines above the Cube class’s End Class clause. In the blank line
immediately above the End Class clause, enter the following procedure header for the
parameterized constructor:

Public Sub New(ByVal dblS As Double)

' Name: Shapes.vb
' Programmer: <your name> on <current date>

Option Explicit On
Option Strict On
Option Infer Off

' base class
Public Class Square

Public Property Side As Double

Public Sub New()
 _Side = 0

End Sub

Public Sub New(ByVal dblS As Double)
 Side = dblS

End Sub

Public Function GetArea() As Double
' returns the area of a square
Return _Side ^ 2

End Function
End Class

' derived class

Square class
definition

Figure 11-51 Contents of the Shapes.vb file
© 2013 Cengage Learning

START HERE

Example 8—Using a Base Class and a Derived Class L E S S ON C

699

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Recall that when a Square object is instantiated, the computer uses one of the Square class’s
constructors to initialize the object. When a Cube object is instantiated, its constructors will call
upon the base class’s constructors to initialize the object. You refer to the base class using the
MyBase keyword. For example, the MyBase.New() statement tells the computer to process the
code contained in the base class’s default constructor. Similarly, the MyBase.New(dblS)
statement tells the computer to process the code contained in the base class’s parameterized
constructor.

To finish coding the Cube class’s constructors:

1. Click the blank line below the default constructor’s procedure header and then type the
following statement, but don’t press Enter:

MyBase.New()

2. Click the blank line below the parameterized constructor’s procedure header and then
type the following statement, but don’t press Enter:

MyBase.New(dblS)

Recall that the Square (base) class contains a method that calculates and returns the area
of a Square object; the method’s name is GetArea. You will also include a GetArea method
in the Cube (derived) class. However, the Cube class’s GetArea method will calculate and
return the surface area of a Cube object. The formula for calculating the surface area is
sideMeasurement2 * 6. The GetArea method in the Cube class will use the Square class’s
GetArea method to calculate and return the first part of the formula: sideMeasurement2.
It then will simply multiply the return value by 6 to get the surface area of a Cube object.

In order to use the same method name—in this case, GetArea—in both a base class and a
derived class, the method’s procedure header in the base class will need to contain the
Overridable keyword, and the method’s procedure header in the derived class will need to
contain the Overrides keyword. The Overridable keyword in the base class indicates that the
method can be overridden by any class that is derived from the base class. In other words,
classes derived from the Square (base) class will provide their own GetArea method. The
Overrides keyword in the derived class indicates that the method overrides (replaces) the same
method contained in the base class. In this case, for example, the GetArea method in the Cube
class replaces the GetArea method in the Square class.

To finish coding the Cube class:

1. Locate the GetArea function in the Square class. Change the procedure header to the
following:

Public Overridable Function GetArea() As Double

2. Now, insert two blank lines above the Cube class’s End Class clause. (Be sure to insert
the lines in the Cube class.) Beginning in the blank line above the End Class clause, enter
the following GetArea method:

Public Overrides Function GetArea() As Double
Return MyBase.GetArea * 6

End Function

3. Save the solution.

START HERE

START HERE

C H A P T E R 1 1 Classes and Objects

700

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Figure 11-52 shows the Square and Cube class definitions contained in the Shapes.vb file.

To complete the Area Calculator application, you still need to code the Click event procedures
for the Square Area and Cube Surface Area buttons in the interface. The Square Area button’s
Click event procedure will calculate and display the area of a square. Similarly, the Cube Surface
Area button’s Click event procedure will calculate and display the surface area of a cube. You
will code the Square Area button’s Click event procedure first.

To code and then test the Square Area button’s Click event procedure:

1. Click the designer window’s tab and then open the form’s Code Editor window.

2. Locate the btnSquare_Click procedure. First, you will instantiate a Square object. Click
the blank line immediately above the End Sub clause and then enter the following Dim
statement:

Dim mySquare As New Square

3. Next, you will declare a variable to store the mySquare object’s area. Type the following
Dim statement and then press Enter twice:

Dim dblArea As Double

' base class
Public Class Square

Public Property Side As Double

Public Sub New()
_Side = 0

End Sub

Public Sub New(ByVal dblS As Double)
Side = dblS

End Sub

Public Overridable Function GetArea() As Double
' returns the area of a square
Return _Side ^ 2

End Function
End Class

' derived class
Public Class Cube

Inherits Square

Public Sub New()
MyBase.New()

End Sub

Public Sub New(ByVal dblS As Double)
MyBase.New(dblS)

End Sub

Public Overrides Function GetArea() As Double
Return MyBase.GetArea * 6

End Function
End Class

the derived class
inherits from the
base class

invokes the base
class’s default
constructor

invokes the base
class’s parameterized
constructor

indicates that the
method can be
overridden in the
derived class

indicates that the
method overrides
the one in the
base class

Figure 11-52 Modified Square and Cube class definitions
© 2013 Cengage Learning

START HERE

Example 8—Using a Base Class and a Derived Class L E S S ON C

701

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

4. Now you will assign the side measurement, which is entered by the user, to the
mySquare object’s Side property. Type the following TryParse method and then press
Enter twice:

Double.TryParse(txtSide.Text, mySquare.Side)

5. Next, you will use the mySquare object’s GetArea method to calculate the area. You will
assign the method’s return value to the dblArea variable. Enter the following comment
and assignment statement:

' calculate the area
dblArea = mySquare.GetArea

6. Finally, you will display the area in the lblArea control. Enter the following comment and
assignment statement:

' display the area
lblArea.Text = "Square: " & dblArea.ToString("N1")

7. If necessary, delete the blank line above the End Sub clause.

8. Save the solution and then start the application. Type 12 in the Side measurement box
and then click the Square Area button. The message “Square: 144.0” appears in the Area
box. See Figure 11-53. (Recall that you can use the Alt key to show/hide the access keys.)

9. Click the Exit button.

Finally, you will code the Cube Surface Area button’s Click event procedure.

To code and then test the Cube Surface Area button’s Click event procedure:

1. Locate the btnCube_Click procedure. First, you will instantiate a Cube object. Click the
blank line immediately above the End Sub clause and then enter the following Dim
statement:

Dim myCube As New Cube

2. Next, you will declare a variable to store the myCube object’s area. Type the following
Dim statement and then press Enter twice:

Dim dblArea As Double

Figure 11-53 Interface showing the square’s area

START HERE

C H A P T E R 1 1 Classes and Objects

702

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

3. Now you will assign the side measurement to the myCube object’s Side property. Type
the following TryParse method and then press Enter twice:

Double.TryParse(txtSide.Text, myCube.Side)

4. Next, you will use the myCube object’s GetArea method to calculate the area. You
will assign the method’s return value to the dblArea variable. Enter the following
comment and assignment statement:

' calculate the area
dblArea = myCube.GetArea

5. Finally, you will display the area in the lblArea control. Enter the following comment and
assignment statement:

' display the area
lblArea.Text = "Cube: " & dblArea.ToString("N1")

6. If necessary, delete the blank line above the End Sub clause.

7. Save the solution and then start the application. Type 12 in the Side measurement box
and then click the Cube Surface Area button. The message “Cube: 864.0” appears in
the Area box.

8. Click the Exit button. Close the form’s Code Editor window and the Shapes.vb window,
and then close the solution.

Figure 11-54 shows the btnSquare_Click and btnCube_Click procedures.

Private Sub btnSquare_Click(sender As Object,
e As EventArgs) Handles btnSquare.Click

' displays the area of a square

Dim mySquare As New Square
Dim dblArea As Double

Double.TryParse(txtSide.Text, mySquare.Side)

' calculate the area
dblArea = mySquare.GetArea
' display the area
lblArea.Text = "Square: " & dblArea.ToString("N1")

End Sub

Private Sub btnCube_Click(sender As Object,
e As EventArgs) Handles btnCube.Click

' displays the surface area of a cube

Dim myCube As New Cube
Dim dblArea As Double

Double.TryParse(txtSide.Text, myCube.Side)

' calculate the area
dblArea = myCube.GetArea
' display the area
lblArea.Text = "Cube: " & dblArea.ToString("N1")

End Sub

Figure 11-54 btnSquare_Click and btnCube_Click procedures
© 2013 Cengage Learning

Example 8—Using a Base Class and a Derived Class L E S S ON C

703

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Lesson C Summary
l To allow a derived class to inherit the attributes and behaviors of a base class:

Enter the Inherits clause immediately below the Public Class clause in the derived class.
The Inherits clause is the keyword Inherits followed by the name of the base class.

l To refer to the base class:

Use the MyBase keyword.

l To indicate that a method in the base class can be overridden (replaced) in the derived class:

Use the Overridable keyword in the method’s header in the base class.

l To indicate that a method in the derived class overrides (replaces) a method in the base class:

Use the Overrides keyword in the method’s header in the derived class.

Lesson C Key Terms
Base class—the original class from which another class is derived

Derived class—a class that inherits the attributes and behaviors of a base class

Inheritance—the ability to create one class from another class

Inherits clause—entered immediately below the Public Class clause in a derived class; specifies
the name of the base class associated with the derived class

MyBase—a keyword used in a derived class to refer to the base class

Overridable—a keyword that can appear in a method’s header in a base class; indicates that the
method can be overridden by any class that is derived from the base class

Overrides—a keyword that can appear in a method’s header in a derived class; indicates that the
method overrides the method with the same name in the base class

Lesson C Review Questions
1. Which of the following clauses allows a derived class named Cat to have the same

attributes and behaviors as its base class, which is named Animal?

a. Inherited Animal

b. Inherits Animal

c. Inherited Cat

d. Inherits Cat

2. A base class contains a method named GetTax. Which of the following procedure
headers can be used in the base class to indicate that a derived class can provide its own
code for the method?

a. Public Inherits Sub GetTax()

b. Public Overridable Sub GetTax()

c. Public Overrides Sub GetTax()

d. Public Overriding Sub GetTax()

C H A P T E R 1 1 Classes and Objects

704

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

3. A base class contains a method named GetTax. Which of the following procedure
headers can be used in the derived class to indicate that it is providing its own code for
the method?

a. Public Inherits Sub GetTax()

b. Public Overridable Sub GetTax()

c. Public Overrides Sub GetTax()

d. Public Overriding Sub GetTax()

4. The Salaried class is derived from a base class named Employee. Which of the following
statements can be used by the Salaried class to invoke the Employee class’s default
constructor?

a. MyBase.New()

b. MyEmployee.New()

c. Call Employee.New

d. none of the above

Lesson C Exercises

1. Open the Formula Solution (Formula Solution.sln) file contained in the VB2012\Chap11\
Formula Solution folder. If necessary, open the designer window. Open the Areas.vb file,
which contains the Parallelogram class definition. The class contains two Public
properties and two constructors. It also contains a GetArea method that calculates the
area of a parallelogram.

a. Create a derived class named Triangle. The derived class should inherit the
properties and GetArea method from the Parallelogram class. However, the
Triangle class’s GetArea method should calculate the area of a triangle. The formula
for calculating the area of a triangle is base * height / 2. Be sure to include a default
constructor and a parameterized constructor in the derived class.

b. The Calculate button’s Click event procedure should display either the area of a
parallelogram or the area of a triangle. The appropriate area to display depends on
the radio button selected in the interface. Code the button’s Click event procedure.

c. Save the solution and then start and test the application. Close the form’s Code
Editor window and the Areas.vb window, and then close the solution.

2. Open the Kerry Sales Solution (Kerry Sales Solution.sln) file contained in the VB2012\
Chap11\Kerry Sales Solution folder. If necessary, open the designer window.

a. Open the Payroll.vb file. Create a base class named Bonus. The class should contain
two Public properties: a String property named SalesId and a Double property
named Sales. Include a default constructor and a parameterized constructor in the
class. Also include a GetBonus method (function) that calculates a salesperson’s
bonus using the following formula: sales * .05.

b. Create a derived class named PremiumBonus. The derived class’s GetBonus method
should calculate the bonus as follows: sales * .05 + (sales – 2500) * .01. Be sure to
include a default constructor and a parameterized constructor in the derived class.

c. Open the form’s Code Editor window and locate the btnCalc_Click procedure.
Finish coding the procedure, using the comments as a guide.

d. Save the solution and then start and test the application. Close the form’s Code
Editor window and the Payroll.vb window, and then close the solution.

INTRODUCTORY

INTERMEDIATE

Lesson C Exercises L E S S ON C

705

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

3. Open the Debug Solution (Debug Solution.sln) file contained in the VB2012\Chap11\
Debug Solution folder. If necessary, open the designer window. Open the Code Editor
windows for the form and class file. Review the existing code. Correct the code to remove
the jagged lines in the Shape and Circle class definitions. Save the solution and then start
and test the application. Notice that the application is not working correctly. Locate and
correct the errors in the code. Save the solution and then start and test the application
again. Close the Code Editor windows and then close the solution.

SWAT THE BUGS

C H A P T E R 1 1 Classes and Objects

706

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 12
Web Applications

Creating the DJ Tom Application

In this chapter, you will create a Web application for DJ (disc jockey)
Tom. Although DJ Tom can be hired for any event, his specialty is
weddings. Therefore, he has requested a Web page that allows the user
to enter the names of the bride and groom, the wedding date, an e-mail
address, and the name of the first song to be danced by the newly
married couple. The Web page will provide a Submit button that displays
a message on the page. The message will contain the information
entered by the user.

All Microsoft screenshots used with permission from Microsoft Corporation.

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Previewing the DJ Tom Application
Before you start the first lesson in this chapter, you will preview the completed application.
The application is contained in the VB2012\Chap12 folder.

To preview the completed application:

1. If necessary, start Visual Studio 2012 or Visual Studio Express 2012 for Web.

2. Click FILE on the menu bar and then click Open Web Site. The Open Web Site dialog
box appears. If necessary, click the File System button. Click the DJTom-Preview
folder contained in the VB2012\Chap12 folder and then click the Open button. If a
message box appears and asks whether you want to use IIS Express or the Visual Studio
Development Server, click the Yes button to use IIS Express.

3. If the Default.aspx Web page does not appear in the Document window, right-click
Default.aspx in the Solution Explorer window and then click View Designer.

4. Press Ctrl+F5 to start the application. The Web page appears in a browser window.
(If the message “Intranet settings are turned off by default” appears, click the Don’t show
this message again button.)

5. Click the Bride box and then type Carlita. Press Tab and then type John as the groom’s
name.

6. Click any date in the calendar.

7. Click the E-mail box and then type anyEmail@domain.com.

8. Click the down arrow in the First song box and then click The Way You Look
Tonight.

9. Click the Submit button. A message appears in a purple box on the Web page.
See Figure 12-1. (The top of your browser window may look slightly different from
the one shown in Figure 12-1.)

START HERE

your message may
show a different date

Figure 12-1 Result of clicking the Submit button

C H A P T E R 1 2 Web Applications

708

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

10. Close the browser window. Click FILE on the Visual Studio 2012 (or Visual Studio
Express 2012 for Web) menu bar and then click Close Solution. If you are asked
whether you want to save the changes to the DJTom-Preview.sln file, click the No
button. Click FILE and then click Exit.

In Lesson A, you will learn how to create static Web pages. Dynamic Web pages are covered in
Lessons B and C. You will code the DJ Tom application in Lesson C. Be sure to complete each
lesson in full and do all of the end-of-lesson questions and several exercises before continuing to
the next lesson.

Previewing the DJ Tom Application

709

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

& LESSON A
After studying Lesson A, you should be able to:

l Define basic Web terminology

l Create a Web application

l Add Web pages to an application

l Customize a Web page

l Add static text to a Web page

l Format a Web page’s static text

l View a Web page in full screen view

l Add a link button and an image to a Web page

l Start a Web application

l Close and open a Web application

l Reposition a control on a Web page

Web Applications
The Internet is the world’s largest computer network, connecting millions of computers
located all around the world. One of the most popular features of the Internet is the
World Wide Web, often referred to simply as the Web. The Web consists of documents
called Web pages that are stored on Web servers. A Web server is a computer that contains
special software that “serves up” Web pages in response to requests from client computers. A
client computer is a computer that requests information from a Web server. The information
is requested and subsequently viewed through the use of a program called a Web browser or,
more simply, a browser. Currently, the two most popular browsers are Microsoft Internet
Explorer and Mozilla Firefox.

Many Web pages are static. A static Web page is a document whose purpose is merely to
display information to the viewer. Static Web pages are not interactive. The only interaction
that can occur between static Web pages and the user is through links that allow the
user to “jump” from one Web page to another. Figures 12-2 and 12-3 show examples
of static Web pages created for Jumping Jack Toy Store. The Web page in Figure 12-2
shows the store’s name, address, and telephone number. The page also provides a link
to the Web page shown in Figure 12-3. That page shows the store’s business hours and
provides a link for returning to the first Web page. You will create both Web pages in
this lesson.

C H A P T E R 1 2 Web Applications

710

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Although static Web pages provide a means for a store to list its location and hours, a company
wanting to do business on the Web must be able to do more than just list information: It must
be able to interact with customers through its Web site. The Web site should allow customers
to submit inquiries, select items for purchase, and submit payment information. It also should
allow the company to track customer inquiries and process customer orders. Tasks such as
these can be accomplished using dynamic Web pages.

Unlike a static Web page, a dynamic Web page is interactive in that it can accept
information from the user and also retrieve information for the user. Examples of dynamic
Web pages include forms for purchasing merchandise online and for submitting online
resumes. Figure 12-4 shows an example of a dynamic Web page that converts American

Figure 12-3 Another example of a static Web page

Figure 12-2 Example of a static Web page
OpenClipArt.org/Anonymous

Web Applications L E S S ON A

711

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

dollars to Mexican pesos. To use the Web page, you enter the number of American dollars
in the American dollars box and then click the Submit button. The button’s Click event
procedure displays the corresponding number of Mexican pesos on the Web page.

The Web applications created in this chapter use a technology called ASP.NET 4.5. ASP stands
for “active server page” and refers to the type of Web page created by the ASP technology. All
ASP pages contain HTML (Hypertext Markup Language) tags that tell the client’s browser how
to render the page on the computer screen. For example, the instruction <h1>Hello</h1>
uses the opening <h1> tag and its closing </h1> tag to display the word “Hello” as a heading on
the Web page. Many ASP pages also contain ASP tags that specify the controls to include on the
Web page. In addition to the HTML and ASP tags, dynamic ASP pages contain code that
tells the objects on the Web page how to respond to the user’s actions. In this chapter, you
will write the appropriate code using the Visual Basic programming language.

When a client computer’s browser sends a request for an ASP page, the Web server locates the
page and then sends the appropriate HTML instructions to the client. The client’s browser uses
the instructions to render the Web page on the computer screen. If the Web page is a dynamic
one, like the Currency Converter page shown in Figure 12-4, the user can interact with the page
by entering data. In most cases, the user then clicks a button on the Web page to submit the
data to the server for processing. When the server receives the data, it executes the Visual Basic
code associated with the Web page. It then sends back the appropriate HTML, which now
includes the result of processing the code and data, to the client for rendering in the browser
window. Using the Currency Converter Web page as an example, the user first enters the
number of American dollars and then clicks the Submit button, which submits the user’s entry
to the Web server. The server executes the Visual Basic code to convert the American dollars to
Mexican pesos and then sends back the HTML, which now includes the number of Mexican
pesos. Notice that the Web page’s HTML is interpreted and executed by the client computer,

Figure 12-4 Example of a dynamic Web page

C H A P T E R 1 2 Web Applications

712

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

whereas the program code is executed by the Web server. Figure 12-5 illustrates the relationship
between the client computer and the Web server.

This lesson covers static Web pages. Dynamic Web pages are covered in Lessons B and C.

Creating a Web Application
You create a Web application in Visual Basic using Visual Studio 2012 for Web, which is
available either as a stand-alone product (called Visual Studio Express 2012 for Web) or as part
of Visual Studio 2012. You can download a free copy of Visual Studio Express 2012 for Web
from Microsoft’s Web site. At the time of this writing, the address is http://www.microsoft.com/
visualstudio/eng/products/visual-studio-express-for-web. The following steps show you how to
configure the Express edition. You should perform these steps only if you are using Visual
Studio Express 2012 for Web.

To configure Visual Studio Express 2012 for Web:

1. Windows 8: If necessary, tap the Windows logo key to switch to the Windows 8
tile-based mode and then click the VS Express for Web tile.

Windows 7: Click the Start button on the Windows 7 taskbar and then point to
All Programs. Click Microsoft Visual Studio Express 2012 on the All Programs
menu and then click Visual Studio Express 2012 for Web.

2. Click TOOLS on the menu bar, and then click Options to open the Options dialog box.
Click the Projects and Solutions node. Use the information shown in Figure 12-6 to
select and deselect the appropriate check boxes.

START HERE

2. Web server returns HTML

1. client computer requests ASP page

3. client computer submits data

4. Web server executes code and returns HTML

Figure 12-5 Illustration of the relationship between a client computer and a Web server
© 2013 Cengage Learning

Creating a Web Application L E S S ON A

713

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

3. Click the OK button to close the Options dialog box.

4. Click TOOLS on the menu bar and then point to Settings. If necessary, click Expert
Settings to select it.

In the next set of steps, you begin creating the Jumping Jack Toy Store Web application.

To begin creating the Web application:

1. If necessary, start Visual Studio 2012 or Visual Studio Express 2012 for Web.

2. If necessary, open the Solution Explorer and Properties windows and auto-hide the
Toolbox window.

3. Click FILE on the menu bar and then click New Web Site to open the New Web Site
dialog box. If necessary, click Visual Basic in the Installed Templates list. Click
ASP.NET Empty Web Site in the middle column of the dialog box.

4. If necessary, change the entry in the Web location box to File System. The File System
selection allows you to store your Web application in any folder on either your computer
or a network drive.

5. In this chapter, you will be instructed to store your Web applications in the VB2012\Chap12
folder on the E drive; however, you should use the drive letter that contains your data
disk. In the box that appears next to the Web location box, replace the existing text with
E:\VB2012\Chap12\JumpingJack. Figure 12-7 shows the completed New Web Site
dialog box. Your dialog box will look slightly different if you are using Visual Studio
Express 2012 for Web.

select these five
check boxes

deselect these
three check boxes

Figure 12-6 Options dialog box

START HERE

C H A P T E R 1 2 Web Applications

714

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

6. Click the OK button to close the dialog box. The computer creates an empty Web
application named JumpingJack.

Adding the Default.aspx Web Page to the Application
After creating an empty Web application, you need to add a Web page to it. The first Web page
added to an application is usually named Default.aspx.

To add the Default.aspx Web page to the application:

1. Click WEBSITE on the menu bar and then click Add New Item to open the Add New
Item dialog box. (If WEBSITE does not appear on the menu bar, click the Web
application’s name in the Solution Explorer window.)

2. If necessary, click Visual Basic in the Installed list and then (if necessary) click Web
Form in the middle column of the dialog box. Verify that the Place code in separate file
check box is selected, and that the Select master page check box is not selected. As
indicated in Figure 12-8, the Web page will be named Default.aspx.

select this Visual
Basic template

your drive letter
may be different

Figure 12-7 New Web Site dialog box

START HERE

Adding the Default.aspx Web Page to the Application L E S S ON A

715

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

3. Click the Add button to display the Default.aspx page in the Document window. If
necessary, click the Design tab that appears at the bottom of the IDE. When the Design
tab is selected, the Web page appears in Design view in the Document window, as shown
in Figure 12-9. You can use Design view to add text and controls to the Web page. If the
Formatting toolbar does not appear on your screen, click VIEW on the menu bar, point
to Toolbars, and then click Formatting. If the div tag does not appear in the Document
window, click either the <div> button at the bottom of the IDE or the rectangle below
the body tag.

tabs

Formatting
toolbar

Web page’s
name

Document
window

Web page’s
name

Figure 12-9 Default.aspx Web page shown in Design view

default name for
the Web page

Figure 12-8 Add New Item dialog box

C H A P T E R 1 2 Web Applications

716

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

4. Click the Source tab to display the Web page in Source view. This view shows the
HTML and ASP tags that tell a browser how to render the Web page. The tags are
automatically generated for you as you are creating the Web page in Design view.
Currently, the Web page contains only HTML tags.

5. Click the Split tab to split the Document window into two parts. The upper half displays
the Web page in Source view, and the lower half displays it in Design view.

6. Click the Design tab to return to Design view, and then auto-hide the Solution Explorer
window.

Including a Title on a Web Page
You can use the Properties window to include a title on a Web page. The properties appear in
the Properties window when you select DOCUMENT in the window’s Object box.

To include a title on the Web page:

1. Click the down arrow button in the Properties window’s Object box and then click
DOCUMENT in the list. (If DOCUMENT does not appear in the Object box, click the
Design tab.) The DOCUMENT object represents the Web page.

2. If necessary, click the Alphabetical button in the Properties window to display the
properties in alphabetical order. Click Title in the Properties list. Type Jumping Jack
Toy Store in the Settings box and then press Enter.

3. Auto-hide the Properties window. Save the application either by clicking the Save
All button on the Standard toolbar or by clicking the Save All option on the FILE
menu.

Adding Static Text to a Web Page
All Web pages contain some text that the user is not allowed to edit, such as a company name or
the caption that identifies a text box. Text that cannot be changed by the user is referred to as
static text. You can add static text to a Web page by simply typing the text on the page itself; or,
you can use a label control that you dragged to the Web page from the Toolbox window. In this
lesson, you will type the static text on the Web page.

To add static text to the Web page:

1. If necessary, click inside the rectangle that appears below the div tag at the top of
the Document window. The div tag defines a division in a Web page. (If the div tag
does not appear in the Document window, click the <div> button at the bottom of
the IDE.)

2. Enter the following four lines of text. Press Enter twice after typing the last line.

Jumping Jack Toy Store
999 East Street
Nashville, TN 37201
(111) 555-5555

3. Save the application.

You can use either the FORMAT menu or the Formatting toolbar to format the static text
on a Web page. Figure 12-10 indicates some of the tools available on the Formatting
toolbar.

START HERE

START HERE

Adding the Default.aspx Web Page to the Application L E S S ON A

717

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

To use the Formatting toolbar to format the static text:

1. Select (highlight) the Jumping Jack Toy Store text on the Web page. Click the down
arrow in the Block Format box on the Formatting toolbar. (If the Formatting toolbar
does not appear on your screen, click VIEW on the menu bar, point to Toolbars, and
then click Formatting.) See Figure 12-11.

2. Click Heading 1 <h1>.

3. Select the address and phone number text on the Web page. Click the down arrow in
the Block Format box and then click Heading 2 <h2>.

4. Now, you will use the Formatting toolbar’s Alignment button to center all of the static
text. Select all of the static text on the Web page and then click the down arrow on the
Alignment button. See Figure 12-12.

Block Format box

Figure 12-11 Result of clicking the arrow in the Block Format box

Block
Format box

Font Size
box

Foreground
Color button

Background
Color button

Alignment
button

Figure 12-10 Formatting toolbar

START HERE

C H A P T E R 1 2 Web Applications

718

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

5. Click Justify Center. The selected text appears centered, horizontally, on the Web page.
Click anywhere below the phone number to deselect the text, and then save the
application.

Viewing a Web Page in Full Screen View
While you are designing a Web page, you can use the Full Screen option on the VIEW menu to
determine how the Web page will appear to the user.

To view the Web page using the Full Screen option:

1. Click VIEW on the menu bar and then click Full Screen. See Figure 12-13. Although
not identical to viewing in a browser window, full screen view provides a quick and easy
way to verify the placement of controls and text on the Web page.

2. Click the Full Screen button to return to the standard view. (If you mistakenly clicked
the window’s Close button, click the Full Screen button, right-click Default.aspx in the
Solution Explorer window, and then click View Designer.)

blinking insertion point

Full Screen button

Figure 12-13 Default.aspx Web page displayed in full screen view

START HERE

Alignment button

Figure 12-12 Result of clicking the Alignment button

Viewing a Web Page in Full Screen View L E S S ON A

719

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Adding Another Web Page to the Application
In the next set of steps, you will add a second Web page to the application. The Web page will
display the store’s hours of operation.

To add another Web page to the application:

1. ClickWEBSITE on the menu bar and then click Add New Item. (If WEBSITE does not
appear on the menu bar, click the Web application’s name in the Solution Explorer
window.)

2. If necessary, click Visual Basic in the Installed list and then (if necessary) click
Web Form in the middle column of the dialog box. Change the filename in the Name
box to Hours and then click the Add button. The computer appends the .aspx
extension on the filename and then displays the Hours.aspx Web page in the
Document window.

3. Temporarily display the Solution Explorer window. Notice that the window now
contains the Hours.aspx filename.

4. Click the Hours.aspx tab and then temporarily display the Properties window. Click
the down arrow button in the Properties window’s Object box and then click
DOCUMENT in the list. Change the Web page’s Title property to Jumping Jack
Toy Store.

5. Click the Hours.aspx tab. The blinking insertion point should be inside the rectangle
that appears below the div tag. (If the div tag does not appear in the Document window,
click the <div button> at the bottom of the IDE.) Type Please visit us during these
hours: and press Enter twice.

6. Now, enter the following three lines of text. Press Enter twice after typing the last line.

Monday – Friday 8am – 10pm
Saturday 9am – 6pm
Closed Sunday

7. Select the Please visit us during these hours: text. Click the down arrow in the Font
Size box and then click x-large (24 pt). Also click the I (Italic) button on the Formatting
toolbar.

8. Select the three lines of text that contain the store hours. Click the down arrow in
the Font Size box and then click large (18 pt). Also click the B (Bold) button on the
Formatting toolbar.

9. Now, you will change the color of the selected text. Click the Foreground Color button
on the Formatting toolbar to open the More Colors dialog box. Click any red hexagon
and then click the OK button.

10. Select all of the static text on the Web page. Click the down arrow on the Alignment
button and then click Justify Center.

11. Click the second blank line below the store hours to deselect the text, and then save the
application.

Adding a Link Button Control to a Web Page
The Toolbox window provides tools for adding controls to a Web page. In the next set of
steps, you will add a link button control to both Web pages. The link button control on the
Default.aspx page will display the Hours.aspx page. The link button control on the Hours.aspx
page will return the user to the Default.aspx Web page.

START HERE

C H A P T E R 1 2 Web Applications

720

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

To add a link button control to both Web pages:

1. First, you will add a link button control to the Hours.aspx page. Permanently display
the Toolbox window. Expand the Standard node, if necessary, and then click the
LinkButton tool. Drag your mouse pointer to the location shown in Figure 12-14
and then release the mouse button.

2. Temporarily display the Properties window. Change the control’s Text property to
Home Page. Click PostBackUrl in the Properties list and then click the … (ellipsis)
button to open the Select URL dialog box. Click Default.aspx in the Contents of folder
list. See Figure 12-15.

3. Click the OK button to close the dialog box and then click the Web page.

4. Now, you will add a link button control to the Default.aspx page. Click the Default.aspx
tab. Click the LinkButton tool. Drag your mouse pointer to the location shown in
Figure 12-16 and then release the mouse button.

Figure 12-15 Select URL dialog box

START HERE

LinkButton tool

Figure 12-14 Link button control added to the Hours.aspx Web page

Adding a Link Button Control to a Web Page L E S S ON A

721

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

5. Temporarily display the Properties window. Change the control’s Text property to Store
Hours and then change its PostBackUrl property to Hours.aspx.

6. Click the OK button to close the dialog box and then click the Web page. Save the
application.

Starting a Web Application
Typically, you start a Web application either by pressing Ctrl+F5 or by clicking the Start
Without Debugging option on the DEBUG menu. The method you use—the shortcut keys
or the menu option—is a matter of personal preference. If you prefer to use a menu
option, you might need to add the Start Without Debugging option to the DEBUG menu
because the option is not automatically included on the menu in either Visual Studio 2012
or Visual Studio Express 2012 for Web. You can add the option to the menu by
performing the next set of steps. If you prefer to use the Ctrl+F5 shortcut keys, you can
skip the next set of steps.

To add the Start Without Debugging option to the DEBUG menu:

1. First, you will determine whether your DEBUG menu already contains the Start Without
Debugging option. Click DEBUG on the menu bar. If the DEBUG menu contains the
Start Without Debugging option, close the menu by clicking DEBUG again, and then
skip the remaining steps in this set of steps.

2. If the DEBUG menu does not contain the Start Without Debugging option, close the
menu by clicking DEBUG again. Click TOOLS on the menu bar and then click
Customize to open the Customize dialog box.

3. Click the Commands tab. The Menu bar radio button should be selected. Click the
down arrow in the Menu bar list box. Scroll down the list until you see Debug, and then
click Debug.

4. Click the Add Command button to open the Add Command dialog box, and then click
Debug in the Categories list. Scroll down the Commands list until you see Start Without
Debugging, and then click Start Without Debugging. Click the OK button to close the
Add Command dialog box.

5. Click the Move Down button until the Start Without Debugging option appears below
the Start/Continue option, as shown in Figure 12-17.

Figure 12-16 Link button control added to the Default.aspx Web page

START HERE

C H A P T E R 1 2 Web Applications

722

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

6. Click the Close button to close the dialog box.

When you start a Web application in either Visual Studio 2012 or Visual Studio Express 2012
for Web, the computer creates a temporary Web server that allows you to view your Web page
in a browser. Keep in mind, however, that your Web page will need to be placed on an actual
Web server for others to view it.

To start the Jumping Jack Toy Store Web application:

1. Start the Web application either by pressing Ctrl+F5 or by clicking the Start Without
Debugging option on the DEBUG menu. (If the message “Intranet settings are turned
off by default.” appears, click the Don't show this message again button.) Your browser
requests the Default.aspx page from the Web server. The server locates the page and
then sends the appropriate HTML instructions to your browser for rendering on the
screen. Notice that the value in the page’s Title property appears on the page’s tab in the
browser window. See Figure 12-18.

START HERE

Figure 12-17 Customize dialog box

Starting a Web Application L E S S ON A

723

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

2. Click the Store Hours link to display the Hours.aspx page. See Figure 12-19.

3. Click the Home Page link to display the Default.aspx page, and then close the browser
window. If necessary, close the Performance Explorer window.

Adding an Image to a Web Page
In the next set of steps, you will add an image to the Default.aspx page. The image is stored in
the VB2012\Chap12\ToyStore.png file. The image was downloaded from the Open Clip Art
Library at http://openclipart.org.

To add an image to the Web page:

1. First, you will need to add the image file to the application. Click WEBSITE on the
menu bar and then click Add Existing Item. Open the VB2012\Chap12 folder.
Click the down arrow in the box that controls the file types and then click All Files
(*.*) in the list. Click ToyStore.png in the list of filenames and then click the Add
button.

2. Insert a blank line below the Store Hours link button control. Click the blank line below
the control and then press Enter to insert another blank line. Click the Image tool in the
toolbox. Drag your mouse pointer to the location shown in Figure 12-20 and then release
the mouse button.

Figure 12-19 Hours.aspx Web page displayed in a browser window

the Title property’s
value appears here

Figure 12-18 Default.aspx Web page displayed in a browser window

START HERE

C H A P T E R 1 2 Web Applications

724

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

3. Temporarily display the Properties window. Click ImageUrl in the Properties list, if
necessary, and then click the … (ellipsis) button to open the Select Image dialog box.
Click ToyStore.png in the Contents of folder section and then click the OK button.

4. Next, you will put a border around the image control and also change the border’s width
to 10 pixels. Change the image control’s BorderStyle property to Groove, and then
change its BorderWidth property to 10. Press Enter after typing the number 10.

5. Now, you will change the color of the image’s border to red. Click BorderColor in the
Properties list and then click the … (ellipsis) button. When the More Colors dialog box
opens, click any red hexagon. Click the OK button to close the dialog box and then
click the Web page.

6. Auto-hide the toolbox. Save and then start the application. See Figure 12-21.

Figure 12-21 Default.aspx Web page
OpenClipArt.org/Anonymous

Figure 12-20 Image control added to the Default.aspx Web page

Adding an Image to a Web Page L E S S ON A

725

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

7. Verify that the browser window is not maximized. Place your mouse pointer on the
window’s right border and then drag the border to the left to make the window
narrower. Notice that the text and image remain centered in the visible portion of the
window. Now, drag the right border to the right to make the window wider. Here again,
the text and image remain centered in the visible portion of the window.

8. Close the browser window.

Closing and Opening an Existing Web Application
You can use the FILE menu to close and also open an existing Web application.

To close and then open the Jumping Jack Toy Store application:

1. Click FILE on the menu bar and then click Close Solution to close the application.

2. Now, you will open the application. Click FILE on the menu bar, and then click Open
Web Site to open the Open Web Site dialog box. If necessary, click the File System
button. If necessary, click the JumpingJack folder, which is contained in the VB2012\
Chap12 folder. Click the Open button. If a message box appears and asks whether you
want to use IIS Express or the Visual Studio Development Server, click the Yes button to
use IIS Express.

3. If the Default.aspx Web page is not open in the Document window, right-click
Default.aspx in the Solution Explorer window and then click View Designer.

Repositioning a Control on a Web Page
At times, you may want to reposition a control on a Web page. In this section, you will move the
image and link button controls to different locations on the Default.aspx Web page. First,
however, you will create a new Web application and then copy the Jumping Jack Toy Store files
to the application.

To create a new Web application and then copy files to the application:

1. Close the Jumping Jack Toy Store application. If you are prompted to save the solution,
click the No button.

2. Use the New Web Site option on the FILE menu to create an empty Web application
named JumpingJack2. Save the application in the VB2012\Chap12 folder.

3. Close the JumpingJack2 application.

4. Use Windows to open the JumpingJack2 folder. Delete the Web.config file.

5. Use Windows to open the JumpingJack folder. Select the folder’s contents, which include
six files (Default.aspx, Default.aspx.vb, Hours.aspx, Hours.aspx.vb, ToyStore.png, and
Web.config). Copy the six files to the JumpingJack2 folder.

Now, you will open the JumpingJack2 application and move the two controls to different
locations on the Default.aspx Web page.

To move the controls in the JumpingJack2 application:

1. Open the JumpingJack2 Web site. If a message box appears and asks whether you want
to use IIS Express or the Visual Studio Development Server, click the Yes button to use
IIS Express.

2. Right-click Default.aspx in the Solution Explorer window and then click View
Designer.

START HERE

START HERE

START HERE

C H A P T E R 1 2 Web Applications

726

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

3. First, you will move the image control from the bottom of the Web page to the
top of the Web page. If necessary, click immediately before the first letter J in
the Jumping Jack Toy Store heading. Press Enter to insert a blank line above the
heading.

4. Click the image control on the Web page. Drag the image control to the blank line
immediately above the heading, and then release the mouse button.

5. Next, you will move the link button control to the empty area below the store’s name.
Click the link button control. Drag the control to the empty area below the store’s
name, and then release the mouse button.

6. Click FILE on the menu bar and then click Save Default.aspx.

7. Start the application. See Figure 12-22.

8. Close the browser window and then close the application.

YOU DO IT 1!

Create an empty Web application named YouDoIt 1. Save the application in the VB2012\
Chap12 folder. Add two Web pages to the application: one named Default.aspx and
one named Address.aspx. The Default.aspx page should contain your name and a link
button control. Change the link button control’s Text property to Address. The control
should display the Address.aspx page. The Address.aspx page should contain your
address and a link button control. Change this link button control’s Text property to
Name. The control should display the Default.aspx page. Save the application and then
start and test it. Close the browser window and then close the application.

Figure 12-22 Modified Default.aspx Web page
OpenClipArt.org/Anonymous

Repositioning a Control on a Web Page L E S S ON A

727

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Lesson A Summary
l To create an empty Web application:

Start Visual Studio 2012 or Visual Studio Express 2012 for Web. Click FILE on the menu bar and
then click NewWeb Site to open the NewWeb Site dialog box. If necessary, click Visual Basic in
the Installed Templates list. Click ASP.NET Empty Web Site in the middle column of the dialog
box. If necessary, change the entry in theWeb location box to File System. In the box that appears
next to theWeb location box, enter the location where you want theWeb application saved. Also
enter the application’s name. Click the OK button to close the New Web Site dialog box.

l To add a Web page to a Web application:

Open theWeb application. ClickWEBSITE on themenu bar and then click AddNew Item to open
the Add New Item dialog box. (If WEBSITE does not appear on the menu bar, click the Web
application’s name in the Solution Explorer window.) If necessary, click Visual Basic in the Installed
list and then (if necessary) clickWeb Form in the middle column of the dialog box. Verify that the
Place code in separate file check box is selected, and that the Select master page check box is not
selected. Enter an appropriate name in theName box. Click theAdd button to display theWebpage
in the Document window. If necessary, click the Design tab that appears at the bottom of the IDE.

l To add a title to a Web page:

Set the DOCUMENT’s Title property.

l To add static text to a Web page:

Either type the text on the Web page or use a label control that you dragged to the Web page
from the Toolbox window.

l To format the static text on a Web page:

Use either the FORMAT menu or the Formatting toolbar.

l To display a Web page in full screen view:

Click VIEW on the menu bar and then click Full Screen.

l To add a link button control to a Web page:

Use the LinkButton tool in the toolbox to drag a link button control to the Web page,
and then set the control’s Text and PostBackUrl properties.

l To display a Web page in a browser window:

Start the Web application either by pressing Ctrl+F5 or by clicking the Start Without
Debugging option on the DEBUG menu.

l To add an image file to an application:

Click WEBSITE on the menu bar and then click Add Existing Item. Open the appropriate
folder and then click the image filename. Click the Add button.

l To add an image control to a Web page:

Use the Image tool in the toolbox to drag an image control to the Web page, and then set
the image control’s ImageUrl property.

l To close a Web application:

Click FILE on the menu bar and then click Close Solution.

l To open an existing Web application:

Click FILE on the menu bar and then click Open Web Site. If necessary, click the File
System button in the Open Web Site dialog box. Click the name of the Web site and

C H A P T E R 1 2 Web Applications

728

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

then click the Open button. If necessary, right-click the Web page’s name in the Solution
Explorer window and then click View Designer.

l To reposition a control on a Web page:

Drag the control to the new location.

Lesson A Key Terms
ASP—stands for “active server page”

Browser—a program that allows a client computer to request and view Web pages

Client computer—a computer that requests information from a Web server

Dynamic Web page—an interactive document that can accept information from the user and
also retrieve information for the user

Link button control—allows the user to “jump” from one Web page to another

Static text—text that the user is not allowed to edit

Static Web page—a non-interactive document whose purpose is merely to display information
to the viewer

Web pages—the documents stored on Web servers

Web server—a computer that contains special software that “serves up” Web pages in response
to requests from client computers

Lesson A Review Questions
1. A computer that requests an ASP page from a Web server is called a

computer.

a. browser

b. client

c. requesting

d. none of the above

2. A is a program that uses HTML to render a Web page on the
computer screen.

a. browser

b. client

c. server

d. none of the above

3. An online form used to purchase a product is an example of a Web page.

a. dynamic

b. static

4. The first Web page in an empty Web application is automatically assigned the
name .

a. Default.aps

b. Default1.vb

c. Default.aspx

d. WebFormDefault.aspx

Lesson A Review Questions L E S S ON A

729

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

5. The HTML instructions in a Web page are processed by the .

a. client computer

b. Web server

6. The text that appears on the application's tab in the browser window is determined by
the property.

a. Application object’s Name

b. Application object’s Title

c. Document object’s Tab Name

d. Document object’s Title

Lesson A Exercises

1. Create an empty Web application named Caroline. Save the application in the VB2012\
Chap12 folder. Add a new Web page named Default.aspx to the application. Change the
DOCUMENT object’s Title property to Caroline's Pet Shoppe. Create a Web page
similar to the one shown in Figure 12-23. The static text should be centered, horizontally,
on the page. Save and then start the application. Close the browser window and then
close the application.

2. Create an empty Web application named AppleOrchard. Save the application in the
VB2012\Chap12 folder. Add a new Web page named Default.aspx to the application.
Change the DOCUMENT object’s Title property to Apple Orchard Farm. Create a
Web page similar to the one shown in Figure 12-24. The image on the Web page is
stored in the VB2012\Chap12\Apple.png file. (The image was downloaded from the
Open Clip Art Library at http://openclipart.org. Hint: To position the image as shown
in the figure, click the image and then use the Position option on the FORMAT
menu. Click the Left button in the Wrapping style section.) Save and then start the
application. Close the browser window and then close the application.

Heading 1 <h1>

Heading 2 <h2>,
blue foreground,
italics

Heading 3 <h3>

large (18 pt)

Figure 12-23 Web page for Caroline’s Pet Shoppe

INTRODUCTORY

INTRODUCTORY

C H A P T E R 1 2 Web Applications

730

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

3. Create an empty Web application named Hearthstone. Save the application in the
VB2012\Chap12 folder. Add two new Web pages named Default.aspx and Message.aspx
to the application. Change each DOCUMENT object’s Title property to Hearthstone
Heating and Cooling. Create Web pages similar to the ones shown in Figures 12-25
and 12-26. The image on the Web page is stored in the VB2012\Chap12\Thermostat.png
file. (The image was downloaded from the Open Clip Art Library at http://openclipart.org.
Hint: To position the image as shown in the figure, click the image and then use the
Position option on the FORMAT menu. Click the Left button in the Wrapping style
section.) The static text and link button control on the Default.aspx page should be
centered, horizontally, on the page. Save and then start the application. Close the
browser window and then close the application.

Figure 12-25 Default.aspx Web page for Hearthstone Heating and Cooling
OpenClipArt.org/motudo

Figure 12-24 Web page for Apple Orchard Farm
OpenClipArt.org/Ana Paula

Figure 12-26 Message.aspx Web page for Hearthstone Heating and Cooling

INTERMEDIATE

Lesson A Exercises L E S S ON A

731

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

& LESSON B
After studying Lesson B, you should be able to:

l Add a text box, a label, and a button to a Web page

l Code a control on a Web page

l Use a RequiredFieldValidator control

Dynamic Web Pages
A dynamic Web page contains controls with which the user can interact. It also contains
code that tells the controls how to respond to the user’s actions. In this lesson, you will create
a dynamic Web page that displays the number of tablespoons and teaspoons required when
the user wants to either increase a recipe or decrease it. The user will need to enter the number
of teaspoons required in the original recipe and whether he or she wants to double the recipe,
triple it, halve it, and so on.

Before you add any text or controls to aWeb page, you should plan the page’s layout. Figure 12-27
shows a sketch of the Web page for the Recipe application. The Web page will contain static text
and the following controls: an image, two text boxes, two labels, and a button. You will add the
static text in the next set of steps.

To add the static text to the partially-completed Recipe Web application:

1. If necessary, start Visual Studio 2012 or Visual Studio Express 2012 for Web.

2. If necessary, open the Solution Explorer, Properties, and Toolbox windows.

3. Click FILE on the menu bar, and then click Open Web Site. If necessary, click the File
System button in the Open Web Site dialog box. Click the Recipe folder, which is
contained in the VB2012\Chap12 folder, and then click the Open button. If a message
box appears and asks whether you want to use IIS Express or the Visual Studio
Development Server, click the Yes button to use IIS Express.

Measurement Converter

Teaspoons:

Multiply by:

Number of tablespoons:

Number of teaspoons:

teaspoon image

Submit

Figure 12-27 Sketch of the Recipe application’s Web page
© 2013 Cengage Learning

START HERE

C H A P T E R 1 2 Web Applications

732

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

4. If the Default.aspx Web page is not open in the Document window, right-click
Default.aspx in the Solution Explorer window and then click View Designer. Position
the blinking insertion point as shown in Figure 12-28. (The teaspoon image was
downloaded from the Open Clip Art Library at http://openclipart.org.)

5. With the insertion point positioned as shown in Figure 12-28, press Tab twice. Type
Teaspoons:, press the Spacebar three times, and then press Enter twice.

6. Press Tab twice. Type Multiply by:, press the Spacebar twice, and then press Enter
twice.

7. Press Tab twice. Type Number of tablespoons:, press the Spacebar twice, and then
press Enter twice.

8. Press Tab twice. Type Number of teaspoons:, press the Spacebar four times, and then
press Enter twice. See Figure 12-29.

Figure 12-29 Static text added to the Web page
OpenClipArt.org/mazeo

position the blinking
insertion point here

Figure 12-28 Partially-completed interface for the Recipe Web application
OpenClipArt.org/mazeo

Dynamic Web Pages L E S S ON B

733

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

In addition to the image control and static text, the Web page will contain two text boxes, two
labels, and a button. You will add those controls next.

To add controls to the page:

1. Drag a text box control from the toolbox to the Web page. Position the control
immediately after the three spaces that follow the “Teaspoons:” text, and then release the
mouse button.

2. Unlike Windows controls, Web controls have an ID property rather than a Name
property. Use the Properties window to set the TextBox1 control’s ID property (which
appears at the top of the Properties list) to txtOriginalTeaspoons. Also set its Width
property to 45px. (The px stands for pixels.)

3. Drag another text box control to the Web page. Position the control immediately after
the two spaces that follow the “Multiply by:” text, and then release the mouse button. Set
the text box’s ID and Width properties to txtMultiplyBy and 45px, respectively.

4. Drag a label control to the Web page. Position the control immediately after the two
spaces that follow the “Number of tablespoons:” text, and then release the mouse button.
Set the control’s ID property to lblTablespoons, and then delete the contents of its Text
property. (The control’s name appears in the label during design time, but it won't when
the application is started.)

5. Drag another label control to the Web page. Position the control immediately after the
four spaces that follow the “Number of teaspoons:” text, and then release the mouse
button. Set the control’s ID property to lblTeaspoons, and then delete the contents of
its Text property.

6. Click the blank line that is two lines below the “Number of teaspoons:” text, and then press
Tab twice. Drag a button control to the Web page. Position the control immediately after
the insertion point in the blank line, and then release the mouse button. Set the Button1
control’s ID and Text properties to btnSubmit and Submit, respectively.

7. Select the static text and all of the controls that appear below the teaspoon image, except
the Submit button. See Figure 12-30.

Figure 12-30 Selected text and controls
OpenClipArt.org/mazeo

START HERE

C H A P T E R 1 2 Web Applications

734

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

8. Click the down arrow in the Font Size box and then click large (18 pt).

9. Click the Submit button, and then use the Font Size box to change the button's font to
medium (14 pt).

10. Save the application. (If necessary, click the Save button in the dialog box.) Start
the application by pressing Ctrl+F5. The Web page appears in a browser window.
See Figure 12-31.

11. Close the browser window. Auto-hide the Solution Explorer, Properties, and Toolbox
windows.

Coding the Submit Button’s Click Event Procedure
In the following set of steps, you will code the Submit button’s Click event procedure so that it
displays both the number of tablespoons and the number of teaspoons required when either
increasing or decreasing a recipe. The procedure’s pseudocode is shown in Figure 12-32 along
with a list of the variables the procedure will use.

Figure 12-31 Web page displayed in a browser window
OpenClipArt.org/mazeo

Coding the Submit Button’s Click Event Procedure L E S S ON B

735

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

As you do when coding a control on a Windows form, you enter the code for a control on a
Web page in the Code Editor window.

To code the Submit button’s Click event procedure:

1. Right-click the Web page and then click View Code on the context menu. The
Default.aspx.vb window opens. Recall that the .vb extension on a filename indicates that
the file contains Visual Basic code. In this case, the file is referred to as the code-behind
file because it contains code that supports the Web page. Temporarily display the
Solution Explorer window. If necessary, click the Default.aspx node. See Figure 12-33.

2. Enter the following comments above the Partial Class clause. Replace <your name> and
<current date> with your name and the current date, respectively. Press Enter twice
after typing the last comment.

' Name: Recipe
' Purpose: Display number of tablespoons
' and teaspoons
' Programmer: <your name> on <current date>

code-behind file

Code Editor window

Figure 12-33 Code Editor and Solution Explorer windows

START HERE

btnSubmit Click event procedure
1. store user input (the number of teaspoons in the original recipe and the amount by which the
 recipe should be increased or decreased) in variables
2. calculate the total number of teaspoons required in the new recipe by multiplying the number
 of teaspoons in the original recipe by the amount by which the original recipe should be
 increased or decreased
3. calculate the number of tablespoons in the new recipe by using integer division to divide the
 total number of teaspoons in the new recipe by 3
4. calculate the number of teaspoons remaining in the new recipe by using the Mod operator to
 divide the total number of teaspoons in the new recipe by 3
5. display, in label controls, the number of tablespoons in the new recipe and the number of
 teaspoons remaining in the new recipe

Variable names Stores
decOrigTeaspoons the number of teaspoons in the original recipe
decMultiplyBy the amount by which the original recipe should be increased or

decreased
decTotalTeaspoons the total number of teaspoons in the new recipe
intNewTablespoons the number of tablespoons in the new recipe
decNewTeaspoons the number of teaspoons remaining in the new recipe

Figure 12-32 Pseudocode and variables for the btnSubmit_Click procedure
© 2013 Cengage Learning

C H A P T E R 1 2 Web Applications

736

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

3. Now, enter the following Option statements:

Option Explicit On
Option Strict On
Option Infer Off

4. Open the btnSubmit control’s Click event procedure. Enter the following comments.
Press Enter twice after typing the second comment.

' calculates number of tablespoons
' and teaspoons

5. Next, you will declare the procedure’s variables. Enter the following Dim statements.
Press Enter twice after typing the last Dim statement.

Dim decOrigTeaspoons As Decimal
Dim decMultiplyBy As Decimal
Dim decTotalTeaspoons As Decimal
Dim intNewTablespoons As Integer
Dim decNewTeaspoons As Decimal

6. The first step in the procedure’s pseudocode is to store the input items in variables.
Enter the following two TryParse methods. Press Enter twice after typing the second
TryParse method.

Decimal.TryParse(txtOriginalTeaspoons.Text, decOrigTeaspoons)
Decimal.TryParse(txtMultiplyBy.Text, decMultiplyBy)

7. The second step in the pseudocode calculates the total number of teaspoons required for
the new recipe. Enter the following assignment statement:

decTotalTeaspoons = decOrigTeaspoons * decMultiplyBy

8. The third step in the pseudocode calculates the number of tablespoons in the new
recipe. Enter the following assignment statement. (Recall that the integer division
operator requires its operands to be integers, and it returns the quotient as an
integer.)

intNewTablespoons = Convert.ToInt32(decTotalTeaspoons) \ 3

9. The fourth step in the pseudocode calculates the number of teaspoons remaining
in the new recipe. Type the following assignment statement and then press Enter
twice. (Recall that the Mod operator divides its operands and then returns the
remainder.)

decNewTeaspoons = decTotalTeaspoons Mod 3

10. The last step in the pseudocode displays the output in label controls. Enter the following
two assignment statements:

lblTablespoons.Text = intNewTablespoons.ToString("N0")
lblTeaspoons.Text = decNewTeaspoons.ToString("N2")

Coding the Submit Button’s Click Event Procedure L E S S ON B

737

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Figure 12-34 shows the code entered in the btnSubmit control’s Click event procedure.

In the next set of steps, you will test the application to verify that it is working correctly.

To test the Recipe application:

1. Save the application, and then start it by pressing Ctrl+F5. Your browser requests
the Default.aspx page from the server. The server locates the page and then sends the
appropriate HTML instructions to your browser for rendering on the screen.

2. First, we’ll triple a recipe that requires 1 and 1/4 (or .25) teaspoons of some ingredient.
Type 1.25 and 3 in the Teaspoons and Multiply by boxes, respectively. Click the Submit
button; doing this submits your entry to the server, along with a request for additional
services. (If the message “Do you want AutoComplete to remember web form entries?”
appears, click the No button.) The server processes the code contained in the button’s
Click event procedure and then sends the appropriate HTML to the browser for
rendering on the screen. As Figure 12-35 indicates, the new recipe requires 1 tablespoon
and 3/4 (0.75) teaspoon of the ingredient.

START HERE

Figure 12-34 btnSubmit_Click procedure

C H A P T E R 1 2 Web Applications

738

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

3. Now we’ll halve a recipe that requires 1 teaspoon of some ingredient. Change the entries
in the Teaspoons and Multiply by boxes to 1 and .5, respectively. Click the Submit
button. The Web page indicates that the new recipe requires 1/2 (0.50) teaspoon of the
ingredient.

4. Close the browser window and then close the Code Editor window.

Validating User Input
The Validation section of the toolbox provides several tools for validating user input. The tools
are referred to as validator tools. The name, purpose, and important properties of each validator
tool are listed in Figure 12-36. In the Recipe application, you will use a RequiredFieldValidator
control to verify that the user entered the two input items.

Figure 12-35 Result of clicking the Submit button
OpenClipArt.org/mazeo

Validating User Input L E S S ON B

739

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

To verify that the user entered the two input items:

1. Click to the immediate right of the txtOriginalTeaspoons control and then press the
Spacebar three times.

2. Permanently display the Toolbox window. If necessary, expand the Validation section.
Click the RequiredFieldValidator tool and then drag your mouse pointer to the Web
page. Position your mouse pointer to the right of the txtOriginalTeaspoons control and
then release the mouse button. The RequiredFieldValidator1 control appears on the
Web page.

3. Temporarily display the Properties window. Set the following properties for the
RequiredFieldValidator1 control:

ControlToValidate: txtOriginalTeaspoons
ErrorMessage: Required entry
ForeColor: choose a red hexagon

4. Click to the immediate right of the txtMultiplyBy control and then press the
Spacebar three times. Click the RequiredFieldValidator tool and then drag your
mouse pointer to the Web page, positioning it to the right of the txtMultiplyBy control.
Release the mouse button. Set the following properties for the RequiredFieldValidator2
control:

ControlToValidate: txtMultiplyBy
ErrorMessage: Required entry
ForeColor: choose a red hexagon

Figure 12-36 Validator tools
© 2013 Cengage Learning

Name Purpose Properties

CompareValidator compare an entry with a ControlToCompare
constant value or the property ControlToValidate
stored in a control ErrorMessage

Operator
Type
ValueToCompare

CustomValidator verify that an entry passes the ClientValidationFunction
specified validation logic ControlToValidate

ErrorMessage

RangeValidator verify that an entry is within ControlToValidate
the specified minimum and ErrorMessage
maximum values MaximumValue

MinimumValue
Type

RegularExpressionValidator verify that an entry matches ControlToValidate
a specific pattern ErrorMessage

ValidationExpression

RequiredFieldValidator verify that a control contains data ControlToValidate
ErrorMessage

ValidationSummary display all of the validation error DisplayMode
messages in a single location on a HeaderText
Web page

START HERE

C H A P T E R 1 2 Web Applications

740

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

5. Click an empty area of the Web page, and then auto-hide the Toolbox window. Save the
application.

6. Start the application by pressing Ctrl+F5. Click the Submit button without entering any
values. (If a Web page opens and displays the “Server Error in '/' Application.” message,
refer to the Important note that follows Figure 12-37.) Each RequiredFieldValidator
control displays the “Required entry” message, as shown in Figure 12-37.

Important note: At the time of this writing, there was an unresolved issue with some of
the validator controls. Until this problem is fixed, you can use the following workaround:
First, close the browser window. Next, right-click Web.config in the Solution Explorer
window and then click Open. Change both occurrences of "4.5" to "4.0", and then save
the application. Close the Web.config window and then repeat Step 6.

7. Type 3 in the Teaspoons box and then click the Submit button. This time, the “Required
entry” message appears only next to the Multiply by text box.

8. Type 2 in the Multiply by box and then click the Submit button. The Web page
indicates that the new recipe requires 2 tablespoons of the ingredient.

9. Close the browser window and then close the application.

YOU DO IT 2!

Create an empty Web application named YouDoIt 2. Save the application in the VB2012\
Chap12 folder. Add a Web page named Default.aspx to the application. The Web
page should contain a text box, a label, and a button. When the user clicks the button,
the application should multiply the number entered in the text box by 2 and then display
the result in the label. Include a RequiredFieldValidator control on the Web page. Save the
application and then start and test it. Close the application.

Figure 12-37 Result of clicking the Submit button when both text boxes are empty
OpenClipArt.org/mazeo

Validating User Input L E S S ON B

741

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Lesson B Summary
l To code a control on a Web page:

Enter the code in the Code Editor window.

l To validate user input on a Web page:

Use one or more of the validator tools contained in the Validation section of the toolbox.
The controls are summarized in Figure 12-36.

Lesson B Key Term
Validator tools—the tools contained in the Validation section of the toolbox; used to validate
user input on a Web page

Lesson B Review Questions
1. In code, you refer to a control on a Web page using the control’s

property.

a. Caption

b. ID

c. Name

d. Text

2. The Visual Basic code in a Web page is processed by the .

a. client computer

b. Web server

3. You can use a control to verify that a control on a Web page
contains data.

a. RequiredFieldValidator

b. RequiredField

c. RequiredValidator

d. none of the above

4. You can use a control to verify that an entry on a Web page is within a
minimum and maximum value.

a. MinMaxValidation

b. MaxMinValidation

c. EntryValidator

d. RangeValidator

Lesson B Exercises

1. Create an empty Web application named SquareArea. Save the application in the
VB2012\Chap12 folder.

a. Add a new Web page named Default.aspx to the application. Change the
DOCUMENT object’s Title property to Square Area.

INTRODUCTORY

C H A P T E R 1 2 Web Applications

742

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

b. Use Figure 12-38 as a guide when designing the Web page. The square image is
contained in the VB2012\Chap12\Square.png file. (The image was downloaded from
the Open Clip Art Library at http://openclipart.org. Hint: To position the image as
shown in the figure, click the image and then use the Position option on the FORMAT
menu. Click the Left button in the Wrapping style section.) Set the CompareValidator
control’s ControlToValidate, Operator, Type, and ValueToCompare properties to
txtSide, Greater Than, Double, and 0, respectively. Also set the control’s ErrorMessage
and ForeColor properties appropriately.

c. Open the Code Editor window. Use comments to document the application’s name
and purpose, as well as your name and the current date. Also enter the appropriate
Option statements. Code the Calculate Area button’s Click event procedure. Display
the area with two decimal places.

d. Save and then start the application. (If necessary, refer to the Important note that
appears after Figure 12-37 in the lesson.) Test the application using positive and
negative numbers, as well as the number 0. Close the browser window. Close the
Code Editor window and then close the application.

2. Create an empty Web application named Multiplication. Save the application in the
VB2012\Chap12 folder.

a. Add a new Web page named Default.aspx to the application. Change the
DOCUMENT object’s Title property to Multiplication Calculator.

b. Use Figure 12-39 as a guide when designing the Web page. The calculator image is
contained in the VB2012\Chap12\Calculator.png file. (The image was downloaded
from the Open Clip Art Library at http://openclipart.org.)

c. Add two RequiredFieldValidator controls to the Web page. The controls should
verify that both text boxes contain data. Display appropriate messages.

d. Open the Code Editor window. Use comments to document the application’s name
and purpose, as well as your name and the current date. Also enter the appropriate
Option statements. Code the Calculate button’s Click event procedure. Display the
product with two decimal places.

e. Save the application and then start it. (If necessary, refer to the Important note that
appears after Figure 12-37 in the lesson.) Test the application. Close the browser
window. Close the Code Editor window and then close the application.

CompareValidator
control

Figure 12-38 Web page for Exercise 1

INTRODUCTORY

Lesson B Exercises L E S S ON B

743

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

3. Create an empty Web application named DollarToEuro. Save the application in the
VB2012\Chap12 folder.

a. Add a new Web page named Default.aspx to the application. Change the
DOCUMENT object’s Title property to Dollars to Euros.

b. Use Figure 12-40 as a guide when designing the Web page. The image is contained
in the VB2012\Chap12\ClickHere.png file. (The image was downloaded from the
Open Clip Art Library at http://openclipart.org.) Change the ImageButton control’s
ID property to imgBtnClickHere.

c. Open the Code Editor window. Use comments to document the application’s name and
purpose, as well as your name and the current date. Also enter the appropriate Option
statements.Code the imgBtnClickHere control’sClick event procedure.Use the Internet to
research the current conversion rate. Display the number of euroswith four decimal places.

d. Save the application and then start and test it. Close the browser window. Close the
Code Editor window and then close the application.

ImageButton control

Figure 12-40 Web page for Exercise 3
OpenClipArt.org/Onsemeliot

Figure 12-39 Web page for Exercise 2
OpenClipArt.org/gsagri04

INTRODUCTORY

C H A P T E R 1 2 Web Applications

744

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

4. Create an empty Web application named ZipCode. Save the application in the
VB2012\Chap12 folder.

a. Add a new Web page named Default.aspx to the application. Change the
DOCUMENT object’s Title property to ZIP Code Verifier.

b. Use Figure 12-41 as a guide when designing the Web page. Use labels for the
static text. Also, use the Segoe UI font for the static text and controls. Use a
RequiredFieldValidator control to verify that the text box is not empty. Use a
RegularExpressionValidator control to verify that the ZIP code is in the
appropriate format.

c. Save and then start the application. (If necessary, refer to the Important note that
appears after Figure 12-37 in the lesson.) Test the application by clicking the text box
and then pressing Enter. The RequiredFieldValidator control should display the “Please
enter a ZIP code.” message. Now, test it using the following ZIP codes: 606123, 60612,
60611-3, and 60611-3456. The RegularExpressionValidator control should display the
“Incorrect format”message for the first and third ZIP codes. Close the browser window.
Close the Code Editor window and then close the application.

5. Create an empty Web application named Temperature. Save the application in the
VB2012\Chap12 folder. Add a new Web page named Default.aspx to the application.
Change the DOCUMENT object’s Title property to Temperature Converter. The Web
page should allow the user to enter a temperature in degrees Fahrenheit. When the user
clicks a button on the Web page, the button’s Click event procedure should display the
temperature converted to Celsius. Save and then start and test the application. Close the
browser window. Close the Code Editor window and then close the application.

6. Create an empty Web application named Measurement. Save the application in the
VB2012\Chap12 folder. Add a new Web page named Default.aspx to the application.
Change the DOCUMENT object’s Title property to Inches to Centimeters. The Web
page should allow the user to enter the number of inches. When the user clicks a button
on the Web page, the button’s Click event procedure should display the number of
inches converted to centimeters. Save and then start and test the application. Close the
browser window. Close the Code Editor window and then close the application.

RequiredFieldValidator
control

RegularExpressionValidator
control

Figure 12-41 Web page for Exercise 4

INTERMEDIATE

INTERMEDIATE

INTERMEDIATE

Lesson B Exercises L E S S ON B

745

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

& LESSON C
After studying Lesson C, you should be able to:

l Make changes to the Web page in Source view

l Create columns using the <div> tag

l Utilize an ASP table in a Web page

l Add a calendar to a Web page

l Add a drop-down list box to a Web page

l Create a new line using the
 tag

Creating the DJ Tom Application
Recall that your task is to create a Web application for DJ (disc jockey) Tom. The application’s
Web page should allow the user to enter the names of the bride and groom, the wedding date,
an e-mail address, and the name of the first song to be danced by the newly married couple. The
Web page should provide a Submit button that displays a message on the page. The message
should contain the input items. A sketch of the Web page is shown in Figure 12-42.

To create the DJ Tom Web application:

1. If necessary, start Visual Studio 2012 or Visual Studio Express 2012 for Web.

2. If necessary, auto-hide the Solution Explorer, Properties, and Toolbox windows.

3. Create an empty Web application named DJTom. Save the application in the VB2012\
Chap12 folder.

4. Use the Add New Item option on the WEBSITE menu to add a Web page named
Default.aspx to the application. Change the DOCUMENT object’s Title property toDJ Tom.

First, you will set the font for the text in the Web page. You can do this by switching to Source
view and then setting one of the style attribute’s properties in the <body> tag. More specifically,
you set the style attribute’s font-family property.

Your Wedding DJ

message Bride: DJ Tom logo

Groom:

Wedding:

E-mail:

First song: DropDownList

Submit

Calendar

Figure 12-42 Sketch of the DJ Tom application’s Web page
© 2013 Cengage Learning

START HERE

C H A P T E R 1 2 Web Applications

746

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

To set the font for the text, and then continue creating the Web page:

1. Click the Source button at the bottom of the IDE and then locate the <body> tag.

2. You can use the style attribute’s font-family property to specify one or more fonts to
use for the Web page’s text. For example, the style="font-family:Segoe UI,
Arial, Sans-Serif" attribute tells the browser to use the Segoe UI font when
displaying text. However, if the Segoe UI font is not available, the browser should
use the Arial font. If neither of those two fonts is available, the browser should use
an available sans serif font. Modify the <body> tag as shown in Figure 12-43. The
modifications are shaded in the figure.

3. Click the Design tab at the bottom of the IDE. If necessary, click inside the rectangle
that appears below the div tag at the top of the Document window. (If the div tag does
not appear on the Web page, click the <div> button at the bottom of the IDE.) Type
Your Wedding DJ and press Enter.

4. If necessary, use the VIEW menu to display the Formatting toolbar. Select (highlight) the
Your Wedding DJ text.

5. Click the down arrow in the Block Format box and then click Heading 1 <h1> in the
list. Click the down arrow on the Alignment button and then click Justify Center. Click
an empty area of the Web page to deselect the text.

Creating a Columnar Layout
The content in many Web pages is laid out in a columnar format, similar to a newspaper. The
sketch of DJ Tom’s Web page (shown earlier in Figure 12-42) indicates that the page contains
three columns. The first column displays a message, the second column displays the data entry
controls, and the third column displays DJ Tom’s logo. You can divide a Web page into columns
using the <div> tag.

To divide DJ Tom’s Web page into three columns:

1. Click the Source tab and then click the blank line below the
 tag. (You will learn
about the
 tag later in this lesson.) If necessary, press Tab to align the insertion
point with the tag.

2. The first column, which you will name “MessageColumn”, will occupy 30% of the
page. You will change the column’s background color to purple and then specify that
the column should appear on the left side of the page. Type <div>. The Source view
editor automatically enters the closing </div> tag for you. Click immediately after
the letter v in the <div> tag and then press the Spacebar. Complete the tag by
entering the text shaded in Figure 12-44, and then position the insertion point as
shown in the figure.

Figure 12-43 Modified <body> tag

START HERE

START HERE

Creating a Columnar Layout L E S S ON C

747

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

3. Now you will use another <div> tag to create the second column. This column will
occupy 39% of the Web page and appear next to the first column. Type the following
<div> tag:

<div id="ContentColumn" style="width:39%; float:left"></div>

4. Click immediately after the </div> tag from Step 3 and then press Enter. The third
column will occupy 30% of the Web page and appear on the right side of the page. Type
the following <div> tag:

<div id="LogoColumn" style="width:30%; float:right"></div>

5. Click the Design tab. Three columns appear in the Web page. See Figure 12-45.

6. Permanently display the Toolbox and Properties windows. Drag a label control into the
MessageColumn. Set the control’s ID and ForeColor properties to lblMsg and White,
respectively. Also remove the contents of its Text property.

7. Before dragging an image control to the Web page, you will add the DJ Tom image file to
the application. Click WEBSITE on the menu bar and then click Add Existing Item.
Open the VB2012\Chap12 folder. Click the down arrow in the box that controls the file
types and then click All Files (*.*) in the list. Click DJ.png in the list of filenames and
then click the Add button.

8. Now drag an image control into the LogoColumn. Set the control’s ImageUrl property
to DJ.png and then click an empty area on the Web page to deselect the control.

Using an ASP Table
The Table tool in the Standard section of the toolbox creates an ASP table control. The
control displays information in a row and column format, similar to a spreadsheet, and is
often used to align the information on a Web page. The ASP table control you will use in
DJ Tom’s Web page will have six rows and two columns. The intersection of a row and a
column in a table is called a cell.

position the insertion
point here

Figure 12-44 Completed <div> tag for the first column

MessageColumn

ContentColumn

LogoColumn

Figure 12-45 Web page showing the three columns

C H A P T E R 1 2 Web Applications

748

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

To add an ASP table to the Web page:

1. Click the Table tool located in the Standard section of the toolbox. Drag a table control
into the ContentColumn and then release the mouse button. (The HTML section of the
toolbox also has a Table tool. Be sure to use the Table tool listed in the Standard
section.) See Figure 12-46.

2. Set the table control’s CellSpacing property, which controls the spacing between the
table cells, to 40. Set the control’s HorizontalAlign property to Center.

3. Now you will begin defining the table rows. Click Rows in the Properties window and
then click the … (ellipsis) button in the Settings box. The TableRow Collection Editor
dialog box opens. Click the Add button and then click (ID) in the list of TableRow
properties. Type tblRow1 and press Enter. See Figure 12-47.

START HERE

use this property to
specify the cells within
the row

Figure 12-47 TableRow Collection Editor dialog box

table control

be sure to use the
Table tool in the
Standard section

Figure 12-46 ASP table control added to the ContentColumn

Using an ASP Table L E S S ON C

749

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

4. The row will have two cells: one will contain the text “Bride:” and the other will contain a
text box for entering the bride’s name. Click Cells in the list of TableRow properties and
then click the … (ellipsis) button in the Settings box. The TableCell Collection Editor
dialog box opens.

5. Click the Add button. Change the cell’s Text property to Bride: and press Enter.
Change its ID property to tblRow1Col1 and press Enter. See Figure 12-48.

6. Click the Add button again. Change the cell’s ID property to tblRow1Col2 and press
Enter. Click the OK button. The TableCell Collection Editor dialog box closes and you
are returned to the TableRow Collection Editor dialog box.

7. Now you will define the second row in the table. Click the Add button in the TableRow
Collection Editor dialog box. Set the row’s ID property to tblRow2 and press Enter.

8. Click Cells in the list of TableRow properties and then click the… (ellipsis) button in the
Settings box. Click the Add button. Change the cell’s Text property to Groom: and
press Enter. Change its ID property to tblRow2Col1 and press Enter. Click the Add
button again. Change the cell’s ID property to tblRow2Col2 and press Enter. Click the
OK button to close the TableCell Collection Editor dialog box.

9. On your own, define the third row in the table. Change the row’s ID property to
tblRow3. The row should have two cells named tblRow3Col1 and tblRow3Col2. The
tblRow3Col1 cell should contain the text Wedding:. Close the TableCell Collection
Editor dialog box.

10. On your own, define the fourth row in the table. Change the row’s ID property to tblRow4.
The row should have two cells named tblRow4Col1 and tblRow4Col2. The tblRow4Col1
cell should contain the text E-mail:. Close the TableCell Collection Editor dialog box.

11. On your own, define the fifth row in the table. Change the row’s ID property to
tblRow5. The row should have two cells named tblRow5Col1 and tblRow5Col2. The
tblRow5Col1 cell should contain the text First song:. Close the TableCell Collection
Editor dialog box.

12. Finally, define the last row in the table. Change the row’s ID property to tblRow6. The
row should have one cell named tblRow6Col1.

Text property

ID property

Figure 12-48 TableCell Collection Editor dialog box

C H A P T E R 1 2 Web Applications

750

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

13. Click the OK button to close the TableCell Collection Editor dialog box, and then click
the OK button to close the TableRow Collection Editor dialog box.

14. Auto-hide the Toolbox and Properties windows and then save the application.

Figure 12-49 shows the table on the Web page.

Dragging Controls in Source View
In the next set of steps, you will open the Web page in Source view and then drag the controls to
the appropriate cells in the table.

To drag controls to the table in Source view:

1. Click the Your Wedding DJ text to deselect the table control and then click the Source
tab at the bottom of the IDE.

2. Permanently display the Toolbox window. First, you will drag a text box into the
cell located next to the Bride: text. That cell is located in the second column of the
first row in the table. Locate the line that contains the opening and closing tags for
the tblRow1Col2 cell. The line says <asp:TableCell ID="tblRow1Col2"
runat="server"></asp:TableCell>. Click immediately before the cell’s
closing tag (which says </asp:TableCell>) and then press Enter. Click the
TextBox tool in the toolbox. Press and hold down the left mouse button as you
drag your mouse pointer to the location shown in Figure 12-50.

Figure 12-49 Table containing six rows and two columns

START HERE

Using an ASP Table L E S S ON C

751

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

3. Release the mouse button. See Figure 12-51.

4. In the <asp:TextBox> tag, change the text box control’s ID property from "TextBox1"
to "txtBride".

5. Click the Design tab. A text box control appears in the second cell in row 1.
See Figure 12-52.

6. Click the Your Wedding DJ text to deselect the table control and then click the
Source tab.

7. Now you will place a text box in the cell located in the second row, second column in the
table. Locate the line that contains the opening and closing tags for the tblRow2Col2 cell.
The line says <asp:TableCell ID="tblRow2Col2" runat="server"></asp:TableCell>.
Click immediately before the cell’s closing tag and then press Enter. Drag a text box
control to the blank line above the closing tag and then release the mouse button. Change the
text box’s ID property to "txtGroom".

8. Next, you will add a calendar control to the cell located in the second column of the
table’s third row. Locate the line that contains the opening and closing tags for the
tblRow3Col2 cell. Click immediately before the cell’s closing tag and then press
Enter. Click the Calendar tool in the toolbox. Drag a calendar control to the blank line
above the closing tag and then release the mouse button. Change the calendar’s ID
property to "calWedding".

drag the text box
to this location

the text box will be
placed in the cell
located in row 1,
column 2

Figure 12-50 Text box control being dragged in Source view

text box control

Figure 12-52 Text box control shown in the table

text box tags

Figure 12-51 Opening and closing text box tags added to the table instructions

C H A P T E R 1 2 Web Applications

752

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

9. Now you will add a text box to the cell located in the second column of the fourth row.
Locate the line that contains the opening and closing tags for the tblRow4Col2 cell. Click
immediately before the cell’s closing tag and then press Enter. Drag a text box
control to the blank line above the closing tag and then release the mouse button.
Change the text box’s ID property to "txtEmail".

10. Next, you will place a drop-down list control in the cell located in the second column
of the fifth row. Locate the line that contains the opening and closing tags for the
tblRow5Col2 cell. Click immediately before the cell’s closing tag and then press
Enter. Click the DropDownList tool in the toolbox. Drag a drop-down list control
to the blank line above the closing tag and then release the mouse button. Change
the drop-down list’s ID property to "ddlSongs".

11. Finally, you will add a button to the last row in the table. Locate the line that contains
the opening and closing tags for the tblRow6Col1 cell. Click immediately before the
cell’s closing tag and then press Enter. Drag a button control to the blank line above
the closing tag and then release the mouse button. Change the button’s ID property to
"btnSubmit" and change its Text property to "Submit".

12. Save the application. Auto-hide the toolbox and then click the Design tab. Click the
Your Wedding DJ text to deselect the table control.

Figure 12-53 shows the controls added to the table. (Your calendar may show a different month
and year.)

Figure 12-53 Controls added to the table

Using an ASP Table L E S S ON C

753

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Adding Items to a DropDownList Control
Currently, the drop-down list control on DJ Tom’s Web page does not contain any items. You
add items to a drop-down list control using the <asp:ListItem> tag. In the next set of steps, you
will add the following four song titles to the control: From This Moment On, At Last, Because
You Loved Me, and The Way You Look Tonight.

To add items to the drop-down list control:

1. Click the Source tab. Locate the line that contains the opening and closing tags
for the ddlSongs control. The line says <asp:DropDownList ID="ddlSongs"
runat="server">. Click immediately before the control’s closing tab and then
press Enter.

2. Type <asp:ListItem Text="From This Moment On">. When you type the > symbol,
the Source view editor automatically enters the closing </asp:ListItem> tag for you. See
Figure 12-54.

3. Click after the > in the list item’s closing tag and then press Enter. Enter the three
additional <asp:ListItem> tags indicated in Figure 12-55.

4. Save the application and then click the Design tab. Click the Your Wedding DJ text to
deselect the table control.

5. Start the application and then click the down arrow in the drop-down list control. The
song titles appear as shown in Figure 12-56.

6. Close the browser window.

enter these three
<asp:ListItem> tags

Figure 12-55 Additional song titles added to the drop-down list control

Figure 12-56 Song titles displayed in the drop-down list control

START HERE

the closing tag is
automatically entered
for you

Figure 12-54 First song title added to the drop-down list control

C H A P T E R 1 2 Web Applications

754

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Coding DJ Tom’s Web Page
Now that the interface is complete, you can code the Web page’s Submit button. The button’s
Click event procedure will display a message in the lblMsg control, which is contained in the
MessageColumn on the Web page.

To code the Submit button’s Click event procedure:

1. Right-click the Web page and then click View Code to open the Code Editor
window. Enter the following comments. Replace <your name> and <current date>
with your name and the current date, respectively. Press Enter twice after typing the
last comment.

' Name: DJTom
' Purpose: Display a message
' Programmer: <your name> on <current date>

2. Now enter the following Option statements:

Option Explicit On
Option Strict On
Option Infer Off

3. Open the code template for the btnSubmit_Click procedure. Type the following
comment and then press Enter twice:

' displays the user’s input in a message

4. First, you will declare variables to store the five input items. Enter the following Dim
statements. Press Enter twice after typing the last Dim statement.

Dim strBride As String
Dim strGroom As String
Dim strWedDate As String
Dim strEmail As String
Dim strSong As String

5. Now you will assign the names of the bride and groom to the appropriate variables.
Enter the following assignment statements:

strBride = txtBride.Text.Trim
strGroom = txtGroom.Text.Trim

6. Next, you will assign the date selected in the Calendar control to the strWedDate
variable. The selected date is stored in the control’s SelectedDate property. You can use
the ToShortDateString method to convert the date to the String data type, formatting it
as follows: mm/dd/yyyy. Enter the following assignment statement:

strWedDate = calWedding.SelectedDate.ToShortDateString

7. Now you will assign the e-mail address to the strEmail variable. Enter the following
assignment statement:

strEmail = txtEmail.Text.Trim

8. Next, you will assign the item selected in the drop-down list control to the strSong
variable. The selected item is stored in the control’s SelectedItem property. Type the
following assignment statement and then press Enter twice:

strSong = ddlSongs.SelectedItem.ToString

START HERE

The Calendar
control also has a
ToLongDateString
method that
formats the date

as follows: day of the week,
month name, day number,
year number.

Coding DJ Tom’s Web Page L E S S ON C

755

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

9. Finally, you will display the user’s input in the lblMsg control. Enter the following lines
of code:

lblMsg.Text = "Thank you "& strBride & " and " &
strGroom & " for visiting my Web site. " &
"Wedding date: " & strWedDate &
"E-mail address: " & strEmail &
"Song: " & strSong

Next, you will test the Submit button’s Click event procedure to verify that its code is working
correctly.

To test the Submit button’s Click event procedure:

1. Save and then start the application. Click the Bride box and then type Pam. Press Tab
and then type Nathan in the Groom box.

2. Click any date in the Calendar control. Click the E-mail box and then type
anyEmail@domain.com. Click the down arrow in the drop-down list control
and then click Because You Loved Me in the list.

3. Click the Submit button. The button’s Click event procedure displays the message
shown in Figure 12-57 in the lblMsg control. (Your message may contain a different
date.) Notice that the message is difficult to read. It would be better if the “Thank you”
message, the wedding date, the e-mail address, and the song title appeared on separate
lines in the control. You will learn how to accomplish this in the next section.

4. Close the browser window.

Using the
 Tag
At times, you may need to break the text on a Web page in a specific location. You can do this
using the
 tag. The “br” in the tag stands for “break.” The
 tag in a Web page is
similar to the ControlChars.NewLine constant in a Windows form; both are used to create a
new line. In DJ Tom’s Web page, you will use the
 tag to separate the wedding date
information from the “Thank you”message. You also will use it to display the e-mail information
and song information on separate lines in the lblMsg control.

To use the
 tag in the lblMsg control:

1. Modify the assignment statement that displays the message in the lblMsg control. The
modifications are shaded in Figure 12-58. (Although the
 tags appear at the
beginning of the lines in Figure 12-58, the tags can appear anywhere within a line.)

lblMsg control

Figure 12-57 Message displayed in the lblMsg control

START HERE

START HERE

C H A P T E R 1 2 Web Applications

756

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

2. Save and then start the application. Click the Bride box and then type Tammy. Press
Tab and then type Christopher in the Groom box.

3. Click any date in the Calendar control. Click the E-mail box and then type
anyEmail@domain.com. Click the down arrow in the drop-down list control
and then click At Last in the list.

4. Click the Submit button. The button’s Click event procedure displays the message shown
in Figure 12-59 in the lblMsg control. (Your message may contain a different date.)

Protected Sub btnSubmit_Click(sender As Object,
e As EventArgs) Handles btnSubmit.Click

' displays the user’s input in a message

Dim strBride As String
Dim strGroom As String
Dim strWedDate As String
Dim strEmail As String
Dim strSong As String

strBride = txtBride.Text.Trim
strGroom = txtGroom.Text.Trim
strWedDate = calWedding.SelectedDate.ToShortDateString
strEmail = txtEmail.Text.Trim
strSong = ddlSongs.SelectedItem.ToString

lblMsg.Text = "Thank you " & strBride & " and " &
strGroom & " for visiting my Web site. " &
"

Wedding date: " & strWedDate &
"
E-mail address: " & strEmail &
"
Song: " & strSong

End Sub

Figure 12-58 Modified btnSubmit_Click procedure
© 2013 Cengage Learning

Figure 12-59 Message displayed on separate lines in the lblMsg control

Coding DJ Tom’s Web Page L E S S ON C

757

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

5. Close the browser window. Close the Code Editor window and then close the
application.

Lesson C Summary
l To set the font for the text on a Web page:

Assign one or more fonts to the style attribute’s font-family property in the <body> tag.

l To divide a Web page into columns:

Use the <div> tag. Use the id attribute to assign a name to the column. Assign a percentage
to the style attribute’s width property. Assign either left or right to the style attribute’s float
property.

l To use an ASP table:

Use the Table tool located in the Standard section of the toolbox to add a table control to the
Web page. The table’s CellSpacing property specifies the spacing between the table cells. Its
HorizontalAlign property determines its alignment on the Web page. Use the Rows property
to add rows and columns (cells) to the table. It’s helpful to set the ID property for each row
and each cell.

l To place a control in an ASP table:

Open the Web page in Source view. Drag the control to a location immediately before the
desired cell’s closing tag.

l To add items to a drop-down list control:

Use a separate <asp:ListItem> tag for each item. In each tag, set the item’s Text property.
Place the tags between the drop-down list control’s opening and closing tags.

l To determine the date selected in a Calendar control:

Use the control’s SelectedDate property.

l To format the date selected in a Calendar control:

Use the control’s ToShortDateString method to format the date as follows: mm/dd/yyyy. Use
the control’s ToLongDateString method to format the date as follows: day of the week,
month name, day number, year number.

l To determine the item selected in a drop-down list control:

Use the control’s SelectedItem property.

l To create a new line on a Web page from code:

Use the
 tag.

Lesson C Key Terms
<asp:ListItem> tag—used to add items to a drop-down list control

 tag—used to create a new line on a Web page or in a control

<div> tag—creates a division on a Web page; can be used to divide a Web page into columns

ASP table control—displays information in a row and column format; can be used to align
information on a Web page

Cell—the intersection of a row and a column in a table

C H A P T E R 1 2 Web Applications

758

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

font-family property—a property of the style attribute in the <body> tag; assigns one or more
fonts to be used for text

Lesson C Review Questions
1. Which of the following specifies the fonts to use for the text on a Web page?

a. style="font-family:Segoe UI, Arial, Sans-Serif"

b. style="fonts:Segoe UI, Arial, Sans-Serif"

c. style:"font-family=Segoe UI, Arial, Sans-Serif"

d. style:"fonts=Segoe UI, Arial, Sans-Serif"

2. Which of the following specifies that Col3 should occupy 15% of the Web page and be
positioned on the right?

a. <div id="Col3" "width:15%; position:right">

b. <div id="Col3" style="width:15%; float:right">

c. <div id="Col3" "position:right; column:15%">

d. <div id="Col3" style="width:15%; position:right">

3. Which of the following adds the word “Alaska” to a drop-down list control?

a. <asp:ListItem Caption="Alaska">

b. <asp:ListItem Item="Alaska">

c. <asp:Item Text="Alaska">

d. none of the above

4. The item selected in a drop-down list control is stored in the control’s
property.

a. Item

b. Selected

c. SelectedItem

d. none of the above

5. The date selected in a Calendar control is stored in the control’s
property.

a. Date

b. SelectedDate

c. DateSelection

d. none of the above

6. You can use the tag to display text on the next line in a control.

a.

b. <break>

c. <newline>

d. none of the above

Lesson C Review Questions L E S S ON C

759

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Lesson C Exercises

1. In this exercise, you modify the DJ Tom application from this lesson.

a. Create an empty Web application named DJTomIntro1. Save the application
in the VB2012\Chap12 folder. Close the DJTomIntro1 application.

b. Use Windows to open the DJTomIntro1 folder. Delete the Web.config file.

c. Use Windows to open the DJTom folder. Select the folder’s contents. Copy the
selected contents to the DJTomIntro1 folder.

d. Open the DJTomIntro1 Web site. Right-click Default.aspx in the Solution Explorer
window and then click View Designer.

e. Drag a RegularExpressionValidator control to the Web page. Don’t be concerned
about the control’s location. The control will verify the format of the e-mail address
entered by the user. Click ErrorMessage in the Properties window, press the
Spacebar twice and then type Invalid. Now, change the ValidationExpression and
ControlToValidate properties to Internet e-mail address and “txtEmail”, respectively.
Click the Source tab. Cut the control’s entire asp tag and then paste the tag before
the txtEmail control’s </asp:TableCell> closing tag. Click the Design tab.

f. Save and then start and test the application. (If necessary, refer to the Important
note that appears after Figure 12-37 in Lesson B.) Close the browser window and
then close the application.

2. In this exercise, you modify the DJ Tom application from this lesson.

a. Create an empty Web application named DJTomIntro2. Save the application in
the VB2012\Chap12 folder. Close the DJTomIntro2 application.

b. Use Windows to open the DJTomIntro2 folder. Delete the Web.config file.

c. Use Windows to open the DJTom folder. Select the folder’s contents. Copy the
selected contents to the DJTomIntro2 folder.

d. Open the DJTomIntro2 Web site. Right-click Default.aspx in the Solution Explorer
window and then click View Designer.

e. Open the Web page in Source view. Add four song titles to the drop-down list
control.

f. Save and then start and test the application. Close the browser window and then
close the application.

3. In this exercise, you modify the DJ Tom application from this lesson.

a. Create an empty Web application named DJTomIntermediate. Save the application
in the VB2012\Chap12 folder. Close the DJTomIntermediate application.

b. Use Windows to open the DJTomIntermediate folder. Delete the Web.config file.

c. Use Windows to open the DJTom folder. Select the folder’s contents. Copy the
selected contents to the DJTomIntermediate folder.

d. Open the DJTomIntermediate Web site. Right-click Default.aspx in the Solution
Explorer window and then click View Designer.

e. Open the Web page in Source view. Locate the asp tag for the last table row. Change
tblRow6 and tblRow6Col1 to tblRow8 and tblRow8Col1, respectively. Add two rows
to the table. The rows should be added above the last row and each should contain
two cells. In the first new row, enter the text “Father/Daughter:” (without the quotes)
in the first column and then place a drop-down list control in the second column.

INTRODUCTORY

INTRODUCTORY

INTERMEDIATE

C H A P T E R 1 2 Web Applications

760

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

In the second new row, enter the text “Mother/Son:” (without the quotes) in the first
column and then place a drop-down list control in the second column. Add the titles
of any four songs to the drop-down list control in the first new row. Add the titles of
any three songs to the drop-down list control in the second new row.

f. Save the application and then switch to Design view. Open the Code Editor window
and modify the code to display the additional user input in the lblMsg control.

g. Save and then start and test the application. Close the browser window. Close the
Code Editor window and then close the application.

4. Create an empty Web application named MarketFoods. Save the application in the
VB2012\Chap12 folder. Add a new Web page named Default.aspx to the application.
Change the DOCUMENT object’s Title property to Market Foods. Create a Web page
similar to the sketch shown in Figure 12-60. The DropDownList control should contain
the store numbers listed in Figure 12-61. When the user clicks the Submit button, the
button’s Click event procedure should display the names of the manager and assistant
manager on the Web page. Open the Code Editor window. Enter the appropriate
comments and Option statements. Code the Submit button’s Click event procedure. Save
and then start and test the application. Close the browser window. Close the Code Editor
window and then close the application.

5. Create an empty Web application named SalesTax. Save the application in the VB2012\
Chap12 folder. Add a new Web page named Default.aspx to the application. Change the
DOCUMENT object’s Title property to Sales Tax Calculator. Create a Web page similar
to the sketch shown in Figure 12-62. When the user enters the sales amount and then
clicks the Calculate button, the button’s Click event procedure should calculate and
display a 5% sales tax and a 6% sales tax. Code the procedure. Save and then start and test
the application. Close the browser window. Close the Code Editor window and then close
the application.

Market Foods

Store number: Submit

Manager:

Assistant:

DropDownList

Figure 12-60 Sketch for Exercise 4
© 2013 Cengage Learning

Figure 12-61 Store information for Exercise 4
© 2013 Cengage Learning

Store number Manager Assistant manager
1001 Jeffrey Jefferson Paula Hendricks
1002 Barbara Millerton Sung Lee
1003 Inez Baily Homer Gomez
1004 Lou Chan Jake Johansen
1005 Henry Abernathy Ingrid Nadkarni

INTERMEDIATE

INTERMEDIATE

Lesson C Exercises L E S S ON C

761

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

6. Create an empty Web application named SkateAway. Save the application in the
VB2012\ Chap12 folder. Add a new Web page named Default.aspx to the application.
Change the DOCUMENT object’s Title property to Skate-Away Sales. The Skate-Away
Sales company sells skateboards by phone. The skateboards are priced at $100 each and
are available in two colors: yellow and blue. The application should allow the salesperson
to enter the customer’s name and the numbers of blue and yellow skateboards ordered.
It should calculate the total number of skateboards ordered and the total price of the
order, including a 5% sales tax. Create a suitable Web page and then code the application.
Save and then start and test the application. Close the browser window. Close the
Code Editor window and then close the application.

Sales Tax Calculator

Sale Rate Tax

5%

6%

Calculate

Figure 12-62 Sketch for Exercise 5
© 2013 Cengage Learning

ADVANCED

C H A P T E R 1 2 Web Applications

762

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 13
Working with Access
Databases and LINQ

Creating the Paradise Bookstore Application

In this chapter, you will create an application for the manager of the
Paradise Bookstore, Louise Pantello. Each book in the bookstore is
associated with a number that uniquely identifies it. The number is
stored in a Microsoft Access database named Books, along with the
book’s title, author, price, and quantity in stock. The application will allow
Ms. Pantello to view either all of the information stored in the database
or only the information for the books written by the author whose name
(or partial name) she enters. She can also use it to display the total value
of the books in the store.

All Microsoft screenshots used with permission from Microsoft Corporation.

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Previewing the Paradise Bookstore Application
Before you start the first lesson in this chapter, you will preview the completed application.
The application is contained in the VB2012\Chap13 folder.

To preview the completed application:

1. Use the Run dialog box to run the Paradise (Paradise.exe) file contained in the VB2012\
Chap13 folder. The 11 records stored in the Books database appear in a DataGridView
control, which you will learn about in Lesson A.

2. First, you will display only the books written by Carol Smith. Click the Author text box
and then type Smith, C (be sure to include a space after the comma). Click the Go
button. Three records appear in the DataGridView control, as shown in Figure 13-1.
(Recall that you can use the Alt key to show/hide the access keys.)

3. Now you will display all of the records again. Delete the contents of the Author text box
and then click the Go button. The 11 records appear in the DataGridView control.

4. Finally, click the Total Value button to display the total value of the books in the store.
See Figure 13-2.

START HERE

Author text box

DataGridView
control

Figure 13-1 Books written by Carol Smith

CH A P T E R 1 3 Working with Access Databases and LINQ

764

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

5. Click the OK button to close the message box. Click the Close button on the form’s title
bar to stop the application.

In Lesson A, you will learn how to connect an application to a Microsoft Access database, and
then display the information in one or more controls in the interface. Lesson B will show you
how to query a database using LINQ, which stands for Language Integrated Query. You will
complete the Paradise Bookstore application in Lesson C. Be sure to complete each lesson in
full and do all of the end-of-lesson questions and several exercises before continuing to the
next lesson.

Figure 13-2 Total value of the inventory

Previewing the Paradise Bookstore Application

765

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

& LESSON A
After studying Lesson A, you should be able to:

l Define basic database terminology

l Connect an application to a Microsoft Access database

l Bind table and field objects to controls

l Explain the purpose of the DataSet, BindingSource, TableAdapter, TableAdapterManager,
and BindingNavigator objects

l Customize a DataGridView control

l Handle errors using the Try…Catch statement

l Position the record pointer in a dataset

Database Terminology
In order to maintain accurate records, most businesses store information about their employees,
customers, and inventory in computer databases. A computer database is an electronic file that
contains an organized collection of related information. Many products exist for creating
computer databases; such products are called database management systems (or DBMS).
Some of the most popular database management systems are Microsoft Access, Microsoft SQL
Server, and Oracle. You can use Visual Basic to access the data stored in databases created by
these database management systems. As a result, companies can use Visual Basic to create a
standard interface that allows employees to access information stored in a variety of database
formats. Instead of learning each DBMS’s user interface, the employee needs to know only one
interface. The actual format of the database is unimportant and will be transparent to the user.

In this chapter, you will learn how to access the data stored in Microsoft Access databases.
Databases created using Microsoft Access are relational databases. A relational database stores
information in tables composed of columns and rows, similar to the format used in a
spreadsheet. The databases are called relational because the information in the tables can be
related in different ways.

Each column in a relational database’s table represents a field and each row represents a record.
A field is a single item of information about a person, place, or thing—such as a name, a salary
amount, a Social Security number, or a price. A record is a group of related fields that contain
all of the necessary data about a specific person, place, or thing. The college you are attending
keeps a student record on you. Examples of fields contained in your student record include your
Social Security number, name, address, phone number, credits earned, and grades earned.
A group of related records is called a table. Each record in a table pertains to the same topic and
contains the same type of information. In other words, each record in a table contains the
same fields.

A relational database can contain one or more tables. A one-table database would be a good
choice for storing information about the college courses you have taken. An example of such a
table is shown in Figure 13-3. Each record in the table contains four fields: an ID field that
indicates the department name and course number, a course title field, a field listing the number
of credit hours, and a grade field.

Many people use
databases to
keep track of
their medical
records,

compact disc
collections, and even golf
scores.

CH A P T E R 1 3 Working with Access Databases and LINQ

766

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

ID Title Hours Grade
ACC110 Accounting Procedures 3 A
ENG101 English Composition I 3 B
CIS156 Visual Basic 2012 3 A
BIO111 Environmental Biology 3 C

Figure 13-3 Example of a one-table relational database
© 2013 Cengage Learning

Most tables have a primary key, which is a field that uniquely identifies each record. In the table
shown in Figure 13-3, you could use either the ID field or the Title field as the primary key
because the data in those fields will be unique for each record.

You might use a two-table database to store information about a CD (compact disc) collection.
You would store the general information about each CD, such as the CD’s name and the artist’s
name, in the first table. The information about the songs on each CD, such as their title and
track number, would be stored in the second table. You would need to use a common field—for
example, a CD number—to relate the records contained in both tables.

Figure 13-4 shows an example of a two-table database that stores CD information. The first
table is referred to as the parent table, and the second table is referred to as the child table.
The CdNum field is the primary key in the parent table because it uniquely identifies each
record in the table. The CdNum field in the child table is used solely to link the song title and
track information to the appropriate CD in the parent table. In the child table, the CdNum field
is called the foreign key.

Storing data in a relational database offers many advantages. The computer can retrieve data
stored in a relational format both quickly and easily, and the data can be displayed in any order.
The information in the CD database, for example, can be arranged by artist name, song title, and
so on. You also can control the amount of information you want to view from a relational
database. You can view all of the information in the CD database, only the information
pertaining to a certain artist, or only the names of the songs contained on a specific CD.

Parent and child
tables are also
referred to as
master and
detail tables,

respectively.

CdNum Name Artist
01 Greatest Hits Shania Twain
02 Music From Another Dimension Aerosmith

CdNum SongTitle Track
01 That Don’t Impress Me Much 1
01 From This Moment On 2
01 You’re Still The One 3
02 Beautiful 1
02 Tell Me 2
02 Another Last Goodbye 3

the two tables are
related by the
CdNum field

Figure 13-4 Example of a two-table relational database
© 2013 Cengage Learning

Database Terminology L E S S ON A

767

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Connecting an Application to a Microsoft Access Database
In this lesson, you will use a Microsoft Access database named Employees. The database
contains one table, which is named tblEmploy. The table data is shown in Figure 13-5. The table
contains seven fields and 17 records. The Emp_Number field is the primary key because it
uniquely identifies each record in the table. The Status field contains the employment status,
which is either the letter F (for full-time) or the letter P (for part-time). The Code field
identifies the employee’s department: 1 for Accounting, 2 for Advertising, 3 for Personnel, and 4
for Inventory.

Before an application can access the data stored in a database, it needs to be connected
to the database. You can make the connection using the Data Source Configuration Wizard.
The wizard allows you to specify the data you want to access. The computer makes a copy of
the specified data and stores the copy in its internal memory. The copy of the data you want
to access is called a dataset. In the following set of steps, you will connect the Morgan Industries
application to the Employees database.

To connect the Morgan Industries application to the Employees database:

1. If necessary, start Visual Studio 2012. Open the Morgan Industries Solution (Morgan
Industries Solution.sln) file contained in the VB2012\Chap13\Morgan Industries
Solution–DataGridView folder. If necessary, open the designer window.

2. Auto-hide the Properties and Toolbox windows, and permanently display the
Solution Explorer window.

3. If necessary, click VIEW on the menu bar, point to Other Windows, and then click
Data Sources to open the Data Sources window. If necessary, click the Auto Hide
button to permanently display the Data Sources window.

4. Click Add New Data Source in the Data Sources window to start the Data Source
Configuration Wizard. If necessary, click Database on the Choose a Data Source
Type screen. See Figure 13-6. (If you want to display the Wizard’s access keys, press the
Alt key.)

field names

records

Figure 13-5 Data contained in the tblEmploy table

START HERE

CH A P T E R 1 3 Working with Access Databases and LINQ

768

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

5. Click the Next button to display the Choose a Database Model screen. If necessary,
click Dataset.

6. Click the Next button to display the Choose Your Data Connection screen. Click the
New Connection button to open the Add Connection dialog box. If Microsoft Access
Database File (OLE DB) does not appear in the Data source box, click the Change
button to open the Change Data Source dialog box, click Microsoft Access Database
File, and then click the OK button.

7. Click the Browse button in the Add Connection dialog box to open the Select Microsoft
Access Database File dialog box. Open the VB2012\Chap13\Access Databases folder
and then click Employees.accdb in the list of filenames. Click the Open button.
Figure 13-7 shows the completed Add Connection dialog box.

Figure 13-6 Choose a Data Source Type screen

Connecting an Application to a Microsoft Access Database L E S S ON A

769

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

8. Click the Test Connection button. The “Test connection succeeded.” message appears
in a message box. Close the message box.

9. Click the OK button to close the Add Connection dialog box. Employees.accdb appears
in the Choose Your Data Connection screen. Click the Next button. The message box
shown in Figure 13-8 opens. The message asks whether you want to include the database
file in the current project. By including the file in the current project, you can more
easily copy the application and its database to another computer.

10. Click the Yes button to add the Employees.accdb file to the application’s project folder in
the Solution Explorer window. The Save the Connection String to the Application
Configuration File screen appears next. The name of the connection string,
EmployeesConnectionString, appears on the screen. If necessary, select the Yes, save
the connection as check box.

Figure 13-8 Message regarding copying the database file

your drive letter
might be different

Figure 13-7 Completed Add Connection dialog box

CH A P T E R 1 3 Working with Access Databases and LINQ

770

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

11. Click the Next button to display the Choose Your Database Objects screen. You use this
screen to select the table and/or field objects to include in the dataset, which is
automatically named EmployeesDataSet.

12. Expand the Tables node and then expand the tblEmploy node. In this application, you
need the dataset to include all of the fields in the table. Click the empty box next to
tblEmploy. Doing this selects the table and field check boxes, as shown in Figure 13-9.

13. Click the Finish button. The computer adds the EmployeesDataSet to the Data Sources
and Solution Explorer windows. Expand the tblEmploy node in the Data Sources
window. As shown in Figure 13-10, the dataset contains one table object and seven
field objects.

Previewing the Contents of a Dataset
You can view the fields and records contained in a dataset by right-clicking the dataset’s name in
the Data Sources window and then clicking Preview Data.

name of the
dataset

expand the nodes
by clicking the
small triangles

Figure 13-9 Objects selected in the Choose Your Database Objects screen

table and field
objects in the
dataset database name

Figure 13-10 Result of running the Data Source Configuration Wizard

Connecting an Application to a Microsoft Access Database L E S S ON A

771

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

To view the contents of the EmployeesDataSet:

1. Right-click EmployeesDataSet in the Data Sources window, and then click Preview
Data to open the Preview Data dialog box.

2. Click the Preview button. As Figure 13-11 shows, the EmployeesDataSet contains
17 records (rows), each having seven fields (columns). Notice the information that
appears in the Select an object to preview box in the figure. EmployeesDataSet is the
name of the dataset in the application, and tblEmploy is the name of the table included in
the dataset. Fill and GetData are methods. The Fill method populates an existing table
with data, while the GetData method creates a new table and populates it with data.

3. Click the Close button to close the Preview Data dialog box, and then auto-hide the
Solution Explorer window.

Binding the Objects in a Dataset
For the user to view the contents of a dataset while an application is running, you need to
connect one or more objects in the dataset to one or more controls in the interface. Connecting
an object to a control is called binding, and the connected controls are called bound controls.
As indicated in Figure 13-12, you can bind the object either to a control that the computer
creates for you or to an existing control in the interface. First, you will learn how to have the
computer create a bound control.

Select an object
to preview box

indicates the number
of columns (fields)
and rows (records)
in the dataset

Figure 13-11 Data displayed in the Preview Data dialog box

START HERE

Bound controls
are also referred
to as data-aware
controls.

CH A P T E R 1 3 Working with Access Databases and LINQ

772

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Binding an Object in a Dataset

To have the computer create a control and then bind an object to it:

In the Data Sources window, click the object you want to bind. If necessary, use the object’s list
arrow to change the control type. Drag the object to an empty area on the form and then release the
mouse button.

To bind an object to an existing control:

In the Data Sources window, click the object you want to bind. Drag the object to the control on the form
and then release the mouse button. Alternatively, you can click the control on the form and then use the
Properties window to set the appropriate property or properties. (Refer to the Binding to an Existing

Control section later in this lesson.)

Figure 13-12 Ways to bind an object in a dataset
© 2013 Cengage Learning

Having the Computer Create a Bound Control
When you drag an object from a dataset to an empty area on the form, the computer creates a
control and automatically binds the object to it. The icon that appears before the object’s name
in the Data Sources window indicates the type of control the computer will create. For example,
the icon next to tblEmploy in Figure 13-13 indicates that a DataGridView control will be created
when you drag the tblEmploy table object to the form. A DataGridView control displays the
table data in a row and column format, similar to a spreadsheet. You will learn more about the
DataGridView control in the next section. The icon next to each of the seven field objects,
on the other hand, indicates that the computer creates a text box when a field object is dragged
to the form.

When an object is selected in the Data Sources window, you can use the list arrow that appears
next to the object’s name to change the type of control the computer creates. For example, to
display the table data in separate text boxes rather than in a DataGridView control, you click
tblEmploy in the Data Sources window and then click the tblEmploy list arrow, as shown in
Figure 13-14. Clicking Details in the list tells the computer to create a separate control for each
field in the table.

indicates a DataGridView control

indicates a
TextBox control

Figure 13-13 Icons in the Data Sources window

Binding the Objects in a Dataset L E S S ON A

773

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Similarly, to display the Last_Name field’s data in a label control rather than in a text box, you
first click Last_Name in the Data Sources window. You then click the field’s list arrow, as shown
in Figure 13-15, and then click Label in the list.

In the following set of steps, you will drag the tblEmploy object from the Data Sources window
to the form, using the default control type for a table.

To bind the tblEmploy object to a DataGridView control:

1. If necessary, click tblEmploy in the Data Sources window to select the tblEmploy object.
Drag the tblEmploy object from the Data Sources window to the form and then release
the mouse button. The computer adds a DataGridView control to the form, and it
binds the tblEmploy object to the control. See Figure 13-16.

Figure 13-15 Result of clicking the Last_Name object’s list arrow

Figure 13-14 Result of clicking the tblEmploy object’s list arrow

START HERE

CH A P T E R 1 3 Working with Access Databases and LINQ

774

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

As Figure 13-16 shows, besides adding a DataGridView control to the form, the computer
also adds a BindingNavigator control. When an application is running, you can use the
BindingNavigator control to move from one record to the next in the dataset, as well as to add
or delete a record and save any changes made to the dataset. The computer also places five
objects in the component tray: a DataSet, BindingSource, TableAdapter, TableAdapterManager,
and BindingNavigator. As you learned in Chapter 1, the component tray stores objects that do
not appear in the user interface while an application is running. An exception to this is the
BindingNavigator object, which appears as the BindingNavigator control during both design
time and run time.

The TableAdapter object connects the database to the DataSet object, which stores the
information you want to access from the database. The TableAdapter is responsible for
retrieving the appropriate information from the database and storing it in the DataSet. It also
can be used to save to the database any changes made to the data contained in the DataSet.
However, in most cases, you will use the TableAdapterManager object to save the changes
because it can handle saving data to multiple tables in the DataSet.

The BindingSource object provides the connection between the DataSet and the bound controls
on the form. The TblEmployBindingSource in Figure 13-16, for example, connects the
EmployeesDataSet to two bound controls: a DataGridView control and a BindingNavigator
control. The TblEmployBindingSource allows the DataGridView control to display the data
contained in the EmployeesDataSet. It also allows the BindingNavigator control to access the
records stored in the EmployeesDataSet. Figure 13-17 illustrates the relationships among
the database, the objects in the component tray, and the bound controls on the form.

BindingNavigator
control

DataGridView
control

component
tray

Figure 13-16 Result of dragging the table object to the form

Binding the Objects in a Dataset L E S S ON A

775

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

If a table object’s control type is changed from DataGridView to Details, the computer
automatically provides the appropriate controls (such as text boxes, labels, and so on) when
you drag the table object to the form. It also adds the BindingNavigator control to the form and
the five objects to the component tray. The appropriate controls and objects are also
automatically included when you drag a field object to an empty area on the form.

The DataGridView Control
The DataGridView control is one of the most popular controls for displaying table data because
it allows you to view a great deal of information at the same time. The control displays the data
in a row and column format, similar to a spreadsheet. Each row represents a record, and each
column represents a field. The intersection of a row and column in a DataGridView control is
called a cell.

Like the PictureBox control, the DataGridView control has a task list. The task list is shown in
Figure 13-18 along with a description of each task.

DataSet

Database bound controls
on the form

BindingSourceTab
leA

dap
ter

Tab
leA

dap
ter

M
an

ag
er

Figure 13-17 Illustration of the relationships among the database, the objects in the component tray,
and the bound controls
© 2013 Cengage Learning

CH A P T E R 1 3 Working with Access Databases and LINQ

776

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Figure 13-19 shows the Edit Columns dialog box, which opens when you click Edit Columns on
the DataGridView control’s task list. You can use the Edit Columns dialog box during design
time to add columns to the control, remove columns from the control, and reorder the columns.
You also can use it to set the properties of the bound columns. For example, you can use a
column’s DefaultCellStyle property to format the column’s data, and also to change the
column’s width and alignment. You can use a column’s HeaderText property, on the other hand,
to change a column’s heading.

Task
Choose Data Source
Edit Columns
Add Column
Enable Adding
Enable Editing
Enable Deleting
Enable Column Reordering
Dock in Parent Container
Add Query
Preview Data

Purpose
select a data source
open the Edit Columns dialog box
add a new column
allow/disallow the user to add data
allow/disallow the user to edit data
allow/disallow the user to delete data
allow/disallow the user to reorder the columns
bind the borders of the control to its container
filter data from a dataset
view the data bound to the control

task box

Figure 13-18 DataGridView control’s task list
© 2013 Cengage Learning

Binding the Objects in a Dataset L E S S ON A

777

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Some properties of a DataGridView control are listed only in the Properties window. One such
property is AutoSizeColumnsMode. The AutoSizeColumnsMode property has seven different
settings that determine the way the column widths are sized in the DataGridView control. The
Fill setting automatically adjusts the column widths so that all of the columns exactly fill the
display area of the control. The ColumnHeader setting, on the other hand, automatically adjusts
the column widths based on the header text.

To improve the appearance of the DataGridView control:

1. Temporarily display the Properties window. Click AutoSizeColumnsMode in the
Properties list and then set the property to Fill.

2. Click the TblEmployDataGridView control to close the Properties window.
Now, click the control’s task box and then click Dock in Parent Container.
The DataGridView control expands to the size of the form. This is because the Dock
in Parent Container option anchors the control’s borders to the borders of its
container, which (in this case) is the form.

3. Next, you will change the header text on several of the columns. Click Edit Columns
in the task list. Click the Alphabetical button (shown earlier in Figure 13-19) to display
the property names in alphabetical order. Emp_Number is currently selected in the
Selected Columns list. Click HeaderText in the Bound Column Properties list and then
type Employee Number and press Enter.

4. Click Last_Name in the Selected Columns list and then change the HeaderText
property to Last Name. On your own, change the First_Name column’s HeaderText
property to First Name. Also change the Rate column’s HeaderText property to
Pay Rate.

5. Now you will have the DataGridView control format the pay rates to show two decimal
places. With Pay Rate selected in the Selected Columns list, click DefaultCellStyle
and then click the … (ellipsis) button to open the CellStyle Builder dialog box. Click
Format and then click the … (ellipsis) button to open the Format String Dialog box.
Click Numeric in the Format type list and then verify that the number 2 appears in the
Decimal places box. See Figure 13-20.

use these buttons
to reorder the
columns

Alphabetical
button

use the scroll box to
view the remaining
properties for the
selected column

Figure 13-19 Edit Columns dialog box

START HERE

CH A P T E R 1 3 Working with Access Databases and LINQ

778

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

6. Click the OK button to close the Format String Dialog box. You are returned to the
CellStyle Builder dialog box.

7. Next, you will have the DataGridView control align the pay rates in the Pay Rate column.
Click Alignment and then set the property to MiddleRight. See Figure 13-21.

Figure 13-20 Completed Format String Dialog box

Binding the Objects in a Dataset L E S S ON A

779

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

8. Click the OK button to close the CellStyle Builder dialog box and then click the OK
button to close the Edit Columns dialog box.

9. Click the DataGridView control to close its task list. Auto-hide the Data Sources
window, and then save the solution.

Figure 13-22 shows the DataGridView control after completing the previous set of steps. You
won’t see the effect of the formatting and aligning the pay rates until the application is started.

Figure 13-22 DataGridView control after setting some of its properties

Format property

Alignment property

Figure 13-21 Completed CellStyle Builder dialog box

CH A P T E R 1 3 Working with Access Databases and LINQ

780

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Visual Basic Code
In addition to adding the appropriate controls and objects to the application when a table
or field object is dragged to the form, the computer also enters some code in the Code
Editor window.

To view the code automatically entered in the Code Editor window:

1. Open the Code Editor window. Replace <your name> and <current date> in the
comments with your name and the current date, respectively.

2. The two procedures shown in Figure 13-23 were automatically entered when the
tblEmploy object was dragged to the form. (In your Code Editor window, the first
procedure header and also the comments in the second procedure will appear on
one line.)

The form’s Load event procedure uses the TableAdapter object’s Fill method to retrieve the data
from the database and store it in the DataSet object. In most applications, the code to fill a
dataset belongs in the form’s Load event procedure. However, as the comments in the
procedure indicate, you can either move or delete the code.

The TblEmployBindingNavigatorSaveItem_Click procedure is processed when you click the
Save Data button (the disk) on the BindingNavigator control. The procedure’s code validates the
changes made to the data before saving the data to the database. Two methods are involved in
the save operation: the BindingSource object’s EndEdit method and the TableAdapterManager’s
UpdateAll method. The EndEdit method applies any pending changes (such as new records,
deleted records, or changed records) to the dataset. The UpdateAll method commits the dataset
changes to the database. Because it is possible for an error to occur when saving data to a
database, you should add error handling code to the Save Data button’s Click event procedure.

Handling Errors in the Code
An error that occurs while an application is running is called an exception. If your code does not
contain specific instructions for handling the exceptions that may occur, Visual Basic handles
them for you. Typically, it does this by displaying an error message and then abruptly
terminating the application. You can prevent your application from behaving in such an
unfriendly manner by taking control of the exception handling in your code; you can do this
using the Try…Catch statement.

Figure 13-24 shows the basic syntax of the Try…Catch statement and includes examples of
using the syntax. The basic syntax contains a Try block and a Catch block. Within the Try block
you place the code that could possibly generate an exception. When an exception occurs in the
Try block’s code, the computer processes the code contained in the Catch block; it then skips to

Figure 13-23 Code automatically entered in the Code Editor window

START HERE

As you learned in
Chapter 1, the
keyword Me
refers to the
current form.

When an error
occurs in
a procedure’s
code during
run time,

programmers say that
the procedure “threw an
exception.”

Visual Basic Code L E S S ON A

781

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

the code following the End Try clause. A description of the exception that occurred is stored
in the Message property of the Catch block’s ex parameter. You can access the description
using the code ex.Message, as shown in Example 2 in the figure.

To include a Try…Catch statement in the Save Data button’s Click event procedure:

1. Insert two blank lines above the Me.Validate() statement in the
TblEmployBindingNavigatorSaveItem_Click procedure.

2. In the blank line above the Me.Validate() statement, type Try and press Enter. The Code
Editor automatically enters the Catch ex As Exception and End Try clauses for you.

3. Select (highlight) the three statements that appear below the End Try clause, and also
the blank line below the statements. Press Ctrl+x to place the selected lines on the
Clipboard. Click the blank line below the Try clause and then press Ctrl+v.

Try…Catch Statement

Basic syntax
Try

one or more statements that might generate an exception
Catch ex As Exception

one or more statements to execute when an exception occurs
End Try

Example 1
Private Sub btnDisplay_Click(sender As Object,
e As EventArgs) Handles btnDisplay.Click

Dim inFile As IO.StreamReader
Dim strLine As String

Try
inFile = IO.File.OpenText("names.txt")
Do Until inFile.Peek = -1

strLine = inFile.ReadLine
lstNames.Items.Add(strLine)

Loop
inFile.Close()

Catch ex As Exception
MessageBox.Show("File error", "JK's",

MessageBoxButtons.OK,
MessageBoxIcon.Information)

End Try
End Sub

Example 2
Private Sub TblSalesBindingNavigatorSaveItem_Click(
sender As Object, e As EventArgs
) Handles TblSalesBindingNavigatorSaveItem.Click

Try
Me.Validate()
Me.TblSalesBindingSource.EndEdit()
Me.TableAdapterManager.UpdateAll(Me.SalesDataSet)

Catch ex As Exception
MessageBox.Show(ex.Message, "Sales Data",

MessageBoxButtons.OK,
MessageBoxIcon.Information)

End Try
End Sub

Figure 13-24 Basic syntax and examples of the Try…Catch statement
© 2013 Cengage Learning

The Try…Catch
statement also
has a Finally
block. The code
in the Finally

block is processed
whether or not an
exception is thrown
within the Try block.

START HERE

CH A P T E R 1 3 Working with Access Databases and LINQ

782

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

4. If the three statements in the Try block do not produce (throw) an exception, the Try
block should display the “Changes saved” message; otherwise, the Catch block should
display a description of the exception. Enter the two MessageBox.Show methods
indicated in Figure 13-25.

5. Save the solution and then start the application. The statement in the form’s Load event
procedure (shown earlier in Figure 13-23) retrieves the appropriate data from the
Employees database and loads the data into the EmployeesDataSet. The data is displayed
in the DataGridView control, which is bound to the tblEmploy table contained in the
dataset. See Figure 13-26.

6. You can use the arrow keys on your keyboard to move the highlight to a different cell in
the DataGridView control. When a cell is highlighted, you can modify its contents by
simply typing the new data. Press the fl key to move the highlight to the next record, and
then press the fi key to move it to the next field.

7. The BindingNavigator control provides buttons for accessing the first, last, previous, and
next records in the dataset. When you rest your mouse pointer on one of these buttons,

TblEmployBindingNavigator
control

TblEmployDataGridView
control

Figure 13-26 Dataset displayed in the DataGridView control

enter this
MessageBox.Show
method

enter this
MessageBox.Show
method

Figure 13-25 Completed Click event procedure for the Save Data button

Visual Basic Code L E S S ON A

783

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

a tooltip appears and indicates the button’s purpose. Rest your mouse pointer on the
Move last button, as shown in Figure 13-27.

8. Click the Move last button to move the highlight to the last record, and then click the
Move first button to move the highlight to the first record.

9. You can also use the BindingNavigator control to access a record by its record number.
The records are numbered 1, 2, 3, and so on. Click the Current position box, which
contains the number 1. Replace the 1 with a 6 and then press Enter. The highlight
moves to the record for employee number 105, which is the sixth record.

10. Click the Close button on the form’s title bar to stop the application.

The BindingNavigator control also provides buttons for adding a new record to the dataset,
deleting a record from the dataset, and saving the changes made to the dataset. You can add
additional items (such as buttons and text boxes) to a BindingNavigator control and also delete
items from the control. You will learn how to add items to and delete items from a
BindingNavigator control in the Customizing a BindingNavigator Control section in Lesson B.

The Copy to Output Directory Property
When the Data Source Configuration Wizard connected the Morgan Industries application to
the Employees database, it added the database file (Employees.accdb) to the application’s project
folder. (You can verify this in the Solution Explorer window.) A database file contained in a
project is referred to as a local database file. The way Visual Basic saves changes to a local
database file is determined by the file’s Copy to Output Directory property. Figure 13-28 lists the
values that can be assigned to the property.

Copy to Output Directory Property
Property setting Meaning
Do not copy the file in the project folder is not copied to the bin\Debug folder when the

application is started
Copy always the file in the project folder is copied to the bin\Debug folder each time the

application is started
Copy if newer when an application is started, the computer compares the date on the file in

the project folder with the date on the file in the bin\Debug folder; the file from
the project folder is copied to the bin\Debug folder only when its date is newer

Figure 13-28 Settings for the Copy to Output Directory property
© 2013 Cengage Learning

Move first Move previous Move next

Figure 13-27 Tooltip for the Move last button

CH A P T E R 1 3 Working with Access Databases and LINQ

784

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

When a file’s Copy to Output Directory property is set to its default setting, Copy always, the file
is copied from the project folder to the project folder’s bin\Debug folder each time you start the
application. In this case, the Employees.accdb file is copied from the Morgan Industries Project
folder to the Morgan Industries Project\bin\Debug folder. As a result, the file will appear in two
different folders in the solution. When you click the Save Data button on the BindingNavigator
control, any changes made in the DataGridView control are recorded only in the file stored in
the bin\Debug folder; the file stored in the project folder is not changed. The next time you start
the application, the file in the project folder is copied to the bin\Debug folder, overwriting the
file that contains the changes. You can change this behavior by setting the database file’s Copy to
Output Directory property to Copy if newer. The Copy if newer setting tells the computer to
compare the dates on both files to determine which file has the newer (more current) date. If the
database file in the project folder has the newer date, the computer should copy it to the bin\
Debug folder; otherwise, it shouldn’t copy it.

To change the Employees.accdb file’s Copy to Output Directory property:

1. Temporarily display the Solution Explorer window. Right-click Employees.accdb and
then click Properties. Change the Employees.accdb file’s Copy to Output Directory
property to Copy if newer.

2. Save the solution and then start the application.

3. Click the Add new button (the plus sign) to add a new record to the end of the
DataGridView control. Type 117 as the employee number, press Tab, and then type
Horowitz as the last name. Press Tab and then type Penny as the first name. Now,
enter 8/9/2012, 10, P, and 3 in the Hired, Pay Rate, Status, and Code fields, respectively.
Press Enter after typing the number 3.

4. Click the Move first button to move the highlight to the Code field in the first record.
When a cell is highlighted, you can modify its existing data by simply typing the new
data. Type 3 and press Enter to change the entry in Jack Benton’s Code field.

5. Click the Save Data button (the disk). The “Changes saved” message appears in a
message box. Close the message box, and then click the Close button on the form’s title
bar to stop the application.

6. Start the application again. The DataGridView control contains the change you made to
Jack Benton’s Code field. Scroll down the control to verify that it contains the record you
added.

7. Click 117 in the Employee Number field and then click the Delete button (the X) to
delete the record. Now, click the Move first button to move the highlight to the first
record, and then change Jack Benton’s Code field from 3 to 2.

8. Click the Save Data button. The “Changes saved” message appears in a message box.
Close the message box, and then click the Close button on the form’s title bar to stop
the application.

9. Start the application again to verify that your changes were saved, and then stop the
application. Close the Code Editor window and then close the solution.

START HERE

The Copy to Output Directory Property L E S S ON A

785

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

YOU DO IT 1!

Create a Visual Basic Windows application named YouDoIt 1. Save the application in the
VB2012\Chap13 folder. Connect the application to the CD database. The database is
stored in the CD.accdb file, which is contained in the VB2012\Chap13\Access Databases
folder. The database contains one table named tblCds. The table contains 13 records.
Each record contains three fields: CdName, Artist, and Price. Display the records in a
DataGridView control. Include the Try…Catch statement in the Save Data button’s Click
event procedure. Also, change the database file's Copy to Output Directory property
appropriately. Save the solution and then start and test the application. Close the Code
Editor window and then close the solution.

Binding to an Existing Control
As indicated earlier in Figure 13-12, you can bind an object in a dataset to an existing control on
a form. The easiest way to do this is by dragging the object from the Data Sources window to the
control. However, you also can click the control and then set one or more properties in the
Properties window. The appropriate property (or properties) to set depends on the control you
are binding. For example, you use the DataSource property to bind a DataGridView control.
However, you use the DataSource and DisplayMember properties to bind a ListBox control.
To bind label and text box controls, you use the DataBindings/Text property.

When you drag an object from the Data Sources window to an existing control, the
computer does not create a new control; instead, it binds the object to the existing control.
Because a new control does not need to be created, the computer ignores the control type
specified for the object in the Data Sources window. Therefore, it is not necessary to change the
control type in the Data Sources window to match the existing control’s type. In other words,
you can drag an object that is associated with a text box in the Data Sources window to a label
control on the form. The computer will bind the object to the label, but it will not change the
label to a text box.

In the next set of steps, you will open a different version of the Morgan Industries application.
You will connect the application to the Employees database and then begin binding objects from
the dataset to existing label controls in the interface. In this version of the application, you will
not need to change the database file’s Copy to Output Directory property to Copy if newer
because the user will not be adding, deleting, or editing the records in the dataset.

To connect an application to a database and then bind an object to an
existing control:

1. Open the Morgan Industries Solution (Morgan Industries Solution.sln) file contained in
the VB2012\Chap13\Morgan Industries Solution–Labels folder. If necessary, open the
designer window. See Figure 13-29.

START HERE

CH A P T E R 1 3 Working with Access Databases and LINQ

786

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

2. Permanently display the Data Sources window and then click Add New Data Source to
start the Data Source Configuration Wizard. If necessary, click Database on the Choose
a Data Source Type screen.

3. Click the Next button to display the Choose a Database Model screen. If necessary,
click Dataset.

4. Click the Next button to display the Choose Your Data Connection screen. Click the
New Connection button to open the Add Connection dialog box. If Microsoft Access
Database File (OLE DB) does not appear in the Data source box, click the Change
button to open the Change Data Source dialog box, click Microsoft Access Database
File, and then click the OK button.

5. Click the Browse button in the Add Connection dialog box. Open the VB2012\Chap13\
Access Databases folder and then click Employees.accdb in the list of filenames. Click
the Open button. Click the Test Connection button in the Add Connection dialog
box. The “Test connection succeeded.” message appears in a message box. Close the
message box.

6. Click the OK button to close the Add Connection dialog box. Click the Next button on
the Choose Your Data Connection screen and then click the Yes button to add the
Employees.accdb file to the application’s project folder.

7. If necessary, select the Yes, save the connection as check box on the Save the
Connection String to the Application Configuration File screen. Click the Next button
to display the Choose Your Database Objects screen.

8. Expand the Tables node and then expand the tblEmploy node. In this application, you
will include only four fields in the dataset. Click the empty box that appears next to each
of the following four field names: Emp_Number, Last_Name, Status, and Code. Click the
Finish button. The computer adds the EmployeesDataSet to the Data Sources window.
Expand the tblEmploy node in the Data Sources window. The dataset contains one table
object and four field objects.

9. Click Emp_Number in the Data Sources window and then drag the field object to the
lblNumber control. Release the mouse button. The computer binds the control and adds
the DataSet, BindingSource, TableAdapter, and TableAdapterManager objects to the
component tray. See Figure 13-30.

lblNumber

lblLastName lblStatus lblCode

Figure 13-29 A different version of the Morgan Industries application

Binding to an Existing Control L E S S ON A

787

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Notice that when you drag an object from the Data Sources window to an existing control, the
computer does not add a BindingNavigator object to the component tray, nor does it add a
BindingNavigator control to the form. You can use the BindingNavigator tool, which is located
in the Data section of the toolbox, to add a BindingNavigator control and object to the
application. You then would set the control’s DataSource property to the name of the
BindingSource object (in this case, TblEmployBindingSource).

Besides adding the objects shown in Figure 13-30 to the component tray, the computer also
enters (in the Code Editor window) the Load event procedure shown earlier in Figure 13-23.
Recall that the procedure uses the TableAdapter object’s Fill method to retrieve the data from
the database and store it in the DataSet object.

To bind the remaining objects in the dataset to existing controls:

1. On your own, drag the Last_Name, Status, and Code field objects to the lblLastName,
lblStatus, and lblCode controls, respectively.

2. Auto-hide the Data Sources window and then save the solution. Start the application.
Only the first record in the dataset appears in the interface. See Figure 13-31.

3. Because the interface does not contain a BindingNavigator control, which would
allow you to move from one record to the next, you will need to code the Next Record
and Previous Record buttons to view the remaining records. Click the Exit button to
stop the application.

you can use the
Alt key to show/hide
the access keys

Figure 13-31 First record displayed in the interface

START HERE

dataset in this
version of the
application

label bound to
the Emp_Number
field

Figure 13-30 Result of binding a field to an existing control

CH A P T E R 1 3 Working with Access Databases and LINQ

788

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Coding the Next Record and Previous Record Buttons
The BindingSource object uses an invisible record pointer to keep track of the current record in
the dataset. It stores the position of the record pointer in its Position property. The first record
is in position 0, the second is in position 1, and so on. Figure 13-32 shows the Position property’s
syntax and includes examples of using the property.

Rather than using the Position property to position the record pointer in a dataset, you can use
the BindingSource object’s Move methods. The Move methods move the record pointer to the
first, last, next, or previous record in the dataset. Figure 13-33 shows each Move method’s
syntax and includes examples of using two of the methods.

BindingSource Object’s Move Methods
Syntax
bindingSourceName.MoveFirst()
bindingSourceName.MoveLast()
bindingSourceName.MoveNext()
bindingSourceName.MovePrevious()

Example 1
TblEmployBindingSource.MoveFirst()
moves the record pointer to the first record in the dataset

Example 2
TblEmployBindingSource.MoveNext()
moves the record pointer to the next record in the dataset

Figure 13-33 Syntax and examples of the BindingSource object’s Move methods
© 2013 Cengage Learning

BindingSource Object’s Position Property
Syntax
bindingSourceName.Position

Example 1
intRecordNum = TblEmployBindingSource.Position
assigns the current record’s position to the intRecordNum variable

Example 2
TblEmployBindingSource.Position = 4
moves the record pointer to the fifth record in the dataset

Example 3
TblEmployBindingSource.Position += 1
moves the record pointer to the next record in the dataset

Figure 13-32 Syntax and examples of the BindingSource object’s Position property
© 2013 Cengage Learning

Coding the Next Record and Previous Record Buttons L E S S ON A

789

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

To code the Next Record and Previous Record buttons, and then test the code:

1. Open the Code Editor window. Replace <your name> and <current date> in the
comments with your name and the current date, respectively.

2. When the user clicks the Next Record button, the button’s Click event procedure
should move the record pointer to the next record in the dataset. Similarly, when the
user clicks the Previous Record button, the button’s Click event procedure should
move the record pointer to the previous record in the dataset. Open the code templates
for the btnNext_Click and btnPrevious_Click procedures. Enter the comments and
Move methods shown in Figure 13-34.

3. Save the solution and then start the application. Click the Next Record button to display
the second record. Continue clicking the Next Record button until the last record
appears in the interface.

4. Click the Previous Record button until the first record appears in the interface, and
then click the Exit button. Close the Code Editor window and then close the solution.

YOU DO IT 2!

Create a Visual Basic Windows application named YouDoIt 2. Save the application in the
VB2012\Chap13 folder. Add three labels and two buttons to the form. Connect the
application to the CD database. The database is stored in the CD.accdb file, which is
contained in the VB2012\Chap13\Access Databases folder. The database contains one
table named tblCds. The table contains 13 records. Each record contains three fields:
CdName, Artist, and Price. Display the records, one at a time, in the labels. Use the
buttons to display the next and previous records. Save the solution and then start and
test the application. Close the Code Editor window and then close the solution.

Lesson A Summary
l To connect an application to a database:

Use the Data Source Configuration Wizard. To start the wizard, open the Data Sources
window by clicking VIEW on the menu bar, pointing to Other Windows, and then clicking
Data Sources. Then, click Add New Data Source in the Data Sources window.

START HERE

enter this comment
and Move method

enter this comment
and Move method

Figure 13-34 btnNext_Click and btnPrevious_Click procedures

CH A P T E R 1 3 Working with Access Databases and LINQ

790

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

l To preview the data contained in a dataset:

Right-click the dataset’s name in the Data Sources window, click Preview Data, and then
click the Preview button in the Preview Data dialog box.

l To have the computer create a control and then bind an object to it:

In the Data Sources window, click the object you want to bind. If necessary, use the object’s
list arrow to change the control type. Drag the object to an empty area on the form and then
release the mouse button.

l To bind an object to an existing control:

In the Data Sources window, click the object you want to bind. Drag the object to the control
on the form and then release the mouse button. Alternatively, you can click the control on
the form and then use the Properties window to set the appropriate property or properties.
(Refer to the Binding to an Existing Control section in this lesson.)

l To have the columns exactly fill the display area in a DataGridView control:

Set the DataGridView control’s AutoSizeColumnsMode property to Fill.

l To anchor the DataGridView control to the borders of its container:

Click the Dock in Parent Container option in the DataGridView control’s task list. You can
also set the DataGridView control’s Dock property in the Properties window.

l To handle exceptions (errors) that occur during run time:

Use the Try…Catch statement.

l To move the record pointer in a dataset during run time:

You can use a BindingNavigator control. You also can use either the BindingSource object’s
Position property or one of its Move methods.

Lesson A Key Terms
AutoSizeColumnsMode property—determines the way the column widths are sized in a
DataGridView control

Binding—the process of connecting an object in a dataset to a control on a form

BindingNavigator control—can be used to add, delete, and save records and also to move the
record pointer from one record to another in a dataset

BindingSource object—connects a DataSet object to the bound controls on a form

Bound controls—the controls connected to an object in a dataset

Cell—the intersection of a row and column in a DataGridView control

Child table—a table linked to a parent table

Computer database—an electronic file that contains an organized collection of related
information

Copy to Output Directory property—a property of a database file; determines when and if the file
is copied from the project folder to the project folder’s bin\Debug folder

DataGridView control—displays data in a row and column format

Dataset—a copy of the data (database fields and records) that can be accessed by an application

DataSet object—stores the information you want to access from a database

Exception—an error that occurs while an application is running

Field—a single item of information about a person, place, or thing

Lesson A Key Terms L E S S ON A

791

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Foreign key—the field used to link a child table to a parent table

Move methods—methods of a BindingSource object; used to move the record pointer to the
first, last, next, or previous record in a dataset

Parent table—a table linked to a child table

Position property—a property of a BindingSource object; stores the position of the record
pointer

Primary key—a field that uniquely identifies each record in a table

Record—a group of related fields that contain all of the necessary data about a specific person,
place, or thing

Relational database—a database that stores information in tables composed of columns (fields)
and rows (records)

Table—a group of related records

TableAdapter object—connects a database to a DataSet object

TableAdapterManager object—handles saving data to multiple tables in a dataset

Try…Catch statement—used for exception handling in a procedure

Lesson A Review Questions
1. Which of the following objects connects a database to a DataSet object?

a. BindingSource

b. DataBase

c. DataGridView

d. TableAdapter

2. The property stores an integer that represents the location of the
record pointer in a dataset.

a. BindingNavigator object’s Position

b. BindingSource object’s Position

c. TableAdapter object’s Position

d. none of the above

3. If the record pointer is positioned on record number 7 in a dataset, which of the
following will move the record pointer to record number 8?

a. TblBooksBindingSource.GoNext()

b. TblBooksBindingSource.Move(8)

c. TblBooksBindingSource.MoveNext()

d. TblBooksBindingSource.PositionNext

4. A is an organized collection of related information stored in a
computer file.

a. database

b. dataset

c. field

d. record

CH A P T E R 1 3 Working with Access Databases and LINQ

792

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

5. The information in a database is stored in tables.

a. columnar

b. relational

c. sorted

d. tabular

6. Which of the following objects provides the connection between a DataSet object and a
control on a form?

a. Bound

b. Binding

c. BindingSource

d. Connecting

7. Which of the following statements retrieves data from the Friends database and stores it
in the FriendsDataSet?

a. Me.FriendsDataSet.Fill(Friends.accdb)

b. Me.TblNamesBindingSource.Fill(Me.FriendsDataSet)

c. Me.TblNamesBindingNavigator.Fill(Me.FriendsDataSet.tblNames)

d. Me.TblNamesTableAdapter.Fill(Me.FriendsDataSet.tblNames)

8. If an application contains the Catch ex As Exception clause, which of the following can
be used to access the exception’s description?

a. ex.Description

b. ex.Exception

c. ex.Message

d. Exception.Description

9. If the current record is the ninth record in a dataset that contains 10 records, which of
the following statements will position the record pointer on the tenth record?

a. TblEmployBindingSource.Position = 9

b. TblEmployBindingSource.Position =
TblEmployBindingSource.Position + 1

c. TblEmployBindingSource.MoveLast()

d. all of the above

10. The field that links a child table to a parent table is called the .

a. foreign key in the child table

b. foreign key in the parent table

c. link key in the parent table

d. primary key in the child table

11. The process of connecting a control to an object in a dataset is called .

a. assigning

b. binding

c. joining

d. none of the above

Lesson A Review Questions L E S S ON A

793

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

12. Which of the following is true?

a. Data stored in a relational database can be retrieved both quickly and easily by the
computer.

b. Data stored in a relational database can be displayed in any order.

c. A relational database stores data in a column and row format.

d. all of the above

Lesson A Exercises

1. In this exercise, you modify one of the Morgan Industries applications from the lesson.
Use Windows to make a copy of the Morgan Industries Solution–Labels folder. Rename
the copy Modified Morgan Industries Solution–Labels. Open the Morgan Industries
Solution (Morgan Industries Solution.sln) file contained in the Modified Morgan
Industries Solution–Labels folder. Open the designer window. Modify the Next Record
and Previous Record buttons’ Click event procedures to use the Position property rather
than the MoveNext and MovePrevious methods. Save the solution and then start and test
the application. Close the Code Editor window and then close the solution.

2. Sydney Industries records the item number, name, and price of each of its products in a
database named Products. The Products database is stored in the VB2012\Chap13\
Access Databases\Products.accdb file. The database contains a table named tblProducts.
The table contains 10 records, each composed of three fields. The ItemNum and
ItemName fields contain text; the Price field contains numbers. Open the Sydney
Solution (Sydney Solution.sln) file contained in the VB2012\Chap13\Sydney Solution–
DataGridView folder. If necessary, open the designer window. Connect the application to
the Products database. Change the database file’s Copy to Output Directory property to
Copy if newer. Bind the table to a DataGridView control and then make the necessary
modifications to the control. Open the Code Editor window and enter the Try…Catch
statement in the Save Data button’s Click event procedure. Include appropriate messages.
Save the solution and then start and test the application. Close the Code Editor window
and then close the solution.

3. Sydney Industries records the item number, name, and price of each of its products in a
database named Products. The Products database is stored in the VB2012\Chap13\
Access Databases\Products.accdb file. The database contains a table named tblProducts.
The table contains 10 records, each composed of three fields. The ItemNum and
ItemName fields contain text; the Price field contains numbers. Open the Sydney
Solution (Sydney Solution.sln) file contained in the VB2012\Chap13\Sydney Solution–
Labels folder. If necessary, open the designer window. Connect the application to the
Products database. Bind the appropriate objects to the existing label controls. Open the
Code Editor window. Code the Click event procedures for the Next Record and Previous
Record buttons. Save the solution and then start and test the application. Close the Code
Editor window and then close the solution.

4. TheMusicBox database is stored in the VB2012\Chap13\Access Databases\MusicBox.accdb
file. The database contains a table named tblBox. The table contains 10 records, each
composed of four text fields. Open the MusicBox Solution (MusicBox Solution.sln) file
contained in the VB2012\Chap13\MusicBox Solution–DataGridView folder. If necessary,
open the designer window. Connect the application to the MusicBox database. Change the
database file’s Copy to Output Directory property to Copy if newer. Bind the table to a
DataGridView control and then make the necessary modifications to the control. Open the
Code Editor window and enter the Try…Catch statement in the Save Data button’s Click
event procedure. Include appropriate messages. Save the solution and then start and test the
application. Close the Code Editor window and then close the solution.

INTRODUCTORY

INTRODUCTORY

INTRODUCTORY

INTRODUCTORY

CH A P T E R 1 3 Working with Access Databases and LINQ

794

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

5. The MusicBox database is stored in the VB2012\Chap13\Access Databases\MusicBox.accdb
file. The database contains a table named tblBox. The table contains 10 records, each
composed of four text fields. Open the MusicBox Solution (MusicBox Solution.sln) file
contained in the VB2012\Chap13\MusicBox Solution–Labels folder. If necessary, open
the designer window. Connect the application to the MusicBox database. Bind the
appropriate objects to the existing label controls. Open the Code Editor window. Code
the Click event procedures for the Next Record and Previous Record buttons. Save the
solution and then start and test the application. Close the Code Editor window and then
close the solution.

6. TheMusicBox database is stored in the VB2012\Chap13\Access Databases\MusicBox.accdb
file. The database contains a table named tblBox. The table contains 10 records, each
composed of four text fields. Open the MusicBox Solution (MusicBox Solution.sln) file
contained in the VB2012\Chap13\MusicBox Solution–ListBox folder. If necessary, open
the designer window. Connect the application to the MusicBox database. Bind the
Shape, Source, and Song field objects to the existing label controls. Then, set the lstId
control’s DataSource and DisplayMember properties to TblMusicBoxBindingSource
and ID, respectively. Save the solution and then start the application. Test the
application by clicking each entry in the list box. Close the solution.

7. In this exercise, you modify one of the Morgan Industries applications from the lesson.

a. Use Windows to make a copy of the Morgan Industries Solution–Labels folder.
Rename the copy Morgan Industries Solution–ListBox. Open the Morgan Industries
Solution (Morgan Industries Solution.sln) file contained in the Morgan Industries
Solution–ListBox folder. Open the designer window.

b. Unlock the controls and then delete the lblNumber control from the form. Also
delete the Previous Record and Next Record buttons and their Click event
procedures. Add a list box to the form. Change the list box’s name to lstNumber.
Assign an access key to the list box. Make any needed modifications to the interface.
Lock the controls and then set the tab order appropriately.

c. Set the lstNumber control’s DataSource and DisplayMember properties
appropriately. Save the solution and then start the application. Test the application
by clicking each entry in the list box. Close the solution.

INTRODUCTORY

INTERMEDIATE

INTERMEDIATE

Lesson A Exercises L E S S ON A

795

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

& LESSON B
After studying Lesson B, you should be able to:

l Query a dataset using LINQ

l Customize a BindingNavigator control

l Use the LINQ aggregate operators

Creating a Query
You can arrange the records stored in a dataset in any order. For example, the records in
the EmployeesDataSet from Lesson A can be arranged by employee number, pay rate,
status, and so on. You can also control the number of records you want to view at any one
time. You can view all of the records in the EmployeesDataSet; or, you can choose to view
only the records for the part-time employees. You use a query to specify both the records
to select in a dataset and the order in which to arrange the records. You can create a query
in Visual Basic 2012 using a language feature called Language Integrated Query or, more
simply, LINQ.

Figure 13-35 shows the basic syntax of LINQ when used to select and arrange records in a
dataset. In the syntax, variableName and elementName can be any names you choose, as
long as the name follows the naming rules for variables. In other words, there is nothing
special about the records and employee names used in the examples. The Where and
Order By clauses are optional parts of the syntax. You use the Where clause, which
contains a condition, to limit the records you want to view. Similar to the condition in the
If…Then…Else and Do…Loop statements, the condition in a Where clause specifies a
requirement that must be met for a record to be selected. The Order By clause is used to
arrange (sort) the records in either ascending (the default) or descending order by one or
more fields.

Using LINQ to Select and Arrange Records in a Dataset

Basic syntax
Dim variableName = From elementName In dataset.table
 [Where condition]
 [Order By elementName.fieldName1 [Ascending | Descending]
 [, elementName.fieldNameN [Ascending | Descending]]]
 Select elementName

Example 1
Dim records = From employee In EmployeesDataSet.tblEmploy
 Select employee
selects all of the records in the dataset

Figure 13-35 Basic LINQ syntax and examples for selecting and arranging records in a dataset (continues)

CH A P T E R 1 3 Working with Access Databases and LINQ

796

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Notice that the syntax shown in Figure 13-35 does not require you to specify the data type
of the variable in the Dim statement. Instead, the syntax allows the computer to infer the
data type from the value being assigned to the variable. However, for this inference to take
place, you must set Option Infer to On (rather than to Off, as you have been doing). You
can do this by entering the Option Infer On statement in the General Declarations section
of the Code Editor window.

Figure 13-35 also includes examples of using the LINQ syntax. The statement in Example 1
selects all of the records in the dataset and assigns the records to the records variable.
The statement in Example 2 performs the same task; however, the records are assigned in
ascending order by the Code field. If you are sorting records in ascending order, you do not
need to include the keyword Ascending in the Order By clause because Ascending is the
default sort order. The statement in Example 3 assigns only the records for part-time
employees to the records variable. The statement in Example 4 uses the Like operator and
the asterisk pattern-matching character to select only records whose Last_Name field begins
with the letter J. (You learned about the Like operator and pattern-matching characters
in Chapter 8.)

The syntax and examples in Figure 13-35 merely assign the selected and/or arranged
records to a variable. To actually view the records, you need to assign the variable’s
contents to the DataSource property of a BindingSource object. The syntax for doing this
is shown in Figure 13-36 along with an example of using the syntax. Any control that is
bound to the BindingSource object will display the appropriate field(s) when the
application is started.

Example 2
Dim records = From employee In EmployeesDataSet.tblEmploy
 OrderBy employee.Code
 Select employee
selects all of the records in the dataset and arranges them in ascending order by the Code field

Example 3
Dim records = From employee In EmployeesDataSet.tblEmploy
 Where employee.Status.ToUpper = "P"
 Select employee
selects only the part-time employee records in the dataset

Example 4
Dim records = From employee In EmployeesDataSet.tblEmploy
 Where employee.Last_Name.ToUpper Like"J*"
 OrderBy employee.Code Descending
 Select employee
selects from the dataset only the employee records whose last name begins with the letter J, and
arranges them in descending order by the Code field

Figure 13-35 Basic LINQ syntax and examples for selecting and arranging records in a dataset
© 2013 Cengage Learning

(continued)

Creating a Query L E S S ON B

797

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

To use LINQ to select specific records in the Morgan Industries application:

1. If necessary, start Visual Studio 2012. Open the Morgan Industries Solution (Morgan
Industries Solution.sln) file contained in the VB2012\Chap13\Morgan Industries
Solution-LINQ folder. If necessary, open the designer window. The Find Last Name
button in the interface will display records whose Last_Name field begins with one or
more characters entered by the user.

2. Open the Code Editor window. Replace <your name> and <current date> in the
comments with your name and the current date, respectively.

3. The btnFind_Click procedure will use LINQ to select the appropriate records.
Therefore, you will change the Option Infer setting from Off to On. Locate the Option
Infer Off statement and then change Off to On. Press the Tab key and then
type ' using LINQ.

4. Locate the btnFind_Click procedure. The procedure uses the InputBox function to
prompt the user either to enter one or more characters or to leave the input area empty.
The user’s response is converted to uppercase and assigned to the strFindName variable.
Click the blank line above the procedure’s End Sub clause.

5. First, you will enter the LINQ statement to select the appropriate records. The condition
in the statement’s Where clause will use the Like operator and the asterisk pattern-
matching character to compare the contents of each record’s Last_Name field with the
user’s entry followed by zero or more characters. Enter the following lines of code:

Dim records = From employee In EmployeesDataSet.tblEmploy
Where employee.Last_Name.ToUpper Like
strFindName & "*"
Select employee

6. Now you will display the contents of the records variable in the DataGridView control.
You do this by assigning the variable to the TblEmployBindingSource object’s
DataSource property. Press Enter to insert another blank line and then enter the
following assignment statement:

TblEmployBindingSource.DataSource = records.AsDataView

Figure 13-37 shows the code entered in the General Declarations section and the btnFind_Click
procedure.

START HERE

Assigning a LINQ Variable’s Contents to a BindingSource Object

Basic syntax
bindingSource.DataSource = variableName.AsDataView

Example
TblEmployBindingSource.DataSource = records.AsDataView
assigns the contents of the records variable (from Figure 13-35) to the
TblEmployBindingSource object

Figure 13-36 Syntax and an example of assigning a LINQ variable’s contents to a BindingSource object
© 2013 Cengage Learning

CH A P T E R 1 3 Working with Access Databases and LINQ

798

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

To test the btnFind_Click procedure:

1. Save the solution and then start the application. The 17 records in the dataset appear in
the DataGridView control.

2. Click the Find Last Name button. First, you will find all of the records whose
Last_Name field begins with the letter S. Type s and press Enter. Five records appear in
the DataGridView control. See Figure 13-38. (Recall that you can use the Alt key to
show/hide the access keys.)

Figure 13-38 Employees whose last name begins with the letter S

START HERE

General Declarations section
Option Explicit On
Option Strict On
Option Infer On ' using LINQ

btnFind_Click procedure
Private Sub btnFind_Click(sender As Object,
e As EventArgs) Handles btnFind.Click

' selects records whose last name
' begins with the user's entry

Const strPROMPT As String = "One or more letters " &
"(leave empty to retrieve all records):"

' get the last name
Dim strFindName As String =
InputBox(strPROMPT, "Find Last Name").ToUpper

' select records matching the last name
Dim records = From employee In EmployeesDataSet.tblEmploy

Where employee.Last_Name.ToUpper Like
strFindName & "*"
Select employee

TblEmployBindingSource.DataSource = records.AsDataView

End Sub

set Option Infer to
On in the General
Declarations section

LINQ code to select
the records

assigns the LINQ
variable to the
BindingSource object

Figure 13-37 Code entered in the General Declarations section and btnFind Click event procedure
© 2013 Cengage Learning

Creating a Query L E S S ON B

799

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

3. Now you will display all of the records. Click the Find Last Name button and then
press Enter.

4. You can click a column header to sort the records in order by the associated field. Click
Code to display the records in ascending order by the Code field. Now click Code again
to display the records in descending order by the Code field.

5. Click the Exit button. Close the Code Editor window and then close the solution.

Customizing a BindingNavigator Control
The BindingNavigator control contains buttons that allow you to move to a different record in
the dataset, add or delete a record, and save any changes made to the dataset. At times, you
may want to include additional items on the control, such as another button, a text box, or a
drop-down button. The steps for adding and deleting items are shown in Figure 13-39.

Customizing a BindingNavigator Control

To add an item to a BindingNavigator control:

1. Click the BindingNavigator control’s task box and then click Edit Items to open the Items
Collection Editor window.

2. If necessary, click the “Select item and add to list below” arrow.
3. Click the item you want to add to the BindingNavigator control and then click the Add button.
4. If necessary, you can use the up and down arrows to reposition the item.

To delete an item from a BindingNavigator control:

1. Click the BindingNavigator control’s task box and then click Edit Items to open the Items
Collection Editor window.

2. In the Members list, click the item you want to remove and then click the X button.

Figure 13-39 Instructions for customizing a BindingNavigator control
© 2013 Cengage Learning

In the following set of steps, you will add a DropDownButton to the BindingNavigator control in
the Morgan Industries application. The DropDownButton will display a menu that contains
three options: All Employees, Full-time Employees, and Part-time Employees. The All
Employees option will display the average pay rate for all employees. The Full-time Employees
and Part-time Employees options will display the average pay rate for full-time employees and
part-time employees, respectively.

To add a DropDownButton to the BindingNavigator control:

1. Open the Morgan Industries Solution (Morgan Industries Solution.sln) file contained in
the VB2012\Chap13\Morgan Industries Solution–Aggregate folder. Open the designer
window.

2. Click an empty area on the TblEmployBindingNavigator control and then click the
control’s task box.

3. Click Edit Items in the task list to open the Items Collection Editor dialog box. Click
the down arrow in the “Select item and add to list below” box and then click
DropDownButton in the list. Click the Add button. See Figure 13-40.

START HERE

CH A P T E R 1 3 Working with Access Databases and LINQ

800

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

4. Click the Alphabetical button to display the property names in alphabetical order. Click
(Name) in the properties list and then type ddbAverage and press Enter. Change the
DisplayStyle and Text properties to Text and A&verage Pay Rate, respectively.

5. Click DropDownItems in the Properties list and then click the … (ellipsis) button. Click
the Add button to add a menu item to the DropDownButton. Click the Alphabetical
button to display the property names in alphabetical order. Change the menu item’s
Name, DisplayStyle, and Text properties to mnuAverageAll, Text, and &All
Employees, respectively. See Figure 13-41.

first drop-down
menu item

Figure 13-41 DropDownItems property in the Items Collection Editor dialog box

DropDownButton
added to the list

Alphabetical button

Figure 13-40 Items Collection Editor dialog box

Customizing a BindingNavigator Control L E S S ON B

801

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

6. Click the Add button to add another menu item to the DropDownButton. Change the
menu item’s Name, DisplayStyle, and Text properties to mnuAverageFull, Text, and
&Full-time Employees, respectively.

7. Click the Add button to add another menu item to the DropDownButton. Change the
menu item’s Name, DisplayStyle, and Text properties to mnuAveragePart, Text, and
&Part-time Employees, respectively.

8. Click the OK button to close the Items Collection Editor (ddbAverage.DropDownItems)
dialog box and then click the OK button to close the Items Collection Editor dialog box.

9. Save the solution. Click the down arrow on the Average Pay Rate button.
See Figure 13-42.

10. Click the form’s title bar to close the Average Pay Rate menu.

Using the LINQ Aggregate Operators
LINQ provides several aggregate operators that you can use when querying a dataset. The most
commonly used aggregate operators are Average, Count, Max, Min, and Sum. An aggregate
operator returns a single value from a group of values. The Sum operator, for example, returns
the sum of the values in the group, whereas the Min operator returns the smallest value in
the group. You include an aggregate operator in a LINQ statement using the syntax shown
in Figure 13-43. The figure also includes examples of using the syntax.

Figure 13-42 DropDownButton added to the TblEmployBindingNavigator control

CH A P T E R 1 3 Working with Access Databases and LINQ

802

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

In the following set of steps, you will use the Average aggregate operator to calculate the average
pay rate for all employees, part-time employees, and full-time employees.

To code the menu items on the DropDownButton control:

1. Open the Code Editor window. Replace <your name> and <current date> in the
comments with your name and the current date, respectively.

2. Open the code template for the mnuAverageAll item’s Click event procedure. Type the
following comment and then press Enter twice:

' displays the average pay rate for all employees

3. Enter the following three lines of code. Press Enter twice after typing the last line.

Dim dblAverage As Double =
Aggregate employee In EmployeesDataSet.tblEmploy
Select employee.Rate Into Average()

4. Next, enter the following five lines of code:

MessageBox.Show("Average pay rate for all employees: " &
dblAverage.ToString("C2"),
"Morgan Industries",
MessageBoxButtons.OK,
MessageBoxIcon.Information)

LINQ Aggregate Operators

Syntax
Dim variableName [As dataType] =
 Aggregate elementName In dataset.table
 [Where condition]
 Select elementName.fieldName
 Into aggregateOperator()

Example 1
Dim dblAvgRate As Double =

Aggregate employee In EmployeesDataSet.tblEmploy
Select employee.Rate Into Average()

calculates the average of the pay rates in the dataset and assigns the result to the dblAvgRate
variable

Example 2
Dim dblMaxRate As Double =

Aggregate employee In EmployeesDataSet.tblEmploy
Where employee.Status.ToUpper = "P"
Select employee.Rate Into Max()

finds the highest pay rate for a part-time employee and assigns the result to the dblMaxRate
variable

Example 3
Dim intCounter As Integer =

Aggregate employee In EmployeesDataSet.tblEmploy
Where employee.Code = 2
Into Count()

counts the number of employees whose department code is 2 and assigns the result to the
intCounter variable (The Count operator doesn’t need the Select clause.)

Figure 13-43 Syntax and examples of the LINQ aggregate operators
© 2013 Cengage Learning

START HERE

Using the LINQ Aggregate Operators L E S S ON B

803

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

5. Open the code template for the mnuAverageFull item’s Click event procedure. Type the
following comment and then press Enter twice:

' displays the average pay rate for full-time employees

6. Enter the following four lines of code. Press Enter twice after typing the last line.

Dim dblAverage As Double =
Aggregate employee In EmployeesDataSet.tblEmploy
Where employee.Status.ToUpper = "F"
Select employee.Rate Into Average()

7. Next, enter the following five lines of code:

MessageBox.Show("Average pay rate for full-time employees: " &
dblAverage.ToString("C2"),
"Morgan Industries",
MessageBoxButtons.OK,
MessageBoxIcon.Information)

8. Open the code template for the mnuAveragePart item’s Click event procedure. Type
the following comment and then press Enter twice:

' displays the average pay rate for part-time employees

9. On your own, enter the appropriate LINQ statement and MessageBox.Show method.

Figure 13-44 shows the code entered in each menu item’s Click event procedure.

Important note: Instead of using the Dim statement to both declare and assign a LINQ
value to a variable, you can declare the variable in the Dim statement and then use an
assignment statement to assign the LINQ value to it. For example, you can replace the
Dim statement in the mnuAverageAll_Click procedure in Figure 13-44 with the following
two statements:

Dim dblAverage As Double
dblAverage = Aggregate employee In EmployeesDataSet.tblEmploy

Select employee.Rate Into Average()

CH A P T E R 1 3 Working with Access Databases and LINQ

804

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

To test the code in each menu item’s Click event procedure:

1. Save the solution and then start the application. Click the down arrow on the Average
Pay Rate button and then click All Employees. (Or, you can press Alt+v and then type
the letter a.) The average pay rate for all employees appears in a message box, as shown
in Figure 13-45.

Private Sub mnuAverageAll_Click(sender As Object,
e As EventArgs) Handles mnuAverageAll.Click

' displays the average pay rate for all employees

Dim dblAverage As Double =
Aggregate employee In EmployeesDataSet.tblEmploy
Select employee.Rate Into Average()

MessageBox.Show("Average pay rate for all employees: " &
dblAverage.ToString("C2"),
"Morgan Industries",
MessageBoxButtons.OK,
MessageBoxIcon.Information)

End Sub

Private Sub mnuAverageFull_Click(sender As Object,
e As EventArgs) Handles mnuAverageFull.Click

' displays the average pay rate for full-time employees

Dim dblAverage As Double =
Aggregate employee In EmployeesDataSet.tblEmploy
Where employee.Status.ToUpper = "F"
Select employee.Rate Into Average()

MessageBox.Show("Average pay rate for full-time employees: " &
dblAverage.ToString("C2"),
"Morgan Industries",
MessageBoxButtons.OK,
MessageBoxIcon.Information)

End Sub

Private Sub mnuAveragePart_Click(sender As Object,
e As EventArgs) Handles mnuAveragePart.Click

' displays the average pay rate for part-time employees

Dim dblAverage As Double =
Aggregate employee In EmployeesDataSet.tblEmploy
Where employee.Status.ToUpper = "P"
Select employee.Rate Into Average()

MessageBox.Show("Average pay rate for part-time employees: " &
dblAverage.ToString("C2"),
"Morgan Industries",
MessageBoxButtons.OK,
MessageBoxIcon.Information)

End Sub

calculates the
average pay rate
for all employees

calculates the
average pay rate
for full-time employees

calculates the
average pay rate
for part-time employees

Figure 13-44 Code entered in each menu item’s Click event procedure
© 2013 Cengage Learning

START HERE

Using the LINQ Aggregate Operators L E S S ON B

805

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

2. Close the message box. Click the down arrow on the Average Pay Rate button and then
click Full-time Employees. The message indicates that the average pay rate for full-time
employees is $16.51.

3. Close the message box. Click the down arrow on the Average Pay Rate button and then
click Part-time Employees. The message indicates that the average pay rate for part-
time employees is $9.94.

4. Close the message box and then click the Close button on the form’s title bar. Close the
Code Editor window and then close the solution.

Lesson B Summary
l To use LINQ to select and arrange records in a dataset:

Use the following syntax:

Dim variableName = From elementName In dataset.table
[Where condition]
[Order By elementName.fieldName1 [Ascending | Descending]

[, elementName.fieldNameN [Ascending | Descending]]]
Select elementName

l To assign a LINQ variable’s contents to a BindingSource object:

Use the following syntax: bindingSource.DataSource = variableName.AsDataView

l To add items to a BindingNavigator control:

Click the BindingNavigator control’s task box and then click Edit Items to open the Items
Collection Editor window. If necessary, click the “Select item and add to list below” arrow.
Click the item you want to add to the BindingNavigator control and then click the Add
button. If necessary, you can use the up and down arrows to reposition the item.

l To delete items from a BindingNavigator control:

Click the BindingNavigator control’s task box and then click Edit Items to open the Items
Collection Editor window. In the Members list, click the item you want to remove and then
click the X button.

Figure 13-45 Message box showing the average pay rate for all employees

CH A P T E R 1 3 Working with Access Databases and LINQ

806

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

l To use the LINQ aggregate operators:

Use the following syntax:

Dim variableName [As dataType] =
Aggregate elementName In dataset.table
[Where condition]
Select elementName.fieldName
Into aggregateOperator()

Lesson B Key Terms
Aggregate operator—an operator that returns a single value from a group of values; LINQ
provides the Average, Count, Max, Min, and Sum aggregate operators

Language Integrated Query—LINQ; the query language built into Visual Basic 2012

LINQ—an acronym for Language Integrated Query

Order By clause—used in LINQ to arrange the records in a dataset

Query—specifies the records to select in a dataset and the order in which to arrange the records

Where clause—used in LINQ to limit the records you want to view in a dataset

Lesson B Review Questions
1. Which of the following will select only records whose City field begins with an

uppercase letter T?

a. Dim records = From StoresDataSet.tblStores
Select City Like "T*"

b. Dim records = From tblStores
Where tblStores.City Like "T*"
Select city

c. Dim records =
From store In StoresDataSet.tblStores
Where store.City Like "T*"
Select store

d. Dim records =
From store In StoresDataSet.tblStores
Where tblStores.City Like "T*"
Select store

2. Which of the following calculates the sum of the values stored in a numeric field named
Quantity?

a. Dim dblTotal As Double =
Aggregate item In ItemsDataSet.tblItems
Select item.Quantity
Into Sum()

b. Dim dblTotal As Double =
From item In ItemsDataSet.tblItems
Select item.Quantity
Into Sum()

Lesson B Review Questions L E S S ON B

807

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

c. Dim dblTotal As Double =
From item In ItemsDataSet.tblItems
Aggregate item.Quantity
Into Sum()

d. Dim dblTotal As Double =
From item In ItemsDataSet.tblItems
Sum item.Quantity

3. Which of the following statements selects all of the records in the tblItems table?

a. Dim records =
From item In ItemsDataSet.tblItems
Select All item

b. Dim records =
From item In ItemsDataSet.tblItems
Select item

c. Dim records =
Select item From ItemsDataSet.tblItems

d. Dim records = From ItemsDataSet.tblItems
Select tblItems.item

4. The tblCities table contains a numeric field named Population. Which of the following
statements selects all cities having a population that exceeds 15000?

a. Dim records =
From city In CitiesDataSet.tblCities
Where Population > 15000
Select city

b. Dim records =
From city In CitiesDataSet.tblCities
Select city.Population > 15000

c. Dim records =
From city In CitiesDataSet.tblCities
Where city.Population > 15000
Select city

d. Dim records =
Select city.Population > 15000
From tblCities

5. The tblCities table contains a numeric field named Population. Which of the following
statements calculates the total population of all of the cities in the table?

a. Dim intTotal As Integer =
Aggregate city In CitiesDataSet.tblCities
Select city.Population
Into Sum()

b. Dim intTotal As Integer =
Sum city In CitiesDataSet.tblCities
Select city.Population
Into Total()

c. Dim intTotal As Integer =
Aggregate CitiesDataSet.tblCities.city
Select city.Population
Into Sum()

d. Dim intTotal As Integer =
Sum city In CitiesDataSet.tblCities.Population

CH A P T E R 1 3 Working with Access Databases and LINQ

808

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

6. In a LINQ statement, the clause limits the records that will be selected.

a. Limit

b. Order By

c. Select

d. Where

Lesson B Exercises

1. The tblMagInfo table contains three fields. The Code and Cost fields are numeric.
The Magazine field contains text. The dataset’s name is MagsDataSet.

a. Write a LINQ statement that arranges the records in ascending order by the
Magazine field.

b. Write a LINQ statement that selects records having a code of 3.

c. Write a LINQ statement that selects records having a cost of at least $2.

d. Write a LINQ statement that selects the Funtime magazine.

2. In this exercise, you modify one of the Morgan Industries applications from the lesson.
Use Windows to make a copy of the Morgan Industries Solution–Aggregate folder.
Rename the copy Modified Morgan Industries Solution–Aggregate. Open the Morgan
Industries Solution (Morgan Industries Solution.sln) file contained in the Modified
Morgan Industries Solution–Aggregate folder. Open the designer window.

a. Click an empty area on the TblEmployBindingNavigator control and then click the
control’s task box. Click Edit Items in the task list to open the Items Collection Editor
dialog box. Add a DropDownButton to the control. Change the DropDownButton’s
name to ddbDepartment. Change its DisplayStyle and Text properties to Text and
&Department, respectively.

b. Use the DropDownItems property to add four menu items to the DropDownButton:
Accounting, Advertising, Personnel, and Inventory. Be sure to change each menu
item’s name, as well as its DisplayStyle and Text properties.

c. Each menu item should display (in a message box) the number of employees in the
department. Code 1 is Accounting, Code 2 is Advertising, Code 3 is Personnel, and
Code 4 is Inventory. Open the Code Editor window and code each menu item’s Click
event procedure.

d. Save the solution and then start and test the application. Close the Code Editor
window and then close the solution.

3. Open the Magazine Solution (Magazine Solution.sln) file contained in the VB2012\
Chap13\Magazine Solution–Introductory folder. If necessary, open the designer window.
The application is connected to the Magazines database, which is stored in the
Magazines.accdb file. The database contains a table named tblMagazine; the table has
three fields. The Cost field is numeric. The Code and MagName fields contain text. Start
the application to view the records contained in the dataset, and then stop the
application. Open the Code Editor window. The btnCode_Click procedure should display
the record whose Code field contains EX33. The btnName_Click procedure should
display only the Visual Basic record. The btnAll_Click procedure should display all of the
records. Code the procedures. Save the solution and then start and test the application.
Close the Code Editor window and then close the solution.

INTRODUCTORY

INTRODUCTORY

INTRODUCTORY

Lesson B Exercises L E S S ON B

809

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

4. Using the information from Exercise 1, write a LINQ statement that selects magazines
whose names begin with the letter G (in either uppercase or lowercase). Then write a
LINQ statement that calculates the average cost of a magazine.

5. Open the Magazine Solution (Magazine Solution.sln) file contained in the VB2012\
Chap13\Magazine Solution–Intermediate folder. If necessary, open the designer window.
The application is connected to the Magazines database stored in the Magazines.accdb
file. The database contains a table named tblMagazine; the table has three fields. The
Cost field is numeric. The Code and MagName fields contain text.

a. Start the application to view the records contained in the dataset, and then stop
the application.

b. Open the Code Editor window. Code the btnAll_Click procedure so that it displays all
of the records.

c. Code the btnCost_Click procedure so that it displays records having a cost of $4
or more.

d. Code the btnName_Click procedure so that it displays only magazines whose names
begin with the letter C (in either uppercase or lowercase).

e. Code the btnAverage_Click procedure so that it displays the average cost of
a magazine. Display the average in a message box.

f. Save the solution and then start and test the application. Close the Code Editor
window and then close the solution.

6. Open the MusicBox Solution (MusicBox Solution.sln) file contained in the VB2012\
Chap13\MusicBox Solution–LINQ folder. If necessary, open the designer window. The
application is connected to the MusicBox database stored in the MusicBox.accdb file.
The database contains a table named tblBox. The table contains 10 records, each
composed of four text fields.

a. Start the application to view the records contained in the dataset, and then stop
the application.

b. Open the Code Editor window. Code the btnAll_Click procedure so that it displays
all of the records.

c. Code the btnShape_Click procedure so that it displays the records for music boxes
having the shape selected by the user.

d. Code the btnSource_Click procedure so that it displays either the records for music
boxes received as gifts or the records for music boxes that were purchased by the
user.

e. Code the btnCount_Click procedure to display the number of music boxes in
the dataset.

f. Save the solution and then start and test the application. Close the Code Editor
window and then close the solution.

INTERMEDIATE

INTERMEDIATE

INTERMEDIATE

CH A P T E R 1 3 Working with Access Databases and LINQ

810

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

& LESSON C
After studying Lesson C, you should be able to:

l Prevent the user from adding and deleting records

l Remove buttons from a BindingNavigator control

l Add a label, a text box, and a button to a BindingNavigator control

Completing the Paradise Bookstore Application
Your task in this chapter is to create an application for the Paradise Bookstore. The application
will use a DataGridView control to display the records contained in a Microsoft Access database
named Books. It will also allow the store manager to enter an author’s name (or part of a name)
and then display only the books written by that author. In addition, it will allow the store
manager to display the total value of the books in the store.

The Books database is stored in the Books.accdb file, which is contained in the VB2012\Chap13\
Access Databases folder. The database contains one table named tblBooks. The table has five
fields and 11 records. The BookNumber, Price, and QuantityInStock fields are numeric. The
Title and Author fields contain text. The fields and records contained in the tblBooks table are
shown in Figure 13-46.

To modify the DataGridView and BindingNavigator controls in the Paradise
Bookstore application:

1. If necessary, start Visual Studio 2012. Open the Paradise Bookstore Solution (Paradise
Bookstore Solution.sln) file contained in the VB2012\Chap13\Paradise Bookstore
Solution folder. If necessary, open the designer window.

2. In this application, the user will not be allowed to add or delete records. Click the
TblBooksDataGridView control. Click the control’s task box to open its task list. Click
the Enable Adding and Enable Deleting check boxes to deselect both check boxes.
Click the form’s title bar to close the task list.

3. Click the TblBooksBindingNavigator control and then click its task box. Click Edit
Items on the task list. Click BindingNavigatorAddNewItem in the Members list and
then click the X button to remove the item from the list. This also removes the Add new
button (the plus sign) from the TblBooksBindingNavigator control.

Figure 13-46 tblBooks table in the Books database

START HERE

Completing the Paradise Bookstore Application L E S S ON C

811

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

4. The BindingNavigatorDeleteItem should be selected in the Members list. Click the X
button to remove the item from the list. This also removes the Delete button (the
letter X) from the TblBooksBindingNavigator control.

5. Now you will add a label and a text box for entering the author’s name. Click the down
arrow in the “Select item and add to list below” box and then click Label in the list.
Click the Add button. Click the Alphabetical button to display the property names in
alphabetical order. Click Text in the properties list (if necessary) and then type
&Author: and press Enter.

6. Click the down arrow in the “Select item and add to list below” box and then click
TextBox in the list. Click the Add button. Change the text box’s name to txtAuthor.

7. Next, you will add a button that, when clicked, will display the books written by the
author whose name (or part of the name) is entered in the text box. Click the down
arrow in the “Select item and add to list below” box and then click Button in the list.
Click the Add button. Change the button’s name to btnGo. Also change its DisplayStyle
and Text properties to Text and &Go, respectively.

8. Finally, you will add a button for displaying the total value of the books. Click the Add
button again to add another button to the BindingNavigator control. Change the
button’s name to btnTotal. Also change its DisplayStyle and Text properties to Text
and &Total Value, respectively. See Figure 13-47.

9. Click the OK button to close the dialog box, and then click the form’s title bar.
See Figure 13-48.

label, text box,
and buttons
added to the
BindingNavigator
control

Figure 13-47 Completed Items Collection Editor dialog box

Figure 13-48 Completed TblBooksBindingNavigator control

CH A P T E R 1 3 Working with Access Databases and LINQ

812

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Coding the Paradise Bookstore Application
The Go button’s Click event procedure should display only records whose Author field begins
with the one or more characters entered in the txtAuthor control. If the text box is empty, the
Go button should display all of the records.

To code and then test the Go button’s Click event procedure:

1. Open the Code Editor window. Replace <your name> and <current date> in the
comments with your name and the current date, respectively.

2. Open the code template for the btnGo control’s Click event procedure. Type the
following comment and then press Enter twice:

' display records for a specific author

3. You can use LINQ to select the appropriate records. Enter the following lines of code.
Press Enter twice after typing the last line.

Dim records = From book In BooksDataSet.tblBooks
Where book.Author.ToUpper Like
txtAuthor.Text.ToUpper & "*"
Select book

4. Now you will display the records in the DataGridView control. As you learned in Lesson
B, you do this by assigning the records variable to the BindingSource object’s
DataSource property. Enter the following line of code:

TblBooksBindingSource.DataSource = records.AsDataView

5. Save the solution and then start the application. Click the Author text box (or press
Alt+a) and then type the letter s. Click the Go button (or press Alt+g). The
DataGridView control shows only the seven books written by authors whose names
begin with the letter s. See Figure 13-49.

6. Remove the letter s from the Author text box and then click the Go button. All of the
records appear in the DataGridView control.

7. Click the Close button on the form’s title bar to stop the application.

START HERE

Figure 13-49 Books written by authors whose names begin with s

Coding the Paradise Bookstore Application L E S S ON C

813

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

The Total Value button’s Click event procedure should display the total value of the books
in the store. The total value is calculated by multiplying the quantity of each book by its price
and then adding together the results.

To code and then test the Total Value button’s Click event procedure:

1. Open the code template for the btnTotal control’s Click event procedure. Type the
following comment and then press Enter twice:

' display the total value of the inventory

2. You can use the Sum aggregate operator to accumulate the results of multiplying each
book’s quantity by its price. The quantity and price are stored in the QuantityInStock
and Price fields, respectively. Enter the following lines of code. Press Enter twice after
typing the last line.

Dim dblTotal As Double =
Aggregate book In BooksDataSet.tblBooks
Select book.QuantityInStock * book.Price
Into Sum()

3. Now display the total value in a message box. Enter the following lines of code:

MessageBox.Show("Total value: " &
dblTotal.ToString("C2"),
"Paradise Bookstore",
MessageBoxButtons.OK,
MessageBoxIcon.Information)

4. Save the solution and then start the application. Click the Total Value button (or press
Alt+t). The total value of the inventory appears in a message box. See Figure 13-50.

5. Close the message box, and then click the Close button on the form’s title bar to stop
the application.

6. Close the Code Editor window and then close the solution.

Figure 13-51 shows the code entered in the btnGo and btnTotal Click event procedures.

START HERE

Figure 13-50 Message box showing the total value of the inventory

CH A P T E R 1 3 Working with Access Databases and LINQ

814

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Lesson C Summary
l To prevent the user from adding or deleting records in a DataGridView control:

Click the DataGridView control’s task box and then deselect the Enable Adding and Enable
Deleting check boxes.

l To delete items from a BindingNavigator control:

Click the BindingNavigator control’s task box and then click Edit Items. In the Members list,
click the item you want to remove. Click the X button.

l To add controls to a BindingNavigator control:

Click the BindingNavigator control’s task box and then click Edit Items. Use the "Select item
and add to list below" box and Add button to add the appropriate control.

Lesson C Key Terms
There are no key terms in Lesson C.

Private Sub btnGo_Click(sender As Object,
e As EventArgs) Handles btnGo.Click

' display records for a specific author

Dim records = From book In BooksDataSet.tblBooks
Where book.Author.ToUpper Like
txtAuthor.Text.ToUpper & "*"
Select book

TblBooksBindingSource.DataSource = records.AsDataView

End Sub

Private Sub btnTotal_Click(sender As Object,
e As EventArgs) Handles btnTotal.Click

' display the total value of the inventory

Dim dblTotal As Double =
Aggregate book In BooksDataSet.tblBooks
Select book.QuantityInStock * book.Price
Into Sum()

MessageBox.Show("Total value: " &
dblTotal.ToString("C2"),
"Paradise Bookstore",
MessageBoxButtons.OK,
MessageBoxIcon.Information)

End Sub

Figure 13-51 btnGo_Click and btnTotal_Click procedures
© 2013 Cengage Learning

Lesson C Key Terms L E S S ON C

815

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Lesson C Review Questions
1. The Enable Deleting check box in a control’s task list determines

whether a record can be deleted from the control.

a. BindingNavigator

b. BindingSource

c. DataBindingNavigator

d. DataGridView

2. Using the Books database from the lesson, which of the following will select book
number 401? The BookNumber field is numeric.

a. Dim records = From book In BooksDataSet.tblBooks
Where book.BookNumber = "401"
Select book

b. Dim records = From book In BooksDataSet.tblBooks
Select book.BookNumber = 401

c. Dim records = From book In BooksDataSet.tblBooks
Where book.BookNumber = 401
Select book

d. Dim records = From book In BooksDataSet.tblBooks
Select BookNumber = 401

3. Using the Books database from the lesson, which of the following determines the number
of records in the dataset?

a. Dim intNumRecords As Integer =
Aggregate book In BooksDataSet.tblBooks
In Counter()

b. Dim intNumRecords As Integer =
Aggregate book In BooksDataSet.tblBooks
Into Count()

c. Dim intNumRecords As Integer =
Aggregate book In BooksDataSet.tblBooks
Into Sum()

d. Dim intNumRecords As Integer =
Aggregate book In BooksDataSet.tblBooks
Into Total()

4. Using the Books database from the lesson, which of the following determines the total
number of books in the bookstore?

a. Dim intNumBooks As Integer =
Aggregate book In BooksDataSet.tblBooks
Select book.QuantityInStock
Into Count()

b. Dim intNumBooks As Integer =
Aggregate book In BooksDataSet.tblBooks
Select book.QuantityInStock
Into Sum()

c. Dim intNumBooks As Integer =
Aggregate book In BooksDataSet.tblBooks
Into Sum()

d. Dim intNumBooks As Integer =
Aggregate book In BooksDataSet.tblBooks
Into Total()

CH A P T E R 1 3 Working with Access Databases and LINQ

816

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

5. Using the Books database from the lesson, which of the following determines the number
of books whose price is at least $20?

a. Dim intNum As Integer =
Aggregate book In BooksDataSet.tblBooks
Where book.Price > 20
Into Count()

b. Dim intNum As Integer =
Aggregate book In BooksDataSet.tblBooks
Where book.Price >= 20
Into Sum()

c. Dim intNum As Integer =
Aggregate book In BooksDataSet.tblBooks
Where book.Price >= 20
Select book

d. Dim intNum As Integer =
Aggregate book In BooksDataSet.tblBooks
Where book.Price >= 20
Into Count()

Lesson C Exercises

1. Open the Addison Playhouse Solution (Addison Playhouse Solution.sln) file contained
in the VB2012\Chap13\Addison Playhouse Solution folder. If necessary, open the
designer window. Connect the application to a Microsoft Access database named Play.
The database is stored in the VB2012\Chap13\Access Databases\Play.accdb file. The Play
database contains one table named tblReservations. The table has 20 records. Each record
has three fields: a numeric field named Seat and two text fields named Patron and Phone.
The application should display the contents of the Play database in a DataGridView control.
It should also allow the user to add, delete, modify, and save records. Enter the Try…Catch
statement in the Save Data button’s Click event procedure. Save the solution and then start
and test the application. Close the Code Editor window and then close the solution.

2. Open the Sports Action Solution (Sports Action Solution.sln) file contained in the
VB2012\Chap13\Sports Action Solution folder. If necessary, open the designer window.
Connect the application to a Microsoft Access database named Sports. The database is
stored in the VB2012\Chap13\Access Databases\Sports.accdb file. The database contains
one table named tblScores. The table contains 10 records. Each record has five fields that
store the following information: a unique number that identifies the game, the date the
game was played, the name of the opposing team, the home team’s score, and the
opposing team’s score. The application should display each record contained in the
Sports database, one at a time, in label controls. (Hint: First, change each field object’s
control type to Label in the Data Sources window. Then, change the table object's control
type to Details before dragging it to the form.) The user should not be allowed to add,
delete, edit, or save records. Include a button on a BindingNavigator control to allow the
user to display the average of the home team’s scores. Open the Code Editor window and
code the application. Save the solution and then start and test the application. Close the
Code Editor window and then close the solution.

3. The sales manager at JW Industries records the item number, name, and price of
the company’s products in a database named Items. The Items database is stored in the
VB2012\Chap13\Access Databases\Items.accdb file. The database contains one table
named tblItems. The table contains 10 records, each composed of three fields. The
ItemNum and ItemName fields contain text, and the Price field contains numbers. The
sales manager wants an application that displays the records in a DataGridView control.

INTRODUCTORY

INTRODUCTORY

INTERMEDIATE

Lesson C Exercises L E S S ON C

817

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

The application should not allow records to be added or deleted. The application should
allow the sales manager to display records whose item number matches one or more
characters he enters. In addition, it should allow him to display the average price.

a. Create a Visual Basic Windows application. Use the following names for the solution
and project, respectively: JW Solution, JW Project. Save the application in the
VB2012\Chap13 folder. Change the form file’s name to Main Form.vb. Change the
form’s name to frmMain.

b. Connect the application to the Items database and then drag the tblItems object
to the form. Make the appropriate modifications to the DataGridView and
BindingNavigator controls.

c. Open the Code Editor window and code the application. Save the solution and then
start and test the application. Close the Code Editor window and then close the solution.

4. In this exercise, you use a Microsoft Access database named Courses. The database is
stored in the VB2012\Chap13\Access Databases\Courses.accdb file. The database
contains one table named tblCourses. The table has 10 records. Each record has the
following four fields: ID, Title, CreditHours, and Grade. The CreditHours field is
numeric; the other fields contain text.

a. Open the College Courses Solution (College Courses Solution.sln) file contained in
the VB2012\Chap13\College Courses Solution folder. If necessary, open the
designer window. Connect the application to the Courses database. Drag the table
into the group box control and then dock the DataGridView control in its parent
container. (In this case, the parent container is the group box control.) Use the
task list to disable Adding, Editing, and Deleting. Change the DataGridView
control’s AutoSizeColumnsMode property to Fill. Change its RowHeadersVisible and
Enabled properties to False. Also change its SelectionMode property to FullRowSelect.

b. Remove the BindingNavigator control from the form by deleting the
BindingNavigator object from the component tray.

c. Open the Code Editor window. Delete the Save Data button’s Click event procedure.
Code the Next Record and Previous Record buttons. Code the Grade Display button
so it allows the user to display either all the records or only the records matching a
specific grade.

d. Save the solution and then start and test the application. Close the Code Editor
window and then close the solution.

5. In this exercise, you use a Microsoft Access database named Trips. The database keeps
track of a person’s business and pleasure trips. The database is stored in the VB2012\
Chap13\Access Databases\Trips.accdb file. The database contains one table named
tblTrips. The table has 10 records. Each record has the following four text fields:
TripDate, Origin, Destination, BusinessPleasure. The user should be able to display the
number of trips from a specific origin to a specific destination, such as from Chicago to
Atlanta. He or she should also be able to display the total number of business trips and
the total number of pleasure trips.

a. Create a Visual Basic Windows application. Use the following names for the solution
and project, respectively: Trips Solution and Trips Project. Save the application in
the VB2012\Chap13 folder. Change the form file’s name to Main Form.vb. Change
the form’s name to frmMain.

INTERMEDIATE

INTERMEDIATE

CH A P T E R 1 3 Working with Access Databases and LINQ

818

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

b. Connect the application to the Trips database and then drag the tblTrips object to
the form. Make the appropriate modifications to the DataGridView control.

c. Open the Code Editor window and code the application. Be sure to enter the
Try... Catch statement in the Save Data button’s Click event procedure. (Hint: You
can use a logical operator in the Where clause.) Save the solution and then start the
application. Use the application to answer the following questions:

How many trips were made from Chicago to Nashville?

How many trips were made from Atlanta to Los Angeles?

How many business trips were taken?

How many pleasure trips were taken?

d. Close the Code Editor window and then close the solution.

6. In this exercise, you use a Microsoft Access database named Calories. The database keeps
track of the calories consumed during the day. The database is stored in the VB2012\
Chap13\Access Databases\Calories.accdb file. The database contains one table named
tblCalories. The table has 10 records. Each record has the following six fields: Day,
Breakfast, Lunch, Dinner, Dessert, and Snack. The Day field is a text field; the other fields
are numeric. The user should be able to display the total number of calories consumed in
the entire dataset. He or she should also be able to display the total calories consumed for
a specific meal, such as the total calories consumed for breakfasts, lunches, dinners,
desserts, or snacks. In addition, the user should be able to display the total calories
consumed on a specific day, the number of days in which more than 1200 calories were
consumed, and the average number of calories consumed per day.

a. Create a Visual Basic Windows application. Use the following names for the solution
and project, respectively: Calorie Counter Solution and Calorie Counter Project. Save
the application in the VB2012\Chap13 folder. Change the form file’s name to Main
Form.vb. Change the form’s name to frmMain.

b. Connect the application to the Calories database and then drag the tblCalories object
to the form. Make the appropriate modifications to the DataGridView control.

c. Open the Code Editor window and code the application. Save the solution and then
start the application. Use the application to answer the following questions:

How many calories were consumed in the entire dataset?

How many calories were consumed for desserts?

How many calories were consumed on 12/21/2013?

How many days were more than 1200 calories consumed?

What is the average number of calories consumed per day?

d. Close the Code Editor window and then close the solution.

7. In this exercise, you modify the College Courses application from Exercise 4.
Use Windows to make a copy of the College Courses Solution folder. Rename the copy
Modified College Courses Solution. Open the College Courses Solution (College Courses
Solution.sln) file contained in the Modified College Courses Solution folder. Open the
designer window. Add a Calculate GPA button to the form. Open the Code Editor
window. Code the Calculate GPA button’s Click event procedure so that it displays the
student’s GPA. (An A grade is worth 4 points, a B is worth 3 points, and so on.) Display
the GPA in a message box. Save the solution and then start and test the application.
Close the Code Editor window and then close the solution.

ADVANCED

ADVANCED

Lesson C Exercises L E S S ON C

819

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

8. Open the Debug Solution (Debug Solution.sln) file contained in the VB2012\Chap13\
Debug Solution folder. The application is connected to the Friends database stored in the
Friends.accdb file. The database contains one table named tblFriends. The table contains
nine records. Open the Code Editor window and review the existing code. Correct the
code to remove the jagged line that appears below one of the lines of code. Save the
solution and then start the application. Click the Fill button, then click the Next and
Previous buttons. Notice that the application is not working correctly. Correct the
application’s code. Save the solution and then start and test the application again. Close
the Code Editor window and then close the solution.

SWAT THE BUGS

CH A P T E R 1 3 Working with Access Databases and LINQ

820

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 14
Access Databases
and SQL

Creating the Academy Award Winners Application

In this chapter, you will create an application that uses a Microsoft
Access database named Movies to keep track of the Academy Award
winners for Best Picture. The Movies database will store the title of each
movie, the year the movie won the award, the name of the director, and
the movie’s running time. The application will allow the user to add
records to the database and also delete records from the database.

All Microsoft screenshots used with permission from Microsoft Corporation.

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Previewing the Academy Award Winners Application
Before you start the first lesson in this chapter, you will preview the completed application.
The application is contained in the VB2012\Chap14 folder.

To preview the completed application:

1. Use the Run dialog box to run the Academy (Academy.exe) file contained in the
VB2012\Chap14 folder. The interface displays the records in a DataGridView control.
As Figure 14-1 indicates, the record for the year 2002 is missing. (Recall that you can use
the Alt key to show/hide the access keys.)

2. First, you will add the missing record to the database. Click the Year won text box in the
Add new record section of the interface. Type 2002 and then press Tab. Type 113,
Chicago, and Rob Marshall in the Length, Movie title, and Director boxes, respectively.
Click the Add button. The record you added appears in numerical order by the year
number. See Figure 14-2.

the record for
year 2002 is
missing

Figure 14-1 Academy Award Winners application

START HERE

CH A P T E R 1 4 Access Databases and SQL

822

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

3. Next, you’ll verify that the record was saved to the database. Click the Exit button to end
the application, and then run the Academy (Academy.exe) file again. The record for the
year 2002 appears in the DataGridView control.

4. Now, you’ll delete the record. Click 2002 in the first column of the DataGridView
control; doing this highlights (selects) the entire record. It also selects the 2002 value in
the Delete record section. Click the Delete button. The “Delete winner from year 2002?”
message appears in a message box. Click the Yes button to delete the record. The
computer removes the record from the DataGridView control, the dataset, and the
database.

5. Click 2009 in the first column of the DataGridView control, and then click the Delete
button. This time, click the No button in the Confirm Delete message box. The record
remains in the DataGridView control, the dataset, and the database.

6. Click the Exit button to end the application, and then run the Academy (Academy.exe)
file again. Notice that the 2002 record, which you deleted in Step 4, does not appear in
the DataGridView control.

7. Click the Exit button.

In Lesson A, you will learn how to add records to a dataset, delete records from a dataset, and
sort the records in a dataset. You will also learn how to save (to a database) the changes made to
a dataset. Lessons B and C cover SQL, which stands for Structured Query Language. You will
create the Academy Award Winners application in Lesson C. Be sure to complete each lesson
in full and do all of the end-of-lesson questions and several exercises before continuing to the
next lesson.

the record
you added

Figure 14-2 Result of adding the missing record

Previewing the Academy Award Winners Application

823

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

& LESSON A
After studying Lesson A, you should be able to:

l Add records to a dataset

l Delete records from a dataset

l Sort the records in a dataset

Adding Records to a Dataset
In Chapter 13, you learned how to use a BindingNavigator control to add records to a dataset
and also delete records from a dataset. In this lesson, you will learn how to perform both tasks
without using a BindingNavigator control. The records will be added to and deleted from a
Microsoft Access database named Movies. The database contains one table named tblMovies.
The table, which is shown in Figure 14-3, keeps track of the movies that won an Academy
Award for Best Picture. The table contains 11 records, each having three fields. The YearWon
and RunningTime fields are numeric; the Title and DirectedBy fields contain text. The YearWon
field is the primary key in the table.

To open the Academy Award Winners application:

1. If necessary, start Visual Studio 2012. Open the Academy Award Solution (Academy
Award Solution.sln) file contained in the VB2012\Chap14\Academy Award Solution
folder. If necessary, open the designer window. The Academy Award Winners
application is already connected to the Movies database, and the Movies.accdb file’s
Copy to Output Directory property is set to Copy if newer. The application’s interface
contains a DataGridView control named TblMoviesDataGridView. The control is bound
to the tblMovies table in the dataset. The application also contains four objects in its
component tray. See Figure 14-4.

START HERE

Figure 14-3 Data contained in the tblMovies table

CH A P T E R 1 4 Access Databases and SQL

824

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

2. Start the application. The records in the dataset appear in the TblMoviesDataGridView
control. The control’s AutoSizeColumnsMode, ReadOnly, SelectionMode, and
StandardTab properties are set to DisplayedCells, True, FullRowSelect, and
True, respectively. Its AllowUserToAddRows, AllowUserToDeleteRows, and
RowHeadersVisible properties are set to False. The lstDeleteYear control is bound to
the YearWon field in the dataset; this is accomplished by setting the control’s
DataSource and DataMember properties to TblMoviesBindingSource and YearWon,
respectively. See Figure 14-5. (Recall that you can use the Alt key to show/hide the
access keys.)

TblMoviesDataGridView

the component tray
contains four objects

Figure 14-4 Interface for the Academy Award Winners application

Adding Records to a Dataset L E S S ON A

825

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

3. Press the down arrow key on your keyboard, slowly, several times. Each time the
highlight moves to a different row in the DataGridView control, the value in the current
row’s YearWon field is highlighted in the lstDeleteYear control.

4. Click the Exit button to end the application.

The Add button’s Click event procedure should add the record entered in the four text boxes
to the MoviesDataSet. Visual Basic provides several ways of adding records to a dataset. In this
lesson, you will use the syntax shown in Figure 14-6. The figure also includes examples of
using the syntax.

the text boxes are named
txtAddYear, txtLength, txtTitle,
and txtDirector

lstDeleteYear

Figure 14-5 Records displayed in the TblMoviesDataGridView control

Adding a Record to a Dataset
Syntax
dataSetName.tableName.AddtableNameRow(valueField1[,
 valueField2…, valueFieldN])

Example 1
BooksDataSet.tblBooks.AddtblBooksRow(txtTitle.Text,
 txtAuthor.Text)
adds a record to the BooksDataSet

Example 2
CDDataSet.tblCds.AddtblCdsRow("02", "Colors", 12.99)
adds a record to the CDDataSet

Figure 14-6 Syntax and examples of adding a record to a dataset
© 2013 Cengage Learning

CH A P T E R 1 4 Access Databases and SQL

826

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

To begin coding the Add button’s Click event procedure:

1. Open the Code Editor window. Replace <your name> and <current date> in the
comments with your name and the current date, respectively.

2. Locate the btnAdd_Click procedure and then click the blank line above the
End Sub clause.

3. Recall that the YearWon and RunningTime fields in the dataset are numeric. Therefore,
you will need to convert the values entered in the txtAddYear and txtLength controls
to numbers before storing each in its associated field. Enter the following four
statements. Press Enter twice after typing the last statement.

Dim intYear As Integer
Dim intLength As Integer
Integer.TryParse(txtAddYear.Text, intYear)
Integer.TryParse(txtLength.Text, intLength)

4. Now, you will use the syntax from Figure 14-6 to add the record to the MoviesDataSet.
Enter the following statement:

MoviesDataSet.tblMovies.AddtblMoviesRow(intYear,
txtTitle.Text,
txtDirector.Text,
intLength)

5. Save the solution and then start the application. In the Add new record section of the
interface, type 2011 in the Year won box, 100 in the Length box, The Artist in the
Movie title box, and Michael Hazanavicius in the Director box. Click the Add button.
The new record appears as the last record in the DataGridView control, as shown in
Figure 14-7.

START HERE

new record

Figure 14-7 New record added to the DataGridView control

Adding Records to a Dataset L E S S ON A

827

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

6. Click the Exit button and then start the application again. Notice that the new record
is missing from the DataGridView control. This is because the Add button’s Click
event procedure contains only the code for adding a record to a dataset. It does not
yet contain the code for actually saving the record to the Movies database. You will add
that code in the next set of steps. Click the Exit button.

For the changes made to a dataset to be permanent, you need to save the changes to the
database associated with the dataset. Here too, Visual Basic provides several ways of performing
this task. In this lesson, you will use the TableAdapter object’s Update method. As you learned
in Chapter 13, the TableAdapter object connects the database to the DataSet object.

The Update method’s syntax is shown in Figure 14-8 along with examples of using the syntax.
Because it is possible for an error to occur when saving data to a database, you should place the
Update method within the Try block of a Try…Catch statement, as shown in the examples.

Figure 13-17 in
Chapter 13
illustrates the
relationships
among the

database, the objects in
the component tray, and
the bound controls.

Saving Dataset Changes to a Database
Syntax
tableAdapterName.Update(dataSetName.tableName)

Example 1
Try
 TblBooksTableAdapter.Update(BooksDataSet.tblBooks)
Catch ex As Exception
 MessageBox.Show(ex.Message, "Books",
 MessageBoxButtons.OK,
 MessageBoxIcon.Information)
End Try
saves the BooksDataSet’s changes to the tblBooks table in the Books database

Example 2
Try
 TblCdsTableAdapter.Update(CDDataSet.tblCds)
Catch ex As Exception
 MessageBox.Show(ex.Message, "CDs",
 MessageBoxButtons.OK,
 MessageBoxIcon.Information)
End Try
saves the CDDataSet’s changes to the tblCds table in the CD database

Figure 14-8 Syntax and examples of saving dataset changes to a database
© 2013 Cengage Learning

CH A P T E R 1 4 Access Databases and SQL

828

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

To finish coding the btnAdd_Click procedure, and then test it:

1. Enter the additional lines of code indicated in Figure 14-9.

2. Save the solution and then start the application. In the Add new record section of the
interface, type 2011, 100, The Artist, and Michael Hazanavicius in the appropriate
boxes. Click the Add button. The new record is added to the end of the records in the
DataGridView control, as shown earlier in Figure 14-7.

3. Now observe what happens when you try to add a duplicate record to the dataset. In this
case, a duplicate record is a record whose YearWon field value is already in the dataset.
(Recall that the YearWon field is the primary key in the tblMovies table.) Click the Add
button again. A run time error occurs when the computer attempts to process the
AddtblMoviesRow function. The run time error occurs because the 2011 value is already
present in the dataset. See Figure 14-10.

4. Click DEBUG on the menu bar and then click Stop Debugging. You can fix this
problem by placing the AddtblMoviesRow function in a Try…Catch statement. Enter the
outer Try…Catch statement shown in Figure 14-11. Be sure to move the
AddtblMoviesRow function and the existing Try...Catch statement into the Try section
of the outer Try...Catch statement.

enter these seven
lines of code

Figure 14-9 Additional code entered in the btnAdd_Click procedure

the AddtblMoviesRow
function causes the
error

description of
the error

Figure 14-10 Result of trying to add a duplicate record

START HERE

Adding Records to a Dataset L E S S ON A

829

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

5. Save the solution and then start the application. In the Add new record section of the
interface, type 2011 in the Year won box and then click the Add button. The “Duplicate
record” message appears in a message box. Close the message box.

6. Next, enter the following new record: 1999, 122, American Beauty, Sam Mendes.
Click the Add button. The 1999 record appears as the last record in the DataGridView
control.

7. Click the Year Won header in the DataGridView control. The records now appear in
numerical order by the YearWon field. As a result, the 1999 record appears first in the
DataGridView control.

8. Click the Exit button and then start the application again. The two new records appear
in the DataGridView control, as shown in Figure 14-12. Notice that the record for the
year 1999 appears, once again, at the bottom of the list. This is because the records are
displayed in the order they appear in the tblMovies table. The record for the year 1999
was the last record entered into the table, so it appears as the last record in the
DataGridView control. You will fix this problem in the next section.

enter the outer
Try...Catch statement

Figure 14-11 Completed btnAdd_Click procedure

CH A P T E R 1 4 Access Databases and SQL

830

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

9. Click the Exit button.

Sorting the Records in a Dataset
As you observed in the previous set of steps, you can sort the records in a DataGridView control
by clicking the appropriate header while the application is running. You also can use the
BindingSource object’s Sort method in code. The method’s syntax is shown in Figure 14-13
along with examples of using the syntax. If you want the records in a dataset to appear in a
particular order when the application is started, you enter the Sort method in the form’s
Load event procedure.

new records

Figure 14-12 New records displayed in the DataGridView control

Sorting the Records in a Dataset
Syntax
bindingSourceName.Sort = fieldName

Example 1
TblBooksBindingSource.Sort = "Author"
sorts the records by the Author field

Example 2
TblCdsBindingSource.Sort = "Cost"
sorts the records by the Cost field

Figure 14-13 Syntax and examples of sorting the records in a dataset
© 2013 Cengage Learning

Sorting the Records in a Dataset L E S S ON A

831

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

To sort the records by the YearWon field:

1. Locate the frmMain_Load procedure in the Code Editor window. Click the blank line
above the End Sub clause and then enter the following line of code:

TblMoviesBindingSource.Sort = "YearWon"

2. Save the solution and then start the application. The records appear in numerical order
by the YearWon field, as shown in Figure 14-14.

3. Click the Exit button.

YOU DO IT 1!

Close the Academy Award Winners solution. Open the YouDoIt 1 (YouDoIt 1.sln) file
contained in the VB2012\Chap14\YouDoIt 1 folder. The application is connected to the
Names database, which contains one table named tblNames. The table contains five
records, each having three fields: ID (the primary key), FirstName, and LastName. When
the application starts, the records should be displayed in order by the LastName field.
Add three text boxes and a button to the form. The button’s Click event procedure should
add the information entered in the text boxes to the dataset, and then save the record in
the database. Don’t add a record unless all of the text boxes contain data, and don’t
allow duplicate records to be entered. Save the solution and then start the application.
Add your name to the database. Then, try adding a duplicate record. Close the Code
Editor window and then close the solution.

new record

new record

Figure 14-14 Records sorted by the YearWon field

START HERE

CH A P T E R 1 4 Access Databases and SQL

832

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Deleting Records from a Dataset
The Delete button’s Click event procedure should search the dataset for the record whose
YearWon field contains the value selected in the lstDeleteYear control. Before deleting the
record, the procedure should display a message that asks the user to confirm the deletion.
You will use the MessageBox.Show method to both display the message and get the user’s
response.

To begin coding the Delete button’s Click event procedure:

1. If necessary, open the Academy Award Winners solution. Locate the btnDelete_Click
procedure and then click the blank line above the End Sub clause. The procedure will
use a DialogResult variable to store the value returned by the MessageBox.Show method.
Enter the following statement:

Dim dlgButton As DialogResult

2. Now, enter the MessageBox.Show method shown in Figure 14-15, and then position the
insertion point as indicated in the figure. Notice that the message box will have Yes
and No buttons.

3. The procedure will delete the record only when the user selects the Yes button in the
message box. Enter the following If clause:

If dlgButton = Windows.Forms.DialogResult.Yes Then

4. Save the solution.

Before the btnDelete_Click procedure can delete the record from the dataset, it first must
locate the record. Visual Basic provides several ways of locating records in a dataset. In this
lesson, you will use the syntax shown in Figure 14-16. The figure also includes examples of using
the syntax.

enter these five
lines of code

position the
insertion point here

Figure 14-15 MessageBox.Show method entered in the btnDelete_Click procedure

START HERE

Deleting Records from a Dataset L E S S ON A

833

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

To continue coding the btnDelete_Click procedure:

1. First, enter the following declaration statement below the If clause:

Dim row As DataRow

2. As mentioned earlier, the YearWon field in the dataset is numeric. Therefore,
you will need to convert the year contained in the lstDeleteYear control to a number
before searching for the record in the dataset. Enter the following statements:

Dim intYear As Integer
Integer.TryParse(lstDeleteYear.Text, intYear)

3. Now, you will use the syntax from Figure 14-16 to locate the appropriate record. Enter
the following statement:

row =
MoviesDataSet.tblMovies.FindByYearWon(intYear)

4. Save the solution.

After locating the appropriate record and assigning it to a DataRow variable, you can use the
variable’s Delete method to delete the record. Figure 14-17 shows the method’s syntax and
includes an example of using the method.

START HERE

Locating a Record in a Dataset

Syntax
dataRowVariable =
 dataSetName.tableName.FindByfieldName(value)

Example 1
Dim row As DataRow
row = BooksDataSet.tblBooks.FindById(123)
The assignment statement searches the dataset for the record whose Id field contains 123, and then
assigns the record to the row variable.

Example 2
Dim findRow As DataRow
findRow = CDDataSet.tblCds.FindByArtist("Cher")
The assignment statement searches the dataset for the record whose Artist field contains “Cher”, and
then assigns the record to the findRow variable.

Figure 14-16 Syntax and examples of locating a record in a dataset
© 2013 Cengage Learning

Deleting a Record from a Dataset
Syntax
dataRowVariable.Delete()

Example
Dim row As DataRow
row = BooksDataSet.tblBooks.FindByTitle("Money")
row.Delete()
The Delete method deletes the record associated with the row variable.

Figure 14-17 Syntax and an example of deleting a record from a dataset
© 2013 Cengage Learning

CH A P T E R 1 4 Access Databases and SQL

834

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

To finish coding the btnDelete_Click procedure:

1. Enter the following statement:

row.Delete()

2. As you learned earlier, the changes made to a dataset are not permanent until they are
saved to the database associated with the dataset. Recall that you can save the changes
using the TableAdapter object’s Update method. Also recall that you should enter the
Update method within the Try block of a Try…Catch statement. Enter the additional
code shown in Figure 14-18.

3. Save the solution and then start the application. The first record is highlighted in the
DataGridView control, and the value of the record’s YearWon field (1999) is highlighted
in the list box.

4. Click the Delete button. The message box shown in Figure 14-19 appears on the screen.
(Recall that you can use the Alt key to show/hide the access keys.)

5. Click the Yes button in the message box. The computer deletes the record from the dataset,
the DataGridView control, and the database. It also deletes the 1999 entry from the list box.

6. Next, click 2005 in the Year Won column. The record for the year 2005 is highlighted
in the DataGridView control, and the value of the record’s YearWon field (2005) is
highlighted in the list box. Click the Delete button, and then click the No button
in the message box. The record remains in the dataset, the DataGridView control,
and the database. The 2005 entry also remains in the list box.

START HERE

Figure 14-19 Message box displayed by the btnDelete_Click procedure

enter these seven
lines of code

Figure 14-18 Additional code entered in the btnDelete_Click procedure

Deleting Records from a Dataset L E S S ON A

835

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

7. Finally, scroll down the list box until you see 2011, and then click 2011 in the list. Click
the Delete button and then click the Yes button. The computer deletes the record from
the dataset, the DataGridView control, and the database. It also deletes the 2011 entry
from the list box.

8. Click the Exit button and then start the application again. Notice that the 2005 record
remains in the dataset, but the 1999 and 2011 records were deleted.

9. Click the Exit button to end the application. Close the Code Editor window and then
close the solution.

Figure 14-20 shows the frmMain_Load, btnAdd_Click, and btnDelete_Click procedures.

Private Sub frmMain_Load(sender As Object,
e As EventArgs) Handles MyBase.Load

'TODO: This line of code loads data into the
'MoviesDataSet.tblMovies' table. You can move, or
remove it, as needed.
Me.TblMoviesTableAdapter.Fill(Me.MoviesDataSet.tblMovies)
TblMoviesBindingSource.Sort = "YearWon"

End Sub

Private Sub btnAdd_Click(sender As Object,
e As EventArgs) Handles btnAdd.Click

' add a record to the dataset

Dim intYear As Integer
Dim intLength As Integer
Integer.TryParse(txtAddYear.Text, intYear)
Integer.TryParse(txtLength.Text, intLength)

Try
MoviesDataSet.tblMovies.AddtblMoviesRow(intYear,

txtTitle.Text,
txtDirector.Text,
intLength)

Catch ex As Exception
MessageBox.Show("Duplicate record", "Add Record",

MessageBoxButtons.OK,
MessageBoxIcon.Information)

End Try

Try
TblMoviesTableAdapter.Update(MoviesDataSet.tblMovies)

Catch ex As Exception
MessageBox.Show(ex.Message, "Add Record",

MessageBoxButtons.OK,
MessageBoxIcon.Information)

End Try

End Sub

Private Sub btnDelete_Click(sender As Object,
e As EventArgs) Handles btnDelete.Click

' delete a record from the dataset

Dim dlgButton As DialogResult
dlgButton =

MessageBox.Show("Delete winner from year " &
lstDeleteYear.Text & "?", "Confirm Delete",
MessageBoxButtons.YesNo,
MessageBoxIcon.Exclamation)

Figure 14-20 frmMain_Load, btnAdd_Click, and btnDelete_Click procedures (continues)

Notice that you
can nest the
Try…Catch
statement.

CH A P T E R 1 4 Access Databases and SQL

836

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Lesson A Summary
l To add a record to a dataset:

Use the following syntax:

dataSetName.tableName.AddtableNameRow(valueField1[,
valueField2…, valueFieldN])

l To save dataset changes to a database:

Use the TableAdapter object’s Update method. The method’s syntax is:

tableAdapterName.Update(dataSetName.tableName)

l To sort the records in a dataset:

Use the BindingSource object’s Sort method. The method’s syntax is:

bindingSourceName.Sort = fieldName

l To locate a record in a dataset:

Use the following syntax:

dataRowVariable =
dataSetName.tableName.FindByfieldName(value)

l To delete a record from a dataset:

Use a DataRow variable’s Delete method. The syntax is:

dataRowVariable.Delete()

Lesson A Key Terms
Delete method—a method of a DataRow variable; used to delete a record from a dataset

Sort method—a method of the BindingSource object; used to sort a dataset in order by a
specific field

Update method—a method of the TableAdapter object; used to save a dataset’s changes to
its associated database

If dlgButton = Windows.Forms.DialogResult.Yes Then
Dim row As DataRow
Dim intYear As Integer
Integer.TryParse(lstDeleteYear.Text, intYear)
row =

MoviesDataSet.tblMovies.FindByYearWon(intYear)
row.Delete()
Try

TblMoviesTableAdapter.Update(MoviesDataSet.tblMovies)
Catch ex As Exception

MessageBox.Show(ex.Message, "Delete Record",
MessageBoxButtons.OK,
MessageBoxIcon.Information)

End Try
End If

End Sub

Figure 14-20 frmMain_Load, btnAdd_Click, and btnDelete_Click procedures
© 2013 Cengage Learning

(continued)

Lesson A Key Terms L E S S ON A

837

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Lesson A Review Questions
1. The FriendsDataSet contains a table named tblFriends. The table contains two text fields

named FName and LName. Which of the following will add a new record to the dataset?

a. FriendsDataSet.tblFriends.AddFriendsRow(strF, strL)

b. FriendsDataSet.tblFriends.AddRowToFriends(strF, strL)

c. FriendsDataSet.tblFriends.AddtblFriendsRow(strF, strL)

d. FriendsDataSet.AddtblFriendsRow(strF, strL)

2. Two records were added to the FriendsDataSet from Review Question 1. Which of the
following will save the records in the Friends database?

a. TblFriendsBindingSource.Save(FriendsDataSet.tblFriends)

b. TblFriendsBindingSource.Update(FriendsDataSet.tblFriends)

c. TblFriendsTableAdapter.Save(FriendsDataSet.tblFriends)

d. TblFriendsTableAdapter.Update(FriendsDataSet.tblFriends)

3. The FriendsDataSet from Review Question 1 is associated with the
TblFriendsBindingSource and TblFriendsTableAdapter objects. Which of
the following will sort the records by the LName field?

a. TblFriendsBindingSource.Sort = "LName"

b. TblFriendsBindingSource.Sort("LName")

c. TblFriendsTableAdapter.Sort = "LName"

d. none of the above

4. Using the FriendsDataSet from Review Question 1, which of the following will locate the
record whose last name is Winkler, and then assign the record to the row variable?

a. row =
FriendsDataSet.tblFriends.FindLName("Winkler")

b. row =
FriendsDataSet.tblFriends.FindByLName("Winkler")

c. row =
FriendsDataSet.tblFriends.Find("Winkler")

d. row =
FriendsDataSet.FindByLName("Winkler")

5. Which of the following will delete the record associated with a DataRow variable named
findRow?

a. findRow.Delete()

b. findRow.Remove()

c. delete(findRow)

d. none of the above

Lesson A Exercises

1. In this exercise, you modify the Academy Award Winners application from the lesson. Use
Windows to make a copy of the Academy Award Solution folder. Rename the copy Modified
Academy Award Solution. Open the Academy Award Solution (Academy Award Solution.sln)
file contained in the VB2012\Chap14\Modified Academy Award Solution folder. Open the
designer and Code Editor windows. Modify the btnAdd_Click procedure so that it adds a

INTRODUCTORY

CH A P T E R 1 4 Access Databases and SQL

838

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

record only when the four text boxes contain data. In addition, save the movie title and
director name without any leading or trailing spaces. Save the solution and then start and test
the application. Close the Code Editor window and then close the solution.

2. Open the HR Sales Solution (HR Sales Solution.sln) file contained in the VB2012\
Chap14\HR Sales Solution folder. If necessary, open the designer window. The
application is connected to the Sales database. The database contains a table named
tblSales. The table contains five records, each having four numeric fields named
RecordNum (the primary key), YearNum, MonthNum, and Sales. The Add button’s
Click event procedure should allow the user to add records to the database, but only
when the four text boxes contain data. All of the records in the database must be unique.
The records should appear in numerical order by the record number. Code the
application. Save the solution and then start and test the application. Close the Code
Editor window and then close the solution.

3. Open the Sydney Solution (Sydney Solution.sln) file contained in the VB2012\Chap14\
Sydney Solution folder. If necessary, open the designer window. The application is
connected to the Products database. The database contains a table named tblProducts.
The table contains 10 records, each composed of three fields. The ItemNum (primary
key) and ItemName fields contain text; the Price field contains numbers. The Add
button’s Click event procedure should allow the user to add records to the database, but
only when the three text boxes contain data. All of the records in the database must be
unique. The Delete button’s Click event procedure should allow the user to delete
records from the database. The records should appear in order by the item number when
the application is started. Code the application. Save the solution and then start and test
the application. Close the Code Editor window and then close the solution.

4. Open the Morgan Industries Solution (Morgan Industries Solution.sln) file contained in
the VB2012\Chap14\Morgan Industries Solution folder. If necessary, open the designer
window. The application is connected to the Employees database. The database contains
one table, which is named tblEmploy. The table contains seven fields and 17 records.
The Emp_Number field is the primary key. The Status field contains the employment
status, which is either the letter F (for full-time) or the letter P (for part-time). The Code
field identifies the employee’s department: 1 for Accounting, 2 for Advertising, 3 for
Personnel, and 4 for Inventory. The Add button’s Click event procedure should allow the
user to add records to the database, but only when the user provides all of the employee
information. All of the records in the database must be unique. The Delete button’s Click
event procedure should allow the user to delete records from the database. The records
should appear in order by the employee number when the application is started. Code
the application. Be sure to code each text box’s Enter event procedure. Also code the
KeyPress event procedures for the Number, Rate, Status, and Code text boxes. Save the
solution and then start and test the application. Close the Code Editor window and then
close the solution.

5. In this exercise, you modify the HR Sales application from Exercise 2. Use Windows to
make a copy of the HR Sales Solution folder. Rename the copy HR Sales Solution-LINQ.
Open the HR Sales Solution (HR Sales Solution.sln) file contained in the HR Sales
Solution-LINQ folder. Open the designer window. Add a button to the form. Change the
button’s name to btnTotal. Change its Text property to &Total Sales. The button’s Click
event procedure should display the total sales amount in a message box. (Hint: Use one of
the LINQ aggregate operators, which you learned about in Chapter 13.) Save the solution
and then start and test the application. Close the Code Editor window and then close the
solution.

INTRODUCTORY

INTRODUCTORY

INTERMEDIATE

INTERMEDIATE

Lesson A Exercises L E S S ON A

839

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

6. In this exercise, you modify the Academy Award Winners application from this lesson.
Use Windows to make a copy of the Academy Award Solution folder. Rename the copy
Academy Award Solution-Advanced. Open the Academy Award Solution (Academy
Award Solution.sln) file contained in the Academy Award Solution-Advanced folder.
Open the designer and Code Editor windows.

a. Use the Delete button, followed by the Yes button, to delete the 11 records from the
dataset. Then, click the Delete button again, followed by the Yes button. A run time
error occurs because the row.Delete() statement is attempting to delete a record
that does not exist. See Figure 14-21.

b. Click DEBUG on the menu bar and then click Stop Debugging. To fix the problem,
you will have the computer determine whether the row variable contains a data row.
Insert a blank line above the row.Delete() statement. Type If row Is Nothing
Then, press Enter twice, type Else, and then press Enter. In the selection structure’s
true path, enter a MessageBox.Show method that displays the “No record found”
message. Move the row.Delete() and Try…Catch statements into the selection
structure’s false path.

c. Save the solution and then start the application. Click the Delete button, followed by
the Yes button. The “No record found” message appears in a message box. Close the
message box. Click the Exit button. Close the Code Editor window and then close the
solution.

7. Open the Friends Solution (Friends Solution.sln) file contained in the VB2012\Chap14\
Friends Solution folder. Open the designer and Code Editor windows. Currently, the
form’s Load event procedure sorts the records in alphabetical order by the last name.
Modify the procedure so that it sorts the records in alphabetical order by first name
within last name. Save the solution and then start and test the application. Close the
Code Editor window and then close the solution.

Figure 14-21 Result of trying to delete a non-existent record

ADVANCED

DISCOVERY

CH A P T E R 1 4 Access Databases and SQL

840

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

& LESSON B
After studying Lesson B, you should be able to:

l Query a database using the SQL SELECT statement

l Create queries using the Query Builder dialog box

Structured Query Language
As you learned in Chapter 13, you use a query to specify both the records to select from a
database and the order in which to arrange the records. In Chapter 13, you created the queries
using LINQ (Language Integrated Query). In this chapter, you will use a different query
language, called SQL. You can pronounce SQL either as ess-cue-el or as sequel.

SQL, which stands for Structured Query Language, is a set of statements that allows you to
access and manipulate the data stored in many database management systems on computers of
all sizes, from large mainframes to small microcomputers. You can use SQL statements—such
as SELECT, INSERT, and DELETE—to perform common database tasks. Examples of these
tasks include storing, retrieving, updating, deleting, and sorting data.

In this lesson, you will use the SQL SELECT statement to query the Movies database from
Lesson A. The tblMovies table in the database contains the 11 records shown in Figure 14-22.
Each record has four fields. The YearWon and RunningTime fields are numeric; the Title and
DirectedBy fields contain text.

The SELECT Statement
The SELECT statement is the most commonly used statement in SQL. You can use it to specify
the fields and records you want to view, and also to control the order in which the fields and
records appear when they are displayed. The statement’s basic syntax is shown in Figure 14-23.
In the syntax, fieldList is one or more field names separated by commas, and tableName is
the name of the table containing the fields. The WHERE and ORDER BY clauses are optional
parts of the syntax. You use the WHERE clause, which contains a condition, to limit the records
you want to view. Similar to the condition in the If…Then…Else and Do…Loop statements,
the condition in a WHERE clause specifies a requirement that must be met for a record to be
selected. The ORDER BY clause is used to arrange the records in either ascending (the default)
or descending order by one or more fields. Although you do not have to capitalize the
keywords SELECT, FROM, WHERE, ORDER BY, and DESC in a SELECT statement, many
programmers do so for clarity.

Figure 14-22 Contents of the tblMovies table

The SELECT Statement L E S S ON B

841

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

The SELECT statement in Example 1 in Figure 14-23 tells the computer to select all of the fields
and records from the tblMovies table. The SELECT statement in Example 2 uses the WHERE
clause to limit the records that will be selected. In this case, the statement tells the computer to
select all of the fields, but only from records for the year 2006 and later. The SELECT statement
in Example 3 tells the computer to select the YearWon field, but only from the Chicago record.
At this point, you may be wondering why the word “Chicago” in Example 3 appears in single
quotes, but the number 2006 in Example 2 does not. The single quotes around the value in the
WHERE clause’s condition are necessary only when you are comparing a text field with a literal
constant. Recall that the Title field contains text, whereas the YearWon field contains numbers.
Text comparisons in SQL are not case-sensitive. Therefore, you can also write the WHERE
clause in Example 3 as WHERE Title = 'chicago'.

The SELECT statement in Example 4 in Figure 14-23 selects all of the fields and records from
the tblMovies table and then sorts the records in ascending order by the Title field. The SELECT
statement in Example 5 shows how you can use the LIKE operator along with the % (percent
sign) wildcard character in the WHERE clause. The statement tells the computer to select the
Title and RunningTime fields from records whose title begins with the word “The” followed by a
space and zero or more characters. The statement then sorts the records in descending order by
the RunningTime field.

SELECT Statement

Basic syntax
SELECT fieldList FROM tableName

[WHERE condition]
[ORDER BY fieldName [DESC]]

Example 1
SELECT YearWon, Title, DirectedBy, RunningTime FROM tblMovies
selects all of the fields and records in the tblMovies table

Example 2
SELECT YearWon, Title, DirectedBy, RunningTime FROM tblMovies

WHERE YearWon >= 2006
selects all of the fields from records for the year 2006 and later

Example 3
SELECT YearWon FROM tblMovies WHERE Title = 'Chicago'
selects the YearWon field from the Chicago record

Example 4
SELECT YearWon, Title, DirectedBy, RunningTime FROM tblMovies

ORDER BY Title
selects all of the fields and records in the tblMovies table and then sorts the records in ascending
order by the Title field

Example 5
SELECT Title, RunningTime FROM tblMovies

WHERE Title LIKE 'The %'
ORDER BY RunningTime DESC

selects the Title and RunningTime fields from records whose title begins with the word “The”
followed by a space and zero or more characters, and then sorts the records in descending order by
the RunningTime field

Figure 14-23 Syntax and examples of the SELECT statement
© 2013 Cengage Learning

CH A P T E R 1 4 Access Databases and SQL

842

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Creating a Query
In this section, you will use the Academy Award Winners application to test the SELECT
statements from Figure 14-23.

To use the Academy Award Winners application to test the SELECT statements:

1. If necessary, start Visual Studio 2012. Open the Academy Award Solution (Academy
Award Solution.sln) file contained in the VB2012\Chap14\Academy Award Solution-
SQL folder. If necessary, open the designer window. The application is already connected
to the Movies database.

2. Start the application. The dataset appears in the DataGridView control. See
Figure 14-24. (Recall that you can use the Alt key to show/hide the access keys.)

3. Click the Exit button to end the application. Right-click MoviesDataSet.xsd
in the Solution Explorer window. The .xsd file, called the dataset’s schema file,
contains information about the tables, fields, records, and properties included in the
MoviesDataSet. Click Open to open the DataSet Designer window. See Figure 14-25.

START HERE

Figure 14-24 Contents of the dataset displayed in the DataGridView control

Creating a Query L E S S ON B

843

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

4. Right-click tblMoviesTableAdapter in the DataSet Designer window. Point to
Add on the shortcut menu and then click Query. (If Add does not appear on the
shortcut menu, click Add Query instead.) Doing this starts the TableAdapter Query
Configuration Wizard. The Use SQL statements radio button should be selected,
as shown in Figure 14-26.

5. Click the Next button to display the Choose a Query Type screen. The “SELECT which
returns rows” radio button should be selected, as shown in Figure 14-27.

verify that this
radio button is
selected

Figure 14-26 Choose a Command Type screen

Figure 14-25 DataSet Designer window

CH A P T E R 1 4 Access Databases and SQL

844

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

6. Click the Next button to display the Specify a SQL SELECT statement screen. The
SELECT statement in the “What data should the table load?” box tells the computer to
select all of the fields and records from the tblMovies table. See Figure 14-28.

You can type a different SELECT statement in the “What data should the table load?” box
shown in Figure 14-28. Or, you can use the Query Builder dialog box to construct the statement
for you. In the next set of steps, you will use the Query Builder dialog box.

To test the SELECT statements from Figure 14-23:

1. Click the Query Builder button to open the Query Builder dialog box. See Figure 14-29.
The table’s primary key appears boldfaced in the Diagram pane.

selects all of the field
and records from the
tblMovies table

Query Builder button

Figure 14-28 Specify a SQL SELECT statement screen

verify that this
radio button is
selected

Figure 14-27 Choose a Query Type screen

START HERE

Creating a Query L E S S ON B

845

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

2. The SQL pane contains the same SELECT statement shown in Example 1 in Figure 14-23.
The statement tells the computer to select all of the fields and records contained in
the tblMovies table. Click the Execute Query button to run the query. The query results
appear in the Results pane. See Figure 14-30. You can use the scroll bar to view the
remaining records.

3. Next, you will create a query that selects all of the fields, but only from records for the
year 2006 and later. In the Grid pane, click the blank cell in the YearWon field’s Filter
column. Type >= 2006 and press Enter. The Filter column entry tells the Query Builder
to include the WHERE (YearWon >= 2006) clause in the SELECT statement. The funnel
symbol that appears in the Diagram pane indicates that the YearWon field is used to
filter the records. Notice the Query Changed message and icon that appear in the Results
pane. The message and icon alert you that the information displayed in the Results pane

SQL pane

Results pane
scroll bar

Figure 14-30 Records listed in the Results pane

Diagram pane

Results pane

Grid pane

SQL pane

primary key
is boldfaced

Figure 14-29 Query Builder dialog box

CH A P T E R 1 4 Access Databases and SQL

846

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

is not from the current query. See Figure 14-28. (For clarity, the Query Builder places the
WHERE clause’s condition in parentheses; however, the parentheses are not a
requirement of the SELECT statement.)

4. Click the Execute Query button to run the current query. If necessary, scroll the Results
pane to verify that it contains only the records for the years 2006 through 2010.

5. Next, you will create a query that selects only the YearWon field for the Chicago record.
Select (highlight) the >= 2006 entry in the YearWon field’s Filter column and then press
Delete. Click the blank cell in the Title field’s Filter column. Type Chicago and press
Enter. The Query Builder changes the entry in the Filter column to = 'Chicago'. It also
enters the WHERE (Title = 'Chicago') clause in the SELECT statement.

6. Now, click the Title, DirectedBy, and RunningTime check boxes in the Diagram
pane to remove the check marks. The Query Builder changes the first line in
the SELECT statement to SELECT YearWon. Click the Execute Query button.
See Figure 14-32.

the field is used to
filter the records

WHERE clause

used by the
WHERE clause

Query changed
message

Query Changed icon

Figure 14-31 SELECT statement containing a WHERE clause

Creating a Query L E S S ON B

847

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

7. Next, you will create a query that selects all of the fields and records in the tblMovies
table and then sorts them in ascending order by the Title field. Select the Title,
DirectedBy, and RunningTime check boxes in the Diagram pane. The Query Builder
changes the first line in the SELECT statement to SELECT YearWon, Title,
DirectedBy, RunningTime. Delete the = 'Chicago' entry from the Filter column in the
Grid pane, and then press Enter. The Query Builder removes the WHERE clause from
the SELECT statement.

8. Now, click the blank cell in the Title field’s Sort Type column and then click the list
arrow in the cell. Click Ascending and then press Enter. The word “Ascending” appears
as the Title field’s Sort Type, and the number 1 appears as its Sort Order. The number 1
indicates that the Title field is the primary field in the sort. As a result, the Query Builder
adds the ORDER BY Title clause to the SELECT statement. Click the Execute Query
button. See Figure 14-33.

the field is used to
filter the records

WHERE clause

used by the
WHERE clause

Figure 14-32 Result of executing the current query

CH A P T E R 1 4 Access Databases and SQL

848

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

9. On your own, create the query for Figure 14-23’s Example 5. The query should select the
Title and RunningTime fields from records whose title begins with the word “The”
followed by a space and zero or more characters. The query should sort the records in
descending order by the RunningTime field. Figure 14-34 shows the query along with
the result of executing it.

ORDER BY clause

ascending (A to Z)
sort

used by the
ORDER BY clause

Figure 14-33 Records displayed in ascending order by the Title field

Creating a Query L E S S ON B

849

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

10. Click the Cancel button in the Query Builder dialog box and then click the Cancel
button in the TableAdapter Query Configuration Wizard dialog box.

11. Save the solution. Close the MoviesDataSet.xsd window and then close the solution.

Lesson B Summary
l To query a database using SQL:

Use the SELECT statement. The statement’s basic syntax is:

SELECT fieldList FROM tableName
[WHERE condition]
[ORDER BY fieldName [DESC]]

l To limit the records you want to view:

Use the SELECT statement’s WHERE clause.

l To sort the selected records:

Use the SELECT statement’s ORDER BY clause.

l To open the DataSet Designer window:

Right-click the name of the dataset’s schema file in the Solution Explorer window and then
click Open. The schema filename ends with .xsd.

Figure 14-34 Records displayed by the current query

CH A P T E R 1 4 Access Databases and SQL

850

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

l To start the TableAdapter Query Configuration Wizard:

Open the DataSet Designer window and then right-click the table adapter’s name. Point to
Add on the shortcut menu and then click Query. (If Add does not appear on the shortcut
menu, click Add Query instead.)

l To open the Query Builder dialog box:

Start the TableAdapter Query Configuration Wizard. Click the Next button and then click
the Next button again to display the Specify a SQL SELECT statement screen. Click the
Query Builder button.

l To represent zero or more characters in the WHERE clause’s condition:

Use the % wildcard.

Lesson B Key Terms
%—a wildcard character used in the condition in a SELECT statement’s WHERE clause;
represents zero or more characters

LIKE operator—used with a wildcard character in the condition in a SELECT statement’s
WHERE clause

ORDER BY clause—used in a SELECT statement to sort the selected records

SELECT statement—the SQL statement that allows you to specify the fields and records to
select, and also the order in which the fields and records appear when displayed

SQL—an acronym for Structured Query Language

Structured Query Language—SQL; a set of statements that allows you to access and manipulate
the data stored in a database

WHERE clause—used in a SELECT statement to limit the records to be selected

Lesson B Review Questions
1. SQL stands for .

a. Select Query Language

b. Semi-Quick Language

c. Structured Quick Language

d. Structured Query Language

2. Which of the following SELECT statements will select the First and Last fields from the
tblNames table?

a. SELECT First AND Last FROM tblNames

b. SELECT First OR Last FROM tblNames

c. SELECT First, Last FROM tblNames

d. SELECT ONLY First, Last FROM tblNames

3. Which of the following SELECT statements will select the SSN field from the tblPayInfo
table, and then sort the records in descending order by the SSN field?

a. SELECT SSN FROM tblPayInfo DESC

b. SELECT SSN FROM tblPayInfo
ORDER BY SSN DESC

c. SELECT SSN FROM tblPayInfo
WHERE SSN DESC

d. SELECT SSN FROM tblPayInfo
SORT SSN DESC

Lesson B Review Questions L E S S ON B

851

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

4. Which of the following SELECT statements will select only records whose Status field
contains the letter A? The Status field is contained in the tblWorker table.

a. SELECT Id, Name, Status FROM tblWorker
WHERE Status = 'A'

b. SELECT Id, Name, Status FROM tblWorker
ORDER BY Status = 'A'

c. SELECT Id, Name, Status FROM tblWorker
FOR Status = 'A'

d. SELECT Id, Name, Status FROM tblWorker
SELECT Status = 'A'

5. The tblState table contains a text field named State. Which of the following SELECT
statements will select the State and Capital fields from only the Kansas and Kentucky
records?

a. SELECT State, Capital FROM tblState
WHERE State LIKE 'K'

b. SELECT State, Capital FROM tblState
WHERE State LIKE 'K*'

c. SELECT State, Capital FROM tblState
WHERE State LIKE 'K%'

d. SELECT State, Capital FROM tblState
WHERE State LIKE 'K#'

6. The tblState table contains a numeric field named Population. Which of the following
SELECT statements will select the State and Capital fields from only states with
populations that exceed 5,000,000?

a. SELECT State, Capital FROM tblState
WHERE Population > 5000000

b. SELECT State, Capital FROM tblState
WHERE Population > '5000000'

c. SELECT State, Capital FROM tblState
WHERE Population > "5000000"

d. SELECT State, Capital FROM tblState
SELECT Population > 5000000

7. In a SELECT statement, which clause is used to limit the records that will be selected?

a. LIMIT

b. ORDER BY

c. ONLY

d. WHERE

8. If a funnel symbol appears next to a field’s name in the Query Builder dialog box, it
indicates that the field is .

a. used in an ORDER BY clause in a SELECT statement

b. used in a WHERE clause in a SELECT statement

c. the primary key

d. the foreign key

CH A P T E R 1 4 Access Databases and SQL

852

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

9. The SQL SELECT statement performs case sensitive comparisons.

a. True

b. False

Lesson B Exercises

1. The tblMagazine table contains three fields. The Cost field is numeric. The Code and
MagName fields contain text.

a. Write a SQL SELECT statement that arranges the records in descending order by the
Cost field.

b. Write a SQL SELECT statement that selects only the MagName and Cost fields from
records having a code of PG10.

c. Write a SQL SELECT statement that selects only the MagName and Cost fields from
records having a cost of $3 or more.

d. Write a SQL SELECT statement that selects the Visual Basic record.

e. Write a SQL SELECT statement that selects only the MagName field from records
whose magazine names begin with the letter C.

f. Open the Magazine Solution (Magazine Solution.sln) file contained in the
VB2012\Chap14\Magazine Solution-SQL folder. If necessary, open the designer
window. The application is connected to the Magazines database. Start the
application to view the records contained in the dataset, and then stop the
application. Open the DataSet Designer window and then start the TableAdapter
Query Configuration Wizard. Open the Query Builder dialog box. Use the dialog
box to test your SELECT statements from Steps a through e.

g. Close the Query Builder dialog box and the TableAdapter Query Configuration
Wizard dialog box. Save the solution. Close the MagazinesDataSet.xsd window and
then close the solution.

2. The tblEmploy table contains seven fields. The Emp_Number, Rate, and Code fields are
numeric. The Last_Name, First_Name, Hired, and Status fields contain text. The Status
field contains either the letter F (for full-time) or the letter P (for part-time). The Code
field identifies the employee’s department: 1 for Accounting, 2 for Advertising, 3 for
Personnel, and 4 for Inventory.

a. Write a SQL SELECT statement that selects all of the fields and records in the table,
and then sorts the records in ascending order by the Code field.

b. Write a SQL SELECT statement that selects only the Emp_Number, Last_Name, and
First_Name fields from all of the records.

c. Write a SQL SELECT statement that selects only the records for full-time employees.

d. Write a SQL SELECT statement that selects the Emp_Number and Rate fields for
employees in the Personnel department.

e. Write a SQL SELECT statement that selects the Emp_Number and Last_Name fields
for employees having a last name of Smith.

f. Write a SQL SELECT statement that selects the Emp_Number and Last_Name fields
for employees having a last name that begins with the letter S.

INTRODUCTORY

INTRODUCTORY

Lesson B Exercises L E S S ON B

853

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

g. Write a SQL SELECT statement that selects only the first and last names for
part-time employees, and then sorts the records in descending order by the
Last_Name field.

h. Open the Morgan Industries Solution (Morgan Industries Solution.sln) file contained
in the VB2012\Chap14\Morgan Industries Solution-SQL folder. If necessary, open
the designer window. The application is connected to the Employees database from
Chapter 13. Start the application to view the records contained in the dataset, and
then stop the application. Open the DataSet Designer window and then start the
TableAdapter Query Configuration Wizard. Open the Query Builder dialog box.
Which field in the table is the primary key? How can you tell that it is the
primary key?

i. Use the Query Builder dialog box to test your SELECT statements from Steps a
through g.

j. Close the Query Builder dialog box and the TableAdapter Query Configuration
Wizard dialog box. Save the solution. Close the EmployeesDataSet.xsd window and
then close the solution.

CH A P T E R 1 4 Access Databases and SQL

854

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

& LESSON C
After studying Lesson C, you should be able to:

l Create a parameter query

l Save a query

l Invoke a query from code

l Add records to a dataset using the SQL INSERT statement

l Delete records from a dataset using the SQL DELETE statement

Parameter Queries
In Lesson B, you learned how to create queries that search for records meeting a specific criteria,
such as Title = 'Chicago' and YearWon >= 2006. Most times, however, you will not know
ahead of time the values to include in the criteria. For example, the next time the user runs the
query, he or she may want to view the Gladiator record (Title = 'Gladiator') rather than
the Chicago record. Or, the user may want to view the movies that won the Academy Award
in the year 2007 and later (YearWon >= 2007). When you don’t know the specific value to
include in the criteria, you use a parameter query.

A parameter query is a query that uses the parameter marker in place of the criteria’s value.
The parameter marker is a question mark (?). Figure 14-35 shows examples of parameter
queries using the tblMovies table from Lessons A and B.

In this section, you will open the Academy Award Winners application and then use it to test
the SELECT statements from Figure 14-35.

To test the first SELECT statement from Figure 14-35:

1. If necessary, start Visual Studio 2012. Open the Academy Award Solution (Academy
Award Solution.sln) file contained in the VB2012\Chap14\Academy Award Solution-
Parameter Queries folder. If necessary, open the designer window. The application is
already connected to the Movies database.

2. Start the application. The dataset shown in Figure 14-36 appears in the DataGridView
control.

Parameter Queries
Example 1
SELECT YearWon, Title, DirectedBy, RunningTime FROM tblMovies

WHERE Title = ?
selects all of the fields from the record whose title is represented by the parameter marker

Example 2
SELECT YearWon, Title, DirectedBy, RunningTime FROM tblMovies

WHERE YearWon >= ?
selects all of the fields from records whose YearWon field contains a value that is greater than or
equal to the value represented by the parameter marker

Figure 14-35 Examples of parameter queries
© 2013 Cengage Learning

START HERE

Parameter Queries L E S S ON C

855

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

3. Click the Exit button to end the application. Right-click MoviesDataSet.xsd in the
Solution Explorer window, and then click Open to open the DataSet Designer window.

4. Right-click tblMoviesTableAdapter in the DataSet Designer window. Point to Add on
the shortcut menu and then click Query to start the TableAdapter Query Configuration
Wizard. (If Add does not appear on the shortcut menu, click Add Query instead.)

5. Verify that the Use SQL statements radio button is selected. Click the Next button to
display the Choose a Query Type screen. Verify that the “SELECT which returns rows”
radio button is selected. Click the Next button to display the Specify a SQL SELECT
statement screen. Click the Query Builder button to open the Query Builder dialog box.

6. First, you will create a query that selects the Chicago record. In the Grid pane, click the
blank cell in the Title field’s Filter column. Type ? and press Enter. The Filter column
entry tells the Query Builder to include the WHERE (Title = ?) clause in the SELECT
statement.

7. Click the Execute Query button to run the query. The Query Parameters dialog box
opens. Type Chicago in the Value column. See Figure 14-37.

Figure 14-36 Records displayed in the DataGridView control

CH A P T E R 1 4 Access Databases and SQL

856

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

8. Click the OK button to close the Query Parameters dialog box. The Chicago record
appears in the Results pane.

9. Now, you will run the query again. This time, however, you will select the Gladiator
record. Click the Execute Query button to run the query. Type Gladiator in the
Value column of the Query Parameters dialog box and then click the OK button.
The Gladiator record appears in the Results pane.

Next, you will create a query for Example 2 from Figure 14-35.

To test the second SELECT statement from Figure 14-35:

1. Delete the = ? from the Title field’s Filter column. Now, type >= ? in the YearWon field’s
Filter column and then press Enter. Click the Execute Query button to run the query.
Type 2006 in the Value column of the Query Parameters dialog box and then click the
OK button. Five records appear in the Results pane. See Figure 14-38.

Figure 14-37 Query Parameters dialog box

START HERE

Parameter Queries L E S S ON C

857

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

2. Now, you will run the query again. This time, however, you will select records for the
year 2009 and later. Click the Execute Query button to run the query. Type 2009 in the
Value column of the Query Parameters dialog box and then click the OK button. This
time, only two records appear in the Results pane.

3. Click the Cancel button in the Query Builder dialog box and then click the Cancel
button in the TableAdapter Query Configuration Wizard dialog box.

4. Save the solution. Close the MoviesDataSet.xsd window and then close the solution.

Saving a Query
In order for an application to use a query during run time, you will need to save the query and
then invoke it from code. You save a query that contains the SELECT statement by associating
the query with one or more methods. The TableAdapter Query Configuration Wizard provides
an easy way of performing this task.

To use the TableAdapter Query Configuration Wizard to save a query:

1. Open the Academy Award Solution (Academy Award Solution.sln) file contained in the
VB2012\Chap14\Academy Award Solution-Save Query folder. If necessary, open the
designer window. The application is connected to the Movies database. The application
allows the user to display either all of the records or only the record for the year entered
in the txtYear control.

2. Start the application. The dataset shown in Figure 14-39 appears in the DataGridView
control. The user can choose to display either all of the records or only the record whose
YearWon field matches the value entered in the txtYear control.

Figure 14-38 Records with a YearWon field value of at least 2006

START HERE

CH A P T E R 1 4 Access Databases and SQL

858

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

3. Click the Exit button to end the application. Right-click MoviesDataSet.xsd in the
Solution Explorer window and then click Open to open the DataSet Designer window.

4. Right-click tblMoviesTableAdapter in the DataSet Designer window. Point to Add on
the shortcut menu and then click Query to start the TableAdapter Query Configuration
Wizard. (If Add does not appear on the shortcut menu, click Add Query instead.)

5. Verify that the Use SQL statements radio button is selected. Click the Next button to
display the Choose a Query Type screen. Verify that the “SELECT which returns rows”
radio button is selected. Click the Next button to display the Specify a SQL SELECT
statement screen. As shown in Figure 14-40, the “What data should the table load?” box
contains the default query, which selects all of the fields and records in the table.

6. You can invoke the default query using the TableAdapter object’s Fill method. Click the
Query Builder button to open the Query Builder dialog box.

7. Recall that the interface provides the txtYear control for the user to enter a year number.
You will create a parameter query that allows the user to display the Academy Award
winner for that year. In the Grid pane, click the blank cell in the YearWon field’s Filter
column. Type ? and press Enter. The Query Builder adds the WHERE (YearWon = ?)
clause to the SELECT statement.

8. Click the Execute Query button to run the query. The Query Parameters dialog box
opens. Type 2004 in the Value column and then click the OK button to close the dialog
box. The 2004 record appears in the Results pane.

default query

Figure 14-40 Default query in the Specify a SQL SELECT statement screen

txtYear

Figure 14-39 Interface for the Academy Award Winners application in Lesson C

Saving a Query L E S S ON C

859

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

9. Click the OK button to close the Query Builder dialog box. The parameter query
appears in the “What data should the table load?” box. See Figure 14-41.

10. Click the Next button to display the Choose Methods to Generate screen. If necessary,
select the Fill a DataTable and Return a DataTable check boxes. Change the Fill a
DataTable method’s name from FillBy to FillByYear. Change the Return a DataTable
method’s name from GetDataBy to GetDataByYear. See Figure 14-42. As the figure
indicates, the FillByYear and GetDataByYear methods are associated with the parameter
query you created. Therefore, you can use the methods to invoke the query during
run time.

parameter
query

Figure 14-41 Parameter query in the Specify a SQL SELECT statement screen

these methods are
associated with the
parameter query from
Figure 14-41

Figure 14-42 Completed Choose Methods to Generate screen

CH A P T E R 1 4 Access Databases and SQL

860

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

11. Click the Next button to display the Wizard Results screen. See Figure 14-43.

12. Click the Finish button. The FillByYear and GetDataByYear methods are added to the
DataSet Designer window, as shown in Figure 14-44.

13. Save the solution and then close the MoviesDataSet.xsd window.

Invoking a Query from Code
You can invoke a query during run time by entering its associated methods in a procedure.
In the next set of steps, you will enter the appropriate methods in the Display button’s Click
event procedure.

retrieves all of
the records

retrieves only the
record for the year
entered by the user

Figure 14-44 Method names included in the DataSet Designer window

Figure 14-43 Wizard Results screen

Invoking a Query from Code L E S S ON C

861

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

To code the Display button’s Click event procedure:

1. Open the Code Editor window. Replace <your name> and <current date> in the
comments with your name and the current date, respectively.

2. Locate the btnDisplay_Click procedure and then click the blank line above the
End Sub clause.

3. If the All radio button is selected in the interface, the procedure will use the
TblMoviesTableAdapter object’s Fill method to select all of the records. (Recall
that the form’s Load event procedure also uses the Fill method.) Enter the lines of
code shown in Figure 14-45.

4. If the All radio button is not selected, it means that the For Year radio button is selected.
In that case, the procedure will use the TblMoviesTableAdapter object’s FillByYear
method to select the appropriate record. The record to select is the one whose YearWon
field matches the year number entered in the txtYear control. First, you will determine
whether the control contains a value. If it does not contain a value, you will display an
appropriate message. Enter the additional lines of code indicated in Figure 14-46.

5. The YearWon field is numeric, so you will need to convert the text box entry to a
number. Enter the following lines of code:

Else
Dim intYear As Integer
Integer.TryParse(txtYear.Text, intYear)

6. Next, you will invoke the TblMoviesTableAdapter object’s FillByYear method. Because
the method is associated with a parameter query, you will need to include the parameter
information in the method. Enter the additional lines of code indicated in Figure 14-47.

enter these
lines of code

Figure 14-45 If clause and Fill method entered in the procedure

enter these lines
of code

Figure 14-46 Additional code entered in the procedure

START HERE

CH A P T E R 1 4 Access Databases and SQL

862

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

7. Save the solution and then start the application. Click the For Year radio button and
then click the Display button. The “Please enter the year.” message appears in a message
box. Close the message box.

8. Click the text box located below the For Year radio button. Type 2008 and then click
the Display button. Only the 2008 record appears in the DataGridView control. See
Figure 14-48.

9. Click the All radio button, and then click the Display button to display all of the records
in the DataGridView control.

10. Click the Exit button. Close the Code Editor window and then close the solution.

The INSERT and DELETE Statements
SQL provides the INSERT statement for inserting records into a database, and the
DELETE statement for deleting records from a database. Figures 14-49 and 14-50 show
the syntax and examples of the INSERT and DELETE statements, respectively.

Figure 14-48 2008 record shown in the interface

enter these
lines of code

year number for
the parameter query

Figure 14-47 btnDisplay_Click procedure

The INSERT and DELETE Statements L E S S ON C

863

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

In the next two sets of steps, you will use the TableAdapter Query Configuration Wizard
to create Insert and Delete queries for the Movies database in the Academy Award Winners
application. An Insert query uses the INSERT statement to add a record to a database.
A Delete query uses the DELETE statement to delete a record from a database.

To create an Insert query in the Academy Award Winners application:

1. Open the Academy Award Solution (Academy Award Solution.sln) file contained in the
VB2012\Chap14\Academy Award Solution-InsertDelete folder. If necessary, open the
designer window. The application is already connected to the Movies database. Start the
application to view the records contained in the dataset. See Figure 14-51.

DELETE Statement
Syntax
DELETE FROM tableName WHERE condition

Example 1
DELETE FROM tblMovies
 WHERE YearWon = 1997

Example 2
DELETE FROM tblMovies
 WHERE Title = 'Forrest Gump'

Example 3—parameter query
DELETE FROM tblMovies
 WHERE YearWon = ?

Figure 14-50 Syntax and examples of the SQL DELETE statement
© 2013 Cengage Learning

INSERT Statement
Syntax
INSERT INTO tableName(fieldName1, fieldName2,…fieldNameN)
 VALUES (field1Value, field2Value,…fieldNValue)

Example 1
INSERT INTO 'tblMovies' ('YearWon', 'Title',
 'DirectedBy', 'RunningTime')
 VALUES (1997, 'Titanic', 'James Cameron', 194)

Example 2
INSERT INTO 'tblMovies' ('YearWon', 'Title',
 'DirectedBy', 'RunningTime')
 VALUES (1994, 'Forrest Gump', 'Robert Zemeckis', 141)

Example 3—parameter query
INSERT INTO 'tblMovies' ('YearWon', 'Title',
 'DirectedBy', 'RunningTime')
 VALUES (?, ?, ?, ?)

Figure 14-49 Syntax and examples of the SQL INSERT statement
© 2013 Cengage Learning

START HERE

CH A P T E R 1 4 Access Databases and SQL

864

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

2. Click the Exit button to end the application. First, you will create the Insert query.
Right-click MoviesDataSet.xsd in the Solution Explorer window and then click
Open to open the DataSet Designer window.

3. Right-click tblMoviesTableAdapter in the DataSet Designer window. Point to Add on
the shortcut menu and then click Query to start the TableAdapter Query Configuration
Wizard. (If Add does not appear on the shortcut menu, click Add Query instead.)

4. Verify that the Use SQL statements radio button is selected, and then click the Next
button to display the Choose a Query Type screen. Click the INSERT radio button.
See Figure 14-52.

select this radio
button to create
an INSERT query

Figure 14-52 Choose a Query Type screen

the text boxes are named
txtAddYear, txtLength, txtTitle,
and txtDirector

lstDeleteYear

Figure 14-51 Records displayed in the TblMoviesDataGridView control

The INSERT and DELETE Statements L E S S ON C

865

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

5. Click the Next button to display the Specify a SQL INSERT statement screen, which
contains the default INSERT statement for the tblMovies table. See Figure 14-53.

6. Click the Next button to display the Choose Function Name screen. Change the
function’s name to InsertRecordQuery. See Figure 14-54.

7. Click the Next button to display the Wizard Results screen. See Figure 14-55.

8. Click the Finish button. The InsertRecordQuery function is added to the DataSet
Designer window, as shown in Figure 14-56.

Figure 14-53 Default INSERT statement for the tblMovies table

Figure 14-54 Choose Function Name screen

Figure 14-55 Wizard Results screen

CH A P T E R 1 4 Access Databases and SQL

866

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Now, you will create a Delete query.

To create a Delete query:

1. Right-click tblMoviesTableAdapter in the DataSet Designer window. Click Add Query
on the shortcut menu to start the TableAdapter Query Configuration Wizard. (If Add
Query does not appear on the shortcut menu, point to Add and then click Query.)

2. Verify that the Use SQL statements radio button is selected. Click the Next button to
display the Choose a Query Type screen.

3. Click the DELETE radio button and then click the Next button to display the Specify a
SQL DELETE statement screen, which contains the default DELETE statement for the
tblMovies table.

4. Click the Query Builder button. Change the statement in the SQL pane of the Query
Builder dialog box as shown in Figure 14-57. (Don’t be concerned about the values in the
Grid pane.)

5. Click the OK button. The DELETE statement shown in Figure 14-58 appears in the
Specify a SQL DELETE statement screen.

Figure 14-57 SQL pane in the Query Builder dialog box

InsertRecordQuery
function

Figure 14-56 InsertRecordQuery function

START HERE

The INSERT and DELETE Statements L E S S ON C

867

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

6. Click the Next button to display the Choose Function Name screen. Change the
function’s name to DeleteRecordQuery, and then click the Next button to display
the Wizard Results screen.

7. Click the Finish button to add the DeleteRecordQuery function to the DataSet Designer
window. See Figure 14-59.

8. Save the solution and then close the MoviesDataSet.xsd window.

In the next set of steps, you will code the Click event procedures for the Add and Delete buttons.
The Add button will use the InsertRecordQuery function to add a record to the Movies
database. The Delete button will use the DeleteRecordQuery function to delete a record from
the Movies database.

To code the Add and Delete buttons:

1. Open the Code Editor window. Locate the btnAdd_Click procedure and then click the
blank line above the End Sub clause. First, you will determine whether the four text
boxes contain data. If at least one of the text boxes is empty, the procedure will display
an appropriate message. Enter the selection structure shown in Figure 14-60.

DeleteRecordQuery
function

Figure 14-59 DeleteRecordQuery function

Figure 14-58 SQL DELETE statement

START HERE

CH A P T E R 1 4 Access Databases and SQL

868

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

2. If all of the text boxes contain data, you will need to convert the values in the txtAddYear
and txtLength controls to numbers before you can add them to the database; this is
because the YearWon and RunningTime fields in the table are numeric. Enter the
following lines of code:

Else
Dim intYear As Integer
Dim intLength As Integer
Integer.TryParse(txtAddYear.Text, intYear)
Integer.TryParse(txtLength.Text, intLength)

3. Now, you will use the TblMoviesTableAdapter object’s InsertRecordQuery function
to add the record to the database. You then will use the object’s Fill method to retrieve
the appropriate data from the database. However, as you learned in Lesson A, a run time
error will occur if you try to add a duplicate record to a dataset. Recall that in this case,
a duplicate record is a record whose YearWon field value is already in the dataset.
Therefore, you will enter the InsertRecordQuery function and Fill method in a
Try…Catch statement. Enter the additional lines of code shown in Figure 14-61.

enter these lines
of code

Figure 14-61 Additional lines of code entered in the btnAdd_Click procedure

enter this selection
structure

Figure 14-60 Selection structure entered in the btnAdd_Click procedure

The INSERT and DELETE Statements L E S S ON C

869

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

4. Next, locate the btnDelete_Click procedure and then click the blank line above the End
Sub clause. Before the procedure deletes a record, it will ask the user to confirm the
deletion. Enter the code indicated in Figure 14-62.

5. If the user confirms the deletion, you will need to convert the value in the lstDeleteYear
control to a number because the YearWon field in the table is numeric. Enter the
following lines of code:

If dlgButton = Windows.Forms.DialogResult.Yes Then
Dim intYear As Integer
Integer.TryParse(lstDeleteYear.Text, intYear)

6. Now you will use the TblMoviesTableAdapter object’s DeleteRecordQuery function to
delete the record from the database. You then will use the object’s Fill method to retrieve
the appropriate data from the database. Enter the additional lines of code shown in
Figure 14-63.

Figure 14-64 shows the code entered in the frmMain_Load, btnAdd_Click, and btnDelete_Click
procedures.

enter these two
lines of code

Figure 14-63 Additional code entered in the selection structure

enter these six
lines of code

Figure 14-62 Additional code entered in the btnDelete_Click procedure

CH A P T E R 1 4 Access Databases and SQL

870

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Private Sub frmMain_Load(sender As Object,
e As EventArgs) Handles MyBase.Load

'TODO: This line of code loads data into the
'MoviesDataSet.tblMovies' table. You can move, or
remove it, as needed.

Me.TblMoviesTableAdapter.Fill(Me.MoviesDataSet.tblMovies)
TblMoviesBindingSource.Sort = "YearWon"

End Sub

Private Sub btnAdd_Click(sender As Object,
e As EventArgs) Handles btnAdd.Click

' add a record to the dataset

If txtAddYear.Text.Trim = String.Empty OrElse
txtLength.Text.Trim = String.Empty OrElse
txtTitle.Text.Trim = String.Empty OrElse
txtDirector.Text.Trim = String.Empty Then
MessageBox.Show("Please enter all of the information.",

"Academy Award Winners",
MessageBoxButtons.OK,
MessageBoxIcon.Information)

Else
Dim intYear As Integer
Dim intLength As Integer
Integer.TryParse(txtAddYear.Text, intYear)
Integer.TryParse(txtLength.Text, intLength)
Try

TblMoviesTableAdapter.InsertRecordQuery(intYear,
txtTitle.Text.Trim,
txtDirector.Text.Trim,
intLength)

TblMoviesTableAdapter.Fill(MoviesDataSet.tblMovies)
Catch ex As Exception

MessageBox.Show("Duplicate record", "Add Record",
MessageBoxButtons.OK,
MessageBoxIcon.Information)

End Try
End If

End Sub

Private Sub btnDelete_Click(sender As Object,
e As EventArgs) Handles btnDelete.Click

' delete a record from the dataset

Dim dlgButton As DialogResult
dlgButton =
MessageBox.Show("Delete winner from year " &

lstDeleteYear.Text & "?", "Confirm Delete",
MessageBoxButtons.YesNo,
MessageBoxIcon.Exclamation)

If dlgButton = Windows.Forms.DialogResult.Yes Then
Dim intYear As Integer
Integer.TryParse(lstDeleteYear.Text, intYear)
TblMoviesTableAdapter.DeleteRecordQuery(intYear)
TblMoviesTableAdapter.Fill(MoviesDataSet.tblMovies)

End If
End Sub

Figure 14-64 Most of the application’s code
© 2013 Cengage Learning

The INSERT and DELETE Statements L E S S ON C

871

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

To test the Add and Delete buttons:

1. Save the solution and then start the application. Click the Add button. The “Please enter
all of the information.” message appears in a message box. Close the message box.

2. Next, try to add a duplicate record. In the Add new record section, type 2010 in the Year
won box, 181 in the Length box, Dances with Wolves in the Movie title box, and Kevin
Costner in the Director box. Click the Add button. The “Duplicate record” message
appears in a message box. Close the message box.

3. Change the 2010 in the Year won box to 1990, and then click the Add button. The new
record appears at the top of the list in the DataGridView control. This is because the
frmMain_Load procedure contains the TblMoviesBindingSource.Sort = "YearWon"
statement, which sorts the records in numerical order by the YearWon field. You
learned about the BindingSource object’s Sort method in Lesson A.

4. Now, add the following record to the database: 2011, 100, The Artist, Michael
Hazanavicius. When you click the Add button, the record appears at the end of the
list in the DataGridView control. See Figure 14-65.

5. Click the Exit button to end the application, and then start the application again to
verify that both new records appear in the DataGridView control.

6. Next, you will delete the record for the year 2011. Click 2011 in the DataGridView
control. Notice that 2011 now appears in the lstDeleteYear control. This is because the
list box is bound to the YearWon field in the dataset. Click the Delete button. The
“Delete winner from year 2011?” message appears in the Confirm Delete message box.
Click the Yes button to delete the record.

7. On your own, delete the record for the year 1990.

new record

new record

Figure 14-65 Two records added to the database

START HERE

CH A P T E R 1 4 Access Databases and SQL

872

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

8. Click 2005 in the DataGridView control and then click the Delete button. When the
Confirm Delete message box appears, click the No button. The record remains in the
DataGridView control.

9. Click the Exit button to end the application, and then start the application again to
verify that only the records for the years 1990 and 2011 were deleted.

10. Click the Exit button to end the application. Close the Code Editor window and then
close the solution.

Lesson C Summary
l To create a parameter query:

Use a question mark in place of the criteria’s value in the WHERE clause.

l To save a query that contains the SELECT statement:

Use the TableAdapter Query Configuration Wizard to associate the query with one or
more methods.

l To save a query that contains either the INSERT statement or the DELETE statement:

Use the TableAdapter Query Configuration Wizard to associate the query with a function.

l To invoke a query from code:

Enter the query’s method or function in a procedure.

l To use SQL to insert records into a database:

Use the INSERT statement.

l To use SQL to delete records from a database:

Use the DELETE statement.

Lesson C Key Terms
?—the parameter marker in a parameter query

Delete query—a query that uses the DELETE statement to delete a record from a database

DELETE statement— the SQL statement used to delete a record from a database

Insert query—a query that uses the INSERT statement to add a record to a database

INSERT statement—the SQL statement used to insert a record into a database

Parameter marker—a question mark (?)

Parameter query—a query that uses the parameter marker (?) in place of the criteria’s value

Lesson C Review Questions
1. When used in a parameter query, which of the following WHERE clauses will allow you

to select the records for employees working more than 40 hours?

a. WHERE Hours >= 40

b. WHERE Hours > ?

c. WHERE Hours > #

d. WHERE Hours < ?

Lesson C Review Questions L E S S ON C

873

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

2. The FillByCity method is associated with a parameter query. Which of the following
invokes the method, passing it the contents of the txtCity control’s Text property?

a. TblCityTableAdapter.FillByCity(CityDataSet.tblCity,
txtCity.Text)

b. TblCityTableAdapter.FillByCity(txtCity.Text)

c. TblCityBindingSource.FillByCity(CityDataSet.tblCity,
txtCity.Text)

d. CityDataSet.FillByCity(txtCity.Text)

3. You can use the SQL statement to add a record to a database.

a. ADD

b. ADD INTO

c. APPEND

d. INSERT

4. You can use the SQL statement to remove a record from a database.

a. DELETE

b. DETACH

c. ERASE

d. REMOVE

Lesson C Exercises

1. Open the JM Sales Solution (JM Sales Solution.sln) file contained in the VB2012\
Chap14\JM Sales Solution folder. If necessary, open the designer window. The
application is connected to the AnnualSales database. The tblSales table in the database
contains five records. Each record has two numeric fields: YearNum (the primary key)
and Sales. The Add button’s Click event procedure should allow the user to add records
to the database. The Delete button’s Click event procedure should allow the user to
delete records (by year number) from the database. Use SQL to code the procedures.
Save the solution and then start and test the application. Be sure to try adding a record
whose year number matches an existing year number. Stop the application. Close the
Code Editor window and then close the solution.

2. Open the Addison Playhouse Solution (Addison Playhouse Solution.sln) file contained in
the VB2012\Chap14\Addison Playhouse Solution folder. If necessary, open the designer
window. The application is connected to the Play database. The tblReservations table in
the database contains 20 records. Each record has three fields: a numeric field named
Seat (the primary key) and two text fields named Patron and Phone. The application
should allow the user to add records to the database and also delete records (by seat
number) from the database. It should also allow the user to enter a seat number and then
view the associated record. In addition, it should allow the user to view the records
whose Patron field begins with the one or more characters the user enters. (Hint: Use
LIKE ? & '%' as the filter.) The records should always appear in order by the seat number.
Code the application. Save the solution and then start and test the application. Close the
Code Editor window and then close the solution.

INTRODUCTORY

INTERMEDIATE

CH A P T E R 1 4 Access Databases and SQL

874

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

3. Open the Polter Solution (Polter Solution.sln) file contained in the VB2012\Chap14\
Polter Solution folder. If necessary, open the designer window. The application is
connected to the Products database. The tblProducts table in the database contains
10 records. Each record has three fields. The ItemNum (primary key) and ItemName
fields contain text; the Price field contains numbers. The application should allow the
user to view the record associated with a specific item number. It should also allow the
user to enter a price and then view the records whose prices are at least that amount. The
records should appear in order by the item number when the application is started. Code
the application. Save the solution and then start and test the application. Close the Code
Editor window and then close the solution.

4. Open the Morgan Industries Solution (Morgan Industries Solution.sln) file contained in
the VB2012\Chap14\Morgan Industries Solution-Advanced folder. If necessary, open the
designer window. The application is connected to the Employees database. The
tblEmploy table in the database contains seven fields and 17 records. The Emp_Number
field is the primary key. The Status field contains the employment status, which is either
the letter F (for full-time) or the letter P (for part-time). The Code field identifies the
employee’s department: 1 for Accounting, 2 for Advertising, 3 for Personnel, and 4 for
Inventory. The records should appear in order by the employee number when the
application is started. The application should allow the user to display all of the records,
only the part-time records, only the full-time records, and only the records for a specific
department. Use the InputBox function to get the department code. Code the
application. Save the solution and then start and test the application. Close the Code
Editor window and then close the solution.

INTERMEDIATE

ADVANCED

Lesson C Exercises L E S S ON C

875

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

APPEND I X A
Finding and Fixing
Program Errors

After studying Appendix A, you should be able to:

Locate syntax errors using the Error List window

Locate a logic error by stepping through the code

Locate logic errors using breakpoints

Fix syntax and logic errors

Identify a run time error

All Microsoft screenshots used with permission from Microsoft Corporation.

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Finding and Fixing Syntax Errors
As you learned in Chapter 2, a syntax error occurs when you break one of a programming
language’s rules. Most syntax errors are a result of typing errors that occur when entering
instructions, such as typing Me.Clse() instead of Me.Close(). The Code Editor detects most
syntax errors as you enter the instructions. However, if you are not paying close attention to
your computer screen, you may not notice the errors. In the next set of steps, you will observe
what happens when you start an application that contains a syntax error.

To start debugging the Total Sales Calculator application:

1. Start Visual Studio 2012. Open the Total Sales Solution (Total Sales Solution.sln)
file contained in the VB2012\AppA\Total Sales Solution folder. If necessary, open the
designer window. The application calculates and displays the total of the sales amounts
entered by the user. See Figure A-1. (The image in the picture box was downloaded from
the Open Clip Art Library at http://openclipart.org.)

2. Open the Code Editor window. Figure A-2 shows the code entered in the btnCalc_Click
procedure. The jagged blue lines alert you that three lines of code contain a syntax error.

START HERE

Figure A-1 Total Sales Calculator application
OpenClipArt.org/luc

A P P E N D I X A Finding and Fixing Program Errors

878

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

3. Start the application. If the dialog box shown in Figure A-3 appears, click the No button.

4. The Error List window opens at the bottom of the IDE, and the Code Editor displays a
red rectangle next to each error in the code. If necessary, click the first error message in
the Error List window. See Figure A-4. The Error List window indicates that the code
contains three errors, and it provides a description of each error and the location of each
error in the code. The red rectangles indicate that the Code Editor has some suggestions
for fixing the errors.

syntax error

syntax error

syntax error

Figure A-2 btnCalc_Click procedure

Figure A-3 Dialog box

Finding and Fixing Syntax Errors

879

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Important note: You can change the size of the Error List window by positioning your
mouse pointer on the window’s top border until the mouse pointer becomes a vertical
line with an arrow at the top and bottom. Then press and hold down the left mouse
button while you drag the border either up or down.

5. Double-click the first error message in the Error List window. The Code Editor opens
the Error Correction window shown in Figure A-5.

6. The first error is simply a typing error: The programmer meant to type Integer. You
can either type the missing e yourself or click the appropriate suggestion in the Error
Correction window. Click Change 'Intger' to 'Integer'. in the list. The Code Editor
makes the change in the Dim statement and also removes the error from the Error List
window.

red rectangles

red rectangle

Error List window

Figure A-4 Error List window

Error Correction
window

double-click this
error message

Figure A-5 List of suggestions for fixing the typing error

A P P E N D I X A Finding and Fixing Program Errors

880

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

7. Double-click the first error message in the Error List window. Move the scroll bar in
the Error Correction window all the way to the right. The window indicates that the
missing parenthesis will be inserted at the end of the assignment statement that contains
the syntax error. See Figure A-6.

8. Click the Insert the missing ')'. suggestion to insert the missing parenthesis. The Code
Editor removes the error from the Error List window.

9. Only one error message remains in the Error List window. The error’s description
indicates that the Code Editor does not recognize the name inTotal. Double-click the
remaining error message in the Error List window. See Figure A-7.

Neither of the suggestions listed in the Error Correction window in Figure A-7 is appropriate for
fixing the error. Therefore, you will need to come up with your own solution to the problem.
You do this by studying the line of code that contains the error. First, notice that the
unrecognized name (inTotal) appears on the left side of an assignment statement. This tells
you that the name belongs to something that can store information—either a control or a
variable. It doesn’t refer to the Text property, so it’s most likely the name of a variable. Looking
at the beginning of the procedure, where the variables are declared, you will notice that the
procedure declares a variable named intTotal. Obviously, the programmer mistyped the
variable’s name.

error description

neither suggestion
is appropriate

Figure A-7 Error Correction window for the last error message

the missing parenthesis
will be inserted here

Figure A-6 List of suggestions for fixing the missing parenthesis error

Finding and Fixing Syntax Errors

881

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

To finish debugging the Total Sales Calculator application:

1. Change inTotal to intTotal in the assignment statement and then move the insertion
point to another line in the Code Editor window. When you move the insertion point,
the Code Editor removes the error message from the Error List window.

2. Close the Error List window. Save the solution and then start the application. Test the
application using 125600 as Jack’s sales, 98700 as Mary’s sales, 165000 as Khalid’s sales,
and 250400 as Sharon’s sales. Click the Calculate button. The total sales are $639,700.
See Figure A-8.

3. Click the Exit button. Close the Code Editor window and then close the solution.

Finding and Fixing Logic Errors
Unlike syntax errors, logic errors are much more difficult to find because they do not trigger an
error message from the Code Editor. A logic error can occur for a variety of reasons, such as
forgetting to enter an instruction or entering the instructions in the wrong order. Some logic errors
occur as a result of calculation statements that are correct syntactically but incorrect mathe-
matically. For example, consider the statement dblRadiusSquared = dblRadius + dblRadius,
which is supposed to calculate the square of the number stored in the dblRadius variable. The
statement’s syntax is correct, but it is incorrect mathematically because you square a number by
multiplying it by itself, not by adding it to itself. In the next two sections, you will debug two
applications that contain logic errors.

To debug the Discount Calculator application:

1. Open the Discount Solution (Discount Solution.sln) file contained in the VB2012\
AppA\Discount Solution folder. If necessary, open the designer window. See Figure A-9.
The application calculates and displays three discount amounts, which are based on
the price entered by the user.

START HERE

use the Alt key to either show
or hide the access keys

Figure A-8 Sample run of the Total Sales Calculator application
OpenClipArt.org/luc

START HERE

A P P E N D I X A Finding and Fixing Program Errors

882

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

2. Open the Code Editor window. Figure A-10 shows the code entered in the
btnCalc_Click procedure.

3. Start the application. Type 100 in the Price box and then click the Calculate button.
The interface shows that each discount is 0.00, which is incorrect. Click the Exit button.

4. You’ll use the DEBUG menu to run the Visual Basic debugger, which is a tool that helps
you locate the logic errors in your code. Click DEBUG on the menu bar. The menu’s
Step Into option will start your application and allow you to step through your code.
It does this by executing the code one statement at a time, pausing immediately before

Figure A-10 btnCalc_Click procedure

Figure A-9 Discount Calculator application

Finding and Fixing Logic Errors

883

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

each statement is executed. Click Step Into. Type 100 in the Price box and then click
the Calculate button. The debugger highlights the first instruction to be executed,
which is the btnCalc_Click procedure header. In addition, an arrow points to the
instruction, as shown in Figure A-11, and the code’s execution is paused.

5. You can use either the DEBUG menu’s Step Into option or the F8 key on your keyboard
to tell the computer to execute the highlighted instruction. Press the F8 key. After the
computer processes the procedure header, the debugger highlights the next statement to
be processed, which is the decDiscount10 = decPrice * 0.1D statement. It then pauses
execution of the code. (The Dim statements are skipped over because they are not
considered executable by the debugger.)

6. While the execution of a procedure’s code is paused, you can view the contents of
controls and variables that appear in the highlighted statement and also in the
statements above it in the procedure. Before you view the contents of a control or
variable, however, you should consider the value you expect to find. Before the
decDiscount10 = decPrice * 0.1D statement is processed, the decDiscount10 variable
should contain its initial value, 0. (Recall that the Dim statement initializes numeric
variables to 0.) Place your mouse pointer on decDiscount10 in the highlighted
statement. The variable’s name (decDiscount10) and current value (0D) appear in a
small box, as shown in Figure A-12. The letter D indicates that the data type of the
value—in this case, 0—is Decimal. At this point, the decDiscount10 variable’s value
is correct.

Figure A-12 Value stored in decDiscount10 before the highlighted statement is executed

Debugging mode

Figure A-11 Result of using the DEBUG menu’s Step Into option

A P P E N D I X A Finding and Fixing Program Errors

884

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

7. Now consider the value you expect the decPrice variable to contain. Before the
highlighted statement is processed, the decPrice variable should contain the number
100, which is the value you entered in the Price box. Place your mouse pointer on
decPrice in the highlighted statement. As Figure A-13 shows, the decPrice variable
contains 0D, which is its initial value. Consider why the variable’s value is incorrect. In
this case, the value is incorrect because no statement above the highlighted statement
assigns the Price box’s value to the decPrice variable. In other words, a statement is
missing from the procedure.

8. Click DEBUG on the menu bar and then click Stop Debugging to stop the debugger.
Click the blank line below the last Dim statement and then press Enter to insert
another blank line. Now, enter the following comment and TryParse method:

' assign price to a variable
Decimal.TryParse(txtPrice.Text, decPrice)

9. Save the solution. Click DEBUG on the menu bar and then click Step Into. Type 100 in
the Price box and then click the Calculate button. Press F8 to process the procedure
header. The debugger highlights the TryParse method and then pauses execution of
the code.

10. Before the TryParse method is processed, the txtPrice control’s Text property should
contain 100, which is the value you entered in the Price box. Place your mouse pointer
on txtPrice.Text in the TryParse method. The box shows that the Text property
contains the expected value. The 100 is enclosed in quotation marks because it is
considered a string.

11. The decPrice variable should contain its initial value, 0D. Place your mouse pointer on
decPrice in the TryParse method. The box shows that the variable contains the
expected value.

12. Press F8 to process the TryParse method. The debugger highlights the
decDiscount10 = decPrice * 0.1D statement before pausing execution of the
code. Place your mouse pointer on decPrice in the TryParse method, as shown in
Figure A-14. Notice that after the method is processed by the computer, the
decPrice variable contains the number 100D, which is correct.

Figure A-14 Value stored in decPrice after the TryParse method is executed

Figure A-13 Value stored in decPrice before the highlighted statement is executed

Finding and Fixing Logic Errors

885

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

13. Before the highlighted statement is processed, the decDiscount10 variable should
contain its initial value, and the decPrice variable should contain the value assigned
to it by the TryParse method. Place your mouse pointer on decDiscount10 in the
highlighted statement. The box shows that the variable contains 0D, which is correct.
Place your mouse pointer on decPrice in the highlighted statement. The box shows
that the variable contains 100D, which also is correct.

14. After the highlighted statement is processed, the decPrice variable should still contain
100D. However, the decDiscount10 variable should contain 10D, which is 10% of 100.
Press F8 to execute the highlighted statement, and then place your mouse pointer on
decDiscount10 in the statement. The box shows that the variable contains the expected
value. On your own, verify that the decPrice variable in the statement contains the
appropriate value.

15. To continue program execution without the debugger, click DEBUG on the menu
bar and then click Continue. This time, the correct discount amounts appear in the
interface. See Figure A-15.

16. Click the Exit button. Close the Code Editor window and then close the solution.

Setting Breakpoints
Stepping through code one line at a time is not the only way to search for logic errors. You also
can use a breakpoint to pause execution at a specific line in the code. You will learn how to set a
breakpoint in the next set of steps.

To begin debugging the Hours Worked application:

1. Open the Hours Worked Solution (Hours Worked Solution.sln) file contained in the
VB2012\AppA\Hours Worked Solution folder. If necessary, open the designer window.
See Figure A-16. The application calculates and displays the total number of hours
worked in four weeks. (The image in the picture box was downloaded from the Open
Clip Art Library at http://openclipart.org.)

Figure A-15 Sample run of the Discount Calculator application

START HERE

A P P E N D I X A Finding and Fixing Program Errors

886

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

2. Open the Code Editor window. Figure A-17 shows the code entered in the
btnCalc_Click procedure.

3. Start the application. Type 10.5, 25, 33, and 40 in the Week 1, Week 2, Week 3, and
Week 4 boxes, respectively, and then click the Calculate button. The interface shows
that the total number of hours is 83.5, which is incorrect; it should be 108.5. Click the
Exit button.

Figure A-17 btnCalc_Click procedure

Figure A-16 Hours Worked application
OpenClipArt.org/AirW

Setting Breakpoints

887

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

The statement that calculates the total number of hours worked is not giving the correct result.
Rather than having the computer pause before processing each line of code in the procedure,
you will have it pause only before processing the calculation statement. You do this by setting a
breakpoint on the statement.

To finish debugging the Hours Worked application:

1. Right-click the calculation statement, point to Breakpoint, and then click Insert
Breakpoint. (You also can set a breakpoint by clicking the statement and then using the
Toggle Breakpoint option on the DEBUG menu. Or, you can simply click in the gray
margin next to the statement.) The debugger highlights the statement and places a circle
next to it, as shown in Figure A-18.

2. Start the application. Type 10.5, 25, 33, and 40 in the Week 1, Week 2, Week 3, and
Week 4 boxes, respectively, and then click the Calculate button. The computer begins
processing the code contained in the button’s Click event procedure. It stops processing
when it reaches the breakpoint statement, which it highlights. The highlighting indicates
that the statement is the next one to be processed. Notice that a yellow arrow now
appears in the red dot next to the breakpoint. See Figure A-19.

3. Before viewing the values contained in each variable in the highlighted statement,
consider the values you expect to find. Before the calculation statement is processed, the
dblTotal variable should contain its initial value (0). Place your mouse pointer on
dblTotal in the highlighted statement. The box shows that the variable’s value is 0.0,
which is correct. (You can verify the variable’s initial value by placing your mouse
pointer on dblTotal in its declaration statement.) Don’t be concerned that 0.0 appears
rather than 0. The .0 indicates that the value’s data type is Double.

4. The other four variables should contain the numbers 10.5, 25, 33, and 40, which are
the values you entered in the text boxes. On your own, view the values contained in the
dblWeek1, dblWeek2, dblWeek3, and dblWeek4 variables. Notice that two of the
variables (dblWeek1 and dblWeek4) contain the correct values (10.5 and 40.0).
The dblWeek2 variable, however, contains 33.0 rather than 25.0, and the dblWeek3
variable contains its initial value (0.0) rather than the number 33.0.

5. Two of the TryParse methods are responsible for assigning the text box values to the
dblWeek2 and dblWeek3 variables. Looking closely at the four TryParse methods in the
procedure, you will notice that the third one is incorrect. After converting the contents
of the txtWeek3 control to a number, the method should assign the number to the
dblWeek3 variable rather than to the dblWeek2 variable. Click DEBUG on the menu bar
and then click Stop Debugging.

Figure A-19 Result of the computer reaching the breakpoint

Figure A-18 Breakpoint set in the procedure

START HERE

A P P E N D I X A Finding and Fixing Program Errors

888

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

6. Change dblWeek2 in the third TryParse method to dblWeek3.

7. Now you can remove the breakpoint. Right-click the statement containing the
breakpoint, point to Breakpoint, and then click Delete Breakpoint. (Or, you can
simply click the breakpoint circle.)

8. Save the solution and then start the application. Type 10.5, 25, 33, and 40 in the
Week 1, Week 2, Week 3, and Week 4 boxes, respectively, and then click the Calculate
button. The interface shows that the total number of hours is 108.5, which is correct.
See Figure A-20.

9. On your own, test the application using other values for the hours worked in each week.
When you are finished testing, click the Exit button. Close the Code Editor window and
then close the solution.

Run Time Errors
In addition to syntax and logic errors, programs can also have run time errors. A run time error
is an error that occurs while an application is running. As you will observe in the following set of
steps, an expression that attempts to divide a value by the number 0 will result in a run time
error. This is because, as in math, division by zero is not allowed.

To use the Quotient Calculator application to observe a run time error:

1. Open the Quotient Solution (Quotient Solution.sln) file contained in the VB2012\AppA\
Quotient Solution folder. If necessary, open the designer window. See Figure A-21. The
interface provides two text boxes for the user to enter two numbers. The Calculate
button’s Click event procedure divides the number in the txtNumerator control by the
number in the txtDenominator control and then displays the result, called the quotient,
in the lblQuotient control.

Figure A-20 Sample run of the Hours Worked application
OpenClipArt.org/AirW

START HERE

Run Time Errors

889

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

2. Open the Code Editor window. Figure A-22 shows the code entered in the
btnCalc_Click procedure.

3. Start the application. Type 100 and 5 in the txtNumerator and txtDenominator controls,
respectively, and then click the Calculate button. The interface shows that the quotient
is 20.00, which is correct.

4. Now, delete the 5 from the txtDenominator control and then click the Calculate button.
A run time error occurs. The Error Correction window indicates that the highlighted
statement, which also has an arrow pointing to it, is attempting to divide by zero. The
troubleshooting tips section of the window advises you to “Make sure the value of the
denominator is not zero before performing a division operation.” See Figure A-23.

Figure A-22 Code entered in the btnCalc_Click procedure

txtNumerator txtDenominator lblQuotient

Figure A-21 Quotient Calculator application

Figure A-23 Run time error caused by attempting to divide by zero

A P P E N D I X A Finding and Fixing Program Errors

890

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

When the txtDenominator control is empty, or when it contains a character that cannot be
converted to a number, the second TryParse method in the procedure stores the number 0 in
the decDenominator variable. If the decDenominator variable contains 0, the statement that
calculates the quotient will produce a run time error because the variable is used as the
denominator in the calculation. To prevent this error from occurring, you will need to tell
the computer to calculate the quotient only when the decDenominator variable contains a
value other than 0. You do this using a selection structure, which is covered in Chapter 4 in
this book.

To add a selection structure to the Quotient Calculator application:

1. Click DEBUG on the menu bar and then click Stop Debugging.

2. Enter the selection structure shown in Figure A-24. Be sure to move the calculation
statement into the selection structure’s true path, as shown.

3. Start the application. Type 100 and 5 in the txtNumerator and txtDenominator controls,
respectively, and then click the Calculate button. The interface shows that the quotient
is 20.00, which is correct.

4. Now, delete the 5 from the txtDenominator control and then click the Calculate button.
Instead of a run time error, the number 0.00 appears in the interface. See Figure A-25.

enter this selection
structure

Figure A-24 Selection structure entered in the procedure

START HERE

Run Time Errors

891

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

5. Click the Exit button. Close the Code Editor window and then close the solution.

Appendix A Summary
l To find the syntax errors in a program:

Look for jagged lines in the Code Editor window. Or, start the application and then look in
the Error List window.

l To find the logic errors in a program:

Either step through the code in the Code Editor window or set a breakpoint.

l To step through your code:

Use either the Step Into option on the DEBUG menu or the F8 key on your keyboard.

l To set a breakpoint:

Right-click the line of code on which you want to set the breakpoint. Point to Breakpoint and
then click Insert Breakpoint. You also can click the line of code and then use the Toggle
Breakpoint option on the DEBUG menu. In addition, you can click in the gray margin next
to the line of code.

l To remove a breakpoint:

Right-click the line of code containing the breakpoint, point to Breakpoint, and then click
Delete Breakpoint. You also can simply click the breakpoint circle in the margin.

l To determine whether a variable contains the number 0:

Use a selection structure.

Review Questions
1. The process of locating and fixing any errors in a program is called .

a. bug-proofing

b. bug-eliminating

c. debugging

d. error removal

quotient when the
denominator is 0

Figure A-25 Result of including the selection structure in the btnCalc_Click procedure

A P P E N D I X A Finding and Fixing Program Errors

892

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

2. While stepping through code, the debugger highlights the statement that .

a. was just executed

b. will be executed next

c. contains the error

d. none of the above

3. Logic errors are listed in the Error List window.

a. True

b. False

4. Which key is used to step through code?

a. F5

b. F6

c. F7

d. F8

5. While stepping through the code in the Code Editor window, you can view the contents
of controls and variables that appear in the highlighted statement only.

a. True

b. False

6. You use to pause program execution at a specific line in the code.

a. a breakpoint

b. the Error List window

c. the Step Into option on the DEBUG menu

d. the Stop Debugging option on the DEBUG menu

7. If the intTotalScore and intTests variables contain the numbers 200 and 0,
respectively, the statement dblAvg = intTotalScore / intTests will .

a. assign 0 to the dblAvg variable

b. result in a syntax error

c. result in a logic error

d. result in a run time error

8. If the intTotalScore and intTests variables contain the numbers 0 and 10,
respectively, the statement dblAvg = intTotalScore / intTests will .

a. assign 0 to the dblAvg variable

b. result in a syntax error

c. result in a logic error

d. result in a run time error

9. The statement Constant dblRATE As Double is an example of a .

a. correct statement

b. logic error

c. syntax error

d. run time error

Review Questions

893

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

10. When entered in a procedure, which of the following statements will result in a
syntax error?

a. Me.Clse()

b. Integer.TryPars(txtHours.Text, intHours)

c. Dim decRate as Decimel

d. all of the above

Exercises
1. Open the Commission Calculator Solution (Commission Calculator Solution.sln) file

contained in the VB2012\AppA\Commission Calculator Solution folder. Use what you
learned in the chapter to debug the application. When you are finished debugging the
application, close the Code Editor window and then close the solution.

2. Open the New Pay Solution (New Pay Solution.sln) file contained in the VB2012\
AppA\New Pay Solution folder. Use what you learned in the chapter to debug the
application. When you are finished debugging the application, close the Code Editor
window and then close the solution.

3. Open the Hawkins Solution (Hawkins Solution.sln) file contained in the VB2012\
AppA\Hawkins Solution folder. Use what you learned in the chapter to debug the
application. When you are finished debugging the application, close the Code Editor
window and then close the solution.

4. Open the Allenton Solution (Allenton Solution.sln) file contained in the VB2012\
AppA\Allenton Solution folder. Use what you learned in the chapter to debug the
application. When you are finished debugging the application, close the Code Editor
window and then close the solution.

5. Open the Martins Solution (Martins Solution.sln) file contained in the VB2012\
AppA\Martins Solution folder. Use what you learned in the chapter to debug the
application. When you are finished debugging the application, close the Code Editor
window and then close the solution.

6. Open the Average Score Solution (Average Score Solution.sln) file contained in the
VB2012\AppA\Average Score Solution folder. Use what you learned in the chapter to
debug the application. When you are finished debugging the application, close the Code
Editor window and then close the solution.

7. Open the Beachwood Solution (Beachwood Solution.sln) file contained in the VB2012\
AppA\Beachwood Solution folder. Use what you learned in the chapter to debug the
application. When you are finished debugging the application, close the Code Editor
window and then close the solution.

8. Open the Framington Solution (Framington Solution.sln) file contained in the VB2012
\AppA\Framington Solution folder. Use what you learned in the chapter to debug the
application. When you are finished debugging the application, close the Code Editor
window and then close the solution.

INTRODUCTORY

INTRODUCTORY

INTRODUCTORY

INTRODUCTORY

ADVANCED

ADVANCED

INTERMEDIATE

INTERMEDIATE

A P P E N D I X A Finding and Fixing Program Errors

894

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

APPEND I X B
GUI Design Guidelines

Chapter 1—Lesson C
FormBorderStyle, ControlBox, MaximizeBox, MinimizeBox, and
StartPosition Properties

l A splash screen should not have Minimize, Maximize, or Close buttons, and its borders
should not be sizable. In most cases, a splash screen’s FormBorderStyle property is set to
either None or FixedSingle. Its StartPosition property is set to CenterScreen.

l A form that is not a splash screen should always have a Minimize button and a Close button,
but you can choose to disable the Maximize button. Typically, the FormBorderStyle property
is set to Sizable; however, it also can be set to FixedSingle. Most times, the form’s
StartPosition property is set to CenterScreen.

Chapter 2—Lesson A
Layout and Organization of the User Interface

l Organize the user interface so that the information flows either vertically or horizontally,
with the most important information always located in the upper-left corner of the interface.

l Group related controls together using either white (empty) space or one of the tools from
the Containers section of the toolbox.

l Use a label to identify each text box in the user interface. Also use a label to identify other
label controls that display program output. The label text should be meaningful, be from one
to three words only, and appear on one line. Left-align the text within the label, and position
the label either above or to the left of the control it identifies. Enter the label text using
sentence capitalization, and follow the label text with a colon (:).

l Display a meaningful caption on the face of each button. The caption should indicate
the action the button will perform when clicked. Enter the caption using book title
capitalization. Place the caption on one line and use from one to three words only.

l When a group of buttons are stacked vertically, each button in the group should be the same
height and width. When a group of buttons are positioned horizontally, each button in the

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

group should be the same height. In a group of buttons, the most commonly used button
is typically placed first in the group.

l Align the borders of the controls wherever possible to minimize the number of different
margins appearing in the interface.

Chapter 2—Lesson B
Adding Graphics

l Use graphics sparingly. If the graphic is used solely for aesthetics, use a small graphic
and place it in a location that will not distract the user.

Selecting Font Types, Styles, and Sizes

l Use only one font type (typically Segoe UI) for all of the text in the interface.

l Use no more than two different font sizes in the interface.

l Avoid using italics and underlining because both font styles make text difficult to read.

l Limit the use of bold text to titles, headings, and key items that you want to emphasize.

Selecting Colors

l Build the interface using black, white, and gray. Only add color if you have a good reason
to do so.

l Use white, off-white, or light gray for the background. Use black for the text.

l Never use a dark color for the background or a light color for the text. A dark background is
hard on the eyes, and light-colored text can appear blurry.

l Limit the number of colors in an interface to three, not including white, black, and gray.
The colors you choose should complement each other.

l Never use color as the only means of identification for an element in the interface.

Setting the BorderStyle Property of a Text Box or Label

l Keep the BorderStyle property of text boxes at the default setting: Fixed3D.

l Keep the BorderStyle property of identifying labels at the default setting: None.

l Set to FixedSingle the BorderStyle property of labels that display program output, such as
those that display the result of a calculation.

l In Windows applications, a control that contains data that the user is not allowed to edit
does not usually appear three-dimensional. Therefore, avoid setting a label control’s
BorderStyle property to Fixed3D.

Setting the AutoSize Property of a Label

l Keep the AutoSize property of identifying labels at the default setting: True.

l In most cases, change to False the AutoSize property of label controls that display
program output.

Assigning Access Keys

l Assign a unique access key to each control that can accept user input.

l When assigning an access key to a control, use the first letter of the control’s caption or
identifying label, unless another letter provides a more meaningful association. If you can’t
use the first letter and no other letter provides a more meaningful association, then use a
distinctive consonant. Lastly, use a vowel or a number.

A P P E N D I X B GUI Design Guidelines

896

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Using the TabIndex Property to Control the Focus

l Assign a TabIndex value (starting with 0) to each control in the interface, except for controls
that do not have a TabIndex property. The TabIndex values should reflect the order in
which the user will want to access the controls.

l To allow users to access a text box using the keyboard, assign an access key to the text box’s
identifying label. Set the identifying label’s TabIndex property to a value that is one number
less than the value stored in the text box’s TabIndex property.

Chapter 3—Lesson B
InputBox Function’s Prompt and Title Capitalization

l Use sentence capitalization for the prompt, but book title capitalization for the title.

Assigning a Default Button

l The default button should be the button that is most often selected by the user, except in
cases where the tasks performed by the button are both destructive and irreversible. If a form
contains a default button, it typically is the first button.

Chapter 4—Lesson B
Labeling a Group Box

l Use sentence capitalization for the optional identifying label, which is entered in the group
box’s Text property.

MessageBox.Show Method

l Use sentence capitalization for the text argument, but book title capitalization for the caption
argument.

l Display the Exclamation icon to alert the user that he or she must make a decision before the
application can continue. You can phrase the message as a question. These message boxes
typically contain more than one button.

l Display the Information icon along with an OK button in a message box that displays an
informational message.

l Display the Stop icon to alert the user of a serious problem that must be corrected before the
application can continue.

l The default button in the message box should be the one that represents the user’s most
likely action, as long as that action is not destructive.

Chapter 5—Lesson B
Radio Button Standards

l Use radio buttons to limit the user to one choice in a group of related but mutually exclusive
choices.

l The minimum number of radio buttons in a group is two and the recommended maximum
number is seven.

l The label in the radio button’s Text property should be entered using sentence
capitalization.

l Assign a unique access key to each radio button in an interface.

Chapter 5—Lesson B

897

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

l Use a container (such as a group box) to create separate groups of radio buttons.
Only one button in each group can be selected at any one time.

l Designate a default radio button in each group of radio buttons.

Check Box Standards

l Use check boxes to allow the user to select any number of choices from a group of one or
more independent and nonexclusive choices.

l The label in the check box’s Text property should be entered using sentence capitalization.

l Assign a unique access key to each check box in an interface.

Chapter 6—Lesson C
List Box Standards

l A list box should contain a minimum of three items.

l A list box should display a minimum of three items and a maximum of eight items at a time.

l Use a label control to provide keyboard access to the list box. Set the label’s TabIndex
property to a value that is one number less than the list box’s TabIndex value.

l List box items are either arranged by use, with the most used entries appearing first in the
list, or sorted in ascending order.

Default List Box Item

l If a list box allows the user to make only one selection, a default item should be selected
when the interface first appears. The default item should be either the item selected most
frequently or the first item in the list. However, if a list box allows more than one selection at
a time, you do not select a default item.

Chapter 7—Lesson B
Combo Box Standards

l Use a label control to provide keyboard access to a combo box. Set the label’s TabIndex
property to a value that is one number less than the combo box’s TabIndex value.

l Combo box items are either arranged by use, with the most used entries appearing first in
the list, or sorted in ascending order.

Chapter 8—Lesson B
Menu Standards

l Menu title captions should be one word and entered using uppercase letters. Each
menu title should have a unique access key.

l Menu item captions can be from one to three words. Use book title capitalization and assign
a unique access key to each menu item on the same menu.

l Assign unique shortcut keys to commonly used menu items.

l If a menu item requires additional information from the user, place an ellipsis (…) at the end
of the item’s caption, which is entered in the item’s Text property.

l Follow the Windows standards for the placement of menu titles and items.

l Use a separator bar to separate groups of related menu items.

A P P E N D I X B GUI Design Guidelines

898

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

APPEND I X C
Visual Basic Conversion
Functions

Syntax Return data type Range for expression

CBool(expression) Boolean Any valid String or numeric expression

CByte(expression) Byte 0 through 255 (unsigned)

CChar(expression) Char Any valid String expression; value can be 0 through 65535 (unsigned);
only the first character is converted

CDate(expression) Date Any valid representation of a date and time

CDbl(expression) Double –1.79769313486231570E+308 through
–4.94065645841246544E-324 for negative values;
4.94065645841246544E-324 through 1.79769313486231570E
+308 for positive values

CDec(expression) Decimal +/–79,228,162,514,264,337,593,543,950,335 for zero-scaled
numbers, that is, numbers with no decimal places; for numbers
with 28 decimal places, the range is +/–
7.9228162514264337593543950335; the smallest possible non-zero
number is .0000000000000000000000000001 (+/–1E-28)

CInt(expression) Integer –2,147,483,648 through 2,147,483,647; fractional parts are rounded

CLng(expression) Long –9,223,372,036,854,775,808 through 9,223,372,036,854,775,807;
fractional parts are rounded

CObj(expression) Object Any valid expression

CSByte(expression) SByte (signed Byte) –128 through 127; fractional parts are rounded

CShort(expression) Short –32,768 through 32,767; fractional parts are rounded

CSng(expression) Single –3.402823E+38 through –1.401298E-45 for negative values;
1.401298E-45 through 3.402823E+38 for positive values

CStr(expression) String Depends on the expression

CUInt(expression) UInt 0 through 4,294,967,295 (unsigned)

CULng(expression) ULng 0 through 18,446,744,073,709,551,615 (unsigned)

CUShort(expression) UShort 0 through 65,535 (unsigned)

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

APPEND I X D
Visual Basic 2012
Cheat Sheet

Statements
Assignment

object.property = expression
variableName = expression

Updating a counter

counterVariable = counterVariable {+ | –} constantValue
counterVariable {+= | –=} constantValue

Updating an accumulator

accumulatorVariable = accumulatorVariable {+ | –} value
accumulatorVariable {+= | –=} value

Option Explicit

when set to On, prevents the computer from creating an undeclared variable
Option Explicit [On | Off]

Option Strict

when set to On, prevents the computer from making implicit type conversions that may result
in a loss of data
Option Strict [On | Off]

Option Infer

when set to Off, prevents the computer from inferring a variable’s data type
Option Infer [On | Off]

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Do…Loop

Pretest loop

Do {While | Until} condition
loop body instructions to be processed either while the condition is true or until the condition
becomes true

Loop

Posttest loop

Do
loop body instructions to be processed either while the condition is true or until the condition
becomes true

Loop {While | Until} condition

For Each…Next
For Each elementVariableName As dataType In group

loop body instructions
Next elementVariableName

For…Next
For counterVariableName [As dataType] = startValue To endValue [Step stepValue]

loop body instructions
Next counterVariableName

stepValue Loop body processed when Loop ends when

positive number counter’s value <= endValue counter’s value > endValue
negative number counter’s value >= endValue counter’s value < endValue

If…Then…Else
If condition Then

statement block to be processed when the condition is true
[ElseIf condition2

statement block to be processed when the first condition is false and condition2 is true]
[Else

statement block to be processed when all previous conditions are false]
End If

Logic errors in selection structures

1. Using a compound condition rather than a nested selection structure
2. Reversing the decisions in the outer and nested selection structures
3. Using an unnecessary nested selection structure
4. Including an unnecessary comparison in a condition

Select Case
Select Case selectorExpression

Case expressionList1
instructions for the first Case

[Case expressionList2
instructions for the second Case]

[Case expressionListN
instructions for the Nth Case]

[Case Else
instructions for when the selectorExpression does not match any of the expressionLists]

End Select

A P P E N D I X D Visual Basic 2012 Cheat Sheat

902

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Case smallest value in the range To largest value in the range
Case Is comparisonOperator value

Try…Catch
Try

one or more statements that might generate an exception
Catch ex As Exception

one or more statements to execute when an exception occurs
End Try

Variable and Named Constant Declaration
{Dim | Private | Static} variableName As dataType [= initialValue]
[Private] Const constantName As dataType = expression

Data Types
Boolean a logical value (True, False)
Char one Unicode character
Date date and time information
Decimal a number with a decimal place
Double a number with a decimal place
Integer integer
Long integer
Object data of any type
Short integer
Single a number with a decimal place
String text

Rules for Naming Variables
1. The name must begin with a letter or an underscore.
2. The name can contain only letters, numbers, and the underscore character.

No punctuation characters, special characters, or spaces are allowed in the name.
3. Although the name can contain thousands of characters, 32 characters is the

recommended maximum number of characters to use.
4. The name cannot be a reserved word, such as Sub or Double.

Type Conversion Rules
1. Strings will not be implicitly converted to numbers.
2. Numbers will not be implicitly converted to strings.
3. Wider data types will not be implicitly demoted to narrower data types.
4. Narrower data types will be implicitly promoted to wider data types.

Type Conversion Rules

903

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Operators and Precedence

^ exponentiation 1
– negation 2
*, / multiplication and division 3
\ integer division 4
Mod modulus (remainder) arithmetic 5
+, – addition and subtraction 6
& concatenation 7
=, <>, equal to, not equal to, 8
>, >=, greater than, greater than or equal to,
<, <= less than, less than or equal to
Not reverses the truth-value of the condition; True becomes False, and 9

False becomes True
And all sub-conditions must be true for the compound condition to 10

evaluate to True
AndAlso same as the And operator, except performs short-circuit evaluation 10
Or only one of the sub-conditions needs to be true for the compound 11

condition to evaluate to True
OrElse same as the Or operator, except performs short-circuit evaluation 11
Xor one and only one of the sub-conditions can be true for the compound 12

condition to evaluate to True

Arithmetic Assignment
variableName arithmeticAssignmentOperator value

Operator Purpose

+= addition assignment
–= subtraction assignment
*= multiplication assignment
/= division assignment

Printing
Print the interface during design time

Make the designer window the active window. Use the Windows Snipping tool to take a
picture of the interface, save the picture, and then print it. Or, tap the Print Screen key, start
an application that can display a picture, open a new document (if necessary), and then
press Ctrl+v.

Print the interface during run time

Add a PrintForm control (object) to the component tray.
object.PrintAction = Printing.PrintAction.destination
object.Print()

destination Purpose
PrintToPreview sends the printout to the Print Preview window
PrintToPrinter sends the printout to the printer

A P P E N D I X D Visual Basic 2012 Cheat Sheat

904

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Print the code during design time

Make the Code Editor window the active window. Collapse any code you do not want to print.
Click the Print option on the FILE menu. Select/deselect the Hide collapsed regions and/or
Include line numbers check boxes. Click the OK button.

Generate Random Numbers
Integers
Dim randomObjectName As New Random
randomObjectName.Next(minValue, maxValue)

Double numbers
Dim randomObjectName As New Random
(maxValue – minValue + 1) * randomObjectName.NextDouble + minValue

Methods
Convert
converts a number from one data type to another
Convert.method(value)

Focus
sends the focus to an object
object.Focus()

MessageBox.Show
displays a message box
MessageBox.Show(text, caption, buttons, icon[, defaultButton])
dialogResultVariable = MessageBox.Show(text, caption, buttons, icon[, defaultButton])

SelectAll
selects the contents of a text box
textbox.SelectAll()

Strings.Space
includes a specific number of spaces in a string
Strings.Space(number)

ToString
formats a number
numericVariableName.ToString(formatString)

TryParse
converts a string to a number
dataType.TryParse(string, numericVariableName)
booleanVariable = dataType.TryParse(string, numericVariableName)

Functions
Format
formats a number
Format(expression, style)

InputBox
InputBox(prompt[, title][, defaultResponse])

Functions

905

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Val
converts a string to a Double number
Val(string)

Independent Sub Procedure
Private Sub procedureName([parameterList])

statements
End Sub
Call procedureName([argumentList])

Function Procedure
Private Function procedureName([parameterList]) As dataType

statements
Return expression

End Function

Internally Document the Code
Start the comment with an apostrophe followed by an optional space.

Control the Characters Accepted by a Text Box
Example

Private Sub txtAge_KeyPress(sender As Object,
e As KeyPressEventArgs) Handles txtAge.KeyPress

' allows the text box to accept only numbers
' and the Backspace key

If (e.KeyChar < "0" OrElse e.KeyChar > "9") AndAlso
e.KeyChar <> ControlChars.Back Then
e.Handled = True

End If
End Sub

Prevent a Form from Closing (FormClosing Event
Procedure)
e.Cancel = True

Working with Strings
Accessing characters
string.Substring(startIndex[, numCharsToAccess])

Aligning the characters
string.PadLeft(totalChars[, padCharacter])
string.PadRight(totalChars[, padCharacter])

Comparing using pattern-matching
string Like pattern

A P P E N D I X D Visual Basic 2012 Cheat Sheat

906

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Pattern-matching characters Matches in string

? any single character
* zero or more characters
any single digit (0 through 9)

[characterList] any single character in the characterList
(for example, “[A5T]” matches A, 5, or T,
whereas “[a–z]” matches any lowercase letter)

[!characterList] any single character not in the characterList
(for example, “[!A5T]” matches any character
other than A, 5, or T, whereas “[!a–z]” matches
any character that is not a lowercase letter)

Concatenation
string & string […& string]

Converting to uppercase or lowercase
string.ToUpper
string.ToLower

Determining the number of characters
string.Length

Inserting characters
string.Insert(startIndex, value)

Removing characters
string.Trim
string.Remove(startIndex[, numCharsToRemove])

Searching
string.Contains(subString)
string.IndexOf(subString[, startIndex])

List/Combo Boxes
Add items
object.Items.Add(item)

Clear items
object.Items.Clear()

Determine the selected item
object.SelectedItem
object.SelectedIndex

Perform a task when the selected item changes
Code the SelectedValueChanged or SelectedIndexChanged events.

Remove items
object.Items.Remove(item)
object.Items.RemoveAt(index)

Select an item
object.SelectedItem = item
object.SelectedIndex = itemIndex

List/Combo Boxes

907

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

One-Dimensional Arrays
Array declaration
{Dim | Private | Static} arrayName(highestSubscript) As dataType
{Dim | Private | Static} arrayName() As dataType = {initialValues}

Highest subscript
arrayName.GetUpperBound(0)
arrayName.Length – 1

Number of elements
arrayName.Length
arrayName.GetUpperBound(0) + 1

Reversing
Array.Reverse(arrayName)

Sorting (ascending order)
Array.Sort(arrayName)

Traversing
Dim strCities() As String = {"Boston", "Chicago",

"Louisville", "Tampa"}

Example 1—For…Next

Dim intHigh As Integer = strCities.GetUpperBound(0)
For intSub As Integer = 0 To intHigh

MessageBox.Show(strCities(intSub))
Next intSub

Example 2—Do…Loop

Dim intHigh As Integer = strCities.Length - 1
Dim intSub As Integer
Do While intSub <= intHigh

lstCities.Items.Add(strCities(intSub))
intSub += 1

Loop

Example 3—For Each…Next

For Each strCity As String In strCities
MessageBox.Show(strCity)

Next strCity

Two-dimensional Arrays
Array declaration
{Dim | Private | Static} arrayName(highestRowSubscript, highestColumnSubscript) As dataType
{Dim | Private | Static} arrayName(,) As dataType = {{initialValues}, …{initialValues}}

Highest column subscript
arrayName.GetUpperBound(1)

Highest row subscript
arrayName.GetUpperBound(0)

Traversing
Dim strMonths(,) As String = {{"Jan", "31"},

{"Feb", "28"},
{"Mar", "31"},
{"Apr", "30"}}

A P P E N D I X D Visual Basic 2012 Cheat Sheat

908

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Example 1 – For…Next (displays contents row by row)

Dim intHighRow As Integer = strMonths.GetUpperBound(0)
Dim intHighCol As Integer = strMonths.GetUpperBound(1)
For intR As Integer = 0 To intHighRow

For intC As Integer = 0 To intHighCol
lstMonths.Items.Add(strMonths(intR, intC))

Next intC
Next intR

Example 2 – Do…Loop (displays contents column by column)

Dim intHighRow As Integer = strMonths.GetUpperBound(0)
Dim intHighCol As Integer = strMonths.GetUpperBound(1)
Dim intR As Integer
Dim intC As Integer
Do While intC <= intHighCol

intR = 0
Do While intR <= intHighRow

lstMonths.Items.Add(strMonths(intR, intC))
intR += 1

Loop
intC += 1

Loop

Example 3 – For Each…Next (displays contents row by row)

For Each strElement As String In strMonths
lstMonths.Items.Add(strElement)

Next strElement

Sequential Access Files
Close a file
streamWriterVariableName.Close()
streamReaderVariableName.Close()

Create a StreamReader object
IO.File.OpenText(fileName)

Create a StreamWriter object
IO.File.method(fileName)

method Description

CreateText opens a sequential access file for output
AppendText opens a sequential access file for append

Declare StreamWriter and StreamReader variables
{Dim | Private} streamWriterVariableName As IO.StreamWriter
{Dim | Private} streamReaderVariableName As IO.StreamReader

Determine whether a file exists
IO.File.Exists(fileName)

Read data from a file
streamReaderVariableName.ReadLine

Determine whether a file contains another character to read
streamReaderVariableName.Peek

Write data to a file
streamWriterVariableName.Write(data)
streamWriterVariableName.WriteLine(data)

Sequential Access Files

909

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Structures
Declare a structure variable
{Dim | Private} structureVariableName As structureName

Declare an array of structure variables
Use the structureName as the array’s dataType.

Definition
Structure structureName

Public memberVariableName1 As dataType
[Public memberVariableNameN As dataType]

End Structure

Member variable within a structure variable
structureVariableName.memberVariableName

Member variable within an array of structure variables
arrayName(subscript).memberVariableName

Databases
Connect an application to an Access database

1. Open the application’s solution file.
2. If necessary, open the Data Sources window by clicking VIEW on the menu bar, pointing

to Other Windows, and then clicking Data Sources.
3. Click Add New Data Source in the Data Sources window to start the Data

Source Configuration Wizard, which displays the Choose a Data Source Type screen.
If necessary, click Database.

4. Click the Next button and then continue using the wizard to specify the data source and
the name of the database file. The data source for an Access database is Microsoft Access
Database File (OLE DB).

Preview the contents of a dataset

1. Right-click the dataset’s name in the Data Sources window and then click Preview Data.
2. Click the Preview button.
3. When you are finished previewing the data, close the dialog box.

Bind an object in a dataset

To have the computer create a control and then bind an object to it:

In the Data Sources window, click the object you want to bind. If necessary, use the object’s list
arrow to change the control type. Drag the object to an empty area on the form and then release
the mouse button.

To bind an object to an existing control:

In the Data Sources window, click the object you want to bind. Drag the object to the control on
the form and then release the mouse button. Alternatively, you can click the control on the form
and then use the Properties window to set the appropriate property or properties.

A P P E N D I X D Visual Basic 2012 Cheat Sheat

910

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Customizing a BindingNavigator control

To add an item to a BindingNavigator control:

1. Click the BindingNavigator control’s task box and then click Edit Items to open the
Items Collection Editor window.

2. If necessary, click the “Select item and add to list below” arrow.
3. Click the item you want to add to the BindingNavigator control and then click the

Add button.
4. If necessary, you can use the up and down arrows to reposition the item.

To delete an item from a BindingNavigator control:

1. Click the BindingNavigator control’s task box and then click Edit Items to open the
Items Collection Editor window.

2. In the Members list, click the item you want to remove and then click the X button.

Determine the location of the record pointer
bindingSourceName.Position

Move the record pointer
bindingSourceName.MoveFirst()
bindingSourceName.MoveLast()
bindingSourceName.MoveNext()
bindingSourceName.MovePrevious()

Add a record to a dataset
dataSetName.tableName.AddtableNameRow(valueField1[,

valueField2…, valueFieldN])

Save dataset changes to a database
tableAdapterName.Update(dataSetName.tableName)

Sort the records in a dataset
bindingSourceName.Sort = fieldName

Locate a record in a dataset
dataRowVariable =

dataSetName.tableName.FindByfieldName(value)

Delete a record from a dataset
dataRowVariable.Delete()

LINQ
Select and arrange records
Dim variableName = From elementName In dataset.table

[Where condition]
[Order By elementName.fieldName1 [Ascending | Descending]

[, elementName.fieldNameN [Ascending | Descending]]]
Select elementName

Assign a LINQ variable’s contents to a BindingSource control
bindingSource.DataSource = variableName.AsDataView

LINQ

911

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

LINQ aggregate operators
The aggregate operators are Average, Count, Max, Min, and Sum. The Count operator does not
need the Select clause.
Dim variableName [As dataType] =

Aggregate elementName In dataset.table
[Where condition]
Select elementName.fieldName
Into aggregateOperator()

SQL
Selecting fields and records
SELECT fieldList FROM tableName

[WHERE condition]
[ORDER BY fieldName [DESC]]

Add a record to a dataset
INSERT INTO tableName(fieldName1, fieldName2,…fieldNameN)

VALUES (field1Value, field2Value,…fieldNValue)

Delete a record from a dataset
DELETE FROM tableName WHERE condition

Classes
Define a class
Public Class className

attributes section
behaviors section

End Class

Instantiate an object
Syntax – Version 1
{Dim | Private} variableName As className
variableName = New className

Syntax – Version 2
{Dim | Private} variableName As New className

Create a Property procedure
Public [ReadOnly | WriteOnly] Property propertyName[(parameterList)] As dataType

Get
[instructions]
Return privateVariable

End Get
Set(value As dataType)

[instructions]
privateVariable = {value | defaultValue}

End Set
End Property

Create a constructor
Public Sub New([parameterList])

instructions to initialize the class’s Private variables
End Sub

A P P E N D I X D Visual Basic 2012 Cheat Sheat

912

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Create a method that is not a constructor
Public {Sub | Function} methodName([parameterList]) [As dataType]

instructions
End {Sub | Function}

Create an auto-implemented property
Public Property propertyName As dataType

Most Commonly Used Properties
Windows Form

AcceptButton specify a default button that will be selected when the user presses the
Enter key

CancelButton specify a cancel button that will be selected when the user presses the Esc
key

ControlBox indicate whether the form contains the Control box and Minimize,
Maximize, and Close buttons

Font specify the font to use for text
FormBorderStyle specify the appearance and behavior of the form’s border
MaximizeBox specify the state of the Maximize button
MinimizeBox specify the state of the Minimize button
Name give the form a meaningful name (use frm as the ID)
StartPosition indicate the starting position of the form
Text specify the text that appears in the form’s title bar and on the taskbar

Button

Enabled indicate whether the button can respond to the user’s actions
Font specify the font to use for text
Image specify the image to display on the button’s face
ImageAlign indicate the alignment of the image on the button’s face
Name give the button a meaningful name (use btn as the ID)
TabIndex indicate the position of the button in the Tab order
Text specify the text that appears on the button

CheckBox

Checked indicate whether the check box is selected or unselected
Font specify the font to use for text
Name give the check box a meaningful name (use chk as the ID)
TabIndex indicate the position of the check box in the Tab order
Text specify the text that appears inside the check box

ComboBox

DropDownStyle indicate the style of the combo box
Font specify the font to use for text
Name give the combo box a meaningful name (use cbo as the ID)
SelectedIndex get or set the index of the selected item
SelectedItem get or set the value of the selected item
Sorted specify whether the items in the list portion are sorted
TabIndex indicate the position of the combo box in the Tab order
Text get or set the value that appears in the text portion

Most Commonly Used Properties

913

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

DataGridView

AutoSizeColumnsMode control the way the column widths are sized
DataSource indicate the source of the data to display in the control
Dock define which borders of the control are bound to its container
Name give the data grid view control a meaningful name (use dgv as the ID)

GroupBox

Name give the group box a meaningful name (use grp as the ID)
Padding specify the internal space between the edges of the group box

and the edges of the controls contained within the group box
Text specify the text that appears in the upper-left corner of the

group box

Label

AutoSize enable/disable automatic sizing
BorderStyle specify the appearance of the label’s border
Font specify the font to use for text
Name give the label a meaningful name (use lbl as the ID)
TabIndex specify the position of the label in the Tab order
Text specify the text that appears inside the label
TextAlign specify the position of the text inside the label

ListBox

Font specify the font to use for text
Name give the list box a meaningful name (use lst as the ID)
SelectedIndex get or set the index of the selected item
SelectedItem get or set the value of the selected item
SelectionMode indicate whether the user can select zero choices, one

choice, or more than one choice
Sorted specify whether the items in the list are sorted

PictureBox

Image specify the image to display
Name give the picture box a meaningful name (use pic as the ID)
SizeMode specify how the image should be displayed
Visible hide/display the picture box

RadioButton

Checked indicate whether the radio button is selected or unselected
Font specify the font to use for text
Name give the radio button a meaningful name (use rad as the ID)
Text specify the text that appears inside the radio button

A P P E N D I X D Visual Basic 2012 Cheat Sheat

914

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

TextBox

BackColor indicate the background color of the text box
CharacterCasing specify whether the text should remain as is or be converted to

either uppercase or lowercase
Font specify the font to use for text
ForeColor indicate the color of the text inside the text box
Name give the text box a meaningful name (use txt as the ID)
MaxLength specify the maximum number of characters the text box will accept
Multiline control whether the text can span more than one line
PasswordChar specify the character to display when entering a password
ReadOnly specify whether the text can be edited
ScrollBars indicate whether scroll bars appear on a text box (used with a multiline

text box)
TabIndex specify the position of the text box in the Tab order
TabStop indicate whether the user can use the Tab key to give focus to the text box
Text get or set the text that appears inside the text box

Timer

Name give the timer a meaningful name (use tmr as the ID)
Enabled stop/start the timer
Interval indicate the number of milliseconds between each Tick event

Most Commonly Used Properties

915

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

APPEND I X E
Case Projects

Your Special Day Catering (Chapters 1 – 3)
Create an application for Your Special Day Catering. The interface should allow the user to
enter the customer ID, the bride’s name, the groom’s name, and the date of the wedding
reception. It also should allow the user to enter the number of beef dinners, the number of
chicken dinners, and the number of vegetarian dinners ordered for the reception. The interface
should display the total number of dinners ordered, the total price of the order without sales tax,
the sales tax, and the total price of the order with sales tax. Each dinner costs $26.75, and the
sales tax rate is 5%. Include an appropriate image in the interface. (You can find many different
images on the Open Clip Art Library Web site at http://openclipart.org.)

Crispies Bagels and Bites (Chapters 1 – 3)
Create an application for Crispies Bagels and Bites. The interface should allow the salesclerk to
enter the number of bagels, donuts, and cups of coffee a customer orders. Bagels are 99¢, donuts
are 75¢, and coffee is $1.20 per cup. The application should calculate and display the total price
of the order without sales tax, the sales tax, and the total price of the order with sales tax. The
sales tax rate is 6%. Include an appropriate image in the interface. (You can find many different
images on the Open Clip Art Library Web site at http://openclipart.org.)

High Roll Game (Chapters 1 – 5)
The High Roll game requires two players. When the application is started, it should get each
player’s name and then display the names in the interface. Each player will roll two dice. The
application should calculate the total roll for each player and then compare both totals. The
application should display one of the following messages: “Tie”, “player 1’s name wins”, or
“player 2’s name wins”. The application should keep track of the number of times player 1 wins,
the number of times player 2 wins, and the number of ties. You can use either your own die
images or the ones contained in the VB2012\AppE folder. (The die images were downloaded
from the Open Clip Art Library at http://openclipart.org.)

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Mortgage Calculator (Chapters 1 – 5)
Research Visual Basic’s Financial.Pmt method. Create an application that calculates and displays
three monthly mortgage payments. The application should use the loan amount and annual
interest rate provided by the user, and terms of 15 years, 25 years, and 30 years. The application
should also display the total amount paid at the end of 15 years, 25 years, and 30 years.

Math Practice (Chapters 1 – 5)
Create an application that can be used to practice adding , subtracting, multiplying, and dividing
numbers. The application should display a math problem on the screen, and then allow the
student to enter the answer and also verify that the answer is correct. The application should
give the student as many chances as necessary to answer the problem correctly. The math
problems should use random integers from 1 through 20 only. The subtraction problems should
never ask the student to subtract a larger number from a smaller one. The division problems
should never ask the student to divide a smaller number by a larger number. Also, the division
problems should always result in a whole number. The application should keep track of the
number of correct and incorrect responses made by the student.

Loan Payment Calculator (Chapters 1 – 7)
Research Visual Basic’s Financial.Pmt method. Create an application that calculates and displays
the monthly payments on a loan. The application should use the loan amount provided by the
user, rates of 3% to 7%, and terms of 3, 4, and 5 years.

Savings Calculator (Chapters 1 – 7)
Research Visual Basic’s Financial.FV (Future Value) method. Create an application that allows
the user to enter the amount a customer plans to deposit in a savings account each month, and
whether the money will be deposited at either the beginning or the end of the month. The
application should calculate and display the value of the account at the end of 5 years, 10 years,
15 years, 20 years, and 25 years. The interest rate is 3% and is compounded monthly.

Tax Deductible Calculator (Chapters 1 – 8)
Create an interface that provides text boxes for entering the following business expenses:
lodging, travel, meals, and entertainment. Lodging and travel are 100% tax deductible; meals and
entertainment are only 50% tax deductible. The application should calculate and display the
total expenses, the amount that is tax deductible, and the percentage that is tax deductible. The
text boxes should accept only numbers, the period, and the Backspace key. The application
should display an error message if a text box contains more than one period.

State Finder (Chapters 1 – 8)
Create an interface that provides a text box for the user to enter one or more characters. The
interface should also include a list box containing the names of the 50 states. When the user
clicks a button in the interface, the button’s Click event procedure should select the first list box
item that begins with the character(s) entered by the user. For example, if the user enters the
letter K, the procedure should select Kansas in the list box. However, if the user enters the
letters Ke, the procedure should select Kentucky.

A P P E N D I X E Case Projects

918

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Shopping Cart (Chapters 1 – 10)
The shopping cart application should list the names of 10 different DVDs in a list box, and also
store the associated prices in a one-dimensional array. To purchase a DVD, the user needs to
click its name in the list box and then click an Add to Cart button. The button’s Click event
procedure should display the DVD’s name and price in another list box, which will represent the
shopping cart. The interface should also provide a Remove from Cart button. The application
should display the cost of the items in the shopping cart, the sales tax, the shipping charge, and
the total cost. The sales tax rate is 4%. The shipping charge is $1 per DVD, up to a maximum
shipping charge of $5.

Airplane Seats (Chapters 1 – 10)
Create an interface that contains 18 controls arranged in six rows and three columns. You can
use label controls, picture boxes, or buttons. The seats in the first row are designated 1A, 1B,
and 1C. The seats in the second row are designated 2A, 2B, and 2C, and so on. When the user
clicks one of the 18 controls, the application should display the passenger’s name, seat
designation, and ticket price. The application should use a sequential access file for the
passenger information, a structure, and an array.

Theater Seats (Chapters 1 – 11)
Create an interface that contains 10 controls arranged in five rows and two columns. You can
use label controls, picture boxes, or buttons. The seats in the first row are designated A1 and B1.
The seats in the second row are designated A2 and B2, and so on. When the user clicks one of
the 10 controls, the application should display the patron’s name, seat designation, and ticket
price. The application should use a sequential access file for the patron information, a class, and
an array.

Roll Em Again (Chapters 1 – 11)
Code the Roll Em Game from Chapter 5’s Lesson C using a class for the pair of dice.

Rosette Catering (Chapters 1 – 12)
Create a Web application for Rosette Catering. The interface should allow the user to enter the
customer ID, the bride’s name, the groom’s name, and the date of the wedding reception. It
should also allow the user to enter the number of chicken dinners, the number of pasta dinners,
and the number of vegetarian dinners ordered for the reception. The interface should display
the total number of dinners ordered, the total price of the order without sales tax, the sales tax,
and the total price of the order with sales tax. Each dinner costs $21, and the sales tax rate is 3%.
Include an appropriate image in the interface. (You can find many different images on the Open
Clip Art Library Web site at http://openclipart.org.)

Jefferson Realty (Chapters 1 – 13)
Create a Microsoft Access database that contains one table named tblHomes. The table should
contain 10 records, each having five fields. The ID and ZIP code fields should contain text. (Be
sure to use several different ZIP codes.) The number of bedrooms, number of bathrooms, and
price fields should be numeric. Create an application that displays the contents of the database in a
DataGridView control. The user should not be allowed to add or delete records. The application

Jefferson Realty (Chapters 1 – 13)

919

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

should allow the user to display the records for a specific number of bedrooms, a specific number
of bathrooms, or a specific ZIP code. It also should allow the user to display the average home
price for the entire database and also for a specific ZIP code.

Foxmore Realty (Chapters 1 – 14)
Create a Microsoft Access database that contains one table named tblHomes. The table should
contain 10 records, each having six fields. The ID, city, and state fields should contain text. The
number of bedrooms, number of bathrooms, and price fields should be numeric. Create an
application that displays the contents of the database in a DataGridView control. If necessary,
remove the BindingNavigator control from the application. The application should allow the
user to insert and delete records. It also should allow the user to display the records for a specific
number of bedrooms, a specific number of bathrooms, a specific ZIP code, or a specific
combination of bedrooms and bathrooms.

A P P E N D I X E Case Projects

920

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Index

Note: Page numbers in boldface type indicate where key terms are defined; page numbers
followed by an asterisk (*) refer to Appendix F, available online at www.cengagebrain.com.

Special Characters
& (ampersand), 77, 154–155, 216

` (apostrophe), 91–92
* (asterisk), 23, 96, 356, 487
\ (backslash), 96
^ (caret), 96
= (equal sign), 89, 120, 195, 196, 356
/ (forward slash), 96, 356
> (left angle bracket), 195, 196
- (minus sign), 96, 216, 356
(number sign), 487
. (period), 20, 20, 595
+ (plus sign), 96, 154, 216, 356
? (question mark), 487, 855
> (right angle bracket), 195, 196
_ (underscore), 154

A
ABC Corporation application,

278–279
Academy Award Winners application,

821–836, 855–873
access keys, 77
assigning, 77–78
showing/hiding, 98

accumulator(s), 343, 343–355
accumulator arrays, 558, 558–561
active server page (ASP), 712
ActiveMdiChild property, F24*
Add Connection dialog box, 770
Add method, 389
Add New Item dialog box, 715–716

Addition application, 345–348
problem specification and pseudocode, 345

addition assignment operator (+=), 356
addition operator (+), 216
aggregate operators, 802, 802–806
algorithms, 266, 266–267
aligning
characters in strings, 477–478
columns of information, 630–632
text in controls, 75

Allen High School application, 272–275, 277
pseudocode and flowchart, 273

Alt key, showing/hiding access keys, 98
ampersand (&)
access keys, 77
concatenation operator, 154–155, 216

And operator, 205, 216
AndAlso operator, 205, 207, 210, 216
apostrophe (’), comments, 91–92
AppendText method, 611
applications, 3, 3–4. See also specific

application names
connecting to Access databases, 768–772,

910
debugging, 101–104
demonstration, 4–5
ending, 37–38
MDI, F2*, F2–3*, F20–28*
OO. See object-oriented (OO) applications
SDI, F2*, F4*
starting, 36–38
TDI, F2*, F3*
testing, 101–104

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Web. See Web applications
Windows, creating, 13–15

Area Calculator application, 133–135,
698–703

arithmetic assignment, 904
arithmetic assignment operators, 355,

355–357
arithmetic expressions, 95–97
array(s), 525–586, 527
accumulator, 558, 558–561
class-level, 529, 543, 544, 555, 556
collections compared, 554
counter, 558
elements, 528
including in structures, 594
list boxes, 554–558
one-dimensional. See one-dimensional arrays
populating, 529
of structure variables, creating, 600–605
two-dimensional. See two-dimensional arrays

Array.Reverse method, 542
Array.Sort method, 542
Ascending keyword, 797
ASP (active server page), 712
ASP table controls, 748, 748–753
adding to Web pages, 749–751
dragging in Source view, 751–753

<asp:ListItem> tag, 754
assembling documentation, 104–105
assignment operator (=), 89, 120
assignment statements, 89
asterisk (*)
designer tab, 23
multiplication assignment operator, 356
multiplication operator, 96, 216
pattern-matching character, 487

attributes, objects, 646
auto-implemented properties, 685,

685–687, 913
AutoSize Property, 75
AutoSizeColumnsMode property, 778

B
background color, controls, 74
backslash (\), integer division operator, 96, 216
base classes, 698, 698–703
behaviors, objects, 646
Billing/Shipping Review form, F17–20*

binding, 772
to existing controls, 786–788, 910
objects in a dataset, 772–780, 910

BindingNavigator controls, 775
customizing, 800–802, 911
deleting items, 911

BindingSource object, 775
Move methods, 789–790
Position property, 789

block scope, 199, 534
block-level variables, 199
bonus rate procedure, 271–272
book title capitalization, 68
Boole, George, 48
Boolean data type, 117, 118
Boolean values, 48
comparing, 297–300

BorderStyle property, 74, 74–75
bound controls, 772, 772–780
creating, 773–776
DataGridView control, 776–780

 tag, 756, 756–758
breakpoints, setting, 886–889
Brewers Coffee application, 535–537
browsers, 710
btnAdd_Click event procedure, 346–348,

629–630, 632
btnCalc_Click event procedure. See also specific

applications
GetFwt function, 453–457
rounding numbers, 457–464

btnCheck_Click event procedure,
511–518

btnClear_Click event procedure, 89–93
btnPrint_Click event procedure, 93–95
btnRemove_Click event procedure, 633
btnSubmit_Click event procedure, 736–739,

755–758
bugs, 102
button controls, 36
Button tool, 36
ByRef keyword, 418

C
Call statement, 412, 412–414, 418, 422
camel case, 21
Cancel property, FormClosing event, 450
CancelButton property, 160

I N D E X

922

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

capitalization. See also case
book title, 68
sentence, 68

Car Emporium application, 537–541
problem specification, 537
pseudocode and flowcharts, 538–539

caret (^), exponentiation operator, 96
Carpets Galore application, 653, 660–668
pseudocode, 660

Carrington Company bonus rate procedure,
271–272

case. See also capitalization
camel, 21
Pascal, 175, 412, 415
strings, converting, 211–215

CD Collection application, 591, 626–627
btnAdd_Click procedure, 629–630, 632
btnCalc_Click event procedure, 97–101
btnRemove_Click procedure, 633
FormClosing event procedure, 634–637
Load event procedure, 627–629
preview, 592–593
pseudocode, 627, 633, 634
TOE chart, 626

cells, 748, 776
CellStyle Builder dialog box, 780
Cerruti Company application, 409
btnCalc_Click procedure, 451–464
FormClosing event, 449–451
GetFwt function, 453–457
opening, 448–449
preview, 410–411
pseudocode, 449, 451, 455
TOE chart, 448

Char data type, 117
character(s)
literal type, 121, 478
streams, 610
strings. See string(s)

CharacterCasing property, 211
check boxes, 291, 291–293
Checked property, 291
CheckedChanged event, 300
child table, 767
City and State application, 481–482
class(es), 3, 646, 646–672, 912–913
base, 698, 698–703
containing auto-implemented properties,

685, 685–687

containing overloaded methods, 687–693
containing parameterized constructors,

664–668
containing private variables, public

properties, and methods, 652–664
containing public variables only, 648–652
containing a ReadOnly property, 680–684
creating, 646–648
derived, 698, 698–703
instances, 646
reusing, 668–672

class definitions, 20
Class Name list box, 39, 39–40
class scope, 128, 128–130
Class statement, 594, 647
class-level arrays, 529, 543, 544, 555, 556
class-level variables, 128
Clear method, 89
Click event procedure
coding, 89–93
modifying, 171–174
opening, 90

client computers, 710
Clock application, 375–377
Close method, 613
closing
current solution, 24
input sequential access files, 617–620
Web applications, 726

code, 17. See also Visual Basic code
blank lines to separate lines, 229
printing, 51–52
pseudocode, 87

Code Editor window, 38–42
collapsing and expanding regions, 39
entering Option statements, 137
Me.Close() instruction, 40–42
opening, 38–39

coding, 2
Click event procedure, 90–91
event procedures, 41, 89–93

collapsing regions, Code Editor window, 39
collection(s), 389
arrays compared, 554

Collection Editor dialog box, 812
color
background, controls, 74
user interfaces, 74

Color dialog box, F8*

I N D E X

923

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

column(s), aligning, 630–632
columnar layout, Web applications, 747–748
combo boxes, 439, 439–444, 907
code, 440, 443–444
styles, 439–440

comments, 91–93
CompareValidator tool, 740
comparing
Boolean values, 297–300
strings, using pattern-matching, 486–490

comparison operators, 195, 195–203
displaying sum or difference, 200–202
swapping numeric values, 197–200

component tray, 48
computer databases, 766. See also database(s)
computer programs, 2
concatenation operator (&), 154, 154–155, 216
conditions, 187
configuring Visual Studio Professional 2012,

12–13
Const statement, 132, 151
constants
literal, 120
named, 132, 132–135, 903

constructors, 658, 658–659
creating, 912
default, 658, 659
parameterized, 658, 664–668

Contains method, 480–481, 481
Continent application, 542–545
control(s), 29
adding to Web pages, 734–735
background color, 74
borders, 74–75
bound. See bound controls
customizing, 800–802
dragging in Source view, 751–753
existing, binding to, 786–788, 910
link button. See link button controls
locking, 77
multiple, changing properties, 33
multiple, selecting, 225
repositioning on Web pages, 726–727
showing and hiding, 319–321

ControlChars.Back constant, 241
ControlChars.NewLine constant, 159, 159–160
conversion functions, 899
Convert class, 123, 123–124
Convert method, 905

converting case of strings, 211–215
Copy to Output Directory property, 784,

784–785
counter(s), 343, 343–344, 349–355
counter arrays, 558
counter-controlled loops, 357
Country Charm Inn application, F4–7*
Covington Resort application, 183, 255
btnCalc_Click event procedure, 226–229,

233–236, 293–300
check boxes, 291–293
ClearLabels procedure, 300–304
coding, 226–229
Enter event procedure, 243–246
group boxes, 224–225
KeyPress event procedures, 240–243
opening, 223, 240, 289–290
preview, 184–185, 256–257
pseudocode, 227, 294
radio buttons, 290–291, 293–300
TOE chart, 288–289

CreateText method, 611
Currency Converter application, F28–33*
custom dialog boxes, F12*
Customize dialog box, 722–723
customizing BindingNavigator controls,

800–802, 911
CustomValidator tool, 740

D
data types, 116, 903
type conversion rules, 903
user-defined, 594. See also structure(s);

structure variables
variables, 116–118

data validation, 207, 207–209
TryParse method, 312–314

database(s), 766–791, 910–911
binding objects, 772–780
coding Next Record and Previous Record

buttons, 789–790
connecting applications, 768–772, 910
Copy to Output Directory property, 784–785
queries, Aee parameter queries. See LINQ

(Language Integrated Query); queries;
Structured Query Language (SQL)

relational, 766
saving dataset changes, 828

I N D E X

924

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

terminology, 766–767
Visual Basic code, 781–784

database management systems
(DBMSs), 766

DataGridView control, 776, 776–780
dataset(s), 768
adding records, 824–831
binding to existing controls, 768–788, 910
deleting records, 833–837
locating records, 834
previewing contents, 771–772
saving changes to a database, 828
selecting and arranging records using LINQ,

796–800
sorting records, 831–832

DataSet Designer window, 843–844
DataSet object, 775
Date data type, 117
DBMSs (database management systems), 766
debugging, 101–104, 102
Decimal data type, 117, 118
decision symbol, 189, 189–190
Declaration section, forms, 125
declaring
class-level arrays, 529
named constants, 903
one-dimensional arrays, 528–530
structure variables, 595
variables, 119, 903

decrementing, 343
default button, 160
default constructor, 658, 659
default list box item, 393
default radio buttons, 291
Delete key, KeyPress event, 241
Delete method, 834, 834–837
Delete queries, 864, 867–868
DELETE statement, 863, 864, 867–868, 870,

871
deleting
items from BindingNavigator controls, 911
records from datasets, 833–837
timer controls, 49–50

demoted values, 136
derived classes, 698, 698–703
desk-checking, 267
dialog boxes, F7–12*. See also specific

dialog boxes
custom, F12*

Die Tracker application, 525, 526, 567–571
difference, displaying, 200–202
flowchart and pseudocode, 200–202

Dim keyword, 119, 128, 130, 150, 151, 172
Discount Calculator application, 125–128,

882–886
displaying. See also viewing
access keys, 98
sum or difference, 200–202

<div> tag, 747, 747–748
division operator (/), 96, 216
DJ Tom application, 707, 746–758
adding items to drop-down list control, 754
ASP table, 748–753
coding, 755–758
columnar layout, 747–748
creating, 746–747
preview, 708–709

documentation
assembling, 104–105
internal, 91–93, 906

Do...Loop statement, 337, 337–343, 902
flowcharts, 339
For...Next statement compared, 363

dot member access operator (.), 20, 595
Double data type, 117, 118
Dr. N problem, 186–189
dragging controls in Source view, 751–753
DropDown combo boxes, 440, 441
drop-down list controls, adding items, 754
DropDownList combo boxes, 440, 441
DropDownStyle property, 439
dual-alternative selection structures, 189,

190, 191
dynamic Web pages, 711, 711–712,

732–742
adding controls, 734–735
adding static text, 732–733
Submit button Click event procedure,

735–739, 755–758
validating user input, 739–741

E
Edit Columns dialog box, 777–778
elements, arrays, 528
determining number in one-dimensional

array, 531
empty strings, 89

I N D E X

925

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Enabled property, 501
encapsulating, 646
ending applications, 37–38
endless loops, 342
Enter event, 243, 243–246
equal sign (=)
addition assignment operator, 356
arithmetic assignment operators, 355–357
assignment operator, 89, 120
division assignment operator, 356
equal to operator, 195, 196, 216
greater than or equal to operator, 195,

196, 216
less than or equal to operator, 195, 196, 216
multiplication assignment operator, 356
subtraction assignment operator, 356

equal to operator (=), 195, 196, 216
errors
debugging, 101–104, 102
logic. See logic errors
run time. See run time errors
syntax. See syntax errors
Visual Basic code, handling, 781–784

event(s), 38, 646. See also specific event names
associating procedures with different objects

and events, 174–178
OO applications, identifying, 65–66

event procedures, 38. See also specific event
procedure names

coding, 89–93
opening, 90
testing, 42

exceptions, 781
handling, 781–784

executable files, 37
Exists method, 615, 615–616
Exit Do statement, 337
Exit For statement, 359
Exit menu item, coding, 503
exiting Visual Studio 2012, 24
expanding regions, Code Editor window, 39
exponentiation operator (^), 96
extended selection structures, 272, 272–275

F
False keyword, 119
false path, 189
Favorite Title application, 415–417

fields, 766
fixed-space fonts, 630
flowchart(s), 88. See also specific applications
nested selection structures, 261–263
selection structures, 189–191

flowlines, 88
focus, 78, 78–81
Focus method, 91, 905
font(s)
fixed-space, 630
user interfaces, 73

Font and Color application, F7–12*
Font dialog box, F7*, F8*
font-family property, 746, 747
For Each...Next statement, 533, 533–534,

902
foreign key, 767
form(s), 16, 16–17
border style, 50
button controls, 36
disabling Minimize and Maximize buttons,

50–51
group boxes, 224–225
label controls, 30–32
locking controls, 77
menus. See menu(s)
Name property, 21
naming, 21
picture box controls, 34–36
preventing from closing, 906
properties, 20–22
Size property, 22
StartPosition property, 21–22
startup, 37, 37–38
text box controls, 76
Text property, 21

form Declaration section, 125
form files, 18
changing name, 19

Format function, 100, 100–101, 905
Format menu, 33–34
Format String dialog box, 778–779
formatting, 161
numbers, using ToString method, 161–164

FormBorderStyle property, setting, 50
FormClosing event, 449, 449–451
FormClosing event procedure, 634–637
For...Next statement, 357, 357–363, 902
Do...Loop statement compared, 363

I N D E X

926

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

forward slash (/)
division assignment operator, 356
division operator, 96, 216

Frankenstein Game application, 469
assigning shortcut keys to menu items,

501–502
btnCheck_Click procedure, 511–518
interface, 498–501
New Game option, 507–511
opening, 507
preview, 470–472
pseudocode, 508, 511–512
TOE chart, 506

Friend keyword, F13*
Full Screen view, viewing Web pages, 719
function(s), 99, 424, 424–430, 905–906
invoking, 427–428
modifying applications to use as, 428–429

Function procedures, 424, 424–430, 906
methods, 659–660
Sub procedures compared, 424–427

G
Game Show Contestants application, 611–614,

619–620
General Declarations section, 92, 135, 137
Get block, 655
Get statement, 656
GetFwt function, 453–457
GetUpperBound method, 531
global variables, 125
golf fee procedure, 266–271
Grade Calculator application, 680–684, 686
btnDisplay_Click procedure, 683–684

graphical user interfaces (GUIs), 16, 72–76
access keys, 77–78
AutoSize property, 75, 76
BorderStyle property, 74–75
color, 74
colors, 74
control borders, size, and alignment, 74–76
design guidelines, 895–898
drawing sketches, 67–69
focus, 78, 78–81
font types, styles, and sizes, 73
fonts, 73
graphics, 73
layout and organization, 69

printing, 51–52
sketching, 67–69
tab order, 78–81

graphics. See images
greater than operator (>), 195, 196, 216
greater than or equal to operator (>=), 195,

196, 216
Gross Pay Calculator application, 207–209,

329, 418–424
Click event procedure, 396–398
coding, 391–398
combo boxes, 441–443
list boxes, 388–395
modifying to use as function, 428–429
opening, 388, 418–419
preview, 330
pseudocode, 396
Sorted property, 390–391
TOE chart, 388

group boxes, 224
adding to forms, 224–225

GUIs. See graphical user interfaces (GUIs)

H
Handled property, 240, 241
hand-tracing, 267
Harper Golf Club golf fee procedure, 266–271
Hide method, F14*
hiding access keys, 98
Hours Worked application, 886–889
Hungarian notation, 21

I
IDE. See integrated development environment

(IDE)
If...Then...Else statements, 192, 192–193, 902
images
adding to Web pages, 724–726
user interfaces, 73

implicit type conversion, 135
incrementing, 343
indenting instructions in selection structures, 188
independent Sub procedures, 412, 412–414, 906
indexes, 528
IndexOf method, 480–481, 481
infinite loops, 342
inheritance, 698
Inherits clause, 698

I N D E X

927

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

initializing, 343
input dialog boxes, 155–158
input files, 610
closing, 617–620

InputBox function, 155, 155–158, 905
input/output symbol, 88
Insert method, 476, 476–480
Insert queries, 864, 864–867
INSERT statement, 863, 863–867, 869, 871
instances, 3
classes, 646

instantiating, 3
label controls, 30–31
objects, 646, 648, 912

instructions in selection structures, indenting,
188

Integer data type, 117
integer division operator (/), 96, 216
integrated development environment (IDE), 3
managing windows, 15–16

internal documentation, 91–93, 906
invalid data, 101
Isis problem, 332–333
IsMdiContainer property, F21*
Items collection, 389
Items Collection Editor dialog box, 801, 812

J
Jenko Booksellers application, 580–582
Jerrili application, 194
problem specification, pseudocode, and

flowchart, 190
Jotpad application, F20–28*
Jumping Jack Toy Store Web application,

723–727

K
Kettleson application, 191, 194–195
problem specification, pseudocode, and

flowchart, 191
KeyChar property, 240, 241
KeyPress event, 240, 240–243
keywords, 40

L
label controls, 30, 30–32
adding to forms, 31
instantiating, 30–31

Location property, 32
multiple, changing properties, 33
naming, 32
size, 75
Text property, 32

Label tool, 30–32
Language Integrated Query. See LINQ

(Language Integrated Query)
layout
columnar, Web applications, 747–748
GUIs, 69

left angle bracket (<)
less than operator, 195, 196, 216
less than or equal to operator, 195, 196, 216
not equal to operator, 195, 196, 216

Length property, 473, 531
less than operator (<), 195, 196, 216
less than or equal to operator (<=), 195, 196, 216
letters, comparing strings containing, 209–211
lifetime, 124
LIKE operator, 842
Like operator, 486, 486–490
line(s), 616
line continuation character (_), 154
link button controls, 720
Web applications, 720–722

LINQ (Language Integrated Query), 796,
911–912

aggregate operators, 802–806, 912
assigning variable’s contents to

BindingSource object, 798, 911
selecting and arranging records in datasets,

796–800, 911
list boxes, 388, 388–395, 907
arrays, 554–558

literal constants, 120
literal type characters, 121, 478
Load event, 146
modifying, 171–174

Load event procedure, 627–629
local scope, 125
local variables, 125
Location property
label controls, 32
locked controls, 77

locking controls on forms, 77
logic errors, 102
finding and fixing, 882–886
selection structures, 266–272

I N D E X

928

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

logical operators, 203, 203–209
calculations, 207–209
truth tables, 206–207

Long data type, 117
loop(s), 331. See also repetition structures
counter-controlled, 357
endless, 342
infinite, 342
posttest, 336
pretest, 336

loop body, 332
loop exit condition, 331
looping condition, 331

M
Maleek problem, 258–261
Math.Round function, 457, 457–464
Maximize button, disabling, 50–51
MaximizeBox property, 50–51
MDI (multiple-document interface)

applications, F2*, F2–3*, F20–28*
MdiWindowListItem property, F21*
Me.Close() instruction, 40–42
member variables, 594, 595–596
menu(s), 497–504
assigning shortcut keys to menu items,

501–502
coding exit menu item, 503
coding txtLetter control KeyPress event, 503

menu strip control, 497
Message dialog box, 103
MessageBox.Show method, 230, 230–233, 905
method(s), 40, 40–41, 658–660, 905. See also

specific method names
constructors, 658, 658–659
Convert class, 123–124
names, 659
overloaded, 687–693, 688
signature, 658

Method Name list box, 39
Minimize button, disabling, 50–51
MinimizeBox property, 50–51
minus box, 22
minus sign (-)
negation operator, 96, 216
subtraction assignment operator, 356
subtraction operator, 96, 216

modulus operator, 96, 216

Morgan Industries application, 798–800
Mount Rushmore application, 214–215
Move methods, 789, 789–790
Multiline property, 345
multiple-alternative selection structures, 272,

272–275
multiple-document interface (MDI)

applications, F2*, F2–3*, F20–28*
multiple-form applications, F4–7*,

F12–20*
multiplication assignment operator (*=), 356
multiplication operator (*), 96, 216
MyBase keyword, 700

N
Name Entry dialog box, 114
Name property, forms, 21
named constants, 132, 132–135
declaring, 903

namespace(s), 20
namespace scope, 125
namespace variables, 125
naming
label controls, 32
objects, 21
procedures, 415
variables, 118, 903

negation operator (-), 96, 216
nested repetition structures, 375–376
nested selection structures, 258, 258–265
flowcharting, 261–263
logic errors, 268–271
nested, coding, 263–265

Net Pay application, 478–479
New Game option, Frankenstein Game

application, 507–511
New Project dialog box, 13–14
New Web Site dialog box, 714–715
Norbert Pool & Spa Deport application,

596–599
class containing public variables only,

648–652
not equal to operator (<>), 195, 196, 216
Not operator, 205, 216
Nothing keyword, 119
number(s), formatting using ToString method,

161–164
number sign (#), pattern-matching character,

487

I N D E X

929

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

O
object(s), 3
associating procedures with different objects

and events, 174–178
attributes, 646
behaviors, 646
datasets, binding, 772–780, 910
instantiating, 646, 648, 912
naming, 21
OO applications, identifying, 64–65

Object box, 18
Object data type, 117–118
object-oriented (OO) applications, 62–70
identifying events, 65–66
identifying objects, 64–65
identifying tasks, 63–64
user interface sketch, 67–69

object-oriented programming (OOP), 39, 646,
646–673

classes. See class(es)
terminology, 646

object-oriented programming languages, 3
one-dimensional arrays, 528, 528–533, 908
calculating total and average values, 535–537
declaring, 528–530
determining highest subscript, 531
determining number of elements in, 531
For Each...Next statement, 533–534
finding highest value, 537–542
parallel, 561–567
sorting, 542–545
sorting data, 530
traversing, 532–533

OO applications. See object-oriented (OO)
applications

OOP. See object-oriented programming (OOP)
opening
Click event procedure, 90
Code Editor window, 38–39
event procedures, 90
existing solutions, 24
Run dialog box, 60
Web applications, 726

OpenText method, 615
operations, precedence, 96–97, 904
operators, 904
aggregate, 802, 802–806
arithmetic assignment, 355, 355–357
comparison. See comparison operators

dot member access, 20, 595
logical. See logical operators

Option Explicit On statement, 135, 137, 901
Option Infer Off statement, 135
Option Infer On statement, 137, 797, 901
Option statements, 135–137, 797, 901
Option Strict Off statement, 137
Option Strict On statement, 136, 901
Options dialog box, 12–13, 713–734
entering Option statements, 137

Or operator, 206, 216
ORDER BY clause, 841
Order By clause, 796
order of operations, 96–97, 904
OrElse operator, 206, 208, 209, 216
output files, 610
closing, 613–614

overloaded methods, 687–693, 688
Overridable keyword, 700
Overrides keyword, 700

P
PadLeft method, 477, 477–478
PadRight method, 477, 477–478
Paradise Bookstore application, 763, 811–815
preview, 764–765

parallel arrays, 561–567, 562
parameter(s), 240
parameter marker (?), 855
parameter queries, 855, 855–858
parameterized constructor, 658, 664–668
parent table, 767
Pascal case, 175, 412, 415
passing variables, 414–424
by reference, 414, 418–424
by value, 414, 415–418

paths
false, 189
true, 189

pattern-matching, comparing strings, 486–490
Peek method, 616, 616–617
period (.), dot member access operator, 20, 20,

595
Pete’s Pizzeria application, 669
btnCalc_Click procedure, 670–671
pseudocode, 670

picture box controls, 34, 34–36
PictureBox tool, 34–36

I N D E X

930

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Play It Again Movies application, 59, 113
btnCalc_Click event procedure, 147–153,

171–172
coding, 86–106
concatenating strings, 154–155
ControlChars.NewLine constant, 159–160
default button, 160
flowcharts, 88, 149
formatting numbers with ToString method,

161–164
InputBox function, 155–158
Load and Click event procedures, 171–174
modifying, 146–153, 171–174
moving code, 172
named constants, 132–135
opening, 72, 147, 172
Option statements, 135–137
planning, 62–69
preview, 60–61, 114–115
pseudocode, 87, 149, 172
TextChanged event procedure, 174–178
TOE chart, 64–66, 86–87, 146, 171
user interface, 72–81, 86
variables, 116

plus box, 22
plus sign (+)
addition assignment operator, 356
addition operator, 96, 216
concatenating strings, 154

points, 22
populating arrays, 529
Position property, 789
posttest loops, 336
precedence of operations, 96–97, 904
pretest loops, 336
Preview Data dialog box, 772
primary key, 767
primary window, F7*
priming read, 350
Print dialog box, 51–52
Print Preview window, 94
PrintForm tool, 93, 93–95
printing, 904–905
splash screen interface and code, 51–52

Private keyword, 40, 128, 130, 172, 412
private variables
class containing private variables, public

properties, and methods, 652–664
Property procedures, 654–658

procedure(s). See also specific procedure
names

associating with different objects and events,
174–178

Function, 424, 424–430
naming, 415
Pascal case, 175
passing structure variables to, 596–599
planning using flowcharts, 88
planning using pseudocode, 87
Sub. See Sub procedures

procedure footers, 40
procedure headers, 40
procedure scope, 125, 125–128
procedure-level variables, 125, 125–128
process symbols, 88
Product ID application, 475–476, 488–489
program(s), 2
programmers, 2
employment opportunities, 2–3
job, 2

programming, 2, 2–3
object-oriented. See class(es); object-oriented

programming (OOP)
programming languages, 2
object-oriented, 3

promoted values, 135
properties, 18, 913–915. See also specific

property names
assigning values during run time,

89–91
auto-implemented, 685, 685–687
changing for multiple controls, 33
setting and restoring values, 22–23

Properties list, 18
Properties window, 18, 18–19
changing form file name, 19

Property procedures, 654
creating, 912
private variables, 654–658

pseudocode, 87. See also specific
applications

pseudo-random number generator, 315
Public keyword, 39
public variables
class containing only public variables,

648–652
class containing private variables, public

properties, and methods, 652–664

I N D E X

931

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Q
queries, 796, 796–800
invoking from code, 861–863
LINQ. See LINQ (Language Integrated

Query)
parameter. See parameter queries
saving, 858–861
SQL. See Structured Query Language (SQL)

Query Builder dialog box, 845–850
Query Parameters dialog box, 857
question mark (?)
parameter marker, 855
pattern-matching character, 487

Quotient Calculator application, 889–892

R
radio buttons, 290, 290–291, 293–300
default, 291

random integers, generating, 315–319
random number generation, 905
random objects, 315
Random.Next method, 315
RangeValidator tool, 740
reading data from sequential access files,

614–617
ReadLine method, 616
ReadOnly keyword, 654
ReadOnly property, 345
class containing, 680–684

real numbers, 382, 382–383
Rearrange Name application, 484–485
Recipe Web application, 732–739, 740–741
adding controls, 734–735
pseudocode, 736
static text, 732–733
Submit button Click event procedure,

735–739
records, 766
adding to datasets, 824–831
deleting from datasets, 833–837
locating in datasets, 834
selecting and arranging using LINQ,

796–800
sorting in datasets, 831–832

Red Tree Inn splash screen, 10, 34–38, 48–51
reference, passing variables by, 414, 418–424
reference control, 34
Refresh method, 377

RegularExpressionValidator tool, 740
RegularFieldValidator tool, 740
relational databases, 766
relational operators. See comparison operators
remainder operator, 96, 216
Remove method, 474, 633
RemoveAt method, 633
repetition structures, 329–399, 331
arithmetic assignment operators, 355–357
counters and accumulators, 343–355
Do...Loop statement, 337–343
For...Next statement, 357–363
list boxes, 388–391
nested, 375–376
Refresh method, 377
Sleep method, 377

repositioning controls on Web pages, 726–727
Return statement, 426
right angle bracket (>)
greater than operator, 195, 196, 216
greater than or equal to operator, 195,

196, 216
not equal to operator, 195, 196, 216

Roll ‘Em Game application, 315–321
pseudocode, 316–317

Rose Performing Arts Center application,
554–558

rounding numbers, btnCalc_Click procedure,
457–464

Run dialog box, opening, 60
run time, 48
run time errors, 102
finding and fixing, 889–892

S
Sales Express application, 349–355, 356–357
flowchart, 351
problem specification and pseudocode,

349, 350
saving
dataset changes to a database, 828
queries, 858–861
solutions, 23

Savings Account application, 336, 360, 379
coding, 340–343, 362–363, 381–382
comparison problem, 382–384
flowchart, 361
problem specification, 334, 335–337, 340,

360–361, 380

I N D E X

932

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

pseudocode, 334, 340, 360, 380
running, 334–335

scalar variables, 527
scope, 124, 124–130
block, 199, 534
class, 128, 128–130
local, 125
namespace, 125
procedure, 125, 125–128

ScrollBars property, 345, 345–346
SDI (single-document interface) applications,

F2*, F4*
searching
strings, 480–483
two-dimensional arrays, 582–586

secondary windows. See dialog boxes
Select Case statement, 275, 275–279,

902–903
specifying range of values, 277–279

Select Resource dialog box, 34–35
SELECT statement, 841, 841–842
SelectAll method, 243, 905
SelectedIndex property, 393
SelectedIndexChanged event, 395
SelectedItem property, 393
SelectedValueChanged event, 395
selecting multiple controls, 225
selection structures, 186, 186–195
coding, 192–195
conditions, 187
denoting beginning and end, 188
dual-alternative, 189, 190, 191
extended, 272, 272–275
flowcharting, 189–191
indenting instructions, 188
logic errors, 266–272
multiple-alternative, 272, 272–275
nested. See nested selection structures
single-alternative, 187, 187–188, 190, 191,

197, 198
SelectionMode property, 388
sentence capitalization, 68
sequential access files, 610, 610–621, 909
input, closing, 617–620
output, closing, 613–614
reading data from, 614–617
writing data to, 610–613

Set block, 656
Set statement, 656

Settings box, 18
Shipping form, F14–16*
Short data type, 117, 118
short-circuit evaluation, 205, 205–206
shortcut keys, 501
assigning to menu items, 501–502

Show method, F14*
showing. See displaying; viewing
signature, methods, 658
Simple combo boxes, 440
simple variables, 527
Single data type, 117
single-alternative selection structures, 187,

187–188, 190, 191, 197, 198
single-document interface (SDI) applications,

F2*, F4*
Size property, forms, 22
Sleep method, 377
solution(s)
current, closing, 24
existing, opening, 24
saving, 23

Solution Explorer window, 17, 17–18
Sort method, 831, 831–832
Sorted property, 390, 390–391
sorting, 542
one-dimensional arrays, 530, 542–545
records in datasets, 831–832

source files, 17
Source view, dragging controls, 751–753
splash screens, 10–19
adding timer controls, 48–49
completed, previewing, 10
creating, 11–19
printing interface and code, 51–52
removing title bar, 51

SQL. See Structured Query Language (SQL)
starting
applications, 36–38
Visual Studio Professional 2012, 11–12
Web applications, 722–724

StartPosition property, forms, 21–22
start/stop symbols, 88
startup forms, 37, 37–38
statement(s), 901–903. See also specific

statement names
statement blocks, 192
States application, 532–533, 534
Static keyword, 130–132

I N D E X

933

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

static text, 717
Web pages, 717–719, 732–733

static variables, 130, 130–132
static Web pages, 710, 710–711
StreamReader object, 614, 614–615
streams of characters, 610
StreamWriter object, 610, 610–613, 909
string(s), 89, 473–490, 906–907
accessing characters, 483–486
aligning characters, 477–478
comparing using pattern-matching,

486–490
containing letters, comparing, 209–211
converting case, 211–215
determining number of characters, 473
inserting characters, 476–480
removing characters, 474–476
searching, 480–483

String data type, 117
String.Empty value, 89
Strings.Space method, 631, 905
structure(s), 594, 910
variables. See structure variables

Structure statement, 594
structure variables, 595, 595–605
creating arrays, 600–605
declaring, 595
passing to a procedure, 596–599
using, 595–596

Structured Query Language (SQL), 841, 912
creating queries, 843–850
SELECT statement, 841–850

Sub keyword, 40, 412
Sub procedures, 40, 412–414
constructors, 658–659
Function procedures compared, 424–427
independent, 412, 906
methods, 658–660

Submit button Click event procedure, 735–739,
755–758

subscripts, 528
highest in one-dimensional array,

determining, 531
Substring method, 483, 483–486
subtraction assignment operator (-=), 356
subtraction operator (-), 216
sum, displaying, 200–202
swapping numeric values, 197–200
pseudocode and flowchart, 198

syntax, 40
syntax errors, 102, 102–104
finding and fixing, 878–882

T
tab order, 78, 78–81
tabbed-document interface (TDI) applications,

F2*, F3*
quasi, F28–33*

TabControl tool, F28*
TabIndex property, 78, 78–81
table(s), 766, 766–767. See also ASP table

controls
child, 767
parent, 767

TableAdapter object, 775
TableAdapterManager object, 775
TableCell Collection Editor dialog

box, 750
TabPage Collection Editor dialog box, F29*
task(s), OO applications, identifying,

63–64
Task, Object, Event charts. See TOE (Task,

Object, Event) charts
TDI (tabbed-document interface) applications,

F2*, F3*
testing
applications, 101–104
event procedures, 42

text
alignment in controls, 75
static. See static text

text boxes, 64, 76
controlling characters accepted by, 906

text files, 610. See also sequential access files
Text property
forms, 21
label controls, 32

TextAlign property, 75
TextChanged event, 174
associating with different objects and events,

174–178
timer controls, 48, 48–50
adding to splash screen, 48–49
deleting, 49–50

Timer tool, 48–50
title(s), Web pages, 717
title bar, removing from splash screens, 51

I N D E X

934

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

TOE (Task, Object, Event) charts, 63–66, 86–87
CD Collection application, 626
Cerruti Company application, 448
Covington Resort application, 288–289
Frankenstein Game application, 506
Gross Pay Calculator application, 388
Play It Again Movies application, 64–66,

86–87, 146, 171
ToLower method, 211, 211–213, 481
toolbox, 29
Toolbox window, 29, 29–30
ToString method, 161, 161–164, 905
Total Sales Calculator application, 878–882
Total Scores application, 128–132
totaling, values stored in two-dimensional arrays,

580–582
ToUpper method, 210, 211, 211–213, 481
traversing
one-dimensional arrays, 532–533
two-dimensional arrays, 579–580

Treasures Gift Shoppe application, 561–567,
582–586, 600–605

pseudocode and flowchart, 563–564
Trim method, 474, 474–476
Trixie at the Diner problem, 377–379
true path, 189
truth tables, 205, 206–207
Try...Catch statements, 781, 781–784, 903
TryParse method, 121, 121–123, 905
data validation, 312–314

two-dimensional arrays, 576, 576–586, 908–909
searching, 582–586
totaling values stored in, 580–582
traversing, 579–580

txtLetter control KeyPress event, coding, 503

U
underscore (_), line continuation character, 154
Unicode, 117
Until keyword, 337
Update method, 828
update read, 350
updating, 343
user input, validating, 739–741
user interfaces, 3. See also graphical user

interfaces (GUIs)
user-defined data types, 594. See also structure(s);

structure variables

V
Val function, 99, 99–100, 906
valid data, 101
ValidationSummary tool, 740
validator tools, 739, 739–741
value(s)
assigning to properties during run time,

89–91
demoted, 136
numeric, swapping, 197–200
passing variables by, 414, 415–418
promoted, 135
properties, setting and restoring, 22–23
specifying range in Case statement,

277–279
stored in two-dimensional arrays, totaling,

580–582
variables, 116, 116–132
assigning values, 120–124
block-level, 199
class-level, 128
Convert class, 123–124
data types, 116–118
declaring, 119, 903
global, 125
lifetime, 124
local, 125
member, 594, 595–596
namespace, 125
naming, 118, 903
passing. See passing variables
procedure-level, 125, 125–128
scalar, 527
scope, 124–130
simple, 527
static, 130, 130–132
StreamWriter, 610–613
structure. See structure variables
TryParse method, 121–1223

viewing. See also displaying
form properties, 20
Visual Basic code, 781
Web pages in full screen view, 719

Visible property, 319, 319–321
Visual Basic 2012
cheat sheet, 901–915
conversion functions, 899
demonstration, 4–5
overview, 3–5

I N D E X

935

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Visual Basic code, 781–784
errors, handling, 781–784
viewing, 781

Visual Studio Professional 2012
configuring, 12–13
creating Windows applications, 13–15
exiting, 24
managing windows in IDE, 15–16
Properties window, 18, 18–19
Solution Explorer window, 17, 17–18
starting, 11–12
Windows Form Designer window, 16, 16–17

voter eligibility problem, 261–265
problem specification and flowcharts,

262–263

W
Warren School application, 558–561
Web applications, 707–758
adding items to drop-down list control, 754
adding Web pages, 715–719, 720
ASP table, 748–753
closing, 726
coding, 755–758
columnar layout, 747–748
creating, 713–715, 746–747
link button controls, 720–722
opening, 726
starting, 722–724
Web pages. See Web pages

Web pages, 710. See also Web applications
adding images, 724–726
adding to Web applications, 715–719, 720

dynamic. See dynamic Web pages
repositioning controls, 726–727
static, 710, 710–711
titles, 717
viewing in full screen view, 719

Web servers, 710
WHERE clause, 841
Where clause, 796
While keyword, 337
windows, managing in IDE, 15–16
Windows applications, creating, 13–15
Windows form(s). See form(s)
Windows Form Designer window, 16,

16–17
Windows Form objects, 16, 16–17. See also

form(s)
Woods Manufacturing application, 643,

689–693
btnCalc_Click event procedure, 690–692
preview, 644–645
pseudocode, 690

Write method, 612, 612–613
WriteLine method, 612, 612–613
WriteOnly keyword, 654
writing to sequential access files, 610–613

X
Xor operator, 216

Z
Zappet application, F12–20*
zero-length strings, 89
ZIP code application, 473

I N D E X

936

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

	Cover������������
	Half Title�����������������
	Title������������
	Statement����������������
	Copyright����������������
	Brief Contents���������������������
	Contents���������������
	Preface��������������
	Read This Before You Begin���������������������������������
	Overview: An Introduction to Programming���
	After Studying the Overview, You Should Be Able to:
	Programming a Computer�����������������������������
	Visual Basic 2012������������������������
	Using the Chapters Effectively�������������������������������������
	Summary��������������
	Key Terms����������������

	Ch 1: An Introduction to Visual Basic 2012���
	Lesson A���������������
	After Studying Lesson A, You Should Be Able to:
	The Splash Screen Application������������������������������������
	Properties of a Windows Form�����������������������������������
	Setting and Restoring a Property’s Value���
	Saving a Solution������������������������
	Closing the Current Solution�����������������������������������
	Opening an Existing Solution�����������������������������������
	Exiting Visual Studio 2012���������������������������������
	Lesson A Summary�����������������������
	Lesson A Key Terms�������������������������
	Lesson A Review Questions��������������������������������
	Lesson A Exercises�������������������������

	Lesson B���������������
	After Studying Lesson B, You Should Be Able to:
	The Toolbox Window�������������������������
	The Label Tool���������������������
	Changing a Property For Multiple Controls��
	Using the Format Menu����������������������������
	The PictureBox Tool��������������������������
	The Button Tool����������������������
	Starting and Ending an Application���
	The Code Editor Window�����������������������������
	Lesson B Summary�����������������������
	Lesson B Key Terms�������������������������
	Lesson B Review Questions��������������������������������
	Lesson B Exercises�������������������������

	Lesson C���������������
	After Studying Lesson C, You Should Be Able to:
	Using the Timer Tool���������������������������
	Setting the FormBorderStyle Property���
	The MinimizeBox, MaximizeBox, and ControlBox Properties��
	Printing the Application’s Code and Interface��
	Lesson C Summary�����������������������
	Lesson C Key Terms�������������������������
	Lesson C Review Questions��������������������������������
	Lesson C Exercises�������������������������

	Ch 2: Designing Applications�����������������������������������
	Lesson A���������������
	After Studying Lesson A, You Should Be Able to:
	Creating an Object-Oriented Application��
	Planning an Object-Oriented Application��
	Lesson A Summary�����������������������
	Lesson A Key Terms�������������������������
	Lesson A Review Questions��������������������������������
	Lesson A Exercises�������������������������

	Lesson B���������������
	After Studying Lesson B, You Should Be Able to:
	Building the User Interface����������������������������������
	Locking the Controls on a Form�������������������������������������
	Assigning Access Keys����������������������������
	Controlling the Tab Order��������������������������������
	Lesson B Summary�����������������������
	Lesson B Key Terms�������������������������
	Lesson B Review Questions��������������������������������
	Lesson B Exercises�������������������������

	Lesson C���������������
	After Studying Lesson C, You Should Be Able to:
	Coding the Application�����������������������������
	Coding the btnClear Control’s Click Event Procedure��
	Coding the btnPrint Control’s Click Event Procedure��
	Writing Arithmetic Expressions�������������������������������������
	Coding the btnCalc Control’s Click Event Procedure���
	Testing and Debugging the Application��
	Assembling the Documentation�����������������������������������
	Lesson C Summary�����������������������
	Lesson C Key Terms�������������������������
	Lesson C Review Questions��������������������������������
	Lesson C Exercises�������������������������

	Ch 3: Using Variables and Constants��
	Lesson A���������������
	After Studying Lesson A, You Should Be Able to:
	Using Variables to Store Information���
	Assigning Data to an Existing Variable���
	The Scope and Lifetime of a Variable���
	Static Variables�����������������������
	Named Constants����������������������
	Option Statements������������������������
	Lesson A Summary�����������������������
	Lesson A Key Terms�������������������������
	Lesson A Review Questions��������������������������������
	Lesson A Exercises�������������������������

	Lesson B���������������
	After Studying Lesson B, You Should Be Able to:
	Modifying the Play It Again Movies Application���
	Modifying the Calculate Button’s Code��
	Concatenating Strings����������������������������
	The InputBox Function����������������������������
	The ControlChars.Newline Constant��
	Designating a Default Button�����������������������������������
	Using the ToString Method to Format Numbers��
	Lesson B Summary�����������������������
	Lesson B Key Terms�������������������������
	Lesson B Review Questions��������������������������������
	Lesson B Exercises�������������������������

	Lesson C���������������
	After Studying Lesson C, You Should Be Able to:
	Modifying the Load and Click Event Procedures��
	Coding the TextChanged Event Procedure���
	Lesson C Summary�����������������������
	Lesson C Key Terms�������������������������
	Lesson C Review Questions��������������������������������
	Lesson C Exercises�������������������������

	Ch 4: The Selection Structure������������������������������������
	Lesson A���������������
	After Studying Lesson A, You Should Be Able to:
	Making Decisions in a Program������������������������������������
	Flowcharting a Selection Structure���
	Coding Selection Structures in Visual Basic��
	Comparison Operators���������������������������
	Logical Operators������������������������
	Comparing Strings Containing Letters���
	Converting a String to Uppercase or Lowercase��
	Summary of Operators���������������������������
	Lesson A Summary�����������������������
	Lesson A Key Term������������������������
	Lesson A Review Questions��������������������������������
	Lesson A Exercises�������������������������

	Lesson B���������������
	After Studying Lesson B, You Should Be Able to:
	Creating the Covington Resort Application��
	Coding the Covington Resort Application��
	The MessageBox.Show Method���������������������������������
	Completing the btnCalc_Click Procedure���
	Lesson B Summary�����������������������
	Lesson B Key Terms�������������������������
	Lesson B Review Questions��������������������������������
	Lesson B Exercises�������������������������

	Lesson C���������������
	After Studying Lesson C, You Should Be Able to:
	Coding the KeyPress Event Procedures���
	Coding the Enter Event Procedures��
	Lesson C Summary�����������������������
	Lesson C Key Term������������������������
	Lesson C Review Questions��������������������������������
	Lesson C Exercises�������������������������

	Ch 5: More on the Selection Structure��
	Lesson A���������������
	After Studying Lesson A, You Should Be Able to:
	Nested Selection Structures����������������������������������
	Flowcharting a Nested Selection Structure��
	Coding a Nested Selection Structure��
	Logic Errors in Selection Structures���
	Multiple-Alternative Selection Structures��
	The Select Case Statement��������������������������������
	Lesson A Summary�����������������������
	Lesson A Key Terms�������������������������
	Lesson A Review Questions��������������������������������
	Lesson A Exercises�������������������������

	Lesson B���������������
	After Studying Lesson B, You Should Be Able to:
	Modifying the Covington Resort Application���
	Modifying the Calculate Button’s Code��
	Modifying the ClearLabels Procedure��
	Lesson B Summary�����������������������
	Lesson B Key Terms�������������������������
	Lesson B Review Questions��������������������������������
	Lesson B Exercises�������������������������

	Lesson C���������������
	After Studying Lesson C, You Should Be Able to:
	Using the TryParse Method for Data Validation��
	Generating Random Integers���������������������������������
	Showing and Hiding a Control�����������������������������������
	Lesson C Summary�����������������������
	Lesson C Key Terms�������������������������
	Lesson C Review Questions��������������������������������
	Lesson C Exercises�������������������������

	Ch 6: The Repetition Structure�������������������������������������
	Lesson A���������������
	After Studying Lesson A, You Should Be Able to:
	Repeating Program Instructions�������������������������������������
	The Do…Loop Statement����������������������������
	Counters and Accumulators��������������������������������
	Arithmetic Assignment Operators��������������������������������������
	The For…Next Statement�����������������������������
	Lesson A Summary�����������������������
	Lesson A Key Terms�������������������������
	Lesson A Review Questions��������������������������������
	Lesson A Exercises�������������������������

	Lesson B���������������
	After Studying Lesson B, You Should Be Able to:
	Nested Repetition Structures�����������������������������������
	The Refresh and Sleep Methods������������������������������������
	Trixie at the Diner��������������������������
	Revisiting the Savings Account Application���
	Lesson B Summary�����������������������
	Lesson B Key Terms�������������������������
	Lesson B Review Questions��������������������������������
	Lesson B Exercises�������������������������

	Lesson C���������������
	After Studying Lesson C, You Should Be Able to:
	Creating the Gross Pay Application���
	Including a List Box in an Interface���
	Coding the Gross Pay Application���������������������������������������
	Lesson C Summary�����������������������
	Lesson C Key Terms�������������������������
	Lesson C Review Questions��������������������������������
	Lesson C Exercises�������������������������

	Ch 7: Sub and Function Procedures��
	Lesson A���������������
	After Studying Lesson A, You Should Be Able to:
	Sub Procedures���������������������
	Passing Variables������������������������
	Function Procedures��������������������������
	Lesson A Summary�����������������������
	Lesson A Key Terms�������������������������
	Lesson A Review Questions��������������������������������
	Lesson A Exercises�������������������������

	Lesson B���������������
	After Studying Lesson B, You Should Be Able to:
	Including a Combo Box in an Interface��
	Lesson B Summary�����������������������
	Lesson B Key Terms�������������������������
	Lesson B Review Questions��������������������������������
	Lesson B Exercises�������������������������

	Lesson C���������������
	After Studying Lesson C, You Should Be Able to:
	Creating the Cerruti Company Application���
	Coding the FormClosing Event Procedure���
	Coding the btnCalc_Click Procedure���
	Completing the btnCalc_Click Procedure���
	Lesson C Summary�����������������������
	Lesson C Key Terms�������������������������
	Lesson C Review Questions��������������������������������
	Lesson C Exercises�������������������������

	Ch 8: String Manipulation��������������������������������
	Lesson A���������������
	After Studying Lesson A, You Should Be Able to:
	Working with Strings���������������������������
	Determining the Number of Characters in a String���
	Removing Characters from a String��
	Inserting Characters in a String���������������������������������������
	Searching a String�������������������������
	Accessing the Characters in a String���
	Using Pattern-Matching to Compare Strings��
	Lesson A Summary�����������������������
	Lesson A Key Terms�������������������������
	Lesson A Review Questions��������������������������������
	Lesson A Exercises�������������������������

	Lesson B���������������
	After Studying Lesson B, You Should Be Able to:
	Adding a Menu to a Form������������������������������
	Lesson B Summary�����������������������
	Lesson B Key Terms�������������������������
	Lesson B Review Questions��������������������������������
	Lesson B Exercises�������������������������

	Lesson C���������������
	After Studying Lesson C, You Should Be Able to:
	Completing the Frankenstein Game Application���
	Lesson C Summary�����������������������
	Lesson C Key Terms�������������������������
	Lesson C Review Questions��������������������������������
	Lesson C Exercises�������������������������

	Ch 9: Arrays�������������������
	Lesson A���������������
	After Studying Lesson A, You Should Be Able to:
	Arrays�������������
	One-Dimensional Arrays�����������������������������
	The For Each…Next Statement����������������������������������
	Calculating the Total and Average Values���
	Finding the Highest Value��������������������������������
	Sorting a One-Dimensional Array��������������������������������������
	Lesson A Summary�����������������������
	Lesson A Key Terms�������������������������
	Lesson A Review Questions��������������������������������
	Lesson A Exercises�������������������������

	Lesson B���������������
	After Studying Lesson B, You Should Be Able to:
	Arrays and Collections�����������������������������
	Accumulator and Counter Arrays�������������������������������������
	Parallel One-Dimensional Arrays��������������������������������������
	The Die Tracker Application����������������������������������
	Lesson B Summary�����������������������
	Lesson B Key Terms�������������������������
	Lesson B Review Questions��������������������������������
	Lesson B Exercises�������������������������

	Lesson C���������������
	After Studying Lesson C, You Should Be Able to:
	Two-Dimensional Arrays�����������������������������
	Totaling the Values Stored in a Two-Dimensional Array��
	Searching a Two-Dimensional Array��
	Lesson C Summary�����������������������
	Lesson C Key Term������������������������
	Lesson C Review Questions��������������������������������
	Lesson C Exercises�������������������������

	Ch 10: Structures and Sequential Access Files��
	Lesson A���������������
	After Studying Lesson A, You Should Be Able to:
	Structures�����������������
	Declaring and Using a Structure Variable���
	Passing a Structure Variable to a Procedure��
	Creating an Array of Structure Variables���
	Lesson A Summary�����������������������
	Lesson A Key Terms�������������������������
	Lesson A Review Questions��������������������������������
	Lesson A Exercises�������������������������

	Lesson B���������������
	After Studying Lesson B, You Should Be Able to:
	Sequential Access Files������������������������������
	Writing Data to a Sequential Access File���
	Closing an Output Sequential Access File���
	Reading Data from a Sequential Access File���
	Closing an Input Sequential Access File��
	Lesson B Summary�����������������������
	Lesson B Key Terms�������������������������
	Lesson B Review Questions��������������������������������
	Lesson B Exercises�������������������������

	Lesson C���������������
	After Studying Lesson C, You Should Be Able to:
	Coding the CD Collection Application���
	Coding the Form’s Load Event Procedure���
	Coding the btnAdd_Click Procedure��
	Aligning Columns of Information��������������������������������������
	Coding the btnRemove_Click Procedure���
	Coding the Form’s FormClosing Event Procedure��
	Lesson C Summary�����������������������
	Lesson C Key Terms�������������������������
	Lesson C Review Questions��������������������������������
	Lesson C Exercises�������������������������

	Ch 11: Classes and Objects���������������������������������
	Lesson A���������������
	After Studying Lesson A, You Should Be Able to:
	Object-Oriented Programming Terminology��
	Creating a Class�����������������������
	Example 1—A Class that Contains Public Variables Only��
	Example 2—A Class that Contains Private Variables, Public Properties, and Methods��
	Example 3—A Class that Contains a Parameterized Constructor��
	Example 4—Reusing a Class��������������������������������
	Lesson A Summary�����������������������
	Lesson A Key Terms�������������������������
	Lesson A Review Questions��������������������������������
	Lesson A Exercises�������������������������

	Lesson B���������������
	After Studying Lesson B, You Should Be Able to:
	Example 5—A Class that Contains a ReadOnly Property��
	Example 6—A Class that Contains Auto-Implemented Properties��
	Example 7—A Class that Contains Overloaded Methods���
	Lesson B Summary�����������������������
	Lesson B Key Terms�������������������������
	Lesson B Review Questions��������������������������������
	Lesson B Exercises�������������������������

	Lesson C���������������
	After Studying Lesson C, You Should Be Able to:
	Example 8—Using a Base Class and a Derived Class���
	Lesson C Summary�����������������������
	Lesson C Key Terms�������������������������
	Lesson C Review Questions��������������������������������
	Lesson C Exercises�������������������������

	Ch 12: Web Applications������������������������������
	Lesson A���������������
	After Studying Lesson A, You Should Be Able to:
	Web Applications�����������������������
	Creating a Web Application���������������������������������
	Adding the Default.aspx Web Page to the Application��
	Viewing a Web Page in Full Screen View���
	Adding Another Web Page to the Application���
	Adding a Link Button Control to a Web Page���
	Starting a Web Application���������������������������������
	Adding an Image to a Web Page������������������������������������
	Closing and Opening an Existing Web Application��
	Repositioning a Control on a Web Page��
	Lesson A Summary�����������������������
	Lesson A Key Terms�������������������������
	Lesson A Review Questions��������������������������������
	Lesson A Exercises�������������������������

	Lesson B���������������
	After Studying Lesson B, You Should Be Able to:
	Dynamic Web Pages������������������������
	Coding the Submit Button’s Click Event Procedure���
	Validating User Input����������������������������
	Lesson B Summary�����������������������
	Lesson B Key Term������������������������
	Lesson B Review Questions��������������������������������
	Lesson B Exercises�������������������������

	Lesson C���������������
	After Studying Lesson C, You Should Be Able to:
	Creating the DJ Tom Application��������������������������������������
	Creating a Columnar Layout���������������������������������
	Using an ASP Table�������������������������
	Adding Items to a DropDownList Control���
	Coding DJ Tom’s Web Page�������������������������������
	Lesson C Summary�����������������������
	Lesson C Key Terms�������������������������
	Lesson C Review Questions��������������������������������
	Lesson C Exercises�������������������������

	Ch 13: Working with Access Databases and LINQ��
	Lesson A���������������
	After Studying Lesson A, You Should Be Able to:
	Database Terminology���������������������������
	Connecting an Application to a Microsoft Access Database���
	Binding the Objects in a Dataset���������������������������������������
	Visual Basic Code������������������������
	The Copy to Output Directory Property��
	Binding to an Existing Control�������������������������������������
	Coding the Next Record and Previous Record Buttons���
	Lesson A Summary�����������������������
	Lesson A Key Terms�������������������������
	Lesson A Review Questions��������������������������������
	Lesson A Exercises�������������������������

	Lesson B���������������
	After Studying Lesson B, You Should Be Able to:
	Creating a Query�����������������������
	Customizing a BindingNavigator Control���
	Using the LINQ Aggregate Operators���
	Lesson B Summary�����������������������
	Lesson B Key Terms�������������������������
	Lesson B Review Questions��������������������������������
	Lesson B Exercises�������������������������

	Lesson C���������������
	After Studying Lesson C, You Should Be Able to:
	Completing the Paradise Bookstore Application��
	Coding the Paradise Bookstore Application��
	Lesson C Summary�����������������������
	Lesson C Key Terms�������������������������
	Lesson C Review Questions��������������������������������
	Lesson C Exercises�������������������������

	Ch 14: Access Databases and SQL��������������������������������������
	Lesson A���������������
	After Studying Lesson A, You Should Be Able to:
	Adding Records to a Dataset����������������������������������
	Sorting the Records in a Dataset���������������������������������������
	Deleting Records from a Dataset��������������������������������������
	Lesson A Summary�����������������������
	Lesson A Key Terms�������������������������
	Lesson A Review Questions��������������������������������
	Lesson A Exercises�������������������������

	Lesson B���������������
	After Studying Lesson B, You Should Be Able to:
	Structured Query Language��������������������������������
	The SELECT Statement���������������������������
	Creating a Query�����������������������
	Lesson B Summary�����������������������
	Lesson B Key Terms�������������������������
	Lesson B Review Questions��������������������������������
	Lesson B Exercises�������������������������

	Lesson C���������������
	After Studying Lesson C, You Should Be Able to:
	Parameter Queries������������������������
	Saving a Query���������������������
	Invoking a Query from Code���������������������������������
	The INSERT and DELETE Statements���������������������������������������
	Lesson C Summary�����������������������
	Lesson C Key Terms�������������������������
	Lesson C Review Questions��������������������������������
	Lesson C Exercises�������������������������

	Appendix A: Finding and Fixing Program Errors��
	Appendix B: GUI Design Guidelines��
	Appendix C: Visual Basic Conversion Functions��
	Appendix D: Visual Basic 2012 Cheat Sheet��
	Appendix E: Case Projects��������������������������������
	Index������������

