PROGRAMMING WITH

MICROSOFT*

VISUAL BASIC® 2012

Sixth Edition DIANE ZAK

lvww.allitebooks.cond

http://www.allitebooks.org

PROGRAMMING WITH
MICROSOFT® VISUAL BASIC® 2012

Copyright 2013 Cengage Learning. All Rightt\R8884@ IHehGEkS Copd d, scanned, or duplicated, in whole or in part.

http://www.allitebooks.org

Copyright 2013 Cengage Learning. All Rightt\Re8éfve IHehGEkS Copd d, scanned, or duplicated, in whole or in part.

http://www.allitebooks.org

PROGRAMMING
WITH MICROSOFT®
VISUAL BASIC® 2012

DIANE ZAK

2

COURSE TECHNOLOGY
1 » CENGAGE Learning’

Australia e Brazil « Japan « Korea « Mexico « Singapore « Spain « United Kingdom « United States

Copyright 2013 Cengage Learning. All Rightb\Re8&4/a4 IHehGEkS Copd d, scanned, or duplicated, in whole or in part.

http://www.allitebooks.org

This is an electronic version of the print textbook. Due to electronic rights restrictions, some third party content may be suppressed. Editorial
review has deemed that any suppressed content does not materially affect the overall learning experience. The publisher reserves the right to
remove content from this title at any time if subsequent rights restrictions require it. For valuable information on pricing, previous
editions, changes to current editions, and alternate formats, please visit www.cengage.com/highered to search by
ISBN#, author, title, or keyword for materials in your areas of interest.

Copyright 2013 Cengage Learning. All Right&/Re& d, scanned, or duplicated, in whole or in part.

http://www.allitebooks.org

COURSE TECHNOLOGY
CENGAGE Learning’

Programming with Microsoft®
Visual Basic® 2012, Sixth Edition
Diane Zak

Executive Editor: Kathleen McMahon
Senior Product Manager: Alyssa Pratt
Editorial Assistant: Sarah Ryan

Brand Marketing Manager: Kay Stefanski

Senior Content Project Manager:
Matthew Hutchinson

Quiality Assurance: Nicole Spoto
Art Director: Cheryl Pearl, GEX
Cover Designer: Cheryl Pearl, GEX
Print Buyer: Julio Esperas
Proofreader: Kathy Orrino
Indexer: Alexandra Nickerson

Compositor:
Integra Software Services Pvt. Ltd.

© 2014 Course Technology, Cengage Learning

ALL RIGHTS RESERVED. No part of this work covered by the copyright herein may be
reproduced, transmitted, stored, or used in any form or by any means graphic, electronic,
or mechanical, including but not limited to photocopying, recording, scanning, digitizing,
taping, Web distribution, information networks, or information storage and retrieval
systems, except as permitted under Section 107 or 108 of the 1976 United States
Copyright Act, without the prior written permission of the publisher.

For product information and technology assistance, contact us at
Cengage Learning Customer & Sales Support, 1-800-354-9706

For permission to use material from this text or product,
submit all requests online at www.cengage.com/permissions.
Further permissions questions can be emailed to
permissionrequest@cengage.com.

Library of Congress Control Number: 2012956117
ISBN-13: 978-1-285-07792-5

ISBN-10: 1-285-07792-X

Course Technology

20 Channel Center Street

Boston, MA 02210
USA

Cengage Learning is a leading provider of customized learning solutions with office
locations around the globe, including Singapore, the United Kingdom, Australia,
Mexico, Brazil and Japan. Locate your local office at international.cengage.com/region

Cengage Learning products are represented in Canada by Nelson Education, Ltd.
For your course and learning solutions, visit www.cengage.com.

Purchase any of our products at your local college store or at our preferred online store
www.cengagebrain.com.

Instructors: Please visit login.cengage.com and log in to access instructor-specific
resources.

Printed in the United States of America

123456181716151413

Copyright 2013 Cengage Learning. All Right}/\Ré

Obldd, scanned, or duplicated, in whole or in part.

http://www.allitebooks.org

Brief Contents

Preface .. Xvii
Read This Before YouBeginxxii
An Introduction to Programming1
An Introduction to Visual Basic 20129
Designing Applications59
Using Variables and Constants113
The Selection Structure183
More on the Selection Structure255
The Repetition Structure329
Sub and Function Procedures409
String Manipulation469
Arrays525
Structures and Sequential Access Files591
Classes and Objects643
Web Applications707
Working with Access DatabasesandLINQ763
Access Databasesand SQL821

Copyright 2013 Cengage Learning. All Rightt\Re8éfv3 IHeRGEkS Copd d, scanned, or duplicated, in whole or in part.

http://www.allitebooks.org

Finding and Fixing Program Errors .

.877

GUI Design Guidelines .895
Visual Basic Conversion Functions . .899
Visual Basic 2012 Cheat Sheet .901
Case Projects . 917
Applications with Multiple Forms Online
Index L9211

Copyright 2013 Cengage Learning. All Right}/\R&8& Bl I1eRGEKS CORdd, scanned, or duplicated, in whole or in part.

http://www.allitebooks.org

Contents

LESSON A

LESSON B

Copyright 2013 Cengage Learning. All Rightt\Re8éfv3 ite

Preface xviii
Read This Before YouBegin Xxxi

An Introduction to Programming1

Programming a Computero o 2
The Programmer'sJobo 2
Employment Opportunities 2

Visual Basic 2012 e 3
AVisual Basic 2012 Demonstration 4

Using the Chapters Effectively 5

Summary e e e e 6

Key Terms o e e e 6

An Introduction to Visual Basic 20129
The Splash Screen Application11

Managing the Windows inthe IDE 15
The Windows Form Designer Window 16
The Solution Explorer Window 17
The Properties Windowo 18
Properties of a Windows Form 20
The Name Propertyo 21
The Text Property o 21
The StartPosition Propertyo 21
The Font Propertyo 22
The Size Propertyo 22
Setting and Restoring a Property'sValue 22
Saving a Solutiono 23
Closing the Current Solution 24
Opening an Existing Solution 24
Exiting Visual Studio 2012o oo 24
Lesson ASummary e 24
LessonAKey Terms 26
Lesson A Review Questions L. e 27
Lesson AEXercises e e e e 28

The Toolbox Window29

The Label Tool e e 30
Setting the Text Property 32
Setting the Location Property 32

dte ohidd, scanned, or duplicated, in whole or in part.

http://www.allitebooks.org

LESSON C

LESSON A

LESSON B

LESSON C

Changing a Property For Multiple Controls
Using the FormatMenuo
The PictureBox Toolo
The Button Tool e
Starting and Ending an Application L.
The Code Editor Window

The Me.Close() Instruction
LessonBSummary
LessonBKeyTermso
Lesson B Review Questionso
Lesson BExercises Lo

Using the Timer Tool .
Setting the FormBorderStyle Property
The MinimizeBox, MaximizeBox, and ControlBox Properties
Printing the Application’s Code and Interface
Lesson C Summary e e e e
Lesson CKey Termso
Lesson C Review Questions
Lesson C Exercises e

Designing Applications

Creating an Object-Oriented Application
Planning an Object-Oriented Application
Identifying the Application’s Tasks
Identifying the Objectso
Identifying the Events oo
Drawing a Sketch of the User Interface
Lesson ASummary e e e e
LessonAKey Terms e
Lesson A Review Questions
Lesson AEXerciseso e e

Building the User Interface e e e e
Including Graphics in the User Interface
Selecting Fonts for the Interface
Adding Color to the Interface
The BorderStyle, AutoSize, and TextAlign Properties
Adding a Text Box Controltothe Form
Locking the ControlsonaForm
Assigning Access Keys L L L e
Controling the Tab Order
Lesson B Summary L
LessonBKeyTermso
Lesson B Review Questionso
Lesson B Exercises L e

Coding the Application e e e e
Using Pseudocode to Plan a Procedure
Using a Flowchart to Plan a Procedure

Coding the btnClear Control's Click Event Procedure
Assigning a Value to a Property during Run Time

Copyright 2013 Cengage Learning. All Right}/\R&8& 3l I1ehceks Cop

http://www.allitebooks.org

LESSON A

LESSON B

LESSON C

Using the Focus Method
Internally Documenting the Program Code
Coding the btnPrint Control's Click Event Procedure
Writing Arithmetic Expressions
Coding the btnCalc Control's Click Event Procedure
The ValFunctiono
The Format Function
Testing and Debugging the Application
Assembling the Documentation
Lesson C Summary e e e
Lesson CKey Terms
Lesson C Review Questions oo
Lesson C Exercises

Using Variables and Constants .

Using Variables to Store Information . e e e
Selecting a Data Type for aVariable
Selecting a Name foraVariable
DeclaringaVariable

Assigning Data to an Existing Variable
The TryParse Method
The Convert Class e

The Scope and Lifetime of a Variable
Variables with Procedure Scope
Variables with Class Scope

Static Variables L

Named Constants

Option Statementso
Option Explicit and OptionInfer
Option Strict

Lesson ASummary Lo e e

Lesson AKey Termso

Lesson A Review Questionso

Lesson AExercises oL e

Modifying the Play It Again Movies Application
Modifying the Calculate Button's Code
Concatenating Stringso
The InputBox Function
The ControlChars.Newline Constant
Designating a Default Button
Using the ToString Method to Format Numbers
Lesson B Summary e e
LessonBKey Terms
Lesson B Review Questions
Lesson BExercises L e

Modifying the Load and Click Event Procedures . C e e
Coding the TextChanged Event Procedure
Associating a Procedure with Different Objects and Events

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

__IE8

LESSON A

LESSON B

LESSON C

LESSON A

Lesson C Summary
LessonCKeyTermso
Lesson C Review Questions
Lesson CEXercises« v v o e e e

The Selection Structure

Making Decisions in a Program e e e e
Flowcharting a Selection Structure
Coding Selection Structures in Visual Basic
Comparison Operators e

Using Comparison Operators: Swapping Numeric Values

Using Comparison Operators: Displaying the Sum or Difference
Logical Operators

Using the Truth Tables

Using Logical Operators: Calculating GrossPay
Comparing Strings Containing Letters
Converting a String to Uppercase or Lowercase

Using the ToUpper and ToLower Methods: Displaying a Message
Summary of Operators
Lesson ASummary
LessonAKey Terms e
Lesson A Review Questionso
Lesson AExercises

Creating the Covington Resort Application e e

Adding a Group Boxtothe Form
Coding the Covington Resort Application

Coding the btnCalc Control's Click Event Procedure
The MessageBox.Show Method
Completing the btnCalc_Click Procedure
LessonBSummary oo
LessonBKeyTerms o
Lesson B Review Questionso
Lesson B Exercises L

Coding the KeyPress Event Procedures e e
Coding the Enter Event Procedures
Lesson C Summary e e
Lesson CKey Terms e
Lesson C Review Questionso
Lesson C Exercises e

More on the Selection Structure

Nested Selection Structures e e e e e
Flowcharting a Nested Selection Structure
Coding a Nested Selection Structure
Logic Errors in Selection Structures
First Logic Error: Using a Compound Condition Rather
Than a Nested Selection Structure
Second Logic Error: Reversing the Outer and Nested Decisions

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Third Logic Error: Using an Unnecessary Nested Selection Structure 270

Fourth Logic Error: Including an Unnecessary Comparison in a Condition 271
Multiple-Alternative Selection Structures 272
The Select Case Statement 275

Specifying a Range of Valuesina Case Clause 277
Lesson ASummary 279
LessonAKey Terms e 279
Lesson A Review Questions Lo 280
Lesson AEXercises e e e e 283

LESSON B Modifying the Covington Resort Application. 288

Adding a Radio Button to the Interface 290

Adding a Check Box to the Interface 291
Modifying the Calculate Button's Code 293

Comparing Boolean Values 297
Modifying the ClearLabels Procedure 300
LessonBSummary oL 305
LessonBKeyTermso 305
Lesson B Review Questionso 305
Lesson B Exercises L 307

LESSON C Using the TryParse Method for Data Validation 312
Generating Random Integerso 315
Showing and Hiding a Control 319
Lesson C Summary L. e e 322
LessonCKeyTermso 322
Lesson C Review Questionso 322
Lesson C Exercises 323
The Repetition Structure329
LESSON A Repeating Program Instructions 331

The Savings Account Application 334
The Do...Loop Statement 337

Coding the Modified Savings Account Application 340
Counters and Accumulatorso 343

The Addition Applicationo 345

The Sales Express Application 349
Arithmetic Assignment Operators 355
The For...Next Statement 357

A Different Version of the Savings Account Application 360

Comparing the For...Next and Do...Loop Statements 363
Lesson ASummary e 364
LessonAKey Terms e 365
Lesson A Review Questionso 366
Lesson AExercises L. L 369

LESSON B Nested Repetition Structures 375
The Refresh and Sleep Methods 377

Trixieatthe Dinero 377

Revisiting the Savings Account Application 379

A Caution about Real Numbers 382

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

LESSON C

LESSON A

LESSON B

LESSON C

LESSON A

LessonBSummary Lo 385

LessonBKey Terms o 385
Lesson B Review Questionso 385
Lesson BExerciseso 386
Creating the Gross Pay Application 388
Including a List Box inan Interface 388

Adding ltemstoalistBox 389

The Sorted Property 390
Coding the Gross Pay Application 391

The Selecteditem and Selectedindex Properties 393

The SelectedValueChanged and SelectedindexChanged Events 395

Coding the Calculate Button’s Click Event Procedure 396
Lesson C Summary e e e 399
LessonCKeyTerms oo 399
Lesson C Review Questions 399
Lesson CEXercises e 400
Sub and Function Procedures409
Sub Procedureso 412
Passing Variableso 414

Passing Variables by Value 415

Passing Variables by Reference 418
Function Procedureso 424
Lesson ASummary e e 430
Lesson AKey Termso 430
Lesson A Review Questions Lo 431
Lesson AEXercises e e e e 434
Including a Combo Box in an Interface 439
LessonBSummaryo 444
LessonBKey Terms 445
Lesson B Review Questionso 445
Lesson BExerciseso 445
Creating the Cerruti Company Application 448
Coding the FormClosing Event Procedure 449
Coding the btnCalc_Click Procedure 451

Creating the GetFwt Function 453
Completing the btnCalc_Click Procedure 457

Rounding Numbers 457
Lesson C Summary e e 464
LessonCKeyTerms 465
Lesson C Review Questions 465
Lesson CExercises e 466
String Manipulation469
Working with Strings 473
Determining the Number of Charactersina String 473
Removing Characters froma String 474

The Product ID Applicationo 475

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

LESSON B

LESSON C

LESSON A

LESSON B

Inserting Charactersina String
Aligning the Charactersina String
The Net Pay Application
Searchinga String o
The City and State Application
Accessing the Charactersina String
The Rearrange Name Application
Using Pattern-Matching to Compare Strings
Modifying the Product ID Applicaton
Lesson ASummary
LessonAKey Terms
Lesson A Review Questionso
Lesson AEXerciseso e e e

Adding a MenutoaForm
Assigning Shortcut Keys to Menu ltems L.
Coding the Exit Menu ltem
Coding the txtLetter Control's KeyPress Event

LessonBSummary oL

LessonBKey Termso

Lesson B Review Questions

Lesson B Exercises Lo

Completing the Frankenstein Game Application
Coding the FILE Menu's New Game Option
Completing the Check Button’s Click Event Procedure

Lesson C Summary L.

Lesson CKey Terms e

Lesson C Review Questionso

Lesson C Exercises e

Arrays

Arrays . . . L s e e e
OneDimensional Arrays o
Declaring a One-Dimensional Array
Storing Data in a One-Dimensional Array
Determining the Number of Elements in a One-Dimensional Array
Determining the Highest Subscript in a One-Dimensional Array
Traversing a OneDimensional Array
The For Each...Next Statement
Calculating the Total and Average Values
Finding the Highest Value
Sorting a OneDimensional Array
Lesson ASummary L e e
LessonAKeyTerms e
Lesson A Review Questionso
Lesson AEXercises

Arrays and Collections
Accumulator and Counter Arrays oL
Parallel One-Dimensional Arrays

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

__ET

LESSON C

LESSON A

LESSON B

LESSON C

LESSON A

The Die Tracker Application
LessonBSummaryo
LessonBKeyTermso
Lesson B Review Questions
Lesson BExercises Lo

Two-Dimensional Arrays e e e e e e

Traversing a Two-Dimensional Array
Totaling the Values Stored in a Two-Dimensional Array
Searching a Two-Dimensional Array
Lesson C Summary e
LessonCKey Term o
Lesson C Review Questions
Lesson C Exercises Lo

Structures and Sequential Access Files

Structures
Declaring and Using a Structure Variable
Passing a Structure Variable to a Procedure
Creating an Array of Structure Variables
Lesson ASummary e e e
Lesson AKey Terms
Lesson A Review Questions Lo
Lesson AEXErcises e e e e e

Sequential Access Fileso
Writing Data to a Sequential Access File
Closing an Output Sequential Access File
Reading Data from a Sequential Access File
Closing an Input Sequential Access File
LessonBSummaryo
LessonBKey Terms
Lesson B Review Questions Lo
Lesson BExercises e

Coding the CD Collection Application e e e
Coding the Form's Load Event Procedure
Coding the btnAdd_Click Procedure
Aligning Columns of Information
Coding the btnRemove_Click Procedure
Coding the Form's FormClosing Event Procedure
Lesson C Summary
Lesson CKey Terms
Lesson C Review Questions
Lesson C Exercises

Classes and Objects

Object-Oriented Programming Terminology
CreatingaClass e
Example 1—A Class that Contains Public VariablesOnly

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

LESSON B

LESSON C

LESSON A

LESSON B

Example 2—A Class that Contains Private Variables, Public Properties,

and Methodso 652

Private Variables and Property Procedures 654

Constructors 658

Methods Other than Constructors 659

Coding the Carpets Galore Application 660
Example 3—A Class that Contains a Parameterized Constructor 664
Example 4—Reusinga Class 668
Lesson ASummaryo 672
LessonAKey Terms 673
Lesson A Review Questions Lo 674
Lesson AExercises L. L 675
Example 5—A Class that Contains a ReadOnly Property 680
Example 6—A Class that Contains Autodmplemented Properties 685
Example 7—A Class that Contains Overloaded Methods 687
LessonBSummary 694
LessonBKeyTermso 694
Lesson B Review Questions 694
Lesson B Exercises L 695
Example 8—Using a Base Class and a Derived Class 698
Lesson C Summary 704
LessonCKeyTerms oo 704
Lesson C Review Questionso 704
Lesson C Exercises e 705
Web Applications707
Web Applications1710
Creating a Web Application 713
Adding the Default.aspx Web Page to the Application 715

Including a Tile onaWeb Page 717

Adding Static TexttoaWebPage 717
Viewing a Web Page in Full Screen View 719
Adding Another Web Page to the Application 720
Adding a Link Button ControltoaWebPage 720
Starting a Web Applicationo 722
Adding anIlmagetoaWeb Page 724
Closing and Opening an Existing Web Application 726
Repositioning a ControlonaWeb Page 726
Lesson ASummaryo 728
Lesson AKey Terms e 729
Lesson A Review Questions 729
Lesson AExercises oL e 730
Dynamic WebPages1732
Coding the Submit Button’s Click Event Procedure 735
Validating User lnput 739
LessonBSummaryo 742
LessonBKey Termo 742
Lesson B Review Questionso 742
Lesson B Exerciseso 742

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

LESSON C

LESSON A

LESSON B

LESSON C

LESSON A

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Creating the DJ Tom Application

Creating a Columnar Layout
UsinganASPTable

Dragging Controls in Source View
Adding Items to a DropDownList Control
Coding DJ Tom'sWebPage

Usingthe
Tag
Lesson C Summaryo
LessonCKeyTerms
Lesson C Review Questions
Lesson C Exercises

Working with Access Databases and LINQ

Database Terminology

Connecting an Application to a Mlcrosoft Access Database
Previewing the Contents of aDataset
Binding the Objects inaDataset
Having the Computer Create a Bound Control
The DataGridView Control
Visual Basic Code
Handling Errorsinthe Code
The Copy to Output Directory Property
Binding to an Existing Control
Coding the Next Record and Previous Record Buttons
Lesson ASummaryo oo
LessonAKey Terms
Lesson A Review Questions
Lesson AExerciseso o000

Creating a Query

Customizing a BmdmgNawgator Control
Using the LINQ Aggregate Operators
LessonB Summaryo
LessonBKeyTerms
Lesson B Review Questions
LessonBExerciseso o000

Completing the Paradise Bookstore Application
Coding the Paradise Bookstore Application
Lesson C Summaryo
LessonCKeyTerms
Lesson C Review Questions
Lesson C Exercises

Access Databases and SQL
Adding Records to a Dataset

Sorting the RecordsinaDataset
Deleting Records fromaDataset
Lesson ASummaryo

746
747
748
751
754
755
756
758
758
759
760

.763

766
768
771
772
773
776
781
781
784
786
789
790
791
792
794

796
800
802
806
807
807
809

. 811

813
815
815
816
817

LESSON B

LESSON C

LessonAKey Terms e 837

Lesson A Review Questionso 838
Lesson AEXercises e e e 838
Structured Query Language 841
The SELECT Statement 841
Creatinga Query o 843
LessonBSummaryo 850
LessonBKeyTerms 851
Lesson B Review Questions Lo 851
Lesson BExercises Lo 853
Parameter Queries 855
SavingaQuery 858
Invoking a Query fromCode 861
The INSERT and DELETE Statements 863
Lesson C Summary 873
Lesson CKey Termso 873
Lesson C Review Questions 873
Lesson CEXercises« v i e e e e 874

Finding and Fixing Program Errors 877
GUI Design Guidelines 895
Visual Basic Conversion Functions 899
Visual Basic 2012 Cheat Sheet 901
Case Projects 917
Applications with Multiple Forms Online

Index 921

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Preface

Programming with Microsoft Visual Basic 2012, Sixth Edition uses Visual Basic 2012, an object-oriented
language, to teach programming concepts. This book is designed for a beginning programming course.
However, it assumes students are familiar with basic Windows skills and file management.

Organization and Coverage

Programming with Microsoft Visual Basic 2012, Sixth Edition contains an Overview and 14 chapters that present
hands-on instruction; it also contains five appendices (A through E). An additional appendix (Appendix F)
covering multiple-form applications and the FontDialog, ColorDialog, and TabControl tools is available online
at www.cengagebrain.com.

In the chapters, students with no previous programming experience learn how to plan and create their own
interactive Windows applications. GUI design skills, OOP concepts, and planning tools (such as TOE charts,
pseudocode, and flowcharts) are emphasized throughout the book. The chapters show students how to work
with objects and write Visual Basic statements such as If... Then...Else, Select Case, Do...Loop, For...Next,
and For Each...Next. Students also learn how to create and manipulate variables, constants, strings, sequential
access files, structures, classes, and arrays. Chapter 12 shows students how to create both static and dynamic
Web applications. In Chapter 13, students learn how to connect an application to a Microsoft Access database,
and then use Language Integrated Query (LINQ) to query the database. Chapter 14 continues the coverage
of databases, introducing the student to more advanced concepts and Structured Query Language (SQL).
Appendix A, which can be covered after Chapter 3, teaches students how to locate and correct errors in their
code. The appendix shows students how to step through their code and also how to create breakpoints.
Appendix B recaps the GUI design guidelines mentioned in the chapters, and Appendix C lists the Visual Basic
conversion functions. The Visual Basic 2012 Cheat Sheet contained in Appendix D summarizes important
concepts covered in the chapters, such as the syntax of statements, methods, and so on. The Cheat Sheet
provides a convenient place for students to locate the information they need as they are creating and coding
their applications. Appendix E contains Case Projects that can be assigned after completing specific chapters in
the book.

Approach

Programming with Microsoft Visual Basic 2012, Sixth Edition teaches programming concepts using a task-driven
rather than a command-driven approach. By working through the chapters, which are each motivated by a
realistic case, students learn how to develop applications they are likely to encounter in the workplace. This is
much more effective than memorizing a list of commands out of context. The book motivates students by
demonstrating why they need to learn the concepts and skills covered in each chapter.

Features

Programming with Microsoft Visual Basic 2012, Sixth Edition is an exceptional textbook because it also includes
the following features:

Copyright 2013 Cengage Learning. All Right] VRAGaHaH ITE e CObéd, scanned, or duplicated, in whole or in part.

http://www.allitebooks.org

Organization and Coverage

READ THIS BEFORE YOU BEGIN This section is consistent with Course Technology’s unequaled commitment to
helping instructors introduce technology into the classroom. Technical considerations and assumptions about
hardware, software, and default settings are listed in one place to help instructors save time and eliminate
unnecessary aggravation.

YOU DO IT! BOXES These boxes provide simple applications that allow students to demonstrate their
understanding of a concept before moving on to the next concept. The YOU DO IT! boxes are located almost
exclusively in Lesson A of each chapter.

VISUAL STUDIO 2012 METHODS The book focuses on Visual Studio 2012 methods rather than on Visual Basic
functions. This is because the Visual Studio methods can be used in any .NET language, whereas the Visual
Basic functions can be used only in Visual Basic. Exceptions to this are the Val and Format functions, which are
introduced in Chapter 2. These functions are covered in the book simply because it is likely that students will
encounter them in existing Visual Basic programs. However, in Chapter 3, the student is taught to use the
TryParse method and the Convert class methods rather than the Val function. Also in Chapter 3, the Format
function is replaced with the ToString method.

OPTION STATEMENTS All programs include the Option Explicit, Option Strict, and Option Infer statements.
START HERE ARROWS These arrows indicate the beginning of a tutorial steps section in the book.

DATABASES, LINQ, AND SQL The book includes two chapters (Chapters 13 and 14) on databases. LINQ is
covered in Chapter 13. SQL is covered in Chapter 14.

FIGURES Figures that introduce new statements, functions, or methods contain both the syntax and examples
of using the syntax. Including the syntax in the figures makes the examples more meaningful, and vice versa.

CHAPTER CASES Each chapter begins with a programming-related problem that students could reasonably
expect to encounter in business, followed by a demonstration of an application that could be used to solve
the problem. Showing the students the completed application before they learn how to create it is motivational
and instructionally sound. By allowing the students to see the type of application they will be able to create
after completing the chapter, the students will be more motivated to learn because they can see how the
programming concepts they are about to learn can be used and, therefore, why the concepts are important.

LESSONS Each chapter is divided into three lessons—A, B, and C. Lesson A introduces the programming
concepts that will be used in the completed application. The concepts are illustrated with code examples and
sample applications. The user interface for each sample application is provided to the student. Also provided are
tutorial-style steps that guide the student on coding, running, and testing the application. Each sample
application allows the student to observe how the current concept can be used before the next concept is
introduced. In Lessons B and/or C, the student creates the application required to solve the problem specified in
the Chapter Case.

APPENDICES Appendix A, which can be covered after Chapter 3, teaches students how to locate and correct
errors (syntax, logic, and run time) in their code. The appendix shows students how to step through their code
and also how to create breakpoints. Appendix B summarizes the GUI design guidelines taught in the chapters,
making it easier for the student to follow the guidelines when designing an application’s interface. Appendix C
lists the Visual Basic conversion functions. Appendix D contains a Cheat Sheet that summarizes important
concepts covered in the chapters, such as the syntax of statements, methods, and so on. The Cheat Sheet
provides a convenient place for students to locate the information they need as they are creating and coding
their applications. Appendix E contains Case Projects that can be assigned after completing specific chapters in
the book. Appendix F, which is available online at www.cengagebrain.com, covers multiple-form applications and
the FontDialog, ColorDialog, and TabControl tools.

GUI DESIGN TIP BOXES The GUI DESIGN TIP boxes contain guidelines and recommendations for designing
applications that follow Windows standards. Appendix B provides a summary of the GUI design guidelines
covered in the chapters.

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Instructor Resources

TIP These notes provide additional information about the current concept. Examples include
alternative ways of writing statements or performing tasks, as well as warnings about common
mistakes made when using a particular command and reminders of related concepts learned in
previous chapters.

SUMMARY Each lesson contains a Summary section that recaps the concepts covered in the lesson.

KEY TERMS Following the Summary section in each lesson is a listing of the key terms introduced throughout
the lesson, along with their definitions.

REVIEW QUESTIONS Each lesson contains Review Questions designed to test a student’s understanding of the
lesson’s concepts.

EXERCISES The Review Questions in each lesson are followed by Exercises, which provide students with
additional practice of the skills and concepts they learned in the lesson. The Exercises are designated as
INTRODUCTORY, INTERMEDIATE, ADVANCED, DISCOVERY, and SWAT THE BUGS. The DISCOVERY
Exercises encourage students to challenge and independently develop their own programming skills while
exploring the capabilities of Visual Basic 2012. The SWAT THE BUGS Exercises provide an opportunity for
students to detect and correct errors in an application’s code.

New to This Edition!

o0 VIDEOS These notes direct students to videos that accompany each chapter in the book. The videos
u explain and/or demonstrate one or more of the chapter’s concepts. The videos have been revised
from the previous edition and are available via the optional CourseMate for this text.

NEW CHAPTER CASES, EXAMPLES, APPLICATIONS, REVIEW QUESTIONS, AND EXERCISES The chapters
contain new Chapter Cases, code examples, sample applications, Review Questions, and Exercises.

APPENDIX D (VISUAL BASIC 2012 CHEAT SHEET) This appendix summarizes important concepts covered in
the chapters (such as the syntax of statements, methods, and so on) and provides a quick reference for students.

APPENDIX E (CASE PROJECTS) This appendix contains Case Projects that can be assigned after completing
specific chapters in the book.

Chapters 4, 5, and 7

The following two topics were moved from Chapter 4 to Chapter 5: the TryParse method’s return value and
the comparison of Boolean values. The Financial. Pmt method was removed from Chapter 4. In the previous
edition of the book, independent Sub procedures were introduced in Chapter 5 and then covered more fully
in Chapter 7. In this edition, independent Sub procedures are now covered in one place: Chapter 7.

Steps and Figures

The tutorial-style steps in the book assume you are using Microsoft Visual Studio Professional 2012 and a
system running either Microsoft Windows 8 or Microsoft Windows 7. The figures in the book reflect how your
screen will look if you are using a Microsoft Windows 8 system. Your screen may appear slightly different in
some instances if you are using a Microsoft Windows 7 system. Any major differences between the screens for
both versions of Microsoft Windows are indicated in the figures.

Instructor Resources

The following teaching tools are available for download at our Instructor Companion Site. Simply search for this
text at login.cengage.com. An instructor login is required.

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Acknowledgments

ELECTRONIC INSTRUCTOR’'S MANUAL The Instructor’s Manual that accompanies this textbook includes
additional instructional material to assist in class preparation, including items such as Sample Syllabi, Chapter
Outlines, Technical Notes, Lecture Notes, Quick Quizzes, Teaching Tips, Discussion Topics, and Additional
Case Projects.

EXAMVIEW® This textbook is accompanied by ExamView, a powerful testing software package that allows
instructors to create and administer printed, computer (LAN-based), and Internet exams. ExamView includes
hundreds of questions that correspond to the topics covered in this text, enabling students to generate detailed
study guides that include page references for further review. The computer-based and Internet testing
components allow students to take exams at their computers, and also save the instructor time by grading each
exam automatically.

POWERPOINT PRESENTATIONS This book offers Microsoft PowerPoint slides for each chapter. These are
included as a teaching aid for classroom presentation, to make available to students on the network for chapter
review, or to be printed for classroom distribution. Instructors can add their own slides for additional topics
they introduce to the class.

SOLUTION FILES Solutions to the Lesson applications and the end-of-lesson Review Questions and Exercises
are provided.

DATA FILES Data Files are necessary for completing the computer activities in this book. Data Files can also be
downloaded by students at www.cengagebrain.com.

CourseMate

The more you study, the better the results. Make the most of your study time by accessing everything
you need to succeed in one place. Read your textbook, take notes, review flashcards, watch videos, and
take practice quizzes online. CourseMate goes beyond the book to deliver what you need! Learn more at
www.cengage.com/coursemate.

The Visual Basic CourseMate includes:

e Video Lessons: Each chapter is accompanied by several video lessons that help to explain important chapter
concepts. These videos were created and narrated by the author.

e An interactive eBook, quizzes, flashcards, and more!

Instructors may add CourseMate to the textbook package, or students may purchase CourseMate
directly at www.cengagebrain.com.

Acknowledgments

Writing a book is a team effort rather than an individual one. I would like to take this opportunity to thank my
team, especially Alyssa Pratt (Senior Project Manager), Sreejith Govindan (Full Service Project Manager), Nicole
Spoto (Quality Assurance), Matt Hutchinson (Content Project Manager), Kathy Orrino (Proofreader), and
the compositors at Integra. Thank you for your support, enthusiasm, patience, and hard work. Last, but
certainly not least, I want to thank the following reviewers for their invaluable ideas and comments: Mary Brock:
Mississippi University for Women; John Buerck: Saint Louis University; Jane Hammer: Valley City University;
Donna Petty: Wallace Community College; and Helen Schneider: The University of Findlay. And a special thank
you to Sally Douglas (College of Central Florida) for suggesting the YOU DO IT! boxes.

Diane Zak

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Read This Before
You Begin

Technical Information
Data Files

You will need data files to complete the computer activities in this book. Your instructor may provide the data
files to you. You may obtain the files electronically at www.cengagebrain.com, and then navigating to the page for
this book.

Each chapter in this book has its own set of data files, which are stored in a separate folder within the VB2012
folder. The files for Chapter 1 are stored in the VB2012\ChapO1 folder. Similarly, the files for Chapter 2 are
stored in the VB2012\Chap02 folder. Throughout this book, you will be instructed to open files from or save
files to these folders.

You can use a computer in your school lab or your own computer to complete the steps and Exercises
in this book.

Using Your Own Computer
To use your own computer to complete the computer activities in this book, you will need the following:

e A Pentium® 4 processor, 1.6 GHz or higher, personal computer running Microsoft Windows. This book was
written using Microsoft Windows 8, and Quality Assurance tested using Microsoft Windows 7.

e Either Microsoft Visual Studio 2012 or the Express Editions of Microsoft Visual Studio 2012 (namely,
Microsoft Visual Studio Express 2012 for Windows Desktop and Microsoft Visual Studio Express 2012 for
Web) installed on your computer. This book was written and Quality Assurance tested using Microsoft
Visual Studio Professional 2012 and Microsoft Visual Studio Express 2012 for Web. At the time of this
writing, you can download a free copy of the Express Editions at www.microsoft.com/visualstudio/eng/
products/visual-studio-express-products.

Figures

The figures in this book reflect how your screen will look if you are using Microsoft Visual Studio Professional
2012 and a Microsoft Windows 8 system. Your screen may appear slightly different in some instances if you are
using another version of either Microsoft Visual Studio or Microsoft Windows.

Visit Our Web Site

Additional materials designed for this textbook might be available at www.cengagebrain.com. Search this site for
more details.

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Technical Information

To the Instructor

To complete the computer activities in this book, your students must use a set of data files. These files can be
obtained electronically at www.cengagebrain.com.

The material in this book was written using Microsoft Visual Studio Professional 2012 on a Microsoft Windows
8 system. It was Quality Assurance tested using Microsoft Visual Studio Professional 2012 on a Microsoft
Windows 7 system, and using Microsoft Visual Studio Express 2012 for Web on a Microsoft Windows 8 system.

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

An Introduction to
Programming

After studying the Overview, you should be able to:

Define the terminology used in programming

©)

Explain the tasks performed by a programmer

©)

Understand the employment opportunities for programmers and
software engineers

©)

Run a Visual Basic 2012 application

©)

Understand how to use the chapters effectively

©)

All Microsoft screenshots used with permission from Microsoft Corporation

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Overview-
Programmers
video

Overview-
Programmer
Qualities
video

An Introduction to Programming

Programming a Computer

In essence, the word programming means giving a mechanism the directions to accomplish a
task. If you are like most people, you've already programmed several mechanisms, such as your
digital video recorder (DVR), cell phone, or coffee maker. Like these devices, a computer also is
a mechanism that can be programmed.

The directions given to a computer are called computer programs or, more simply, programs.
The people who write programs are called programmers. Programmers use a variety of special
languages, called programming languages, to communicate with the computer. Some popular
programming languages are Visual Basic, C#, C++, and Java. In this book, you will use the Visual
Basic programming language.

The Programmer’s Job

When a company has a problem that requires a computer solution, typically it is a programmer
who comes to the rescue. The programmer might be an employee of the company; or he or she
might be a freelance programmer, which is a programmer who works on temporary contracts
rather than for a long-term employer.

First the programmer meets with the user, which is the person (or persons) responsible for
describing the problem. In many cases, this person or persons also will eventually use the
solution. Depending on the complexity of the problem, multiple programmers may be involved,
and they may need to meet with the user several times. Programming teams often contain
subject matter experts, who may or may not be programmers. For example, an accountant
might be part of a team working on a program that requires accounting expertise. The purpose
of the initial meetings with the user is to determine the exact problem and to agree on a
solution.

After the programmer and user agree on the solution, the programmer begins converting the
solution into a computer program. During the conversion phase, the programmer meets
periodically with the user to determine whether the program fulfills the user’s needs and to
refine any details of the solution. When the user is satisfied that the program does what he or
she wants it to do, the programmer rigorously tests the program with sample data before
releasing it to the user. In many cases, the programmer also provides the user with a manual
that explains how to use the program. As this process indicates, the creation of a good computer
solution to a problem—in other words, the creation of a good program—requires a great deal of
interaction between the programmer and the user.

Employment Opportunities

When searching for a job in computer programming, you will encounter ads for “computer
programmers” as well as for “computer software engineers.” Although job titles and descriptions
vary, computer software engineers typically are responsible for designing an appropriate solution
to a user’s problem, while computer programmers are responsible for translating the solution
into a language that the computer can understand. The process of translating the solution is
called coding.

Keep in mind that, depending on the employer and the size and complexity of the user’s
problem, the design and coding tasks may be performed by the same employee, no matter what
his or her job title is. In other words, it’s not unusual for a software engineer to code her
solution, just as it's not unusual for a programmer to have designed the solution he is coding.

Programmers and software engineers need to have strong problem-solving and analytical skills,
as well as the ability to communicate effectively with team members, end users, and other
nontechnical personnel. Typically, computer software engineers are expected to have at least a

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Visual Basic 2012

bachelor’s degree in software engineering, computer science, or mathematics, along with
practical work experience, especially in the industry in which they are employed. Computer
programmers usually need at least an associate’s degree in computer science, mathematics, or
information systems, as well as proficiency in one or more programming languages.

Computer programmers and software engineers are employed by companies in almost every
industry, such as telecommunications companies, software publishers, financial institutions,
insurance carriers, educational institutions, and government agencies. The Bureau of Labor
Statistics predicts that employment of computer software engineers will increase by 28% from
2010 to 2020. The employment of computer programmers, on the other hand, will increase
by 12% over the same period. In addition, consulting opportunities for freelance programmers
and software engineers are expected to increase as companies look for ways to reduce their
payroll expenses.

There is a great deal of competition for programming and software engineering jobs, so
jobseekers will need to keep up to date with the latest programming languages and technologies.
A competitive edge may be gained by obtaining vendor-specific or language-specific
certifications. More information about computer programmers and computer software
engineers can be found on the Bureau of Labor Statistics Web site at www.bls.gov.

Visual Basic 2012

In this book, you will learn how to create programs using the Visual Basic 2012 programming
language. Visual Basic 2012 is an object-oriented programming language, which is a language
that allows the programmer to use objects to accomplish a program’s goal. An object is anything
that can be seen, touched, or used. In other words, an object is nearly any thing. The objects in
an object-oriented program can take on many different forms. Programs written for the
Windows environment typically use objects such as check boxes, list boxes, and buttons. A
payroll program, on the other hand, might utilize objects found in the real world, such as a time
card object, an employee object, and a check object.

Every object in an object-oriented program is created from a class, which is a pattern that the
computer uses to create the object. The class contains the instructions that tell the computer
how the object should look and behave. An object created from a class is called an instance of
the class and is said to be instantiated from the class. An analogy involving a cookie cutter and
cookies is often used to describe a class and its objects: the class is the cookie cutter, and the
objects instantiated from the class are the cookies. You will learn more about classes and objects
throughout this book.

Visual Basic 2012 is one of the languages included in Visual Studio 2012, which is available
in many different editions. The most robust edition is Visual Studio Ultimate 2012, followed
by Visual Studio Premium 2012, Visual Studio Professional 2012, and then the Express
editions of Visual Studio 2012. Microsoft plans to release four different Express editions:
Visual Studio Express 2012 for Windows 8, Visual Studio Express 2012 for Web, Visual
Studio Express 2012 for Windows Desktop, and Visual Studio Express 2012 for Windows
Phone. Each of these products include an integrated development environment (IDE), which
is an environment that contains all of the tools and features you need to create, run, and
test your programs.

You can use Visual Basic to create programs, called applications, for the Windows environment
or for the Web. A Windows application has a Windows user interface and runs on a personal
computer. A user interface is what the user sees and interacts with while an application is
running. Examples of Windows applications include graphics programs, data-entry systems, and
games. A Web application, on the other hand, has a Web user interface and runs on a server.
You access a Web application using your computer’s browser. Examples of Web applications

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

The Windows
logo key looks

like this: A .

Don't be

concerned if

some of the

letters on your

screen are
underlined. You can
show/hide the underlined
letters by pressing the
Alt key.

Copyright 2013 Cengage Learning. All Right] VRAAHal I

An Introduction to Programming

include e-commerce applications available on the Internet, and employee handbook applications
accessible on a company’s intranet. You also can use Visual Basic to create applications for tablet
PCs and mobile devices, such as cell phones and PDAs (personal digital assistants).

A Visual Basic 2012 Demonstration

In the following set of steps, you will run a Visual Basic 2012 application that shows you some of
the objects you will learn about in the chapters. For now, it is not important for you to
understand how these objects were created or why the objects perform the way they do. Those

questions will be answered in the chapters.

To run the Visual Basic 2012 application:

1. Press and hold down the Windows logo key on your keyboard as you tap the letter r.

The Run dialog box opens. Release the logo key.

2. Click the Browse button to open the Browse dialog box. Locate and then open the
VB2012\Overview folder on your computer’s hard disk or on the device designated by

your instructor.

3. Click Monthly Payment Calculator (Monthly Payment Calculator.exe) in the list of
filenames. (Depending on how Windows is set up on your computer, you may see the
.exe extension on the filename.) Click the Open button. The Browse dialog box closes

and the Run dialog box appears again.

4. Click the OK button in the Run dialog box. After a few moments, the Monthly Payment
Calculator application shown in Figure 1 appears on the screen. The interface contains a
text box, list box, buttons, radio buttons, and labels. You can use the application to

calculate the monthly payment for a car loan.

if you are using Windows 7,
the title bar text will be
left-aligned

Principal: Interest:

different

if you are using Windows 7,
these buttons will look

Terms:

| 600 %
6.25 %

. 6.50 %
list box
6.75 %

~ () 2 years
) 3 years
) 4 years

® 5 years

Calculate ||
Il

\/

Figure 1 Monthly Payment Calculator application

RO

(OO

O

bldd, scanned, or duplicated, in whole or in part.

http://www.allitebooks.org

Using the Chapters Effectively

5. Use the application to calculate the monthly payment for a $20,000 loan at 6.75%
interest for five years. Type 20000 in the Principal text box and then click 6.75 % in
the Interest list box. The radio button corresponding to the five-year term is already
selected, so you just need to click the Calculate button to compute the monthly
payment. The application indicates that your monthly payment would be $393.67.

See Figure 2. II-

Principal: Interest: Terms:

20000 600% O 2 years
6.25 % —
6.50 % () 3 years

6.75 % O 4 years

700%

® 5 years

Monthly payment:

$393.67 Calculate

Figure 2 Computed monthly payment

6. Now determine what your monthly payment would be if you borrowed $10,000 at 8%
interest for four years. Type 10000 in the Principal text box. Scroll down the Interest list
box and then click 8.00 %. Click the 4 years radio button and then click the Calculate
button. The Monthly payment box shows $244.13.

7. Click the Exit button to close the application.

Using the Chapters Effectively

This book is designed for a beginning programming course. However, it assumes students are
familiar with basic Windows skills and file management. The chapters in this book will help you
learn how to write programs using Microsoft Visual Basic 2012. The chapters are designed to be
used at your computer. Begin by reading the text that explains the concepts. When you come to
the numbered steps, follow the steps on your computer. Read each step carefully and completely
before you try it. As you work, compare your screen with the figures to verify your results. The
figures in this book reflect how your screen will look if you are using Visual Studio Professional
2012 and a Microsoft Windows 8 system. Your screen may appear slightly different in some
instances if you are using a different edition of Visual Studio or if you are using another version
of Microsoft Windows. Don’t worry if your screen display differs slightly from the figures. The
important parts of the screen display are labeled in each figure. Just be sure you have these parts
on your screen.

Do not worry about making mistakes; that’s part of the learning process. Tip notes identify

common problems and explain how to get back on track. They also provide additional Tip notes are
information about a procedure—for example, an alternative method of performing the o designated by
procedure. the icon.

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

An Introduction to Programming

Each chapter is divided into three lessons. You might want to take a break between lessons.
Following each lesson is a Summary section that lists the important elements of the lesson. After
the Summary section is a listing of the key terms (including definitions) covered in the lesson.
Following the Key Terms section are questions and exercises designed to review and reinforce
the lesson’s concepts. You should complete all of the end-of-lesson questions and several
exercises before continuing to the next lesson. It takes a great deal of practice to acquire the
skills needed to create good programs, and future chapters assume that you have mastered the
information found in the previous chapters.

Some of the end-of-lesson exercises are Discovery exercises, which allow you to both “discover”
the solutions to problems on your own and experiment with material that is not covered in the
chapter. Some lessons also contain one or more Debugging exercises. In programming, the term
debugging refers to the process of finding and fixing any errors, called bugs, in a program.
Debugging exercises provide opportunities for you to find and correct the errors in existing
applications. Appendix A, which can be covered along with Chapter 3, guides you through the
process of locating and correcting a program’s errors (bugs).

Throughout the book you will find GUI (graphical user interface) design tips. These tips contain
guidelines and recommendations for designing applications. You should follow these guidelines
and recommendations so that your applications follow the Windows standards.

Summary

e Programs are the step-by-step instructions that tell a computer how to perform a task.
e DProgrammers use various programming languages to communicate with the computer.

e The creation of a good program requires a great deal of interaction between the programmer
and the user.

e DProgrammers rigorously test a program with sample data before releasing the program to
the user.

e It's not unusual for the same person to perform the duties of both a software engineer and a
programmer.

e An object-oriented programming language, such as Visual Basic 2012, allows programmers
to use objects to accomplish a program’s goal. An object is anything that can be seen,
touched, or used.

e Every object in an object-oriented program is instantiated (created) from a class, which is a
pattern that tells the computer how the object should look and behave. An object is referred
to as an instance of the class.

e The process of locating and correcting the errors (bugs) in a program is called debugging.

Key Terms

Applications—programs created for the Windows environment, the Web, or mobile devices
Class—a pattern that the computer uses to create (instantiate) an object

Coding—the process of translating a solution into a language that the computer can understand
Computer programs—the directions given to computers; also called programs
Debugging—the process of locating and correcting the errors (bugs) in a program

IDE—integrated development environment

earning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Key Terms

Instance—an object created (instantiated) from a class
Instantiated—the process of creating an object from a class

Integrated development environment—an environment that contains all of the tools and
features you need to create, run, and test your programs; also called an IDE

Object—anything that can be seen, touched, or used

Object-oriented programming language—a programming language that allows the programmer
to use objects to accomplish a program’s goal

Programmers—the people who write computer programs

Programming—the process of giving a mechanism the directions to accomplish a task
Programming languages—languages used to communicate with a computer
Programs—the directions given to computers; also called computer programs

User interface—what the user sees and interacts with while an application is running

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or dupli

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

An Introduction to
Visual Basic 2012

Creating a Splash Screen

In this chapter, you will use Visual Basic 2012, Microsoft's newest
version of the Visual Basic language, to create a splash screen for the
Red Tree Inn. A splash screen is the first image that appears when an

application is started. It is used to introduce the application and to hold
the user’s attention while the application is being read into the
computer’s internal memory.

All Microsoft screenshots used with permission from Microsoft Corporation

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

START HERED>

The Windows
logo key looks

like this: o .

You will learn
more about
splash screens
(such as how to
round their
corners) in Lesson C's
Discovery Exercises 4, 5,
and 6.

An Introduction to Visual Basic 2012

Previewing the Splash Screen

Before you start the first lesson in this chapter, you will preview a completed splash screen.
The splash screen is contained in the VB2012\ChapO1 folder.

To preview a completed splash screen:

1.

Press and hold down the Windows logo key on your keyboard as you tap the letter r.
The Run dialog box opens. Release the logo key.

Click the Browse button to open the Browse dialog box. Locate and then open the
VB2012\ChapO1 folder on your computer’s hard disk or on the device designated by
your instructor.

Click RTI Splash (RTI Splash.exe) in the list of filenames. (Depending on how
Windows is set up on your computer, you may see the .exe extension on the
filename.) Click the Open button. The Browse dialog box closes and the Run dialog
box appears again.

Click the OK button in the Run dialog box. After a few moments, the splash screen
shown in Figure 1-1 appears on the screen. The splash screen closes when six seconds
have elapsed.

RTT

Red Tree Inn

A relaxing place to stay!

Figure 1-1 Splash screen for the Red Tree Inn
Photo courtesy of Diane Zak

Chapter 1 is designed to help you get comfortable with the Visual Studio 2012 integrated
development environment. As you learned in the Overview, an integrated development
environment (IDE) is an environment that contains all of the tools and features you need to
create, run, and test your programs. As do all the chapters in this book, Chapter 1 contains three
lessons. You should complete a lesson in full and do all of the end-of-lesson questions and
several exercises before continuing to the next lesson.

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

The Splash Screen Application

After studying Lesson A, you should be able to:

e Start and customize Visual Studio 2012

e Create a Visual Basic 2012 Windows application

e Manage the windows in the IDE

e Set the properties of an object

e Restore a property to its default setting

e Save a solution

e Close and open an existing solution

The Splash Screen Application

In this chapter, you will create a splash screen using Visual Basic 2012. The following set of steps
will guide you in starting Visual Studio Professional 2012 from either Windows 8 or Windows 7.
Your steps may differ slightly if you are using a different edition of Visual Studio 2012.

To start Visual Studio Professional 2012:

1.

Windows 8: If necessary, tap the Windows logo key to switch to the Windows 8
tile-based mode, and then click the Visual Studio 2012 tile.

Windows 7: Click the Start button on the Windows 7 taskbar and then point to All
Programs. Click Microsoft Visual Studio 2012 on the All Programs menu and then
click Visual Studio 2012.

If the Choose Default Environment Settings dialog box appears, click Visual Basic
Development Settings and then click Start Visual Studio.

Click WINDOW on the menu bar, click Reset Window Layout, and then click the Yes
button. When you start Visual Studio Professional 2012, your screen will appear similar
to Figure 1-2. However, your menu bar may contain underlined letters, called access
keys. You will learn about access keys in Chapter 2. (You can show/hide the access keys
by pressing the Alt key on your keyboard.)

(1] The ChO1A
u video

demon-

strates all of
the steps contained in
Lesson A. You can view
the video either before or
after completing the
lesson.

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

START HERED>

An Introduction to Visual Basic 2012

Solution Explorer
Toolbox window's tab Start Page window window

b Staft Page - Microsoft Visual Studio Quick Launch (Ctrl+Q) i = B O
FILE /EDIT WVIEW DEBUG TEAM SOL TOOLS/ TEST ANALYZE WINDOW HELP

B-@ b Atach.. - I
Start Page & X ~ Solution Explorer > 1x
&

%0q|00 .

GET STARTED

Welcome

'
= “ What's New
What's new in Visual Studic

What's new in .NET Framework

Getting Started
o1

Getting started with Visual Studio
Getting started with Blend
Learn more about Visual Studio

Recent

Discover extensions, add-ons and samples

t':), Manage your projects in the cloud
& Leam how to set up your project and connect it to Visual Studio

Seewhat's new, or sign up for an account

I—u Learning Resources Team nyplorer
i} Visual Studio troubleshooting and support window's tab
Visual Studio videos on Channel 9
whatissn MSDN subscripiion? | ha syre these check
boxes are selected | soucon eipiorer | Team siplorer

Figure 1-2 Microsoft Visual Studio Professional 2012 startup screen

Note: To select a different window layout, click TOOLS on the menu bar, click Import and
Export Settings, select the Reset all settings radio button, click the Next button, select the
appropriate radio button, click the Next button, click the settings collection you want to use,
and then click the Finish button.

Next, you will configure Visual Studio so that your screen agrees with the figures and tutorial
steps in this book. As mentioned in the Overview, the figures reflect how your screen will look if
you are using Visual Studio Professional 2012 and a Microsoft Windows 8 system. Your screen
may appear slightly different in some instances if you are using a different edition of Visual
Studio or if you are using another version of Microsoft Windows. Don't worry if your screen
display differs slightly from the figures.

To configure Visual Studio:

1. Click TOOLS on the menu bar and then click Options to open the Options dialog box.
Click the Projects and Solutions node. Use the information shown in Figure 1-3 to
select and deselect the appropriate check boxes. (Your dialog box will look slightly
different if you are using Windows 7. For example, the title bar text will be left-aligned
rather than centered, and the buttons on the title bar will look different.) When you are
finished, click the OK button to close the Options dialog box.

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

The Splash Screen Application

the title bar text will be these buttons will look
left-aligned in Windows 7 different in Windows 7

4 Environment Projects location:
General | ChUsers\Diane\DocumentsiVisual Studio 2012\Projects | m
Add-in Security -
AutoRecover
Documents
Extensions and Updates

User project templates location: -
| C:\Users\Diane\DecumentsiVisual Studio 2012\ Templates\Project Templates | [|

User itern templates location:

Faiicl anid Relplace | ChUsers\Diane\Documents\Visual Studio 2012\ Templates\ltemTemplates | .
Fonts and Colors

Import and Export Settings Always show Error List if build finishes with errors
International Settings [#] Track Active ltem in Solution Explorer

Ke},.rboard select these five [[] Show advanced build configurations
{Sii::::auncr check boxes \\ Always show solution

Tabs and Windows Save new projects when created deselect these
Task List Warn user when the project location is not trusted three check boxes
Web Browser [] Show Output window when build starts

1> | Projects and Selutions [] Prompt for symbelic renaming when renaming files

= Source Control
i Text Editor e

Projects and
Solutions node

Figure 1-3 Options dialog box

The splash screen will be a Windows application, which means it will have a Windows user
interface and run on a desktop computer. Recall that a user interface is what the user sees and
interacts with while an application is running. Windows applications in Visual Basic are
composed of solutions, projects, and files. A solution is a container that stores the projects and
files for an entire application. Although the solutions in this book contain only one project, a
solution can contain several projects. A project also is a container, but it stores only the files
associated with that particular project.

To create a Visual Basic 2012 Windows application: <(START HERE
1. Click FILE on the menu bar and then click New Project to open the New Project
dialog box.

2. 1If necessary, expand the Visual Basic node in the Installed Templates list, and then
(if necessary) click Windows.

3. If necessary, click Windows Forms Application in the middle column of the
dialog box.

4. Change the name entered in the Name box to Splash Project.

5. Click the Browse button to open the Project Location dialog box. Locate and then
click the VB2012\ChapO1 folder. Click the Select Folder button to close the Project
Location dialog box.

6. If necessary, select the Create directory for solution check box in the New Project
dialog box. Change the name entered in the Solution name box to Splash Solution.
Figure 1-4 shows the completed New Project dialog box in Visual Studio Professional
2012. (Your dialog box will look slightly different if you are using Windows 7 or a
different edition of Visual Studio.) The drive letter may be different from the one shown

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

An Introduction to Visual Basic 2012

in the figure if you are saving to a device other than your computer’s hard drive—for
example, if you are saving to a flash drive.

b Recent .MET Framework 4.5 ~ Sortby: Default e Search Installed Templates (Ct 2 -

4 |nstalled - . :
Windows Forms Application Visual Basic Type: Visual Basic

4 Templates A project for creating an application with a
4 Visual Basic r WPF Application Visual Basic HOE TR e T e
Windows Store

Conscle Application Visual Basic

b Office
Cloud

Class Library Visual Basic

Reporting Portable Class Library Visual Basic

I SharePoint
Silverlight
Test
WCF

WPF Browser Application Visual Basic

Empty Project Visual Basic
P Online

MNarne: Splash Project

focaton: C:A\VB2012\Chap0T\ -

Solution name: |Splash Solution | Create directory for solution
[[] Add to source control

your drive letter
might be different [ok][cancel

Figure 1-4 Completed New Project dialog box in Visual Studio Professional 2012

7. Click the OK button to close the New Project dialog box. The computer creates a
solution and adds a Visual Basic project to the solution. The names of the solution and
project, along with other information pertaining to the project, appear in the Solution
Explorer window. See Figure 1-5. In addition to the windows shown earlier in Figure 1-2,
three other windows appear in the IDE: Windows Form Designer, Properties, and Data
Sources. (Don’t be concerned if different properties appear in your Properties window.)

AAA

Copyright 2013 Cengage Learning. All Righth\ROSErvel hezele : , scanned, or duplicated, in whole or in part.

http://www.allitebooks.org

if you are using Windows 7,
Form1 will be left-aligned

Dq Splash Solution { Microsoft Visual Studio

Quick Launch (Ctrl+Q)

The Splash Screen Application

Auto Hide button

N = =

FILE EDIT VIEW PROJECT BUILD DEBUG TEAM 50L FORMAT TOOLS TEST AMNALYZE WINDOW HELP

i i3 - e P Start - [A

g Form1.vb [Design] 4: v Solution Explorer woow QX
g G e-d@m o
g o Form1 EI@ Search Solution Explorer (Ctrl+:) o~
;" - &1 Solution 'Splash Selution’ (1 project)

£ solution and

o

Data Sources
window's tab

project names
and information

4 Splash Project
K& My Project
9 App.config

B Form1vb

Solution Explorer | Team Explorer

Properties window Properties st w B X

Form1 System Windows.Forms.Form -

=@]n]s »

ul ShowlnTaskbar True =
Size 300, 300
SizeGripStyle Auto
StartPosition WindowsDefaultLoc
Tag
Text Form1 -
Text

The text associated with the control.

Windows Form
Designer window

Figure 1-5 Solution and Visual Basic project

Managing the Windows in the IDE

In most cases, you will find it easier to work in the IDE if you either close or auto-hide the

windows you are not currently using. The easiest way to close an open window is to click the
Close button on the window’s title bar. In most cases, the VIEW menu provides an appropriate
option for opening a closed window. Rather than closing a window, you also can auto-hide it.
You auto-hide a window using the Auto Hide button (refer to Figure 1-5) on the window’s title
bar. The Auto Hide button is a toggle button: clicking it once activates it, and clicking it again
deactivates it. The Toolbox and Data Sources windows in Figure 1-5 are auto-hidden windows.

To close, open, auto-hide, and display windows in the IDE:

1.

Click the Close button on the Properties window’s title bar to close the window. Now,
click VIEW on the menu bar and then click Properties Window to open the window.

If your IDE contains the Team Explorer window, click the Team Explorer tab and then
click the Close button on the window’s title bar.

Click the Auto Hide (vertical pushpin) button on the Solution Explorer window. The
Solution Explorer window is minimized and appears as a tab on the edge of the IDE.

To temporarily display the Solution Explorer window, click the Solution Explorer tab.
Notice that the Auto Hide button is now a horizontal pushpin rather than a vertical

If you want

to size the
Solution Explorer
window to match
Figure 1-5,
position your mouse
pointer on the window's
left border until the
mouse pointer becomes
a sizing pointer

(a horizontal line with

an arrowhead at each
end), and then drag the
border to either the left
or the right.

<(START HERE

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

To reset the
window layout in
the IDE, click
WINDOW on the
menu bar, click
Reset Window Layout,
and then click the Yes
button.

ll

An Introduction to Visual Basic 2012

pushpin. To return the Solution Explorer window to its auto-hidden state, click the
Solution Explorer tab again.

5. To permanently display the Solution Explorer window, click the Solution Explorer tab
and then click the Auto Hide (horizontal pushpin) button on the window’s title bar. The
vertical pushpin replaces the horizontal pushpin on the button.

If necessary, close the Data Sources window.

7. Figure 1-6 shows the current status of the windows in the IDE. Only the Windows Form
Designer, Solution Explorer, and Properties windows are open; the Toolbox window is
auto-hidden. If necessary, click Form1.vb in the Solution Explorer window. If the items
in the Properties window do not appear in alphabetical order, click the Alphabetical

button.
dq Splash Solution - Microsoft Visual Studio Quick Launch (Crl+Q) £ = T
FILE EDIT VIEW PROJECT BUILD DEBUG TEAM 50L TOOLS TEST AMNALYZE WINDOW HELP
i B - & b Start - G (3 A
g‘ Form1l.vb [Design] ® X ol Scolution Explorer 1 X
g @ o-uwdm o
ag! Form1 E‘@ Search Solution Explorer (Ctrl+:) P~

&1 Solution ‘Splash Selution’ (1 project)
Fl Splash Project

A& My Project

¥ App.config

_ Form1.xb

Properties =
Form1.wb File Properties -
] Build Action Compile
Alphabetical button Copy to Output D Do not copy

Custom Tool

Custom Teol Nar

File Name Forml.vb

Full Path CAVB2012\Chap01\Splz
Build Action

How the file relates to the build and
deployment processes,

Figure 1-6 Current status of the windows in the IDE

In the next several sections, you will take a closer look at the Windows Form Designer, Solution
Explorer, and Properties windows. (The Toolbox window is covered in Lesson B.)

The Windows Form Designer Window

Figure 1-7 shows the Windows Form Designer window, where you create (or design) your
application’s graphical user interface, more simply referred to as a GUL. Only a Windows Form
object appears in the designer window shown in the figure. A Windows Form object, or form, is
the foundation for the user interface in a Windows application. You create the user interface by
adding other objects, such as buttons and text boxes, to the form. Notice that a title bar appears
at the top of the form. The title bar contains a default caption (Form1) along with Minimize,
Maximize, and Close buttons. (The title bar text will be left-aligned in Windows 7.) At the top of

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

The Splash Screen Application

the designer window is a tab labeled Form1.vb [Design]. Forml.vb is the name of the file (on
your computer’s hard disk or on another device) that contains the Visual Basic instructions
associated with the form, and [Design] identifies the window as the designer window.

name of the disk file - 5)
that contains the instructions | | title bar (Form1 will be left-aligned

associated with the form if you are using Windows 7)

Form1.wvb [Design] # X

G

o Form1 (= =] =]

form

Figure 1-7 Windows Form Designer window

As you learned in the Overview, all objects in an object-oriented program are instantiated
(created) from a class. A form, for example, is an instance of the Windows Form class. The form
is automatically instantiated for you when you create a Windows application.

The Solution Explorer Window

The Solution Explorer window displays a list of the projects contained in the current solution and the
items contained in each project. Figure 1-8 shows the Solution Explorer window for the Splash Solution,
which contains one project named Splash Project. Within the Splash Project are the My Project folder
and two files named App.config and Form1.vb. The project also contains other items, which are
typically kept hidden. However, you can display the additional items by clicking the Show All Files
button. You would click the button again to hide the items. The .vb on the Form1.vb filename indicates
that the file is a Visual Basic source file. A source file is a file that contains program instructions, called
code. The Form1.vb file contains the code associated with the form displayed in the designer window.
You can view the code using the Code Editor window, which you will learn about in Lesson B.

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

ll

Recall that a
class is a pattern
that the
computer uses
to create an
object.

To display the
properties of the
Form1.vb form
file, Forml.vb
must be
selected in the Solution
Explorer window.

An Introduction to Visual Basic 2012

Solution Explorer * 1 X
@ e-nd@ o
Search Solution Explorer (Ctrl+;) -

fa] Solution 'Splash Solution' (1 project)
4 Splash Project

& My Project

v App.config

P Form1.vb

Show Al Files button

Figure 1-8 Solution Explorer window

The Form1.vb source file is referred to as a form file because it contains the code associated with
a form. The code associated with the first form included in a project is automatically stored in a
form file named Forml.vb. The code associated with the second form in the same project is
stored in a form file named Form2.vb, and so on. Because a project can contain many forms and,
therefore, many form files, it is a good practice to give each form file a more meaningful name.
Doing this will help you keep track of the various form files in the project. You can use the
Properties window to change the filename.

The Properties Window

As is everything in an object-oriented language, a file is an object. Each object has a set of
attributes that determine its appearance and behavior. The attributes are called properties and
are listed in the Properties window. When an object is created, a default value is assigned to each
of its properties. The Properties window shown in Figure 1-9 lists the default values assigned to
the properties of the Form1.vb file. (You do not need to widen your Properties window to match
Figure 1-9.) As indicated in the figure, the Properties window includes an Object box and a
Properties list. The Object box contains the name of the selected object. In this case, it contains
Forml.vb, which is the name of the form file. The Properties list has two columns. The left
column displays the names of the selected object’s properties. You can use the Alphabetical and
Categorized buttons to display the names either alphabetically or by category, respectively.
However, it’s usually easier to work with the Properties window when the properties are listed in
alphabetical order, as they are in Figure 1-9. The right column in the Properties list is called the
Settings box and displays the current value (or setting) of each of the object’s properties. A brief
description of the selected property appears in the Description pane.

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

The Splash Screen Application

Categorized button

Propepties
1.wb File Properties Object box
= Alphabetical button

Build Action Compile ~]

Copy to Output Directory Do not copy

Customn Tool T

Properties list

Custom Tool Namespace

File Name Form1.vh

Full Path CAVB20 2\ Chap0h\Splash Solution\Splash Project\Form1.vb -
Build Action

How the file relates to the build and deployment processes. Description pane

Figure 1-9 Properties window

To use the Properties window to change the form file’s name:

1. Forml.vb should be selected in the Solution Explorer window. Click File Name in the
Properties list and then type Splash Form.vb. Be sure to include the .vb extension on
the filename; otherwise, the computer will not recognize the file as a source file.

2. Press Enter. Splash Form.vb appears in the Solution Explorer and Properties windows
and on the designer window’s tab, as shown in Figure 1-10.

form file's name

nd Splgsh Solution - Microsoft Visual Studio

Cuick Launch (Ctrl+Q) P = B x

FILE EDI VIEW PROJECT BUILD DEBUG TEAM 5QL TOOLS TEST AMNALYZE WINDOW HELP
i@~ B - e - Q@ - | » Start - S G A
g Splash Form.vb [Design]* & X ~ Solution Explorer =
g @ o-0dd o
oz Form1 IEI@ Search Solution Explorer (Ctrl+;) el

&1 Solution 'Splash Solution’ (1 project)
4 Splash Project

& My Project

) App.config
b Splash Form.vb

Splash Form.wb File Properties -

form file’'s name

Custom Tool Mar

Full Path CAVB20124Chap01\Spl

File Name
Mame of the file or folder.

Form file's name shown in various locations

Figure 1-10

<(START HERE

You also can
change the File
Name property
by right-clicking
Forml.vb in the
Solution Explorer window
and then clicking Rename
on the context menu.

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

START HERED>

An Introduction to Visual Basic 2012

Properties of a Windows Form

Like a file, a Windows form also has a set of properties. The form'’s properties will appear in the
Properties window when you select the form in the designer window.

To view the properties of the form:

1. Click the form in the designer window to display the form’s properties in the Properties
window. Figure 1-11 shows a partial listing of the properties of a Windows form.

location of the

form name Form class class name
ETErEiiss HHE385H60051000053000000001 B0R0M DR0R00000000000. o x
Form1 System.Windows.Forms.Form -
¥
Size 300, 300 -
SizeGripStyle Auto
StartPosition WindowsDefaultLocation
Tag
Text Form1
TopMuost False
TransparencyKey |:|
UseWaitCursor False
Window5tate Mermal
-
Text
The text associated with the contrel.

Figure 1-11 Properties window showing a partial listing of the form’s properties

Notice that Form1 System.Windows.Forms.Form appears in the Object box in Figure 1-11.
Forml is the name of the form. The name is automatically assigned to the form when the form
is instantiated (created). In System.Windows.Forms.Form, Form is the name of the class used to
instantiate the form. System.Windows.Forms is the namespace that contains the Form class
definition. A class definition is a block of code that specifies (or defines) an object’s appearance
and behavior. All class definitions in Visual Basic 2012 are contained in namespaces, which you
can picture as blocks of memory cells inside the computer. Each hamespace contains the code
that defines a group of related classes. The System.Windows.Forms namespace contains the
definition of the Windows Form class. It also contains the class definitions for objects you add to
a form, such as buttons and text boxes.

The period that separates each word in System.Windows.Forms.Form is called the dot
member access operator. Similar to the backslash (\) in a folder path, the dot member access
operator indicates a hierarchy, but of namespaces rather than folders. In other words, the
backslash in the path D:\VB2012\Chap01\Splash Solution\Splash Project\Splash Form.vb
indicates that the Splash Form.vb file is contained in (or is a member of) the Splash Project
folder, which is a member of the Splash Solution folder, which is a member of the Chap01
folder, which is a member of the VB2012 folder, which is a member of the D: drive. Likewise, the
name System.Windows.Forms.Form indicates that the Form class is a member of the Forms

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Properties of a Windows Form

namespace, which is a member of the Windows namespace, which is a member of the
System namespace. The dot member access operator allows the computer to locate the Form
class in the computer’s internal memory, similar to the way the backslash (\) allows the
computer to locate the Splash Form.vb file on your computer’s disk.

The Name Property

As you do to a form file, you should assign a more meaningful name to a Windows form because
doing so will help you keep track of the various forms in a project. Unlike a file, a Windows form
has a Name property rather than a File Name property. You use the name entered in an object’s
Name property to refer to the object in code, so each object must have a unique name. The
name you assign to an object must begin with a letter and contain only letters, numbers, and the
underscore character. The name cannot include punctuation characters or spaces.

There are several conventions for naming objects in Visual Basic. In this book, you will use a
naming convention called Hungarian notation. Names in Hungarian notation begin with a three
(or more) character ID that represents the object’s type, with the remaining characters in the
name representing the object’s purpose. For example, using Hungarian notation, you might
assign the name frmSplash to the current form. The “frm” identifies the object as a form, and
“Splash” reminds you of the form’s purpose. Hungarian notation names are entered using camel
case, which means you enter the ID characters in lowercase and then capitalize the first letter of
each subsequent word in the name. Camel case refers to the fact that the uppercase letters
appear as “humps” in the name because they are taller than the lowercase letters.

To change the name of the form:

1. Drag the scroll box in the Properties window to the top of the vertical scroll bar. As you
scroll, notice the various properties associated with a form. Also notice that the items
within parentheses appear at the top of the Properties list.

2. Click (Name) in the Properties list. Type frmSplash and press Enter. An asterisk (*)
appears on the designer window’s tab. The asterisk indicates that the form has been
changed since the last time it was saved.

The Text Property

In addition to changing the form’s Name property, you also should change its Text property, which
controls the text displayed in the form’s title bar. Form1 is the default value assigned to the Text
property of the first form in a project. In this case, “Red Tree Inn” would be a more descriptive value.

To set the Text property of the form:

1. Scroll down the Properties window until you see the Text property in the Properties list
and then click Text.

2. Type Red Tree Inn and press Enter. The new text appears in the property’s Settings
box and also in the form’s title bar.

The Name and Text properties of a Windows form should always be changed to more
meaningful values. The Name property is used by the programmer when coding the application.
The Text property, on the other hand, is read by the user while the application is running.

The StartPosition Property

When an application is started, the computer uses the form’s StartPosition property to
determine the form’s initial position on the screen. The frmSplash form represents a splash
screen, which typically appears in the middle of the screen.

<«(START HERE

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

START HERE >

START HERED>

An Introduction to Visual Basic 2012

To center a form on the screen when the application is started:

1. Click StartPosition in the Properties list and then click the list arrow in the
Settings box.

2. Click CenterScreen in the list.

The Font Property

A form’s Font property determines the type, style, and size of the font used to display the text
on the form. A font is the general shape of the characters in the text. Segoe UI, Tahoma, and
Microsoft Sans Serif are examples of font types. Font styles include regular, bold, and italic.
The numbers 9, 12, and 18 are examples of font sizes, which typically are measured in points,
with one point equaling 1/72 of an inch. The recommended font for applications created for
systems running Windows 8, Windows 7, or Windows Vista is Segoe Ul because it offers
improved readability. Segoe is pronounced SEE-go, and Ul stands for user interface. For most
of the elements in the interface, you will use a font size of 9-point. However, to make the
figures in the book more readable, some of the interfaces created in this book will use a larger
font size.

To set the form’s Font property:

1. Click Font in the Properties list and then click the ... (ellipsis) button in the Settings box
to open the Font dialog box.

2. Locate and then click the Segoe UI font in the Font box. Click 9 in the Size box and then
click the OK button. (Don’t be concerned if the size of the form changes.)

The Size Property

As you can with any Windows object, you can size a form by selecting it and then dragging the
sizing handles that appear around it. You also can size an object by selecting it and then pressing
and holding down the Shift key as you press the up, down, right, or left arrow key on your
keyboard. In addition, you can set the object’s Size property.

To set the form’s Size property:

1. Click Size in the Properties list. Notice that the Size property contains two numbers
separated by a comma and a space. The first number represents the width of the form,
measured in pixels. The second number represents the height, also measured in pixels.
A pixel, which is short for “picture element,” is one spot in a grid of thousands of such
spots that form an image either produced on the screen by a computer or printed on a
page by a printer.

2. Type 605, 334 in the Size property’s Settings box and press Enter. Expand the Size
property by clicking the plus box that appears next to the property. Notice that the first
number listed in the property represents the width, and the second number represents
the height. Click the minus box to collapse the property.

Setting and Restoring a Property’s Value

In the next set of steps, you will practice setting and then restoring a property’s value. More
specifically, you will set and then restore the value of the form’s BackColor property, which
determines the background color of the form.

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Saving a Solution

To set and then restore the form’s BackColor property value:

1. Click BackColor in the Properties list and then click the list arrow in the Settings box.
Click the Custom tab and then click a red square to change the background color of the
form to red.

2. Now, right-click BackColor in the Properties list and then click Reset on the context
menu. The background color of the form returns to its default setting. Figure 1-12 shows
the status of the form in the IDE.

the asterisk indicates that the
form has been changed since
the last time it was saved

if you are using Windows 7,
the text in the title bar will be
left-aligned

B Splash Solution - Microsoft Visual Studio Quick Launch (Ctrl+Q) P = B X
FILE EDIT VIEW PROJECT BUILD DEBUG
[ERE -1 2] 5

Splash Form.wvhb [Design]* & X

TOOLS TEST ANALYZE WINDOW HELP
6 G i
+ Solution Explorer
® o-uad@m o
Search Solution Explorer (Ctrl+;) pe i

TEAM 50L
P Start -

xogjoo]

= =]=]

ag! Red Tree Inn

&1 Solution 'Splash Selution' (1 project)
4 Splash Project
My Project
¥ App.config
3 Splash Form.vb

Properties o x

frmSplash Systern.Windows.Forms.Fort -

5|5
AutoSize False =
AutoSizeMode GrowOnly
AuteValidate EnablePreventFocy
Gacicoor (IR
Backgroundlmag l:l (none)

& Backgroundlmag Tile

CancelButton (none)
CausesValidation True
ContextMenuStrit (none)

BackColor

The background color of the compenent.

-

Figure 1-12 Status of the form in the IDE

Saving a Solution

The asterisk (*) that appears on the designer tab in Figure 1-12 indicates that a change was made
to the form since the last time it was saved. It is a good idea to save the current solution every 10
or 15 minutes so that you will not lose a lot of your work if the computer loses power. You can
save the solution by clicking FILE on the menu bar and then clicking Save All. You also can click
the Save All button on the Standard toolbar. When you save the solution, the computer saves
any changes made to the files included in the solution. It also removes the asterisk that appears
on the designer window’s tab.

To save the current solution:

1. Click FILE on the menu bar and then click Save All. The asterisk is removed from the
designer window’s tab, indicating that all changes made to the form have been saved.

<«(START HERE

The Save All
button on the
Standard toolbar
looks like this:

.

<(START HERE

il

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

START HERED>

START HERED>

An Introduction to Visual Basic 2012

Closing the Current Solution

When you are finished working on a solution, you should close it. Closing a solution closes all
projects and files contained in the solution.

To close the Splash Solution:

1. Click FILE on the menu bar. Notice that the menu contains a Close option and a Close
Solution option. The Close option closes the designer window in the IDE; however, it
does not close the solution itself. Only the Close Solution option closes the solution.

2. Click Close Solution. The Solution Explorer window indicates that no solution is
currently open in the IDE.

Opening an Existing Solution

You can use the FILE menu to open an existing solution. The names of solution files end with
sln. If a solution is already open in the IDE, you will be given the option of closing it before
another solution is opened.

To open the Splash Solution:

1. Click FILE on the menu bar and then click Open Project to open the Open Project
dialog box.

2. Locate and then open the VB2012\Chap01\Splash Solution folder. Click Splash
Solution (Splash Solution.sln) in the list of filenames and then click the Open button.

3. The Solution Explorer window indicates that the solution is open. If the designer
window is not open, right-click Splash Form.vb in the Solution Explorer window and
then click View Designer.

Exiting Visual Studio 2012

Finally, you will learn how to exit Visual Studio 2012. You will complete the splash screen in the
remaining two lessons. You can exit Visual Studio using either the Close button on its title bar
or the Exit option on its FILE menu.

To exit Visual Studio 2012:
1. Click FILE on the menu bar and then click Exit.

Lesson A Summary
e To start Visual Studio 2012:

If you are using Windows 8, tap the Windows logo key (if necessary) to switch to the
Windows 8 tile-based mode and then click the Visual Studio 2012 tile. If you are using
Windows 7, click the Start button on the Windows 7 taskbar, point to All Programs, click
Microsoft Visual Studio 2012, and then click Visual Studio 2012.

e To select a different window layout:

Click TOOLS on the menu bar, click Import and Export Settings, select the Reset all settings
radio button, click the Next button, select the appropriate radio button, click the Next
button, click the settings collection you want to use, and then click the Finish button.

bldd, scanned, or duplicated, in whole or in part.

http://www.allitebooks.org

Lesson A Summary

To configure Visual Studio:

Click TOOLS, click Options, click the Projects and Solutions node, and then use the
information shown earlier in Figure 1-3 to select and deselect the appropriate check boxes.
Click the OK button.

To create a Visual Basic 2012 Windows application:

Start Visual Studio 2012. Click FILE, click New Project, expand the Visual Basic node, click
Windows, and then click Windows Forms Application. Enter an appropriate name and
location in the Name and Location boxes, respectively. Select the Create directory for
solution check box. Enter an appropriate name in the Solution name box and then click
the OK button.

To reset the window layout in the IDE:
Click WINDOW, click Reset Window Layout, and then click the Yes button.
To close and open a window in the IDE:

Close the window by clicking the Close button on its title bar. Use the appropriate option on
the VIEW menu to open the window.

To auto-hide a window in the IDE:

Click the Auto Hide (vertical pushpin) button on the window’s title bar.
To temporarily display an auto-hidden window in the IDE:

Click the window’s tab.

To permanently display an auto-hidden window in the IDE:

Click the window’s tab to display the window, and then click the Auto Hide (horizontal
pushpin) button on the window’s title bar.

To set the value of a property:

Select the object whose property you want to set and then select the appropriate property in
the Properties list. Type the new property value in the selected property’s Settings box, or
choose the value from the list, color palette, or dialog box.

To give a more meaningful name to an object:

Set the object’s Name property.

To control the text appearing in the form’s title bar:

Set the form’s Text property.

To specify the starting location of the form:

Set the form’s StartPosition property.

To specify the type, style, and size of the font used to display text on the form:
Set the form’s Font property.

To size a form:

Drag the form’s sizing handles. You also can set the form’s Size, Height, and Width values in
the Properties window. In addition, you can select the form and then press and hold down
the Shift key as you press the up, down, left, or right arrow key on your keyboard.

To change the background color of a form:

Set the form’s BackColor property.

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or dupli

An Introduction to Visual Basic 2012

e To restore a property to its default setting:
Right-click the property in the Properties list and then click Reset.
e To save a solution:

Click FILE on the menu bar and then click Save All. You also can click the Save All button
on the Standard toolbar.

e To close a solution:
Click FILE on the menu bar and then click Close Solution.
e To open an existing solution:

Click FILE on the menu bar and then click Open Project. Locate and then open

the application’s solution folder. Click the solution filename, which ends with .sln. Click
the Open button. If the designer window is not open, right-click the form file’s name in
the Solution Explorer window and then click View Designer.

e To exit Visual Studio 2012:

Click the Close button on the Visual Studio 2012 title bar. You also can click FILE on the
menu bar and then click Exit.

Lesson A Key Terms

Camel case—used when entering object names in Hungarian notation; the practice of entering
the object’s ID characters in lowercase and then capitalizing the first letter of each subsequent
word in the name

Class definition—a block of code that specifies (or defines) an object’s appearance and behavior
Code—program instructions
Dot member access operator—a period; used to indicate a hierarchy

Form—the foundation for the user interface in a Windows application; also called a Windows
Form object

Form file—a file that contains the code associated with a Windows form
GUl—acronym for graphical user interface

Namespace—a block of memory cells inside the computer; contains the code that defines a
group of related classes

Object box—the section of the Properties window that contains the name of the selected object
Point—used to measure font size; 1/72 of an inch
Properties—the attributes that control an object’s appearance and behavior

Properties list—the section of the Properties window that lists both the names and the values of
the selected object’s properties

Properties window—the window that lists an object’s attributes (properties)
Settings box—the right column of the Properties list; displays each property’s current value (setting)

Solution Explorer window—the window that displays a list of the projects contained in the
current solution and the items contained in each project

Source file—a file that contains code
Windows Form Designer window—the window in which you create an application’s GUI

Windows Form object—the foundation for the user interface in a Windows application; referred
to more simply as a form

earning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Lesson A Review Questions

Lesson A Review Questions

1. When a form has been modified since the last time it was saved, what appears on its tab
in the designer window?

a. an ampersand (&)
b. an asterisk (*)
c. a percent sign (%)
d. aplussign (+)
2. Youusethe — window to set the characteristics that control an object’s

appearance and behavior.

a. Characteristics

b. Object
c. Properties
d. Toolbox
3. The — window lists the projects and files included in a solution.
Object

a

b. Project
c. Properties
d

Solution Explorer

4. The names of solution files in Visual Basic 2012 end with

a. .prg
b. .sln
c. .src
d. .wb

5. Which of the following statements is true?

a. You can auto-hide a window by clicking the Auto-Hide (vertical pushpin) button on
its title bar.

An auto-hidden window appears as a tab on the edge of the IDE.

IS

o

You temporarily display an auto-hidden window by clicking its tab.
d. all of the above

6. The ____ property controls the text displayed in a form’s title bar.
a. Caption
b. Text
c. Title
d. TitleBar

7. You give an object a more meaningful name by setting the object’s —_____ property.
a. Application
b. Caption

c. Name

d. Text

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or dupli

INTRODUCTORY

INTRODUCTORY

INTRODUCTORY

An Introduction to Visual Basic 2012

8.

9.
10.
11.

The — property determines the initial position of a form when the application
is started.

InitialLocation

Location

StartLocation

™ A

StartPosition

Explain the difference between a form’s Text property and its Name property.
Explain the difference between a form file and a form.

What does the dot member access operator indicate in the text System.Windows.Forms.
Label?

Lesson A Exercises

1.

If necessary, start Visual Studio 2012 and permanently display the Solution Explorer
window. Use the FILE menu to open the Carter Solution (Carter Solution.sln) file, which
is contained in the VB2012\ChapO1\Carter Solution folder. If necessary, right-click the
form file’s name in the Solution Explorer window and then click View Designer. Change
the form’s Name property to frmMain. Change the form’s BackColor property to light
purple. Change the form’s Font property to Segoe UI, 9pt. Change the form’s
StartPosition property to CenterScreen. Change the form'’s Text property to Carter Sales.
Click FILE on the menu bar and then click Save All to save the solution. Click FILE on
the menu bar and then click Close Solution to close the solution.

If necessary, start Visual Studio 2012 and permanently display the Solution Explorer window.
Create a Visual Basic Windows application. Use the following names for the solution and
project, respectively: Turner Solution and Turner Project. Save the application in the VB2012
\ChapO1 folder. Change the form file’s name to Main Form.vb. Change the form’s name to
frmMain. The form’s title bar should say Turner Inc.; set the appropriate property. The form
should be centered on the screen when it first appears; set the appropriate property. Change
the background color of the form to light pink. Any text on the form should appear in the
Segoe UL, 12pt font; set the appropriate property. Save and then close the solution.

If necessary, start Visual Studio 2012 and permanently display the Solution Explorer
window. Create a Visual Basic Windows application. Use the following names for the
solution and project, respectively: Hillside Solution and Hillside Project. Save the solution
in the VB2012\ChapO1 folder. Change the form file’s name to Main Form.vb. Change the
form’s name to frmMain. The form’s title bar should say Hillside Shopping Center; set
the appropriate property. The form should be centered on the screen when it first
appears; set the appropriate property. Any text on the form should appear in the Segoe
UL, 9pt font; set the appropriate property. Save and then close the solution.

earning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

The Toolbox Window

B LESSONB

After studying Lesson B, you should be able to:

e Add a control to a form

e Set the properties of a label, picture box, and button control
e Select multiple controls

e Center controls on the form

e Open the Project Designer window

e Start and end an application

e Enter code in the Code Editor window

e Terminate an application using the Me.Close() instruction

e Run the project’s executable file

The Toolbox Window

In Lesson A, you learned about the Windows Form Designer, Solution Explorer, and
Properties windows. In this lesson, you will learn about the Toolbox window, referred to more
simply as the toolbox. The toolbox contains the tools you use when creating your application’s
user interface. Each tool represents a class from which an object, such as a button or text box,
can be instantiated. The instantiated objects, called controls, will appear on the form.

To open the Splash Solution from Lesson A and then display the Toolbox window:
1. If necessary, start Visual Studio 2012 and open the Solution Explorer window.

2. Open the Splash Solution (Splash Solution.sln) file contained in the
VB2012\Chap01\Splash Solution folder. If necessary, open the designer window.

3. Permanently display the Properties and Toolbox windows and then auto-hide the
Solution Explorer window.

4. 1If necessary, expand the Common Controls node in the toolbox. Rest your mouse
pointer on the word Label in the toolbox. The tool’s purpose appears in a box. See
Figure 1-13.

[1) The ChO1B
E" video
demon-

strates all of
the steps contained in
Lesson B. You can view
the video either before or
after completing the
lesson.

<«(START HERE

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

START HERED>

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

An Introduction to Visual Basic 2012

DG Splash Solution - Microsoft Visual Studio
FILE EDIT VIEW PROJECT BUILD DEBUG TEAM SOL

Quick La
TOOLS TEST ANA

]

4 Common Controls

ListBg Version 4.5.0.0 from Microseft Corporation
Listyi| -‘MET Compenent

k Pointer

Button
CheckBox

B= CheckedListBox
& ComboBox
DateTimePicker
A Labg

A Lk

{)- Mask proyides run-time information or descriptive text for a
Mont] control.

c MNotifylcon r

¥ d fﬂ - -=| [~] Hu P Start - G. c',

Toolbox AR W8 Splach Formuvb [Design] & X

Search Toolbox P~ .z

I All Windows Forms . s Red Tree Inn

Figure 1-13 Toolbox window showing the purpose of the Label tool

The Label Tool

You use the Label tool to add a label control to a form. The purpose of a label control is to
display text that the user is not allowed to edit while the application is running. In this case, for
example, you do not want the user to change the name of the inn or the “A relaxing place to

stay!” message. Therefore, you will display the information using two label controls.

To use the Label tool to instantiate a label control:

1.

Click the Label tool in the toolbox, but do not release the mouse button. Hold down the
mouse button as you drag the mouse pointer to the lower-left corner of the form. As
you drag the mouse pointer, you will see a solid box, an outline of a rectangle, and a
plus box following the mouse pointer. The blue lines that appear between the form’s left
and bottom borders and the label’s left and bottom borders are called margin lines
because their size is determined by the contents of the label’s Margin property. The
purpose of the margin lines is to assist you in spacing the controls properly on the form.

See Figure 1-14.

T

the length of the blue
horizontal and vertical
lines is determined by the
label's Margin property

Figure 1-14 Label tool being dragged to the form

The Label Tool

2. Release the mouse button. A label control appears on the form. See Figure 1-15.
(If the wrong control appears on the form, right-click the control, click Delete, and then
repeat Steps 1 and 2.) Notice that Labell System.Windows.Forms.Label appears in the
Object box in the Properties window. (You may need to widen the Properties window
to view the entire contents of the Object box.) Labell is the default name assigned to
the label control. System.Windows.Forms.Label indicates that the control is an
instance of the Label class, which is defined in the System.Windows.Forms namespace.

Label object’'s name | |location of the Label class class name

Splash Form.vb [Design]® + X =__Properties -

w2
Labell System.Windows.Forms.Label -

ol Red Tree Inn g% ¥ | F

Imagelndex |:| (none) -~
Imagekey |:| (none)
ImageList (none)

Location 13,270
Locked False

Margin 30,30

MaximumSize 0,0
MinimumSize 0,0

Medifiers Friend
Padding 0000
o . RightToLeft N
ext property i
valte Size 41,15
TabIndex 0
Tag You also can add
B Label1 — acontrol to the
TextAlign Topleft form by clicking
UseCompatibleT False a tool in the
UseMnemenic True toolbox and then
UseWaitCursor False clicking the form. In
o - . .
Vicihle Trie addition, you can click a
Text

tool in the toolbox, place
the mouse pointer on the
4 3 form, and then press the

drag the mouse pointer
until the control is the
desired size. You also
can double-click a tool in
Recall from Lesson A that a default value is assigned to each of an object’s properties when the the toolbox.

object is created. Labell is the default value assigned to the Text and Name properties of the
first label control added to a form. The value of the Text property appears inside the label
control, as indicated in Figure 1-15.

To add another label control to the form: <«(START HERE

1. Click the Label tool in the toolbox and then drag the mouse pointer to the form,
positioning it above the existing label control. (Do not worry about the exact location.)

The text asscciated with the control.

Figure 1-15 Label control added to the form

2. Release the mouse button. Label2 is assigned to the control’s Text and Name properties.

Some programmers assign meaningful names to all of the controls in an interface, while
others do so only for controls that are either coded or referred to in code. In subsequent
chapters in this book, you will follow the latter convention. In this chapter, however, you will
assign a meaningful name to each control in the interface. The three-character ID used for
naming labels is Ibl.

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

The move
pointer looks like
this:

oo
START HERED>

An Introduction to Visual Basic 2012

To assign meaningful names to the label controls:

1. Click the Labell control on the form. This selects the control and displays its properties
in the Properties window. Click (Name) in the Properties list. Type IbIName in the
Settings box and then press Enter.

2. Click the Label2 control on the form. Change the control’s name to IbIMsg and then
press Enter.

Setting the Text Property

As you learned earlier, a label control’s Text property determines the value that appears inside
the control. In this application, you want the words “Red Tree Inn” to appear in the IbIName
control, and the words “A relaxing place to stay!” to appear in the 1bIMsg control.

To set each label control’'s Text property:

1. Currently, the IbIMsg control is selected on the form. Click Text in the Properties list.
Type A relaxing place to stay! and then press Enter. The new text appears in the Text
property’s Settings box and in the 1bIMsg control. Notice that the designer automatically
sizes the IbIMsg control to fit its current contents. This is because the default setting of a
Label control’s AutoSize property is True. (You can verify that fact by viewing the
AutoSize property in the Properties window.)

2. Click the IbIName control on the form. Change its Text property to Red Tree Inn and
then press Enter. The IbIName control stretches automatically to fit the contents of its
Text property.

Setting the Location Property

You can move a control to a different location on the form by placing your mouse pointer
on the control until it becomes a move pointer, and then dragging the control to the desired
location. You also can select the control and then press and hold down the Control (Ctrl)
key as you press the up, down, left, or right arrow key on your keyboard. In addition, you can
set the control’s Location property, which specifies the position of the upper-left corner of
the control.

To set each label control's Location property:

1. Click the IbIMsg control to select it. Click Location in the Properties list. Expand the
Location property by clicking its plus box. The X value specifies the number of pixels
from the left border of the form to the left border of the control. The Y value specifies
the number of pixels between the top border of the form and the top border of the
control. In other words, the X value refers to the control’s horizontal location on the
form, whereas the Y value refers to its vertical location.

2. Type 315, 175 in the Location property and then press Enter. The IbIMsg control
moves to its new location. Click the minus box to collapse the property.

3. In addition to selecting a control by clicking it on the form, you also can select a
control by clicking its entry (name and class) in the Object box in the Properties window.
Click the list arrow in the Properties window’s Object box, and then click
IbIName System.Windows.Forms.Label in the list. Set the control’s Location property
to 315, 130.

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Using the Format Menu

Changing a Property For Multiple Controls

In Lesson A, you changed the form’s Font property to Segoe UI, 9pt. When you add a control to
the form, the control’s Font property is set to the same value as the form’s Font property. Using
object-oriented programming terminology, the control “inherits” the Font attribute of the form.
In this case, for example, the IbIName and 1bIMsg controls inherit the form’s Font property
setting: Segoe UI, 9pt.

At times, you may want to use a different font type, style, or size for a control’s text. One reason
for doing this is to bring attention to a specific part of the screen. In the splash screen, for
example, you can make the text in the two label controls more noticeable by increasing the size
of the font used to display the text. You can change the font size for both controls at the same
time by clicking one control and then pressing and holding down the Ctrl (Control) key as you
click the other control on the form. You can use the Ctrl+click method to select as many
controls as you want. To cancel the selection of one of the selected controls, press and hold
down the Ctrl key as you click the control. To cancel the selection of all of the selected controls,
release the Ctrl key and then click the form or an unselected control on the form.

To easily select a group of controls on a form, place the mouse pointer slightly above and to the
left of the first control you want to select, and then press and hold down the left mouse button
as you drag the mouse pointer. A dotted rectangle will appear as you drag. When all of the
controls you want to select are within (or at least touched by) the dotted rectangle, release the
mouse button. All of the controls surrounded or touched by the dotted rectangle will be
selected.

To select both label controls and then set their Font property:

1. Verify that the IbIName control is selected. Press and hold down the Ctrl (Control) key
as you click the IbIMsg control, and then release the Ctrl key. Both controls are selected,
as shown in Figure 1-16.

both label controls
are selected

Figure 1-16 Label controls selected on the form

2. Open the Font dialog box by clicking Font in the Properties list and then clicking the ...
(ellipsis) button in the Settings box. Click 18 in the Size box, and then click the OK
button to close the Font dialog box. The text in the two label controls appears in the new
font size.

3. Click the form to deselect the label controls.

4. Click the IbIName control and then use its Font property to change its font style to
Bold.

5. Click the IbIMsg control and then use its Font property to change its font style to Italic.

Using the Format Menu

The Format menu provides options for manipulating the controls on the form. The Align

option, for example, allows you to align two or more controls by their left, right, top, or bottom
borders. You can use the Make Same Size option to make two or more controls the same width
and/or height. Before you can use the Format menu to change the alignment or size of two or
more controls, you first must select the controls. The first control you select should always be

<«(START HERE

To experiment
with the Align
and Make Same
Size options,
complete
Discovery Exercise 4 at
the end of this lesson.

l

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

START HERED>

Copyright 2013 Cengage Learning. All Rightb/\R&8 ~alil ITEGIeks

An Introduction to Visual Basic 2012

the one whose size and/or location you want to match. For example, to align the left border of
the Label2 control with the left border of the Labell control, you first select the Labell control
and then select the Label2 control. However, to make the Labell control the same size as the
Label2 control, you must select the Label2 control before selecting the Labell control. The first
control you select is referred to as the reference control. The reference control will have white
sizing handles, whereas the other selected controls will have black sizing handles.

The Format menu also has a Center in Form option that centers one or more controls either
horizontally or vertically on the form. In the next set of steps, you will use the Center in Form
option to center the two label controls vertically on the form.

To center the label controls vertically on the form:

1. Verify that the IbIMsg control is selected. Ctrl+click the IbIName control. Both label
controls are now selected.

2. Click FORMAT on the menu bar, point to Center in Form, and then click Vertically.
3. Click FILE on the menu bar and then click Save All to save the solution.

The PictureBox Tool

The splash screen you previewed at the beginning of the chapter showed two images. You can
include an image on a form using a picture box control, which you instantiate using the
PictureBox tool.

To add two picture box controls to the form:

1. Click the PictureBox tool in the toolbox and then drag the mouse pointer to the upper-
left corner of the form. Release the mouse button. The picture box control’s properties
appear in the Properties list, and a box containing a triangle appears in the upper-right
corner of the control. The box is referred to as the task box because, when you click it, it
displays a list of tasks associated with the control. Each task in the list is associated with
one or more properties. You can set the properties using the task list or the Properties
window.

2. Click the task box on the PictureBox1 control. See Figure 1-17.

task box

o Red Tree Inn
PictureBox Tasks

Choose Image...
e e Mode: | Normal v |

Dock in Parent Container

Figure 1-17 Open task list for a picture box

3. Click Choose Image to open the Select Resource dialog box. The Choose Image task is
associated with the Image property in the Properties window.

4. To include the image file within the project itself, the Project resource file radio button
must be selected in the Select Resource dialog box. Verify that the radio button is
selected, and then click the Import button to open the Open dialog box.

bldd, scanned, or duplicated, in whole or in part.

http://www.allitebooks.org

5.

10.

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

The PictureBox Tool

Open the VB2012\ChapO1 folder. Click RedTreeInn (RedTreelnn.jpg) in the list of
filenames and then click the Open button. See Figure 1-18.

Rescurce context

() Local resource:
Import...

(®) Project resource file:

|My Project\Resources.resx v|

{none)

RedTreelnn

image file’s name

Figure 1-18 Completed Select Resource dialog box
Photo courtesy of Diane Zak

Click the OK button to close the Select Resource dialog box. A small portion of the
image appears in the picture box control on the form, and Splash_Project.My.Resources.
Resources.RedTreelnn appears in the control’s Image property in the Properties window.

Click the list arrow in the Size Mode box in the task list and then click StretchImage in
the list. Click the picture box control to close the task list.

The three-character ID used when naming picture box controls is pic. Use the Properties
window to change the picture box’s name to picRedTree.

If necessary, place your mouse pointer on the picture box control and then drag it to the
location shown in Figure 1-19 (on the next page). Then place your mouse pointer on the
sizing handle located in the lower-right corner of the picture box. Drag the sizing handle
until the picture box is the size shown Figure 1-19 and then release the mouse button.
(You also can set the Location and Size properties to 12, 12 and 245, 270, respectively.)

On your own, add another picture box control to the form. Position the picture box in
the upper-right corner of the form. The control should display the image stored in the
RTLpng file, which is contained in the VB2012\ChapO1 folder. Change its size mode to
StretchImage. Change the control’s name to picRti. Position and size the control as
shown in Figure 1-19.

START HERED>

START HERED>

An Introduction to Visual Basic 2012

ag Red Tree Inn [-E =

Red Tree Inn

A relaxing place to stay!

Figure 1-19 Picture boxes added to the form

Photo courtesy of Diane Zak

The Button Tool

Every application should give the user a way to exit the program. Most Windows applications
accomplish this task using either an Exit option on a FILE menu or an Exit button. In this lesson,
the splash screen will provide a button for ending the application. In Windows applications, a
button control is commonly used to perform an immediate action when clicked. The OK and

Cancel buttons are examples of button controls found in many Windows applications.

To add a button control to the form:

1. Use the Button tool in the toolbox to add a button control to the form. Position the
control in the lower-right corner of the form.

2. The three-character ID used when naming button controls is btn. Change the button
control’s name to btnExit.

3. The button control’s Text property determines the text that appears on the button’s face.
Set the button control’s Text property to Exit.

4. Save the solution.

Starting and Ending an Application

Now that the user interface is complete, you can start the splash screen application to see how it
will appear to the user. Before you start an application for the first time, you should open the
Project Designer window and verify the name of the startup form, which is the form that the
computer automatically displays each time the application is started. You can open the Project
Designer window by right-clicking My Project in the Solution Explorer window and then
clicking Open on the context menu. Or, you can click PROJECT on the menu bar and then click
<project name> Properties on the menu.

To verify the name of the startup form:

1. Auto-hide the Toolbox and Properties windows. Temporarily display the Solution
Explorer window. Right-click My Project in the Solution Explorer window and then
click Open to open the Project Designer window.

2. If necessary, click the Application tab to display the Application pane, which is shown
in Figure 1-20. If frmSplash does not appear in the Startup form list box, click the
Startup form list arrow and then click frmSplash in the list.

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Starting and Ending an Application

Project Designer
window's Close button

LG EL R AT RSl Splash Form.vb [Design]
— Application tab
Application
Assembly name: fh Root namespace:
o [Splash Projec) name oi the Splash_Project
executable file :I e

Debug A

Target framework: Application type:
EEEERe .MET Framework 4.5 v | | Windows Forms Ap
Resources

Startup form: fth lcon:
SEEES frmSplash n?mte Of e v (Default lcon)
Settings startup rorm
Signing Assembly Information... View Windows Settings

Figure 1-20 Application pane in the Project Designer window

You can start an application by clicking DEBUG on the menu bar and then clicking Start
Debugging. You also can press the F5 key on your keyboard or click the Start button on the
Standard toolbar. When you start a Visual Basic application, the computer automatically creates
a file that can be run outside of the IDE (such as from the Run dialog box in Windows). The file
is referred to as an executable file. The executable file’s name is the same as the project’s name,
except it ends with .exe. The name of the executable file for the Splash Project, for example, is
Splash Project.exe. However, you can use the Project Designer window to change the executable
file’s name. The computer stores the executable file in the project’s bin\Debug folder. In this
case, the Splash Project.exe file is stored in the VB2012\Chap01\Splash Solution\Splash Project
\bin\Debug folder. When you are finished with an application, you typically give the user only
the executable file because it does not allow the user to modify the application’s code. To allow
someone to modify the code, you need to provide the entire solution.

To change the name of the executable file, and then start and end the application:

1. The Project Designer window should still be open. Change the filename in the Assembly
name box to Red Tree Splash. Save the solution and then close the Project Designer
window by clicking its Close button. (Refer to Figure 1-20 for the location of the Close
button.)

2. Click DEBUG on the menu bar and then click Start Debugging to start the application.
See Figure 1-21. (Do not be concerned about any windows that appear at the bottom of
the screen.)

<(START HERE

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

An Introduction to Visual Basic 2012

startup form ‘ form’s Close button ‘

RET

Red Tree Inn

A relaxing place to stay!

Figure 1-21 Result of starting the splash screen application
Photo courtesy of Diane Zak

3. Recall that the purpose of the Exit button is to allow the user to end the application.
Click the Exit button on the splash screen. The button does not end the application; this
is because you have not yet entered the instructions that tell the button how to respond
when clicked.

4. Click the Close button on the form’s title bar to stop the application. (You also can click
the designer window to make it the active window, then click DEBUG on the menu bar,
and then click Stop Debugging.)

The Code Editor Window

After creating your application’s interface, you can begin entering the Visual Basic instructions
(code) that tell the controls how to respond to the user’s actions. Those actions—such as
clicking, double-clicking, or scrolling—are called events. You tell an object how to respond to an
event by writing an event procedure, which is a set of Visual Basic instructions that are
processed only when the event occurs. You enter the procedure’s code in the Code Editor
window. In this lesson, you will write a Click event procedure for the Exit button, which should
end the application when it is clicked.

STARMEERE» To open the Code Editor window:

1. Right-click the form and then click View Code on the context menu. The Code
Editor window opens in the IDE, as shown in Figure 1-22. The Code Editor window
contains the Class statement, which is used to define a class in Visual Basic. In this
case, the Class statement begins with the Public Class frmSplash clause and
ends with the End Class clause. Within the Class statement you enter the code to
tell the form and its objects how to react to the user’s actions.

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

The Code Editor Window

Code Editor designer window's
window's tab | | tab

nd Splash Solution - Microsoft/Visual Studio Quick Launch (Ctrl+Q) p = B x
FILE EDIT VIEW PROJECT BUILD DEBUG TEAM SOL TOOLS TEST ANALYZE WINDOW HELP
ie-0 H-add | YR [9-C | p st 6 G A
§ STEELG NS RU R Splash Form.vb [Design] - E_n
g “zfrmSplash - I8 (Declarations) -5
EPublic Class frmSplash + £
| End Class =
3
e
click the minus box
to collapse the code —
you can use this list box =

150% - to increase or decrease

the size of the code font

Figure 1-22 Code Editor window opened in the IDE

If the Code Editor window contains many lines of code, you might want to hide the sections of
code that you are not presently working with or that you do not want to print. You hide a
section (or region) of code by clicking the minus box that appears next to it. To unhide a region
of code, you click the plus box that appears next to the code. Hiding and unhiding the code is
also referred to as collapsing and expanding the code, respectively.

To collapse and expand a region of code in the Code Editor window:

1. Click the minus box that appears next to the Public Class frmSplash clause in the
Code Editor window. Doing this collapses the Class statement, as shown in Figure 1-23.

Class Name Method Name
list box list box

4

B EE NS KU Splash Form.vb [Design]
#3 frmSplash - BB (Declarations)

FlPublic Class frmSplash .. .|

ok

click the plus box
to expand the code

Figure 1-23 Code collapsed in the Code Editor window
2. Now click the plus box to expand the code.

As Figure 1-23 indicates, the Code Editor window contains a Class Name list box and a Method
Name list box. The Class Name list box lists the names of the objects included in the user
interface. The Method Name list box lists the events to which the selected object is capable of
responding. In object-oriented programming (OOP), an event is considered a behavior of an
object because it represents an action to which the object can respond. In the context of OOP,
the Code Editor window “exposes” an object’s behaviors to the programmer. You use the Class
Name and Method Name list boxes to select the object and event, respectively, that you want to
code. In this case, you will select btnExit in the Class Name list box and Click in the Method
Name list box. This is because you want the application to end when the Exit button is clicked.

The Public
keyword in the
Class statement
indicates that the
class can be
used by code defined
outside of the class.

ll

<«(START HERE

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

An Introduction to Visual Basic 2012

STARTINER> To select the btnExit control's Click event:

procedure header

procedure footer

1. Click the Class Name list arrow and then click btnExit in the list.

2. Click the Method Name list arrow and then click Click in the list. A code template for
the btnExit control’s Click event procedure appears in the Code Editor window. See
Figure 1-24.

ETEEL N U B) Splash Form.vb [Design]™ =

@, btnExit - Click
—jPublic Class frmSplash

+ .

Private Sub btnExit_Click(sender As Object, e As EventArgs) Handles btnExit.Click
insertion point
End Sub
End Class

150% ~

Figure 1-24 btnExit control's Click event procedure

The Code Editor provides the code template to help you follow the rules of the Visual Basic
language. The rules of a programming language are called its syntax. The first line in the code
template is called the procedure header, and the last line is called the procedure footer. The
procedure header begins with the two keywords Private Sub. A keyword is a word that has a
special meaning in a programming language. Keywords appear in a different color from the rest
of the code. The Private keyword in Figure 1-24 indicates that the button’s Click event
procedure can be used only within the current Code Editor window. The Sub keyword is an
abbreviation of the term sub procedure, which is a block of code that performs a specific task.
Following the Sub keyword is the name of the object, an underscore, the name of the event, and
parentheses containing some text. For now, you do not have to be concerned with the text that
appears between the parentheses. After the closing parenthesis is Handles btnExit.Cl1ck.
This part of the procedure header indicates that the procedure handles (or is associated with)
the btnExit control’s Click event. It tells the computer to process the procedure only when the
btnExit control is clicked.

The code template ends with the procedure footer, which contains the keywords End Sub.
You enter your Visual Basic instructions at the location of the insertion point, which appears
between the Private Sub and End Sub clauses in Figure 1-24. The Code Editor automatically
indents the line between the procedure header and footer. Indenting the lines within a
procedure makes the instructions easier to read and is a common programming practice. In this
case, the instruction you enter will tell the btnExit control to end the application when it is
clicked.

The Me.Close() Instruction

The Me.Close() instruction tells the computer to close the current form. If the current form is
the only form in the application, closing it terminates the entire application. In the instruction,
Me is a keyword that refers to the current form, and Close is one of the methods available in
Visual Basic. A method is a predefined procedure that you can call (or invoke) when needed.
For example, if you want the computer to close the current form when the user clicks the Exit
button, you enter the Me.Close() instruction in the button’s Click event procedure. Notice the
empty set of parentheses after the method’s name in the instruction. The parentheses are
required when calling some Visual Basic methods. However, depending on the method, the

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

The Code Editor Window

parentheses may or may not be empty. If you forget to enter the empty set of parentheses, the
Code Editor will enter them for you when you move the insertion point to another line in the
Code Editor window.

To code the btnExit control’'s Click event procedure: - HERE

1. You can type the Me.Close() instruction on your own or use the Code Editor window’s
IntelliSense feature. In this set of steps, you will use the IntelliSense feature. Type me.
(be sure to type the period, but don’t press Enter). When you type the period, the
IntelliSense feature displays a list of properties, methods, and so on from which you can
select.

Note: If the list of choices does not appear, the IntelliSense feature may have been
turned off on your computer system. To turn it on, click TOOLS on the menu bar and
then click Options. Expand the Text Editor node and then click Basic. Select the Auto
list members check box and then click the OK button.

2. 1If necessary, click the Common tab. The Common tab displays the most commonly
used items, whereas the All tab displays all of the items. Type cl (but don’t press Enter).
The IntelliSense feature highlights the Close method in the list. See Figure 1-25.

R R T RUE TR Splash Form.vb [Design]™
@, btnExit - % Cick

= Public Class frmSplash

Private Sub btnExit_Click(sender As Object, |
= Me.cll

End Sub . btnExit_Click

End Class © pubicsub Coseg| || e boxcortans

description of the
: Cl the form. | .
@, MemberwiseClone i s selected item

Common | All

Figure 1-25 List displayed by the IntelliSense feature

3. Press Tab to include the Close method in the instruction and then press Enter.
See Figure 1-26.

R Nl RO SRl Splash Form.vb [Design]®
@, btnExit - ¥ Cick

EPublic Class frmSplash

Private Sub btnExit_Click(sender As Object, ¢
= Me.Close()

End Sub
End Class

Figure 1-26 Completed Click event procedure for the btnExit control

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

START HERED>

An Introduction to Visual Basic 2012

It’s a good idea to test a procedure after you have coded it. By doing this, you'll know where to
look if an error occurs. You can test the Exit button’s Click event procedure by starting the
application and then clicking the button. When the button is clicked, the computer will process
the Me.Close() instruction contained in the procedure.

To test the Exit button’s Click event procedure and the executable file:

1. Save the solution and then press the F5 key to start the application. The splash
screen appears.

2. Click the Exit button to end the application. Close the Code Editor window and then
close the solution.

3. Press and hold down the Windows logo key on your keyboard as you tap the letter r.
When the Run dialog box opens, release the logo key.

4. Click the Browse button. Locate and then open the VB2012\Chap01\Splash
Solution\Splash Project\bin\Debug folder. Click Red Tree Splash (Red Tree Splash.exe)
and then click the Open button.

5. Click the OK button in the Run dialog box. When the splash screen appears, click the
Exit button.

Lesson B Summary

To add a control to a form:

Click a tool in the toolbox, but do not release the mouse button. Hold down the
mouse button as you drag the tool to the form, and then release the mouse button. You
also can click a tool in the toolbox and then click the form. In addition, you can click a tool
in the toolbox, place the mouse pointer on the form, and then press the left mouse button
and drag the mouse pointer until the control is the desired size. You also can double-click a
tool in the toolbox.

To display text that the user cannot edit while the application is running:
Use the Label tool to instantiate a label control. Set the label control’s Text property.
To move a control to a different location on the form:

Drag the control to the desired location. You also can set the control’s Location property. In
addition, you can select the control and then press and hold down the Ctrl (Control) key as
you press the up, down, right, or left arrow key on your keyboard.

To specify the type, style, and size of the font used to display text in a control:
Set the control’s Font property.
To select multiple controls on a form:

Click the first control you want to select, then Ctrl+click each of the other controls you want
to select. You also can select a group of controls on the form by placing the mouse pointer
slightly above and to the left of the first control you want to select, then pressing the left
mouse button and dragging. A dotted rectangle appears as you drag. When all of the controls
you want to select are within (or at least touched by) the dotted rectangle, release the mouse
button. All of the controls surrounded or touched by the dotted rectangle will be selected.

To cancel the selection of one or more controls:

You cancel the selection of one control by pressing and holding down the Ctrl key as you
click the control. You cancel the selection of all of the selected controls by releasing the Ctrl
key and then clicking the form or an unselected control on the form.

earning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Lesson B Key Terms

e To center one or more controls on the form:

Select the controls you want to center. Click FORMAT on the menu bar, point to Center in
Form, and then click either Horizontally or Vertically.

e To align the borders of two or more controls on the form:

Select the reference control and then select the other controls you want to align. Click
FORMAT on the menu bar, point to Align, and then click the appropriate option.

e To make two or more controls on the form the same size:

Select the reference control and then select the other controls you want to size. Click
FORMAT on the menu bar, point to Make Same Size, and then click the appropriate option.

e To display a graphic in a control in the user interface:

Use the PictureBox tool to instantiate a picture box control. Use the task box or Properties
window to set the control’s Image and SizeMode properties.

e To display a standard button that performs an action when clicked:
Use the Button tool to instantiate a button control.
e To verify or change the names of the startup form and/or executable file:

Use the Application pane in the Project Designer window. You can open the

Project Designer window by right-clicking My Project in the Solution Explorer window,
and then clicking Open on the context menu. Or, you can click PROJECT on the menu
bar and then click <project name> Properties on the menu.

e To start and stop an application:

You can start an application by clicking DEBUG on the menu bar and then clicking

Start Debugging. You also can press the F5 key on your keyboard or click the Start button
on the Standard toolbar. You can stop an application by clicking the form’s Close

button. You also can first make the designer window the active window, and then

click DEBUG on the menu bar and then click Stop Debugging.

e To open the Code Editor window:
Right-click the form and then click View Code on the context menu.
e To display an object’s event procedure in the Code Editor window:

Open the Code Editor window. Use the Class Name list box to select the object’s name, and
then use the Method Name list box to select the event.

e To allow the user to close the current form while an application is running:
Enter the Me.Close() instruction in an event procedure.
e To run a project’s executable file:

Open the Run dialog box in Windows. Click the Browse button. Locate and then open the
project’s bin\Debug folder. Click the executable file’s name. Click the Open button to close
the Browse dialog box, and then click the OK button.

Lesson B Key Terms

Button control—the control commonly used to perform an immediate action when clicked

Class Name list box—appears in the Code Editor window; lists the names of the objects
included in the user interface

Controls—objects (such as a label, a picture box, or a button) added to a form

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or dupli

An Introduction to Visual Basic 2012

Event procedure—a set of Visual Basic instructions that tell an object how to respond to an
event

Events—actions to which an object can respond; examples include clicking and double-clicking

Executable file—a file that can be run outside of the Visual Studio IDE, such as from the Run
dialog box in windows; the file has an .exe extension on its filename

Keyword—a word that has a special meaning in a programming language

Label control—the control used to display text that the user is not allowed to edit while an
application is running

Method—a predefined Visual Basic procedure that you can call (invoke) when needed

Method Name list box—appears in the Code Editor window; lists the events to which the
selected object is capable of responding

OOP—acronym for object-oriented programming

Picture box control—the control used to display an image on a form
Procedure footer—the last line in a procedure

Procedure header—the first line in a procedure

Reference control—the first control selected in a group of controls; this is the control whose
size and/or location you want the other selected controls to match

Startup form—the form that appears automatically when an application is started
Sub procedure—a block of code that performs a specific task

Syntax—the rules of a programming language

Toolbox—refers to the Toolbox window

Toolbox window—the window that contains the tools used when creating an interface; each tool
represents a class; referred to more simply as the toolbox

Lesson B Review Questions

1. The purpose of the —__ control is to display text that the user is not allowed to edit
while the application is running.
a. Button
b. DisplayBox
c. Label
d. DPictureBox

2. The text displayed on a button’s face is stored in the button’s —_____ property.
a. Caption
b. Label
c. Name
d. Text

3. The Format menu contains options that allow you to

a. align two or more controls

b. center one or more controls horizontally on the form

c. make two or more controls the same size
d. all of the above

bldd, scanned, or duplicated, in whole or in part.

http://www.allitebooks.org

Lesson B Exercises

4. You can use the —_____instruction to terminate a running application.

5.

a. Me.Close()
b. Me.Done()
c. Me.Finish(Q
d. Me.Stop(Q)

Define the term “syntax.”

Lesson B Exercises

1.

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or dupli

Open the Carpenters Solution (Carpenters Solution.sln) file contained in the
VB2012\ChapO1\Carpenters Solution folder. If necessary, open the designer window.

a. Change the form file’s name to Main Form.vb.

b. Change the form’s name to frmMain. Change its Font property to Segoe UL 9pt. The
form’s title bar should say ICA; set the appropriate property. The form should be
centered on the screen when it first appears; set the appropriate property.

c. Add a label control to the form. The label should contain the text “International
Carpenters Association” (without the quotation marks); set the appropriate property.
Display the label’s text in italics using the Segoe UI, 16pt font. The label should be
located 20 pixels from the top of the form, and it should be centered horizontally on
the form.

d. Add a picture box control to the form. The control should display the image stored in
the ICA.png file, which is contained in the VB2012\ChapO1 folder. Set the picture
box’s size mode to StretchImage. Change the size of the picture box to 290, 110.
Center the picture box on the form, both vertically and horizontally.

e. Add a button control to the form. Position the button in the lower-right corner of the
form. Change the button’s name to btnExit. The button should display the text “Exit”
(without the quotation marks); set the appropriate property.

f. Open the Code Editor window. Enter the Me.Close() instruction in the btnExit
control’s Click event procedure.

g. Display the Project Designer window. Verify that the name of the startup form is
frmMain. Also, use the Assembly name box to change the executable file’s name to
ICA. Close the Project Designer window.

h. Save the solution and then start the application. Use the Exit button to stop the
application. Close the Code Editor window and then close the solution.

i. Use the Run dialog box to run the project’s executable file, which is contained in the
project’s bin\Debug folder.

Create a Visual Basic Windows application. Use the following names for the solution and
project, respectively: Costello Solution and Costello Project. Save the application in the
VB2012\ChapO1 folder. Change the form file’s name to Main Form.vb. Create the user
interface shown in Figure 1-27. The picture box should display the image stored in the
DollarSign.png file, which is contained in the VB2012\ChapO01 folder. Change the form’s
Font property to Segoe UI, 9pt. You can use any font style and size for the label controls.
The form should be centered on the screen when the application is started. Code the Exit
button so that it closes the application when it is clicked. Use the Project Designer
window to verify that the name of the startup form is correct, and to change the
executable file’s name to Costello Motors. Save the solution and then start the
application. Use the Exit button to stop the application. Close the Code Editor window
and then close the solution. Use the Run dialog box to run the project’s executable file,
which is contained in the project’s bin\Debug folder.

INTRODUCTORY

INTERMEDIATE

An Introduction to Visual Basic 2012

if you are using Windows 7,
your title bar text will be

left-aligned
ol Costello Motors =)=
Costello Motors :
frmMain
Our prices can't be beat!
Bt btnExit
Figure 1-27 User interface for the Costello Motors application
INTERMEDIATE 3. Create a Visual Basic Windows application. Use the following names for the solution and

project, respectively: Tabatha Solution and Tabatha Project. Save the application in the
VB2012\Chap01 folder. Change the form file’s name to Main Form.vb. Create the user
interface shown in Figure 1-28. Change the form’s Font property to Segoe Ul 9pt. You
can use any font style and size for the label control. The form should be centered on the
screen when the application is started. Assign appropriate names to the form and button.
The picture box should display the image stored in the BandB.png file, which is
contained in the VB2012\Chap01 folder. Code the Exit button so that it closes the
application when it is clicked. Save the solution and then start the application. Use the
Exit button to stop the application. Close the Code Editor window and then close the
solution. Use the Run dialog box to run the project’s executable file, which is contained in
the project’s bin\Debug folder.

if you are using Windows 7,
your title bar text will be
left-aligned

ol Tabatha's El@

Tabatha's Bed and Breakfast

Exit

Figure 1-28 User interface for the Tabatha's Bed and Breakfast application

earning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Lesson B Exercises

4. In this exercise, you learn about the FORMAT menu’s Align and Make Same Size
options.

a.

b.

Open the Format Solution (Format Solution.sln) file contained in the
VB2012\ChapO1\Format Solution folder. If necessary, open the designer window.

Click the Button2 control, and then press and hold down the Ctrl (Control) key as
you click the other two button controls. Release the Ctrl key. Notice that the sizing
handles on the first button you selected (Button2) are white, while the sizing handles
on the other two buttons are black. The Align and Make Same Size options on the
FORMAT menu use the control with the white sizing handles as the reference
control when aligning and sizing the selected controls. First, you will practice with the
Align option by aligning the three buttons by their left borders. Click FORMAT,
point to Align, and then click Lefts. The left borders of the Buttonl and Button3
controls are aligned with the left border of the Button2 control, which is the reference
control.

The Make Same Size option makes the selected objects the same height, width, or
both. Here again, the first object you select determines the size. Click the form to
deselect the three buttons. Click Buttonl, Ctrl+click Button2, and then Ctrl+click
Button3. Click FORMAT, point to Make Same Size, and then click Both. The height
and width of the Button2 and Button3 controls now match the height and width of
the reference control (Buttonl).

d. Click the form to deselect the buttons. Save and then close the solution.

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or dupli

DISCOVERY

o0 The Ch01C

B0 ideo
demonstrates
all of the

steps contained in
Lesson C. You can view
the video either before
or after completing

the lesson.

The Boolean
values (True and
False) are named
after the English
mathematician
George Boole.

l

START HERED>

An Introduction to Visual Basic 2012

B LESSON C

After studying Lesson C, you should be able to:

e Set the properties of a timer control

e Delete a control from the form

o Delete code from the Code Editor window

o Code a timer control’s Tick event procedure

e DPrevent the user from sizing a form

e Remove and/or disable a form’s Minimize, Maximize, and Close buttons

e Print an application’s code and interface

Using the Timer Tool

In Lesson B, you added an Exit button to the splash screen created for the Red Tree Inn. Splash
screens usually do not contain an Exit button. Instead, they use a timer control to automatically
remove themselves from the screen after a set period of time. In this lesson, you will remove the
Exit button from the splash screen and replace it with a timer control.

To open the Splash Solution from Lesson B:
1. If necessary, start Visual Studio 2012 and open the Solution Explorer window.

2. Open the Splash Solution (Splash Solution.sln) file contained in the VB2012\Chap01\Splash
Solution folder. If necessary, open the designer window.

3. Permanently display the Properties and Toolbox windows and then auto-hide the
Solution Explorer window.

You instantiate a timer control using the Timer tool, which is located in the Components
section of the toolbox. When you drag the Timer tool to the form and then release the mouse
button, the timer control will be placed in the component tray rather than on the form. The
component tray is a special area of the IDE. Its purpose is to store controls that do not appear in
the user interface during run time, which occurs while an application is running. In other words,
the timer will not be visible to the user when the interface appears on the screen.

The purpose of a timer control is to process code at one or more regular intervals. The length
of each interval is specified in milliseconds and entered in the timer’s Interval property. A
millisecond is 1/1000 of a second; in other words, there are 1000 milliseconds in a second.
The timer’s state—either running or stopped—is determined by its Enabled property, which can
be set to either the Boolean value True or the Boolean value False. When its Enabled property is
set to True, the timer is running; when it is set to False, the timer is stopped. If the timer is
running, its Tick event occurs each time an interval has elapsed. Each time the Tick event
occurs, the computer processes any code contained in the Tick event procedure. If the timer is
stopped, the Tick event does not occur and, therefore, any code entered in the Tick event
procedure is not processed.

To add a timer control to the splash screen:

1. If necessary, expand the Components node in the toolbox. Click the Timer tool and
then drag the mouse pointer to the form. (Do not worry about the exact location.) When
you release the mouse button, a timer control appears in the component tray at the
bottom of the IDE.

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Using the Timer Tool

2. The three-character ID used when naming timer controls is tmr. Change the timer’s
name to tmrExit, and then set its Enabled property to True.

3. You will have the timer end the application after six seconds, which are 6000
milliseconds. Set the timer’s Interval property to 6000 and press Enter. See Figure 1-29.

Dq Splash Solution - Microsoft Visual Studio Quick Launch (Ctrl+Q) A - 0 x
FILE EDT VIEW PROJECT BUILD DEBUG TEAM SQL TOOLS TEST ANALYZE WINDOW HELP
F- I [- ol W 2-C - b Sta~ 6. G A
Toalbox ~ B X Splash Formavb [Design]* # X - g
Search Toolbex p- “ tmrbxit SystemWindows.Forms.Timer ~ 5
b Data 4 [P Red Tree Inn EEE | =0 f| =
3

4 Components] ’ | (ApplicationSetti i

I s Eﬂ. (Name) tmrExit

i BackgroundWorker Enabled True

B DirectoryEntry GeneratehMembe True

P DirectorySearcher 6000

Modifiers Friend
ErrorProvider

. Red Tree Inn Tag

Eventlog

B FileSystemWatcher .

A relaxing place to stay!

H HelpProvider g p Iy

B ImageList

& MessageQueue

PerformanceCounter

P Pioces =

& SerialPort

" ServiceController -

@ Timer 4 »
I Printing . o -
v biaiegs | Timer tool @ tneeit timer control Interval
b Reporting The frequency of Elapsed events in
b WEF Interoperability > milliseconds.

1
component tray

Figure 1-29 Timer control placed in the component tray
Photo courtesy of Diane Zak

You no longer need the Exit button, so you can delete it and its associated code. You then will
enter the Me.Close() instruction in the timer’s Tick event procedure.

To delete the Exit button and its code, and then code and test the timer: -r HERE

1. Auto-hide the Toolbox and Properties windows. Click the Exit button to select it and
then press Delete to delete the control from the form.

2. Deleting a control from the form does not delete the control’s code, which remains in
the Code Editor window. Open the Code Editor window by right-clicking the form and
then clicking View Code. Select (highlight) the entire Click event procedure for the
btnExit control, including the blank line above the procedure, as shown in Figure 1-30.

EEL NI RN i) Splach Form.vb [Design]™ =
#3 frmSplash - Bl (Declarations) -
EPublic Class frmSplash =
. . . . highlight (select) the
Private Sub btnExit_Click(sender As Object, e As EventArgs) entire Click event
= Me.Close() procedure, including
it the blank line above
Bl Sub| the procedure
End Class

150% ~ ¢ >

Figure 1-30 Exit button’s Click event procedure selected in the Code Editor window

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

The horizontal
sizing pointer
looks like this:
L

An Introduction to Visual Basic 2012

3. Press Delete to delete the selected code from the Code Editor window.

4. Use the Class Name and Method Name list boxes to open the code template for the
tmrExit control’s Tick event procedure. Type Me.Close() and press Enter.

5. Save the solution and then start the application. The splash form appears on the
screen.

6. Place your mouse pointer on the form’s right border until it becomes a horizontal sizing
pointer, and then drag the form’s border to the left. Notice that you can change the
form’s size during run time. Typically, a user is not allowed to change the size of a splash
screen. You can prevent the user from sizing the form by changing the form’s
FormBorderStyle property, which you will do in the next section.

7. When six seconds have elapsed, the application ends and the splash form disappears.
Click the Splash Form.vb [Design] tab to make the designer window the active
window.

Setting the FormBorderStyle Property

A form’s FormBorderStyle property determines the border style of the form. For most
applications, you will leave the property at its default setting, Sizable. Doing this allows the user
to change the form’s size by dragging its borders while the application is running. When a form
represents a splash screen, however, you typically set the FormBorderStyle property to either
None or FixedSingle. The None setting removes the form’s border, whereas the FixedSingle
setting draws a fixed, thin line around the form.

To change the FormBorderStyle property:

1. Click the form’s title bar to select the form. Temporarily display the Properties window,
and then set the FormBorderStyle property to FixedSingle.

2. Save the solution and then start the application. Try to size the form by dragging one of
its borders. You will notice that you cannot size the form using its border.

3. When six seconds have elapsed, the application ends. Start the application again. Notice
that the splash screen’s title bar contains a Minimize button, a Maximize button, and a
Close button. As a general rule, most splash screens do not contain these elements. You
will learn how to remove the elements, as well as the title bar itself, in the next section.
Here again, the application ends after six seconds have elapsed.

The MinimizeBox, MaximizeBox, and ControlBox Properties

You can use a form’s MinimizeBox property to disable the Minimize button that appears on
the form’s title bar. Similarly, you can use the MaximizeBox property to disable the Maximize
button. You will experiment with both properties in the next set of steps.

To experiment with the MinimizeBox and MaximizeBox properties:

1. If necessary, click the form’s title bar to select the form. First, you will disable the
Minimize button. Temporarily display the Properties window, and then set the
form’s MinimizeBox property to False. Notice that the Minimize button appears
dimmed (grayed-out) on the title bar. This indicates that the button is not available
for use.

2. Now you will enable the Minimize button and disable the Maximize button. Set the
MinimizeBox property to True, and then set the MaximizeBox property to False. Now
only the Maximize button appears dimmed (grayed-out) on the title bar.

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Printing the Application’s Code and Interface

Now observe what happens if both the MinimizeBox and MaximizeBox properties are
set to False. Set the MinimizeBox property to False. (The MaximizeBox property is
already set to False.) Notice that when both properties are set to False, the buttons are
not disabled; instead, they are removed from the title bar.

Now return the buttons to their original state by setting the form’s MinimizeBox and
MaximizeBox properties to True.

Unlike most applications, splash screens typically do not contain a title bar. You can remove the
title bar by setting the form’s ControlBox property to False, and then removing the text from its
Text property. You will try this next.

To remove the title bar from the splash screen:

1.

Set the form’s ControlBox property to False. Doing this removes the title bar elements
(icon and buttons) from the form; however, it does not remove the title bar itself.

To remove the title bar, you must delete the contents of the form’s Text property. Select
the text in the Text property. Press Delete and then press Enter.

Save the solution and then start the application. The splash screen appears without a title
bar. See Figure 1-31. The application ends after six seconds have elapsed.

RIT

Red Tree Inn

A relaxing place to stay!

Figure 1-31 Completed splash screen
Photo courtesy of Diane Zak

Printing the Application’s Code and Interface

You should always print a copy of your application’s code because the printout will help you
understand and maintain the application in the future. To print the code, the Code Editor
window must be the active (current) window. You also should print a copy of the application’s
user interface.

To print the splash screen’s interface and code:

1.

The designer window should be the active window. Tap the Print Screen (Prnt Scrn or
PrtSc) key on your keyboard; doing this places a picture of the interface on the
Clipboard. Start Microsoft Word (or any application that can display a picture) and open
a new document (if necessary). Press Ctrl+v to paste the contents of the Clipboard in the
document. If your computer is connected to a printer, use the application to print the
document. Close Microsoft Word (or the application you used to display the picture)
without saving the document.

st Il

<«(START HERE

You will learn
more about
splash screens
(such as how to
round their
corners) in this lesson’s
Discovery Exercises 4, 5,
and 6.

<«(START HERE

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

An Introduction to Visual Basic 2012

CholC- Note: If the Print Screen key does not work on your computer, you may be able to use
Snipping the Windows Snipping Tool to take a picture of your interface and then save the picture
Tool to a file for printing. See the Ch01C-Snipping Tool video.

2. Click the Splash Form.vb tab to make the Code Editor window the active window.
Click FILE on the menu bar, and then click Print to open the Print dialog box.
See Figure 1-32. Notice that you can include line numbers in the printout. You also
can choose to hide the collapsed regions of code. Currently, the Hide collapsed regions
check box is grayed-out because no code is collapsed in the Code Editor window.

Printer

Mame: Hewlett-Packard HP Laserlet P2055dn Properties...

Status: Ready
Type: HP Laserlet P205X series PCLE Class Driver
Where: USBOO1

Comment:
Print range Copies

() All Selection Murnber of copies:

Pages frorm: tio:
dimmed (grayed-out) because
Print what no code is collapsed in the | [
Code Editor window _ﬂl@ _1}2@ ¥ Collate
Hide collapsed regions

[JInclude line numbers

allows you to include line Cancel

numbers in the printout

Figure 1-32 Print dialog box

3. Ifyour computer is connected to a printer, click the OK button to begin printing; otherwise,
click the Cancel button. If you clicked the OK button, your printer prints the code.

4. Close the Code Editor window and then close the solution.

Lesson C Summary

e To process code at specified intervals of time:

Use the Timer tool to instantiate a timer control. Set the timer’s Interval property to the
number of milliseconds for each interval. Turn on the timer by setting its Enabled property
to True. Enter the timer’s code in its Tick event procedure.

e To delete a control:

Select the control you want to delete and then press Delete. If the control contains code, open
the Code Editor window and delete the code contained in the control’s event procedures.

earning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Lesson C Review Questions

e To control the border style of the form:
Set the form’s FormBorderStyle property.

e To enable/disable the Minimize button on the form’s title bar:
Set the form’s MinimizeBox property.

e To enable/disable the Maximize button on the form’s title bar:

Set the form’s MaximizeBox property.

e To control whether the icon and buttons appear in the form’s title bar:
Set the form’s ControlBox property.

e To print the user interface:

Make the designer window the active window. Tap the Print Screen (Prnt Scrn or PrtSc)
key. Start an application that can display a picture (such as Microsoft Word) and open a
new document (if necessary). Press Ctrl+v to paste the contents of the Clipboard in

the document. Use the application to print the document. Close the application you used
to display the picture.

e To print the Visual Basic code:

Make the Code Editor window the active window. Collapse any code you do not want to print.
Click FILE on the menu bar and then click Print. If you don’t want to print the collapsed code,
select the Hide collapsed regions check box. If you want to print line numbers, select the
Include line numbers check box. Click the OK button in the Print dialog box.

Lesson C Key Terms

Component tray—a special area in the IDE; stores controls that do not appear in the interface
during run time

Run time—the state of an application while it is running

Timer control—the control used to process code at one or more regular intervals

Lesson C Review Questions

1. If atimer is running, the code inits _—____ event procedure is processed each time an
interval has elapsed.

a. Interval
b. Tick

c. Timed
d. Timer

2. Which of the following is false?

When you add a timer control to a form, the control appears in the component tray.
The user can see a timer control during run time.

You stop a timer by setting its Enabled property to False.

/a0 TR

The number entered in a timer’s Interval property represents the number of
milliseconds for each interval.

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or dupli

INTRODUCTORY

INTERMEDIATE

An Introduction to Visual Basic 2012

5.

To disable the Minimize button on a form’s title bar, set the form’s —_______ property to
False.

a. ButtonMinimize

b. Minimize

c. MinimizeBox

d. MinimizeButton

You can remove the Minimize, Maximize, and Close buttons from a form’s title bar by
setting the form’s —_______ property to False.

a. ControlBox

b. ControlButton

c. TitleBar

d. TitleBarElements

Explain how you delete a control that contains code.

Lesson C Exercises

1.

In this exercise, you modify an existing form by replacing its Exit button with a timer.

a. Open the Williams Solution (Williams Solution.sln) file contained in the
VB2012\Chap01\Williams Solution folder. If necessary, open the designer window.

b. Delete the Exit button from the form and then delete the button’s code from the
Code Editor window.

c. Return to the designer window. Add a timer control to the form. Change the timer’s
name to tmrExit. Set the timer’s Enabled property to True. The timer should end the
application after eight seconds have elapsed; set the appropriate property. Enter the
Me.Close() instruction in the appropriate event procedure in the Code Editor
window.

d. Save the solution and then start the application. When eight seconds have elapsed,
the application ends.

e. Set the form’s FormBorderStyle property to FixedSingle. Also, remove the elements
(icon and buttons) and text from the form’s title bar.

f. Save the solution and then start the application. Close the Code Editor window and
then close the solution.

Create a Visual Basic Windows application. Use the following names for the solution
and project, respectively: Faces Solution and Faces Project. Save the application in the
VB2012\ChapO1 folder. Change the form file’s name to Main Form.vb. Create the
interface shown in Figure 1-33. The picture boxes should display the images stored in the
Facel.png and Face2.png files, which are contained in the VB2012\Chap01 folder.
Include a timer that ends the application after five seconds have elapsed. Save the
solution and then start the application. Now, remove the icon and buttons from the
form’s title bar. Also, use the Project Designer window to change the executable file’s
name to Faces. Save the solution and then start the application. Close the Code Editor
window and then close the solution. Use the Run dialog box in Windows to run the
Faces.exe file, which is contained in the project’s bin\Debug folder.

earning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Lesson C Exercises

if you are using Windows 7,
your title bar text will be
left-aligned

Faces

Blue face Green face

Figure 1-33 Interface for the Faces application

Create a Visual Basic Windows application. Name the solution, project, and form file INTERMEDIATE
My Splash Solution, My Splash Project, and Splash Form.vb. Save the application in the

VB2012\Chap01 folder. Create your own splash screen. Save the solution and then

start the application. Close the Code Editor window and then close the solution.

4. The Internet contains a vast amount of code snippets that you can use in your Visual DISCOVERY
Basic applications. And in many cases, you can use the snippet without fully

understanding each line of its code. In this exercise, you will use a code snippet that

rounds the corners on a splash screen.

a. Open the Rounded Corners Solution (Rounded Corners Solution.sln) file contained in
the VB2012\ChapO1\Rounded Corners Solution folder. If necessary, open the
designer window.

b. For the code snippet to work properly, the splash screen cannot have a border.
Therefore, change the form’s FormBorderStyle property to None.

c. Change the form’s BackColor property to black.

d. Save the application and then start the solution. Notice that the splash screen
contains the standard corners, which are not rounded. Click the Exit button to end
the application.

e. Open the Code Editor window. Select (highlight) the lines of code contained in the
form’s Load event procedure, which is processed when the application is run and the
form is loaded into the computer’s internal memory. See Figure 1-34.

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or dupli

An Introduction to Visual Basic 2012

Uncomment the
selected lines button

¢ Rounded Comers Solution | Microsoft Visual Studio Quick Launch (Ctrl+Q) P o= B8 X

FILE EDIT VIEW PROJECT BUILD DEBUG TEAM SOL TOOLS TEST AMALYZE WINDOW HELP
- B-akd 9% 90 - pstt- 6. & A _

3 A Main Form.vb [Design] = Ej

g “frmMain - 88 (Declarations) - 8

End Sub sl

- 7

= 'Private Sub frmMain_Load(sender As Object, e As EventArgs) Handles Me.Load =

! Dim p As New Drawing2D.GraphicsPath() &

. i

! .StartFigure() .

p
p.AddArc(New Rectangle(@, @, 4@, 40), 180, 9@)

p.AddLine(4e, @, Me.width - 4e, @)

p.AddArc(New Rectangle(Me.Width - 46, e, 4@, 4@), -90, 99)
p.AddLine(Me.Width, 4@, Me.Width, Me.Height - 48)

. p.AddArc(New Rectangle(Me.Width - 4@, Me.Height - 4@, 4@, 48), @, 90)
p.AddLine(Me.Width - 48, Me.Height, 46, Me.Height)

p.AddArc(New Rectangle(®@, Me.Height - 4@, 4@, 40), 90, 99)
p.CloseFigure()

Me.Region = New Region(p)

"End Sub
7End Class

150% =~ 4 3

Figure 1-34 Form's Load event procedure selected in the Code Editor window

f. Click the Uncomment the selected lines button on the Standard toolbar. (Refer to
Figure 1-34 for the button’s location.) Save the solution and then start the application.
The splash screen now has rounded corners. See Figure 1-35.

Figure 1-35 Splash screen with rounded corners

earning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Lesson C Exercises

g. Click the Exit button to end the application. Close the Code Editor window and then
close the solution.

5. In this exercise, you will create a splash screen that has a transparent background. DISCOVERY
a. Open the Petal Solution (Petal Solution.sln) file contained in the VB2012\Chap01\Petal
Solution folder. If necessary, open the designer window.

b. Add a picture box control to the form. The picture box should display the image
stored in the PetalShop.png file, which is contained in the VB2012\ChapO1 folder. Set
the picture box’s size mode to StretchImage. Set its name property to picPetal.
Position and size the picture box as shown in Figure 1-36.

- Petal Shop B]

Figure 1-36 Correct location and size of picture box

c. Click the form’s title bar to select the form. Set the form’s FormBorderStyle property
to None.

d. Click TransparencyKey in the Properties window. The TransparencyKey property
determines the color that will appear transparent when the application is run. For
example, you can make the form transparent by setting its TransparencyKey property
to the same color as its BackColor property. Click the TransparencyKey property’s list
arrow, then click the System tab, and then click Control.

e. Open the Code Editor window. Open the code template for the picPetal control’s
Click event procedure. Type Me.Close() and press Enter.

f. Save the solution and then start the application. Because the color specified in the
form’s BackColor property is the same as the color specified in the TransparencyKey
property, the form appears transparent. As a result, the splash screen shows only the
image contained in the picture box. See Figure 1-37.

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or dupli

DISCOVERY

DISCOVERY

SWAT THE BUGS

An Introduction to Visual Basic 2012

8.

icPetal_Click(sender As Object, e As EventiArgs) Handles picF
I

Figure 1-37 Splash screen with a transparent background

g. Click the picture box to end the application. Close the Code Editor window and then
close the solution.

In this exercise, you will learn how to display a splash screen followed by another form.

a. Open the Two Form Solution (Two Form Solution.sln) file contained in the VB2012\
Chap01\Two Form Solution folder. If necessary, open the Solution Explorer and
designer windows. Notice that the project contains one form named Splash Form.vb.

b. Now you will add a new form to the project. Click PROJECT on the menu bar, then
click Add Windows Form, and then click the Add button. Change the new form file’s
name to Main Form.vb. Change the form’s name to frmMain, and then set its
StartPosition property to CenterScreen. Also set its Text property to Main Form.

c. Right-click My Project in the Solution Explorer window and then click Open. Change
the entry in the Startup form box to frmMain. Change the entry in the Splash screen
box to frmSplash. Close the Project Designer window.

d. Save the solution and then start the application. The splash screen (frmSplash)
appears first. After a few seconds, the splash screen disappears automatically and
the startup form (frmMain) appears. Click the Close button on the startup form’s title
bar, and then close the solution.

In this exercise, you learn how to display a tooltip. Open the ToolTip Solution (ToolTip
Solution.sln) file contained in the VB2012\Chap01\ToolTip Solution folder. If necessary,
open the designer window. Click the ToolTip tool in the toolbox and then drag the tool
to the form. Notice that a tooltip control appears in the component tray rather than on
the form. Set the btnExit control’s ToolTip on ToolTipl property to “Ends the
application” (without the quotation marks). Save the solution and then start the
application. Hover your mouse pointer over the Exit button. The tooltip “Ends the
application” appears in a tooltip box. Click the Exit button and then close the solution.

Open the Debug Solution (Debug Solution.sln) file contained in the VB2012\Chap01\Debug
Solution folder. If necessary, open the designer window. Start the application. The
application is not working correctly because the splash screen does not disappear after four
seconds have elapsed. Click DEBUG on the menu bar and then click Stop Debugging. Locate
and then correct the error(s). Save the solution and then start the application again to verify
that it is working correctly. Close the Code Editor window and then close the solution.

earning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Designing Applications

Creating the Play It Again Movies Application

In this chapter, you create an application that prints a sales receipt for
Play It Again Movies, a small store that sells used movies in both DVD
and Blu-ray format. The DVD and Blu+ray discs sell for S7 each. The
application will allow the salesclerk to enter the current date and the
number of DVDs and Blu-rays sold to a customer. It then will calculate
and display the total number of discs sold and the total sales amount.

All Microsoft screenshots used with permission from Microsoft Corporation

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Designing Applications

Previewing the Play It Again Movies Application

Before you start the first lesson in this chapter, you will preview the completed application.
The application is contained in the VB2012\Chap02 folder.

STARTIERD» To preview the completed application:

To open the Run
dialog box,
press and hold
down the
Windows logo
key as you tap the letter
r, and then release the
logo key.

1.

Use the Run dialog box to run the Play It Again (Play It Again.exe) file contained in
the VB2012\Chap02 folder. The interface shown in Figure 2-1 appears on the screen.
(The image in the picture box was downloaded from the Open Clip Art Library at
http://openclipart.org.) In addition to the picture box, label, and button controls that you
learned about in Chapter 1, the interface contains three text boxes. A text box gives a
user an area in which to enter data.

I Calculate |
=" |

Total discs: I:I £
Total sales: I:I

Figure 2-1 Play It Again Movies interface
OpenClipArt.org/John Diamond / diamonjohn

Note: If the underlined letters, called access keys, do not appear on your screen, press
the Alt key on your keyboard. You will learn about access keys in Lesson B.

The insertion point is located in the first text box. The label control to the left of the
text box identifies the information the user should enter. Type 11/15/2014 as the date,
and then press Tab twice to move the insertion point to the Blu-rays text box.

Type 5 in the Blu-rays box and then press Shift+Tab (press and hold down the Shift key
as you tap the Tab key) to move the insertion point to the DVDs text box.

Type 3 in the DVDs box and then click the Calculate button. The button’s Click event

procedure calculates and displays the total number of discs sold (8) and the total sales
($56.00).

Click the Blue-rays text box. Change the number 5 in the box to 2, and then click the
Calculate button. The button’s Click event procedure recalculates the total number of
discs sold (5) and the total sales ($35.00). See Figure 2-2.

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Previewing the Play It Again Movies Application

@ Sales Receipt

Date: 11/15/2014

DVDs: 3 Print Receipt

Blu-rays: |2 Clear Screen
Total discs: Bxit

Total sales: $35.00

Figure 2-2 Completed sales receipt
OpenClipArt.org/John Diamond / diamonjohn

6. Click the Print Receipt button. The sales receipt appears in the Print preview window.
(It may take a few seconds for the window to open.) Click the Zoom button’s list arrow
and then click 75%. If necessary, size the Print preview window to view the entire sales
receipt. See Figure 2-3.

Print button

5 9 ~| 00 @ 8 8| cosc

@ Sales Receipt

Date: 11/15/2014

DVDs: 3

Blurays: |2

Total discs: 5
Total sales: $35.00

Figure 2-3 Print preview window
OpenClipArt.org/John Diamond / diamonjohn

7. If your computer is connected to a printer, click the Print button (the printer) on the
Print preview window’s toolbar to send the output to the printer.

8. Click the Close button on the Print preview window’s toolbar.

9. Click the Clear Screen button to remove the sales information (except the date) from
the form, and then click the Exit button to end the application.

The Play It Again Movies application is an object-oriented program because it uses objects (such
as buttons and text boxes) to accomplish its goal. In Lesson A, you will learn how a programmer
plans an object-oriented program. You will create the Play It Again Movies application in
Lessons B and C. Be sure to complete each lesson in full and do all of the end-of-lesson
questions and several exercises before continuing to the next lesson.

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Designing Applications

After studying Lesson A, you should be able to:
e Plan an object-oriented Windows application in Visual Basic 2012
e Complete a TOE (Task, Object, Event) chart

e Follow the Windows standards regarding the layout and labeling of controls

Creating an Object-Oriented Application

As Figure 2-4 indicates, the process a programmer follows when creating an object-oriented
(OO) application is similar to the process a builder follows when building a home. Like a builder,
a programmer first meets with the client to discuss the client’s wants and needs; both then
create a plan for the project. After the client approves the plan, the builder builds the home’s
frame, whereas the programmer builds the user interface, which is the application’s frame. Once
the frame is built, the builder completes the home by adding the electrical wiring, walls, and so
on. The programmer, on the other hand, completes the application by adding the necessary
code to the user interface. When the home is complete, the builder makes a final inspection and
corrects any problems before the customer moves in. Similarly, the programmer tests the
completed application and fixes any problems, called bugs, before releasing the application to
the user. The final step in both processes is to assemble the project’s documentation
(paperwork), which then is given to the customer/user.

A builder’s process A programmer’s process

1. Meet with the client 1. Meet with the client

2. Plan the home (blueprint) 2. Plan the application (TOE chart)
3. Build the frame 3. Build the user interface

4. Complete the home 4. Code the application

5. Inspect the home and fix any problems 5. Test and debug the application
6. Assemble the documentation 6. Assemble the documentation

Figure 2-4 Processes used by a builder and a programmer
© 2013 Cengage Learning

You will learn how to plan an OO application in this lesson. Steps three through six of the
process are covered in Lessons B and C.

Planning an Object-Oriented Application

As any builder will tell you, the most important aspect of a home is not its beauty. Rather, it is
how closely the home matches the buyer’s wants and needs. The same is true of an OO
application. For an application to fulfill the wants and needs of the user, it is essential for the
programmer to plan the application jointly with the user. It cannot be stressed enough that the
only way to guarantee the success of an application is to actively involve the user in the planning
phase. The steps for planning an OO application are listed in Figure 2-5.

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Planning an Object-Oriented Application

Planning an OO application

1. Identify the tasks the application needs to perform

2. ldentify the objects to which you will assign the tasks

3. ldentify the events required to trigger an object into performing its assigned tasks
4. Draw a sketch of the user interface

Figure 2-5 Steps for planning an OO application

© 2013 Cengage Learning

You can use a TOE (Task, Object, Event) chart to record the application’s tasks, objects, and
events, which are identified in the first three steps of the planning phase. In the next section, you
begin completing a TOE chart for the Play It Again Movies application. The first step is to
identify the application’s tasks.

Identifying the Application’s Tasks

Realizing that it is essential to involve the user when planning the application, you meet with the
store manager of Play It Again Movies, Ms. Kranz, to determine her requirements. You ask Ms.
Kranz to bring a sample of the store’s current sales receipt; the sample is shown in Figure 2-6.
Viewing a store’s (or company’s) current forms and procedures will help you gain a better
understanding of the application you need to create. You also can use the current form as a
guide when designing the user interface.

Play It Again Movies
Sales Receipt
Date: 5/2/2014
DVDs: 2
Blu-rays: 3
Total discs: 5
Total sales: $35.00

Figure 2-6 Sample of the store’s current sales receipt
© 2013 Cengage Learning

When identifying the major tasks an application needs to perform, it is helpful to ask the
questions italicized in the following bulleted items. The answers pertaining to the Play It Again
Movies application follow each question.

o What information will the application need to display on the screen and/or print on the
printer? The application should display and also print the following information: the date,
the number of DVDs sold, the number of Blu-rays sold, the total number of discs sold, and
the total sales amount.

o What information will the user need to enter into the user interface to display and/or print the
desired information? The salesclerk (the user) must enter the date, the number of DVDs
sold, and the number of Blu-rays sold.

o What information will the application need to calculate to display and/or print the desired
information? The application needs to calculate the total number of discs sold and the total
sales amount.

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

You can draw a
TOE chart by
hand or use the
table feature in a
word processor
(such as Microsoft Word).

ll

Designing Applications

e How will the user end the application? All applications should provide a way for the user
to end the application. The Play It Again Movies application will use an Exit button for
this task.

o Will previous information need to be cleared from the screen before new information is
entered? The sales information will need to be cleared from the screen before the next
customer’s sales information is entered.

Figure 2-7 shows the application’s tasks listed in a TOE chart. The tasks do not need to be
listed in any particular order. In this case, the data entry tasks are listed first, followed by the
calculation tasks, the display and printing tasks, the application ending task, and the screen
clearing task.

Task Object Event

Get the following sales information from the user:
Current date
Number of DVDs sold
Number of Blu-rays sold

Calculate total discs sold and total sales amount

Display the following information:
Current date
Number of DVDs sold
Number of Blu-rays sold
Total discs sold
Total sales amount

Print the sales receipt
End the application

Clear screen for the next sale

Figure 2-7 Tasks entered in a TOE chart
© 2013 Cengage Learning

Identifying the Objects

After completing the Task column of the TOE chart, you then assign each task to an object in
the user interface. For this application, the only objects you will use besides the Windows form
itself are the button, label, and text box controls. As you already know, you use a label to display
information that you do not want the user to change while the application is running, and you
use a button to perform an action immediately after the user clicks it. You use a text box to give
the user an area in which to enter data.

The first task listed in Figure 2-7 is to get the sales information from the user. For each order,
the salesclerk will need to enter the current date, the number of DVDs sold, and the number of
Blu-rays sold. Because you need to provide the salesclerk with areas in which to enter the
information, you will assign the first task to three text boxes—one for each item of information.
The three-character ID used when naming text boxes is txt, so you will name the text boxes
txtDate, txtDvd, and txtBluRay.

The second task listed in the TOE chart is to calculate both the total number of discs sold and
the total sales amount. So that the salesclerk can calculate these amounts at any time, you will
assign the task to a button named btnCalc.

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Planning an Object-Oriented Application

The third task listed in the TOE chart is to display the sales information along with the

total number of discs sold and the total sales amount. The sales information is displayed
automatically when the user enters that information in the three text boxes. The total discs
sold and total sales amount, however, are not entered by the user. Instead, those amounts are
calculated by the btnCalc control. Because the user should not be allowed to change the
calculated results, you will have the btnCalc control display the total discs sold and total
sales amount in two label controls named IblTotalDiscs and IblTotalSales. If you look ahead
to Figure 2-8, you will notice that “(from btnCalc)” was added to the Task column for both
display tasks.

The fourth task listed in the TOE chart is to print the sales receipt. Here again, you will assign
the task to a button so that the salesclerk has control over when the sales receipt is printed. You
will name the button btnPrint.

The last two tasks listed in the TOE chart are “End the application” and “Clear screen for the
next sale.” You will assign the tasks to buttons named btnExit and btnClear; doing this gives the
user control over when the tasks are performed. Figure 2-8 shows the TOE chart with the Task
and Object columns completed.

Task Object Event
Get the following sales information from the user:
Current date txtDate
Number of DVDs sold txtDvds
Number of Blu-rays sold txtBluRays
Calculate total discs sold and total sales amount btnCalc
Display the following information:
Current date txtDate
Number of DVDs sold txtDvds
Number of Blu-rays sold txtBluRays
Total discs sold (from btnCalc) IblTotalDiscs
Total sales amount (from btnCalc) IblTotalSales
Print the sales receipt btnPrint
End the application btnExit
Clear screen for the next sale btnClear

Figure 2-8 Tasks and objects entered in a TOE chart
© 2013 Cengage Learning

Identifying the Events

After defining the application’s tasks and assigning the tasks to objects in the interface, you then
determine which event (if any) must occur for an object to carry out its assigned task. The three
text boxes listed in the TOE chart in Figure 2-8 are assigned the task of getting and displaying the
sales information. Text boxes accept and display information automatically, so no special event is
necessary for them to do their assigned task. The two label controls listed in the TOE chart are
assigned the task of displaying the total number of discs sold and the total sales amount. Label
controls automatically display their contents; so, here again, no special event needs to occur.
(Recall that the two label controls will get their values from the btnCalc control.) The remaining
objects listed in the TOE chart are the four buttons. You will have the buttons perform their
assigned tasks when the user clicks them. Figure 2-9 shows the completed TOE chart.

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Designing Applications

Task Object Event
Get the following sales information from the user:
Current date txtDate None
Number of DVDs sold txtDvds None
Number of Blu-rays sold txtBluRays None
Calculate total discs sold and total sales amount btnCalc Click
Display the following information:
Current date txtDate None
Number of DVDs sold txtDvds None
Number of Blu-rays sold txtBluRays None
Total discs sold (from btnCalc) IbITotalDiscs None
Total sales amount (from btnCalc) IbITotalSales None
Print the sales receipt btnPrint Click
End the application btnExit Click
Clear screen for the next sale btnClear Click

Figure 2-9 Completed TOE chart ordered by task
© 2013 Cengage Learning

If the application you are creating is small, as is the Play It Again Movies application, you can
use the TOE chart in its current form to help you write the Visual Basic code. When the
application is large, however, it is often helpful to rearrange the TOE chart so that it is ordered
by object rather than by task. To do so, you list all of the objects in the Object column of a new
TOE chart, being sure to list each object only once. Then list each object’s tasks and events in
the Task and Event columns, respectively. Figure 2-10 shows the rearranged TOE chart ordered
by object rather than by task.

Task Object Event
1. Calculate total discs sold and total sales amount btnCalc Click

2. Display total discs sold and total sales amount
in IblTotalDiscs and IblTotalSales

Print the sales receipt btnPrint Click

End the application btnExit Click

Clear screen for the next sale btnClear Click

Display total discs sold (from btnCalc) IbITotalDiscs None

Display total sales amount (from btnCalc) IblTotalSales None

Get and display the sales information txtDate, txtDvds, None
txtBluRays

Figure 2-10 Completed TOE chart ordered by object
© 2013 Cengage Learning

After completing the TOE chart, the next step is to draw a rough sketch of the user interface.

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Planning an Object-Oriented Application

Drawing a Sketch of the User Interface

Although the TOE chart lists the objects to include in the interface, it does not indicate where
the objects should be placed on the form. While the design of an interface is open to creativity,
there are some guidelines to which you should adhere so that your interface is consistent with
the Windows standards. This consistency will give your interface a familiar look, which will
make your application easier to both learn and use. The guidelines are referred to as GUI
(graphical user interface) guidelines.

The first GUI guideline covered in this book pertains to the organization of the controls in the
interface. In Western countries, the user interface should be organized so that the information
flows either vertically or horizontally, with the most important information always located in the
upper-left corner of the interface. In a vertical arrangement, the information flows from top to
bottom: the essential information is located in the first column of the interface, while secondary
information is placed in subsequent columns. In a horizontal arrangement, on the other hand,
the information flows from left to right: the essential information is placed in the first row of the
interface, with secondary information placed in subsequent rows.

Related controls should be grouped together using either white (empty) space or one of the tools
located in the Containers section of the toolbox. Examples of tools found in the Containers
section include the GroupBox, Panel, and TableLayoutPanel tools. The difference between a
panel and a group box is that, unlike a group box, a panel can have scroll bars. However, unlike a
panel, a group box has a Text property that you can use to indicate the contents of the control.
Unlike the panel and group box controls, the table layout panel control provides a table
structure in which you place other controls.

Figures 2-11 and 2-12 show two different sketches of the Play It Again Movies interface.

In Figure 2-11 the information is arranged vertically, and white space is used to group related
controls together. In Figure 2-12 the information is arranged horizontally, with related
controls grouped together using a group box. Each box and button in both figures is labeled so
the user knows its purpose. For example, the “Date:” label tells the user the type of information
to enter in the box that appears to its right. Similarly, the “Calculate” caption on the first button
indicates the action the button will perform when it is clicked.

Play button | Sales Receipt
image
Date: [[Calculate]
s B ey
Blu-rays: [| rint Receip
Total discs: [| [Clear Screen]
Total sales: [| [Exit]

Figure 2-11 \Vertical arrangement of the Play It Again Movies application
© 2013 Cengage Learning

Some
companies have
their own
standards for
interfaces used
within the company. A
company’s standards
supersede the Windows

il

standards.
(X} The Ch02A-
u Containers
video
demonstrates

how to use the group box,
panel, and table layout
panel controls.

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Designing Applications

Play button Sales ReceipT
image
Sales information
Date: DVDs: Blu-rays:

Total discs: [| Totalsales: []

[Calculate][Print Receipt][Clear Screen][Exit]

Figure 2-12 Horizontal arrangement of the Play It Again Movies application
© 2013 Cengage Learning

Most times, program output (such as the result of calculations) is displayed in a label control in
the interface. Label controls that display program output should be labeled to make their
contents obvious to the user. In the interfaces shown in Figures 2-11 and 2-12, the “Total discs:”
and “Total sales:” labels identify the contents of the IblTotalDiscs and IblTotalSales controls,
respectively.

The text contained in an identifying label should be meaningful and left-aligned within the label.
In most cases, an identifying label should be from one to three words only and appear on one
line. In addition, the identifying label should be positioned either above or to the left of the
control it identifies. An identifying label should end with a colon (:), which distinguishes it from
other text in the user interface (such as the heading text “Sales Receipt”). Some assistive
technologies, which are technologies that provide assistance to individuals with disabilities, rely
on the colons to make this distinction. The Windows standard is to use sentence capitalization
for identifying labels. Sentence capitalization means you capitalize only the first letter in the
first word and in any words that are customarily capitalized.

As you learned in Chapter 1, buttons are identified by the text that appears on the button’s face.
The text is often referred to as the button’s caption. The caption should be meaningful, be from
one to three words only, and appear on one line. A button’s caption should be entered using
book title capitalization, which means you capitalize the first letter in each word, except for
articles, conjunctions, and prepositions that do not occur at either the beginning or end of the
caption. If the buttons are stacked vertically, as they are in Figure 2-11, all the buttons should be
the same height and width. If the buttons are positioned horizontally, as they are in Figure 2-12,
all the buttons should be the same height, but their widths may vary if necessary. In a group of
buttons, the most commonly used button typically appears first—either on the top (in a vertical
arrangement) or on the left (in a horizontal arrangement).

When positioning the controls in the interface, place related controls close to each other and be
sure to maintain a consistent margin from the edges of the form. Also, it’s helpful to align the
borders of the controls wherever possible to minimize the number of different margins
appearing in the interface. Doing this allows the user to more easily scan the information. You
can align the borders using the snap lines that appear as you are building the interface. Or, you
can use the FORMAT menu to align (and also size) the controls.

In this lesson you learned some basic guidelines to follow when sketching a graphical user
interface (GUI). You will learn more GUI guidelines in the remaining lessons and in subsequent
chapters. You can find a complete list of the GUI guidelines in Appendix B of this book.

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Lesson A Summary

Layout and Organization of the User Interface

o Organize the user interface so that the information flows either vertically or

horizontally, with the most important information always located in the upper-left
corner of the interface.

o Group related controls together using either white (empty) space or one of the tools

from the Containers section of the toolbox.

e Use a label to identify each text box in the user interface. Also use a label to identify

other label controls that display program output. The label text should be meaningful,
be from one to three words only, and appear on one line. Left-align the text within the
label, and position the label either above or to the left of the control it identifies. Enter
the label text using sentence capitalization, and follow the label text with a colon (:).

o Display a meaningful caption on the face of each button. The caption should indicate

the action the button will perform when clicked. Enter the caption using book title
capitalization. Place the caption on one line and use from one to three words only.

o When a group of buttons are stacked vertically, each button in the group should be

the same height and width. When a group of buttons are positioned horizontally, each
button in the group should be the same height. In a group of buttons, the most
commonly used button is typically placed first in the group.

o Align the borders of the controls wherever possible to minimize the number of

different margins appearing in the interface.

Lesson A Summary

To create an OO application:
1. Meet with the client

2. Plan the application

3. Build the user interface

4. Code the application

5. Test and debug the application

6. Assemble the documentation

To plan an OO application in Visual Basic 2012:

1. Identify the tasks the application needs to perform

2. Identify the objects to which you will assign the tasks

3. Identify the events required to trigger an object into performing its assigned tasks
4. Draw a sketch of the user interface

To assist you in identifying the major tasks an application needs to perform, ask the
following questions:

1. What information will the application need to display on the screen and/or print on the
printer?

2. What information will the user need to enter into the user interface to display and/or
print the desired information?

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or dupli

Designing Applications

3. What information will the application need to calculate to display and/or print the
desired information?

4. How will the user end the application?

5. Will prior information need to be cleared from the screen before new information is
entered?

Lesson A Key Terms

Book title capitalization—the capitalization used for a button’s caption; refers to capitalizing the
first letter in each word, except for articles, conjunctions, and prepositions that do not occur at
either the beginning or end of the caption

Sentence capitalization—the capitalization used for identifying labels; refers to capitalizing only
the first letter in the first word and in any words that are customarily capitalized

Text box—a control that provides an area in the form for the user to enter data

Lesson A Review Questions

1. When designing a user interface, the most important information should be placed in

the corner of the interface.
a. lower-left

b. lower-right

c. upper-left

d. upper-right

2. A button’s caption should be entered using

a. book title capitalization
b. sentence capitalization

c. either book title capitalization or sentence capitalization

3. Which of the following statements is false?

a. The text contained in identifying labels should be left-aligned within the label.

b. An identifying label should be positioned either above or to the right of the control it
identifies.

c. Identifying labels should be entered using sentence capitalization.
Identifying labels should end with a colon (:).

4. Listed below are the four steps you should follow when planning an OO application. Put
the steps in the proper order by placing a number (1 through 4) on the line to the left of
the step.

Identify the objects to which you will assign the tasks

Draw a sketch of the user interface

Identify the tasks the application needs to perform

Identify the events required to trigger an object into
performing its assigned tasks

earning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Lesson A Exercises

5. Listed below are the six steps you should follow when creating an OO application.
Put the steps in the proper order by placing a number (1 through 6) on the line to the left
of the step.

Test and debug the application
Build the user interface

Code the application

Assemble the documentation

Plan the application

Meet with the client

Lesson A Exercises

1. At the end of the year, each salesperson at Shiloh Products is paid a bonus of 1% of his INTRODUCTORY
or her annual sales. The company’s payroll clerk wants an application that will compute
the bonus after he or she enters the salesperson’s ID and annual sales. Prepare a TOE
chart ordered by task, and then rearrange the TOE chart so that it is ordered by object.
Be sure to include buttons that allow the user to both clear and print the screen. Draw a
sketch of the user interface. (You will create the interface in Lesson B’s Exercise 1 and
then code the application in Lesson C’s Exercise 1.)

2. Carson Carpets wants an application that allows the salesclerk to enter a floor’s length INTERMEDIATE
and width measurements in feet. The application should calculate the floor’s area in both
square feet and square yards. Prepare a TOE chart ordered by task, and then rearrange
the TOE chart so that it is ordered by object. Be sure to include buttons that allow
the user to both clear and print the screen. Draw a sketch of the user interface. (You
will create the interface in Lesson B’s Exercise 2 and then code the application in
Lesson C’s Exercise 4.)

3. KJ Inc. divides its sales territory into four regions: North, South, East, and West. INTERMEDIATE
The sales manager wants an application that allows him to enter the current year’s sales
for each region and the projected increase (expressed as a decimal number) for each
region. He wants the application to compute the following year’s projected sales for each
region. As an example, if the sales manager enters 10000 as the current sales for the
South region, and then enters .05 (the decimal equivalent of 5%) as the projected
increase, the application should display 10500 as the next year’s projected sales. Prepare a
TOE chart ordered by task, and then rearrange the TOE chart so that it is ordered by
object. Be sure to include buttons that allow the user to both clear and print the screen.
(You will create the interface in Lesson B’s Exercise 3 and then code the application in
Lesson C’s Exercise 5.)

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or dupli

Designing Applications

B LESSONB

After studying Lesson B, you should be able to:

Build the user interface using your TOE chart and sketch

Follow the Windows standards regarding the use of graphics, fonts, and color
Set a control’s BorderStyle, AutoSize, and TextAlign properties

Add a text box to a form

Lock the controls on the form

Assign access keys to controls

Set the TabIndex property

Building the User Interface

In Lesson A, you planned the Play It Again Movies application. Planning the application is
the second of the six steps involved in creating an OO application. Now you are ready to tackle
the third step, which is to build the user interface. You use the TOE chart and sketch you
created in the planning step as guides when building the interface, which involves placing

the appropriate controls on the form and setting the applicable properties of the controls.

To save you time, the VB2012\Chap02\Play It Again Solution folder contains a partially
completed application for Play It Again Movies. When you open the solution, you will find
that most of the user interface has been created and most of the properties have been set.
You will complete the interface in this lesson.

STARTINERE» To open the partially completed application:

1. If necessary, start Visual Studio 2012 and open the Solution Explorer window.

Open the Play It Again Solution (Play It Again Solution.sln) file contained in the
VB2012\Chap02\Play It Again Solution folder. If necessary, open the designer window.

2. Permanently display the Properties and Toolbox windows and then auto-hide the

Solution Explorer window. Figure 2-13 shows the partially completed interface, which
resembles the sketch shown in Figure 2-11 in Lesson A.

if you are using Windows 7, the
title bar text will be left-aligned

ol Play It Again Movies =N B

- Sales Receipt

Date: Calculate
DVDs: Print Receipt
Blu-rays: Clear Screen

Total discs: Label7 Exit

Total sales: l:l

Figure 2-13 Partially completed interface for the Play It Again Movies application
OpenClipArt.org/John Diamond / diamonjohn

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Building the User Interface

The application’s user interface follows the GUI guidelines covered in Lesson A. The

information is arranged vertically, and the controls are aligned wherever possible. Each text box

and button, as well as each label control that displays program output, is labeled so the user

knows the control’s purpose. The text contained in the identifying labels is entered using

sentence capitalization. In addition, the text ends with a colon and is left-aligned within the

label. The identifying labels are positioned to the left of the controls they identify. Each button’s

caption is entered using book title capitalization. The button captions and identifying labels
appear on one line and do not exceed the three-word limit. Because the buttons are stacked in

the interface, each button has the same height and width, and the most commonly used button

(Calculate) is placed at the top of the button group.

When building the user interface, keep in mind that you want to create a screen that no one notices.

Interfaces that contain a lot of different colors, fonts, and graphics may get “oohs” and “aahs” during font. and color
their initial use, but they become tiresome after a while. The most important point to remember is qui delines do not
that the interface should not distract the user from doing his or her work. The next three sections pertain to game
provide some guidelines to follow regarding the use of these elements in an interface. applications.

The graphics,

Including Graphics in the User Interface

The human eye is attracted to pictures before text, so use graphics sparingly. Designers typically
include graphics to either emphasize or clarify a portion of the screen. However, a graphic also
can be used merely for aesthetic purposes, as long as it is small and placed in a location that does
not distract the user. The small graphic in the Play It Again Movies interface is included for
aesthetics only. The graphic is purposely located in the upper-left corner of the interface, which
is where you want the user’s eye to be drawn first anyway. The graphic adds a personal touch to
the sales receipt form without being distracting to the user.

GUI DESIGN TIP Adding Graphics

o Use graphics sparingly. If the graphic is used solely for aesthetics, use a small
graphic and place it in a location that will not distract the user.

Selecting Fonts for the Interface

As you learned in Chapter 1, an object’s Font property determines the type, style, and size of the
font used to display the object’s text. You should use only one font type (typically Segoe UI) for all
of the text in the interface, and use no more than two different font sizes. In addition, avoid using
italics and underlining in an interface because both font styles make text difficult to read. The use
of bold text should be limited to titles, headings, and key items that you want to emphasize.

GUI DESIGN TIP Selecting Font Types, Styles, and Sizes

o Use only one font type (typically Segoe Ul) for all of the text in the interface.

o Use no more than two different font sizes in the interface.

o Avoid using italics and underlining because both font styles make text difficult to read.
o Limit the use of bold text to titles, headings, and key items that you want to emphasize.

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

You can change
the background
color of a control
by setting its
BackColor
property.

Designing Applications

Adding Color to the Interface

The human eye is attracted to color before black and white; therefore, use color sparingly in an
interface. It is a good practice to build the interface using black, white, and gray first, and then
add color only if you have a good reason to do so. Keep the following three points in mind when
deciding whether to include color in an interface:

1. People who have some form of either color blindness or color confusion will have
trouble distinguishing colors.

2. Color is very subjective: A color that looks pretty to you may be hideous to someone
else.

3. A color may have a different meaning in a different culture.

Usually, it is best to use black text on a white, off-white, or light gray background because dark
text on a light background is the easiest to read. You should never use a dark color for the
background or a light color for the text. This is because a dark background is hard on the eyes,
and light-colored text can appear blurry.

If you are going to include color in an interface, limit the number of colors to three, not including
white, black, and gray. Be sure that the colors you choose complement each other. Although color
can be used to identify an important element in the interface, you should never use it as the only
means of identification. In the Play It Again Movies interface, for example, the colored box helps
the salesclerk quickly locate the total sales amount. However, color is not the only means of
identifying the contents of that box; the box also has an identifying label (Total sales:).

Selecting Colors

o Build the interface using black, white, and gray. Only add color if you have a good
reason to do so.

o Use white, off-white, or light gray for the background. Use black for the text.

o Never use a dark color for the background or a light color for the text. A dark
background is hard on the eyes, and light-colored text can appear blurry.

o Limit the number of colors in an interface to three, not including white, black, and
gray. The colors you choose should complement each other.

o Never use color as the only means of identification for an element in the interface.

The BorderStyle, AutoSize, and TextAlign Properties

A control’s border is determined by its BorderStyle property, which can be set to None,
FixedSingle, or Fixed3D. Controls with a BorderStyle property set to None have no border.
Setting the BorderStyle property to FixedSingle surrounds the control with a thin line, and
setting it to Fixed3D gives the control a three-dimensional appearance. In most cases, a text
box’s BorderStyle property should be left at the default setting: Fixed3D. The BorderStyle
property for each text box in the Play It Again Movies interface follows this convention.

The appropriate setting for a label control’s BorderStyle property depends on the control’s
purpose. Label controls that identify other controls (such as those that identify text boxes)
should have a BorderStyle property setting of None, which is the default setting. This is the
setting for each identifying label in the Play It Again Movies interface. Label controls that display

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Building the User Interface

program output, such as those that display the result of a calculation, typically have a
BorderStyle property setting of FixedSingle. The BorderStyle property of the lblTotalSales
control in the Play It Again Movies interface is set to FixedSingle. You should avoid setting a
label control’s BorderStyle property to Fixed3D because, in Windows applications, a control
with a three-dimensional appearance implies that it can accept user input.

A label control’s AutoSize property determines whether the control automatically sizes to fit its
current contents. The appropriate setting depends on the label’s purpose. Label controls that
identify other controls use the default setting: True. However, you typically set to False the
AutoSize property of label controls that display program output.

A label control’s TextAlign property determines the alignment of the text within the label. The
TextAlign property can be set to nine different values, such as TopLeft, MiddleCenter, and
BottomRight. In the next set of steps, you will change the AutoSize, BorderStyle, and TextAlign
properties of the IblTotalDiscs control. (The AutoSize, BorderStyle, and TextAlign properties of
the IblTotalSales control have already been set.) You also will delete the contents of the control’s
Text property and then size the control to match the IblTotalSales control.

To change the properties of the IbiTotalDiscs control and then size the control:

1. Click the IblTotalDiscs control, which contains the text Label7. Set the following
properties:

AutoSize False

BorderStyle FixedSingle

2. Click TextAlign in the Properties list and then click the list arrow in the Settings box.
Click the center button to change the property’s setting to MiddleCenter.

3. Click Text in the Properties list and then select (highlight) Label7. Press Delete (or
Backspace) and then press Enter.

4. Click the IblTotalSales control and then press and hold down the Ctrl key as you click
the IblTotalDiscs control. Click FORMAT on the menu bar, point to Make Same Size,
and then click Both.

5. Click the form to deselect the two labels.

GUI DESIGN TIP Setting the BorderStyle Property of a Text Box or Label

o Keep the BorderStyle property of text boxes at the default setting: Fixed3D.
o Keep the BorderStyle property of identifying labels at the default setting: None.

o Set to FixedSingle the BorderStyle property of labels that display program output,
such as those that display the result of a calculation.

o In Windows applications, a control that contains data that the user is not allowed to
edit does not usually appear three-dimensional. Therefore, avoid setting a label
control's BorderStyle property to Fixed3D.

<(START HERE

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

l

Designing Applications

GUI DESIGN TIP Setting the AutoSize Property of a Label

Keep the AutoSize property of identifying labels at the default setting: True.

In most cases, set to False the AutoSize property of label controls that display
program output.

Adding a Text Box Control to the Form

A text box is an As mentioned earlier, a text box provides an area in the form for the user to enter data. Missing
instance of the from the Play It Again Movies interface is the text box for entering the number of Blu-rays sold.

TextBox class.

You will add the missing text box in the next set of steps.

STARWNERE> To add the missing text box to the form:

1.

Use the TextBox tool in the toolbox to add a text box to the form. Position the text box
immediately below the text box labeled DVDs.

Change the text box’s name to txtBluRays and press Enter.

Next, you will make the Blu-rays text box the same size as the DVDs text box. Click the
txtDvds control and then Ctrl+click the txtBluRays control. Click FORMAT on the
menu bar, point to Make Same Size, and then click Both.

You can align the Blu-rays text box using either the FORMAT menu or the snap lines.
You will use the snap lines. Click the form to deselect the DVDs and Blu-rays text boxes.
Place your mouse pointer on the txtBluRays control, and then press and hold down
the left mouse button as you drag the control to the location shown in Figure 2-14.
The blue snap lines help you align the Blu-rays text box with the DVDs text box.

The pink snap line allows you to align the text in the Blu-rays text box with the text in its
identifying label.

ol Play It Again Movies [E=HEoH |5

blue snap line

pink snap line— —

5.

Calculate
DVDs: | Print Receipt .
Blu-rays: [| Clear Screen
Total discs: -
Total sales:

Figure 2-14 Snap lines shown in the interface
OpenClipArt.org/John Diamond / diamonjohn

When the Blu-rays text box is in the correct location, release the mouse button.

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Assigning Access Keys

Locking the Controls on a Form A locked contr
After placing all of the controls in their appropriate locations, it is a good idea to lock the It also can be
controls on the form. Locking the controls prevents them from being moved inadvertently as moved by setting
you work in the IDE. You can lock the controls by clicking the form (or any control on the form) its Location

and then clicking the Lock Controls option on the FORMAT menu; you can follow the same property.
procedure to unlock the controls. You also can lock and unlock the controls by right-clicking

the form (or any control on the form) and then clicking Lock Controls on the context menu.
When a control is locked, a small lock appears in the upper-left corner of the control.

To lock the controls on the form and then save the solution: <«(START HERE

1. Right-click the form and then click Lock Controls. A small lock appears in the
upper-left corner of the form.

2. Save the solution. Try dragging one of the controls to a different location on the form.
You will not be able to do so.

Assigning Access Keys

The text in many of the controls shown in Figure 2-14 contains an underlined letter. The underlined
letter is called an access key, and it allows the user to select an object using the Alt key in
combination with a letter or number. For example, you can select the Exit button in the Play It Again
Movies interface by pressing Alt+x because the letter x is the Exit button’s access key. Access keys are
not case sensitive. Therefore, you can select the Exit button by pressing either Alt+x or Alt+X. If you
do not see the underlined access keys while an application is running, you can show them temporarily
by pressing the Alt key. (To always display access keys in Windows 7, see the Summary section at the
end of this lesson.)

You should assign access keys to each of the controls (in the interface) that can accept user
input. Examples of such controls include text boxes and buttons. This is because the user can
enter information in a text box and click a button. The only exceptions to this rule are the OK
and Cancel buttons, which typically do not have access keys in Windows applications. It is
important to assign access keys for the following reasons:

1. They allow a user to work with the application even when their mouse becomes
inoperative.

2. They allow users who are fast typists to keep their hands on the keyboard.

3. They allow people who cannot work with a mouse, such as people with disabilities, to
use the application.

You assign an access key by including an ampersand (&) in the control’s caption or identifying
label. If the control is a button, you include the ampersand in the button’s Text property, which
is where a button’s caption is stored. If the control is a text box, you include the ampersand in
the Text property of its identifying label. (As you will learn later in this lesson, you also must set
the TabIndex properties of the text box and its identifying label appropriately.) You enter the
ampersand to the immediate left of the character you want to designate as the access key. For
example, to assign the letter x as the access key for the Exit button, you enter E&xit in the
button’s Text property. To assign the letter D as the access key for the txtDvds control, you
enter &DVDs: in the Text property of its identifying label.

Each access key in an interface should be unique. The first choice for an access key is the
first letter of the caption or identifying label, unless another letter provides a more meaningful
association. For example, the letter x is the access key for an Exit button because it provides

a more meaningful association than does the letter E. If you can’t use the first letter (perhaps

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

START HERED>

When a text box
has the focus, an
insertion point
appears inside it.
When a button
has the focus, a dotted
rectangle appears inside
its darkened border.

ll

Designing Applications

because it is already used as the access key for another control) and no other letter provides a
more meaningful association, then use a distinctive consonant in the caption or label. The last
choices for an access key are a vowel or a number.

Missing from the interface shown in Figure 2-14 are the access keys for the Calculate button and
Date text box. You will assign those access keys in the next set of steps. However, notice that the
Total discs: and Total sales: labels also do not have access keys. This is because those labels do
not identify controls that accept user input; rather, they identify other label controls. Recall that
users cannot access label controls while an application is running, so it is inappropriate to assign
an access key to their identifying labels.

To assign access keys to the Calculate button and Date text box:

1. Click the Calculate button. Change the button’s Text property to &Calculate and then
press Enter. The letter C in the button’s caption is now underlined.

2. Click the Date: label, which identifies the txtDate control. Change the label’s Text
property to Da&te: and then press Enter. The letter t is now underlined.

- 1]
GUI DESIGN TIP Assigning Access Keys

o Assign a unique access key to each control that can accept user input.

« When assigning an access key to a control, use the first letter of the control’s caption
or identifying label, unless another letter provides a more meaningful association.
If you can't use the first letter and no other letter provides a more meaningful
association, then use a distinctive consonant. Lastly, use a vowel or a number.

Controlling the Tab Order

While you are creating the interface, each control’'s Tablndex property contains a number
that represents the order in which the control was added to the form. The first control added
to a form has a TabIndex value of 0; the second control has a TabIndex value of 1, and so on.
The TabIndex values determine the tab order, which is the order in which each control receives
the focus when the user either presses the Tab key or employs an access key while an
application is running. A control whose TabIndex is 2 will receive the focus immediately

after the control whose Tablndex is 1, and so on. When a control has the focus, it can accept
user input. Not all controls have a TabIndex property; a PictureBox control, for example, does
not have a TabIndex property.

Most times, you will need to reset the TabIndex values for an interface. This is because controls
rarely are added to a form in the desired tab order. To determine the appropriate TabIndex
values, you first make a list of the controls that can accept user input. The list should reflect the
order in which the user will want to access the controls. In the Play It Again Movies interface,
the user typically will want to access the txtDate control first, followed by the txtDvds control,
the txtBluRays control, the btnCalc control, and so on.

If a control that accepts user input is identified by a label control, you also include the label
control in the list. (A text box is an example of a control that accepts user input and is identified
by a label control.) You place the name of the label control immediately above the name of the
control it identifies in the list. In the Play It Again Movies interface, the Label2 control (which
contains Date:) identifies the txtDate control. Therefore, Label2 should appear immediately
above txtDate in the list.

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Controlling the Tab Order

The names of controls that do not accept user input and are not used to identify controls that
do should be listed at the bottom of the list; these names do not need to appear in any specific
order. After listing the control names, you then assign each control in the list a TabIndex value,
beginning with the number 0. If a control does not have a TabIndex property, you do not assign
it a TabIndex value in the list. You can tell whether a control has a TabIndex property by
viewing its Properties list.

Figure 2-15 shows the list of controls and TabIndex values for the Play It Again Movies
interface. Notice that the TabIndex value assigned to each text box’s identifying label is one
number less than the value assigned to the text box itself. For example, the Label2 control has a
TabIndex value of 0 and its corresponding text box (txtDate) has a Tablndex value of 1. For a
text box’s access key (which is defined in the identifying label) to work appropriately, you must
be sure to set the identifying label’s TabIndex property to a value that is one number less than
the value stored in the text box’s TabIndex property.

Controls that accept user input,
along with their identifying labels Tabindex value

Label2 (Date:)
txtDate

Label3 (DVDs:)
txtDvds

Label4 (Blurays:)
txtBluRays
btnCalc

btnPrint

btnClear

btnExit

OooO~NOOT Pk~ wNH— O

Other controls

Labell (Sales Receipt) 10
Label5 (Total discs:) 11
Label6 (Total sales:) 12
IblTotalDiscs 13
IbITotalSales 14
PictureBox1 N/A

Figure 2-15 List of controls and TabIndex values
© 2013 Cengage Learning

You can set each control’s TabIndex property using either the Properties window or the Tab
Order option on the VIEW menu. The Tab Order option is available only when the designer
window is the active window.

To set the TabIndex values and then verify the tab order:

1. Click the form to make the designer window the active window. Click VIEW on the
menu bar and then click Tab Order. The current TabIndex values appear in blue boxes
on the form. (The picture box does not have a TabIndex property.)

2. You begin specifying the desired tab order by clicking the first control you want in the
tab order. According to Figure 2-15, the first control in the tab order should be the
Label2 control, which displays the Date: text. Click the blue box that contains the
number 1. (You also can click the Label2 control directly.) The number 0 replaces the
number 1 in the box, and the color of the box changes from blue to white to indicate
that you have set the control’s TabIndex value.

<«(START HERE

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

You also can
remove the
TabIndex boxes
using the Tab
Order option on
the VIEW menu.

Tablndex is O

Designing Applications

The second control in the tab order should be the txtDate control, which currently
has a TabIndex value of 10. Click the blue box that contains the number 10. The

number 1 replaces the number 10 in the box, and the color of the box changes from
blue to white.

Use the information shown in Figure 2-16 to set the TabIndex properties for the
remaining controls, which have TabIndex values of 2 through 14. Be sure to set the
values in numerical order. If you make a mistake, press the Esc key to remove the
TabIndex boxes from the form, and then repeat Steps 1 through 4. When you have
finished setting all of the TabIndex values, the color of the boxes will automatically
change from white to blue, as shown in Figure 2-16.

ol Play It Again Movies [E=8 (=R 5

: Il_gales Receipt

ﬂ E Calculate
EUDS: E __;rint Receipt .
u—rays: E EClear Screen

m:al discs: m E Em
m:al sales: m

Figure 2-16 Tablndex boxes showing the correct Tabindex values
OpenClipArt.org/John Diamond / diamonjohn

Press Esc to remove the TabIndex boxes from the form.

Save the solution and then start the application. If the access keys do not appear in
the interface, press the Alt key. When you start an application, the computer sends the
focus to the control whose TabIndex is 0. In the Play It Again Movies interface, that
control is the Label2 (Date:) control. However, because label controls cannot receive the
focus, the computer sends the focus to the next control in the tab order sequence
(txtDate). The blinking insertion point indicates that the text box has the focus and

is ready to receive input from you. See Figure 2-17.

TabIndex is 1

Calculate

. Print Receipt .

Blu-rays: Clear Screen

Total discs: I:l 2
Total sales: I:l

Figure 2-17 Play It Again Movies interface
OpenClipArt.org/John Diamond / diamonjohn

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Lesson B Summary

7. Type 5/6/2014 in the Date text box. The information you entered is recorded in the text
box’s Text property.

8. In Windows applications, the Tab key moves the focus forward, and the Shift+Tab key
combination moves the focus backward. Press Tab to move the focus to the DVDs text
box, and then press Shift+Tab to move the focus back to the Date text box.

9. Now use the Tab key to verify the tab order of the controls in the interface. Press Tab, slowly,
three times. The focus moves to the DVDs text box, then to the Blu-rays text box, and then to
the Calculate button. Notice that when a button has the focus, a dotted rectangle appears
inside its darkened border. Press Tab, slowly, three more times. The focus moves to the Print
Receipt button, then to the Clear Screen button, and finally to the Exit button.

10. Pressing the Enter key when a button has the focus invokes the button’s Click event,
causing the computer to process any code contained in the Click event procedure. Press
Enter to have the computer process the Exit button’s Click event procedure, which
contains the Me.Close() instruction. The application ends.

11. You also can move the focus using a text box’s access key. Start the application. If the
access keys do not appear in the interface, press the Alt key to display them. Now, press
Alt+b to move the focus to the Blu-rays text box. Then press Alt+t to move the focus to
the Date text box. Lastly, press Alt+d to move the focus to the DVDs text box.

12. Unlike pressing a text box’s access key, which moves the focus, pressing a button’s access
key invokes the button’s Click event. Press Alt+x to invoke the Exit button’s Click event,
which ends the application.

13. Close the solution.

Using the Tablndex Property to Control the Focus

e Assign a TabIndex value (starting with 0) to each control in the interface, except for
controls that do not have a TabIndex property. The Tablndex values should reflect the
order in which the user will want to access the controls.

o To allow users to access a text box using the keyboard, assign an access key to the
text box's identifying label. Set the identifying label's Tablndex property to a value that
is one number less than the value stored in the text box’s Tablndex property.

Lesson B Summary
e To use appropriate graphics, fonts, and colors in an interface:

Refer to the GUI guidelines listed in Appendix B for this chapter’s lesson.
e To specify a control’s border:

Set the control’s BorderStyle property.

e To specify whether a label control should automatically size to fit its current contents:
Set the label control’s AutoSize property.
e To specify the alignment of the text within a label control:

Set the label control’'s TextAlign property.

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or dupli

Designing Applications

e To lock/unlock the controls on the form:

Right-click the form or any control on the form and then select Lock Controls on the
context menu. You also can click the Lock Controls option on the FORMAT menu.

e To assign an access key to a control:

Type an ampersand (&) in the Text property of the control or identifying label. The
ampersand should appear to the immediate left of the character that you want to designate
as the access key.

e To provide keyboard access to a text box:

Assign an access key to the text box’s identifying label. Set the identifying label’s TabIndex
property to a value that is one number less than the text box’s TabIndex value.

e To employ an access key:

If necessary, press the Alt key to display the access keys, and then release the key. Press and
hold down the Alt key as you tap the access key.

e To set the tab order:

Set each control’s TabIndex property to a number (starting with 0) that represents the order
in which the control should receive the focus. You can set the TabIndex property using
either the Properties window or the Tab Order option on the VIEW menu.

e To always display access keys in Windows 7:

Click the Start button on the Windows 7 taskbar. Click Control Panel and then click
Appearance and Personalization. In the Ease of Access Center section, click Turn on easy
access keys. Select the Underline keyboard shortcuts and access keys check box, and then
click the OK button. Close the Control Panel window.

Lesson B Key Terms

Access key—the underlined character in an object’s identifying label or caption; allows the user
to select the object using the Alt key in combination with the underlined character

AutoSize property—determines whether a control automatically sizes to fit its current contents
BorderStyle property—determines the appearance of a control’s border
Focus—indicates that a control is ready to accept user input

Tab order—the order in which each control receives the focus when the user either presses the
Tab key or employs an access key while an application is running

Tabindex property—specifies a control’s position in the tab order

TextAlign property—determines the alignment of the text within a control

Lesson B Review Questions

1. Which property determines the tab order for the controls in an interface?

a. SetOrder
b. SetTab

c. TabIndex
d. TabOrder

earning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Lesson B Exercises

2. An Exit button’s access key is always the letter

a. E
b. x
c. i
3. You assign an access key using a control’s property.
a. Access
b. Caption
c. Key
d. Text

4. Which of the following specifies the letter D as the access key?

a. &Display
b. #Display
c. “Display
d. D&isplay

5. Explain the method for providing keyboard access to a text box.

Lesson B Exercises

1. Open the Shiloh Solution (Shiloh Solution.sln) file contained in the VB2012\Chap02\ INTRODUCTORY
Shiloh Solution folder. If necessary, open the designer window. Figure 2-18 shows the
completed interface. Add the missing txtSales and 1blBonus controls to the form. Set the
IbIBonus control’s TextAlign property to MiddleCenter. Lock the controls on the form.
Assign the access keys (shown in the figure) to the text boxes and buttons. Set the
TabIndex values appropriately. Save the solution and then start the application. Verify
that the tab order is correct. Also verify that the access keys work appropriately. Use the
Exit button to end the application. Close the solution. (You will code the Calculate, Print,
and Clear Screen buttons in Lesson C’s Exercise 1.)

&

- Shiloh Products [E=R (SR ™=

Bonus Calculator

1D: Annual sales: Bonus:

[]

Calculate Print Clear Screen Exit

Figure 2-18 Shiloh Products user interface

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or dupli

INTERMEDIATE

INTERMEDIATE

Designing Applications

Create a Visual Basic Windows application. Use the following names for the solution and
project respectively: Carson Solution and Carson Project. Save the application in the
VB2012\Chap02 folder. Change the form file’s name to Main Form.vb. Change the form’s
name to frmMain. The form should be centered on the screen when it first appears; set
the appropriate property. Create the interface shown in Figure 2-19. Use the following
names for the text boxes, labels, and buttons: txtLength, txtWidth, IblAreaSqFt,
IblAreaSqYd, btnCalc, btnPrint, btnClear, and btnExit. (Or, use the names from the TOE
chart you created in Lesson A’s Exercise 2.) The contents of the IblAreaSqFt and
IblAreaSqYd controls should be centered; set the appropriate property. Lock the controls
on the form. Set the TabIndex values appropriately. The Exit button should end the
application when it is clicked; code the appropriate event procedure. Save the solution
and then start the application. Verify that the tab order is correct. Also verify that the
access keys work appropriately. Use the Exit button to end the application. Close the
solution. (You will code the Calculate, Print, and Clear buttons in Lesson C’s Exercise 4-.)

&

o Carson Carpets T
Area Calculator

Length (feet). Calculate

Width (feet): Print

Area (square feet): I:l Clear
Area (square yards): I:l Exit

Figure 2-19 Carson Carpets user interface

Create a Visual Basic Windows application. Use the following names for the solution
and project respectively: KJ Solution and K] Project. Save the application in the
VB2012\Chap02 folder. Change the form file’s name to Main Form.vb. Change the form’s
name to frmMain. The form should be centered on the screen when it first appears; set
the appropriate property. Create the interface shown in Figure 2-20. Use the following
names for the text boxes, labels, and buttons: txtNsales, txtSsales, txtEsales, txtWsales,
txtNincrease, txtSincrease, txtEincrease, txtWincrease, IbINorth, IblSouth, 1blEast,
IbIWest, btnCalc, btnPrint, btnClear, and btnExit. (Or, use the names from the TOE
chart you created in Lesson A’s Exercise 3.) The contents of the four label controls that
display the projected sales should be right-aligned; set the appropriate property. Lock the
controls on the form. Set the TabIndex values appropriately. The Exit button should end
the application when it is clicked; code the appropriate event procedure. Save the solution
and then start the application. Verify that the tab order is correct. Also verify that the
access keys work appropriately. Use the Exit button to end the application. Close the
solution. (You will code the Calculate, Print, and Clear buttons in Lesson C’s Exercise 5.)

earning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Lesson B Exercises

- K Inc. [E=R(EcR ==

Mote: Enter the projected increase in decimal form.

Morth South East West

Current sales:

Projected increase:

Projected sales: | | | | | |

Calculate Print Clear Exit

Figure 2-20 KJ Inc. user interface

4. Open the Age Solution (Age Solution.sln) file contained in the VB2012\Chap02\Age INTERMEDIATE
Solution folder. If necessary, open the designer window. The application allows the user
to enter the year you were born and the current year. When it is coded, the Calculate
button will calculate your age by subtracting your birth year from the current year. Lay
out and organize the interface so that it follows all of the GUI design guidelines you have
learned so far. (Refer to Appendix B for a listing of the guidelines covered in Chapter 1
and in Lessons A and B of Chapter 2.) Lock the controls on the form. Code the Exit
button’s Click event procedure so it ends the application. Save the solution and then start
the application. Verify that the tab order is correct. Also verify that the access keys work
appropriately. Use the Exit button to end the application. Close the solution. (You will
code the Calculate and Print buttons in Lesson C’s Exercise 2.)

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or dupli

Designing Applications

B LESSON C

After studying Lesson C, you should be able to:

e Code an application using its TOE chart

e Plan an object’s code using either pseudocode or a flowchart
e Write an assignment statement

e Send the focus to a control during run time

e Include internal documentation in the code

e Write arithmetic expressions

e Use the Val and Format functions

e Print an interface from code

e Locate and correct syntax errors

Coding the Application

In Lessons A and B, you created a TOE chart and user interface for the Play It Again Movies
application. The user interface and TOE chart are shown in Figures 2-21 and 2-22, respectively.

ayl Play It Again Movies =]

Date: Calculate
DVDs: Print Receipt
Blu-rays: Clear Screen

Total discs: I:I Exit
Total sales: I:I

Figure 2-21 Play It Again Movies user interface from Lesson B
OpenClipArt.org/John Diamond / diamonjohn

Task Object Event

1. Calculate total discs sold and total sales amount btnCalc Click
2. Display total discs sold and total sales amount in
IbITotalDiscs and IblTotalSales

Print the sales receipt btnPrint Click
End the application btnExit Click
Clear screen for the next sale btnClear Click
Display total discs sold (from btnCalc) IbITotalDiscs None
Display total sales amount (from btnCalc) IbITotalSales None
Get and display the sales information txtDate, txtDvds, txtBluRays None

Figure 2-22 TOE chart (ordered by object) for Play It Again Movies
© 2013 Cengage Learning

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Coding the Application

After planning an application and building its user interface, you then can begin coding the
application. You code an application so that the objects in the interface perform their assigned
tasks when the appropriate event occurs. The objects and events that need to be coded, as well
as the tasks assigned to each object and event, are listed in the application’s TOE chart. The
TOE chart in Figure 2-22 indicates that only the four buttons require coding, as they are the
only objects with an event listed in the third column of the chart.

Before you begin coding an object’s event procedure, you should plan it. Many programmers use
planning tools such as pseudocode or flowcharts. You do not need to create both a flowchart
and pseudocode for a procedure; you need to use only one of these planning tools. The tool you
use is really a matter of personal preference. For simple procedures, pseudocode works just fine.
When a procedure becomes more complex, however, the procedure’s steps may be easier to
understand in a flowchart. The programmer uses either the procedure’s pseudocode or its
flowchart as a guide when coding the procedure.

Using Pseudocode to Plan a Procedure

Pseudocode uses short phrases to describe the steps a procedure must take to accomplish its
goal. Even though the word “pseudocode” might be unfamiliar to you, you have already written
pseudocode without even realizing it. Consider the last time you gave directions to someone. You
wrote each direction down on paper, in your own words; your directions were a form of pseudocode.

Figure 2-23 shows the pseudocode for the procedures that need to be coded in the Play

It Again Movies application. Notice that the btnExit control’s Click event procedure will
simply end the application. The btnCalc control’s Click event procedure will calculate the
total discs sold and the total sales amount, and then display the calculated results in the
appropriate label controls in the interface. The btnPrint control’s Click event procedure will
print the sales receipt. The btnClear control’s Click event procedure will prepare the screen
for the next sale. It will do this by removing the previous sale’s information—in this case, the
number of DVDs sold, the number of Blu-rays sold, the total number of discs sold, and
the total sales—from the appropriate controls in the interface. It then will send the focus
to the txtDvds control so the user can begin entering the next sale. You may be wondering
why the event procedure doesn’t clear the date entered in the txtDate control, and why it
sends the focus to the txtDvds control rather than to the txtDate control. After the salesclerk
enters the date the first time, there is no reason to have him or her enter it again for
subsequent sales because the date will be the same.

btnExit Click event procedure
end the application

btnCalc Click event procedure

1. calculate total discs sold = DVDs sold + Blu-rays sold

2. calculate total sales = total discs sold « disc price

3. display total discs sold and total sales in IblTotalDiscs and IblTotalSales

btnPrint Click event procedure
print the sales receipt

btnClear Click event procedure

1. clear the contents of the txtDvds and txtBluRays text boxes

2. clear the contents of the IblTotalDiscs and IblTotalSales controls

3. send the focus to the txtDvds control so the user can begin entering the next sale

Figure 2-23 Pseudocode for the Play It Again Movies application
© 2013 Cengage Learning

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Designing Applications

Using a Flowchart to Plan a Procedure

Unlike pseudocode, which consists of short phrases, a flowchart uses standardized symbols to
show the steps a procedure must follow to reach its goal. Figure 2-24 shows the flowcharts for

the procedures that need to be coded in the Play It Again Movies application. The logic
illustrated in the flowcharts is the same as the logic shown in the pseudocode in Figure 2-23.
The flowcharts contain three different symbols: an oval, a rectangle, and a parallelogram. The
oval symbol is called the start/stop symbol. The start and stop ovals indicate the beginning and
end, respectively, of the flowchart. The rectangles are called process symbols. You use the
process symbol to represent tasks such as making assignments and calculations. The
parallelogram in a flowchart is called the input/output symbol and is used to represent input
tasks (such as getting information from the user) and output tasks (such as displaying
information). The parallelograms in Figure 2-24 represent output tasks. The lines connecting
the symbols in a flowchart are called flowlines.

btnExit Click event procedure

| end the application |

btnCalc Click event procedure

total discs sold = DVDs
sold + Blu-rays sold

!

total sales = total discs
sold * disc price

display total
discs sold in
IbITotalDiscs

display total
sales in
IblTotalSales

btnPrint Click event procedure

print the
sales receipt

btnClear event procedure

start

{

clear the contents of
xtDvds and txtBluRays

!

clear the contents of
IbITotalDiscs and
IbITotalSales

!

send the focus to txtDvds

stop

i}

Figure 2-24 Flowcharts for Play It Again Movies

© 2013 Cengage Learning

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Coding the btnClear Control's Click Event Procedure

Coding the btnClear Control's Click Event Procedure

According to its pseudocode and flowchart, the btnClear control’s Click event procedure should
clear the Text property of two of the three text boxes and two of the labels in the interface. It
then should send the focus to the txtDvds control. You can clear the Text property of an object
by assigning a zero-length string to it. A string is defined as zero or more characters enclosed in
quotation marks. The word “Jones” is a string. Likewise, “45” is a string, but 45 (without the
quotes) is a number. “Jones” is a string with a length of five because there are five characters
between the quotation marks. “45” is a string with a length of two because there are two
characters between the quotation marks. Following this logic, a zero-length string, also called an
empty string, is a set of quotation marks with nothing between them, like this: "". Assigning a
zero-length string to the Text property of an object during run time removes the contents of the
object. You also can clear an object’s Text property by assigning the value String.Empty to it

You also can use
the Clear
method to clear
the contents of a
text box. The

Clear method is covered

while an application is running. When you do this, the computer assigns an empty string to the in Discovery Exercise 14
Text property, thereby removing its contents. at the end of this lesson.

Assigning a Value to a Property during Run Time

In Chapter 1, you learned how to use the Properties window to set an object’s properties during
design time, which is when you are building the interface. You also can set an object’s properties
during run time; you do this using an assignment statement. An assignment statement is one of
many different types of Visual Basic instructions. Its purpose is to assign a value to something
(such as to the property of an object) while an application is running.

The syntax of an assignment statement is shown in Figure 2-25 along with examples of using the
syntax. In the syntax, object and property are the names of the object and property, respectively,
to which you want the value of the expression assigned. The expression can be a string, a
keyword, a number, or a calculation. You use a period to separate the object name from the
property name. Recall that the period is the dot member access operator. In this case, the
operator indicates that the property is a member of the object. You use an equal sign between the
object.property information and the expression. The equal sign in an assignment statement is
called the assignment operator.

Assigning a Value to a Property during Run Time

Syntax
object.property = expression

Examples
txtState.Text = "Montana"

txtName.Text = String.Empty
btnCalc.Visible = False
1b1Due.Width = 120
1b1Product.Text = 6 + 3

Figure 2-25 Syntax and examples of assigning a value to a property during run time
© 2013 Cengage Learning

When the computer processes an assignment statement, it assigns the value of the expression
that appears on the right side of the assignment operator to the object and property that appear
on the left side of the assignment operator. The assignment statement txtState.Text =
"Montana", for example, assigns the string “Montana” to the txtState control’s Text property.
Similarly, the assignment statement txtName.Text = String.Empty assigns the empty string to
the Text property of the txtName control. You will use assignment statements to code the
btnClear control’s Click event procedure.

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Designing Applications

START |.. To open the btnClear control's Click event procedure:

1.

4,

5.

If necessary, start Visual Studio 2012 and open the Solution Explorer window. Open
the Play It Again Solution (Play It Again Solution.sln) file from Lesson B. The file is
contained in the VB2012\Chap02\Play It Again Solution folder. If necessary, open the
designer window.

Auto-hide the Solution Explorer window. If necessary, auto-hide the Properties and
Toolbox windows.

Open the Code Editor window. Notice that the btnExit control’s Click event procedure
has already been coded.

Use the Class Name and Method Name list boxes to open the code template for the
btnClear control’s Click event procedure.

Press Enter to insert a blank line below the procedure header.

According to its pseudocode and flowchart (shown earlier in Figures 2-23 and 2-24), the
procedure should clear the contents of the txtDvds and txtBluRays text boxes. You can do this

using either the textbox.Text = String. Empty instruction or the textbox.Text =

instruction,

where textbox is the name of the appropriate text box. You will assign the String. Empty value to
the Text property of both text boxes. As you learned in Chapter 1, you can either type the Visual
Basic instructions on your own or use the IntelliSense feature that is built into the Code Editor.
In the next set of steps, you will use the IntelliSense feature.

STARTERE> To begin coding the btnClear control's Click event procedure:

1.

First, you will enter the txtDvds.Text = String.Empty assignment statement in the
procedure. Type the two letters tx and then (if necessary) click the Common tab. The
IntelliSense feature lists the names of the three text boxes. See Figure 2-26.

Private Sub btnClear_Click(sender As Object, e As E

t)(|
End < EERSE Friend WithEvents txtBluRays As System.Windows.Forms. TextBox

@
End Clas o~ Dt
@, bitDvds

Common | All

Figure 2-26 Listing of text box names

Type tdv to highlight txtDvds in the list and then press Tab to enter txtDvds in the
assignment statement.

Now type . (a period) to display a listing of the properties and methods of the

txtDvds control. If Text is not highlighted in the list, type te. At this point, you can either
press the Tab key to enter the Text property in the assignment statement, or you can
type the character that follows Text in the statement. In this case, the next character is
the assignment operator. Type = to enter the Text property and an equal sign in the
statement.

Next, type st to highlight String in the list, and then type .e to highlight Empty. Press
Enter. The txtDvds.Text = String.Empty statement appears in the Code Editor
window. See Figure 2-27.

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Coding the btnClear Control's Click Event Procedure

Private Sub btnClear_Click(sender As Object, e
txtDvds.Text = String.Empty

End Sub
End Class

Figure 2-27 First assignment statement entered in the procedure

When entering code, you can type the names of commands, objects, and properties in lowercase
letters. When you move to the next line in the Code Editor window, the Code Editor
automatically changes your code to reflect the proper capitalization of those elements. This
provides a quick way of verifying that you entered an object’s name and property correctly, and
that you entered the code using the correct syntax. If the capitalization does not change, it
means that the Code Editor does not recognize the object, command, or property. In this book
you will always be given the complete instruction to enter, including the appropriate
capitalization. Keep in mind that you can either type the instruction on your own or use the
IntelliSense feature to enter the instruction.

To continue coding the btnClear control’s Click event procedure: -RT HERE
1. Type txtBluRays.Text = String.Empty and press Enter.

2. Next, the procedure should clear the contents of the IblTotalDiscs and IblTotalSales
controls. Enter the following two assignment statements. Press Enter twice after typing
the last statement.

IblTotalDiscs.Text = String. Empty
IblTotalSales. Text = String.Empty

The last step in the procedure’s pseudocode and flowchart is to send the focus to the txtDvds
control. You can accomplish this task using the Focus method. Recall that a method is a
predefined Visual Basic procedure that you can call (or invoke) when needed.

Using the Focus Method

You can use the Focus method to move the focus to a specified control while an application is
running. As you learned in Lesson B, a control that has the focus can accept user input. The
Focus method’s syntax is object.Focus(), in which object is the name of the object to which you
want the focus sent.

To enter the Focus method in the btnClear control’'s Click event procedure: -RT HERE
1. Type txtDvds.Focus() and press Enter.

2. Save the solution.

Internally Documenting the Program Code

It is a good practice to include comments, called internal documentation, as reminders in
the Code Editor window. Programmers use comments to indicate a procedure’s purpose and
also to explain various sections of a procedure’s code. Including comments in your code will
make the code more readable and easier to understand by anyone viewing it. You create a
comment in Visual Basic by placing an apostrophe (') before the text that represents the
comment. The computer ignores everything that appears after the apostrophe on that line.

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

START HERED>

START HERED>

START HERED>

Designing Applications

Although it is not required, some programmers use a space to separate the apostrophe from the

comment text; you will follow that convention in this book.

To add comments to the btnClear control's Click event procedure:
1.

Click the blank line above the txtDvds.Text = String.Empty statement. Type

' prepare screen for the next sale (be sure to type the apostrophe followed by a
space) and press Enter. Notice that comments appear in a different color from the rest
of the code.

Click the blank line above the txtDvds.Focus() statement. Type ' send the focus to
the DVDs box and then click the blank line above the procedure’s End Sub clause. See
Figure 2-28.

Private Sub btnClear_Click(sender As Object, e As
' prepare screen for the next sale

txtDvds.Text = String.Empty
txtBluRays.Text = String.Empty
1blTotalDiscs.Text = String.Empty
lblTotalSales.Text = String.Empty
" send the focus to the DVDs box
txtDvds.Focus()

End Sub

Figure 2-28 btnClear control's Click event procedure

It is a good idea to test a procedure after you have coded it because, by doing so, you will know
where to look if an error occurs.

To test the btnClear control’'s Click event procedure:

1.

Save the solution and then start the application. Type 5 in the Date, DVDs, and Blu-rays
boxes. You haven’t coded the Calculate button yet, so the Total discs and Total sales
boxes are empty at this point. Therefore, you will only be able to observe whether the
Clear Screen button clears the two text boxes and moves the focus appropriately. You
will need to test the Clear Screen button again after the Calculate button is coded.

Click the Clear Screen button. The computer processes the instructions contained in
the button’s Click event procedure. The instructions remove the contents of the two text
boxes (and also the contents of the two labels, which are currently empty), and then send
the focus to the DVDs box. Click the Exit button to end the application.

Many programmers also use comments to document the project’s name and purpose, the
programmer’s name, and the date the code was either created or modified. Such comments are
placed above the Public Class clause in the Code Editor window. The area above the Public Class
clause is called the General Declarations section.

To include comments in the General Declarations section:

1.

Click before the letter P in the Public Class frmMain line and then press Enter to
insert a blank line. Now, click the blank line.

Type the comments shown in Figure 2-29 and then save the solution. In the comments,
replace <your name> and <current date> with your name and the current date,
respectively.

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Coding the btnPrint Control's Click Event Procedure

General Declarations
section

Main Form.vb [Design]™

BBE (General) - HBE (Declarations)
' Name: Play It Again Project
. " Purpose: Calculates the total number
enter these five 3
comments : of discs sold and the total
g sales amount
' Programmer: <your name> on <current date>
Public Class frmMain

Figure 2-29 Comments entered in the General Declarations section

Coding the btnPrint Control’s Click Event Procedure

Visual Basic provides the PrintForm tool for printing an interface from code. The tool is
contained in the Visual Basic PowerPacks section of the toolbox. When you drag the PrintForm
tool to a form, the instantiated print form control appears in the component tray. You can use
the control to send the printout either to the Print preview window or directly to the printer.
The syntax for printing the interface from code is shown in Figure 2-30 along with examples of
using the syntax. As the figure indicates, the printing task requires two statements. The first
statement specifies the output destination, and the second statement tells the computer to start
the print operation.

Printing the Interface from Code

Syntax

object.PrintAction = Printing.PrintAction.destination

object.Print()

destination Purpose

PrintToPreview sends the printout to the Print preview window
PrintToPrinter sends the printout to the printer

Example 1

PrintForml.PrintAction =
Printing.PrintAction.PrintToPreview

PrintForml.Print()

sends the output to the Print preview window

Example 2
PrintForml.PrintAction =

Printing.PrintAction.PrintToPrinter
PrintForml.Print()
sends the output directly to the printer

Figure 2-30 Syntax and examples of printing the interface from code
© 2013 Cengage Learning

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Designing Applications

STAR- To add a print form control to the application:

1.
2.

Click the designer window’s tab to make the designer window the active window.

Temporarily display the toolbox. Scroll down the toolbox until you see the Visual Basic
PowerPacks section. If necessary, expand the section’s node. Click PrintForm, and then
drag your mouse pointer to the form. When you release the mouse button, a print form
control appears in the component tray.

You will have the Print Receipt button send the sales receipt to the Print preview window rather than
directly to the printer. By doing so, the user will have more control over when the receipt is printed.

STAR- To begin coding the btnPrint control's Click event procedure:

1.

enter this comment
and two lines of code

Return to the Code Editor window. Open the code template for the btnPrint control’s
Click event procedure, and then enter the comment and statements shown in Figure 2-31.

Private Sub btnPrint_Click(sender As Object, e As EventArgs) Handl
' print the sales receipt

PrintForml.PrintAction = Printing.PrintAction.PrintToPreview
PrintForml.Print()

| End Sub

=l

Figure 2-31 Comment and printing instructions entered in the procedure

Save the solution and then start the application. If necessary, press Alt to display the
access keys. Click the Print Receipt button. A printout of the interface appears in the
Print preview window. (It may take a few seconds for the window to open.) Click the
Zoom button’s list arrow and then click 75%. See Figure 2-32. Notice that the four
buttons appear on the sales receipt. You will fix that problem in the next set of steps.

Zoom button’s
list arrow

& O~ |0 M B E M| Clos| Page| 113]
Lal

@ Sales Receipt
Date:

DvDs
Biu-rays:

Total discs: |

Figure 2-32 Print preview window
OpenClipArt.org/John Diamond / diamonjohn

You won't need to print the sales receipt, so click the Close button on the Print preview
window’s toolbar, and then click the Exit button in the interface.

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Writing Arithmetic Expressions

You can prevent the buttons from appearing on the printed receipt by hiding them on
the form before the receipt is printed, and then showing them again after the receipt is
printed. In this case, you will hide the buttons by reducing the width of the form by 165
pixels. You can do this using the statement Me.Width = Me.Width - 165. As you learned
in Chapter 1, Me is a keyword that refers to the current form. After the sales receipt is
printed, you will increase the form’s width by the same amount so that the buttons appear
once again on the form.

To finish coding the btnPrint control's Click event procedure:

1. Enter the additional two assignment statements shown in Figure 2-33.

Private Sub btnPrint_Click(sender As Object, e As EventArgs) Handl
" print the sales receipt

= Me.Width = Me.Width - 165
PrintForml.PrintAction = Printing.PrintAction.PrintToPreview
PrintForml.Print()
Me.Width = Me.Width + 165

End Sub

enter these two

Figure 2-33 Completed Click event procedure for the btnPrint control

2. Save the solution and then start the application. Enter 5 in the Date, DVDs, and Blu-rays
boxes.

3. Click the Print Receipt button to display the sales receipt in the Print preview window.
Notice that the four buttons do not appear on the sales receipt.

4. If your computer is connected to a printer, click the Print button (the printer) on the
Print preview window’s toolbar.

5. Click the Close button on the Print preview window’s toolbar, and then click the Exit
button in the interface.

Before you can code the btnCalc control’s Click event procedure, you need to learn how to write
arithmetic expressions in Visual Basic. Note: You have learned a lot so far in this lesson. You
may want to take a break at this point before continuing.

Writing Arithmetic Expressions

Most applications require the computer to perform at least one calculation. You instruct the
computer to perform a calculation by writing an arithmetic expression, which is an expression
that contains one or more arithmetic operators. Figure 2-34 lists the most commonly used
arithmetic operators available in Visual Basic, along with their precedence numbers. The
precedence numbers indicate the order in which the computer performs the operation in an
expression. Operations with a precedence number of 1 are performed before operations with a
precedence number of 2, and so on. However, you can use parentheses to override the order of
precedence because operations within parentheses are always performed before operations
outside parentheses.

<«(START HERE

assignment statements

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Designing Applications

Operator Operation Precedence number
A exponentiation (raises a number to a power) 1
- negation (reverses the sign of a number) 2
*/ multiplication and division 3
\ integer division 4
Mod modulus (remainder) arithmetic 5
+, - addition and subtraction 6

Figure 2-34 Most commonly used arithmetic operators
© 2013 Cengage Learning

Although the negation and subtraction operators listed in Figure 2-34 use the same symbol (a
hyphen), there is a difference between both operators: the negation operator is unary, whereas the
subtraction operator is binary. Unary and binary refer to the number of operands required by the
operator. Unary operators require one operand; binary operators require two operands. For
example, the expression —10 uses the negation operator to turn its one operand (the positive
number 10) into a negative number. The expression 8 — 2, on the other hand, uses the subtraction
operator to subtract its second operand (the number 2) from its first operand (the number 8).

Two of the arithmetic operators listed in Figure 2-34 might be less familiar to you: the integer
division operator (\) and the modulus (remainder) operator (Mod). You use the integer division
operator to divide two integers (whole numbers) and then return the result as an integer. For
instance, the expression 211 \ 4 results in 52, which is the integer result of dividing 211 by 4.
(If you use the standard division operator [/] to divide 211 by 4, the result is 52.75 rather than 52.)
You might use the integer division operator in a program that determines the number of quarters,
dimes, and nickels to return as change to a customer. For example, if a customer should receive 53
cents in change, you could use the expression 53 \ 25 to determine the number of quarters to
return; the expression evaluates to 2.

The modulus operator (sometimes referred to as the remainder operator) is also used to divide
two numbers, but the numbers do not have to be integers. After dividing the numbers, the
modulus operator returns the remainder of the division. For instance, 211 Mod 4 equals 3,
which is the remainder of 211 divided by 4. A common use for the modulus operator is to
determine whether a number is even or odd. If you divide the number by 2 and the remainder is
0, the number is even; if the remainder is 1, however, the number is odd. Figure 2-35 shows
several examples of using the integer division and Mod operators.

Examples Results
211\4 52
211 Mod 4 3
53\ 25 2
53 Mod 25 3
75\2 37
75 Mod 2 1
100\ 2 50
100 Mod 2 0

Figure 2-35 Examples of the integer division and Mod (remainder) operators
© 2013 Cengage Learning

You may have noticed that some of the operators listed in Figure 2-34, like the addition and
subtraction operators, have the same precedence number. When an expression contains more
than one operator having the same priority, those operators are evaluated from left to right.

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Coding the btnCalc Control's Click Event Procedure

In the expression 7 — 8 / 2 + 5, for instance, the division (/) is performed first, then the
subtraction (—), and then the addition (+). The result of the expression is the number 8, as
shown in Example 1 in Figure 2-36. You can use parentheses to change the order in which the
operators in an expression are evaluated. For instance, as Example 2 in Figure 2-36 shows, the
expression 7 — (8 / 2 + 5) evaluates to —2 rather than to 8. This is because the parentheses tell
the computer to perform the division first, then the addition, and then the subtraction.

Example 1

Original expression 7-8/2+5
The division is performed first 7-4+5

The subtraction is performed next 3+5

The addition is performed last 8

Example 2

Original expression 7-(8/2+5)
The division is performed first 7-4+5)
The addition is performed next 7-9

The subtraction is performed last -2

Figure 2-36 Expressions containing more than one operator having the same precedence
© 2013 Cengage Learning

When entering an arithmetic expression in code, you do not enter a comma or special characters,
such as the dollar sign or percent sign. If you want to include a percentage in an arithmetic
expression, you do so using its decimal equivalent; for example, you enter .05 rather than 5%.

Coding the btnCalc Control’s Click Event Procedure

According to its pseudocode and flowchart (shown earlier in Figures 2-23 and 2-24), the btnCalc
control’s Click event should calculate the total number of discs sold by adding together the
number of DVDs sold and the number of Blu-rays sold. The number of DVDs sold is recorded
in the txtDvds control’s Text property as the user enters that information in the interface.
Likewise, the number of Blu-rays sold is recorded in the txtBluRays control’s Text property. You
can use an assignment statement to first add together the Text property of the two text boxes,
and then assign the sum to the Text property of the IblTotalDiscs control. The total discs sold
calculation is illustrated in Figure 2-37.

Pseudocode: total discs sold = DVDs sold + Blu-rays sold

! | !

Assignment statement: IblTotalDiscs.Text = txtDvds.Text + txtBluRays.Text

Figure 2-37 lllustration of the total discs sold calculation
© 2013 Cengage Learning

Next, the procedure should calculate the total sales by multiplying the total number of discs sold
(which is recorded in the IblTotalDiscs control) by the disc price ($7). The total sales should be
displayed in the IblTotalSales control. The total sales calculation is illustrated in Figure 2-38.

o0 The Ch02C-
u Arithmetic
Operators
video
provides more examples
of using arithmetic
operators.

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

START HERED>

Remember that

you can use the
Alt key to show/
hide the access

keys.

Designing Applications

Pseudocode: total sales = total discs sold = disc price

| l !

Assignment statement: IblTotalSales.Text = IblTotalDiscs.Text = 7

Figure 2-38 lllustration of the total sales calculation
© 2013 Cengage Learning

Finally, the procedure should display the total discs sold and total sales amount in the
appropriate label controls. The assignment statements shown in Figures 2-37 and 2-38
accomplish this task.

To code the btnCalc control’s Click event procedure and then test it:

1. Open the code template for the btnCalc control’s Click event procedure. Type
' calculate number of discs sold and total sales and press Enter twice.

2. Next, enter the following two assignment statements:
IblTotalDiscs. Text = txtDvds.Text + txtBluRays.Text
IblTotalSales. Text = IblTotalDiscs.Text * 7

3. Save the solution and then start the application. Click the DVDs text box. Type 2 and
then press Tab. Type 5 as the number of Blu-rays sold and then click the Calculate
button. The button’s Click event procedure calculates the total number of discs sold and
total sales, displaying the results in the two label controls. As Figure 2-39 indicates, the
displayed results are incorrect. Instead of mathematically adding the two sales quantities
together, giving 7, the second sales quantity was appended to the first sales quantity,
giving 25. When the total discs sold amount is incorrect, the total sales will also be
incorrect because the total discs sold amount is used in the total sales calculation.

Print Receipt

Blu-rays: |5 Clear Screen

) Exit
Total discs: —
otal discs both amounts

Total sales: 175 are incorrect

Figure 2-39 Interface showing the incorrect results of the calculations
OpenClipArt.org/John Diamond / diamonjohn

4. Click the Exit button to end the application.

Even though you do not see the quotation marks around the value, a value stored in the Text
property of an object is treated as a string rather than as a number. Adding strings together does
not give you the same result as adding numbers together. For example, adding the string “2” to
the string “5” results in the string “25”, whereas adding the number 2 to the number 5 results in
the number 7. To add together the contents of two text boxes, you need to tell the computer to
treat the contents as numbers rather than as strings. The easiest way, although not one of the

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Coding the btnCalc Control's Click Event Procedure

preferred ways, is to use the Val function. However, because this lesson’s topics are difficult for
many beginning programmers, we'll use the Val function in this lesson (and only in this lesson)
so as not to complicate those topics.

The Val Function

A function is a predefined procedure that performs a specific task and then returns a value after
completing the task. The Val function, for instance, temporarily converts a string to a number
and then returns the number. The number is stored in the computer’s internal memory only
while the function is processing.

The syntax of the Val function is shown in Figure 2-40. The item within the parentheses is called
an argument and represents information that the function needs to perform its task. In this case,
the string argument represents the string you want treated as a number. Because the Val
function must be able to interpret the string as a numeric value, the string cannot include a
letter, a comma, or a special character (such as the dollar sign or percent sign); it can, however,
include a period or a space. When the Val function encounters an invalid character in its string
argument, it stops converting the string to a number at that point. Figure 2-40 shows some
examples of how the Val function converts various strings.

Val Function

Syntax

Val(string)

Example Numeric result
Val("456") 456
Val("24,500™") 24
val("123Xx") 123
Val("25%") 25
val(" 12 34 ") 1234
Val("$56.88") 0
Val("Abc") 0
val("™) 0

Figure 2-40 Syntax and examples of the Val function
© 2013 Cengage Learning

To include the Val function in the btnCalc control’s code:
1. Change the two assignment statements as follows:

IblTotalDiscs. Text = Val(txtDvds.Text) + Val(txtBluRays.Text)
IblTotalSales.Text = Val(IblTotalDiscs.Text) * 7

2. Save the solution. The changes made to the procedure are highlighted in Figure 2-41.

Private Sub btnCalc_Click(sender As Object, e As EventArgs) Handlef
" calculate number of discs sold and total sales

1blTotalDiscs.Text = Val(txtDvds.Text) + Val(txtBluRays.Text)
= 1blTotalSales.Text = Val(lblTotalDiscs.Text) * 7

End Sub

Figure 2-41 Val function entered in the assignment statements

<«(START HERE

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Designing Applications

3. Start the application. Enter 2 in the DVDs box and enter 5 in the Blu-rays box. Click the
Calculate button. The application correctly calculates and displays the total number of
discs sold (7) and total sales amount (49). See Figure 2-42.

Print Receipt

Blu-rays: |5 Clear Screen

- Exit
! n both amounts
Total sales: 49 are correct

Figure 2-42 Interface showing the correct results of the calculations
OpenClipArt.org/John Diamond / diamonjohn

4. In the next section, you will improve the appearance of the total sales amount by
including a dollar sign, a thousands separator, and two decimal places. Click the Exit
button.

The Format Function

You can use the Format function to improve the appearance of numbers in an interface. The
function’s syntax is shown in Figure 2-43. The expression argument specifies the number, date,
time, or string whose appearance you want to format. The style argument can be a predefined
Visual Basic format style, some of which are explained in the figure. It also can be a string
containing special symbols that indicate how you want the expression displayed. (You can
display the Help screen for the Format function to learn more about these special symbols.) In
this case, you will use one of the predefined format styles.

Format Function

Syntax
Format(expression, style)

Format style Description
Currency Formats the number with a dollar sign, two decimal places, and (if appropriate) a
thousands separator; negative numbers are enclosed in parentheses

Fixed Formats the number with at least one digit to the left of the decimal point and two
digits to the right of the decimal point

Standard Formats the number with at least one digit to the left of the decimal point, two
digits to the right of the decimal point, and (if appropriate) a thousands separator

Percent Multiplies the number by 100 and then formats the result with a percent sign and
two digits to the right of the decimal point

Figure 2-43 Format function’s syntax and some of the predefined format styles
© 2013 Cengage Learning

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Testing and Debugging the Application

To format the total sales amount:

1. Enter the following statement in the blank line below the total sales assignment
statement:

IblTotalSales.Text = Format(lblTotalSales.Text, "Currency")

2. Save the solution. The change made to the procedure is highlighted in Figure 2-44.

i L Private Sub btnCalc_Click(sender As Object, e As EventArgs) Handles

I ' calculate number of discs sold and total sales

1= ,

IE" 1blTotalDiscs.Text = Val(txtDvds.Text) + Val(txtBluRays.Text)

I 1blTotalSales.Text = Val(lblTotalDiscs.Text) * 7
1blTotalSales.Text = Format(lblTotalSales.Text, "Currency")

i End Sub

Figure 2-44 Format function entered in the procedure

3. Start the application. Enter 4/16/2014 in the Date box, 100 in the DVDs box, and 100 in
the Blu-rays box. Click the Calculate button. See Figure 2-45.

(.) Sales Receipt

Date: 4/16/2014

DVDs: 1100 Print Receipt

Blu-rays: |100 Clear Screen

Total discs: 200 Exit

result of formatting the

Total sales: | $1,400.00 total sales amount to

Currency

Figure 2-45 Formatted total sales amount shown in the interface
OpenClipArt.org/John Diamond / diamonjohn

4. Click the Exit button.

You have completed the first four of the six steps involved in creating an OO application:
meeting with the client, planning the application, building the user interface, and coding the
application. The fifth step is to test and debug the application.

Testing and Debugging the Application

You test an application by starting it and entering some sample data. The sample data should
include both valid and invalid data. Valid data is data that the application is expecting the user to
enter, whereas invalid data is data that the application is not expecting the user to enter. The
Play It Again Movies application, for instance, expects the user to enter a numeric value in the
DVDs box; it does not expect the user to enter a letter. In most cases, invalid data is a result of a
typing error made by the user. You should test an application as thoroughly as possible to ensure
that it displays the correct output when valid data is entered, and does not end abruptly when
invalid data is entered.

<«(START HERE

You also can
include the
Format function
in the statement
that calculates
the total sales, like this:
Tb1TotalSales.
Text = Format(Val
(1b1TotalDiscs.
Text) * 7,
"Currency").

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

START HERED>

START HERED>

Designing Applications

Debugging refers to the process of locating and correcting the errors, called bugs, in a
program. Program bugs are typically categorized as syntax errors, logic errors, or run time
errors. As you learned in Chapter 1, the term “syntax” refers to the set of rules you must follow
when using a programming language. A syntax error occurs when you break one of the
language’s rules. Most syntax errors are a result of typing errors that occur when entering
instructions, such as typing Me.Clse() instead of Me.Close(). The Code Editor detects
most syntax errors as you enter the instructions.

Logic errors, on the other hand, are much more difficult to find because the Code Editor cannot
detect them for you. A logic error can occur for a variety of reasons, such as forgetting to enter
an instruction or entering the instructions in the wrong order. Some logic errors occur as a
result of calculation statements that are correct syntactically but incorrect mathematically. For
example, consider the statement Tb1Squared.Text = Val (txtNum.Text) + Val (txtNum.Text),
which is supposed to square the number entered in the txtNum control. The statement’s syntax is
correct; however, the statement is incorrect mathematically because you square a value by
multiplying it by itself, not by adding it to itself.

A run time error is an error that occurs while an application is running. An expression that
attempts to divide a value by the number 0 will result in a run time error. You will learn more
about run time errors as you progress through this book.

To test and debug the Play It Again Movies application:

1. Start the application. First, test the application by clicking the Calculate button without
entering any data. The application displays 0 and $0.00 as the total number of discs sold
and total sales, respectively. (Recall that the Val function converts the empty string to
the number 0.)

2. Now you will test the application using a letter for the number of DVDs and Blu-rays
sold. Click the Clear Screen button to clear the calculated results from the label
controls. Enter p in the DVDs and Blu-rays boxes. Click the Calculate button. The
application displays 0 and $0.00 as the total number of discs sold and total sales,
respectively. (Recall that the Val function converts a letter to the number 0.)

3. Finally, test the application with valid data. Click the Clear Screen button. Enter 6/10/2014
in the Date box, 6 in the DVDs box, and 3 in the Blu-rays box. Click the Calculate button.
The application correctly calculates and displays the total number of discs sold (9) and total
sales amount ($63.00).

4. Click the Print Receipt button. If your computer is connected to a printer, print the
sales receipt. Close the Print preview window.

5. Click the Clear Screen button and then practice with other entries to see how the
application responds. When you are finished testing the application, click the Exit
button to end the application.

In the following set of steps, you will introduce syntax errors in the application’s code. You also
will learn how to locate and correct the errors.

To introduce syntax errors in the code and also debug the code:

1. Change the statement in the btnExit control’s Click event procedure to Me.Clse() and
then click the blank line above the procedure header. The jagged blue line indicates that
the statement contains a syntax error. To debug the code, change the statement to
Me.Close() and then click the blank line above the procedure header. The jagged blue
line disappears.

2. In the btnCalc control’s Click event procedure, delete the ending parenthesis in the last
assignment statement and then click the blank line below the statement. The jagged

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Testing and Debugging the Application

blue line indicates that the statement contains a syntax error. The red rectangle indicates
that the Code Editor has some suggestions for fixing the error.

3. Hover your mouse pointer over the red rectangle until you see the Error Correction
Options box, and then click the list arrow in the box. A suggestion for fixing the error
appears in the Error Correction window. See Figure 2-46. [Don’t be concerned if your
Error Correction window appears above (rather than below) the red rectangle.]

Error Correction

Options box
Format(lblTotalSales.Text, "Currency”
a
‘)" expected.
2 linsert the missing '+
1blTotalDiscs.Text = Val(txtDvds.Text)
. 1blTotalSales.Text = Val(lblTotalDiscs
Error COrreCtIOn 1blTotalSales.Text = Format(lblTotalSa
window End Sub
< >
[Expand All Previews

Figure 2-46 Suggestion for fixing the error

4. Move the scroll bar in the Error Correction window all the way to the right. The window
indicates that the missing parenthesis will be inserted at the end of the assignment
statement that contains the syntax error. You can type the missing parenthesis yourself.
Or, you can simply click the suggestion in the Error Correction window. Click the Insert
the missing ‘). suggestion to insert the missing parenthesis.

5. In this step, you will observe what happens when you start an application whose code
contains a syntax error. First, delete the ending parenthesis in the last assignment
statement in the btnCalc control’s Click event procedure, and then click the blank line
below the statement. Save the solution and then start the application. The message
dialog box shown in Figure 2-47 appears.

[] There were build errors. Would you like to continue and run the last
successful build?

[Do not show this dialog again

Figure 2-47 Message dialog box
6. Click the No button. The Error List window shown in Figure 2-48 opens at the bottom

of the IDE. The window indicates that the code contains one error, and it provides both
a description and the location of the error in the Code Editor window.

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Designing Applications

Error List window
L de 0 Warnings 0 Messages Search Error List P~

Description File Line Column Project

01) expected. Main Form.vb 40 66 Play It Again Project

Figure 2-48 Error List window in the IDE

7. Double-click the error message in the Error List window. The Code Editor opens the
Error Correction window shown earlier in Figure 2-46. Click the Insert the missing).
suggestion to insert the missing parenthesis. The Code Editor inserts the missing
parenthesis and then removes the error message from the Error List window.

8. Close the Error List window. Save the solution and then start the application. Test the
application to verify that it works correctly, and then click the Exit button to end the
application.

9. Close the Code Editor window and then close the solution.

Assembling the Documentation

After you have tested an application thoroughly, you can move to the last step involved in
creating an OO application: assemble the documentation. Assembling the documentation refers
to putting your planning tools and a printout of the application’s interface and code in a safe
place, so you can refer to them if you need to change the application in the future. Your
planning tools include the TOE chart, a sketch of the user interface, and either the flowcharts or
pseudocode. The code for the Play It Again Movies application is shown in Figure 2-49.

1 ' Name: PTay It Again Project

2 ' Purpose: Calculates the total number
3! of discs sold and the total
4" sales amount

5 ' Programmer: <your name> on <current date>
6

7 PubTlic Class frmMain

8

9 Private Sub btnExit_Click(sender As Object,

e As EventArgs) Handles btnExit.Click

10 Me.Close()
11 End Sub
12

13 Private Sub btnClear_Click(sender As Object,

e As EventArgs) Handles btnClear.Click

14 ' prepare screen for the next sale

15

16 txtDvds.Text = String.Empty

17 txtBTuRays.Text = String.Empty

18 Tb1TotalDiscs.Text = String.Empty

19 Tb1TotalSales.Text = String.Empty

20 ' send the focus to the DVDs box

21 txtDvds.Focus()

22

23 End Sub

24

Figure 2-49 Play It Again Movies code (continues)

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Lesson C Summary

(continued)
25 Private Sub btnPrint_Click(sender As Object,
e As EventArgs) Handles btnPrint.Click
26 ' print the sales receipt
27
28 Me.Width = Me.Width - 165
29 PrintForml.PrintAction =
Printing.PrintAction.PrintToPreview
30 PrintForml.Print()
31 Me.Width = Me.Width + 165
32
33 End Sub
34
35 Private Sub btnCalc_Click(sender As Object,
e As EventArgs) Handles btnCalc.Click
36 ' calculate number of discs sold and total sales
37
38 TbT1TotalDiscs.Text = Val(txtDvds.Text) +
Val(txtBluRays.Text)
39 Tb1TotalSales.Text = Val(IblTotalDiscs.Text) * 7
40 TbTTotalSales.Text =
Format(1b1TotalSales.Text, "Currency")
41
42 End Sub
43 End Class

Figure 2-49 Play It Again Movies code
© 2013 Cengage Learning

Lesson C Summary

e To plan an object’s code:
Use pseudocode or a flowchart.
e To clear the text property of an object while an application is running:
Assign either the String. Empty value or the empty string ("") to the object’s Text property.
e To assign a value to an object’s property while an application is running:
Use an assignment statement that follows the syntax object.property = expression.
e To move the focus to an object while an application is running:
Use the Focus method. The method’s syntax is object.Focus().
e To create a comment in Visual Basic:
Begin the comment text with an apostrophe (").
e To divide two integers and then return the result as an integer:
Use the integer division operator (\).
e To divide two numbers and then return the remainder:

Use the modulus (remainder) operator (Mod).

e To print the interface during run time:

Use the PrintForm tool to instantiate a print form control. The tool is located in the Visual
Basic PowerPacks section of the toolbox.

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or dupli

Designing Applications

e To temporarily convert a string to a number:
Use the Val function. The function’s syntax is Val(string).
e To improve the appearance of numbers in the user interface:

Use the Format function. The function’s syntax is Format(expression, style).

Lesson C Key Terms

Assignment operator—the equal sign in an assignment statement

Assignment statement—an instruction that assigns a value to something, such as to the
property of an object

Bugs—the errors in a program
Debugging—the process of locating and correcting the bugs (errors) in a program

Empty string—a set of quotation marks with nothing between them (""); also called a zero-
length string

Flowchart—a planning tool that uses standardized symbols to show the steps a procedure must
take to accomplish its goal

Flowlines—the lines connecting the symbols in a flowchart

Focus method—moves the focus to a specified control during run time
Format function—used to improve the appearance of numbers in an interface
Function—a procedure that processes a specific task and returns a value

General Declarations section—the area above the Public Class clause in the Code Editor
window

Input/output symbol—the parallelogram in a flowchart; used to represent input and output tasks

Integer division operator—represented by a backslash (\); divides two integers and then returns
the quotient as an integer

Invalid data—data that an application is not expecting the user to enter

Logic error—occurs when you neglect to enter an instruction or enter the instructions in the
wrong order; also occurs as a result of calculation statements that are correct syntactically but
incorrect mathematically

Modulus operator—represented by the keyword Mod; divides two numbers and returns the
remainder of the division

PrintForm tool—used to instantiate a print form control; located in the Visual Basic PowerPacks
section of the toolbox

Process symbols—the rectangle symbols in a flowchart; used to represent assignment and
calculation tasks

Pseudocode—a planning tool that uses phrases to describe the steps a procedure must take to
accomplish its goal

Run time error—an error that occurs while an application is running; an example is an
expression that attempts to divide by zero

Start/stop symbol—the oval symbol in a flowchart; used to indicate the beginning and end of
the flowchart

String—zero or more characters enclosed in quotation marks

String.Empty—the value that represents the empty string in Visual Basic

earning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Lesson C Exercises

Syntax error—occurs when an instruction in an application’s code breaks one of a programming
language’s rules

Val function—temporarily converts a string to a number and then returns the number

Valid data—data that an application is expecting the user to enter

Zero-length string—a set of quotation marks with nothing between them (""); also called an
empty string

Lesson C Review Questions

1.

Which of the following assignment statements will not calculate correctly?
a. 1bTTotal.Text =Val(txtSalesl.Text) + Val(txtSales2.Text)

b. 1blTotal.Text =4 - Val(txtSalesl.Text)

c. 1b1Total.Text =Val(txtQuantity.Text + 3)
d

All of the above assignment statements will calculate correctly.

The function temporarily converts a string to a number, and then
returns the number.

a. Format

b. FormatNumber

c. StringToNumber

d. Val

Which symbol is used in a flowchart to represent an output task?

a. circle
b. oval
c. parallelogram

d. rectangle

What value is assigned to the IbINum control when the TbTNum.Text =99 \ 25
instruction is processed by the computer?

What value is assigned to the IbINum control when the TbTNum.Text = 99 Mod 25
instruction is processed by the computer?

Lesson C Exercises

Note: In several of the exercises in this lesson, you perform the second through sixth steps
involved in creating an OO application. Recall that the six steps are:

1.
2.

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or dupli

Meet with the client.

Plan the application. (Prepare a TOE chart that is ordered by object, and then draw a
sketch of the user interface.)

Build the user interface. (Refer to Appendix B for a listing of the GUI guidelines you have
learned so far. To help you remember the names of the controls as you are coding, print
the application’s interface and then write the names next to each object.)

Code the application. (Write pseudocode for each of the objects that will be coded.
Include appropriate comments in the code.)

Test and debug the application.

Assemble the documentation (your planning tools and a printout of the interface and code).

INTRODUCTORY

INTRODUCTORY

INTRODUCTORY

Designing Applications

In this exercise, you complete the application saved in Lesson B’s Exercise 1. Open the
Shiloh Solution (Shiloh Solution.sln) file contained in the VB2012\Chap02\Shiloh
Solution folder. If necessary, open the designer window.

a. At the end of the year, each salesperson at Shiloh Products is paid a bonus of 1% of
his or her annual sales. Code the Calculate button using the Val function. Use the
Format function to display the bonus with a dollar sign, a thousands separator, and
two decimal places.

b. Code the Clear Screen button. Send the focus to the ID text box.

c. Add a print form control to the application, and then code the Print button. Send
the printout to the Print preview window. To hide the buttons in the printout,
reduce the form’s height by 75 pixels before printing, and then increase the height by
the same amount after printing.

d. Add appropriate comments in the General Declarations section and in the coded
procedures.

e. Save the solution and then start the application. Enter the following valid ID and
sales amount: AB65 and 5000. The bonus should be $50.00. If your computer is
connected to a printer, print the interface.

f. Clear the screen. Now test the application using invalid data. More specifically, test
it without entering any data. Then test it using a letter as the sales amount.

g. Close the Code Editor window and then close the solution.

In this exercise, you complete the application saved in Lesson B’s Exercise 4. Open the
Age Solution (Age Solution.sln) file contained in the VB2012\Chap02\Age Solution
folder. If necessary, open the designer window. The Calculate button should calculate
your age by subtracting your birth year from the current year. Code the Calculate
button using the Val function. Add a print form control to the application, and then
code the Print button. Send the printout (which should not include the buttons) to the
Print preview window. Add appropriate comments in the General Declarations section
and in the coded procedures. Save the solution and then start the application. Test the
application using your birth year and the current year. Also test it without entering any
data. Finally, test it using a $ sign for the birth year and a % sign for the current year.
Close the Code Editor window and then close the solution.

ABC Company wants an application that displays the company’s net annual profit or
loss. The company’s accountant will enter the following two pieces of information: the
company’s total annual revenue and its total annual expenses.

a. Create a Visual Basic Windows application. Use the following names for the solution
and project, respectively: ABC Solution and ABC Project. Save the application in the
VB2012\Chap02 folder. Change the form file’s name to Main Form.vb. Change the
form’s name to frmMain.

b. Perform the steps involved in creating an OO application. (See the Note at the
beginning of the Exercises section.) Include buttons that allow the user to both clear
and print the screen. Send the printout (which should not include the buttons) to
the Print preview window. Code the application using the Val and Format functions.
Add appropriate comments in the General Declarations section and in the coded
procedures.

earning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Lesson C Exercises

c. Test the application using the following revenue and expenses, respectively: 115000 and
64500. Then test it without entering any data. Also test it using a letter as the revenue
and expenses. Finally, test it using 50 and 75 as the revenue and expenses, respectively.

d. Close the Code Editor window and then close the solution.

4. In this exercise, you complete the application saved in Lesson B’s Exercise 2. Open the
Carson Solution (Carson Solution.sln) file contained in the VB2012\Chap02\Carson

Solution folder. If necessary, open the designer window. JIERHIEDIATE

a. The Carson Carpets application should calculate the area of a floor in both square
feet and square yards. Code the Calculate button using the Val function. Use the
Format function to display the calculated results using the Standard format style.

b. Code the Clear button. Send the focus to the Length text box.

c. Add a print form control to the application, and then code the Print button. Send
the printout (which should include the buttons) to the Print preview window.

d. Add appropriate comments in the General Declarations section and in the coded
procedures.

e. Save the solution and then start the application. Test the application using 10 as the
length and 12 as the width. If your computer is connected to a printer, print the interface.

f. Clear the screen. Now test the application using invalid data. More specifically, test
it without entering any data. Then test it using a letter as the length and width
measurements.

g. Close the Code Editor window and then close the solution.

5. In this exercise, you complete the application saved in Lesson B’s Exercise 3. Open the INTERMEDIATE
KJ Solution (KJ Solution.sln) file contained in the VB2012\Chap02\K]J Solution folder. If
necessary, open the designer window.

a. The KJ Inc. application should calculate the projected sales for each sales region.
Code the Calculate button using the Val function. Use the Format function to
display the calculated results using the Standard format style.

b. Code the Clear button. Send the focus to the Current sales text box in the North
column.

c. Add a print form control to the application, and then code the Print button. Send
the printout (which should not include the buttons) to the Print preview window.

d. Add appropriate comments in the General Declarations section and in the coded
procedures.

e. Save the solution and then start the application. Test the application using the
following valid data:

North sales and percentage: 25000, .1

South sales and percentage: 10000, .05
East sales and percentage: 10000, .04
West sales and percentage: 15000, .11

f. Test the application without entering any data. Also test it using letters as the sales
and percentage amounts.

g. Close the Code Editor window and then close the solution.

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or dupli

INTERMEDIATE

INTERMEDIATE

INTERMEDIATE

INTERMEDIATE

Designing Applications

In this exercise, you modify the Play It Again Movies application from the chapter.
Use Windows to make a copy of the Play It Again Solution folder contained in the
VB2012\Chap02 folder. Rename the copy Modified Play It Again Solution. Open the
Play It Again Solution (Play It Again Solution.sln) file contained in the Modified Play It
Again Solution folder. Open the designer window. Modify the interface so that it allows
the user to enter the disc price. Also modify the application’s code. Save the solution
and then start and test the application. Close the Code Editor window and then close
the solution.

Create a Visual Basic Windows application. Use the following names for the solution
and project, respectively: Average Solution and Average Project. Save the application in
the VB2012\Chap02 folder. Change the form file’s name to Main Form.vb. Change the
form’s name to frmMain. The application should display the average of any three
numbers entered by the user. Perform the steps involved in creating an OO application.
(See the Note at the beginning of the Exercises section.) Include buttons that allow the
user to both clear and print the screen. Send the printout (which should include the
buttons) to the Print preview window. Display the average with two decimal places.
Code the application using the Val and Format functions. Add appropriate comments in
the General Declarations section and in the coded procedures. Use the following three
numbers to test the application: 27, 9, and 18. Also test it without entering any data.
Finally, test it using letters for the input. Close the Code Editor window and then close
the solution.

Timbers is having a 20% off sale. The store manager wants an application that allows the
clerk to enter the original price of an item. The application should display the discount
and new price. Create a Visual Basic Windows application. Use the following names for
the solution and project, respectively: Timbers Solution and Timbers Project. Save the
application in the VB2012\Chap02 folder. Change the form file’s name to Main Form.vb.
Change the form’s name to frmMain. Perform the steps involved in creating an OO
application. (See the Note at the beginning of the Exercises section.) Include buttons that
allow the user to both clear and print the screen. Send the printout (which should not
include the buttons) to the Print preview window. Code the application using the Val
function. Format the discount and new price using the Standard format style. Add
appropriate comments in the General Declarations section and in the coded procedures.
Test the application using valid and invalid data. Close the Code Editor window and then
close the solution.

The store manager of Reader Haven needs an inventory application. The application
should allow him to enter the title of a book, the number of paperback versions of the
book currently in inventory, the number of hardcover versions of the book currently in
inventory, the cost of the paperback version, and the cost of the hardcover version. The
application should display the value of the paperback versions of the book, the value of
the hardcover versions of the book, the total number of paperback and hardcover
versions, and the total value of the paperback and hardcover versions combined. Create
a Visual Basic Windows application. Use the following names for the solution and
project, respectively: Reader Haven Solution and Reader Haven Project. Save the
application in the VB2012\Chap02 folder. Change the form file’s name to Main Form.vb.
Change the form’s name to frmMain. Perform the steps involved in creating an OO
application. (See the Note at the beginning of the Exercises section.) Include buttons
that allow the user to both clear and print the screen. Send the printout (which should
not include the buttons) to the Print preview window. Code the application using the Val
and Format functions. Format the calculated dollar amounts to show a dollar sign,

earning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

10.

11.

12.

13.

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or dupli

Lesson C Exercises

thousands separator, and two decimal places. Add appropriate comments in the General
Declarations section and in the coded procedures. Use the valid and invalid data shown
here when testing the application. Close the Code Editor window and then close the
solution.

Book Title: Summer Nights
Paperback versions: 100 Paperback cost: 40
Hardcover versions: 50 Hardcover cost: 75
Book Title: Kitchen Helpers
Paperback versions: A Paperback cost: B
Hardcover versions: C Hardcover cost: D

Carol’s favorite crackers have 50 calories per serving. In this case, a serving is

10 crackers. Carol wants an application that displays the number of calories she
consumes during her midnight snack of crackers. Create a Visual Basic Windows
application. Use the following names for the solution and project, respectively: Calories
Solution and Calories Project. Save the application in the VB2012\Chap02 folder.
Change the form file’s name to Main Form.vb. Change the form’s name to frmMain.
Perform the steps involved in creating an OO application. (See the Note at the
beginning of the Exercises section.) Include buttons that allow the user to both clear
and print the screen. Send the printout (which should not include the buttons) to the
Print preview window. Code the application using the Val function. Add appropriate
comments in the General Declarations section and in the coded procedures. Test

the application using both valid and invalid data. Close the Code Editor window

and then close the solution.

Zander Typing Services charges $0.12 per typed envelope and $0.40 per typed page.
The company accountant wants an application to help her prepare bills. She will
enter the customer’s name, the number of typed envelopes, and the number of
typed pages. The application should calculate and display the customer’s total bill.
Create a Visual Basic Windows application. Use the following names for the
solution and project, respectively: Zander Solution and Zander Project. Save the
application in the VB2012\Chap02 folder. Change the form file’'s name to Main
Form.vb. Change the form’s name to frmMain. Perform the steps involved in
creating an OO application. (See the Note at the beginning of the Exercises section.)
Test the application using both valid and invalid data. Close the Code Editor
window and then close the solution.

Yardley Company needs an application that allows the shipping clerk to enter the
quantity of an item in inventory and the number of the items that can be packed in a
box for shipping. When the shipping clerk clicks a button, the application should
compute and display both the number of full boxes that can be packed and the number of
items left over. Create a Visual Basic Windows application. Use the following names for the
solution and project, respectively: Yardley Solution and Yardley Project. Save the
application in the VB2012\Chap02 folder. Change the form file's name to Main Form.vb.
Change the form’s name to frmMain. Perform the steps involved in creating an OO
application. (See the Note at the beginning of the Exercises section.) Save the solution and
then start the application. Yardley Company has 73 items in inventory. If five of the items
can fit into a box for shipping, how many full boxes can the company ship and how many
items will remain in inventory? Close the Code Editor window and then close the solution.

The payroll clerk at Lawry Inc. wants an application that displays an employee’s net pay.
The application should allow the payroll clerk to enter the employee’s name, hours
worked, and rate of pay. For this application, you do not have to worry about overtime
because this company does not allow anyone to work more than 40 hours. The

INTERMEDIATE

INTERMEDIATE

ADVANCED

ADVANCED

__[Bt)

DISCOVERY

SWAT THE BUGS

Designing Applications

14.

15.

application should calculate and display the gross pay, the federal withholding tax
(FWT), the Social Security tax (FICA), the state income tax, and the net pay. The FWT
is 20% of the gross pay. The FICA tax is 8% of the gross pay. The state income tax is 3%
of the gross pay. Create a Visual Basic Windows application. Use the following names
for the solution and project, respectively: Lawry Solution and Lawry Project. Save the
application in the VB2012\Chap02 folder. Change the form file’s name to Main Form.vb.
Change the form’s name to frmMain. Perform the steps involved in creating an OO
application. (See the Note at the beginning of the Exercises section.) Format the
calculated amounts using the Standard format style. Test the application using both
valid and invalid data. Close the Code Editor window and then close the solution.

In this exercise, you learn about a text box’s Clear method, which can be used to remove
the contents of the text box while an application is running. Use Windows to make a
copy of the Play It Again Solution folder from the chapter. Rename the copy Discovery
Play It Again Solution. Open the Play It Again Solution (Play It Again Solution.sln) file
contained in the Discovery Play It Again Solution folder. Open the designer window.
The Clear method’s syntax is textbox.Clear(). Use the Clear method in the btnClear
control’s Click event procedure to remove the contents of the txtDvds and txtBluRays
controls. (You cannot use the Clear method to remove the contents of label controls.)
Save the solution and then start the application. Enter any date and sales amounts, and
then click the Calculate button. Click the Clear Screen button to verify that the Clear
method worked correctly. Close the Code Editor window and then close the solution.

Open the Debug Solution (Debug Solution.sln) file contained in the VB2012\Chap02\
Debug Solution folder. If necessary, open the designer window. Open the Code Editor
window. Locate and then correct the syntax errors in the code. Save the solution and
then start and test the application. If necessary, correct any other errors in the code.
Close the Code Editor window and then close the solution.

earning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Using Variables
and Constants

Revising the Play It Again Movies Application

In this chapter, you modify the Play It Again Movies application from
Chapter 2. The modified application will calculate a 3% sales tax and

then display the result in the interface. It also will display the name of the
salesclerk who entered the sales information.

All Microsoft screenshots used with permission from Microsoft Corporation

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Using Variables and Constants

Previewing the Modified Play It Again Movies Application

Before you start the first lesson in this chapter, you will preview the completed application
contained in the VB2012\Chap03 folder.

STARTINERD)» To preview the completed application:

L

To open the Run

press and hold

down the

Windows logo
key as you tap the letter
r, and then release the
logo key.

dialog box, 3.

if the underlined letters do
not appear in your interface,
press the Alt key

Use the Run dialog box to run the Play It Again (Play It Again.exe) file contained in the
VB2012\Chap03 folder. A sales receipt similar to the one created in Chapter 2 appears
on the screen.

Type 8/8/2014 in the Date box, 5 in the DVDs box, and 8 in the Blu-rays box.

Although the Calculate button does not have the focus, you can select it by pressing the
Enter key because it is the default button in the interface. You will learn how to designate
a default button in Lesson B. Press Enter to calculate both the total number of discs sold
and the total sales amount. A Name Entry dialog box appears and requests the
salesclerk’s name, as shown in Figure 3-1.

Salesclerds name:

Figure 3-1 Name Entry dialog box

Type Kevin Cooper and then press Enter to select the dialog box’s OK button.
The completed sales receipt is shown in Figure 3-2. The application uses string
concatenation, which is covered in Lesson B, to display the sales tax amount and
salesclerk’s name on the receipt.

@ Sales Receipt

Total discs: Bt

Total sales: $93.73

The sales tax was 2.73.
Kevin Cooper

Figure 3-2 Completed sales receipt

OpenClipArt.org/John Diamond / diamonjohn

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Previewing the Modified Play It Again Movies Application

5. Change the number of DVDs sold to 4. The application clears the contents of the label
controls that display the total number of discs sold, the total sales amount, and the
message. In Lesson C, you will learn how to clear the contents of a control when a
change is made to the value stored in a different control.

6. Click the Calculate button. The Name Entry dialog box appears and displays the
salesclerk’s name. Press Enter to select the dialog box’s OK button. The application
recalculates the total number of discs sold, the total sales amount, and the sales tax
amount, and then displays the information on the sales receipt.

7. Click the Clear Screen button to clear the sales information (except the date) from the
form, and then click the Exit button to end the application.

In Lesson A, you will learn how to store information, temporarily, in memory locations inside
the computer. You will modify the Play It Again Movies application in Lessons B and C. Be sure
to complete each lesson in full and do all of the end-of-lesson questions and several exercises

before continuing to the next lesson.

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

o0 ChO3A-
u Variables
video

Don't be
overwhelmed by
the number of
data types listed
in Figure 3-3.
This book will use only
the Boolean, Decimal,
Double, Integer, and
String data types.

Using Variables and Constants

After studying Lesson A, you should be able to:

e Declare variables and named constants

e Assign data to an existing variable

e Convert string data to a numeric data type using the TryParse method

e Convert numeric data to a different data type using the Convert class methods
e Explain the scope and lifetime of variables and named constants

e Explain the purpose of Option Explicit, Option Infer, and Option Strict

Using Variables to Store Information

In the Play It Again Movies application from Chapter 2, all of the sales information is
temporarily stored in the properties of the controls on the sales receipt form. For example, the
numbers of DVDs and Blu-rays sold are stored in the Text properties of the txtDvds and
txtBluRays controls, respectively. Recall that the btnCalc control’s Click event procedure uses
the Text properties of those controls to calculate the total number of discs sold, like this:
Tb1TotalDiscs.Text = Val(txtDvds.Text) + Val(txtBluRays.Text). The application then
uses the IblTotalDiscs control’s Text property to calculate the total sales amount, like this:
Tb1TotalSales.Text =Val(lblTotalDiscs.Text) * 7.

Besides storing data in the properties of controls, a programmer also can temporarily store data
in memory locations inside the computer. The memory locations are called variables because
the contents of the locations can change (vary) as the application is running. It may be helpful to
picture a variable as a small box inside the computer. You can enter and store data in the box,
but you cannot actually see the box. One use for a variable is to hold information that is not
stored in a control on the form. For example, if you didn’t need to display the total number of
discs sold on the Play It Again Movies sales receipt, you could eliminate the IblTotalDiscs
control from the form and store the total number of discs sold in a variable instead. You then
would use the value stored in the variable, rather than the value stored in the Text property of
the IblTotalDiscs control, in the total sales calculation.

You also can use a variable to store the data contained in a control’s property, such as the data
contained in a control’s Text property. Programmers typically do this when the data is a
numeric amount that will be used in a calculation. As you will learn in the next section,
assigning numeric data to a variable allows you to control the preciseness of the data. It also
makes your code run more efficiently because the computer can process data stored in a variable
much faster than it can process data stored in the property of a control.

Every variable has a data type, name, scope, and lifetime. First, you will learn how to select an
appropriate data type for a variable.

Selecting a Data Type for a Variable

Each variable used in an application should be assigned a data type by the programmer. The
data type determines the type of data the variable can store. Figure 3-3 describes most of the
basic data types available in Visual Basic 2012. Each data type is a class, which means that each
data type is a pattern from which one or more objects—in this case, variables—are instantiated
(created).

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Using Variables to Store Information

Data type Stores Memory Required
Boolean a logical value (True, False) 2 bytes
Char one Unicode character 2 bytes
Date date and time information 8 bytes

Date range: January 1, 0001 to December 31, 9999
Time range: 0:00:00 (midnight) to 23:59:59

Decimal a number with a decimal place 16 bytes
Range with no decimal place:
+/-79,228,162,514,264,337,593,543,950,335
Range with a decimal place:
+/-7.9228162514264337593543950335

Double a number with a decimal place 8 bytes
Range: +/-4.94065645841247 X 1073%* to
+/-1.79769313486231 X 103%

Integer integer 4 bytes
Range: -2,147,483,648 to 2,147,483,647

Long integer 8 bytes
Range: -9,223,372,036,854,775,808 to
9,223,372,036,854,775,807

Object data of any type 4 bytes

Short integer 2 bytes
Range: -32,768 to 32,767

Single a number with a decimal place 4 bytes
Range: +/-1.401298 X 107 to +/-3.402823 X 1038

String text; O to approximately 2 billion characters

Figure 3-3 Basic data types in Visual Basic
© 2013 Cengage Learning

As Figure 3-3 indicates, variables assigned the Integer, Long, or Short data type can store
integers, which are whole numbers. A whole number is a positive or negative number that does
not have any decimal places. The differences among these three data types are in the range of
integers each type can store and the amount of memory each type needs to store the integer.

The Decimal, Double, and Single variables can store numbers containing a decimal place. Here again,
the differences among these three data types are in the range of numbers each type can store and the
amount of memory each type needs to store the numbers. However, calculations involving Decimal
variables are not subject to the small rounding errors that may occur when using Double or Single
variables. In most cases, the small rounding errors do not create any problems in an application. One
exception to this is when the application contains complex equations dealing with money, where you
need accuracy to the penny. In those cases, the Decimal data type is the best type to use.

The Char data type can store one Unicode character, while the String data type can store from
zero to approximately two billion Unicode characters. Unicode is the universal coding scheme
for characters. It assigns a unique numeric value to each character used in the written languages
of the world. (For more information, see The Unicode Standard at www.unicode.org.)

Also listed in Figure 3-3 are the Boolean, Date, and Object data types. You use a Boolean variable
to store a Boolean value (either True or False), and a Date variable to store date and time
information. The Object data type can store any type of data. However, your application will pay a

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Using Variables and Constants

price for this flexibility: It will run more slowly because the computer has to determine the type of
data currently stored in an Object variable. It is best to avoid using the Object data type.

The applications in this book will use the Integer data type for variables that will store integers
used in calculations, even when the integers are small enough to fit into a Short variable. This is
because a calculation containing Integer variables takes less time to process than the equivalent
calculation containing Short variables. Either the Decimal data type or the Double data type will
be used for numbers that contain decimal places and are used in calculations. The applications
will use the String data type for variables that contain either text or numbers not used in
calculations, and the Boolean data type to store Boolean values.

Selecting a Name for a Variable

In addition to assigning a data type to an application’s variables, the programmer also must
assign a name to each variable. The name, also called the identifier, should describe the contents
of the variable. A good variable name is one that is meaningful right after you finish a program
and also years later when you (or perhaps a co-worker) need to modify the program. There are
several conventions for naming variables in Visual Basic. In this book, you will use Hungarian
notation, which is the same naming convention used for controls. Variable names in Hungarian
notation begin with a three-character ID that represents the variable’s data type. The three-
character IDs for the most commonly used data types are listed in Figure 3-4 along with
examples of variable names. Like control names, variable names are entered using camel case,
which means you lowercase the ID and then uppercase the first letter of each word in the name.

Data type ID Example

Boolean bin bTnInsured
Decimal dec decGrossPay
Double dbl db1Sales
Integer int intNumSold
String str strFirstName

Figure 3-4 Three-character IDs and examples
© 2013 Cengage Learning

Figure 3-5 lists the rules for naming variables and includes examples of valid and invalid variable
names.

Rules for Naming Variables

1. The name must begin with a letter or an underscore.

2. The name can contain only letters, numbers, and the underscore character. No punctuation
characters, special characters, or spaces are allowed in the name.

3. Although the name can contain thousands of characters, 32 characters is the recommended
maximum number of characters to use.

4. The name cannot be a reserved word, such as Sub or DoubTe.

Valid names
intFeb_Income, decSales2014, dblEastRegion, strName, bInIsValid

Invalid names Problem

4thQuarter the name must begin with a letter or an underscore
dbTWest Region the name cannot contain a space
strFirst.Name the name cannot contain punctuation
decSales$East the name cannot contain a special character

Figure 3-5 Variable naming rules and examples
© 2013 Cengage Learning

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Using Variables to Store Information

Declaring a Variable

Now that you know how to select an appropriate data type and name for a variable, you can
learn how to declare a variable in code. Declaring a variable tells the computer to set aside a
small section of its internal memory, and it allows you to refer to the section by the variable’s
name. The size of the section is determined by the variable’s data type. You declare a variable
using a declaration statement. Figure 3-6 shows the syntax of a declaration statement and
includes examples of declaring variables. The {Dim | Private | Static} portion of the syntax
indicates that you can select only one of the keywords appearing within the braces. In most
instances, you declare a variable using the Dim keyword. (You will learn about the Private and
Static keywords later in this lesson.)

Variable Declaration Statement

Syntax
{Dim | Private | Static} variableName As dataType [= initialValue]

Example 1

Dim intNumSold As Integer

Dim db1TaxRate As Double

declares an Integer variable named intNumSold and a Double variable named dbT1TaxRate;
the variables are automatically initialized to O

Example 2
Dim decPay As Decimal
declares a Decimal variable named decPay; the variable is automatically initialized to O

Example 3
Dim bTnInsured As Boolean = True

declares a Boolean variable named b1nInsured and initializes it using the keyword True

Example 4
Dim strMsg As String = "Good Night"
declares a String variable named strMsg and initializes it using the string “Good Night”

Figure 3-6 Syntax and examples of a variable declaration statement
© 2013 Cengage Learning

In the syntax, variableName and dataType are the variable’s name and data type, respectively.
As mentioned earlier, a variable is considered an object in Visual Basic and is an instance of the
class specified in the dataType information. The Dim intNumSold As Integer statement, for
example, creates a variable (object) named intNumSold. The intNumSold variable (object) is an
instance of the Integer class.

InitialValue in the syntax is the value you want stored in the variable when it is created in the
computer’s internal memory. The square brackets in the syntax indicate that the “= initialValue”
part of a variable declaration statement is optional. If you do not assign an initial value to a
variable when it is declared, the computer stores a default value in the variable. The default value
depends on the variable’s data type. A variable declared using one of the numeric data types is
automatically initialized to—in other words, given a beginning value of—the number 0. The
computer automatically initializes a Boolean variable using the keyword False, and a Date
variable to 1/1/0001 12:00:00 AM. Object and String variables are automatically initialized using
the keyword Nothing. Variables initialized to Nothing do not actually contain the word
“Nothing”; rather, they contain no data at all.

Dim comes from
the word
“dimension,”
which is how
programmers in
the 1960s referred to
the process of allocating
the computer's memory.
“Dimension” refers to the
“size” of something.

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Using Variables and Constants

Assigning Data to an Existing Variable

In Chapter 2, you learned how to use an assignment statement to assign a value to a control’s
property during run time. An assignment statement is also used to assign a value to a variable
during run time; the syntax for doing this is shown in Figure 3-7. In the syntax, expression can
contain items such as literal constants, object properties, variables, keywords, or arithmetic
operators. A literal constant is an item of data whose value does not change while the
application is running; examples include the string literal constant “Mary” and the numeric
literal constant 500. When the computer processes an assignment statement, it assigns the value
of the expression that appears on the right side of the assignment operator (=) to the variable
(memory location) whose name appears on the left side of the assignment operator. In other
words, the computer evaluates the expression and then stores the result in the variable.

Assigning a Value to a Variable during Run Time

Syntax
variableName = expression

Note: In each of the following examples, the data type of the expression assigned to the variable
is the same as the data type of the variable itself.

Example 1
intNumber = 25

assigns the integer 25 to the intNumber variable

Example 2
strName = "Karen"

assigns the string “Karen” to the strName variable

Example 3
strCity = txtCity.Text
assigns the string contained in the txtCity control's Text property to the strCity variable

Example 4
dblInterestRate = .09

assigns the Double number .09 to the dbT1InterestRate variable

Example 5

decTaxRate = .06D

converts the Double number .06 to Decimal and then assigns the result to the decTaxRate
variable

Example 6

db1Bonus = dbl1Sales * .05

multiplies the contents of the db1Sales variable by the Double number .05 and then assigns the
result to the db1Bonus variable

Figure 3-7 Syntax and examples of assigning a value to a variable during run time
© 2013 Cengage Learning

The data type of the expression assigned to a variable should be the same data type as the
variable itself; this is the case in all of the examples included in Figure 3-7. The assignment
statement in Example 1 stores the numeric literal constant 25 (an integer) in an Integer variable
named intNumber. Similarly, the assignment statement in Example 2 stores the string literal
constant “Karen” in a String variable named strName. Notice that string literal constants are
enclosed in quotation marks, but numeric literal constants and variable names are not. The
quotation marks differentiate a string from both a number and a variable name. In other words,
“500” is a string, but 500 is a number. Similarly, “Karen” is a string, but Karen (without the
quotation marks) would be interpreted by the computer as the name of a variable. When the

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Assigning Data to an Existing Variable

computer processes an assignment statement that assigns a string to a String variable, it assigns
only the characters that appear between the quotation marks; it does not assign the quotation
marks themselves.

The assignment statement in Example 3 assigns the string contained in the txtCity control’s Text
property to a String variable named strCity. (Recall that the value stored in the Text property
of an object is always treated as a string.) The assignment statement in Example 4 assigns the
Double number .09 to a Double variable named db1InterestRate. This is because a numeric
literal constant that has a decimal place is automatically treated as a Double number in Visual
Basic. When entering a numeric literal constant, you do not enter a comma or special characters,
such as the dollar sign or percent sign. If you want to include a percentage in an assignment
statement, you do so using its decimal equivalent; for example, you enter .09 rather than 9%.

The decTaxRate = .06D statement in Example 5 shows how you convert a numeric literal

constant of the Double data type to the Decimal data type, and then assign the result to a You wil learn
Decimal variable. The D that follows the number .06 in the statement is one of the literal type = ﬁtt; ?glt g{r;c;ther
characters in Visual Basic. A literal type character forces a literal constant to assume a data type character, the
other than the one its form indicates. In this case, the D forces the Double number .06 to letter C, in
assume the Decimal data type. Chapter 8.

Finally, the db1Bonus = db1Sales * .05 statement in Example 6 in Figure 3-7 multiplies the
contents of the db1Sales variable by the Double number .05 and then assigns the result to the
db1Bonus variable. When an assignment statement’s expression contains the name of a variable,
the computer uses the value stored inside the variable to evaluate the expression.

A variable can store only one value at any one time. When you use an assignment statement to
assign another value to the variable, the new value replaces the existing value. The code shown
in Figure 3-8 illustrates this point. The declaration statement in the code creates the
intQuantity variable and initializes it to the number 0. The first assignment statement then
replaces the number O with the number 25. The second assignment statement multiplies the
contents of the intQuantity variable (25) by the number 2, giving 50. It then replaces the
number 25 stored in the variable with the number 50. Notice that the calculation appearing on
the right side of the assignment operator is performed first, and then the result is assigned to the
variable whose name appears on the left side of the assignment operator.

Private Sub btnCalc_Click(sender As Object, e As
initializes the variable to 0 Dim intQuantity As Integer
replaces the 0 with 25 intQuantity = 25
replaces the 25 with 50 intQuantity = intQuantity * 2
End Sub

Figure 3-8 Assignment statements entered in the btnCalc_Click procedure

In all of the assignment statements shown in Figures 3-7 and 3-8, the expression’s data type is
the same as the variable’s data type. At times, however, you may need to store a value of a
different data type in a variable. You can change the value’s data type to match the variable’s
data type using either the TryParse method or one of the methods in the Convert class.

The TryParse Method You will learn

more about the

Like the Val function, which you learned about in Chapter 2, the TryParse method converts a TryParse
string to a number. However, unlike the Val function, which returns a Double number, the method in
TryParse method allows the programmer to specify the number’s data type; for this reason, most Chapter 5.

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Using Variables and Constants

programmers prefer to use the TryParse method. Every numeric data type in Visual Basic has a
TryParse method that converts a string to that particular data type.

Figure 3-9 shows the basic syntax of the TryParse method and includes examples of using the
method. In the syntax, dataType is one of the numeric data types available in Visual Basic. The
dot member access operator in the TryParse method’s syntax indicates that the method is a
member of the dataType class. The method’s arguments (string and numericVariableName)
represent information that the method needs to perform its task. The string argument is the string
you want converted to a number of the dataType type. The string argument is typically either the
Text property of a control or the name of a String variable. The numericVariableName argument
is the name of a numeric variable in which the TryParse method can store the number. The
numeric variable must have the same data type as specified in the dataType portion of the syntax.
For example, when using the TryParse method to convert a string to a Double number, you need
to provide the method with the name of a Double variable in which to store the number.

The TryParse method parses its string argument to determine whether the string can be
converted to a number. In this case, the term “parse” means to look at each character in the
string. If the string can be converted, the TryParse method converts the string to a number and
then stores the number in the variable specified in the numericVariableName argument. If the
TryParse method determines that the string cannot be converted to the appropriate data type, it
assigns the number O to the variable.

TryParse Method

Basic syntax
dataType.TryParse(string, numericVariableName)

Example 1
DoubTle.TryParse(txtDue.Text, dbl1Due)

If the string contained in the txtDue control's Text property can be converted to a Double
number, the TryParse method converts the string and then stores the result in the db1Due
variable; otherwise, it stores the number O in the variable.

Example 2

Decimal.TryParse(txtNetPay.Text, decNetPay)

If the string contained in the txtNetPay control's Text property can be converted to a Decimal
number, the TryParse method converts the string and then stores the result in the decNetPay
variable; otherwise, it stores the number O in the variable.

Example 3

Integer.TryParse(strScore, intScore)

If the string contained in the strScore variable can be converted to an Integer number, the

TryParse method converts the string and then stores the result in the intScore variable; otherwise, it
stores the number O in the variable.

Figure 3-9 Basic syntax and examples of the TryParse method
© 2013 Cengage Learning

Figure 3-10 shows how the TryParse method of the Double, Decimal, and Integer data types
would convert various strings. As the figure indicates, the three methods can convert a string
that contains only numbers. They also can convert a string that contains a leading sign, as
well as one that contains leading or trailing spaces. In addition, the Double.TryParse and
Decimal. TryParse methods can convert a string that contains a decimal point or a comma.
However, none of the three methods can convert a string that contains a dollar sign, a percent
sign, a letter, or a space within the string.

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Assigning Data to an Existing Variable

string Double.TryParse Decimal.TryParse Integer.TryParse
'62" 62 62 62
9" -9 -9 -9
"'12.55" 12.55 12.55 0
—4.23" -4.23 -4.23 0
'1,457" 1457 1457 0
"33" 33 33 33
"S5 0 0 0
"7%" 0 0 0
'122a" 0 0 0
"1 345" 0 0 0
empty string 0 0 0

Figure 3-10 Results of the TryParse method for the Double, Decimal, and Integer data types
© 2013 Cengage Learning

The Convert Class

At times, you may need to convert a number (rather than a string) from one data type to
another. Visual Basic provides several ways of accomplishing this task. One way is to use the
Visual Basic conversion functions, which are listed in Appendix C in this book. You also can use
one of the methods defined in the Convert class. In this book you will use the Convert class
methods because they can be used in any of the languages built into Visual Studio. The
conversion functions, on the other hand, can be used only in the Visual Basic language. The
more commonly used methods in the Convert class are the ToDecimal, ToDouble, ToInt32, and
ToString methods. The methods convert a value to the Decimal, Double, Integer, and String
data types, respectively.

The syntax for using the Convert class methods is shown in Figure 3-11 along with examples of
using the methods. The dot member access operator in the syntax indicates that the method is a
member of the Convert class. In most cases, the value argument is a numeric value that you
want converted either to the String data type or to a different numeric data type (for example,
from Double to Decimal). Although you can use the Convert methods to convert a string to a
numeric data type, the TryParse method is the recommended method to use for that task. This
is because, unlike the Convert methods, the TryParse method does not produce an error when it
tries to convert the empty string. Instead, the TryParse method assigns the number 0 to its
numericVariableName argument.

You can
experiment with
the Visual Basic
conversion
functions by
completing Exercise 7 at
the end of Lesson C.

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

ChO3A-
Scope and
Lifetime

Using Variables and Constants

Convert Class Methods

Syntax
Convert.method(value)

Example 1
decRate = Convert.ToDecimal(.15)
converts the Double number .15 to Decimal and then assigns the result to the decRate variable

Example 2

TbTQuantity.Text = Convert.ToString(intQuantity)

converts the integer stored in the intQuantity variable to String and then assigns the result to
the IblQuantity control's Text property

Example 3
decBonus = decSales * Convert.ToDecimal(.05)

converts the Double number .05 to Decimal, then multiplies the result by the contents of the
decSales variable, and then assigns that result to the decBonus variable

Figure 3-11 Syntax and examples of the Convert class methods
© 2013 Cengage Learning

In the statement shown in Example 1, the Convert.ToDecimal method converts the Double
number .15 to Decimal. (Recall that a number with a decimal place is automatically treated as a
Double number in Visual Basic.) The statement then assigns the result to the decRate variable.
You also could write the statement as decRate = .15D. However, many programmers would
argue that using the Convert.ToDecimal method, rather than the literal type character D, makes
the code clearer.

In Example 2’s statement, the Convert.ToString method converts the integer stored in the
intQuantity variable to String before the statement assigns the result to the IblQuantity
control’s Text property. The statement in Example 3 uses the Convert.ToDecimal method to
convert the Double number .05 to Decimal. The statement multiplies the result by the contents
of the decSales variable and then assigns the product to the decBonus variable. You also could
write this statement as decBonus = decSales * .05D.

]
YOU DO IT 1!

Create a Visual Basic Windows application named YouDolt 1. Save the application in the
VB2012\Chap03 folder. Add a text box, a label, and a button to the form. The button’s
Click event procedure should store the contents of the text box in a Double variable
named dblCost. It then should display the variable’s contents in the label. Code the
procedure. Save the solution and then start and test the application. Close the solution.

Note: You have learned a lot so far in this lesson. You may want to take a break at this point
before continuing.

The Scope and Lifetime of a Variable

Besides a name, data type, and initial value, every variable also has a scope and a lifetime. A
variable’s scope indicates where the variable can be used in an application’s code, and its lifetime
indicates how long the variable remains in the computer’s internal memory. Variables can have

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

The Scope and Lifetime of a Variable

class scope, procedure scope, or block scope. However, most of the variables used in an
application will have procedure scope. This is because fewer unintentional errors occur in
applications when the variables are declared using the minimum scope needed, which usually is
procedure scope.

A variable’s scope and lifetime are determined by where you declare the variable—in other
words, where you enter the variable’s declaration statement. Typically, you enter the declaration
statement either in a procedure (such as an event procedure) or in the Declarations section of a
form. A form’s Declarations section is not the same as the General Declarations section, which
you learned about in Chapter 2. The General Declarations section is located above the Public
Class clause in the Code Editor window, whereas the form’s Declarations section is located
between the Public Class and End Class clauses. Variables declared in a form’s Declarations
section have class scope. Variables declared in a procedure, on the other hand, have either
procedure scope or block scope, depending on where in the procedure they are declared. In the
next two sections, you will learn about procedure scope variables and class scope variables.
Variables having block scope are covered in Chapter 4.

Variables with Procedure Scope

When you declare a variable in a procedure, the variable is called a procedure-level variable.
Procedure-level variables have procedure scope because they can be used only by the procedure
in which they are declared. Procedure-level variables are typically declared at the beginning of a
procedure, and they remain in the computer’s internal memory only while the procedure is
running. Procedure-level variables are removed from memory when the procedure in which
they are declared ends. In other words, a procedure-level variable has the same lifetime as the
procedure that declares it. As mentioned earlier, most of the variables in your applications will
be procedure-level variables.

The Discount Calculator application that you view next illustrates the use of procedure-level
variables. As the interface shown in Figure 3-12 indicates, the application allows the user to
enter a sales amount. It then calculates and displays either a 15% discount or a 20% discount,
depending on the button selected by the user.

ol Discount Calculator == =
Sales: Discount:
15% Discount 20% Discount Exit

Figure 3-12 User interface for the Discount Calculator application

Figure 3-13 shows the Click event procedures for the 15% Discount and 20% Discount buttons.
The comments in the figure indicate the purpose of each line of code. When each procedure
ends, its procedure-level variables are removed from the computer’s memory. The variables will
be created again the next time the user clicks the button.

Variables can
also have
namespace
scope and are
referred to as
namespace variables,
global variables, or
public variables. @-
Such variables can

lead to unintentional
errors in a program and
should be avoided, if
possible. For this reason,
they are not covered in
this book.

Procedure-evel
variables are
also called local
variables and
their scope is
often referred to as local
scope.

l

In the Static
Variables section
of this chapter,
you will learn
how to declare a
procedure-level variable
that remains in the
computer's memory even
when the procedure in
which it is declared ends.

l

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Using Variables and Constants

Private Sub btnDiscl5_Click(sender As Object, e As EventArgs)
Handles btnDiscl5.Click

' calculates and displays a 15% discount

' the Dim statements declare two procedure-Tlevel
variables that can be used only within the

' btnDiscl5_Click procedure these variables will be

Dim db1Sales As Double——— removed from memory

Dim db1Discountl5 As Double — when the btnDisc15_Click
procedure ends

the TryParse method converts the contents of the
txtSales control to Double and then stores the
result in the procedure-Tevel dblSales variable
Double.TryParse(txtSales.Text, dblSales)

v

the assignment statement multiplies the value
stored in the procedure-level dblSales variable

" by the Double number 0.15 and then assigns the

' result to the procedure-level dblDiscountl5 variable
db1Discountl5 = db1Sales * 0.15

il

the Convert method converts the value stored in the
procedure-level db1Discountl5 variable to String, and
the assignment statement assigns the result to the
1b1Discount control's Text property

Tb1Discount.Text = Convert.ToString(db1Discountl5)
End Sub

v
]
il

Private Sub btnDisc20_Click(sender As Object, e As EventArgs)
Handles btnDisc20.Click

' calculates and displays a 20% discount

' the Dim statements declare two procedure-level
variables that can be used only within the

" btnDisc20_Click procedure these variables will be

Dim db1Sales As Double ——— removed from memory

Dim db1Discount20 As Double— when the btnDisc20_Click
procedure ends

the TryParse method converts the contents of the
txtSales control to Double and then stores the
result in the procedure-Tevel dblSales variable
Double.TryParse(txtSales.Text, dblSales)

the assignment statement multiplies the value

stored in the procedure-Tevel dblSales variable

' by the Double number 0.2 and then assigns the

' result to the procedure-level dblDiscount20 variable
db1Discount20 = dblSales * 0.2

the Convert method converts the value stored in the
procedure-Tevel db1Discount20 variable to String, and
the assignment statement assigns the result to the

' 1b1Discount control's Text property

Tb1Discount.Text = Convert.ToString(db1Discount20)
End Sub

Figure 3-13 Click event procedures using procedure-level variables
© 2013 Cengage Learning

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

The Scope and Lifetime of a Variable

Notice that both procedures in Figure 3-13 declare a variable named db1Sales. When you use
the same name to declare a variable in more than one procedure, each procedure creates its own
variable when the procedure is invoked. Each procedure also destroys its own variable when the
procedure ends. In other words, although both procedures in Figure 3-13 declare a variable
named db1Sales, each db1Sales variable will refer to a different section in the computer’s
internal memory, and each will be both created and destroyed independently from the other.

To code and then test the Discount Calculator application: -T W

1. If necessary, start Visual Studio 2012. Open the Discount Calculator Solution (Discount
Calculator Solution.sln) file contained in the VB2012\Chap03\Discount Calculator
Solution-Procedure-level folder. If necessary, open the designer window and auto-hide
the Solution Explorer, Properties, and Toolbox windows. The user interface shown
earlier in Figure 3-12 appears on the screen.

2. Open the Code Editor window. See Figure 3-14. For now, do not be concerned about the
three Option statements that appear in the window. You will learn about the Option
statements later in this lesson. Replace <your name> and <current date> in the
comments with your name and the current date, respectively.

ﬂ Discount Calculator Solution - Microsoft Visual Studio Quick Launch (Ctrl+Q) b = B e
FILE EDIT VIEW PROJECT BUILD DEBUG TEAM 50L DATA TOOLS TEST ANALYZE WINDOW HELP
e BraMWd v% DT - b St~ G G A
Main Form.vb [Design]
HHE (General) ~ BM (Declarations)
=" Name: Discount Calculator Project
7" Purpose: Displays either a 15% discount or a 20% discount
' Programmer: <your name> on <current date>

*0q|00]
> k] 4

saipadosg Juojdig uonnjos

~Option Explicit On you will learn about
Option Infer Off these statements later
Option Strict On in this lesson

Public Class frmMain

Private Sub btnExit_Click(sender As Object, e As EventArgs) Handl
Me.Close()
End Sub

=

End Class

150% ~

Figure 3-14 Code Editor window for the Discount Calculator application

3. Open the code template for the btnDisc15 control’s Click event procedure. Also open
the code template for the btnDisc20 control’s Click event procedure. In the procedures,
enter the comments and code shown earlier in Figure 3-13.

4. Save the solution and then start the application. If necessary, press Alt to display the
access keys in the interface.

5. First, calculate and display a 15% discount on $600. If you do not see the blinking
insertion point in the Sales box, click the Sales box. Type 600 in the Sales box and then
click the 15% Discount button. The number 90 appears in the Discount box, as shown
in Figure 3-15.

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Although you
also can use the
Dim keyword to
declare a class-
level variable,
most Visual Basic
programmers use the
Private keyword so
that the scope is more
obvious to anyone
reading the code.

il

Using Variables and Constants

Sales: Discount;

15% Discount 20% Discount

Figure 3-15 Discount shown in the interface

6. Change the sales amount to the letter a and then click the 15% Discount button.
The number 0 appears in the Discount box.

7. Change the sales amount to 1000 and then click the 20% Discount button. The number
200 appears in the Discount box.

8. Change the sales amount to the letter s and then click the 20% Discount button.
The number 0 appears in the Discount box.

9. Click the Exit button. Close the Code Editor window and then close the solution.

Variables with Class Scope

In addition to declaring a variable in a procedure, you also can declare a variable in the form’s
Declarations section, which begins with the Public Class clause and ends with the End Class clause.
When you declare a variable in the form’s Declarations section, the variable is called a class-level
variable and it has class scope. Class-level variables can be used by all of the procedures in the
form, including the procedures associated with the controls contained on the form. Class-level
variables retain their values and remain in the computer’s internal memory until the application
ends. In other words, a class-level variable has the same lifetime as the application itself.

Unlike a procedure-level variable, which is declared using the Dim keyword, you declare a class-
level variable using the Private keyword. You typically use a class-level variable when you need
more than one procedure in the same form to use the same variable. However, a class-level
variable can also be used when a procedure needs to retain a variable’s value after the procedure
ends. The Total Scores application, which you view next, illustrates this use of a class-level
variable. The application’s interface is shown in Figure 3-16. As the interface indicates, the
application calculates and displays the total of the scores entered by the user.

o Total Scores EI

Enter score here: Add to Total

Total scores: I:l Exit

Figure 3-16 User interface for the Total Scores application

Figure 3-17 shows the Total Scores application’s code. The code uses a class-level variable
named decTotal to accumulate (add together) the scores entered by the user. Class-level
variables are declared after the Public Class clause, but before the first Private Sub clause, in the
form’s Declarations section.

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

The Scope and Lifetime of a Variable

PubTic Class frmMain

' class-level variable used

' to accumuTlate the scores class-level variable

Private decTotal As Decimal declared in the form’s
Declarations section

Private Sub btnExit_Click(sender As Object,

e As EventArgs) Handles btnExit.Click

Me.Close()
End Sub

Private Sub btnAdd_Click(sender As Object,
e As EventArgs) Handles btnAdd.Click
' totals the scores entered by the user
' . rocedure-leve
_dec1are variable . SMBMededamdm
Dim decScore As Decimal the btnAdd_Click
procedure
' total the scores
Decimal.TryParse(txtScore.Text, decScore)
decTotal = decTotal + decScore
display the total
1b1Total.Text = Convert.ToString(decTotal)
' set the focus
txtScore.Focus()

End Sub
End Class

Figure 3-17 Total Scores application’s code using a class-evel variable
© 2013 Cengage Learning

When the user starts the Total Scores application, the computer will process the Private
decTotal As Decimal statement first. The statement creates and initializes the class-level
decTotal variable. The variable is created and initialized only once, when the application starts.
It remains in the computer’s internal memory until the application ends.

Each time the user clicks the Add to Total button, the button’s Click event procedure creates
and initializes a procedure-level variable named decScore. The TryParse method then converts
the contents of the txtScore control to Decimal, storing the result in the decScore variable. The
first assignment statement in the procedure adds the contents of the procedure-level decScore
variable to the contents of the class-level decTotal variable. At this point, the decTotal
variable contains the sum of all of the scores entered so far. The last assignment statement in the
procedure converts the contents of the decTotal variable to String and then assigns the result
to the IblTotal control. The procedure then sends the focus to the txtScore control. When the
procedure ends, the computer removes the procedure-level decScore variable from its memory.
However, it does not remove the class-level decTotal variable. The decTotal variable is
removed from the computer’s memory only when the application ends.

To code and then test the Total Scores application:

1. Open the Total Scores Solution (Total Scores Solution.sln) file contained in the VB2012
\Chap03\Total Scores Solution-Class-level folder. If necessary, open the designer
window. The user interface shown earlier in Figure 3-16 appears on the screen.

2. Open the Code Editor window. Here again, do not be concerned about the three Option
statements that appear in the window. You will learn about the Option statements later
in this lesson. Replace <your name> and <current date> in the comments with your
name and the current date, respectively.

<(START HERE

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

ll

The Static
keyword can be
used only in a
procedure.

Using Variables and Constants

3. First, declare the class-level decTotal variable in the form’s Declarations section. Click
the blank line below the ' to accumulate the scores comment and then enter the
following declaration statement:

Private decTotal As Decimal

4. Open the code template for the btnAdd control’s Click event procedure. In the
procedure, enter the comments and code shown earlier in Figure 3-17.

5. Save the solution and then start the application. If necessary, press Alt to display the
access keys.

Note: The figures in this book will usually show the interface’s access keys. However,
from now on, you will not be instructed to press Alt to display the access keys. Instead,
you can choose whether or not to display them.

6. Type 95 as the score and then click the Add to Total button. The number 95 appears in
the Total scores box.

7. Change the score to 87 and then click the Add to Total button. The number 182
appears in the Total scores box.

8. Change the score to 100 and then click the Add to Total button. The number 282
appears in the Total scores box, as shown in Figure 3-18.

Enter score here: Add to Total

Total scores: 282 Exit

Figure 3-18 Interface showing the total of the scores you entered

9. Click the Exit button. Close the Code Editor window and then close the solution.

Static Variables

Recall that you can declare a variable using the Dim, Private, or Static keywords. You already
know how to use the Dim and Private keywords to declare procedure-level and class-level
variables, respectively. In this section, you will learn how to use the Static keyword to declare a
special type of procedure-level variable, called a static variable.

A static variable is a procedure-level variable that remains in memory, and also retains its value,
even when the procedure in which it is declared ends. Like a class-level variable, a static variable
is not removed from the computer’s internal memory until the application ends. However,
unlike a class-level variable, which can be used by all of the procedures in a form, a static
variable can be used only by the procedure in which it is declared. In other words, a static
variable has a narrower (or more restrictive) scope than does a class-level variable. As
mentioned earlier, you can prevent many unintentional errors from occurring in an application
by declaring the variables using the minimum scope needed.

In the previous section, you viewed the interface and code for the Total Scores application,
which uses a class-level variable to accumulate the scores entered by the user. Rather than using
a class-level variable for that purpose, you also can use a static variable, as shown in the code in
Figure 3-19.

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Static Variables

PubTlic Class frmMain

Private Sub btnExit_Click(sender As Object,

e As EventArgs) Handles btnExit.Click
Me.Close()

End Sub

Private Sub btnAdd_Click(sender As Object,
e As EventArgs) Handles btnAdd.Click
' totals the scores entered by the user

' declare variables modified comment

Dim decScore As Decimal

Static decTotal As Decimal static variable declared
in the btnAdd_Click

' total the scores procedure

Decimal.TryParse(txtScore.Text, decScore)
decTotal = decTotal + decScore

' display the total

Tb1Total.Text = Convert.ToString(decTotal)
' set the focus

txtScore.Focus()

End Sub
End Class

Figure 3-19 Total Scores application’s code using a static variable
© 2013 Cengage Learning

The first time the user clicks the Add to Total button, the button’s Click event procedure
creates and initializes (to 0) a procedure-level variable named decScore and a static variable
named decTotal. The TryParse method then converts the contents of the txtScore control to
Decimal, storing the result in the decScore variable. The first assignment statement in the
procedure adds the contents of the decScore variable to the contents of the decTotal variable.
The last assignment statement in the procedure converts the contents of the decTotal variable
to String and assigns the result to the IblTotal control. The procedure then sends the focus to
the txtScore control. When the procedure ends, the computer removes the variable declared
using the Dim keyword (decScore) from its internal memory. But it does not remove the
variable declared using the Static keyword (decTotal).

Each subsequent time the user clicks the Add to Total button, the computer re-creates and re-
initializes the decScore variable declared in the button’s Click event procedure. However, it
does not re-create or re-initialize the decTotal variable because that variable, as well as its
current value, is still in the computer’s memory. After re-creating and re-initializing the
decScore variable, the computer processes the remaining instructions contained in the button’s
Click event procedure. Here again, each time the procedure ends, the decScore variable is
removed from the computer’s internal memory. The decTotal variable is removed only when
the application ends.

To use a static variable in the Total Scores application:

1. Open the Total Scores Solution (Total Scores Solution.sln) file contained in the Total
Scores Solution-Static folder. If necessary, open the designer window. The user interface
shown earlier in Figure 3-16 appears on the screen.

2. Open the Code Editor window. (Recall that you will learn about the Option statements
later in this lesson.) Replace <your name> and <current date> in the comments with
your name and the current date, respectively.

<«(START HERE

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Using Variables and Constants

3. Delete the comments and Private declaration statement entered in the form’s
Declarations section.

4. Modify the btnCalc control’s Click event procedure so that it uses a static variable rather
than a class-level variable. Use the code shown in Figure 3-19 as a guide.

5. Save the solution and then start the application.

6. Use the application to total the following three scores: 95, 87, and 100. Be sure to click
the Add to Total button after typing each score. Also be sure to delete the previous score
before entering the next score. When you are finished entering the scores, the number
282 appears in the Total scores box, as shown earlier in Figure 3-18.

7. Click the Exit button. Close the Code Editor window and then close the solution.

]
YOU DO IT 2!

Create a Visual Basic Windows application named YouDolt 2. Save the application in the
VB2012\Chap03 folder. Add a label and a button to the form. The button’s Click event
procedure should add the number 1 to the contents of a classlevel Integer variable
named intNumber. It then should display the variable’s contents in the label. Code the
application. Save the solution and then start and test the application. Now change
the class-level variable to a static variable. Save the solution and then start and test
the application. Close the solution.

Named Constants

In addition to using literal constants and variables in your code, you also can use named
constants. Like a variable, a named constant is a memory location inside the computer.
However, unlike the value stored in a variable, the value stored in a named constant cannot be
changed while the application is running. You create a named constant using the Const
statement. The statement’s syntax is shown in Figure 3-20. In the syntax, expression is the value
you want stored in the named constant when it is created in the computer’s internal memory.
The expression’s value must have the same data type as the named constant. The expression can
contain a literal constant, another named constant, or an arithmetic operator; however, it
cannot contain a variable or a method.

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Named Constants

Declaring a Named Constant

Syntax
[Private] Const constantName As dataType = expression

Example 1
Const db1PI As Double = 3.141593
declares db1PI as a Double named constant and initializes it to the Double number 3.141593

Example 2
Const intLIMIT As Integer = 70

declares intLIMIT as an Integer named constant and initializes it to the integer 70

Example 3
Const strCOMPANY As String = "Merring Co."

declares strCOMPANY as a String named constant and initializes it to the string “Merring Co.”
the D literal type

Example 4

Private Const decTAX_RATE As Decimal = .025D character changes e
declares decTAX_RATE as a Decimal named constant and initializes it to the Decimal number Decimal

025

Figure 3-20 Syntax and examples of the Const statement
© 2013 Cengage Learning

To differentiate the name of a constant from the name of a variable, many programmers
lowercase the three-character ID that represents the constant’s data type and then uppercase
the remaining characters in the name, as shown in the examples in Figure 3-20. When entered
in a procedure, the Const statements shown in the first three examples create procedure-level
named constants. To create a class-level named constant, you precede the Const keyword with
the Private keyword, as shown in Example 4. In addition, you enter the Const statement in the
form’s Declarations section. Notice that Example 4 uses the literal type character D to convert
the Double number .025 to Decimal. The Convert.ToDecimal method was not used for this
purpose because, as mentioned earlier, the expression assigned to a named constant cannot
contain a method.

Named constants make code more self-documenting and easier to modify because they allow
you to use meaningful words in place of values that are less clear. The named constant db1PI,
for example, is much more meaningful than the number 3.141593, which is the value of pi
rounded to six decimal places. Once you create a named constant, you then can use the
constant’s name, rather than its value, in the application’s code. Unlike the value stored in a
variable, the value stored in a named constant cannot be inadvertently changed while the
application is running. Using a named constant to represent a value has another advantage: If
the value changes in the future, you will need to modify only the Const statement in the
program, rather than all of the program statements that use the value.

The Area Calculator application that you view next illustrates the use of a named constant. As
the interface shown in Figure 3-21 indicates, the application allows the user to enter the radius
of a circle. It then calculates and displays the circle’s area. The formula for calculating the area of
a circle is ir?, where 1t stands for pi (3.141593).

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

ll

You also can
calculate the area
using the
expression
db1PI *
dbTRadius A 2.

The Format
function, which
you learned
about in Chapter
2, returns a
string.

named constant
declaration statement

assignment statement
containing the named
constant

START HERE >

Using Variables and Constants

(=2 =)

agl Area Calculator

Circle’s radius:

Calculate Area

Exit

Figure 3-21 User interface for the Area Calculator application

Figure 3-22 shows the code for the Calculate Area button’s Click event procedure. The
declaration statements in the procedure declare and initialize a named constant and two
variables. The TryParse method converts the contents of the txtRadius control to Double,
storing the result in the db1Radius variable. The first assignment statement in the procedure
calculates the circle’s area using the values stored in the db1PI named constant and db1Radius
variable; it then assigns the result to the db1Area variable. The Format function in the second
assignment statement formats the contents of the db1Area variable and then displays the
resulting string in the IblArea control. When the procedure ends, the computer removes the
named constant and two variables from its internal memory.

Private Sub btnCalc_Click(sender As Object, e As EventArgs)
Handles btnCalc.Click
' calculates the area of a circle

' declare named constant and variables
Const db1PI As Double = 3.141593

Dim db1Radius As DoubTle

Dim dbTArea As Double

' calculate and display the area
DoubTle.TryParse(txtRadius.Text, dblRadius)
db1Area = db1PI * dbTRadius * dblRadius
1bTArea.Text = Format(dbTArea, "Standard")

End Sub

Figure 3-22 Calculate Area button’s Click event procedure
© 2013 Cengage Learning

To code and then test the Area Calculator application:

1. Open the Area Calculator Solution (Area Calculator Solution.sln) file contained in the
VB2012\Chap03\Area Calculator Solution folder. If necessary, open the designer
window. The user interface shown earlier in Figure 3-21 appears on the screen.

2. Open the Code Editor window. (You will learn about the Option statements in the next
section.) Replace <your name> and <current date> in the comments with your name and
the current date, respectively.

3. Open the code template for the btnCalc control’s Click event procedure, and then enter
the comments and code shown earlier in Figure 3-22.

4. Save the solution and then start the application.

5. Type 10 in the Circle’s radius box and then click the Calculate Area button. The
number 314.16 appears in the Circle’s area box, as shown in Figure 3-23.

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Option Statements

Circle's radius: |10 sl A

Circle's area: 31416 e

Figure 3-23 Interface showing the circle’s area

6. Click the Exit button. Close the Code Editor window and then close the solution.

Option Statements

Finally, you will learn about the three Option statements shown earlier in Figure 3-14. The
Option statements appeared in the Code Editor window for all of the applications you viewed in
this lesson—namely, the Discount Calculator, Total Scores, and Area Calculator applications.
You will learn about the Option Explicit and Option Infer statements first.

Option Explicit and Option Infer

It is important to declare every variable used in your code. This means every variable should
appear in a declaration statement, such as a Dim or Private statement. The declaration
statement is important because it allows you to control the variable’s data type. Declaration
statements also make your code more self-documenting. However, a word of caution is in order
at this point: In Visual Basic you can create variables “on the fly.” This means that if a statement
in your code refers to an undeclared variable, Visual Basic will create the variable for you and
assign the Object data type to it. Recall that the Object type is not a very efficient data type, and
its use should be limited.

Because it is so easy to forget to declare a variable—and so easy to misspell a variable’s name
while coding, thereby inadvertently creating an undeclared variable—Visual Basic provides a
statement that tells the Code Editor to flag any undeclared variables in your code. The

Recall that the

statement, Option Explicit On, must be entered in the General Declarations section of the > S:Zg;ltions
Code Editor window. When you also enter the Option Infer Off statement in the General section is
Declarations section, the Code Editor ensures that every variable and named constant is located above
declared with a data type. In other words, the statement tells the computer not to infer (or the Public Class clause in

assume) a memory location’s data type based on the data assigned to the memory location. the Code Editor window.

Option Strict

As you learned earlier, the data type of the value assigned to a memory location should be the
same as the data type of the memory location itself. If the value’s data type does not match the
memory location’s data type, the computer uses a process called implicit type conversion to
convert the value to fit the memory location. For example, when processing the statement Dim
db1Length As Double =9, the computer converts the integer 9 to the Double number 9.0 before
storing the value in the db1Length variable. When a value is converted from one data type to
another data type that can store either larger numbers or numbers with greater precision, the
value is said to be promoted. In this case, if the db1Length variable is used subsequently in a
calculation, the results of the calculation will not be adversely affected by the implicit promotion
of the number 9 to the number 9.0.

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Using Variables and Constants

On the other hand, if you inadvertently assign a Double number to a memory location that can
store only integers, the computer converts the Double number to an integer before storing the
value in the memory location. It does this by rounding the number to the nearest whole number
and then truncating (dropping off) the decimal portion of the number. When processing the
statement Dim intScore As Integer = 78.4, for example, the computer converts the Double
number 78.4 to the integer 78 before storing the integer in the intScore variable. When a value
is converted from one data type to another data type that can store only smaller numbers or
numbers with less precision, the value is said to be demoted. If the intScore variable is used
subsequently in a calculation, the implicit demotion of the number 78.4 to the number 78 will
probably cause the calculated results to be incorrect.

With implicit type conversions, data loss can occur when a value is converted from one data
type to a narrower data type, which is a data type with less precision or smaller capacity. You
can eliminate the problems that occur as a result of implicit type conversions by entering the
Option Strict On statement in the General Declarations section of the Code Editor window.
When the Option Strict On statement appears in an application’s code, the computer uses the
type conversion rules listed in Figure 3-24. The figure also includes examples of these rules.

Type Conversion Rules

1. Strings will not be implicitly converted to numbers. The Code Editor will display a warning
message when a statement attempts to use a string where a number is expected.

Incorrect: db1Sales = txtSales.Text
Correct: Double.TryParse(txtSales.Text, dblSales)

2. Numbers will not be implicitly converted to strings. The Code Editor will display a warning
message when a statement attempts to use a number where a string is expected.

Incorrect: 1b1Bonus.Text = decBonus
Correct: Tb1Bonus.Text = Convert.ToString(decBonus)

3. Wider data types will not be implicitly demoted to narrower data types. The Code Editor will
display a warning message when a statement attempts to use a wider data type where a
narrower data type is expected.

Incorrect: Dim decRate As Decimal = .05
Correct: Dim decRate As Decimal =.05D
Correct: Dim decRate As Decimal = Convert.ToDecimal(.05)

4. Narrower data types will be implicitly promoted to wider data types.
Correct: dbTAverage = db1Total / intNum

Figure 3-24 Rules and examples of type conversions
© 2013 Cengage Learning

According to the first rule, the computer will not implicitly convert a string to a number. As a
result, the Code Editor will issue the warning message “Option Strict On disallows implicit
conversions from 'String' to 'Double” when your code contains the statement db1Sales =
txtSales.Text. This is because the statement tells the computer to store a string in a Double
variable. As you learned earlier, you should use the TryParse method to explicitly convert a
string to the Double data type before assigning it to a Double variable. In this case, the
appropriate statement to use is DoubTle.TryParse(txtSales.Text, dblSales).

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Option Statements

According to the second rule, the computer will not implicitly convert a number to a string.
Therefore, the Code Editor will issue an appropriate warning message when your code contains
the statement Tb1Bonus.Text = decBonus; this is because the statement assigns a number to a
string. Recall that you can use the Convert class methods to explicitly convert a number to the
String data type. An appropriate statement to use here is Th1Bonus.Text = Convert.ToString
(decBonus).

The third rule states that wider data types will not be implicitly demoted to narrower data types.
A data type is wider than another data type if it can store either larger numbers or numbers with
greater precision. Because of this rule, a Double number will not be implicitly demoted to the
Decimal or Integer data types. If your code contains the statement Dim decRate As Decimal = .05,
the Code Editor will issue an appropriate warning message because the statement assigns a
Double number to a Decimal variable. The correct statement to use in this case is either Dim
decRate As Decimal = .05D or Dim decRate As Decimal = Convert.ToDecimal(.05).

According to the last rule listed in Figure 3-24, the computer will implicitly convert narrower
data types to wider data types. For example, when processing the statement dbTAverage =
db1Total / intNum, the computer will implicitly promote the integer stored in the intNum
variable to Double before dividing it into the contents of the db1Total variable. The result, a
Double number, will be assigned to the dbTAverage variable.

Figure 3-25 shows the three Option statements entered in the General Declarations section of
the Code Editor window. If a project contains more than one form, the statements must be
entered in each form’s Code Editor window.

General Declarations section

Main Form.vh [Design]

BBE (General) - HBE (Declarations)
" Name: Area Calculator Project
' Purpose: Displays the area of a circle

Programmer: <your name> on <current date>
Option Explicit On

Option Infer Off Option statements

Option Strict On

Public Class frmMain

Figure 3-25 Option statements entered in the General Declarations section

Rather than entering the Option statements in the Code Editor window, you also can set the
options using either the Project Designer window or the Options dialog box. However, it is
strongly recommended that you enter the Option statements in the Code Editor window
because doing so makes your code more self-documenting and ensures that the options are set
appropriately. The steps for setting the options in the Project Designer window and Options
dialog box are listed in the Lesson A Summary section.

In Visual Basic
2012, the
default setting
for Option
Explicit and
Option Infer is On,
whereas the default
setting for Option Strict
is Off.

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Using Variables and Constants

YOU DO IT 3!

Create a Visual Basic Windows application named YouDolt 3. Save the application in the
VB2012\Chap03 folder. Add a text box, a label, and a button to the form. In the General
Declarations section of the Code Editor window, enter the following three Option statements:

Option Explicit On, Option Strict Off, and Option Infer Off.In the button’s Click
event procedure, declare a Double variable named db1Num. Use an assignment statement to
assign the contents of the text box to the Double variable. Then, use an assignment
statement to assign the contents of the Double variable to the label. Save the solution and
then start and test the application. Stop the application. Now change the Option Strict
off statement to Option Strict On, and then make the necessary modifications to the
code. Save the solution and then start and test the application. Close the solution.

Lesson A Summary

e To declare a variable:

The syntax of a variable declaration statement is {Dim | Private | Static} variableName
As dataType |= initialValue]. Use camel case for a variable’s name.

e To declare a procedure-level variable:

Enter the variable declaration statement in a procedure; use the Dim keyword to declare a
procedure-level variable that will be removed from the computer’s internal memory when
the procedure ends; use the Static keyword to declare a procedure-level variable that
remains in the computer’s internal memory, and also retains its value, until the application
ends.

e To declare a class-level variable:

Enter the variable declaration statement in a form’s Declarations section; use the Private
keyword.

e To use an assignment statement to assign data to an existing variable:
Use the syntax variableName = expression.

e To force a Double literal constant to assume the Decimal data type:
Append the letter D to the end of the Double literal constant.

e To convert a string to a numeric data type:

Use the TryParse method. The method’s syntax is dataType.TryParse(string, numeric-
VariableName).

e To convert a numeric value to a different data type:
Use one of the Convert methods. Each method’s syntax is Convert.method(value).
e To create a named constant:

Use the Const statement. The statement’s syntax is [Private] Const constantName As
dataType = expression. Enter the three-character ID in lowercase, and the remainder of
the name in uppercase.

e To create a procedure-level named constant:

Enter the Const statement (without the Private keyword) in a procedure.

earning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Lesson A Key Terms

e To create a class-level named constant:

Enter the Const statement, preceded by the keyword Private, in a form’s Declarations
section.

e To prevent the computer from creating an undeclared variable:

Enter the Option Explicit On statement in the General Declarations section of the Code
Editor window.

e To prevent the computer from inferring a variable’s data type:

Enter the Option Infer Off statement in the General Declarations section of the Code
Editor window.

e To prevent the computer from making implicit type conversions that may result in a loss of
data:

Enter the Option Strict On statement in the General Declarations section of the Code
Editor window.

e To use the Project Designer window to set Option Explicit, Option Strict, and Option Infer
for an entire project:

Open the solution that contains the project. Right-click My Project in the Solution Explorer
window and then click Open to open the Project Designer window. Click the Compile tab.
Use the Option explicit, Option strict, and Option infer boxes to set the options. Save the
solution and then close the Project Designer window.

e To use the Options dialog box to set Option Explicit, Option Strict, and Option Infer for all
of the projects you create:

Click TOOLS on the Visual Studio menu bar and then click Options. When the Options
dialog box opens, expand the Projects and Solutions node and then click VB Defaults. Use
the Option Explicit, Option Strict, and Option Infer boxes to set the options. Click the OK
button to close the Options dialog box.

Lesson A Key Terms

Class scope—the scope of a class-level variable; refers to the fact that the variable can be used
by any procedure in the form

Class-level variable—a variable declared in a form’s Declarations section; the variable has class
scope

Const statement—the statement used to create a named constant

Convert class—contains methods that return the result of converting a value to a specified data
type

Data type—indicates the type of data a memory location (variable or named constant) can store

Demoted—the process of converting a value from one data type to another data type that can
store only smaller numbers or numbers with less precision

Form'’s Declarations section—located between the Public Class and End Class clauses in the
Code Editor window; the section of the Code Editor window where class-level variables are
declared

Implicit type conversion—the process by which a value is automatically converted to fit the
memory location to which it is assigned

Lifetime—indicates how long a variable or named constant remains in the computer’s internal
memory

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or dupli

Using Variables and Constants

Literal constant—an item of data whose value does not change during run time

Literal type character—a character (such as the letter D) appended to a literal constant for the
purpose of forcing the literal constant to assume a different data type (such as Decimal)

Named constant—a computer memory location whose contents cannot be changed during run
time; created using the Const statement

Procedure scope—the scope of a procedure-level variable; refers to the fact that the variable
can be used only by the procedure in which it is declared

Procedure-level variable—a variable declared in a procedure; the variable has procedure scope

Promoted—the process of converting a value from one data type to another data type that can
store either larger numbers or numbers with greater precision

Scope—indicates where a memory location (variable or named constant) can be used in an
application’s code

Static variable—a procedure-level variable that remains in memory, and also retains its value,
until the application (rather than the procedure) ends

TryParse method—used to convert a string to a number of a specified data type

Unicode—the universal coding scheme that assigns a unique numeric value to each character
used in the written languages of the world

Variables—computer memory locations where programmers can temporarily store data, as well
as change the data, while an application is running

Lesson A Review Questions

1. Which of the following keywords is used to declare a class-level variable?

Class

Global

a
b. Dimension
C
d. Private

2. Which of the following is a data item whose value does not change during run time?

literal constant
literal variable

named constant

I~

variable

3. Which of the following statements declares a procedure-level variable that remains in the
computer’s memory until the application ends?

Dim Static intScore As Integer

Private Static intScore As Integer

Static intScore As Integer

both b and ¢

o~

4. Which of the following keywords can be used to declare a procedure-level variable?

a. Dim

b. Procedure
c. Static

d. both aandc

earning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

10.

11.

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or dupli

Lesson A Review Questions

Which of the following statements declares a class-level variable?

a. (Class intNum As Integer

b. Private intNum As Integer

c. Private Class intNum As Integer
d. Private Dim intNum As Integer

Which of the following declares a procedure-level String variable?

Dim String strCity
Dim strCity As String
Private strCity As String

a0 T

String strCity

Which of the following are computer memory locations that can temporarily store
information?

a. Literal constants
b. Named constants
¢. Variables

d. both b and ¢

If Option Strict is set to On, which of the following statements will assign the contents of
the txtSales control to a Double variable named db1Sales?

dblSales = txtSales.Text

db1Sales = txtSales.Text.Convert.ToDouble
Double.TryParse(txtSales.Text, db1Sales)
TryParse.Double(txtSales.Text, db1Sales)

a0 T

Which of the following declares a named constant having the Double data type?

Const dbTRATE As Double = .09
Const dbTRATE As Double
Constant db1RATE = .09

both a and b

a0 T

If Option Strict is set to On, which of the following statements assigns the sum of two
Integer variables to the Text property of the IblTotal control.

a. 1b1Total.Text = Convert.ToInteger(intNl + intN2)

b. 1blTotal.Text = Convert.ToInt32(intN1l + intN2)

c. 1b1Total.Text = Convert.ToString(intN1l) + Convert.ToString(intN2)

d. none of the above

Which of the following statements prevents data loss due to implicit type conversions?
Option Explicit On

Option Strict On

Option ImpTlicit Off

Option Convert Off

a0 TR

INTRODUCTORY

INTRODUCTORY

INTRODUCTORY

INTRODUCTORY

INTRODUCTORY

INTRODUCTORY
INTRODUCTORY
INTRODUCTORY

INTRODUCTORY
INTRODUCTORY

INTRODUCTORY

INTRODUCTORY

Using Variables and Constants

Lesson A Exercises

1.

10.

11.

A procedure needs to store an employee’s name and net pay amount (which may have
decimal places). Write the appropriate Dim statements to declare the necessary
procedure-level variables.

A procedure needs to store a person’s height and weight. The height may have a
decimal place; the weight will always be a whole number. Write the appropriate Dim
statements to declare the necessary procedure-level variables.

A procedure needs to store the name of an inventory item, the number of units in stock
at the beginning of the current month, the number of units purchased during the
current month, the number of units sold during the current month, and the number of
units in stock at the end of the current month. The number of units is always a whole
number. Write the appropriate Dim statements to declare the necessary procedure-level
variables.

Write an assignment statement that assigns Alabama to a String variable named
strState.

Write an assignment statement that assigns the word July to a String variable named
strMonth. Also write assignment statements that assign the numbers 4 and 20 to
Integer variables named intMomBirthday and intDadBirthday, respectively.

Write the statement to declare the procedure-level decINTEREST_RATE named constant
whose value is .075.

Write the statement to store the contents of the txtQuantity control in an Integer
variable named intQuantity.

Write the statement to assign the contents of an Integer variable named
intPopulation to the IblPopulation control.

An application needs to store the name of an item and its price (which may contain a
decimal place). Write the appropriate Private statements to declare the necessary class-
level variables.

Write an assignment statement that subtracts the contents of the db1Expenses variable
from the contents of the db1Income variable and then assigns the result to the db1Net
variable.

Open the Shiloh Solution (Shiloh Solution.sln) file contained in the VB2012\Chap03\Shiloh
Solution folder. If necessary, open the designer window. At the end of the year, each
salesperson at Shiloh Products is paid a bonus of 1% of his or her annual sales.

a. Open the Code Editor window. In the General Declarations section, enter your
name, the current date, and the three Option statements. Use variables and the
TryParse method to code the Calculate button. Use the Format function to display
the bonus with a dollar sign, a thousands separator, and two decimal places.

b. Save the solution and then start the application. Enter the following valid ID and
sales amount: DB12 and 9500. The bonus should be $95.00. If your computer is
connected to a printer, print the interface.

c. Clear the screen. Now test the application using invalid data. More specifically, test
it without entering any data. Then test it using a letter as the sales amount.

d. Close the Code Editor window and then close the solution.

Open the Age Solution (Age Solution.sln) file contained in the VB2012\Chap03\Age
Solution folder. If necessary, open the designer window. The Calculate button should

earning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Lesson A Exercises

calculate your age this year by subtracting your birth year from the current year. Open
the Code Editor window. In the General Declarations section, enter your name, the

current date, and the three Option statements. Use variables, the TryParse method, and
the Convert.ToString method to code the Calculate button. Save the solution and then
start the application. Test the application without entering any data. Then test it using
your birth year and the current year. Finally, test it using a $ sign for the birth year and a
% sign for the current year. Close the Code Editor window and then close the solution.

13. Write an assignment statement that increases the contents of the decSalary variable
by 2%.

14. Write an assignment statement that adds together the values stored in the decRegionl
and decRegion2 variables, and then assigns the result to a String variable named
strTotalSales.

15. Write the statement to declare a String variable that can be used by two procedures in
the same form. Name the variable strEmployeeName. Also specify where you will need
to enter the statement in the Code Editor window and whether the variable is a
procedure-level or class-level variable.

16. Open the Happy Flooring Solution (Happy Flooring Solution.sln) file contained in the
VB2012\Chap03\Happy Flooring Solution folder. If necessary, open the designer
window. The application should calculate the area of a floor in square yards. Open the
Code Editor window. In the General Declarations section, enter your name, the current
date, and the three Option statements. Use variables and the TryParse method to code
the Calculate button. Use the Format function to display the calculated results using the
Standard format style. Save the solution and then start the application. Test the
application using 10 as the length and 12 as the width. Now test the application using
invalid data. More specifically, test it without entering any data. Then test it using a
letter as the length and width measurements. Close the Code Editor window and then
close the solution.

17. Open the Mason Solution (Mason Solution.sIn) file contained in the VB2012\Chap03\Mason
Solution folder. If necessary, open the designer window. The application should
calculate the projected sales for each sales region.

a. Open the Code Editor window. In the General Declarations section, enter your
name, the current date, and the three Option statements. Use variables and the
TryParse method to code the Calculate button. Use the Format function to display
the calculated results using the Standard format style.

b. Save the solution and then start the application. Test the application using the
following valid sales and increase percentage amounts. The percentage amounts
are shown in decimal form.

Region 1 sales and percentage: 150000, .15
Region 2 sales and percentage: 175500, .12
Region 3 sales and percentage: 100300, .11

c. Test the application without entering any data. Also test it using letters as the sales
and percentage amounts.

d. Close the Code Editor window and then close the solution.

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or dupli

INTERMEDIATE

INTERMEDIATE

INTERMEDIATE

INTERMEDIATE

INTERMEDIATE

Using Variables and Constants

DISCOVERY 18. In this exercise, you experiment with procedure-level and class-level variables. Open the
Scope Solution (Scope Solution.sln) file contained in the VB2012\Chap03\Scope
Solution folder. The Scope application allows the user to calculate either a 5% or 10%
commission on a sales amount. It displays the sales and commission amounts in the
IblSales and IblCommission controls, respectively.

a. Open the Code Editor window and then open the code template for the btnSales
control’s Click event procedure. Code the procedure so that it declares a variable
named db1Sales. The procedure also should use an assignment statement to assign
the number 500 to the variable. In addition, the procedure should display the
contents of the variable in the IblSales control on the form.

b. Save the solution and then start the application. Click the Display Sales button.
What does the button’s Click event procedure display in the IblSales control? When
the Click event procedure ends, what happens to the db1Sales variable? Click the
Exit button.

c. Open the code template for the btnCommb5 control’s Click event procedure. In the
procedure, enter an assignment statement that multiplies a variable named
db1Sales by .05, assigning the result to the IblCommission control. When you press
the Enter key after typing the assignment statement, a jagged line appears below
db1Sales in the instruction. The jagged line indicates that the code contains a
syntax error. To determine the problem, rest your mouse pointer on the variable
name, db1Sales. The message in the box indicates that the variable is not declared.
In other words, the btnComm5 control’s Click event procedure cannot locate the
variable’s declaration statement, which you previously entered in the btnSales
control’s Click event procedure. As you learned in Lesson A, only the procedure in
which a variable is declared can use the variable. No other procedure is even aware
that the variable exists.

d. Now observe what happens when you use the same name to declare a variable in
more than one procedure. Insert a blank line above the assignment statement in the
btnCommb5 control’s Click event procedure. In the blank line, type a statement that
declares the db1Sales variable, and then click the assignment statement to move
the insertion point away from the current line. Notice that the jagged line disappears
from the assignment statement. Save the solution and then start the application.
Click the Display Sales button. The contents of the db1Sales variable declared in the
btnSales control’s Click event procedure (500) appears in the IblSales control. Click
the 5% Commission button. Why does the number O appear in the IblCommission
control? What happens to the db1Sales variable declared in the btnCommb5 control’s
Click event procedure when the procedure ends? Click the Exit button. As this
example shows, when you use the same name to declare a variable in more than one
procedure, each procedure creates its own procedure-level variable. Although the
variables have the same name, each refers to a different location in memory.

e. Next, you use a class-level variable in the application. Click the blank line above
the btnExit control’s Click event procedure. The Class Name and Method Name
boxes show frmMain and (Declarations), respectively. Press Enter to insert a
blank line. In the blank line, enter a statement that declares a class-level variable
named db1Sales.

f. Delete the Dim statement from the btnSales control’s Click event procedure. Also
delete the Dim statement from the btnCommb5 control’s Click event procedure.

g. Open the code template for the btnComm10 control’s Click event procedure. In the
procedure, enter an assignment statement that multiplies the db1Sales variable
by .1, assigning the result to the IblCommission control.

earning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Lesson A Exercises

h. Save the solution and then start the application. The variable declaration statement

in the form’s Declarations section creates the db1Sales variable and initializes it to 0.
Click the Display Sales button. The button’s Click event procedure stores the number
500 in the db1Sales variable and then displays the contents of the variable (500) in
the IblSales control. Click the 5% Commission button. The button’s Click event
procedure multiplies the contents of the db1Sales variable (500) by .05 and then
displays the result (25) in the IblCommission control. Click the 10% Commission
button. The button’s Click event procedure multiplies the contents of the db1Sales
variable (500) by .1 and then displays the result (50) in the IblCommission control. As
this example shows, any procedure in the form can use a class-level variable. Click
the Exit button. What happens to the class-level db1Sales variable when the
application ends? Close the Code Editor window and then close the solution.

19. Open the Debug Solution (Debug Solution.sln) file contained in the VB2012\Chap03\
Debug Solution-Lesson A folder. The application is supposed to display the number of
times the Count button is pressed, but it is not working correctly.

a.

C.

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or dupli

Start the application. Click the Count button. The message indicates that you have
pressed the Count button once, which is correct. Click the Count button several
more times. The message still displays the number 1. Click the Exit button.

Open the Code Editor window and study the code. What are two ways that you can
use to correct the code? Which way is the preferred way? Modify the code using the
preferred way. Save the solution and then start the application. Click the Count
button several times. Each time you click the Count button, the message should
change to indicate the number of times the button was pressed.

Click the Exit button. Close the Code Editor window and then close the solution.

SWAT THE BUGS

Using Variables and Constants

B LESSONB

After studying Lesson B, you should be able to:

o Include procedure-level and class-level variables in an application
o Concatenate strings

e Get user input using the InputBox function

e Include the ControlChars.NewLine constant in code

o Designate the default button for a form

e Format numbers using the ToString method

Modifying the Play It Again Movies Application

Your task in this chapter is to modify the Play It Again Movies application created in Chapter 2.
The modified application will calculate and display a 3% sales tax. It also will display the name of
the salesclerk who entered the sales information. Before making modifications to an
application’s existing code, you should review the application’s documentation and revise the
necessary documents. In this case, you need to revise the application’s TOE chart and also the
pseudocode for the Calculate button. The revised TOE chart is shown in Figure 3-26. The
changes made to the original TOE chart from Chapter 2 are shaded in the figure. (You will view
the revised pseudocode for the Calculate button later in this lesson.)

Task Object Event

1. Calculate total discs sold and total sales amount btnCalc Click
2. Display total discs sold and total sales amount
in IblTotalDiscs and IblTotalSales
3. Calculate the sales tax
4. Display sales tax and salesclerk’s name in IbIMessage

Print the sales receipt btnPrint Click
End the application btnExit Click
Clear screen for the next sale btnClear Click
Display total discs sold (from btnCalc) IbITotalDiscs None
Display total sales amount (from btnCalc) IbITotalSales None
Get and display the sales information txtDate, txtDvds, txtBluRays None
Get the salesclerk’s name frmMain Load
Display sales tax and salesclerk’s name (from btnCalc) IbIMessage None

Figure 3-26 Revised TOE chart for the Play It Again Movies application
© 2013 Cengage Learning

Notice that the revised TOE chart includes two additional objects (the form and a label control),
as well as an additional event (Load). A form’s Load event occurs when the application is started
and the form is displayed the first time. According to the TOE chart, the Load event is
responsible for getting the salesclerk’s name. Also notice that the btnCalc control’s Click event
procedure now has two additional tasks: It must calculate the sales tax and also display the sales
tax and salesclerk’s name in the IblMessage control.

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Modifying the Calculate Button's Code

To open the Play It Again Movies application: -RT HERE

1. If necessary, start Visual Studio 2012. Open the Play It Again Solution (Play It Again
Solution.sln) file contained in the VB2012\Chap03\Play It Again Solution folder. If
necessary, open the designer window. Figure 3-27 shows the application’s user interface.

Lt Play It Again Movies EI@

Calculate
DVDs: Print Receipt
Blu-rays: Clear Screen

Total discs: I:I Exit
Total sales: I:I

IbIMessage

Figure 3-27 Modified user interface for the Play It Again Movies application
OpenClipArt.org/John Diamond / diamonjohn

Two modifications were made to the application created in Chapter 2: The IblMessage control
was added to the interface and the statement Tb1Message.Text = String.Empty was added to
the btnClear control’s Click event procedure. The statement will remove the contents of the
IbIMessage control when the user clicks the Clear Screen button.

Modifying the Calculate Button's Code

Currently, the Calculate button uses the Val function and the Text properties of controls to
calculate the total number of discs sold and total sales amount. In this lesson, you will modify
the button’s code to use the TryParse method and variables.

To begin modifying the application’s code: <«(START HERE

1. Open the Code Editor window. Replace <your name> and <current date> with your
name and the current date, respectively.

2. The code will contain variables, so you will enter the three Option statements in the
Code Editor window. Click the blank line above the Public Class frmMain clause and
then press Enter to insert another blank line. Enter the following three statements:

Option Explicit On
Option Strict On
Option Infer Off

3. Scroll down the Code Editor window until the entire btnCalc_Click procedure is visible.
Notice that jagged blue lines appear below the expressions in the two calculations. The
jagged lines indicate that the expressions contain one or more syntax errors.

4. Position your mouse pointer on the first jagged blue line, as shown in Figure 3-28. An
error message appears in a box. (If the box does not appear after a few seconds have

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Using Variables and Constants

elapsed, try moving your mouse pointer to a different location on the jagged blue line.)
The error message says “Option Strict On disallows implicit conversions from Double’ to
'String'.” You received this error message because the expression on the right side of the
assignment operator results in a Double number, and the assignment statement is
attempting to assign that Double number to the Text property of a control. (Recall that the

Val function returns a Double number, and the Text property of a control is a string.)

mouse pointer

Private Sub btnCalc_Click(sender As Object, e As EventArgs) Handles
' calculate number of discs sold and total sales

Val(txtDvds.Text) 7+ Val(txtBluRays.Text

(x}

1blTotalDiscs.Text
1blTotalSales.Text
1blTotalSales.Text

Option Strict On disallows implicit conversions from 'Double’ to 'String’.

TUI AL AUL I VLALIALED . ITAL, Ul SNy)

End Sub

Figure 3-28 A jagged blue line indicates a syntax error

5. Highlight (select) the three lines of code and the blank line that appears below them, as
shown in Figure 3-29. Press Delete to remove the highlighted (selected) lines from the
procedure.

Private Sub btnCalc_Click(sender As Object, e As EventArgs) Handles
' calculate number of discs sold and total sales

= lblTotalDiscs.Text = Val(txtDvds.Text) + Val(txtBluRays.Text) highlight (select)
1blTotalSales.Text = Val(lblTotalDiscs.Text) * 7 these lines and
1blTotalSales.Text = Format(lblTotalSales.Text, "Currency") then press Delete

End Sub

Figure 3-29 Lines to delete from the procedure

Figure 3-30 shows the revised pseudocode and flowchart for the btnCalc control’s Click event
procedure. Changes made to the original pseudocode and flowchart from Chapter 2 are shaded
in the figure. The Click event procedure includes two additional calculations: one for the
subtotal and one for the sales tax. The subtotal is computed by multiplying the total number of
discs sold by the disc price. The sales tax is computed by multiplying the subtotal by the sales
tax rate. Notice that the total sales expression has changed; it now adds the subtotal to the sales
tax. Lastly, the Click event procedure displays the sales tax and the salesclerk’s name in the
IbIMessage control.

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Modifying the Calculate Button's Code

btnCalc Click event procedure

. calculate total discs sold = DVDs sold + Blu-rays sold

. calculate subtotal = total discs sold * disc price

. calculate sales tax = subtotal * sales tax rate

. calculate total sales = subtotal + sales tax

. display total discs sold and total sales in IblTotalDiscs and IbITotalSales
. display sales tax and salesclerk’s name in IbIMessage

total discs sold = DVDs
sold + Blu-rays sold

!

subtotal = total discs sold
* disc price

sales tax = subtotal *
sales tax rate

!

total sales = subtotal +
sales tax

display total discs

sold in IblTotalDiscs
display total sales
in IblTotalSales

display sales tax and
salesclerk’s name in
IbIMessage

Figure 3-30 Revised pseudocode and flowchart for the btnCalc control's Click event procedure
© 2013 Cengage Learning

SO W

Before you begin coding a procedure, you first study the procedure’s pseudocode to determine
the variables and named constants (if any) the procedure will use. When determining the named
constants, look for items whose value should be the same each time the procedure is invoked. In
the btnCalc control’s Click event procedure, the disc price and sales tax rate will always be $7
and .03 (the decimal equivalent of 3%), respectively; therefore, you will assign both values to
Decimal named constants. At this point, you may be wondering why the disc price is assigned to
a Decimal constant rather than to an Integer constant. Although the disc price does not
currently contain any decimal places, it is possible that the price may include a decimal place in
the future. By using the Decimal data type now, you can change the constant’s value to include a
decimal place without having to remember to also change its data type.

When determining a procedure’s variables, look in the pseudocode for items whose value is
allowed to change each time the procedure is processed. In the btnCalc control’s Click event
procedure, the numbers of DVDs and Blu-rays sold will likely be different each time the
procedure is processed. As a result, the total number of discs sold, subtotal, sales tax, and total
sales amounts will also vary because they are based on the numbers of DVDs and Blu-rays sold.

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Using Variables and Constants

Therefore, you will assign those six values to variables. Integer variables are a good choice for
storing the number of DVDs sold, the number of Blu-rays sold, and the total number of discs
sold because a customer can buy only a whole number of discs. You will use Decimal variables
to store the subtotal, sales tax, and total price because these amounts may contain a decimal
place. Figure 3-31 lists the names and data types of the two named constants and six variables
you will use in the btnCalc control’s Click event procedure.

Named constant/Variable Data type
decDISC_PRICE Decimal
decTAX_RATE Decimal
intDvds Integer
intBluRays Integer
intTotalDiscs Integer
decSubtotal Decimal
decSalesTax Decimal
decTotalSales Decimal

Figure 3-31 List of named constants and variables
© 2013 Cengage Learning

START H- To declare the named constants and variables:

1.

The insertion point should be located in the blank line above the End Sub clause in the
btnCalc control’s Click event procedure. If necessary, press Tab twice to align the
blinking insertion point with the apostrophe in the comment.

First, you will declare the named constants. When declaring named constants and
variables, be sure to enter the name using the exact capitalization you want. Then, any
time you want to refer to the named constant or variable in the code, you can enter its
name using any case. The Code Editor will automatically adjust the name to match the
case used in the declaration statement. Enter the following declaration statements. (For
now, don’t be concerned about the jagged green line that appears below each statement
after you press Enter.)

Const decDISC_PRICE As Decimal = 7D
Const decTAX_RATE As Decimal = .03D

Next, enter the following six variable declaration statements. Press Enter twice after
typing the last statement.

Dim intDvds As Integer

Dim intBluRays As Integer
Dim intTotalDiscs As Integer
Dim decSubtotal As Decimal
Dim decSalesTax As Decimal
Dim decTotalSales As Decimal

Place your mouse pointer on the jagged green line that appears below the last Dim
statement. A warning message appears in a box, as shown in Figure 3-32. The message
alerts you that the decTotalSales variable has been declared but has not been used yet.
In other words, the variable name does not appear in any other statement in the code.
The jagged green line will disappear when you include the variable name in another
statement in the procedure.

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Modifying the Calculate Button's Code

Private Sub btnCalc_Click(sender As Object, e As Event
" calculate number of discs sold and total sales
Const decDISC_PRICE As Decimal = 7D
Const decTAX_RATE As Decimal = ©.83D
Dim intDvds As Integer
Dim intBluRays As Integer
Dim intTotalDiscs As Integer
Dim decSubtotal As Decimal
Dim decSalesTax As Decimal
Dim g531253l§§£3§ As Decimal

Unused local variable: 'decTotalSales', warning message

End Lub insertion point

Figure 3-32 Const and Dim statements entered in the procedure

After declaring the named constants and variables, you can begin coding either each step in the
procedure’s pseudocode or each symbol (other than the start and stop ovals) in its flowchart.
Keep in mind that some steps and symbols may require more than one line of code. You will use
the pseudocode shown earlier in Figure 3-30 to code the procedure. The first step in the
pseudocode calculates the total number of discs sold by adding the number of DVDs sold to the
number of Blu-rays sold. The numbers of DVDs and Blu-rays sold are stored in the Text
properties of the txtDvds and txtBluRays controls, respectively. You will use the TryParse
method to convert the Text properties to integers and then store the results in the intDvds and
intBluRays variables. You then will use an assignment statement to add together the contents
of both variables, assigning the sum to the intTotalDiscs variable.

To continue coding the btnCalc control’s Click event procedure:

1. The insertion point should be positioned as shown earlier in Figure 3-32. Enter the
following comment and TryParse methods. When you press Enter after typing each
TryParse method, the Code Editor removes the jagged green line that appears below the
respective variable’s Dim statement.

' calculate total number of discs sold
Integer.TryParse(txtDvds.Text, intDvds)
Integer.TryParse(txtBluRays.Text, intBluRays)

2. Next, you will enter an assignment statement that calculates the total number of discs
sold. Type the following assignment statement and then press Enter twice. (Notice that
all of the variables in the assignment statement have the same data type: Integer.)

intTotalDiscs = intDvds + intBluRays

3. The second step in the pseudocode calculates the subtotal by multiplying the total
number of discs sold by the disc price. You will assign the subtotal to the decSubtotal
variable. Enter the following comment and assignment statement. Press Enter twice
after typing the assignment statement. When processing the assignment statement, the
computer will implicitly convert the integer stored in the intTotalDiscs variable to
Decimal before multiplying it by the decimal number stored in the decDISC_PRICE
constant. It then will assign the result to the decSubtotal variable.

' calculate the subtotal
decSubtotal = intTotalDiscs * decDISC_PRICE

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Using Variables and Constants

4. The third step in the pseudocode calculates the sales tax by multiplying the subtotal by
the sales tax rate. You will assign the sales tax to the decSalesTax variable. Enter the
following comment and assignment statement. Press Enter twice after typing the
assignment statement. (Notice that the variables and named constant in the assignment
statement have the same data type: Decimal.)

' calculate the sales tax
decSalesTax = decSubtotal * decTAX_RATE

5. The fourth step in the pseudocode calculates the total sales by adding together the
subtotal and the sales tax. You will assign the result to the decTotalSales variable.
Enter the following comment and assignment statement. Press Enter twice after typing
the assignment statement. (Notice that all of the variables in the assignment statement
have the same data type: Decimal.)

' calculate the total sales
decTotalSales = decSubtotal + decSalesTax

6. Step 5 in the pseudocode displays the total number of discs sold and total sales in their
respective label controls. The total number of discs sold and total sales are stored in the
intTotalDiscs and decTotalSales variables, respectively. Because both variables have
a numeric data type, you will need to convert their contents to the String data type
before assigning the contents to the label controls. You can use the ToString method of
the Convert class to make the conversions. Enter the following comment and assignment
statements. Press Enter twice after typing the last assignment statement.

' display total amounts
IblTotalDiscs. Text = Convert.ToString(intTotalDiscs)
IblTotalSales.Text = Convert.ToString(decTotalSales)

7. The last step in the pseudocode displays both the sales tax and the salesclerk’s name in
the IbIMessage control. For now, you will display only the sales tax. Enter the following
comment and assignment statement:

" display tax and salesclerk’s name
IbIMessage.Text = Convert.ToString (decSalesTax)

8. Save the solution. Figure 3-33 shows the code entered in the btnCalc control’s Click
event procedure.

Private Sub btnCalc_Click(sender As Object, e As EventArgs)
HandTes btnCalc.Click
' calculate number of discs sold and total sales

Const decDISC_PRICE As Decimal = 7D
Const decTAX_RATE As Decimal = 0.03D
Dim intDvds As Integer

Dim intBluRays As Integer

Dim intTotalDiscs As Integer

Dim decSubtotal As Decimal

Dim decSalesTax As Decimal

Dim decTotalSales As Decimal

' calculate total number of discs sold
Integer.TryParse(txtDvds.Text, intDvds)
Integer.TryParse(txtBluRays.Text, intBluRays)
intTotalDiscs = intDvds + intBTuRays

Figure 3-33 Code entered in the btnCalc control's Click event procedure (continues)

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Modifying the Calculate Button's Code

(continued)

calculate the subtotal

decSubtotal = intTotalDiscs * decDISC_PRICE
' calculate the sales tax

decSalesTax = decSubtotal * decTAX_RATE

calculate the total sales
decTotalSales = decSubtotal + decSalesTax

' display total amounts
Tb1TotalDiscs.Text = Convert.ToString(intTotalDiscs)
Tb1TotalSales.Text = Convert.ToString(decTotalSales)

' display tax and salesclerk's name
Tb1Message.Text = Convert.ToString(decSalesTax)

End Sub

Figure 3-33 Code entered in the btnCalc control's Click event procedure
© 2013 Cengage Learning

To start and then test the application: <«(START HERE

1. Start the application. Type 4/9/2014 in the Date box, 5 in the DVDs box, and 3 in the
Blu-rays box. Click the Calculate button. The total number of discs sold, total sales, and
sales tax appear in the interface, as shown in Figure 3-34. However, it’s not obvious to
the user that the 1.68 is the sales tax. You can fix this problem by displaying the message
“The sales tax was” before the sales tax amount. Before you can accomplish this task, you
need to learn how to concatenate (link together) strings. String concatenation is covered
in the next section.

@ Sales Receipt

Date: 4/9/2014

Blu-rays: i-3 Clear Screen

Total discs: Exit

Total sales: 57.68

_ sales tax amount

Figure 3-34 Calculated amounts shown in the interface
OpenClipArt.org/John Diamond / diamonjohn

2. Click the Clear Screen button to clear the sales receipt (except for the date), and then
click the Exit button.

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

You also can use
the plus sign (+)
to concatenate
strings. To avoid
confusion,
however, you should use
the plus sign for addition
and the ampersand for
concatenation.

START HERED>

space
S— ' display tax and salesclerk's name
modify this 1b1M Text = "™TH 1 £ "o
assignment essage.Text = e sales tax was
statement Convert.ToString(decSalesTax) & "."

Using Variables and Constants

Concatenating Strings

You use the concatenation operator, which is the ampersand (&), to concatenate (connect or
link together) strings. For the Code Editor to recognize the ampersand as the concatenation
operator, the ampersand must be both preceded and followed by a space. Figure 3-35 shows
some examples of string concatenation.

Concatenating Strings

Variables Contents

strCity Nashville

strState Tennessee

intPop 43500

Concatenated string Result

strCity & strState NashvilleTennessee
strState & " " & strCity Tennessee Nashville
strCity & ", " & strState Nashville, Tennessee
"He Tives in " & strCity & "."" He lives in Nashville.
"Population: " & Convert.ToString(intPop) Population: 43500

Figure 3-35 Examples of string concatenation
© 2013 Cengage Learning

You will use the concatenation operator to concatenate the following three strings: “The sales tax
was ", the contents of the decSalesTax variable after it has been converted to a string, and “.”.
Using the examples shown in Figure 3-35 as a guide, the correct assignment statement is
Tb1Message.Text = "The sales tax was " & Convert.ToString(decSalesTax) & ".". The
assignment statement is rather long and, depending on the size of the font used in your Code
Editor window, you may not be able to view the entire statement without scrolling the window.
The Code Editor allows you to break a line of code into two or more physical lines, as long as the
break comes either before a closing parenthesis or after one of the following: a comma, an
opening parenthesis, or an operator (arithmetic, assignment, comparison, logical, or
concatenation). If you want to break a line of code anywhere else, you will need to use the

line continuation character, which is an underscore (_) that is immediately preceded by a space.
However, if you use the line continuation character, it must appear at the end of a physical line of
code. In this case, you will break the assignment statement after the first concatenation operator.

To concatenate the strings and then test the code:

1. Change the last assignment statement in the procedure as shown in Figure 3-36. The
modifications are shaded in the figure.

' display total amounts
1blTotalDiscs.Text = Convert.ToString(intTotalDiscs)
lblTotalSales.Text = Convert.ToString(decTotalSales)

End Sub

Figure 3-36 String concatenation included in the assignment statement

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

The InputBox Function

2. Save the solution and then start the application. Type 4/9/2014 in the Date box, 5 in the
DVDs box, and 3 in the Blu-rays box. Click the Calculate button. The IbIMessage
control contains the sentence “The sales tax was 1.68.”. See Figure 3-37.

@ Sales Receipt

Date: 4/9/2014

DVDs: 5 Print Receipt

Blu-rays: 3 Clear Screen

Total discs: .

Total sales: 5768

message and

The sales tax was 1.68.
sales tax amount

Figure 3-37 Concatenated strings displayed in the IbIMessage control
OpenClipArt.org/John Diamond / diamonjohn

3. Click the Exit button.

You also need to display the salesclerk’s name in the IbIMessage control. You can use the
InputBox function to obtain the name from the user.

The InputBox Function

The InputBox function displays an input dialog box, which is one of the standard dialog boxes
available in Visual Basic. An example of an input dialog box is shown in Figure 3-38. The message in
the dialog box should prompt the user to enter the appropriate information in the input area. The
user closes the dialog box by clicking the OK button, Cancel button, or Close button. The value
returned by the InputBox function depends on the button the user chooses. If the user clicks the
OK button, the function returns the value contained in the input area of the dialog box; the return
value is always treated as a string. If the user clicks either the Cancel button in the dialog box or the
Close button on the dialog box’s title bar, the function returns an empty (or zero-length) string.

if you are using Windows 7, the
title bar text will be left-aligned

prompt message

Erter a sales amount. Click Cancel to end.

m

Figure 3-38 Example of an input dialog box

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

The InputBox
function’s syntax
also includes
optional XPos
and YPos
arguments for specifying
the dialog box’s
horizontal and vertical
positions, respectively. If
both arguments are
omitted, the dialog box
appears centered on the
screen.

{l

Using Variables and Constants

Figure 3-39 shows the basic syntax of the InputBox function. The prompt argument contains the
message to display inside the dialog box. The optional title and defaultResponse arguments
control the text that appears in the dialog box’s title bar and input area, respectively. If you omit
the title argument, the project name appears in the title bar. If you omit the defaultResponse
argument, a blank input area appears when the dialog box opens. The prompt, title, and
defaultResponse arguments can be string literal constants, String named constants, or String
variables. The Windows standard is to use sentence capitalization for the prompt, but book title
capitalization for the title. The capitalization (if any) you use for the defaultResponse depends on
the text itself. In most cases, you assign the value returned by the InputBox function to a String
variable, as shown in the first three examples in Figure 3-39.

Using the InputBox Function

Syntax
InputBox(prompt], titlell, defaultResponsel)

Example 1
strSales =

InputBox("Enter a sales amount. Click Cancel to end.",

"Sales Entry", "0.00")
Displays the input dialog box shown in Figure 3-38. When the user closes the dialog box, the
assignment statement assigns the function’s return value to the strSales variable.

Example 2

strCity = InputBox("City name:", "City")

Displays an input dialog box that shows City name: as the prompt, City in the title bar, and an
empty input area. When the user closes the dialog box, the assignment statement assigns the
function’s return value to the strCity variable.

Example 3
Const strPROMPT As String = "Enter the discount rate:"

Const strTITLE As String = "Discount Rate"

strRate = InputBox(strPROMPT, strTITLE, ".00")

Displays an input dialog box that shows the contents of the strPROMPT constant as the prompt,

the contents of the strTITLE constant in the title bar, and .00 in the input area. When the user closes
the dialog box, the assignment statement assigns the function’s return value to the strRate variable.

Example 4
Integer.TryParse(InputBox("How old are you?",

"Discount Verification"), intAge)
Displays an input dialog box that shows How old are you? as the prompt, Discount Verification
in the title bar, and an empty input area. When the user closes the dialog box, the TryParse
method converts the function’s return value from String to Integer and then stores the result in the
intAge variable.

Figure 3-39 Basic syntax and examples of the InputBox function
© 2013 Cengage Learning

GUI DESIGN TIP InputBox Function's Prompt and Title Capitalization

o Use sentence capitalization for the prompt, but book title capitalization for the title.

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

The InputBox Function

You will use the InputBox function to prompt the salesclerk to enter his or her name. The
function should be entered in the form’s Load event procedure because that is the procedure
responsible for getting the salesclerk’s name. Recall that a form’s Load event occurs before the
form appears on the screen. After the Load event procedure obtains the salesclerk’s name, you
will have the Calculate button’s Click event procedure concatenate the name to the message
displayed in the IbIMessage control.

Before entering the InputBox function in the Load event procedure, you must decide where to
declare the String variable that will store the function’s return value. In other words, should the
variable have procedure scope or class scope? When deciding, consider the fact that the form’s
Load event procedure needs to store a value in the variable, and the Calculate button’s Click
event procedure needs to display the variable’s value in the IblMessage control. Recall from
Lesson A that when two procedures in the same form need access to the same variable, you
declare the variable as a class-level variable by entering its declaration statement in the form’s
Declarations section.

To continue coding the Play It Again Movies application: -T HERE

1. Scroll to the top of the Code Editor window. Click the blank line immediately below the
Public Class frmMain clause. When you do so, frmMain and (Declarations) appear in
the Class Name and Method Name boxes, respectively. Press Enter to insert a blank line.

2. First, you will declare a class-level String variable named strClerk. Enter the comment
and declaration statement shown in Figure 3-40.

(METL N1 B e Sl Main Form.vb [Design]*

#z frmMain - Bl (Declarations)
—1' Name: Play It Again Project
' Purpose: Calculates the total number

' of discs sold and the total
. sales amount

" Programmer: <your name> on <current date>
Option Explicit On

Option Strict On

Option Infer Off

Public Class frmMain

' declare class-level variable enter this comment and
Private strClerk As String declaration statement

Private Sub btnExit_Click(sender As Object, e As

Figure 3-40 Class-level variable declared in the form’s Declarations section

3. Now you will enter the InputBox function in the form’s Load event procedure. You
access the form’s procedures by selecting (frmMain Events) in the Class Name list box.
Click the Class Name list arrow and then click (frmMain Events) in the list. Click the
Method Name list arrow to view a list of the form’s procedures. Scroll down the list
until you see Load, and then click Load in the list. The frmMain Load event procedure
appears in the Code Editor window.

4. To make the assignment statement that contains the InputBox function shorter and
easier to understand, you will create named constants for the function’s prompt and title
arguments, and then use the named constants (rather than the longer strings) in the

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Using Variables and Constants

function. You are using named constants rather than variables because the prompt and
title will not change as the application is running. Enter the comments and code shown
in Figure 3-41.

enter these two comments
and three lines of code

Private Sub frmMain_Load(sender As Object, e As Event/

[

—— ' gets the salesclerk's name

Const strPROMPT As String = "Salesclerk's name:"

=l Const strTITLE As String = "Name Entry"
' assign the name to the class-level variable
. strClerk = InputBox(strPROMPT, strTITLE)

End Sub

Figure 3-41 frmMain Load event procedure

Next, you will concatenate the strClerk variable to the message assigned to the
IbIMessage control. Locate the btnCalc control’s Click event procedure. Click
immediately after the closing quotation mark in the Convert.ToString
(decSalesTax) & "." line. Press the spacebar to enter a space character after the
closing quotation mark. Type & and then press Enter. Now type strClerk and then click
the blank line above the End Sub clause. The modified assignment statement is shown
here: Th1Message.Text = "The sales tax was " & Convert.ToString(decSalesTax)
&"." &strClerk.

Save the solution and then start the application. The Name Entry dialog box created by
the InputBox function appears first. See Figure 3-42.

if you are using Windows 7, the
title bar text will be left-aligned

Salesclerds name:

Figure 3-42 Dialog box created by the InputBox function

Type your name in the input area of the dialog box and then click the OK button. The
sales receipt appears. Type 4 in the DVDs box and then click the Calculate button.
Notice that your name appears much too close to the period in the lbIMessage
control. You can correct the spacing problem by replacing the period (".") in the
assignment statement with a period and two spaces (". "). Or, you can use the
ControlChars.NewLine constant to display the salesclerk’s name on the next line in
the IbIMessage control. Click the Exit button.

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

The ControlChars.Newline Constant

The ControlChars.Newline Constant

The ControlChars.NewLine constant instructs the computer to advance the insertion point to
the next line in a control. (You also can use it to advance the insertion point in a file or on the
printer.) Whenever you want to start a new line, you simply enter the ControlChars.NewLine
constant at the appropriate location in your code. In this case, you want to advance to a new line
after displaying the period—in other words, before displaying the salesclerk’s name—in the
IblMessage control.

To display the salesclerk’s name on a separate line in the IbIMessage control:

1. In the btnCalc control’s Click event procedure, modify the last assignment statement as
indicated in Figure 3-43. The modifications are shaded in the figure.

' display tax and salesclerk's name

lblMessage.Text = "The sales tax was " &
Convert.ToString(decSalesTax) & "." &
ControlChars.NewLine & strClerk

| make the shaded
End Sub | modifications

Figure 3-43 Modified assignment statement

2. Save the solution and then start the application. The Name Entry dialog box shown in
Figure 3-44 appears first. The blinking insertion point indicates that the dialog box’s
input area has the focus. However, notice that the OK button in the dialog box has a
darkened border, even though it does not have the focus. In Windows terminology, a
button that has a darkened border when it does not have the focus is called the default
button. You can select a default button by pressing Enter at any time.

Salesclerd’s name: the default button has
a darkened border

the input area
has the focus

Figure 3-44 Name Entry input dialog box

3. Type Martin Lapinski and then press Enter. The sales receipt appears.

4. Type 10/10/2014 in the Date box and 5 in the DVDs box. Click the Calculate button.
The salesclerk’s name now appears on a separate line in the IbIMessage control, as

shown in Figure 3-45. Click the Exit button.

<«(START HERE

The
ControlChars.
NewLine
constant is an
intrinsic
constant, which is a
named constant

built into

Visual Basic.

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Using Variables and Constants

Total sales: 36.05

the salesclerk’s name
appears on a separate line

The sales tax was 1.05.
Martin Lapinski

Forms also have
a CancelButton
property that
specifies the
button whose
Click event procedure is
processed when the user
presses the Esc key. This
property is covered in
Exercise 12 at the end of
this lesson.

START HERED>

Figure 3-45 Salesclerk’s name shown on the sales receipt

Designating a Default Button

As you already know from using Windows applications, you can select a button either by
clicking it or by pressing the Enter key when the button has the focus. If you make a button the
default button, you also can select it by pressing the Enter key even when the button does not
have the focus. When a button is selected, the computer processes the code contained in the
button’s Click event procedure.

An interface does not have to have a default button. However, if one is used, it should be the
button that is most often selected by the user, except in cases where the tasks performed by the
button are both destructive and irreversible. For example, a button that deletes information
should not be designated as the default button unless the application provides a way for the
information to be restored. If you assign a default button in an interface, it typically is the first
button on the left when the buttons are positioned horizontally, but the first button on the top
when they are stacked vertically. A form can have only one default button. You specify the
default button (if any) by setting the form’s AcceptButton property to the name of the button.

- 1]
GUI DESIGN TIP Assigning a Default Button

o The default button should be the button that is most often selected by the user,
except in cases where the tasks performed by the button are both destructive and
irreversible. If a form contains a default button, it typically is the first button.

To make the Calculate button the default button:

1. Return to the designer window and then set the form’s AcceptButton property to
btnCalc. A darkened border appears around the Calculate button.

2. Save the solution and then start the application. Type your name in the Name Entry
dialog box and then press Enter. The sales receipt appears.

3. Click the DVDs box. Type 5 and then press Enter to select the Calculate button. The
numbers 5 and 36.05 appear in the Total discs and Total sales boxes, respectively. In
addition, the message “The sales tax was 1.05.” and your name appear in the IbIMessage
control. Click the Exit button.

Finally, you will modify the btnCalc control’s Click event procedure so that it displays a dollar
sign and comma (if appropriate) in the total sales amount.

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Using the ToString Method to Format Numbers

Using the ToString Method to Format Numbers

Numbers representing monetary amounts are usually displayed with either zero or two decimal
places and may include a dollar sign and a thousands separator. Similarly, numbers representing
percentage amounts are usually displayed with zero or more decimal places and a percent sign.
Specifying the number of decimal places and the special characters to display in a number is
called formatting. In Chapter 2, you learned how to use the Format function to format a number
for output as a string. Although you can still use the Format function in Visual Basic 2012, many
programmers now use the ToString method because the method can be used in any of the
languages built into Visual Studio.

The ToString method’s syntax is shown in Figure 3-46. In the syntax, numericVariableName is
the name of a numeric variable. The ToString method formats the number stored in the
numeric variable and then returns the result as a string. The formatString argument in the
syntax specifies the format you want to use. The formatString argument must take the form
“Axx”, where A is an alphabetic character called the format specifier, and xx is a sequence of
digits called the precision specifier. The format specifier must be one of the built-in format
characters. The most commonly used format characters are listed in Figure 3-46. Notice that
you can use either an uppercase letter or a lowercase letter as the format specifier. When used
with one of the format characters listed in the figure, the precision specifier controls the number
of digits that will appear after the decimal point in the formatted number. Also included in
Figure 3-46 are examples of using the ToString method.

Using the ToString Method to Format a Number

Syntax
numericVariableName.ToString(formatString)

Format specifier (Name) Description

C or ¢ (Currency) formats the string with a dollar sign; includes a thousands
separator (if appropriate); negative values are enclosed in
parentheses

Norn (Number) similar to the Currency format, but does not include a dollar sign
and negative values are preceded by a minus sign

F or f (Fixed-point) same as the Number format, but does not include a thousands
separator

Porp (Percent) multiplies the numeric variable’s value by 100 and formats the result

with a percent sign; negative values are preceded by a minus sign
Example 1
Dim intPropertyTax As Integer = 1250
Tb1Tax.Text = intPropertyTax.ToString("C2")
assigns the string “S1,250.00" to the IblTax control's Text property

Example 2
Dim decDue As Decimal = 63.775D

Tb1Due.Text = decDue.ToString("N2")
assigns the string “63.78" to the IbIDue control's Text property

Example 3
Dim db1Rate As Double = .04

Tb1Rate.Text = dbTRate.ToString("P0")
assigns the string “4 %" to the IblRate control's Text property

Figure 3-46 Syntax and examples of the ToString method
© 2013 Cengage Learning

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Using Variables and Constants

In the Play It Again Movies application, you will display the total sales amount with a dollar sign,
thousands separator, and two decimal places.

STARTIER)> To format the total sales:

1.

4,

Return to the Code Editor window. In the btnCalc_Click procedure, change the
Tb1TotalSales.Text = Convert.ToString(decTotalSales) statement as follows:

IblTotalSales.Text = decTotalSales. ToString("C2")

Save the solution and then start the application. Type Kate Hansen and then press
Enter. The sales receipt appears.

Type 7/20/2014 in the Date box, 4 in the DVDs box, and 10 in the Blu-rays box. Press
Enter to select the Calculate button. The total sales amount appears with a dollar sign, a
thousands separator, and two decimal places. See Figure 3-47.

Total discs: Exit
Total sales: $100.94 formatted price

The sales tax was 2.94.
Kate Hansen

Figure 3-47 Formatted total sales amount shown on the sales receipt

Click the Exit button. Close the Code Editor window and then close the solution.

Figure 3-48 shows the application’s code at the end of Lesson B.

' Name: Play It Again Project

" Purpose: Calculates the total number

' of discs sold and the total

! sales amount

' Programmer: <your name> on <current date>

Option Explicit On
Option Strict On
Option Infer Off

PubTic Class frmMain

' declare class-level variable
Private strClerk As String

Private Sub btnExit_Click(sender As Object,

e As EventArgs) Handles btnExit.Click
Me.Close()

End Sub

Private Sub btnClear_Click(sender As Object,
e As EventArgs) Handles btnClear.Click
' prepare screen for the next sale

Figure 3-48 Play It Again Movies application’s code at the end of Lesson B (continues)

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Using the ToString Method to Format Numbers

(continued)
23 txtDvds.Text = String.Empty
24 txtBTuRays.Text = String.Empty
25 Tb1TotalDiscs.Text = String.Empty
26 Tb1TotalSales.Text = String.Empty
27 Tb1Message.Text = String.Empty
28 ' send the focus to the DVDs box
29 txtDvds.Focus()
30
31 End Sub
32

33 Private Sub btnPrint_Click(sender As Object,
e As EventArgs) Handles btnPrint.Click

34 " print the sales receipt

35

36 Me.Width = Me.Width - 165

37 PrintForml.PrintAction =
Printing.PrintAction.PrintToPreview

38 PrintForml.Print()

39 Me.Width = Me.Width + 165

40

41 End Sub

42

43 Private Sub btnCalc_Click(sender As Object,
e As EventArgs) Handles btnCalc.Click

44 ' calculate number of discs sold and total sales
45

46 Const decDISC_PRICE As Decimal = 7D

47 Const decTAX_RATE As Decimal = 0.03D

48 Dim intDvds As Integer

49 Dim intBluRays As Integer

50 Dim intTotalDiscs As Integer

51 Dim decSubtotal As Decimal

52 Dim decSalesTax As Decimal

53 Dim decTotalSales As Decimal

54

55 ' calculate total number of discs sold

56 Integer.TryParse(txtDvds.Text, intDvds)

57 Integer.TryParse(txtBluRays.Text, intBluRays)
58 intTotalDiscs = intDvds + intBluRays

59

60 ' calculate the subtotal

61 decSubtotal = intTotalDiscs * decDISC_PRICE
62

63 ' calculate the sales tax

64 decSalesTax = decSubtotal * decTAX_RATE

65

66 ' calculate the total sales

67 decTotalSales = decSubtotal + decSalesTax

68

69 ' display total amounts

70 Tb1TotalDiscs.Text = Convert.ToString(intTotalDiscs)

71 Tb1TotalSales.Text decTotalSales.ToString('C2")
72

73 ' display tax and salesclerk's name

74 Tb1Message.Text = "The sales tax was " &

75 Convert.ToString(decSalesTax) & "." &

76 ControlChars.NewLine & strClerk

77

78 End Sub

79

Figure 3-48 Play It Again Movies application’s code at the end of Lesson B (continues)

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Using Variables and Constants

(continued)
80 Private Sub frmMain_Load(sender As Object,
e As EventArgs) Handles Me.Load
81 ' gets the salesclerk's name
82
83 Const strPROMPT As String = "Salesclerk's name:"
84 Const strTITLE As String = "Name Entry"
85 ' assign the name to the class-level variable
86 strClerk = InputBox(strPROMPT, strTITLE)
87
88 End Sub
89 End Class

Figure 3-48 Play It Again Movies application’s code at the end of Lesson B
© 2013 Cengage Learning

Lesson B Summary

To concatenate strings:

Use the concatenation operator (&). Be sure to include a space before and after the
ampersand.

To display an input dialog box:

Use the InputBox function. The function’s syntax is InputBox(prompt|, title]

[, defaultResponse]). The prompt, title, and defaultResponse arguments can be string literal
constants, String named constants, or String variables. Use sentence capitalization for the
prompt, but book title capitalization for the title.

If the user clicks the OK button, the InputBox function returns the value contained in the
input area of the dialog box. The return value is always treated as a string. If the user clicks
either the dialog box’s Cancel button or its Close button, the InputBox function returns an
empty string.

To advance the insertion point to the next line:
Use the ControlChars.NewLine constant in code.
To break up a long instruction into two or more physical lines in the Code Editor window:

Break the line after a comma, after an opening parenthesis, before a closing parenthesis, or
after an operator (arithmetic, assignment, comparison, logical, or concatenation). You also
can use the line continuation character, which is an underscore (_). The line continuation
character must be immediately preceded by a space and appear at the end of a physical line
of code.

To make a button the default button:
Set the form’s AcceptButton property to the name of the button.
To format a number for output as a string:

Use the ToString method. The method’s syntax is numericVariableName.ToString
(formatString).

earning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Lesson B Review Questions

Lesson B Key Terms

&—the concatenation operator

Concatenation operator—the ampersand (&); used to concatenate strings; must be both
preceded and followed by a space character

ControlChars.NewLine constant—used to advance the insertion point to the next line

Default button—a button that can be selected by pressing the Enter key even when the button
does not have the focus

Formatting—specifying the number of decimal places and the special characters to display in a
number

InputBox function—a Visual Basic function that displays an input dialog box containing a
message, OK and Cancel buttons, and an input area

Line continuation character—an underscore that is immediately preceded by a space and
located at the end of a physical line of code; used to split a long instruction into two or more
physical lines in the Code Editor window

Load event—an event associated with a form; occurs when the application is started and the
form is displayed the first time

ToString method—formats a number stored in a numeric variable and then returns the result as
a string

Lesson B Review Questions

1. The name of a form’s default button is specified in the property.

a. button’s AcceptButton
b. button’s DefaultButton
c. form’s AcceptButton
d. form’s DefaultButton

2. The InputBox function displays a dialog box containing which of the following?

a. input area

b. OK and Cancel buttons
C. prompt

d. all of the above

3. Which of the following is the concatenation operator?

a @
b. &
c $
d #
4. Which of the following Visual Basic constants advances the insertion point to the
next line?
a. Advance
b. ControlChars.Advance
¢. ControlChars.NewLine
d. none of the above

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or dupli

Using Variables and Constants

10.

The strWordl and strWord2 variables contain the strings “Input” and “Box”,
respectively. Which of the following will display the string “InputBox” (one word) in the
IbIWord control?

Tb1Word.Text = strWordl & striord?2

TblWord.Text = "strWordl " & "strWord2 "

Tb1Word.Text = strWordl @ strWord?2

Tb1Word.Text = strWordl # strWord?2

e~

The strCity and strState variables contain the strings “Tampa” and “Florida”,
respectively. Which of the following will display the string “Tampa, Florida” (the city, a
comma, a space, and the state) in the IblCityState control?

1b1CityState.Text = strCity , & strState

Tb1CityState.Text = strCity & "," & strState

Tb1CityState.Text = "strCity" & ", " & "strState"

none of the above

o S A

Which of the following statements correctly assigns the InputBox function’s return value
to a Double variable named db1Num?

a. Double.TryParse(InputBox(strMSG,
"Number'"), db1Num)

b. dbTNum = Double.TryParse(
InputBox (strMSG, "Number"))

c. dbTNum = InputBox(strMSG, "Number")

d. TryParse.Double(InputBox(strMSG,
"Number"), db1Num)

Which of the following statements correctly assigns the InputBox function’s return value
to a String variable named strCity?

a. String.TryParse(InputBox(strMSsG,
"City"), strCity)

o

strCity = String.TryParse(
InputBox(strMsG, "City"))

c. strCity = InputBox(strMsSG, "City")

d. none of the above

The InputBox function’s prompt argument should be entered using

a. book title capitalization
b. sentence capitalization

If the decPay variable contains the number 1200.76, which of the following statements
displays the number as $1,200.76?

TbTPay.Text = decPay.ToString(""N2")

Tb1Pay.Text = decPay.ToString("F2")

TbTPay.Text = decPay.ToString("D2")

TbTPay.Text = decPay.ToString("C2")

o S SR

earning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Lesson B Exercises

Lesson B Exercises

1.

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or dupli

The strFirst and strlLast variables contain the strings “Dolly” and “Pershing”,
respectively. Write an assignment statement to display the string “Pershing, Dolly” in
the IbIName control.

The strCity variable contains the string “Bowling Green”. Write an assignment
statement to display the string “Our office is in Bowling Green, KY.” in the 1blMsg
control.

In this exercise, you modify the Play It Again Movies application from this lesson. Use
Windows to make a copy of the Play It Again Solution folder. Rename the copy
Modified Play It Again Solution. Open the Play It Again Solution (Play It Again
Solution.sln) file contained in the Modified Play It Again Solution folder. Open the
designer window. Modify the btnCalc control’s Click event procedure so that it displays
the sales tax amount with a dollar sign, two decimal places, and a thousands separator
(if necessary). Save the solution and then start and test the application. Close the Code
Editor window and then close the solution.

Open the Gross Pay Solution (Gross Pay Solution.sln) file contained in the VB2012
\Chap03\Gross Pay Solution folder. If necessary, open the designer window. The
application calculates and displays an employee’s gross pay. Make the Calculate button
the default button. Open the Code Editor window and enter the three Option
statements in the General Declarations section. Review the code in the Calculate
button’s Click event procedure. Modify the procedure’s code to use variables. (Do not
use the Val function.) Use the ToString method to display the gross pay amount with a
dollar sign, two decimal places, and a thousands separator (if necessary). Save the
solution and then start the application. Test the application by calculating the gross pay
for an employee working 35 hours at $9.75 per hour. Close the Code Editor window and
then close the solution.

The strFirst, strMiddle, strLast, and strNickname variables contain the strings
“Karl”, “G.”, “Perillo”, and “KG”, respectively. Write an assignment statement that will
display the string “My name is Karl G. Perillo, but you can call me KG.” in the IbIMsg
control.

Open the Fairmont Solution (Fairmont Solution.sln) file contained in the VB2012
\ChapO03\Fairmont Solution folder. If necessary, open the designer window. The
application allows the sales manager to enter the sales made in three states. It then
calculates and displays both the total sales made and the total commission earned in the
three states.

a. Make the Calculate button the default button.
b. Enter the appropriate Option statements in the Code Editor window.
c. Code the Exit button so that it ends the application when it is clicked.

d. Use the pseudocode shown in Figure 3-49 to code the Calculate button’s Click event
procedure. Be sure to use variables. (Do not use the Val function.) The commission
rate is 3%. Use the ToString method to display a thousands separator (if necessary)
and two decimal places in the total sales and commission amounts.

e. Save the solution and then start the application. Test the application by calculating
the total sales and commission for the following amounts: Illinois sales of 36000,
Indiana sales of 34500, and Alaska sales of 23675.

f. Close the Code Editor window and then close the solution.

INTRODUCTORY

INTRODUCTORY

167

INTRODUCTORY

INTRODUCTORY

INTERMEDIATE

INTERMEDIATE

Using Variables and Constants

btnCalc Click event procedure

1. calculate total sales = llinois sales + Indiana sales + Alaska sales
2. calculate commission = total sales * commission rate
3. display total sales and commission in IblTotalSales and IbITotalComm

4. send the focus to the txtlll control

Figure 3-49 Pseudocode for Exercise 6
© 2013 Cengage Learning

INTERMEDIATE 7. In this exercise, you modify the Fairmont application from Exercise 6. Use Windows to
make a copy of the Fairmont Solution folder. Rename the copy Modified Fairmont
Solution. Open the Fairmont Solution (Fairmont Solution.sln) file contained in the
Modified Fairmont Solution folder. Open the designer window. Code the form’s Load
event procedure so that it uses the InputBox function to ask the user for the
commission rate before the form appears. Modify the code in the btnCalc control’s
Click event procedure so that it uses the commission rate entered by the user. Save the
solution and then start the application. When you are prompted to enter the
commission rate, type .1 (the decimal equivalent of 10%) and then click the OK button.
Test the application using 56000 as the Illinois sales, 64000 as the Indiana sales, and
39000 as the Alaska sales. Close the Code Editor window and then close the solution.

INTERMEDIATE 8. Open the Turner Solution (Turner Solution.sln) file contained in the VB2012\Chap03
\Turner Solution folder. If necessary, open the designer window. The application
calculates the new hourly pay for each of three job codes, given the current hourly pay
for each job code and the raise percentage (entered as a decimal number). The
application should display the message “Raise percentage: XX” in a label control on the
form. The XX in the message should be replaced by the actual raise percentage.

a. Code the Exit button so that it ends the application when it is clicked.

b. Before the form appears, use the InputBox function to prompt the personnel clerk to
enter the raise percentage in decimal form. You will use the raise percentage to
calculate the new hourly pay for each job code.

c. Use the pseudocode shown in Figure 3-50 to code the Calculate button’s Click event
procedure. Be sure to use variables. (Do not use the Val function.) Create a named
constant for the “Raise percentage:” message. Format the new hourly pay amounts
using the “N2” formatString. Format the raise rate (in the message) using the “P0”
formatString.

d. Save the solution and then start the application. When you are prompted to enter
the raise percentage, type .05 (the decimal equivalent of 5%) and then click the OK
button. Use the following information to calculate the new hourly pay for each job
code:

Current hourly pay for job code 1: 5
Current hourly pay for job code 2: 6.5
Current hourly pay for job code 3: 8.75

e. Close the Code Editor window and then close the solution.

earning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

10.

11.

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or dupli

Lesson B Exercises

btnCalc Click event procedure

1. calculate each new hourly pay = current hourly pay * raise rate + current hourly pay
2. display the new hourly pays in the appropriate label controls

3. display the message and raise rate in the IbIMessage control

4. send the focus to the txtCurrentl control

Figure 3-50 Pseudocode for Exercise 8
© 2013 Cengage Learning

Create a Visual Basic Windows application. Use the following names for the solution
and project, respectively: Red Lion Solution and Red Lion Project. Save the application
in the VB2012\Chap03 folder. Change the form file’s name to Main Form.vb. Change
the form’s name to frmMain. The application’s interface should allow the owner of the
Red Lion photo studio to enter the studio’s quarterly sales amount. The application
should display the amount of state, county, and city sales tax the studio must pay. It also
should display the total sales tax. The sales tax rates for the state, county, and city are
3%, 1%, and 0.5%, respectively. Be sure to use variables. (Do not use the Val function.)
Use the ToString method to display a thousands separator (if necessary) and two
decimal places in each of the sales tax amounts. Also include a dollar sign in the total
sales tax amount. Save the solution and then start and test the application. Close the
Code Editor window and then close the solution.

Create a Visual Basic Windows application. Use the following names for the solution and
project, respectively: Martin Motors Solution and Martin Motors Project. Save the
application in the VB2012\Chap03 folder. Change the form file’s name to Main Form.vb.
Change the form’s name to frmMain. Jerry Martin of Martin Motors wants an
application that allows him to enter the annual sales made at each of three dealerships.
The application should calculate the total annual sales and also the percentage that each
dealership contributed to the total annual sales. Save the solution and then start and test
the application. Close the Code Editor window and then close the solution.

In this exercise, you modify the Turner application from Exercise 8. The modified
application will allow the user to enter a separate raise percentage for each job code. Use
Windows to make a copy of the Turner Solution folder. Rename the copy Modified
Turner Solution. Open the Turner Solution (Turner Solution.sln) file contained in the
Modified Turner Solution folder. Open the designer window.

a. Modify the application’s code so that it asks the personnel clerk to enter the raise for
each job code separately. Display the following information on separate lines in the
IblMessage control. Be sure to replace the XX in each line with the appropriate raise
percentage. (You may need to change the size of the form and/or IblMessage
control.)

Job Code 1: XX %
Job Code 2: XX %
Job Code 3: XX %

INTERMEDIATE

INTERMEDIATE

ADVANCED

Using Variables and Constants

b. Save the solution and then start the application. When you are prompted to enter
the raise percentages for the job codes, use .03 for job code 1, .05 for job code 2, and
.04 for job code 3. Use the following information to calculate the new hourly pay for
each job code:

Current hourly pay for job code 1: 5
170 Current hourly pay for job code 2: 6.5
Current hourly pay for job code 3: 8.75

c. Close the Code Editor window and then close the solution.

DISCOVERY 12. In this exercise, you learn about the CancelButton property of a Windows form. Open
the Cancel Solution (Cancel Solution.sln) file contained in the VB2012\Chap03\Cancel
Solution folder.

a. Open the Code Editor window and review the existing code. Start the application.
Type your first name in the text box and then press Enter to select the Clear button,
which is the form’s default button. The Clear button removes your name from the
text box. Click the Undo button. Your name reappears in the text box. Click the Exit
button.

b. Return to the designer window. Set the form’s CancelButton property to btnUndo.
Doing this tells the computer to process the code in the Undo button’s Click event
procedure when the user presses the Esc key. Save the solution and then start the
application. Type your first name in the text box and then press Enter to select the
Clear button. Press Esc to select the Undo button. Your name reappears in the text
box. Close the Code Editor window and then close the solution.

earning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Modifying the Load and Click Event Procedures

After studying Lesson C, you should be able to:
e Include a static variable in code
e Code the TextChanged event procedure

e Create a procedure that handles more than one event

Modifying the Load and Click Event Procedures

Currently, the Play It Again Movies application allows the user to enter the salesclerk’s name
only when the application first starts. In this lesson you will modify the code so that it asks for
the name each time the Calculate button is clicked. This will allow another salesclerk to enter
his or her name on the sales receipt without having to start the application again.

As you learned in Lesson B, you should review an application’s documentation and revise the
necessary documents before making modifications to the code. Figure 3-51 shows the revised
TOE chart. Changes made to the TOE chart from Lesson B are shaded in the figure. Notice that
the Calculate button’s Click event procedure, rather than the form’s Load event procedure, is
now responsible for getting the salesclerk’s name.

Task Object Event

1. Get the salesclerk’s name btnCalc Click
2. Calculate total discs sold and total sales amount
3. Display total discs sold and total sales amount
in IblTotalDiscs and IblTotalSales
4. Calculate the sales tax
5. Display sales tax and salesclerk’s name in IbIMessage

Print the sales receipt btnPrint Click
End the application btnExit Click
Clear screen for the next sale btnClear Click
Display total discs sold (from btnCalc) IbITotalDiscs None
Display total sales amount (from btnCalc) IbITotalSales None
Get and display the sales information txtDate, txtDvds, txtBluRays None
Get-the-sateselerk’s-name frrmMain toad
Display sales tax and salesclerk’s name (from btnCalc) IbIMessage None

Figure 3-51 Revised TOE chart for the Play It Again Movies application in Lesson C
© 2013 Cengage Learning

Figure 3-52 shows the revised pseudocode for the Calculate button’s Click event procedure.
Changes made to the pseudocode from Lesson B are shaded in the figure.

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

172

Using Variables and Constants

btnCalc Click event procedure

get the salesclerk’s name

calculate total discs sold = DVDs sold + Blu-rays sold

calculate subtotal = total discs sold * disc price

calculate sales tax = subtotal * sales tax rate

calculate total sales = subtotal + sales tax

display total discs sold and total sales in IblTotalDiscs and IbITotalSales
display sales tax and salesclerk’s name in IbIMessage

Nookwe

Figure 3-52 Revised pseudocode for the Calculate button in Lesson C
© 2013 Cengage Learning

First, you will open the Play It Again Movies application from Lesson B. You then will move the
code contained in the form’s Load event procedure to the btnCalc control’s Click event
procedure.

To open the Play It Again Movies application and then move some of the code:

1. If necessary, start Visual Studio 2012. Open the Play It Again Solution (Play It Again
Solution.sln) file from Lesson B. The file is contained in the VB2012\Chap03\Play It
Again Solution folder. If necessary, open the designer window.

2. Open the Code Editor window. Locate the form’s Load event procedure, and then
highlight the two Const statements in the procedure. Press Ctrl+x to cut the two Const
statements from the procedure.

3. Locate the btnCalc_Click procedure. Click the blank line above the first Const
statement in the procedure, and then press Enter to insert a new blank line. With the
insertion point in the new blank line, press Ctrl+v. The two Const statements that you
cut from the Load event procedure now appear in the Click event procedure. (Don’t be
concerned about the jagged green lines that appear below the two Const statements. The
lines will disappear when you use the constants in another statement within the
procedure.)

4. Return to the form’s Load event procedure. Highlight the second comment and the
assignment statement. Press Ctrl+x to remove the comment and the assignment
statement from the procedure.

5. Return to the btnCalc_Click procedure. Click the blank line below the last Dim
statement, and then press Enter to insert a new blank line. With the insertion point in
the new blank line, press Ctrl+v. The comment and assignment statement that you cut
from the Load event procedure now appear in the Click event procedure. Press Enter to
insert a new blank line below the assignment statement, and then delete the class-
Tevel text from the comment.

6. Return to the form’s Load event procedure and then delete the entire procedure from
the Code Editor window.

Now that you have moved the InputBox function from the form’s Load event procedure to the
btnCalc_Click procedure, only one procedure—the btnCalc_Click procedure—needs to use the
strClerk variable. Therefore, you should change the variable from a class-level variable to a
procedure-level variable. You can do this by moving the variable’s declaration statement from
the form’s Declarations section to the btnCalc_Click procedure. In addition, you will need to
change the keyword in the declaration statement from Private to Dim. Recall that you use the
Private keyword to declare class-level variables, but you use the Dim keyword to declare
procedure-level variables.

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Modifying the Load and Click Event Procedures

To move the declaration statement and then modify it:

1. Delete the ' declare class-level variable comment from the form’s Declarations
section. Highlight the Private strClerk As String statement, and then press Ctrl+x
to cut the statement from the Declarations section.

2. Click the blank line below the last Dim statement in the btnCalc_Click procedure. Press
Ctrl+v to paste the Private statement in the procedure, and then press Enter to insert a
blank line below the statement.

3. The jagged blue line below the Private keyword indicates that the statement contains a
syntax error. Rest your mouse pointer on the Private keyword. The error message
indicates that the Private keyword is not valid on a local variable declaration. Change
Private in the variable declaration statement to Dim.

4. Save the solution and then start the application. Click the Calculate button. Type your
name in the Name Entry dialog box and then press Enter. The message “The sales tax
was 0.00.” and your name appear in the IblMessage control.

5. Click the Calculate button again. Notice that the Name Entry dialog box requires the
user to enter the salesclerk’s name again. It would be more efficient for the user if the
salesclerk’s name appeared as the default response the second and subsequent times the
Calculate button is clicked.

6. Click the Cancel button in the dialog box. The InputBox function returns an empty
string, so no name appears in the IbIMessage control. Click the Exit button.

To display the salesclerk’s name in the dialog box when the Calculate button is clicked the
second and subsequent times, you can declare the strClerk variable as either a class-level
variable or a static variable, and then use the variable as the defaultResponse argument in the
InputBox function. In this case, a static variable is a better choice because static variables have a
lesser (more restrictive) scope than class-level variables. Recall that a static variable is really just
a special type of procedure-level variable. As you learned in Lesson A, fewer unintentional errors
occur in applications when variables are declared using the minimum scope needed. In this case,
the minimum scope required for the strClerk variable is procedure scope because only one
procedure needs to use the variable.

To declare the strClerk variable as a static variable and then modify the InputBox
function:

1. In the btnCalc_Click procedure, change the Dim in the Dim strClerk As String
statement to Static.

2. Now change the statement that contains the InputBox function as follows, and then click
the blank line below the statement:

strClerk = InputBox(strPROMPT, strTITLE, strClerk)

3. Save the solution and then start the application. Type 1/25/2014 in the Date box, 5 in
the DVDs box, and 3 in the Blu-rays box. Press Enter. Type your name in the Name
Entry dialog box and then press Enter. The application calculates and displays the total
discs sold (8) and total sales ($57.68). In addition, the message “The sales tax was 1.68.”
and your name appear in the IbIMessage control.

4. Change the number of DVDs sold to 2. At this point, the calculated amounts on the sales
receipt are incorrect because they do not reflect the change in the number of DVDs sold.
To display the correct amounts, you will need to recalculate the amounts by selecting the
Calculate button. Press Enter to select the Calculate button. Your name appears
highlighted in the input area of the Name Entry dialog box.

<(START HERE

<«(START HERE

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

174

START HERE >

Using Variables and Constants

5. Press Enter to select the dialog box’s OK button. The application calculates and displays
the total discs sold (5) and total sales ($36.05). The message “The sales tax was 1.05.” and
your name appear in the IblMessage control. Click the Exit button.

Having the previously calculated amounts remain on the screen when a change is made to the
interface could be misleading. A better approach is to clear the amounts when a change is made
to either the number of DVDs sold or the number of Blu-rays sold.

Coding the TextChanged Event Procedure

A control’s TextChanged event occurs when a change is made to the contents of the control’s
Text property. This can happen as a result of either the user entering data into the control or the
application’s code assigning data to the control’s Text property. In the next set of steps, you will
code the txtDvds_TextChanged event procedure so that it clears the contents of the
IblTotalDiscs, 1blTotalSales, and IbIMessage controls when the user changes the number of
DVDs sold.

To code the txtDvds_TextChanged event procedure:

1. Open the code template for the txtDvds control’s TextChanged event procedure. Type
the following comment and then press Enter twice.

' clears the total discs, total sales, and message
2. Enter the following three assignment statements:

IblTotalDiscs.Text = String. Empty
IblTotalSales. Text = String. Empty
IblMessage. Text = String.Empty

3. Save the solution and then start the application. Type 1/25/2014 in the Date box, 5 in
the DVDs box, and 3 in the Blu-rays box. Press Enter. Type your name in the Name
Entry dialog box and then press Enter. The application calculates and displays the total
discs sold (8), total sales ($57.68), and sales tax (1.68).

4. Change the number of DVDs sold to 2. When you make this change, the
txtDvds_TextChanged procedure clears the total discs sold, total sales, and message
information from the form. Click the Exit button.

Recall that you also want to clear the calculated amounts when a change is made to the number
of Blu-rays sold. You could code the TextChanged event procedure for the txtBluRays control
separately, as you did with the txtDvds control. However, you also can create one procedure for
the computer to process when the TextChanged event of either of the two controls occurs.

Associating a Procedure with Different Objects and Events

The Handles clause in an event procedure’s header indicates the object and event associated
with the procedure. The Handles clause in Figure 3-53, for example, indicates that the
procedure is associated with the TextChanged event of the txtDvds control. As a result, the
procedure will be processed when the txtDvds control’s TextChanged event occurs.

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Coding the TextChanged Event Procedure

procedure name

Private Sub txtDvds_TextChanged(sender As Object,
e As EventArgs) Handles txtDvds.TextChanged

Handles keyword followed
by object and event names

Figure 3-53 TextChanged event procedure associated with the txtDvds control
© 2013 Cengage Learning

Although an event procedure’s name contains the names of its associated object and event,
separated by an underscore, that is not a requirement. You can change the name of an event
procedure to almost anything you like, as long as the name follows the same rules for naming
variables. Unlike variable names, however, procedure names are usually entered using Pascal
case, which means you capitalize the first letter in the name and the first letter of each
subsequent word in the name. For example, you can change the name of the procedure in
Figure 3-53 from txtDvds_TextChanged to ClearLabels and the procedure will still work
correctly. This is because the Handles clause, rather than the event procedure’s name,
determines when the procedure is invoked.

You can associate a procedure with more than one object and event, as long as each event
contains the same parameters in its procedure header. To do so, you list each object and event
in the procedure’s Handles clause. You separate the object and event with a period, like this:
object.event. You use a comma to separate each object.event from the next object.event. In the
next set of steps, you will change the name of the txtDvds_TextChanged procedure to
ClearLabels. You then will associate the ClearLabels procedure with the txtDvds.TextChanged
and txtBluRays.TextChanged events.

To change the procedure’s name and then associate the procedure with different -T HERE
objects and events:

1. Change txtDvds_TextChanged, which appears after Private Sub in the procedure
header, to ClearLabels.

2. In the ClearLabels procedure header, click immediately before the letter H in the
keyword Handles. Type _ (an underscore, which is the line continuation character).
Be sure there is a space between the ending parenthesis and the underscore.

3. Press Enter to move the Handles clause to the next line in the procedure.

4. Click immediately after TextChanged in the Handles clause. The ClearLabels
procedure is already associated with the txtDvds.TextChanged event. You just need to
associate it with the txtBluRays.TextChanged event. Type , (a comma). Scroll the list of
object names until you see txtBluRays. Click txtBluRays in the list, and then press Tab
to enter the object name in the Handles clause.

5. Type. (a period). Scroll the list of event names (if necessary) until you see TextChanged.
Click TextChanged and then press Tab. Figure 3-54 shows the completed ClearLabels
procedure.

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

176

Using Variables and Constants

Handles clause ——————Handles txtDvds.TextChanged, txtBluRays.TextChanged

10.

line continuation
character

Private Sub ClearLabels(sender As Object, e As EventArgs)
' clears the total discs, total sales, and message
1blTotalDiscs.Text = String.Empty

1lblTotalSales.Text = String.Empty
lblMessage.Text = String.Empty

End Sub

Figure 3-54 Completed ClearLabels procedure

Save the solution and then start the application. Type 8/8/2014 in the Date box, 5 in the
DVDs box, and 3 in the Blu-rays box. Press Enter. Type your name in the Name Entry
dialog box and then press Enter. The application calculates and displays the total discs
sold (8), total sales ($57.68), and sales tax (1.68).

Change the number of DVDs sold to 2. The ClearLabels procedure clears the total discs
sold, total sales, and message information from the form.

Press Enter to select the Calculate button, and then press Enter to select the OK button
in the Name Entry dialog box. The application calculates and displays the total discs sold
(5), total sales ($36.05), and sales tax (1.05).

Change the number of Blu-rays sold to 4. The ClearLabels procedure clears the total
discs sold, total sales, and message information from the form.

Press Enter to select the Calculate button. Type Sarah Wilson in the Name Entry dialog
box, and then press Enter to select the OK button. The application calculates and
displays the total discs sold (6), total sales ($43.26), and sales tax (1.26). See Figure 3-55.

6 .} Sales Receipt

DVDs: '2 | . Print Receipt .

Blu-rays: Clear Screen '

Total discs: III L =
Total sales: $43.26

The sales tax was 1.26.
Sarah Wilson

Figure 3-55 Completed Sales Receipt
OpenClipArt.org/John Diamond / diamonjohn

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Coding the TextChanged Event Procedure

11. Click the Exit button. Close the Code Editor window and then close the solution.

Figure 3-56 shows the application’s code at the end of Lesson C.

1 ' Name: PTay It Again Project

2 ' Purpose: Calculates the total number
3" of discs sold and the total
4 "' sales amount

5 ' Programmer: <your name> on <current date>
6

7 Option Explicit On

8 Option Strict On

9 Option Infer Off
10
11 Public Class frmMain
12

13 Private Sub btnExit_Click(sender As Object,
e As EventArgs) Handles btnExit.Click

14 Me.Close()
15 End Sub
16

17 Private Sub btnClear_Click(sender As Object,
e As EventArgs) Handles btnClear.Click

18 ' prepare screen for the next sale
19

20 txtDvds.Text = String.Empty

21 txtBluRays.Text = String.Empty

22 Tb1TotalDiscs.Text = String.Empty
23 1b1TotalSales.Text = String.Empty
24 Tb1Message.Text = String.Empty

25 ' send the focus to the DVDs box
26 txtDvds.Focus()

27

28 End Sub

29

30 Private Sub btnPrint_Click(sender As Object,
e As EventArgs) Handles btnPrint.Click

31 ' print the sales receipt

32

33 Me.Width = Me.Width - 165

34 PrintForml.PrintAction =
Printing.PrintAction.PrintToPreview

35 PrintForml.Print()

36 Me.Width = Me.Width + 165

37

38 End Sub

39

40 Private Sub btnCalc_Click(sender As Object,
e As EventArgs) Handles btnCalc.Click

41 ' calculate number of discs sold and total sales
42

43 Const strPROMPT As String = "Salesclerk's name:"
44 Const strTITLE As String = "Name Entry"

45 Const decDISC_PRICE As Decimal = 7D

Figure 3-56 Play It Again Movies application’s code at the end of Lesson C (continues)

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Using Variables and Constants

(continued)
46 Const decTAX_RATE As Decimal = 0.03D
47 Dim intDvds As Integer
48 Dim intBTuRays As Integer
49 Dim intTotalDiscs As Integer
50 Dim decSubtotal As Decimal
178 51 Dim decSalesTax As Decimal
52 Dim decTotalSales As Decimal
53 Static strClerk As String
54
55 ' assign the name to the variable
56 strClerk = InputBox(strPROMPT, strTITLE, strClerk)
57
58 ' calculate total number of discs sold
59 Integer.TryParse(txtDvds.Text, intDvds)
60 Integer.TryParse(txtBTuRays.Text, intBluRays)
61 intTotalDiscs = intDvds + intBTuRays
62
63 ' calculate the subtotal
64 decSubtotal = intTotalDiscs * decDISC_PRICE
65
66 ' calculate the sales tax
67 decSalesTax = decSubtotal * decTAX_RATE
68
69 ' calculate the total sales
70 decTotalSales = decSubtotal + decSalesTax
71
72 ' display total amounts
73 1b1TotalDiscs.Text = Convert.ToString(intTotalDiscs)
74 Tb1TotalSales.Text = decTotalSales.ToString('C2")
75
76 ' display tax and salesclerk's name
77 TbTMessage.Text = "The sales tax was " &
78 Convert.ToString(decSalesTax) & "." &
79 ControlChars.NewLine & strClerk
80
81 End Sub
82
83 Private Sub ClearLabels(sender As Object, e As EventArgs) _
84 Handles txtDvds.TextChanged, txtBluRays.TextChanged
85 ' clears the total discs, total sales, and message
86
87 Tb1TotalDiscs.Text = String.Empty
88 Tb1TotalSales.Text = String.Empty
89 Tb1Message.Text = String.Empty
90
91 End Sub
92 End Class

Figure 3-56 Play It Again Movies application’s code at the end of Lesson C
© 2013 Cengage Learning

Lesson C Summary

e To create a procedure-level variable that retains its value until the application ends:

Declare the variable in a procedure, using the Static keyword. The variable will remain in
memory until the application ends.

e To process code when a change is made to the contents of a control’s Text property:

Enter the code in the control’s TextChanged event procedure.

earning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Lesson C Review Questions

e To associate a procedure with more than one object or event:

List each object and event (using the syntax object.event) after the Handles keyword in the
procedure header. Use a comma to separate each object and event from the previous object
and event.

Lesson C Key Terms

Pascal case—used when entering procedure names; the process of capitalizing the first letter in
the name and the first letter of each subsequent word in the name

TextChanged event—occurs when a change is made to the contents of a control’s Text property

Lesson C Review Questions

1. Which of the following events occurs when a change is made to the contents of a

text box?
a. Change
b. Changed
c. TextChanged
d. TextChange
2. A variable is a procedure-level variable that retains its value after the

procedure in which it is declared ends.

a0 T

constant
static
stationary

term

3. Which of the following clauses associates a procedure with the TextChanged event of the
txtMid and txtFinal controls?

a0 T

Associates txtMid_TextChanged, txtFinal_TextChanged
Handled txtMid_TextChanged, txtFinal_TextChanged
Controls txtMid.TextChanged And txtFinal.TextChanged
HandTles txtMid.TextChanged, txtFinal.TextChanged

4. Which of the following statements declares a procedure-level variable that is removed
from the computer’s memory when the procedure ends?

a0 T

5. Which of the following statements declares a procedure-level variable that retains its
value after the procedure in which it is declared ends?

e S A

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or dupli

Const intCounter As Integer
Dim intCounter As Integer
Local intCounter As Integer
Static intCounter As Integer

Const intCounter As Integer
Dim intCounter As Constant
Dim intCounter As Integer
Static intCounter As Integer

INTRODUCTORY

INTRODUCTORY

INTERMEDIATE

Using Variables and Constants

Lesson C Exercises

1.

Open the CityState Solution (CityState Solution.sln) file contained in the VB2012
\Chap03\CityState Solution folder. Code the form’s Load event procedure so that it uses
two InputBox functions to prompt the user to enter the name of a city and the name of a
state. Assign the results of both functions to variables. Code the Display button’s Click
event procedure so that it displays the city name followed by a comma, a space, and the
state name in the IblCityState control. Save the solution and then start and test the
application. Close the Code Editor window and then close the solution.

In this exercise, you create an application that converts American dollars to the Euro, the
Swiss franc, and the South African rand. Create a Visual Basic Windows application. Use
the following names for the solution and project, respectively: Converter Solution and
Converter Project. Save the application in the VB2012\Chap03 folder. Change the form
file’s name to Main Form.vb. Change the form’s name to frmMain. Create the interface
shown in Figure 3-57. Make the Convert button the default button. Code the application
appropriately. Use the Internet to determine the appropriate conversion rates. Be sure to
use variables in your code. (Do not use the Val function.) The calculated amounts should
be displayed with two decimal places. Clear the calculated amounts when a change is
made to the number of dollars. Save the solution and then start and test the application.
Close the Code Editor window and then close the solution.

al Currency Converter E@
American dollar:
Convert Exit
Euro: Swiss franc: South African rand:

Figure 3-57 |Interface for Exercise 2

In this exercise, you create an application that allows your friend Miranda to enter the
number of pennies she has in a jar. The application should calculate the number of
dollars, quarters, dimes, nickels, and pennies she will receive when she cashes in the
pennies at a bank. Create a Visual Basic Windows application. Use the following names
for the solution and project, respectively: Pennies Solution and Pennies Project. Save the
application in the VB2012\Chap03 folder. Change the form file’s name to Main Form.vb.
Change the form’s name to frmMain. Create the interface shown in Figure 3-58. Make
the Calculate button the default button. Code the application appropriately. (It might be
helpful to review the information in Figures 2-34 and 2-35 in Chapter 2.) Clear the
calculated amounts when a change is made to the number of pennies entered by the user.
Save the solution and then start the application. Test the application twice, using the
following data: 706 pennies and 533 pennies. Close the Code Editor window and then
close the solution.

earning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Lesson C Exercises

ol Pennies Calculator ==

Number of pennies: Exit

Dollars: Quarters: Dimes: Nickels: Pennies:

Figure 3-58 Interface for Exercise 3

4. Create a Visual Basic Windows application. Use the following names for the solution INTERMEDIATE
and project, respectively: Car Solution and Car Project. Save the application in the

VB2012\Chap03 folder. Change the form file’s name to Main Form.vb. Change the form’s

name to frmMain. The application’s interface should allow the user to enter his or her

monthly car expenses. The expenses should include the loan payment, insurance

payment, oil change, maintenance, car washes, and gas. You will need a text box for each

individual expense for each month. The application should calculate and display each

month’s total expenses, as well as the total expenses for the year. Save the solution and

then start and test the application.

Create a Visual Basic Windows application. Use the following names for the solution and INTERMEDIATE
project, respectively: Credit Card Solution and Credit Card Project. Save the application

in the VB2012\ChapO03 folder. Change the form file’s name to Main Form.vb. Change the

form’s name to frmMain. Create an interface that allows the user to enter the total

monthly amount charged to his or her credit card for the following five categories of

expenses: Merchandise, Restaurants, Gasoline, Travel/Entertainment, Services, and

Supermarkets. The application should calculate and display each month’s total charges,

as well as the total annual amount he or she charged. The application also should

calculate and display the percentage that each category contributed to the total annual

amount charged. Save the solution and then start and test the application.

6. In this exercise, you create an application that can help students in grades 1 through 6 ADVANCED
learn how to make change. The application should allow the student to enter the amount
of money a customer owes and the amount of money the customer paid. It then should
calculate the amount of change, as well as the number of dollars, quarters, dimes, nickels,
and pennies to return to the customer. For now, you do not have to worry about the
situation where the amount owed is greater than the amount paid. You can assume that
the customer pays either the exact amount or more than the exact amount. Create a
Visual Basic Windows application. Use the following names for the solution, project, and
form file, respectively: Change Solution, Change Project, and Main Form.vb. Save the
application in the VB2012\Chap03 folder. Create the interface shown in Figure 3-59.
Make the Calculate Change button the default button. Code the application
appropriately. (It might be helpful to review the information in Figures 2-34 and 2-35 in
Chapter 2.) Clear the calculated amounts when a change is made to either the amount
owed or amount paid. Save the solution and then start the application. Test the
application three times, using the following data: 75.33 as the amount owed and 80.00 as
the amount paid, 39.67 as the amount owed and 50.00 as the amount paid, and 45.55 as
the amount owed and 45.55 as the amount paid. Close the Code Editor window and then
close the solution.

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or dupli

Using Variables and Constants

o Change Calculator [E=8 =R~
Amount pwed: Calculate Change
Amount paid: Clear Screen

Dollars: Quarters: Dimes: Nickels: Pennies:

Figure 3-59 Interface for Exercise 6

DISCOVERY 7. In this exercise, you experiment with the Visual Basic conversion functions listed in
Appendix C. Open the Conversion Functions Solution (Conversion Functions Solution.
sln) file contained in the VB2012\Chap03\Conversion Functions Solution folder. Start
the application. Test the application using 4 and 10 as the item price and number
purchased, respectively. What appears in the Total price box when you click the
Calculate button? Now delete the number 10 from the Number purchased box. What
appears in the Total price box when you click the Calculate button? Stop the application.
Modify the code so that it uses the Visual Basic conversion functions listed in Appendix C.
For example, to convert the item price to Decimal, use decPrice = CDec(txtPrice.Text).
Save the solution and then start the application. Test the application using 4 and 10
as the item price and number purchased, respectively. What appears in the Total
price box when you click the Calculate button? Now delete the number 10 from the
Number purchased box. What happens when you click the Calculate button? Stop
the application by clicking DEBUG on the menu bar and then clicking Stop Debugging.
What does this exercise tell you about the difference between the TryParse methods
and the Visual Basic conversion functions? Close the Code Editor window and then
close the solution.

SWAT THE BUGS 8. Open the Debug Solution (Debug Solution.sln) file contained in the VB2012\Chap03\
Debug Solution-Lesson C folder. If necessary, open the designer window. Start and then
test the application. Locate and correct any errors. When the application is working
correctly, close the Code Editor window and then close the solution.

earning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

The Selection Structure

Creating the Covington Resort Application

In this chapter, you will create a reservation application for Covington
Resort. The application should allow the user to enter the following
information: the number of rooms to reserve, the length of stay (in
nights), the number of adult guests, and the number of child guests.
Each room can accommodate a maximum of six guests. The resort

charges $284 per room per night. It also charges a 15.25% sales and
lodging tax, which is based on the room charge. In addition, there is a
S15 resort fee per room per night. The application should display the
total room charge, the sales and lodging tax, the resort fee, and the
total due.

All Microsoft screenshots used with permission from Microsoft Corporation

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

The Selection Structure

Previewing the Covington Resort Application

Before you start the first lesson in this chapter, you will preview the completed application. The
application is contained in the VB2012\Chap04 folder.

STARNEERE)> To preview the completed application:

1.

Use the Run dialog box to run the Covington (Covington.exe) file contained in the
VB2012\Chap04 folder. The application’s user interface appears on the screen.

Type 1 in the Rooms box, 2 in the Nights box, 2 in the Adults box, and 3 in the Children
box. Click the Calculate button. The application calculates and displays the charges
shown in Figure 4-1.

Number of Charges

@ i : i - Room:

Tax

Resort fee:

Total due:

Figure 4-1 Interface showing the calculated amounts

Recall that only 6 guests are allowed in a room. Change the number of adults to 4 and
then click the Calculate button. The message box shown in Figure 4-2 appears on the
screen. You will learn how to create a message box in Lesson B.

L= Covington Resort -

Number of Charges

a message box
appears on top
of the form

Figure 4-2 Message box

Click the OK button to close the message box. Try typing a $ in the Nights box. Notice
that the text box does not accept the $ key. You will learn how to prevent a text box
from accepting unwanted characters in Lesson C.

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Previewing the Covington Resort Application

5. Change the number of nights and number of adults to 1 and 2, respectively. Also change
the number of children to 2. Click the Calculate button. The application calculates and
displays the charges shown in Figure 4-3.

Number of Charges

w Rooms: Mights: Room: 284.00

E' E' Tax: 4331
Adults (18+): Children: Resort fee: 15.00

Total due:

| Calculate |

Figure 4-3 New charges shown in the interface

6. Click the Exit button to end the application.

The Covington Resort application uses the selection structure, which you will learn about in

Lesson A. In Lesson B, you will complete the application’s interface and also begin coding the
application. You will finish coding the application in Lesson C. Be sure to complete each lesson
in full and do all of the end-of-lesson questions and several exercises before continuing to the

next lesson.

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

ChO4A video

The Selection Structure

After studying Lesson A, you should be able to:

e Write pseudocode for the selection structure

e Create a flowchart to help you plan an application’s code

e Write an If... Then ... Else statement

e Include comparison operators in a selection structure’s condition
e Include logical operators in a selection structure’s condition

e Change the case of a string

Making Decisions in a Program

All of the procedures in an application are written using one or more of three basic control
structures: sequence, selection, and repetition. The procedures in the previous three chapters
used the sequence structure only. When one of the procedures was invoked during run time, the
computer processed its instructions sequentially—in other words, in the order the instructions
appeared in the procedure. Every procedure you write will contain the sequence structure.
Many times, however, a procedure will need the computer to make a decision before selecting
the next instruction to process. A procedure that calculates an employee’s gross pay, for
example, typically has the computer determine whether the number of hours an employee
worked is greater than 40. The computer then would select either an instruction that computes
regular pay only or an instruction that computes regular pay plus overtime pay. Procedures that
need the computer to make a decision require the use of the selection structure (also called the
decision structure).

The selection structure indicates that a decision (based on some condition) needs to be
made, followed by an appropriate action derived from that decision. But how does a
programmer determine whether a problem’s solution requires a selection structure? The
answer to this question is by studying the problem specification. The first problem
specification you will examine in this lesson involves an evil scientist named Dr. N. The
problem specification and an illustration of the problem are shown in Figure 4-4 along with a
solution to the problem. The solution, which is written in pseudocode, requires only the
sequence structure.

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Making Decisions in a Program

Problem Specification

Dr. N is sitting in a chair in his lair, facing a control deck and an electronic screen. At times, visitors
come to the door located at the rear of the lair. Before pressing the blue button on the control deck to
open the door, Dr. N likes to view the visitor on the screen. He can do so by pressing the orange button
on the control deck. Write the instructions that direct Dr. N to view the visitor first, and then open the
door and say “Welcome”.

Solution

1. press the orange button on the control deck to view the visitor on the screen
2. press the blue button on the control deck to open the door

3. say “Welcome”

Figure 4-4 A problem that requires the sequence structure only
Image by Diane Zak; Created with Reallusion CrazyTalk Animator

Now we'll make a slight change to the problem specification from Figure 4-4. In this case, Dr. N
should open the door only if the visitor knows the secret password. The modified problem
specification and solution are shown in Figure 4-5. The solution contains both the sequence and
selection structures. The selection structure’s condition directs Dr. N to make a decision about
the visitor’s password. More specifically, he needs to determine whether the visitor’s password
matches the secret password. The condition in a selection structure must be phrased so that it
evaluates to an answer of either true or false. In this case, either the visitor’s password matches
the secret password (true) or it doesn’t match the secret password (false). Only if both
passwords are the same does Dr. N need to follow the two indented instructions. The selection
structure in Figure 4-5 is referred to as a single-alternative selection structure because it
requires one or more actions to be taken only when its condition evaluates to true. Other
examples of single-alternative selection structures include “if it’s raining, take an umbrella” and
“if you are driving your car at night, turn your car’s headlights on”.

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

188

followed only when
the condition is true

In pseudocode,
most
programmers
use the words
“if” and “end if"
to denote the beginning
and end, respectively, of
a selection structure.
They also indent the
instructions within the
selection structure.

The Selection Structure

Problem Specification

Dr. N is sitting in a chair in his lair, facing a control deck and an electronic screen. At times, visitors
come to the door located at the rear of the lair. Before pressing the blue button on the control deck to
open the door, Dr. N likes to view the visitor on the screen. He can do so by pressing the orange button
on the control deck. Write the instructions that direct Dr. N to view the visitor first, and then ask the
visitor for the password. He should open the door and say “Welcome” only if the visitor knows the secret
password.

Solution
1. press the orange button on the control deck to view the visitor on the screen

2. ask the visitor for the password —
condition

3. if the visitor's password matches the secret password
press the blue button on the control deck to open the door
say “Welcome”
end if

Figure 4-5 A problem that requires the sequence structure and a single-alternative selection structure
© 2013 Cengage Learning

Figure 4-6 shows a modified version of the previous problem specification. In this version,
Dr. N will say “Sorry, you are wrong” and then destroy the visitor if the passwords do not
match. Also shown in Figure 4-6 are two possible solutions to the problem; both solutions
produce the same result. The condition in Solution 1’s selection structure determines
whether the visitor’s password is correct. If it is correct, Dr. N will open the door and
welcome the visitor to his lair. Otherwise, he will tell the visitor that the password is wrong
and then destroy the visitor. The condition in Solution 2’s selection structure, on the other
hand, determines whether the visitor’s password is incorrect. If it is incorrect, Dr. N will tell
the visitor that the password is wrong and then destroy the visitor; otherwise, he will open
the door and welcome the visitor to his lair.

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Flowcharting a Selection Structure

Problem Specification

Dr. N is sitting in a chair in his lair, facing a control deck and an electronic screen. At times, visitors
come to the door located at the rear of the lair. Before pressing the blue button on the control deck to
open the door, Dr. N likes to view the visitor on the screen. He can do so by pressing the orange button
on the control deck. Write the instructions that direct Dr. N to view the visitor first, and then ask the
visitor for the password. He should open the door and say “Welcome” only if the visitor knows the
secret password. If the visitor does not know the secret password, Dr. N should say “Sorry, you are
wrong” and then destroy the visitor by pressing the big red button on the control deck.

Solution 1
1. press the orange button on the control deck to view the visitor on the screen
2. ask the visitor for the password

condition

3. if the visitor's password matches the secret password
press the blue button on the control deck to open the door

say “Welcome” frue path
else
say “Sorry, you are wrong” false path
press the big red button on the control deck to destroy the visitor P
end if
Solution 2
1. press the orange button on the control deck to view the visitor on the screen
2. ask the visitor for the password
condition
3. if the visitor's password does not match the secret password
say “Sorry, you are wrong”
press the big red button on the control deck to destroy the visitor true path
else
press the blue button on the control deck to open the door
u " false path
say “Welcome
end if

Figure 4-6 A problem that requires the sequence structure and a dual-alternative selection structure
© 2013 Cengage Learning

Unlike the selection structure in Figure 4-5, which provides instructions for Dr. N to follow only
when the selection structure’s condition is true, the selection structures in Figure 4-6 require
Dr. N to perform one set of instructions when the condition is true but a different set of
instructions when the condition is false. The instructions to follow when the condition evaluates
to true are called the true path. The true path begins with the “if” and ends with either the “else”
(if there is one) or the “end if”. The instructions to follow when the condition evaluates to false
are called the false path. The false path begins with the “else” and ends with the “end if”. For
clarity, the instructions in each path should be indented as shown in Figure 4-6. Selection
structures that contain instructions in both paths, like the ones in Figure 4-6, are referred to as
dual-alternative selection structures.

Flowcharting a Selection Structure

As you learned in Chapter 2, many programmers use flowcharts (rather than pseudocode) when
planning solutions to problems. Figures 4-7 and 4-8 show two problem specifications along with the
correct solutions in flowchart form. (So that you can compare both planning tools, the
corresponding pseudocode is also included in the figures.) The diamond in a flowchart is called the
decision symbol because it is used to represent the condition (decision) in both the selection and

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

The Selection Structure

repetition structures. The diamonds in Figures 4-7 and 4-8 represent the condition in a selection
structure. The flowchart in Figure 4-7 contains a single-alternative selection structure. You can tell
that it’s a single-alternative selection structure because it requires a set of actions to be taken only
when its condition evaluates to true. Figure 4-8’s flowchart contains a dual-alternative selection
structure. You can tell that it’s a dual-alternative selection structure because it requires two different
sets of actions: one to be taken only when its condition evaluates to true, and the other to be taken
only when its condition evaluates to false.

Problem Specification

Jerrili's Trading Store wants an application that allows a salesclerk to enter an item'’s price and the
quantity purchased by a customer. When the quantity purchased is over 10, the customer is given a
20% discount. The application should calculate and display the total amount the customer owes.

Pseudocode for the Calculate button’s Click event procedure
1. store price and quantity purchased in variables

2. total owed = price * quantity purchased
3. if the quantity purchased is over 10
discount = total owed * .2
total owed = total owed - discount
end if
4. display total owed in IblTotal

Flowchart for the Calculate button’s Click event procedure

store price and quantity
purchased in variables

!

total owed = price *
quantity purchased

quantity
purchased
over 10

discount = total
owed * .2

!

total owed = total
owed — discount

|
display total
owed in IbITotal

Figure 4-7 Pseudocode and flowchart showing a single-alternative selection structure
© 2013 Cengage Learning

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Flowcharting a Selection Structure

Problem Specification

Mary Kettleson wants an application that calculates and displays her annual bonus, given her annual
sales amount. Mary receives a 2% bonus when her annual sales are over $15,000; otherwise, she
receives a 1.5% bonus.

Pseudocode for the Calculate button’s Click event procedure
1. store sales in a variable
2. if the sales are over 15000
bonus = sales * .02
else
bonus = sales * .015
end if
3. display bonus in IbIBonus

Flowchart for the Calculate button’s Click event procedure

store sales in a variable

bonus = bonus =
sales * .015 sales * .02

display bonus
in IbIBonus

Figure 4-8 Pseudocode and flowchart showing a dual-alternative selection structure
© 2013 Cengage Learning

The condition in Figure 4-7’s diamond checks whether the customer purchased more than
10 items. It's necessary to do this because the customer receives a 20% discount when more
than 10 items are purchased. The condition in Figure 4-8’s diamond, on the other hand,
determines whether Mary’s sales are over $15,000. In this case, the result (either true or
false) determines whether Mary receives a 2% or 1.5% bonus. Notice that the conditions in
both diamonds evaluate to either true or false only. Also notice that both diamonds have
one flowline entering the symbol and two flowlines leaving the symbol. One of the flowlines
leading out of a diamond in a flowchart should be marked with a “T” (for true) and the
other should be marked with an “F” (for false). The “T” flowline points to the next
instruction to be processed when the condition evaluates to true. In Figure 4-7, the next
instruction calculates the 20% discount; in Figure 4-8, it calculates the 2% bonus. The “F”
flowline points to the next instruction to be processed when the condition evaluates to
false. In Figure 4-7, that instruction displays the total owed; in Figure 4-8, it calculates
the 1.5% bonus. You also can mark the flowlines leading out of a diamond with a “Y” and
an “N” (for yes and no).

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

The Selection Structure

Coding Selection Structures in Visual Basic

Visual Basic provides the If...Then ... Else statement for coding single-alternative and dual-
alternative selection structures. The statement’s syntax is shown in Figure 4-9. The square
brackets in the syntax indicate that the Else portion, referred to as the Else clause, is optional.
Recall, however, that boldfaced items in a statement’s syntax are required. In this case, the
keywords If, Then, and End If are required. The E1se keyword is necessary only in a dual-
alternative selection structure.

Italicized items in the syntax indicate where the programmer must supply information. In the
If ... Then ... Else statement, the programmer must supply the condition that the computer needs
to evaluate before further processing can occur. The condition must be a Boolean expression,
which is an expression that results in a Boolean value (True or False). Besides providing the
condition, the programmer must provide the statements to be processed in the true path and
(optionally) in the false path. The set of statements contained in each path is referred to as a
statement block. (In Visual Basic, a statement block is a set of statements terminated by an
Else, End If, Loop, or Next clause. You will learn about the Loop and Next clauses in Chapters 6
and 7.)

Also included in Figure 4-9 are two examples of using the If...Then...Else statement to
code selection structures. Example 1 shows how you use the statement to code the single-
alternative selection structure shown earlier in Figure 4-7. Example 2 shows how you use
the statement to code the dual-alternative selection structure shown earlier in Figure 4-8.
Both examples contain the greater-than comparison operator (>), which you will learn
about in the next section.

If...Then...Else Statement

Syntax
If condition Then

statement block to be processed when the condition is true
[Else

statement block to be processed when the condition is false]
End If

Figure 4-9 Syntax and examples of the If ... Then... Else statement (continues)

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Coding Selection Structures in Visual Basic

(continued)

Example 1
Private Sub btnCalc_Click(sender As Object,
e As EventArgs) Handles btnCalc.Click

' calculate total owed

Dim db1Price As Double
Dim intQuantity As Integer
Dim db1Total As Double
Dim db1Discount As Double

store user input in variables
Double.TryParse(txtPrice.Text, dblPrice)
Integer.TryParse(txtQuantity.Text, intQuantity)
' calculate total owed

db1Total = db1Price * intQuantity
' subtract discount, if necessary
If intQuantity > 10 Then

dbTDiscount = db1Total * 0.2 single-alternative
dbTTotal = db1Total - dbl1Discount selection structure
End If

' display total owed
Tb1Total.Text = dbl1Total.ToString("C2")
End Sub

Example 2
Private Sub btnCalc_Click(sender As Object,
e As EventArgs) Handles btnCalc.Click

' calculate the annual bonus

Dim db1Sales As Double
Dim db1Bonus As Double
' store sales in a variable
Double.TryParse(txtSales.Text, dblSales)
' calculate and display bonus
If db1Sales > 15000 Then

dbTBonus = db1Sales * 0.02 dual-alternative
Else selection
db1Bonus = db1Sales * 0.015 structure
End If
Tb1Bonus.Text = db1Bonus.ToString("C2")
End Sub

Figure 4-9 Syntax and examples of the If ... Then ... Else statement
© 2013 Cengage Learning

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

The Selection Structure

STARTHERE»> To code and then test the Jerrili and Kettleson applications:

1.

10.

If necessary, start Visual Studio 2012. Open the Jerrili Solution (Jerrili Solution.sln) file
contained in the VB2012\Chap04\Jerrili Solution folder. If necessary, open the designer
window.

Open the Code Editor window. Replace <your name> and <current date> in the
comments with your name and the current date, respectively.

Open the code template for the btnCalc control’s Click event procedure. Enter the
comments and code shown in Example 1 in Figure 4-9.

Save the solution and then start the application. First, calculate the total owed when the
customer purchases 9 items at $5 per item; the total owed should be $45.00. Type 5 in
the Item’s price box and then type 9 in the Quantity purchased box. Click the Calculate
button. The button’s Click event procedure displays $45.00 in the Total owed box, as
shown in Figure 4-10.

ltem’s price: Quantity purchased: Total owed:
5

Figure 4-10 Jerril's interface showing the total owed

Now, calculate the total owed when the customer purchases 20 items at $5 per item; the
total owed should be $80.00. Change the quantity purchased to 20 and then click the
Calculate button. $80.00 appears in the Total owed box.

Click the Exit button. Close the Code Editor window and then close the solution.

Open the Kettleson Solution (Kettleson Solution.sln) file contained in the
VB2012\Chap04\Kettleson Solution folder. If necessary, open the designer window.

Open the Code Editor window. Replace <your name> and <current date> in the
comments with your name and the current date, respectively.

Open the code template for the btnCalc control’s Click event procedure. Enter the
comments and code shown in Example 2 in Figure 4-9.

Save the solution and then start the application. First, calculate the bonus when the sales
are $25,000; the bonus should be $500.00. Type 25000 in the Annual sales box and then
click the Calculate button. The button’s Click event procedure displays $500.00 in the
Annual bonus box, as shown in Figure 4-11.

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Comparison Operators

Annual sales:

;25[}[}[} | Calculate

Annual bonus:

$500.00

Figure 4-11 Kettleson interface showing the bonus

11. Now, calculate the bonus when the sales are $10,000; the bonus should be $150.00.
Change the annual sales to 10000 and then click the Calculate button. $150.00 appears
in the Annual bonus box.

12. Click the Exit button. Close the Code Editor window and then close the solution.

]
YOU DO IT 1!

Create a Visual Basic Windows application named YouDolt 1. Save the application in the
VB2012\Chap04 folder. Add a text box, a label, and a button to the form. The button’s
Click event procedure should display the string “Over 1" in the label when the value in the
text box is greater than the number 1; otherwise, it should display the string “Not Over 1”.
Code the procedure. Save the solution and then start and test the application. Close the
solution.

As mentioned earlier, an If ... Then... Else statement’s condition must be a Boolean expression,
which is an expression that evaluates to either True or False. The expression can contain
variables, constants, properties, methods, keywords, arithmetic operators, comparison operators,
and logical operators. You already know about variables, constants, properties, methods,
keywords, and arithmetic operators. You will learn about comparison operators and logical
operators in this lesson. We'll begin with comparison operators.

Comparison Operators

Figure 4-12 lists the most commonly used comparison operators in Visual Basic. Comparison
operators (also referred to as relational operators) are used in expressions to compare two
values. When making comparisons, keep in mind that equal to (=) is the opposite of not equal to
(<>), greater than (>) is the opposite of less than or equal to (<=), and less than (<) is the
opposite of greater than or equal to (>=). Expressions containing a comparison operator always
evaluate to a Boolean value: either True or False. Also included in Figure 4-12 are examples of
using comparison operators in an If... Then... Else statement’s condition.

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

The Selection Structure

Comparison Operators

Operator Operation

= equal to

> greater than

>= greater than or equal to
< less than

<= less than or equal to
<> not equal to

Example 1

If decNorthSales = decSouthSales Then
The condition evaluates to True when both variables contain the same value; otherwise, it evaluates to
False.

Example 2
If intAge >= 65 Then

The condition evaluates to True when the value stored in the intAge variable is greater than or equal
to 65; otherwise, it evaluates to False.

Example 3
If decTotal < 500.75D Then

The condition evaluates to True when the value stored in the decTotal variable is less than
500.75; otherwise, it evaluates to False. You also can write the condition as decTotal <
Convert.ToDecimal(500.75).

Example 4

If db1Commission <= 1500 Then

The condition evaluates to True when the value stored in the db1Commi ssion variable is less than
or equal to 1500; otherwise, it evaluates to False.

Example 5

If strState <> "KY" Then

The condition evaluates to True when the strState variable does not contain the string “KY”;
otherwise, it evaluates to False.

Figure 4-12 Listing and examples of commonly used comparison operators
© 2013 Cengage Learning

Unlike arithmetic operators, comparison operators in Visual Basic do not have an order of
precedence. When an expression contains more than one comparison operator, the computer
evaluates the comparison operators from left to right in the expression. Comparison operators
are evaluated after any arithmetic operators in an expression. For example, when processing the
expression 3 + 6 < 16 / 2, the computer will evaluate the two arithmetic operators before it
evaluates the comparison operator. The result of the expression is the Boolean value False, as
shown in Figure 4-13. Also included in the figure are the evaluation steps for two other
expressions that contain arithmetic and comparison operators.

Evaluation Steps Result
Original expression 3+6<16/2
The division is performed first 3+6<8

The addition is performed next 9<8

The < comparison is performed last False

Figure 4-13 Evaluation steps for expressions containing arithmetic and comparison operators (continues)

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Comparison Operators

(continued)
Evaluation Steps Result
Original expression 6*2*3>=6"6
The first multiplication is performed first 12*3>=6"6
The second multiplication is performed next 36>=6"6
The remaining multiplication is performed next 36 >= 36
The >= comparison is performed last True

Original expression
The first multiplication is performed first

7+6*4*2-1>50
7+24*2-1>50

The remaining multiplication is performed next 7+48-1>50
The addition is performed next 55-1>50
The subtraction is performed next 54 > 50

The > comparison is performed last True

Figure 4-13 Evaluation steps for expressions containing arithmetic and comparison operators
© 2013 Cengage Learning

YOU DO IT 2!

On a piece of paper, write down the answers to the following four expressions:
4+3*2>2*10-11

8+3-6+85<H5*26

10/5+3-6*2>0

75/25+2*5*6<=8"8

Next, create a Visual Basic Windows application named YouDolt 2. Save the application in
the VB2012\Chap04 folder. Add four labels and a button to the form. The button’s Click
event procedure should display the results of the four expressions shown here. Code the
procedure. Save the solution and then start and test the application. Compare the
application’s results with your answers. Close the solution.

In the next two sections, you will view two procedures that contain a comparison
operator in an If...Then... Else statement’s condition. The first procedure uses a single-
alternative selection structure, and the second procedure uses a dual-alternative selection
structure.

Using Comparison Operators: Swapping Numeric Values

Figure 4-14 shows a sample run of an application that displays the lowest and highest of
two scores entered by the user. Figure 4-15 shows the pseudocode and flowchart for the
Display button’s Click event procedure. The procedure contains a single-alternative
selection structure whose condition determines whether the first score entered by the user
is greater than the second score. If it is, the selection structure’s true path takes the
appropriate action.

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

The Selection Structure

Score 1: |95 Display

Score 2: |83 Exit

Lowest score: 83
Highest score: 95

Figure 4-14 Sample run of the Lowest and Highest application

Pseudocode for the Display button’s Click event procedure
1. store the two scores in two variables
2. if the score in the first variable is greater than the score in the second variable
swap both scores so that the first variable contains the lowest of the two scores
end if
3. display the lowest and highest scores (and appropriate messages) in IbIMessage

Flowchart for the Display button's Click event procedure

| store the two scores in two variables |

score in first
variable > score in
second variable

swap both scores so that
the first variable contains
the lowest of the two scores

!

display the lowest and
highest scores (and
appropriate messages)
in IbIMessage

Figure 4-15 Pseudocode and flowchart containing a single-alternative selection structure
© 2013 Cengage Learning

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Comparison Operators

Figure 4-16 shows the code entered in the Display button’s Click event procedure.
The condition in the If clause compares the contents of the intScorel variable with the
contents of the intScore2 variable. If the value in the intScorel variable is greater than the
value in the intScore2 variable, the condition evaluates to True and the four instructions in the
If... Then ... Else statement’s true path swap both values. Swapping the values places the smaller
number in the intScorel variable and places the larger number in the intScore2 variable. If
the condition evaluates to False, on the other hand, the true path instructions are skipped over
because the intScorel variable already contains a number that is smaller than (or possibly
equal to) the number stored in the intScore2 variable.

Private Sub btnDisplay_Click(sender As Object,
e As EventArgs) Handles btnDisplay.Click
' display the lowest and highest scores

Dim intScorel As Integer
Dim intScore2 As Integer
' store input in variables

Integer.TryParse(txtScorel.Text, intScorel)
Integer.TryParse(txtScore2.Text, intScore2)

' swap scores, if necessary comparison
If intScorel > intScore2 Then operator
Dim intTemp As Integer
intTemp = intScorel single-alternative
intScorel = intScore?2 selection structure
intScore2 = intTemp
End If

display Towest and highest scores
TbTMessage.Text = "Lowest score: " &
Convert.ToString(intScorel) &
ControlChars.NewLine &

"Highest score: " &
Convert.ToString(intScore2)
End Sub

Figure 4-16 Display button’s Click event procedure
© 2013 Cengage Learning

The first instruction in the If...Then...Else statement’s true path declares and initializes a
variable named intTemp. Like a variable declared at the beginning of a procedure, a
variable declared within a statement block—referred to as a block-level variable—remains
in memory until the procedure ends. However, unlike a variable declared at the beginning
of a procedure, block-level variables have block scope rather than procedure scope.

A variable that has block scope can be used only within the statement block in which it is
declared. More specifically, it can be used only below its declaration statement within the
statement block. In this case, the procedure-level intScorel and intScore2 variables can
be used anywhere below their Dim statements within the Display button’s Click event
procedure, but the block-level intTemp variable can be used only after its Dim statement
within the If... Then...Else statement’s true path.

You may be wondering why the intTemp variable was not declared at the beginning of the
procedure, along with the other variables. Although there is nothing wrong with declaring the
intTemp variable in that location, there is no reason to create the variable until it is needed,
which (in this case) is only when a swap is necessary.

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

START HERED>

The Selection Structure

The second instruction in the If... Then...Else statement’s true path assigns the value in the
intScorel variable to the intTemp variable. If you do not store the intScorel variable’s value
in the intTemp variable, the value will be lost when the computer processes the next statement,
intScorel = intScore2, which replaces the contents of the intScorel variable with the
contents of the intScore2 variable. Finally, the intScore2 = intTemp instruction assigns the
intTemp variable’s value to the intScore2 variable; this completes the swap. Figure 4-17
illustrates the concept of swapping, assuming the user enters the numbers 95 and 83 in the
txtScorel and txtScore2 controls, respectively.

intScorel 1intScore2 intTemp
values stored in the variables immediately 95 83 0
before the intTemp = intScorel statement
is processed
result of the intTemp = intScorel statement 95 83 95
result of the intScorel = intScore2 statement 83 83 95

result of the intScore2 intTemp statement 83 95 95

the values were
swapped

Figure 4-17 lllustration of the swapping concept
© 2013 Cengage Learning

To code and then test the Lowest and Highest application:

1. Open the Lowest and Highest Solution (Lowest and Highest Solution.sln) file contained
in the VB2012\Chap04\Lowest and Highest Solution folder. If necessary, open the
designer window.

2. Open the Code Editor window. Replace <your name> and <current date> in the
comments with your name and the current date, respectively.

3. Open the code template for the btnDisplay control’s Click event procedure. Enter the
comments and code shown earlier in Figure 4-16.

4. Save the solution and then start the application. Type 95 in the Score 1 box and then
type 83 in the Score 2 box. Click the Display button. The button’s Click event procedure
displays the lowest and highest scores, as shown earlier in Figure 4-14.

5. Click the Exit button. Close the Code Editor window and then close the solution.

Using Comparison Operators: Displaying the Sum or Difference

Figure 4-18 shows a sample run of an application that displays either the sum of two
numbers entered by the user or the difference between both numbers. Figure 4-19 shows
the pseudocode and flowchart for the Calculate button’s Click event procedure. The
procedure uses a dual-alternative selection structure to determine the appropriate operation
to perform.

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Comparison Operators

Enter 1 (Addition) or 2 (Subtraction): |1

First number: 45

Second number: i67 | | Exit

Figure 4-18 Sample run of the Sum or Difference application

Pseudocode for the Calculate button’s Click event procedure
1. store operation, first number, and second number in variables
2. if the operation is “1”, which indicates Addition
calculate the sum by adding together the first number and the second number
display the message “Sum:” along with the sum in IblAnswer
else
calculate the difference by subtracting the second number from the first number
display the message “Difference:” along with the difference in IblAnswer
end if

Flowchart for the Calculate button’s Click event procedure

store operation, first number, and
second number in variables

operation is
“1” (Addition)

difference = first number - second sum = first number + second

number number
display “Difference:” display “Sum:" and
and difference in sum in IblAnswer
IblAnswer

Figure 4-19 Flowchart and pseudocode containing a dual-alternative selection structure
© 2013 Cengage Learning

Figure 4-20 shows the code entered in the Calculate button’s Click event procedure. The Dim
statements in the procedure declare four procedure-level variables. The next three statements
store the contents of the text boxes in the appropriate variables. The condition in the If clause

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

The Selection Structure

compares the contents of the strOperation variable with the string “1”. If the condition
evaluates to True, the statements in the selection structure’s true path calculate the sum of the
numbers entered by the user and then display the sum in the IblAnswer control. If the condition
evaluates to False, the statements in the selection structure’s false path calculate the difference
between both numbers and then display the difference in the IblAnswer control.

dual-alternative
selection structure

End

Private Sub btnCalc_Click(sender As Object,
e As EventArgs) Handles btnCalc.Click

calculate either a sum or a difference

Dim strOperation As String
Dim db1Numl As Double

Dim db1Num2 As Double

Dim dblAnswer As Double

' store input in variables

strOperation = txtOperation.Text
DoubTle.TryParse(txtFirst.Text, db1Numl)

DoubTle.TryParse(txtSecond.Text, db1Num2) comparison

. . operator
' calculate and |display the sum or difference

If strOperation = "1" Then
dbTAnswer = dbTNuml + dbT1Num2
TbTAnswer.Text =
"Sum: " & Convert.ToString(dblAnswer)
Else
dbTAnswer = dbTNuml - db1Num2
Tb1Answer.Text =
"Difference: " & Convert.ToString(dblAnswer)
End If
Sub

Figure 4-20 Calculate button’s Click event procedure
© 2013 Cengage Learning

STARTERE)> To code and then test the Sum or Difference application:

1.

Open the Sum or Difference Solution (Sum or Difference Solution.sln) file contained in
the VB2012\Chap04\Sum or Difference Solution folder. If necessary, open the designer
window.

Open the Code Editor window. Replace <your name> and <current date> in the
comments with your name and the current date, respectively.

Open the code template for the btnCalc control’s Click event procedure. Enter the
comments and code shown in Figure 4-20.

Save the solution and then start the application. Type 1 in the Enter 1 (Addition) or 2
(Subtraction) box, 45 in the First number box, and 67 in the Second number box. Click
the Calculate button. The button’s Click event procedure displays the sum of both
numbers, as shown earlier in Figure 4-18.

Change the 1 in the Enter 1 (Addition) or 2 (Subtraction) box to 2 and then click the
Calculate button. The button’s Click event procedure displays the difference between
both numbers (-22).

Click the Exit button. Close the Code Editor window and then close the solution.

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Logical Operators

YOUDOIT 3!

Create a Visual Basic Windows application named YouDolt 3. Save the application
in the VB2012\Chap04 folder. Add a text box, a label, and a button to the form. If
the user enters the number 1 in the text box, the button’s Click event procedure
should display the result of multiplying the number 20 by the number 5; otherwise,
it should display the result of dividing the number 20 by the number 5. Code the
procedure. Save the solution and then start and test the application. Close the
solution.

YOU DO IT 4!

Create a Visual Basic Windows application named YouDolt 4. Save the application in the
VB2012\Chap04 folder. Add two text boxes, a label, and a button to the form. The
button’s Click event procedure should assign the contents of the text boxes to Double
variables named db1Num1 and db1Num2. It then should divide the contents of the db1Num1
variable by the contents of the db1Num2 variable, assigning the result to a Double variable
named dblAnswer. Display the answer in the label. Code the procedure. Save the
solution and then start the application. Test the application using the numbers 6 and
2; the number 3 appears in the label control. Now test it using the numbers 6 and 0. The
word “Infinity” appears in the label control because, as in math, division by O is not
possible. Add a selection structure to the procedure. The selection structure should
perform the division only if the contents of the dbINum2 variable is not 0. Save the
solution and then start and test the application. Close the solution.

Logical Operators

An If...Then... Else statement’s condition can also contain logical operators. Visual Basic
provides six logical operators, which are listed along with their order of precedence in
Figure 4-21. Keep in mind, however, that logical operators are evaluated after any
arithmetic or comparison operators in an expression. All of the logical operators, with the
exception of the Not operator, allow you to combine two or more conditions, called sub-
conditions, into one compound condition. The compound condition will always evaluate
to either True or False, which is why logical operators are often referred to as Boolean
operators. Also included in Figure 4-21 are examples of using logical operators in the
If...Then...Else statement’s condition.

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

The Selection Structure

Logical Operators

Operator Operation Precedence number
Not reverses the truth-value of the condition; 1

True becomes False, and False becomes True

And all sub-conditions must be true for the 2
compound condition to evaluate to True

AndAlso same as the And operator, except performs 2
short-circuit evaluation

Or only one of the sub-conditions needs to be true 3
for the compound condition to evaluate to True

OrElse same as the Or operator, except performs 3
short-circuit evaluation

Xor one and only one of the sub-conditions can be 4
true for the compound condition to evaluate to True

Example 1
If Not blnIsInsured Then

The condition evaluates to True when the b1nIsInsured variable contains the Boolean value False;
otherwise, it evaluates to False. The clause also could be written more clearly as If
blnIsInsured = False Then.

Example 2
If dbTRate > 0 AndAlso dbT1Rate < 0.15 Then

The compound condition evaluates to True when the value in the db1Rate variable is greater than 0
and, at the same time, less than 0.15; otherwise, it evaluates to False.

Example 3
If strState = "AK" AndAlso decSales > 1999.99D Then

The compound condition evaluates to True when the strState variable contains the string “AK”
and, at the same time, the value in the decSales variable is greater than 1999.99; otherwise, it
evaluates to False.

Example 4
If strState = "AK" OrElse decSales > 1999.99D Then

The compound condition evaluates to True when the strState variable contains the string “AK” or
when the value in the decSaTes variable is greater than 1999.99; otherwise, it evaluates to False.

Example 5

If strCouponl = "USE" Xor strCoupon2 = "USE" Then

The compound condition evaluates to True when only one of the variables contains the string “USE”;
otherwise, it evaluates to False.

Figure 4-21 Listing and examples of logical operators
© 2013 Cengage Learning

You already are familiar with logical operators because you use them on a daily basis. Examples
of this include the following:

if you finished your homework and you studied for tomorrow’s exam, watch a movie

if your cell phone rings and (it's your spouse calling or it’s your child calling), answer the
phone

if you are driving your car and (it’s raining or it’s foggy or there is bug splatter on your
windshield), turn your car’s wipers on

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Logical Operators

As mentioned earlier, all expressions containing a logical operator evaluate to either True or
False only. The tables shown in Figure 4-22, called truth tables, summarize how the computer
evaluates the logical operators in an expression.

Truth Tables
Not operator
value of condition

value of Not condition

True False

False True

And operator

sub-conditionl sub-condition2 sub-conditionl And sub-condition?
True True True

True False False

False True False

False False False

AndAlso operator

sub-condition1 sub-condition2 sub-condition1 AndAlso sub-condition2
True True True

True False False

False (not evaluated) False

Or operator

sub-condition1 sub-condition2 sub-conditionl Or sub-condition2
True True True

True False True

False True True

False False False

OrElse operator

sub-conditionl sub-condition2 sub-conditionl OrElse sub-condition2
True (not evaluated) True

False True True

False False False

Xor operator

sub-conditionl sub-condition2 sub-condition] Xor sub-condition2
True True False

True False True

False True True

False False False

Figure 4-22 Truth tables for the logical operators
© 2013 Cengage Learning

As the figure indicates, the Not operator reverses the truth-value of the condition. If the value of
the condition is True, then the value of Not condition is False. Likewise, if the value of the
condition is False, then the value of Not condition is True.

When you use either the And operator or the AndAlso operator to combine two sub-conditions,
the resulting compound condition evaluates to True only when both sub-conditions are True.
If either sub-condition is False or if both sub-conditions are False, then the compound condition
evaluates to False. The difference between the And and AndAlso operators is that the And
operator always evaluates both sub-conditions, while the AndAlso operator performs a
short-circuit evaluation, which means it does not always evaluate sub-condition2. Because both

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

The Selection Structure

sub-conditions combined with the AndAlso operator need to be True for the compound
condition to evaluate to True, the AndAlso operator does not evaluate sub-condition2 when
sub-conditionl is False; this makes the AndAlso operator more efficient than the And operator.

Notice that when you combine two sub-conditions using either the Or operator or the OrElse
operator, the compound condition evaluates to True when either one or both of the sub-conditions is
True. The compound condition will evaluate to False only when both sub-conditions are False. The
difference between the Or and OrElse operators is that the Or operator always evaluates both sub-
conditions, while the OrElse operator performs a short-circuit evaluation. In this case, because only
one of the sub-conditions combined with the OrElse operator needs to be True for the compound
condition to evaluate to True, the OrElse operator does not evaluate sub-condition2 when sub-
conditionl is True. As a result, the OrElse operator is more efficient than the Or operator.

Finally, when you combine conditions using the Xor operator, the compound condition
evaluates to True only when one and only one sub-condition is True. If both sub-conditions are
True or both sub-conditions are False, then the compound condition evaluates to False. In
the next section, you will use the truth tables to determine which logical operator to use in an
If...Then... Else statement’s condition.

Using the Truth Tables

When ordering from Warren's Web site, customers using their Warren credit card to pay for their
order receive free shipping on order amounts over $100. In the procedure that determines the free-
shipping eligibility, the order amount and credit card name are stored in variables named
db10rderAmount and strCreditCard, respectively. Therefore, you can phrase sub-conditionl in
the If... Then... Else statement as db10rderAmount > 100, and phrase sub-condition2 as
strCreditCard="Warren". Which logical operator should you use to combine both sub-conditions
into one compound condition? We'll use the truth tables from Figure 4-22 to answer this question.

For a customer to receive free shipping at Warren’s, both sub-condition1 (db10rderAmount > 100)
and sub-condition2 (strCreditCard = "Warren") must be True at the same time. If either one or
both of the sub-conditions are False, then the compound condition should be False and the
customer should not receive free shipping. According to the truth tables, all of the logical operators
except Xor evaluate a compound condition as True when both sub-conditions are True. However,
only the And and AndAlso operators evaluate the compound condition as False when either one or
both of the sub-conditions are False. In this case, we'll use the AndAlso operator because it is more
efficient than the And operator. Therefore, the correct compound condition to use here is
db10rderAmount > 100 AndAlso strCreditCard = "Warren".

Unlike Warren’s Web site, Houston’s Web site has the following shipping policy: Customers
who belong to Houston’s free shipping club are always entitled to free shipping; all other
customers receive free shipping only when their order amount is over $100. In the procedure
that determines the free-shipping eligibility, the order amount and club information are stored
in variables named db10rderAmount and strClub, respectively. Therefore, you can phrase
sub-conditionl in the If... Then... Else statement as db10rderAmount > 100, and phrase
sub-condition2 as strClub = "Member". Now which logical operator should you use to
combine both sub-conditions into one compound condition? Here again, we'll use the truth
tables from Figure 4-22 to answer this question.

For a customer to receive free shipping at Houston’s, at least one of the sub-conditions needs to
be True. In other words, either the customer’s order needs to be over $100 or the customer
needs to be a member of the free shipping club. As the truth tables indicate, the Or and OrElse
operators are the only operators that evaluate the compound condition as True when at least
one of the sub-conditions is True. In this case, we'll use the OrElse operator because it is more
efficient than the Or operator. Therefore, the correct compound condition to use here is
db10rderAmount > 100 OrE1se strClub = "Member".

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Logical Operators

Finally, assume that when placing an order at Houston’s, a customer is allowed to use only one
of two coupons. If a procedure uses the variables strCouponl and strCoupon?2 to keep track of
the coupons, you can phrase sub-conditionl as strCouponl="USE" and phrase sub-condition2
as strCoupon2 = "USE". Now which operator should you use to combine both sub-conditions?
According to the truth tables, the Xor operator is the only operator that evaluates the
compound condition as True when one and only one condition is True. Therefore, the correct
compound condition to use here is strCouponl = "USE" Xor strCoupon2 = "USE".

Using Logical Operators: Calculating Gross Pay

A procedure needs to calculate and display an employee’s gross pay. To keep this example
simple, no one at the company works more than 40 hours per week and everyone earns the
same hourly rate, $10.75. Before making the gross pay calculation, the procedure should verify
that the number of hours entered by the user is greater than or equal to 0 but less than or equal
to 40. Programmers refer to the process of verifying that the input data is within the expected
range as data validation. In this case, if the number of hours is valid, the procedure should
calculate and display the gross pay. Otherwise, it should display an error message alerting the
user that the number of hours is incorrect.

Figure 4-23 shows two examples of code that calculates and displays the gross pay. Both
examples contain a dual-alternative selection structure whose compound condition includes a
logical operator. The compound condition in Example 1 uses the AndAlso operator to
determine whether the value stored in the dbTHours variable is greater than or equal to 0 and, at
the same time, less than or equal to 40. If the compound condition evaluates to True, the
selection structure’s true path calculates and displays the gross pay; otherwise, its false path
displays the “Incorrect number of hours” message. The compound condition in Example 2, on
the other hand, uses the OrElse operator to determine whether the value stored in the
dbTHours variable is either less than 0 or greater than 40. If the compound condition evaluates
to True, the selection structure’s true path displays the “Incorrect number of hours” message;
otherwise, its false path calculates and displays the gross pay. Both examples in Figure 4-23
produce the same result and simply represent two different ways of performing the same task.

Procedures Containing Logical Operators

Example 1- using the AndAlso operator
PrivateSub btnCalc_Click(sender As Object,
e As EventArgs) Handles btnCalc.Click

' calculate the gross pay

Const dbTRATE As Double = 10.75
Dim dblHours As Double

Dim db1Gross As Double

' store hours in a variable
DoubTle.TryParse(txtHours.Text, dblHours)

If dblHours >= 0 AndAlso dblHours <= 40 Then

' calculate and display gross pay

db1Gross = dbTHours * db1RATE

1b1Gross.Text = db1Gross.ToString("C2")
Else

1b1Gross.Text = "Incorrect number of hours"
End If

End Sub

Figure 4-23 Examples of using the AndAlso and OrElse logical operators (continues)

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

The Selection Structure

(continued)

Example 2— using the OrElse operator
Private Sub btnCalc_Click(sender As Object,

e As EventArgs) Handles btnCalc.Click

' calculate the gross pay

Const dbT1RATE AsDouble = 10.75
Dim dblHours AsDouble

Dim db1Gross AsDouble

' store hours in a variable
DoubTe.TryParse(txtHours.Text, dblHours)

If dblHours < 0 OrElse dbTHours > 40 Then
1b1Gross.Text = "Incorrect number of hours"
Else
' calculate and display gross pay
db1Gross = dblHours * dbT1RATE
Tb1Gross.Text = db1Gross.ToString("C2")

End If

End Sub

Figure 4-23 Examples of using the AndAlso and OrElse logical operators
© 2013 Cengage Learning

STAR- To code and then test the Gross Pay Calculator application:

1.

Open the Gross Pay Solution (Gross Pay Solution.sln) file contained in the
VB2012\Chap04\Gross Pay Solution folder. If necessary, open the designer window.

Open the Code Editor window. Replace <your name> and <current date> in the
comments with your name and the current date, respectively.

Locate the code template for the btnCalc control’s Click event procedure. Enter the
comments and code from either of the two examples shown in Figure 4-23.

Save the solution and then start the application. Type 30 in the Hours worked box and
then press Enter to select the Calculate button. The button’s Click event procedure
displays the gross pay amount in the Gross pay box. See Figure 4-24.

Hours worked:

‘ Calculate H Exit

Gross pay:
| $322.50

Figure 4-24 Sample run of the application using valid data

Change the number of hours worked to 43 and then press Enter. The Calculate button’s
Click event procedure displays the “Incorrect number of hours” message in the Gross
pay box. See Figure 4-25.

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Comparing Strings Containing Letters

Hours worked:

43| ‘ Calculate H Exit

Gross pay:

| Incorrect number of hours |

Figure 4-25 Sample run of the application using invalid data

6. Click the Exit button. Close the Code Editor window and then close the solution.

]
YOU DO IT 5!

Create a Visual Basic Windows application named YouDolt 5. Save the application in the
VB2012\Chap04 folder. Add a text box, a label, and a button to the form. If the user
enters a number that is either less than O or greater than 100, the button’s Click event
procedure should display the string “Invalid number” in the label; otherwise, it should
display the string “Valid number”. Code the procedure. Save the solution and then start
and test the application. Close the solution.

In addition to comparing numeric values, as well as comparing numbers treated as strings, an
If...Then... Else statement’s condition also can compare strings containing letters.

Comparing Strings Containing Letters

A procedure needs to display the words “Senior discount” when the user enters the letter Y in
the txt65AndOver control, and the words “No discount” when the user enters anything else.
Figure 4-26 shows four ways of writing the procedure’s code.

Procedures Containing String Comparisons

Example 1 — using the OrElse operator
Private Sub btnDisplay_Click(sender As Object,
e As EventArgs) Handles btnDisplay.Click

' display appropriate message

Dim strSenior As String

' store input in a variable

strSenior = txt65AndOver.Text

' display message

If strSenior = "Y" OrElse strSenior = "y" Then
Tb1Msg.Text = "Senior discount"

Else
Tb1Msg.Text = "No discount"

End If

End Sub

Figure 4-26 Examples of using string comparisons in a procedure (continues)

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

unnecessary
evaluation

The Selection Structure

(continued)

Example 2 — using the AndAlso operator
Private Sub btnDisplay_Click(sender As Object,
e As EventArgs) Handles btnDisplay.Click

' display appropriate message

Dim strSenior As String

' store input in a variable

strSenior = txt65AndOver.Text

' display message

If strSenior <> "Y" AndAlso strSenior <> "y" Then
TbTMsg.Text = "No discount"”

Else
TbTMsg.Text = "Senior discount"

End If

End Sub

Example 3 — inefficient solution
Private Sub btnDisplay_Click(sender As Object,
e As EventArgs) Handles btnDisplay.Click

' display appropriate message

Dim strSenior As String

' store input in a variable

strSenior = txt65AndOver.Text

' display message

If strSenior = "Y" OrElse strSenior = "y" Then
TbTMsg.Text = "Senior discount"

End If

If strSenior <> "Y" AndAlso strSenior <> "y" Then
TbTMsg.Text = "No discount"”

End If

End Sub

Example 4 — using the ToUpper method
PrivateSub btnDisplay_Click(sender As Object,
e As EventArgs) Handles btnDisplay.Click

' display appropriate message

Dim strSenior As String

' store input in a variable

strSenior = txt65AndOver.Text

' display message

If strSenior.ToUpper = "Y" Then
TbTMsg.Text = "Senior discount"

Else
TbTMsg.Text = "No discount"”

End If

End Sub

Figure 4-26 Examples of using string comparisons in a procedure
© 2013 Cengage Learning

The compound condition in Example 1 determines whether the value stored in the
strSenior variable is either the uppercase letter Y or the lowercase letter y. When the
variable contains one of those two letters, the compound condition evaluates to True and
the selection structure’s true path displays the words “Senior discount” on the screen;
otherwise, its false path displays the words “No discount”. You may be wondering why you
need to compare the contents of the strSenior variable with both the uppercase and
lowercase forms of the letter Y. As is true in many programming languages, string

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Converting a String to Uppercase or Lowercase

comparisons in Visual Basic are case sensitive, which means that the uppercase version of a
letter is not the same as its lowercase counterpart. So, although a human being recognizes
Y and y as being the same letter, a computer does not; to a computer, a Y is different from
a y. The reason for this differentiation is that each character on the computer keyboard is
stored using a different Unicode character in the computer’s internal memory.

In Example 2 in Figure 4-26, the compound condition determines whether the value
stored in the strSenior variable is not equal to the uppercase letter Y and also not equal
to the lowercase letter y. When the variable does not contain either of those two letters,
the compound condition evaluates to True and the selection structure’s true path displays
the words “No discount” on the screen; otherwise, its false path displays the words “Senior
discount”.

Rather than using a dual-alternative selection structure, as in Examples 1 and 2, Example 3 uses
two single-alternative selection structures. Although the selection structures in Example 3
produce the same results as the ones in Examples 1 and 2, they do so less efficiently. To illustrate
this point, assume that the user enters the letter Y in the txt65AndOver control. The compound
condition in the first selection structure in Example 3 determines whether the value stored in
the strSenior variable is equal to either Y or y. The compound condition evaluates to True, so
the first selection structure’s true path displays the words “Senior discount”. Although the
appropriate words (“Senior discount”) already appear in the interface, the procedure still
evaluates the second selection structure’s compound condition to determine whether to display
the “No discount” message. The second evaluation is unnecessary and makes Example 3’s code
less efficient than the code shown in Examples 1 and 2.

The selection structure in Example 4 in Figure 4-26 also contains a string comparison
in its condition. However, notice that the condition does not use a logical operator;
rather, it uses the ToUpper method. You will learn about the ToUpper method in the
next section.

Converting a String to Uppercase or Lowercase

As already mentioned, string comparisons in Visual Basic are case-sensitive, which means
that the string “Yes” is not the same as either the string “YES” or the string “yes”. Because
of this, a problem may occur when you need to compare strings that are either entered by
the user or read from a file. This is due to the fact that you cannot always control the case
of the string. Although you can change a text box’s CharacterCasing property from its
default value of Normal to either Upper (which converts the user’s entry to uppercase) or
Lower (which converts the user’s entry to lowercase), you may not want to change the case
of the user’s entry as he or she is typing it. And it’s entirely possible that you may not be
aware of the case of strings that are read from a file. To fix the comparison problem, you
can use either the ToUpper method or the ToLower method to temporarily convert the
string to either uppercase or lowercase, respectively, and then use the converted string in
the comparison.

Figure 4-27 shows the syntax of the ToUpper and ToLower methods and includes examples
of using the methods. In each syntax, string is usually either the name of a String variable
or the Text property of an object. Both methods copy the contents of the string to a
temporary location in the computer’s internal memory. The methods convert the temporary
string to the appropriate case (if necessary) and then return the temporary string. Keep in
mind that the ToUpper and ToLower methods do not change the contents of the string;
they change the contents of the temporary location only. In addition, the ToUpper and
ToLower methods affect only letters of the alphabet, which are the only characters that
have uppercase and lowercase forms.

l

lesson.

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

You will use the
CharacterCasing
property in
Exercise 16 at
the end of this

The Selection Structure

ToUpper and ToLower Methods

Syntax
string.ToUpper
string.ToLower

Example 1
If strSenior.ToUpper = "Y" Then

compares the uppercase version of the string stored in the strSenior variable with the uppercase
letter Y

Example 2
If strNamel.ToUpper = strName2.ToUpper Then

compares the uppercase version of the string stored in the strName1l variable with the uppercase
version of the string stored in the strName2 variable

Example 3
If strSenior.ToLower <> "y" Then

compares the lowercase version of the string stored in the strSenior variable with the lowercase
letter y

Example 4
If "Tondon" = txtCity.Text.ToLower Then

compares the lowercase string “london” with the lowercase version of the string stored in the txtCity
control's Text property

Example 5
TbTName.Text = strCustomer.ToUpper

assigns the uppercase version of the string stored in the strCustomer variable to the IbIName
control's Text property

Example 6
strName = strName.ToUpper

txtState.Text = txtState.Text.TolLower
changes the contents of the strName variable to uppercase, and changes the contents of the txtState
control's Text property to lowercase

Figure 4-27 Syntax and examples of the ToUpper and ToLower methods
© 2013 Cengage Learning

When using the ToUpper method in a comparison, be sure that everything you are comparing is
uppercase, as shown in Examples 1 and 2; otherwise, the comparison will not evaluate correctly. For
instance, the clause If strSenior.ToUpper ="y" Then is not correct: The condition will always
evaluate to False because the uppercase version of a letter will never be equal to its lowercase
counterpart. Likewise, when using the ToLower method in a comparison, be sure that everything
you are comparing is lowercase, as shown in Examples 3 and 4. The statement in Example 5
temporarily converts the contents of the strCustomer variable to uppercase and then assigns the
result to the IbIName control. As Example 6 indicates, you also can use the ToUpper and ToLower
methods to permanently convert the contents of either a String variable or a control’s Text property
to uppercase or lowercase, respectively.

Using the ToUpper and ToLower Methods: Displaying a Message

A procedure needs to display the message “On Mount Rushmore” when the user enters the
name of any of the four Mount Rushmore presidents; otherwise, the procedure should display
the message “Not on Mount Rushmore”. Figure 4-28 shows three ways of writing the
procedure’s code.

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Converting a String to Uppercase or Lowercase

Procedures Containing the ToUpper and ToLower Methods

Example 1 — using the ToUpper method in a condition
Private Sub btnDispTlay_Click(sender As Object,
e As EventArgs) Handles btnDisplay.Click

' display an appropriate message

Dim strName As String

strName = txtName.Text

If strName.ToUpper = "GEORGE WASHINGTON" OrElse
strName.ToUpper = "THOMAS JEFFERSON" OrElse
strName.ToUpper = "ABRAHAM LINCOLN" OrElse
strName.ToUpper = "THEODORE ROOSEVELT" Then
1b1Msg.Text = "On Mount Rushmore"

Else
1b1Msg.Text = "Not on Mount Rushmore"

End If

EndSub

Example 2 — using the ToUpper method in an assignment statement
Private Sub btnDispTlay_Click(sender As Object,
e As EventArgs) Handles btnDisplay.Click

' display an appropriate message

Dim strName As String

strName = txtName.Text.ToUpper

If strName = "GEORGE WASHINGTON" OrElse
strName "THOMAS JEFFERSON" OrElse
strName = "ABRAHAM LINCOLN" OrElse
strName = "THEODORE ROOSEVELT" Then
Tb1Msg.Text = "On Mount Rushmore"

Else
Tb1Msg.Text = "Not on Mount Rushmore"

End If

End Sub

Example 3 — using the Tol ower method in an assignment statement
Private Sub btnDisplay_Click(sender As Object,
e As EventArgs) Handles btnDisplay.Click

' display an appropriate message

Dim strName AsString

strName = txtName.Text.TolLower

If strName <> "george washington" AndAlso
strName <> "thomas jefferson" AndAlso
strName <> "abraham Tincoln" AndAlso
strName <> "theodore roosevelt" Then
1b1Msg.Text = "Not on Mount Rushmore"

Else
1b1Msg.Text = "On Mount Rushmore"

End If

End Sub

Figure 4-28 Examples of using the ToUpper and ToLower methods in a procedure
© 2013 Cengage Learning

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

START HERED>

The Selection Structure

When the computer processes the compound condition in Example 1, it temporarily
converts the contents of the strName variable to uppercase and then compares the result
to the string “GEORGE WASHINGTON?". If the comparison evaluates to False, the
computer again temporarily converts the contents of the variable to uppercase, this time
comparing the result to the string “THOMAS JEFFERSON”. If the comparison evaluates to
False, the computer again temporarily converts the contents of the variable to uppercase;
this time, it compares the result to the string “ABRAHAM LINCOLN?”. If the comparison
evaluates to False, the computer once again temporarily converts the contents of the
variable to uppercase, comparing the result to the string “THEODORE ROOSEVELT”.
Notice that, depending on the result of each condition, the computer might need to
temporarily convert the contents of the strName variable to uppercase four times.

Example 2 in Figure 4-28 provides a more efficient way of writing Example 1’s code. The
strName = txtName.Text.ToUpper statement in Example 2 temporarily converts the
contents of the txtName control’s Text property to uppercase and then assigns the result
to the strName variable. The compound condition then compares the contents of the
strName variable (which now contains uppercase letters) to the string “GEORGE
WASHINGTON?”. If the comparison evaluates to False, the computer compares the
variable’s contents to the string “THOMAS JEFFERSON”. If this comparison evaluates to
False, the computer compares the variable’s contents to the string “ABRAHAM
LINCOLN?”. If this comparison evaluates to False, the computer compares the variable’s
contents to the string “THEODORE ROOSEVELT”. Notice that the value in the txtName
control’s Text property is converted to uppercase only once, rather than four times.
However, although Example 2’s code is more efficient than Example 1’s code, there may be
times when you will not want to change the case of the string stored in a variable. For
example, you may need to display (on the screen or in a printed report) the variable’s
contents using the exact case entered by the user.

The strName = txtName.Text.ToLower statement in Example 3 in Figure 4-28 temporarily
converts the contents of the txtName control’s Text property to lowercase and then assigns the
result to the strName variable. The compound condition in Example 3 is processed similarly to
the compound condition in Example 2. However, the comparisons are made using lowercase
letters rather than uppercase letters, and the comparisons test for inequality rather than
equality. The three examples in Figure 4-28 produce the same result and simply represent
different ways of performing the same task.

To code and then test the Mount Rushmore application:

1. Open the Mount Rushmore Solution (Mount Rushmore Solution.sln) file contained in
the VB2012\Chap04\ Mount Rushmore Solution folder. If necessary, open the designer
window.

2. Open the Code Editor window. Replace <your name> and <current date> in the
comments with your name and the current date, respectively.

3. Open the code template for the btnDisplay control’s Click event procedure. Enter the
code shown in any of the three examples shown earlier in Figure 4-28.

4. Save the solution and then start the application. Type george washington in the
Name box and then press Enter to select the Display button. The button’s Click
event procedure displays the “On Mount Rushmore” message in the lbIMsg
control. See Figure 4-29.

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Summary of Operators

Name: ‘george washington Display

| On Mount Rushmore Exit E-

Figure 4-29 Message shown in the interface

5. Change the name to john adams and then press Enter. The button’s Click event
procedure displays the “Not on Mount Rushmore” message.

6. On your own, test the code using the names of the other three presidents on Mount
Rushmore.

7. When you are finished testing the code, click the Exit button. Close the Code Editor
window and then close the solution.

]
YOU DO IT 6!

Create a Visual Basic Windows application named YouDolt 6. Save the application in the
VB2012\Chap04 folder. Add a text box, a label, and a button to the form. If the user
enters the letter A (in either uppercase or lowercase), the button’s Click event procedure
should display the string “Addition” in the label; otherwise, it should display the string
“Subtraction”. Code the procedure. Save the solution and then start and test the
application. Close the solution.

Summary of Operators

Figure 4-30 shows the order of precedence for the arithmetic, concatenation, comparison,

and logical operators you have learned so far. Recall that operators with the same

precedence number are evaluated from left to right in an expression. Notice that logical

operators are evaluated after any arithmetic operators or comparison operators in an

expression. As a result, when the computer processes the expression 30 > 75 / 3 AndAlso

5 < 10 * 2, it evaluates the arithmetic operators first, followed by the comparison operators

and then the logical operator. The expression evaluates to True, as shown in the example o0 ChO4A-
included in Figure 4-30. (Keep in mind that you can use parentheses to override the order =34 operators
of precedence.) video

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

The Selection Structure

Operator Operation Precedence number

A exponentiation (raises a number to a power) 1

- negation (reverses the sign of a number) 2

*/ multiplication and division 3

\ integer division 4

Mod modulus (remainder) arithmetic 5

+, — addition and subtraction 6

& concatenation 7

=, >, >=, equal to, greater than, greater than or equal to, 8

<, <=, <> less than, less than or equal to, not equal to

Not reverses the truth-value of the condition; True 9
becomes False, and False becomes True

AndAlso, And all sub-conditions must be True for the 10
compound condition to evaluate to True

OrElse, Or only one of the sub-conditions needs to be True 11
for the compound condition to evaluate to True

Xor one and only one of the sub-conditions can be 12
True for the compound condition to evaluate to True

Example

Evaluation steps Result

Original expression 30>75/3AndAlso 5 <10 * 2

75 / 3 is evaluated first 30 > 25 AndAlso 5 < 10 * 2

10 * 2 is evaluated second 30 > 25 AndAlso 5 < 20

30 > 25 is evaluated third True AndAlso 5 < 20

5 < 20 is evaluated fourth True AndAlso True

True AndAlso True is evaluated last True

Figure 4-30 Listing of arithmetic, concatenation, comparison, and logical operators
© 2013 Cengage Learning

Lesson A Summary

To code single-alternative and dual-alternative selection structures:

Use the If... Then ... Else statement. The statement’s syntax is shown in Figure 4-9.
To compare two values:

Use the comparison operators listed in Figure 4-12.

To swap the values contained in two variables:

Assign the first variable’s value to a temporary variable. Assign the second variable’s value to
the first variable, and then assign the temporary variable’s value to the second variable. An
illustration of the swapping concept is shown in Figure 4-17.

To create a compound condition:
Use the logical operators and truth tables listed in Figures 4-21 and 4-22, respectively.

To convert the user’s text box entry to either uppercase or lowercase as the user is
typing the text:

Change the text box’s CharacterCasing property from Normal to either Upper or
Lower.

earning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Lesson A Key Terms

e To temporarily convert a string to uppercase:
Use the ToUpper method. The method’s syntax is string. ToUpper.
e To temporarily convert a string to lowercase:
Use the ToLower method. The method’s syntax is string. ToLower.
e To evaluate an expression containing arithmetic, comparison, and logical operators:

Evaluate the arithmetic operators first, followed by the comparison operators and then the
logical operators. Figure 4-30 shows the order of precedence for the arithmetic,
concatenation, comparison, and logical operators you have learned so far.

Lesson A Key Terms

And operator—one of the logical operators; when used to combine two sub-conditions, the
resulting compound condition evaluates to True only when both sub-conditions are True; it
evaluates to False when one or both of the sub-conditions are False

AndAlso operator—one of the logical operators; same as the And operator, but more efficient
because it performs a short-circuit evaluation

Block scope—the scope of a variable declared within a statement block; a variable with block
scope can be used only within the statement block in which it is declared, and only after its
declaration statement

Block-level variable—a variable declared within a statement block; the variable has block scope

Comparison operators—operators used to compare values in an expression; also called
relational operators

Condition—specifies the decision you are making and must be phrased so that it evaluates to an
answer of either true or false

Data validation—the process of verifying that a program’s input data is within the expected range

Decision symbol—the diamond in a flowchart; used to represent the condition in selection and
repetition structures

Dual-alternative selection structure—a selection structure that requires one set of actions to be
performed when the structure’s condition evaluates to True, but a different set of actions to be
performed when the structure’s condition evaluates to False

False path—contains the instructions to be processed when a selection structure’s condition
evaluates to False

If...Then...Else statement—used to code single-alternative and dual-alternative selection
structures in Visual Basic

Logical operators—operators used to combine two or more sub-conditions into one compound
condition; also called Boolean operators

Not operator—one of the logical operators; reverses the truth-value of a condition

Or operator—one of the logical operators; when used to combine two sub-conditions, the
resulting compound condition evaluates to True when at least one of the sub-conditions is True;
it evaluates to False only when both sub-conditions are False

OrElse operator—one of the logical operators; same as the Or operator, but more efficient
because it performs a short-circuit evaluation

Selection structure—one of the three basic control structures; tells the computer to make a
decision based on some condition and then select the appropriate action; also called the decision
structure

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or dupli

The Selection Structure

Short-circuit evaluation—refers to the way the computer evaluates two sub-conditions
connected by either the AndAlso or OrElse operators; when the AndAlso operator is used, the
computer does not evaluate sub-condition2 when sub-conditionl is False; when the OrElse
operator is used, the computer does not evaluate sub-condition2 when sub-conditionl is True

Single-alternative selection structure—a selection structure that requires a special set of actions
to be performed only when the structure’s condition evaluates to True

Statement block—in a selection structure, the set of statements terminated by an Else or
End If clause

ToLower method—temporarily converts a string to lowercase
ToUpper method—temporarily converts a string to uppercase

True path—contains the instructions to be processed when a selection structure’s condition
evaluates to True

Truth tables—tables that summarize how the computer evaluates the logical operators in an
expression

Lesson A Review Questions
1. What is the scope of variables declared in an If... Then... Else statement’s true path?

only the true path in the If... Then... Else statement

a

b. the entire application

c. the procedure in which the If... Then ... Else statement appears
d

the entire If... Then... Else statement

2. Which of the following is a valid condition for an If... Then...Else statement?

a. intQuantity > 0 AndAlso < 500

b. intQuantity < 0 AndAlso intQuantity > 5000
c. intQuantity <0 OrETse intQuantity > 5000
d. intQuantity >0 OrElse > 500

3. Which of the following If clauses compares the string contained in the txtId control with
the state abbreviation Tx? (Be sure the clause will handle Tx, TX, tx, and tX.)

If txtId.Text = ToUpper("TX") Then

If txtId.Text = ToLower("tx") Then

If ToUpper (txtId.Text) = "TX" Then

If txtId.Text.ToUpper ="TX" Then

e S SR

4. The six logical operators are listed below. Indicate their order of precedence by placing a
number (1, 2, and so on) on the line to the left of the operator. (If two or more operators
have the same precedence, assign the same number to each.)

Xor
And
Not

Or
AndAlso
OrElse

earning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Lesson A Review Questions

5. An expression can contain arithmetic, comparison, and logical operators. Indicate the
order of precedence for the three types of operators by placing a number (1, 2, or 3) on
the line to the left of the operator type.

Arithmetic

Logical

Comparison

6. The expression 6 > 12 OrElse 4 < 5 evaluates to

a. True
b. False

7. The expression 6 + 3 > 7 AndAlso 11 > 2 * 5 evaluates to

a. True
b. False

8. The expression 8 >=4 + 6 OrElse 5 > 6 AndA1so 4 < 7 evaluates to

a. True
b. False

9. The expression 7 + 3 * 2 > 5 * 3 AndAlso True evaluates to

a. True
b. False

10. The expression 5 * 4 > 6 ~ 2 evaluates to

a. True
b. False

11. The expression 5 * 4> 6 * 2 AndA1so True OrE1se False evaluates to

a. True
b. False

Use the selection structure shown in Figure 4-31 to answer Questions 12 through 14.

If intNum >= 500 Then
intNum = intNum * 5
Else
intNum = intNum * 3
End If

Figure 4-31 Code for Review Questions 12 through 14

© 2013 Cengage Learning

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or dupli

INTRODUCTORY

INTRODUCTORY

INTRODUCTORY

INTRODUCTORY

INTRODUCTORY

INTRODUCTORY

The Selection Structure

12. If the intNum variable contains the number 90, what value will be in the variable after
the selection structure in Figure 4-31 is processed?

a. 0

b. 90
c. 270
d. 450

13. If the intNum variable contains the number 1000, what value will be in the variable after
the selection structure in Figure 4-31 is processed?

a. 0

b. 1000
c. 3000
d. 5000

14. If the intNum variable contains the number 500, what value will be in the variable after
the selection structure in Figure 4-31 is processed?

a. 0

b. 500
c. 1500
d. 2500

Lesson A Exercises

1. Draw the flowchart corresponding to the pseudocode shown in Figure 4-32.

if the sales are less than or equal to 10,000
display “3% bonus”

else
display “56% bonus”

end if

Figure 4-32 Pseudocode for Exercise 1
© 2013 Cengage Learning

2. Write an If... Then... Else statement that displays the string “Vegetable” in the IblType
control when the txtFood control contains the string “Corn” (in any case).

3. Write an If ... Then... Else statement that displays the string “Please enter the invoice
number” in the IbIMsg control when the txtInvoiceNum control does not contain any data.

4. Write an If ... Then ... Else statement that displays the string “Incorrect quantity” in the
IbIMsg control when the intQuantity variable contains a number that is less than 0;
otherwise, display the string “Valid quantity”.

5. Write an If... Then ... Else statement that displays the string “Time to reorder” in the
IbIMsg control when the intNumUnits variable contains a number that is less than 5;
otherwise, display the string “We have enough in stock”.

6. Write an If ... Then ... Else statement that assigns the number 35 to the intCommission
variable when the decSales variable contains a number that is less than or equal to
$250; otherwise, assign the number 50.

earning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

10.

11.

12.

13.

14.

15.

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or dupli

Lesson A Exercises

Write an If ... Then... Else statement that displays the value 25 in the IblShipping
control when the strState variable contains the string “Alaska” (in any case);
otherwise, display the value 15.

Write an If ... Then... Else statement that displays the string “Cat” in the IblAnimal
control when the strAnimal variable contains the letter “C” (in any case); otherwise,
display the string “Dog”. Also draw the flowchart.

A procedure should calculate a 2.5% commission when the strCommType variable contains
the string “Prime” (in any case); otherwise, it should calculate a 2% commission. The
commission is calculated by multiplying the commission rate by the contents of the
db1Sales variable. Display the commission in the IblComm control. Draw the flowchart
and then write the Visual Basic code.

In this exercise, you modify the Kettleson application from this lesson. Use Windows to
make a copy of the Kettleson Solution folder. Rename the copy Modified Kettleson
Solution. Open the Kettleson Solution (Kettleson Solution.sln) file contained in the
Modified Kettleson Solution folder. Open the designer and Code Editor windows.
Locate the btnCalc_Click procedure. Change the selection structure’s condition so that
it tests for the opposite of what it does now, then make the appropriate modifications to
the selection structure’s true and false paths. Save the solution and then start the
application. Test the application twice, using 25000 and 15000 as the annual sales. Close
the Code Editor window and then close the solution.

Assume that a customer purchases either a Harris Brothers item or a Jacob Co.
item. If the item is a sweater manufactured by Harris Brothers, the customer is
entitled to a 5% discount. Write the Visual Basic code for a procedure that
calculates and displays the discount (if any) and the new price. Use the variables
strManufacturer, strItem, db1Price, and db1Discount. Format the discount and
new price using the “C2” format. Display the calculated amounts in the IbIDiscount
and |bINewPrice controls.

Write the Visual Basic code that swaps the values stored in the decLow and decHigh
variables, but only if the value stored in the decHigh variable is less than the value
stored in the decLow variable.

In this exercise, you modify the Sum or Difference application from this lesson. Use
Windows to make a copy of the Sum or Difference Solution folder. Rename the copy
Modified Sum or Difference Solution. Open the Sum or Difference Solution (Sum or
Difference Solution.sln) file contained in the Modified Sum or Difference Solution
folder. Open the designer window. Change the Labell’s text from “Enter 1 (Addition)
or 2 (Subtraction):” to “Enter A (Addition) or S (Subtraction):”. Open the Code Editor
window. Make the appropriate modifications to the btnCalc_Click procedure. The user
should be able to enter the operation letter in either uppercase or lowercase. Save the
solution and then start and test the application. Close the Code Editor window and then
close the solution.

In this exercise, you modify the Jerrili application from this lesson. Use Windows to
make a copy of the Jerrili Solution folder. Rename the copy Modified Jerrili Solution.
Open the Jerrili Solution (Jerrili Solution.sln) file contained in the Modified Jerrili
Solution folder. Open the designer and Code Editor windows. Jerrili’s now gives a
discount to all of its customers. The discount rate is 20% when the quantity purchased is
at least 10, and 15% when the quantity purchased is less than 10. Make the appropriate
modifications to the btnCalc_Click procedure. Save the solution and then start and test
the application. Close the Code Editor window and then close the solution.

Open the Shipping Solution (Shipping Solution.sln) file contained in the
VB2012\Chap04\Shipping Solution folder. If necessary, open the designer window.

INTRODUCTORY

INTRODUCTORY

e

INTRODUCTORY

INTRODUCTORY

INTERMEDIATE

INTERMEDIATE

INTERMEDIATE

INTERMEDIATE

INTERMEDIATE

Il 2> |

DISCOVERY

The Selection Structure

16.

The Display button’s Click event procedure should display the message “We ship to
this state.” if the user enters one of the following state IDs: TN, KY, or IN. If the
user enters an ID other than these, the procedure should display the “We don’t ship
to this state.” message. The user should be able to enter the ID in uppercase,
lowercase, or a combination of uppercase and lowercase. Code the procedure. Save
the solution and then start and test the application. Close the Code Editor window
and then close the solution.

In this exercise, you learn how to use a text box’s CharacterCasing property.
Open the CharCase Solution (CharCase Solution.sln) file contained in the
VB2012\Chap04\CharCase Solution folder. If necessary, open the designer window.

a. Open the Code Editor window and study the code contained in the
btnDisplay_Click procedure. The code compares the contents of the txtld control
with the strings “AB12”, “XY59”, and “TV45”. However, it does not convert the
contents of the text box to uppercase. Start the application. Enter ab12 as the ID and
then click the Display button. The button’s Click event procedure displays the
“Invalid ID” message, which is incorrect. Click the Exit button.

b. Use the Properties window to change the txtld control’s CharacterCasing property
to Upper. Save the solution and then start the application. Enter ab12 as the ID.
Notice that the letters appear in uppercase in the text box. Click the Display button.
The button’s Click event procedure displays the “Valid ID” message, which is
correct. Click the Exit button. Close the Code Editor window and then close the
solution.

earning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Creating the Covington Resort Application

B LESSONB

After studying Lesson B, you should be able to:
e Group objects using a GroupBox control

e Create a message box using the MessageBox.Show method

e Determine the value returned by a message box

Creating the Covington Resort Application

Recall that your task in this chapter is to create a reservation application for Covington
Resort. The application will allow the user to enter the following information: the number
of rooms to reserve, the length of stay (in nights), the number of adults, and the number of
children. As you may remember, each room can accommodate a maximum of six people.
The resort charges $284 per room per night. It also charges a 15.25% sales and lodging tax,
which is based on the room charge. In addition, there is a $15 resort fee per room per

night. The application should display the total room charge, the sales and lodging tax, the (X} Ch048B video
total resort fee, and the total due. u
To open the partially completed Covington Resort application: -RT HERE

1. If necessary, start Visual Studio 2012. Open the Covington Resort Solution
(Covington Resort Solution.sln) file contained in the VB2012\Chap04\Covington
Resort Solution folder. If necessary, open the designer window. The interface
contains one group box. In the next section, you will add another group box to the
interface. See Figure 4-33.

al! Covington Resort =S =R

Number of
this group box contains

d Rooms: Nights:
the controls associated

Adults (18+): Children: with the input

Calculate Exit

Room:
these controls and

Tax: |:| their identifying labels
I:' will be placed in their
|:| own group box

Resort fee:

Total due:

Figure 4-33 Partially completed interface for Covington Resort

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

The Selection Structure

Adding a Group Box to the Form

You use the GroupBox tool, which is located in the Containers section of the toolbox, to
add a group box to the interface. A group box serves as a container for other controls and
is typically used to visually separate related controls from other controls on the form. For
example, the group box shown in Figure 4-33 visually separates the input controls from
the rest of the controls. You can include an identifying label on a group box by setting the
group box’s Text property. Labeling a group box is optional; but if you do label it, the label
should be entered using sentence capitalization. Keep in mind that a group box and its
controls are treated as one unit. When you move a group box, the controls inside the
group box also move. Likewise, when you delete a group box, the controls inside the group
box are also deleted.

- 1]
GUI DESIGN TIP Labeling a Group Box

Use sentence capitalization for the optional identifying label, which is entered in the
group box’s Text property.

STARTIERD> To add a group box to the interface:

1.

If necessary, expand the Containers node in the toolbox. Click the GroupBox tool and
then drag the mouse pointer to the form. You do not need to worry about the exact
location. Release the mouse button. The GroupBox1 control appears on the form.

Change the group box’s Text property to Charges, then position and size the group box
as shown in Figure 4-34.

ol Covington Resort =

o u}
Mumber of %arges

w Rooms; Nights:

Adults (18+): Children:

Figure 4-34 Interface showing the location and size of the additional group box

Next, you will drag the eight controls related to the calculated amounts into the Charges
group box. You then will center the controls within the group box. Place your mouse
pointer slightly above and to the left of the Room: label. Press and hold down the left
mouse button as you drag the mouse pointer down and to the right. A dotted rectangle
appears as you drag. Continue to drag until the dotted rectangle surrounds the eight
controls, as shown in Figure 4-35.

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Creating the Covington Resort Application

Calculate Exit) i
dotted rectangle éResortfee: :|

éTDtaI due: I:I

' N

Figure 4-35 Dotted rectangle surrounding the eight controls

When the dotted rectangle surrounds the eight controls, release the mouse button
to select the eight controls. Place your mouse pointer on one of the selected
controls. The mouse pointer turns into the move pointer. Press and hold down the
left mouse button as you drag the selected controls into the Charges group box,
then release the mouse button.

Use the Format menu to center the selected controls both horizontally and vertically in
the group box.

Click the form to deselect the controls. Use the sizing handle to move the form’s bottom
border closer to the buttons (you can look ahead to Figure 4-36), and then lock the
controls on the form.

Click View on the menu bar and then click Tab Order. Notice that the TabIndex values
of the controls contained within each group box begin with the TabIndex value of the
group box itself. This indicates that the controls belong to the group box rather than to
the form. As mentioned earlier, if you move or delete the group box, the controls that
belong to the group box will also be moved or deleted. The numbers that appear after
the period in the TabIndex values indicate the order in which each control was added to
the group box.

Use the information shown in Figure 4-36 to set each control’s TabIndex value.

al Covington Resort =R E=E =<
ﬂlumber of Eiharges
w Ems: Ehts: Ebm:
| 0.1] 0.3} E
mJIts (18+): mldren: ortfe : E

m m mal due:

2] Exit

nCalcuIate

Figure 4-36 Correct Tablndex values for the interface

9. When you are finished setting the TabIndex values, press Esc to remove the TabIndex

boxes, and then save the solution.

You also can
select more than
one control by
clicking the first
control and then
pressing and holding
down the Ctrl (Control)
key as you click the other
controls you want to
select. The move pointer
mentioned in Step 4
looks like this: o@p

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

The Selection Structure

Coding the Covington Resort Application

According to the application’s TOE chart, which is shown in Figure 4-37, the Click event
procedures for the two buttons need to be coded. The TextChanged, KeyPress, and Enter
events for the four text boxes also need to be coded. When you open the Code Editor
window, you will notice that the btnExit control’s Click event procedure and the
TextChanged event procedures for the four text boxes have been coded for you. In this
lesson, you will code the btnCalc control’s Click event procedure. You will code the KeyPress
and Enter event procedures in Lesson C.

Task Object Event

1. Calculate the total room charge, tax, total resort fee, btnCalc Click
and total due

2. Display the calculated amounts in IblRoomChg, IbITax,
IbIResortFee, and IblTotalDue

End the application btnExit Click
Display the total room charge (from btnCalc) IbIRoomChg None
Display the tax (from btnCalc) IblTax None
Display the total resort fee (from btnCalc) IbiResortFee None
Display the total due (from btnCalc) IbITotalDue None
Get and display the number of rooms reserved, number txtRooms, txtNights, None

of nights, number of adults, and number of children txtAdults, txtChildren

Clear the contents of IblRoomChg, IbITax, IblIResortFee, txtRooms, txtNights, TextChanged
and IblTotalDue txtAdults, txtChildren

Allow the text box to accept only numbers and the txtRooms, txtNights, KeyPress
Backspace key txtAdults, txtChildren

Select the contents of the text box txtRooms, txtNights, Enter

txtAdults, txtChildren

Figure 4-37 TOE chart for the Covington Resort application
© 2013 Cengage Learning

Coding the btnCalc Control's Click Event Procedure

The btnCalc control’s Click event procedure is responsible for calculating and displaying the
total room charge, tax, total resort fee, and total due. The procedure’s pseudocode is shown in
Figure 4-38.

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Coding the Covington Resort Application

btnCalc Click event procedure

2. calculate the total number of guests = number of adults + number of children

per room, which is 6

4. if the number of rooms reserved < number of rooms required

else

* daily room charge of $284
calculate tax = total room charge * tax rate of 15.25%

calculate total resort fee = number of rooms reserved * number of nights
* daily resort fee of $15

calculate total due = total room charge + tax + total resort fee
display total room charge, tax, total resort fee, and total due
end if

1. store user input (numbers of rooms reserved, nights, adults, and children) in variables

3. calculate the number of rooms required = total number of guests / maximum number of guests

display the message “You have exceeded the maximum guests per room.”

calculate total room charge = number of rooms reserved * number of nights

Figure 4-38 Pseudocode for the btnCalc control's Click event procedure
© 2013 Cengage Learning

To begin coding the btnCalc control’s Click event procedure:

<(START HERE

1. Open the Code Editor window. Replace <your name> and <current date> in the

comments with your name and the current date, respectively.

2. Open the code template for the btnCalc control’s Click event procedure. Type the
comments shown in Figure 4-39, and then position the insertion point as shown in

the figure.

Private Sub btnCalc_Click(sender As Object, e As EventArg
" calculate and display total room charge,
" tax, total resort fee, and total due

" declare named constants and variables

End Sub

Figure 4-39 Comments and Dim statements entered in the procedure

enter these three
comments

position the
insertion point here

Now, study the procedure’s pseudocode to determine any named constants or variables the
procedure will use. When determining the named constants, look for items whose value should
remain the same each time the procedure is invoked. In the btnCalc_Click procedure, those
items are the maximum number of guests per room, the daily room charge, the tax rate, the
daily resort fee, and the message. Figure 4-40 shows the named constants that the procedure will
use for these items. The named constants will make the code easier to understand. In addition,

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

The Selection Structure

they will allow you (or another programmer) to quickly locate those values should they need to

be changed in the future.

Named constants
intMAX_PER_ROOM
intDAILY_ROOM_CHG
db1TAX_RATE
intDAILY_RESORT_FEE
strMSG

Values

6

284

0.1525 (the decimal equivalent of 15.25%)

15

“You have exceeded the maximum guests per room.”

Figure 4-40 Listing of named constants and their values

© 2013 Cengage Learning

When determining the procedure’s variables, look in the pseudocode for items whose value is
allowed to change each time the procedure is processed. In the btnCalc_Click procedure, those
values are the four input items, the number of guests, the number of rooms required, the room
charge, the tax, the resort fee, and the total due. Figure 4-41 shows the variables that the
procedure will use for these items.

Variable names
intRoomsReserved
intNights
intAdults
intChildren
intNumGuests

db1RoomsRequired

intTotalRoomChg

db1Tax

intTotalResortFee

db1TotalDue

Stores

the number of rooms to reserve

the number of nights

the number of adult guests

the number of child guests

the total number of guests, which is calculated by adding together the
number of adult guests and the number of child guests

the number of rooms required, which is calculated by dividing the

total number of guests by the maximum guests per room (may contain a
decimal place)

the total room charge, which is calculated by multiplying the number

of rooms to reserve by the number of nights and then multiplying the
result by the daily room charge

the tax, which is calculated by multiplying the total room charge by

the tax rate

the total resort fee, which is calculated by multiplying the number of
rooms to reserve by the number of nights and then multiplying the result by
the daily resort fee

the total due, which is calculated by adding together the total room
charge, tax, and total resort fee

Figure 4-41 Listing of variables and what each stores

© 2013 Cengage Learning

STARTMERS> To continue coding the btnCalc control's Click event procedure:

1. Enter the Const and Dim statements shown in Figure 4-42, and then position the
insertion point as shown in the figure.

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Coding the Covington Resort Application

' declare named constants and variables
Const intMAX PER_ROOM As Integer = 6
Const iﬂEQﬁE&Xﬂngﬂngﬂg As Integer = 284
Const dblTAX RATE As Double = ©.1525

AP PP

Const intDAILY RESORT FEE As Integer = 15

Dim intRoomsReserved As Integer
Dim intNights As Integer

Dim intAdults As Integer

Dim intChildren As Integer

Dim intNumGuests As Integer
Dim dblRoomsRequired As Double

Dim intTotalRoomChg As Integer
Dim dblTax As Double

Dim intTotalResortFee As Integer
Dim dblTotalDue As Double

End Sub

Const strMsG As String = "You have exceeded the maximum guests per room."

Figure 4-42 Const and Dim statements entered in the procedure

enter these Const and

Dim statements

position the insertion

point here

Step 1 in the pseudocode is to store the input items in variables. Enter the following
comment and TryParse methods. Press Enter twice after typing the last TryParse
method.

' store input in variables

Integer.TryParse(txtRooms.Text, intRoomsReserved)
Integer.TryParse(txtNights.Text, intNights)

Integer.TryParse(txtAdults.Text, intAdults)

Integer.TryParse(txtChildren.Text, intChildren)

Step 2 in the pseudocode calculates the total number of guests by adding together the
number of adult guests and the number of child guests. Enter the following comment
and assignment statement:

' calculate total number of guests

intNumGuests = intAdults + intChildren

Step 3 in the pseudocode calculates the number of rooms required by dividing the total
number of guests by the maximum number of guests per room. Enter the following
comment and assignment statement. Press Enter twice after typing the assignment
statement.

' calculate number of rooms required

dblRoomsRequired = intNumGuests / intMAX_PER_ROOM

Step 4 in the pseudocode is a selection structure that determines whether the number of

rooms reserved is adequate for the number of guests. If the number of reserved rooms is less
than the number of required rooms, the selection structure’s true path displays an
appropriate message. In the next section, you will learn how to display the message in a
message box. For now, enter the following comments and If clause. When you press Enter
after typing the If clause, the Code Editor will automatically enter the End If clause for you.

' determine whether number of reserved

' rooms is adequate and then either display a

" message or calculate and display the charges

If intRoomsReserved < dblRoomsRequired Then

6. Save the solution.

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Using a blank
line to separate
related blocks of
code in the Code
Editor window

makes the code easier to
read and understand.

The Selection Structure

The MessageBox.Show Method

At times, an application may need to communicate with the user during run time; one
means of doing this is through a message box. You display a message box using the
MessageBox.Show method. The message box contains text, one or more buttons, and an
icon. Figure 4-43 shows the method’s syntax and also lists the meaning of each argument.
The figure also includes examples of using the method. Figures 4-44 and 4-45 show the
message boxes created by the two examples. (Your message boxes will look slightly different
if you are using Windows 7.)

MessageBox.Show Method

Syntax
MessageBox.Show(text, caption, buttons, iconl, defaultButton])

Argument Meaning

text text to display in the message box; use sentence capitalization

caption text to display in the message box's title bar; use book title capitalization
buttons buttons to display in the message box; can be one of the following constants:

MessageBoxButtons.AbortRetryIgnore
MessageBoxButtons.OK (default setting)
MessageBoxButtons.OKCancel
MessageBoxButtons.RetryCancel
MessageBoxButtons.YesNo
MessageBoxButtons.YesNoCancel

icon icon to display in the message box; typically, one of the following constants:
MessageBoxIcon.ExcTamation /A
MessageBoxIcon.Information @
MessageBoxIcon.Stop €@

defaultButton button automatically selected when the user presses Enter; can be
one of the following constants:
MessageBoxDefaultButton.Buttonl (default setting)
MessageBoxDefauTltButton.Button2
MessageBoxDefaultButton.Button3

Example 1

MessageBox.Show('"Record deleted.", "Payroll",
MessageBoxButtons.OK, MessageBoxIcon.Information)

displays an information message box that contains the message “Record deleted.”

Example 2

MessageBox.Show("Delete this record?", "Payroll",
MessageBoxButtons.YesNo, MessageBoxIcon.Exclamation,
MessageBoxDefaultButton.Button2)

displays a warning message box that contains the message “Delete this record?”

Figure 4-43 Syntax and examples of the MessageBox.Show method
© 2013 Cengage Learning

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

The MessageBox.Show Method

the user can close an
o Record deleted. information message

box using either the
OK button or the
Close button

Figure 4-44 Message displayed by the code in Example 1 in Figure 4-43

the Close button is
automatically disabled

i rd
i. Releiri s pmcont the user must select

one of these two
buttons to close a
warning message box

Figure 4-45 Message displayed by the code in Example 2 in Figure 4-43

GUI DESIGN TIP MessageBox.Show Method

o Use sentence capitalization for the text argument, but book title capitalization for the
caption argument.

o Display the Exclamation icon to alert the user that he or she must make a decision
before the application can continue. You can phrase the message as a question.
These message boxes typically contain more than one button.

o Display the Information icon along with an OK button in a message box that displays
an informational message.

o Display the Stop icon to alert the user of a serious problem that must be corrected
before the application can continue.

e The default button in the message box should be the one that represents the user's
most likely action, as long as that action is not destructive.

After displaying the message box, the MessageBox.Show method waits for the user to choose
one of the buttons. It then closes the message box and returns an integer indicating the
button chosen by the user. Sometimes you are not interested in the value returned by the
MessageBox.Show method. This is the case when the message box is for informational purposes
only, like the message box shown in Figure 4-44. Many times, however, the button selected by
the user determines the next task performed by the computer. Selecting the Yes button in the
message box shown in Figure 4-45 tells the application to delete the record; selecting the No
button tells it not to delete the record.

Figure 4-46 lists the integer values returned by the MessageBox.Show method. Each value is
associated with a button that can appear in a message box. The figure also lists the DialogResult

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

The Selection Structure

values assigned to each integer, and the meaning of the integers and DialogResult values. As the
figure indicates, the MessageBox.Show method returns the integer 6 when the user selects the
Yes button. The integer 6 is represented by the DialogResult value, Windows . Forms.
DialogResult.Yes. When referring to the method’s return value in code, you should use the
DialogResult values rather than the integers because the values make the code more self-
documenting and easier to understand. Figure 4-46 also shows two examples of using the
MessageBox.Show method’s return value.

MessageBox.Show Method’s Return Values

Integer DialogResult value Meaning
1 Windows.Forms.DialogResult.OK user chose the OK button
2 Windows.Forms.DialogResult.Cancel user chose the Cancel button
3 Windows.Forms.DialogResult.Abort user chose the Abort button
4 Windows.Forms.DialogResult.Retry user chose the Retry button
5 Windows.Forms.DialogResult.Ignore user chose the Ignore button
6 Windows.Forms.DialogResult.Yes user chose the Yes button
7 Windows.Forms.DialogResult.No user chose the No button
Example 1
Dim dlgButton As DialogResult
dlgButton =

MessageBox.Show("Delete this record?", "Payroll",

MessageBoxButtons.YesNo, MessageBoxIcon.Exclamation,
MessageBoxDefaultButton.Button2)

If dlgButton = Windows.Forms.DialogResult.Yes Then
instructions to delete the record

End If

Example 2

If MessageBox.Show("Play another game?", "Math Monster",
MessageBoxButtons.YesNo,
MessageBoxIcon.Exclamation) = Windows.Forms.DialogResult.Yes Then
instructions to start another game

Else ' No button
instructions to close the game application

End If

Figure 4-46 Values returned by the MessageBox.Show method
© 2013 Cengage Learning

In the first example in Figure 4-46, the MessageBox.Show method’s return value is assigned to a
DialogResult variable named d1gButton. The selection structure in the example compares the
contents of the d1gButton variable with the Windows.Forms.DialogResult.Yes value. In the
second example, the method’s return value is not stored in a variable. Instead, the method
appears in the selection structure’s condition, where its return value is compared with the
Windows.Forms.DialogResult.Yes value. The selection structure in Example 2 performs one
set of tasks when the user selects the Yes button in the message box, but a different set of tasks
when the user selects the No button. Many programmers document the Else portion of the
selection structure as shown in Figure 4-46 because it makes it clear that the Else portion is
processed only when the user selects the No button.

In the Covington Resort application, the btnCalc_Click procedure should display an appropriate
message when the number of rooms reserved is less than the number of rooms required. You
will use the MessageBox.Show method to display the message in a message box. The message
box is for informational purposes only. Therefore, it should contain the Information icon and
the OK button, and you do not need to be concerned with its return value.

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Completing the btnCalc_Click Procedure

To add the MessageBox.Show method to the btnCalc_Click procedure: -RT HERE

1. The insertion point should be positioned in the blank line above the End If clause. Enter
the following lines of code:

MessageBox.Show(strMSG, "Covington Resort",
MessageBoxButtons.OK,
MessageBoxIcon.Information)

Completing the btnCalc_Click Procedure

Recall that Step 4 in the btnCalc_Click procedure’s pseudocode is a selection structure that
determines whether the number of rooms reserved is adequate for the number of guests. In the
previous section, you completed the selection structure’s true path. You will complete the false
path in this section. According to the pseudocode, the false path should calculate and display the
total room charge, tax, total resort fee, and total due.

To complete the btnCalc_Click procedure and then test it: -RT HERE
1. In the blank line above the End If clause, type else and press Enter.

2. The total room charge is calculated by first multiplying the number of rooms reserved by
the number of nights and then multiplying the result by the daily room charge of $284.
Enter the following comment and assignment statement:

' calculate charges
intTotalRoomChg = intRoomsReserved *
intNights * intDAILY_ROOM_CHG

3. The tax is calculated by multiplying the total room charge by the tax rate of 15.25%.
Enter the following assignment statement:

dblTax = intTotalRoomChg * dbITAX RATE

4. The total resort fee is calculated by first multiplying the number of rooms reserved by
the number of nights and then multiplying the result by the daily resort fee of $15. Enter
the following assignment statement:

intTotalResortFee = intRoomsReserved *
intNights * intDAILY_RESORT_FEE

5. The total due is calculated by adding together the total room charge, tax, and total resort
fee. Enter the following assignment statement:

dblTotalDue = intTotalRoomChg +
dblTax + intTotalResortFee

6. Finally, you will display the calculated amounts in the interface. Press Enter to insert
another blank line below the last assignment statement. Enter the following comment
and assignment statements:

' display charges

IbIRoomChg.Text = intTotalRoomChg.ToString("N2")
IblTax.Text = dblTax.ToString("N2")
IblResortFee.Text = intTotalResortFee.ToString("N2")
IblTotalDue.Text = dblTotalDue.ToString("C2")

7. 1If necessary, delete the blank line above the End If clause.

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

The Selection Structure

8.

Save the solution and then start the application. Type 1 in the Rooms box, 2 in the
Nights box, 4 in the Adults box, and 4 in the Children box. Click the Calculate button.
The message box shown in Figure 4-47 opens.

o You have exceeded the maximum guests per room.

Figure 4-47 Message box created by the MessageBox.Show method

Click the OK button to close the message box. Change the number of adults to 2. Also
change the number of children to 2. Click the Calculate button. The total room charge,
tax, total resort fee, and total due appear in the interface. See Figure 4-48.

Number of Charges
Rooms: Nights: Room:
] Tax:

Adults (18+): Children: Resort fee:

Total due:

| Calculate |

Figure 4-48 Calculated amounts shown in the interface

10. Click the Exit button.

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Completing the btnCalc_Click Procedure

Figure 4-49 shows the application’s code at the end of Lesson B.

' Name: Covington Resort Project

' Purpose: Display the total room charge, tax,
! total resort fee, and total due

' Programmer: <your name> on <current date>

Option Explicit On
Option Strict On
Option Infer Off

OCoONOUVITEA WN R

10 Public Class frmMain

11

12 Private Sub btnExit_Click(sender As Object,
e As EventArgs) Handles btnExit.Click

13 Me.Close()

14 End Sub

15

16 Private Sub ClearLabels(sender As Object, e As EventArgs) _
17 Handles txtRooms.TextChanged, txtNights.TextChanged,
18 txtAdults.TextChanged, txtChildren.TextChanged

19 ' clear calculated amounts

20

21 TbTRoomChg.Text = String.Empty

22 Tb1Tax.Text = String.Empty

23 TbTResortFee.Text = String.Empty

24 Tb1TotalDue.Text = String.Empty

25 End Sub

26

27 Private Sub btnCalc_Click(sender As Object,
e As EventArgs) Handles btnCalc.Click

28 ' calculate and display total room charge,
29 ' tax, total resort fee, and total due
30
31 ' declare named constants and variables
32 Const intMAX_PER_ROOM As Integer = 6
33 Const intDAILY_ROOM_CHG As Integer = 284
34 Const db1TAX_RATE As Double = 0.1525
35 Const intDAILY_RESORT_FEE As Integer = 15
36 Const strMSG As String =
"You have exceeded the maximum guests per room."
37 Dim intRoomsReserved As Integer
38 Dim intNights As Integer
39 Dim intAdults As Integer
40 Dim intChildren As Integer
41 Dim intNumGuests As Integer
42 Dim dbTRoomsRequired As Double
43 Dim intTotalRoomChg As Integer
44 Dim db1Tax As Double
45 Dim intTotalResortFee As Integer
46 Dim db1TotalDue As Double
47
48 ' store input in variables

Figure 4-49 Covington Resort application’s code at the end of Lesson B (continues)

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

The Selection Structure

(continued)
49 Integer.TryParse(txtRooms.Text, intRoomsReserved)
50 Integer.TryParse(txtNights.Text, intNights)
51 Integer.TryParse(txtAdults.Text, intAdults)
52 Integer.TryParse(txtChildren.Text, intChildren)
53
54 ' calcuTlate total number of guests
55 intNumGuests = intAdults + intChildren
56 ' calculate number of rooms required
57 db1RoomsRequired = intNumGuests / intMAX_PER_ROOM
58
59 ' determine whether number of reserved
60 ' rooms is adequate and then either display a
61 ' message or calculate and display the charges
62 If intRoomsReserved < dblRoomsRequired Then
63 MessageBox.Show(strMSG, "Covington Resort",
64 MessageBoxButtons.OK,
65 MessageBoxIcon.Information)
66 Else
67 ' calculate charges
68 intTotalRoomChg = intRoomsReserved *
69 intNights * intDAILY_ROOM_CHG
70 db1Tax = intTotalRoomChg * db1TAX_RATE
71 intTotalResortFee = intRoomsReserved *
72 intNights * intDAILY_RESORT_FEE
73 db1TotalDue = intTotalRoomChg +
74 db1Tax + intTotalResortFee
75
76 ' display charges
77 TbTRoomChg.Text = intTotalRoomChg.ToString("N2")
78 Tb1Tax.Text = db1Tax.ToString(""N2")
79 Tb1ResortFee.Text = intTotalResortFee.ToString('"N2")
80 1b1TotalDue.Text = dblTotalDue.ToString("C2")
81 End If
82 End Sub
83 End Class

Figure 4-49 Covington Resort application’s code at the end of Lesson B
© 2013 Cengage Learning

Lesson B Summary

e To group controls together using a group box:

Use the GroupBox tool to add a group box to the form. Drag controls from either the form
or the toolbox into the group box. To include an optional identifying label on a group box,
set the group box’s Text property. The TabIndex value of a control contained within a group
box is composed of two numbers separated by a period. The number to the left of the period
is the TabIndex value of the group box itself. The number to the right of the period indicates

the order in which the control was added to the group box.
e To display a message box that contains text, one or more buttons, and an icon:

Use the MessageBox.Show method. The method’s syntax is MessageBox.Show(text,
caption, buttons, icon|, defaultButton]). Refer to Figure 4-43 for a description of each

argument. The figure also contains examples of using the method to display a message box.

Refer to Figure 4-46 for a listing and description of the method’s return values.

earning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Lesson B Exercises

Lesson B Key Terms

Group box—a control that is used to contain other controls; instantiated using the GroupBox
tool, which is located in the Containers section of the toolbox

MessageBox.Show method—displays a message box that contains text, one or more buttons,
and an icon; allows an application to communicate with the user while the application is
running

Lesson B Review Questions
1. Which of the following statements is false?

a. When you delete a group box, the controls contained within the group box are also
deleted.

b. Moving a group box also moves all of the controls contained within the group box.

c. A group box’s Label property specifies its identifying label.

d. You can drag a control from the form into a group box.

2. What is the TabIndex value of the first control added to a group box whose TabIndex

value is 3?
a. 3

b. 3.0

c. 3.1

d. none of the above

3. You use the constant to include the Exclamation icon in a message box.

a. MessageBox.Exclamation
b. MessageBox.IconExclamation
c. MessageBoxIcon.Exclamation
d. MessageBox.WarningIcon

4. If a message is for informational purposes only and does not require the user to make a
decision, the message box should display which of the following?

an OK button and the Information icon

a
b. an OK button and the Exclamation icon
c. a Yes button and the Information icon

d

any button and the Information icon

5. If the user clicks the Yes button in a message box, the message box returns the number 6,
which is equivalent to which value?

Windows.Forms.DialogResultButton.Yes

Windows.Forms.DialogResult.Yes

Windows.Forms.DialogResult.YesButton

S

none of the above

Lesson B Exercises

1. In this exercise, you create an application for Jonas Manufacturing. Create a Visual Basic INTRODUCTORY
Windows application. Use the following names for the solution and project, respectively:
Jonas Solution and Jonas Project. Save the application in the VB2012\Chap04 folder. Change

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or dupli

INTRODUCTORY

INTERMEDIATE

INTERMEDIATE

The Selection Structure

the form file’s name to Main Form.vb. Change the form’s name to frmMain. The
application’s interface, which is shown in Figure 4-50, allows the user to enter an employee’s
current salary and pay grade. The application should display the employee’s raise and new
salary in a message box. Employees having a pay grade of 1 receive a 3% raise; all other
employees receive a 2% raise. Use the ToString method to display a thousands separator
(if necessary) and two decimal places in the raise and new salary. Code the application.
(Be sure to use variables. Do not use the Val function.) Save the solution and then start and
test the application. Close the Code Editor window and then close the solution.

ol Jonas Manufacturing EI@
Current salary: Pay grade: Calculate
Exit

Figure 4-50 Interface for Exercise 1

In this exercise, you modify the application from Exercise 1. Use Windows to make a
copy of the Jonas Solution folder. Rename the copy Modified Jonas Solution. Open the
Jonas Solution (Jonas Solution.sln) file contained in the Modified Jonas Solution folder.
Open the designer window. Modify the code so that employees having a pay grade of 1, 2,
or 3 receive a 3% raise. All other employees should receive a 2% raise. Save the solution
and then start and test the application. Close the Code Editor window and then close the
solution.

Tea Time Company wants an application that allows a clerk to enter the number of
pounds of tea ordered, the price per pound, and whether the customer should be charged
a $15 shipping fee. The application should calculate and display the total amount the
customer owes. Create a Visual Basic Windows application. Use the following names for
the solution and project, respectively: Tea Time Solution and Tea Time Project. Save the
application in the VB2012\Chap04 folder. Change the form file’s name to Main Form.vb.
Change the form’s name to frmMain. The total amount owed should be removed from
the interface when a change is made to the contents of a text box in the interface. Use the
MessageBox.Show method to determine whether the user should be charged for
shipping. (Use the examples in Figure 4-46 as a guide.) Code the application. (Be sure to
use variables. Do not use the Val function.) Save the solution and then start and test the
application. Close the Code Editor window and then close the solution.

Marcy’s Department store is having a BoGoHo (Buy One, Get One Half Off) sale. The
store manager wants an application that allows the salesclerk to enter the prices of two
items. The application should calculate and display the total amount the customer owes.
The half-off should always be taken on the item having the lowest price. Use the
MessageBox.Show method to display the amount the customer saved. For example, if the
two items cost $24.99 and $10, the half-off would be taken on the $10 item, and the
message box would indicate that the customer saved $5.00. Create a Visual Basic
Windows application. Use the following names for the solution and project, respectively:
Marcy Solution and Marcy Project. Save the application in the VB2012\Chap04 folder.
Change the form file’s name to Main Form.vb. Change the form’s name to frmMain. The
total amount owed should be removed from the interface when a change is made to the
contents of a text box in the interface. Code the application. (Be sure to use variables. Do
not use the Val function.) Save the solution and then start and test the application. Close
the Code Editor window and then close the solution.

earning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Lesson B Exercises

5. In this exercise, you create an application for Corondo Industries. Create a Visual Basic INTERMEDIATE
Windows application. Use the following names for the solution and project, respectively:
Corondo Solution and Corondo Project. Save the application in the VB2012\Chap04
folder. Change the form file’s name to Main Form.vb. Change the form’s name to
frmMain. The application’s interface, which is shown in Figure 4-51, allows the user to
enter the quantity ordered and product price. The application should calculate the
discount (if any) and total due. Before calculating the discount, the btnCalc control’s
Click event procedure should display the message “Are you a wholesaler?” in a message
box. Only wholesalers receive a discount, which is 10%. The discount and total due
should be removed from the interface when a change is made to the contents of a text
box in the interface. Code the application. Save the solution and then start the
application. Test the application by calculating the total due for a wholesaler ordering 4
units of product at $10 per unit. Then, test the application by calculating the total due for
a non-wholesaler ordering 2 units of product at $5 per unit. Close the Code Editor
window and then close the solution.

o Corondo Industries E@
Quantity ordered: Product price:
Discount: Total due:
Calculate Exit

Figure 4-51 Interface for Exercise 2

6. Open the Division Solution (Division Solution.sln) file contained in the ADVANCED
VB2012\Chap04\Division Solution folder. If necessary, open the designer window.
The interface allows the user to enter two numbers. The Calculate button’s Click event
procedure should calculate and display the result of dividing the larger number by the
smaller number. However, keep in mind that an application will end abruptly if a
statement attempts to divide a number by zero. This is because, as in math, division by
zero is not allowed. Therefore, if the smaller number is 0, the application should display
the “Cannot divide by 0” message. Code the application. (Be sure to use variables. Do
not use the Val function.) Save the solution and then start the application. Test the
application using 150.72 and 3 as the two numbers, then test it using 4 and 100. Also test
it using 0 and 5, and then using 0 and 3. Close the Code Editor window and then close
the solution.

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or dupli

ChO4C video

START HERED>

START HERED>

The Selection Structure

B LESSON C

After studying Lesson C, you should be able to:
e Prevent the entry of unwanted characters in a text box

e Select the existing text in a text box

Coding the KeyPress Event Procedures

To complete the Covington Resort application, you need to code the KeyPress and
Enter event procedures for the four text boxes. You will code the KeyPress event
procedures first.

To open the Covington Resort application:

1. If necessary, start Visual Studio 2012. Open the Covington Resort Solution
(Covington Resort Solution.sln) file from Lesson B. The file is contained in the
VB2012\Chap04\Covington Resort Solution folder. If necessary, open the designer window.

The application provides text boxes for the user to enter the numbers of rooms, nights, adults,
and children. The user should enter those items using only numbers. The items should not
contain any letters, spaces, punctuation marks, or special characters. Unfortunately, you can’t
stop the user from trying to enter an inappropriate character into a text box. However, you can
prevent the text box from accepting the character; you do this by coding the text box’s KeyPress
event procedure.

To view the code template for the txtRooms control’'s KeyPress event procedure:
1. Open the Code Editor window and then open the code template for the txtRooms

control’s KeyPress event procedure. See Figure 4-52.

sender parameter e parameter

Private Sub txtRooms_KeyPress(sender As Object, e As KeyPressEventArgs) Hd

End Sub

Figure 4-52 Code template for the txtRooms control's KeyPress event procedure

A control’s KeyPress event occurs each time the user presses a key while the control has the
focus. The procedure associated with the KeyPress event has two parameters, which appear
within the parentheses in the procedure header: sender and e. A parameter represents
information that is passed to the procedure when the event occurs. When the KeyPress event
occurs, a character corresponding to the pressed key is sent to the KeyPress event’s e parameter.
For example, when the user presses the period (.) while entering data into a text box, the text
box’s KeyPress event occurs and a period is sent to the event’s e parameter. Similarly, when the
Shift key along with a letter is pressed, the uppercase version of the letter is sent to the e
parameter.

To prevent a text box from accepting an inappropriate character, you first use the e parameter’s
KeyChar property to determine the pressed key. (KeyChar stands for “key character.”) You then
use the e parameter’s Handled property to cancel the key if it is an inappropriate one. You
cancel the key by setting the Handled property to True, like this: e.Handled = True.

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Coding the KeyPress Event Procedures

Figure 4-53 shows examples of using the KeyChar and Handled properties in the KeyPress
event procedure. The condition in Example 1’s selection structure compares the contents
of the KeyChar property with a dollar sign. If the condition evaluates to True, the
e.Handled = True instruction in the selection structure’s true path cancels the $ key
before it is entered in the txtSales control. You can use the selection structure in Example
2 to allow the text box to accept only numbers and the Backspace key (which is used for
editing). You refer to the Backspace key on your keyboard using Visual Basic’s
ControlChars.Back constant.

The KeyPress

event

ll

automatically
allows the use of
the Delete key

for editing.

Controlling the Characters Accepted by a Text Box

Example 1
Private Sub txtSales_KeyPress(sender As Object,
e As KeyPressEventArgs) Handles txtSales.KeyPress
' prevents the text box from accepting the dollar sign

If e.KeyChar = "$" Then
e.Handled = True
End If
End Sub

Example 2
Private Sub txtAge_KeyPress(sender As Object,
e As KeyPressEventArgs) Handles txtAge.KeyPress
' allows the text box to accept only numbers
' and the Backspace key
If (e.KeyChar < "0" OrElse e.KeyChar > "9") AndAlso
e.KeyChar <> ControlChars.Back Then
e.Handled = True
End If
End Sub

Figure 4-53 Examples of using the KeyChar and Handled properties in the KeyPress event procedure
© 2013 Cengage Learning

According to the application’s TOE chart, each text box’s KeyPress event procedure should
allow the text box to accept only numbers and the Backspace key. All other keys should be
canceled. (The TOE chart is shown in Figure 4-37 in Lesson B.)

To allow the four text boxes to accept only numbers and the Backspace key:
1. Change txtRooms_KeyPress in the procedure header to CancelKeys.

2. Click immediately before the) (closing parenthesis) in the procedure header and then
press Enter to move the parenthesis and Handles clause to the next line in the
procedure. (You can look ahead to Figure 4-54.)

3. Click at the end of the Handles clause. Type the following text and press Enter. (Be
sure to type the comma before and after txtNights.KeyPress.)

, txtNights.KeyPress,

4. Now type the following text and press Enter:

txtAdults.KeyPress, txtChildren.KeyPress

<(START HERE

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

The Selection Structure

Enter the following comments. Press Enter twice after typing the second comment.

" allows the text box to accept only numbers and
' the Backspace key

Enter the following If clause. When you press Enter after typing Then, the Code Editor

will automatically enter the End If clause for you.

If (e.KeyChar < "0" OrElse e.KeyChar > "9") AndAlso
e.KeyChar <> ControlChars.Back Then

Enter the following comment and assignment statement:

' cancel the key
e.Handled = True

If necessary, delete the blank lines above the End If and End Sub clauses. Figure 4-54
shows the completed CancelKeys procedure, which is associated with each text box’s

KeyPress event.

Private Sub CancelKeys(sender As Object, e As KeyPressEventArgs
) Handles txtRooms.KeyPress, txtNights.KeyPress,
txtAdults.KeyPress, txtChildren.KeyPress
allows the text box to accept only numbers and
the Backspace key

If (e.KeyChar < "@" OrElse e.KeyChar > "9") AndAlso
e.KeyChar <> ControlChars.Back Then
" cancel the key
e.Handled = True
End If
End Sub

Figure 4-54 CancelKeys procedure

the procedure is
associated with
each text box’s
KeyPress event

In the next set of steps, you will test the CancelKeys procedure to verify that it allows the text
boxes to accept only numbers and the Backspace key.

STARTINERE> To test the CancelKeys procedure:

1.
2.

Save the solution and then start the application.

Try entering a letter in the Rooms box, and then try entering a dollar sign. Now, type 10
in the Rooms box and then press Backspace to delete the 0. The Rooms box now

contains only the number 1.

Try entering a letter in the Nights box, and then try entering a percent sign. Now, type
21 in the Nights box and then press Backspace to delete the 1. The Nights box now

contains only the number 2.

Try entering a letter in the Adults box, and then try entering an ampersand. Now, type
20 in the Adults box and then press Backspace to delete the 0. The Adults box now

contains only the number 2.

Try entering a letter in the Children box, and then try entering a period. Now, type 13 in
the Children box and then press Backspace to delete the 3. The Children box now

contains only the number 1.

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Coding the Enter Event Procedures

6. Click the Calculate button to display the calculated amounts in the interface.

7. Press Tab twice to move the focus to the Rooms box. Notice that the insertion point
appears at the end of the number 1. It is customary in Windows applications to have a
text box’s existing text selected (highlighted) when the text box receives the focus. You
will learn how to select the existing text in the next section. Click the Exit button to end
the application.

Coding the Enter Event Procedures

To complete the Covington Resort application, you just need to code the Enter event
procedures for the four text boxes. A text box’s Enter event occurs when the text box receives
the focus, which can happen as a result of the user tabbing to the control or using the control’s
access key. It also occurs when the Focus method is used to send the focus to the control. In the
current application, the Enter event procedure for each text box is responsible for selecting
(highlighting) the contents of the text box. When the text is selected in a text box, the user can
remove the text simply by pressing a key on the keyboard, such as the letter n; the pressed key—
in this case, the letter n—replaces the selected text.

Visual Basic provides the SelectAll method for selecting a text box’s existing text. The method’s
syntax is shown in Figure 4-55 along with an example of using the method. In the syntax,
textbox is the name of the text box whose contents you want to select.

SelectAll Method

Syntax
textbox.SelectAll()

Example
txtId.SelectAl11()
selects the contents of the txtld control

Figure 4-55 Syntax and an example of the SelectAll method
© 2013 Cengage Learning

You will use the SelectAll method to select the contents of the four text boxes in the Covington
Resort application. You will enter the method in each text box’s Enter event procedure so that
the method is processed when the text box receives the focus.

To code each text box’s Enter event procedure and then test the procedures: <(START HERE

1. Open the code template for the txtRooms control’s Enter event procedure. Type the
following comments and then press Enter twice:

' selects the contents when the
' text box receives the focus

2. Type txtRooms.SelectAll() and then click the blank line below the last comment.

3. Open the code template for the txtNights control’s Enter event procedure. Copy the
comments and SelectAll method from the txtRooms_Enter procedure to the
txtNights_Enter procedure. Change txtRooms in the SelectAll method to txtNights and
then click the blank line below the last comment.

4. Open the code template for the txtAdults control’s Enter event procedure. Copy the
comments and SelectAll method from the txtRooms_Enter procedure to the

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

The Selection Structure

txtAdults_Enter procedure. Change txtRooms in the SelectAll method to txtAdults and
then click the blank line below the last comment.

Open the code template for the txtChildren control’s Enter event procedure. Copy the
comments and SelectAll method from the txtRooms_Enter procedure to the
txtChildren_Enter procedure. Change txtRooms in the SelectAll method to txtChildren
and then click the blank line below the last comment.

Save the solution and then start the application. Type 1 in the Rooms box, 1 in the
Nights box, 2 in the Adults box, and 2 in the Children box. Click the Calculate button
to display the calculated amounts in the interface.

Press Tab twice to move the focus to the Rooms box. The txtRooms_Enter procedure
selects the contents of the text box, as shown in Figure 4-56.

Number of Charges

the existing text is
selected when the
text box receives
the focus

@ Rooms: Nights: Room: 284.00

E- E’ Tax: 43.31

Adults (18+): Children: Resort fee: 15.00

B 2 Total due: $342.31

I Calculate | | Exit |

Figure 4-56 Existing text selected in the txtRooms control

8. Press Tab three times, slowly, to move the focus to each of the other three text boxes.

Each text box’s Enter event procedure selects the contents of the text box.

9. Click the Exit button. Close the Code Editor window and then close the solution.

Figure 4-57 shows the application’s code at the end of Lesson C.

OCooNOUVIAWN R

10
11
12

13
14
15

' Name: Covington Resort Project

' Purpose: Display the total room charge, tax,
! total resort fee, and total due

' Programmer: <your name> on <current date>

Option Explicit On
Option Strict On
Option Infer Off

PubTic Class frmMain

Private Sub btnExit_Click(sender As Object,

e As EventArgs) Handles btnExit.Click
Me.Close()

End Sub

Figure 4-57 Covington Resort application’s code at the end of Lesson C (continues)

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Coding the Enter Event Procedures

(continued)

16 Private Sub txtRooms_Enter(sender As Object,
e As EventArgs) Handles txtRooms.Enter

17 ' selects the contents when the
18 ' text box receives the focus
19

20 txtRooms.SelectAl11()

21 End Sub

22

23 Private Sub txtNights_Enter(sender As Object,
e As EventArgs) Handles txtNights.Enter

24 ' selects the contents when the
25 ' text box receives the focus
26

27 txtNights.SelectAl11(0)

28 End Sub

29

30 Private Sub txtAdults_Enter(sender As Object,
e As EventArgs) Handles txtAdults.Enter

31 ' selects the contents when the
32 ' text box receives the focus
33

34 txtAdults.SelectAl11()

35 End Sub

36

37 Private Sub txtChildren_Enter(sender As Object,
e As EventArgs) Handles txtChildren.Enter

38 ' selects the contents when the
39 ' text box receives the focus
40

41 txtChildren.SelectAl11()

42 End Sub

43

44 Private Sub CancelKeys(sender As Object,
e As KeyPressEventArgs

45) Handles txtRooms.KeyPress, txtNights.KeyPress,
46 txtAdults.KeyPress, txtChildren.KeyPress

47 ' allows the text box to accept only numbers and

48 ' the Backspace key

49

50 If (e.KeyChar < "0" OrElse e.KeyChar > "9") AndAlso
51 e.KeyChar <> ControlChars.Back Then

52 ' cancel the key

53 e.Handled = True

54 End If

55 End Sub

56

57 Private Sub ClearLabels(sender As Object, e As EventArgs) _
58 Handles txtRooms.TextChanged, txtNights.TextChanged,
59 txtAdults.TextChanged, txtChildren.TextChanged

60 ' clear calculated amounts

61

62 1bTRoomChg.Text = String.Empty

63 1b1Tax.Text = String.Empty

64 TbTResortFee.Text = String.Empty

65 Tb1TotalDue.Text = String.Empty

66 End Sub

67

Figure 4-57 Covington Resort application’s code at the end of Lesson C (continues)

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

The Selection Structure

(continued)
68 Private Sub btnCalc_Click(sender As Object,
e As EventArgs) Handles btnCalc.Click
69 ' calculate and display total room charge,
70 ' tax, total resort fee, and total due
71
72 ' declare named constants and variables
73 Const intMAX_PER_ROOM As Integer = 6
74 Const intDAILY_ROOM_CHG As Integer = 284
75 Const db1TAX_RATE As Double = 0.1525
76 Const intDAILY_RESORT_FEE As Integer = 15
77 Const strMSG As String =
"You have exceeded the maximum guests per room."
78 Dim intRoomsReserved As Integer
79 Dim intNights As Integer
80 Dim intAdults As Integer
81 Dim intChildren As Integer
82 Dim intNumGuests As Integer
83 Dim db1RoomsRequired As Double
84 Dim intTotalRoomChg As Integer
85 Dim db1Tax As Double
86 Dim intTotalResortFee As Integer
87 Dim db1TotalDue As Double
88
89 ' store input in variables
90 Integer.TryParse(txtRooms.Text, intRoomsReserved)
91 Integer.TryParse(txtNights.Text, intNights)
92 Integer.TryParse(txtAdults.Text, intAdults)
93 Integer.TryParse(txtChildren.Text, intChildren)
94
95 ' calculate total number of guests
96 intNumGuests = intAdults + intChildren
97 ' calculate number of rooms required
98 dbTRoomsRequired = intNumGuests / intMAX_PER_ROOM
99
100 ' determine whether number of reserved
101 ' rooms is adequate and then either display a
102 ' message or calculate and display the charges
103 If intRoomsReserved < dbT1RoomsRequired Then
104 MessageBox.Show(strMSG, "Covington Resort",
105 MessageBoxButtons.OK,
106 MessageBoxIcon.Information)
107 Else
108 ' calculate charges
109 intTotalRoomChg = intRoomsReserved *
110 intNights * intDAILY_ROOM_CHG
111 db1Tax = intTotalRoomChg * db1TAX_RATE
112 intTotalResortFee = intRoomsReserved *
113 intNights * intDAILY_RESORT_FEE
114 db1TotalDue = intTotalRoomChg +
115 db1Tax + intTotalResortFee
116
117 ' display charges
118 Tb1RoomChg.Text = intTotalRoomChg.ToString("N2™)
119 Tb1Tax.Text = db1Tax.ToString('"N2")
120 TbT1ResortFee.Text = intTotalResortFee.ToString(''N2")
121 1b1TotalDue.Text = db1TotalDue.ToString("C2")
122 End If
123 End Sub
124 End Class

Figure 4-57 Covington Resort application’s code at the end of Lesson C

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Lesson C Review Questions

Lesson C Summary

e To allow a text box to accept only certain keys:

Code the text boxs KeyPress event procedure. The key the user pressed is stored in the e.KeyChar
property. You use the e.Handled = True statement to cancel the key pressed by the user.

e To select the existing text in a text box:
Use the SelectAll method. The method’s syntax is textbox.SelectAll().
e To process code when a control receives the focus:

Enter the code in the control’s Enter event procedure.

Lesson C Key Term

ControlChars.Back constant—the Visual Basic constant that represents the Backspace key on
your keyboard

Enter event—occurs when a control receives the focus, which can happen as a result of the user
either tabbing to the control or using the control’s access key; also occurs when the Focus
method is used to send the focus to the control

Handled property—a property of the KeyPress event procedure’s e parameter; when assigned
the value True, it cancels the key pressed by the user

KeyChar property—a property of the KeyPress event procedure’s @ parameter; stores the
character associated with the key pressed by the user

KeyPress event—occurs each time the user presses a key while a control has the focus

Parameter—an item contained within parentheses in a procedure header; represents
information passed to the procedure when the procedure is invoked

SelectAll method—used to select all of the text contained in a text box

Lesson C Review Questions

1. A control’s event occurs each time a user presses a key while the
control has the focus.

a. Focus

b. Key

c. KeyFocus
d. KeyPress

2. When entered in the appropriate event procedure, which of the following statements
cancels the key pressed by the user?
a. e.Cancel =True
b. e.Cancel = False
c. e.Handled =True
d. e.Handled = False

3. Which of the following If clauses determines whether the user pressed the Backspace key?
a. If e.KeyChar = ControlChars.Back Then
b. If e.KeyChar =Backspace Then
c. Ife.KeyChar = ControlChars.Backspace Then
d. If ControlChars.BackSpace =True Then

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or dupli

INTRODUCTORY

INTRODUCTORY

INTRODUCTORY

The Selection Structure

Which of the following If clauses determines whether the user pressed the % key?

a. If ControlChars.PercentSign =True Then

b. If e.KeyChar ="%" Then

c. If e.KeyChar = Chars.PercentSign Then

d. If KeyChar.ControlChars ="%" Then

When a user tabs to a text box, the text box’s event occurs.
a. Access

b. Enter

c. TabOrder

d. TabbedTo

Which of the following tells the computer to highlight all of the text contained in the
txtName control?

txtName.SelectA11()

txtName.HighlightAl11(Q)

Highlight(txtName)

SelectAl1(txtName.Text)

A

Lesson C Exercises

1.

Open the State ID Solution (State ID Solution.sln) file contained in the
VB2012\Chap04\State ID Solution folder. If necessary, open the designer window.
The txtState control should accept only letters and the Backspace key; code the
appropriate procedure. When the txtState control receives the focus, its existing text
should be selected; code the appropriate procedure. Save the solution and then start
the application. Test the application with both valid data (uppercase and lowercase
letters and the Backspace key) and invalid data (numbers and special characters).
Close the Code Editor window and then close the solution.

Use Windows to make a copy of the Play It Again Solution folder contained in the
VB2012\Chap04 folder. Rename the copy Play It Again Solution-Introductory. Open
the Play It Again Solution (Play It Again Solution.sln) file contained in the Play It Again
Solution-Introductory folder. Open the designer window. When a text box receives the
focus, its existing text should be selected; code the appropriate procedures. The Date
text box should accept only numbers, the slash (/), the hyphen (-), and the Backspace
key; code the appropriate procedure. The DVDs and Blu-rays boxes should accept only
numbers and the Backspace key; code the appropriate procedures. Save the solution and
then start and test the application. Close the Code Editor window and then close the
solution.

Open the MessageBox Value Solution (MessageBox Value Solution.sln) file contained in
the VB2012\Chap04\MessageBox Value Solution folder. If necessary, open the designer
window. Open the Code Editor window. The btnCalc control’s Click event procedure
should use the MessageBox.Show method to ask whether the user wants to include a
dollar sign in the gross pay amount. Include Yes and No buttons in the message box. If
the user clicks the Yes button, the procedure should display the gross pay amount using
the “C2” format. If the user clicks the No button, the procedure should display the gross
pay amount using the “N2” format. Modify the btnCalc control’s code. In addition,
when the text box receives the focus, its existing text should be selected; code the
appropriate procedure. Save the solution and then start and test the application. Close
the Code Editor window and then close the solution.

earning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Lesson C Exercises

4. Create a Visual Basic Windows application. Use the following names for the solution INTRODUCTORY
and project, respectively: Concert Solution and Concert Project. Save the application in
the VB2012\Chap04 folder. Change the form file’s name to Main Form.vb. Change the
form’s name to frmMain. The interface, which is shown in Figure 4-58, allows the user
to enter the number of concert tickets purchased. Each concert ticket costs $75.50. A
customer is allowed to purchase a maximum of 25 tickets at a time. The application
displays the total amount a customer owes for the concert tickets. Code the application.
Allow the text box to accept only numbers and the Backspace key. Clear the total due
when a change is made to the number of tickets purchased. When the text box receives
the focus, select its existing text. The Calculate button’s Click event procedure should
display the “You can purchase up to 25 tickets only.” message when the number of
tickets is greater than 25. It should display the total due with a dollar sign and two
decimal places. Save the solution and then start and test the application. Close the Code
Editor window and then close the solution.

o

a5 Concert Hall E@

Tickets: Total due:

]

Calculate Exit

Figure 4-58 Interface for Exercise 4

5. Create a Visual Basic Windows application. Use the following names for the solution INTRODUCTORY
and project, respectively: Mortgage Solution and Mortgage Project. Save the application
in the VB2012\Chap04 folder. Change the form file’s name to Main Form.vb. Change
the form’s name to frmMain. Generally speaking, most prospective homeowners can
afford a mortgage that is between 2 and 2.5 times their annual gross income. Create an
interface that allows the user to enter his or her annual gross income. The application
should display the lower and upper ends of the mortgage range. The text box in which
the user enters the gross income should accept only numbers, the period, and the
Backspace key, and it should have its existing text highlighted when it receives the focus.
Save the solution and then start and test the application. Close the Code Editor window
and then close the solution.

6. Create a Visual Basic Windows application. Use the following names for the solution and INTRODUCTORY
project, respectively: Hinsbrook Solution and Hinsbrook Project. Save the application in
the VB2012\Chap04 folder. Change the form file’s name to Main Form.vb. Change the
form’s name to frmMain. A third-grade teacher at Hinsbrook Elementary School wants an
application that allows a student to enter the amount of money a customer owes and the
amount of money the customer paid. The application should calculate and display the
amount of change. Display an appropriate message when the amount paid is less than the
amount owed. The text boxes in which the user enters the amounts owed and paid should
accept only numbers, the period, and the Backspace key, and they should have their
existing text highlighted when they receive the focus. Save the solution and then start and
test the application. Close the Code Editor window and then close the solution.

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or dupli

INTERMEDIATE

INTERMEDIATE

INTERMEDIATE

INTERMEDIATE

The Selection Structure

10.

In this exercise, you modify the application from Exercise 6. Use Windows to make a
copy of the Hinsbrook Solution folder. Rename the copy Modified Hinsbrook Solution.
Open the Hinsbrook Solution (Hinsbrook Solution.sln) file contained in the Modified
Hinsbrook Solution folder. Open the designer window. Modify the interface and code so
that they also display the number of dollars, quarters, dimes, nickels, and pennies to
return to the customer. Save the solution and then start and test the application. Close
the Code Editor window and then close the solution.

Open the Zip Shipping Solution (Zip Shipping Solution.sln) file contained in the
VB2012\Chap04\Zip Shipping Solution folder. If necessary, open the designer window.
Code the Display Shipping Charge button’s Click event procedure. The procedure
should display $15.00 as the shipping charge for the following ZIP codes: 42164, 45134,
60345, and 42544. All other ZIP codes are charged $17.75 for shipping. Save the
solution and then start and test the application. Close the Code Editor window and then
close the solution.

In this exercise, you create an application designed to teach the Spanish words for red,
blue, and green. The Spanish words are rojo, azul, and verde, respectively. Create a
Visual Basic Windows application. Use the following names for the solution and project,
respectively: Spanish Colors Solution and Spanish Colors Project. Save the application
in the VB2012\Chap04 folder. Change the form file’s name to Main Form.vb. Change
the form’s name to frmMain. Create the interface shown in Figure 4-59. The interface
contains three text boxes, five buttons, and one label. After entering the Spanish word
corresponding to a button’s color, the user should click the button to verify the entry. If
the Spanish word is correct, the button’s Click event procedure should change the color
of the text box to match the button’s color. (Hint: Assign the button’s BackColor
property to the text box’s BackColor property.) Otherwise, the Click event procedure
should display the appropriate Spanish word in a message box. The Clear button should
change each text box’s background color to white, using the Visual Basic constant
Color.White; it also should clear the contents of each text box. Save the solution and
then start and test the application. Close the Code Editor window and then close the
solution.

akl Spanish Colors [E=H EcB

Enter the Spanish word and then click the color button:

Clear

m Blue Green Exit

Figure 4-59 Interface for Exercise 9

Create a Visual Basic Windows application. Use the following names for the solution
and project, respectively: Allenton Solution and Allenton Project. Save the application in
the VB2012\Chap04 folder. Change the form file’s name to Main Form.vb. Change the
form’s name to frmMain. Allenton Water Department wants an application that
calculates a customer’s monthly water bill. The application’s interface, which is shown
in Figure 4-60, allows the user to enter the current and previous meter readings. The

earning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Lesson C Exercises

application should calculate and display the number of gallons of water used and the
total charge for the water. The charge for water is $1.75 per 1000 gallons. However,
there is a minimum charge of $16.67. (In other words, every customer must pay at least
$16.67.) Display the total charge with a dollar sign and two decimal places. The text
boxes should accept only numbers and the Backspace key. Clear the number of gallons
used and the total charge when a change is made to the contents of a text box on the
form. When a text box receives the focus, select its existing text. Save the solution and
then start and test the application. Close the Code Editor window and then close the

solution.
agl Allenton Water Department EI@
Current reading: Previous reading: Calculate
Exit
Gallons used: Total charge:

Figure 4-60 Interface for Exercise 10

11. In this exercise, you modify the application from Exercise 2. Use Windows to make a
copy of the Play It Again Solution-Introductory folder. Rename the copy Play It Again
Solution-Intermediate. Open the Play It Again Solution (Play It Again Solution.sln) file
contained in the Play It Again Solution-Intermediate folder. Open the designer and
Code Editor windows. If the txtDvds control does not contain any data, the btnCalc
control’s Click event procedure should assign the number 0 to the text box’s Text
property. Likewise, if the txtBluRays control does not contain any data, the btnCalc
control’s Click event procedure should assign the number 0 to the text box’s Text
property. Modify the procedure’s code. Save the solution and then start and test the
application. Close the Code Editor window and then close the solution.

12. Create a Visual Basic Windows application. Use the following names for the solution
and project, respectively: Treasures Solution and Treasures Project. Save the application
in the VB2012\Chap04 folder. Change the form file’s name to Main Form.vb. Change
the form’s name to frmMain. Create the interface shown in Figure 4-61. When the user
clicks the Calculate button, the button’s Click event procedure should add the item
price to the total of the prices already entered; this amount represents the subtotal owed
by the customer. The procedure should display the subtotal on the form. It also should
display a 2% sales tax, the shipping charge, and the grand total owed by the customer.
The grand total is calculated by adding together the subtotal, the 2% sales tax, and a $10
shipping charge. For example, if the user enters 30.55 as the price and then clicks the
Calculate button, the button’s Click event procedure should display 30.55 as the
subtotal, 0.61 as the sales tax, 10.00 as the shipping charge, and 41.16 as the total due. If
the user subsequently enters 20 as the price and then clicks the Calculate button, the
button’s Click event procedure should display 50.55 as the subtotal, 1.01 as the sales tax,
10.00 as the shipping charge, and 61.56 as the total due. However, when the subtotal is
at least $100, the shipping charge is 0.00. Code the application. Save the solution and
then start and test the application. Close the Code Editor window and then close the
solution.

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or dupli

INTERMEDIATE

ADVANCED

DISCOVERY

SWAT THE BUGS

The Selection Structure

13.

14.

o Treasures = e ==

Item price:

Subtotal:
Sales tax:
Shipping:

Total due:

il

Calculate

Figure 4-61 Interface for Exercise 12

In this exercise, you learn how to specify the maximum number of characters that can
be entered in a text box. Open the Zip Solution (Zip Solution.sln) file contained in the
VB2012\Chap04\Zip Solution folder. If necessary, open the designer window. Click
the txtZip control. Look in the Properties list for a property that allows you to specify
the maximum number of characters that can be entered in the text box. When you
locate the property, set its value to 10. Save the solution and then start the application.
Test the application by trying to enter more than 10 characters in the text box. Close
the solution.

Open the Debug Solution (Debug Solution.sln) file contained in the
VB2012\Chap04\Debug Solution folder. Open the Code Editor window and review
the existing code. The btnCalc control’s Click event procedure should calculate a 5%
commission when the code entered by the user is 1, 2, or 3 and, at the same time,

the sales amount is greater than $5,000; otherwise, the commission rate is 3%. Also, the
CancelKeys procedure should allow the two text boxes to accept only numbers,

the period, and the Backspace key.

a. Start the application. Type the number 1 in the Code box and then press the
Backspace key. Notice that the Backspace key is not working correctly. Stop the
application and then make the appropriate change to the CancelKeys procedure.

b. Save the solution and then start the application. Type the number 12 in the Code
box and then press the Backspace key to delete the 2. The Code box now contains
the number 1.

c. Type 2000 in the Sales amount box and then click the Calculate button. A message
box appears and indicates that the commission amount is $100.00 (5% of $2,000),
which is incorrect; it should be $60.00 (3% of $2,000). Close the message box. Stop
the application and then make the appropriate change to the btnCalc control’s Click
event procedure.

d. Save the solution and then start the application. Type the number 1 in the Code box.
Type 2000 in the Sales amount box and then click the Calculate button. The message
box should indicate that the commission amount is $60.00. Close the message box.

earning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Lesson C Exercises

e. Test the application using the following codes and sales amounts:

Code Sales amount
7000

5000

5000.75
175.55
9000.65

2000

6700

B LW W NN

f. When you are finished testing the application, close the Code Editor window and
then close the solution.

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or dupli

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

More on the Selection
Structure

Revising the Covington Resort Application

In this chapter, you will modify the Covington Resort application from
Chapter 4. In addition to the previous input data, the application’s
interface will now allow the user to select the number of beds (either two
queen beds or one king bed), the view (either standard or atrium), and
whether the guest should be charged a vehicle parking fee. The resort

charges $284 for two queen beds with a standard view, $325 for two
queen beds with an atrium view, $290 for one king bed with a standard
view, and $350 for one king bed with an atrium view. The vehicle parking
fee is S12.75 per night. In addition to displaying the total room charge,
the sales and lodging tax, the resort fee, and the total due, the
application should now also display the total parking fee.

All Microsoft screenshots used with permission from Microsoft Corporation

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

More on the Selection Structure

Previewing the Modified Covington Resort Application

Before you start the first lesson in this chapter, you will preview the completed application. The
application is contained in the VB2012\ChapO05 folder.

To preview the completed application:

1.

Use the Run dialog box to run the Covington (Covington.exe) file contained in

the VB2012\ChapO5 folder. The application’s user interface appears on the screen.
Type 1, 1, 2, and 2 in the Rooms, Nights, Adults, and Children boxes, respectively.
Click the Calculate button. See Figure 5-1.

radio button

T Vi
ype e [Vehicle parking fee
® Two gueen ® Standard
O One king O Atrium

Number of Charges
Rooms: Nights: Room: 284.00
EI Tax: 43.31
Adults (18+): Children: Resort fee: 15.00

Total due: $342.31

Interface showing the calculated amounts

Figure 5-1

The interface contains radio buttons and a check box. These controls are covered in
Lesson B. Click the One king and Atrium radio buttons to select both. Also click the
Vehicle parking fee check box to select it. A check mark appears inside the check box.
Click the Calculate button. See Figure 5-2.

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Previewing the Modified Covington Resort Application

T Vi
b o Vehicle parking fee
) Two gueen) Standard
® One king ® Atrium
MNumber of Charges
Rooms: Nights: Room: 350.00
1 1 Tax: 53.38
Adults (18+): Children: Resort fee: 15.00
]] Parking: 12.75
Total due: $431.13
‘ Calculate | | Exit |

Figure 5-2 Recalculated amounts shown in the interface

3. Click the Exit button to end the application.

The modified Covington Resort application uses nested selection structures, which you will
learn about in Lesson A. You also will learn about multiple-alternative selection structures.

In Lesson B, you will add a radio button and a check box to the Covington Resort application’s
interface; you also will modify the application’s code. In Lesson C, you will learn how to use the
TryParse method for data validation. You also will learn how to generate random integers and
how to hide and show controls during runtime. Be sure to complete each lesson in full and do all
of the end-of-lesson questions and several exercises before continuing to the next lesson.

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Ch05A video

More on the Selection Structure

After studying Lesson A, you should be able to:

e Include a nested selection structure in pseudocode and in a flowchart

e Code a nested selection structure

e Desk-check an algorithm

e Recognize common logic errors in selection structures

e Include a multiple-alternative selection structure in pseudocode and in a flowchart

e Code a multiple-alternative selection structure

Nested Selection Structures

In Chapter 4, you learned that you use the selection structure when you want the computer
to make a decision and then select the appropriate path—either the true path or the false
path—based on the result. Both paths in a selection structure can include instructions that
declare variables, perform calculations, and so on. In this chapter, you will learn that both
paths can also include other selection structures. When either a selection structure’s true path
or its false path contains another selection structure, the inner selection structure is referred
to as a nested selection structure because it is contained (nested) within the outer selection
structure.

A programmer determines whether a problem’s solution requires a nested selection structure by
studying the problem specification. The first problem specification you will examine in this
chapter involves a basketball player named Maleek. The problem specification and an
illustration of the problem are shown in Figure 5-3, along with an appropriate solution. The
solution requires a selection structure, but not a nested one. This is because only one decision—
whether the basketball went through the hoop—is necessary.

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Nested Selection Structures

Problem Specification

Maleek is practicing for an upcoming basketball game. Write the instructions that direct Maleek to shoot
the basketball and then say one of two phrases, depending on whether or not the basketball went

through the hoop.
Result of shot Phrase
Basketball went through the hoop | did it!
Basketball did not go through the hoop Missed it!

Solution

1. shoot the basketball

2. if the basketball went through the hoop
say ‘1 did it!"” true path
else
say “Missed it!” false path
end if

Figure 5-3 A problem that requires the selection structure
Image by Diane Zak; Created with Reallusion CrazyTalk Animator; OpenClipArt.org/Tom Kolter/tawm1972

Now we'll make a slight change to the problem specification shown in Figure 5-3. This time,
Maleek should say either one or two phrases, depending not only on whether or not the ball
went through the hoop, but also on where he was standing when he made the basket. Figure 5-4
shows the modified problem specification and solution. The modified solution contains an outer
dual-alternative selection structure and a nested dual-alternative selection structure. The outer
selection structure begins with “if the basketball went through the hoop”, and it ends with the
last “end if”. The last “else” belongs to the outer selection structure and separates the structure’s
true path from its false path. Notice that the instructions in both paths are indented within the
outer selection structure. Indenting in this manner clearly indicates the instructions to be
followed when the basketball went through the hoop, as well as the ones to be followed when
the basketball did not go through the hoop.

The nested selection structure in Figure 5-4 appears in the outer selection structure’s true path.
The nested selection structure begins with “if Maleek was either inside or on the 3-point line”,
and it ends with the first “end if”. The indented “else” belongs to the nested selection structure
and separates the nested structure’s true path from its false path. For clarity, the instructions
in the nested selection structure’s true and false paths are indented within the structure. For

a nested selection structure to work correctly, it must be contained entirely within either

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

nested dual-alternative
selection structure

More on the Selection Structure

the outer selection structure’s true path or its false path. The nested selection structure in
Figure 5-4, for example, appears entirely within the outer selection structure’s true path.

Problem Specification

Maleek is practicing for an upcoming basketball game. Write the instructions that direct Maleek to shoot
the basketball and then say either one or two of four phrases, depending on whether or not the
basketball went through the hoop and also where Maleek was standing when he made the basket.

Result of shot Phrase

Basketball went through the hoop | did it!

Maleek made the basket from either inside or on the 3-point line 2 points for me

Maleek made the basket from behind the 3-point line 3 points for me

Basketball did not go through the hoop Missed it!
Solution

1. shoot the basketball
2. if the basketball went through the hoop
say ‘I did it!"”
if Maleek was either inside or on the 3-point line
say “2 points for me”

else outer dual-alternative
say “3 points for me” selection structure
end if
else
say “Missed it!”
end if

Figure 5-4 A problem that requires a nested selection structure
© 2013 Cengage Learning

Figure 5-5 shows a modified version of the previous problem specification, along with
the modified solution. In this version of the problem, Maleek should still say “Missed it!”
when the basketball misses its target. However, if the basketball hits the rim, he also should say
“So close”. In addition to the nested dual-alternative selection structure from the previous
solution, the modified solution also contains a nested single-alternative selection structure,
which appears in the outer selection structure’s false path. The nested single-alternative
selection structure begins with “if the basketball hit the rim”, and it ends with the second
“end if”. Notice that the nested single-alternative selection structure is contained entirely within
the outer selection structure’s false path.

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Flowcharting a Nested Selection Structure

Problem Specification

Maleek is practicing for an upcoming basketball game. Write the instructions that direct Maleek to shoot
the basketball and then say either one or two of five phrases, depending on whether or not the
basketball went through the hoop and also where Maleek was standing when he made the basket.

Result of shot Phrase
Basketball went through the hoop | did it!

Maleek made the basket from either inside or on the 3-point line 2 points for me
Maleek made the basket from behind the 3-point line 3 points for me
Basketball did not go through the hoop Missed it!
Maleek’s missed shot hit the rim So close

Solution
1. shoot the basketball
2. if the basketball went through the hoop
say “l did it!”
if Maleek was either inside or on the 3-point line

“2 points for me” -
say "2 points for me nested dual-alternative

else u . " selection structure
say “3 points for me
end if
else
say “Missed it!”
if the basketball hit the rim tod Shaleatternat
say “SO C|OSE” nes e_ single-alternative
. selection structure
end if
end if

Figure 5-5 A problem that requires two nested selection structures
© 2013 Cengage Learning

Flowcharting a Nested Selection Structure

Figure 5-6 shows a problem specification for a voter eligibility application. The application
determines whether a person can vote and then displays one of three messages. The appropriate
message depends on the person’s age and voter registration status. For example, if the person is
younger than 18 years old, the program should display the message “You are too young to vote.”
However, if the person is at least 18 years old, the program should display one of two messages.
The correct message to display is determined by the person’s voter registration status. If the
person is registered, then the appropriate message is “You can vote.”; otherwise, it is “You must
register before you can vote.” Notice that determining the person’s voter registration status is
important only after his or her age is determined. Because of this, the decision regarding the age
is considered the primary decision, while the decision regarding the registration status is
considered the secondary decision because whether it needs to be made depends on the result of
the primary decision. A primary decision is always made by an outer selection structure, while a
secondary decision is always made by a nested selection structure.

Also included in Figure 5-6 is a correct solution to the voter eligibility problem in flowchart
form. The first diamond in the flowchart represents the outer selection structure’s condition,
which checks whether the age entered by the user is greater than or equal to 18. If the condition
evaluates to false, it means that the person is not old enough to vote. In that case, the outer
selection structure’s false path will display the “You are too young to vote.” message before the
outer selection structure ends. However, if the outer selection structure’s condition evaluates to
true, it means that the person is old enough to vote. Before displaying the appropriate message,
the outer selection structure’s true path gets the registration status from the user. It then uses a
nested selection structure to determine whether the person is registered and then take the
appropriate action. The nested selection structure’s condition is represented by the second

outer dual-alternative
selection structure

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

More on the Selection Structure

diamond in Figure 5-6. If the person is registered, the nested selection structure’s true path
displays the “You can vote.” message; otherwise, its false path displays the “You must register
before you can vote.” message. After the appropriate message is displayed, the nested and outer
selection structures end. Notice that the nested selection structure is processed only when the
outer selection structure’s condition evaluates to true.

Problem Specification

The Danville city manager wants an application that determines voter eligibility and displays one of three
messages. The messages and the criteria for displaying each message are shown here. The application’s
interface will provide a text box for entering the prospective voter's age. It will use a message box to ask
the user whether the person is registered to vote.

Message Criteria
You are too young to vote. person is younger than 18 years old
You can vote. person is at least 18 years old and is registered to vote

You must register before you can vote. person is at least 18 years old but is not registered to vote

| store age in a variable |

age >=18

1 y
display “You are too ask whether person
young to vote.” is registered

registered

display “You must
register before you
can vote.”

display “You
can vote.”

Figure 5-6 Problem specification and a correct solution for the voter eligibility problem
© 2013 Cengage Learning

Even small problems can have more than one solution. Figure 5-7 shows another correct
solution, also in flowchart form, for the voter eligibility problem. As in the previous solution,
the outer selection structure in this solution determines the age (the primary decision), and the
nested selection structure determines the voter registration status (the secondary decision). In
this solution, however, the outer selection structure’s condition is the opposite of the one in
Figure 5-6: It checks whether the age is less than 18, rather than checking if it is greater than or
equal to 18. (Recall that less than is the opposite of greater than or equal to.) In addition, the
nested selection structure appears in the outer selection structure’s false path in this solution,

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Coding a Nested Selection Structure

which means it will be processed only when the outer selection structure’s condition evaluates
to false. The solutions in Figures 5-6 and 5-7 produce the same results. Neither solution is better
than the other. Each simply represents a different way of solving the same problem.

Problem Specification

The Danville city manager wants an application that determines voter eligibility and displays one of three
messages. The messages and the criteria for displaying each message are shown here. The application’s
interface will provide a text box for entering the prospective voter's age. It will use a message box to ask
the user whether the person is registered to vote.

Message Criteria
You are too young to vote. person is younger than 18 years old
You can vote. person is at least 18 years old and is registered to vote

You must register before you can vote. person is at least 18 years old but is not registered to vote

| store age in a variable |

T
age < 18
ask whether display “You
person is are too young
registered to vote.”
. T
registered
display “You must ’ u
: display “You
register befor,:e can vote.”
you can vote.

Figure 5-7 Another correct solution for the voter eligibility problem
© 2013 Cengage Learning

Coding a Nested Selection Structure

Figure 5-8 shows examples of code that could be used for the voter eligibility application. The
first example corresponds to the flowchart in Figure 5-6, and the second example corresponds
to the flowchart in Figure 5-7.

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

More on the Selection Structure

Example 1: Code for the flowchart in Figure 5-6
Const strTOO_YOUNG As String = "You are too young to vote."
Const strMUST_REGISTER As String =
"You must register before you can vote."
Const strCAN_VOTE As String = "You can vote."
Const strPROMPT As String = "Are you registered to vote?"
Dim intAge As Integer
Dim dlgButton As DialogResult

Integer.TryParse(txtAge.Text, intAge)

If intAge >= 18 Then
dlgButton = MessageBox.Show(strPROMPT,
"Voter Eligibility",
MessageBoxButtons.YesNo,
MessageBoxIcon.Exclamation)
If dlgButton = Windows.Forms.DialogResult.Yes Then
TbTMsg.Text = strCAN_VOTE

Else
TbTMsg.Text = strMUST_REGISTER
End If
Else
Tb1Msg.Text = strTOO_YOUNG
End If

Example 2: Code for the flowchart in Figure 5-7
Const strTOO_YOUNG As String = "You are too young to vote."

Const strMUST_REGISTER As String =
"You must register before you can vote."
Const strCAN_VOTE As String = "You can vote."
Const strPROMPT As String = "Are you registered to vote?"
Dim intAge As Integer
Dim dlgButton As DialogResult

Integer.TryParse(txtAge.Text, intAge)

If intAge < 18 Then
Tb1Msg.Text = strTOO_YOUNG
Else
dlgButton = MessageBox.Show(strPROMPT,
"Voter ETigibility",
MessageBoxButtons.YesNo,
MessageBoxIcon.ExcTlamation)
If dlgButton = Windows.Forms.DialogResult.Yes Then
TbIMsg.Text = strCAN_VOTE

Else
TbTMsg.Text = strMUST_REGISTER
End If
End If

Figure 5-8 Code for the flowcharts in Figures 5-6 and 5-7
© 2013 Cengage Learning

STARTERE)> To code and then test the Voter Eligibility application:

1. If necessary, start Visual Studio 2012. Open the Voter Solution (Voter Solution.sln) file
contained in the VB2012\Chap05\Voter Solution folder. If necessary, open the designer
window.

2. Open the Code Editor window. Replace <your name> and <current date> in the
comments with your name and the current date, respectively.

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Coding a Nested Selection Structure

3. Locate the btnDisplay_Click procedure. Enter the code shown in either of the examples
in Figure 5-8.

4. Save the solution and then start the application. Type 17 in the Age box and then click
the Display Message button. The “You are too young to vote.” message appears in the
IbIMsg control. See Figure 5-9.

Enter age: 117

You are too young to vote.

recall that you can
press Alt to either
show or hide the
access keys

Display Message

Figure 5-9 Sample run of the Voter Eligibility application

5. Change the age to 21 and then press Enter. A message box opens and displays the “Are
you registered to vote?” message. Press Enter to select the Yes button. The “You can
vote.” message appears in the IblMsg control.

6. Click the Display Message button and then click the No button in the message box.
The “You must register before you can vote.” message appears in the IbIMsg control.

7. Click the Exit button. Close the Code Editor window and then close the solution.

]
YOU DO IT 1!

Create a Visual Basic Windows application named YouDolt 1. Save the application in the
VB2012\Chap05 folder. Add a label and two buttons to the form. The application should
display the price of a CD (compact disc) in the label. The prices are shown here. Code
the first button’s Click event procedure using a nested selection structure in the outer
selection structure’s true path. Code the second button’s Click event procedure using a
nested selection structure in the outer selection structure’s false path. Use message
boxes with Yes and No buttons to get the coupon information from the user. Save the
solution and then start and test the application. Close the solution.

Price Criteria

S12 customer does not have a coupon
S10 customer has a $2 coupon

S8 customer has a $4 coupon

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

You also can
write the nested
selection
structure’s

if clause in
Figure 5-10 as follows:
if weekend. However, you
then would need to
reverse the instructions
in the true and false
paths.

l

More on the Selection Structure

Logic Errors in Selection Structures

In the next few sections, you will observe some of the common logic errors made when writing
selection structures. Being aware of these errors will help prevent you from making them. In
most cases, logic errors in selection structures are a result of one of the following four mistakes:

1. using a compound condition rather than a nested selection structure
2. reversing the decisions in the outer and nested selection structures
3. using an unnecessary nested selection structure

4. including an unnecessary comparison in a condition

To better understand these four logic errors, we'll demonstrate the first three using a procedure
that displays the appropriate fee to charge a golfer. We'll demonstrate the last error using a
procedure that displays a bonus rate. We'll begin with the golf fee procedure.

Harper Golf Club charges every golfer a basic fee of $25 per round of golf. However, if the golfer
is not a member of the golf club, he or she is charged an additional fee of either $15 on a
weekday or $20 on a weekend. Notice that the golfer’s membership status determines whether
the golfer is charged an additional amount. If the golfer is not a member of the club, then
whether it’s either a weekday or a weekend determines the appropriate additional amount. In
this case, the decision regarding the membership status is the primary decision, while the
decision regarding where the day falls in the week is the secondary decision. The pseudocode
shown in Figure 5-10 represents a correct algorithm for the golf fee procedure. An algorithm is
the set of step-by-step instructions for accomplishing a task.

Problem Specification

Harper Golf Club wants an application that displays the appropriate fee to charge a golfer.
The club’s fees are as follows:

Basic fee for members and non-members $25
Additional fee for non-members on a weekday 15
Additional fee for non-members on a weekend 20

Correct algorithm
1. golf fee = 25

2. if non-member
if weekday
add 15 to the golf fee
else
add 20 to the golf fee
end if
end if

3. display the golf fee

Figure 5-10 A correct algorithm for the golf fee procedure
© 2013 Cengage Learning

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Logic Errors in Selection Structures

You can verify that the algorithm in Figure 5-10 works correctly by desk-checking it. Desk-
checking refers to the process of reviewing the algorithm while seated at your desk rather than
in front of the computer. Desk-checking is also called hand-tracing because you use a pencil and
paper to follow each of the algorithm’s instructions by hand. You desk-check an algorithm to
verify that it is not missing any instructions and that the existing instructions are correct and in
the proper order.

Before you begin the desk-check, you first choose a set of sample data for the input values,
which you then use to manually compute the expected output values. Figure 5-11 shows the
input values you will use to desk-check Figure 5-10’s algorithm four times; it also includes the
expected output values.

Desk-check Membership Status Day Information Expected Golf Fee
1 member weekday $25
2 member weekend $25
3 non-member weekday $40
4 non-member weekend $45

Figure 5-11 Sample data and expected results for the algorithm shown in Figure 5-10
© 2013 Cengage Learning

Step 1 in Figure 5-10’s algorithm assigns $25 as the golf fee. Next, the condition in the outer
selection structure in Step 2 determines whether the golfer is not a club member. For the first
desk-check, the condition evaluates to False because the golfer is a club member. As a result, the
outer selection structure ends. Notice that the nested selection structure is not processed when
the outer selection structure’s condition is false. This is because the day of the week information
is not important when the golfer is a club member. The last step in the algorithm displays the
expected golf fee of $25.

Now we'll desk-check the algorithm using the second set of test data: member and weekend.
Step 1 in Figure 5-10’s algorithm assigns $25 as the golf fee. Next, the condition in the outer
selection structure in Step 2 determines whether the golfer is not a club member. Here again,
the condition evaluates to False because the golfer is a club member. As a result, the outer
selection structure ends. The last step in the algorithm displays the expected golf fee, $25.

Next, we'll desk-check the algorithm using the third set of test data: non-member and weekday.
Step 1 in Figure 5-10’s algorithm assigns $25 as the golf fee. Next, the condition in the outer
selection structure in Step 2 determines whether the golfer is not a club member. In this case,
the condition evaluates to True, so the nested selection structure’s condition checks whether the
person is golfing on a weekday. This condition also evaluates to True, so the nested selection
structure’s true path adds $15 to the basic golf fee, giving $40; after doing this, both selection
structures end. The last step in the algorithm displays the expected golf fee, $40.

Finally, we'll desk-check the algorithm using the fourth set of test data: non-member and
weekend. Step 1 in Figure 5-10’s algorithm assigns $25 as the golf fee. Next, the condition in the
outer selection structure in Step 2 determines whether the golfer is not a club member. The
condition evaluates to True, so the nested selection structure’s condition checks whether the
person is golfing on a weekday. This condition evaluates to False, so the nested selection
structure’s false path adds $20 to the basic golf fee, giving $45; after doing this, both selection
structures end. The last step in the algorithm displays the expected golf fee of $45. The results of
desk-checking the algorithm using the data from Figure 5-11 agree with the expected values also
shown in the figure.

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

ChO5A-
Harper
Correct
Desk-Check
video

267

ChObAFirst
Logic Error
Desk-Check
video

More on the Selection Structure

First Logic Error: Using a Compound Condition Rather Than a Nested
Selection Structure

A common error made when writing selection structures is to use a compound condition in the
outer selection structure when a nested selection structure is needed. Figure 5-12 shows an
example of this error in the golf fee algorithm. The correct algorithm is included in the figure for
comparison. Notice that the incorrect algorithm uses one selection structure rather than two
selection structures and that the selection structure contains a compound condition. Consider
why the selection structure in the incorrect algorithm cannot be used in place of the selection
structures in the correct one. In the correct algorithm, the outer and nested selection structures
indicate that a hierarchy exists between the membership status and day of the week decisions:
The status decision is always made first, followed by the day of the week decision (if necessary).
In the incorrect algorithm, the compound condition indicates that no hierarchy exists between
the status and day decisions. Consider how this difference changes the algorithm.

Correct algorithm Incorrect algorithm
1. golf fee = 25 1. golf fee = 25 uses 2 compound
2. if non-member 2. if non-member and weekday a nested selection
if weekday add 15 to the golf fee structure
add 15 to the golf fee else
else add 20 to the golf fee
add 20 to the golf fee end if
end if 3. display the golf fee
end if
3. display the golf fee

Figure 5-12 Correct algorithm and an incorrect algorithm containing the first logic error
© 2013 Cengage Learning

To understand why the incorrect algorithm in Figure 5-12 will not work correctly, you will desk-
check it using the same test data used to desk-check the correct algorithm. Step 1 in the
incorrect algorithm assigns $25 as the golf fee. Next, the compound condition in Step 2
determines whether the golfer is not a club member and, at the same time, the person is golfing
on a weekday. Using the first set of test data (member and weekday), the compound condition
evaluates to False because the golfer is a club member. As a result, the selection structure’s false
path adds $20 to the golf fee, giving $45, and then the selection structure ends. The last step in
the incorrect algorithm displays $45 as the golf fee, which is not correct; the correct fee is $25, as
shown earlier in Figure 5-11.

Now we'll desk-check the incorrect algorithm using the second set of test data: member and
weekend. Step 1 in the incorrect algorithm assigns $25 as the golf fee. Next, the compound
condition in Step 2 determines whether the golfer is not a club member and, at the same time,
the person is golfing on a weekday. Here again, the compound condition evaluates to False: this
time because the golfer is a club member and is not golfing on a weekday. As a result, the
selection structure’s false path adds $20 to the golf fee, giving $45, and then the selection
structure ends. The last step in the incorrect algorithm displays $45 as the golf fee, which is not
correct; the correct fee is $25, as shown earlier in Figure 5-11.

Next, we'll desk-check the incorrect algorithm using the third set of test data: non-member and
weekday. Step 1 in the incorrect algorithm assigns $25 as the golf fee. Next, the compound
condition in Step 2 determines whether the golfer is not a club member and, at the same time,
the person is golfing on a weekday. In this case, the compound condition evaluates to True, so
the selection structure’s true path adds $15 to the golf fee, giving $40, and then the selection
structure ends. The last step in the incorrect algorithm displays the expected golf fee, $40. Even

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Logic Errors in Selection Structures

though its selection structure is phrased incorrectly, the incorrect algorithm produces the same
result as the correct algorithm using the third set of test data.

Finally, we'll desk-check the incorrect algorithm in Figure 5-12 using the fourth set of test
data: non-member and weekend. Step 1 in the incorrect algorithm assigns $25 as the golf fee.
Next, the compound condition in Step 2 determines whether the golfer is not a club member
and, at the same time, the person is golfing on a weekday. The compound condition evaluates to
False because the person is not golfing on a weekday. As a result, the selection structure’s false
path adds $20 to the golf fee, giving $45, and then the selection structure ends. The last step in
the incorrect algorithm displays the expected golf fee, $45. Here again, even though its selection
structure is phrased incorrectly, the incorrect algorithm produces the same result as the
correct algorithm using the fourth set of test data.

Figure 5-13 shows the desk-check table for the incorrect algorithm from Figure 5-12.
As indicated in the figure, the results of the third and fourth desk-checks are correct, but the
results of the first and second desk-checks are not correct.

Membership Day Expected
Desk-check Status Information Golf Fee Actual Result
1 member weekday $25 $45 (incorrect)
2 member weekend $25 $45 (incorrect)
3 non-member weekday $40 $40 (correct)
4 non-member weekend $45 $45 (correct)

Figure 5-13 Results of desk-checking the incorrect algorithm from Figure 5-12
© 2013 Cengage Learning

The importance of desk-checking an algorithm several times using different data cannot be
emphasized enough. In this case, if you had used only the last two sets of data to desk-check the
incorrect algorithm, you would not have discovered that the algorithm did not work as
intended.

Second Logic Error: Reversing the Outer and Nested Decisions

Another common error made when writing selection structures is to reverse the decisions made
by the outer and nested structures. Figure 5-14 shows an example of this error in the golf fee
algorithm. The correct algorithm is included in the figure for comparison. Unlike the selection
structures in the correct algorithm, which determine the membership status before determining
the day of the week, the selection structures in the incorrect algorithm determine the day of the
week before determining the membership status. Consider how this difference changes the
algorithm. In the correct algorithm, the selection structures indicate that only non-members pay

an additional amount. The selection structures in the incorrect algorithm, on the other hand, ee 4 gzgg:d
indicate that the additional amount is paid by anyone golfing on a weekday. Figure 5-15 shows Logic Error
the results of desk-checking the incorrect algorithm. As indicated in the figure, only two of the Desk-Check
four results are correct. video

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

270

More on the Selection Structure

Correct algorithm Incorrect algorithm
1. golf fee = 25 1. golf fee = 25
2. if non-member 2. if weekday the outer and nested
if weekday if non-member decisions are reversed
add 15 to the golf fee add 15 to the golf fee
else else
add 20 to the golf fee add 20 to the golf fee
end if end if
end if end if
3. display the golf fee 3. display the golf fee

Figure 5-14 Correct algorithm and an incorrect algorithm containing the second logic error

© 2013 Cengage Learning

Membership Day Expected
Desk-check Status Information Golf Fee Actual Result
1 member weekday $25 $45 (incorrect)
2 member weekend $25 $25 (correct)
3 non-member weekday $40 $40 (correct)
4 non-member weekend $45 $25 (incorrect)

Figure 5-15 Results of desk-checking the incorrect algorithm from Figure 5-14
© 2013 Cengage Learning

Third Logic Error: Using an Unnecessary Nested Selection Structure

Another common error made when writing selection structures is to include an unnecessary
nested selection structure. In most cases, a selection structure containing this error will still
produce the correct results. However, it will do so less efficiently than selection structures that
are properly structured. Figure 5-16 shows an example of this error in the golf fee algorithm.
The correct algorithm is included in the figure for comparison. Unlike the correct algorithm,
which contains two selection structures, the inefficient algorithm contains three selection
structures. The condition in the third selection structure determines whether the day is a
weekend and is processed only when the second selection structure’s condition evaluates to
False. In other words, it is processed only when the day is not a weekday. However, if the day is
not a weekday, then it would have to be a weekend, so the third selection structure is

ChO5A-Third

Logic Error unnecessary. Figure 5-17 shows the results of desk-checking the inefficient algorithm. Although
Desk-Check the results of the four desk-checks are correct, the result of the second desk-check is obtained in
video a less efficient manner.

Correct algorithm
1. golf fee = 25

2. if non-member
if weekday
add 15 to the golf fee
else
add 20 to the golf fee
end if
end if
3. display the golf fee

Inefficient algorithm
1. golf fee = 25
2. if non-member
if weekday
add 15 to the golf fee
else
if weekend
add 20 to the golf fee
end if
end if
end if
3. display the golf fee

unnecessary nested
selection structure

Figure 5-16 Correct algorithm and an inefficient algorithm containing the third logic error

© 2013 Cengage Learning

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Logic Errors in Selection Structures

Membership Day Expected
Desk-check Status Information Golf Fee Actual Result
1 member weekday $25 $25 (correct)
2 member weekend $25 $25 (correct) .
3 non-member weekday $40 $40 (correct) result obtained
4 non-member weekend $45 $45 (correct) 'r: :n'r?;s efficient
Figure 5-17 Results of desk-checking the inefficient algorithm from Figure 5-16
Credit to Come
Fourth Logic Error: Including an Unnecessary Comparison
in a Condition
Another common error made when writing selection structures is to include an unnecessary
comparison in a condition. Like selection structures containing the third logic error, selection
structures containing this error also produce the correct results in an inefficient way. We'll o0 ChOBA.
demonstrate this error using the bonus rate procedure created for the Carrington Company. B3V Fourth Logic
Figure 5-18 shows the problem specification, a correct algorithm, and an inefficient algorithm Error Desk-
that contains the fourth logic error. Check video
Problem Specification
Carrington Company wants an application that displays the rate to use when calculating a salesperson’s
bonus. The rates are as follows:
Sales (S) Bonus Rate
Less than O 0
0-5,000 1%
Over 5,000 1.5%
In Fi 518,
Correct algorithm Inefficient algorithm _ ;oulirsrg can
1. ifsales <0 1. ifsales <0 © \write the nested
rate =0 rate = 0 unnecessary selection
else else comparison structure’s if
if salei <_= g(iOO if salei >_= (())land sales <= 5000 clause in the correct
elsera €= elsera €= algorithm as follows: if
rate = 015 rate = 015 sales > 5000. However,
end if o end if o you then would need to
end if end if reverse the instructions
2. display the rate 2. display the rate ;'aizz frue and false

Figure 5-18 Problem specification, a correct algorithm, and an inefficient algorithm
© 2013 Cengage Learning

Unlike the nested selection structure in the correct algorithm, the nested selection structure in
the inefficient algorithm contains a compound condition that compares the sales to both 0 and
5000. Consider why the comparison to 0 in the compound condition is unnecessary. If the sales
are less than 0, the outer selection structure’s condition will evaluate to True. As a result, the
outer selection structure’s true path will assign the number 0 as the rate before the outer

selection structure ends. In other words, sales that are less than 0 will be handled by the outer
selection structure’s true path. The nested selection structure’s condition will be evaluated only

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

272

More on the Selection Structure

when the sales are greater than or equal to 0. Therefore, the comparison to 0 is unnecessary in the
compound condition. Figure 5-19 shows the results of desk-checking the correct and inefficient
algorithms. Although the results of the three desk-checks for the inefficient algorithm are correct,
the results of the second and third desk-checks are obtained in a less efficient manner.

Correct

Algorithm Expected Actual

Desk-check Sales Rate Result

1 -300 0 0 (correct)

2 1000 .01 .01 (correct)

3 5001 .015 .015 (correct)

Inefficient

Algorithm Expected Actual

Desk-check Sales Rate Result

1 -300 0 0 (correct)

2 1000 .01 .01 (correct) results obtained in
3 5001 015 .015 (correct) | | a less efficient manner

Figure 5-19 Results of desk-checking the algorithms from Figure 5-18
© 2013 Cengage Learning

Note: You have learned a lot so far in this lesson. You may want to take a break at this point
before continuing.

Multiple-Alternative Selection Structures

Figure 5-20 shows the problem specification for the Allen High School application. The
application’s solution requires a selection structure that can choose from several different
letter grades. As the figure indicates, when the letter grade is A, the selection structure should
display the message “Excellent”. When the letter grade is B, the selection structure should
display the message “Above Average”, and so on. Selection structures containing several
alternatives are referred to as multiple-alternative selection structures or extended selection
structures.

Problem Specification

Mrs. Jackson teaches math at Allen High School. She wants an application that displays a message based
on a letter grade she enters. The valid letter grades and their corresponding messages are shown here.
If the letter grade is not valid, the application should display the “Incorrect Grade” message.

Letter grade Message

Excellent
Above Average
Average
Below Average
Below Average

MO O W >

Figure 5-20 Problem specification for the Allen High School problem
© 2013 Cengage Learning

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Multiple-Alternative Selection Structures

Figure 5-21 shows the pseudocode and flowchart for a procedure in the Allen High School
application. The diamond in the flowchart represents a multiple-alternative selection structure’s
condition. Recall that the diamond is also used to represent the condition in both the single-
alternative and dual-alternative selection structures. However, unlike the diamond in both of
those selection structures, the diamond in a multiple-alternative selection structure has several
flowlines (rather than only two flowlines) leading out of the symbol. Each flowline represents a
possible path and must be marked appropriately, indicating the value or values necessary for the
path to be chosen.

—_

change the grade entered by the user to uppercase
2. if the grade is one of the following:
A display “Excellent”
B display “Above Average”
C display “Average”
D,F display “Below Average”
else
display “Incorrect Grade”
end if

change the grade entered
by the user to uppercase

grade
A B C D,F Other
. display . display display
glsplay " “Above 9|splay " “Below “Incorrect
Excellent " Average ” "
Average Average Grade

(stop)

Figure 5-21 Pseudocode and flowchart containing a multiple-alternative selection structure
© 2013 Cengage Learning

Figure 5-22 shows two versions of the code corresponding to the multiple-alternative selection
structure from Figure 5-21; both versions use If...Then...Else statements. Although both
versions produce the same result, Version 2 provides a more convenient way of coding a
multiple-alternative selection structure.

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

More on the Selection Structure

Version 1
Dim strGrade As String

strGrade = txtGrade.Text.ToUpper
If strGrade = "A" Then
Tb1Msg.Text = "Excellent"
Else
If strGrade = "B" Then
Tb1Msg.Text = "Above Average"
Else
If strGrade = "C" Then
TbTMsg.Text = "Average"
Else
If strGrade = "D"
Tb1Msg.Text
Else
Tb1Msg.Text
End If
End If
End If
End If

274

you get here when
the grade is not A,
B, or C

four End If clauses
are required

Version 2
Dim strGrade As String

strGrade = txtGrade.Text.ToUpper

If strGrade = "A" Then
Tb1Msg.Text = "Excellent"

ElseIf strGrade = "B" Then
Tb1Msg.Text = "Above Average"

ElseIf strGrade = "C" Then
1b1Msg.Text = "Average"

ElseIf strGrade =
Tb1Msg.Text =
Else
Tb1Msg.Text =
End If

"Below Average"

"Incorrect Grade"

"Incorrect Grade"

"D" OrElse strGrade =

you get here when
the grade is not A

you get here when
the grade is not A
and not B

OrElse strGrade = "F" Then
"Below Average"

you get here when
the grade is not A,
B,C,D,orF

"F" Then

only one End If
clause is required

Figure 5-22 Two versions of the code containing a multiple-alternative selection structure

© 2013 Cengage Learning

START HERED>

To code and then test the Allen High School application:

1. Open the Grade Solution (Grade Solution.sln) file contained in the VB2012\Chap05\
Grade Solution-If folder. If necessary, open the designer window.

2. Open the Code Editor window. Replace <your name> and <current date> in the
comments with your name and the current date, respectively.

3. Locate the btnDisplay_Click procedure. Enter the code from Version 2 in Figure 5-22.

4.

Save the solution and then start the application. Type the letter a and then press Enter.
The “Excellent” message appears in the interface. See Figure 5-23.

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

The Select Case Statement

Letter grade: El Excellent

Display | Exit \

Figure 5-23 Excellent message shown in the interface

5. On your own, test the application using the following grades: b, ¢, d, x, and f. When
you are finished testing, click the Exit button. Close the Code Editor window and then
close the solution.

]
YOU DO IT 2!

Create a Visual Basic Windows application named YouDolt 2. Save the application in the
VB2012\Chap05 folder. Add a text box, a label, and a button to the form. The button’s
Click event procedure should display (in the label) either the price of a concert ticket or
an error message. The ticket price is based on the code entered in the text box, as
shown here. Code the procedure. Save the solution and then start and test the applica-
tion. Close the solution.

Code Ticket price

1 $15
2 S15
3 $25
4 $35
5 $37
Other Invalid code

The Select Case Statement

When a multiple-alternative selection structure has many paths from which to choose, it is often
simpler and clearer to code the selection structure using the Select Case statement rather than
several If...Then...Else statements. The Select Case statement’s syntax is shown in Figure 5-24.
The figure also shows how you can use the statement to code the multiple-alternative selection
structure from Figure 5-22.

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

276

More on the Selection Structure

Select Case Statement

Syntax
Select Case selectorExpression
Case expressionList]
instructions for the first Case
[Case expressionList2
instructions for the second Casel
[Case expressionListN
instructions for the Nth Casel
[Case Else
instructions for when the selectorExpression does not match any of the expressionLists]
End Select

Example
Dim strGrade As String

strGrade = txtGrade.Text.ToUpper
Select Case strGrade

Case "A"
Tb1Msg.Text = "Excellent"
Case "B"
TbTMsg.Text = "Above Average"
Case "C"
TbTMsg.Text = "Average" the selectorExpression
Case "D", "F" needs to match only
1bIMsg.Text = "Below Average" one of these values
Case Else
TbTMsg.Text = "Incorrect Grade"
End Select

Figure 5-24 Syntax and an example of the Select Case statement
© 2013 Cengage Learning

The Select Case statement begins with the keywords Select Case, followed by a
selectorExpression. The selectorExpression can contain any combination of variables, constants,
keywords, functions, methods, operators, and properties. In the example in Figure 5-24, the
selectorExpression is a String variable named strGrade. The Select Case statement ends with
the End Select clause. Between the Select Case and End Select clauses are the individual Case
clauses. Each Case clause represents a different path that the computer can follow. It is
customary to indent each Case clause and the instructions within each Case clause, as shown in
the figure. You can have as many Case clauses as necessary in a Select Case statement. However,
if the Select Case statement includes a Case Else clause, the Case Else clause must be the last
clause in the statement.

Each of the individual Case clauses, except the Case Else clause, must contain an expressionList,
which can include one or more expressions. To include more than one expression in an
expressionList, you separate each expression with a comma, as in the expressionList Case "D",
"F". The selectorExpression needs to match only one of the expressions listed in an
expressionList. The data type of the expressions must be compatible with the data type of the
selectorExpression. If the selectorExpression is numeric, the expressions in the Case clauses
should be numeric. Likewise, if the selectorExpression is a string, the expressions should be
strings. In the example in Figure 5-24, the selectorExpression (strGrade) is a string, and so are
the expressions "A", "B", "C", "D", and "F".

The Select Case statement looks more complicated than it really is. When processing the
statement, the computer simply compares the value of the selectorExpression with the value or

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

The Select Case Statement

values listed in each of the Case clauses, one Case clause at a time beginning with the first.

If the selectorExpression matches at least one of the values listed in a Case clause, the computer
processes only the instructions contained in that Case clause. After the Case clause instructions
are processed, the Select Case statement ends and the computer skips to the instruction
following the End Select clause. For instance, if the strGrade variable in the example shown in
Figure 5-24 contains the letter A, the computer will display the “Excellent” message and then
skip to the instruction following the End Select clause. Similarly, if the strGrade variable
contains the letter F, the computer will display the “Below Average” message and then skip to
the instruction following the End Select clause. Keep in mind that if the selectorExpression
matches a value in more than one Case clause, only the instructions in the first match’s Case
clause are processed.

If the selectorExpression does 7ot match any of the values listed in any of the Case clauses, the
next instruction processed depends on whether the Select Case statement contains a Case Else
clause. If there is a Case Else clause, the computer processes the instructions in that clause and
then skips to the instruction following the End Select clause. (Recall that the Case Else clause
and its instructions immediately precede the End Select clause.) If there isn’t a Case Else clause,
the computer just skips to the instruction following the End Select clause.

To use the Select Case statement to code the Allen High School application:

1. Open the Grade Solution (Grade Solution.sln) file contained in the VB2012\Chap05\
Grade Solution-Select Case folder. If necessary, open the designer window.

2. Open the Code Editor window. Replace <your name> and <current date> in the
comments with your name and the current date, respectively.

3. Locate the btnDisplay_Click procedure. Enter the code shown in Figure 5-24.

4. Save the solution and then start the application. Type the letter a and then press Enter.
The “Excellent” message appears in the interface, as shown earlier in Figure 5-23.

5. On your own, test the application using the following grades: b, ¢, d, x, and f. When you
are finished testing, click the Exit button. Close the Code Editor window and then close
the solution.

Specifying a Range of Values in a Case Clause

In addition to specifying one or more discrete values in a Case clause, you also can specify

a range of values, such as the values 1 through 4 or values greater than 10. You do this using
either the keyword To or the keyword Is. You use the To keyword when you know both the
upper and lower values in the range. The Is keyword is appropriate when you know only one
end of the range (either the upper or lower end). Figure 5-25 shows the syntax for using both
keywords. It also contains an example of a Select Case statement that assigns a price based

on the number of items ordered. According to the price chart shown in the figure, the price for
1 to 5 items is $25 each. Using discrete values, the first Case clause would look like this: Case 1,
2, 3, 4, 5. However, a more convenient way of writing that range of numbers is to use the To
keyword, like this: Case 1 To 5. The expression 1 To 5 specifies the range of numbers from 1 to 5,
inclusive. The expression 6 To 10 in the second Case clause in the example specifies the range of
numbers from 6 through 10. Notice that both Case clauses state both the lower (1 and 6) and
upper (5 and 10) values in each range.

The third Case clause, Case Is > 10, contains the Is keyword rather than the To keyword. Recall
that you use the Is keyword when you know only one end of the range of values. In this case,
you know only the lower end of the range, 10. The Is keyword is always used in combination
with one of the following comparison operators: =, <, <=, >, >=, <>. The Case Is > 10 clause
specifies all numbers greater than the number 10. Because intQuantity is an Integer variable,
you also can write this Case clause as Case Is >=11. The Case Else clause in the example in

277
o0 ChO5A-
u Select Case
video

<«(START HERE

If you neglect to
type the Is
keyword in an
expressionList—
for example, if
you enter Case > 10—
the Code Editor will
change the clause to

Case Is > 10.

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

278

Be sure to test
your code
thoroughly
because the
computer will not
display an error message
when the value preceding
To in a Case clause is
greater than the value
following To. Instead, the
Select Case statement
will not give the correct
results.

More on the Selection Structure

Figure 5-25 is processed only when the intQuantity variable contains a value that is not
included in any of the previous Case clauses.

Specifying a Range of Values in a Case Clause

Syntax
Case smallest value in the range To largest value in the range

Case Is comparisonOperator value

Example
The ABC Corporation’s price chart is shown here:

Quantity ordered Price per item
1-5 $25

6-10 $23

More than 10 $20

Less than 1 S0

Select Case intQuantity
Case 1 To 5
intPrice = 25
Case 6 To 10
intPrice = 23
Case Is > 10
intPrice = 20
Case Else
intPrice = 0
End Select

Figure 5-25 Syntax and an example of specifying a range of values
© 2013 Cengage Learning

To code and then test the ABC Corporation application:

1. Open the ABC Solution (ABC Solution.sln) file contained in the VB2012\Chap05\ABC
Solution folder. If necessary, open the designer window.

2. Open the Code Editor window. Replace <your name> and <current date> in the
comments with your name and the current date, respectively.

3. Locate the btnDisplay_Click procedure. Click the blank line below the ' determine
the price per item comment and then enter the Select Case statement shown in
Figure 5-25.

4. Save the solution and then start the application. Type 7 in the Quantity ordered box and
then press Enter. $23.00 appears in the Price per item box. See Figure 5-26.

Quantity ordered:

Price per item:

$23.00

Figure 5-26 Price per item shown in the interface

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Lesson A Key Terms

5. On your own, test the application using 6, 11, and 0 as the quantity ordered. When you
are finished testing, click the Exit button. Close the Code Editor window and then close
the solution.

]
YOU DO IT 3!

Create a Visual Basic Windows application named YouDolt 3. Save the application in the
VB2012\Chap05 folder. Add a text box, a label, and a button to the form. The button’s
Click event procedure should display (in the label) either the price of a concert ticket or
an error message. The ticket price is based on the code entered in the text box, as
shown here. Code the procedure using the Select Case statement. Save the solution and
then start and test the application. Close the solution.

Code Ticket price

1 S15
2 S15
3 $25
4 $35
5 $37
Other Invalid code

Lesson A Summary

e To create a selection structure that evaluates both a primary and a secondary decision:

Place (nest) the secondary decision’s selection structure within either the true or false path of
the primary decision’s selection structure.

e To verify that an algorithm works correctly:
Desk-check (hand-trace) the algorithm.
e To code a multiple-alternative selection structure:
Use either If...Then...Else statements or the Select Case statement.

e To specify a range of values in a Select Case statement’s Case clause:
Use the To keyword when you know both the upper and lower values in the range. Use the
Is keyword when you know only one end of the range. The Is keyword is used in
combination with one of the following comparison operators: =, <, <=, >, >=, <>.

Lesson A Key Terms

Algorithm—a set of step-by-step instructions for accomplishing a task

Desk-checking—the process of using sample data to manually walk through the steps in an
algorithm; also called hand-tracing

Extended selection structures—another name for multiple-alternative selection structures

Hand-tracing—another term for desk-checking

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or dupli

More on the Selection Structure

Multiple-alternative selection structures—selection structures that contain several alternatives;
also called extended selection structures; can be coded using either If...Then...Else statements
or the Select Case statement

Nested selection structure—a selection structure that is wholly contained (nested) within either
the true or false path of another selection structure

Select Case statement—used to code a multiple-alternative selection structure in Visual Basic

Lesson A Review Questions

Use the code shown in Figure 5-27 to answer Review Questions 1 through 4.

If intNum > 1000 Then
intNum = intNum * 3
ElseIf intNum > 500 Then
intNum = intNum * 2
End If

Figure 5-27 Code for Review Questions 1 through 4
© 2013 Cengage Learning

1. If the intNum variable contains the number 600, what value will be in the variable after
the code in Figure 5-27 is processed?

a. 0

b. 600
c. 1200
d. 1800

2. If the intNum variable contains the number 1000, what value will be in the variable after
the code in Figure 5-27 is processed?

a. 0

b. 1000
c. 2000
d. 3000

3. If the intNum variable contains the number 500, what value will be in the variable after
the code in Figure 5-27 is processed?

a. 0

b. 500
c. 1000
d. 1500

4. If the intNum variable contains the number 2000, what value will be in the variable after
the code in Figure 5-27 is processed?

a. 0

b. 2000
c. 4000
d. 6000

earning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Lesson A Review Questions

Use the code shown in Figure 5-28 to answer Review Questions 5 through 8.

If intId = 1 Then
Tb1Name.Text = "Janet"
ElseIf intId = 2 Then
TbTName.Text = "Mark"
ElseIf intId = 3 OrElse intId = 4 Then
Tb1Name.Text = "Jerry"
Else
Tb1Name.Text = "Sue"
End If

Figure 5-28 Code for Review Questions 5 through 8

© 2013 Cengage Learning

5. What will the code in Figure 5-28 display when the intId variable contains
the number 2?

a. Janet
b. Jerry
c¢. Mark
d. Sue

6. What will the code in Figure 5-28 display when the intId variable contains
the number 4?

a. Janet
b. Jerry
c¢. Mark
d. Sue

7. What will the code in Figure 5-28 display when the intId variable contains the

number 3?
a. Janet
b. Jerry
c. Mark
d. Sue
8. What will the code in Figure 5-28 display when the intId variable contains the

number 8?
a. Janet
b. Jerry
c. Mark
d. Sue

9. A nested selection structure can appear

a. only in an outer selection structure’s false path
b. only in an outer selection structure’s true path

c. in either an outer selection structure’s true path or its false path

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or dupli

More on the Selection Structure

10. Which of the following Case clauses is valid in a Select Case statement whose
selectorExpression is an Integer variable named intCode?
a. CaseIs>7
b. Case3, 5
c. CaselTo4

d: all of the above

Use the code shown in Figure 5-29 to answer Review Questions 11 through 13.

Select Case 1intId
Case 1
TbTName.Text
Case 2 To 4
TbTName.Text
Case 5, 7
TbTName.Text
Case Else
TbTName.Text
End Select

"Janet"

llMarkll

llJerryll

llSuell

Figure 5-29 Code for Review Questions 11 through 13

© 2013 Cengage Learning

11. What will the code in Figure 5-29 display when the intId variable contains the

number 2?
a. Janet
b. Mark
c. Jerry
d. Sue
12. What will the code in Figure 5-29 display when the intId variable contains the
number 3?
a. Janet
b. Mark
c. Jerry
d. Sue
13. What will the code in Figure 5-29 display when the intId variable contains the
number 6?
a. Janet
b. Mark
c. Jerry
d. Sue

14. List the four errors commonly made when writing selection structures. Which errors
produce the correct results, but in a less efficient way?

15. Explain the meaning of the term “desk-checking.”

earning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Lesson A Exercises

Lesson A Exercises

1. Travis is standing in front of two containers: one marked Trash and the other marked INTRODUCTORY
Recycle. In his right hand, he is holding a bag that contains either trash or recyclables.
Travis needs to lift the lid from the appropriate container (if necessary), then drop the
bag in the container, and then put the lid back on the container. Write an appropriate
algorithm, using only the instructions listed in Figure 5-30.

else

end if

drop the bag of recyclables in the Recycle container

drop the bag of trash in the Trash container

if the bag contains trash

if the lid is on the Recycle container

if the lid is on the Trash container

lift the Recycle container’s lid using your left hand

lift the Trash container’s lid using your left hand

put the lid back on the Recycle container using your left hand
put the lid back on the Trash container using your left hand

Figure 5-30 Instructions for Exercise 1
© 2013 Cengage Learning

2. Caroline is at a store’s checkout counter. She’d like to pay for her purchase using one of INTRODUCTORY
her credit cards—either her Discovery card or her Vita card, but preferably her
Discovery card. However, she is not sure whether the store accepts either card. If the
store doesn't accept either card, she will need to pay cash for the items. Write an
appropriate algorithm, using only the instructions listed in Figure 5-31.

else

end if

pay for your items using your Vita card

pay for your items using your Discovery card

pay for your items using cash

if the store accepts the Vita card

if the store accepts the Discovery card

ask the store clerk whether the store accepts the Vita card

ask the store clerk whether the store accepts the Discovery card

Figure 5-31 Instructions for Exercise 2
© 2013 Cengage Learning

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or dupli

INTRODUCTORY

INTRODUCTORY

INTRODUCTORY

INTRODUCTORY
INTRODUCTORY

More on the Selection Structure

3. What is wrong with the algorithm shown in Figure 5-32?

1. shoot the basketball
2. if the basketball went through the hoop
say ‘I did it!”
else
if the basketball did not go through the hoop
say “Missed it!”
end if
end if

Figure 5-32 Algorithm for Exercise 3
© 2013 Cengage Learning

4. Write the Visual Basic code for the algorithm shown in Figure 5-10 in this lesson.
The membership status (either N for non-member or M for member) is stored, in
uppercase, in a variable named strStatus. The day of the week information (either D
for weekday or E for weekend) is stored, in uppercase, in a variable named strDay.
Assign the fee to a variable named intFee. Display the fee in the IblFee control.

5. Write the Visual Basic code that displays the message “Highest honors” when a
student’s test score is 90 or above. When the test score is 70 through 89, display
the message “Good job”. For all other test scores, display the message “Retake the test”.
The test score is stored in the intScore variable. Display the appropriate message
in the IbIMsg control. Code the multiple-alternative selection structure using the
If...Then...Else statement.

6. Rewrite the code from Exercise 5 using the Select Case statement.

7. Open the Movie Ticket Solution (Movie Ticket Solution.sln) file contained in the
VB2012\Chap05\Movie Ticket Solution folder. If necessary, open the designer window.
Use the If...Then...Else statement to code the If...Then...Else button’s Click event
procedure. Use the Select Case statement to code the Select Case button’s Click
event procedure. Both procedures should display the appropriate ticket price, which
is based on the customer’s age as shown here. Save the solution and then start the
application. Test each button’s Click event procedure five times, using the numbers
1, 3, 64, 65, and 70.

Age Price ($)
Under 3 0
3 to 64 9
65 and over 6

earning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Lesson A Exercises

8. Does the algorithm in Figure 5-33 give you the same results as the solution shown in
Figure 5-4 in this lesson? If not, why not?

1. shoot the basketball
2. if the basketball went through the hoop and Maleek was either inside or on the 3-point line
say “l did it!”
say “2 points for me”
else
if Maleek was behind the 3-point line
say ‘| did it!”
say “3 points for me”
else
say “Missed it!”
end if
end if

Figure 5-33 Algorithm for Exercise 8
© 2013 Cengage Learning

9. Does the algorithm in Figure 5-34 give you the same results as the solution shown in
Figure 5-4 in this lesson? If not, why not?

1. shoot the basketball
2. if the basketball did not go through the hoop
say “Missed it!"
else
say ‘| did it
if Maleek was either inside or on the 3-point line
say “2 points for me”
else
say “3 points for me”
end if
end if

Figure 5-34 Algorithm for Exercise 9
© 2013 Cengage Learning

10. Open the Rate Solution (Rate Solution.sln) file contained in the VB2012\Chap05\Rate
Solution folder. If necessary, open the designer window. Use the Select Case statement
to finish coding the Display button’s Click event procedure. Use the partial flowchart
shown in Figure 5-35 as a guide. Display the rate formatted with a percent sign and no
decimal places. Save the solution and then start and test the application. Close the Code
Editor window and then close the solution.

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or dupli

INTERMEDIATE

INTERMEDIATE

INTERMEDIATE

INTERMEDIATE

INTERMEDIATE

INTERMEDIATE

More on the Selection Structure

1,2, 3 4,5 6 7 Other
{ | { ! }
rate = .03 rate = .07 rate = .12 rate = .14 rate = -1
| | | I |
F T

display

“Invalid code”

in IbIRate

display rate in
IblRate

Figure 5-35 Flowchart for Exercise 10
© 2013 Cengage Learning

11.

12.

13.

Open the Kettleson Solution (Kettleson Solution.sln) file contained in the
VB2012\Chap05\Kettleson Solution folder. Open the Code Editor window. The
txtSales control should accept only numbers, the period, and the Backspace key; code
the appropriate procedure. Now, locate the btnCalc_Click procedure. The procedure
calculates a 2% bonus when the annual sales are over $15,000; otherwise, it calculates a
1.5% bonus. Modify the procedure to use the bonus rates shown here. Use the

If... Then...Else statement to code the multiple-alternative selection structure. Save the
solution and then start the application. Test the application seven times, using 2500,
16000, 15000, 15000.99, 20000, 50000, and 65000 as the annual sales. Close the Code
Editor window and then close the solution.

Annual sales ($) Bonus rate
0 — 15,000 1.5%
15,000.01 — 25,000 2%
25,000.01 — 50,000 3%
Over 50,000 4%

In this exercise, you modify the Kettleson application from Exercise 11. Use Windows to
make a copy of the Kettleson Solution folder. Rename the copy Modified Kettleson
Solution. Open the Kettleson Solution (Kettleson Solution.sln) file contained in the
Modified Kettleson Solution folder. Open the designer and Code Editor windows.
Locate the btnCalc_Click procedure. Code the multiple-alternative selection structure
using the Select Case statement rather than the If...Then...Else statement. Save the
solution and then start the application. Test the application seven times, using 2500,
16000, 15000, 15000.99, 20000, 50000, and 65000 as the annual sales. Close the Code
Editor window and then close the solution.

Open the Jerrili Solution (Jerrili Solution.sln) file contained in the VB2012\Chap05\
Jerrili Solution folder. Open the Code Editor window. The txtPrice control should
accept only numbers, the period, and the Backspace key; code the appropriate

earning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

14.

15.

16.

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or dupli

Lesson A Exercises

procedure. The txtQuantity control should accept only numbers and the Backspace key;
code the appropriate procedure. Jerrili's now uses the discount rates shown here. Make
the appropriate modifications to the btnCalc_Click procedure. Save the solution and
then start and test the application. Close the Code Editor window and then close the
solution.

Quantity purchased Discount rate
0-5 0

6 - 15 2%

16 — 30 3%

Over 30 4%

Open the Bonus Solution (Bonus Solution.sln) file contained in the VB2012\Chap05\
Bonus Solution folder. If necessary, open the designer window. Open the Code Editor
window. The Calculate button’s Click event procedure should assign the number 25 to
the intBonus variable when the user enters a sales amount that is greater than or equal
to $100, but less than or equal to $250. When the user enters a sales amount that is
greater than $250, the procedure should assign the number 50 to the variable. When the
user enters a sales amount that is less than $100, the procedure should assign the
number O as the bonus. Use the If...Then...Else statement to code the multiple-
alternative selection structure. Save the solution and then start the application. Test the
Calculate button’s code three times, using sales amounts of 100, 300, and 40. Close the
Code Editor window and then close the solution.

In this exercise, you modify the Bonus application from Exercise 14. Use Windows to
make a copy of the Bonus Solution folder. Rename the copy Modified Bonus Solution.
Open the Bonus Solution (Bonus Solution.sln) file contained in the Modified Bonus
Solution folder. Open the designer and Code Editor windows. Locate the btnCalc_Click
procedure. Code the multiple-alternative selection structure using the Select Case
statement rather than the If... Then...Else statement. Save the solution and then start the
application. Test the Calculate button’s code three times, using sales amounts of 100,
300, and 40. Close the Code Editor window and then close the solution.

Open the Blane Solution (Blane Solution.sln) file contained in the VB2012\Chap05\
Blane Solution folder. If necessary, open the designer window. Blane Ltd. sells
economic development software to cities around the country. The company is having its
annual user’s forum next month. The price per person depends on the number of people
a user registers. The first 3 people a user registers are charged $150 per person.
Registrants 4 through 10 are charged $100 per person. Registrants over 10 are charged
$60 per person. For example, if a user registers 8 people, then the total amount owed is
$950. The $950 is calculated by first multiplying 3 by 150, giving 450. You then multiply
5 by 100, giving 500. You then add the 500 to the 450, giving 950. Display the total
amount owed in the IblTotalOwed control. Use the Select Case statement to complete
the Calculate button’s Click event procedure. Save the solution and then start and test
the application. Close the Code Editor window and then close the solution.

INTERMEDIATE

INTERMEDIATE

ADVANCED

288

More on the Selection Structure

B LESSONB

After studying Lesson B, you should be able to:
e Include a group of radio buttons in an interface
e Designate a default radio button

e Include a check box in an interface

o Compare Boolean values

Modifying the Covington Resort Application

Your task in this chapter is to modify the Covington Resort application created in Chapter 4.
In addition to the previous input data, the application’s interface will now allow the user to
select the number of beds (either two queen beds or one king bed), the view (either standard or
atrium), and whether the guest should be charged a vehicle parking fee of $12.75 per night.
In addition to displaying the total room charge, the sales and lodging tax, the resort fee, and
the total due, the application should now also display the total parking fee. Figure 5-36

shows the application’s revised TOE chart. The changes made to the original TOE chart from
Chapter 4 are shaded in the figure.

Task Object Event

1. Calculate the total room charge, tax, total resort btnCalc Click
fee, total parking fee, and total due

2. Display the calculated amounts in IblRoomChg,
IblTax, IbIResortFee, IblParkingFee, and

IbITotalDue
End the application btnExit Click
Display the total room charge (from btnCalc) IblRoomChg None
Display the tax (from btnCalc) IbITax None
Display the total resort fee (from btnCalc) IbIResortFee None
Display the total parking fee (from btnCalc) IbIParkingFee None
Display the total due (from btnCalc) IbITotalDue None
Specifies whether the guest should be charged chkParkingFee None

the vehicle parking fee

Get and display the number of rooms reserved, txtRooms, txtNights, None
number of nights, number of adults, and number txtAdults, txtChildren,

of children

Get number of beds radQueen, radKing None
Get room view radStandard, radAtrium None

Figure 5-36 Revised TOE chart for the Covington Resort application (continues)

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Modifying the Covington Resort Application

(continued)

Task Object Event

Clear the contents of IbIRoomChg, IbITax, txtRooms, txtNights, TextChanged

IblResortFee, IblParkingFee, and IblTotalDue txtAdults, txtChildren
radQueen, radKing, CheckedChanged
radStandard, radAtrium,
chkParkingFee

Allow the text box to accept only numbers txtRooms, txtNights, KeyPress

and the Backspace key txtAdults, txtChildren

Select the contents of the text box txtRooms, txtNights, Enter
txtAdults, txtChildren

Figure 5-36 Revised TOE chart for the Covington Resort application
© 2013 Cengage Learning

The revised TOE chart indicates that the interface will now include six additional controls: a
label, a check box, and four radio buttons. The additional label will be used to display the total
parking fee. The check box will allow the user to specify whether the vehicle parking fee is
applicable to the guest. Two of the four radio buttons will allow the user to specify the number
of beds, while the other two will allow him or her to specify the room view.

To open the Covington Resort application: <(START HERE

1. If necessary, start Visual Studio 2012. Open the Covington Resort Solution (Covington
Resort Solution.sln) file contained in the VB2012\Chap05\Covington Resort Solution
folder. If necessary, open the designer window. See Figure 5-37. Four of the additional
six controls listed in the TOE chart have already been added to the interface.

The interface also includes two group boxes that will serve as containers for the radio
buttons. (Controls whose purpose is to contain other controls are usually not listed
in the TOE chart.) Missing from the interface are the Atrium radio button and the
Vehicle parking fee check box.

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Ch05B video

More on the Selection Structure

this group box this group box
contains the contains the
radQueen and radStandard
radKing controls control
ol Covington Resort [|- (]
Type View
) Two gueen O Standard
) One king
Mumber of Charges
Rooms: Nights: Room: I:I
Adults (18+): Children: Resortfee: [|
Parking: I:I IbIParkingFee
Total due: I:I
Calculate Exit

Figure 5-37 Partially completed interface for the Covington Resort application

Adding a Radio Button to the Interface

You create a radio button using the RadioButton tool in the toolbox. Radio buttons allow you to
limit the user to only one choice from a group of two or more related but mutually exclusive
choices. Each radio button in an interface should be labeled so the user knows the choice it
represents. You enter the label using sentence capitalization in the radio button’s Text property.
Each radio button should also have a unique access key that allows the user to select the button
using the keyboard. The three-character ID for a radio button’s name is rad.

The Covington Resort interface will use two groups of radio buttons: one for selecting the
number of beds and one for selecting the room view. To include two groups of radio buttons in
an interface, at least one of the groups must be placed within a container, such as a group box.
Otherwise, the radio buttons are considered to be in the same group and only one can be
selected at any one time. In this case, the radio buttons pertaining to the number of beds are
contained in the Type group box, and the radio buttons pertaining to the room view are
contained in the View group box. Placing each group of radio buttons in a separate group box
allows the user to select one button from each group. During run time, you can determine
whether a radio button is selected or unselected by looking at the value in its Checked property.
If the property contains the Boolean value True, the radio button is selected. If it contains

the Boolean value False, the radio button is not selected.

Keep in mind that the minimum number of radio buttons in a group is two; this is because
the only way to deselect a radio button is to select another radio button. The recommended
maximum number of radio buttons in a group is seven. In the next set of steps, you will add the
missing Atrium radio button to the View group box.

To add the Atrium radio button to the View group box:

1. Click the RadioButton tool in the toolbox and then drag the mouse pointer into the
View group box, placing it below the Standard radio button. Release the mouse button.
The RadioButtonl control appears in the group box.

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Modifying the Covington Resort Application

2. Change the RadioButtonl control’s name to radAtrium, and then change its Text
property to A&trium. If necessary, position the radio button as shown in Figure 5-38.

ol Covington Resort [-]

Type View
O Two gueen O Standard
O One king) Atrium ::?(l)(:ﬁ:(r)llum

Figure 5-38 Atrium radio button added to the View group box

It is customary in Windows applications to have one of the radio buttons in each group already
selected when the user interface first appears. The automatically selected radio button is called
the default radio button and is either the radio button that represents the user’s most likely
choice or the first radio button in the group. You designate the default radio button by setting
the button’s Checked property to the Boolean value True.

To designate a default radio button in each group: <(START HERE

1. Click the Two queen radio button and then use the Properties window to set the radio
button’s Checked property to True. When you do this, a colored dot appears inside the
button’s circle to indicate that the button is selected.

2. Now set the Standard radio button’s Checked property to True.

.
GUI DESIGN TIP Radio Button Standards

e Use radio buttons to limit the user to one choice in a group of related but mutually
exclusive choices.

e The minimum number of radio buttons in a group is two and the recommended
maximum number is seven.

o The label in the radio button’s Text property should be entered using sentence
capitalization.

e Assign a unique access key to each radio button in an interface.

o Use a container (such as a group box) to create separate groups of radio buttons.
Only one button in each group can be selected at any one time.

o Designate a default radio button in each group of radio buttons.

Adding a Check Box to the Interface

You create a check box using the CheckBox tool in the toolbox. Like radio buttons, check
boxes can be either selected or deselected. Also like radio buttons, you can determine whether a
check box is selected by looking at the value in its Checked property during run time: A True
value indicates that the check box is selected, whereas a False value indicates that it is not
selected. However, unlike radio buttons, check boxes provide one or more independent and
nonexclusive items from which the user can choose. Whereas only one button in a group

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

More on the Selection Structure

of radio buttons can be selected at any one time, any number of check boxes on a form can be

selected at the same time. Each check box in an interface should be labeled to make its

purpose obvious. You enter the label using sentence capitalization in the check box’s Text

property. Each check box should also have a unique access key that allows the user to select it
ST AR'I- using the keyboard. The three-character ID for a check box’s name is chk.

To add a check box to the interface:

1.

Click the CheckBox tool in the toolbox and then drag the mouse pointer onto the form.
Position it to the right of the View group box and then release the mouse button.

Change the CheckBox1 control’s name to chkParkingFee, and then change its Text
property to &Vehicle parking fee. Position the check box as shown in Figure 5-39.

o Covington Resort B .

T Vi i
YBE few [Vehicle parking fee chkParkingFee

@® Two gueen @® Standard control
) One king O Atrium

Figure 5-39 Vehicle parking fee check box added to the interface

GUI DESIGN TIP Check Box Standards

Use check boxes to allow the user to select any number of choices from a group of
one or more independent and nonexclusive choices.

The label in the check box’s Text property should be entered using sentence
capitalization.

Assign a unique access key to each check box in an interface.

Now that you have completed the user interface, you can lock the controls in place and then set
each control’s TabIndex property.

STARTINERE> To lock the controls and then set each control's Tabindex property:

1.
2.

Right-click the form and then click Lock Controls on the context menu.

Click VIEW on the menu bar and then click Tab Order. Use the information shown in
Figure 5-40 to set the TablIndex values for the controls. (As you learned in Chapter 2,
picture boxes do not have a TabIndex property.) When you are finished, press Esc to
remove the TabIndex boxes from the form.

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Modifying the Calculate Button's Code

ol Covington Resort o=
Elype Hiew B veni _
Vehicle parking fee
m'wo gueen m;tandard
EXbne king m\Irium

ﬂlumber of Elharges

XDms: [Ehts: [6.0111F E
0.1} = & [6.6]
s (18+): [Xdren: Eort fee:
0.5} Eking: | 6.8}

mal due: m

nCalcuIate E Exit

Figure 5-40 Correct Tablndex values

Next, you will start the application to observe how you select and deselect radio buttons and
check boxes.

To select and deselect radio buttons and check boxes: -T HERE

1. Save the solution and then start the application. Notice that the Two queen and
Standard radio buttons are already selected.

2. You can select a different radio button by clicking it. You can click either the circle or
the text that appears inside the radio button. Click the One king radio button. The
computer selects the One king radio button as it deselects the Two queen radio button.
This is because both radio buttons belong to the same group and only one radio button
in a group can be selected at any one time.

3. Click the Atrium radio button. The computer selects the Atrium radio button as it
deselects the Standard radio button. Here again, the radio buttons associated with the
room view belong to the same group, so selecting one deselects the other.

4. You can select a check box by clicking either the square or the text that appears inside
the control. Click the Vehicle parking fee check box to select it. A check mark appears
inside the check box to indicate that the check box is selected. Now, click the Vehicle
parking fee check box again. This time the check box is deselected, as the absence of the
check mark indicates.

5. Click the Exit button.

Modifying the Calculate Button's Code

According to the application’s TOE chart (shown earlier in Figure 5-36), the Calculate button’s
Click event procedure will now need to calculate and display the total parking fee. However, that
is not the only modification you will need to make to the procedure. You will also need to

change the way it calculates the total room charge because the daily room charge now depends
on both the number of beds and the room view. Figure 5-41 shows the modified pseudocode for
the btnCalc_Click procedure. The changes made to the original pseudocode from Chapter 4 are
shaded in the figure. Notice that the outer selection structure’s false path now includes a nested

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

nested dual-
alternative
selection
structure

nested single-
alternative
selection
structure

More on the Selection Structure

dual-alternative selection structure and a nested single-alternative selection structure. Each path
in the nested dual-alternative selection structure also contains a nested dual-alternative selection
structure.

btnCalc Click event procedure
1. store user input (numbers of rooms reserved, nights, adults, and children) in variables
2. calculate the total number of guests = number of adults + number of children
3. calculate the number of rooms required = total number of guests / maximum number
of guests per room, which is 6
4. if the number of rooms reserved < number of rooms required
display the message “You have exceeded the maximum guests per room.”

else
if the Two queen radio button is selected
if the Standard radio button is selected
EEE daily room charge is 5284 nesteq dual-alternative
daily room charge is $325 selection structure
end if
else
if the Standard radio button is selected
BIEE daily room charge is 5290 nested dual-alternative
. . lecti truct
daily room charge is $350 selection structure
end if
end if

calculate total room charge = number of rooms reserved * number of nights

* daily room charge

calculate tax = total room charge * tax rate of 15.25%

calculate total resort fee = number of rooms reserved * number of nights

* daily resort fee of $15

if the Vehicle parking fee check box is selected

calculate total parking fee = number of nights * 12.75

end if

calculate total due = total room charge + tax + total resort fee + total parking fee

display total room charge, tax, total resort fee, total parking fee, and total due
end if

Figure 5-41 Modified pseudocode for the btnCalc_Click procedure
© 2013 Cengage Learning

Figure 5-42 contains a list of the named constants and variables the btnCalc_Click
procedure will now use. The changes made to the list of named constants and variables
from Chapter 4 are shaded in the figure. Notice that the procedure will no longer use the
intDAILY_ROOM_CHG named constant, whose value is $284. In the modified Covington
Resort application, the daily room charge varies depending on the radio buttons selected in
the interface. Therefore, the btnCalc_Click procedure will need four named constants to
represent the four different daily room charges ($284, $325, $290, and $350). The fifth
named constant you will add to the procedure, db1DAILY_PARKING_FEE, will store the daily
vehicle parking fee, which is $12.75. The two additional variables added to the procedure
will store the total parking fee and the appropriate daily room charge.

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Modifying the Calculate Button's Code

Named constants
intMAX_PER_ROOM

Values
6

ntBDATEY-ROOM_EHG— 284
intDAILY_ROOM_CHG_QUEEN_STAND 284
intDAILY_ROOM_CHG_QUEEN_ATRIUM 325
intDAILY_ROOM_CHG_KING_STAND 290
intDAILY_ROOM_CHG_KING_ATRIUM 350

db1DAILY_PARKING_FEE

db1TAX_RATE

intDAILY_RESORT_FEE

strmSG

Variable names
intRoomsReserved
intNights
intAdults
intChildren
intNumGuests

db1RoomsRequired

db1ParkingFee
intDailyRoomChg

intTotalRoomChg

db1Tax

intTotalResortFee

db1TotalDue

12.75

0.1525 (the decimal equivalent of 15.25%)
15

“You have exceeded the maximum guests per
room.”

Stores

the number of rooms to reserve

the number of nights

the number of adult guests

the number of child guests

the total number of guests, which is calculated by adding together the
number of adult guests and the number of child guests

the number of rooms required, which is calculated by dividing the total
number of guests by the maximum guests per room (may contain a
decimal place)

the total parking fee, which is calculated by multiplying the number
of nights by the daily parking fee

the daily room charge, which depends on the number of beds and
room view

the total room charge, which is calculated by multiplying the number
of rooms to reserve by the number of nights and then multiplying the
result by the daily room charge

the tax, which is calculated by multiplying the total room charge by
the tax rate

the total resort fee, which is calculated by multiplying the number of
rooms to reserve by the number of nights and then multiplying the
result by the daily resort fee

the total due, which is calculated by adding together the total

room charge, tax, total resort fee, and total parking fee

Figure 5-42 Modified list of named constants and variables
© 2013 Cengage Learning

<«(START HERE

To begin modifying the btnCalc_Click procedure:

1. Open the Code Editor window. Replace <your name> and <current date> in the
comments with your name and the current date, respectively.

2. Locate the btnCalc_Click procedure. First, you'll modify the Const section of the
procedure. Delete the second Const statement, which says Const intDAILY_ROOM_CHG
As Integer = 284, and then enter the five Const statements indicated in Figure 5-43.

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

More on the Selection Structure

' declare named constants and variables

Const intMAX_PER_ROOM As Integer = 6

Const intDAILY_ROOM_CHG_QUEEN_STAND As Integer = 284
enter these Const intDAILY_ROOM_CHG_QUEEN_ATRIUM As Integer = 325
Const statements Const intDAILY_ROOM_CHG_KING_STAND As Integer = 290

Const intDAILY_ROOM_CHG_KING_ATRIUM As Integer = 358

Const dblDAILY_PARKING_FEE As Double = 12.75
Const dblTAX_RATE As Double = 8.1525
Const intDAILY_RESORT_FEE As Integer = 15

Const strMSG As String = "You have exceeded the maximum
Dim intRoomsReserved As Integer

Figure 5-43 Named constants added to the procedure

3. Next, you'll modify the Dim section of the procedure. Insert a blank line below the
Dim dbTRoomsRequired As DoubTle statement, and then enter the two Dim statements
indicated in Figure 5-44.

Dim intRoomsReserved As Integer
Dim intNights As Integer

Dim intAdults As Integer

Dim intChildren As Integer

Dim intNumGuests As Integer

Dim dblRoomsRequired As Double
enter these Dim Dim dblParkingFee As Double
statements Dim intDailyRoomChg As Integer
Dim intTotalRoomChg As Integer
Dim dblTax As Double

Dim intTotalResortFee As Integer
Dim dblTotalDue As Double

store input in variables

Figure 5-44 Variables added to the procedure

According to the pseudocode shown earlier in Figure 5-41, you need to add three nested dual-
alternative selection structures to the outer selection structure’s false path. The conditions in the
nested selection structures will determine whether the Two queen and Standard radio buttons
are selected. As you learned earlier, you can determine whether a radio button is selected or
unselected by looking at the value in its Checked property. If the property contains the Boolean
value True, the radio button is selected. If it contains the Boolean value False, the radio button is
not selected.

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Modifying the Calculate Button's Code

Comparing Boolean Values

In addition to comparing numbers and strings, you also can compare Boolean values
in If...Then...Else and Select Case statements. Examples of such comparisons are shown
in Figure 5-45.

Comparing Boolean Values

Example 1
If blnIsInsured Then

The condition evaluates to True when the b1nIsInsured variable contains the Boolean value
True; otherwise, it evaluates to False. You also can write the If clause like this: If bTnIsInsured
= True Then.

Example 2
If Not bInIsInsured Then

The condition evaluates to True when the b1nIsInsured variable contains the Boolean value
False; otherwise, it evaluates to True. You also can write the If clause like this: If bTnIsInsured
= False Then.

Example 3
If chkParkingFee.Checked Then

The condition evaluates to True when the chkParkingFee check box is selected; otherwise, it
evaluates to False. You also can write the If clause like this: If chkParkingFee.Checked
= True Then.

Example 4
Select Case chkParkingFee.Checked
Case True
instructions to process when the check box is selected
Case False
instructions to process when the check box is not selected
End Select
The instructions in the first Case clause will be processed when the chkParkingFee check box is
selected; the instructions in the second Case clause will be processed when the check box is not
selected.

Example 5
Select Case True
Case radStandard.Checked
instructions to process when the radStandard radio button is selected
Case radAtrium.Checked
instructions to process when the radAtrium radio button is selected
End Select
The instructions in the first Case clause will be processed when the radStandard radio button is
selected; the instructions in the second Case clause will be processed when the radAtrium radio
button is selected.

Figure 5-45 Examples of comparing Boolean values
© 2013 Cengage Learning

The first two examples in Figure 5-45 use a Boolean variable named b1nIsInsured. You learned
about the Boolean data type in Chapter 3. Recall that a Boolean variable can store either the

Boolean value True or the Boolean value False. The condition in Example 1 will evaluate to True
when the bTnIsInsured variable contains the Boolean value True. As the figure indicates, you
also can write the condition as b1nIsInsured = True. The condition in Example 2, on the other
hand, will evaluate to True when the b1nIsInsured variable contains the Boolean value False.

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

START HERED>

enter these

selection structures Else

You can also
write the If
clauses in Figure
546 as If
radQueen.
Checked = True Then
and If radStandard.
Checked = True.

ll

More on the Selection Structure

This is because the Not operator, which you learned about in Chapter 4, reverses the truth-value
of a condition. In other words, if bInIsInsured is True, then Not b1nIsInsured would have to
be False because False is the opposite of True. Although most programmers would use the Not
operator in this condition, you also can write the condition as b1nIsInsured = False.

The condition in Example 3 in Figure 5-45 will evaluate to True when the chkParkingFee check
box is selected. Notice that you also can phrase the condition as chkParkingFee.Checked =
True. Examples 4 and 5 show how you can use a Boolean value in a Select Case statement. In
Example 4, the check box’s Checked property is used as the selectorExpression. Recall that the
value in the Checked property indicates whether the check box is selected (True) or unselected
(False). The instructions in the Case True clause will be processed when the check box is
selected; otherwise, the instructions in the Case False clause will be processed. Because a check
box’s Checked property can only be either True or False, you can replace the Case False clause
with Case Else.

In Example 5 in Figure 5-45, the Boolean value True is used as the selectorExpression. The first
Case clause compares the selectorExpression with the radStandard control’s Checked property.
If the Standard radio button is selected, the computer processes only the instructions in the first
Case clause. If the Standard radio button is not selected, the second Case clause compares the
selectorExpression with the radAtrium control’s Checked property. If the Atrium radio button is
selected, the computer processes only the instructions in the second Case clause. Because the
Standard and Atrium radio buttons are the only buttons in their group, you can replace the
second Case clause with Case Else.

To finish modifying the btnCalc_Click procedure:

1. First, you'll enter the three nested dual-alternative selection structures. Insert a
blank line below the ' calculate charges comment, and then enter the nested
selection structures indicated in Figure 5-46. The nested selection structures
determine the selected radio buttons and then assign the appropriate daily room
charge to the intDailyRoomChg variable.

Else
' calculate charges
If radQueen.Checked Then
If radStandard.Checked Then
intDailyRoomChg = intDAILY_ROOM_CHG_QUEEN_STAND
Else
intDailyRoomChg = intDAILY_ROOM_CHG_QUEEN_ATRIUM
End If

If radStandard.Checked Then
intDailyRoomChg = intDAILY_ROOM_CHG_KING_STAND
Else
intDailyRoomChg = intDAILY_ ROOM_CHG_KING_ATRIUM
End If
End If
intTotalRoomChg = intRoomsReserved *
intNights * intDAILY ROOM_CHG
dblTax = intTotalRoomChg * dblTAX_RATE

Figure 5-46 Nested dual-alternative selection structures entered in the procedure

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Modifying the Calculate Button's Code

2. In the line below the nested selection structures, change intDAILY_ROOM_CHG to

intDailyRoomChg.

3. You also need to include a single-alternative selection structure that determines whether
the Vehicle parking fee check box is selected. If it is, the procedure should calculate the
total parking fee by multiplying the number of nights by the daily parking fee. Insert a
blank line above the statement that calculates the total due, and then enter the selection

structure indicated in Figure 5-47.

intTotalResortFee = intRoomsReserved *
intNights * intDAILY RESORT_FEE
If chkParkingFee.Checked Then
dblParkingFee = intNights * dblDAILY_PARKING_FEE
End If
dblTotalDue = intTotalRoomChg +
dblTax + intTotalResortFee

enter this selection

structure

Figure 5-47 Nested single-alternative selection structure entered in the procedure

You can also
write the If
clause in
Figure 5-47 as
follows: If

ll

chkParkingFee.
Checked =True Then.

4. Finally, you need to add the total parking fee to the total due and also display the
total parking fee in the IblParkingFee control. Make the modifications indicated in

Figure 5-48.

dblTotalDue = intTotalRoomChg +
dblTax + intTotalResortFee |+ dblParkingFee |

' display charges
1blRoomChg.Text = intTotalRoomChg.ToString("N2")
1blTax.Text = dblTax.ToString("N2")
1blResortFee.Text = intTotalResortFee.ToString("N2"
1blParkingFee.Text = dblParkingFee.ToString("N2")
1blTotalDue.Text = dblTotalDue.ToString("C2")

End If

Figure 5-48 Final modifications made to the procedure

enter this
code

enter this
statement

5. Save the solution and then start the application. Type 1, 1, and 2 in the Rooms, Nights,
and Adults boxes, respectively, and then click the Calculate button. See Figure 5-49.

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

More on the Selection Structure

Type View [T ehide paiking fec recall that you can

® Two gueen @® Standard \ press Alt to either
O One king O Atrium Zzg\eﬂlsgrkr:js the

Mumber of Charges

Rooms: Nights: Room:

|1 1 Tax:

Adults (18+): Children: Resort fee:
2 Parking:

Total due: $342.31

Figure 5-49 Calculated amounts shown in the interface

6. Now click the Atrium radio button. Notice that the calculated amounts still appear in
the interface. You will fix that problem in the next section. Change the number of nights
to 2 and then click the Calculate button. The total due is now $779.13.

7. Click the Vehicle parking fee check box. Here too, the calculated amounts still appear
in the interface. You will fix this problem in the next section. Click the Calculate button.
The total due is now $804.63.

8. Click the Exit button.

Modifying the ClearLabels Procedure

According to the application’s TOE chart (shown earlier in Figure 5-36), the
CheckedChanged events of the radio buttons and check box need to be coded.

The CheckedChanged event occurs when the value in a control’s Checked property
changes. For example, when you select a check box, its Checked property changes from
False to True; this change invokes the check box’s CheckedChanged event. Likewise, when
you deselect a check box, its Checked property changes from True to False, thereby
invoking its CheckedChanged event. When you select a radio button, its Checked
property changes from False to True and its CheckedChanged event occurs. In addition,
the Checked property of the previously selected radio button in the same group changes
from True to False, thereby invoking that radio button’s CheckedChanged event.

The TOE chart indicates that the CheckedChanged events should clear the contents of five label
controls in the interface; the ClearLabels procedure that you created in Chapter 4 will perform
that task. All you need to do is add the Tb1ParkingFee.Text = String.Empty statement to the
procedure, and then include the CheckedChanged events for the radio buttons and check box in
the procedure’s Handles cause.

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Modifying the ClearLabels Procedure

To modify and then test the ClearLabels procedure:

1.

6.

Locate the ClearLabels procedure and then make the modifications indicated in
Figure 5-50. (Be sure to type the comma after txtChildren.TextChanged in the
Handles clause.)

Private Sub ClearlLabels(sender As Object, e As EventArgs) _
Handles txtRooms.TextChanged, txtNights.TextChanged,

txtAdults.TextChanged, txtChildren.TextChanged] | %Z%gﬁﬁg;ype
radQueen.CheckedChanged, radKing.CheckedChanged,
radStandard.CheckedChanged, radAtrium.CheckedChanged, enter this code
chkParkingFee.CheckedChanged

clear calculated amounts

1blRoomChg.Text = String.Empty
1blTax.Text = String.Empty
1blResortFee.Text = String.Empty

[1blParkingFee.Text = String.Empty| enter this statement
1blTotalDue.Text = String.Empty
End Sub

Figure 5-50 Clearlabels procedure

Save the solution and then start the application. Type 1, 1, and 2 in the Rooms, Nights,
and Adults boxes, respectively, and then click the Calculate button. The total due is
$342.31, as shown earlier in Figure 5-49.

Click the Atrium radio button. The ClearLabels procedure removes the calculated
amounts from the interface. Click the Calculate button. The total due is now $389.56.

Click the Vehicle parking fee check box. The ClearLabels procedure removes the
calculated amounts from the interface. Click the Calculate button. The total due is now
$402.31.

On your own, verify that the ClearLabels procedure removes the calculated amounts
when the One king radio button is clicked, and also when the Standard radio button
is clicked.

Click the Exit button. Close the Code Editor window and then close the solution.

Figure 5-51 shows the application’s code at the end of Lesson B.

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

More on the Selection Structure

1 ' Name: Covington Resort Project

2 ' Purpose: Display the total room charge, tax,

3" total resort fee, total parking fee,

4" and total due

5 ' Programmer: <your name> on <current date>

6

7 Option Explicit On

8 Option Strict On

9 Option Infer Off

10

11 PubTlic Class frmMain

12

13 Private Sub btnExit_Click(sender As Object,
e As EventArgs) Handles btnExit.Click

14 Me.Close()

15 End Sub

16

17 Private Sub txtRooms_Enter(sender As Object,
e As EventArgs) Handles txtRooms.Enter

18 ' selects the contents when the

19 ' text box receives the focus

20

21 txtRooms.SelectAl11()

22 End Sub

23

24 Private Sub txtNights_Enter(sender As Object,
e As EventArgs) Handles txtNights.Enter

25 ' selects the contents when the

26 ' text box receives the focus

27

28 txtNights.SelectAT1()

29 End Sub

30

31 Private Sub txtAdults_Enter(sender As Object,
e As EventArgs) Handles txtAdults.Enter

32 ' selects the contents when the

33 ' text box receives the focus

34

35 txtAdults.SelectAT11(0)

36 End Sub

37

38 Private Sub txtChildren_Enter(sender As Object,
e As EventArgs) Handles txtChildren.Enter

39 ' selects the contents when the

40 ' text box receives the focus

41

42 txtChildren.SelectAl11()

43 End Sub

44

45 Private Sub CancelKeys(sender As Object,
e As KeyPressEventArgs

46) Handles txtRooms.KeyPress, txtNights.KeyPress,

Figure 5-51 Covington Resort application’s code at the end of Lesson B (continues)

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Modifying the ClearLabels Procedure

(continued)
47 txtAdults.KeyPress, txtChildren.KeyPress
48 ' allows the text box to accept only numbers and
49 ' the Backspace key
50
51 If (e.KeyChar < "0" OrElse e.KeyChar > "9") AndAlso
52 e.KeyChar <> ControlChars.Back Then
53 ' cancel the key
54 e.Handled = True
55 End If
56 End Sub
57
58 Private Sub ClearLabels(sender As Object,
e As EventArgs) _
59 Handles txtRooms.TextChanged, txtNights.TextChanged,
60 txtAdults.TextChanged, txtChildren.TextChanged,
61 radQueen.CheckedChanged, radKing.CheckedChanged,
62 radStandard.CheckedChanged, radAtrium.CheckedChanged,
63 chkParkingFee.CheckedChanged
64 ' clear calculated amounts
65
66 TbT1RoomChg.Text = String.Empty
67 Tb1Tax.Text = String.Empty
68 TbT1ResortFee.Text = String.Empty
69 Tb1ParkingFee.Text = String.Empty
70 Tb1TotalDue.Text = String.Empty
71 End Sub
72
73 Private Sub btnCalc_Click(sender As Object,
e As EventArgs) Handles btnCalc.Click

74 ' calculate and display total room charge,
75 ' tax, total resort fee, total parking fee,
76 ' and total due
77
78 ' declare named constants and variables
79 Const intMAX_PER_ROOM As Integer = 6
80 Const intDAILY_ROOM_CHG_QUEEN_STAND As Integer = 284
81 Const intDAILY_ROOM_CHG_QUEEN_ATRIUM As Integer = 325
82 Const intDAILY_ROOM_CHG_KING_STAND As Integer = 290
83 Const intDAILY_ROOM_CHG_KING_ATRIUM As Integer = 350
84 Const db1DAILY_PARKING_FEE As Double = 12.75
85 Const db1TAX_RATE As Double = 0.1525
86 Const intDAILY_RESORT_FEE As Integer = 15
87 Const strMSG As String =

"You have exceeded the maximum guests per room."
88 Dim intRoomsReserved As Integer
89 Dim intNights As Integer
90 Dim intAdults As Integer
91 Dim intChildren As Integer
92 Dim intNumGuests As Integer
93 Dim db1RoomsRequired As Double
94 Dim db1ParkingFee As Double
95 Dim intDailyRoomChg As Integer

Figure 5-51 Covington Resort application’s code at the end of Lesson B (continues)

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

More on the Selection Structure

(continued)
96 Dim intTotalRoomChg As Integer
97 Dim db1Tax As Double
98 Dim intTotaTResortFee As Integer
99 Dim db1TotalDue As Double
100
101 ' store input in variables
102 Integer.TryParse(txtRooms.Text, intRoomsReserved)
103 Integer.TryParse(txtNights.Text, intNights)
104 Integer.TryParse(txtAdults.Text, intAdults)
105 Integer.TryParse(txtChildren.Text, intChildren)
106
107 ' calculate total number of guests
108 intNumGuests = intAdults + intChildren
109 ' calculate number of rooms required
110 dbTRoomsRequired = intNumGuests / intMAX_PER_ROOM
111
112 ' determine whether number of reserved
113 ' rooms is adequate and then either display a
114 ' message or calculate and display the charges
115 If intRoomsReserved < dblRoomsRequired Then
116 MessageBox.Show(strMSG, "Covington Resort",
117 MessageBoxButtons.OK,
118 MessageBoxIcon.Information)
119 Else
120 ' calculate charges
121 If radQueen.Checked Then
122 If radStandard.Checked Then
123 intDailyRoomChg = intDAILY_ROOM_CHG_QUEEN_STAND
124 Else
125 intDailyRoomChg = intDAILY_ROOM_CHG_QUEEN_ATRIUM
126 End If
127 Else
128 If radStandard.Checked Then
129 intDailyRoomChg = intDAILY_ROOM_CHG_KING_STAND
130 Else
131 intDailyRoomChg = intDAILY_ROOM_CHG_KING_ATRIUM
132 End If
133 End If
134 intTotalRoomChg = intRoomsReserved *
135 intNights * intDailyRoomChg
136 db1Tax = intTotalRoomChg * db1TAX_RATE
137 intTotalResortFee = intRoomsReserved *
138 intNights * intDAILY_RESORT_FEE
139 If chkParkingFee.Checked Then
140 dbTParkingFee = intNights * db1DAILY_PARKING_FEE
141 End If
142 dbTTotalDue = intTotalRoomChg +
143 dbTTax + intTotalResortFee + dbl1ParkingFee
144
145 ' display charges
146 TbTRoomChg.Text = intTotalRoomChg.ToString("N2")
147 1b1Tax.Text = db1Tax.ToString(""N2")
148 Tb1ResortFee.Text = intTotalResortFee.ToString("N2")
149 Tb1ParkingFee.Text = dblParkingFee.ToString(""N2")
150 1b1TotalDue.Text = dblTotalDue.ToString("C2")
151 End If
152 End Sub
153 End Class

Figure 5-51 Covington Resort application’s code at the end of Lesson B
© 2013 Cengage Learning

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Lesson B Review Questions

Lesson B Summary

e To limit the user to only one choice in a group of two or more related but mutually exclusive
choices:

Use the RadioButton tool to add two or more radio buttons to the form. To include two
groups of radio buttons on a form, at least one of the groups must be placed within a
container, such as a group box.

e To allow the user to select any number of choices from a group of one or more independent
and nonexclusive choices:

Use the CheckBox tool to add one or more check box controls to the form.
e To determine whether a radio button or check box is selected or unselected:

Use the Checked property of the radio button or check box. The property will contain
the Boolean value True if the control is selected; otherwise, it will contain the Boolean
value False.

e To process code when the value in the Checked property of a radio button or check box
changes:

Enter the code in the radio button’s or check box’s CheckedChanged event procedure.

Lesson B Key Terms

Check boxes—controls used to offer the user one or more independent and nonexclusive
choices

Checked property—the property of radio button and check box controls that indicates whether
or not the control is selected; contains either the Boolean value True or the Boolean value False

CheckedChanged event—an event associated with radio buttons and check boxes; occurs when
the value in a control’s Checked property changes

Default radio button—the radio button that is automatically selected when an interface first
appears

Radio buttons—controls used to limit the user to only one choice from a group of two or more
related but mutually exclusive choices

Lesson B Review Questions

1. What is the minimum number of radio buttons in a group?

a. one
b. two
c. three

d. There is no minimum number of radio buttons.

2. If a check box is not selected, what value is contained in its Checked property?

a. True
b. Unchecked
c. False

d. Unselected

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or dupli

More on the Selection Structure

3. The text appearing in check boxes and radio buttons should be entered
using

a. sentence capitalization
b. book title capitalization

c. either book title capitalization or sentence capitalization

4. It is customary in Windows applications to designate a default check box.

a. True
b. False

5. A form contains six radio buttons. Three of the radio buttons are contained in a group
box. How many of the radio buttons on the form can be selected at the same time?

a. one
b. two
c. three
d. six

6. A form contains six check boxes. Three of the check boxes are contained in a group box.
How many of the check boxes on the form can be selected at the same time?

a. one
two
c. three
six
7. If a radio button is selected, its property contains the Boolean
value True.
a. Checked
b. On
c. Selected

d. Selection

8. Which of the following If clauses will evaluate to True when the Bonus check box is selected?

If chkBonus.Check = True Then

If chkBonus.Checked Then

If chkBonus.Selected = True Then
If chkBonus.Selected Then

o S R

9. Which of the following events occurs when a check box is clicked?

a. Check

b. Checked

c. CheckedChange
d. CheckedChanged

10. If the bTnSenior variable contains the Boolean value False, then the Not bT1nSenior
condition will evaluate to

a. True
b. False

earning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Lesson B Exercises

Lesson B Exercises

1.

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or dupli

In this exercise, you modify the Covington Resort application from this lesson.

Use Windows to make a copy of the Covington Resort Solution folder. Rename the
copy Covington Resort Solution-Select Case. Open the Covington Resort Solution
(Covington Resort Solution.sln) file contained in the Covington Resort Solution-Select
Case folder. Open the designer and Code Editor windows. In the btnCalc_Click
procedure, replace the If...Then...Else statement that determines the number of beds
with the Select Case statement. Save the solution and then start and test the application.
Close the Code Editor window and then close the solution.

In this exercise, you create an application for Moonbucks Coffee. Create a Visual
Basic Windows application. Use the following names for the solution and project,
respectively: Moonbucks Solution and Moonbucks Project. Save the application in the
VB2012\Chap05 folder. Change the form file’s name to Main Form.vb. Change the
form’s name to frmMain. The application’s interface, which is shown in Figure 5-52,
allows the user to specify the size of the coffee a customer is ordering and whether the
coffee should be decaffeinated. The price for each coffee size is shown in the interface;
however, the store must also charge a 5% sales tax. The Calculate button should
calculate the total price of a cup of coffee. It then should display (in the label control) a
message that indicates the coffee size, total price, and whether the coffee is decaf or
regular. Use the If...Then...Else statement to code the multiple-alternative selection
structure. The Print button should print the interface. The CheckedChanged event
procedures for the radio buttons and check box should clear the message from the label
control. Code the application. Save the solution and then start and test the application.
Close the Code Editor window and then close the solution.

a Moonbucks Coffee E@

Size [1 Decaf
® Small (2.95)

O Medium (3.50)

) Large (4.05)

label

Calculate Print Bxit

Figure 5-52 Interface for Exercise 2

INTRODUCTORY

INTRODUCTORY

INTRODUCTORY

INTERMEDIATE

INTERMEDIATE

More on the Selection Structure

In this exercise, you modify the Moonbucks Coffee application from Exercise 2.

Use Windows to make a copy of the Moonbucks Solution folder. Rename the copy
Modified Moonbucks Solution. Open the Moonbucks Solution (Moonbucks Solution.sln)
file contained in the Modified Moonbucks Solution folder. Open the designer and Code
Editor windows. Use the Select Case statement to code the multiple-alternative
selection structure in the Calculate button’s Click event procedure. Save the solution
and then start and test the application. Close the Code Editor window and then close
the solution.

In this exercise, you code an application that allows the user to select one radio button
from each of two groups: a State group and a City group. Open the Geography Solution
(Geography Solution.sln) file contained in the VB2012\Chap05\Geography Solution
folder. If necessary, open the designer window. When a radio button is selected, its
CheckedChanged event procedure should clear the contents of the IbIMsg control. The
Verify Answer button’s Click event procedure should verify that the selected city is the
capital of the selected state. If it is, the procedure should display the message “Correct”;
otherwise, it should display the message “Incorrect”. Code the procedure using one
dual-alternative selection structure. Save the solution and then start and test the
application. Close the Code Editor window and then close the solution.

In this exercise, you create an application that allows the user to enter both the number
of calories and the number of grams of fat contained in a specific food. Create a Visual
Basic Windows application. Use the following names for the solution and project,
respectively: Fat Solution and Fat Project. Save the application in the VB2012\Chap05
folder. Change the form file’s name to Main Form.vb. Change the form’s name to
frmMain. Create the interface shown in Figure 5-53. The application should calculate
and display two values: the food’s fat calories (the number of calories attributed to fat)
and its fat percentage (the ratio of the food’s fat calories to its total calories). You
calculate the number of fat calories in a food by multiplying the number of fat grams
contained in the food by the number 9 because each gram of fat contains 9 calories.
To calculate the fat percentage, you divide the food’s fat calories by its total calories and
then multiply the result by 100. If the Display message check box is selected when the
Calculate button is clicked, the button’s Click event procedure should display one of
two messages in a message box: either “This food is high in fat” or “This food is not high
in fat”. The first message is appropriate when the fat percentage is over 30%. The second
message is appropriate when the fat percentage is not over 30%. If the check box is not
selected when the user clicks the Calculate button, no message should be displayed.
Code the application. Save the solution and then start and test the application. Close the
Code Editor window and then close the solution.

ol Fat Calculator o] = (==
Calories: Fat grams:] Display message
Calculate
Fat calories: Fat percentage:
| | Exit

Figure 5-53 Interface for Exercise 5

earning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Lesson B Exercises

6. In this exercise, you modify the Covington Resort application from this lesson. Use INTERMEDIATE
Windows to make a copy of the Covington Resort Solution folder. Rename the copy
Modified Covington Resort Solution. Open the Covington Resort Solution (Covington
Resort Solution.sln) file contained in the Modified Covington Resort Solution folder.
Open the designer window.

a. Currently, the application calculates the total parking fee by multiplying the

daily parking fee by the number of nights. However, this calculation is based on
the assumption that the guest will have only one vehicle to park, when it is entirely
possible that he or she may have two or more vehicles. Add a label control and a
text box to the form, positioning both below the check box. Change the label’s Text
property to N&umber of vehicles:. The user will enter the number of vehicles in
the additional text box. When the user selects the check box, display the number 1
in the text box. When the user deselects the check box, clear the contents of the
text box. (Hint: A check box also has a Click event.)

b. Open the Code Editor window. The code should now calculate the total parking fee
by multiplying the daily parking fee by the number of nights, and then multiplying
that result by the number of vehicles. As is currently done, the parking fee should be
charged only when the check box is selected. If the check box is selected and the text
box is empty, display the number 1 in the text box. Make the appropriate
modifications to the code. Save the solution and then start and test the application.
Close the Code Editor window and then close the solution.

7. In this exercise, you create an application for Hinsbrook Health Club. Create a Visual INTERMEDIATE
Basic Windows application. Use the following names for the solution and project,
respectively: Hinsbrook Solution and Hinsbrook Project. Save the application in the
VB2012\Chap05 folder. Change the form file’s name to Main Form.vb. Change the
form’s name to frmMain. The application should display the number of daily calories
needed to maintain a person’s current weight. The formulas for calculating the number
of daily calories are shown in Figure 5-54. Create a suitable interface, and then code the
application. Save the solution and then start and test the application. Close the Code
Editor window and then close the solution.

Gender Activity Level Total Daily Calories Formula

Female Moderately active weight * 12 calories per pound
Female Relatively inactive weight * 10 calories per pound
Male Moderately active weight * 15 calories per pound
Male Relatively inactive weight * 13 calories per pound

Figure 5-54 Formulas for Exercise 7
© 2013 Cengage Learning

8. In this exercise, you create an application that converts U.S. dollars (entered as a whole ADVANCED
number) to a different currency. Create a Visual Basic Windows application. Use the
following names for the solution and project, respectively: Currency Solution and
Currency Project. Save the application in the VB2012\Chap05 folder. Change the form
file’s name to Main Form.vb. Change the form’s name to frmMain. The number of U.S.
dollars should always be an integer that is greater than or equal to 0. Create an interface
that allows the user to select from the listing of currencies shown in Figure 5-55. Use
the Internet to research the current exchange rates. Code the application. Save the
solution and then start and test the application. Close the Code Editor window and then
close the solution.

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or dupli

ADVANCED

DISCOVERY

More on the Selection Structure

Currency
Canadian dollar

Euro

Indian rupee
Japanese yen
Mexican peso
South African rand
British pound

Figure 5-55 Currencies for Exercise 8
© 2013 Cengage Learning

Shopper Stoppers wants an application that displays the number of reward points a
customer earns each month. The reward points are based on the customer’s
membership type and total monthly purchase amount, as shown in Figure 5-56.
Create a Visual Basic Windows application. Use the following names for the solution
and project, respectively: Shopper Solution and Shopper Project. Save the application
in the VB2012\Chap05 folder. Change the form file’s name to Main Form.vb. Change
the form’s name to frmMain. Create a suitable interface. Code the application.
Display the reward points as whole numbers. Save the solution and then start and test
the application. Close the Code Editor window and then close the solution.

Total Monthly
Membership Type Purchase (S) Reward Points
Basic Less than 100 5% of the total monthly purchase
100 and over 7% of the total monthly purchase
Standard Less than 150 6% of the total monthly purchase
150 - 299.99 8% of the total monthly purchase
300 and over 10% of the total monthly purchase
Premium Less than 200 7% of the total monthly purchase
200 and over 15% of the total monthly purchase

Figure 5-56 Reward points for Exercise 9
© 2013 Cengage Learning

10. Create a Visual Basic Windows application. Use the following names for the solution

and project, respectively: Songs Solution and Songs Project. Save the application in the
VB2012\Chap05 folder. Change the form file’s name to Main Form.vb. Change the
form’s name to frmMain.

a. Create the interface shown in Figure 5-57. The four radio buttons contain song
titles. The Artist Name button’s Click event procedure should display the name of
the artist associated with the selected radio button. The names of the artists are
Andrea Bocelli, Michael Jackson, Beyonce, and Josh Groban. Code the application.
Save the solution and then start and test the application.

earning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Lesson B Exercises

b. Now, remove the Artist Name button from the interface. Also remove the button’s
code from the Code Editor window. Code the application so that the artist name
automatically appears when a radio button is selected. Save the solution and then
start the application. The name Andrea Bocelli should appear in the Artist box
because the Because We Believe radio button is selected. Click the Billie Jean radio
button. The name Michael Jackson should appear in the Artist box. Close the Code
Editor window and then close the solution.

o Songs and Artists =N =

Songs
Artist:
® Because We Believe
() Billie Jean
) Single Ladies
Artist Name

2 You Raise Me Up
Exit

Figure 5-57 Interface for Exercise 10

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or dupli

empty string

More on the Selection Structure

After studying Lesson C, you should be able to:
e Determine the success of the TryParse method
e Generate random numbers

e Show and hide a control while an application is running

Using the TryParse Method for Data Validation

In Chapter 3, you learned how to use the TryParse method to convert a string to a number
of a specific data type. Recall that if the conversion is successful, the TryParse method stores the
number in the variable specified in the method’s numericVariableName argument; otherwise,
it stores the number 0 in the variable. What you didn’t learn in Chapter 3 was that in addition
to storing a number in the variable, the TryParse method also returns a Boolean value that
indicates whether the conversion was successful (True) or unsuccessful (False). You can
assign the value returned by the TryParse method to a Boolean variable, as shown in the syntax
and example in Figure 5-58. You then can use a selection structure to take the appropriate
action based on the result of the conversion. For example, you might want a selection structure’s
true path to calculate an employee’s gross pay only when the user’s input (hours worked and
pay rate) can be converted to numbers; otherwise, its false path should display an “Input Error”
message.

Using the Boolean Value Returned by the TryParse Method

Syntax
booleanVariable = dataType.TryParse(string, numericVariableName)

Example
b1nIsValid = Double.TryParse(txtSales.Text, dblSales)

Result of assignment statement

Test data db1Sales b1nIsValid
“12" 12.0 True

“25.7" 25.7 True

“Ab” 0 False

“25%" 0 False

0 False

Figure 5-58 Syntax and an example of using the Boolean value returned by the TryParse method
© 2013 Cengage Learning

Study the assignment statement shown in the example in Figure 5-58. The TryParse method in
the statement will attempt to convert the string stored in the txtSales control’s Text property to
a Double number. If the conversion is successful, the method stores the Double number in the
db1Sales variable and also returns the Boolean value True. If the conversion is not successful,
the method stores the number 0 in the db1Sales variable and returns the Boolean value False.
The assignment statement assigns the return value (either True or False) to the bTnIsvalid
variable.

Now look at the test data and results shown in Figure 5-58. Notice that the TryParse method
can convert, to the Double data type, a string composed of numbers and an optional period.

Also notice that when the conversion is successful, the db1Sales variable contains the numeric
equivalent of the string, and the bTnIsValid variable contains the Boolean value True. On the

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Using the TryParse Method for Data Validation

other hand, the TryParse method will fail if the string contains a letter or a special character,
or if the string is the empty string. Notice that when the conversion is unsuccessful, the
db1Sales variable contains the number 0, and the b1nIsvValid variable contains the Boolean
value False.

To use the Boolean value returned by the TryParse method: <«(START HERE

1. If necessary, start Visual Studio 2012. Open the New Pay Solution (New Pay Solution.sln)
file contained in the VB2012\Chap05\New Pay Solution folder. If necessary, open the
designer window.

2. Open the Code Editor window. Replace <your name> and <current date> in the
comments with your name and the current date, respectively.

3. Locate the btnCalc_Click procedure. Before modifying the code to use the Boolean value
returned by the TryParse method, you will observe how the procedure currently works.
Start the application. Type 10 in the Old pay box and then click the Calculate button.
Even though no raise rate was entered, the button’s Click event procedure displays an
amount in the New pay box; in this case, it displays the old pay amount of $10.00.

4. Type a in the Raise rate box and then click the Calculate button. Here again, the
procedure displays $10.00 in the New pay box, even though the raise rate is invalid.
See Figure 5-59. (Recall that you can press Alt to either show or hide the access keys.)

aise rate (for example, .05):

‘ Calculate

the original procedure
displays the old pay
amount when the raise
rate is invalid

Figure 5-59 Sample run of the original Click event procedure

5. Change the raise rate to .05 and then click the Calculate button. The procedure displays
$10.50 in the New pay box, which is correct. Click the Exit button.

6. Use the code shown in Figure 5-60 to modify the btnCalc_Click procedure. The
modifications are shaded in the figure.

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

More on the Selection Structure

Private Sub btnCalc_Click(sender As Object,
e As EventArgs) Handles btnCalc.Click
' calculates and displays the new pay

Dim db101d As DoubTe
Dim db1Rate As Double
Dim db1New As DoubTe
Dim bTnIsO1dOk As Boolean
Dim bInIsRateOk As Boolean

convert the input to numbers
b1nIsO1dOk = Double.TryParse(txtOld.Text, db101d)
blnIsRateOk = DoubTle.TryParse(txtRate.Text, db1Rate)

' determine whether the conversions were successful
If bTnIsO1dOk AndAlso bTnIsRateOk Then
' calculate and display the new pay

dbTNew = db101d + db101d * dbTRate

TbTNew.Text = dbINew.ToString("C2")
Else

TbTNew.Text = "Invalid data"
End If
' set the focus

txt01d.Focus()
End Sub

Figure 5-60 Modified btnCalc_Click procedure

© 2013 Cengage Learning

7. Save the solution and then start the application. Type 10 in the Old pay box and then
click the Calculate button. Because no raise rate was entered, the procedure displays the
“Invalid data” message in the New pay box.

8. Type .05 in the Raise rate box and then click the Calculate button. The procedure
calculates and displays $10.50 as the new pay amount, which is correct.

9. Change the old pay to the letter a and then click the Calculate button. The procedure
displays the “Invalid data” message, which is correct.

10. Click the Exit button. Close the Code Editor window and then close the solution.

]
YOU DO IT 4!

Create a Visual Basic Windows application named YouDolt 4. Save the application in the
VB2012\Chap05 folder. Add a text box, a label, and a button to the form. If the user
enters a value that can be converted to the Integer data type, the button’s Click event
procedure should display the integer in the label; otherwise, it should display the string
“Can't be converted”. Code the procedure. Save the solution and then start the applica-
tion. Test the application using the following values: 12, 12.75, 2, $45, 3, 5%, 6, and the
empty string. Close the solution.

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Generating Random Integers

Generating Random Integers

Most computer game programs contain at least one multiple-alternative selection structure;
most also use random numbers. You already know how to write multiple-alternative selection
structures. In this section, you will learn how to generate random integers. If you want to learn
how to generate random numbers containing a decimal place, refer to Exercise 13 at the end of
this lesson.

Most programming languages provide a pseudo-random number generator, which is a device
that produces a sequence of numbers that meet certain statistical requirements for randomness.
Pseudo-random numbers are chosen with equal probability from a finite set of numbers. The
chosen numbers are not completely random because a definite mathematical algorithm is used
to select them. However, they are sufficiently random for practical purposes. The pseudo-
random number generator in Visual Basic is an object whose data type is Random.

Figure 5-61 shows the syntax for generating random integers in Visual Basic, and it includes
examples of using the syntax. As the figure indicates, you first create a Random object to
represent the pseudo-random number generator in your application’s code. You create the
Random object by declaring it in a Dim statement. You enter the Dim statement in the
procedure that will use the number generator. After the Random object is created, you can use
the object’s Random.Next method to generate random integers. In the method’s syntax,
randomObjectName is the name of the Random object. The minValue and maxValue
arguments in the syntax must be integers, and minValue must be less than maxValue. The
Random.Next method returns an integer that is greater than or equal to minValue, but less than
maxValue. You will use random integers to code the Roll 'Em Game application, which
simulates the rolling of two dice.

Generating Random Integers

Syntax
Dim randomObjectName As New Random
randomObjectName.Next(minValue, maxValue)

Example 1
Dim randGen As New Random

intNum = randGen.Next(1l, 51)

The Dim statement creates a Random object named randGen. The randGen.Next (1, 51)
expression generates a random integer that is greater than or equal to 1, but less than 51. The
assignment statement assigns the random integer to the intNum variable.

Example 2
Dim randGen As New Random

intNum = randGen.Next(-10, 0)

The Dim statement creates a Random object named randGen. The randGen.Next(-10, 0)
expression generates a random integer that is greater than or equal to —10, but less than 0. The
assignment statement assigns the random integer to the intNum variable.

Figure 5-61 Syntax and examples of generating random integers
© 2013 Cengage Learning

To open the Roll 'Em Game application:

1. Open the Roll Em Solution (Roll Em Solution.sln) file contained in the VB2012\Chap05\
Roll Em Solution folder. If necessary, open the designer window. The interface is shown
in Figure 5-62. (The die images were downloaded from the Open Clip Art Library at
http://openclipart.org.)

<«(START HERE

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

More on the Selection Structure

o Roll 'Em Game o] e
picDiel picDie2
Total:
Boll the Dice Exit IblTotal

Figure 5-62 Roll 'Em Game application’s interface
OpenClipArt.org/orsonj

2. Open the Code Editor window. Replace <your name> and <current date> in the
comments with your name and the current date, respectively.

When the user clicks the Roll the Dice button, the button’s Click event procedure will generate
two random integers from 1 through 6. It will use the random integers to select one of the
images located below the buttons in the interface. The images are named picOneDot,
picTwoDots, picThreeDots, picFourDots, picFiveDots, and picSixDots. The procedure will
display the selected images in the picDiel and picDie2 controls. It also will total the number of
dots appearing on both dice and then display the total in the lblTotal control. Figure 5-63 shows
the pseudocode for the Roll the Dice button’s Click event procedure.

btnRoll Click event procedure

1. generate a random integer from 1 through 6 and assign to a variable named intNum1
2. generate a random integer from 1 through 6 and assign to a variable named intNum2

3. use the intNum1 variable’s value to display the appropriate image in the picDiel control
if intNum1 contains:

display the picOneDot image

display the picTwoDots image

display the picThreeDots image

display the picFourDots image

display the picFiveDots image

display the picSixDots image

SO W

Figure 5-63 Pseudocode for the Roll the Dice button’s Click event procedure (continues)

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Generating Random Integers

(continued)

4. use the intNum2 variable’s value to display the appropriate image in the picDie2 control
if intNum2 contains:

display the picOneDot image

display the picTwoDots image

display the picThreeDots image

display the picFourDots image

display the picFiveDots image

display the picSixDots image

SO W

5. calculate the total number of dots on both dice by adding together the integers stored in the intNum1
and intNum2 variables

6. display the total in the IblTotal control

Figure 5-63 Pseudocode for the Roll the Dice button’s Click event procedure
© 2013 Cengage Learning

To code the Roll the Dice button’s Click event procedure: 'T BE

1. Open the code template for the btnRoll control’s Click event procedure. Type the
following comment and then press Enter twice:

' simulates a game of rolling dice

2. First, you will declare the random number generator. Type the following Dim statement
and then press Enter:

Dim randGen As New Random

3. Next, you will declare the intNuml and intNum2 variables, which will store the random
integers. You also will declare an Integer variable to store the total of the dots on both
dice. Enter the following three Dim statements. Press Enter twice after typing the last
Dim statement.

Dim intNuml As Integer
Dim intNum2 As Integer
Dim intTotal As Integer

4. The first two steps in the pseudocode are to generate two random integers from 1
through 6 and assign them to the intNuml and intNum2 variables. To generate integers
in that range, you will need to use 1 for the Random.Next method’s minValue argument,
and 7 for its maxValue argument. Enter the following comment and two assignment
statements. Press Enter twice after typing the second assignment statement.

" assign random integer from 1 through 6
intNum1l = randGen.Next(1, 7)
intNum?2 = randGen.Next(1, 7)

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

More on the Selection Structure

5. Step 3 in the pseudocode uses the intNuml variable’s value to display the appropriate
image in the picDiel control. Enter the following comment and Select Case statement:
' display appropriate image in picDiel
Select Case intNum1

Case 1

picDiel.Image = picOneDot.Image
Case 2

picDiel.Image = picTwoDots.Image
Case 3

picDiel.Image = picThreeDots.Image
Case 4

picDiel.Image = picFourDots.Image
Case 5

picDiel.Image = picFiveDots.Image
Case 6

picDiel.Image = picSixDots.Image

End Select

6. Similarly, Step 4 uses the intNum2 variable’s value to display the appropriate image in the
picDie2 control. Insert another blank line above the End Sub clause and then enter the
following comment and Select Case statement:

' display appropriate image in picDie2
Select Case intNum?2

Case 1

picDie2.Image = picOneDot.Image
Case 2

picDie2.Image = picTwoDots.Image
Case 3

picDie2.Image = picThreeDots.Image
Case 4

picDie2.Image = picFourDots.Image
Case 5

picDie2.Image = picFiveDots.Image
Case 6

picDie2.Image = picSixDots.Image

End Select

7. The last two steps in the pseudocode calculate the total number of dots on both dice and
then display the result in the lblTotal control. Insert another blank line above the End
Sub clause and then enter the following comment and assignment statements:

' calculate and display total number of dots
intTotal = intNum1 + intNum2
IblTotal. Text = intTotal. ToString()

8. Save the solution and then start the application. Click the Roll the Dice button. See
Figure 5-64. Because random numbers are used to select the appropriate images for the
picDiel and picDie2 controls, your dice and total might be different from the dice and
total shown in the figure.

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Showing and Hiding a Control

Total:

? total number of dots
on the two dice
| Roll the Dice || Exit |

Figure 5-64 Result of clicking the Roll the Dice button

OpenClipArt.org/orsonj

9. Click the Roll the Dice button several more times to verify that different images appear
in the picDiel and picDie2 controls. Also verify that the number in the Total box is
correct. When you are finished testing the application, click the Exit button.

YOU DO IT 5!

Create a Visual Basic Windows application named YouDolt 5. Save the application in the
VB2012\Chap05 folder. Add a label and a button to the form. The button’s Click event
procedure should display an integer from 1 through 10 in the label. Code the procedure.
Save the solution and then start and test the application. Close the solution.

Showing and Hiding a Control

The six picture boxes located at the bottom of the form should not appear while the application
is running. You can hide them by changing their Visible property from True to False. Setting a
control’s Visible property to False makes the control invisible during runtime. However, you will
still be able to see the control in the designer window.

To hide the six picture boxes and then resize the form: <«(START HERE

1. Close the Code Editor window. Select the six picture boxes located at the bottom of the
form, and then use the Properties window to change the Visible property to False. Click
the form to deselect the picture boxes.

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

More on the Selection Structure

2. Drag the form’s bottom sizing handle up until the form is approximately the size shown
in Figure 5-65. Don’t be concerned that you can still see a portion of the picOneDot,
picTwoDots, and picThreeDots controls. Because their Visible property is set to False,

the controls won't appear while the application is running.

Roll 'Em Game

' Roll the Dice || Exit |

Figure 5-65 Resized form

OpenClipArt.org/orsonj

3. Lock the controls on the form. Save the solution and then start the application. Click
the Roll the Dice button. See Figure 5-66. Notice that the picture boxes located at the

bottom of the form are hidden from view.

Roll the Dice

Figure 5-66 Interface with six of the picture boxes hidden
OpenClipArt.org/orsonj

4. Click the Exit button and then close the solution.

Figure 5-67 shows the code entered in the Roll the Dice button’s Click event procedure.

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Showing and Hiding a Control

Private Sub btnRol1_Click(sender As Object,
e As EventArgs) Handles btnRol11.Click
' simulates a game of rolling dice

randGen As New Random
intNuml As Integer
intNum2 As Integer
intTotal As Integer

Dim
Dim
Dim
Dim

assign random integer from 1 through 6

intTotal

End Sub

' display appropriate
Select Case intNum2

intNuml = randGen.Next(1, 7)
intNum2 = randGen.Next(1, 7)
' display appropriate image in picDiel
Select Case intNuml
Case 1
picDiel.Image = picOneDot.Image
Case 2
picDiel.Image = picTwoDots.Image
Case 3
picDiel.Image = picThreeDots.Image
Case 4
picDiel.Image = picFourDots.Image
Case 5
picDiel.Image = picFiveDots.Image
Case 6
picDiel.Image picSixDots.Image
End Select

image in picDie2

Case 1
picDie2.Image picOneDot.Image
Case 2
picDie2.Image picTwoDots.Image
Case 3
picDie2.Image picThreeDots.Image
Case 4
picDie2.Image picFourDots.Image
Case 5
picDie2.Image = picFiveDots.Image
Case 6
picDie2.Image = picSixDots.Image
End Select

calculate and display total number of dots
= intNuml + intNum2
1b1Total.Text = intTotal.ToString()

Figure 5-67 Roll the Dice button’s Click event procedure

© 2013 Cengage Learning

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

More on the Selection Structure

Lesson C Summary

e To determine whether the TryParse method converted a string to a number of the specified
data type:

Use the syntax booleanVariable = dataType.TryParse(string, numericVariableName). The
TryParse method returns the Boolean value True when the string can be converted to the numeric
dataType; otherwise, it returns the Boolean value False.

e To generate random integers:

Create a Random object to represent the pseudo-random number generator. Typically, the
syntax for creating a Random object is Dim randomObjectName As New Random. You
then use the Random.Next method to generate a random integer. The method’s syntax is
randomObjectName . Next(minValue, maxValue). The Random.Next method returns an
integer that is greater than or equal to minValue, but less than maxValue. In most cases,
the Random.Next method’s return value is assigned to a variable.

e To show or hide a control while an application is running:

Set the control’s Visible property to the Boolean value True to show the control during
runtime. Set the control’s Visible property to the Boolean value False to hide the control
during runtime.

Lesson C Key Terms

Pseudo-random number generator—a device that produces a sequence of numbers that meet
certain statistical requirements for randomness; the pseudo-random generator in Visual Basic is
an object whose data type is Random

Random object—represents the pseudo-random number generator in Visual Basic

Random.Next method—used to generate a random integer that is greater than or equal to a
minimum value, but less than a maximum value

Visible property—determines whether a control is visible in the interface while an application is
running

Lesson C Review Questions

1. If the txtPrice control contains the value 75, what value will the
Decimal.TryParse(txtPrice.Text, decPrice) method return?

a. False
b. True
c. 75

d. 75.00

2. Which of the following statements will hide the picCar control?

picCar.Hide
picCar.Hide = True
picCar.Invisible =True

o S SR

picCar.Visible = False

earning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Lesson C Exercises

Which of the following statements declares an object to represent the pseudo-random
number generator in a procedure?

Dim randGen As New RandomNumber

Dim randGen As New Generator

Dim randGen As New Random

pa e oo

Dim randGen As New RandomObject

Which of the following statements generates a random integer from 1 to 25, inclusive?
a. intNum = randGen.Next(1l, 25)

b. intNum = randGen.Next (1, 26)

c. intNum = randGen(1, 25)

d. intNum = randGen.NextNumber (1, 26)

If the txtAge control is empty, the b1nIsOk = Integer.TryParse(txtAge.Text,

intAge) statement will store in the intAge variable and also
assign to the b1nIsOk variable.

a. 0, True

b. 0, False

c. False, the empty string

d. the empty string, False

Lesson C Exercises

1.

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or dupli

Open the Kelley Solution (Kelley Solution.sln) file contained in the VB2012\Chap05\
Kelley Solution folder. If necessary, open the designer and Code Editor windows. Locate
the btnCalc_Click procedure. The procedure should display the message “Please enter a
number” in the IblBonus control when the contents of the txtSales control cannot be
converted to a Double number. Otherwise, it should multiply the contents of the
db1Sales variable by 10% and display the result in the IblBonus control. Make the
appropriate modifications to the procedure’s code. Save the solution and then start and
test the application. Close the Code Editor window and then close the solution.

Create a Visual Basic Windows application. Use the following names for the solution
and project, respectively: Lottery Solution and Lottery Project. Save the application in
the VB2012\ChapO5 folder. Change the form file’s name to Main Form.vb. Change the
form’s name to frmMain. Create the interface shown in Figure 5-68. The image for the
picture box is stored in the VB2012\Chap05\BagOfMoney.png file. (The image was
downloaded from the Open Clip Art Library at http://openclipart.org.) The Select
Numbers button should display six lottery numbers. Each lottery number can range
from 1 through 54 only. (An example of six lottery numbers would be: 4 8 35 15 20 3.)
Code the application. For now, do not worry if the lottery numbers are not unique. You
will learn how to display unique numbers in Chapter 9. Save the solution and then start
and test the application. Close the Code Editor window and then close the solution.

INTRODUCTORY

INTRODUCTORY

INTRODUCTORY

INTERMEDIATE

More on the Selection Structure

all Lottery Numbers =N Ecl ===

Lottery numbers:

Select Numbers Exit

Figure 5-68 Interface for Exercise 2
OpenClipArt.org/johnny_automatic

Open the Sum Solution (Sum Solution.sln) file contained in the VB2012\Chap05\Sum
Solution folder. If necessary, open the designer window. The Calculate button’s Click
event procedure should calculate the sum of the two values entered by the user, and
then display the result in the IbISum control. Calculate and display the sum only when
both values can be converted to the Integer data type; otherwise, display the message
“Please enter two integers” in a message box. Code the procedure. Save the solution and
then start and test the application. Close the Code Editor window and then close the
solution.

Create a Visual Basic Windows application. Use the following names for the solution
and project, respectively: Concert Solution and Concert Project. Save the application in
the VB2012\Chap05 folder. Change the form file’s name to Main Form.vb. Change the
form’s name to frmMain. Create the interface shown in Figure 5-69. The three text
boxes should be invisible when the application starts. When the user selects a check
box, its corresponding text box should appear in the interface and remain visible until
the user deselects the check box. The user will enter the number of tickets he or she
wants to purchase in the appropriate text box. Keep in mind that the user can purchase
any combination of tickets, such as 3 box tickets and 5 lawn tickets, or 2 pavilion tickets,
1 box ticket, and 2 lawn tickets. The application should calculate and display the total
number of tickets purchased and the total price. The tickets for box, pavilion, and lawn
seats are $75, $30, and $21, respectively. Save the solution and then start and test the
application. Close the Code Editor window and then close the solution.

o Ticket Miser []
Tickets
[Box [Pavilion [J Lawn

the three text boxes
should be invisible when
the application starts
Total tickets:

]

Total due:

Calculate

Figure 5-69 |Interface for Exercise 4

earning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Lesson C Exercises

5. Create a Visual Basic Windows application. Use the following names for the solution and INTERMEDIATE
project, respectively: Guessing Game Solution and Guessing Game Project. Save the
application in the VB2012\Chap05 folder. Change the form file’s name to Main Form.vb.
Change the form’s name to frmMain. The application should generate a random integer
from 1 through 25, inclusive. It then should give the user as many chances as necessary to
guess the integer. If the user guesses the integer, the application should display the “You
are correct. The random integer is x.” message, where x is the random integer. If the user’s @-
guess is less than the random integer, the application should display the “Guess higher”
message. If the user’s guess is greater than the random integer, the application should
display the “Guess lower” message. Create a suitable interface, and then code the
application. Save the solution and then start and test the application. Close the Code
Editor window and then close the solution.

6. In this exercise, you modify the application from Exercise 5. Use Windows to make INTERMEDIATE
a copy of the Guessing Game Solution folder. Rename the copy Modified Guessing
Game Solution. Open the Guessing Game Solution (Guessing Game Solution.sln) file
contained in the Modified Guessing Game Solution folder. Open the designer and
Code Editor windows. Allow the user to make only five incorrect guesses. When the
user has made the fifth incorrect guess, display the random integer. Save the solution
and then start and test the application. Close the Code Editor window and then close
the solution.

7. Create a Visual Basic Windows application. Use the following names for the solution INTERMEDIATE
and project, respectively: Willowbrook Solution and Willowbrook Project. Save the
application in the VB2012\Chap05 folder. Change the form file’s name to Main Form.vb.
Change the form’s name to frmMain. Create the interface shown in Figure 5-70. The
application should calculate and display a club member’s monthly dues, which includes
the basic monthly fee and any additional monthly charges for tennis ($30), golf ($25), and
racquetball ($20). Code the application. Save the solution and then start and test the
application. Close the Code Editor window and then close the solution.

o Willowbrook Health Club =
Basic fee:
[Golf
Additional: [] Tennis
[] 0 Becquetball
Monthly dues:
Calculate Exit

Figure 5-70 Interface for Exercise 7

8. Open the Juarez Solution (Juarez Solution.sln) file contained in the VB2012\Chap05\ INTERMEDIATE
Juarez Solution folder. If necessary, open the designer window.

a. The Display Grade button’s Click event procedure should display a letter grade that
is based on the average of three test scores. See Figure 5-71. Each test is worth 100
points. The procedure should display an appropriate message if any of the test scores
cannot be converted to the Double data type. Code the Click event procedure.

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or dupli

INTERMEDIATE

INTERMEDIATE

More on the Selection Structure

b. When the user makes a change to the contents of a text box, the application should
remove the contents of the IblGrade control. Code the appropriate event
procedures.

c. The application should select a text box’s existing text when the text box receives
the focus. Code the appropriate event procedures.

d. Save the solution and then start and test the application. Use the following scores
for the first test: 90, 95, and 100. The grade should be an A. Use the following scores
for the second test: 83, 72, and 65. Use the following scores for the third test: 40, 30,
and 20. Next, test the application using letters, and then test it using an empty text
box. Close the Code Editor window and then close the solution.

Average Grade
90 - 100 A
80 -89 B
70-79 C
60 - 69 D
Below 60 F

Figure 5-71 Grade information for Exercise 8
© 2013 Cengage Learning

10.

Open the Gross Pay Solution (Gross Pay Solution.sln) file contained in the VB2012\
Chap05\Gross Pay Solution folder. If necessary, open the designer window. The
Calculate button’s Click event procedure should calculate an employee’s gross pay.
Employees working more than 40 hours receive time and one-half for the hours over 40.
The procedure should display an appropriate message if the user’s input cannot be
converted to a Decimal number. Code the procedure. Save the solution and then start
and test the application. Close the Code Editor window and then close the solution.

Create a Visual Basic Windows application. Use the following names for the solution
and project, respectively: Marshall Solution and Marshall Project. Save the application
in the VB2012\Chap05 folder. Change the form file’s name to Main Form.vb. Change
the form’s name to frmMain. Create the interface shown in Figure 5-72. Each
salesperson at Marshall Sales Corporation receives a commission based on the amount
of his or her sales. The commission rates are shown in Figure 5-73. If the salesperson
has been with the company more than 10 years, he or she receives an additional $500.
If the salesperson is classified as a traveling salesperson, he or she receives an additional
$700. Code the application. Save the solution and then start and test the application.
Close the Code Editor window and then close the solution.

) Marshall Sales Corporation [= | & |3
Sales: [] Over 10 years
1 Traveling
Total commission:
Calculate default button
Exit

Figure 5-72 Interface for Exercise 10

earning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Lesson C Exercises

Sales (S) Commission

1 -100,000.99 2% of sales

100,001 - 400,000.99 $2,000 plus 5% of the sales over $100,000
400,001 and over $17,000 plus 10% of the sales over $400,000

Figure 5-73 Commission rates for Exercise 10
© 2013 Cengage Learning

11.

In this exercise, you create an application for Sunnyside Products. The application
calculates and displays the price of an order, based on the number of units ordered and
the customer’s status (either wholesaler or retailer). The price per unit is shown in
Figure 5-74. Create a Visual Basic Windows application. Use the following names for the
solution and project, respectively: Sunnyside Solution and Sunnyside Project. Save the
application in the VB2012\Chap05 folder. Change the form file’s name to Main Form.vb.
Change the form’s name to frmMain. Design an appropriate interface. Use radio buttons
to determine the customer’s status. Code the application. Save the solution and then
start and test the application. Close the Code Editor window and then close the solution.

Number of Units Price per Unit ($) Number of Units Price per Unit ($)

1-10 20 1-5 30
11 and over 15 6-15 28

Wholesaler Retailer

16 and over 25

Figure 5-74 Pricing chart for Exercise 11
© 2013 Cengage Learning

12.

13.

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or dupli

In this exercise, you modify the Covington Resort application from Lesson B’s Exercise 6.
Use Windows to make a copy of the Modified Covington Resort Solution folder. Rename
the copy Modified Covington Resort Solution-Advanced. Open the Covington Resort
Solution (Covington Resort Solution.sln) file contained in the Modified Covington Resort
Solution-Advanced folder. Open the designer window. Change the Visible property of the
Number of vehicles: label and its associated text box to False in the Properties window.
The label and text box should appear in the interface only when the check box is selected.
If the check box is subsequently deselected, the application should hide the label and text
box once again. Save the solution and then start and test the application. Close the Code
Editor window and then close the solution.

This exercise will show you how to generate and display random numbers containing
decimal places. Open the Random Double Solution (Random Double Solution.sln) file
contained in the VB2012\Chap05\Random Double Solution folder. If necessary, open
the designer window.

a. Open the Code Editor window. You can use the Random.NextDouble method
to return a random number that is greater than or equal to 0.0, but less than 1.0. The
syntax of the Random.NextDouble method is randomObjectName.NextDouble. Code
the btnDisplay_Click procedure so that it displays a random number in the IbINumber
control. Save the solution and then start the application. Click the Display Random
Number button several times. Each time you click the button, a random number that is
greater than or equal to 0.0, but less than 1.0, appears in the IbINumber control.

ADVANCED

ADVANCED

DISCOVERY

More on the Selection Structure

b. You can use the following formula to generate random numbers within a
specified range: (maxValue — minValue + 1) * randomObjectName.NextDouble
+ minValue. For example, if the Random object’s name is randGen, the formula
(10 -1+ 1) * randGen.NextDouble + 1 generates random numbers that are greater
than or equal to 1.0, but less than 11.0. Modify the btnDisplay_Click procedure to
display a random number that is greater than or equal to 25.0, but less than 51.0.

Display two decimal places in the number.

c. Save the solution and then start the application. Click the Display Random Number
button several times. Each time you click the button, a random number that is
greater than or equal to 25.0, but less than 51.0, appears in the IbINumber control.
Close the Code Editor window and then close the solution.

SWAT THE BUGS 14. The purpose of this exercise is to demonstrate the importance of testing an application
thoroughly. Open the Debug Solution (Debug Solution.sln) file contained in the
VB2012\Chap05\Debug Solution folder. If necessary, open the designer and Code Editor
windows. The application displays a shipping charge, which is based on the total
price entered by the user. If the total price is greater than or equal to $100 but less than
$501, the shipping charge is $10. If the total price is greater than or equal to $501 but
less than $1,001, the shipping charge is $7. If the total price is greater than or equal to
$1,001, the shipping charge is $5. No shipping charge is due if the total price is less
than $100. Start the application. Test the application using the following total prices:
100, 501, 1500, 500.75, 30, 1000.33, and 2000. Notice that the application does not
always display the correct shipping charge. Correct the application’s code. Save the
solution and then start and test the application again. Close the Code Editor window
and then close the solution.

earning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

The Repetition Structure

Creating the Gross Pay Application

In this chapter, you create an application that allows the user to enter
the number of hours an employee worked and his or her rate of pay. The
number of hours worked and pay rate will be entered using list boxes.
The hours worked list box will display numbers from 0.5 through 40.0 in

increments of 0.5 (for example, 0.5, 1.0, 1.5, 2.0, and so on). The pay
rate list box will display numbers from 8.00 through 15.00, also in
increments of 0.5. The application will calculate and display the
employee’s gross pay.

All Microsoft screenshots used with permission from Microsoft Corporation

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

The Repetition Structure

Previewing the Gross Pay Application

Before you start the first lesson in this chapter, you will preview the completed application.
The application is contained in the VB2012\Chap06 folder.

STARTIERD»> To preview the completed application:

1. Use the Run dialog box to run the Gross Pay (Gross Pay.exe) file contained in
the VB2012\Chap06 folder. The application’s user interface appears on the screen.
The interface contains two list boxes. List box controls are covered in Lesson C.

2. Click 38.5 in the Hours list box, and then click the Calculate button. The gross
pay amount ($385.00) appears in the interface. See Figure 6-1.

| list box | | list box |

Calculate

Gross pay:

$385.00

Figure 6-1 Gross pay shown in the interface
OpenClipArt.org/johnny_automatic

3. Click the Exit button to end the application.
The Gross Pay application uses the repetition structure, which is covered in Lessons A and B.

You will code the Gross Pay application in Lesson C. Be sure to complete each lesson in full and
do all of the end-of-lesson questions and several exercises before continuing to the next lesson.

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Repeating Program Instructions

After studying Lesson A, you should be able to:
e Differentiate between a looping condition and a loop exit condition

o Explain the difference between a pretest loop and a posttest loop

e Include pretest and posttest loops in pseudocode and in a flowchart

e Write a Do...Loop statement

e Stop an infinite loop

e Utilize counters and accumulators

e Explain the purpose of the priming and update reads

e Abbreviate assignment statements using the arithmetic assignment operators

e Code a counter-controlled loop using the For...Next statement

Repeating Program Instructions

Recall that all of the procedures in an application are written using one or more of three control
structures: sequence, selection, and repetition. You learned about the sequence and selection
structures in previous chapters. This chapter covers the repetition structure. Programmers use
the repetition structure, referred to more simply as a loop, when they need the computer to
repeatedly process one or more program instructions. The loop contains a condition that
controls whether the instructions are repeated. In many programming languages, the condition
can be phrased in one of two ways. It can either specify the requirement for repeating the
instructions or specify the requirement for not repeating them. The requirement for repeating
the instructions is referred to as the looping condition because it indicates when the computer
should continue “looping” through the instructions. The requirement for not repeating the
instructions is referred to as the loop exit condition because it tells the computer when to exit
(or stop) the loop. Every looping condition has an opposing loop exit condition; one is the
opposite of the other.

Some examples may help illustrate the difference between the looping condition and the loop
exit condition. You've probably heard the old adage “Make hay while the sun shines.” The “while
the sun shines” is the looping condition because it tells you when to continue making hay. The
adage could also be phrased as “Make hay until the sun is no longer shining.” In this case, the
“until the sun is no longer shining” is the loop exit condition because it indicates when you
should stop making hay. In the phrase, “Keep your car’s windshield wipers on while it is raining,”
the “while it is raining” is the looping condition. To use the loop exit condition, you would
change the phrase to “Keep your car’s windshield wipers on until it stops raining.” Similarly, the
idiom “While the cat’s away, the mice will play” uses the looping condition “While the cat’s
away” to indicate when the mice will continue playing. You could also phrase the idiom using a
loop exit condition, like this: “Until the cat returns, the mice will play.” In this case, the loop exit
condition indicates when the mice will stop playing. As mentioned earlier, the looping and loop
exit conditions are the opposite of each another.

The programmer determines whether a problem’s solution requires a loop by studying the

problem specification. The first problem specification you will examine in this chapter involves a

superheroine named Isis. The problem specification and an illustration of the problem are (1) ChOBA video
shown in Figure 6-2, along with a correct solution written in pseudocode. The solution uses only v

the sequence and selection structures because no instructions need to be repeated.

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

The Repetition Structure

Problem Specification

A superheroine named Isis must prevent a poisonous yellow spider from attacking King Khafra and
Queen Rashida. Isis has one weapon at her disposal: a laser beam that shoots out from her right hand.
Unfortunately, Isis gets only one shot at the spider, which is flying around the palace looking for the
king and queen. Before taking the shot, she needs to position both her right arm and her right hand
toward the spider. After taking the shot, she should return her right arm and right hand to their original
positions. In addition, she should say “You are safe now. The spider is dead.” if the laser beam hit the
spider; otherwise, she should say “Run for your lives, my king and queen!”

Solution
1. position both your right arm and your right hand toward the spider
2. shoot a laser beam at the spider
3. return your right arm and right hand to their original positions
4. if the laser beam hit the spider
say “You are safe now. The spider is dead.”
else
say “Run for your lives, my king and queen!”
end if

Figure 6-2 A problem that requires the sequence and selection structures
Image by Diane Zak; Created with Reallusion CrazyTalk Animator

Now let’s change the problem specification slightly. This time, rather than taking only one shot,
Isis can take as many shots as needed to destroy the poisonous yellow spider. Because of this, she
will never need to tell the king and queen to run for their lives again. Figure 6-3 shows the
modified problem specification along with two solutions. (As mentioned in Chapter 5, even
small problems can have more than one solution.) Both solutions contain the sequence and
repetition structures. The repetition structure in Solution 1 begins with the “repeat while the
laser beam did not hit the spider” clause and ends with the “end repeat while” clause. The
repetition structure in Solution 2, on the other hand, begins with the “repeat until the laser
beam hits the spider” clause and ends with the “end repeat until” clause. The instructions
between both clauses are called the loop body and are indented to indicate that they are part of
the repetition structure.

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Repeating Program Instructions

Problem Specification

A superheroine named Isis must prevent a poisonous yellow spider from attacking King Khafra and
Queen Rashida. Isis has one weapon at her disposal: a laser beam that shoots out from her right
hand. Isis can take as many shots as needed to destroy the spider, which is flying around the palace
looking for the king and queen. Before taking each shot, she needs to position both her right arm and
her right hand toward the spider. When the laser beam hits the spider, she should return her right arm
and right hand to their original positions and then say “You are safe now. The spider is dead.”

Solution 1

1.
2.
3.

position both your right arm and your right hand toward the spider
shoot a laser beam at the spider

repeat while the laser beam did not hit the spider

position both your right arm and your right hand toward the spider continue

end repeat while
4. return your right arm and right hand to their original positions
5. say “You are safe now. The spider is dead.”

Solution 2
1.

2.
3.

position both your right arm and your right hand toward the spider
shoot a laser beam at the spider
repeat until the laser beam hits the spider

end repeat until
return your right arm and right hand to their original positions
say “You are safe now. The spider is dead.”

o~

shoot a laser beam at the spider loop body

position both your right arm and your right hand toward the spider 000 bod stop
shoot a laser beam at the spider p body

Figure 6-3 A problem that requires the sequence and repetition structures
© 2013 Cengage Learning

The shaded portion in each solution in Figure 6-3 specifies the repetition structure’s condition.
The condition in Solution 1 is phrased as a looping condition because it tells Isis when to
continue repeating the instructions. In this case, she should repeat the instructions as long as (or
while) the laser beam did not hit the spider. The condition in Solution 2 is phrased as a loop exit
condition because it tells Isis when to stop repeating the instructions. In this case, she should
stop when the laser beam hits the spider. Notice that the loop exit condition is the opposite of
the looping condition. Whether you use a looping condition or a loop exit condition, the
condition must evaluate to a Boolean value.

]
YOU DO IT 1!
Using only the seven instructions shown here, write two solutions for printing the

pages in a document that contains at least one page. Use a looping condition in
the first solution. Use a loop exit condition in the second solution.

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

end repeat until

end repeat while

print the next page

print the first page

repeat until there are no more pages to print
repeat while there is another page to print
say “Done printing”

looping condition
specifies when to

L33 [

loop exit condition
specifies when to

The Repetition Structure

The Savings Account Application

Figure 6-4 shows the next problem specification you will examine in this chapter, along with
the pseudocode and code for the Calculate button’s Click event procedure. The procedure
requires only the sequence structure. It does not need a selection structure or a loop because no
decisions need to be made and no instructions need to be repeated to calculate and display
the account balance at the end of the year.

Problem Specification

Create an application that displays the balance in a savings account at the end of the year, given the
amount of money deposited into the savings account at the beginning of the year and the annual
interest rate. The interest is compounded annually and no withdrawals or additional deposits are made
during the year. The interest rate will be entered in decimal form. The application’s interface should
provide a Calculate button for displaying the account balance.

Pseudocode for the Calculate button’s Click event procedure
store deposit in balance variable

store interest rate in rate variable

interest = balance * rate

add interest to balance

display balance

oL

Code for the Calculate button’s Click event procedure
Dim db1Balance As DoubTle
Dim db1Rate As Double
Dim db1Interest As Double
Double.TryParse(txtDeposit.Text, dblBalance)
Double.TryParse(txtRate.Text, dblRate)
db1Interest = db1Balance * dbTRate
db1Balance = db1Balance + dblInterest
Tb1Balance.Text = "You will have " &
db1Balance.ToString("C2") &
" at the end of 1 year."

Figure 6-4 Problem specification, pseudocode, and code for the Savings Account application
© 2013 Cengage Learning

STARTERE> To run the Savings Account application:

1. If necessary, start Visual Studio 2012. Open the Savings Solution (Savings Solution.sln)
file contained in the VB2012\Chap06\Savings Solution folder. If necessary, open the
designer window.

2. Open the Code Editor window. Replace <your name> and <current date> in the
comments with your name and the current date, respectively.

3. Locate the btnCalc_Click procedure. The procedure contains the code shown in
Figure 6-4.

4. Save the solution and then start the application. Enter 5000 as the deposit and .03 as the
annual interest rate. Click the Calculate button. The button’s Click event procedure
displays the message shown in Figure 6-5.

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Repeating Program Instructions

Deposit: Annual interest rate (.00): Calculate
15000 | [0z]

Exit you can press Alt
" to either show or
hide the access
keys

You will have $5,150.00 at the end of 1 year.

Figure 6-5 Sample run of the Savings Account application

5. Click the Exit button.

Now we’ll make a slight change to the problem specification from Figure 6-4. The Savings
Account application will now need to display the number of years required for the savings
account to reach one-quarter of a million dollars, and the balance in the account at that time.
Consider the changes you will need to make to the Calculate button’s original pseudocode.

The first two steps in the original pseudocode are to store the input items (deposit and interest
rate) in variables; the modified pseudocode will still need both of these steps. Steps 3 and 4
calculate the interest and then add the interest to the savings account balance. The modified
pseudocode will need to repeat both of those steps either while the balance is less than one-
quarter of a million dollars (looping condition) or until the balance is greater than or equal to
one-quarter of a million dollars (loop exit condition). Here too, notice that the loop exit
condition is the opposite of the looping condition. The loop in the modified pseudocode will also
need to keep track of the number of times the instructions in Steps 3 and 4 are processed
because each time represents a year. The last step in the original pseudocode displays the
account balance. The modified pseudocode will need to display the account balance as well as
the number of years.

The modified problem specification is shown in Figure 6-6 along with four versions of the
modified pseudocode for the Calculate button’s Click event procedure. (Here again, notice that
even small procedures can have many solutions.) Only the loop is different in each version.

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

l

looping condition
specifies when to
continue

looping condition
specifies when to
continue

Pretest and
posttest loops
are also called
top-driven and
bottom-driven
loops,
respectively.

Like selection
structures,
repetition
structures
(loops) can be
nested.

The Repetition Structure

Problem Specification

Create an application that displays the number of years required for the balance in a savings account to
reach at least one-quarter of a million dollars, given the amount of money deposited into the savings
account at the beginning of the year and the annual interest rate. The application should also display the
account balance at that time. The interest is compounded annually and no withdrawals or additional
deposits are made during any of the years. The interest rate will be entered in decimal form. The
application’s interface should provide a Calculate button for displaying the number of years and the
account balance.

Pseudocode for the Calculate button’s Click event procedure

Version 1 - pretest loop

1. store deposit in balance variable

2. store interest rate in rate variable

3. repeat while balance < 250,000
interest = balance * rate
add interest to balance
add 1 to number of years

end repeat while
4. display balance and number of years

Version 2 - pretest loop

1. store deposit in balance variable

2. store interest rate in rate variable

3. repeat until balance >= 250,000
interest = balance * rate
add interest to balance
add 1 to number of years

end repeat until
4. display balance and number of years

loop exit condition
specifies when to
stop

Version 3 - posttest loop
1. store deposit in balance variable
2. store interest rate in rate variable
3. repeat
interest = balance * rate
add interest to balance
add 1 to number of years
end repeat while balance < 250,000
4. display balance and number of years

Version 4 - posttest loop
1. store deposit in balance variable
2. store interest rate in rate variable
3. repeat
interest = balance * rate
add interest to balance
add 1 to number of years
end repeat until balance >= 250,000
4. display balance and number of years

loop exit condition
specifies when to
stop

Figure 6-6 Modified problem specification and pseudocode for the Calculate button’s Click event

procedure
© 2013 Cengage Learning

The loops in Versions 1 and 2 in Figure 6-6 are pretest loops. In a pretest loop, the condition
appears at the beginning of the loop, indicating that it is evaluated before the instructions within
the loop are processed. The condition in Version 1 is a looping condition because it tells the
computer when to continue repeating the loop instructions. Version 2’s condition, on the other
hand, is a loop exit condition because it tells the computer when to stop repeating the
instructions. Depending on the result of the evaluation, the instructions in a pretest loop may
never be processed. For example, if the original deposit entered by the user is greater than or
equal to 250,000 (one-quarter of a million), the “while balance < 250,000” looping condition in
Version 1 will evaluate to False and the loop instructions will be skipped over. Similarly, the
“until balance >= 250,000” loop exit condition in Version 2 will evaluate to True, causing the
loop instructions to be bypassed.

The loops in Versions 3 and 4 in Figure 6-6, on the other hand, are posttest loops. In a posttest
loop, the condition appears at the end of the loop, indicating that it is evaluated after the
instructions within the loop are processed. The condition in Version 3 is a looping condition,
whereas the condition in Version 4 is a loop exit condition. Unlike the instructions in a pretest
loop, the instructions in a posttest loop will always be processed at least once. In this case, if the
original deposit entered by the user is greater than or equal to 250,000, the instructions in the
two posttest loops will be processed once before the loop ends. Posttest loops should be used
only when you are certain that the loop instructions should be processed at least once.

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

The Do...Loop Statement

The Visual Basic language provides three different statements for coding loops: Do...Loop,
For...Next, and For Each...Next. The Do...Loop statement can be used to code both pretest
and posttest loops, whereas the For...Next and For Each...Next statements are used only for
pretest loops. You will learn about the Do...Loop and For...Next statements in this lesson.
The For Each...Next statement is covered in Chapter 9.

337

The Do...Loop Statement

Figure 6-7 shows two versions of the syntax for the Do...Loop statement: one for coding a
pretest loop and the other for coding a posttest loop. In both versions of the syntax, the
statement begins with the Do clause and ends with the Loop clause. Between both clauses, you
enter the instructions you want the computer to repeat. The {While | Until} portion in each
syntax indicates that you can select only one of the keywords appearing within the braces. You
follow the keyword with a condition, which can be phrased as either a looping condition or a

loop exit condition. You use the While keyword in a looping condition to specify that the loop You can use the
body should be processed while (in other words, as long as) the condition is true. You use the - Exit Do
Until keyword in a loop exit condition to specify that the loop body should be processed until statement to exit
the condition becomes true, at which time the loop should stop. Like the condition in an the Do...Loop

statement
before the loop has
finished processing. You

If...Then...Else statement, the condition in a Do...Loop statement can contain variables,
constants, properties, methods, keywords, and operators; it also must evaluate to a Boolean
value. The condition is evaluated with each repetition of the loop and determines whether the o

) 1) . may need to do this if the
computer processes the loop body. Notice that the keyword (either WhiTe or Unti1) and the omouter encounters an
condition appear in the Do clause in a pretest loop, but they appear in the Loop clause in a error when processing
posttest loop. the loop instructions.

Do...Loop Statement

Syntax for a pretest loop Syntax for a posttest loop
Do {While | Until} condition Do
loop body instructions to be loop body instructions to be
processed either while processed either while
the condition is true or until the condition is true or until
the condition becomes true the condition becomes true
Loop Loop {While | Until} condition
Pretest loop example Posttest loop example
Dim intNum As Integer =1 Dim intNum As Integer = 1
Do While intNum <= 3 Do
TbTNums.Text = TbTNums.Text =
TbTNums.Text & TbTNums.Text &
loop body intNum & " " loop body intNum & " "
intNum = intNum + 1 intNum = intNum + 1
Loop Loop Until intNum > 3

Result of using either of the above examples

Display

Exit

Figure 6-7 Syntax versions and examples of the Do...Loop statement
© 2013 Cengage Learning

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Ch06A-Do
Loop video

The Repetition Structure

Figure 6-7 also shows examples of using both syntax versions to display the numbers 1, 2, and 3
in a label control, and it includes a sample run of an application that contains either example.
Figure 6-8 describes the way the computer processes the code shown in the examples.

Processing steps for the pretest loop example

1. The intNum variable is created and initialized to 1.

2. The Do clause checks whether the value in the intNum variable (1) is less than or equal to 3.

It is, so the loop body instructions display the number 1 in the IbINums control and then add 1
to the contents of the intNum variable, giving 2.

3. The Loop clause returns processing to the Do clause (the beginning of the loop).

4. The Do clause checks whether the value in the intNum variable (2) is less than or equal to 3. It is,
so the loop body instructions display the numbers 1 and 2 (separated by spaces) in the IbINums
control and then add 1 to the contents of the intNum variable, giving 3.

5. The Loop clause returns processing to the Do clause (the beginning of the loop).

6. The Do clause checks whether the value in the intNum variable (3) is less than or equal to 3. It is, so

the loop body instructions display the numbers 1, 2, and 3 (separated by spaces) in the IbINums

control and then add 1 to the contents of the intNum variable, giving 4.

The Loop clause returns processing to the Do clause (the beginning of the loop).

8. The Do clause checks whether the value in the intNum variable (4) is less than or equal to 3. It isn't,
so the loop ends. Processing will continue with the statement following the Loop clause.

~N

Processing steps for the posttest loop example

1. The intNum variable is created and initialized to 1.

2. The Do clause marks the beginning of the posttest loop.

3. The loop body instructions display the number 1 in the IbINums control and then add 1 to the
contents of the intNum variable, giving 2.

4. The Loop clause checks whether the value in the intNum variable (2) is greater than 3. It isn't,
so processing returns to the Do clause (the beginning of the loop).

5. The loop body instructions display the numbers 1 and 2 (separated by spaces) in the IbINums
control and then add 1 to the contents of the intNum variable, giving 3.

6. The Loop clause checks whether the value in the intNum variable (3) is greater than 3. It isn't,
so processing returns to the Do clause (the beginning of the loop).

7. The loop body instructions display the numbers 1, 2, and 3 (separated by spaces) in the IbINums
control and then add 1 to the contents of the intNum variable, giving 4.

8. The Loop clause checks whether the value in the intNum variable (4) is greater than 3. It is,
so the loop ends. Processing will continue with the statement following the Loop clause.

Figure 6-8 Processing steps for the loop examples from Figure 6-7
© 2013 Cengage Learning

Although both examples in Figure 6-7 produce the same results, pretest and posttest loops are
not always interchangeable. For instance, if the intNum variable in the pretest loop in Figure 6-7
is initialized to 10 rather than to 1, the instructions in the pretest loop will not be processed
because the intNum <= 3 condition (which is evaluated before the instructions are processed)
evaluates to False. However, if the intNum variable in the posttest loop is initialized to 10 rather
than to 1, the instructions in the posttest loop will be processed one time because the intNum > 3
condition is evaluated after (rather than before) the loop instructions are processed.

It’s often easier to understand loops when viewed in flowchart form. Figure 6-9 shows the
flowcharts associated with the loop examples from Figure 6-7. The diamond in each
flowchart indicates the beginning of a repetition structure (loop). Like the diamond in a
selection structure, the diamond in a repetition structure contains a condition that evaluates

Co