
MOBILE DEVELOPMENT/IOS

Programming iOS 8

ISBN: 978-1-491-90873-0

US $54.99 CAN $57.99

“	Neuburg	is	my	favorite	
programming	book	
writer,	period.”

—John Gruber
Daring Fireball

Twitter: @oreillymedia
facebook.com/oreilly

Start building apps for iOS 8 with Apple’s Swift programming language.
If you’re grounded in the basics of Xcode and the Cocoa framework, this
book provides a structured explanation of all essential real-world iOS app
components. Through deep exploration and copious code examples,
you’ll learn how to create views, manipulate view controllers, and use iOS
frameworks for adding features such as audio and video, access to user
calendars and photos, and tracking the device’s location.

Example code is available on GitHub in the form of full projects that you
can download, study, and run.

Topics new to iOS 8 include:

 ■ Major changes in app coordinate space and interface rotation

 ■ Trait collections and size classes

 ■ View margins, visual effect views, and major animation changes

 ■ Changes to presented view controllers, popovers and split view
controllers, alert and action sheet architecture

 ■ Table view features: automatic variable row heights and
sliding cells

 ■ Classes for search results display, web view, video display, and
audio mixing and effects

 ■ Today extensions, Action extensions, Photo Editing extensions

 ■ Xcode 6 features: conditional constraints, view debugging,
designable views, inspectable properties, new segue types

Matt Neuburg has a PhD in Classics and has taught at many colleges and universities.
He has served as editor of MacTech magazine and as contributing editor for TidBITS.
He has written many OS X and iOS applications. Previous books include Programming
iOS 7, REALbasic: The Definitive Guide, and AppleScript: The Definitive Guide.

Matt Neuburg

Programming

iOS 8
DIVE DEEP INTO VIEWS, VIEW CONTROLLERS, AND FRAMEWORKS

Covers Swift,

iOS 8.1, Xcode 6.1

Program
m

ing iO
S 8

N
euburg

www.allitebooks.com

http://www.allitebooks.org

MOBILE DE VELOPMENT/IOS

Programming iOS 8

ISBN: 978-1-491-90873-0

US $54.99 CAN $57.99

“	Neuburg	is	my	favorite	
programming	book	
writer,	period.”

—John Gruber
Daring Fireball

Twitter: @oreillymedia
facebook.com/oreilly

Start building apps for iOS 8 with Apple’s Swift programming language.
If you’re grounded in the basics of Xcode and the Cocoa framework, this
book provides a structured explanation of all essential real-world iOS app
components. Through deep exploration and copious code examples,
you’ll learn how to create views, manipulate view controllers, and use iOS
frameworks for adding features such as audio and video, access to user
calendars and photos, and tracking the device’s location.

Example code is available on GitHub in the form of full projects that you
can download, study, and run.

Topics new to iOS 8 include:

 ■ Major changes in app coordinate space and interface rotation

 ■ Trait collections and size classes

 ■ View margins, visual effect views, and major animation changes

 ■ Changes to presented view controllers, popovers and split view
controllers, alert and action sheet architecture

 ■ Table view features: automatic variable row heights and
sliding cells

 ■ Classes for search results display, web view, video display, and
audio mixing and effects

 ■ Today extensions, Action extensions, Photo Editing extensions

 ■ Xcode 6 features: conditional constraints, view debugging,
designable views, inspectable properties, new segue types

Matt Neuburg has a PhD in Classics and has taught at many colleges and universities.
He has served as editor of MacTech magazine and as contributing editor for TidBITS.
He has written many OS X and iOS applications. Previous books include Programming
iOS 7, REALbasic: The Definitive Guide, and AppleScript: The Definitive Guide.

Matt Neuburg

Programming

iOS 8
DIVE DEEP INTO VIEWS, VIEW CONTROLLERS, AND FRAMEWORKS

Covers Swift,

iOS 8.1, Xcode 6.1

Program
m

ing iO
S 8

N
euburg

www.allitebooks.com

http://www.allitebooks.org

Matt Neuburg

FIFTH EDITION

Programming iOS 8

www.allitebooks.com

http://www.allitebooks.org

Programming iOS 8, Fifth Edition
by Matt Neuburg

Copyright © 2015 Matt Neuburg. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://safaribooksonline.com). For more information, contact our corporate/
institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editor: Rachel Roumeliotis
Production Editor: Kristen Brown
Proofreader: O’Reilly Production Services
Indexer: Matt Neuburg

Cover Designer: Randy Comer
Interior Designer: David Futato
Illustrator: Matt Neuburg

May 2011: First Edition

March 2012: Second Edition

March 2013: Third Edition

December 2013: Fourth Edition

December 2014: Fifth Edition

Revision History for the Fifth Edition:

2014-11-21: First release

See http://oreilly.com/catalog/errata.csp?isbn=9781491908730 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Programming iOS 8, the image of a
kingbird, and related trade dress are trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc., was aware of a trade‐
mark claim, the designations have been printed in caps or initial caps.

While the publisher and the author have used good faith efforts to ensure that the information and instruc‐
tions contained in this work are accurate, the publisher and the author disclaim all responsibility for errors
or omissions, including without limitation responsibility for damages resulting from the use of or reliance
on this work. Use of the information and instructions contained in this work is at your own risk. If any code
samples or other technology this work contains or describes is subject to open source licenses or the intel‐
lectual property rights of others, it is your responsibility to ensure that your use thereof complies with such
licenses and/or rights.

ISBN: 978-1-491-90873-0

[LSI]

www.allitebooks.com

http://safaribooksonline.com
mailto:corporate@oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781491908730
http://www.allitebooks.org

Table of Contents

Preface. xvii

Part I. Views

1. Views. 3
The Window 4
Experimenting With Views 7
Subview and Superview 8
Visibility and Opacity 12
Frame 12
Bounds and Center 13
Window Coordinates and Screen Coordinates 17
Transform 18
Trait Collections and Size Classes 23
Layout 26

Autoresizing 27
Autolayout 30
Configuring Layout in the Nib 47
View Debugging, Previewing, and Designing 56
Events Related to Layout 60

2. Drawing. 65
UIImage 65
UIImageView 68

Resizable Images 70
Image Rendering Mode 74

Graphics Contexts 75
UIImage Drawing 79
CGImage Drawing 81

iii

www.allitebooks.com

http://www.allitebooks.org

Snapshots 83
CIFilter and CIImage 85
Blur and Vibrancy Views 90
Drawing a UIView 92
Graphics Context Settings 94
Paths and Shapes 95
Clipping 99
Gradients 100
Colors and Patterns 102
Graphics Context Transforms 104
Shadows 106
Erasing 107
Points and Pixels 108
Content Mode 109

3. Layers. 111
View and Layer 112
Layers and Sublayers 113

Manipulating the Layer Hierarchy 116
Positioning a Sublayer 117
CAScrollLayer 119
Layout of Sublayers 119

Drawing in a Layer 120
Content Resizing and Positioning 123
Layers that Draw Themselves 126

Transforms 127
Depth 131

Shadows, Borders, and Masks 134
Layer Efficiency 136
Layers and Key–Value Coding 137

4. Animation. 141
Drawing, Animation, and Threading 142
UIImageView and UIImage Animation 145
View Animation 147

View Animation Options 149
Canceling a View Animation 153
Custom Animatable View Properties 155
Springing View Animation 156
Keyframe View Animation 156
Transitions 158

Implicit Layer Animation 160

iv | Table of Contents

www.allitebooks.com

http://www.allitebooks.org

Animation Transactions 162
Media Timing Functions 163

Core Animation 165
CABasicAnimation and Its Inheritance 165
Using a CABasicAnimation 167
Keyframe Animation 171
Making a Property Animatable 172
Grouped Animations 173
Freezing an Animation 177
Transitions 178
Animations List 180

Actions 182
What an Action Is 182
Action Search 183
Hooking Into the Action Search 185
Making a Custom Property Implicitly Animatable 188
Nonproperty Actions 189

Emitter Layers 191
CIFilter Transitions 196
UIKit Dynamics 198
Motion Effects 205
Animation and Autolayout 206

5. Touches. 209
Touch Events and Views 210
Receiving Touches 211
Restricting Touches 213
Interpreting Touches 214
Gesture Recognizers 218

Gesture Recognizer Classes 219
Gesture Recognizer Conflicts 223
Subclassing Gesture Recognizers 225
Gesture Recognizer Delegate 227
Gesture Recognizers in the Nib 230

Touch Delivery 230
Hit-Testing 231
Initial Touch Event Delivery 236
Gesture Recognizer and View 237
Touch Exclusion Logic 238
Gesture Recognition Logic 239
Touches and the Responder Chain 241

Table of Contents | v

www.allitebooks.com

http://www.allitebooks.org

Part II. Interface

6. View Controllers. 245
View Controller Responsibilities 246
View Controller Hierarchy 247
View Controller Creation 254
How a View Controller Gets Its View 255

Manual View 257
Generic Automatic View 259
View in a Separate Nib 260
Nib-Instantiated View Controller 264
Storyboard-Instantiated View Controller 266

View Resizing 268
View Size in the Nib Editor 268
Bars and Underlapping 269
Resizing Events 272
Rotation 273

Presented View Controller 284
Presenting a View 285
Communication With a Presented View Controller 288
Presented View Animation 291
Presentation Styles 292
Adaptive Presentation 295
Rotation of a Presented View 297

Tab Bar Controller 298
Tab Bar Items 299
Configuring a Tab Bar Controller 300

Navigation Controller 302
Bar Button Items 305
Navigation Items and Toolbar Items 306
Configuring a Navigation Controller 309

Custom Transition 313
Noninteractive Custom Transition Animation 314
Interactive Custom Transition Animation 317
Custom Presented View Controller Transition 324
Transition Coordinator 330

Page View Controller 332
Preparing a Page View Controller 332
Page View Controller Navigation 334
Other Page View Controller Configurations 337

Container View Controllers 337
Adding and Removing Children 338

vi | Table of Contents

www.allitebooks.com

http://www.allitebooks.org

Container View Controllers, Traits, and Resizing 342
Storyboards 344

Segues 346
Container Views 349
Unwind Segues 350

View Controller Lifetime Events 355
Incoherencies in View Controller Events 358
Appear and Disappear Events 358
Event Forwarding to a Child View Controller 359

View Controller Memory Management 361
State Restoration 364

How to Test State Restoration 365
Participating in State Restoration 366
Restoration ID, Identifier Path, and Restoration Class 368
Restoring View Controller State 373
Restoration Order of Operations 378
Restoration of Other Objects 380
Snapshot Suppression 382

7. Scroll Views. 385
Creating a Scroll View in Code 386

Manual Content Size 386
Automatic Content Size With Autolayout 387
Using a Content View 389

Scroll View in a Nib 391
Scrolling 393

Paging 397
Tiling 399

Zooming 401
Zooming Programmatically 403
Zooming with Detail 403

Scroll View Delegate 406
Scroll View Touches 409
Floating Scroll View Subviews 412
Scroll View Performance 413

8. Table Views and Collection Views. 415
Table View Cells 418

Built-In Cell Styles 419
Registering a Cell Class 425
Custom Cells 427

Table View Data 433

Table of Contents | vii

www.allitebooks.com

http://www.allitebooks.org

The Three Big Questions 435
Reusing Cells 436
Table View Sections 438
Refreshing Table View Data 445
Variable Row Heights 449

Table View Cell Selection 454
Managing Cell Selection 454
Responding to Cell Selection 455
Navigation From a Table View 457
Cell Choice and Static Tables 458

Table View Scrolling and Layout 460
Table View State Restoration 460
Table View Searching 461

Configuring a Search Controller 461
Using a Search Controller 462

Table View Editing 468
Deleting Cells 471
Custom Action Buttons 473
Editable Content in Cells 474
Inserting Cells 476
Rearranging Cells 478
Dynamic Cells 479

Table View Menus 480
Collection Views 483

Collection View Classes 486
Using a Collection View 489
Custom Collection View Layouts 493
Switching Layouts 496
Collection Views and UIKit Dynamics 497

9. Popovers and Split Views. 499
Popovers 499

Preparing a Popover 501
Popover Presentation, Dismissal, and Delegate 507
Adaptive Popovers 509
Popover Segues 511
Popover Presenting a View Controller 513
Popover Search Results 513

Split Views 515
Expanded Split View Controller (iPad) 517
Collapsed Split View Controller (iPhone) 519
Expanding Split View Controller (iPhone 6 Plus) 522

viii | Table of Contents

www.allitebooks.com

http://www.allitebooks.org

Customizing a Split View Controller 523
Setting the Collapsed State 525
Replacing the Child View Controllers 526
Split View Controller in a Storyboard 529

10. Text. 531
Fonts and Font Descriptors 532

Fonts 532
Font Descriptors 535

Attributed Strings 537
Attributed String Attributes 538
Making an Attributed String 541
Modifying and Querying an Attributed String 546
Custom Attributes 548
Drawing and Measuring an Attributed String 549

Labels 550
Number of Lines 551
Wrapping and Truncation 551
Label Resizing 552
Customized Label Drawing 554

Text Fields 555
Summoning and Dismissing the Keyboard 557
Keyboard Covers Text Field 559
Configuring the Keyboard 563
Text Field Delegate and Control Event Messages 564
Text Field Menu 566

Text Views 569
Text View as Scroll View 570
Text View and Keyboard 571

Text Kit 572
Text Container 574
Alternative Text Kit Stack Architectures 576
Layout Manager 578
Text Kit Without a Text View 581

11. Web Views. 587
WKWebView 588

WKWebView Content 590
Tracking Changes in a WKWebView 591
WKWebView Navigation 592
Communicating With a WKWebView Web Page 593

UIWebView 596

Table of Contents | ix

UIWebView Content 596
UIWebView Navigation 597
Communicating with a UIWebView 598
Paginated Web Views 599
UIWebView State Restoration 599

Developing Web View Content 600

12. Controls and Other Views. 603
UIActivityIndicatorView 603
UIProgressView 605
UIPickerView 607
UISearchBar 609
UIControl 614

UISwitch 618
UIStepper 619
UIPageControl 620
UIDatePicker 621
UISlider 624
UISegmentedControl 627
UIButton 630
Custom Controls 635

Bars 638
Bar Position and Bar Metrics 638
Bar Appearance 640
UIBarButtonItem 641
UINavigationBar 643
UIToolbar 646
UITabBar 646

Tint Color 651
Appearance Proxy 653

13. Modal Dialogs. 657
Alerts and Action Sheets 657

Alerts 658
Action Sheets 661
Dialog Alternatives 662

Local Notifications 663
Registering a Notification 667
Scheduling a Notification 669
Hearing About a Local Notification 670
Today Extensions 672

Activity Views 675

x | Table of Contents

Presenting an Activity View 676
Custom Activities 678
Action Extensions 680

Part III. Some Frameworks

14. Audio. 689
System Sounds 689
Audio Session 691

Interruptions 693
Secondary Audio 695
Routing Changes 696

Audio Player 697
Remote Control of Your Sound 699
Playing Sound in the Background 701
AVAudioEngine 704
Speech Synthesis 709
Further Topics in Sound 709

15. Video. 711
AVPlayerViewController 712

Fullscreen AVPlayerViewController 712
Embedded AVPlayerViewController 714
Other AVPlayerViewController Properties 714

Introducing AV Foundation 716
Some AV Foundation Classes 716
Things Take Time 717
Time is Measured Oddly 720
Constructing Media 720
Synchronizing Animation With Video 722
AVPlayerLayer 723
Further Exploration of AV Foundation 725

UIVideoEditorController 725

16. Music Library. 729
Exploring the Music Library 729

Querying the Music Library 730
Persistence and Change in the Music Library 734

Music Player 735
MPVolumeView 738
Playing Songs With AV Foundation 739

Table of Contents | xi

Media Picker 741

17. Photo Library and Image Capture. 745
Photo Library Authorization 745
Choosing From the Photo Library 747
Photos Framework 751

Querying the Photo Library 752
Modifying the Library 754
Displaying Images 757
Editing Images 759
Photo Editing Extension 763

Using the Camera 765
Camera Authorization 765
Using the Camera with UIImagePickerController 766
Customizing the Image Capture Interface 768
Image Capture With AV Foundation 770

18. Address Book. 773
Address Book Database 773

Address Book Authorization 773
Address Book Changes 775
Persons and Addresses 776

Address Book Interface 779
ABPeoplePickerNavigationController 779
ABPersonViewController 781
ABNewPersonViewController 782
ABUnknownPersonViewController 783

19. Calendar. 785
Calendar Database 785

Calendar Database Authorization 786
Calendar Database Contents 787
Calendar Database Changes 788
Creating Calendars and Events 789
Recurrence 791
Fetching Events 794
Reminders 795
Proximity Alarms 796

Calendar Interface 796
EKEventViewController 797
EKEventEditViewController 798
EKCalendarChooser 798

xii | Table of Contents

20. Mail and Messages. 801
Mail Message 802
Text Message 803
Twitter Post 804

21. Maps. 807
Displaying a Map 807
Annotations 810

Custom Annotation View 811
Custom Annotation Class 815
Other Annotation Features 816

Overlays 817
Custom Overlay Class 819
Custom Overlay Renderer 821
Other Overlay Features 823

Map Kit and Current Location 824
Communicating With the Maps App 826
Geocoding, Searching, and Directions 827

Geocoding 827
Searching 829
Directions 829

22. Sensors. 831
Core Location 832

Core Location Authorization 833
Basic Location Determination 835
Heading 838
Background Location 839

Acceleration and Attitude 843
Shake Events 844
Raw Acceleration 845
Gyroscope 849
Motion Activity 854

Part IV. Final Topics

23. Persistent Storage. 861
The Sandbox 861

Standard Directories 861
Visually Inspecting the Sandbox 863
Basic File Operations 864

Table of Contents | xiii

Saving and Reading Files 865
File Coordinators 867

User Defaults 867
Simple Sharing and Previewing of Files 870

File Sharing 870
Document Types and Receiving a Document 871
Handing Over a Document 874
Previewing a Document 875

Document Architecture 878
iCloud 883
XML 886
SQLite 891
Core Data 891
Image File Formats 898

24. Basic Networking. 901
HTTP Requests 901

Simple HTTP Request 903
Formal HTTP Request 904
Encapsulating the Session, Task, and Delegate 909
Multiple Tasks 913
Background Downloads 917

Background App Refresh 919
In-App Purchases 920
Bonjour 924

25. Threads. 927
Main Thread 927
Why Threading Is Hard 930
Blocking the Main Thread 931
NSOperation 934
Grand Central Dispatch 938
Threads and App Backgrounding 944

26. Undo. 947
Undo Manager 947

Target–Action Undo 948
Undo Grouping 950
Invocation Undo 951

Undo Interface 952
Shake-To-Edit 952
Undo Menu 953

xiv | Table of Contents

A. Application Lifetime Events. 957

B. Some Useful Utility Functions. 963

Index. 971

Table of Contents | xv

Aut lego vel scribo; doceo scrutorve sophian.
—Sedulius Scottus

Preface

On June 2, 2014, Apple’s WWDC keynote address ended with a shocking announce‐
ment: “We have a new programming language.” This was surprising in several ways:

• Apple buried the lede (or, looking at it another way, they saved the biggest until
last).

• Like the weather, everyone had long talked about the need for a new language to
replace Objective-C, but no one believed Apple would ever actually do anything
about it.

• How on earth had Apple done all the groundwork needed to design, prepare, and
implement a whole new programming language without the least rumor leaking
out?

Having picked themselves up off the floor, developers immediately began to examine
this new language — Swift — studying it, critiquing it, and deciding whether to adopt
it. My own first move was to translate all my existing iOS apps into Swift; this was enough
to convince me that, for all its faults, Swift deserved to be adopted by new students of
iOS programming, and that my books, therefore, should henceforth assume that readers
are using Swift.

Therefore, Swift is the programming language used throughout this book. Nevertheless,
the reader will also need some awareness of Objective-C (including C). There are two
chief reasons for this:

• The Foundation and Cocoa APIs, the built-in commands with which your code
must interact in order to make anything happen on an iOS device, are still written
in C and Objective-C. In order to interact with them, you have to know what those
languages would expect. For example, in order to pass a Swift array where an

xvii

NSArray is expected, you need to know what consitutes an object acceptable as an
element of an Objective-C NSArray.

• Swift can’t do everything that C and Objective-C can do. Apple likes to claim that
Swift can “access all of the Cocoa Touch frameworks” and that it constitutes “a
complete replacement for both the C and Objective-C languages” — I’m quoting
from the Xcode 6 release notes — but the truth is that Swift can’t interface directly
with every facet of the Cocoa Touch APIs. Swift can’t form a C function or obtain
the address of such a function; Swift can’t declare a property @dynamic in the
Objective-C sense; in certain situations, Swift can be prohibitively slow in com‐
parison to equivalent Objective-C code; and so on. Thus, I occasionally show some
Objective-C code in this edition, in order to do things that Swift alone can’t ac‐
complish.

Because Swift is new, I have had to settle on my own conventions for presenting and
describing code. The most important question has been how to state the name of a
method. My solution is to give the method’s Objective-C name. As an example, what is
the name of the method that you call when you set a value using key–value coding? The
actual call, in Swift, would be something like this:

someObject.setValue(someValue, forKey:"someKey")

But when I give the name of the method being called here, that name is setValue:for-
Key:. This choice has several advantages:

• It is clear, compact, and predictable, being formed according to perfectly consistent
and well-established rules.

• For those who have been programming in Objective-C all these years, it’s what we’re
used to. The way Objective-C methods are named is a thoroughly entrenched con‐
vention; even Swift programmers must accommodate themselves to seeing
Objective-C method names plastered all over the Internet and Apple’s own docu‐
mentation.

• That name is in fact its name as far as Objective-C and the Cocoa APIs are con‐
cerned, and even in Swift you would need to know this. For example, if you wanted
to specify this method when providing its name as a selector parameter (or as a
string representing a selector), it is the Objective-C name that you would have to
provide.

• The translation from the Objective-C name into practical Swift syntax is mechanical
and unambiguous — the first colon is replaced by parentheses embracing the first
parameter plus the names and values of any remaining parameters — and is some‐
thing that every Swift programmer needs to know how to do.

Similarly, I will speak of the setValue: parameter, even though, in an actual Swift
method call, the name of that parameter appears before the parentheses, with no colon.

xviii | Preface

www.allitebooks.com

http://www.allitebooks.org

The grand exception to this rule is my treatment of initializers. Here, the difference
between Objective-C and Swift is greater than a simple shorthand can readily encom‐
pass, so I give the initializer’s name as you would implement it. For example, in Objective-
C, the default initializer for a UIView is initWithFrame:. In this book, I will call that
initializer init(frame:). The same thing applies to what in Objective-C would be class
factory methods with a corresponding initializer: when I want to mention what in
Objective-C would be the UIImage class factory method imageNamed:, I’ll call it
init(named:).

This treatment of initializer names has the great virtue that the name clarifies instantly
that such a method is an initializer. Swift effectively abolishes class factory methods and
brings such methods into the fold of formal initializers; my treatment of their names is
a way of supporting and adopting that innovation.

Again, this convention requires some mental translation on the reader’s part, because
in Swift the way you would name an initializer when you implement it is not the same
as the way you would name it when you call it. If you were to override this method in
a UIView subclass, you’d override init(frame:); but if you were to call it to create a
new UIView, you’d say UIView(frame:). This mental translation, however, is hardly
objectionable, as it is a practical fact to which every Swift user is already habituated.

So much for Swift. A new language is big news, but Swift is not the only big news
connected with iOS 8. Nor is it the only welcome news. I’ve been arguing for years that
Apple needs to check the rampant growth and evolution of the basic Cocoa Touch APIs
and concentrate, for one release at least, on rationalizing the changes that have accu‐
mulated, often seemingly by random accretion, over the years. iOS 8 appears to do
exactly that. To give just a couple of obvious examples:

• An app, when it rotates to compensate for a change in the orientation of the device,
no longer does so by applying a transform to the root view. Instead, in iOS 8, rotation
is a feature of the app as a whole — the window itself, and indeed the screen, is
resized.

• A popover, in iOS 8, is just a variety of presented view controller. Not only does this
vastly simplify popover management (whose wretchedness I’ve been complaining
about since the first edition of this book), but also it eliminates the need, in a uni‐
versal app, for large chunks of conditional code depending on what type of device
the app runs on: a presented view controller is legal everywhere. Similarly, alerts
and action sheets are now forms of presented view controller.

Such rationalization permeates iOS 8, and I have eagerly adopted it, even where the
prior approach is not yet deprecated. You could still create popovers and alerts the way
we created them in iOS 7 and before; and obviously if you wanted your code to run on
iOS 7 as well as iOS 8, you’d have to. But in this edition I behave, in effect, as if the old
way didn’t exist. It’s the business of this edition to teach iOS 8, not to help you write

Preface | xix

backwards-compatible code; if you want to know how to deal with popovers (or any‐
thing else) in iOS 7 or before, consult an earlier edition of the book.

This book retains the structure of the previous edition. Like Homer’s Iliad, it begins in
the middle of the story, with the reader jumping with all four feet into views and view
controllers, and with a knowledge of the language and the Xcode IDE already presup‐
posed. As in Programming iOS 7, discussion of the programming language, the Xcode
IDE (including the nature of nibs, outlets, and actions, and the mechanics of nib load‐
ing), and the fundamental conventions, classes, and architectures of the Cocoa Touch
framework (including delegation, the responder chain, key–value coding, memory
management, and so on), has been expunged and relegated to a different book. This is
material that constituted Chapters 1–13 of earlier editions, before Programming iOS 7,
but whose presence was deemed to be making this book unwieldy in size and scope.

Here’s a summary of this book’s major sections:

• Part I describes views, the fundamental units of an iOS app’s interface. Views are
what the user can see and touch in an iOS app. To make something appear before
the user’s eyes, you need a view. To let the user interact with your app, you need a
view. This part of the book explains how views are created, arranged, drawn, layered,
animated, and touched.

• Part II starts by discussing view controllers. Perhaps the most remarkable and im‐
portant feature of iOS programming, view controllers enable views to come and go
coherently within the interface, thus allowing a single-windowed app running on
what may be a tiny screen to contain multiple screens of material. This part of the
book talks about all the ways in which view controllers can be manipulated in order
to make their views appear. It also describes every kind of view provided by the
Cocoa framework — the built-in building blocks with which you’ll construct an
app’s interface.

• Part III surveys the most important secondary frameworks provided by iOS. These
are clumps of code, sometimes with built-in interface, that are not part of your app
by default, but are there for the asking if you need them, allowing you to work with
such things as sound, video, user libraries, mail, maps, and the device’s sensors.

• Part IV wraps up the book with some miscellaneous but important topics: files,
networking, threading, and how to implement Undo.

• Appendix A summarizes the most important lifetime event messages sent to your
app delegate.

• Appendix B, new in this edition, appends some useful Swift utility functions. You
should keep an eye on this appendix, consulting it whenever a mysterious method
name appears. For instance, my example code frequently uses my delay function,
which embraces dispatch_after with a convenient shorthand; when I use delay
and you don’t know what it is, consult this appendix.

xx | Preface

Someone who has read this book will, I believe, be capable of writing a real-life iOS app,
and to do so with a clear understanding of what he or she is doing and where the app
is going as it grows and develops. The book itself doesn’t show how to write any par‐
ticularly interesting iOS apps (though it is backed by dozens of example projects that
you can download from my GitHub site, http://github.com/mattneub/Programming-
iOS-Book-Examples), but it does constantly use my own real apps and real programming
situations to illustrate and motivate its explanations.

Just as important, this book is intended to prepare you for your own further explorations.
In the case of some topics, especially in Parts III and IV, I guide you past the initial
barrier of no knowledge into an understanding of the topic, its concepts, its capabilities,
and its documentation, along with some code examples; but the topic itself may be so
huge that there is room only to introduce it here. Your feet, nevertheless, will now be
set firmly on the path, and you will know enough that you can now proceed further
down that path on your own whenever the need or interest arises.

Indeed, there is always more to learn about iOS. iOS is vast! It is all too easy to find areas
of iOS that have had to be ruled outside the scope of this book. In Part IV, for example,
I peek at Core Data, and demonstrate its use in code, but a true study of Core Data would
require an entire book of its own (and such books exist); so, having opened the door, I
quickly close it again, lest this book suddenly double in size. By the same token, many
areas of iOS are not treated at all in this book:
OpenGL

An open source C library for drawing, including 3D drawing, that takes full ad‐
vantage of graphics hardware. This is often the most efficient way to draw, especially
when animation is involved. iOS incorporates a simplified version of OpenGL called
OpenGL ES. See Apple’s OpenGL Programming Guide for iOS. Open GL interface
configuration, texture loading, shading, and calculation are simplified by the GLKit
framework; see the GLKit Framework Reference. New in iOS 8 are the Metal classes,
which you’ll also want to investigate.

Sprite Kit
Sprite Kit provides a built-in framework for designing 2D animated games.

Scene Kit
New in iOS 8, Scene Kit is ported from OS X, making it much easier to create 3D
games and interactive graphics.

Accelerate
Certain computation-intensive processes will benefit from the vector-based Accel‐
erate framework. See the vDSP Programming Guide.

Game Kit
The Game Kit framework covers three areas that can enhance your user’s game
experience: Wireless or Bluetooth communication directly between devices (peer-

Preface | xxi

http://github.com/mattneub/Programming-iOS-Book-Examples
http://github.com/mattneub/Programming-iOS-Book-Examples

to-peer); voice communication across an existing network connection; and Game
Center, which facilitates these and many other aspects of interplayer communica‐
tion, such as posting and viewing high scores and setting up competitions. See the
Game Kit Programming Guide.

Advertising
The iAD framework lets your free app attempt to make money by displaying ad‐
vertisements provided by Apple. See the iAD Programming Guide.

Newsstand
Your app may represent a subscription to something like a newspaper or magazine.
See the Newsstand Kit Framework Reference.

Printing
See the “Printing” chapter of the Drawing and Printing Guide for iOS.

Security
This book does not discuss security topics such as keychains, certificates, and en‐
cryption. See the Security Overview and the Security framework.

Accessibility
VoiceOver assists visually impaired users by describing the interface aloud. To par‐
ticipate, views must be configured to describe themselves usefully. Built-in views
already do this to a large extent, and you can extend this functionality. See the
Accessibility Programming Guide for iOS.

Telephone
The Core Telephony framework lets your app get information about a particular
cellular carrier and call.

Pass Kit
The Pass Kit framework allows creation of downloadable passes to go into the user’s
Passbook app. See the Passbook Programming Guide.

Health Kit
New in iOS 8, the Health Kit framework lets your app obtain, store, share, and
present data and statistics related to body activity and exercise. See the HealthKit
Framework Reference.

External accessories
The user can attach an external accessory to the device, either directly via USB or
wirelessly via Bluetooth. Your app can communicate with such an accessory. See
External Accessory Programming Topics. New in iOS 8, the Home Kit framework
lets the user communicate with devices in the physical world, such as light switches
and door locks. See the HomeKit Framework Reference.

xxii | Preface

Handoff
New in iOS 8, Handoff permits your app to post to the user’s iCloud account a
record of what the user is doing, so that the user can switch to another copy of your
app on another device and resume doing the same thing. See the Handoff Pro‐
gramming Guide.

Versions
This book is geared to iOS 8.1 and Xcode 6.1, both of which became publicly available
in October, 2014. In general, only very minimal attention is given to earlier versions of
iOS and Xcode. As I’ve already said, it is not my intention to embrace in this book any
detailed knowledge about earlier versions of the software, which is, after all, readily and
compendiously available in my earlier books. The book does contain, nevertheless, a
few words of advice about backward compatibility, and now and then I will call out a
particularly noteworthy change from earlier system versions, especially where your ex‐
isting iOS 7 code is likely to break or behave differently when compiled against iOS 8.

Xcode 6 has eliminated some of the templates that you choose from when creating a
new project. The loss of the Utility Application template is a pity, because it embodied
and illustrated the standard techniques for passing data to and from a presented view
controller; but it hasn’t affected this book, because the template itself had become so
ugly and crufty that in the previous edition I didn’t mention it in any case. The loss of
the Empty Application template, on the other hand, is severe; it is, after all, perfectly
reasonable to write an app without a storyboard (several of my own apps are structured
in that way). Accordingly, near the start of the first chapter, I have given instructions
for turning a Single View Application–based template into something similar to what
the Empty Application template would have given you. Also, although I treat story‐
boards as the primary Interface Builder design milieu, I still do also assume that you
know how to make and work with a .xib file when that is what you need or prefer.

At the time of this writing, Apple was still making frequent adjustments to the Swift
language and to the way the Objective-C APIs are bridged to it. I have tried to keep my
code up-to-date, but please make allowances, and be prepared to compensate, for the
possibility that my examples may contain slight occasional impedance mismatches, such
as the lack of a needed Optional unwrap or the presence of a superfluous one.

Screenshots of Xcode 6 were taken under OS X 10.9 Mavericks. At the time of writing,
OS X 10.10 Yosemite was still in beta, and there’s no chance of my installing a beta of
an operating system on my computer when I’m working on a mission-critical project.
If you’re using Yosemite, your interface will naturally look slightly different from the
screenshots.

Preface | xxiii

Acknowledgments
My thanks go first and foremost to the people at O’Reilly Media who have made writing
a book so delightfully easy: Rachel Roumeliotis, Sarah Schneider, Kristen Brown, Dan
Fauxsmith, and Adam Witwer come particularly to mind. And let’s not forget my first
and long-standing editor, Brian Jepson, who had nothing whatever to do with this ed‐
ition, but whose influence is present throughout.

As in the past, I have been greatly aided by some fantastic software, whose excellences
I have appreciated at every moment of the process of writing this book. I should like to
mention, in particular:

• git (http://git-scm.com)
• SourceTree (http://www.sourcetreeapp.com)
• TextMate (http://macromates.com)
• AsciiDoc (http://www.methods.co.nz/asciidoc)
• BBEdit (http://barebones.com/products/bbedit/)
• Snapz Pro X (http://www.ambrosiasw.com)
• GraphicConverter (http://www.lemkesoft.com)
• OmniGraffle (http://www.omnigroup.com)

The book was typed and edited entirely on my faithful Unicomp Model M keyboard
(http://pckeyboard.com), without which I could never have done so much writing over
so long a period so painlessly. For more about my physical work environment, see http://
matt.neuburg.usesthis.com.

From the Programming iOS 4 Preface
A programming framework has a kind of personality, an overall flavor that provides an
insight into the goals and mindset of those who created it. When I first encountered
Cocoa Touch, my assessment of its personality was: “Wow, the people who wrote this
are really clever!” On the one hand, the number of built-in interface objects was severely
and deliberately limited; on the other hand, the power and flexibility of some of those
objects, especially such things as UITableView, was greatly enhanced over their OS X
counterparts. Even more important, Apple created a particularly brilliant way (UIView‐
Controller) to help the programmer make entire blocks of interface come and go and
supplant one another in a controlled, hierarchical manner, thus allowing that tiny
iPhone display to unfold virtually into multiple interface worlds within a single app
without the user becoming lost or confused.

The popularity of the iPhone, with its largely free or very inexpensive apps, and the
subsequent popularity of the iPad, have brought and will continue to bring into the fold

xxiv | Preface

http://git-scm.com
http://www.sourcetreeapp.com
http://macromates.com
http://www.methods.co.nz/asciidoc
http://barebones.com/products/bbedit/
http://www.ambrosiasw.com
http://www.lemkesoft.com
http://www.omnigroup.com
http://pckeyboard.com
http://matt.neuburg.usesthis.com
http://matt.neuburg.usesthis.com

many new programmers who see programming for these devices as worthwhile and
doable, even though they may not have felt the same way about OS X. Apple’s own annual
WWDC developer conventions have reflected this trend, with their emphasis shifted
from OS X to iOS instruction.

The widespread eagerness to program iOS, however, though delightful on the one hand,
has also fostered a certain tendency to try to run without first learning to walk. iOS gives
the programmer mighty powers that can seem as limitless as imagination itself, but it
also has fundamentals. I often see questions online from programmers who are evidently
deep into the creation of some interesting app, but who are stymied in a way that reveals
quite clearly that they are unfamiliar with the basics of the very world in which they are
so happily cavorting.

It is this state of affairs that has motivated me to write this book, which is intended to
ground the reader in the fundamentals of iOS. I love Cocoa and have long wished to
write about it, but it is iOS and its popularity that has given me a proximate excuse to
do so. Here I have attempted to marshal and expound, in what I hope is a pedagogically
helpful and instructive yet ruthlessly Euclidean and logical order, the principles and
elements on which sound iOS programming rests. My hope, as with my previous books,
is that you will both read this book cover to cover (learning something new often enough
to keep you turning the pages) and keep it by you as a handy reference.

This book is not intended to disparage Apple’s own documentation and example
projects. They are wonderful resources and have become more wonderful as time goes
on. I have depended heavily on them in the preparation of this book. But I also find that
they don’t fulfill the same function as a reasoned, ordered presentation of the facts. The
online documentation must make assumptions as to how much you already know; it
can’t guarantee that you’ll approach it in a given order. And online documentation is
more suitable to reference than to instruction. A fully written example, no matter how
well commented, is difficult to follow; it demonstrates, but it does not teach.

A book, on the other hand, has numbered chapters and sequential pages; I can assume
you know views before you know view controllers for the simple reason that Part I
precedes Part II. And along with facts, I also bring to the table a degree of experience,
which I try to communicate to you. Throughout this book you’ll find me referring to
“common beginner mistakes”; in most cases, these are mistakes that I have made myself,
in addition to seeing others make them. I try to tell you what the pitfalls are because I
assume that, in the course of things, you will otherwise fall into them just as naturally
as I did as I was learning. You’ll also see me construct many examples piece by piece or
extract and explain just one tiny portion of a larger app. It is not a massive finished
program that teaches programming, but an exposition of the thought process that de‐
veloped that program. It is this thought process, more than anything else, that I hope
you will gain from reading this book.

Preface | xxv

Conventions Used in This Book
The following typographical conventions are used in this book:
Italic

Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program elements
such as variable or function names, databases, data types, environment variables,
statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

This element signifies a tip or suggestion.

This element signifies a general note.

This element indicates a warning or caution.

Using Code Examples
Supplemental material (code examples, exercises, etc.) is available for download at
https://github.com/mattneub/Programming-iOS-Book-Examples.

This book is here to help you get your job done. In general, if example code is offered
with this book, you may use it in your programs and documentation. You do not need
to contact us for permission unless you’re reproducing a significant portion of the code.
For example, writing a program that uses several chunks of code from this book does
not require permission. Selling or distributing a CD-ROM of examples from O’Reilly
books does require permission. Answering a question by citing this book and quoting
example code does not require permission. Incorporating a significant amount of ex‐
ample code from this book into your product’s documentation does require permission.

xxvi | Preface

https://github.com/mattneub/Programming-iOS-Book-Examples

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “Programming iOS 8 by Matt Neuburg
(O’Reilly). Copyright 2015 Matt Neuburg, 978-1-491-90873-0.”

If you feel your use of code examples falls outside fair use or the permission given above,
feel free to contact us at permissions@oreilly.com.

Safari® Books Online
Safari Books Online is an on-demand digital library that delivers
expert content in both book and video form from the world’s
leading authors in technology and business.

Technology professionals, software developers, web designers, and business and crea‐
tive professionals use Safari Books Online as their primary resource for research, prob‐
lem solving, learning, and certification training.

Safari Books Online offers a range of plans and pricing for enterprise, government,
education, and individuals.

Members have access to thousands of books, training videos, and prepublication manu‐
scripts in one fully searchable database from publishers like O’Reilly Media, Prentice
Hall Professional, Addison-Wesley Professional, Microsoft Press, Sams, Que, Peachpit
Press, Focal Press, Cisco Press, John Wiley & Sons, Syngress, Morgan Kaufmann, IBM
Redbooks, Packt, Adobe Press, FT Press, Apress, Manning, New Riders, McGraw-Hill,
Jones & Bartlett, Course Technology, and hundreds more. For more information about
Safari Books Online, please visit us online.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://bit.ly/programmingiOS8_5E.

To comment or ask technical questions about this book, send email to
bookquestions@oreilly.com.

Preface | xxvii

mailto:permissions@oreilly.com
http://safaribooksonline.com
https://www.safaribooksonline.com/explore/
https://www.safaribooksonline.com/pricing/
https://www.safaribooksonline.com/enterprise/
https://www.safaribooksonline.com/government/
https://www.safaribooksonline.com/academic-public-library/
https://www.safaribooksonline.com/our-library/
http://safaribooksonline.com/
http://bit.ly/programmingiOS8_5E
mailto:bookquestions@oreilly.com

For more information about our books, courses, conferences, and news, see our website
at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

xxviii | Preface

www.allitebooks.com

http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia
http://www.allitebooks.org

PART I

Views

The things that appear in your app’s interface are, ultimately, views. A view is a unit of
your app that knows how to draw itself. A view also knows how to sense that the user
has touched it. Views are what your user sees on the screen, and what your user interacts
with by touching the screen. Thus, views are the primary constituent of an app’s visible,
touchable manifestation. They are your app’s interface. So it’s going to be crucial to know
how views work.

• Chapter 1 discusses views in their most general aspect — their hierarchy, visibility,
and position, including an explanation of autolayout.

• Chapter 2 is about drawing. A view knows how to draw itself; this chapter explains
how to tell a view what you want it to draw, from displaying an existing image to
constructing a drawing in code.

• Chapter 3 explains about layers. The drawing power of a view comes ultimately
from its layer. To put it another way, a layer is effectively the aspect of a view that
knows how to draw — with even more power.

• Chapter 4 tells about animation. An iOS app’s interface isn’t generally static; it’s
lively. Much of that liveliness comes from animation. iOS gives you great power to
animate your interface with remarkable ease; that power, it turns out, resides ulti‐
mately in layers.

• Chapter 5 is about touches. A view knows how to sense that the user is touching it.
This chapter explains the iOS view-based mechanisms for sensing and responding
to touches, with details on how touches are routed to the appropriate view and how
you can customize that routing.

CHAPTER 1

Views

A view (an object whose class is UIView or a subclass of UIView) knows how to draw
itself into a rectangular area of the interface. Your app has a visible interface thanks to
views. Creating and configuring a view can be extremely simple: “Set it and forget it.”
For example, you can drag an interface object, such as a UIButton, into a view in the
nib editor; when the app runs, the button appears, and works properly. But you can also
manipulate views in powerful ways, in real time. Your code can do some or all of the
view’s drawing of itself (Chapter 2); it can make the view appear and disappear, move,
resize itself, and display many other physical changes, possibly with animation (Chap‐
ter 4).

A view is also a responder (UIView is a subclass of UIResponder). This means that a
view is subject to user interactions, such as taps and swipes. Thus, views are the basis
not only of the interface that the user sees, but also of the interface that the user touches
(Chapter 5). Organizing your views so that the correct view reacts to a given touch allows
you to allocate your code neatly and efficiently.

The view hierarchy is the chief mode of view organization. A view can have subviews;
a subview has exactly one immediate superview. Thus there is a tree of views. This
hierarchy allows views to come and go together. If a view is removed from the interface,
its subviews are removed; if a view is hidden (made invisible), its subviews are hidden;
if a view is moved, its subviews move with it; and other changes in a view are likewise
shared with its subviews. The view hierarchy is also the basis of, though it is not identical
to, the responder chain.

A view may come from a nib, or you can create it in code. On balance, neither approach
is to be preferred over the other; it depends on your needs and inclinations and on the
overall architecture of your app.

3

The Window
The top of the view hierarchy is the app’s window. It is an instance of UIWindow (or
your own subclass thereof), which is a UIView subclass. Your app should have exactly
one main window. It is created at launch time and is never destroyed or replaced. It
occupies the entire screen and forms the background to, and is the ultimate superview
of, all your other visible views. Other views are visible by virtue of being subviews, at
some depth, of your app’s window.

If your app can display views on an external screen, you’ll create an additional
UIWindow to contain those views; but in this chapter I’ll behave as if there were
just one screen, the device’s own screen, and just one window. I repeat: if there is
just one screen, your app should create just one UIWindow. You may encounter
online tutorials that advise explicit creation of a second UIWindow as a way of
making content appear in front of the app’s main interface; such statements are
wrong and should be disregarded. To make content appear in front of the interface,
add a view, not another entire window.

The window must fill the device’s screen. Therefore, its size and position must be iden‐
tical to the size and position of the screen. This is done by setting the window’s frame
to the screen’s bounds as the window is instantiated. (I’ll explain later in this chapter
what “frame” and “bounds” are.) If you’re using a main storyboard, that’s taken care of
for you automatically behind the scenes by the UIApplicationMain function as the app
launches; but an app without a main storyboard is possible, and in that case you’d need
to set the window’s frame yourself, very early in the app’s lifetime, like this:

let w = UIWindow(frame: UIScreen.mainScreen().bounds)

The window must also persist for the lifetime of the app. To make this happen, the app
delegate class has a window property with a strong retain policy. As the app launches,
the UIApplicationMain function instantiates the app delegate class and retains the re‐
sulting instance. This is the app delegate instance; it is never released, so it persists for
the lifetime of the app. The window instance is then assigned to the app delegate in‐
stance’s window property; therefore it, too, persists for the lifetime of the app.

You will typically not put any view content manually and directly inside your main
window. Instead, you’ll obtain a view controller and assign it to the main window’s root-
ViewController property. Once again, if you’re using a main storyboard, this is done
automatically behind the scenes; the view controller in question will be your storyboard’s
initial view controller.

When a view controller becomes the main window’s rootViewController, its main
view (its view) is made the one and only immediate subview of your main window —
the main window’s root view. All other views in your main window will be subviews of

4 | Chapter 1: Views

the root view. Thus, the root view is the highest object in the view hierarchy that the
user will usually see. There might be just a chance, under certain circumstances, that
the user will catch a glimpse of the window, behind the root view; for this reason, you
may want to assign the main window a reasonable backgroundColor. But this seems
unlikely, and in general you’ll have no reason to change anything about the window
itself.

Your app’s interface is not visible until the window, which contains it, is made the app’s
key window. This is done by calling the UIWindow instance method makeKeyAnd-
Visible.

Let’s summarize how all the initial creation, configuration, and showing of the main
window happens. There are two cases to consider:
App with a main storyboard

If your app has a main storyboard, as specified by its Info.plist key “Main storyboard
file base name” (UIMainStoryboardFile) — the default for all Xcode 6 app
templates — then UIApplicationMain instantiates UIWindow, sets its frame cor‐
rectly, and assigns that instance to the app delegate’s window property. It also in‐
stantiates the storyboard’s initial view controller and assigns that instance to the
window’s rootViewController property. All of that happens before the app dele‐
gate’s application:didFinishLaunchingWithOptions: is called (Appendix A).

Finally, UIApplicationMain calls makeKeyAndVisible to display your app’s inter‐
face. This in turn automatically causes the root view controller to obtain its main
view (typically by loading it from a nib), which the window adds as its own root
view. That happens after application:didFinishLaunchingWithOptions: is
called.

App without a main storyboard
If your app has no main storyboard, then creation and configuration of the window
must be done in some other way. Typically, it is done in code. No Xcode 6 app
template lacks a main storyboard, but if you start with, say, the Single View Appli‐
cation template, you can experiment as follows:

1. Edit the target. In the General pane, select “Main” in the Main Interface field
and delete it (and press Tab to set this change).

2. Delete Main.storyboard and ViewController.swift from the project.
3. Delete the entire content of AppDelegate.swift.

You now have a project with an app target but no storyboard and no code. To make
a minimal working app, you need to edit AppDelegate.swift in such a way as to
recreate the AppDelegate class with just enough code to create and show the win‐
dow, as shown in Example 1-1. The result is a minimal working app with an empty
white window; you can prove to yourself that your code is creating the window by

The Window | 5

changing its backgroundColor to something else (such as UIColor.redColor())
and running the app again. We didn’t set a root view controller, so you will also see
a warning about that in the console (“Application windows are expected to have a
root view controller at the end of application launch”); I’ll explain in a moment what
to do about that.

Example 1-1. An App Delegate class with no storyboard
import UIKit
@UIApplicationMain
class AppDelegate : UIResponder, UIApplicationDelegate {
 var window : UIWindow?
 func application(application: UIApplication,
 didFinishLaunchingWithOptions launchOptions: [NSObject: AnyObject]?)
 -> Bool {
 self.window = UIWindow(frame:UIScreen.mainScreen().bounds)
 self.window!.backgroundColor = UIColor.whiteColor()
 self.window!.makeKeyAndVisible()
 return true
 }
}

It is extremely improbable that you would ever need to subclass UIWindow. If, however,
you wanted to create a UIWindow subclass and make an instance of that subclass your
app’s main window, then how you proceed depends on how the window is instantiated
in the first place:
App with a main storyboard

As the app launches, after UIApplicationMain has instantiated the app delegate, it
asks the app delegate instance for the value of its window property. If that value is
nil, UIApplicationMain instantiates UIWindow and assigns that instance to the
app delegate’s window property. If that value is not nil, UIApplicationMain leaves
it alone and uses it as the app’s main window. Therefore, to make your app’s main
window be an instance of your UIWindow subclass, you’ll make that instance the
default value for the app delegate’s window property, like this:

lazy var window : UIWindow = {
 return MyWindow(frame: UIScreen.mainScreen().bounds)
}()

App without a main storyboard
You’re already instantiating UIWindow and assigning that instance to the app del‐
egate’s self.window property, in code (Example 1-1). So instantiate your UIWind‐
ow subclass instead:

// ...
self.window = MyWindow(frame:UIScreen.mainScreen().bounds)
// ...

6 | Chapter 1: Views

Once the app is running, there are various ways to refer to the window:

• If a UIView is in the interface, it automatically has a reference to the window through
its own window property.
You can also use a UIView’s window property as a way of asking whether it is ulti‐
mately embedded in the window; if it isn’t, its window property is nil. A UIView
whose window property is nil cannot be visible to the user.

• The app delegate instance maintains a reference to the window through its window
property. You can get a reference to the app delegate from elsewhere through the
shared application’s delegate property, and through it you can refer to the window:

let w = UIApplication.sharedApplication().delegate!.window!!

If you prefer something less generic (and requiring less extreme unwrapping of
Optionals), cast the delegate explicitly to your app delegate class:

let w = (UIApplication.sharedApplication().delegate as AppDelegate).window

• The shared application maintains a reference to the window through its key-
Window property:

let w = UIApplication.sharedApplication().keyWindow

That reference, however, is slightly volatile, because the system can create temporary
windows and interpose them as the application’s key window.

Experimenting With Views
In the course of this and subsequent chapters, you may want to experiment with views
in a project of your own. Since view controllers aren’t formally explained until Chap‐
ter 6, I’ll just outline two simple approaches.

One way is to start your project with the Single View Application template. It gives you
a main storyboard containing one scene containing one view controller instance con‐
taining its own main view; when the app runs, that view controller will become the app’s
main window’s rootViewController, and its main view will become the window’s root
view. You can drag a view from the Object library into the main view as a subview, and
it will be instantiated in the interface when the app runs. Alternatively, you can create
views and add them to the interface in code; the simplest place to do this, for now, is
the view controller’s viewDidLoad method, which has a reference to the view controller’s
main view as self.view. For example:

Experimenting With Views | 7

override func viewDidLoad() {
 super.viewDidLoad()
 let mainview = self.view
 let v = UIView(frame:CGRectMake(100,100,50,50))
 v.backgroundColor = UIColor.redColor() // small red square
 mainview.addSubview(v) // add it to main view
}

Alternatively, you can start with the empty application without a storyboard that I de‐
scribed in Example 1-1. It has no .xib or .storyboard file, so your views will have to be
created entirely in code. As I mentioned a moment ago, we did not assign any view
controller to the window’s rootViewController property, which causes the runtime to
complain when the application is launched. A simple solution is to add a line of code
in the app delegate’s application:didFinishLaunchingWithOptions:, creating a min‐
imal root view controller. We can then access its main view through its view property.
For example:

func application(application: UIApplication,
 didFinishLaunchingWithOptions launchOptions: [NSObject: AnyObject]?)
 -> Bool {
 self.window = UIWindow(frame:UIScreen.mainScreen().bounds)
 self.window!.rootViewController = UIViewController() // *
 // and now we can add subviews
 let mainview = self.window!.rootViewController!.view
 let v = UIView(frame:CGRectMake(100,100,50,50))
 v.backgroundColor = UIColor.redColor() // small red square
 mainview.addSubview(v) // add it to main view
 // and the rest is as before...
 self.window!.backgroundColor = UIColor.whiteColor()
 self.window!.makeKeyAndVisible()
 return true
}

Subview and Superview
Once upon a time, and not so very long ago, a view owned precisely its rectangular area.
No part of any view that was not a subview of this view could appear inside it, because
when this view redrew its rectangle, it would erase the overlapping portion of the other
view. No part of any subview of this view could appear outside it, because the view took
responsibility for its own rectangle and no more.

Those rules, however, were gradually relaxed, and starting in OS X 10.5, Apple intro‐
duced an entirely new architecture for view drawing that lifted those restrictions com‐
pletely. iOS view drawing is based on this revised architecture. In iOS, some or all of a
subview can appear outside its superview, and a view can overlap another view and can
be drawn partially or totally in front of it without being its subview.

8 | Chapter 1: Views

Figure 1-1. Overlapping views

Figure 1-2. A view hierarchy as displayed in the nib editor

For example, Figure 1-1 shows three overlapping views. All three views have a back‐
ground color, so each is completely represented by a colored rectangle. You have no way
of knowing, from this visual representation, exactly how the views are related within
the view hierarchy. In actual fact, the view in the middle (horizontally) is a sibling view
of the view on the left (they are both direct subviews of the root view), and the view on
the right is a subview of the middle view.

When views are created in the nib, you can examine the view hierarchy in the nib editor’s
document outline to learn their actual relationship (Figure 1-2). When views are created
in code, you know their hierarchical relationship because you created that hierarchy.
But the visible interface doesn’t tell you, because view overlapping is so flexible.

To study your app’s view hierarchy at runtime while paused in the debugger, choose
Debug → View Debugging → Capture View Hierarchy (new in Xcode 6). I’ll talk
more about this feature later in this chapter.

Nevertheless, a view’s position within the view hierarchy is extremely significant. For
one thing, the view hierarchy dictates the order in which views are drawn. Sibling sub‐

Subview and Superview | 9

views of the same superview have a definite order: one is drawn before the other, so if
they overlap, it will appear to be behind its sibling. Similarly, a superview is drawn before
its subviews, so if they overlap it, it will appear to be behind them.

You can see this illustrated in Figure 1-1. The view on the right is a subview of the view
in the middle and is drawn on top of it. The view on the left is a sibling of the view in
the middle, but it is a later sibling, so it is drawn on top of the view in the middle and
on top of the view on the right. The view on the left cannot appear behind the view on
the right but in front of the view in the middle, because those two views are subview
and superview and are drawn together — both are drawn either before or after the view
on the left, depending on the ordering of the siblings.

This layering order can be governed in the nib editor by arranging the views in the
document outline. (If you click in the canvas, you may be able to use the menu items of
the Editor → Arrange menu instead — Send to Front, Send to Back, Send Forward, Send
Backward.) In code, there are methods for arranging the sibling order of views, which
we’ll come to in a moment.

Here are some other effects of the view hierarchy:

• If a view is removed from or moved within its superview, its subviews go with it.
• A view’s degree of transparency is inherited by its subviews.
• A view can optionally limit the drawing of its subviews so that any parts of them

outside the view are not shown. This is called clipping and is set with the view’s
clipsToBounds property.

• A superview owns its subviews, in the memory-management sense, much as an
array owns its elements; it retains them and is responsible for releasing a subview
when that subview ceases to be its subview (it is removed from the collection of this
view’s subviews) or when it itself goes out of existence.

• If a view’s size is changed, its subviews can be resized automatically (and I’ll have
much more to say about that later in this chapter).

A UIView has a superview property (a UIView) and a subviews property (an array of
UIView objects, in back-to-front order), allowing you to trace the view hierarchy in
code. There is also a method isDescendantOfView: letting you check whether one view
is a subview of another at any depth. If you need a reference to a particular view, you
will probably arrange this beforehand as property, perhaps through an outlet. Alterna‐
tively, a view can have a numeric tag (its tag property), and can then be referred to by
sending any view higher up the view hierarchy the viewWithTag: message. Seeing that
all tags of interest are unique within their region of the hierarchy is up to you.

Manipulating the view hierarchy in code is easy. This is part of what gives iOS apps their
dynamic quality, and it compensates for the fact that there is basically just a single

10 | Chapter 1: Views

www.allitebooks.com

http://www.allitebooks.org

window. It is perfectly reasonable for your code to rip an entire hierarchy of views out
of the superview and substitute another! You can do this directly; you can combine it
with animation (Chapter 4); you can govern it through view controllers (Chapter 6).

The method addSubview: makes one view a subview of another; removeFrom-
Superview takes a subview out of its superview’s view hierarchy. In both cases, if the
superview is part of the visible interface, the subview will appear or disappear; and of
course this view may itself have subviews that accompany it. Just remember that re‐
moving a subview from its superview releases it; if you intend to reuse that subview later
on, you will wish to retain it first. This is often taken care of by assignment to a property.

Events inform a view of these dynamic changes. To respond to these events requires
subclassing. Then you’ll be able to override any of these methods:

• didAddSubview:, willRemoveSubview:
• didMoveToSuperview, willMoveToSuperview:
• didMoveToWindow, willMoveToWindow:

When addSubview: is called, the view is placed last among its superview’s subviews;
thus it is drawn last, meaning that it appears frontmost. A view’s subviews are indexed,
starting at 0, which is rearmost. There are additional methods for inserting a subview
at a given index, or below (behind) or above (in front of) a specific view; for swapping
two sibling views by index; and for moving a subview all the way to the front or back
among its siblings:

• insertSubview:atIndex:

• insertSubview:belowSubview:, insertSubview:aboveSubview:
• exchangeSubviewAtIndex:withSubviewAtIndex:

• bringSubviewToFront:, sendSubviewToBack:

Oddly, there is no command for removing all of a view’s subviews at once. However, a
view’s subviews array is an immutable copy of the internal list of subviews, so it is legal
to cycle through it and remove each subview one at a time:

for v in myView.subviews as [UIView] {
 v.removeFromSuperview()
}

Or, more compactly (deliberately misusing map):

(myView.subviews as [UIView]).map{$0.removeFromSuperview()}

Subview and Superview | 11

Visibility and Opacity
A view can be made invisible by setting its hidden property to true, and visible again
by setting it to false. This takes it (and its subviews, of course) out of the visible interface
without the overhead of actually removing it from the view hierarchy. A hidden view
does not (normally) receive touch events, so to the user it really is as if the view weren’t
there. But it is there, so it can still be manipulated in code.

A view can be assigned a background color through its backgroundColor property. A
color is a UIColor; this is not a difficult class to use, and I’m not going to go into details.
A view whose background color is nil (the default) has a transparent background. It is
perfectly reasonable for a view to have a transparent background and to do no additional
drawing of its own, just so that it can act as a convenient superview to other views,
making them behave together.

A view can be made partially or completely transparent through its alpha property: 1.0
means opaque, 0.0 means transparent, and a value may be anywhere between them,
inclusive. This affects subviews: if a superview has an alpha of 0.5, none of its subviews
can have an apparent opacity of more than 0.5, because whatever alpha value they have
will be drawn relative to 0.5. (Just to make matters more complicated, colors have an
alpha value as well. So, for example, a view can have an alpha of 1.0 but still have a
transparent background because its backgroundColor has an alpha less than 1.0.) A
view that is completely transparent (or very close to it) is like a view whose hidden is
true: it is invisible, along with its subviews, and cannot (normally) be touched.

A view’s alpha property value affects both the apparent transparency of its background
color and the apparent transparency of its contents. For example, if a view displays an
image and has a background color and its alpha is less than 1, the background color
will seep through the image (and whatever is behind the view will seep through both).

A view’s opaque property, on the other hand, is a horse of a different color; changing it
has no effect on the view’s appearance. Rather, this property is a hint to the drawing
system. If a view completely fills its bounds with ultimately opaque material and its
alpha is 1.0, so that the view has no effective transparency, then it can be drawn more
efficiently (with less drag on performance) if you inform the drawing system of this fact
by setting its opaque to true. Otherwise, you should set its opaque to false. The opaque
value is not changed for you when you set a view’s backgroundColor or alpha! Setting
it correctly is entirely up to you; the default, perhaps surprisingly, is true.

Frame
A view’s frame property, a CGRect, is the position of its rectangle within its superview,
in the superview’s coordinate system. By default, the superview’s coordinate system will

12 | Chapter 1: Views

have the origin at its top left, with the x-coordinate growing positively rightward and
the y-coordinate growing positively downward.

Setting a view’s frame to a different CGRect value repositions the view, or resizes it, or
both. If the view is visible, this change will be visibly reflected in the interface. On the
other hand, you can also set a view’s frame when the view is not visible — for example,
when you create the view in code. In that case, the frame describes where the view will
be positioned within its superview when it is given a superview. UIView’s designated
initializer is init(frame:), and you’ll often assign a frame this way, especially because
the default frame might otherwise be (0.0,0.0,0.0,0.0), which is rarely what you
want.

Forgetting to assign a view a frame when creating it in code, and then wondering
why it isn’t appearing when added to a superview, is a common beginner mistake.
A view with a zero-size frame is effectively invisible. If a view has a standard size
that you want it to adopt, especially in relation to its contents (like a UIButton in
relation to its title), an alternative is to call its sizeToFit method.

We are now in a position to generate programmatically the interface displayed in
Figure 1-1:

let v1 = UIView(frame:CGRectMake(113, 111, 132, 194))
v1.backgroundColor = UIColor(red: 1, green: 0.4, blue: 1, alpha: 1)
let v2 = UIView(frame:CGRectMake(41, 56, 132, 194))
v2.backgroundColor = UIColor(red: 0.5, green: 1, blue: 0, alpha: 1)
let v3 = UIView(frame:CGRectMake(43, 197, 160, 230))
v3.backgroundColor = UIColor(red: 1, green: 0, blue: 0, alpha: 1)
mainview.addSubview(v1)
v1.addSubview(v2)
mainview.addSubview(v3)

In that code, we determined the layering order of v1 and v3 (the middle and left views,
which are siblings) by the order in which we inserted them into the view hierarchy with
addSubview:.

Bounds and Center
Suppose we have a superview and a subview, and the subview is to appear inset by 10
points, as in Figure 1-3. The Foundation utility function CGRectInset and the Swift
CGRect method rectByInsetting make it easy to derive one rectangle as an inset from
another, so we’ll use one of them to determine the subview’s frame. But what rectangle
should this be inset from? Not the superview’s frame; the frame represents a view’s
position within its superview, and in that superview’s coordinates. What we’re after is a
CGRect describing our superview’s rectangle in its own coordinates, because those are

Bounds and Center | 13

Figure 1-3. A subview inset from its superview

the coordinates in which the subview’s frame is to be expressed. The CGRect that de‐
scribes a view’s rectangle in its own coordinates is the view’s bounds property.

So, the code to generate Figure 1-3 looks like this:

let v1 = UIView(frame:CGRectMake(113, 111, 132, 194))
v1.backgroundColor = UIColor(red: 1, green: 0.4, blue: 1, alpha: 1)
let v2 = UIView(frame:v1.bounds.rectByInsetting(dx: 10, dy: 10))
v2.backgroundColor = UIColor(red: 0.5, green: 1, blue: 0, alpha: 1)
mainview.addSubview(v1)
v1.addSubview(v2)

You’ll very often use a view’s bounds in this way. When you need coordinates for drawing
inside a view, whether drawing manually or placing a subview, you’ll often refer to the
view’s bounds.

Interesting things happen when you set a view’s bounds. If you change a view’s bounds
size, you change its frame. The change in the view’s frame takes place around its cen‐
ter, which remains unchanged. So, for example:

let v1 = UIView(frame:CGRectMake(113, 111, 132, 194))
v1.backgroundColor = UIColor(red: 1, green: 0.4, blue: 1, alpha: 1)
let v2 = UIView(frame:v1.bounds.rectByInsetting(dx: 10, dy: 10))
v2.backgroundColor = UIColor(red: 0.5, green: 1, blue: 0, alpha: 1)
mainview.addSubview(v1)
v1.addSubview(v2)
v2.bounds.size.height += 20
v2.bounds.size.width += 20

What appears is a single rectangle; the subview completely and exactly covers its su‐
perview, its frame being the same as the superview’s bounds. The call to rectBy-
Insetting started with the superview’s bounds and shaved 10 points off the left, right,
top, and bottom to set the subview’s frame (Figure 1-3). But then we added 20 points to
the subview’s bounds height and width, and thus added 20 points to the subview’s frame

14 | Chapter 1: Views

Figure 1-4. A subview exactly covering its superview

height and width as well (Figure 1-4). The center didn’t move, so we effectively put the
10 points back onto the left, right, top, and bottom of the subview’s frame.

When you create a UIView, its bounds coordinate system’s zero point (0.0,0.0) is at
its top left. If you change a view’s bounds origin, you move the origin of its internal
coordinate system. Because a subview is positioned in its superview with respect to its
superview’s coordinate system, a change in the bounds origin of the superview will
change the apparent position of a subview. To illustrate, we start once again with our
subview inset evenly within its superview, and then change the bounds origin of the
superview:

let v1 = UIView(frame:CGRectMake(113, 111, 132, 194))
v1.backgroundColor = UIColor(red: 1, green: 0.4, blue: 1, alpha: 1)
let v2 = UIView(frame:v1.bounds.rectByInsetting(dx: 10, dy: 10))
v2.backgroundColor = UIColor(red: 0.5, green: 1, blue: 0, alpha: 1)
mainview.addSubview(v1)
v1.addSubview(v2)
v1.bounds.origin.x += 10
v1.bounds.origin.y += 10

Nothing happens to the superview’s size or position. But the subview has moved up and
to the left so that it is flush with its superview’s top-left corner (Figure 1-5). Basically,
what we’ve done is to say to the superview, “Instead of calling the point at your upper
left (0.0,0.0), call that point (10.0,10.0).” Because the subview’s frame origin is itself
at (10.0,10.0), the subview now touches the superview’s top-left corner. The effect of
changing a view’s bounds origin may seem directionally backward — we increased the
superview’s origin in the positive direction, but the subview moved in the negative
direction — but think of it this way: a view’s bounds origin point coincides with its
frame’s top left.

We have seen that changing a view’s bounds size affects its frame size. The converse is
also true: changing a view’s frame size affects its bounds size. What is not affected by
changing a view’s bounds size is the view’s center. This property, like the frame property,

Bounds and Center | 15

Figure 1-5. The superview’s bounds origin has been shifted

represents the view’s position within its superview, in the superview’s coordinates, but
it is the position of the bounds center, the point derived from the bounds like this:

let c = CGPointMake(theView.bounds.midX, theView.bounds.midY)

A view’s center is thus a single point establishing the positional relationship between a
view’s bounds and its superview’s bounds. Changing a view’s bounds does not change
its center; changing a view’s center does not change its bounds.

Thus, a view’s bounds and center are orthogonal (independent), and describe (among
other things) both the view’s size and its position within its superview. The view’s frame
is therefore superfluous! In fact, the frame property is merely a convenient expression
of the center and bounds values. In most cases, this won’t matter to you; you’ll use the
frame property anyway. When you first create a view from scratch, the designated ini‐
tializer is init(frame:). You can change the frame, and the bounds size and center will
change to match. You can change the bounds size or the center, and the frame will change
to match. Nevertheless, the proper and most reliable way to position and size a view
within its superview is to use its bounds and center, not its frame; there are some sit‐
uations in which the frame is meaningless (or will at least behave very oddly), but the
bounds and center will always work.

We have seen that every view has its own coordinate system, expressed by its bounds,
and that a view’s coordinate system has a clear relationship to its superview’s coordinate
system, expressed by its center. This is true of every view in a window, so it is possible
to convert between the coordinates of any two views in the same window. Convenience
methods are supplied to perform this conversion both for a CGPoint and for a CGRect:

• convertPoint:fromView:, convertPoint:toView:
• convertRect:fromView:, convertRect:toView:

If the second parameter is nil, it is taken to be the window.

16 | Chapter 1: Views

For example, if v2 is a subview of v1, then to center v2 within v1 you could say:

v2.center = v1.convertPoint(v1.center, fromView:v1.superview)

When setting a view’s position by setting its center, if the height or width of the
view is not an integer (or, on a single-resolution screen, not an even integer), the
view can end up misaligned: its point values in one or both dimensions are located
between the screen pixels. This can cause the view to be displayed incorrectly; for
example, if the view contains text, the text may be blurry. You can detect this
situation in the Simulator by checking Debug → Color Misaligned Images. A simple
solution is to set the view’s frame, after positioning it, to the CGRectIntegral of its
frame, or (in Swift) to call integerize on the view’s frame.

Window Coordinates and Screen Coordinates
The device screen has no frame, but it has bounds. The main window has no superview,
but its frame is set with respect to the screen’s bounds, as I showed earlier:

let w = UIWindow(frame: UIScreen.mainScreen().bounds)

Thus, window coordinates are screen coordinates.

In iOS 7 and before, the screen’s coordinates were invariant, regardless of the orientation
of the device and of the rotation of the app to compensate. iOS 8 makes a major change
in this coordinate system: when the app rotates to compensate for the rotation of the
device, the screen (and therefore the window) is what rotates. This change is expressed
in part as a reversal of the size components of the bounds of the screen and window
(and the frame of the window): in portrait orientation, the size is taller than wide, but
in landscape orientation, the size is wider than tall.

This change may break your existing code, but once you’ve made the necessary adjust‐
ments, you’ll find it extremely convenient. For example, as you’ll discover in Chap‐
ter 10, you no longer have to compensate for the device’s rotation when calculating how
the onscreen keyboard overlaps your interface.

For those occasions where you need device coordinates, independent of the rotation of
the app, iOS 8 introduces the UICoordinateSpace protocol, which provides a bounds
property. UIView adopts the UICoordinateSpace protocol, and so do two additional
objects:
UIScreen’s coordinateSpace property

This coordinate space rotates, so that its height and width are reversed when the
app rotates to compensate for a change in the orientation of the device; its (0.0,0.0)
point is at the app’s top left.

Window Coordinates and Screen Coordinates | 17

UIScreen’s fixedCoordinateSpace property
This coordinate space is invariant, meaning that its top left represents the physical
top left of the device qua physical device; its (0.0,0.0) point thus might be in any
corner (from the user’s perspective).

To help you convert between coordinate spaces, UICoordinateSpace also provides four
methods parallel to the coordinate-conversion methods I listed in the previous section:

• convertPoint:fromCoordinateSpace:, convertPoint:toCoordinateSpace:
• convertRect:fromCoordinateSpace:, convertRect:toCoordinateSpace:

So, for example, suppose we have a UIView v in our interface, and we wish to learn its
position in fixed device coordinates. We could do it like this:

let r = v.convertRect(
 v.frame, toCoordinateSpace: UIScreen.mainScreen().fixedCoordinateSpace)

It doesn’t actually matter to what view or coordinate space we send the convertRect:to-
CoordinateSpace: message; the result will be the same.

Occasions where you need such information, however, will be rare. Everything takes
place within your root view controller’s main view, and the bounds of that view, which
are adjusted for you automatically when the app rotates to compensate for a change in
device orientation, are the highest coordinate system that will normally interest you.

Transform
A view’s transform property alters how the view is drawn — it may, for example, change
the view’s perceived size and orientation — without affecting its bounds and center. A
transformed view continues to behave correctly: a rotated button, for example, is still a
button, and can be tapped in its apparent location and orientation.

A transform value is a CGAffineTransform, which is a struct representing six of the nine
values of a 3×3 transformation matrix (the other three values are constants, so there’s
need to represent them in the struct). You may have forgotten your high-school linear
algebra, so you may not recall what a transformation matrix is. For the details, which
are quite simple really, see the “Transforms” chapter of Apple’s Quartz 2D Programming
Guide, especially the section called “The Math Behind the Matrices.” But you don’t really
need to know those details, because convenience functions, whose names start with
CGAffineTransformMake..., are provided for creating three of the basic types of trans‐
form: rotation, scaling, and translation (i.e., changing the view’s apparent position). A
fourth basic transform type, skewing or shearing, has no convenience function.

18 | Chapter 1: Views

Figure 1-6. A rotation transform

By default, a view’s transformation matrix is CGAffineTransformIdentity, the identity
transform. It has no visible effect, so you’re unaware of it. Any transform that you do
apply takes place around the view’s center, which is held constant.

Here’s some code to illustrate use of a transform:

let v1 = UIView(frame:CGRectMake(113, 111, 132, 194))
v1.backgroundColor = UIColor(red: 1, green: 0.4, blue: 1, alpha: 1)
let v2 = UIView(frame:v1.bounds.rectByInsetting(dx: 10, dy: 10))
v2.backgroundColor = UIColor(red: 0.5, green: 1, blue: 0, alpha: 1)
mainview.addSubview(v1)
v1.addSubview(v2)
v1.transform = CGAffineTransformMakeRotation(45 * CGFloat(M_PI)/180.0)

The transform property of the view v1 is set to a rotation transform. The result
(Figure 1-6) is that the view appears to be rocked 45 degrees clockwise. (I think in
degrees, but Core Graphics thinks in radians, so my code has to convert.) Observe that
the view’s center property is unaffected, so that the rotation seems to have occurred
around the view’s center. Moreover, the view’s bounds property is unaffected; the internal
coordinate system is unchanged, so the subview is drawn in the same place relative to
its superview. The view’s frame, however, is now useless, as no mere rectangle can de‐
scribe the region of the superview apparently occupied by the view; the frame’s actual
value, roughly (63.7,92.7,230.5,230.5), describes the minimal bounding rectangle
surrounding the view’s apparent position. The rule is that if a view’s transform is not
the identity transform, you should not set its frame; also, automatic resizing of a subview,
discussed later in this chapter, requires that the superview’s transform be the identity
transform.

Suppose, instead of CGAffineTransformMakeRotation, we call CGAffineTransform-
MakeScale, like this:

v1.transform = CGAffineTransformMakeScale(1.8, 1)

Transform | 19

Figure 1-7. A scale transform

The bounds property of the view v1 is still unaffected, so the subview is still drawn in
the same place relative to its superview; this means that the two views seem to have
stretched horizontally together (Figure 1-7). No bounds or centers were harmed by the
application of this transform!

Transformation matrices can be chained. There are convenience functions for applying
one transform to another. Their names do not contain “Make.” These functions are not
commutative; that is, order matters. (That high school math is starting to come back to
you now, isn’t it?) If you start with a transform that translates a view to the right and
then apply a rotation of 45 degrees, the rotated view appears to the right of its original
position; on the other hand, if you start with a transform that rotates a view 45 degrees
and then apply a translation to the right, the meaning of “right” has changed, so the
rotated view appears 45 degrees down from its original position. To demonstrate the
difference, I’ll start with a subview that exactly overlaps its superview:

let v1 = UIView(frame:CGRectMake(20, 111, 132, 194))
v1.backgroundColor = UIColor(red: 1, green: 0.4, blue: 1, alpha: 1)
let v2 = UIView(frame:v1.bounds)
v2.backgroundColor = UIColor(red: 0.5, green: 1, blue: 0, alpha: 1)
mainview.addSubview(v1)
v1.addSubview(v2)

Then I’ll apply two successive transforms to the subview, leaving the superview to show
where the subview was originally. In this example, I translate and then rotate
(Figure 1-8):

v2.transform = CGAffineTransformMakeTranslation(100, 0)
v2.transform = CGAffineTransformRotate(v2.transform, 45 * CGFloat(M_PI)/180.0)

In this example, I rotate and then translate (Figure 1-9):

v2.transform = CGAffineTransformMakeRotation(45 * CGFloat(M_PI)/180.0)
v2.transform = CGAffineTransformTranslate(v2.transform, 100, 0)

20 | Chapter 1: Views

www.allitebooks.com

http://www.allitebooks.org

Figure 1-8. Translation, then rotation

Figure 1-9. Rotation, then translation

The function CGAffineTransformConcat concatenates two transform matrices using
matrix multiplication. Again, this operation is not commutative. The order is the op‐
posite of the order when using convenience functions for applying one transform to
another. For example, this gives the same result as Figure 1-9:

let r = CGAffineTransformMakeRotation(45 * CGFloat(M_PI)/180.0)
let t = CGAffineTransformMakeTranslation(100, 0)
v2.transform = CGAffineTransformConcat(t,r) // not r,t

To remove a transform from a combination of transforms, apply its inverse. A conve‐
nience function lets you obtain the inverse of a given affine transform. Again, order
matters. In this example, I rotate the subview and shift it to its “right,” and then remove
the rotation (Figure 1-10):

Transform | 21

Figure 1-10. Rotation, then translation, then inversion of the rotation

Figure 1-11. Skew (shear)

let r = CGAffineTransformMakeRotation(45 * CGFloat(M_PI)/180.0)
let t = CGAffineTransformMakeTranslation(100, 0)
v2.transform = CGAffineTransformConcat(t,r)
v2.transform = CGAffineTransformConcat(
 CGAffineTransformInvert(r), v2.transform)

Finally, as there are no convenience methods for creating a skew (shear) transform, I’ll
illustrate by creating one manually, without further explanation (Figure 1-11):

v1.transform = CGAffineTransformMake(1, 0, -0.2, 1, 0, 0)

Transforms are useful particularly as temporary visual indicators. For example, you
might call attention to a view by applying a transform that scales it up slightly, and then
applying the identity transform to restore it to its original size, and animating those
changes (Chapter 4).

In iOS 7 and before, the transform property lay at the heart of an iOS app’s ability to
rotate its interface: the window’s frame and bounds were invariant, locked to the screen,
and an app’s interface rotated to compensate for a change in device orientation by ap‐

22 | Chapter 1: Views

plying a rotation transform to the root view, so that its (0.0,0.0) point moved to what
the user now saw as the top left of the view.

In iOS 8, however, as I’ve already mentioned, this is no longer the case. The screen’s
coordinate space is effectively rotated, but a coordinate space doesn’t have a transform
property, so the rotation transform applied to that coordinate space is fictitious: you
can work out what has happened, if you really want to, by comparing the screen’s
coordinateSpace with its fixedCoordinateSpace, but none of the views in the story
— neither the window, nor the root view, nor any of its subviews — receives a rotation
transform when the app’s interface rotates. If you had code, inherited from iOS 7 or
before, that relied on the assumption that a rotated app’s root view had a rotation trans‐
form, that code will break when compiled and run against iOS 8.

Instead, iOS 8 expects you to concentrate on the dimensions of the window, the root
view, and so forth. And this doesn’t mean their absolute dimensions (though you might
have reason to consider these), but their dimensions relative to an iPad. This dimen‐
sional relationship is embodied in a set of size classes which are vended by a view’s trait-
Collection property as a UITraitCollection object. I’ll discuss trait collections and size
classes further in the next section.

One purpose of this innovation in iOS 8 is so that you can treat app rotation as effectively
nothing more than a change in the interface’s proportions: when the app rotates, the
long dimension (of the root view, the window, and the screen’s coordinate space bounds)
becomes its short dimension and vice versa. This, after all, is what your interface needs
to take into account in order to keep working when the app rotates.

Consider, for example, a subview of the root view, located at the bottom right of the
screen when the device is in portrait orientation. If the root view’s bounds width and
bounds height are effectively swapped, then that poor old subview will now be outside
the bounds height, and therefore off the screen — unless your app responds in some
way to this change to reposition it. Such a response is called layout, a subject that will
occupy most of the rest of this chapter. The point, however, is that what you’re respond‐
ing to, in iOS 8, is just a change in the window’s proportions; the fact that this change
stems from rotation of the app’s interface is virtually irrelevant.

Trait Collections and Size Classes
Trait collections are a major iOS 8 innovation. Every view in the interface, from the
window on down, as well as any view controller whose view is part of the interface,
inherits from the environment the value of its traitCollection property, which it has
by virtue of implementing the UITraitEnvironment protocol. The traitCollection is
a UITraitCollection, a value class consisting of four properties:

Trait Collections and Size Classes | 23

displayScale

The scale inherited from the current screen, typically 1 or 2 for a single- or double-
resolution screen respectively — or 3 for the iPhone 6 Plus. (This will be the same,
by default, as the UIScreen scale property.)

userInterfaceIdiom

A UserInterfaceIdiom value, either .Phone or .Pad, stating generically what kind
of device we’re running on. (This will be the same, by default, as the UIDevice user-
InterfaceIdiom property.)

horizontalSizeClass, verticalSizeClass
A UIUserInterfaceSizeClass value, either .Regular or .Compact. These are called
size classes. The size classes, in combination, have the following meanings:
Both the vertical and horizontal size classes are .Regular

We’re running on an iPad.

The vertical size class is .Regular, but the horizontal size class is .Compact
We’re running on an iPhone with the app in portrait orientation.

Both the vertical and horizontal size classes are .Compact
We’re running on an iPhone (except an iPhone 6 Plus) with the app in landscape
orientation.

The vertical size class is .Compact, but the horizontal size class is .Regular
We’re running on an iPhone 6 Plus with the app in landscape orientation.

To be iPhone 6 Plus–native, your app must either designate a .xib or .storyboard
file as its launch screen or contain a Retina HD 5.5 launch image in the asset catalog.
Otherwise, the size classes on an iPhone 6 Plus will be the same as for any other
iPhone (and your app will be displayed scaled up).

The trait collection properties might not change during the lifetime of an app, but they
still might differ, and thus be of interest to your code, from one run of an app to another.
In particular, if you write a universal app, one that runs natively on different device types
(iPhone and iPad), you will probably want your interface to differ depending on which
device type we’re running on; trait collections are the iOS 8 way to detect that.

Moreover, some trait collection properties can change during the lifetime of an app. In
particular, the size classes, on an iPhone, reflect the orientation of the app — which can
change as the app rotates in response to a change in the orientation of the device.

Thus, the environment’s trait collection is considered to have changed on two main
occasions:

24 | Chapter 1: Views

• The interface is assembled initially.
• The app rotates on an iPhone.

At such moments, the traitCollectionDidChange: message is propagated down the
hierarchy of UITraitEnvironments (meaning primarily, for our purposes, view control‐
lers and views); the old trait collection is provided as the parameter, and the new trait
collection can be retrieved as self.traitCollection.

Perhaps you are now saying to yourself: “Wait, there aren’t enough size classes!”
You’re absolutely right. Apple has decided that size classes should not differentiate
between an iPad in portrait orientation and an iPad in landscape orientation. This
seems an odd design decision (especially since iPad apps whose interface changes
radically between landscape and portrait are standard, as I’ll illustrate when dis‐
cussing split views in Chapter 9); I can’t explain it.

It is also possible to create a trait collection yourself. (It may not be immediately obvious
why this would be a useful thing to do; I’ll give an example in the next chapter.) Oddly,
however, you can’t set any trait collection properties directly; instead, you form a trait
collection through an initializer that determines just one property, and if you want to
add further property settings, you have to combine trait collections by calling
init(traitsFromCollections:). For example:

let tcdisp = UITraitCollection(displayScale: 2.0)
let tcphone = UITraitCollection(userInterfaceIdiom: .Phone)
let tcreg = UITraitCollection(verticalSizeClass: .Regular)
let tc = UITraitCollection(traitsFromCollections: [tcdisp, tcphone, tcreg])

When combining trait collections with init(traitsFromCollections:), an ordered
intersection is performed. If two trait collections are combined, and one sets a property
and the other doesn’t (the property isn’t set or its value isn’t yet known), the one that
sets the property wins; if they both set the property, the winner is the trait collection
that appears later in the array.

Similarly, if you create a trait collection and you don’t specify a property, this means that
the value for that property is to be inherited if the trait collection finds itself in the
inheritance hierarchy.

(You cannot, however, insert a trait collection directly into the inheritance hierarchy
simply by setting a view’s trait collection; traitCollection isn’t a settable property.
Instead, you’ll use a UIViewController method, setOverrideTraitCollection:for-
ChildViewController:; view controllers are the subject of Chapter 6.)

Trait Collections and Size Classes | 25

To compare trait collections, call containsTraitsInCollection:. This returns true if
the value of every specified property of the second trait collection (the argument)
matches that of the first trait collection (the target of the message).

Layout
We have seen that a subview moves when its superview’s bounds origin is changed. But
what happens to a subview when its superview’s bounds (or frame) size is changed?

Of its own accord, nothing happens. The subview’s bounds and center haven’t changed,
and the superview’s bounds origin hasn’t moved, so the subview stays in the same po‐
sition relative to the top left of its superview. In real life, however, that often won’t be
what you want. You’ll want subviews to be resized and repositioned when their super‐
view’s bounds size is changed. This is called layout.

The need for layout is obvious in a context such as OS X, where the user can freely resize
a window, potentially disturbing your interface. For example, you’d want an OK button
near the lower-right corner to stay in the lower-right corner as the window grows, while
a text field at the top of the window should stay at the top of the window, but perhaps
should widen as the window widens.

There are no user-resizable windows on an iOS device, but still, a superview might be
resized dynamically. For example:

• Your app might compensate for the user rotating the device 90 degrees by rotating
itself so that its top moves to the new top of the screen, matching its new orientation
— and, as a consequence, swapping its bounds width and height values.

• An iPhone app might launch on screens with different aspect ratios: for example,
the screen of the iPhone 4s is relatively shorter than the screen of later iPhone
models, and the app’s interface may need to adapt to this difference.

• A universal app might launch on an iPad or on an iPhone. The app’s interface may
need to adapt to the size of the screen on which it finds itself running.

• A view instantiated from a nib, such as a view controller’s main view or a table view
cell, might be resized to fit into the interface into which it is placed.

• A view might grow or shrink in response to a change in its surrounding views. For
example, in iOS 8, a navigation controller’s navigation bar and toolbar may be shown
or hidden dynamically, as the user pleases.

Layout is performed in three primary ways:
Manual layout

The superview is sent the layoutSubviews message whenever it is resized; so, to
lay out subviews manually, provide your own subclass and override layout-

26 | Chapter 1: Views

Subviews. Clearly this could turn out to be a lot of work, but it means you can do
anything you like.

Autoresizing
Autoresizing is the pre-iOS 6 way of performing layout automatically. A subview
will respond to its superview’s being resized, in accordance with the rules prescribed
by the subview’s autoresizingMask property value.

Autolayout
Autolayout, introduced in iOS 6, depends on the constraints of views. A constraint
(an instance of NSLayoutConstraint) is a full-fledged object with numeric values
describing some aspect of the size or position of a view, often in terms of some other
view; it is much more sophisticated, descriptive, and powerful than the
autoresizingMask. Multiple constraints can apply to an individual view, and they
can describe a relationship between any two views (not just a subview and its
superview). Autolayout is implemented behind the scenes in layoutSubviews; in
effect, constraints allow you to write sophisticated layoutSubviews functionality
without code.

Your layout strategy can involve any combination of these. The need for manual layout
is rare, but it’s there if you need it. Autoresizing is used automatically unless you delib‐
erately turn it off by setting a superview’s autoresizesSubviews property to false, or
unless a view uses autolayout instead. Autolayout is an opt-in technology, and can be
used for whatever areas of your interface you find appropriate; a view that uses auto‐
layout can live side by side with a view that uses autoresizing.

One of the chief places where you opt in to autolayout is the nib file, and in Xcode 5
and 6 all new .storyboard and .xib files do opt in — they have autolayout turned on, by
default. To see this, select the file in the Project navigator, show the File inspector, and
examine the “Use Auto Layout” checkbox. On the other hand, a view that your code
creates and adds to the interface, by default, uses autoresizing, not autolayout.

Autoresizing
Autoresizing is a matter of conceptually assigning a subview “springs and struts.” A
spring can stretch; a strut can’t. Springs and struts can be assigned internally or exter‐
nally, horizontally or vertically. Thus you can specify (using internal springs and struts)
whether and how the view can be resized, and (using external springs and struts)
whether and how the view can be repositioned. For example:

• Imagine a subview that is centered in its superview and is to stay centered, but is to
resize itself as the superview is resized. It would have struts externally and springs
internally.

Layout | 27

• Imagine a subview that is centered in its superview and is to stay centered, and is
not to resize itself as the superview is resized. It would have springs externally and
struts internally.

• Imagine an OK button that is to stay in the lower right of its superview. It would
have struts internally, struts externally to its right and bottom, and springs externally
to its top and left.

• Imagine a text field that is to stay at the top of its superview. It is to widen as the
superview widens. It would have struts externally, but a spring to its bottom; in‐
ternally it would have a vertical strut and a horizontal spring.

In code, a combination of springs and struts is set through a view’s autoresizing-
Mask property. It’s a bitmask, so you use bitwise-or to combine options. The options,
members of the UIViewAutoresizing struct, represent springs; whatever isn’t specified
is a strut. The default is .None, apparently meaning all struts — but of course it can’t
really be all struts, because if the superview is resized, something needs to change; in
reality, .None is the same as .FlexibleRightMargin together with .FlexibleBottom-
Margin.

In debugging, when you log a UIView to the console, its autoresizingMask is re‐
ported using the word “autoresize” and a list of the springs. The margins are LM, RM,
TM, and BM; the internal dimensions are W and H. For example, autoresize = LM+TM
means that what’s flexible is the left and top margins; autoresize = W+BM means
that what’s flexible is the width and the bottom margin.

To demonstrate autoresizing, I’ll start with a view and two subviews, one stretched across
the top, the other confined to the lower right (Figure 1-12):

let v1 = UIView(frame:CGRectMake(100, 111, 132, 194))
v1.backgroundColor = UIColor(red: 1, green: 0.4, blue: 1, alpha: 1)
let v2 = UIView(frame:CGRectMake(0, 0, 132, 10))
v2.backgroundColor = UIColor(red: 0.5, green: 1, blue: 0, alpha: 1)
let v3 = UIView(frame:CGRectMake(
 v1.bounds.width-20, v1.bounds.height-20, 20, 20))
v3.backgroundColor = UIColor(red: 1, green: 0, blue: 0, alpha: 1)
mainview.addSubview(v1)
v1.addSubview(v2)
v1.addSubview(v3)

To that example, I’ll add code applying springs and struts to the two subviews to make
them behave like the text field and the OK button I was hypothesizing earlier:

v2.autoresizingMask = .FlexibleWidth
v3.autoresizingMask = .FlexibleTopMargin | .FlexibleLeftMargin

28 | Chapter 1: Views

Figure 1-12. Before autoresizing

Figure 1-13. After autoresizing

Now I’ll resize the superview, thus bringing autoresizing into play; as you can see
(Figure 1-13), the subviews remain pinned in their correct relative positions:

v1.bounds.size.width += 40
v1.bounds.size.height -= 50

That example shows exactly what autoresizing is about, but it’s a little artificial; in real
life, the superview is more likely to be resized, not because you resize it in code, but
because of automatic behavior, such as compensatory resizing of the interface when the
device is rotated. To see this, you might modify the previous example to pin the size of
v1 to the size of the root view, and then run the app and rotate the device. Thus you
might initially configure v1 like this:

v1.frame = mainview.bounds
v1.autoresizingMask = .FlexibleHeight | .FlexibleWidth

Now run the app and rotate the device (in the Simulator, repeatedly choose Hardware
→ Rotate Left). The view v1 now fills the screen as the interface rotates, and its subviews
stay pinned in their correct relative positions.

Autoresizing is effective but simple — sometimes too simple. The only relationship it
describes is between a subview and its superview; it can’t help you do such things as
space a row of views evenly across the screen relative to one another. Before autolayout,
the way to achieve more sophisticated goals of that sort was to combine autoresizing

Layout | 29

with manual layout in layoutSubviews. Autoresizing happens before layout-
Subviews is called, so your layoutSubviews code is free to come marching in and tidy
up whatever autoresizing didn’t get quite right.

Autolayout
Autolayout is an opt-in technology, at the level of each individual view. A view may opt
in to autolayout in any of three ways:

• Your code adds an autolayout constraint to a view. The views involved in this con‐
straint use autolayout.

• Your app loads a nib for which “Use Auto Layout” is checked. Every view instantiated
from that nib uses autolayout.

• A view in the interface, which would be an instance of a custom UIView subclass
of yours, returns true from the class method requiresConstraintBasedLayout.
That view uses autolayout.
The reason for this third approach to opting in to autolayout is that you might need
autolayout to be switched on in order to add autolayout constraints in code. A
common place to create constraints in code is in a view’s updateConstraints im‐
plementation (discussed later in this chapter). However, if autolayout isn’t switched
on, updateConstraints won’t be called. So requiresConstraintBasedLayout
provides a way of switching it on.

One sibling view can use autolayout while another sibling view does not, and a superview
can use autolayout while one or indeed all of its subviews do not. However, autolayout
is implemented through the superview chain, so if a view uses autolayout, then auto‐
matically so do all its superviews; and if (as will almost certainly be the case) one of
those views is the main view of a view controller, that view controller receives autolayout-
related events that it would not have received otherwise.

You can’t turn off autolayout for just part of a nib. Either all views instantiated from
a nib use autolayout or they all use autoresizing. To generate different parts of your
interface from nibs, one part with autoresizing, another part with autolayout, sep‐
arate those parts into different nibs (different .storyboard or .xib files) and then load
and combine them at runtime.

Constraints
An autolayout constraint, or simply constraint, is an NSLayoutConstraint instance, and
describes either the absolute width or height of a view or a relationship between an
attribute of one view and an attribute of another view. In the latter case, the attributes
don’t have to be the same attribute, and the two views don’t have to be siblings (subviews

30 | Chapter 1: Views

www.allitebooks.com

http://www.allitebooks.org

of the same superview) or parent and child (superview and subview) — the only re‐
quirement is that they share a common ancestor (a superview somewhere up the view
hierarchy).

Here are the chief properties of an NSLayoutConstraint:
firstItem, firstAttribute, secondItem, secondAttribute

The two views and their respective attributes (NSLayoutAttribute) involved in this
constraint. If the constraint is describing a view’s absolute height or width, the
second view will be nil and the second attribute will be .NotAnAttribute. Addi‐
tional NSLayoutAttribute values are:

• .Left, .Right
• .Top, .Bottom
• .Leading, .Trailing
• .Width, .Height
• .CenterX, .CenterY
• .Baseline, .FirstBaseline

.FirstBaseline, new in iOS 8, applies primarily to multiline labels (Chap‐
ter 10); .Baseline is the last baseline, which is some distance up from the bottom
of the label, whereas the first baseline is some distance down from the top of the
label. The meanings of the other attributes are intuitively obvious, except that you
might wonder what “leading” and “trailing” mean: they are the international equiv‐
alent of “left” and “right,” automatically reversing their meaning on systems whose
language is written right-to-left (making it easy, say, to align the beginnings of sev‐
eral labels of different lengths, irrespective of localization).

(iOS 8 also introduces the notion of alignment with respect to a view’s margins; I’ll
discuss that in a moment.)

multiplier, constant
These numbers will be applied to the second attribute’s value to determine the first
attribute’s value. The multiplier is multiplied by the second attribute’s value; the
constant is added to that product. The first attribute is set to the result. (The name
constant is a very poor choice, as this value isn’t constant; have the Apple folks never
heard the term addend?) Basically, you’re writing an equation of the form a1 = ma2

+ c, where a1 and a2 are the two attributes, and m and c are the multiplier and the
constant. Thus, in the degenerate case where the first attribute’s value is to equal
the second attribute’s value, the multiplier will be 1 and the constant will be 0. If
you’re describing a view’s width or height absolutely, the multiplier will be 1 and
the constant will be the width or height value.

Layout | 31

relation

An NSLayoutRelation stating how the two attribute values are to be related to one
another, as modified by the multiplier and the constant. This is the operator that
goes in the spot where I put the equal sign in the equation in the preceding para‐
graph. It might be an equal sign (.Equal), but inequalities are also permitted (.Less-
ThanOrEqual, .GreaterThanOrEqual).

priority

Priority values range from 1000 (required) down to 1, and certain standard behav‐
iors have standard priorities. Constraints can have different priorities, determining
the order in which they are applied. Constraints are permitted to conflict with one
another provided they have different priorities.

A constraint belongs to a view. A view can have many constraints: a UIView has a
constraints property, along with these instance methods:

• addConstraint:, addConstraints:
• removeConstraint:, removeConstraints:

The question then is which view a given constraint should belong to. The answer is: the
view that is closest up the view hierarchy from both views involved in the constraint. If
possible, it should be one of those views. Thus, for example, if the constraint dictates a
view’s absolute width, it belongs to that view; if it sets the top of a view in relation to the
top of its superview, it belongs to that superview; if it aligns the tops of two sibling views,
it belongs to their common superview. (The runtime may permit you to cheat and add
a constraint at too high a level.) Adding a constraint that refers to a view outside the
subview hierarchy of the view to which you add it will cause a crash (with a helpful error
message). Both views involved in a constraint must be present in the view hierarchy
before the constraint can be added.

New in iOS 8, a constraint has a Bool active property, and constraints can be activated
or deactivated together with NSLayoutConstraint class methods activate-

Constraints: and deactivateConstraints:. Unfortunately, these features are cur‐
rently undocumented; but it appears that activating a constraint is equivalent to adding
it automatically to the correct view, and thus these are ways to add and remove con‐
straints with the focus of attention on the constraint rather than on the view.

NSLayoutConstraint properties are read-only, except for priority and constant. In
Chapter 4, it will turn out that changing a constraint’s constant in real time is a good
way to animate a view. If you want to change anything else about an existing constraint,
you must remove the constraint and add a new one.

32 | Chapter 1: Views

Autoresizing constraints
The mechanism whereby individual views can opt in to autolayout can suddenly involve
other views in autolayout, even though those other views were not using autolayout
previously. Therefore, there needs to be a way, when such a view becomes involved in
autolayout, to determine that view’s position and layout through constraints in the same
way they were previously being determined through its frame and its autoresizing-
Mask. The runtime takes care of this for you: it translates the view’s frame and
autoresizingMask settings into constraints. The result is a set of implicit constraints,
of class NSAutoresizingMaskLayoutConstraint, affecting this view (though they may
be attached to its superview). Thanks to these implicit constraints, the layout dictated
by the view’s autoresizingMask continues to work, even though the view is no longer
obeying its autoresizingMask but rather is using autolayout and constraints.

For example, suppose I have a UILabel whose frame is (20.0,20.0,42.0,22.0), and
whose autoresizingMask is .None. If this label were suddenly to come under
autolayout, then its superview would acquire four implicit constraints setting its width
and height at 42 and 22 and its center X and center Y at 41 and 31.

This conversion is performed only if the view in question has its translates-
AutoresizingMaskIntoConstraints property set to true. That is, in fact, the default if
the view came into existence either in code or by instantiation from a nib where “Use
Auto Layout” is not checked. The assumption is that if a view came into existence in
either of those ways, you want its frame and autoresizingMask to act as its constraints
if it becomes involved in autolayout.

That’s a sensible rule, but it means that if you intend to apply any explicit constraints of
your own to such a view, you’ll probably want to remember to turn off this automatic
behavior by setting the view’s translatesAutoresizingMaskIntoConstraints prop‐
erty to false. If you don’t, you’re going to end up with both implicit constraints and
explicit constraints affecting this view, and it’s unlikely that you would want that. Typ‐
ically, that sort of situation will result in a conflict between constraints, as I’ll explain a
little later; indeed, what usually happens to me is that I don’t remember to set the view’s
translatesAutoresizingMaskIntoConstraints property to false, and am reminded
to do so only when I do get a conflict between constraints.

For some obscure reason, translatesAutoresizingMaskIntoConstraints is not a
directly settable property in Swift; to set it, you have to call a view’s setTranslates-
AutoresizingMaskIntoConstraints: method.

Creating constraints in code
We are now ready to write some code involving constraints! I’ll generate the same views
and subviews and layout behavior as in Figures 1-12 and 1-13, but using constraints.

Layout | 33

Observe that I don’t bother to assign the subviews v2 and v3 explicit frames as I create
them, because constraints will take care of positioning them, and that I remember (for
once) to set their translatesAutoresizingMaskIntoConstraints properties to false:

let v1 = UIView(frame:CGRectMake(100, 111, 132, 194))
v1.backgroundColor = UIColor(red: 1, green: 0.4, blue: 1, alpha: 1)
let v2 = UIView()
v2.backgroundColor = UIColor(red: 0.5, green: 1, blue: 0, alpha: 1)
let v3 = UIView()
v3.backgroundColor = UIColor(red: 1, green: 0, blue: 0, alpha: 1)
mainview.addSubview(v1)
v1.addSubview(v2)
v1.addSubview(v3)
v2.setTranslatesAutoresizingMaskIntoConstraints(false)
v3.setTranslatesAutoresizingMaskIntoConstraints(false)
v1.addConstraint(
 NSLayoutConstraint(item: v2,
 attribute: .Left,
 relatedBy: .Equal,
 toItem: v1,
 attribute: .Left,
 multiplier: 1, constant: 0)
)
v1.addConstraint(
 NSLayoutConstraint(item: v2,
 attribute: .Right,
 relatedBy: .Equal,
 toItem: v1,
 attribute: .Right,
 multiplier: 1, constant: 0)
)
v1.addConstraint(
 NSLayoutConstraint(item: v2,
 attribute: .Top,
 relatedBy: .Equal,
 toItem: v1,
 attribute: .Top,
 multiplier: 1, constant: 0)
)
v2.addConstraint(
 NSLayoutConstraint(item: v2,
 attribute: .Height,
 relatedBy: .Equal,
 toItem: nil,
 attribute: .NotAnAttribute,
 multiplier: 1, constant: 10)
)
v3.addConstraint(
 NSLayoutConstraint(item: v3,
 attribute: .Width,
 relatedBy: .Equal,
 toItem: nil,

34 | Chapter 1: Views

 attribute: .NotAnAttribute,
 multiplier: 1, constant: 20)
)
v3.addConstraint(
 NSLayoutConstraint(item: v3,
 attribute: .Height,
 relatedBy: .Equal,
 toItem: nil,
 attribute: .NotAnAttribute,
 multiplier: 1, constant: 20)
)
v1.addConstraint(
 NSLayoutConstraint(item: v3,
 attribute: .Right,
 relatedBy: .Equal,
 toItem: v1,
 attribute: .Right,
 multiplier: 1, constant: 0)
)
v1.addConstraint(
 NSLayoutConstraint(item: v3,
 attribute: .Bottom,
 relatedBy: .Equal,
 toItem: v1,
 attribute: .Bottom,
 multiplier: 1, constant: 0)
)

Now, I know what you’re thinking. You’re thinking: “What are you, nuts? That is a
boatload of code!” (Except that you probably used another four-letter word instead of
“boat.”) But that’s something of an illusion. I’d argue that what we’re doing here is actually
simpler than the code with which we created Figure 1-12 using explicit frames and
autoresizing.

After all, we merely create eight constraints in eight simple commands. (I’ve broken
each command into multiple lines, but that’s just a matter of formatting.) They’re
verbose, but they are the same command repeated with different parameters, so creating
them is just a matter of copy-and-paste. Moreover, our eight constraints determine the
position, size, and layout behavior of our two subviews, so we’re getting a lot of bang for
our buck.

Even more telling, constraints are a far clearer expression of what’s supposed to happen
than setting a frame and autoresizingMask. The position of our subviews is described
once and for all, both as they will initially appear and as they will appear if their super‐
view is resized. And it is described meaningfully; we don’t have to use arbitrary math.
Recall what we had to say before:

let v3 = UIView(frame:CGRectMake(
 v1.bounds.width-20, v1.bounds.height-20, 20, 20))

Layout | 35

That business of subtracting the view’s height and width from its superview’s bounds
height and width in order to position the view is confusing and error-prone. With
constraints, we can speak the truth directly; our constraints say, plainly and simply, “v3
is 20 points wide and 20 points high and flush with the bottom-right corner of v1.”

In addition, of course, constraints can express things that autoresizing can’t. For exam‐
ple, instead of applying an absolute height to v2, we could require that its height be
exactly one-tenth of v1’s height, regardless of how v1 is resized. To do that without
constraints, you’d have to implement layoutSubviews and enforce it manually, in code.

Once you are using explicit constraints to position and size a view, do not set its
frame (or bounds and center) subsequently; use constraints alone. Otherwise, when
layoutSubviews is called, the view will jump back to where its constraints position
it. (The exception is that you may set a view’s frame if you are in layoutSubviews,
as I’ll explain later.)

Visual format
If you find constraint-creation code too verbose, it may be possible to condense it
somewhat. Instead of creating each constraint individually, it is sometimes possible to
describe multiple constraints simultaneously through a sort of text-based shorthand,
called a visual format. The shorthand is best understood by example:

"V:|[v2(10)]"

In that expression, V: means that the vertical dimension is under discussion; the alter‐
native is H:, which is also the default (so it is permitted to specify no dimension). A
view’s name appears in square brackets, and a pipe (|) signifies the superview, so here
we’re portraying v2’s top edge as butting up against its superview’s top edge. Numeric
dimensions appear in parentheses, and a numeric dimension accompanying a view’s
name sets that dimension of that view, so here we’re also setting v2’s height to 10.

To use a visual format, you have to provide a dictionary mapping the string name of
each view mentioned to the actual view. For example, the dictionary accompanying the
preceding expression might be ["v2":v2]. So here’s another way of expressing of the
preceding code example, using the visual format shorthand throughout:

let d = ["v2":v2,"v3":v3]
v1.addConstraints(
 NSLayoutConstraint.constraintsWithVisualFormat(
 "H:|[v2]|", options: nil, metrics: nil, views: d)
)
v1.addConstraints(
 NSLayoutConstraint.constraintsWithVisualFormat(
 "V:|[v2(10)]", options: nil, metrics: nil, views: d)
)

36 | Chapter 1: Views

v1.addConstraints(
 NSLayoutConstraint.constraintsWithVisualFormat(
 "H:[v3(20)]|", options: nil, metrics: nil, views: d)
)
v1.addConstraints(
 NSLayoutConstraint.constraintsWithVisualFormat(
 "V:[v3(20)]|", options: nil, metrics: nil, views: d)
)

That example creates the same constraints as the previous example, but in four com‐
mands instead of eight.

The visual format syntax shows itself to best advantage when multiple views are laid out
in relation to one another along the same dimension; in that situation, you get a lot of
bang for your buck (many constraints generated by one visual format string). The syn‐
tax, however, is severely limited in what constraints it can express (you can’t even use it
to center things); it conceals the number and exact nature of the constraints that it
produces; and personally I find it easier to make a mistake with the visual format syntax
than with the complete expression of each constraint. Still, you’ll want to become
familiar with the visual format syntax, not least because console messages describing a
constraint sometimes use it.

Here are some further things to know when generating constraints with the visual for‐
mat syntax:

• The metrics: parameter is a dictionary with numeric values. This lets you use a
name in the visual format string where a numeric value needs to go.

• The options: parameter is a bitmask (NSLayoutFormatOptions) chiefly letting you
do things like add alignments. The alignments you specify are applied to all the
views mentioned in the visual format string.

• To specify the distance between two successive views, use hyphens surrounding the
numeric value, like this: "[v1]-20-[v2]". The numeric value may optionally be
surrounded by parentheses. A single hyphen means that a default distance should
be used. (New in iOS 8, that default distance is the margin; I’ll talk more about
margins in a moment.)

• A numeric value in parentheses may be preceded by an equality or inequality op‐
erator, and may be followed by an at sign with a priority. Multiple numeric values,
separated by comma, may appear in parentheses together. For example:
"[v1(>=20@400,<=30)]".

For formal details of the visual format syntax, see the “Visual Format Syntax” chapter
of Apple’s Auto Layout Guide.

Layout | 37

In Objective-C, you can form a dictionary for mapping view names to view refer‐
ences more or less automatically, thanks to the NSDictionaryOfVariableBindings
macro; for example, NSDictionaryOfVariableBindings(v2,v3) yields the Objective-
C equivalent of the dictionary ["v2":v2,"v3":v3] that we formed manually in the
preceding code. But Swift lacks macros; there’s no preprocessor, so the textual
transformation needed to generate a literal dictionary from a literal list of view
variable names is impossible. For an alternative, see the dictionaryOfNames utility
function in Appendix B.

Constraints as objects
Although the examples so far have involved creating constraints and adding them di‐
rectly to the interface — and then forgetting about them — it is frequently useful to
form constraints and keep them on hand for future use (typically in a property). A
common use case is where you intend, at some future time, to change the interface in
some radical way, such as by inserting or removing a view; you’ll probably find it con‐
venient to keep multiple sets of constraints on hand, each set being appropriate to a
particular configuration of the interface. It is then trivial to swap constraints out of and
into the interface along with views that they affect.

In this example, we have prepared two properties, constraintsWith and constraints-
Without, initialized as empty arrays of NSLayoutConstraint:

var constraintsWith = [NSLayoutConstraint]()
var constraintsWithout = [NSLayoutConstraint]()

We create within our main view (mainview) three views, v1, v2, and v3, which are red,
yellow, and blue rectangles respectively. We keep strong references (as properties) to all
three views. For some reason, we will later want to remove and insert the yellow view
(v2) dynamically as the app runs, moving the blue view to where the yellow view was
when the yellow view is absent (Figure 1-14). So we create two sets of constraints, one
describing the positions of v1, v2, and v3 when all three are present, the other describing
the positions of v1 and v3 when v2 is absent. We start with v2 present, so it is the first
set of constraints that we initially hand over to our main view:

let v1 = UIView()
v1.backgroundColor = UIColor.redColor()
v1.setTranslatesAutoresizingMaskIntoConstraints(false)
let v2 = UIView()
v2.backgroundColor = UIColor.yellowColor()
v2.setTranslatesAutoresizingMaskIntoConstraints(false)
let v3 = UIView()
v3.backgroundColor = UIColor.blueColor()
v3.setTranslatesAutoresizingMaskIntoConstraints(false)
mainview.addSubview(v1)
mainview.addSubview(v2)
mainview.addSubview(v3)

38 | Chapter 1: Views

Figure 1-14. Alternate sets of views and constraints

self.v1 = v1
self.v2 = v2
self.v3 = v3
// construct constraints
let c1 = NSLayoutConstraint.constraintsWithVisualFormat("H:|-(20)-[v(100)]",
 options: nil, metrics: nil, views: ["v":v1]) as [NSLayoutConstraint]
let c2 = NSLayoutConstraint.constraintsWithVisualFormat("H:|-(20)-[v(100)]",
 options: nil, metrics: nil, views: ["v":v2]) as [NSLayoutConstraint]
let c3 = NSLayoutConstraint.constraintsWithVisualFormat("H:|-(20)-[v(100)]",
 options: nil, metrics: nil, views: ["v":v3]) as [NSLayoutConstraint]
let c4 = NSLayoutConstraint.constraintsWithVisualFormat("V:|-(100)-[v(20)]",
 options: nil, metrics: nil, views: ["v":v1]) as [NSLayoutConstraint]
let c5with = NSLayoutConstraint.constraintsWithVisualFormat(
 "V:[v1]-(20)-[v2(20)]-(20)-[v3(20)]", options: nil, metrics: nil,
 views: ["v1":v1, "v2":v2, "v3":v3]) as [NSLayoutConstraint]
let c5without = NSLayoutConstraint.constraintsWithVisualFormat(
 "V:[v1]-(20)-[v3(20)]", options: nil, metrics: nil,
 views: ["v1":v1, "v3":v3]) as [NSLayoutConstraint]
// first set of constraints
self.constraintsWith.extend(c1)
self.constraintsWith.extend(c2)
self.constraintsWith.extend(c3)
self.constraintsWith.extend(c4)
self.constraintsWith.extend(c5with)
// second set of constraints
self.constraintsWithout.extend(c1)
self.constraintsWithout.extend(c3)
self.constraintsWithout.extend(c4)
self.constraintsWithout.extend(c5without)
// apply first set
NSLayoutConstraint.activateConstraints(self.constraintsWith)

All that preparation may seem extraordinarily elaborate, but the result is that when the
time comes to swap v2 out of or into the interface, swapping the appropriate constraints
is trivial:

if self.v2.superview != nil {
 self.v2.removeFromSuperview()
 NSLayoutConstraint.deactivateConstraints(self.constraintsWith)
 NSLayoutConstraint.activateConstraints(self.constraintsWithout)
} else {

Layout | 39

 mainview.addSubview(v2)
 NSLayoutConstraint.deactivateConstraints(self.constraintsWithout)
 NSLayoutConstraint.activateConstraints(self.constraintsWith)
}

Guides and margins
In iOS, the top and bottom of the interface are often occupied by a bar (status bar,
navigation bar, toolbar, tab bar — see Chapter 12). Your layout will typically occupy the
region between these bars. On iOS 6 and before, this was trivial, because a view controller
would automatically resize its view to fit into that region. But in iOS 7 and iOS 8, a view
can extend vertically to the edges of the screen behind those bars. Moreover, such bars
can come and go dynamically, and can change their heights; for example, in iOS 8 the
default behavior is for the status bar to vanish when an iPhone app is in landscape
orientation, and a navigation bar is taller when an iPhone app is in portrait orientation
than it is when the same app is in landscape orientation.

Therefore, you need something else to anchor your vertical constraints to — something
that will move vertically to reflect the location of the bars. Otherwise, an interface that
looks right under some circumstances will look wrong in others. For example, consider
a view whose top is constrained to the top of the view controller’s main view, which is
its superview:

mainview.addConstraints(
 NSLayoutConstraint.constraintsWithVisualFormat(
 "V:|-0-[v]", options: nil, metrics: nil, views: ["v":v])
)

When the app is in landscape orientation, with the status bar removed by default, this
view will be right up against the top of the screen, which is fine. But in portrait orien‐
tation, this view will still be right up against the top the screen, which looks bad because
the status bar reappears and overlaps it.

Therefore, UIViewController supplies and maintains two invisible views, the top layout
guide and the bottom layout guide, which it injects as subviews into the view hierarchy
of its main view. Your topmost and bottommost vertical constraints will usually not be
between a subview and the top or bottom of the main view, but between a subview and
the bottom of the top layout guide, or a subview and the top of the bottom layout guide.
The bottom of the top layout guide matches the bottom of the lowest top bar, or the top
of the main view if there is no top bar; the top of bottom layout guide matches the top
of the bottom bar, or the bottom of the main view if there is no bottom bar.

You can access these layout guides programmatically through the UIViewController
properties topLayoutGuide and bottomLayoutGuide. For example (this code is in a view
controller, so the top layout guide is self.topLayoutGuide):

40 | Chapter 1: Views

www.allitebooks.com

http://www.allitebooks.org

mainview.addConstraints(
 NSLayoutConstraint.constraintsWithVisualFormat(
 "V:[tlg]-0-[v]", options: nil, metrics: nil,
 views: ["tlg":self.topLayoutGuide, "v":v])
)

And here’s the same thing without a visual format string:

mainview.addConstraint(
 NSLayoutConstraint(item: v,
 attribute: .Top,
 relatedBy: .Equal,
 toItem: self.topLayoutGuide,
 attribute: .Bottom,
 multiplier: 1, constant: 0)
)

New in iOS 8, views also have margins. A view’s layoutMargins property is a UIEdge‐
Insets expressing the minimum standard distance of subviews from the edge of this
view as superview. A visual format string that pins a subview’s edge to its superview’s
edge, expressed as a pipe character (|) and a hyphen with no explicit distance value, will
cause the subview to butt up against the superview’s margin. In iOS 7 and before, this
standard minimum spacing was fixed at 20; in iOS 8, it is up to the individual superview.
The default for a view controller’s main view is a top and bottom margin of 0 and a right
and left margin of 16 (which means that the position of your subviews might be different
between iOS 7 and iOS 8 if you use the same visual format string and don’t change the
superview’s margins); for any other view, it’s 8 on all four margins.

Thus, for example, here’s a view that’s butting up against its superview’s left margin:

mainview.addConstraints(
 NSLayoutConstraint.constraintsWithVisualFormat(
 "H:|-[v]", options: nil, metrics: nil, views: ["v":v])
)

When using the full constraint-creation syntax, you pin a view with respect to another
view’s margins using an additional set of NSLayoutAttribute values that’s new in iOS 8:

• .LeftMargin, .RightMargin
• .TopMargin, .BottomMargin
• .LeadingMargin, .TrailingMargin
• .CenterXWithinMargins, .CenterYWithinMargins

So here’s the same view placed against its superview’s left margin, without using a visual
format string:

Layout | 41

mainview.addConstraint(
 NSLayoutConstraint(item: v,
 attribute: .Left,
 relatedBy: .Equal,
 toItem: mainview,
 attribute: .LeftMargin,
 multiplier: 1, constant: 0)
)

An additional UIView property, preservesSuperviewLayoutMargins, if true, causes a
view to adopt as its layoutMargins the intersection of its own and its superview’s layout-
Margins. For example, consider the following:

let v = UIView()
v.backgroundColor = UIColor.redColor()
v.setTranslatesAutoresizingMaskIntoConstraints(false)
mainview.addSubview(v)
mainview.addConstraints(NSLayoutConstraint.constraintsWithVisualFormat(
 "H:|-(0)-[v]-(0)-|", options: nil, metrics: nil, views: ["v":v]))
mainview.addConstraints(NSLayoutConstraint.constraintsWithVisualFormat(
 "V:|-(0)-[v]-(0)-|", options: nil, metrics: nil, views: ["v":v]))
v.preservesSuperviewLayoutMargins = true

The view v has, by default, layout margins {8, 8, 8, 8}. Its superview, mainview, is
the view controller’s main view, and has, by default, layout margins {0, 16, 0, 16}.
The subview v exactly covers its superview mainview: their edges match. Normally this
would have no effect on v’s layout margins, but because we have set its preserves-
SuperviewLayoutMargins to true, the part of mainview’s layout margins that extends
further inwards than v’s layout margins is adopted by v as its own, so that v’s layout
margins are now actually {8, 16, 8, 16}. We can see the effect of this if we subsequently
give v a subview pinned to its layout margins:

let v1 = UIView()
v1.backgroundColor = UIColor.greenColor()
v1.setTranslatesAutoresizingMaskIntoConstraints(false)
v.addSubview(v1)
v.addConstraints(NSLayoutConstraint.constraintsWithVisualFormat(
 "H:|-[v1]-|", options: nil, metrics: nil, views: ["v1":v1]))
v.addConstraints(NSLayoutConstraint.constraintsWithVisualFormat(
 "V:|-[v1]-|", options: nil, metrics: nil, views: ["v1":v1]))

The green subview v1 is inset 16 points at the left and right from its red superview v,
and 8 points at the top and bottom.

Mistakes with constraints
Creating constraints manually, as I’ve been doing so far in this chapter, is an invitation
to make a mistake. Your totality of constraints constitute instructions for view layout,
and it is all too easy, as soon as more than one or two views are involved, to generate
faulty instructions. You can (and will) make two major kinds of mistake with constraints:

42 | Chapter 1: Views

Conflict
You can apply constraints that can’t be satisfied simultaneously. This will be reported
in the console (at great length). Only required constraints (priority 1000) can con‐
tribute to a conflict, as the runtime is free to ignore lower-priority constraints that
it can’t satisfy.

Underdetermination (ambiguity)
A view uses autolayout, but you haven’t supplied sufficient information to deter‐
mine its size and position. This is a far more insidious problem, because nothing
bad may seem to happen, so you might not discover it until much later. If you’re
lucky, the view will at least fail to appear, or will appear in an undesirable place,
alerting you to the problem.

Let’s start by generating a conflict. In this example, we return to our small red square in
the lower right corner of a big purple square (Figure 1-12) and append a contradictory
constraint:

v1.addConstraints(
 NSLayoutConstraint.constraintsWithVisualFormat(
 "H:[v3(20)]|", options: nil, metrics: nil, views: d)
)
v1.addConstraints(
 NSLayoutConstraint.constraintsWithVisualFormat(
 "V:[v3(20)]|", options: nil, metrics: nil, views: d)
)
v1.addConstraints(
 NSLayoutConstraint.constraintsWithVisualFormat(
 "V:[v3(10)]|", options: nil, metrics: nil, views: d)
)

The height of v3 can’t be both 10 and 20. The runtime reports the conflict, and tells you
which constraints are causing it:

Unable to simultaneously satisfy constraints. Probably at least one of the
constraints in the following list is one you don't want...

 "<NSLayoutConstraint:0x7f7fabc10750 V:[UIView:0x7f7fabc059d0(20)]>",
 "<NSLayoutConstraint:0x7f7fabc10d10 V:[UIView:0x7f7fabc059d0(10)]>"

Now we’ll generate an ambiguity. Here, we neglect to give our small red square a height:

v1.addConstraints(
 NSLayoutConstraint.constraintsWithVisualFormat(
 "H:[v3(20)]|", options: nil, metrics: nil, views: d)
)

No console message alerts us to our mistake. Fortunately, however, v3 fails to appear in
the interface, so we know something’s wrong. If your views fail to appear, suspect am‐
biguity.

Layout | 43

Figure 1-15. View debugging

Suspecting ambiguity is one thing; tracking it down and proving it is another. UIView’s
hasAmbiguousLayout method will help; be sure to remove that call before submitting
your app to the App Store. I find it useful to set up a utility method that lets me check
a view and all its subviews at any depth for ambiguity (see Appendix B).

To get a full list of the constraints responsible for positioning a particular view within
its superview, log the results of calling the UIView instance method constraints-
AffectingLayoutForAxis:; again, be sure to remove that call before finalizing your
app. These constraints do not necessarily belong to this view (and the output doesn’t
tell you what view they do belong to). Your choices of axis (UILayoutConstraintAxis)
are .Horizontal and .Vertical. If a view doesn’t participate in autolayout, the result
will be an empty array. Again, a utility method can come in handy (see Appendix B).

Also, use Xcode 6’s new view debugging feature (Figure 1-15). With the app running,
choose Debug → View Debugging → Capture View Hierarchy, or click the Debug View
Hierarchy button in the debug toolbar. At the left, the Debug navigator lists your window
and all its views hierarchically, along with their constraints. (Interpreting the constraints
here is something of an art, because a constraint involving two views is listed twice.)
What’s more, when a view is selected in this list or in the canvas, the Size inspector at
the right lists its bounds and all the constraints that determine those bounds. This, along
with the layered graphical display of your views and constraints in the canvas, is very
likely to help you penetrate to the cause of any constraint-related difficulties.

44 | Chapter 1: Views

New in Xcode 6, Instruments includes the Cocoa Layout template, which tracks
changes to your constraints over time and can help you work out how and when
things went awry.

Given the notions of conflict and ambiguity, we can understand what priorities are for.
Imagine that all constraints have been placed in boxes, where each box is a priority value,
in descending order. The first box (1000) contains all the required constraints, so all
required constraints are obeyed first. (If they conflict, that’s bad, and a report appears
in the log; meanwhile, the system implicitly lowers the priority of one of the conflicting
constraints, so that it doesn’t have to obey it and can continue with layout by satisfying
the remaining required constraints.) If there still isn’t enough information to perform
unambiguous layout given the required priorities alone, we pull the constraints out of
the next box and try to obey them. If we can, consistently with what we’ve already done,
fine; if we can’t, or if ambiguity remains, we look in the next box — and so on. For a box
after the first, we don’t care about obeying exactly the constraints it contains; if an
ambiguity remains, we can use a lower-priority constraint value to give us something
to aim at, resolving the ambiguity, without fully obeying the lower-priority constraint’s
desires. For example, an inequality is an ambiguity, because an infinite number of values
will satisfy it; a lower-priority equality can tell us what value to prefer, resolving the
ambiguity, but there’s no conflict even if we can’t fully achieve that preferred value.

Intrinsic content size
Some built-in interface objects, when using autolayout, have an inherent size in one or
both dimensions, so they are not ambiguously laid out even if no explicit NSLayout‐
Constraint dictates their size. Rather, the inherent size is used to generate constraints
implicitly, of class NSContentSizeLayoutConstraint. For example, a button has a stan‐
dard height, and its width is determined by its title. This inherent size is the object’s
intrinsic content size.

A change in the font size or text content of a built-in interface object may cause its
intrinsic size to change. (I’ll give examples in Chapter 10.) You will want to configure
your autolayout constraints so that your interface responds to such changes grace‐
fully.

The tendency of an interface object to size itself to its intrinsic content size must not be
allowed to conflict with its tendency to obey explicit constraints. Assigning a UILabel
an explicit, absolute width constraint should not cause a conflict with its intrinsic con‐
tent size; and we wouldn’t want a UILabel with a lot of text to be compelled by its intrinsic
content size to extend outside of its superview. Therefore these tendencies have a low‐
ered priority, and come into force only if no constraint of a higher priority prevents

Layout | 45

them. Methods taking a UILayoutConstraintAxis parameter (.Horizontal
or .Vertical) allow you to access these priorities:
contentHuggingPriorityForAxis:

A view’s resistance to growing larger than its intrinsic size in this dimension. In
effect, there is an inequality constraint saying that the view’s size in this dimension
should be less than or equal to its intrinsic size. The default priority for a UILabel
is 251; for a UIButton it’s 250 (the same as UILayoutPriorityDefaultLow).

contentCompressionResistancePriorityForAxis:

A view’s resistance to shrinking smaller than its intrinsic size in this dimension. In
effect, there is an inequality constraint saying that the view’s size in this dimension
should be greater than or equal to its intrinsic size. The default priority is 750 (the
same as UILayoutPriorityDefaultHigh).

Those methods are getters; there are corresponding setters. Situations where you would
need to change the priorities of these tendencies are few, but they do exist. For example,
here are the visual formats configuring two adjacent labels pinned to the superview and
to one another:

"V:|-20-[_lab1]"
"V:|-20-[_lab2]"
"H:|-20-[_lab1]"
"H:[_lab2]-20-|"
"H:[_lab1]-(>=20)-[_lab2]"

There may be no ambiguity initially, but as the superview becomes narrower or the text
of the labels becomes longer, an ambiguity arises: which label should be truncated? To
dictate the answer, it suffices to raise the compression resistance priority of one of the
labels by a single point:

let p = self.lab2.contentCompressionResistancePriorityForAxis(.Horizontal)
self.lab1.setContentCompressionResistancePriority(p+1, forAxis: .Horizontal)

Alternatively, you may want to lower the priority of some other constraint, to allow
intrinsic content size to predominate. An example that Apple gives is a label to the left
of a centered button and not permitted to overlap with it. As the text of the label becomes
longer, at first, the label grows leftward. But the label should not stretch leftward past
the left side of its superview, so it has an inequality constraint pinning its left at a guar‐
anteed minimum distance from the superview’s left. When it hits that limit, the label’s
text should not then be truncated if it doesn’t have to be, so the priority with which the
button is horizontally centered is set lower than the label’s compression resistance pri‐
ority; in effect, the label is able to force the button to move to the right:

self.button.setTranslatesAutoresizingMaskIntoConstraints(false)
self.label.setTranslatesAutoresizingMaskIntoConstraints(false)
let d = dictionaryOfNames(button, label)
self.view.addConstraints(
 NSLayoutConstraint.constraintsWithVisualFormat(

46 | Chapter 1: Views

 "V:[v1]-(112)-|", options: nil, metrics: nil, views: d)
)
self.view.addConstraints(
 NSLayoutConstraint.constraintsWithVisualFormat(
 "H:|-(>=10)-[v2]-[v1]-(>=10)-|",
 options: NSLayoutFormatOptions.AlignAllBaseline,
 metrics: nil, views: d)
)
let con = NSLayoutConstraint(item: button,
 attribute: .CenterX,
 relatedBy: .Equal,
 toItem: self.view,
 attribute: .CenterX,
 multiplier: 1, constant: 0)
con.priority = 700
self.view.addConstraint(con)

You can supply an intrinsic size in your own custom UIView subclass by implementing
intrinsicContentSize. Obviously you should do this only if your view’s size depends
on its contents. If you need the runtime to call intrinsicContentSize again, because
that size has changed and the view needs to be laid out afresh, call your view’s invalidate-
IntrinsicContentSize method.

By the same token, you may want to be able to align your custom UIView with another
view by their baselines. If your view’s baseline is its own bottom, there’s nothing to do;
but it may be that your view has content that gives a different meaning to the notion of
a baseline. To dictate where your custom view’s baseline should be, you do not provide
a numeric value. Rather, your custom view must contain a subview whose bottom will
function as the baseline, and whose top (in iOS 8) will function as the first baseline, and
you return that subview in your UIView subclass’s viewForBaselineLayout.

The intrinsic size of a UILabel has some additional complications connected with
its text wrapping behavior. I’ll discuss the matter in detail in Chapter 10.

Configuring Layout in the Nib
The focus of the discussion so far has been on configuring layout in code. This, however,
will often be unnecessary; instead, you’ll set up your layout (autoresizing or autolayout)
in the nib, using the nib editor (Interface Builder). It would not be true to say that you
can do absolutely anything in the nib that you could do in code, but the nib editor is
certainly a remarkably powerful way of configuring layout (and where it falls short, you
can always supplement it with some code in addition).

Layout | 47

Autoresizing in the nib
To configure autoresizing in the nib editor, you’ll need to ensure that autolayout is
turned off for the .storyboard or .xib file you’re editing. To do so, select that file in the
Project navigator and show the File inspector: uncheck “Use Auto Layout.”

When editing a nib file with autolayout turned off, you can assign a view springs and
struts in the Size inspector. A solid line externally represents a strut; a solid line internally
represents a spring. A helpful animation shows you the effect on your view’s position
as its superview is resized.

Constraints in the nib
In a .xib or .storyboard file where “Use Auto Layout” is checked, a vast array of tools
springs to life in the nib editor to help you create constraints that will be instantiated
from the nib along with the views. What’s more, the nib editor will help prevent you
from ending up with conflicting or ambiguous constraints.

Even in a nib with “Use Auto Layout” checked, the nib editor doesn’t generate any
constraints unless you ask it to. However, it doesn’t want the app to run with ambiguous
layout, because then you might not see any views at all; you wouldn’t be able to test your
app until you’d fully worked out all the constraints throughout the interface. Therefore,
if your views lack needed constraints, the nib supplies them implicitly behind the scenes
so that they are present at runtime:
No constraints

If a view is affected by no constraints at all, it is given constraints tagged in the
debugger as “IB auto generated at build time for view with fixed frame.”

Ambiguous constraints
If a view is affected by some constraints but not enough to disambiguate fully, it is
given additional constraints tagged in the debugger as “IB auto generated at build
time for view with ambiguity.”

The nib editor also doesn’t change any constraints unless you ask it to. If you create
constraints and then move or resize a view affected by those constraints, the constraints
are not automatically changed. This means that the constraints no longer match the way
the view is portrayed; if the constraints were to position the view, they wouldn’t put it
where you’ve put it. The nib editor will alert you to this situation (a Misplaced Views
issue), and can readily resolve it for you, but it won’t do so unless you explicitly ask it
to.

Creating a constraint
The nib editor provides two primary ways to create a constraint:

48 | Chapter 1: Views

Figure 1-16. Creating a constraint by control-dragging

• Control-drag from one view to another. A HUD appears, listing constraints that
you can create (Figure 1-16). Either view can be in the canvas or in the document
outline. To create an internal width or height constraint, control-drag from a view
to itself! When you control-drag within the canvas, the direction of the drag is used
to winnow the options presented in the HUD; for example, if you control-drag
horizontally within a view in the canvas, the HUD lists Width but not Height.

• Choose from the Editor → Align or Editor → Pin hierarchical menus, or click the
first (“Align”) or second (“Pin”) buttons at the right end of the layout bar below the
canvas.

The buttons in the layout bar are very powerful! They present little popover dialogs
where you can choose multiple constraints to create (possibly for multiple views, if that’s
what you’ve selected beforehand) and provide them with numeric values (Figure 1-17).
Constraints are not actually added until you click Add Constraints at the bottom. Before
clicking Add Constraints, think about the Update Frames pop-up menu; if you don’t
update frames, the views may end up being drawn in the canvas differently from how
the constraints describe them (a Misplaced Views issue).

As I mentioned earlier in this chapter, a view controller generates a Top Layout Guide
and a Bottom Layout Guide. In the nib editor, these guides are listed in the document
outline and elsewhere. An attempt to create a vertical constraint to a view controller’s
main view from a subview by Control-dragging will automatically make a constraint to
the corresponding guide rather than to the absolute top or bottom of the main view.

The Xcode 6 nib editor must work with iOS 8, so it also takes account of layout margins
(discussed earlier in this chapter). Layout margins are physically shown as faint lines in
the canvas. (The faint vertical line at the left of Figure 1-16 is a margin.) By default, when
you Control-drag to form a constraint from a view to its superview, the constraint may
connect to the superview’s layout margin rather than to the superview’s absolute edge;
if that isn’t what you want, hold Option when the HUD is visible to view and choose the
nonmargin alternative. Similarly, the popover dialog from the Pin button in the layout

Layout | 49

Figure 1-17. Creating constraints from the layout bar

Figure 1-18. A view’s constraints displayed in the nib

bar has a “Constrain to margins” checkbox (Figure 1-17). Finally, when editing a con‐
straint (as I describe in the next section), the First Item and Second Item pop-up menus
have a “Relative to margin” option.

Viewing and editing constraints
Constraints in the nib are full-fledged objects. They can be selected, edited, and deleted.
Moreover, you can create an outlet to a constraint (and there are reasons why you might
want to do so).

Constraints in the nib are visible in three places (Figure 1-18):

50 | Chapter 1: Views

In the document outline
Constraints are listed in a special category, “Constraints,” under the view to which
they belong. (You’ll have a much easier time distinguishing these constraints if you
give your views meaningful labels!)

In the canvas
Constraints appear graphically as dimension lines when you select a view that they
affect.

In the Size inspector
When a view affected by constraints is selected, the Size inspector lists those con‐
straints. New in Xcode 6, a Constraints grid also displays the view’s constraints
graphically.

When you select a constraint in the document outline or the canvas, you can view and
edit its values in the Attributes or Size inspector. Alternatively, for simple editing of a
constraint’s constant, relation, and priority, double-click the constraint in the canvas to
summon a little popover dialog. Similarly, when a constraint is listed in a view’s Size
inspector, double-click it to edit it in its Size inspector, or click its Edit button to summon
the little popover dialog.

A view’s Size inspector also provides access to its content hugging and content com‐
pression resistance priority settings. Beneath these, there’s an Intrinsic Size pop-up
menu. The idea here is that your custom view might have an intrinsic size, but the nib
editor doesn’t know this, so it will report an ambiguity when you fail to provide (say) a
width constraint that you know isn’t actually needed; choose Placeholder to supply an
intrinsic size and relieve the nib editor’s worries (and to prevent the missing constraints
from being generated automatically at runtime).

There is also a Placeholder checkbox in the Attributes inspector when you’ve selected
a constraint (“Remove at build time”). If you check this checkbox, the constraint you’re
editing won’t be instantiated when the nib is loaded, and it will not be replaced by an
automatically generated constraint: in effect, you are deliberately generating ambiguous
layout when the views and constraints are instantiated from the nib.

Why might you want to do such a thing? One typical reason is in order to take a view
out of the influence of autolayout altogether. Suppose you intend to reposition this view
dynamically while the app is running, and the easiest way to do this will be to keep
changing its frame or center. As I mentioned earlier, you can’t do that to a view that’s
governed by autolayout, because when layout comes along it will put your view back
where it was. On the other hand, you want the convenience of being able design this
view in the nib along with the rest of the interface. So you give it constraints in the nib
editor and designate them as placeholders. In code, when the app launches, you set this
view’s translatesAutoresizingMaskIntoConstraints to true (you can’t do that in the

Layout | 51

Even Distribution
A common problem is how to distribute views equally within their superview. This is
easy to arrange initially, but it is not obvious how to design evenly spaced views that will
remain evenly spaced when their superview is resized. The problem is that constraints
describe relationships between views, not between constraints; there is no way to con‐
strain the spacing constraints between views to remain equal to one another automat‐
ically as the superview is resized.

You can, on the other hand, constrain the heights or widths of views to remain equal to
one another. The simplest solution, therefore, is to resort to spacer views with their
hidden set to true.

For example, suppose (in the nib editor) that I have four views that are to remain equally
distributed vertically. I constrain their left and right edges, their heights, and the top of
the first view and the bottom of the last view, but I do nothing about the vertical position
of the two middle views.

Now I introduce three spacer views between my real views. I constrain their left edges
and widths. I now pin each spacer view, with a constant of 0, to the bottom of the view
above it and the top of the view below it. Finally, I select all the spacer views and choose
Editor → Pin → Heights Equally. This resolves all ambiguities, fixing the heights of the
spacer views and the positions of the two middle real views. The spacer views are hidden,
so the user never sees them, but they are responsible for the vertical positioning of the
views that the user does see. (Figure 1-18 in fact shows me setting up exactly such a
configuration.)

nib editor, unfortunately). Now that view is an autoresizing view, not an autolayout view,
and subsequently changing its frame is fine.

Problems with constraints
I’ve already said that generating constraints manually, in code, is error-prone. The nib
editor, however, knows whether it contains problematic constraints. If a view is affected
by any constraints, the Xcode nib editor will permit them to be ambiguous or conflicting,
but it will also complain helpfully. You should pay attention to such complaints! The
nib editor will bring the situation to your attention in various places:
Canvas

Constraints drawn in the canvas when you select a view that they affect use color
coding to express their status:
Conflicting constraints

Drawn in red.

52 | Chapter 1: Views

Insufficient constraints
Drawn in orange. These are ambiguous constraints: they don’t conflict, but they
aren’t sufficient to describe a view completely.

Satisfactory constraints
Drawn in blue.

Document outline
If there are layout issues, the document outline displays a right arrow in a red or
orange circle. Click it to see a detailed list of the issues (Figure 1-19). Hover the
mouse over a title to see an Info button which you can click to learn more about
the nature of this issue. The icons at the right are buttons: click one for a list of
things the nib editor is offering to do to fix the issue for you. The chief issues are:
Conflicting Constraints

A conflict between constraints.

Missing Constraints
Ambiguous layout.

Misplaced Views
If you manually change the frame of a view that is affected by constraints (in‐
cluding its intrinsic size), then the nib editor canvas may be displaying that
view differently from how it would really appear if the current constraints were
obeyed. A Misplaced Views situation is also reflected in the canvas:

• The constraints in the canvas display the numeric difference between their
values and the view’s frame. They are drawn in orange even if they are not
insufficient.

• A dotted outline in the canvas may show where the view would be drawn
if the existing constraints were obeyed.

A hierarchical menu, Editor → Resolve Auto Layout Issues, also available from the third
button at the bottom right of the layout bar (“Resolve Auto Layout Issues”), proposes
five large-scale moves involving all the constraints affecting selected views or all views:
Update Frames

Changes the way the view is drawn in the canvas, to show how it would really appear
in the running app under the constraints as they stand. Be careful: if constraints are
ambiguous, this can cause a view to disappear.

Alternatively, if you have resized a view with intrinsic size constraints, such as a
button or a label, and you want it to resume the size it would have according to
those intrinsic size constraints, select the view and choose Editor → Size to Fit
Content.

Layout | 53

Figure 1-19. Layout issues in the document outline

Update Constraints
Choose this menu item to change numerically all the existing constraints affecting
a view to match the way the canvas is currently drawing the view’s frame.

Add Missing Constraints
Create new constraints so that the view has sufficient constraints to describe its
frame unambiguously. The added constraints correspond to the way the canvas is
currently drawing the view’s frame.

Not everything that this command does may be what you ultimately want; you
should regard it as a starting point. For example, the nib editor doesn’t know
whether you think a certain view’s width should be determined by an internal width
constraint or by pinning it to the left and right of its superview; and it may generate
alignment constraints with other views that you never intended.

Reset to Suggested Constraints
This is as if you chose Clear Constraints followed by Add Missing Constraints: it
removes all constraints affecting the view, and replaces them with a complete set of
automatically generated constraints describing the way the canvas is currently
drawing the view’s frame.

Clear Constraints
Removes all constraints affecting the view.

Conditional constraints
New in Xcode 6, constraints and views can be made conditional in the nib editor. The
conditions on which they depend are the iOS 8 size classes that I discussed earlier. This
means that you can design your interface’s constraints, and even the presence or absence

54 | Chapter 1: Views

of views, to depend on the size of the screen. In effect, the interface detects trait-
CollectionDidChange: and responds to it. Thus:

• You can design directly into your interface a complex rearrangement of that inter‐
face when an iPhone app rotates to compensate for a change in device orientation.

• A single .storyboard or .xib file can be used to design the interface of a universal
app, even though the iPad interface and the iPhone interface may be quite different
from one another.

Use of conditional constraints is an opt-in feature of the nib editor. You have opted in
if “Use Size Classes” is checked in the File inspector for this .storyboard or .xib. In that
case, the following nib editor interface features are present:

• The main view in the canvas, by default, is portrayed as a square, to suggest the
dimension-agnostic nature of the design process.

• The center of the layout bar, below the canvas, acquires a pop-up menu where you
can choose any combination of size classes. Your choices are Compact, Regular, and
(between them) Any, so the choice is represented as a 3×3 grid.

The idea is that you design your interface initially for the general case (Any width, Any
height, which is the default). You then use the pop-up grid to switch to a specific case
— the layout bar turns blue to indicate that you’re in specific-case mode — and modify
the design for that case. Do not impulsively start moving interface items around! Instead,
use the inspectors:

• Use a view’s Attributes inspector to determine whether that view is present for a
particular size class combination. Note the Installed checkbox! Initially, it applies
to the general case. Click the Plus button, at its left, to add another Installed check‐
box applicable to a particular set of size classes. Now you can check or uncheck
Installed checkboxes so that this view is present for some size class combinations
but removed for others.

• Use a constraint’s Attributes or Size inspector to determine:
■ Whether that constraint is present for a particular size class combination. There

is an Installed checkbox, which works just like the Installed checkbox for a view.
■ The value of that constraint’s constant for a particular size class combination.

The Constant field has a Plus button, at its left, just like the Installed checkbox;
click it to add another Constant field applicable to a particular set of size classes.

Layout | 55

Figure 1-20. A view with differing layout for portrait and landscape

A constraint or view that is not installed for the set of size classes you’re looking at
is listed in gray in the document outline.

Here’s a simple example from one of my own apps. The view that informs the user of
an available in-app purchase appears on the iPad in portrait in a popover, but on the
iPhone it appears in landscape completely covering the screen (Figure 1-20). Simple
constraints can handle differences such as the width of the descriptive label at the top,
but the rearrangement of interface elements at the bottom requires conditional con‐
straints:

• The Restore button is 88 pixels from the bottom in the base case, but is 14 pixels
from the bottom in the Compact height case (iPhone in landscape). That’s one
constraint with two Constant values.

• The Done button is at the lower left in the base case, but is vertically aligned with
the Restore button in the Compact height case. That’s two constraints — a vertical
space constraint between the Done button and the bottom of its superview that’s
installed only in the general case, and a baseline alignment constraint between the
two buttons that’s installed only in the Compact height case (Figure 1-21).

View Debugging, Previewing, and Designing
Xcode 6 has several features for helping you visualize and understand your view hier‐
archy and the effect of your constraints. This section calls attention to some of these.

56 | Chapter 1: Views

Figure 1-21. A conditional constraint

View debugger
I have already mentioned the view debugger earlier in this chapter. You pause your
running app in the debugger and choose Debug → View Debugging → Capture View
Hierarchy. Alternatively, click the Debug View Hierarchy button in the debug bar. (You
don’t actually have to pause the running app in advance; if it isn’t paused, either of these
commands will pause it.)

The result is that your app’s current view hierarchy is analyzed and displayed in two
ways (Figure 1-15):

• On the left, in the Debug navigator, the views and their constraints are listed hier‐
archically.

• At the top, the jump bar shows you the same hierarchy in a different way, and helps
you navigate it.

• In the center, in the canvas, the views and their constraints are displayed graphically.
The window starts out facing front, much as if you were looking at the screen with
the app running; but if you swipe sideways a little in the canvas, the window rotates
and its subviews are displayed in front of it, in layers. The slider at the lower left
changes the distance between these layers. The double-slider at the lower right lets
you eliminate the display of views from the front or back of the layering order (or
both). You can switch to wireframe mode. You can display constraints for the cur‐
rently selected view.

Layout | 57

Figure 1-22. Previewing a view in the assistant pane

• On the right, the Object inspector and the Size inspector tell you details about the
currently selected object (view or constraint).

Apple did not simply steal, copy, or otherwise infringe upon the idea or interface
of existing view hierarchy inspection utilities such as Reveal (http://revealapp.com).
No.

Previewing your interface
When you’re displaying the nib editor in Xcode, the assistant pane’s Tracking menu (the
first component in its jump bar, Control-4) includes the Preview option. Choose it to
see a preview of the currently selected view controller’s view (or, in a .xib file, the top-
level view). The Plus button at the lower left lets you add previews for different devices
and device sizes; thus, for example, you can view your interface on iPad and iPhone
simultaneously. At the bottom of each preview, a Rotate button lets you switch this
preview to the other orientation (Figure 1-22).

In Xcode 6, these previews take account of conditional constraints. Thus, this feature is
a very good way to view the effects of your conditional constraints immediately and
simultaneously for different combinations of size class.

At the lower right, a language pop-up menu lets you switch your app’s text (buttons and
labels) to another language for which you have localized your app, or to an artificial

58 | Chapter 1: Views

http://revealapp.com

“double-length” version of your base language. Again, this is intended as a way of letting
you preview the results of your constraints, which need to accomodate possible changes
in the width of labels and buttons caused by running the app in a different language.

Resizable simulator
Another new Xcode 6 feature is the resizable simulator. When you choose Resizable
iPhone or Resizable iPad as your destination and run your app in the simulator, you get
a window where you can change the horizontal and vertical dimensions — either by
setting size classes (Compact or Regular) or by providing an arbitrary absolute numer‐
ical value. Once again, this is intended as a way to let you test the robustness of your
constraints under different runtime conditions.

Observe that if you want your app to respond to a change in size classes while running
within a resizable simulator, then either your nib editor must use conditional constraints
or your code must implement traitCollectionDidChange:.

Designable views and inspectable properties
Also new in Xcode 6, even if your view configures itself and its subviews in code, you
can make it appear more or less correctly in the nib editor canvas and preview. To take
advantage of this feature, you need a UIView subclass declared @IBDesignable:

@IBDesignable class MyView: UIView {
 // ... your code goes here ...
}

If an instance of this UIView subclass appears in the nib, then whatever code your app
runs to prepare the subclass in methods such as init(coder:) or willMoveTo-
Superview: will be run also as the nib editor prepares to portray your view. For example,
if your init(coder:) method adds a UILabel as a subview of this view, then that label
will appear not only in the running app but also in the nib editor’s drawing of an instance
of this view.

In addition, your view can implement prepareForInterfaceBuilder to perform visual
configurations aimed specifically at how it will be portrayed in the nib editor. For ex‐
ample, if your view contains a UILabel that comes into existence empty but whose
purpose is to portray some kind of data at runtime, you could implement prepareFor-
InterfaceBuilder to set the label’s text to some actual sample data, so that its appear‐
ance in the nib editor will be more realistic.

In Figure 1-23, the nib editor displays a MyView instance; the green and red subviews
come from MyView’s initializer, and the purple background is added in prepareFor-
InterfaceBuilder.

Xcode 6’s nib editor also has a new interface for setting runtime attributes. (This is
unrelated to designable views, but is often mentioned in the same breath.) If your UI‐

Layout | 59

Figure 1-23. A designable view with an inspectable property

View subclass has a property whose value type is understood by the nib editor, and if
this property is declared @IBInspectable, then if an instance of this UIView subclass
appears in the nib, that property will get a field of its own at the top of the view’s Attributes
inspector. Thus, when a custom UIView subclass is to be instantiated from the nib, its
custom properties can be set in the nib editor rather than having to be set in code. (This
feature isn’t really new; it’s equivalent to setting a nib object’s User Defined Runtime
Attributes in the Identity inspector, which has been possible for years. But it’s a conve‐
nient new interface, which Apple presumably hopes will make it more discoverable and
useful.)

Inspectable property types are: Bool, number, String, CGRect, CGPoint, CGSize, UI‐
Color, or UIImage — or an Optional wrapping any of these. You can assign a default
value in code; Interface Builder won’t portray this value as the default, but you can tell
Interface Builder to use the default by leaving the field empty (or, if you’ve entered a
value, by deleting that value).

In Figure 1-23, the nib editor displays MyView’s custom name property.

Events Related to Layout
I’ve talked about how you configure layout, but I haven’t said very much about when
you configure layout. The simple answer, in many cases, will be: when your interface
loads. For instance, our code setting up three colored rectangles with autoresizing or

60 | Chapter 1: Views

Autolayout and View Transforms
Ever since autolayout was introduced, back in iOS 6, every edition of this book has
contained at this point a rant about the conflict between autolayout and view transforms.
The problem was twofold:

• Autolayout was incorrectly implemented. What happened at layoutSubviews time
was that autolayout used a view’s constraints to set its frame. But setting the frame
of a view whose transform is not the identity transform is exactly what you must
not do! Doing that, in effect, can undo the transform.

• Merely applying a transform to a view was triggering layout immediately. Thus,
autolayout wasn’t merely lying in wait to wreck your view transform at some future
layout time (such as when the app was rotated); it was wrecking your view transform
immediately.

In iOS 8, both bugs are gone; autolayout now behaves as it should have done all along.
Not only does applying a transform to a view no longer trigger immediate layout, but
when layout does come along, autolayout sets your view’s bounds and center, not its
frame — thus leaving any applied view transforms intact. The workarounds that I sug‐
gested in earlier editions of this book are no longer necessary.

autolayout could appropriately go into a view controller’s viewDidLoad or some similar
event early in the lifetime of a view controller (I’ll talk much more about view controller
lifetime events in Chapter 6). If your interface’s autoresizing or autolayout is configured
in the nib, the early event in question will be the loading of the nib, and the nib-loading
process may well take care of the entire thing, with no code being involved.

Nevertheless, it will be useful to be aware of the chief UIView events related to layout.
These are events that you can receive and respond to by overriding them in your UIView
subclass. You might want to do this in situations where layout is complex — for example,
when you need to supplement autoresizing or autolayout with manual layout in code,
or when your autoresizing or autolayout configuration itself needs to change in response
to changing conditions.

In iOS 8, the earliest possible layout-related event is the traitCollectionDidChange:
message, which, as I’ve already said, is propagated down the hierarchy of UITrait‐
Environments. Thus, if your interface needs to respond to a change in the trait collection
— by changing constraints, adding or removing subviews, or what have you — an over‐
ride of traitCollectionDidChange: is the place to do it.

For example, earlier in this chapter I showed some code for swapping a view into or out
of the interface together with the entire set of constraints laying out that interface. But
I left open the matter of the conditions under which we wanted such swapping to occur.

Layout | 61

If we wanted to do this swapping in response to rotation of the app on iPhone, trait-
CollectionDidChange: would be an appropriate event to use as a trigger.

If your interface involves autolayout and constraints, then after traitCollectionDid-
Change: is propagated down the hierarchy, the updateConstraints event is propagated
up the hierarchy, starting at the bottom of the hierarchy (the deepest subview) and
working up to the top (typically the root view). This event may be omitted for a view if
its constraints have not changed, but it will certainly be called for the view at the top of
the hierarchy.

You might override updateConstraints in a UIView subclass if your subclass is capable
of altering its own constraints and you need a signal that now is the time to do so. You
must call super or the app will crash (with a helpful error message).

You should never call updateConstraints directly. To trigger an immediate call to
updateConstraints, send a view the updateConstraintsIfNeeded message. But
updateConstraints may still not be sent unless constraints have changed or the view
is at the top of the hierarchy. To force updateConstraints to be sent to a view, send it
the setNeedsUpdateConstraints message.

After the (possible) propagation of traitCollectionDidChange: and (if appropriate)
updateConstraints, a view and its subviews are sent layoutSubviews, starting at the
top of the hierarchy (typically the root view) and working down to the bottom (the
deepest subview).

You can override layoutSubviews in a subclass in order to take a hand in the layout
process. If you’re not using autolayout, layoutSubviews does nothing by default; layout-
Subviews is your opportunity to perform manual layout after autoresizing has taken
place. If you are using autolayout, you must call super or the app will crash (with a
helpful error message).

You should never call layoutSubviews directly; to trigger an immediate call to layout-
Subviews, send a view the layoutIfNeeded message (which may cause layout of the
entire view tree, not only below but also above this view), or send setNeedsLayout to
trigger a call to layoutSubviews later on, after your code finishes running, when layout
would normally take place.

When you’re using autolayout, what happens in layoutSubviews? The runtime exam‐
ines all the constraints affecting this view’s subviews, works out values for their center
and bounds, and assigns those views those center and bounds values. In other words,
layoutSubviews performs manual layout! The constraints are merely instructions at‐
tached to the views; layoutSubviews reads them and responds accordingly, sizing and
positioning views in the good old-fashioned way. (Thus, layoutSubviews is a place
where it is legal — and indeed necessary — to set the size and position of a view governed
by explicit constraints.)

62 | Chapter 1: Views

Knowing this, you might override layoutSubviews when you’re using autolayout, in
order to tweak the outcome. First you call super, causing all the subviews to adopt their
new frames. Then you examine those frames. If you don’t like the outcome, you can
change the situation, removing subviews, adding or removing constraints, and so on —
and then you call super again, to get a new layout outcome.

Unless you explicitly demand immediate layout, layout isn’t performed until your code
finishes running (and then only if needed). Moreover, ambiguous layout isn’t ambiguous
until layout actually takes place. Thus, for example, it’s perfectly reasonable to cause an
ambiguous layout temporarily, provided you resolve the ambiguity before layout-
Subviews is called. On the other hand, a conflicting constraint conflicts the instant it is
added.

It is also possible to simulate layout of a view in accordance with its constraints and
those of its subviews. This is useful for discovering ahead of time what a view’s size
would be if layout were performed at this moment. Send the view the systemLayout-
SizeFittingSize: message. The system will attempt to reach or at least approach the
size you specify, at a very low priority; mostly likely you’ll specify either UILayout-
FittingCompressedSize or UILayoutFittingExpandedSize, depending on whether
what you’re after is the smallest or largest size the view can legally attain. New in iOS 8,
you can dictate the individual axis priorities explicitly (systemLayoutSizeFitting-
Size:withHorizontalFittingPriority:verticalFittingPriority:).

Layout | 63

CHAPTER 2

Drawing

Many UIView subclasses, such as a UIButton or a UILabel, know how to draw them‐
selves; sooner or later, though, you’re going to want to do some drawing of your own.
You can draw an image in code, and then display it in your interface in a class that knows
how to show an image, such as a UIImageView or a UIButton. A pure UIView is all
about drawing, and it leaves that drawing largely up to you; your code determines what
the view draws, and hence what it looks like in your interface.

This chapter discusses the mechanics of drawing. Don’t be afraid to write drawing code
of your own! It isn’t difficult, and it’s often the best way to make your app look the way
you want it to.

(For how to draw text, see Chapter 12.)

UIImage
The basic general UIKit image class is UIImage. UIImage can read a file from disk, so
if an image does not need to be created dynamically, but has already been created before
your app runs, then drawing may be as simple as providing an image file as a resource
in your app’s bundle. The system knows how to work with many standard image file
types, such as TIFF, JPEG, GIF, and PNG; when an image file is to be included in your
app bundle, iOS has a special affinity for PNG files, and you should prefer them when‐
ever possible. You can also obtain image data in some other way, such as by downloading
it, and transform this into a UIImage. Conversely, you can construct your own UIImage
for display in your interface or for saving to disk (image file output is discussed in
Chapter 23).

A pre-existing image file in your app’s bundle can be obtained through the UIImage
initializer init(named:). This method looks in two places for the image:

65

Asset catalog
We look in the asset catalog for an image set with the supplied name. The name is
case-sensitive.

Top level of app bundle
We look at the top level of the app’s bundle for an image file with the supplied name.
The name is case-sensitive and should include the file extension; if it doesn’t include
a file extension, .png is assumed.

When calling init(named:), an asset catalog is searched before the top level of the app’s
bundle. If there are multiple asset catalogs, they are all searched, but the search order is
indeterminate and cannot be specified, so avoid image sets with the same name.

A nice thing about init(named:) is that the image data may be cached in memory, and
if you ask for the same image by calling init(named:) again later, the cached data may
be supplied immediately. Alternatively, you can read an image file from anywhere in
your app’s bundle directly and without caching, using init(contentsOfFile:), which
expects a pathname string; you can get a reference to your app’s bundle with
NSBundle.mainBundle(), and NSBundle then provides instance methods for getting
the pathname of a file within the bundle, such as pathForResource:ofType:.

Methods that specify a resource in the app bundle, such as init(named:) and pathFor-
Resource:ofType:, respond to suffixes in the name of an actual resource file. On a
device with a double-resolution screen, when an image is obtained by name from the
app bundle, a file with the same name extended by @2x, if there is one, will be used
automatically, with the resulting UIImage marked as double-resolution by assigning it
a scale property value of 2.0. New in iOS 8, if there is a file with the same name extended
by @3x, it will be used on the triple-resolution screen of the iPhone 6 Plus, with a scale
property value of 3.0.

In this way, your app can contain multiple versions of an image file at different resolu‐
tions. Thanks to the scale property, a high-resolution version of an image is drawn at
the same size as the single-resolution image. Thus, on a high-resolution screen, your
code continues to work without change, but your images look sharper.

iOS 8 doesn’t run on any single-resolution iPhone-sized devices, so an iPhone-only
app doesn’t need any single-resolution image variants. But iOS 8 does run on a
single-resolution iPad.

Similarly, a file with the same name extended by ~ipad will automatically be used if the
app is running on an iPad. You can use this in a universal app to supply different images
automatically depending on whether the app runs on an iPhone or iPod touch, on the

66 | Chapter 2: Drawing

one hand, or on an iPad, on the other. (This is true not just for images but for any
resource obtained by name from the bundle. See Apple’s Resource Programming Guide.)

One of the great benefits of an asset catalog, though, is that you can forget all about
those name suffix conventions. An asset catalog knows when to use an alternate image
within an image set, not from its name, but from its place in the catalog. Put the single-,
double-, and triple-resolution alternatives into the slots marked “1x,” “2x,” and “3x”
respectively. For a distinct iPad version of an image, switch the Devices pop-up menu
in the image set’s Attributes inspector from Universal to Device Specific and check the
boxes for the cases you want to distinguish; separate slots for those device types will
appear in the asset catalog.

New in iOS 8, an asset catalog can also distinguish between versions of an image intended
for different size class situations. (See the discussion of size classes and trait collections
in Chapter 1.) In the Attributes inspector for your image set, use the Width and Height
pop-up menus to specify which size class possibilities you want to distinguish. Thus,
for example, if we’re on an iPhone with the app rotated to landscape orientation, and if
there’s both an Any height and a Compact height alternative in the image set, the Com‐
pact height version is used. Moreover, these features are live; for example, if the app
rotates from landscape to portrait, and there’s both an Any height and a Compact height
alternative in the image set, the Compact height version is replaced with the Any height
version in your interface, automatically.

The way an asset catalog performs all this magic, in iOS 8, is through trait collections
and the UIImageAsset class. When an image is extracted from an asset catalog through
init(named:) and the name of its image set, its imageAsset property is a UIImageAsset.
All the images in that image set are available through the UIImageAsset; each image
has a trait collection associated with it (its traitCollection), and you can ask the
UIImageAsset for the image appropriate to a particular trait collection by calling image-
WithTraitCollection:. A built-in interface object that displays an image is automat‐
ically trait collection–aware in iOS 8; it receives the traitCollectionDidChange: mes‐
sage and responds accordingly. We can imagine how this works under the hood by
building a UIView with an image property that does the same thing:

class MyView: UIView {
 var image : UIImage!
 override func traitCollectionDidChange(previous: UITraitCollection?) {
 if self.traitCollection != previous {
 self.setNeedsDisplay()
 }
 }
 override func drawRect(rect: CGRect) {
 if var im = self.image {
 if let asset = self.image.imageAsset {
 let tc = self.traitCollection
 im = asset.imageWithTraitCollection(tc)
 }

UIImage | 67

 im.drawAtPoint(CGPointZero)
 }
 }
}

Moreover, your code can combine images into a UIImageAsset — the code equivalent
of an image set in an asset catalog, but without an asset catalog. Thus you could, for
example, create images in real time (as I’ll describe later in this chapter), or fetch images
out of your app bundle, and configure them so that one is used when an iPhone app is
in portrait orientation and the other is used when the app is in landscape orientation,
automatically, like this:

let tcdisp = UITraitCollection(displayScale: UIScreen.mainScreen().scale)
let tcphone = UITraitCollection(userInterfaceIdiom: .Phone)
let tcreg = UITraitCollection(verticalSizeClass: .Regular)
let tc1 = UITraitCollection(traitsFromCollections: [tcdisp, tcphone, tcreg])
let tccom = UITraitCollection(verticalSizeClass: .Compact)
let tc2 = UITraitCollection(traitsFromCollections: [tcdisp, tcphone, tccom])
let moods = UIImageAsset()
let frowney = UIImage(named:"frowney")!
let smiley = UIImage(named:"smiley")!
moods.registerImage(frowney, withTraitCollection: tc1)
moods.registerImage(smiley, withTraitCollection: tc2)

After that, if frowney is placed into the interface — for example, by handing it over to
a UIImageView as its image, as I’ll explain in a moment — it automatically alternates
with smiley when the app changes orientation. The remarkable thing is that this works
even though there is no persistent reference to frowney, smiley, or the UIImageAsset
(moods). The reason is that frowney and smiley are cached by the system (because of
the call to init(named:)), and they each maintain a strong reference to the UIImage‐
Asset with which they are registered.

New in iOS 8, you can also specify a target trait collection while fetching an image
from the asset catalog or from your app bundle, by calling init(named:in-
Bundle:compatibleWithTraitCollection:). The bundle specified will usually be nil,
meaning the app’s main bundle.

UIImageView
Many built-in Cocoa interface objects will accept a UIImage as part of how they draw
themselves; for example, a UIButton can display an image, and a UINavigationBar or a
UITabBar can have a background image. I’ll discuss those in Chapter 12. But when you
simply want an image to appear in your interface, you’ll probably hand it to a UIImage‐
View, which has the most knowledge and flexibility with regard to displaying images
and is intended for this purpose.

68 | Chapter 2: Drawing

The nib editor supplies some shortcuts in this regard: the Attributes inspector of an
interface object that can have an image will have a pop-up menu listing known images
in your project, and such images are also listed in the Media library (Command-Option-
Control-4). Media library images can often be dragged onto an interface object in the
canvas to assign them, and if you drag a Media library image into a plain view, it is
transformed into a UIImageView displaying that image.

A UIImageView can actually have two images, one assigned to its image property and
the other assigned to its highlightedImage property; the value of the UIImageView’s
highlighted property dictates which of the two is displayed at any given moment. A
UIImageView does not automatically highlight itself merely because the user taps it, the
way a button does. However, there are certain situations where a UIImageView will
respond to the highlighting of its surroundings; for example, within a table view cell, a
UIImageView will show its highlighted image when the cell is highlighted (Chapter 8).

A UIImageView is a UIView, so it can have a background color in addition to its image,
it can have an alpha (transparency) value, and so forth (see Chapter 1). An image may
have areas that are transparent, and a UIImageView will respect this; thus an image of
any shape can appear. A UIImageView without a background color is invisible except
for its image, so the image simply appears in the interface, without the user being aware
that it resides in a rectangular host. A UIImageView without an image and without a
background color is invisible, so you could start with an empty UIImageView in the
place where you will later need an image and subsequently assign the image in code.
You can assign a new image to substitute one image for another, or set the image view’s
image property to nil to remove it.

How a UIImageView draws its image depends upon the setting of its contentMode
property (UIViewContentMode). (The contentMode property is inherited from UI‐
View; I’ll discuss its more general purpose later in this chapter.) For example, .Scale-
ToFill means the image’s width and height are set to the width and height of the view,
thus filling the view completely even if this alters the image’s aspect ratio; .Center means
the image is drawn centered in the view without altering its size. The best way to get a
feel for the meanings of the various contentMode settings is to assign a UIImageView a
small image in a nib and then, in the Attributes inspector, change the Mode pop-up
menu, and see where and how the image draws itself.

You should also pay attention to a UIImageView’s clipsToBounds property; if it is
false, its image, even if it is larger than the image view and even if it is not scaled down
by the contentMode, may be displayed in its entirety, extending beyond the image view
itself.

When creating a UIImageView in code, you can take advantage of a convenience ini‐
tializer, init(image:) (or init(image:highlightedImage:)). The default content-
Mode is .ScaleToFill, but the image is not initially scaled; rather, the view itself is sized

UIImageView | 69

Figure 2-1. Mars appears in my interface

to match the image. You will still probably need to position the UIImageView correctly
in its superview. In this example, I’ll put a picture of the planet Mars in the center of the
app’s interface (Figure 2-1; for the CGRect center property, see Appendix B):

let iv = UIImageView(image:UIImage(named:"Mars")) // asset catalog
mainview.addSubview(iv)
iv.center = iv.superview!.bounds.center
iv.frame.integerize()

What happens to the size of an existing UIImageView when you assign an image to it
depends on whether the image view is using autolayout. If it isn’t, or if its size is con‐
strained absolutely, the image view’s size doesn’t change. But under autolayout, the size
of the new image becomes the image view’s new intrinsicContentSize, so the image
view will adopt the image’s size unless other constraints prevent.

Resizable Images
A UIImage can generate a resizable image, by calling its resizableImageWithCap-
Insets:resizingMode: method. The capInsets: argument is a UIEdgeInsets, a struct
consisting of four floats representing inset values starting at the top and proceeding
counterclockwise — top, left, bottom, right. They represent distances inward from the
edges of the image. In a context larger than the image, a resizable image can behave in
one of two ways, depending on the resizingMode: value (UIImageResizingMode):
.Tile

The interior rectangle of the inset area is tiled (repeated) in the interior; each edge
is formed by tiling the corresponding edge rectangle outside the inset area. The four
corner rectangles outside the inset area are drawn unchanged.

.Stretch

The interior rectangle of the inset area is stretched once to fill the interior; each edge
is formed by stretching the corresponding edge rectangle outside the inset area
once. The four corner rectangles outside the inset area are drawn unchanged.

Certain places in the interface require a resizable image; for example, a custom image
that serves as the track of a slider or progress view (Chapter 12) must be resizable, so

70 | Chapter 2: Drawing

Figure 2-2. Tiling the entire image of Mars

Figure 2-3. Tiling the interior of Mars

that it can fill a space of any length. And there can frequently be other situations where
you want to fill a background by tiling or stretching an existing image.

In these examples, assume that self.iv is a UIImageView with absolute height and
width (so that it won’t adopt the size of its image) and with a contentMode of .ScaleTo-
Fill (so that the image will exhibit resizing behavior). First, I’ll illustrate tiling an entire
image (Figure 2-2); note that the capInsets: is UIEdgeInsetsZero:

let mars = UIImage(named:"Mars")!
let marsTiled = mars.resizableImageWithCapInsets(
 UIEdgeInsetsZero, resizingMode: .Tile)
self.iv.image = marsTiled

Now we’ll tile the interior of the image, changing the capInsets: argument from the
previous code (Figure 2-3):

let marsTiled = mars.resizableImageWithCapInsets(
 UIEdgeInsetsMake(
 mars.size.height / 4.0,
 mars.size.width / 4.0,
 mars.size.height / 4.0,
 mars.size.width / 4.0
), resizingMode: .Tile)

Next, I’ll illustrate stretching. We’ll start by changing just the resizingMode: from the
previous code (Figure 2-4):

UIImageView | 71

Figure 2-4. Stretching the interior of Mars

Figure 2-5. Stretching a few pixels at the interior of Mars

let marsTiled = mars.resizableImageWithCapInsets(
 UIEdgeInsetsMake(
 mars.size.height / 4.0,
 mars.size.width / 4.0,
 mars.size.height / 4.0,
 mars.size.width / 4.0
), resizingMode: .Stretch)

A common stretching strategy is to make almost half the original image serve as a cap
inset, leaving just a pixel or two in the center to fill the entire interior of the resulting
image (Figure 2-5):

let marsTiled = mars.resizableImageWithCapInsets(
 UIEdgeInsetsMake(
 mars.size.height / 2.0 - 1,
 mars.size.width / 2.0 - 1,
 mars.size.height / 2.0 - 1,
 mars.size.width / 2.0 - 1
), resizingMode: .Stretch)

You should also experiment with different scaling contentMode settings. In the preced‐
ing example, if the image view’s contentMode is .ScaleAspectFill, and if the image
view’s clipsToBounds is true, we get a sort of gradient effect, because the top and bottom
of the stretched image are outside the image view and aren’t drawn (Figure 2-6).

Alternatively, you can configure a resizable image without code, in the project’s asset
catalog. It is often the case that a particular image will be used in your app chiefly as a
resizable image, and always with the same capInsets: and resizingMode:, so it makes
sense to configure this image once rather than having to repeat the same code. And even
if an image is configured in the asset catalog to be resizable, it can appear in your interface

72 | Chapter 2: Drawing

Figure 2-6. Mars, stretched and clipped

Figure 2-7. Mars, sliced in the asset catalog

as a normal image as well — for example, if you use it to initialize an image view, or
assign it to an image view under autolayout, or if the image view doesn’t scale its image
(it has a contentMode of .Center, for example).

To configure an image in an asset catalog as a resizable image, select the image and, in
the Slicing section of the Attributes inspector, change the Slices pop-up menu to Hor‐
izontal, Vertical, or Horizontal and Vertical. When you do this, additional interface
appears. You can specify the resizingMode with another pop-up menu. You can work
numerically, or click Show Slicing at the lower right of the canvas and work graphically.
The graphical editor is zoomable, so zoom in to work comfortably.

The reason this feature is called Slicing and not Resizing is that it can do more than
resizableImageWithCapInsets:resizingMode: can do: it lets you specify the end caps
separately from the tiled or stretched region, with the rest of the image being sliced out.
The meaning of your settings is intuitively clear from the graphical slicing editor. In
Figure 2-7, for example, the dark areas at the top left, top right, bottom left, and bottom
right will be drawn as is. The narrow bands will be stretched, and the small rectangle at
the top center will be stretched to fill most of the interior. But the rest of the image, the
large central area covered by a sort of gauze curtain, will be omitted entirely. The result
is shown in Figure 2-8.

UIImageView | 73

Figure 2-8. Mars, sliced and stretched

Image Rendering Mode
Several places in an iOS app’s interface automatically treat an image as a transparency
mask, also known as a template. This means that the image color values are ignored,
and only the transparency (alpha) values of each pixel matter. The image shown on the
screen is formed by combining the image’s transparency values with a single tint color.
Such, for example, is the behavior of a tab bar item’s image.

The way an image will be treated is a property of the image, its renderingMode. This
property is read-only; to change it, generate a new image with a different rendering
mode, by calling imageWithRenderingMode:. The rendering mode values (UIImage‐
RenderingMode) are:

• .Automatic

• .AlwaysOriginal

• .AlwaysTemplate

The default is .Automatic, which means that the image is drawn normally everywhere
except in certain limited contexts, where it is used as a transparency mask.

With the renderingMode property, you can force an image to be drawn normally, even
in a context that would usually treat it as a transparency mask. You can also do the
opposite: you can force an image to be treated as a transparency mask, even in a context
that would otherwise treat it normally.

To accompany this feature, iOS gives every UIView a tintColor, which will be used to
tint any template images it contains. Moreover, this tintColor by default is inherited
down the view hierarchy, and indeed throughout the entire app, starting with the UI‐
Window (Chapter 1). Thus, assigning your app’s main window a tint color is probably
one of the few changes you’ll make to the window; otherwise, your app adopts the
system’s blue tint color. (Alternatively, if you’re using a main storyboard, set the Global
Tint color in its File inspector.) Individual views can be assigned their own tint color,
which is inherited by their subviews. Figure 2-9 shows two buttons displaying the same
background image, one in normal rendering mode, the other in template rendering

74 | Chapter 2: Drawing

Figure 2-9. One image in two rendering modes

mode, in an app whose window tint color is red. (I’ll say more about template images
and tintColor in Chapter 12.)

New in Xcode 6, an asset catalog can assign an image a rendering mode. Select the image
set in the asset catalog, and use the Render As pop-up menu in the Attributes inspector
to set the rendering mode to Default (.Automatic), Original Image (.Always-
Original), or Template Image (.AlwaysTemplate). This is an excellent approach when‐
ever you have an image that you will primarily use in a specific rendering mode, because
it saves you from having to remember to set that rendering mode in code every time
you fetch the image. Instead, any time you call init(named:), this image arrives with
the rendering mode already set.

Graphics Contexts
A UIImageView draws an existing image for you and takes care of all the details; in
many cases, it will be all you’ll need. Eventually, though, you may want to create some
drawing yourself, directly, in code. To do so, you will always need a graphics context.

A graphics context is basically a place you can draw. Conversely, you can’t draw in code
unless you’ve got a graphics context. There are several ways in which you might obtain
a graphics context; in this chapter I will concentrate on two, which have proven in my
experience to be far and away the most common:
You create an image context

The function UIGraphicsBeginImageContextWithOptions creates a graphics con‐
text suitable for use as an image. You then draw into this context to generate the
image. When you’ve done that, you call UIGraphicsGetImageFromCurrentImage-
Context to turn the context into a UIImage, and then UIGraphicsEndImage-
Context to dismiss the context. Now you have a UIImage that you can display in
your interface or draw into some other graphics context or save as a file.

Cocoa hands you a graphics context
You subclass UIView and implement drawRect:. At the time your drawRect: im‐
plementation is called, Cocoa has already created a graphics context and is asking
you to draw into it, right now; whatever you draw is what the UIView will display.

Graphics Contexts | 75

A slight variant of this situation is that you subclass CALayer and implement draw-
InContext:, or make some object the delegate of a layer and implement draw-
Layer:inContext:; layers are discussed in Chapter 3.

Moreover, at any given moment there either is or is not a current graphics context:

• UIGraphicsBeginImageContextWithOptions not only creates an image context, it
also makes that context the current graphics context.

• When drawRect: is called, the UIView’s drawing context is already the current
graphics context.

• Callbacks with a context: argument have not made any context the current graph‐
ics context; rather, that argument is a reference to a graphics context.

What beginners find most confusing about drawing is that there are two separate sets
of tools for drawing. These tool sets take different attitudes toward the context in which
they will draw:
UIKit

Various Cocoa classes know how to draw themselves; these include UIImage,
NSString (for drawing text), UIBezierPath (for drawing shapes), and UIColor. Some
of these classes provide convenience methods with limited abilities; others are ex‐
tremely powerful. In many cases, UIKit will be all you’ll need.

With UIKit, you can draw only into the current context. So if you’re in a UIGraphics-
BeginImageContextWithOptions or drawRect: situation, you can use the UIKit
convenience methods directly; there is a current context and it’s the one you want
to draw into. If you’ve been handed a context: argument, on the other hand, then
if you want to use the UIKit convenience methods, you’ll have to make that context
the current context; you do this by calling UIGraphicsPushContext (and be sure to
restore things with UIGraphicsPopContext later).

Core Graphics
This is the full drawing API. Core Graphics, often referred to as Quartz, or Quartz
2D, is the drawing system that underlies all iOS drawing — UIKit drawing is built
on top of it — so it is low-level and consists of C functions. There are a lot of them!
This chapter will familiarize you with the fundamentals; for complete information,
you’ll want to study Apple’s Quartz 2D Programming Guide.

With Core Graphics, you must specify a graphics context (a CGContext) to draw
into, explicitly, in every function call. If you’ve been handed a context: argument,
then that’s probably the graphics context you want to draw into. But in a UIGraphics-
BeginImageContextWithOptions or drawRect: situation, you have no reference to
a context; to use Core Graphics, you need to get such a reference. Since the context

76 | Chapter 2: Drawing

you want to draw into is the current graphics context, you call UIGraphicsGet-
CurrentContext to get the needed reference.

So we have two sets of tools and three ways in which a context might be supplied; that
makes six ways of drawing. To clarify, I’ll now demonstrate all six of them! Without
worrying just yet about the actual drawing commands, focus your attention on how the
context is specified and on whether we’re using UIKit or Core Graphics. First, I’ll draw
a blue circle by implementing a UIView subclass’s drawRect:, using UIKit to draw into
the current context, which Cocoa has already prepared for me:

override func drawRect(rect: CGRect) {
 let p = UIBezierPath(ovalInRect: CGRectMake(0,0,100,100))
 UIColor.blueColor().setFill()
 p.fill()
}

Now I’ll do the same thing with Core Graphics; this will require that I first get a reference
to the current context:

override func drawRect(rect: CGRect) {
 let con = UIGraphicsGetCurrentContext()
 CGContextAddEllipseInRect(con, CGRectMake(0,0,100,100))
 CGContextSetFillColorWithColor(con, UIColor.blueColor().CGColor)
 CGContextFillPath(con)
}

Next, I’ll implement a UIView subclass’s drawLayer:inContext:. In this case, we’re
handed a reference to a context, but it isn’t the current context. So I have to make it the
current context in order to use UIKit:

override func drawLayer(layer: CALayer, inContext con: CGContext) {
 UIGraphicsPushContext(con)
 let p = UIBezierPath(ovalInRect: CGRectMake(0,0,100,100))
 UIColor.blueColor().setFill()
 p.fill()
 UIGraphicsPopContext()
}

To use Core Graphics in drawLayer:inContext:, I simply keep referring to the context
I was handed:

override func drawLayer(layer: CALayer, inContext con: CGContext) {
 CGContextAddEllipseInRect(con, CGRectMake(0,0,100,100))
 CGContextSetFillColorWithColor(con, UIColor.blueColor().CGColor)
 CGContextFillPath(con)
}

Finally, for the sake of completeness, let’s make a UIImage of a blue circle. We can do
this at any time (we don’t need to wait for some particular method to be called) and in
any class (we don’t need to be in a UIView subclass). The resulting UIImage (here called
im) is suitable anywhere you would use a UIImage. For instance, you could hand it over

Graphics Contexts | 77

to a visible UIImageView as its image, thus causing the image to appear onscreen. Or
you could save it as a file. Or, as I’ll explain in the next section, you could use it in another
drawing.

First, I’ll draw my image using UIKit:

UIGraphicsBeginImageContextWithOptions(CGSizeMake(100,100), false, 0)
let p = UIBezierPath(ovalInRect: CGRectMake(0,0,100,100))
UIColor.blueColor().setFill()
p.fill()
let im = UIGraphicsGetImageFromCurrentImageContext()
UIGraphicsEndImageContext()
// im is the blue circle image, do something with it here ...

Here’s the same thing using Core Graphics:

UIGraphicsBeginImageContextWithOptions(CGSizeMake(100,100), false, 0)
let con = UIGraphicsGetCurrentContext()
CGContextAddEllipseInRect(con, CGRectMake(0,0,100,100))
CGContextSetFillColorWithColor(con, UIColor.blueColor().CGColor)
CGContextFillPath(con)
let im = UIGraphicsGetImageFromCurrentImageContext()
UIGraphicsEndImageContext()
// im is the blue circle image, do something with it here ...

You may be wondering about the arguments to UIGraphicsBeginImageContextWith-
Options. The first argument is obviously the size of the image to be created. The second
argument declares whether the image should be opaque; if I had passed true instead of
false here, my image would have a black background, which I don’t want. The third
argument specifies the image scale, corresponding to the UIImage scale property I
discussed earlier; by passing 0, I’m telling the system to set the scale for me in accordance
with the main screen resolution, so my image will look good on both single-resolution
and high-resolution devices.

You don’t have to use UIKit or Core Graphics exclusively; on the contrary, you can
intermingle UIKit calls and Core Graphics calls to operate on the same graphics context.
They merely represent two different ways of telling a graphics context what to do.

You may find that the dance required to begin an image context, draw into it, extract
the image, and end the context, is a bit tedious and error-prone. If so, you might
like to consider a utility function that I provide in Appendix B. It has the advantage
that you provide the drawing instructions in a closure and an image is returned
directly.

78 | Chapter 2: Drawing

Figure 2-10. Two images of Mars combined side by side

UIImage Drawing
A UIImage provides methods for drawing itself into the current context. We know how
to obtain a UIImage, and we know how to obtain an image context and make it the
current context, so we can experiment with these methods. Here, I’ll make a UIImage
consisting of two pictures of Mars side by side (Figure 2-10):

var mars = UIImage(named:"Mars")!
var sz = mars.size
UIGraphicsBeginImageContextWithOptions(
 CGSizeMake(sz.width*2, sz.height), false, 0)
mars.drawAtPoint(CGPointMake(0,0))
mars.drawAtPoint(CGPointMake(sz.width,0))
var im = UIGraphicsGetImageFromCurrentImageContext()
UIGraphicsEndImageContext()

Observe that image scaling works perfectly in that example. If we have multiple reso‐
lution versions of our original Mars image, the correct one for the current device is used,
and is assigned the correct scale value. Our call to UIGraphicsBeginImageContextWith-
Options has a third argument of 0, so the image context that we are drawing into also
has the correct scale. And the image that results from calling UIGraphicsGetImage-
FromCurrentImageContext has the correct scale as well. Thus, this same code produces
an image that looks correct on the current device, whatever its screen resolution may
be.

Additional UIImage methods let you scale an image into a desired rectangle as you draw,
and specify the compositing (blend) mode whereby the image should combine with
whatever is already present. To illustrate, I’ll create an image showing Mars centered in
another image of Mars that’s twice as large, using the Multiply blend mode (Figure 2-11):

mars = UIImage(named:"Mars")!
sz = mars.size
UIGraphicsBeginImageContextWithOptions(
 CGSizeMake(sz.width*2, sz.height*2), false, 0)
mars.drawInRect(CGRectMake(0,0,sz.width*2, sz.height*2))
mars.drawInRect(

UIImage Drawing | 79

Figure 2-11. Two images of Mars in different sizes, composited

Figure 2-12. Half the original image of Mars

 CGRectMake(sz.width/2.0, sz.height/2.0, sz.width, sz.height),
 blendMode: kCGBlendModeMultiply, alpha: 1.0)
im = UIGraphicsGetImageFromCurrentImageContext()
UIGraphicsEndImageContext()

There is no UIImage drawing method for specifying the source rectangle — that is, for
times when you want to extract a smaller region of the original image. You can work
around this by creating a smaller graphics context and positioning the image drawing
so that the desired region falls into it. For example, to obtain an image of the right half
of Mars, you’d make a graphics context half the width of the mars image, and then draw
mars shifted left, so that only its right half intersects the graphics context. There is no
harm in doing this, and it’s a perfectly standard strategy; the left half of mars simply isn’t
drawn (Figure 2-12):

mars = UIImage(named:"Mars")!
sz = mars.size
UIGraphicsBeginImageContextWithOptions(
 CGSizeMake(sz.width/2.0, sz.height), false, 0)
mars.drawAtPoint(CGPointMake(-sz.width/2.0,0))
im = UIGraphicsGetImageFromCurrentImageContext()
UIGraphicsEndImageContext()

80 | Chapter 2: Drawing

Figure 2-13. Image of Mars split in half (and flipped)

CGImage Drawing
The Core Graphics version of UIImage is CGImage. They are easily converted to one
another: a UIImage has a CGImage property that accesses its Quartz image data, and you
can make a UIImage from a CGImage using init(CGImage:) or its more configurable
sibling, init(CGImage:scale:orientation:).

A CGImage lets you create a new image directly from a rectangular region of the original
image, which you can’t do with UIImage. (A CGImage has other powers a UIImage
doesn’t have; for example, you can apply an image mask to a CGImage.) I’ll demonstrate
by splitting the image of Mars in half and drawing the two halves separately
(Figure 2-13):

mars = UIImage(named:"Mars")!
// extract each half as CGImage
sz = mars.size
var marsLeft = CGImageCreateWithImageInRect(
 mars.CGImage,
 CGRectMake(0,0,sz.width/2.0,sz.height))
var marsRight = CGImageCreateWithImageInRect(
 mars.CGImage,
 CGRectMake(sz.width/2.0,0,sz.width/2.0,sz.height))
// draw each CGImage
UIGraphicsBeginImageContextWithOptions(
 CGSizeMake(sz.width*1.5, sz.height), false, 0)
var con = UIGraphicsGetCurrentContext()
CGContextDrawImage(con,
 CGRectMake(0,0,sz.width/2.0,sz.height), marsLeft)
CGContextDrawImage(con,
 CGRectMake(sz.width,0,sz.width/2.0,sz.height), marsRight)
im = UIGraphicsGetImageFromCurrentImageContext()
UIGraphicsEndImageContext()

But there’s a problem with that example: the drawing is upside-down! It isn’t rotated;
it’s mirrored top to bottom, or, to use the technical term, flipped. This phenomenon can
arise when you create a CGImage and then draw it with CGContextDrawImage, and is
due to a mismatch in the native coordinate systems of the source and target contexts.

CGImage Drawing | 81

There are various ways of compensating for this mismatch between the coordinate sys‐
tems. One is to draw the CGImage into an intermediate UIImage and extract another
CGImage from that. Example 2-1 presents a utility function for doing this.

Example 2-1. Utility for flipping an image drawing
func flip (im: CGImage) -> CGImage {
 let sz = CGSizeMake(
 CGFloat(CGImageGetWidth(im)), CGFloat(CGImageGetHeight(im)))
 UIGraphicsBeginImageContextWithOptions(sz, false, 0)
 CGContextDrawImage(UIGraphicsGetCurrentContext(),
 CGRectMake(0, 0, sz.width, sz.height), im)
 let result = UIGraphicsGetImageFromCurrentImageContext().CGImage
 UIGraphicsEndImageContext()
 return result;
}

Armed with the utility function from Example 2-1, we can fix our calls to CGContext-
DrawImage in the previous example so that they draw the halves of Mars the right way
up:

CGContextDrawImage(con,
 CGRectMake(0,0,sz.width/2.0,sz.height), flip(marsLeft))
CGContextDrawImage(con,
 CGRectMake(sz.width,0,sz.width/2.0,sz.height), flip(marsRight))

However, we’ve still got a problem: on a high-resolution device, if there is a high-
resolution variant of our image file, the drawing comes out all wrong. The reason is that
we are obtaining our initial Mars image using UIImage’s init(named:), which returns
a UIImage that compensates for the increased size of a high-resolution image by setting
its own scale property to match. But a CGImage doesn’t have a scale property, and
knows nothing of the fact that the image dimensions are increased! Therefore, on a
high-resolution device, the CGImage that we extract from our Mars UIImage as
mars.CGImage is larger (in each dimension) than mars.size, and all our calculations
after that are wrong.

The best solution for dealing a CGImage, therefore, is to wrap it in a UIImage and draw
the UIImage instead of the CGImage. The UIImage can be formed in such a way as to
compensate for scale: call init(CGImage:scale:orientation:) as you form the UI‐
Image from the CGImage. Moreover, by drawing a UIImage instead of a CGImage, we
avoid the flipping problem! So here’s an approach that deals with both flipping and scale,
with no need for the flip utility:

mars = UIImage(named:"Mars")!
sz = mars.size
// derive CGImage first, use its dimensions to extract its halves
marsCG = mars.CGImage
szCG = CGSizeMake(
 CGFloat(CGImageGetWidth(marsCG)), CGFloat(CGImageGetHeight(marsCG)))

82 | Chapter 2: Drawing

Why Flipping Happens
The ultimate source of accidental flipping is that Core Graphics comes from the OS X
world, where the coordinate system’s origin is located by default at the bottom left and
the positive y-direction is upward, whereas on iOS the origin is located by default at the
top left and the positive y-direction is downward. In most drawing situations, no prob‐
lem arises, because the coordinate system of the graphics context is adjusted to com‐
pensate. Thus, the default coordinate system for drawing in a Core Graphics context on
iOS has the origin at the top left, just as you expect. But creating and drawing a CGImage
exposes the “impedance mismatch” between the two worlds.

marsLeft =
 CGImageCreateWithImageInRect(
 marsCG, CGRectMake(0,0,szCG.width/2.0,szCG.height))
marsRight =
 CGImageCreateWithImageInRect(
 marsCG, CGRectMake(szCG.width/2.0,0,szCG.width/2.0,szCG.height))
UIGraphicsBeginImageContextWithOptions(
 CGSizeMake(sz.width*1.5, sz.height), false, 0)
// instead of calling flip, pass through UIImage
UIImage(CGImage: marsLeft, scale: mars.scale,
 orientation: mars.imageOrientation)!
 .drawAtPoint(CGPointMake(0,0))
UIImage(CGImage: marsRight, scale: mars.scale,
 orientation: mars.imageOrientation)!
 .drawAtPoint(CGPointMake(sz.width,0))
im = UIGraphicsGetImageFromCurrentImageContext()
UIGraphicsEndImageContext()

Yet another solution to flipping is to apply a transform to the graphics context before
drawing the CGImage, effectively flipping the context’s internal coordinate system. This
is elegant, but can be confusing if there are other transforms in play. I’ll talk more about
graphics context transforms later in this chapter.

Snapshots
An entire view — anything from a single button to your whole interface, complete with
its contained hierarchy of views — can be drawn into the current graphics context by
calling the UIView instance method drawViewHierarchyInRect:afterScreen-

Updates:. (This method is much faster than the CALayer method renderInContext:;
nevertheless, renderInContext: does still come in handy, as I’ll show in Chapter 5.)
The result is a snapshot of the original view: it looks like the original view, but it’s basically
just a bitmap image of it, a lightweight visual duplicate.

Snapshots | 83

Figure 2-14. A snapshot view in an animation

An even faster way to obtain a snapshot of a view is to use the UIView (or UIScreen)
instance method snapshotViewAfterScreenUpdates:. The result is a UIView, not a
UIImage; it’s rather like a UIImageView that knows how to draw only one image, namely
the snapshot. Such a snapshot view will typically be used as is, but you can enlarge its
bounds and the snapshot image will stretch. If you want the stretched snapshot to
behave like a resizable image, call resizableSnapshotViewFromRect:afterScreen-
Updates:withCapInsets: instead. It is perfectly reasonable to make a snapshot view
from a snapshot view.

Snapshots are useful because of the dynamic nature of the iOS interface. For example,
you might place a snapshot of a view in your interface in front of the real view to hide
what’s happening, or use it during an animation to present the illusion of a view moving
when in fact it’s just a snapshot.

Here’s an example from one of my apps. Figure 2-14 shows the “before” and “after” state
of a custom transition between view controller views. The user taps one of the three
colored rectangles in the first view (left), and the second view rises up from the bottom
of the screen to let the user edit, with sliders, the colors of that rectangle (right); in this
case, the user has tapped the blue rectangle. What you can’t see in the illustration is the
animation: as the second view rises, so does the blue rectangle, passing from its position
in the first view to its position in the second view, growing as it does so, to emphasize
that what the user is about to edit is the same color swatch that was just tapped.

Or so it seems! In reality, it would make no sense to move the literal color swatch
rectangle from the first view to the second view. What rises and grows during the ani‐
mation is just a snapshot of the color swatch rectangle. Here’s the relevant part of the

84 | Chapter 2: Drawing

code; it won’t mean much to you until you’ve read about animations (Chapter 4) and
custom view transitions (Chapter 6), but you can readily see why this would be a typical
situation for using a snapshot:

// take snapshot of swatch
let cpc = (vc1 as UINavigationController).viewControllers[0]
 as ColorPickerController
let snapshot = cpc.swatch.snapshotViewAfterScreenUpdates(false)
// work out initial and final positions for snapshot
let r1 = con.convertRect(cpc.swatch.frame, fromView:cpc.swatch.superview)
let r2 = self.tappedColor.superview!.convertRect(
 self.tappedColor.frame, toView:vc2.view)
// add snapshot to interface in place of original swatch
snapshot.frame = r1
con.addSubview(snapshot)
cpc.swatch.hidden = true
// animate!
UIView.animateWithDuration(0.8, animations:{
 snapshot.frame = r2
 // ...
}

CIFilter and CIImage
The “CI” in CIFilter and CIImage stands for Core Image, a technology for transforming
images through mathematical filters. About 130 such filters are available in iOS 8. Core
Image started life on the desktop (OS X); some of the filters available on the desktop
aren’t available in iOS (presumably because they are too intensive mathematically for a
mobile device).

A filter is a CIFilter. The available filters fall naturally into several categories:
Patterns and gradients

These filters create CIImages that can then be combined with other CIImages, such
as a single color, a checkerboard, stripes, or a gradient.

Compositing
These filters combine one image with another, using compositing blend modes
familiar from image processing programs such as Photoshop.

Color
These filters adjust or otherwise modify the colors of an image. Thus you can alter
an image’s saturation, hue, brightness, contrast, gamma and white point, exposure,
shadows and highlights, and so on.

Geometric
These filters perform basic geometric transformations on an image, such as scaling,
rotation, and cropping.

CIFilter and CIImage | 85

Transformation
These filters distort, blur, or stylize an image. Relatively few of them are available
on iOS.

Transition
These filters provide a frame of a transition between one image and another; by
asking for frames in sequence, you can animate the transition (I’ll demonstrate in
Chapter 4).

Special purpose
These filters perform highly specialized operations such as face detection and gen‐
eration of QR codes.

The basic use of a CIFilter is quite simple:

• You specify what filter you want by supplying its string name; to learn what these
names are, consult Apple’s Core Image Filter Reference, or call the CIFilter class
method filterNamesInCategories: with a nil argument.

• Each filter has a small number of keys and values that determine its behavior (as if
a filter were a kind of dictionary). You can learn about these keys entirely in code,
but typically you’ll consult the documentation. For each key that you’re interested
in, you supply a key–value pair. In supplying values, a number must be wrapped
up as an NSNumber (Swift will take care of this for you), and there are a few sup‐
porting classes such as CIVector (like CGPoint and CGRect combined) and CI‐
Color, whose use is easy to grasp.

Among a CIFilter’s keys are the input image or images on which the filter is to operate;
such an image must be a CIImage. You can obtain this CIImage from a CGImage with
init(CGImage:) or from a UIImage with init(image:).

Do not attempt, as a shortcut, to obtain a CIImage directly from a UIImage by
calling the UIImage instance method CIImage. This method does not transform a
UIImage into a CIImage! It merely points to the CIImage that already backs the
UIImage, and your images are not backed by a CIImage, but rather by a CGImage.
I’ll explain where a CIImage-backed UIImage comes from in just a moment.

Alternatively, you can obtain a CIImage as the output of a filter — which means that
filters can be chained together.

There are three ways to describe and use a filter:

• Create the filter with CIFilter’s init(name:). Now append the keys and values by
calling setValue:forKey: repeatedly. Obtain the output CIImage as the filter’s
outputImage.

86 | Chapter 2: Drawing

• Create the filter and supply the keys and values in a single move, by calling CIFilter’s
init(name:withInputParameters:). Obtain the output CIImage as the filter’s
outputImage.

• New in iOS 8, if a CIFilter requires an input image and you already have a CIImage
to fulfill this role, specify the filter and supply the keys and values (as a dictionary),
and receive the output CIImage as a result, all in a single move, by calling the CI‐
Image instance method imageByApplyingFilter:withInputParameters:.

As you build a chain of filters, nothing actually happens. The only calculation-intensive
move comes at the very end, when you transform the final CIImage in the chain into a
bitmap drawing. There are two ways to do this:

• Create a CIContext (by calling init(options:)) and then call create-

CGImage:fromRect:, handing it the final CIImage as the first argument. The only
mildly tricky thing here is that a CIImage doesn’t have a frame or bounds; it has an
extent. You will often use this as the second argument to createCGImage:from-
Rect:. The final output CGImage is ready for any purpose, such as for display in
your app, for transformation into a UIImage, or for use in further drawing.

• Create a UIImage directly from the final CIImage by calling init(CIImage:) or
init(CIImage:scale:orientation:). You must then draw the UIImage into some
graphics context. That last step is essential; the CIImage is not transformed into a
bitmap until you do it. Thus, a UIImage generated from imageWithCIImage: is not
suitable for display directly in a UIImageView. It is useful for drawing, not for
display.

Okay, I lied. There’s a third way to render visibly the CIImage that comes out of a
CIFilter: you can call a CIContext’s drawImage:inRect:fromRect: to draw into an
GLKView. This book doesn’t talk about GLKView — it involves GLKit and Open‐
GLES, which are outside its purview.

To illustrate, I’ll start with an ordinary photo of myself (it’s true I’m wearing a motorcycle
helmet, but it’s still ordinary) and create a circular vignette effect (Figure 2-15). We
derive from the image of me (moi) a CIImage (moici). We use a CIFilter (grad) to form
a radial gradient between the default colors of white and black. Then we use a second
CIFilter that treats the radial gradient as a mask for blending between the photo of me
and a default clear background: where the radial gradient is white (everything inside
the gradient’s inner radius) we see just me, and where the radial gradient is black (ev‐
erything outside the gradient’s outer radius) we see just the clear color, with a gradation
in between, so that the image fades away in the circular band between the gradient’s
radii:

CIFilter and CIImage | 87

Figure 2-15. A photo of me, vignetted

let moi = UIImage(named:"Moi")!
let moici = CIImage(image:moi)
let moiextent = moici.extent()
let center = CIVector(x: moiextent.width/2.0, y: moiextent.height/2.0)
let smallerDimension = min(moiextent.width, moiextent.height)
let largerDimension = max(moiextent.width, moiextent.height)
// first filter, old way: form filter, set values, get output
let grad = CIFilter(name: "CIRadialGradient")
grad.setValue(center, forKey:"inputCenter")
grad.setValue(smallerDimension/2.0 * 0.85, forKey:"inputRadius0")
grad.setValue(largerDimension/2.0, forKey:"inputRadius1")
let gradimage = grad.outputImage
// second filter, new iOS 8 way: turn one CIImage into another
let blendimage = moici.imageByApplyingFilter(
 "CIBlendWithMask", withInputParameters: [
 "inputMaskImage":gradimage
])

We now have the final CIImage in the chain (blendimage); remember, the processor
has not yet performed any drawing. Now, however, we want to generate the final bitmap
and display it. Let’s say we’re going to display it as the image of a UIImageView. We can
create a CGImage by passing the CIImage through a CIContext:

let moicg = CIContext(options: nil)
 .createCGImage(blendimage, fromRect: moiextent)
self.iv.image = UIImage(CGImage: moicg)

Alternatively, we could capture our final CIImage as a UIImage directly — but then we
must draw with it in order to generate the bitmap output of the filter chain. For example,
we could draw it into an image context:

UIGraphicsBeginImageContextWithOptions(moiextent.size, false, 0)
UIImage(CIImage: blendimage)!.drawInRect(moiextent)
let im = UIGraphicsGetImageFromCurrentImageContext()
UIGraphicsEndImageContext()
self.iv.image = im

88 | Chapter 2: Drawing

A filter chain can be encapsulated into a single custom filter by subclassing CIFilter.
Your subclass just needs to override the outputImage property (and possibly other
methods such as setDefaults), with additional properties to make it key–value coding
compliant for any input keys. Here’s our vignette filter as a simple CIFilter subclass,
where the input keys are the input image and a percentage that adjusts the gradient’s
smaller radius:

class MyVignetteFilter : CIFilter {
 var inputImage : CIImage!
 var inputPercentage = NSNumber(double:1.0)
 override var outputImage : CIImage! {
 get {
 return self.makeOutputImage()
 }
 }
 private func makeOutputImage () -> CIImage {
 let moiextent = self.inputImage.extent()
 let grad = CIFilter(name: "CIRadialGradient")
 let center = CIVector(x: moiextent.width/2.0, y: moiextent.height/2.0)
 let smallerDimension = min(moiextent.width, moiextent.height)
 let largerDimension = max(moiextent.width, moiextent.height)
 grad.setValue(center, forKey:"inputCenter")
 grad.setValue(
 smallerDimension/2.0 * CGFloat(self.inputPercentage.doubleValue),
 forKey:"inputRadius0")
 grad.setValue(largerDimension/2.0, forKey:"inputRadius1")
 let gradimage = grad.outputImage
 let blend = CIFilter(name: "CIBlendWithMask")
 blend.setValue(self.inputImage, forKey: "inputImage")
 blend.setValue(gradimage, forKey: "inputMaskImage")
 return blend.outputImage
 }
}

And here’s how to use our CIFilter subclass and display its output:

let vig = MyVignetteFilter()
let moici = CIImage(image: UIImage(named:"Moi"))
vig.setValue(moici, forKey: "inputImage")
vig.setValue(NSNumber(double:0.7), forKey: "inputPercentage")
let outim = vig.outputImage
let outimcg = CIContext(options: nil).createCGImage(
 outim, fromRect: outim.extent())
self.iv.image = UIImage(CGImage: outimcg)

New in iOS 8, you can create your own CIFilter from scratch — not by combining
existing filters, but by coding the actual mathematics of the filter. The details are outside
the scope of this book; you’ll want to look at the CIKernel class.

CIFilter and CIImage | 89

Blur and Vibrancy Views
iOS 7 introduced a convention where certain views, such as navigation bars and the
control center, are translucent and display a blurred rendition of what’s behind them.
Apple encouraged developers to imitate this convention, as a way of subliminally sug‐
gesting that the current view is temporary and secondary, but neglected to supply any
standard way of doing so; there was no access to whatever trickery Apple itself was using
to perform this blurring rapidly and efficiently. Typically, your code would snapshot the
view to be covered, as I described earlier in this chapter, and then blur it; but how?
There’s a blurring CIFilter, but it’s much too slow. A better approach was to add the
UIImageEffects class from Apple’s Blurring and Tinting an Image sample code, but then
why hadn’t Apple made this class part of iOS itself? In addition, Apple’s blurred views
can show views moving behind them, but a snapshot, obviously, is frozen and can’t do
that.

iOS 8 corrects this omission by introducing the UIVisualEffectView class. To use a
UIVisualEffectView, create it with init(effect:); the effect: argument will be an
instance of a UIVisualEffect subclass, either a UIBlurEffect or a UIVibrancyEffect. You
can place other views in front of the UIVisualEffectView, but don’t give it any direct
subviews; subviews must go inside its contentView. To tint what’s seen through the
UIVisualEffectView, set the backgroundColor of its contentView.
UIBlurEffect

To initialize a UIBlurEffect, call init(style:); the styles (UIBlurEffectStyle)
are .Dark, .Light, and .ExtraLight. (.ExtraLight is suitable particularly for
pieces of interface that function like a navigation bar or toolbar.) Here’s a complete
example from my own code (this is, in fact, the background view that appears on
the right side of Figure 2-14):

let fuzzy = UIVisualEffectView(effect:(UIBlurEffect(style:.Light)))

UIVibrancyEffect
To initialize a UIVibrancyEffect, call init(forBlurEffect:). Vibrancy tints a view
so as to make it harmonize with the blurred colors underneath it. The intention
here is that the vibrancy effect view should sit in front of a blur effect view, typically
in its contentView, adding vibrancy to a single UIView that’s inside its own content-
View; you tell the vibrancy effect what the underlying blur effect is, so that they
harmonize. You can fetch a visual effect view’s blur effect as its effect property,
but that’s a UIVisualEffect — the superclass — so you’ll have to cast to a UIBlurEffect
in order to hand it to init(forBlurEffect:).

Here’s an example of a blur effect view covering the interface, blurring what’s behind it,
and containing a UILabel wrapped in a vibrancy effect view (Figure 2-16):

90 | Chapter 2: Drawing

Figure 2-16. A blurred background and a vibrant label

let blur = UIVisualEffectView(effect: UIBlurEffect(style: .Light))
blur.frame = mainview.bounds
blur.autoresizingMask = .FlexibleWidth | .FlexibleHeight
let vib = UIVisualEffectView(effect: UIVibrancyEffect(
 forBlurEffect: blur.effect as UIBlurEffect))
let lab = UILabel()
lab.text = "Hello, world!"
lab.sizeToFit()
vib.frame = lab.frame
vib.contentView.addSubview(lab)
vib.center = CGPointMake(blur.bounds.midX, blur.bounds.midY)
vib.autoresizingMask = .FlexibleTopMargin | .FlexibleBottomMargin |
 .FlexibleLeftMargin | .FlexibleRightMargin
blur.contentView.addSubview(vib)
mainview.addSubview(blur)

Apple seems to think that vibrancy makes a view more legible in conjunction with the
underlying blur, but I’m not persuaded. The vibrant view’s color is made to harmonize
with the blurred color behind it, but harmony implies similarity, which can make the
vibrant view less legible. You’ll have to experiment. With the particular interface I’m
blurring, the vibrant label in Figure 2-16 looks okay with a .Dark or .ExtraLight blur
effect view, but is very hard to see with a .Light blur effect view.

There are a lot of useful additional notes, well worth consulting, in the UIVisualEffect‐
View.h header. Observe that both a blur effect view and a blur effect with an embedded
vibrancy view are available as built-in objects in the nib editor.

Blur and Vibrancy Views | 91

Drawing a UIView
The examples of drawing so far in this chapter have mostly produced UIImage objects,
chiefly by calling UIGraphicsBeginImageContextWithOptions to obtain a graphics
context, suitable for display by a UIImageView or any other interface object that knows
how to display an image. But, as I’ve already explained, a UIView provides a graphics
context; whatever you draw into that graphics context will appear in that view. The
technique here is to subclass UIView and implement the subclass’s drawRect: method.
At the time that drawRect: is called, the current graphics context has already been set
to the view’s own graphics context. You can use Core Graphics functions or UIKit con‐
venience methods to draw into that context.

So, for example, let’s say we have a UIView subclass called MyView. You would then
instantiate this class and get the instance into the view hierarchy. One way to do this
would be to drag a UIView into a view in the nib editor and set its class to MyView in
the Identity inspector; another would be to create the MyView instance and put it into
the interface in code. The result is that, from time to time, MyView’s drawRect: will be
called. This is your subclass, so you get to write the code that runs at that moment.
Whatever you draw will appear inside the MyView instance. There will usually be no
need to call super, since UIView’s own implementation of drawRect: does nothing.

You should never call drawRect: yourself! If a view needs updating and you want
its drawRect: called, send the view the setNeedsDisplay message. This will cause
drawRect: to be called at the next proper moment. Also, don’t override drawRect:
unless you are assured that this is legal. For example, it is not legal to override draw-
Rect: in a subclass of UIImageView; you cannot combine your drawing with that
of the UIImageView.

The need to draw in real time, on demand, surprises some beginners, who worry that
drawing may be a time-consuming operation. This can indeed be a reasonable consid‐
eration, and where the same drawing will be used in many places in your interface, it
may well make sense to draw a UIImage instead, once, and then reuse that UIImage. In
general, however, you should not optimize prematurely. The code for a drawing oper‐
ation may appear verbose and yet be extremely fast. Moreover, the iOS drawing system
is efficient; it doesn’t call drawRect: unless it has to (or is told to, through a call to set-
NeedsDisplay), and once a view has drawn itself, the result is cached so that the cached
drawing can be reused instead of repeating the drawing operation from scratch. (Apple
refers to this cached drawing as the view’s bitmap backing store.) You can readily satisfy
yourself of this fact with some caveman debugging, logging in your drawRect: imple‐
mentation; you may be amazed to discover that your custom UIView’s drawRect: code
is called only once in the entire lifetime of the app! In fact, moving code to drawRect:
is commonly a way to increase efficiency. This is because it is more efficient for the

92 | Chapter 2: Drawing

drawing engine to render directly onto the screen than for it to render offscreen and
then copy those pixels onto the screen.

Where drawing is extensive and can be compartmentalized into sections, you may be
able to gain some additional efficiency by paying attention to the rect parameter passed
into drawRect:. It designates the region of the view’s bounds that needs refreshing.
Normally, this is the view’s entire bounds; but if you call setNeedsDisplayInRect:, it
will be the CGRect that you passed in as argument. You could respond by drawing only
what goes into those bounds; but even if you don’t, your drawing will be clipped to those
bounds, so, while you may not spend less time drawing, the system will draw more
efficiently.

When creating a custom UIView subclass instance in code, you may be surprised and
annoyed to find that the view has a black background:

let mv = MyView(frame:CGRectMake(20,20,150,100))
self.view.addSubview(mv)

This can be frustrating if what you expected and wanted was a transparent background,
and it’s a source of considerable confusion among beginners. The black background
arises when two things are true:

• The view’s backgroundColor is nil.
• The view’s opaque is true.

Unfortunately, when creating a UIView in code, both those things are true by default!
So if you don’t want the black background, you must do something about one or the
other of them (or both). If a view isn’t going to be opaque, its opaque should be set to
false anyway, so that’s probably the cleanest solution:

let mv = MyView(frame:CGRectMake(20,20,150,100))
self.view.addSubview(mv)
mv.opaque = false

Alternatively, this being your own UIView subclass, you could implement its
init(frame:) (the designated initializer) to have the view set its own opaque to
false:

override init(frame: CGRect) {
 super.init(frame:frame)
 self.opaque = false
}

With a UIView created in the nib, on the other hand, the black background problem
doesn’t arise. This is because such a UIView’s backgroundColor is not nil. The nib assigns
it some actual background color, even if that color is UIColor.clearColor().

Drawing a UIView | 93

Of course, if a view fills its rectangle with opaque drawing or has an opaque background
color, you can leave opaque set to true and gain some drawing efficiency (see Chapter 1).

Graphics Context Settings
As you draw in a graphics context, the drawing obeys the context’s current settings.
Thus, the procedure is always to configure the context’s settings first, and then draw.
For example, to draw a red line followed by a blue line, you would first set the context’s
line color to red, and then draw the first line; then you’d set the context’s line color to
blue, and then draw the second line. To the eye, it appears that the redness and blueness
are properties of the individual lines, but in fact, at the time you draw each line, line
color is a feature of the entire graphics context. This is true regardless of whether you
use UIKit methods or Core Graphics functions.

A graphics context thus has, at every moment, a state, which is the sum total of all its
settings; the way a piece of drawing looks is the result of what the graphics context’s state
was at the moment that piece of drawing was performed. To help you manipulate entire
states, the graphics context provides a stack for holding states. Every time you call
CGContextSaveGState, the context pushes the entire current state onto the stack; every
time you call CGContextRestoreGState, the context retrieves the state from the top of
the stack (the state that was most recently pushed) and sets itself to that state.

Thus, a common pattern is: call CGContextSaveGState; manipulate the context’s set‐
tings, thus changing its state; draw; call CGContextRestoreGState to restore the state
and the settings to what they were before you manipulated them. You do not have to do
this before every manipulation of a context’s settings, however, because settings don’t
necessarily conflict with one another or with past settings. You can set the context’s line
color to red and then later to blue without any difficulty. But in certain situations you
do want your manipulation of settings to be undoable, and I’ll point out several such
situations later in this chapter.

Many of the settings that constitute a graphics context’s state, and that determine the
behavior and appearance of drawing performed at that moment, are similar to those of
any drawing application. Here are some of them, along with some of the commands
that determine them. I list Core Graphics functions, followed by some UIKit conve‐
nience methods that call them:
Line thickness and dash style

CGContextSetLineWidth, CGContextSetLineDash (and UIBezierPath lineWidth,
setLineDash:count:phase:)

Line end-cap style and join style
CGContextSetLineCap, CGContextSetLineJoin, CGContextSetMiterLimit (and
UIBezierPath lineCapStyle, lineJoinStyle, miterLimit)

94 | Chapter 2: Drawing

Line color or pattern
CGContextSetRGBStrokeColor, CGContextSetGrayStrokeColor, CGContextSet-
StrokeColorWithColor, CGContextSetStrokePattern (and UIColor setStroke)

Fill color or pattern
CGContextSetRGBFillColor, CGContextSetGrayFillColor, CGContextSetFill-
ColorWithColor, CGContextSetFillPattern (and UIColor setFill)

Shadow
CGContextSetShadow, CGContextSetShadowWithColor

Overall transparency and compositing
CGContextSetAlpha, CGContextSetBlendMode

Anti-aliasing
CGContextSetShouldAntialias

Additional settings include:
Clipping area

Drawing outside the clipping area is not physically drawn.

Transform (or “CTM,” for “current transform matrix”)
Changes how points that you specify in subsequent drawing commands are mapped
onto the physical space of the canvas.

Many of these settings will be illustrated by examples later in this chapter.

Paths and Shapes
By issuing a series of instructions for moving an imaginary pen, you trace out a path.
The path is constructed by tracing it out from point to point. You must first tell the pen
where to position itself, setting the current point; after that, you issue a series of com‐
mands telling it how to trace out each subsequent piece of the path. Each additional
piece of the path starts at the current point; its end becomes the new current point.

Note that a path, in and of itself, does not constitute drawing! First you provide a path;
then you draw. Drawing can mean stroking the path or filling the path, or both. Again,
this should be a familiar notion from certain drawing applications.

Here are some path-drawing commands you’re likely to give:
Position the current point

CGContextMoveToPoint

Trace a line
CGContextAddLineToPoint, CGContextAddLines

Paths and Shapes | 95

Trace a rectangle
CGContextAddRect, CGContextAddRects

Trace an ellipse or circle
CGContextAddEllipseInRect

Trace an arc
CGContextAddArcToPoint, CGContextAddArc

Trace a Bezier curve with one or two control points
CGContextAddQuadCurveToPoint, CGContextAddCurveToPoint

Close the current path
CGContextClosePath. This appends a line from the last point of the path to the first
point. There’s no need to do this if you’re about to fill the path, since it’s done for
you.

Stroke or fill the current path
CGContextStrokePath, CGContextFillPath, CGContextEOFillPath, CGContext-
DrawPath. Stroking or filling the current path clears the path. Use CGContextDraw-
Path if you want both to fill and to stroke the path in a single command, because if
you merely stroke it first with CGContextStrokePath, the path is cleared and you
can no longer fill it. There are also a lot of convenience functions that create a path
and stroke or fill it all in a single move:

• CGContextStrokeLineSegments

• CGContextStrokeRect

• CGContextStrokeRectWithWidth

• CGContextFillRect

• CGContextFillRects

• CGContextStrokeEllipseInRect

• CGContextFillEllipseInRect

A path can be compound, meaning that it consists of multiple independent pieces. For
example, a single path might consist of two separate closed shapes: a rectangle and a
circle. When you call CGContextMoveToPoint in the middle of constructing a path (that
is, after tracing out a path and without clearing it by filling, stroking, or calling
CGContextBeginPath), you pick up the imaginary pen and move it to a new location
without tracing a segment, thus preparing to start an independent piece of the same
path. If you’re worried, as you begin to trace out a path, that there might be an existing
path and that your new path might be seen as a compound part of that existing path,

96 | Chapter 2: Drawing

Figure 2-17. A simple path drawing

you can call CGContextBeginPath to specify that this is a different path; many of Apple’s
examples do this, but in practice I usually do not find it necessary.

To illustrate the typical use of path-drawing commands, I’ll generate the up-pointing
arrow shown in Figure 2-17. This might not be the best way to create the arrow, and I’m
deliberately avoiding use of the convenience functions, but it’s clear and shows a nice
basic variety of typical commands:

// obtain the current graphics context
let con = UIGraphicsGetCurrentContext()
// draw a black (by default) vertical line, the shaft of the arrow
CGContextMoveToPoint(con, 100, 100)
CGContextAddLineToPoint(con, 100, 19)
CGContextSetLineWidth(con, 20)
CGContextStrokePath(con)
// draw a red triangle, the point of the arrow
CGContextSetFillColorWithColor(con, UIColor.redColor().CGColor)
CGContextMoveToPoint(con, 80, 25)
CGContextAddLineToPoint(con, 100, 0)
CGContextAddLineToPoint(con, 120, 25)
CGContextFillPath(con)
// snip a triangle out of the shaft by drawing in Clear blend mode
CGContextMoveToPoint(con, 90, 101)
CGContextAddLineToPoint(con, 100, 90)
CGContextAddLineToPoint(con, 110, 101)
CGContextSetBlendMode(con, kCGBlendModeClear)
CGContextFillPath(con)

If a path needs to be reused or shared, you can encapsulate it as a CGPath. You can copy
the graphics context’s current path using CGContextCopyPath. Even without a graphics
context, you can create a new CGMutablePath and construct the path using various
CGPath functions that parallel the CGContext path-construction functions. Also, there
are a number of CGPath functions for creating a path based on simple geometry or
based on an existing path:

• CGPathCreateWithRect

• CGPathCreateWithEllipseInRect

Paths and Shapes | 97

• CGPathCreateCopyByStrokingPath

• CGPathCreateCopyByDashingPath

• CGPathCreateCopyByTransformingPath

The UIKit class UIBezierPath wraps CGPath (in its CGPath property); it, too, provides
methods parallel to the CGContext path-construction functions, such as:

• init(rect:)

• init(ovalInRect:)

• moveToPoint:

• addLineToPoint:

• addArcWithCenter:radius:startAngle:endAngle:clockwise:

• addQuadCurveToPoint:controlPoint:

• addCurveToPoint:controlPoint1:controlPoint2:

• closePath

Also, UIBezierPath offers one extremely useful convenience constructor, init(rounded-
Rect:cornerRadius:) — drawing a rectangle with rounded corners using only Core
Graphics functions is rather tedious.

When you call the UIBezierPath instance method fill or stroke (or fillWithBlend-
Mode:alpha: or strokeWithBlendMode:alpha:), the current graphics context is saved,
the wrapped CGPath is made the current graphics context’s path and stroked or filled,
and the current graphics context is restored.

Thus, using UIBezierPath together with UIColor, we could rewrite our arrow-drawing
routine entirely with UIKit methods:

let p = UIBezierPath()
// shaft
p.moveToPoint(CGPointMake(100,100))
p.addLineToPoint(CGPointMake(100, 19))
p.lineWidth = 20
p.stroke()
// point
UIColor.redColor().set()
p.removeAllPoints()
p.moveToPoint(CGPointMake(80,25))
p.addLineToPoint(CGPointMake(100, 0))
p.addLineToPoint(CGPointMake(120, 25))
p.fill()
// snip
p.removeAllPoints()

98 | Chapter 2: Drawing

p.moveToPoint(CGPointMake(90,101))
p.addLineToPoint(CGPointMake(100, 90))
p.addLineToPoint(CGPointMake(110, 101))
p.fillWithBlendMode(kCGBlendModeClear, alpha:1.0)

There’s no savings of code here over calling Core Graphics functions, so your choice of
Core Graphics or UIKit is a matter of taste. UIBezierPath is particularly useful when
you want to capture a CGPath and pass it around as an object; an example appears in
Chapter 21. See also the discussion in Chapter 3 of CAShapeLayer, which takes a CGPath
that you’ve constructed and draws it for you within its own bounds on the screen.

Clipping
Another use of a path is to mask out areas, protecting them from future drawing. This
is called clipping. By default, a graphics context’s clipping region is the entire graphics
context: you can draw anywhere within the context.

The clipping area is a feature of the context as a whole, and any new clipping area is
applied by intersecting it with the existing clipping area; so if you apply your own clip‐
ping region, the way to remove it from the graphics context later is to plan ahead and
wrap things with calls to CGContextSaveGState and CGContextRestoreGState.

To illustrate, I’ll rewrite the code that generated our original arrow (Figure 2-17) to use
clipping instead of a blend mode to “punch out” the triangular notch in the tail of the
arrow. This is a little tricky, because what we want to clip to is not the region inside the
triangle but the region outside it. To express this, we’ll use a compound path consisting
of more than one closed area — the triangle, and the drawing area as a whole (which
we can obtain with CGContextGetClipBoundingBox).

Both when filling a compound path and when using it to express a clipping region, the
system follows one of two rules:
Winding rule

The fill or clipping area is denoted by an alternation in the direction (clockwise or
counterclockwise) of the path demarcating each region.

Even-odd rule (EO)
The fill or clipping area is denoted by a simple count of the paths demarcating each
region.

Our situation is extremely simple, so it’s easier to use the even-odd rule. So we set up
the clipping area using CGContextEOClip and then draw the arrow:

// obtain the current graphics context
let con = UIGraphicsGetCurrentContext()
// punch triangular hole in context clipping region
CGContextMoveToPoint(con, 90, 100)
CGContextAddLineToPoint(con, 100, 90)

Clipping | 99

How Big Is My Context?
At first blush, it appears that there’s no way to learn a graphics context’s size. Typically,
this doesn’t matter, because either you created the graphics context or it’s the graphics
context of some object whose size you know, such as a UIView. But in fact, because the
default clipping region of a graphics context is the entire context, you can use CGContext-
GetClipBoundingBox to learn the context’s “bounds” (before changing the clipping re‐
gion, of course).

CGContextAddLineToPoint(con, 110, 100)
CGContextClosePath(con)
CGContextAddRect(con, CGContextGetClipBoundingBox(con))
CGContextEOClip(con)
// draw the vertical line
CGContextMoveToPoint(con, 100, 100)
CGContextAddLineToPoint(con, 100, 19)
CGContextSetLineWidth(con, 20)
CGContextStrokePath(con)
// draw the red triangle, the point of the arrow
CGContextSetFillColorWithColor(con, UIColor.redColor().CGColor)
CGContextMoveToPoint(con, 80, 25)
CGContextAddLineToPoint(con, 100, 0)
CGContextAddLineToPoint(con, 120, 25)
CGContextFillPath(con)

The UIBezierPath clipping commands are usesEvenOddFillRule and addClip.

Gradients
Gradients can range from the simple to the complex. A simple gradient (which is all I’ll
describe here) is determined by a color at one endpoint along with a color at the other
endpoint, plus (optionally) colors at intermediate points; the gradient is then painted
either linearly between two points in the context or radially between two circles in the
context.

You can’t use a gradient as a path’s fill color, but you can restrict a gradient to a path’s
shape by clipping, which amounts to the same thing.

To illustrate, I’ll redraw our arrow, using a linear gradient as the “shaft” of the arrow
(Figure 2-18):

// obtain the current graphics context
let con = UIGraphicsGetCurrentContext()
CGContextSaveGState(con)
// punch triangular hole in context clipping region
CGContextMoveToPoint(con, 90, 100)
CGContextAddLineToPoint(con, 100, 90)

100 | Chapter 2: Drawing

Figure 2-18. Drawing with a gradient

CGContextAddLineToPoint(con, 110, 100)
CGContextClosePath(con)
CGContextAddRect(con, CGContextGetClipBoundingBox(con))
CGContextEOClip(con)
// draw the vertical line, add its shape to the clipping region
CGContextMoveToPoint(con, 100, 100)
CGContextAddLineToPoint(con, 100, 19)
CGContextSetLineWidth(con, 20)
CGContextReplacePathWithStrokedPath(con)
CGContextClip(con)
// draw the gradient
let locs : [CGFloat] = [0.0, 0.5, 1.0]
let colors : [CGFloat] = [
 0.3,0.3,0.3,0.8, // starting color, transparent gray
 0.0,0.0,0.0,1.0, // intermediate color, black
 0.3,0.3,0.3,0.8 // ending color, transparent gray
]
let sp = CGColorSpaceCreateDeviceGray()
let grad =
 CGGradientCreateWithColorComponents (sp, colors, locs, 3)
CGContextDrawLinearGradient (
 con, grad, CGPointMake(89,0), CGPointMake(111,0), 0)
// done clipping
CGContextRestoreGState(con)
// draw the red triangle, the point of the arrow
CGContextSetFillColorWithColor(con, UIColor.redColor().CGColor)
CGContextMoveToPoint(con, 80, 25)
CGContextAddLineToPoint(con, 100, 0)
CGContextAddLineToPoint(con, 120, 25)
CGContextFillPath(con)

The call to CGContextReplacePathWithStrokedPath pretends to stroke the current
path, using the current line width and other line-related context state settings, but then
creates a new path representing the outside of that stroked path. Thus, instead of a thick
line we have a rectangular region that we can use as the clip region.

We then create the gradient and paint it. The procedure is verbose but simple; everything
is boilerplate. We describe the gradient as an array of locations on the continuum be‐
tween one endpoint (0.0) and the other endpoint (1.0), along with the RGB compo‐
nents of the colors corresponding to each location; in this case, I want the gradient to

Gradients | 101

Figure 2-19. A patterned fill

be lighter at the edges and darker in the middle, so I use three locations, with the dark
one at 0.5. We must also supply a color space in order to create the gradient. Finally,
we create the gradient and paint it into place.

There are also gradient CIFilters, as I demonstrated earlier in this chapter; for yet an‐
other way to create a simple gradient, see the discussion of CAGradientLayer in the next
chapter.

Colors and Patterns
A color is a CGColor. CGColor is not difficult to work with, and can be converted to
and from a UIColor through UIColor’s init(CGColor:) and CGColor methods.

A pattern is also a kind of color. You can create a pattern color and stroke or fill with it.
The simplest way is to draw a minimal tile of the pattern into a UIImage and create the
color by calling UIColor’s init(patternImage:). To illustrate, I’ll create a pattern of
horizontal stripes and use it to paint the point of the arrow instead of a solid red color
(Figure 2-19):

// CGContextSetFillColorWithColor(con, UIColor.redColor().CGColor)
// not any more, we're going to paint with a pattern instead of red!
// create the pattern image tile
UIGraphicsBeginImageContextWithOptions(CGSizeMake(4,4), false, 0)
let imcon = UIGraphicsGetCurrentContext()
CGContextSetFillColorWithColor(imcon, UIColor.redColor().CGColor)
CGContextFillRect(imcon, CGRectMake(0,0,4,4))
CGContextSetFillColorWithColor(imcon, UIColor.blueColor().CGColor)
CGContextFillRect(imcon, CGRectMake(0,0,4,2))
let stripes = UIGraphicsGetImageFromCurrentImageContext()
UIGraphicsEndImageContext()
// paint the point of the arrow with it
let stripesPattern = UIColor(patternImage:stripes)
stripesPattern.setFill()
let p = UIBezierPath()
p.moveToPoint(CGPointMake(80,25))
p.addLineToPoint(CGPointMake(100,0))
p.addLineToPoint(CGPointMake(120,25))
p.fill()

102 | Chapter 2: Drawing

The Core Graphics equivalent, CGPattern, is considerably more powerful, but also
much more elaborate. As of this writing, it can’t be constructed in pure Swift, because
the C API expects you to form a C function and pass a pointer to it, neither of which
can be done in Swift. So the heart of the code, the formation of the CGPattern itself,
must be done in C. I’ll use a utility class, PatternHelper, written in Objective-C:

void drawStripes (void *info, CGContextRef con) {
 // assume 4 x 4 cell
 CGContextSetFillColorWithColor(con, [[UIColor redColor] CGColor]);
 CGContextFillRect(con, CGRectMake(0,0,4,4));
 CGContextSetFillColorWithColor(con, [[UIColor blueColor] CGColor]);
 CGContextFillRect(con, CGRectMake(0,0,4,2));
}
- (CGPatternRef) patternMaker {
 CGPatternCallbacks callback = {
 0, drawStripes, nil
 };
 CGAffineTransform tr = CGAffineTransformIdentity;
 CGPatternRef patt = CGPatternCreate(nil,
 CGRectMake(0,0,4,4),
 tr,
 4, 4,
 kCGPatternTilingConstantSpacingMinimalDistortion,
 true,
 &callback);
 return patt;
}

Everything in the above code revolves around the call to CGPatternCreate. A pattern
is a drawing in a rectangular “cell”; we have to state both the size of the cell (the second
argument) and the spacing between origin points of cells (the fourth and fifth argu‐
ments). In this case, the cell is 4×4, and every cell exactly touches its neighbors both
horizontally and vertically. We have to supply a transform to be applied to the cell (the
third argument); in this case, we’re not doing anything with this transform, so we supply
the identity transform. We supply a tiling rule (the sixth argument). We have to state
whether this is a color pattern or a stencil pattern; it’s a color pattern, so the seventh
argument is true. And we have to supply a pointer to a callback function that actually
draws the pattern into its cell (the eighth argument).

Except that that’s not what we have to supply as the eighth argument. To make matters
more complicated, what we actually have to supply here is a pointer to a CGPattern‐
Callbacks struct. This struct consists of the number 0 and pointers to two functions, one
called to draw the pattern into its cell, the other called when the pattern is released. We’re
not specifying the second function, however; it is for memory management, and we
don’t need it in this simple example.

As you can see, the actual pattern-drawing code (drawStripes) is very simple. The only
tricky issue is that the call to CGPatternCreate must be in agreement with the pattern-

Colors and Patterns | 103

drawing function as to the size of a cell, or the pattern won’t come out the way you
expect. We know in this case that the cell is 4×4. So we fill it with red, and then fill its
lower half with blue. When these cells are tiled touching each other horizontally and
vertically, we get the stripes that you see in Figure 2-19.

Now back to Swift. Here’s how to use PatternHelper’s patternMaker method to generate
the CGPattern and paint the point of the arrow with it:

// draw the red triangle, the point of the arrow
let sp2 = CGColorSpaceCreatePattern(nil)
CGContextSetFillColorSpace(con, sp2)
let patt = PatternHelper().patternMaker().takeRetainedValue()
var alph : CGFloat = 1.0
CGContextSetFillPattern(con, patt, &alph)
CGContextMoveToPoint(con, 80, 25)
CGContextAddLineToPoint(con, 100, 0)
CGContextAddLineToPoint(con, 120, 25)
CGContextFillPath(con)

The important thing here is the call to CGContextSetFillPattern; instead of setting a
fill color, we’re setting a fill pattern, to be used the next time we fill a path (in this case,
the triangular arrowhead). The third parameter to CGContextSetFillPattern is a
pointer to a CGFloat, so we have to set up the CGFloat itself beforehand. The second
parameter to CGContextSetFillPattern is a CGPattern — the CGPattern that our
Objective-C code generates for us.

The only thing left to explain is the first two lines of that code. It turns out that before
you can call CGContextSetFillPattern with a colored pattern, you have to set the
context’s fill color space to a pattern color space. If you neglect to do this, you’ll get an
error when you call CGContextSetFillPattern. This means that the code as presented
has left the graphics context in an undesirable state, with its fill color space set to a
pattern color space. This would cause trouble if we were later to try to set the fill color
to a normal color. The solution, as usual, is to wrap the code in calls to CGContextSave-
GState and CGContextRestoreGState.

You may have observed in Figure 2-19 that the stripes do not fit neatly inside the triangle
of the arrowhead: the bottommost stripe is something like half a blue stripe. This is
because a pattern is positioned not with respect to the shape you are filling (or stroking),
but with respect to the graphics context as a whole. We could shift the pattern position
by calling CGContextSetPatternPhase before drawing.

Graphics Context Transforms
Just as a UIView can have a transform, so can a graphics context. However, applying a
transform to a graphics context has no effect on the drawing that’s already in it; it affects
only the drawing that takes place after it is applied, altering the way the coordinates you

104 | Chapter 2: Drawing

provide are mapped onto the graphics context’s area. A graphics context’s transform is
called its CTM, for “current transform matrix.”

It is quite usual to take full advantage of a graphics context’s CTM to save yourself from
performing even simple calculations. You can multiply the current transform by any
CGAffineTransform using CGContextConcatCTM; there are also convenience functions
for applying a translate, scale, or rotate transform to the current transform.

The base transform for a graphics context is already set for you when you obtain the
context; this is how the system is able to map context drawing coordinates onto screen
coordinates. Whatever transforms you apply are applied to the current transform, so
the base transform remains in effect and drawing continues to work. You can return to
the base transform after applying your own transforms by wrapping your code in calls
to CGContextSaveGState and CGContextRestoreGState.

For example, we have hitherto been drawing our upward-pointing arrow with code that
knows how to place that arrow at only one location: the top left of its rectangle is hard-
coded at (80,0). This is silly. It makes the code hard to understand, as well as inflexible
and difficult to reuse. Surely the sensible thing would be to draw the arrow at (0,0), by
subtracting 80 from all the x-values in our existing code. Now it is easy to draw the
arrow at any position, simply by applying a translate transform beforehand, mapping
(0,0) to the desired top-left corner of the arrow. So, to draw it at (80,0), we would say:

CGContextTranslateCTM(con, 80, 0)
// now draw the arrow at (0,0)

A rotate transform is particularly useful, allowing you to draw in a rotated orientation
without any nasty trigonometry. However, it’s a bit tricky because the point around
which the rotation takes place is the origin. This is rarely what you want, so you have
to apply a translate transform first, to map the origin to the point around which you
really want to rotate. But then, after rotating, in order to figure out where to draw you
will probably have to reverse your translate transform.

To illustrate, here’s code to draw our arrow repeatedly at several angles, pivoting around
the end of its tail (Figure 2-20). Since the arrow will be drawn multiple times, I’ll start
by encapsulating the drawing of the arrow as a UIImage. This is not merely to reduce
repetition and make drawing more efficient; it’s also because we want the entire arrow
to pivot, including the pattern stripes, and this is the simplest way to achieve that:

func arrowImage () -> UIImage {
 UIGraphicsBeginImageContextWithOptions(CGSizeMake(40,100), false, 0.0)
 // obtain the current graphics context
 let con = UIGraphicsGetCurrentContext()
 // draw the arrow into the image context
 // draw it at (0,0)! adjust all x-values by subtracting 80
 // ... actual code omitted ...

Graphics Context Transforms | 105

Figure 2-20. Drawing rotated with a CTM

 let im = UIGraphicsGetImageFromCurrentImageContext()
 UIGraphicsEndImageContext()
 return im
}

We produce the arrow image once and store it somewhere — I’ll use a property accessed
as self.arrow. In our drawRect: implementation, we draw the arrow image multiple
times:

override func drawRect(rect: CGRect) {
 let con = UIGraphicsGetCurrentContext()
 self.arrow.drawAtPoint(CGPointMake(0,0))
 for _ in 0..<3 {
 CGContextTranslateCTM(con, 20, 100)
 CGContextRotateCTM(con, 30 * CGFloat(M_PI)/180.0)
 CGContextTranslateCTM(con, -20, -100)
 self.arrow.drawAtPoint(CGPointMake(0,0))
 }
}

A transform is also one more solution for the “flip” problem we encountered earlier
with CGContextDrawImage. Instead of reversing the drawing, we can reverse the context
into which we draw it. Essentially, we apply a “flip” transform to the context’s coordinate
system. You move the context’s top downward, and then reverse the direction of the y-
coordinate by applying a scale transform whose y-multiplier is -1:

CGContextTranslateCTM(con, 0, theHeight)
CGContextScaleCTM(con, 1.0, -1.0)

How far down you move the context’s top (theHeight) depends on how you intend to
draw the image.

Shadows
To add a shadow to a drawing, give the context a shadow value before drawing. The
shadow position is expressed as a CGSize, where the positive direction for both values
indicates down and to the right. The blur value is an open-ended positive number; Apple

106 | Chapter 2: Drawing

Figure 2-21. Drawing with a shadow

doesn’t explain how the scale works, but experimentation shows that 12 is nice and
blurry, 99 is so blurry as to be shapeless, and higher values become problematic.

Figure 2-21 shows the result of the same code that generated Figure 2-20, except that
before we start drawing the arrow repeatedly, we give the context a shadow:

let con = UIGraphicsGetCurrentContext()
CGContextSetShadow(con, CGSizeMake(7, 7), 12)
[self.arrow drawAtPoint:CGPointMake(0,0)]; // ... and so on

It may not be evident from Figure 2-21, but we are adding a shadow each time we draw.
Thus the arrows are able to cast shadows on one another. Suppose, however, that we
want all the arrows to cast a single shadow collectively. The way to achieve this is with
a transparency layer; this is basically a subcontext that accumulates all drawing and then
adds the shadow. Our code for drawing the shadowed arrows now looks like this:

let con = UIGraphicsGetCurrentContext()
CGContextSetShadow(con, CGSizeMake(7, 7), 12)
CGContextBeginTransparencyLayer(con, nil)
self.arrow.drawAtPoint(CGPointMake(0,0))
for _ in 0..<3 {
 CGContextTranslateCTM(con, 20, 100)
 CGContextRotateCTM(con, 30 * CGFloat(M_PI)/180.0)
 CGContextTranslateCTM(con, -20, -100)
 self.arrow.drawAtPoint(CGPointMake(0,0))
}
CGContextEndTransparencyLayer(con)

Erasing
The function CGContextClearRect erases all existing drawing in a rectangle; combined
with clipping, it can erase an area of any shape. The result can “punch a hole” through
all existing drawing.

The behavior of CGContextClearRect depends on whether the context is transparent
or opaque. This is particularly obvious and intuitive when drawing into an image con‐
text. If the image context is transparent — the second argument to UIGraphicsBegin-

Erasing | 107

Figure 2-22. The very strange behavior of CGContextClearRect

ImageContextWithOptions is false — CGContextClearRect erases to transparent;
otherwise it erases to black.

When drawing directly into a view (as with drawRect: or drawLayer:inContext:), if
the view’s background color is nil or a color with even a tiny bit of transparency, the
result of CGContextClearRect will appear to be transparent, punching a hole right
through the view including its background color; if the background color is completely
opaque, the result of CGContextClearRect will be black. This is because the view’s
background color determines whether the view’s graphics context is transparent or
opaque; thus, this is essentially the same behavior that I described in the preceding
paragraph.

Figure 2-22 illustrates; the blue square on the left has been partly cut away to black,
while the blue square on the right has been partly cut away to transparency. Yet these
are instances of the same UIView subclass, drawn with exactly the same code! The
difference between the views is that the backgroundColor of the first view is solid red
with an alpha of 1, while the backgroundColor of the second view is solid red with an
alpha of 0.99. This difference is utterly imperceptible to the eye (not to mention that
the red color never appears, as it is covered with a blue fill), but it completely changes
the effect of CGContextClearRect. The UIView subclass’s drawRect: looks like this:

let con = UIGraphicsGetCurrentContext()
CGContextSetFillColorWithColor(con, UIColor.blueColor().CGColor)
CGContextFillRect(con, rect)
CGContextClearRect(con, CGRectMake(0,0,30,30))

Points and Pixels
A point is a dimensionless location described by an x-coordinate and a y-coordinate.
When you draw in a graphics context, you specify the points at which to draw, and this
works regardless of the device’s resolution, because Core Graphics maps your drawing
nicely onto the physical output using the base CTM and anti-aliasing. Therefore,
throughout this chapter I’ve concerned myself with graphics context points, disregard‐
ing their relationship to screen pixels.

108 | Chapter 2: Drawing

However, pixels do exist. A pixel is a physical, integral, dimensioned unit of display in
the real world. Whole-numbered points effectively lie between pixels, and this can mat‐
ter if you’re fussy, especially on a single-resolution device. For example, if a vertical path
with whole-number coordinates is stroked with a line width of 1, half the line falls on
each side of the path, and the drawn line on the screen of a single-resolution device will
seem to be 2 pixels wide (because the device can’t illuminate half a pixel).

You will sometimes encounter advice suggesting that if this effect is objectionable, you
should try shifting the line’s position by 0.5, to center it in its pixels. This advice may
appear to work, but it makes some simpleminded assumptions. A more sophisticated
approach is to obtain the UIView’s contentScaleFactor property. You can divide by
this value to convert from pixels to points. Consider also that the most accurate way to
draw a vertical or horizontal line is not to stroke a path but to fill a rectangle. So this
UIView subclass code will draw a perfect 1-pixel-wide vertical line on any device (con
is the current graphics context):

CGContextFillRect(con, CGRectMake(100,0,1.0/self.contentScaleFactor,100))

Content Mode
A view that draws something within itself, as opposed to merely having a background
color and subviews (as in the previous chapter), has content. This means that its content-
Mode property becomes important whenever the view is resized. As I mentioned earlier,
the drawing system will avoid asking a view to redraw itself from scratch if possible;
instead, it will use the cached result of the previous drawing operation (the bitmap
backing store). So, if the view is resized, the system may simply stretch or shrink or
reposition the cached drawing, if your contentMode setting instructs it to do so.

It’s a little tricky to illustrate this point when the view’s content is coming from draw-
Rect:, because I have to arrange for the view to obtain its content (from drawRect:)
and then cause it to be resized without also causing it to be redrawn (that is, without
drawRect: being called again). Here’s how I’ll do that. As the app starts up, I’ll create
an instance of a UIView subclass, MyView, that knows how to draw our arrow. Then I’ll
use delayed performance to resize the instance after the window has shown and the
interface has been initially displayed (for the delay utility function, see Appendix B):

delay(0.1) {
 mv.bounds.size.height *= 2 // mv is the MyView instance
}

We double the height of the view without causing drawRect: to be called. The result is
that the view’s drawing appears at double its correct height. For example, if our view’s
drawRect: code is the same as the code that generated Figure 2-18, we get Figure 2-23.

Content Mode | 109

Figure 2-23. Automatic stretching of content

Sooner or later, however, drawRect: will be called, and the drawing will be refreshed in
accordance with our code. Our code doesn’t say to draw the arrow at a height that is
relative to the height of the view’s bounds; it draws the arrow at a fixed height. Thus, the
arrow will snap back to its original size.

A view’s contentMode property should therefore usually be in agreement with how the
view draws itself. Our drawRect: code dictates the size and position of the arrow relative
to the view’s bounds origin, its top left; so we could set its contentMode to .TopLeft.
Alternatively, we could set it to .Redraw; this will cause automatic scaling of the cached
content to be turned off — instead, when the view is resized, its setNeedsDisplay
method will be called, ultimately triggering drawRect: to redraw the content.

110 | Chapter 2: Drawing

CHAPTER 3

Layers

The tale told in Chapters 1 and 2 of how a UIView works and how it draws itself is only
half the story. A UIView has a partner called its layer, a CALayer. A UIView does not
actually draw itself onto the screen; it draws itself into its layer, and it is the layer that is
portrayed on the screen. As I’ve already mentioned, a view is not redrawn frequently;
instead, its drawing is cached, and the cached version of the drawing (the bitmap backing
store) is used where possible. The cached version is, in fact, the layer. What I spoke of
in Chapter 2 as the view’s graphics context is actually the layer’s graphics context.

This might seem like a mere implementation detail, but layers are important and in‐
teresting. To understand layers is to understand views more deeply; layers extend the
power of views. In particular:
Layers have properties that affect drawing.

Layers have drawing-related properties beyond those of a UIView. Because a layer
is the recipient and presenter of a view’s drawing, you can modify how a view is
drawn on the screen by accessing the layer’s properties. In other words, by reaching
down to the level of its layer, you can make a view do things you can’t do through
UIView methods alone.

Layers can be combined within a single view.
A UIView’s partner layer can contain additional layers. Since the purpose of layers
is to draw, portraying visible material on the screen, this allows a UIView’s drawing
to be composited of multiple distinct pieces. This can make drawing easier, with
the constituents of a drawing being treated as objects.

Layers are the basis of animation.
Animation allows you to add clarity, emphasis, and just plain coolness to your
interface. Layers are made to be animated; the “CA” in “CALayer” stands for “Core
Animation.” Animation is the subject of Chapter 4.

111

Figure 3-1. A compass, composed of layers

For example, suppose we want to add a compass indicator to our app’s interface.
Figure 3-1 portrays a simple version of such a compass. It takes advantage of the arrow
that we figured out how to draw in Chapter 2; the arrow is drawn into a layer of its own.
The other parts of the compass are layers too: the circle is a layer, and each of the cardinal
point letters is a layer. The drawing is thus easy to composite in code (and later in this
chapter, that’s exactly what we’ll do); even more intriguing, the pieces can be reposi‐
tioned and animated separately, so it’s easy to rotate the arrow without moving the circle
(and in Chapter 4, that’s exactly what we’ll do).

The documentation discusses layers chiefly in connection with animation (in particular,
in the Core Animation Programming Guide). This categorization gives the impression
that layers are of interest only if you intend to animate. That’s misleading. Layers are
the basis of animation, but they are also the basis of view drawing, and are useful and
important even if you don’t use them for animation.

View and Layer
A UIView instance has an accompanying CALayer instance, accessible as the view’s
layer property. This layer has a special status: it is partnered with this view to embody
all of the view’s drawing. The layer has no corresponding view property, but the view is
the layer’s delegate. The documentation sometimes speaks of this layer as the view’s
“underlying layer.”

By default, when a UIView is instantiated, its layer is an instance of CALayer. But if you
subclass UIView and you want your subclass’s underlying layer to be an instance of a
CALayer subclass (built-in or your own), implement the UIView subclass’s layer-
Class class method to return that CALayer subclass.

112 | Chapter 3: Layers

That, for example, is how the compass in Figure 3-1 is created. We have a UIView
subclass, CompassView, and a CALayer subclass, CompassLayer. Here is Compass‐
View’s implementation:

class CompassView : UIView {
 override class func layerClass() -> AnyClass {
 return CompassLayer.self
 }
}

Thus, when CompassView is instantiated, its underlying layer is a CompassLayer. In
this example, there is no drawing in CompassView; its job — in this case, its only job
— is to give CompassLayer a place in the visible interface, because a layer cannot appear
without a view.

Because every view has an underlying layer, there is a tight integration between the two.
The layer portrays all the view’s drawing; if the view draws, it does so by contributing
to the layer’s drawing. The view is the layer’s delegate. And the view’s properties are often
merely a convenience for accessing the layer’s properties. For example, when you set
the view’s backgroundColor, you are really setting the layer’s backgroundColor, and if
you set the layer’s backgroundColor directly, the view’s backgroundColor is set to match.
Similarly, the view’s frame is really the layer’s frame and vice versa.

A CALayer’s delegate property is settable, but you must never set the delegate
property of a UIView’s underlying layer. To do so would be to break the integration
between them, thereby causing drawing to stop working correctly. A UIView must
be the delegate of its underlying layer; moreover, it must not be the delegate of any
other layer. Don’t do anything to mess this up.

The view draws into its layer, and the layer caches that drawing; the layer can then be
manipulated, changing the view’s appearance, without necessarily asking the view to
redraw itself. This is a source of great efficiency in the drawing system. It also explains
such phenomena as the content stretching that we encountered in the last section of
Chapter 2: when the view’s bounds size changes, the drawing system, by default, simply
stretches or repositions the cached layer image, until such time as the view is told to
draw freshly (drawRect:), replacing the layer’s content.

Layers and Sublayers
A layer can have sublayers, and a layer has at most one superlayer. Thus there is a tree
of layers. This is similar and parallel to the tree of views (Chapter 1). In fact, so tight is
the integration between a view and its underlying layer that these hierarchies are effec‐
tively the same hierarchy. Given a view and its underlying layer, that layer’s superlayer
is the view’s superview’s underlying layer, and that layer has as sublayers all the under‐

Layers and Sublayers | 113

Figure 3-2. A hierarchy of views and the hierarchy of layers underlying it

Figure 3-3. Layers that have sublayers of their own

lying layers of all the view’s subviews. Indeed, because the layers are how the views
actually get drawn, one might say that the view hierarchy really is a layer hierarchy
(Figure 3-2).

At the same time, the layer hierarchy can go beyond the view hierarchy. A view has
exactly one underlying layer, but a layer can have sublayers that are not the underlying
layers of any view. So the hierarchy of layers that underlie views exactly matches the
hierarchy of views, but the total layer tree may be a superset of that hierarchy. In
Figure 3-3, we see the same view-and-layer hierarchy as in Figure 3-2, but two of the
layers have additional sublayers that are theirs alone (that is, sublayers that are not any
view’s underlying layers).

From a visual standpoint, there may be nothing to distinguish a hierarchy of views from
a hierarchy of layers. For example, in Chapter 1 we drew three overlapping rectangles

114 | Chapter 3: Layers

Figure 3-4. Overlapping layers

using a hierarchy of views (Figure 1-1). This code gives exactly the same visible display
by manipulating layers (Figure 3-4):

let lay1 = CALayer()
lay1.backgroundColor = UIColor(red: 1, green: 0.4, blue: 1, alpha: 1).CGColor
lay1.frame = CGRectMake(113, 111, 132, 194)
mainview.layer.addSublayer(lay1)
let lay2 = CALayer()
lay2.backgroundColor = UIColor(red: 0.5, green: 1, blue: 0, alpha: 1).CGColor
lay2.frame = CGRectMake(41, 56, 132, 194)
lay1.addSublayer(lay2)
let lay3 = CALayer()
lay3.backgroundColor = UIColor(red: 1, green: 0, blue: 0, alpha: 1).CGColor
lay3.frame = CGRectMake(43, 197, 160, 230)
mainview.layer.addSublayer(lay3)

A view’s subview’s underlying layer is a sublayer of that view’s underlaying layer, just
like any other sublayers of that view’s underlying layer. Therefore, it can be positioned
anywhere among them in the drawing order. The fact that a view can be interspersed
among the sublayers of its superview’s underlying layer is surprising to beginners. For
example, let’s construct Figure 3-4 again, but between adding lay2 and lay3 to the
interface, we’ll add a subview:

// ...
lay1.addSublayer(lay2)
let iv = UIImageView(image:UIImage(named:"smiley"))
mainview.addSubview(iv)
iv.frame.origin = CGPointMake(180,180)
let lay3 = CALayer() // the red rectangle
// ...

Layers and Sublayers | 115

Figure 3-5. Overlapping layers and a view

The result is Figure 3-5. The smiley face was added to the interface before the red (left)
rectangle, so it appears behind that rectangle. By reversing the order in which the red
rectangle (lay3) and the smiley face (iv) are added to the interface, the smiley face can
be made to appear in front of that rectangle. The smiley face is a view, whereas the
rectangle is just a layer; so they are not siblings as views, since the rectangle is not a view.
But the smiley face is both a view and its layer; as layers, the smiley face and the rectangle
are siblings, since they have the same superlayer, so either one can be made to appear
in front of the other.

Whether a layer displays regions of its sublayers that lie outside that layer’s own bounds
depends upon the value of its masksToBounds property. This is parallel to a view’s clips-
ToBounds property, and indeed, for a layer that is its view’s underlying layer, they are
the same thing. In Figures 3-4 and 3-5, the layers all have clipsToBounds set to false
(the default); that’s why the right layer is visible beyond the bounds of the middle layer,
which is its superlayer.

Like a UIView, a CALayer has a hidden property that can be set to take it and its sublayers
out of the visible interface without actually removing it from its superlayer.

Manipulating the Layer Hierarchy
Layers come with a full set of methods for reading and manipulating the layer hierarchy,
parallel to the methods for reading and manipulating the view hierarchy. A layer has a
superlayer property and a sublayers property, and these methods:

• addSublayer:

• insertSublayer:atIndex:

116 | Chapter 3: Layers

• insertSublayer:below:, insertSublayer:above:
• replaceSublayer:with:

• removeFromSuperlayer

Unlike a view’s subviews property, a layer’s sublayers property is writable; thus, you
can give a layer multiple sublayers in a single move, by assigning to its sublayers
property. To remove all of a layer’s sublayers, set its sublayers property to nil.

Although a layer’s sublayers have an order, reflected in the sublayers order and regu‐
lated with the methods I’ve just mentioned, this is not necessarily the same as their back-
to-front drawing order. By default, it is, but a layer also has a zPosition property, a
CGFloat, and this also determines drawing order. The rule is that all sublayers with the
same zPosition are drawn in the order they are listed among their sublayers siblings,
but lower zPosition siblings are drawn before higher zPosition siblings. (The default
zPosition is 0.0.)

Sometimes, the zPosition property is a more convenient way of dictating drawing order
than sibling order is. For example, if layers represent playing cards laid out in a solitaire
game, it will likely be a lot easier and more flexible to determine how the cards overlap
by setting their zPosition than by rearranging their sibling order. Moreover, a subview’s
layer is itself just a layer, so you can rearrange the drawing order of subviews by setting
the zPosition of their underlying layers. In our code constructing Figure 3-5, if we
assign the image view’s underlying layer a zPosition of 1, it is drawn in front of the red
(left) rectangle:

mainview.addSubview(iv)
iv.layer.zPosition = 1

Methods are also provided for converting between the coordinate systems of layers
within the same layer hierarchy:

• convertPoint:fromLayer:, convertPoint:toLayer:
• convertRect:fromLayer:, convertRect:toLayer:

Positioning a Sublayer
Layer coordinate systems and positioning are similar to those of views. A layer’s own
internal coordinate system is expressed by its bounds, just like a view; its size is its bounds
size, and its bounds origin is the internal coordinate at its top left.

However, a sublayer’s position within its superlayer is not described by its center, like
a view; a layer does not have a center. Instead, a sublayer’s position within its superlayer
is defined by a combination of two properties, its position and its anchorPoint. Think

Layers and Sublayers | 117

of the sublayer as pinned to its superlayer; then you have to say both where the pin
passes through the sublayer and where it passes through the superlayer. (I didn’t make
up that analogy, but it’s pretty apt.)
position

A point expressed in the superlayer’s coordinate system.

anchorPoint

Where the position point is located, with respect to the layer’s own bounds. It is a
pair of floating-point numbers (a CGPoint) describing a fraction (or multiple) of
the layer’s own bounds width and bounds height. Thus, for example, (0.0,0.0) is
the top left of the layer’s bounds, and (1.0,1.0) is the bottom right of the layer’s
bounds.

If the anchorPoint is (0.5,0.5) (the default), the position property works like a view’s
center property. A view’s center is thus a special case of a layer’s position. This is quite
typical of the relationship between view properties and layer properties; the view prop‐
erties are often a simpler, more convenient, and less powerful version of the layer prop‐
erties.

A layer’s position and anchorPoint are orthogonal (independent); changing one does
not change the other. Therefore, changing either of them without changing the other
changes where the layer is drawn within its superlayer.

For example, in Figure 3-1, the most important point in the circle is its center; all the
other objects need to be positioned with respect to it. Therefore they all have the same
position: the center of the circle. But they differ in their anchorPoint. For example,
the arrow’s anchorPoint is (0.5,0.8), the middle of the shaft, near the tail. On the
other hand, the anchorPoint of a cardinal point letter is (0.5,3.0), well outside the
letter’s bounds, so as to place the letter near the edge of the circle.

A layer’s frame is a purely derived property. When you get the frame, it is calculated
from the bounds size along with the position and anchorPoint. When you set the
frame, you set the bounds size and position. In general, you should regard the frame
as a convenient façade and no more. Nevertheless, it is convenient! For example, to
position a sublayer so that it exactly overlaps its superlayer, you can just set the sublayer’s
frame to the superlayer’s bounds.

A layer created in code (as opposed to a view’s underlying layer) has a frame and
bounds of (0.0,0.0,0.0,0.0) and will not be visible on the screen even when you
add it to a superlayer that is on the screen. Be sure to give your layer a nonzero
width and height if you want to be able to see it. Creating a layer and adding it to
a superlayer and then wondering why it isn’t appearing in the interface is a common
beginner error.

118 | Chapter 3: Layers

CAScrollLayer
If you’re going to be moving a layer’s bounds origin as a way of repositioning its sublayers
en masse, you might like to make the layer a CAScrollLayer, a CALayer subclass that
provides convenience methods for this sort of thing. (Despite the name, a CAScrollLayer
provides no scrolling interface; the user can’t scroll it by dragging, for example.) By
default, a CAScrollLayer’s masksToBounds property is true; thus, the CAScrollLayer acts
like a window through which you see can only what is within its bounds. (You can set
its masksToBounds to false, but this would be an odd thing to do, as it somewhat defeats
the purpose.)

To move the CAScrollLayer’s bounds, you can talk either to it or to a sublayer (at any
depth):
Talking to the CAScrollLayer

scrollToPoint:

Changes the CAScrollLayer’s bounds origin to that point.

scrollToRect:

Changes the CAScrollLayer’s bounds origin minimally so that the given portion
of the bounds rect is visible.

Talking to a sublayer
scrollPoint:

Changes the CAScrollLayer’s bounds origin so that the given point of the sub‐
layer is at the top left of the CAScrollLayer.

scrollRectToVisible:

Changes the CAScrollLayer’s bounds origin so that the given rect of the sub‐
layer’s bounds is within the CAScrollLayer’s bounds area. You can also ask the
sublayer for its visibleRect, the part of this sublayer now within the CAScroll‐
Layer’s bounds.

Layout of Sublayers
The view hierarchy is actually a layer hierarchy (Figure 3-2). The positioning of a view
within its superview is actually the positioning of its layer within its superlayer (the
superview’s layer). A view can be repositioned and resized automatically in accordance
with its autoresizingMask or through autolayout based on its constraints. Thus, there
is automatic layout for layers if they are the underlying layers of views. Otherwise, there
is no automatic layout for layers in iOS. The only option for layout of sublayers that are
not the underlying layers of views is manual layout that you perform in code.

When a layer needs layout, either because its bounds have changed or because you called
setNeedsLayout, you can respond in either of two ways:

Layers and Sublayers | 119

• The layer’s layoutSublayers method is called; to respond, override layout-
Sublayers in your CALayer subclass.

• Alternatively, implement layoutSublayersOfLayer: in the layer’s delegate. (Re‐
member, if the layer is a view’s underlying layer, the view is its delegate.)

To do effective manual layout of sublayers, you’ll probably need a way to identify or
refer to the sublayers. There is no layer equivalent of viewWithTag:, so such identifi‐
cation and reference is entirely up to you. Key–value coding can be helpful here; layers
implement key–value coding in a special way, discussed at the end of this chapter.

For a view’s underlying layer, layoutSublayers or layoutSublayersOfLayer: is called
after the view’s layoutSubviews. Under autolayout, you must call super or else auto‐
layout will break. Moreover, these methods may be called more than once during the
course of autolayout; if you’re looking for an automatically generated signal that it’s time
to do manual layout of sublayers, a view layout event might be a better choice (see
“Events Related to Layout” on page 60).

Drawing in a Layer
A view draws into its underlying layer if its drawRect: is implemented (Chapter 2). Now
let’s talk about how to draw into other layers.

The simplest way to make something appear in a layer is through its contents property.
 This is parallel to the image in a UIImageView (Chapter 2). It is expected to be a
CGImage (or nil, signifying no image). So, for example, here’s how we might modify
the code that generated Figure 3-5 in such a way as to generate the smiley face as a layer
rather than a view:

let lay4 = CALayer()
let im = UIImage(named:"smiley")!
lay4.frame = CGRect(origin:CGPointMake(180,180), size:im.size)
lay4.contents = im.CGImage
mainview.layer.addSublayer(lay4)

Setting a layer’s contents to a UIImage, rather than a CGImage, will fail silently —
the image doesn’t appear, but there is no error either. This is absolutely maddening,
and I wish I had a nickel for every time I’ve done it and then wasted hours figuring
out why my layer isn’t appearing.

There are also four methods that can be implemented to provide or draw a layer’s content
on demand, similar to a UIView’s drawRect:. A layer is very conservative about calling
these methods (and you must not call any of them directly). When a layer does call these

120 | Chapter 3: Layers

methods, I will say that the layer redisplays itself. Here is how a layer can be caused to
redisplay itself:

• If the layer’s needsDisplayOnBoundsChange property is false (the default), then
the only way to cause the layer to redisplay itself is by calling setNeedsDisplay (or
setNeedsDisplayInRect:). Even this might not cause the layer to redisplay itself
right away; if that’s crucial, then you will also call displayIfNeeded.

• If the layer’s needsDisplayOnBoundsChange property is true, then the layer will
also redisplay itself when the layer’s bounds change (rather like a UIView’s UIView-
ContentMode.Redraw).

Here are the four methods that can be called when a layer redisplays itself; pick one to
implement (don’t try to combine them, you’ll just confuse things):
display in a subclass

Your CALayer subclass can override display. There’s no graphics context at this
point, so display is pretty much limited to setting the contents image.

displayLayer: in the delegate
You can set the CALayer’s delegate property and implement displayLayer: in the
delegate. As with display, there’s no graphics context, so you’ll just be setting the
contents image.

drawInContext: in a subclass
Your CALayer subclass can override drawInContext:. The parameter is a graphics
context into which you can draw directly; it is not automatically made the current
context.

drawLayer:inContext: in the delegate
You can set the CALayer’s delegate property and implement drawLayer:in-
Context:. The second parameter is a graphics context into which you can draw
directly; it is not automatically made the current context.

Remember, you must not set the delegate property of a view’s underlying layer! The
view is its delegate and must remain its delegate. A useful architecture for drawing into
a layer through a delegate of your choosing is to treat a view as a layer-hosting view: the
view and its underlying layer do nothing except to serve as a host to a sublayer of the
view’s underlying layer, which is where the drawing occurs (Figure 3-6).

Assigning a layer a contents image and drawing directly into the layer are, in effect,
mutually exclusive. So:

• If a layer’s contents is assigned an image, this image is shown immediately and
replaces whatever drawing may have been displayed in the layer.

Drawing in a Layer | 121

Figure 3-6. A view and a layer delegate that draws into it

• If a layer redisplays itself and drawInContext: or drawLayer:inContext: draws
into the layer, the drawing replaces whatever image may have been displayed in the
layer.

• If a layer redisplays itself and none of the four methods provides any content, the
layer will be empty.

A layer has a scale, its contentsScale, which maps point distances in the layer’s graphics
context to pixel distances on the device. A layer that’s managed by Cocoa, if it has
contents, will adjust its contentsScale automatically as needed; for example, if a UI‐
View implements drawRect:, then on a device with a double-resolution screen its
underlying layer is assigned a contentsScale of 2. A layer that you are creating and
managing yourself, however, has no such automatic behavior; it’s up to you, if you plan
to draw into the layer, to set its contentsScale appropriately. Content drawn into a layer
with a contentsScale of 1 may appear pixellated or fuzzy on a high-resolution screen.
 And when you’re starting with a UIImage and assigning its CGImage as a layer’s
contents, if there’s a mismatch between the UIImage’s scale and the layer’s contents-
Scale, then the image may be displayed at the wrong size.

Three layer properties strongly affect what the layer displays, in ways that can be baffling
to beginners:
backgroundColor

Equivalent to a view’s backgroundColor (and if this layer is a view’s underlying layer,
it is the view’s backgroundColor). Changing the backgroundColor takes effect im‐
mediately. Think of the backgroundColor as separate from the layer’s own drawing,
and as painted behind the layer’s own drawing.

opacity

Affects the overall apparent transparency of the layer. It is equivalent to a view’s
alpha (and if this layer is a view’s underlying layer, it is the view’s alpha). It affects
the apparent transparency of the layer’s sublayers as well. It affects the apparent

122 | Chapter 3: Layers

Automatically Redisplaying a View’s Underlying Layer
A layer is not told automatically to redisplay itself (unless its bounds are resized when
needsDisplayOnBoundsChange is true), but a view is. For example, a view is told to
redraw itself when it first appears; basically, it is sent setNeedsDisplay, much as if you
had sent it explicitly. When a view is sent setNeedsDisplay, the view’s underlying layer
is also sent setNeedsDisplay — unless the view has no drawRect: implementation
(because in that case, it is assumed that the view never needs redrawing). So, if you’re
drawing a view entirely by drawing to its underlying layer directly, and if you want the
underlying layer to be redisplayed automatically when the view is told to redraw itself,
you should implement drawRect:, even if it does nothing. (This technique has no effect
on sublayers of the underlying layer.)

transparency of the background color and the apparent transparency of the layer’s
content separately (just as with a view’s alpha). Changing the opacity property
takes effect immediately.

opaque

Determines whether the layer’s graphics context is opaque. An opaque graphics
context is black; you can draw on top of that blackness, but the blackness is still
there. A non-opaque graphics context is clear; where no drawing is, it is completely
transparent. Changing the opaque property has no effect until the layer redisplays
itself. A view’s underlying layer’s opaque property is independent of the view’s
opaque property; they are unrelated and do entirely different things.

If a layer is the underlying layer of a view that implements drawRect:, then setting
the view’s backgroundColor changes the layer’s opaque — setting it to true if the
new background color is opaque (alpha component of 1), to false otherwise. This
is the reason behind the strange behavior of CGContextClearRect described in
Chapter 2.
Also, when drawing directly into a layer, the behavior of GCContextClearRect differs
from what was described in Chapter 2 for drawing into a view: instead of punching
a hole through the background color, it effectively paints with the layer’s back‐
ground color. (This can have curious side effects.)
I regard all this as deeply weird.

Content Resizing and Positioning
A layer’s content is stored (cached) as a bitmap which is then treated like an image and
drawn in relation to the layer’s bounds in accordance with various layer properties:

Drawing in a Layer | 123

• If the content came from setting the layer’s contents property to an image, the
cached content is that image; its size is the point size of the CGImage we started
with.

• If the content came from drawing directly into the layer’s graphics context (drawIn-
Context:, drawLayer:inContext:), the cached content is the layer’s entire graphics
context; its size is the point size of the layer itself at the time the drawing was
performed.

The layer properties in question cause the cached content to be resized, repositioned,
cropped, and so on, as it is displayed. The properties are:
contentsGravity

This property, a string, is parallel to a UIView’s contentMode property, and describes
how the content should be positioned or stretched in relation to the bounds. For
example, kCAGravityCenter means the content is centered in the bounds without
resizing; kCAGravityResize (the default) means the content is sized to fit the
bounds, even if this means distorting its aspect; and so forth.

For historical reasons, the terms “bottom” and “top” in the names of the contents-
Gravity settings have the opposite of their expected meanings.

contentsRect

A CGRect expressing the proportion of the content that is to be displayed. The
default is (0.0,0.0,1.0,1.0), meaning the entire content is displayed. The speci‐
fied part of the content is sized and positioned in relation to the bounds in accord‐
ance with the contentsGravity. Thus, for example, by setting the contentsRect,
you can scale up part of the content to fill the bounds, or slide part of a larger image
into view without redrawing or changing the contents image.

You can also use the contentsRect to scale down the content, by specifying a larger
contentsRect such as (-0.5,-0.5,1.5,1.5); but any content pixels that touch the
edge of the contentsRect will then be extended outward to the edge of the layer
(to prevent this, make sure that the outermost pixels of the content are all empty).

contentsCenter

A CGRect, structured like contentsRect, expressing the central region of nine rec‐
tangular regions of the contentsRect that are variously allowed to stretch if the
contentsGravity calls for stretching. The central region (the actual value of the
contentsCenter) stretches in both directions. Of the other eight regions (inferred
from the value you provide), the four corner regions don’t stretch, and the four side

124 | Chapter 3: Layers

regions stretch in one direction. (This should remind you of how a resizable image
stretches! See Chapter 2.)

If a layer’s content comes from drawing directly into its graphics context, then the layer’s
contentsGravity, of itself, has no effect, because the size of the graphics context, by
definition, fits the size of the layer exactly; there is nothing to stretch or reposition. But
the contentsGravity will have an effect on such a layer if its contentsRect is not
(0.0,0.0,1.0,1.0), because now we’re specifying a rectangle of some other size; the
contentsGravity describes how to fit that rectangle into the layer.

Again, if a layer’s content comes from drawing directly into its graphics context, then
when the layer is resized, if the layer is asked to display itself again, the drawing is
performed again, and once more the layer’s content fits the size of the layer exactly. But
if the layer’s bounds are resized when needsDisplayOnBoundsChange is false, then the
layer does not redisplay itself, so its cached content no longer fits the layer, and the
contentsGravity matters.

By a judicious combination of settings, you can get the layer to perform some clever
drawing for you that might be difficult to perform directly. For example, Figure 3-7
shows the result of the following settings:

arrow.needsDisplayOnBoundsChange = false
arrow.contentsCenter = CGRectMake(0.0, 0.4, 1.0, 0.6)
arrow.contentsGravity = kCAGravityResizeAspect
arrow.bounds.inset(dx: -20, dy: -20)

Because needsDisplayOnBoundsChange is false, the content is not redisplayed when
the arrow’s bounds are increased; instead, the cached content is used. The contents-
Gravity setting tells us to resize proportionally; therefore, the arrow is both longer and
wider than in Figure 3-1, but not in such a way as to distort its proportions. However,
notice that although the triangular arrowhead is wider, it is not longer; the increase in
length is due entirely to the stretching of the arrow’s shaft. That’s because the contents-
Center region is within the shaft.

A layer’s masksToBounds property has the same effect on its content that it has on its
sublayers. If it is false, the whole content is displayed, even if that content (after taking
account of the contentsGravity and contentsRect) is larger then the layer. If it is
true, only the part of the content within the layer’s bounds will be displayed.

The value of a layer’s bounds origin does not affect where its content is drawn. It
affects only where its sublayers are drawn.

Drawing in a Layer | 125

Figure 3-7. One way of resizing the compass arrow

Layers that Draw Themselves
A few built-in CALayer subclasses provide some basic but extremely helpful
self-drawing ability:
CATextLayer

A CATextLayer has a string property, which can be an NSString or NSAttributed‐
String, along with other text formatting properties, somewhat like a simplified UI‐
Label; it draws its string. The default text color, the foregroundColor property, is
white, which is unlikely to be what you want. The text is different from the contents
and is mutually exclusive with it: either the contents image or the text will be drawn,
but not both, so in general you should not give a CATextLayer any contents image.
In Figures 3-1 and 3-7, the cardinal point letters are CATextLayer instances.

CAShapeLayer
A CAShapeLayer has a path property, which is a CGPath. It fills or strokes this path,
or both, depending on its fillColor and strokeColor values, and displays the
result; the default is a fillColor of black and no strokeColor. It has properties for
line thickness, dash style, end-cap style, and join style, similar to a graphics context;
it also has the remarkable ability to draw only part of its path (strokeStart and
strokeEnd), making it very easy, for example, to draw an arc of an ellipse. A
CAShapeLayer may also have contents; the shape is displayed on top of the contents
image, but there is no property permitting you to specify a compositing mode. In
Figures 3-1 and 3-7, the background circle is a CAShapeLayer instance, stroked
with gray and filled with a lighter, slightly transparent gray.

126 | Chapter 3: Layers

Figure 3-8. A gradient drawn behind the compass

An Apple WWDC 2014 video points out that CAShapeLayer, while convenient, may
entail some drawing inefficiency, because the shape must be rasterized into an image
every time you change it. See also the discussion of layer drawing efficiency later
in this chapter.

CAGradientLayer
A CAGradientLayer covers its background with a simple linear gradient; thus, it’s
an easy way to draw a gradient in your interface (and if you need something more
elaborate you can always draw with Core Graphics instead). The gradient is defined
much as in the Core Graphics gradient example in Chapter 2, an array of locations
and an array of corresponding colors, along with a start and end point. To clip the
gradient’s shape, you can add a mask to the CAGradientLayer (masks are discussed
later in this chapter). A CAGradientLayer’s contents are not displayed.

The colors array requires CGColors, not UIColors. That’s legal in a Swift array,
but NSArray expects objects (CGColor is not an object type), so you’ll need to
typecast each color to AnyObject or you’ll crash at runtime.

Figure 3-8 shows our compass drawn with an extra CAGradientLayer behind it.

Transforms
The way a layer is drawn on the screen can be modified though a transform. This is not
surprising, because a view can have a transform (see Chapter 1), and a view is drawn
on the screen by its layer. But a layer’s transform is more powerful than a view’s trans‐
form; you can use it to accomplish things that you can’t accomplish with a view’s
transform alone.

In the simplest case, when a transform is two-dimensional, you can access a layer’s
transform through the affineTransform method (and the corresponding setter, set-

Transforms | 127

AffineTransform:). The value is a CGAffineTransform, familiar from Chapters 1 and
2. The transform is applied around the anchorPoint. (Thus, the anchorPoint has a
second purpose that I didn’t tell you about when discussing it earlier.)

You now know everything needed to understand the code that generated Figure 3-8, so
here it is. In this code, self is the CompassLayer; it does no drawing of its own, but
merely assembles and configures its sublayers. The four cardinal point letters are each
drawn by a CATextLayer and placed using a transform. They are drawn at the same
coordinates, but they have different rotation transforms, and are anchored so that their
rotation is centered at the center of the circle. To generate the arrow, we make ourselves
the arrow layer’s delegate and call setNeedsDisplay; this causes drawLayer:inContext:
to be called in CompassLayer (that code is just the same code we developed for drawing
the arrow in Chapter 2, and is not repeated here). The arrow layer is positioned by an
anchorPoint pinning its tail to the center of the circle, and rotated around that pin by
a transform:

// the gradient
let g = CAGradientLayer()
g.contentsScale = UIScreen.mainScreen().scale
g.frame = self.bounds
g.colors = [
 UIColor.blackColor().CGColor as AnyObject,
 UIColor.redColor().CGColor as AnyObject
]
g.locations = [0.0,1.0]
self.addSublayer(g)
// the circle
let circle = CAShapeLayer()
circle.contentsScale = UIScreen.mainScreen().scale
circle.lineWidth = 2.0
circle.fillColor = UIColor(red:0.9, green:0.95, blue:0.93, alpha:0.9).CGColor
circle.strokeColor = UIColor.grayColor().CGColor
let p = CGPathCreateMutable()
CGPathAddEllipseInRect(p, nil, CGRectInset(self.bounds, 3, 3))
circle.path = p
self.addSublayer(circle)
circle.bounds = self.bounds
circle.position = self.bounds.center
// the four cardinal points
let pts = "NESW"
for (ix,c) in enumerate(pts) {
 let t = CATextLayer()
 t.contentsScale = UIScreen.mainScreen().scale
 t.string = String(c)
 t.bounds = CGRectMake(0,0,40,40)
 t.position = circle.bounds.center
 let vert = circle.bounds.midY / t.bounds.height
 t.anchorPoint = CGPointMake(0.5, vert)
 // println(t.anchorPoint)
 t.alignmentMode = kCAAlignmentCenter

128 | Chapter 3: Layers

 t.foregroundColor = UIColor.blackColor().CGColor
 t.setAffineTransform(
 CGAffineTransformMakeRotation(CGFloat(ix)*CGFloat(M_PI)/2.0))
 circle.addSublayer(t)
}
// the arrow
let arrow = CALayer()
arrow.contentsScale = UIScreen.mainScreen().scale
arrow.bounds = CGRectMake(0, 0, 40, 100)
arrow.position = self.bounds.center
arrow.anchorPoint = CGPointMake(0.5, 0.8)
arrow.delegate = self // we will draw the arrow in the delegate method
arrow.setAffineTransform(CGAffineTransformMakeRotation(CGFloat(M_PI)/5.0))
self.addSublayer(arrow)
arrow.setNeedsDisplay() // draw, please

A full-fledged layer transform, the value of the transform property, takes place in three-
dimensional space; its description includes a z-axis, perpendicular to both the x-axis
and y-axis. (By default, the positive z-axis points out of the screen, toward the viewer’s
face.) Layers do not magically give you realistic three-dimensional rendering — for that
you would use OpenGL, which is beyond the scope of this discussion. Layers are two-
dimensional objects, and they are designed for speed and simplicity. Nevertheless, they
do operate in three dimensions, quite sufficiently to give a cartoonish but effective sense
of reality, especially when performing an animation. We’ve all seen the screen image flip
like turning over a piece of paper to reveal what’s on the back; that’s a rotation in three
dimensions.

A three-dimensional transform takes place around a three-dimensional extension of
the anchorPoint, whose z-component is supplied by the anchorPointZ property. Thus,
in the reduced default case where anchorPointZ is 0.0, the anchorPoint is sufficient,
as we’ve already seen in using CGAffineTransform.

The transform itself is described mathematically by a struct called a CATransform3D.
The Core Animation Function Reference lists the functions for working with these
transforms. They are a lot like the CGAffineTransform functions, except they’ve got a
third dimension. For example, the function for making a 2D scale transform, CGAffine-
TransformMakeScale, takes two parameters; the function for making a 3D scale trans‐
form, CATransform3DMakeScale, takes three parameters.

The rotation 3D transform is a little more complicated. In addition to the angle, you
also have to supply three coordinates describing the vector around which the rotation
takes place. Perhaps you’ve forgotten from your high-school math what a vector is, or
perhaps trying to visualize three dimensions boggles your mind, so think of it this way.

Pretend for purposes of discussion that the anchor point is the origin, (0.0,0.0,0.0).
Now imagine an arrow emanating from the anchor point; its other end, the pointy end,
is described by the three coordinates you provide. Now imagine a plane that intersects

Transforms | 129

Figure 3-9. An anchor point plus a vector defines a rotation plane

the anchor point, perpendicular to the arrow. That is the plane in which the rotation
will take place; a positive angle is a clockwise rotation, as seen from the side of the plane
with the arrow (Figure 3-9). In effect, the three coordinates you supply describe (relative
to the anchor point) where your eye would have to be to see this rotation as an old-
fashioned two-dimensional rotation.

A vector specifies a direction, not a point. Thus it makes no difference on what scale
you give the coordinates: (1.0,1.0,1.0) means the same thing as (10.0,10.0,10.0).
If the three values are (0.0,0.0,1.0), with all other things being equal, the case is
collapsed to a simple CGAffineTransform, because the rotational plane is the screen. If
the three values are (0.0,0.0,-1.0), it’s a backward CGAffineTransform, so that a
positive angle looks counterclockwise (because we are looking at the “back side” of the
rotational plane).

A layer can itself be rotated in such a way that its “back” is showing. For example, the
following rotation flips a layer around its y-axis:

someLayer.transform = CATransform3DMakeRotation(CGFloat(M_PI), 0, 1, 0)

By default, the layer is considered double-sided, so when it is flipped to show its “back,”
what’s drawn is an appropriately reversed version of the content of the layer (along with
its sublayers, which by default are still drawn in front of the layer, but reversed and
positioned in accordance with the layer’s transformed coordinate system). But if the
layer’s doubleSided property is false, then when it is flipped to show its “back,” the
layer disappears (along with its sublayers); its “back” is transparent and empty.

130 | Chapter 3: Layers

Depth
There are two ways to place layers at different nominal depths with respect to their
siblings. One is through the z-component of their position, which is the zPosition
property. (Thus the zPosition, too, has a second purpose that I didn’t tell you about
earlier.) The other is to apply a transform that translates the layer’s position in the z-
direction. These two values, the z-component of a layer’s position and the z-component
of its translation transform, are related; in some sense, the zPosition is a shorthand for
a translation transform in the z-direction. (If you provide both a zPosition and a z-
direction translation, you can rapidly confuse yourself.)

In the real world, changing an object’s zPosition would make it appear larger or smaller,
as it is positioned closer or further away; but this, by default, is not the case in the world
of layer drawing. There is no attempt to portray perspective; the layer planes are drawn
at their actual size and flattened onto one another, with no illusion of distance. (This is
called orthographic projection, and is the way blueprints are often drawn to display an
object from one side.)

However, there’s a widely used trick for introducing a quality of perspective into the way
layers are drawn: make them sublayers of a layer whose sublayerTransform property
maps all points onto a “distant” plane. (This is probably just about the only thing the
sublayerTransform property is ever used for.) Combined with orthographic projection,
the effect is to apply one-point perspective to the drawing, so that things do get per‐
ceptibly smaller in the negative z-direction.

For example, let’s try applying a sort of “page-turn” rotation to our compass: we’ll anchor
it at its right side and then rotate it around the y-axis. Here, the sublayer we’re rotating
(accessed through a property, rotationLayer) is the gradient layer, and the circle and
arrow are its sublayers so that they rotate with it:

self.rotationLayer.anchorPoint = CGPointMake(1,0.5)
self.rotationLayer.position = CGPointMake(
 self.bounds.maxX, self.bounds.midY)
self.rotationLayer.transform = CATransform3DMakeRotation(
 CGFloat(M_PI)/4.0, 0, 1, 0)

The results are disappointing (Figure 3-10); the compass looks more squashed than
rotated. Now, however, we’ll also apply the distance-mapping transform. The superlayer
here is self:

var transform = CATransform3DIdentity
transform.m34 = -1.0/1000.0
self.sublayerTransform = transform

The results (shown in Figure 3-11) are better, and you can experiment with values to
replace 1000.0; for example, 500.0 gives an even more exaggerated effect. Also, the
zPosition of the rotationLayer will now affect how large it is.

Transforms | 131

Figure 3-10. A disappointing page-turn rotation

Figure 3-11. A dramatic page-turn rotation

Another way to draw layers with depth is to use CATransformLayer. This CALayer
subclass doesn’t do any drawing of its own; it is intended solely as a host for other layers.
It has the remarkable feature that you can apply a transform to it and it will maintain
the depth relationships among its own sublayers. For example:

// lay1 is a layer, f is a CGRect
let lay2 = CALayer()
lay2.frame = f
lay2.backgroundColor = UIColor.blueColor().CGColor
lay1.addSublayer(lay2)
let lay3 = CALayer()
lay3.frame = f.rectByOffsetting(dx: 20, dy: 30)
lay3.backgroundColor = UIColor.greenColor().CGColor
lay3.zPosition = 10
lay1.addSublayer(lay3)
lay1.transform = CATransform3DMakeRotation(CGFloat(M_PI), 0, 1, 0)

132 | Chapter 3: Layers

In that code, the superlayer lay1 has two sublayers, lay2 and lay3. The sublayers are
added in that order, so lay3 is drawn in front of lay2. Then lay1 is flipped like a page
being turned by setting its transform. If lay1 is a normal CALayer, the sublayer drawing
order doesn’t change; lay3 is still drawn in front of lay2, even after the transform is
applied. But if lay1 is a CATransformLayer, lay3 is drawn behind lay2 after the trans‐
form; they are both sublayers of lay1, so their depth relationship is maintained.

Figure 3-12 shows our page-turn rotation yet again, still with the sublayerTransform
applied to self, but this time the only sublayer of self is a CATransformLayer:

var transform = CATransform3DIdentity
transform.m34 = -1.0/1000.0
self.sublayerTransform = transform
let master = CATransformLayer()
master.frame = self.bounds
self.addSublayer(master)
self.rotationLayer = master

The CATransformLayer, to which the page-turn transform is applied, holds the gradient
layer, the circle layer, and the arrow layer. Those three layers are at different depths
(using different zPosition settings), and I’ve tried to emphasize the arrow’s separation
from the circle by adding a shadow (discussed in the next section):

circle.zPosition = 10
arrow.shadowOpacity = 1.0
arrow.shadowRadius = 10
arrow.zPosition = 20

You can see from its apparent offset that the circle layer floats in front of the gradient
layer, but I wish you could see this page-turn as an animation, which makes the circle
jump right out from the gradient as the rotation proceeds.

Even more remarkable, I’ve added a little white peg sticking through the arrow and
running into the circle! It is a CAShapeLayer, rotated to be perpendicular to the
CATransformLayer (I’ll explain the rotation code later in this chapter):

let peg = CAShapeLayer()
peg.contentsScale = UIScreen.mainScreen().scale
peg.bounds = CGRectMake(0,0,3.5,50)
let p2 = CGPathCreateMutable()
CGPathAddRect(p2, nil, peg.bounds)
peg.path = p2
peg.fillColor = UIColor(red:1.0, green:0.95, blue:1.0, alpha:0.95).CGColor
peg.anchorPoint = CGPointMake(0.5,0.5)
peg.position = master.bounds.center
master.addSublayer(peg)
peg.setValue(M_PI/2, forKeyPath:"transform.rotation.x")
peg.setValue(M_PI/2, forKeyPath:"transform.rotation.z")
peg.zPosition = 15

Transforms | 133

Figure 3-12. Page-turn rotation applied to a CATransformLayer

In that code, the peg runs straight out of the circle toward the viewer, so it is seen end-
on, and because a layer has no thickness, it is invisible. But as the CATransformLayer
pivots forward in our page-turn rotation, the peg maintains its orientation relative to
the circle, and comes into view. In effect, the drawing portrays a 3D model constructed
entirely out of layers.

There is, I think, a slight additional gain in realism if the same sublayerTransform is
applied also to the CATransformLayer, but I have not done so here.

Shadows, Borders, and Masks
A CALayer has many additional properties that affect details of how it is drawn. Since
these drawing details can be applied to a UIView’s underlying layer, they are effectively
view features as well.

A CALayer can have a shadow, defined by its shadowColor, shadowOpacity, shadow-
Radius, and shadowOffset properties. To make the layer draw a shadow, set the
shadowOpacity to a nonzero value. The shadow is normally based on the shape of the
layer’s nontransparent region, but deriving this shape can be calculation-intensive (so
much so that in early versions of iOS, layer shadows weren’t implemented). You can
vastly improve performance by defining the shape yourself and assigning this shape as
a CGPath to the shadowPath property.

134 | Chapter 3: Layers

Figure 3-13. A layer with a mask

If a layer’s masksToBounds is true, no part of its shadow lying outside its bounds is
drawn. (This includes the underlying layer of a view whose clipsToBounds is true.)
Wondering why the shadow isn’t appearing for a layer that masks to its bounds is
a common beginner quandary.

A CALayer can have a border (borderWidth, borderColor); the borderWidth is drawn
inward from the bounds, potentially covering some of the content unless you compen‐
sate.

A CALayer can be bounded by a rounded rectangle, by giving it a cornerRadius greater
than zero. If the layer has a border, the border has rounded corners too. If the layer has
a backgroundColor, that background is clipped to the shape of the rounded rectangle.
If the layer’s masksToBounds is true, the layer’s content and its sublayers are clipped by
the rounded corners.

A CALayer can have a mask. This is itself a layer, whose content must be provided
somehow. The transparency of the mask’s content in a particular spot becomes (all other
things being equal) the transparency of the layer at that spot. The mask’s colors (hues)
are irrelevant; only transparency matters. To position the mask, pretend it’s a sublayer.

For example, Figure 3-13 shows our arrow layer, with the gray circle layer behind it, and
a mask applied to the arrow layer. The mask is silly, but it illustrates very well how masks
work: it’s an ellipse, with an opaque fill and a thick, semitransparent stroke. Here’s the
code that generates and applies the mask:

let mask = CAShapeLayer()
mask.frame = arrow.bounds
let p2 = CGPathCreateMutable()
CGPathAddEllipseInRect(p2, nil, CGRectInset(mask.bounds, 10, 10))
mask.strokeColor = UIColor(white:0.0, alpha:0.5).CGColor
mask.lineWidth = 20
mask.path = p2
arrow.mask = mask

Using a mask, we can do manually and in a more general way what the cornerRadius
and masksToBounds properties do. For example, here’s a utility method that generates
a CALayer suitable for use as a rounded rectangle mask:

Shadows, Borders, and Masks | 135

func maskOfSize(sz:CGSize, roundingCorners rad:CGFloat) -> CALayer {
 let r = CGRect(origin:CGPointZero, size:sz)
 UIGraphicsBeginImageContextWithOptions(r.size, false, 0)
 let con = UIGraphicsGetCurrentContext()
 CGContextSetFillColorWithColor(
 con, UIColor(white:0, alpha:0).CGColor)
 CGContextFillRect(con, r)
 CGContextSetFillColorWithColor(
 con, UIColor(white:0, alpha:1).CGColor)
 let p = UIBezierPath(roundedRect:r, cornerRadius:rad)
 p.fill()
 let im = UIGraphicsGetImageFromCurrentImageContext()
 UIGraphicsEndImageContext()
 let mask = CALayer()
 mask.frame = r
 mask.contents = im.CGImage
 return mask
}

The CALayer returned from that method can be placed as a mask anywhere in a layer
by adjusting its frame origin and assigning it as the layer’s mask. The result is that all of
that layer’s content drawing and its sublayers (including, if this layer is a view’s under‐
lying layer, the view’s subviews) are clipped to the rounded rectangle shape; everything
outside that shape is not drawn. That’s just one example of the sort of thing you can do
with a mask. A mask can have values between opaque and transparent, and it can be
any shape. And the transparent region doesn’t have to be on the outside of the mask;
you can use a mask that’s opaque on the outside and transparent on the inside to punch
a hole in a layer (or a view).

New in iOS 8, you can apply a mask as a view directly to another view through its mask-
View property, rather than having to drop down to the level of layers. This may be a
notational convenience, but it is not functionally distinct from applying the mask view’s
layer to the view’s layer; under the hood, in fact, it is applying the mask view’s layer to
the view’s layer. Thus, for example, it does nothing to solve the problem that the mask
is not automatically resized along with the view.

Layer Efficiency
By now, you’re probably envisioning all sorts of compositing fun, with layers masking
sublayers and laid semitransparently over other layers. There’s nothing wrong with that,
but when an iOS device is asked to shift its drawing from place to place, the movement
may stutter because the device lacks the necessary computing power to composite re‐
peatedly and rapidly. This sort of issue is likely to emerge particularly when your code
performs an animation (Chapter 4) or when the user is able to animate drawing through
touch, as when scrolling a table view (Chapter 8). You may be able to detect these prob‐
lems by eye, and you can quantify them on a device by using the Core Animation
template in Instruments, which shows the frame rate achieved during animation. Also,

136 | Chapter 3: Layers

both the Core Animation template and the Simulator’s Debug menu let you summon
colored overlays that provide clues as to possible sources of inefficient drawing which
can lead to such problems.

In general, opaque drawing is most efficient. (Nonopaque drawing is what Instruments
marks in red as “blended layers.”) If a layer will always be shown over a background
consisting of a single color, you can give the layer its own background of that same color;
when additional layer content is supplied, the visual effect will be the same as if that
additional layer content were composited over a transparent background. For example,
instead of an image masked to a rounded rectangle (with a layer’s cornerRadius or mask
property), you could use Core Graphics to clip the drawing of that image to a rounded
rectangle shape within the graphics context of a layer whose background color is the
same as that of the destination in front of which the drawing will be shown.

Another way to gain some efficiency is by “freezing” the entirety of the layer’s drawing
as a bitmap. In effect, you’re drawing everything in the layer to a secondary cache and
using the cache to draw to the screen. Copying from a cache is less efficient than drawing
directly to the screen, but this inefficiency may be compensated for, if there’s a deep or
complex layer tree, by not having to composite that tree every time we render. To do
this, set the layer’s shouldRasterize to true and its rasterizationScale to some sen‐
sible value (probably UIScreen.mainScreen().scale). You can always turn rasteriza‐
tion off again by setting shouldRasterize to false, so it’s easy to rasterize just before
some massive or sluggish rearrangement of the screen and then unrasterize afterward.

In addition, there’s a layer property drawsAsynchronously. The default is false. If set
to true, the layer’s graphics context accumulates drawing commands and obeys them
later on a background thread. Thus, your drawing commands run very quickly, because
they are not in fact being obeyed at the time you issue them. I haven’t had occasion to
use this, but presumably there could be situations where it keeps your app responsive
when drawing would otherwise be time-consuming.

Layers and Key–Value Coding
All of a layer’s properties are accessible through key–value coding by way of keys with
the same name as the property. Thus, to apply a mask to a layer, instead of saying this:

layer.mask = mask

we could have said:

layer.setValue(mask, forKey: "mask")

In addition, CATransform3D and CGAffineTransform values can be expressed through
key–value coding and key paths. For example, instead of writing this:

self.rotationLayer.transform = CATransform3DMakeRotation(
 CGFloat(M_PI)/4.0, 0, 1, 0)

Layers and Key–Value Coding | 137

we can write this:

self.rotationLayer.setValue(M_PI/4, forKeyPath:"transform.rotation.y")

This notation is possible because CATransform3D is key–value coding compliant for a
repertoire of keys and key paths. These are not properties, however; a CATransform3D
doesn’t have a rotation property. It doesn’t have any properties, because it isn’t even an
object. You cannot say:

self.rotationLayer.transform.rotation.y = //... No, sorry

The transform key paths you’ll use most often are:

• "rotation.x", "rotation.y", "rotation.z"
• "rotation" (same as "rotation.z")
• "scale.x", "scale.y", "scale.z"
• "translation.x", "translation.y", "translation.z"
• "translation" (two-dimensional, a CGSize)

The Quartz Core framework also injects KVC compliance into CGPoint, CGSize, and
CGRect, allowing you to use keys and key paths matching their struct component names.
For a complete list of KVC compliant classes related to CALayer, along with the keys
and key paths they implement, plus rules for how to wrap nonobject values as objects,
see “Core Animation Extensions to Key-Value Coding” in Apple’s Core Animation Pro‐
gramming Guide.

Moreover, you can treat a CALayer as a kind of NSDictionary, and get and set the value
for any key. This means you can attach arbitrary information to an individual layer
instance and retrieve it later. For example, earlier I mentioned that to apply manual
layout to a layer’s sublayers, you will need a way of identifying those sublayers. This
feature could provide a way of doing that. For example:

myLayer1.setValue("Manny", forKey:"name")
myLayer2.setValue("Moe", forKey:"name")

A layer doesn’t have a name property; the "name" key is something I’m attaching to these
layers arbitrarily. Now I can identify these layers later by getting the value of their re‐
spective "name" keys.

Also, CALayer has a defaultValueForKey: class method; to implement it, you’ll need
to subclass and override. In the case of keys whose value you want to provide a default
for, return that value; otherwise, return the value that comes from calling super. Thus,
even if a value for a particular key has never been explicitly provided, it can have a non-
nil value.

138 | Chapter 3: Layers

The truth is that this feature, though delightful (and I often wish that all classes behaved
like this), is not put there for your convenience and enjoyment. It’s there to serve as the
basis for animation, which is the subject of the next chapter.

Layers and Key–Value Coding | 139

CHAPTER 4

Animation

Animation is the visible change of an attribute over time. The changing attribute might
be positional: something moves or changes size. But other kinds of attribute can animate
as well. For example, a view’s background color might change from red to green, not
instantly, but perceptibly fading from one to the other. Or a view might change from
opaque to transparent, not instantly, but perceptibly fading away.

Without help, most of us would find animation beyond our reach. There are just too
many complications — complications of calculation, of timing, of screen refresh, of
threading, and many more. Fortunately, help is provided. You don’t perform an ani‐
mation yourself; you describe it, you order it, and it is performed for you. You get
animation on demand.

Asking for an animation can be as simple as setting a property value; under some cir‐
cumstances, a single line of code will result in animation:

myLayer.backgroundColor = UIColor.redColor().CGColor // animate to red

And this is no coincidence. Apple wants to facilitate your use of animation. Animation
is crucial to the character of the iOS interface. It isn’t just cool and fun; it clarifies that
something is changing or responding. For example, one of my first apps was based on
an OS X game in which the user clicks cards to select them. In the OS X version, a card
was highlighted to show it was selected, and the computer would beep to indicate a click
on an ineligible card. On iOS, these indications were insufficient: the highlighting felt
weak, and you can’t use a sound warning in an environment where the user might have
the volume turned off or be listening to music. So in the iOS version, animation is the
indicator for card selection (a selected card waggles eagerly) and for tapping on an
ineligible card (the whole interface shudders, as if to shrug off the tap).

(If you’re looking to create a complete constantly running animated world, as for certain
types of game, look into Sprite Kit. This book doesn’t discuss Sprite Kit, but an under‐
standing of the concepts in this chapter will prepare you very well for Sprite Kit.)

141

The Simulator’s Debug → Toggle Slow Animations menu item helps you inspect
animations by making them run more slowly.

Drawing, Animation, and Threading
When you change a visible view property, even without animation, that change does
not visibly take place there and then. Rather, the system records that this is a change
you would like to make, and marks the view as needing to be redrawn. You can change
many visible view properties, but these changes merely constitute an accumulated set
of instructions. Later, when all your code has run to completion and the system has, as
it were, a free moment, then it redraws all views that need redrawing, applying their
new visible property features. Let’s call this the redraw moment. (I’ll explain what the
redraw moment really is later in this chapter.)

You can see that this is true simply by changing some visible aspect of a view and
changing it back again, in the same code: on the screen, nothing happens. For example,
suppose a view’s background color is green. Suppose your code changes it to red, and
then later changes it back to green:

// view starts out green
view.backgroundColor = UIColor.redColor()
// ... time-consuming code goes here ...
view.backgroundColor = UIColor.greenColor()
// code ends, redraw moment arrives

The system accumulates all the desired changes until the redraw moment happens, and
the redraw moment doesn’t happen until after your code has finished, so when the
redraw moment does happen, the last accumulated change in the view’s color is to green
— which is its color already. Thus, no matter how much time-consuming code lies
between the change from green to red and the change from red to green, the user won’t
see any color change at all.

That’s why you don’t order a view to be redrawn; rather, you tell it that it needs redrawing
— setNeedsDisplay — at the next redraw moment. It’s also why I used delayed per‐
formance in the contentMode example in Chapter 2: it was to allow the redraw moment
a chance to happen, thus giving the view some content, before resizing the view. This
use of delayed performance to let a redraw moment happen is quite common; later in
this chapter I’ll suggest another way of accomplishing the same goal.

Similarly, when you ask for an animation to be performed, the animation doesn’t start
happening on the screen until the next redraw moment. (You can force an animation
to be performed immediately, but this is unusual.)

Now let’s talk about the mechanism by which animation is performed. It’s all a kind of
ingenious illusion. Think of the animation as a kind of movie, a cartoon, interposed

142 | Chapter 4: Animation

between the user and the “real” screen. While the animation lasts, this movie is super‐
imposed onto the screen. When the animation is finished, the movie is removed, re‐
vealing the state of the “real” screen behind it. The user is unaware of all this, because
(if you’ve done things correctly) at the time that it starts, the movie’s first frame looks
just like the state of the “real” screen at that moment, and at the time that it ends, the
movie’s last frame looks just like the state of the “real” screen at that moment.

So, when you reposition a view from position 1 to position 2 with animation, you can
envision a typical sequence of events like this:

1. The view is set to position 2, but there has been no redraw moment, so it is still
portrayed at position 1.

2. The rest of your code runs to completion.
3. The redraw moment arrives. If there were no animation, the view would now sud‐

denly be portrayed at position 2. But there is an animation, and it (the “animation
movie”) starts with the view portrayed at position 1, so that is still what the user
sees.

4. The animation proceeds, portraying the view at intermediate positions between
position 1 and position 2. The documentation describes the animation as now in-
flight.

5. The animation ends, portraying the view ending up at position 2.
6. The “animation movie” is removed, revealing the view indeed at position 2.

Realizing that the “animation movie” is different from what happens to the real view is
key to configuring an animation correctly. A frequent complaint of beginners is that a
position animation is performed as expected, but then, at the end, the view “jumps” to
some other position. This happens because you set up the animation but failed to move
the view to match its final position in the “animation movie”; the “jump” happens be‐
cause, when the “movie” is whipped away at the end of the animation, the real situation
that’s revealed doesn’t match the last frame of the “movie.”

There isn’t really an “animation movie” in front of the screen — but it’s a good analogy,
and the effect is much the same. In reality, it is not a layer itself that is portrayed on the
screen; it’s a derived layer called the presentation layer. Thus, when you animate the
change of a view’s position or a layer’s position from position 1 to position 2, its nominal
position changes immediately; meanwhile, the presentation layer’s position remains
unchanged until the redraw moment, and then changes over time, and because that’s
what’s actually drawn on the screen, that’s what the user sees.

(A layer’s presentation layer can be accessed through its presentationLayer method
— and the layer itself may be accessed through the presentation layer’s modelLayer
method. I’ll give examples later in this chapter and in the next chapter of situations
where accessing the presentation layer is a useful thing to do.)

Drawing, Animation, and Threading | 143

The existence of the presentation layer can be confusing, because it means that every
animated layer is copied. You may need to be aware of this fact when designing a
custom CALayer subclass. For example, you might use logging or breakpoints to
test when certain events take place in an instance of your custom CALayer; you may
think there is only such instance, but if this layer is animated, there are two such
instances, and your console messages or pauses may take place in the presentation
layer rather than in your “real” layer.

The “animation movie” analogy is an apt one, because, like a movie (especially an old-
fashioned animated cartoon), there are “frames.” An animating layer does not change
smoothly and continuously; it changes in small, individual increments that give the
illusion of smooth, continuous change. This illusion works because the device itself
undergoes a periodic, rapid, more or less regular screen refresh, and the incremental
changes are made to fall between these refreshes. Apple calls the system component
responsible for this the animation server.

Animation (meaning the animation server) operates on an independent thread. You
don’t have to worry about the details (thank heavens, because multithreading is generally
rather tricky and complicated), but you can’t ignore it either. Your code runs independ‐
ently of and possibly simultaneously with the animation — that’s what multithreading
means — so communication between the animation and your code can require some
planning.

Arranging for your code to be notified when an animation ends is a common need.
Most of the animation APIs provide a way to set up such a notification. One use of an
“animation ended” notification might be to chain animations together: one animation
ends and then another begins, in sequence. Another use is to perform some sort of
cleanup. A very frequent kind of cleanup has to do with handling of touches: while an
animation is in-flight, if your code is not running, the interface by default is responsive
to the user’s touches, which might cause all kinds of havoc as your views try to respond
while the animation is still happening and the screen presentation doesn’t match reality.
To take care of this, it’s common practice to turn off your app’s responsiveness to touches
as you set up an animation and then turn it back on when you’re notified that the
animation is over; locking down all the relevant situations so that this toggling of the
app’s responsiveness is performed coherently can be challenging.

Since your code can run even after you’ve set up an animation, or might start running
while an animation is in-flight, you need to be careful about setting up conflicting ani‐
mations. Multiple animations can be set up (and performed) simultaneously, but trying
to animate or change a property that’s already in the middle of being animated is an
incoherency that can kill the animation there and then. You may sometimes do this
intentionally as a way of interrupting an animation, but just as often you’ll want to take
care not to let your animations step on each other’s feet.

144 | Chapter 4: Animation

New in iOS 8, conflicting view animations may automatically be combined addi‐
tively, rather than the second one superseding the first. I’ll talk more about that later
in this chapter.

Outside forces can interrupt your animations as well. The user might click the Home
button to send your app to the background, or an incoming phone call might arrive
while an animation is in-flight. The system deals coherently with this situation by simply
canceling all in-flight animations when an app is backgrounded; you’ve already arranged
before the animation for your views to assume the final states they will have after the
animation, so no harm is done — when your app resumes, everything is in that final
state you arranged beforehand. But if you wanted your app to resume an animation in
the middle, where it left off when it was interrupted, that would require some canny
coding on your part.

UIImageView and UIImage Animation
UIImageView provides a form of animation so simple as to be scarcely deserving of the
name; still, sometimes it might be all you need. You supply the UIImageView with an
array of UIImages, as the value of its animationImages or highlightedAnimation-
Images property. This array represents the “frames” of a simple cartoon; when you send
the startAnimating message, the images are displayed in turn, at a frame rate deter‐
mined by the animationDuration property, repeating as many times as specified by the
animationRepeatCount property (the default is 0, meaning to repeat forever), or until
the stopAnimating message is received. Before and after the animation, the image view
continues displaying its image (or highlightedImage).

For example, suppose we want an image of Mars to appear out of nowhere and flash
three times on the screen. This might seem to require some sort of NSTimer-based
solution, but it’s far simpler to use an animating UIImageView:

let mars = UIImage(named: "Mars")!
UIGraphicsBeginImageContextWithOptions(mars.size, false, 0)
let empty = UIGraphicsGetImageFromCurrentImageContext()
UIGraphicsEndImageContext()
let arr = [mars, empty, mars, empty, mars]
let iv = UIImageView(image:empty)
iv.frame.origin = CGPointMake(100,100)
self.view.addSubview(iv)
iv.animationImages = arr
iv.animationDuration = 2
iv.animationRepeatCount = 1
iv.startAnimating()

UIImageView and UIImage Animation | 145

You can combine UIImageView animation with other kinds of animation. For example,
you could flash the image of Mars while at the same time sliding the UIImageView
rightward, using view animation as described in the next section.

UIImage supplies a form of animation parallel to that of UIImageView: an image can
itself be an animated image. Just as with UIImageView, this really means that you’ve
prepared multiple images that form a sequence serving as the “frames” of a simple
cartoon. You can create an animated image with one of these UIImage class methods:
animatedImageWithImages:duration:

As with UIImageView’s animationImages, you supply an array of UIImages. You
also supply the duration for the whole animation.

animatedImageNamed:duration:

You supply the name of a single image file, as with init(named:), with no file
extension. The runtime appends "0" (or, if that fails, "1") to the name you supply
and makes that image file the first image in the animation sequence. Then it in‐
crements the appended number, gathering images and adding them to the sequence
(until there are no more, or we reach "1024").

animatedResizableImageNamed:capInsets:resizingMode:duration:

Combines an animated image with a resizable image (Chapter 2).

You do not tell an animated image to start animating, nor are you able to tell it how long
you want the animation to repeat. Rather, an animated image is always animating, re‐
peating its sequence once every duration seconds, so long as it appears in your interface;
to control the animation, add the image to your interface or remove it from the interface,
possibly exchanging it for a similar image that isn’t animated. Moreover, an animated
image can appear in the interface anywhere a UIImage can appear as a property of some
interface object.

In this example, I construct a sequence of red circles of different sizes, in code, and build
an animated image which I then display in a UIButton:

var arr = [UIImage]()
let w : CGFloat = 18
for i in 0 ..< 6 {
 UIGraphicsBeginImageContextWithOptions(CGSizeMake(w,w), false, 0)
 let con = UIGraphicsGetCurrentContext()
 CGContextSetFillColorWithColor(con, UIColor.redColor().CGColor)
 let ii = CGFloat(i)
 CGContextAddEllipseInRect(con, CGRectMake(0+ii,0+ii,w-ii*2,w-ii*2))
 CGContextFillPath(con)
 let im = UIGraphicsGetImageFromCurrentImageContext()
 UIGraphicsEndImageContext()
 arr += [im]
}
let im = UIImage.animatedImageWithImages(arr, duration:0.5)
b.setImage(im, forState:.Normal) // b is a button in the interface

146 | Chapter 4: Animation

View Animation
All animation is ultimately layer animation. However, for a limited range of properties,
you can animate a UIView directly: these are its alpha, backgroundColor, bounds,
center, frame, and transform. You can also animate a UIView’s change of contents.
This list of animatable features, despite its brevity, will often prove quite sufficient. (If
it doesn’t, you can drop down to a lower level and animate a layer, as described later in
this chapter.)

The syntax for animating a UIView involves calling a UIView class method and ex‐
pressing the desired animation in a closure. Such a closure corresponds to an Objective-
C block, so the documentation refers to this as block-based animation, and I will use
phrases such as “animation block” or “animations: block” even though “block” is not
the official Swift term for such a construct.

For example, suppose we have a UIView self.v in the interface, with a yellow back‐
ground color, and we want to animate that view’s change of background color to red.
This will do it:

UIView.animateWithDuration(0.4, animations: {
 self.v.backgroundColor = UIColor.redColor()
})

Any animatable change made within an animations: block will be animated, so we can
animate a change both to the view’s color and to its position simultaneously:

UIView.animateWithDuration(0.4, animations: {
 self.v.backgroundColor = UIColor.redColor()
 self.v.center.y += 100
})

We can also animate changes to multiple views within the same animations: block. For
example, suppose we want to make one view dissolve into another. We start with the
second view present in the view hierarchy, but with an alpha of 0, so that it is invisible.
Then we animate the change of the first view’s alpha to 0 and the second view’s alpha
to 1.

In that case, we might like to place the second view in the view hierarchy just before the
animation starts (invisibly, because its alpha starts at 0) and remove the first view just
after the animation ends (invisibly, because its alpha ends at 0). An additional param‐
eter, completion:, lets us specify what should happen after the animation ends:

let v2 = // ... create and configure new view here ...
v2.alpha = 0
self.v.superview!.addSubview(v2)
UIView.animateWithDuration(0.4, animations: {
 self.v.alpha = 0
 v2.alpha = 1

View Animation | 147

 }, completion: {
 _ in
 self.v.removeFromSuperview()
})

Code that isn’t about animatable view properties can appear in an animations: block
with no problem, but we must be careful to keep any changes to animatable properties
that we do not want animated out of the animations: block. In the preceding example,
in setting v2.alpha to 0, I just want to set it right now, instantly; I don’t want that change
to be animated. So I’ve put that line before the animations: block.

Sometimes, though, that’s not so easy; perhaps, within the animations: block, we must
call a method that might perform animatable changes. The performWithoutAnimation:
method solves the problem; it goes inside an animations: block, but whatever happens
in its block is not animated. In this rather artificial example, the view jumps to its new
position and then slowly turns red:

UIView.animateWithDuration(0.4, animations: {
 self.v.backgroundColor = UIColor.redColor()
 UIView.performWithoutAnimation {
 self.v.center.y += 100
 }
})

The material inside an animations: block (but not inside a performWithoutAnimation:
block) orders the animation — that is, it gives instructions for what the animation will
be when the redraw moment comes. If you change an animatable view property as part
of the animation, you should not change that property again afterward; the results can
be confusing. This code, for example, is essentially incoherent:

UIView.animateWithDuration(2, animations: {
 self.v.center.y = 100
})
self.v.center.y = 300

What actually happens is that the view jumps to a center y position of 100, even though
that setting is inside the animation block, and then animates to a center y position of
300, even though that setting is outside the animation block. What has happened, in
effect, is that the second setting of self.v.center.y has cancelled the first animation
and replaced it with another. I could try to explain why this is, but I’m not even sure I
understand it completely; what I do know is that you should try not to do that sort of
thing. After you’ve ordered an animatable view property to be animated inside an
animations: block, don’t change that view property’s value again until after the anima‐
tion is over.

On the other hand, this code jumps and then animates on iOS 7 and before, but on iOS
8 it does a smooth single animation from its original position to a center y position of
300:

148 | Chapter 4: Animation

UIView.animateWithDuration(2, animations: {
 self.v.center.y = 100
 self.v.center.y = 300
})

This is an important change in iOS 8 animation behavior, and I do know the reason for
it (because Apple explains it in a WWDC 2014 video): it’s because basic positional view
animations are additive by default in iOS 8. This means, in effect, that although there
are two animations of the same view attribute in that code, the second one does not
cancel or conflict with the first, as it did in iOS 7 and before; instead, both animations
are allowed to stand, and the second one is run simultaneously with the first, and is
blended with it.

In that example, it’s particularly obvious what such blending entails. Sometimes,
however, this new iOS 8 blending of animations can give results that may initially
surprise you. If your existing iOS 7 animation code results in new behavior when
your app is compiled for iOS 8, additive animations may be the reason.

View Animation Options
The UIView class methods animateWithDuration: and animateWith-

Duration:completion: are both reduced forms. The full form of this method, which
you should use whenever you need the maximum in flexibility and power, is animate-
WithDuration:delay:options:animations:completion:. The parameters are:
duration

The duration of the animation: how long it takes (in seconds) to run from start to
finish. You can also think of this as the animation’s speed. Obviously, if two views
are told to move different distances in the same time, the one that must move further
must move faster.

delay

The delay before the animation starts. The default is no delay. A delay is not the
same as applying the animation using delayed performance; the animation is ap‐
plied immediately, but when it starts running it spins its wheels, with no visible
change, until the delay time has elapsed.

options

A bitmask combining additional options (using the bitwise-or operator).

animations

The block containing view property changes to be animated.

View Animation | 149

completion

The block to run when the animation ends (or nil). It takes one Bool parameter
indicating whether the animation ran to completion. The block is called, with a
parameter indicating true, even if nothing in the animations: block triggers any
animations. It’s fine for this block to order a further animation, thus chaining
animations.

Here are some of the chief options: values (UIViewAnimationOptions) that you might
wish to use:
Animation curve

An animation curve describes how the animation changes speed during its course.
The term “ease” means that there is a gradual acceleration or deceleration between
the animation’s central speed and the zero speed at its start or end. Specify one at
most:

• .CurveEaseInOut (the default)
• .CurveEaseIn

• .CurveEaseOut

• .CurveLinear (constant speed throughout)

.Repeat

If included, the animation will repeat indefinitely. There is no way to specify a
certain number of repetitions; you either repeat forever or not at all. This feels like
an oversight (a serious oversight); I’ll suggest a workaround in a moment.

.Autoreverse

If included, the animation will run from start to finish (in the given duration time),
and will then run from finish to start (also in the given duration time). The docu‐
mentation’s claim that you can autoreverse only if you also repeat is incorrect; you
can use either or both (or neither).

When using .Autoreverse, you will want to clean up at the end so that the view is back
in its original position when the animation is over. To see what I mean, consider this
code:

let opts = UIViewAnimationOptions.Autoreverse
UIView.animateWithDuration(1, delay: 0, options: opts, animations: {
 self.v.center.x += 100
 }, completion: nil)

The view animates 100 points to the right and then animates 100 points back to its
original position — and then jumps 100 points to the right again. The reason for the
jump is that the last actual value we assigned to the view’s center x is 100 points to the
right, so when the animation is over and the “animation movie” is whipped away, the

150 | Chapter 4: Animation

view is revealed still sitting 100 points to the right. The solution is to move the view back
to its original position in the completion: handler:

let opts = UIViewAnimationOptions.Autoreverse
let xorig = self.v.center.x
UIView.animateWithDuration(1, delay: 0, options: opts, animations: {
 self.v.center.x += 100
 }, completion: {
 _ in
 self.v.center.x = xorig
})

Working around the inability to specify a finite number of repetitions is not easy. Let’s
say you want to repeat the above animation exactly three times. A simple counting loop
won’t work, because animations are asynchronous and time-consuming. One clear sol‐
ution is to append a tail-recursion to the completion: handler:

func animate(count:Int) {
 let opts = UIViewAnimationOptions.Autoreverse
 let xorig = self.v.center.x
 UIView.animateWithDuration(1, delay: 0, options: opts, animations: {
 self.v.center.x += 100
 }, completion: {
 _ in
 self.v.center.x = xorig
 if count > 1 {
 self.animate(count-1)
 }
 })
}

If we call the animate: method with an argument of 3, our animation takes place three
times and stops. There is always a danger, with recursion, of filling up the stack and
running out of memory, but I think we’re safe if we start with a small count value. (That
example, of course, suffers from lack of generality; for a general utility function that can
do a finite count repetition of any animation, see Appendix B.)

There are also some options saying what should happen if another animation is already
ordered or in-flight:
.BeginFromCurrentState

If this animation animates a property already being animated by an animation that
is previously ordered or in-flight, then instead of canceling the previous animation
(completing the requested change instantly), if that is what would normally happen,
this animation will use the presentation layer to decide where to start, and, if pos‐
sible, will “blend” its animation with the previous animation.

.OverrideInheritedDuration

Prevents inheriting the duration from a surrounding or in-flight animation (the
default is to inherit it).

View Animation | 151

.OverrideInheritedCurve

Prevents inheriting the animation curve from a surrounding or in-flight animation
(the default is to inherit it).

To illustrate .BeginFromCurrentState is not as easy as it was in iOS 7 and before,
because simple view animations, as I’ve already said, are additive by default in iOS 8.
Consider the following:

UIView.animateWithDuration(1, animations: {
 self.v.center.x += 100
})
UIView.animateWithDuration(1, delay: 0, options: nil,
 animations: {
 self.v.center.y += 100
}, completion: nil)

In iOS 7, that code would cause the view to jump 100 points rightward and then animate
100 points downward. That’s because both animations have to do with the position of
the view, and they conflict; the second animation therefore caused the first animation
to be thrown away. Setting options: to .BeginFromCurrentState, on the other hand,
caused the two animations to combine: the view animates diagonally down and to the
right.

In iOS 8, however, additive animation is the default, so the view animates diagonally
down and to the right even if options: is nil.

Thus, .BeginFromCurrentState is unlikely to be useful in iOS 8 — though it does no
harm to use it. Observe, however, that the effect of additive animations in iOS 8 is not
identical to the effect of .BeginFromCurrentState in iOS 7. To see the difference, ex‐
periment with code such as this:

UIView.animateWithDuration(2, animations: {
 self.v.center.x += 100
})
delay(1) {
 let opts = UIViewAnimationOptions.BeginFromCurrentState
 UIView.animateWithDuration(1, delay: 0, options: opts,
 animations: {
 self.v.center.y += 100
 }, completion: nil)
}

The second animation launches under delayed performance halfway through the first
animation. In iOS 7, this stops the first animation dead in its tracks; the animation does
resume from that stopping point, but the view turns a sharp corner and makes a beeline
for its final position (down and to the right). In iOS 8, on the other hand, the view never
stops moving, because the first animation is never cancelled; when the second animation
starts, the view turns the corner gently, with some residual horizontal motion from the
first animation.

152 | Chapter 4: Animation

Canceling a View Animation
Once a view animation is in-flight, how can you cancel it? This has always been a tricky
problem, and the change in iOS 8 to additive view animations actually makes it even
trickier.

The simple answer, which is not tricky at all, is to reach down to the CALayer level and
call removeAllAnimations. (If the layer has more than one animation and you only
want to cancel one of them, you can call removeAnimationForKey:; I’ll talk later in this
chapter about how to distinguish layer animations by key.) This has the advantage of
simplicity, but the disadvantage that it simply stops the animation dead: the “animation
movie” is whipped away instantly, leaving the view at its final position.

To illustrate, I’ll start with a simple unidirectional positional animation, with a long
duration so that we can interrupt it in mid-flight (by tapping a button, for example). To
facilitate the explanation, I’ll conserve both the view’s original position and its final
position in properties:

self.pOrig = self.v.center
self.pFinal = self.v.center
self.pFinal.x += 100
UIView.animateWithDuration(4, animations: {
 self.v.center = self.pFinal
})

We can certainly stop that animation abruptly by mindlessly removing all animations
from the layer; this is effectively the same as what the system does automatically when
the app goes into the background:

self.v.layer.removeAllAnimations()

That code, obviously, jumps the view to its final position — because that’s where it really
is, and that fact is revealed when the “animation movie” is removed. Now let’s try to
devise a more subtle form of cancellation: the view should hurry to its final position. In
iOS 7 and before, the way to do this was to order another animation that brings the
animated view rapidly to its final state. But the second animation must not assign the
animated property exactly the same value that the first animation assigned it, or nothing
will happen; we must generate a conflict between the two animations. The solution was
to order a very slightly different, conflicting animation and use its completion: handler
to assign the view property its true final value:

let opts = UIViewAnimationOptions.BeginFromCurrentState
UIView.animateWithDuration(0.1, delay:0.1, options:opts,
 animations: {
 var p = self.pFinal!
 p.x += 1
 self.v.center = p

View Animation | 153

 }, completion: {
 _ in
 self.v.center = self.pFinal
})

That doesn’t work in iOS 8, however, because the two animations don’t conflict; they are
additive. The second animation thus doesn’t remove the first animation, which is what
we’re trying to accomplish. Therefore we must remove the first animation manually.
We already know how to do that: call removeAllAnimations. But we also know that if
we do that, the view will jump to its final position; we want it to remain, for the moment,
at its current position — meaning the animation’s current position. That position is
where the presentation layer currently is. Therefore we reposition the view at the loca‐
tion of its presentation layer, and then remove the animation, and then perform the final
“hurry home” animation:

self.v.layer.position = self.v.layer.presentationLayer().position
self.v.layer.removeAllAnimations()
UIView.animateWithDuration(0.1, animations: {
 self.v.center = self.pFinal
})

One nice thing about our solution is that if we decide that cancellation means returning
the view to its original position, we have only to set the view’s center to self.pOrig
instead of self.pFinal.

Now let’s suppose that the animation we want to cancel is an infinitely repeating
autoreversing animation:

self.pOrig = self.v.center
let opts : UIViewAnimationOptions = .Autoreverse | .Repeat
UIView.animateWithDuration(1, delay: 0, options: opts,
 animations: {
 self.v.center.x += 100
 }, completion: nil)

In that case, the iOS 7 technique of imposing a conflicting animation does work in iOS
8, because the new animation is not additive with the first one. The reason is that, as
I’ve said already, only simple view animations are additive in iOS 8; I have not elaborated
on what “simple” means, but one thing it means is “not repeating.” So here’s how to
cancel that animation by returning it rapidly to its original position:

UIView.animateWithDuration(0.1, delay:0,
 options:.BeginFromCurrentState,
 animations: {
 self.v.center = self.pOrig
 }, completion:nil)

The .BeginFromCurrentState option is necessary to prevent the view from jumping
momentarily to the “final” position, 100 points to the right, to which we set it to initiate
the repeating animation.

154 | Chapter 4: Animation

(If you object that storage of the view’s original or final position as a view controller
property is not a very encapsulated solution, then consider storing it instead in the view’s
layer using key–value coding. The implementation is left as an exercise for the reader.
Hint: a CGPoint will need to be wrapped in an NSValue.)

Custom Animatable View Properties
Even though the view attributes that are animatable through block-based view anima‐
tion are officially limited to its alpha, backgroundColor, bounds, center, frame, and
transform, you can define your own custom view properties that respond by animating
when they themselves are changed in an animation block.

Here’s an example of what I mean. Imagine a UIView subclass, MyView, which has a
Bool swing property. All this does is reposition the view: when swing is set to true, the
view’s center x value is increased by 100; when swing is set to false, the view’s center x
value is decreased by 100. A view’s center is animatable, so we can make it be the case
that when a MyView’s swing is set in an animation block, the position change is ani‐
mated.

The trick is a simple one (though I personally had never thought of it until an Apple
WWDC 2014 video suggested it): implement MyView’s swing setter with a zero-
duration animation block. This basically means that there is no animation by default,
but if we happen to be inside an animation block already when the swing property is
set, the setter’s animation block inherits the duration of the surrounding animation
block — because such inheritance is, as I mentioned earlier, the default:

class MyView : UIView {
 var swing : Bool = false {
 didSet {
 var p = self.center
 p.x = self.swing ? p.x + 100 : p.x - 100
 UIView.animateWithDuration(0, animations: {
 self.center = p
 })
 }
 }
}

The result is exactly as I’ve already said. If, in code elsewhere, we change a MyView’s
swing directly, the view jumps to its new position. But now suppose we change it in an
animation block:

UIView.animateWithDuration(1, animations: {
 self.v.swing = !self.v.swing // "animatable" Bool property
})

In that case, the change in position is animated, with the specified duration of 1.

View Animation | 155

Springing View Animation
A springing view animation is an animation curve with a very fast ease-in and a very
slow ease-out; the animation can even oscillate for a while around its final value, as if it
were being snapped into place by a spring. To use it, call animateWith-

Duration:delay:usingSpring.... For example:

UIView.animateWithDuration(0.8, delay: 0,
 usingSpringWithDamping: 0.7,
 initialSpringVelocity: 20,
 options: nil,
 animations: {
 self.v.center.y += 100
 }, completion: nil)

The damping: and initialSpringVelocity: parameters modify the behavior of the
animation curve. If the damping is less than 1, there’s a waggle as the animated view
assumes its final position; this waggle becomes quite pronounced at values less than
about 0.7, and at values like 0.3 there are several waggles before the view settles into
place.

The initial spring velocity gives the view an initial “kick,” speeding up the initial ease-
in and increasing the tendency of the view to overshoot its final position on its first
approach. Depending on the duration and damping amount, it may need to be quite
large to make an appreciable difference. You can have a lot of waggly fun with smaller
damping values and larger initial spring velocity values. Conversely, a small initial spring
value (about 10 or less) and a high damping value (1.0 or close to it) gives a normal
animation that wouldn’t particularly remind anyone of a spring, but that does have a
pleasingly rapid beginning and slow ending; many of Apple’s own system animations
are actually spring animations of that type (consider, for example, the way folders open
in the springboard).

Keyframe View Animation
A view animation can be ordered as a set of keyframes. This means that, instead of a
simple beginning and end point, you specify multiple stages in the animation and those
stages are joined together for you. You call animateKeyframesWithDuration:...; it has
an animations: block, and inside that block you call addKeyframe... multiple times
to specify each stage. Each keyframe’s start time and duration is between 0 and 1, relative
to the animation as a whole. (Giving the start time and duration in seconds is a common
beginner mistake.)

For example, here I’ll waggle a view back and forth horizontally while moving it down
the screen vertically:

156 | Chapter 4: Animation

var p = self.v.center
let dur = 0.25
var start = 0.0
let dx : CGFloat = 100
let dy : CGFloat = 50
var dir : CGFloat = 1
UIView.animateKeyframesWithDuration(4,
 delay: 0, options: nil,
 animations: {
 UIView.addKeyframeWithRelativeStartTime(start,
 relativeDuration: dur,
 animations: {
 p.x += dx*dir; p.y += dy
 self.v.center = p
 })
 start += dur; dir *= -1
 UIView.addKeyframeWithRelativeStartTime(start,
 relativeDuration: dur,
 animations: {
 p.x += dx*dir; p.y += dy
 self.v.center = p
 })
 start += dur; dir *= -1
 UIView.addKeyframeWithRelativeStartTime(start,
 relativeDuration: dur,
 animations: {
 p.x += dx*dir; p.y += dy
 self.v.center = p
 })
 start += dur; dir *= -1
 UIView.addKeyframeWithRelativeStartTime(start,
 relativeDuration: dur,
 animations: {
 p.x += dx*dir; p.y += dy
 self.v.center = p
 })
 }, completion: nil)

In that code, there are four keyframes, evenly spaced: each is .25 in duration (one-fourth
of the whole animation) and each starts .25 later than the previous one (as soon as the
previous one ends). In each keyframe, the view’s center x value increases or decreases
by 100, alternately, while its center y value keeps increasing by 50.

The keyframe values are points in space and time; the actual animation interpolates
between them. How this interpolation is done depends upon the options:, which are
UIKeyframeAnimationOptions values whose names start with “CalculationMode.” The
default is .CalculationModeLinear. In our example, this means that the path followed
by the view is a sharp zig-zag, the view seeming to bounce off invisible walls at the right
and left. But if the setting is .CalculationModeCubic, our view describes a smooth S-
curve, starting at the view’s initial position and ending at the last keyframe point, and

View Animation | 157

passing through the three other keyframe points like the maxima and minima of a sine
wave.

Because my keyframes are perfectly even, I could achieve the same effects by
using .CalculationModePaced (same effect as .CalculationModeLinear)
and .CalculationModeCubicPaced (same effect as .CalculationModeCubic). The
Paced options simply ignore the relative start time and relative duration values of the
keyframes; you might as well pass 0 for all of them. Instead, they divide up the times
and durations evenly, exactly as my code has done.

Finally, .CalculationModeDiscrete means that the changed animatable properties
don’t animate: the animation jumps to each keyframe.

The outer animations: block can contain other changes to animatable view properties,
as long as they don’t conflict with the keyframe animations:; these are animated over
the total duration. For example:

UIView.animateKeyframesWithDuration(4,
 delay: 0, options: nil,
 animations: {
 self.v.alpha = 0
 // ...

The result is that as the view zigzags back and forth down the screen, it also gradually
fades away.

It is also legal and meaningful to supply an animation curve as part of the options:
argument. Unfortunately, the documentation fails to make this clear; and Swift’s
obsessive-compulsive attitude towards data types resists folding a UIViewAnimation‐
Options animation curve directly into a value typed as a UIViewKeyframeAnimation‐
Options. Yet if you don’t do it, the default is .CurveEaseInOut, which may not be what
you want. Here’s how to combine .CalculationModeLinear with .CurveLinear:

let opt1 : UIViewKeyframeAnimationOptions = .CalculationModeLinear
let opt2 : UIViewAnimationOptions = .CurveLinear
let opts = opt1 | UIViewKeyframeAnimationOptions(opt2.rawValue)

That’s two different senses of “Linear.” The first means that the path described by the
moving view is a sequence of straight lines. The second means that the moving view’s
speed along that path is steady.

Transitions
A transition is an animation that emphasizes a view’s change of content. Transitions are
ordered using one of two UIView class methods:

158 | Chapter 4: Animation

• transitionWithView:duration:options:animations:completion:

• transitionFromView:toView:duration:options:completion:

The transition animation types are expressed as part of the options: bitmask:

• .TransitionFlipFromLeft, .TransitionFlipFromRight
• .TransitionCurlUp, .TransitionCurlDown
• .TransitionFlipFromBottom, .TransitionFlipFromTop
• .TransitionCrossDissolve

In this example, a UIImageView containing an image of Mars flips over as its image
changes to a smiley face; it looks as if the image view were two-sided, with Mars on one
side and the smiley face on the other:

let opts : UIViewAnimationOptions = .TransitionFlipFromLeft
UIView.transitionWithView(self.iv, duration: 0.8, options: opts,
 animations: {
 self.iv.image = UIImage(named:"Smiley")
 }, completion: nil)

In that example, I’ve put the content change inside the animations: block. That’s con‐
ventional but misleading; the truth is that if all that’s changing is the content, nothing
needs to go into the animations: block. The change of content can be anywhere, before
or even after this entire line of code. It’s the flip that’s being animated. You might use
the animations: block here to order additional animations, such as a change in a view’s
center.

You can do the same sort of thing with a custom view that does its own drawing. Let’s
say that I have a UIView subclass, MyView, that draws either a rectangle or an ellipse
depending on the value of its Bool reverse property:

class MyView : UIView {
 var reverse = false
 override func drawRect(rect: CGRect) {
 let f = self.bounds.rectByInsetting(dx: 10, dy: 10)
 let con = UIGraphicsGetCurrentContext()
 if self.reverse {
 CGContextStrokeEllipseInRect(con, f)
 }
 else {
 CGContextStrokeRect(con, f)
 }
 }
}

This code flips a MyView instance while changing its drawing from a rectangle to an
ellipse or vice versa:

View Animation | 159

let opts : UIViewAnimationOptions = .TransitionFlipFromLeft
self.v.reverse = !self.v.reverse
UIView.transitionWithView(self.v, duration: 1, options: opts,
 animations: {
 self.v.setNeedsDisplay()
 }, completion: nil)

During a transition, by default, the view’s appearance changes directly to its final ap‐
pearance; in effect, a snapshot of the view’s final appearance has been taken beforehand.
If that isn’t what you want — that is, if you want to display a subview of the transitioning
view being animated as it assumes its final state — use .AllowAnimatedContent in the
options bitmask.

transitionFromView:toView:... names two views; the first is replaced by the second,
while their superview undergoes the transition animation. There are two possible con‐
figurations, depending on the options you provide:
Remove one subview, add the other

If .ShowHideTransitionViews is not one of the options, then the second subview
is not in the view hierarchy when we start; the transition removes the first subview
from its superview and adds the second subview to that same superview.

Hide one subview, show the other
If .ShowHideTransitionViews is one of the options, then both subviews are in the
view hierarchy when we start; the hidden of the first is false, the hidden of the
second is true, and the transition reverses these values.

In this example, a label self.lab is already in the interface. The animation causes the
superview of self.lab to flip over, while at the same time a different label, lab2, is
substituted for it:

let lab2 = UILabel(frame:self.lab.frame)
lab2.text = self.lab.text == "Hello" ? "Howdy" : "Hello"
lab2.sizeToFit()
UIView.transitionFromView(self.lab, toView: lab2,
 duration: 0.8, options: .TransitionFlipFromLeft,
 completion: {
 _ in
 self.lab = lab2
 })

It’s up to you to make sure beforehand that the second view (toView:) has the desired
position, so that it will appear in the right place in its superview.

Implicit Layer Animation
If a layer is already present in the interface and is not a view’s underlying layer, animating
it can be as simple as setting a property. A change in what the documentation calls an

160 | Chapter 4: Animation

animatable property is automatically interpreted as a request to animate that change.
In other words, animation of layer property changes is the default! Multiple property
changes are considered part of the same animation. This mechanism is called implicit
animation.

You cannot use implicit animation on a UIView’s underlying layer. You can animate
a UIView’s underlying layer directly, but you must use explicit layer animation
(discussed later in this chapter).

For example, in Chapter 3 we constructed a compass out of layers. The compass itself
is a CompassView that does no drawing of its own; its underlying layer is a Compass‐
Layer that also does no drawing, serving only as a superlayer for the layers that constitute
the drawing. None of the layers that constitute the actual drawing is the underlying layer
of a view, so a property change to any of them, once they are established in the interface,
is animated automatically.

So, presume that we have a reference to the arrow layer (arrow). If we rotate the arrow
by changing its transform property, that rotation is animated:

// an implicit animation
arrow.transform = CATransform3DRotate(
 arrow.transform, CGFloat(M_PI)/4.0, 0, 0, 1)

CALayer properties listed in the documentation as animatable in this way are anchor-
Point and anchorPointZ, backgroundColor, borderColor, borderWidth, bounds,
contents, contentsCenter, contentsRect, cornerRadius, doubleSided, hidden,
masksToBounds, opacity, position and zPosition, rasterizationScale and should-
Rasterize, shadowColor, shadowOffset, shadowOpacity, shadowRadius, and
sublayerTransform and transform.

In addition, a CAShapeLayer’s path, strokeStart, strokeEnd, fillColor, stroke-
Color, lineWidth, lineDashPhase, and miterLimit are animatable; so are a CAText‐
Layer’s fontSize and foregroundColor, and a CAGradientLayer’s colors, locations,
and endPoint. (See Chapter 3 for discussion of those classes; the fact that a CAShape‐
Layer’s path can be animated is particularly intriguing, and I’ll give an example later in
this chapter.)

Basically, a property is animatable because there’s some sensible way to interpolate the
intermediate values between one value and another. The nature of the animation at‐
tached to each property is therefore generally just what you would intuitively expect.
When you change a layer’s hidden property, it fades out of view (or into view). When
you change a layer’s contents, the old contents are dissolved into the new contents. And
so forth.

Implicit Layer Animation | 161

Implicit layer animation doesn’t affect a layer as it is being created, configured, and
added to the interface. Implicit animation comes into play when you change an ani‐
matable property of a layer that is already present in the interface.

Animation Transactions
Implicit animation operates with respect to a transaction (a CATransaction), which
collects all animation requests and hands them over to the animation server in a single
batch. Every animation request takes place in the context of some transaction. You can
make this explicit by wrapping your animation requests in calls to the CATransaction
class methods begin and commit; the result is a transaction block. Additionally, there is
always an implicit transaction surrounding your code, and you can operate on this
implicit transaction without any begin and commit.

To modify the characteristics of an implicit animation, you modify the transaction that
surrounds it. Typically, you’ll use these CATransaction class methods:
setAnimationDuration:

The duration of the animation.

setAnimationTimingFunction:

A CAMediaTimingFunction; timing functions are discussed in the next section.

setCompletionBlock:

A block to be called when the animation ends. The block takes no parameters. The
block is called even if no animation is triggered during this transaction.

By nesting transaction blocks, you can apply different animation characteristics to dif‐
ferent elements of an animation. But you can also use transaction commands outside
of any transaction block to modify the implicit transaction. So, in our previous example,
we could slow down the animation of the arrow like this:

CATransaction.setAnimationDuration(0.8)
arrow.transform = CATransform3DRotate(
 arrow.transform, CGFloat(M_PI)/4.0, 0, 0, 1)

A important use of transactions is to turn implicit animation off. This is valuable because
implicit animation is the default, and can be unwanted (and a performance drag). To
turn off implicit animation, call the CATransaction class method setDisableActions:
with argument true. There are other ways to turn off implicit animation (discussed later
in this chapter), but this is the simplest.

setCompletionBlock: is an extraordinarily useful and probably underutilized tool. The
transaction’s completion block signals the end, not only of the implicit layer property
animations you yourself have ordered as part of this transaction, but of all animations
ordered during this transaction, including Cocoa’s own animations. Thus, it’s a way to
be notified when any and all animations come to an end.

162 | Chapter 4: Animation

Transactions and the Redraw Moment
The “redraw moment” that I’ve spoken of in connection with drawing, layout, layer
property settings, and animation is actually the end of the current transaction. You set
a view’s background color; the displayed color of the background is changed when the
transaction ends. You call setNeedsDisplay; drawRect: is called when the transaction
ends. You call setNeedsLayout; layout happens when the transaction ends. You order
an animation; the animation starts when the transaction ends.

Your code runs within an implicit transaction. Your code comes to an end, and the
transaction commits itself. It is then, as part of the transaction commit procedure, that
the screen is updated: first layout, then drawing, then obedience to layer property
changes, then the start of any animations. The transaction then continues on a back‐
ground thread, under the guidance of the animation server, while any animations are
performed, and finally calls its completion block, if any, when the animations are over.

CATransaction implements KVC to allow you to set and retrieve a value for an arbitrary
key, similar to CALayer.

An explicit transaction block that orders an animation to a layer, if the block is not
preceded by any other changes to the layer, can cause animation to begin immedi‐
ately when the CATransaction class method commit is called, without waiting for
the redraw moment, while your code continues running. In my experience, this
can cause trouble (animation delegate messages cannot arrive, and the presentation
layer can’t be queried properly) and should be avoided.

Media Timing Functions
The CATransaction class method setAnimationTimingFunction: takes as its param‐
eter a media timing function (CAMediaTimingFunction). This class is the general ex‐
pression of the animation curves we have already met (ease-in-out, ease-in, ease-out,
and linear), and you can use it with those very same predefined curves, by calling
the CAMediaTimingFunction initializer init(name:) with one of these parameters:

• kCAMediaTimingFunctionLinear

• kCAMediaTimingFunctionEaseIn

• kCAMediaTimingFunctionEaseOut

• kCAMediaTimingFunctionEaseInEaseOut

• kCAMediaTimingFunctionDefault

Implicit Layer Animation | 163

Figure 4-1. An ease-in-out Bézier curve

A media timing function is a Bézier curve defined by two points. The curve graphs the
fraction of the animation’s time that has elapsed (the x-axis) against the fraction of the
animation’s change that has occurred (the y-axis); its endpoints are therefore at
(0.0,0.0) and (1.0,1.0), because at the beginning of the animation there has been
no elapsed time and no change, and at the end of the animation all the time has elapsed
and all the change has occurred.

The curve’s defining points are its endpoints, and each endpoint needs only one Bézier
control point to define the tangent to the curve. And because the curve’s endpoints are
known, defining the two control points is sufficient to describe the entire curve. And
because a point is a pair of floating-point values, a media timing function can be ex‐
pressed as four floating-point values. That is, in fact, how it is expressed.

So, for example, the ease-in-out timing function is expressed as the four values 0.42,
0.0, 0.58, 1.0. That defines a Bézier curve with one endpoint at (0.0,0.0), whose
control point is (0.42,0.0), and the other endpoint at (1.0,1.0), whose control point
is (0.58,1.0) (Figure 4-1).

To define your own media timing function, supply the coordinates of the two control
points by calling init(controlPoints:). (It helps to design the curve in a standard
drawing program first so that you can visualize how the placement of the control points
shapes the curve.) For example, here’s a media timing function that starts out quite
slowly and then whips quickly into place after about two-thirds of the time has elapsed.
I call this the “clunk” timing function, and it looks great with the compass arrow:

let clunk = CAMediaTimingFunction(controlPoints: 0.9, 0.1, 0.7, 0.9)
CATransaction.setAnimationTimingFunction(clunk)
arrow.transform = CATransform3DRotate(
 arrow.transform, CGFloat(M_PI)/4.0, 0, 0, 1)

164 | Chapter 4: Animation

Core Animation
Core Animation is the fundamental underlying iOS animation technology. View ani‐
mation and implicit layer animation are merely convenient façades for Core Animation.
Core Animation is explicit layer animation, and revolves primarily around the CAAni‐
mation class and its subclasses, which allow you to create far more elaborate specifica‐
tions of an animation than anything we’ve encountered so far.

You may never program at the level of Core Animation, but you should read this section
anyway, if only to learn how animation really works and to get a sense of its mighty
powers. In particular, Core Animation:

• Works even on a view’s underlying layer. Thus, Core Animation is the only way to
apply full-on layer property animation to a view.

• Provides fine control over the intermediate values and timing of an animation.
• Allows animations to be grouped into complex combinations.
• Adds transition animation effects that aren’t available otherwise, such as new con‐

tent “pushing” the previous content out of a layer.

Animating a view’s underlying layer with Core Animation is layer animation, not
view animation — so you don’t get any automatic layout of that view’s subviews.
This can be a reason for preferring view animation.

CABasicAnimation and Its Inheritance
The simplest way to animate a property with Core Animation is with a CABasic‐
Animation object. CABasicAnimation derives much of its power through its inheri‐
tance, so I’ll describe that inheritance along with CABasicAnimation itself. You will
readily see that all the property animation features we have met so far are embodied in
a CABasicAnimation instance.
CAAnimation

CAAnimation is an abstract class, meaning that you’ll only ever use a subclass of
it. Some of CAAnimation’s powers come from its implementation of the CAMedia‐
Timing protocol.
delegate

The delegate messages are animationDidStart: and animationDidStop:
finished:.

A CAAnimation instance retains its delegate; this is very unusual behavior and
can cause trouble if you’re not conscious of it (I’m speaking from experience).
Alternatively, don’t set a delegate; to make your code run after the animation

Core Animation | 165

ends, call the CATransaction class method setCompletionBlock: before con‐
figuring the animation.

duration, timingFunction
The length of the animation, and its timing function (a CAMediaTiming‐
Function). A duration of 0 (the default) means .25 seconds unless overridden
by the transaction.

autoreverses, repeatCount, repeatDuration, cumulative
For an infinite repeatCount (in Swift), use Float.infinity. The repeat-
Duration property is a different way to govern repetition, specifying how long
the repetition should continue rather than how many repetitions should occur;
don’t specify both a repeatCount and a repeatDuration. If cumulative is
true, a repeating animation starts each repetition where the previous repetition
ended (rather than jumping back to the start value).

beginTime

The delay before the animation starts. To delay an animation with respect to
now, call CACurrentMediaTime and add the desired delay in seconds. The delay
does not eat into the animation’s duration.

timeOffset

A shift in the animation’s overall timing; looked at another way, specifies the
starting frame of the “animation movie,” which is treated as a loop. For example,
an animation with a duration of 8 and a time offset of 4 plays its second half
followed by its first half.

CAAnimation, along with all its subclasses, implements KVC to allow you to set
and retrieve a value for an arbitrary key, similar to CALayer (Chapter 3) and CA‐
Transaction.

CAPropertyAnimation
CAPropertyAnimation is a subclass of CAAnimation. It too is abstract, and adds
the following:
keyPath

The all-important string specifying the CALayer key that is to be animated.
Recall from Chapter 3 that CALayer properties are accessible through KVC
keys; now we are using those keys! The convenience initializer init(keyPath:)
creates the instance and assigns it a keyPath.

additive

If true, the values supplied by the animation are added to the current presen‐
tation layer value.

166 | Chapter 4: Animation

valueFunction

Converts a simple scalar value that you supply into a transform.

There is no animatable CALayer key called "frame". To animate a layer’s frame
using explicit layer animation, if both its position and bounds are to change, you
must animate both. Similarly, you cannot use explicit layer animation to animate
a layer’s affineTransform property, because affineTransform is not a property (it’s
a pair of convenience methods); you must animate its transform instead. Attempt‐
ing to form an animation with a key path of "frame" or "affineTransform" is a
common beginner error.

CABasicAnimation
CABasicAnimation is a subclass (not abstract!) of CAPropertyAnimation. It adds
the following:
fromValue, toValue

The starting and ending values for the animation. These values must be
Objective-C objects, so numbers and structs will have to be wrapped accord‐
ingly, using NSNumber and NSValue (Swift will automatically take care of the
former but not the latter). If neither fromValue nor toValue is provided, the
former and current values of the property are used. If just one of fromValue or
toValue is provided, the other uses the current value of the property.

byValue

Expresses one of the endpoint values as a difference from the other rather than
in absolute terms. So you would supply a byValue instead of a fromValue or
instead of a toValue, and the actual fromValue or toValue would be calculated
for you by subtraction or addition with respect to the other value. If you supply
only a byValue, the fromValue is the property’s current value.

Using a CABasicAnimation
Having constructed and configured a CABasicAnimation, the way you order it to be
performed is to add it to a layer. This is done with the CALayer instance method add-
Animation:forKey:. (I’ll discuss the purpose of the forKey: parameter later; it’s fine to
ignore it and use nil, as I do in the examples that follow.)

However, there’s a slight twist. A CAAnimation is merely an animation; all it does is
describe the hoops that the presentation layer is to jump through, the “animation movie”
that is to be presented. It has no effect on the layer itself. Thus, if you naively create a
CABasicAnimation and add it to a layer with addAnimation:forKey:, the animation
happens and then the “animation movie” is whipped away to reveal the layer sitting

Core Animation | 167

there in exactly the same state as before. It is up to you to change the layer to match what
the animation will ultimately portray.

This requirement may seem odd, but keep in mind that we are now in a much more
fundamental, flexible world than the automatic, convenient worlds of view animation
and implicit layer animation. Using explicit animation is more work, but you get more
power. The converse, of course, is that you don’t have to change the layer if it doesn’t
change as a result of the animation.

To assure good results, start by taking a plodding, formulaic approach to the use of
CABasicAnimation, like this:

1. Capture the start and end values for the layer property you’re going to change,
because you’re likely to need these values in what follows.

2. Change the layer property to its end value, first calling setDisableActions: if
necessary to prevent implicit animation.

3. Construct the explicit animation, using the start and end values you captured earlier,
and with its keyPath corresponding to the layer property you just changed.

4. Add the explicit animation to the layer.

The explicit animation is copied when it is added to the layer. Therefore the ani‐
mation must be configured first and added to the layer later. Configuring an ani‐
mation after it has been added to a layer will have no effect on how that layer is
animated, because the animation that has been added to the layer is no longer the
animation you are configuring.

Here’s how you’d use this approach to animate our compass arrow rotation:

// capture the start and end values
let startValue = arrow.transform
let endValue = CATransform3DRotate(
 startValue, CGFloat(M_PI)/4.0, 0, 0, 1)
// change the layer, without implicit animation
CATransaction.setDisableActions(true)
arrow.transform = endValue
// construct the explicit animation
let anim = CABasicAnimation(keyPath:"transform")
anim.duration = 0.8
let clunk = CAMediaTimingFunction(controlPoints:0.9, 0.1, 0.7, 0.9)
anim.timingFunction = clunk
anim.fromValue = NSValue(CATransform3D:startValue)
anim.toValue = NSValue(CATransform3D:endValue)
// ask for the explicit animation
arrow.addAnimation(anim, forKey:nil)

168 | Chapter 4: Animation

Once you’re comfortable with the full form, you will find that in many cases it can be
condensed. For example, when the fromValue and toValue are not set, the former and
current values of the property are used automatically. (This magic is possible because,
at the time the CABasicAnimation is added to the layer, the presentation layer still has
the former value of the property, while the layer itself has the new value; thus, the
CABasicAnimation is able to retrieve them.) In our example, therefore, there is no need
to set the fromValue and toValue, and no need to capture the start and end values
beforehand. Here’s the condensed version:

CATransaction.setDisableActions(true)
arrow.transform = CATransform3DRotate(
 arrow.transform, CGFloat(M_PI)/4.0, 0, 0, 1)
let anim = CABasicAnimation(keyPath:"transform")
anim.duration = 0.8
let clunk = CAMediaTimingFunction(controlPoints:0.9, 0.1, 0.7, 0.9)
anim.timingFunction = clunk
arrow.addAnimation(anim, forKey:nil)

As I mentioned earlier, you will omit changing the layer if it doesn’t change as a result
of the animation. For example, let’s make the compass arrow appear to vibrate rapidly,
without ultimately changing its current orientation. To do this, we’ll waggle it back and
forth, using a repeated animation, between slightly clockwise from its current position
and slightly counterclockwise from its current position. The “animation movie” neither
starts nor stops at the current position of the arrow, but for this animation it doesn’t
matter, because it all happens so quickly as to appear perfectly natural:

// capture the start and end values
let nowValue = arrow.transform
let startValue = CATransform3DRotate(
 nowValue, CGFloat(M_PI)/40.0, 0, 0, 1)
let endValue = CATransform3DRotate(
 nowValue, CGFloat(-M_PI)/40.0, 0, 0, 1)
// construct the explicit animation
let anim = CABasicAnimation(keyPath:"transform")
anim.duration = 0.05
anim.timingFunction = CAMediaTimingFunction(
 name:kCAMediaTimingFunctionLinear)
anim.repeatCount = 3
anim.autoreverses = true
anim.fromValue = NSValue(CATransform3D:startValue)
anim.toValue = NSValue(CATransform3D:endValue)
// ask for the explicit animation
arrow.addAnimation(anim, forKey:nil)

That code, too, can be shortened considerably from its full form. We can eliminate the
need to calculate the new rotation values based on the arrow’s current transform by
setting our animation’s additive property to true; this means that the animation’s
property values are added to the existing property value for us, so that they are relative,
not absolute. For a transform, “added” means “matrix-multiplied,” so we can describe

Core Animation | 169

the waggle without any reference to the arrow’s current rotation. Moreover, because our
rotation is so simple (around a cardinal axis), we can take advantage of CAProperty‐
Animation’s valueFunction; the animation’s property values can then be simple scalars
(in this case, angles), because the valueFunction tells the animation to interpret these
as rotations around the z-axis:

let anim = CABasicAnimation(keyPath:"transform")
anim.duration = 0.05
anim.timingFunction = CAMediaTimingFunction(
 name:kCAMediaTimingFunctionLinear)
anim.repeatCount = 3
anim.autoreverses = true
anim.additive = true
anim.valueFunction = CAValueFunction(
 name:kCAValueFunctionRotateZ)
anim.fromValue = M_PI/40
anim.toValue = -M_PI/40
arrow.addAnimation(anim, forKey:nil)

Instead of using a valueFunction, we could have set the animation’s key path to
"transform.rotation.z" to achieve the same effect. However, Apple advises against
this, as it can result in mathematical trouble when there is more than one rotation.

Let’s return once more to our arrow “clunk” rotation for one final alternative imple‐
mentation using the additive and valueFunction properties. We set the arrow layer
to its final transform at the outset, so when the time comes to configure the animation,
its toValue, in additive terms, will be 0; the fromValue will be its current value ex‐
pressed negatively, like this:

let rot = CGFloat(M_PI)/4.0
CATransaction.setDisableActions(true)
arrow.transform = CATransform3DRotate(arrow.transform, rot, 0, 0, 1)
// construct animation additively
let anim = CABasicAnimation(keyPath:"transform")
anim.duration = 0.8
let clunk = CAMediaTimingFunction(controlPoints:0.9, 0.1, 0.7, 0.9)
anim.timingFunction = clunk
anim.fromValue = -rot
anim.toValue = 0
anim.additive = true
anim.valueFunction = CAValueFunction(name:kCAValueFunctionRotateZ)
arrow.addAnimation(anim, forKey:nil)

This is an interesting way of describing the animation; in effect, it expresses the ani‐
mation in reverse, regarding the final position as correct and the current position as an
aberration to be corrected. It also happens to be the way iOS 8 additive view animations
are rewritten behind the scenes, and explains their behavior.

170 | Chapter 4: Animation

Keyframe Animation
Keyframe animation (CAKeyframeAnimation) is an alternative to basic animation
(CABasicAnimation); they are both subclasses of CAPropertyAnimation and they are
used in identical ways. The difference is that a keyframe animation, in addition to spec‐
ifying a starting and ending value, also specifies multiple values through which the
animation should pass on the way, the stages (frames) of the animation. This can be as
simple as setting the animation’s values array.

Here’s a more sophisticated version of our animation for waggling the compass arrow:
the animation includes both the start and end states, and the degree of waggle gets
progressively smaller:

var values = [0.0]
var direction = 1.0
for (var i = 20; i < 60; i += 5, direction *= -1) { // alternate directions
 values.append(direction * M_PI / Double(i))
}
values.append(0.0)
let anim = CAKeyframeAnimation(keyPath:"transform")
anim.values = values
anim.additive = true
anim.valueFunction = CAValueFunction(name: kCAValueFunctionRotateZ)
arrow.addAnimation(anim, forKey:nil)

Here are some CAKeyframeAnimation properties:
values

The array of values the animation is to adopt, including the starting and ending
value.

timingFunctions

An array of timing functions, one for each stage of the animation (so that this array
will be one element shorter than the values array).

keyTimes

An array of times to accompany the array of values, defining when each value should
be reached. The times start at 0 and are expressed as increasing fractions of 1, ending
at 1.

calculationMode

Describes how the values are treated to create all the values through which the
animation must pass.

• The default is kCAAnimationLinear, a simple straight-line interpolation from
value to value.

Core Animation | 171

• kCAAnimationCubic constructs a single smooth curve passing through all the
values (and additional advanced properties, tensionValues, continuity-
Values, and biasValues, allow you to refine the curve).

• kCAAnimationPaced and kCAAnimationCubicPaced means the timing func‐
tions and key times are ignored, and the velocity is made constant through the
whole animation.

• kCAAnimationDiscrete means no interpolation: we jump directly to each value
at the corresponding key time.

path

When you’re animating a property whose values are pairs of floats (CGPoints), this
is an alternative way of describing the values; instead of a values array, which must
be interpolated to arrive at the intermediate values along the way, you supply the
entire interpolation as a single CGPath. The points used to draw the path are the
keyframe values, so you can still apply timing functions and key times. If you’re
animating a position, the rotationMode property lets you ask the animated object
to rotate so as to remain perpendicular to the path.

In this example, the values array is a sequence of five images to be presented successively
and repeatedly in a layer’s contents, like the frames in a movie; the effect is similar to
UIImageView and UIImage animation, discussed earlier in this chapter:

let anim = CAKeyframeAnimation(keyPath:"contents")
// self.images is an array of UIImage
anim.values = self.images.map {$0.CGImage as AnyObject}
anim.keyTimes = [0.0, 0.25, 0.5, 0.75, 1.0]
anim.calculationMode = kCAAnimationDiscrete
anim.duration = 1.5
anim.repeatCount = Float.infinity
// self.sprite is a CALayer
self.sprite.addAnimation(anim, forKey:nil)

Making a Property Animatable
So far, we’ve been animating built-in animatable properties. If you define your own
property on a CALayer subclass, you can easily make that property animatable through
a CAPropertyAnimation (a CABasicAnimation or a CAKeyframeAnimation). For ex‐
ample, here we animate the increase or decrease in a CALayer subclass property called
thickness, using essentially the pattern for explicit animation that we’ve already de‐
veloped:

172 | Chapter 4: Animation

let lay = self.v.layer as MyLayer
let cur = lay.thickness
let val : CGFloat = cur == 10 ? 0 : 10
lay.thickness = val
let ba = CABasicAnimation(keyPath:"thickness")
ba.fromValue = cur
lay.addAnimation(ba, forKey:nil)

To make our layer responsive to such a command, it needs a thickness property (ob‐
viously) and it must return true from the class method needsDisplayForKey:, where
the key is the string name of the property:

class MyLayer : CALayer {
 var thickness : CGFloat = 0
 override class func needsDisplayForKey(key: String) -> Bool {
 if key == "thickness" {
 return true
 }
 return super.needsDisplayForKey(key)
 }
}

Returning true from needsDisplayForKey: causes this layer to be redisplayed repeat‐
edly as the thickness property changes. So if we want to see the animation, this layer
also needs to draw itself in some way that depends on the thickness property. Here, I’ll
implement the layer’s drawInContext: to make thickness the thickness of the black
border around a red rectangle:

override func drawInContext(con: CGContext) {
 let r = self.bounds.rectByInsetting(dx:20, dy:20)
 CGContextSetFillColorWithColor(con, UIColor.redColor().CGColor)
 CGContextFillRect(con, r)
 CGContextSetLineWidth(con, self.thickness)
 CGContextStrokeRect(con, r)
}

At every frame of the animation, drawInContext: is called, and because the thickness
value differs at each step, it appears animated.

We have made MyLayer’s thickness property animatable when using explicit layer
animation, but it would be even cooler to make it animatable when using implicit layer
animation (that is, when setting lay.thickness directly). Later in this chapter, I’ll show
how to do that.

Grouped Animations
A grouped animation (CAAnimationGroup) combines multiple animations into one,
by means of its animations property (an array of animations). By delaying and timing
the various component animations, complex effects can be achieved.

Core Animation | 173

A CAAnimationGroup is itself an animation; it is a CAAnimation subclass, so it has a
duration and other animation features. Think of the CAAnimationGroup as the parent,
and its animations as its children. Then the children inherit default property values from
their parent. Thus, for example, if you don’t set a child’s duration explicitly, it will inherit
the parent’s duration.

Let’s use a grouped animation to construct a sequence where the compass arrow rotates
and then waggles. This requires very little modification of code we’ve already written.
We express the first animation in its full form, with explicit fromValue and toValue.
We postpone the second animation using its beginTime property; notice that we express
this in relative terms, as a number of seconds into the parent’s duration, not with respect
to CACurrentMediaTime. Finally, we set the overall parent duration to the sum of the
child durations, so that it can embrace both of them (failing to do this, and then won‐
dering why some child animations never occur, is a common beginner error):

// capture current value, set final value
let rot = M_PI/4.0
CATransaction.setDisableActions(true)
let current = arrow.valueForKeyPath("transform.rotation.z")!.doubleValue
arrow.setValue(current + rot, forKeyPath:"transform.rotation.z")
// first animation (rotate and clunk)
let anim1 = CABasicAnimation(keyPath:"transform")
anim1.duration = 0.8
let clunk = CAMediaTimingFunction(controlPoints:0.9, 0.1, 0.7, 0.9)
anim1.timingFunction = clunk
anim1.fromValue = current
anim1.toValue = current + rot
anim1.valueFunction = CAValueFunction(name:kCAValueFunctionRotateZ)
// second animation (waggle)
var values = [0.0]
var direction = 1.0
for (var i = 20; i < 60; i += 5, direction *= -1) { // alternate directions
 values.append(direction * M_PI / Double(i))
}
values.append(0.0)
let anim2 = CAKeyframeAnimation(keyPath:"transform")
anim2.values = values
anim2.duration = 0.25
anim2.additive = true
anim2.beginTime = anim1.duration - 0.1
anim2.valueFunction = CAValueFunction(name: kCAValueFunctionRotateZ)
// group
let group = CAAnimationGroup()
group.animations = [anim1, anim2]
group.duration = anim1.duration + anim2.duration
arrow.addAnimation(group, forKey:nil)

In that example, I grouped two animations that animated the same property sequentially.
Now let’s go to the other extreme and group some animations that animate different

174 | Chapter 4: Animation

Figure 4-2. A boat and the course she’ll sail

properties simultaneously. I have a small view (self.v), located near the top-right cor‐
ner of the screen, whose layer contents are a picture of a sailboat facing to the left. I’ll
“sail” the boat in a curving path, both down the screen and left and right across the
screen, like an extended letter “S” (Figure 4-2). Each time the boat comes to a vertex of
the curve, changing direction across the screen, I’ll turn the boat picture so that it faces
the way it’s about to move. At the same time, I’ll constantly rock the boat, so that it
always appears to be pitching a little on the waves.

Here’s the first animation, the movement of the boat along its curving path. It illustrates
the use of a CAKeyframeAnimation with a CGPath; the calculationMode of
kCAAnimationPaced ensures an even speed over the whole path. We don’t set an explicit
duration because we want to adopt the duration of the group:

let h : CGFloat = 200
let v : CGFloat = 75
let path = CGPathCreateMutable()
var leftright : CGFloat = 1
var next : CGPoint = self.v.layer.position
var pos : CGPoint
CGPathMoveToPoint(path, nil, next.x, next.y)
for i in 0 ..< 4 {
 pos = next
 leftright *= -1
 next = CGPointMake(pos.x+h*leftright, pos.y+v)
 CGPathAddCurveToPoint(path, nil,
 pos.x, pos.y+30,
 next.x, next.y-30,
 next.x, next.y)

Core Animation | 175

}
let anim1 = CAKeyframeAnimation(keyPath:"position")
anim1.path = path
anim1.calculationMode = kCAAnimationPaced

Here’s the second animation, the reversal of the direction the boat is facing. This is
simply a rotation around the y-axis. It’s another CAKeyframeAnimation, but we make
no attempt at visually animating this reversal: the calculationMode is kCAAnimation-
Discrete, so that the boat image reversal is a sudden change, as in our earlier “sprite”
example. There is one less value than the number of points in our first animation’s path,
and the first animation has an even speed, so the reversals take place at each curve apex
with no further effort on our part. (If the pacing were more complicated, we could give
both the first and the second animation identical keyTimes arrays, to coordinate them.)
Once again, we don’t set an explicit duration:

let revs = [0.0, M_PI, 0.0, M_PI]
let anim2 = CAKeyframeAnimation(keyPath:"transform")
anim2.values = revs
anim2.valueFunction = CAValueFunction(name:kCAValueFunctionRotateY)
anim2.calculationMode = kCAAnimationDiscrete

Here’s the third animation, the rocking of the boat. It has a short duration, and repeats
indefinitely:

let pitches = [0.0, M_PI/60.0, 0.0, -M_PI/60.0, 0.0]
let anim3 = CAKeyframeAnimation(keyPath:"transform")
anim3.values = pitches
anim3.repeatCount = Float.infinity
anim3.duration = 0.5
anim3.additive = true
anim3.valueFunction = CAValueFunction(name:kCAValueFunctionRotateZ)

Finally, we combine the three animations, assigning the group an explicit duration that
will be adopted by the first two animations. As we hand the animation over to the layer
displaying the boat, we also change the layer’s position to match the final position from
the first animation, so that the boat won’t jump back to its original position afterward:

let group = CAAnimationGroup()
group.animations = [anim1, anim2, anim3]
group.duration = 8
self.v.layer.addAnimation(group, forKey:nil)
CATransaction.setDisableActions(true)
self.v.layer.position = next

Here are some further CAAnimation properties (from the CAMediaTiming protocol)
that come into play especially when animations are grouped:
speed

The ratio between a child’s timescale and the parent’s timescale. For example, if a
parent and child have the same duration, but the child’s speed is 1.5, its animation
runs one-and-a-half times as fast as the parent.

176 | Chapter 4: Animation

fillMode

Suppose the child animation begins after the parent animation, or ends before the
parent animation, or both. What should happen to the appearance of the property
being animated, outside the child animation’s boundaries? The answer depends on
the child’s fillMode:

• kCAFillModeRemoved means the child animation is removed, revealing the
layer property at its actual current value whenever the child is not running.

• kCAFillModeForwards means the final presentation layer value of the child
animation remains afterward.

• kCAFillModeBackwards means the initial presentation layer value of the child
animation appears right from the start.

• kCAFillModeBoth combines the previous two.

Freezing an Animation
CALayer adopts the CAMediaTiming protocol. Thus, a layer can have a speed. This will
affect any animation attached to it. A CALayer with a speed of 2 will play a 10-second
animation in 5 seconds. A layer can also have a timeOffset.

One remarkably powerful way to take advantage of this feature of CALayer is to assign
a layer a speed of 0. This effectively “freezes” any animation attached to the layer. You
can then change the layer’s timeOffset to display any single frame of the animation. In
effect, the frozen animation has given you a whole slew of interpolated states “for free,”
any of which you can select by setting the layer’s timeOffset.

To illustrate, let’s explore the animatable path property of a CAShapeLayer. Consider a
layer that can display a rectangle or an ellipse or any of the intermediate shapes between
them. I can’t imagine what the notion of an intermediate shape between a rectangle or
an ellipse may mean, let alone how to draw such an intermediate shape; but thanks to
frozen animations, I don’t have to. Here, I’ll construct the CAShapeLayer, add it to the
interface, give it an animation from a rectangle to an ellipse, and keep a reference to it
as a property:

let shape = CAShapeLayer()
shape.frame = v.bounds
v.layer.addSublayer(shape)
shape.fillColor = UIColor.clearColor().CGColor
shape.strokeColor = UIColor.redColor().CGColor
let path = CGPathCreateWithRect(shape.bounds, nil)
shape.path = path
let path2 = CGPathCreateWithEllipseInRect(shape.bounds, nil)
let ba = CABasicAnimation(keyPath: "path")
ba.duration = 1
ba.fromValue = path

Core Animation | 177

ba.toValue = path2
shape.speed = 0
shape.timeOffset = 0
shape.addAnimation(ba, forKey: nil)
self.shape = shape

I’ve added the animation to the layer, but because the layer’s speed is 0, no animation
takes place; the rectangle is displayed and that’s all. There’s also a UISlider in the inter‐
face. I’ll respond to the user changing the value of the slider by setting the frame of the
animation:

@IBAction func doSlider(sender: AnyObject) { // slider action
 let slider = sender as UISlider
 self.shape.timeOffset = Double(slider.value)
}

This astonishing feature of layers and animations can be used in many powerful ways.
It lies at the heart of interactive view controller transition animations (Chapter 6), and
is probably used in unsuspected places throughout the iPhone and iPad interface.

Transitions
A layer transition is an animation involving two “copies” of a single layer, in which the
second “copy” appears to replace the first. It is described by an instance of CATransition
(a CAAnimation subclass), which has these chief properties describing the animation:
type

Your choices are:

• kCATransitionFade

• kCATransitionMoveIn

• kCATransitionPush

• kCATransitionReveal

subtype

If the type is not kCATransitionFade, your choices are:

• kCATransitionFromRight

• kCATransitionFromLeft

• kCATransitionFromTop

• kCATransitionFromBottom

178 | Chapter 4: Animation

Figure 4-3. A push transition

For historical reasons, the terms “bottom” and “top” in the names of the subtype
settings have the opposite of their expected meanings.

To understand a layer transition, first implement one without changing anything else
about the layer:

let t = CATransition()
t.type = kCATransitionPush
t.subtype = kCATransitionFromBottom
t.duration = 2
lay.addAnimation(t, forKey: nil)

The entire layer exits moving down from its original place while fading away, and an‐
other copy of the very same layer enters moving down from above while fading in. If,
at the same time, we change something about the layer’s contents, then the old contents
will appear to exit downward while the new contents appear to enter from above:

// ... configure the transition as before ...
CATransaction.setDisableActions(true)
lay.contents = UIImage(named: "Smiley")!.CGImage
lay.addAnimation(t, forKey: nil)

A common device is for the layer that is to be transitioned to be inside a superlayer that
is exactly the same size and whose masksToBounds is true. This confines the visible
transition to the bounds of the layer itself. Otherwise, the entering and exiting versions
of the layer are visible outside the layer. In Figure 4-3, which shows a smiley face pushing
an image of Mars out of the layer, I’ve emphasized this arrangement by giving the su‐
perlayer a border as well.

A transition on a superlayer can happen simultaneously with animation of a sublayer.
The animation will be seen to occur on the second “copy” of the layer as it moves into
position. This is analogous to the .AllowAnimatedContent option for view animation.

Core Animation | 179

Animations List
The method that asks for an explicit animation to happen is CALayer’s add-
Animation:forKey:. To understand how this method actually works (and what the
“key” is), you need to know about a layer’s animations list.

An animation is an object (a CAAnimation) that modifies how a layer is drawn. It does
this merely by being attached to the layer; the layer’s drawing mechanism does the rest.
A layer maintains a list of animations that are currently in force. To add an animation
to this list, you call addAnimation:forKey:. When the time comes to draw itself, the
layer looks through its animations list and draws itself in accordance with any anima‐
tions it finds there. (The list of things the layer must do in order to draw itself is some‐
times referred to by the documentation as the render tree.) The order in which anima‐
tions were added to the list is the order in which they are applied.

The animations list is maintained in a curious way. The list is not exactly a dictionary,
but it behaves somewhat like a dictionary. An animation has a key — the forKey:
parameter in addAnimation:forKey:. If an animation with a certain key is added to the
list, and an animation with that key is already in the list, the one that is already in the
list is removed. Thus a rule is maintained that only one animation with a given key can
be in the list at a time (the exclusivity rule). This explains why sometimes ordering an
animation can cancel an animation already ordered or in-flight: the two animations had
the same key, so the first one was removed. In iOS 8, additive view animations affecting
the same property work around this limitation simply by giving the additional anima‐
tions a different key name (for example, "position" and "position-2").

It is also possible to add an animation with no key (the key is nil); it is then not subject
to the exclusivity rule (that is, there can be more than one animation in the list with no
key).

The forKey: parameter in addAnimation:forKey: is thus not a property name. It could
be a property name, but it can be any arbitrary value. Its purpose is to enforce the
exclusivity rule. It does not have any meaning with regard to what property a
CAPropertyAnimation animates; that is the job of the animation’s keyPath. (Apple’s use
of the term “key” in addAnimation:forKey: is thus unfortunate and misleading; I wish
they had named this method addAnimation:withIdentifier: or something like that.)

180 | Chapter 4: Animation

Actually, there is a relationship between the “key” in addAnimation:forKey: and a
CAPropertyAnimation’s keyPath — if a CAPropertyAnimation’s keyPath is nil at
the time that it is added to a layer with addAnimation:forKey:, that keyPath is set
to the forKey: value. Thus, you can misuse the forKey: parameter in add-
Animation:forKey: as a way of specifying what keyPath an animation animates.
(This fact is not documented, so far as I know, but it’s easily verified experimentally,
and it should remain reliably true, as implicit layer animation crucially depends on
it.) I have seen many prominent but misleading examples that use this technique,
apparently in the mistaken belief that the “key” in addAnimation:forKey: is the way
you are supposed to specify what property to animate. This is wrong. Set the
CAPropertyAnimation’s keyPath explicitly (as do all my examples); that’s what it’s
for.

You can use the exclusivity rule to your own advantage, to keep your code from stepping
on its own feet. Some code of yours might add an animation to the list using a certain
key; then later, some other code might come along and correct this, removing that
animation and replacing it with another. By using the same key, the second code is easily
able to override the first: “You may have been given some other animation with this key,
but throw it away; play this one instead.”

In some cases, the key you supply is ignored and a different key is substituted. In par‐
ticular, the key with which a CATransition is added to the list is always kCATransition
(which happens to be "transition"); thus there can be only one transition animation
in the list.

You can think of an animation in a layer’s animations list as being the “animation movie”
I spoke of at the start of this chapter. As long as an animation is in the list, the movie is
present, either waiting to be played or actually playing. An animation that has finished
playing is, in general, pointless; the animation should now be removed from the list.
Therefore, an animation has a removedOnCompletion property, which defaults to
true: when the “movie” is over, the animation removes itself from the list.

You can, if desired, set removedOnCompletion to false. However, even the presence in
the list of an animation that has already played might make no difference to the layer’s
appearance, because an animation’s fillMode is kCAFillModeRemoved, which removes
the animation from the layer’s drawing when the movie is over. Thus, it can usually do
no harm to leave an animation in the list after it has played, but it’s not a great idea either,
because this is just one more thing for the drawing system to worry about. Typically,
you’ll leave removedOnCompletion set at true.

Core Animation | 181

You may encounter examples that set removedOnCompletion to false and set the
animation’s fillMode to kCAFillModeForwards or kCAFillModeBoth, as a way of
causing the layer to keep the appearance of the last frame of the “animation mov‐
ie” even after the animation is over, and preventing a property from apparently
jumping back to its initial value when the animation ends. This is wrong. The correct
approach, as I have explained, is to change the property value to match the final
frame of the animation. The proper use of kCAFillModeForwards is in connection
with a child animation within a grouped animation.

You can’t access the entire animations list directly. You can access the key names of the
animations in the list, with animationKeys; and you can obtain or remove an animation
with a certain key, with animationForKey: and removeAnimationForKey:; but anima‐
tions with a nil key are inaccessible. You can, however, remove all animations, including
animations with a nil key, using removeAllAnimations. When your app is suspended,
removeAllAnimations is called on all layers for you; that is why it is possible to suspend
an app coherently in the middle of an animation.

If an animation is in-flight when you remove it from the animations list manually, by
calling removeAllAnimations or removeAnimationForKey:, it will stop; however, that
doesn’t happen until the next redraw moment. You might be able to work around this,
if you need an animation to be removed immediately, by wrapping the remove... call
in an explicit transaction block.

Actions
For the sake of completeness, I will now explain how implicit animation really works
— that is, how implicit animation is turned into explicit animation behind the scenes.
The basis of implicit animation is the action mechanism. Feel free to skip this section if
you don’t want to get into the under-the-hood nitty-gritty of implicit animation.

What an Action Is
An action is an object that adopts the CAAction protocol. This means simply that it
implements runActionForKey:object:arguments:. The action object could do any‐
thing in response to this message. The notion of an action is completely general. The
only class that adopts the CAAction protocol is CAAnimation, but in fact the action
object doesn’t have to be an animation — it doesn’t even have to perform an animation.

You would never send runActionForKey:object:arguments: to an animation directly.
Rather, this message is sent to an action object for you, as the basis of implicit animation.
The key is the property that was set, and the object is the layer whose property was set.

182 | Chapter 4: Animation

What an animation does when it receives runActionForKey:object:arguments: is to
assume that the second parameter, the object:, is a layer, and to add itself to that
layer’s animations list. Thus, for an animation, receiving the runActionFor-

Key:object:arguments: message is like being told: “Play yourself!”

This is where the rule comes into play, which I mentioned earlier, that if an animation’s
keyPath is nil, the key by which the animation is assigned to a layer’s animations
list is used as the keyPath. When an animation is sent runActionForKey:

object:arguments:, it calls addAnimation:forKey: to add itself to the layer’s anima‐
tion’s list, using the name of the property as the key. The animation’s keyPath for an
implicit layer animation is usually nil, so the animation’s keyPath winds up being set to
the same key! That is how the property that you set ends up being the property that is
animated.

Action Search
When you set a property of a layer and trigger an implicit animation, you are actually
triggering the action search: the layer searches for an action object (a CAAction) to which
it can send the runActionForKey:object:arguments: message. The procedure by
which the layer searches for this animation is quite elaborate.

The search for an action object begins when something causes the layer to be sent the
actionForKey: message. Three sorts of event can cause this to happen:

• A specially marked CALayer property is set — by calling the setter method explicitly,
by setting the property itself, or by means of setValue:forKey:. All animatable
properties, and indeed most (or all) other CALayer properties, are marked in this
special way. (You can mark a custom property in this same way by designating it as
@dynamic in Objective-C, as I’ll demonstrate later in this chapter.)
Setting a layer’s frame property sets its position and bounds and calls actionFor-
Key: for the "position" and "bounds" keys. Calling a layer’s setAffineTransform:
sets its transform and calls actionForKey: for the "transform" key.

• The layer is sent setValue:forKey: with a key that is not a property. This is because
CALayer’s setValue:forUndefinedKey:, by default, calls actionForKey:.

• Various other miscellaneous types of event take place, such as the layer being added
to the interface. I’ll give some examples later in this chapter.

CATransaction’s setDisableActions:, with an argument of true, prevents the
actionForKey: message from being sent. That’s how it actually works behind the
scenes.

Actions | 183

At each stage of the action search, the following rules are obeyed regarding what is
returned from that stage of the search:
An action object

If an action object is produced, that is the end of the search. The action mechanism
sends that action object the runActionForKey:object:arguments: message; if this
an animation, the animation responds by adding itself to the layer’s animations list.

NSNull()

If NSNull() is produced, that is the end of the search. There will be no implicit
animation; NSNull() means, “Do nothing and stop searching.”

nil
If nil is produced, the search continues to the next stage.

The action search proceeds by stages, as follows:

1. The layer’s actionForKey: might terminate the search before it even starts. For
example, the layer will do this if it is the underlying layer of a view, or if a property
is set to the same value it already has. In such a case, there should be no implicit
animation, so the whole mechanism is nipped in the bud. (This stage is special in
that a returned value of nil ends the search and no animation takes place.)

2. If the layer has a delegate that implements actionForLayer:forKey:, that message
is sent to the delegate, with this layer as the layer and the property name as the key.
If an action object or NSNull() is returned, the search ends.

3. The layer has a property called actions, which is a dictionary. If there is an entry
in this dictionary with the given key, that value is used, and the search ends.

4. The layer has a property called style, which is a dictionary. If there is an entry in
this dictionary with the key actions, it is assumed to be a dictionary; if this actions
dictionary has an entry with the given key, that value is used, and the search ends.
Otherwise, if there is an entry in the style dictionary called style, the same search
is performed within it, and so on recursively until either an actions entry with the
given key is found (the search ends) or there are no more style entries (the search
continues).
(If the style dictionary sounds profoundly weird, that’s because it is profoundly
weird. It is actually a special case of a larger, separate mechanism, which is also
profoundly weird, having to do not with actions, but with a CALayer’s implemen‐
tation of KVC. When you call valueForKey: on a layer, if the key is undefined by
the layer itself, the style dictionary is consulted. I have never written or seen code
that uses this mechanism for anything, and I’ll say no more about it.)

5. The layer’s class is sent defaultActionForKey:, with the property name as the key.
If an action object or NSNull() is returned, the search ends.

184 | Chapter 4: Animation

6. If the search reaches this last stage, a default animation is supplied, as appropriate.
For a property animation, this is a plain vanilla CABasicAnimation.

Hooking Into the Action Search
You can affect the action search at any of its various stages to modify what happens when
the search is triggered.

For example, you can turn off implicit animation for some particular property. One way
would be to return nil from actionForKey: itself, in a CALayer subclass. Here’s the code
from a CALayer subclass that doesn’t animate its position property (but does animate
its other properties normally):

override func actionForKey(key: String!) -> CAAction! {
 if key == "position" {
 return nil
 }
 return super.actionForKey(key)
}

For more flexibility, we can take advantage of the fact that a CALayer acts like a dictio‐
nary (allowing us to set an arbitrary key’s value) — we’ll embed a switch in our CALayer
subclass that we can use to turn implicit position animation on and off at will:

override func actionForKey(key: String!) -> CAAction! {
 if key == "position" {
 if self.valueForKey("suppressPositionAnimation") != nil {
 return nil
 }
 }
 return super.actionForKey(key)
}

To turn off implicit position animation for an instance of this layer, we set its "suppress-
PositionAnimation" key to a non-nil value:

layer.setValue(true, forKey:"suppressPositionAnimation")

Another possibility is to cause some stage of the search to produce an action object of
your own. You would then be affecting how implicit animation behaves.

Let’s say we want a certain layer’s duration for an implicit position animation to be 5
seconds. We can achieve this with a minimally configured animation, like this:

let ba = CABasicAnimation()
ba.duration = 5

The idea now is to situate this animation where it will be produced by the action search
for the "position" key. We could, for instance, put it into the layer’s actions dictionary:

layer.actions = ["position": ba]

Actions | 185

The only property of this animation that we have set is its duration; that setting, however,
is final. Although animation properties that you don’t set can be set through CATran‐
saction, in the usual manner for implicit property animation, animation properties that
you do set can not be overridden through CATransaction. Thus, when we set this layer’s
position, if an implicit animation results, its duration is 5 seconds, even if we try to
change it through CATransaction:

CATransaction.setAnimationDuration(1.5) // won't work
layer.position = CGPointMake(100,100)

Storing an animation in the actions dictionary, however, is a somewhat inflexible way
to hook into the action search. If we have to write our animation beforehand, we know
nothing about the layer’s starting and ending values for the changed property. A much
more powerful approach is to make our action object a custom CAAction object —
because in that case, it will be sent runActionForKey:..., and we can construct and
run an animation now, when we are in direct contact with the layer to be animated.
Here’s a barebones version of such an object:

class MyAction : NSObject, CAAction {
 func runActionForKey(event: String!, object anObject: AnyObject!,
 arguments dict: [NSObject : AnyObject]!) {
 let anim = CABasicAnimation(keyPath: event)
 anim.duration = 5
 let lay = anObject as CALayer
 let newP : AnyObject? = lay.valueForKey(event)
 let oldP : AnyObject? = lay.presentationLayer()!.valueForKey(event)
 lay.addAnimation(anim, forKey:nil)
 }
}

The idea is that this would then be the action object that we store in the actions
dictionary:

layer.actions = ["position": MyAction()]

Our custom CAAction object, MyAction, doesn’t do anything very interesting — but it
could. That’s the point. As the code demonstrates, we have access to the name of the
animated property (event), the old value of that property (from the layer’s presentation
layer), and the new value of that property (from the layer itself). We are thus free to
configure the animation in all sorts of ways. In fact, we can add more than one animation
to the layer, or a group animation. We don’t have to add an animation to the layer! We
are free to interpret the setting of this property in any way we like.

Here’s a modification of our MyAction object that creates and runs a keyframe animation
that “waggles” as it goes from the start value to the end value:

class MyAction : NSObject, CAAction {
 func runActionForKey(event: String!, object anObject: AnyObject!,
 arguments dict: [NSObject : AnyObject]!) {
 let lay = anObject as CALayer

186 | Chapter 4: Animation

 let newP = (lay.valueForKey(event) as NSValue).CGPointValue()
 let oldP =
 (lay.presentationLayer()!.valueForKey(event) as NSValue)
 .CGPointValue()
 let d = sqrt(pow(oldP.x - newP.x, 2) + pow(oldP.y - newP.y, 2))
 let r = Double(d/3.0)
 let theta = Double(atan2(newP.y - oldP.y, newP.x - oldP.x))
 let wag = 10*M_PI/180.0
 let p1 = CGPointMake(
 oldP.x + CGFloat(r*cos(theta+wag)),
 oldP.y + CGFloat(r*sin(theta+wag)))
 let p2 = CGPointMake(
 oldP.x + CGFloat(r*2*cos(theta-wag)),
 oldP.y + CGFloat(r*2*sin(theta-wag)))
 let anim = CAKeyframeAnimation(keyPath: event)
 anim.values = [oldP,p1,p2,newP].map{NSValue(CGPoint:$0)}
 anim.calculationMode = kCAAnimationCubic
 lay.addAnimation(anim, forKey:nil)
 }
}

By adding this CAAction object to a layer’s actions dictionary under the "position"
key, we have created a CALayer that waggles when its position is set. The power of this
mechanism is simply staggering. We can modify any layer in this way — even one that
doesn’t belong to us.

Instead of modifying the layer’s actions dictionary, we could hook into the action search
by setting the layer’s delegate to an instance that responds to actionForLayer:for-
Key:. This has the advantage of serving as a single locus that can do different things
depending on what the layer is and what the key is. Here’s an implementation that does
exactly what the actions dictionary did — it returns an instance of our custom CAAc‐
tion object, so that setting the layer’s position waggles it into place:

override func actionForLayer(layer: CALayer!,
 forKey key: String!) -> CAAction! {
 if key == "position" {
 return MyAction()
 }
 return nil
}

Finally, I’ll demonstrate overriding defaultActionForKey:. This code would go into a
CALayer subclass; setting this layer’s contents will automatically trigger a push tran‐
sition from the left:

override class func defaultActionForKey(key: String!) -> CAAction! {
 if key == "contents" {
 let tr = CATransition()
 tr.type = kCATransitionPush
 tr.subtype = kCATransitionFromLeft

Actions | 187

 return tr
 }
 return super.defaultActionForKey(key)
}

Both the delegate’s actionForLayer:forKey: and the subclass’s defaultActionFor-
Key: are declared as returning a CAAction. Therefore, to return NSNull() from your
implemention of one of these methods, you’ll need to typecast it to CAAction to
quiet the compiler; you’re lying (NSNull does not adopt the CAAction protocol),
but it doesn’t matter.

Making a Custom Property Implicitly Animatable
Earlier in this chapter, we made a custom layer’s thickness property animatable through
explicit layer animation. Now that we know how implicit layer animation works, we can
make our layer’s thickness property animatable through implicit animation as well.
Thus, we will be able to animate our layer’s thickness with code like this:

let lay = self.v.layer as MyLayer
let cur = lay.thickness
let val : CGFloat = cur == 10 ? 0 : 10
lay.thickness = val // implicit animation

We have already implemented needsDisplayForKey: to return true for the
"thickness" key, and we have provided an appropriate drawInContext: implementa‐
tion. Now we’ll add two further pieces of the puzzle. As we now know, to make our
MyLayer class respond to direct setting of a property, we need to hook into the action
search and return a CAAction. The obvious place to do this is in the layer itself, at the
very start of the action search, in an actionForKey: implementation:

override func actionForKey(key: String!) -> CAAction! {
 if key == "thickness" {
 let ba = CABasicAnimation(keyPath: key)
 ba.fromValue = (self.presentationLayer() as CALayer).valueForKey(key)
 return ba
 }
 return super.actionForKey(key)
}

Finally, we must declare our thickness property @dynamic in the Objective-C sense —
in fact, we must make this declaration in Objective-C (Swift’s dynamic is not the same
thing). Otherwise, actionForKey: won’t be called in the first place (the action search
will never happen). Thus, the MyLayer class is now declared in Objective-C:

// MyLayer.h:
@interface MyLayer : CALayer
@property CGFloat thickness;
@end

188 | Chapter 4: Animation

// MyLayer.m:
#import "MyLayer.h"
@implementation MyLayer
@dynamic thickness;
@end

The Swift code must import "MyLayer.h" in the bridging header, and is now an exten‐
sion of the Objective-C class:

public extension MyLayer {
 // ... code goes here ...
}

Nonproperty Actions
An action search is also triggered when a layer is added to a superlayer (key kCAOnOrder-
In) and when a layer’s sublayers are changed by adding or removing a sublayer (key
"sublayers").

These triggers and their keys are incorrectly described in Apple’s documentation
(and headers).

In this example, we use our layer’s delegate so that when our layer is added to a superlayer,
it will “pop” into view:

let layer = CALayer()
// ... configure layer here ...
layer.delegate = self
self.view.layer.addSublayer(layer)

In the layer’s delegate (self), we implement the actual animation as a group animation,
fading the layer quickly in from an opacity of 0 and at the same time scaling its transform
to make it momentarily appear a little larger:

override func actionForLayer(layer: CALayer!,
 forKey key: String!) -> CAAction! {
 if key == kCAOnOrderIn {
 let anim1 = CABasicAnimation(keyPath:"opacity")
 anim1.fromValue = 0.0
 anim1.toValue = layer.opacity
 let anim2 = CABasicAnimation(keyPath:"transform")
 anim2.toValue = NSValue(CATransform3D:
 CATransform3DScale(layer.transform, 1.2, 1.2, 1.0))
 anim2.autoreverses = true
 anim2.duration = 0.1
 let group = CAAnimationGroup()
 group.animations = [anim1, anim2]

Actions | 189

 group.duration = 0.2
 return group
 }
}

The documentation says that when a layer is removed from a superlayer, an action is
sought under the key kCAOnOrderOut. This is true but useless, because by the time the
action is sought, the layer has already been removed from the superlayer, so returning
an animation has no visible effect. Similarly, an animation returned as an action when
a layer’s hidden is set to true is never played. A possible workaround is to trigger the
animation in some other way (and remove the layer afterward, if desired).

Recall, for example, that an action search is triggered when an arbitrary key is set on a
layer. Let’s implement the key "farewell" so that it shrinks and fades the layer and then
removes it from its superlayer:

layer.delegate = self
layer.setValue("", forKey:"farewell")

The supplier of the action object — in this case, the layer’s delegate — returns the shrink-
and-fade animation; it also sets itself as that animation’s delegate, and removes the layer
when the animation ends:

override func actionForLayer(layer: CALayer!,
 forKey key: String!) -> CAAction! {
 if key == "farewell" {
 let anim1 = CABasicAnimation(keyPath:"opacity")
 anim1.fromValue = layer.opacity
 anim1.toValue = 0.0
 let anim2 = CABasicAnimation(keyPath:"transform")
 anim2.toValue = NSValue(CATransform3D:
 CATransform3DScale(layer.transform, 0.1, 0.1, 1.0))
 let group = CAAnimationGroup()
 group.animations = [anim1, anim2]
 group.duration = 0.2
 group.delegate = self // animationDidStop will be called
 group.setValue(layer, forKey:"remove") // identifier
 layer.opacity = 0
 return group
 }
}
override func animationDidStop(anim: CAAnimation!, finished flag: Bool) {
 if let layer = anim.valueForKey("remove") as? CALayer {
 layer.removeFromSuperlayer()
 }
}

190 | Chapter 4: Animation

Emitter Layers
Emitter layers (CAEmitterLayer) are, to some extent, on a par with animated images:
once you’ve set up an emitter layer, it just sits there animating all by itself. The nature
of this animation is rather narrow: an emitter layer emits particles, which are
CAEmitterCell instances. However, by clever setting of the properties of an emitter layer
and its emitter cells, you can achieve some astonishing effects. Moreover, the animation
is itself animatable using Core Animation.

Here are some useful basic properties of a CAEmitterCell:
contents, contentsRect

These are modeled after the eponymous CALayer properties, although CAEmitter‐
Layer is not a CALayer subclass; so, respectively, an image (a CGImage) and a
CGRect specifying a region of that image. They define the image that a cell will
portray.

birthrate, lifetime
How many cells per second should be emitted, and how many seconds each cell
should live before vanishing, respectively.

velocity

The speed at which a cell moves. The unit of measurement is not documented;
perhaps it’s points per second.

emissionLatitude, emissionLongitude
The angle at which the cell is emitted from the emitter, as a variation from the
perpendicular. Longitude is an angle within the plane; latitude is an angle out of
the plane.

So, here’s code to create a very elementary emitter cell:

// make a gray circle image
UIGraphicsBeginImageContextWithOptions(CGSizeMake(10,10), false, 1)
let con = UIGraphicsGetCurrentContext()
CGContextAddEllipseInRect(con, CGRectMake(0,0,10,10))
CGContextSetFillColorWithColor(con, UIColor.grayColor().CGColor)
CGContextFillPath(con)
let im = UIGraphicsGetImageFromCurrentImageContext()
UIGraphicsEndImageContext()
// make a cell with that image
let cell = CAEmitterCell()
cell.birthRate = 5
cell.lifetime = 1
cell.velocity = 100
cell.contents = im.CGImage

Emitter Layers | 191

(In the first line, we deliberately keep the scale at 1, even on a high-resolution screen,
because a CAEmitterLayer has no contentsScale, as a CALayer does; we’re going to
derive a CGImage from this image, and we don’t want its size doubled.)

The result is that little gray circles should be emitted slowly and steadily, five per second,
each one vanishing in one second. Now we need an emitter layer from which these
circles are to be emitted. Here are some basic CAEmitterLayer properties (beyond those
it inherits from CALayer); these define an imaginary object, an emitter, that will be
producing the emitter cells:
emitterPosition

The point at which the emitter should located, in superlayer coordinates. You can
optionally add a third dimension to this point, emitterZPosition.

emitterSize

The size of the emitter.

emitterShape

The shape of the emitter. The dimensions of the shape depend on the emitter’s size;
the cuboid shape depends also on a third size dimension, emitterDepth. Your
choices are:

• kCAEmitterLayerPoint

• kCAEmitterLayerLine

• kCAEmitterLayerRectangle

• kCAEmitterLayerCuboid

• kCAEmitterLayerCircle

• kCAEmitterLayerSphere

emitterMode

The region of the shape from which cells should be emitted. Your choices are:

• kCAEmitterLayerPoints

• kCAEmitterLayerOutline

• kCAEmitterLayerSurface

• kCAEmitterLayerVolume

Let’s start with the simplest possible case, a single point emitter:

let emit = CAEmitterLayer()
emit.emitterPosition = CGPointMake(30,100)
emit.emitterShape = kCAEmitterLayerPoint
emit.emitterMode = kCAEmitterLayerPoints

192 | Chapter 4: Animation

Figure 4-4. A really boring emitter layer

We tell the emitter what types of cell to emit by assigning those cells to its emitter-
Cells property (an array of CAEmitterCell). We then add the emitter to our interface,
and presto, it starts emitting:

emit.emitterCells = [cell]
self.view.layer.addSublayer(emit)

The result is a constant stream of gray circles emitted from the point (30.0,100.0),
each circle marching steadily to the right and vanishing after one second (Figure 4-4).

Now that we’ve succeeded in creating a boring emitter layer, we can start to vary some
parameters. The emissionRange defines a cone in which cells will be emitted; if we
increase the birthRate and widen the emissionRange, we get something that looks like
a stream shooting from a water hose:

cell.birthRate = 100
cell.lifetime = 1.5
cell.velocity = 100
cell.emissionRange = CGFloat(M_PI)/5.0

In addition, as the cell moves, it can be made to accelerate (or decelerate) in each di‐
mension, using its xAcceleration, yAcceleration, and zAcceleration properties.
Here, we turn the stream into a falling cascade, like a waterfall coming from the left:

cell.xAcceleration = -40
cell.yAcceleration = 200

All aspects of cell behavior can be made to vary randomly, using the following
CAEmitterCell properties:
lifetimeRange, velocityRange

How much the lifetime and velocity values are allowed to vary randomly for dif‐
ferent cells.

scale
scaleRange, scaleSpeed

The scale alters the size of the cell; the range and speed determine how far and how
rapidly this size alteration is allowed to change over the lifetime of each cell.

Emitter Layers | 193

Figure 4-5. An emitter layer that makes a sort of waterfall

color
redRange, greenRange, blueRange, alphaRange
redSpeed, greenSpeed, blueSpeed, alphaSpeed

The color is painted in accordance with the opacity of the cell’s contents image; it
combines with the image’s color, so if we want the color stated here to appear in full
purity, our contents image should use only white. The range and speed determine
how far and how rapidly each color component is to change.

spin, spinRange
The spin is a rotational speed (in radians per second); its range determines how far
this speed is allowed to change over the lifetime of each cell.

Here we add some variation so that the circles behave a little more independently of one
another. Some live longer than others, some come out of the emitter faster than others.
And they all start out a shade of blue, but change to a shade of green about half-way
through the stream (Figure 4-5):

cell.lifetimeRange = 0.4
cell.velocityRange = 20
cell.scaleRange = 0.2
cell.scaleSpeed = 0.2
cell.color = UIColor.blueColor().CGColor
cell.greenRange = 0.5
cell.greenSpeed = 0.75

Once the emitter layer is in place and animating, you can change its parameters and the
parameters of its emitter cells through key–value coding on the emitter layer. You can

194 | Chapter 4: Animation

access the emitter cells through the emitter layer’s "emitterCells" key path; to specify
a cell type, use its name property (which you’ll have to have assigned earlier) as the next
piece of the key path. For example, suppose we’ve set cell.name to "circle"; now we’ll
change the cell’s greenSpeed so that each cell changes from blue to green much earlier
in its lifetime:

emit.setValue(3.0, forKeyPath:"emitterCells.circle.greenSpeed")

The significance of this is that such changes can themselves be animated! Here, we’ll
attach to the emitter layer a repeating animation that causes our cell’s greenSpeed to
move back and forth between two values. The result is that the stream varies, over time,
between being mostly blue and mostly green:

let key = "emitterCells.circle.greenSpeed"
let ba = CABasicAnimation(keyPath:key)
ba.fromValue = -1.0
ba.toValue = 3.0
ba.duration = 4
ba.autoreverses = true
ba.repeatCount = Float.infinity
emit.addAnimation(ba, forKey:nil)

A CAEmitterCell can itself function as an emitter — that is, it can have cells of its own.
Both CAEmitterLayer and CAEmitterCell conform to the CAMediaTiming protocol,
and their beginTime and duration properties can be used to govern their times of
operation, much as in a grouped animation. For example, this code causes our existing
waterfall to spray tiny droplets in the region of the “nozzle” (the emitter):

let cell2 = CAEmitterCell()
cell.emitterCells = [cell2]
cell2.contents = im.CGImage
cell2.emissionRange = CGFloat(M_PI)
cell2.birthRate = 200
cell2.lifetime = 0.4
cell2.velocity = 200
cell2.scale = 0.2
cell2.beginTime = 0.04
cell2.duration = 0.2

But if we change the beginTime to be larger (hence later), the tiny droplets happen near
the bottom of the cascade. We must also increase the duration, or stop setting it
altogether, since if the duration is less than the beginTime, no emission takes place at
all (Figure 4-6):

cell2.beginTime = 1.4
cell2.duration = 0.4

We can also alter the picture by changing the behavior of the emitter itself. This change
turns the emitter into a line, so that our cascade becomes broader (more like Niagara
Falls):

Emitter Layers | 195

Figure 4-6. The waterfall makes a kind of splash

emit.emitterPosition = CGPointMake(100,25)
emit.emitterSize = CGSizeMake(100,100)
emit.emitterShape = kCAEmitterLayerLine
emit.emitterMode = kCAEmitterLayerOutline
cell.emissionLongitude = 3*CGFloat(M_PI)/4

There’s more to know about emitter layers and emitter cells, but at this point you know
enough to understand Apple’s sample code simulating such things as fire and smoke
and pyrotechnics, and you can explore further on your own.

CIFilter Transitions
Core Image filters (Chapter 2) include transitions. You supply two images and a frame
time between 0 and 1; the filter supplies the corresponding frame of a one-second ani‐
mation transitioning from the first image to the second. For example, Figure 4-7 shows
the frame at frame time .75 for a starburst transition from a solid red image to a photo
of me. (You don’t see the photo of me, because this transition, by default, “explodes” the
first image to white first, and then quickly fades to the second image.)

Animating a Core Image transition filter is up to you. Thus we need a way of rapidly
calling the same method repeatedly; in that method, we’ll request and draw each frame
of the transition. This could be a job for an NSTimer, but a better way is to use a display
link (CADisplayLink), a form of timer that’s highly efficient, especially when repeated
drawing is involved, because it is linked directly to the refreshing of the display (hence
the name). The display refresh rate is typically about one-sixtieth of a second; the actual
value is given as the display link’s duration, and will undergo slight fluctuations. Like

196 | Chapter 4: Animation

Figure 4-7. Midway through a starburst transition

a timer, the display link calls a designated method of ours every time it fires. We can
slow the rate of calls by an integral amount by setting the display link’s frame-
Interval; for example, a display link with a frameInterval of 2 will call us about every
one-thirtieth of a second. We can learn the exact time when the display link last fired
by querying its timestamp.

In this example, I’ll display the animation in a view’s layer. We start by initializing and
storing ahead of time, in properties, everything we’ll need later to obtain an output
image for a given frame of the transition — the CIFilter, the image’s extent, and the
CIContext used for rendering. We also have a timestamp property, which we initialize
as well:

let moi = CIImage(image:UIImage(named:"moi"))
self.moiextent = moi.extent()
let col = CIFilter(name:"CIConstantColorGenerator")
let cicol = CIColor(color:UIColor.redColor())
col.setValue(cicol, forKey:"inputColor")
let colorimage = col.valueForKey("outputImage") as CIImage
let tran = CIFilter(name:"CIFlashTransition")
tran.setValue(colorimage, forKey:"inputImage")
tran.setValue(moi, forKey:"inputTargetImage")
let center = CIVector(x:self.moiextent.width/2.0, y:self.moiextent.height/2.0)
tran.setValue(center, forKey:"inputCenter")
self.con = CIContext(options:nil)
self.tran = tran
self.timestamp = 0.0

We create the display link, setting it to call into our nextFrame: method, and set it going
by adding it to the run loop, which retains it:

let link = CADisplayLink(target:self, selector:"nextFrame:")
link.addToRunLoop(NSRunLoop.mainRunLoop(), forMode:NSDefaultRunLoopMode)

CIFilter Transitions | 197

Our nextFrame: method is called with the display link as parameter (sender). We store
the initial timestamp in a property, and use the difference between that and each suc‐
cessive timestamp value to calculate our desired frame. We ask the filter for the corre‐
sponding image and display it. When the frame value exceeds 1, the animation is over
and we invalidate the display link (just like a repeating timer), which releases it from
the run loop:

func nextFrame(sender:CADisplayLink) {
 if self.timestamp < 0.01 { // pick up and store first timestamp
 self.timestamp = sender.timestamp
 self.frame = 0.0
 } else { // calculate frame
 self.frame = (sender.timestamp - self.timestamp) // * SCALE
 }
 sender.paused = true // defend against frame loss
 self.tran.setValue(self.frame, forKey:"inputTime")
 let moi = self.con.createCGImage(
 tran.outputImage, fromRect:self.moiextent)
 CATransaction.setDisableActions(true)
 self.v.layer.contents = moi
 if self.frame > 1.0 {
 sender.invalidate()
 }
 sender.paused = false
}

I have surrounded the time-consuming calculation and drawing of the image with calls
to the display link’s paused property, in case the calculation time exceeds the time be‐
tween screen refreshes; perhaps this isn’t necessary, but it can’t hurt. Our animation
occupies one second; changing that value is merely a matter of multiplying by a scale
value when we set our frame property (as I have shown in a comment). If you experiment
with this code, run on the device, as display links do not work well in the Simulator.

UIKit Dynamics
The term UIKit dynamics refers to a suite of classes that supplies a convenient API for
animating views in a manner reminiscent of real-world physical behavior. For example,
views can be subjected to gravity, collisions, bouncing, and momentary forces, with
effects that would otherwise be difficult to achieve.

UIKit dynamics should not be treated as a game engine. It is deliberately quite cartoony
and simple, treating views as rectangular blocks and animating only their position
(center) and rotation transform within a flat two-dimensional space. Like CIFilter
animated transitions, UIKit dynamics relies on CADisplayLink, and the calculation of
each frame takes place on the main thread (not on the animation server’s background
thread). There’s no “animation movie” and no distinct presentation layer; the views
really are being repositioned in real time. Thus, UIKit Dynamics is not intended for

198 | Chapter 4: Animation

extended use; it is a way of momentarily emphasizing or clarifying functional transfor‐
mations of your interface.

Implementing UIKit dynamics involves configuring a “stack” of three things:
A dynamic animator

A dynamic animator, a UIDynamicAnimator instance, is the ruler of the physics
world you are creating. It has a reference view, which is the superview of the views
to be animated, and which defines the coordinate system of its world. Retaining the
animator is up to you; a strong property will do. It’s fine for an animator to sit empty
until you need it; an animator whose world is empty (or at rest) is not running, and
occupies no processor time.

A behavior
A UIDynamicBehavior is a rule describing how a view should behave. You’ll typi‐
cally use a built-in subclass, such as UIGravityBehavior or UICollisionBehavior.
You configure the behavior and add it to the animator; an animator has methods
and properties for managing its behaviors, such as addBehavior:, behaviors,
removeBehavior:, and removeAllBehaviors. A behavior’s configuration can be
changed, and behaviors can be added to and removed from an animator, even while
an animation is in progress.

An item
An item is any object that implements the UIDynamicItem protocol. A UIView is
such an object! You add a UIView (one that’s a subview of your animator’s reference
view) to a behavior (one that belongs to that animator) — and at that moment, the
view comes under the influence of that behavior. If this behavior is one that causes
motion, and if no other behaviors prevent, the view will now move (the animator
is running).

Some behaviors can accept multiple items, and have methods and properties such
as addItem:, items, and removeItem:. Others can have just one or two items and
must be initialized with these from the outset.

That’s sufficient to get started, so let’s try it! I’ll start by creating my animator and storing
it in a property:

self.anim = UIDynamicAnimator(referenceView: self.view)

Now I’ll cause an existing subview of self.view (a UIImageView, self.iv) to drop off
the screen, under the influence of gravity. I create a UIGravityBehavior, add it to the
animator, and add self.iv to it:

let grav = UIGravityBehavior()
self.anim.addBehavior(grav)
grav.addItem(self.iv)

UIKit Dynamics | 199

As a result, self.iv comes under the influence of gravity and is now animated down‐
ward off the screen. (A UIGravityBehavior object has properties configuring the
strength and direction of gravity, but I’ve left them here at their defaults.)

An immediate concern is that our view falls forever. This is a serious waste of memory
and processing power. If we no longer need the view after it has left the screen, we should
take it out of the influence of UIKit dynamics by removing it from any behaviors to
which it belongs (and we can also remove it from its superview). One way to do this is
by removing from the animator any behaviors that are no longer needed. In our simple
example, where the animator’s entire world contains just this one item, it will be suffi‐
cient to call removeAllBehaviors.

But how will we know when the view is off the screen? A UIDynamicBehavior can have
an action block (a closure), which is called repeatedly as the animator drives the ani‐
mation. I’ll configure our gravity behavior’s action block to check whether self.iv is
still within the bounds of the reference view, by calling the animator’s itemsInRect:
method. Here’s my first attempt:

grav.action = {
 let items = self.anim.itemsInRect(self.view.bounds) as [UIView]
 let ix = find(items, self.iv)
 if ix == nil {
 self.anim.removeAllBehaviors()
 self.iv.removeFromSuperview()
 }
}

This works in the sense that, after the image view leaves the screen, the image view is
removed from the window and the animation stops. Unfortunately, there is also a
memory leak: neither the image view nor the gravity behavior has been released. One
solution is, in grav.action, to set self.anim (the animator property) to nil, thus break‐
ing the retain cycle. This is a perfectly appropriate solution if, as here, we no longer need
the animator for anything; a UIDynamicAnimator is a lightweight object and can very
reasonably come into existence only for as long as we need to run an animation. Another
possibility is to use delayed performance; even a delay of 0 solves the problem, pre‐
sumably because the behavior’s action closure is no longer running at the time we
remove the behavior:

grav.action = {
 let items = self.anim.itemsInRect(self.view.bounds) as [UIView]
 let ix = find(items, self.iv)
 if ix == nil {
 delay(0) {
 self.anim.removeAllBehaviors()
 self.iv.removeFromSuperview()
 }
 }
}

200 | Chapter 4: Animation

Now let’s add some further behaviors. If falling straight down is too boring, we can add
a UIPushBehavior to create a slight rightward impulse to be applied to the view as it
begins to fall:

let push = UIPushBehavior(items:[self.iv], mode:.Instantaneous)
push.pushDirection = CGVectorMake(2, 0)
self.anim.addBehavior(push)

The view now falls in a parabola to the right. Next, let’s add a UICollisionBehavior to
make our view strike the “floor” of the screen:

let coll = UICollisionBehavior()
coll.collisionMode = .Boundaries
coll.addBoundaryWithIdentifier("floor",
 fromPoint:CGPointMake(0, self.view.bounds.height),
 toPoint:CGPointMake(self.view.bounds.width,
 self.view.bounds.height))
self.anim.addBehavior(coll)
coll.addItem(self.iv)

The view now falls in a parabola onto the floor of the screen, bounces a tiny bit, and
comes to rest. It would be nice if the view bounced a bit more. Characteristics internal
to a dynamic item’s physics, such as bounciness (elasticity), are configured by as‐
signing it to a UIDynamicItemBehavior:

let bounce = UIDynamicItemBehavior()
bounce.elasticity = 0.4
self.anim.addBehavior(bounce)
bounce.addItem(self.iv)

Our view now bounces higher; nevertheless, when it hits the floor, it stops moving to
the right, so it ends up at rest on the floor. I’d prefer that, after it bounces, it should start
spinning to the right, so that it eventually leaves the screen. A UICollisionBehavior has
a delegate to which it sends messages when a collision occurs. I’ll make self the collision
behavior’s delegate, and when the delegate message arrives, I’ll add rotational velocity
to the existing dynamic item behavior bounce, so that our view starts spinning clockwise:

func collisionBehavior(behavior: UICollisionBehavior,
 beganContactForItem item: UIDynamicItem,
 withBoundaryIdentifier identifier: NSCopying,
 atPoint p: CGPoint) {
 // look for the dynamic item behavior
 for b in self.anim.behaviors as [UIDynamicBehavior] {
 if let bounce = b as? UIDynamicItemBehavior {
 let v = bounce.angularVelocityForItem(self.iv)
 if v <= 0.1 {
 bounce.addAngularVelocity(30, forItem:self.iv)
 }
 break;
 }
 }
}

UIKit Dynamics | 201

The view now falls in a parabola to the right, strikes the floor, spins clockwise, and
bounces off the floor and out the right side of the screen!

We have now developed a complex behavior by a combination of several built-in UI‐
DynamicBehavior subclass instances. For neatness, clarity, maintainability, and
reusability, it might make sense to express that combination as a single custom
UIDynamicBehavior subclass. Let’s call it MyDropBounceAndRollBehavior. Now we
can apply this behavior to our view, self.iv, very simply:

self.anim.addBehavior(MyDropBounceAndRollBehavior(view:self.iv))

All the work is now done by the MyDropBounceAndRollBehavior instance. I’ve de‐
signed it to affect just one view, so its initializer looks like this:

init(view v:UIView) {
 self.v = v
 super.init()
}

A UIDynamicBehavior receives a reference to its dynamic animator just before being
added to it, by implementing willMoveToAnimator:, and can refer to it subsequently
as self.dynamicAnimator. To incorporate actual behaviors into itself, our custom UI‐
DynamicBehavior subclass creates and configures them, and calls addChild-

Behavior:; it can refer to the array of its child behaviors as self.childBehaviors.
When our custom behavior is added to or removed from the dynamic animator, the
effect is the same as if its child behaviors themselves were added or removed.

Here is the rest of MyDropBounceAndRollBehavior. Our precautions in the gravity
behavior’s action block not to cause a retain cycle are simpler than before; it suffices to
designate self as a weak reference and remove self from the animator explicitly:

override func willMoveToAnimator(anim: UIDynamicAnimator!) {
 if anim == nil { return }
 let sup = self.v.superview!
 let grav = UIGravityBehavior()
 grav.action = {
 [weak self] in
 let items = anim.itemsInRect(sup.bounds) as [UIView]
 if find(items, self!.v) == nil {
 anim.removeBehavior(self)
 self!.v.removeFromSuperview()
 }
 }
 self.addChildBehavior(grav)
 grav.addItem(self.v)
 let push = UIPushBehavior(items:[self.v], mode:.Instantaneous)
 push.pushDirection = CGVectorMake(2, 0)
 self.addChildBehavior(push)
 let coll = UICollisionBehavior()
 coll.collisionMode = .Boundaries

202 | Chapter 4: Animation

 coll.collisionDelegate = self
 coll.addBoundaryWithIdentifier("floor",
 fromPoint:CGPointMake(0, sup.bounds.size.height),
 toPoint:CGPointMake(sup.bounds.size.width,
 sup.bounds.size.height))
 self.addChildBehavior(coll)
 coll.addItem(self.v)
 let bounce = UIDynamicItemBehavior()
 bounce.elasticity = 0.4
 self.addChildBehavior(bounce)
 bounce.addItem(self.v)
}
func collisionBehavior(behavior: UICollisionBehavior,
 beganContactForItem item: UIDynamicItem,
 withBoundaryIdentifier identifier: NSCopying,
 atPoint p: CGPoint) {
 // look for the dynamic item behavior
 for b in self.childBehaviors as [UIDynamicBehavior] {
 if let bounce = b as? UIDynamicItemBehavior {
 let v = bounce.angularVelocityForItem(item)
 if v <= 0.1 {
 bounce.addAngularVelocity(30, forItem:item)
 }
 break;
 }
 }
}

Here are some further UIDynamicAnimator methods and properties:
delegate

The delegate (UIDynamicAnimatorDelegate) is sent messages dynamicAnimator-
DidPause: and dynamicAnimatorWillResume:. The animator is paused when it has
nothing to do: it has no dynamic items, or all its dynamic items are at rest.

running

If true, the animator is not paused; some dynamic item is being animated.

elapsedTime

The total time during which this animator has been running since it first started
running. The elapsedTime does not increase while the animator is paused, nor is
it reset. You might use this in a delegate method or action method to decide that
the animation is over.

updateItemUsingCurrentState:

Once a dynamic item has come under the influence of the animator, the animator
is responsible for positioning that dynamic item. If your code subsequently man‐
ually changes the dynamic item’s position or other relevant attributes, call this
method so that the animator can take account of those changes.

UIKit Dynamics | 203

Here is some more about the various built-in UIDynamicBehavior subclasses:
UIGravityBehavior

Imposes an acceleration on its dynamic items. By default, this acceleration is down‐
ward with a magnitude of 1 (arbitrarily defined as 1000 points per second per
second).

UIPushBehavior
Applies a force either instantaneously or continuously (mode), the latter constituting
an acceleration. How this force affects an object depends in part upon the object’s
“mass,” which is based on its size combined with its density (the latter can be set
through a UIDynamicItemBehavior); thus, by default, a smaller view is easier to
push. The effect of a push behavior can be toggled with the active property; an
instantaneous push is repeated each time the active property is set to true.

In addition to a direction and a magnitude, a push may be given an offset from the
center of an item. This will apply an additional angular acceleration. Thus, I could
have started the image view spinning clockwise by means of its initial push, like
this:

push.setTargetOffsetFromCenter(UIOffsetMake(0, -200), forItem:self.v)

UICollisionBehavior
Watches for collisions either amongst items belonging to this same behavior or
between an item and a boundary (mode). One collision behavior can have many
boundaries. A boundary may be described as a line between two points or as a
UIBezierPath, or you can turn the reference view’s bounds into boundaries (set-
TranslatesReferenceBoundsIntoBoundaryWithInsets:). Boundaries that you
create can have an identifier. The collisionDelegate (UICollisionBehavior‐
Delegate) is called when a collision begins and again when it ends.

How a given collision affects the item(s) involved depends on the physical charac‐
teristics of the item(s), which may be configured through a UIDynamicItem‐
Behavior.

UISnapBehavior
Causes one item to snap to one point as if pulled by a spring. Its damping describes
how much the item should oscillate as its settles into that point. This is a very simple
behavior: the snap occurs once, immediately (when the behavior is added to the
animator), and there’s no notification when it’s over.

204 | Chapter 4: Animation

UIAttachmentBehavior
Attaches an item by a bar or a spring to another item or to a point in the reference
view , depending on how you initialize it:

• init(item:attachedToItem:)

• init(item:attachedToAnchor:)

The attachment point is, by default, the item’s center; to change that, there’s a dif‐
ferent pair of initializers:

• init(item:offsetFromCenter:attachedToItem:offsetFromCenter:)

• init(item:offsetFromCenter:attachedToAnchor:)

The physics of the attaching medium is governed by the behavior’s length,
frequency, and damping. They are set for you when you initialize the behavior, but
you can modify them, and the anchorPoint (if the attachment is to an anchor),
over the behavior’s lifetime.

As the other item or the anchorPoint moves, this item moves with it, in accordance
with the physics of the attaching medium. An anchorPoint is particularly useful
for implementing a draggable view within an animator world, as I’ll demonstrate
in the next chapter.

UIDynamicItemBehavior
Endows its items with internal physical characteristics such as density (changes
the impulse-resisting mass in relation to size), elasticity (bounce on collision),
friction, and resistance (tendency to come to rest unless forces are actively
applied), as well as injecting linear velocity or angular velocity.

Motion Effects
A view can respond in real time to the way the user tilts the device. Typically, the view’s
response will be to shift its position slightly. This is used, for example, in various parts
of the interface, to give a sense of the interface’s being layered (parallax). When an alert
is present, for example, if the user tilts the device, the alert shifts its position; the effect
is subtle, but sufficient to suggest subconsciously that the alert is floating slightly in front
of everything else on the screen.

Your own views can behave in the same way. A view will respond to shifts in the position
of the device if it has one or more motion effects (UIMotionEffect). Motion effects are
added to a view with addMotionEffect:, listed with motionEffects, and removed with
removeMotionEffect:.

The UIMotionEffect class is abstract: its job is to be subclassed. The chief subclass pro‐
vided is UIInterpolatingMotionEffect. Every UIInterpolatingMotionEffect has a single

Motion Effects | 205

key path, which uses key–value coding to specify the property of its view that it affects.
It also has a type, specifying which axis of the device’s tilting (horizontal tilt or vertical
tilt) is to affect this property. Finally, it has a maximum and minimum relative value,
the furthest distance that the affected property of the view is to be permitted to wander
from its actual value as the user tilts the device. Related motion effects should be com‐
bined into a UIMotionEffectGroup (a UIMotionEffect subclass), and the group added
to the view.

So, for example:

let m1 = UIInterpolatingMotionEffect(
 keyPath:"center.x", type:.TiltAlongHorizontalAxis)
m1.maximumRelativeValue = 10.0
m1.minimumRelativeValue = -10.0
let m2 = UIInterpolatingMotionEffect(
 keyPath:"center.y", type:.TiltAlongVerticalAxis)
m2.maximumRelativeValue = 10.0
m2.minimumRelativeValue = -10.0
let g = UIMotionEffectGroup()
g.motionEffects = [m1,m2]
v.addMotionEffect(g)

You can write your own UIMotionEffect subclass by implementing a single method,
keyPathsAndRelativeValuesForViewerOffset:, but this will rarely be necessary.

The user can turn off motion effects in the Settings app (under General → Acces‐
sibility → Reduce Motion).

Animation and Autolayout
The interplay between animation and autolayout can be tricky. As part of an animation,
you may be changing a view’s frame (or bounds, or center). You’re really not supposed
to do that when you’re using autolayout. If you do, an animation may not work correctly.
Or, it may appear to work perfectly, because no layout has happened; however, it is
entirely possible that layout will happen, and that it will be accompanied by undesirable
effects.

As I explained in Chapter 1, when layout takes place under autolayout, what matters
are a view’s constraints. If the constraints affecting a view don’t resolve to the size and
position that the view has at the moment of layout, the view will jump as the constraints
are obeyed. This is almost certainly not what you want.

To persuade yourself that this can be a problem, just animate a view’s position and then
ask for immediate layout by calling layoutIfNeeded, like this:

206 | Chapter 4: Animation

UIView.animateWithDuration(1, animations:{
 self.v.center.x += 100
 }, completion: {
 _ in
 self.v.layoutIfNeeded() // this is what will happen at layout time
 })

If we’re using autolayout, the view slides to the right and then jumps back to the left.
This is bad. It’s up to us to keep the constraints synchronized with the reality, so that
when layout comes along in the natural course of things, our views don’t jump into
undesirable states.

One option is to revise the violated constraints to match the new reality. If we’ve planned
far ahead, we may have armed ourselves in advance with a reference to those constraints;
in that case, our code can now remove and replace them — or, if the only thing that
needs changing is the constant value of a constraint, we can change that value in place
(recall that the constant is the only writable property of an existing constraint). Other‐
wise, discovering what constraints are now violated, and getting a reference to them, is
not at all easy.

An alternative approach, in the case where the only thing that needs changing is a
constraint’s constant, is this: instead of animating the view’s position and then com‐
pensating by changing the constant value of the constraint that positions it, animate
the change in the constant value in the first place. To do so, we set the constraint’s
constant to its new value, and animate the act of layout. Again, this assumes that we
have a reference to the constraint in question.

For example, if we are animating a view 100 points rightward, and if we have a reference
to the constraint whose constant positions that view horizontally, we would say this:

let con = self.v_horizontalPositionConstraint
con.constant += 100
UIView.animateWithDuration(1, animations:{
 self.v.layoutIfNeeded()
})

Another possibility is to use a snapshot of the original view (Chapter 1). Add the snap‐
shot temporarily to the interface — without using autolayout, and perhaps hiding the
original view — and animate the snapshot:

let snap = self.v.snapshotViewAfterScreenUpdates(true)
snap.frame = self.v.frame
self.v.superview!.addSubview(snap)
self.v.hidden = true
UIView.animateWithDuration(1, animations:{
 snap.center.x += 100
})

That works because the snapshot view is not under the influence of autolayout, so it
stays where we put it even if layout takes place. If, however, we need to remove the

Animation and Autolayout | 207

snapshot view and reveal the real view, and if the nature of the animation is such that
the real view ultimately needs to be shifted to a new permanent position, then its con‐
straints will still have to be revised.

Obviously, a view that is not under the direct influence of autolayout can be animated
however you like without violating any constraints. Thus, yet another possibility is to
remove the animated view from the influence of autolayout (remove its constraints and
set its translatesAutoresizingMaskIntoConstraints to true).

It is unfortunate that such elaborate tactics are needed. Autolayout was introduced into
iOS 6 with a seeming disregard for its fundamental incompatibility with animation; that
incompatibility is a serious flaw in iOS, and Apple, far from grappling with it, has stu‐
diously glossed over it ever since.

208 | Chapter 4: Animation

[Winifred the Woebegone illustrates hit-testing:]
Hey nonny nonny, is it you? — Hey nonny nonny
nonny no! — Hey nonny nonny, is it you? — Hey

nonny nonny nonny no!
—Marshall Barer, Once Upon a Mattress

CHAPTER 5

Touches

A touch is an instance of the user putting a finger on the screen. The system and the
hardware, working together, know when a finger contacts the screen and where it is. A
finger is fat, but its location is cleverly reduced to a single appropriate point.

A UIView, by virtue of being a UIResponder, is the visible locus of touches. There are
other UIResponder subclasses, but none of them is visible on the screen. What the user
sees are views; what the user is touching are views. (The user actually sees layers, but a
layer is not a UIResponder and is not involved with touches.)

It would make sense, therefore, if every touch were reported directly to the view in which
it occurred. However, what the system “sees” is not particular views but an app as a
whole. So a touch is represented as an object (a UITouch instance) which is bundled up
in an envelope (a UIEvent) which the system delivers to your app. It is then up to your
app to deliver the envelope to an appropriate UIView. In the vast majority of cases, this
will happen automatically the way you expect, and you will respond to a touch by way
of the view in which the touch occurred.

In fact, usually you won’t concern yourself with UIEvents and UITouches at all. Most
built-in interface views deal with these low-level touch reports themselves, and notify
your code at a higher level — you hear about functionality and intention rather than
raw touches. When a UIButton emits an action message to report a control event such
as Touch Up Inside, it has already performed a reduction of a complex sequence of
touches (“the user put a finger down inside me and then, possibly with some dragging
hither and yon, raised it when it was still reasonably close to me”). A UITextField reports
touches on the keyboard as changes in its own text. A UITableView reports that the user

209

selected a cell. A UIScrollView, when dragged, reports that it scrolled; when pinched
outward, it reports that it zoomed.

Nevertheless, it is useful to know how to respond to touches directly, so that you can
implement your own touchable views, and so that you understand what Cocoa’s built-
in views are actually doing. This chapter discusses touch detection and response by
views (and other UIResponders) at their lowest level, along with a higher-level, more
practical mechanism, gesture recognizers, that categorizes touches into gesture types
for you; then it deconstructs the touch-delivery architecture by which touches are re‐
ported to your views in the first place.

Touch Events and Views
Imagine a screen that the user is not touching at all: the screen is “finger-free.” Now the
user touches the screen with one or more fingers. From that moment until the time the
screen is once again finger-free, all touches and finger movements together constitute
what Apple calls a single multitouch sequence.

The system reports to your app, during a given multitouch sequence, every change in
finger configuration, so that your app can figure out what the user is doing. Every such
report is a UIEvent. In fact, every report having to do with the same multitouch sequence
is the same UIEvent instance, arriving repeatedly, each time there’s a change in finger
configuration.

Every UIEvent reporting a change in the user’s finger configuration contains one or
more UITouch objects. Each UITouch object corresponds to a single finger; conversely,
every finger touching the screen is represented in the UIEvent by a UITouch object.
Once a UITouch instance has been created to represent a finger that has touched the
screen, the same UITouch instance is used to represent that finger throughout this mul‐
titouch sequence until the finger leaves the screen.

Now, it might sound as if the system has to bombard the app with huge numbers of
reports constantly during a multitouch sequence. But that’s not really true. The system
needs to report only changes in the finger configuration. For a given UITouch object
(representing, remember, a specific finger), only four things can happen. These are
called touch phases, and are described by a UITouch instance’s phase property (UI‐
TouchPhase):
.Began

The finger touched the screen for the first time; this UITouch instance has just been
created. This is always the first phase, and arrives only once.

.Moved

The finger moved upon the screen.

210 | Chapter 5: Touches

.Stationary

The finger remained on the screen without moving. Why is it necessary to report
this? Well, remember, once a UITouch instance has been created, it must be present
every time the UIEvent arrives. So if the UIEvent arrives because something else
happened (e.g., a new finger touched the screen), we must report what this finger
has been doing, even if it has been doing nothing.

.Ended

The finger left the screen. Like .Began, this phase arrives only once. The UITouch
instance will now be destroyed and will no longer appear in UIEvents for this mul‐
titouch sequence.

Those four phases are sufficient to describe everything that a finger can do. Actually,
there is one more possible phase:
.Cancelled

The system has aborted this multitouch sequence because something interrupted
it. What might interrupt a multitouch sequence? There are many possibilities. Per‐
haps the user clicked the Home button or the screen lock button in the middle of
the sequence. A local notification alert may have appeared (Chapter 13); on an
iPhone, a call might have come in. And as we shall see, a gesture recognizer recog‐
nizing its gesture may also trigger touch cancellation. The point is, if you’re dealing
with touches yourself, you cannot afford to ignore touch cancellation; they are your
opportunity to get things into a coherent state when the sequence is interrupted.

When a UITouch first appears (.Began), your app works out which UIView it is asso‐
ciated with. (I’ll give full details, later in this chapter, as to how it does that.) This view
is then set as the touch’s view property, and remains so; from then on, this UITouch is
always associated with this view (until that finger leaves the screen).

The same UIEvent containing the same UITouches can be sent to multiple views. Ac‐
cordingly, a UIEvent is distributed to all the views of all the UITouches it contains. Con‐
versely, if a view is sent a UIEvent, it’s because that UIEvent contains at least one UITouch
whose view is this view.

If every UITouch in a UIEvent associated with a certain UIView has the
phase .Stationary, that UIEvent is not sent to that UIView. There’s no point, because
as far as that view is concerned, nothing happened.

Receiving Touches
A UIResponder, and therefore a UIView, has four methods corresponding to the four
UITouch phases that require UIEvent delivery. A UIEvent is delivered to a view by
calling one of these four methods (the touches... methods):

Receiving Touches | 211

touchesBegan:withEvent:

A finger touched the screen, creating a UITouch.

touchesMoved:withEvent:

A finger previously reported to this view with touchesBegan:withEvent: has
moved.

touchesEnded:withEvent:

A finger previously reported to this view with touchesBegan:withEvent: has left
the screen.

touchesCancelled:withEvent:

We are bailing out on a finger previously reported to this view with touches-
Began:withEvent:.

The parameters of these methods are:
The relevant touches

These are the event’s touches whose phase corresponds to the name of the method
and (normally) whose view is this view. They arrive as an NSSet. If there is only one
touch in the set, or if any touch in the set will do, you can retrieve it with any-
Object (an NSSet doesn’t have a first or last object, because a set is unordered).

The event
This is the UIEvent instance. It contains its touches as an NSSet, which you can
retrieve with the allTouches message. This means all the event’s touches, including
but not necessarily limited to those in the first parameter; there might be touches
in a different phase or intended for some other view. You can call touchesForView:
or touchesForWindow: to ask for the set of touches associated with a particular view
or window.

A UITouch has some useful methods and properties:
locationInView:, previousLocationInView:

The current and previous location of this touch with respect to the coordinate sys‐
tem of a given view. The view you’ll be interested in will often be self or
self.superview; supply nil to get the location with respect to the window. The
previous location will be of interest only if the phase is .Moved.

Recall (from Chapter 1) that the coordinate system of the window works differently
in iOS 8 from previous systems: in a rotated app, the window rotates in iOS 8,
whereas in iOS 7 and before it didn’t. If your code was relying on the location of a
touch with respect to the window in iOS 7, it may break in iOS 8.

212 | Chapter 5: Touches

timestamp

When the touch last changed. A touch is timestamped when it is created (.Began)
and each time it moves (.Moved). There can be a delay between the occurrence of
a physical touch and the delivery of the corresponding UITouch, so to learn about
the timing of touches, consult the timestamp, not the clock.

tapCount

If two touches are in roughly the same place in quick succession, and the first one
is brief, the second one may be characterized as a repeat of the first. They are dif‐
ferent touch objects, but the second will be assigned a tapCount one larger than the
previous one. The default is 1, so if (for example) a touch’s tapCount is 3, then this
is the third tap in quick succession in roughly the same spot.

view

The view with which this touch is associated.

majorRadius, majorRadiusTolerance
New in iOS 8, the radius of the touch (approximately half its size) and the uncer‐
tainty of that measurement, in points.

Here are some additional UIEvent properties:
type

This will be UIEventType.Touches. There are other event types, but you’re not
going to receive any of them this way.

timestamp

When the event occurred.

So, when we say that a certain view is receiving a touch, that is a shorthand expression
meaning that it is being sent a UIEvent containing this UITouch, over and over, by
calling one of its touches... methods, corresponding to the phase this touch is in, from
the time the touch is created until the time it is destroyed.

Restricting Touches
Touch events can be turned off entirely at the application level with UIApplication’s
beginIgnoringInteractionEvents. It is quite common to do this during animations
and other lengthy operations during which responding to a touch could cause unde‐
sirable results. This call should be balanced by endIgnoringInteractionEvents. Pairs
can be nested, in which case interactivity won’t be restored until the outermost end-
IgnoringInteractionEvents has been reached.

A number of UIView properties also restrict the delivery of touches to particular views:

Restricting Touches | 213

userInteractionEnabled

If set to false, this view (along with its subviews) is excluded from receiving touch‐
es. Touches on this view or one of its subviews “fall through” to a view behind it.

alpha

If set to 0.0 (or extremely close to it), this view (along with its subviews) is excluded
from receiving touches. Touches on this view or one of its subviews “fall through”
to a view behind it.

hidden

If set to true, this view (along with its subviews) is excluded from receiving touches.
This makes sense, since from the user’s standpoint, the view and its subviews are
not even present.

multipleTouchEnabled

If set to false, this view never receives more than one touch simultaneously; once
it receives a touch, it doesn’t receive any other touches until that first touch has
ended.

exclusiveTouch

This is the only one of these properties that can’t be set in the nib editor. An
exclusiveTouch view receives a touch only if no other views in the same window
have touches associated with them; once an exclusiveTouch view has received a
touch, then while that touch exists no other view in the same window receives any
touches.

Interpreting Touches
Thanks to gesture recognizers (discussed later in this chapter), in most cases you won’t
have to interpret touches at all; you’ll let a gesture recognizer do most of that work. Even
so, it is beneficial to be conversant with the nature of touch interpretation; this will help
you interact with a gesture recognizer, write your own gesture recognizer, or subclass
an existing one. Furthermore, not every touch sequence can be codified through a ges‐
ture recognizer; sometimes, directly interpreting touches is the best approach.

To figure out what’s going on as touches are received by a view, your code must essentially
function as a kind of state machine. You’ll receive various touches... method calls, and
your response will partly depend upon what happened previously, so you’ll have to
record somehow, such as in properties, the information that you’ll need in order to
decide what to do when the next touches... method is called. Such an architecture can
make writing and maintaining touch-analysis code quite tricky. Moreover, although
you can distinguish a particular UITouch or UIEvent object over time by keeping a
reference to it, you mustn’t retain that reference; it doesn’t belong to you.

214 | Chapter 5: Touches

To illustrate the business of interpreting touches, we’ll start with a view that can be
dragged with the user’s finger. For simplicity, I’ll assume that this view receives only a
single touch at a time. (This assumption is easy to enforce by setting the view’s multiple-
TouchEnabled to false, which is the default.)

The trick to making a view follow the user’s finger is to realize that a view is positioned
by its center, which is in superview coordinates, but the user’s finger might not be at
the center of the view. So at every stage of the drag we must change the view’s center by
the change in the user’s finger position in superview coordinates:

override func touchesMoved(touches: NSSet, withEvent event: UIEvent) {
 let t = touches.anyObject() as UITouch
 let loc = t.locationInView(self.superview)
 let oldP = t.previousLocationInView(self.superview)
 let deltaX = loc.x - oldP.x
 let deltaY = loc.y - oldP.y
 var c = self.center
 c.x += deltaX
 c.y += deltaY
 self.center = c
}

Next, let’s add a restriction that the view can be dragged only vertically or horizontally.
All we have to do is hold one coordinate steady; but which coordinate? Everything seems
to depend on what the user does initially. So we’ll do a one-time test the first time we
receive touchesMoved:withEvent:. Now we’re maintaining two Bool state properties,
decided and horiz:

override func touchesBegan(touches: NSSet, withEvent event: UIEvent) {
 self.decided = false
}
override func touchesMoved(touches: NSSet, withEvent event: UIEvent) {
 let t = touches.anyObject() as UITouch
 if !self.decided {
 self.decided = true
 let then = t.previousLocationInView(self)
 let now = t.locationInView(self)
 let deltaX = fabs(then.x - now.x)
 let deltaY = fabs(then.y - now.y)
 self.horiz = deltaX >= deltaY
 }
 let loc = t.locationInView(self.superview)
 let oldP = t.previousLocationInView(self.superview)
 let deltaX = loc.x - oldP.x
 let deltaY = loc.y - oldP.y
 var c = self.center
 if self.horiz {
 c.x += deltaX
 } else {

Interpreting Touches | 215

 c.y += deltaY
 }
 self.center = c
}

Look at how things are trending. We are maintaining multiple state properties, which
we are managing across multiple methods, and we are subdividing a touches... meth‐
od implementation into tests depending on the state of our state machine. Our state
machine is very simple, but already our code is becoming difficult to read and to main‐
tain — and things will only become more messy as we try to make our view’s behavior
more sophisticated.

Another area in which manual touch handling can rapidly prove overwhelming is when
it comes to distinguishing between different gestures that the user is to be permitted to
perform on a view. Imagine, for example, a view that distinguishes between a finger
tapping briefly and a finger remaining down for a longer time. We can’t know how long
a tap is until it’s over, so we must wait until then before deciding; once again, this requires
maintaining state in a property (time):

override func touchesBegan(touches: NSSet, withEvent event: UIEvent) {
 self.time = (touches.anyObject() as UITouch).timestamp
}
override func touchesEnded(touches: NSSet, withEvent event: UIEvent) {
 let diff = event.timestamp - self.time
 if (diff < 0.4) {
 println("short")
 } else {
 println("long")
 }
}

A similar challenge is distinguishing between a single tap and a double tap. The UITouch
tapCount property already makes this distinction, but that, by itself, is not enough to
help us react differently to the two. What we must do, having received a tap whose tap-
Count is 1, is to use delayed performance in responding to it, so that we wait long enough
to give a second tap a chance to arrive. This is unfortunate, because it means that if the
user intends a single tap, some time will elapse before anything happens in response to
it; however, there’s nothing we can readily do about that.

Distributing our various tasks correctly is tricky. We know when we have a double tap
as early as touchesBegan:withEvent:, but we respond to the double tap in touches-
Ended:withEvent:. Therefore we use a property (single) to communicate between the
two. We don’t start our delayed response to a single tap until touchesEnded:with-
Event:, because what matters is the time between the taps as a whole, not between the
starts of the taps:

216 | Chapter 5: Touches

override func touchesBegan(touches: NSSet, withEvent event: UIEvent) {
 let ct = (touches.anyObject() as UITouch).tapCount
 switch ct {
 case 2:
 self.single = false
 default: break
 }
}
override func touchesEnded(touches: NSSet, withEvent event: UIEvent) {
 let ct = (touches.anyObject() as UITouch).tapCount
 switch ct {
 case 1:
 self.single = true
 delay(0.3) {
 if self.single { // no second tap intervened
 println("single tap")
 }
 }
 case 2:
 println("double tap")
 default: break
 }
}

As that code weren’t confusing enough, let’s now consider combining our detection for
a single or double tap with our earlier code for dragging a view horizontally or vertically.
This is to be a view that can detect four kinds of gesture: a single tap, a double tap, a
horizontal drag, and a vertical drag. We must include the code for all possibilities and
make sure they don’t interfere with each other. The result is horrifying — a forced join
between two already complicated sets of code, along with an additional pair of state
properties (drag, decidedTapOrDrag) to track the decision between the tap gestures on
the one hand and the drag gestures on the other:

override func touchesBegan(touches: NSSet, withEvent event: UIEvent) {
 // be undecided
 self.decidedTapOrDrag = false
 // prepare for a tap
 let ct = (touches.anyObject() as UITouch).tapCount
 switch ct {
 case 2:
 self.single = false
 self.decidedTapOrDrag = true
 self.drag = false
 return
 default: break
 }
 // prepare for a drag
 self.decidedDirection = false
}
override func touchesMoved(touches: NSSet, withEvent event: UIEvent) {
 if self.decidedTapOrDrag && !self.drag {return}

Interpreting Touches | 217

 let t = touches.anyObject() as UITouch
 self.decidedTapOrDrag = true
 self.drag = true
 if !self.decidedDirection {
 self.decidedDirection = true
 let then = t.previousLocationInView(self)
 let now = t.locationInView(self)
 let deltaX = fabs(then.x - now.x)
 let deltaY = fabs(then.y - now.y)
 self.horiz = deltaX >= deltaY
 }
 let loc = t.locationInView(self.superview)
 let oldP = t.previousLocationInView(self.superview)
 let deltaX = loc.x - oldP.x
 let deltaY = loc.y - oldP.y
 var c = self.center
 if self.horiz {
 c.x += deltaX
 } else {
 c.y += deltaY
 }
 self.center = c
}
override func touchesEnded(touches: NSSet, withEvent event: UIEvent) {
 if !self.decidedTapOrDrag || !self.drag {
 // end for a tap
 let ct = (touches.anyObject() as UITouch).tapCount
 switch ct {
 case 1:
 self.single = true
 delay(0.3) {
 if self.single {
 println("single tap")
 }
 }
 case 2:
 println("double tap")
 default: break
 }
 }
}

That code seems to work, but it’s hard to say whether it covers all possibilities coherently;
it’s barely legible and the logic borders on the mysterious. This is the kind of situation
for which gesture recognizers were devised.

Gesture Recognizers
Writing and maintaining a state machine that interprets touches across a combination
of three or four touches... methods is hard enough when a view confines itself to
expecting only one kind of gesture, such as dragging. It becomes even more involved

218 | Chapter 5: Touches

when a view wants to accept and respond differently to different kinds of gesture. Fur‐
thermore, many types of gesture are conventional and standard; it seems insane to
require developers to implement independently the elements that constitute what is, in
effect, a universal vocabulary.

The solution is gesture recognizers, which standardize common gestures and allow the
code for different gestures to be separated and encapsulated into different objects.
Thanks to gesture recognizers, it is unnecessary to subclass UIView merely in order to
implement touch analysis.

Gesture Recognizer Classes
A gesture recognizer (a subclass of UIGestureRecognizer) is an object whose job is to
detect that a multitouch sequence equates to one particular type of gesture. It is attached
to a UIView, which has for this purpose methods addGestureRecognizer: and remove-
GestureRecognizer:, and a gestureRecognizers property. A UIGestureRecognizer
implements the four touches... handlers, but it is not a responder (a UIResponder),
so it does not participate in the responder chain.

If a new touch is going to be delivered to a view, it is also associated with and delivered
to that view’s gesture recognizers if it has any, and that view’s superview’s gesture rec‐
ognizers if it has any, and so on up the view hierarchy. Thus, the place of a gesture
recognizer in the view hierarchy matters, even though it isn’t part of the responder chain.

UITouch and UIEvent provide complementary ways of learning how touches and ges‐
ture recognizers are associated. UITouch’s gestureRecognizers lists the gesture rec‐
ognizers that are currently handling this touch. UIEvent’s touchesForGesture-
Recognizer: lists the touches that are currently being handled by a particular gesture
recognizer.

Each gesture recognizer maintains its own state as touch events arrive, building up
evidence as to what kind of gesture this is. When one of them decides that it has rec‐
ognized its own particular type of gesture, it emits either a single message (to indicate,
for example, that a finger has tapped) or a series of messages (to indicate, for example,
that a finger is moving); the distinction here is between a discrete and a continuous
gesture.

What message a gesture recognizer emits, and to what object it sends it, is set through
a target–action dispatch table attached to the gesture recognizer; a gesture recognizer
is rather like a UIControl in this regard. Indeed, one might say that a gesture recognizer
simplifies the touch handling of any view to be like that of a control. The difference is
that one control may report several different control events, whereas each gesture rec‐
ognizer reports only one gesture type, with different gestures being reported by different
gesture recognizers.

Gesture Recognizers | 219

UIGestureRecognizer itself is abstract, providing methods and properties to its sub‐
classes. Among these are:
init(target:action:)

The designated initializer. Each message emitted by a UIGestureRecognizer is a
matter of sending the action message to the target. Further target–action pairs may
be added with addTarget:action: and removed with removeTarget:action:.

Two forms of action: selector are possible: either there is no parameter, or there
is a single parameter which will be the gesture recognizer. Most commonly, you’ll
use the second form, so that the target can identify and query the gesture recognizer;
moreover, using the second form also gives the target a reference to the view,
through the gesture recognizer’s view property.

locationOfTouch:inView:

The touch is specified by an index number. The numberOfTouches property pro‐
vides a count of current touches; the touches themselves are inaccessible by way of
the gesture recognizer.

enabled

A convenient way to turn a gesture recognizer off without having to remove it from
its view.

state, view
I’ll discuss state later on. The view is the view to which this gesture recognizer is
attached.

Built-in UIGestureRecognizer subclasses are provided for six common gesture types:
tap, pinch (inward or outward), pan (drag), swipe, rotate, and long press. Each embodies
properties and methods likely to be needed for each type of gesture, either in order to
configure the gesture recognizer beforehand or in order to query it as to the state of an
ongoing gesture:
UITapGestureRecognizer (discrete)

Configuration: numberOfTapsRequired, numberOfTouchesRequired (“touches”
means simultaneous fingers).

UIPinchGestureRecognizer (continuous)
Two fingers moving toward or away from each other. State: scale, velocity.

UIRotationGestureRecognizer (continuous)
Two fingers moving round a common center. State: rotation, velocity.

UISwipeGestureRecognizer (discrete)
A straight-line movement in one of the four cardinal directions. Configuration:
direction (meaning permitted directions, a bitmask), numberOfTouchesRequired.

220 | Chapter 5: Touches

UIPanGestureRecognizer (continuous)
Dragging. Configuration: minimumNumberOfTouches, maximumNumberOfTouches.
State: translationInView:, setTranslation:inView:, and velocityInView:; the
coordinate system of the specified view is used.
UIScreenEdgePanGestureRecognizer

A UIPanGestureRecognizer subclass. It recognizes a pan gesture that starts at
an edge of the screen. It adds a configuration property, edges, a UIRectEdge;
despite the name (and the documentation), this must be set to a single edge.

UILongPressGestureRecognizer (continuous)
Configuration: numberOfTapsRequired, numberOfTouchesRequired, minimum-
PressDuration, allowableMovement. The numberOfTapsRequired is the count of
taps before the tap that stays down; so it can be 0 (the default). The allowable-
Movement setting lets you compensate for the fact that the user’s finger is unlikely
to remain steady during an extended press; thus we need to provide some limit
before deciding that this gesture is, say, a drag, and not a long press after all. On the
other hand, once the long press is recognized, the finger is permitted to drag.

UIGestureRecognizer also provides a locationInView: method. This is a single point,
even if there are multiple touches. The subclasses implement this variously. For example,
for UIPanGestureRecognizer, the location is where the touch is if there’s a single touch,
but it’s a sort of midpoint (“centroid”) if there are multiple touches.

We already know enough to implement, using a gesture recognizer, a view that responds
to a single tap, or a view that responds to a double tap. We don’t yet know quite enough
to implement a view that lets itself be dragged around, or a view that can respond to
more than one gesture; we’ll come to that. Meanwhile, here’s code that implements a
view (v) that responds to a single tap:

let t1 = UITapGestureRecognizer(target:self, action:"singleTap")
self.v.addGestureRecognizer(t1)
// ...
func singleTap () {
 println("single tap")
}

And here’s code that implements a view (v) that responds to a double tap:

let t2 = UITapGestureRecognizer(target:self, action:"doubleTap")
t2.numberOfTapsRequired = 2
self.v.addGestureRecognizer(t2)
// ...
func doubleTap () {
 println("double tap")
}

Gesture Recognizers | 221

For a continuous gesture like dragging, we need to know both when the gesture is in
progress and when the gesture ends. This brings us to the subject of a gesture recognizer’s
state.

A gesture recognizer implements a notion of states (the state property, UIGesture‐
RecognizerState); it passes through these states in a definite progression. The gesture
recognizer remains in the .Possible state until it can make a decision one way or the
other as to whether this is in fact the correct gesture. The documentation neatly lays out
the possible progressions:
Wrong gesture

.Possible → .Failed. No action message is sent.

Discrete gesture (like a tap), recognized
.Possible → .Ended. One action message is sent, when the state changes to .Ended.

Continuous gesture (like a drag), recognized
.Possible → .Began → .Changed (repeatedly) → .Ended. Action messages are sent
once for .Began, as many times as necessary for .Changed, and once for .Ended.

Continuous gesture, recognized but later cancelled
.Possible → .Began → .Changed (repeatedly) → .Cancelled. Action messages are
sent once for .Began, as many times as necessary for .Changed, and once
for .Cancelled.

The same action message arrives at the same target every time, so the handler must
differentiate by asking about the gesture recognizer’s state. To illustrate, we will im‐
plement, using a gesture recognizer, a view (v) that lets itself be dragged around in any
direction by a single finger. Our maintenance of state is greatly simplified, because a
UIPanGestureRecognizer maintains a delta (translation) for us. This delta, available
using translationInView:, is reckoned from the touch’s initial position. We don’t even
need to record the view’s original center, because we are allowed to reset the UIPan‐
GestureRecognizer’s delta, using setTranslation:inView:. So:

func dragging(p : UIPanGestureRecognizer!) {
 let vv = p.view!
 switch p.state {
 case .Began, .Changed:
 let delta = p.translationInView(vv.superview!)
 var c = vv.center
 c.x += delta.x; c.y += delta.y
 vv.center = c
 p.setTranslation(CGPointZero, inView: vv.superview)
 default: break
 }
}

222 | Chapter 5: Touches

A pan gesture recognizer can be used also to make a view draggable under the influence
of a UIDynamicAnimator (Chapter 4). The strategy here is that the view is attached to
one or more anchor points through a UIAttachmentBehavior; as the user drags, we
move the anchor point(s), and the view follows. In this example, I set up the whole UIKit
dynamics “stack” of objects as the gesture begins, anchoring the view at the point where
the touch is; then I move the anchor point to stay with the touch. Instance variables
anim and att store the UIDynamicAnimator and the UIAttachmentBehavior, respec‐
tively; self.view is our view’s superview, and is the animator’s reference view:

@IBAction func dragging(g: UIPanGestureRecognizer!) {
 switch g.state {
 case .Began:
 self.anim = UIDynamicAnimator(referenceView:self.view)
 let loc = g.locationOfTouch(0, inView:g.view)
 let cen = CGPointMake(g.view!.bounds.midX, g.view!.bounds.midY)
 let off = UIOffsetMake(loc.x-cen.x, loc.y-cen.y)
 let anchor = g.locationOfTouch(0, inView:self.view)
 let att = UIAttachmentBehavior(item:g.view!,
 offsetFromCenter:off, attachedToAnchor:anchor)
 self.anim.addBehavior(att)
 self.att = att
 case .Changed:
 self.att.anchorPoint = g.locationOfTouch(0, inView: self.view)
 default:
 self.anim = nil
 }
}

The outcome is that the view both moves and rotates in response to dragging, like a
plate being pulled about on a table by a single finger. Another implementation, suggested
in a WWDC 2013 video, is to attach the view by springs to four anchor points at some
distance outside its corners and move all four anchor points; the view then jiggles while
being dragged.

Gesture Recognizer Conflicts
The question naturally arises of what happens when multiple gesture recognizers are in
play. This isn’t a matter merely of multiple recognizers attached to a single view; as I
have said, if a view is touched, not only its own gesture recognizers but also any gesture
recognizers attached to views further up the view hierarchy are in play simultaneously.
I like to think of a view as surrounded by a swarm of gesture recognizers — its own, and
those of its superview, and so on. (In reality, it is a touch that has a swarm of gesture
recognizers; that’s why a UITouch has a gestureRecognizers property, in the plural.)

The superview gesture recognizer swarm comes as a surprise to beginners, but it makes
sense, because without it, certain gestures would be impossible. Imagine, for example,
a pair of views, each of which the user can tap individually, but which the user can also

Gesture Recognizers | 223

touch simultaneously (one finger on each view) to rotate them together around their
mutual centroid. Neither view can detect the rotation qua rotation, because neither view
receives both touches; only the superview can detect it, so the fact that the views them‐
selves respond to touches must not prevent the superview’s gesture recognizer from
operating.

In general, once a gesture recognizer succeeds in recognizing its gesture, any other
gesture recognizers associated with its touches are forced into the .Failed state, and
whatever touches were associated with those gesture recognizers are no longer sent to
them; in effect, the first gesture recognizer in a swarm that recognizes its gesture owns
the gesture (and its touches) from then on.

In many cases, this “first past the post” behavior, on its own, will correctly eliminate
conflicts. If it doesn’t, you can modify it.

For example, we can add both our UITapGestureRecognizer for a single tap and our
UIPanGestureRecognizer to a view and everything will just work; “first past the post”
is exactly the desired behavior. What happens, though, if we also add the UITapGesture‐
Recognizer for a double tap? Dragging works, and single tap works; double tap works
too, but without preventing the single tap from working. So, on a double tap, both the
single tap action handler and the double tap action handler are called.

If that isn’t what we want, we don’t have to use delayed performance, as we did earlier.
Instead, we can create a dependency between one gesture recognizer and another, telling
the first to suspend judgement until the second has decided whether this is its gesture.
 We can do this by sending the first gesture recognizer the requireGestureRecognizer-
ToFail: message. (This message is rather badly named; it doesn’t mean “force this other
recognizer to fail,” but rather, “you can’t succeed unless this other recognizer has failed.”)

So our view v is now configured as follows:

let t2 = UITapGestureRecognizer(target:self, action:"doubleTap")
t2.numberOfTapsRequired = 2
self.v.addGestureRecognizer(t2)
let t1 = UITapGestureRecognizer(target:self, action:"singleTap")
t1.requireGestureRecognizerToFail(t2) // *
self.v.addGestureRecognizer(t1)
let p = UIPanGestureRecognizer(target: self, action: "dragging:")
self.v.addGestureRecognizer(p)

Apple would prefer, if you’re going to have a view respond both to a single tap and
to a double tap, that you not make the former wait upon the latter (because this
delays your response after the single tap). Rather, they would like you to arrange
things so that it doesn’t matter if you respond to a single tap that is the first tap of
a double tap. This isn’t always feasible, however; Apple’s own Mobile Safari is a clear
counterexample.

224 | Chapter 5: Touches

Another conflict that can arise is between a gesture recognizer and a view that already
knows how to respond to the same gesture, such as a UIControl. This problem pops up
particularly when the gesture recognizer belongs to the UIControl’s superview. The
UIControl’s mere presence does not “block” the superview’s gesture recognizer from
recognizing a gesture on the UIControl, even if it is a UIControl that responds auton‐
omously to touches. For example, your window’s root view might have a UITapGesture‐
Recognizer attached to it (perhaps because you want to be able to recognize taps on the
background), but there is also a UIButton within it. How is that gesture recognizer to
ignore a tap on the button?

The UIView instance method gestureRecognizerShouldBegin: solves the problem. It
is called automatically; to modify its behavior, use a custom UIView subclass and over‐
ride it. Its parameter is a gesture recognizer belonging to this view or to a view further
up the view hierarchy. That gesture recognizer has recognized its gesture as taking place
in this view; but by returning false, the view can tell the gesture recognizer to bow out
and do nothing, not sending any action messages, and permitting this view to respond
to the touch as if the gesture recognizer weren’t there.

Thus, for example, a UIButton could return false for a single tap UITapGesture‐
Recognizer; a single tap on the button would then trigger the button’s action message,
not the gesture recognizer’s action message. And in fact a UIButton, by default, does
return false for a single tap UITapGestureRecognizer whose view is not the UIButton
itself. (If the gesture recognizer is for some gesture other than a tap, then the problem
never arises, because a tap on the button won’t cause the gesture recognizer to recognize
in the first place.) Other built-in controls may also implement gestureRecognizer-
ShouldBegin: in such a way as to prevent accidental interaction with a gesture recog‐
nizer; the documentation says that a UISlider implements it in such a way that a
UISwipeGestureRecognizer won’t prevent the user from sliding the “thumb,” and there
may be other cases that aren’t documented explicitly. Naturally, you can take advantage
of this feature in your own UIView subclasses.

Another way of resolving possible gesture recognizer conflicts is through the gesture
recognizer’s delegate, or with a gesture recognizer subclass. I’ll discuss these in a
moment.

Subclassing Gesture Recognizers
To subclass UIGestureRecognizer or a built-in gesture recognizer subclass, you must
do the following things:

• In the bridging header, import <UIKit/UIGestureRecognizerSubclass.h>. This
file contains a category on UIGestureRecognizer that allows you to set the gesture
recognizer’s state (which is otherwise read-only), along with declarations for the
methods you may need to override.

Gesture Recognizers | 225

• Override any touches... methods you need to (as if the gesture recognizer were
a UIResponder); if you’re subclassing a built-in gesture recognizer subclass, you
will almost certainly call super so as to take advantage of the built-in behavior. In
overriding a touches... method, you need to think like a gesture recognizer. As
these methods are called, a gesture recognizer is setting its state; you must interact
with that process.

To illustrate, we will subclass UIPanGestureRecognizer so as to implement a view that
can be moved only horizontally or vertically. Our strategy will be to make two UIPan‐
GestureRecognizer subclasses — one that allows only horizontal movement, and an‐
other that allows only vertical movement. They will make their recognition decisions
in a mutually exclusive manner, so we can attach an instance of each to our view. This
separates the decision-making logic in a gorgeously encapsulated object-oriented man‐
ner — a far cry from the spaghetti code we wrote earlier to do this same task.

I will show only the code for the horizontal drag gesture recognizer, because the vertical
recognizer is symmetrically identical. We maintain just one property, origLoc, which
we will use once to determine whether the user’s initial movement is horizontal. We
override touchesBegan:withEvent: to set our property with the first touch’s location:

override func touchesBegan(touches: NSSet, withEvent event: UIEvent) {
 self.origLoc =
 (touches.anyObject() as UITouch).locationInView(self.view!.superview)
 super.touchesBegan(touches, withEvent:event)
}

We then override touchesMoved:withEvent:; all the recognition logic is here. This
method will be called for the first time with the state still at .Possible. At that moment,
we look to see if the user’s movement is more horizontal than vertical. If it isn’t, we set
the state to .Failed. But if it is, we just step back and let the superclass do its thing:

override func touchesMoved(touches: NSSet, withEvent event: UIEvent) {
 if self.state == .Possible {
 let loc = (touches.anyObject() as UITouch)
 .locationInView(self.view!.superview)
 let deltaX = fabs(loc.x - self.origLoc.x)
 let deltaY = fabs(loc.y - self.origLoc.y)
 if deltaY >= deltaX {
 self.state = .Failed
 }
 }
 super.touchesMoved(touches, withEvent:event)
}

We now have a view that moves only if the user’s initial gesture is horizontal. But that
isn’t the entirety of what we want; we want a view that, itself, moves horizontally only.
To implement this, we’ll simply lie to our client about where the user’s finger is, by
overriding translationInView::

226 | Chapter 5: Touches

override func translationInView(view: UIView) -> CGPoint {
 var proposedTranslation = super.translationInView(view)
 proposedTranslation.y = 0
 return proposedTranslation
}

That example was simple, because we subclassed a fully functional built-in UIGesture‐
Recognizer subclass. If you were to write your own UIGestureRecognizer subclass en‐
tirely from scratch, there would be more work to do:

• You should definitely implement all four touches... handlers. Their job, at a min‐
imum, is to advance the gesture recognizer through the canonical progression of
its states. When the first touch arrives at a gesture recognizer, its state will
be .Possible; you never explicitly set the recognizer’s state to .Possible yourself.
As soon as you know this can’t be our gesture, you set the state to .Failed (Apple
says that a gesture recognizer should “fail early, fail often”). If the gesture gets past
all the failure tests, you set the state instead either to .Ended (for a discrete gesture)
or to .Began (for a continuous gesture); if .Began, then you might set it
to .Changed, and ultimately you must set it to .Ended. Action messages will be sent
automatically at the appropriate moments.

• You should probably implement reset. This is called after you reach the end of the
progression of states to notify you that the gesture recognizer’s state is about to be
set back to .Possible; it is your chance to return your state machine to its starting
configuration (resetting properties, for example).

Keep in mind that your gesture recognizer might stop receiving touches without notice.
Just because it gets a touchesBegan:withEvent: call for a particular touch doesn’t mean
it will ever get touchesEnded:withEvent: for that touch. If your gesture recognizer fails
to recognize its gesture, either because it declares failure or because it is still in
the .Possible state when another gesture recognizer recognizes, it won’t get any more
touches... calls for any of the touches that were being sent to it. This is why reset is
so important; it’s the one reliable signal that it’s time to clean up and get ready to receive
the beginning of another possible gesture.

Gesture Recognizer Delegate
A gesture recognizer can have a delegate (UIGestureRecognizerDelegate), which can
perform two types of task.

These delegate methods can block a gesture recognizer’s operation:
gestureRecognizerShouldBegin:

Sent to the delegate before the gesture recognizer passes out of the .Possible state;
return false to force the gesture recognizer to proceed to the .Failed state. (This
happens after gestureRecognizerShouldBegin: has been sent to the view in which

Gesture Recognizers | 227

the touch took place. That view must not have returned false, or we wouldn’t have
reached this stage.)

gestureRecognizer:shouldReceiveTouch:

Sent to the delegate before a touch is sent to the gesture recognizer’s touches-
Began:... method; return false to prevent that touch from ever being sent to the
gesture recognizer.

These delegate methods can mediate gesture recognition conflict:
gestureRecognizer:shouldRecognizeSimultaneouslyWithGestureRecognizer:

Sent when a gesture recognizer recognizes its gesture, if this will force the failure
of another gesture recognizer, to the delegates of both gesture recognizers. Return
true to prevent that failure, thus allowing both gesture recognizers to operate si‐
multaneously. For example, a view could respond to both a two-fingered pinch and
a two-fingered pan, the one applying a scale transform, the other changing the view’s
center.

gestureRecognizer:shouldRequireFailureOfGestureRecognizer:
gestureRecognizer:shouldBeRequiredToFailByGestureRecognizer:

Sent very early in the life of a gesture, when all gesture recognizers in a view’s swarm
are still in the .Possible state, to the delegates of all of them, pairing the gesture
recognizer whose delegate this is with every other gesture recognizer in the swarm.
Return true to prioritize between a pair, saying that one gesture recognizer cannot
succeed until another has first failed. In essence, these delegate methods turn the
decision made once and permanently in requireGestureRecognizerToFail: into
a live decision that can be made freshly every time a gesture occurs.

As an example, we will use delegate messages to combine a UILongPressGesture‐
Recognizer and a UIPanGestureRecognizer, as follows: the user must perform a tap-
and-a-half (tap and hold) to “get the view’s attention,” which we will indicate by a pulsing
animation on the view; then (and only then) the user can drag the view.

The UIPanGestureRecognizer’s handler will take care of the drag, as shown earlier in
this chapter. The UILongPressGestureRecognizer’s handler will take care of starting and
stopping the animation:

func longPress(lp:UILongPressGestureRecognizer!) {
 switch lp.state {
 case .Began:
 let anim = CABasicAnimation(keyPath: "transform")
 anim.toValue = NSValue(
 CATransform3D:CATransform3DMakeScale(1.1, 1.1, 1))
 anim.fromValue = NSValue(CATransform3D:CATransform3DIdentity)
 anim.repeatCount = Float.infinity
 anim.autoreverses = true
 lp.view!.layer.addAnimation(anim, forKey:nil)
 case .Ended, .Cancelled:

228 | Chapter 5: Touches

 lp.view!.layer.removeAllAnimations()
 default: break
 }
}

As we created our gesture recognizers, we kept a reference to the UILongPressGesture‐
Recognizer (self.longPresser), and we made ourself the UIPanGestureRecognizer’s
delegate. So we will receive delegate messages. If the UIPanGestureRecognizer tries to
declare success while the UILongPressGestureRecognizer’s state is .Failed or still
at .Possible, we prevent it. If the UILongPressGestureRecognizer succeeds, we permit
the UIPanGestureRecognizer to operate as well:

func gestureRecognizerShouldBegin(g: UIGestureRecognizer) -> Bool {
 // g is the pan gesture recognizer
 var result = true
 switch self.longPresser.state {
 case .Possible, .Failed:
 result = false
 default: break
 }
 return result
}
func gestureRecognizer(g: UIGestureRecognizer,
 shouldRecognizeSimultaneouslyWithGestureRecognizer
 g2: UIGestureRecognizer) -> Bool {
 println("sim")
 return true
}

The result is that the view can be dragged only while it is pulsing; in effect, what we’ve
done is to compensate, using delegate methods, for the fact that UIGestureRecognizer
has no requireGestureRecognizerToSucceed: method.

If you are subclassing a gesture recognizer class, you can incorporate delegate-like be‐
havior into the subclass, by overriding the following methods:

• canPreventGestureRecognizer:

• canBePreventedByGestureRecognizer:

• shouldRequireFailureOfGestureRecognizer:

• shouldBeRequiredToFailByGestureRecognizer:

The “Prevent” methods are similar to the delegate shouldBegin: method, and the “Fail”
methods are similar to the delegate “Fail” methods. In this way, you can mediate gesture
recognizer conflict at the class level. The built-in gesture recognizer subclasses already
do this; that is why, for example, a single tap UITapGestureRecognizer does not, by
recognizing its gesture, cause the failure of a double tap UITapGestureRecognizer.

Gesture Recognizers | 229

You can also, in a gesture recognizer subclass, send ignoreTouch:forEvent: directly to
a gesture recognizer (typically, to self). This has the same effect as the delegate method
gestureRecognizer:shouldReceiveTouch: returning false, blocking all future de‐
livery of that touch to the gesture recognizer. For example, if you’re in the middle of an
already recognized gesture and a new touch arrives, you might well elect to ignore it.

Gesture Recognizers in the Nib
Instead of instantiating a gesture recognizer in code, you can create and configure it in
a .xib or .storyboard file. In the nib editor, drag a gesture recognizer from the Object
library into a view; the gesture recognizer becomes a top-level nib object, and the view’s
gestureRecognizers outlet is connected to the gesture recognizer. (You can add more
than one gesture recognizer to a view in the nib: the view’s gestureRecognizers prop‐
erty is an array, and its gestureRecognizers outlet is an outlet collection.) The gesture
recognizer’s properties are configurable in the Attributes inspector, and the gesture
recognizer has a delegate outlet. The gesture recognizer is a full-fledged nib object, so
you can make an outlet to it.

To configure a gesture recognizer’s target–action pair in the nib, treat it like a UIControl’s
control event. The action method’s signature should be marked @IBAction, and it should
take a single parameter, which will be a reference to the gesture recognizer. You will then
be able to form the Sent Action connection in the usual way.

A gesture recognizer can have multiple target–action pairs, but only one target–
action pair can be configured for a gesture recognizer using the nib editor.

A view retains its gesture recognizers, so there will usually be no need for additional
memory management on a gesture recognizer instantiated from a nib.

Touch Delivery
Here’s the full standard procedure by which a touch is delivered to views and gesture
recognizers:

• Whenever a new touch appears, the application uses hit-testing (see the next sec‐
tion) to determine the view that was touched. This view will be permanently asso‐
ciated with this touch, and is called, appropriately, the hit-test view. The logic of
ignoring a view (denying it the ability to become the hit-test view) in response to
its userInteractionEnabled, hidden, and alpha is implemented at this stage.

230 | Chapter 5: Touches

• Each time the touch situation changes, the application calls its own sendEvent:,
which in turn calls the window’s sendEvent:. The window delivers each of an event’s
touches by calling the appropriate touches... method(s), as follows:

■ As a touch first appears, the logic of obedience to multipleTouchEnabled and
exclusiveTouch is considered. If permitted by that logic (which I’ll discuss in
detail later):
⚬ The touch is delivered to the hit-test view’s swarm of gesture recognizers.
⚬ The touch is delivered to the hit-test view itself.

■ If a gesture is recognized by a gesture recognizer, then for any touch associated
with this gesture recognizer:
⚬ touchesCancelled:forEvent: is sent to the touch’s view, and the touch is

no longer delivered to its view.
⚬ If that touch was associated with any other gesture recognizer, that gesture

recognizer is forced to fail.
■ If a gesture recognizer fails, either because it declares failure or because it is

forced to fail, its touches are no longer delivered to it, but (except as already
specified) they continue to be delivered to their view.

■ If a touch would be delivered to a view, but that view does not respond to the
appropriate touches... method, a responder further up the responder chain is
sought that does respond to it, and the touch is delivered there.

The rest of this chapter discusses the details. As you’ll see, nearly every bit of that stan‐
dard procedure can be customized to some extent.

Hit-Testing
Hit-testing is the determination of what view the user touched. View hit-testing uses the
UIView instance method hitTest:withEvent:, which returns either a view (the hit-
test view) or nil. The idea is to find the frontmost view containing the touch point. This
method uses an elegant recursive algorithm, as follows:

1. A view’s hitTest:withEvent: first calls the same method on its own subviews, if
it has any, because a subview is considered to be in front of its superview. The
subviews are queried in reverse order, because that’s front-to-back order (Chap‐
ter 1): thus, if two sibling views overlap, the one in front reports the hit first.

2. If, as a view hit-tests its subviews, any of those subviews responds by returning a
view, it stops querying its subviews and immediately returns the view that was
returned to it. Thus, the very first view to declare itself the hit-test view immediately
percolates all the way to the top of the call chain and is the hit-test view.

Touch Delivery | 231

3. If, on the other hand, a view has no subviews, or if all of its subviews return nil
(indicating that neither they nor their subviews was hit), then the view calls point-
Inside:withEvent: on itself. If this call reveals that the touch was inside this view,
the view returns itself, declaring itself the hit-test view; otherwise it returns nil.
No problem arises if a view has a transform, because pointInside:withEvent:
takes the transform into account. That’s why a rotated button continues to work
correctly.

It is also up to hitTest:withEvent: to implement the logic of touch restrictions ex‐
clusive to a view. If a view’s userInteractionEnabled is false, or its hidden is true,
or its alpha is close to 0.0, it returns nil without hit-testing any of its subviews and
without calling pointInside:withEvent:. Thus these restrictions do not, of them‐
selves, exclude a view from being hit-tested; on the contrary, they operate precisely by
modifying a view’s hit-test result.

However, hit-testing knows nothing about multipleTouchEnabled (which involves
multiple touches) or exclusiveTouch (which involves multiple views). The logic of
obedience to these properties is implemented at a later stage of the story.

You can use hit-testing yourself at any moment where it might prove useful. In calling
hitTest:withEvent:, supply a point in the coordinates of the view to which the message
is sent. The second parameter can be nil if you have no event.

For example, suppose we have a UIView with two UIImageView subviews. We want to
detect a tap in either UIImageView, but we want to handle this at the level of the UIView.
We can attach a UITapGestureRecognizer to the UIView, but then the gesture recog‐
nizer’s view is the UIView, so how will we know which subview, if any, the tap was in?

First, verify that userInteractionEnabled is true for both UIImageViews. UIImage‐
View is one of the few built-in view classes where this is false by default, and a view
whose userInteractionEnabled is false won’t normally be the result of a call to hit-
Test:withEvent:. Then, when our gesture recognizer’s action handler is called, we can
use hit-testing to determine where the tap was:

// g is the gesture recognizer
let p = g.locationOfTouch(0, inView: g.view)
let v = g.view!.hitTest(p, withEvent: nil)
if let v = v as? UIImageView { // ...

You can also override hitTest:withEvent: in a view subclass, to alter its results during
touch delivery, thus customizing the touch delivery mechanism. I call this hit-test
munging. Hit-test munging can be used selectively as a way of turning user interaction
on or off in an area of the interface. In this way, some unusual effects can be produced.

An important use of hit-test munging is to permit the touching of parts of subviews
outside the bounds of their superview. If a view’s clipsToBounds is false, a paradox

232 | Chapter 5: Touches

arises: the user can see the regions of its subviews that are outside its bounds, but can’t
touch them. This can be confusing and seems wrong. The solution is for the view to
override hitTest:withEvent: as follows:

override func hitTest(point: CGPoint, withEvent event: UIEvent?) -> UIView? {
 if let result = super.hitTest(point, withEvent:event) {
 return result
 }
 for sub in self.subviews.reverse() as [UIView] {
 let pt = self.convertPoint(point, toView:sub)
 if let result = sub.hitTest(pt, withEvent:event) {
 return result
 }
 }
 return nil
}

Hit-testing for layers

There is also hit-testing for layers. It doesn’t happen automatically, as part of sendEvent:
or anything else; it’s up to you. It’s just a convenient way of finding out which layer would
receive a touch at a point, if layers received touches. To hit-test layers, call hitTest: on
a layer, with a point in superlayer coordinates.

Keep in mind, though, that layers do not receive touches. A touch is reported to a view,
not a layer. A layer, except insofar as it is a view’s underlying layer and gets touch re‐
porting because of its view, is completely untouchable; from the point of view of touches
and touch reporting, it’s as if the layer weren’t on the screen at all. No matter where a
layer may appear to be, a touch falls through the layer, to whatever view is behind it.

In the case of the layer that is a view’s underlying layer, you don’t need hit-testing. It is
the view’s drawing; where it appears is where the view is. So a touch in that layer is
equivalent to a touch in its view. Indeed, one might say (and it is often said) that this is
what views are actually for: to provide layers with touchability.

The only layers on which you’d need special hit-testing, then, would presumably be
layers that are not themselves any view’s underlying layer, because those are the only
ones you don’t find out about by normal view hit-testing. However, all layers, including
a layer that is its view’s underlying layer, are part of the layer hierarchy, and can partic‐
ipate in layer hit-testing. So the most comprehensive way to hit-test layers is to start
with the topmost layer, the window’s layer. In this example, we subclass UIWindow (see
Chapter 1) and override its hitTest:withEvent: so as to get layer hit-testing every time
there is view hit-testing:

override func hitTest(point: CGPoint, withEvent event: UIEvent?) -> UIView? {
 let lay = self.layer.hitTest(point)
 // ... possibly do something with that information
 return super.hitTest(point, withEvent:event)
}

Touch Delivery | 233

In that example, the view hit-test point works as the layer hit-test point; window bounds
are screen bounds (Chapter 1). But usually you’ll have to convert to superlayer coordi‐
nates. In this next example, we return to the CompassView developed in Chapter 3, in
which all the parts of the compass are layers; we want to know whether the user tapped
on the arrow layer. For simplicity, we’ve given the CompassView a UITapGesture‐
Recognizer, and this is its action handler, in the CompassView itself. We convert to our
superview’s coordinates, because these are also our layer’s superlayer coordinates:

@IBAction func tapped(t:UITapGestureRecognizer) {
 let p = t.locationOfTouch(0, inView: self.superview)
 let hitLayer = self.layer.hitTest(p)
 let arrow = (self.layer as CompassLayer).arrow
 if hitLayer? == arrow { // respond to touch
 arrow.transform = CATransform3DRotate(
 arrow.transform, CGFloat(M_PI)/4.0, 0, 0, 1)
 }
}

Layer hit-testing knows nothing of the restrictions on touch delivery; it just reports on
every sublayer, even one whose view (for example) has userInteractionEnabled set
to false.

The documentation warns that hitTest: must not be called on a CATransform‐
Layer.

Hit-testing for drawings
The preceding example (letting the user tap on the compass arrow) worked, but we
might complain that it is reporting a hit on the arrow even if the hit misses the drawing
of the arrow. That’s true for view hit-testing as well. A hit is reported if we are within
the view or layer as a whole; hit-testing knows nothing of drawing, transparent areas,
and so forth.

If you know how the region is drawn and can reproduce the edge of that drawing as a
CGPath, you can test whether a point is inside it with CGPathContainsPoint. So, in our
compass layer, we could override hitTest along these lines:

override func hitTest(p: CGPoint) -> CALayer? {
 var lay = super.hitTest(p)
 if lay == self.arrow {
 // artificially restrict touchability to roughly the arrow area
 let pt = self.arrow.convertPoint(p, fromLayer:self.superlayer)
 let path = CGPathCreateMutable()
 CGPathAddRect(path, nil, CGRectMake(10,20,20,80))
 CGPathMoveToPoint(path, nil, 0, 25)
 CGPathAddLineToPoint(path, nil, 20, 0)
 CGPathAddLineToPoint(path, nil, 40, 25)
 CGPathCloseSubpath(path)

234 | Chapter 5: Touches

 if !CGPathContainsPoint(path, nil, pt, false) {
 lay = nil;
 }
 }
 return lay
}

(Layer hit-testing works by calling containsPoint:. However, containsPoint: takes a
point in the layer’s coordinates, so to hand it a point that arrives through hitTest: we
must first convert from superlayer coordinates.)

Alternatively, it might be the case that if a pixel of the drawing is transparent, it’s outside
the drawn region, so that it suffices to detect whether the pixel tapped is transparent.
Unfortunately, there’s no way to ask a drawing (or a view, or a layer) for the color of a
pixel; you have to make a bitmap and copy the drawing into it, and then ask the bitmap
for the color of a pixel. If you can reproduce the content as an image, and all you care
about is transparency, you can make a one-pixel alpha-only bitmap, draw the image in
such a way that the pixel you want to test is the pixel drawn into the bitmap, and examine
the transparency of the resulting pixel:

// assume im is a UIImage, point is the CGPoint to test
let info = CGBitmapInfo(CGImageAlphaInfo.Only.rawValue)
let pixel = UnsafeMutablePointer<CUnsignedChar>.alloc(1)
pixel[0] = 0
let context = CGBitmapContextCreate(pixel,
 1, 1, 8, 1, nil, info)
UIGraphicsPushContext(context)
im.drawAtPoint(CGPointMake(-point.x, -point.y))
UIGraphicsPopContext()
let p = pixel[0]
let alpha = Double(p)/255.0
let transparent = alpha < 0.01

However, there may not be a one-to-one relationship between the pixels of the under‐
lying drawing and the points of the drawing as portrayed on the screen — because the
drawing is stretched, for example. In many cases, the CALayer method renderIn-
Context: can be helpful here. This method allows you to copy a layer’s actual drawing
into a context of your choice. If that context is, say, an image context created with
UIGraphicsBeginImageContextWithOptions, you can now use the resulting image as
im in the code above:

UIGraphicsBeginImageContextWithOptions(self.bounds.size, false, 0)
let lay = // ... the layer whose drawing we're interested in
lay.renderInContext(UIGraphicsGetCurrentContext())
let im = UIGraphicsGetImageFromCurrentImageContext()
UIGraphicsEndImageContext()

Touch Delivery | 235

Hit-testing during animation
The simplest solution to the problem of touch during animation is to disallow it entirely.
By default, view animation turns off touchability of a view while it’s being animated
(though you can prevent that with .AllowUserInteraction in the options: argument),
and you can temporarily turn off touchability altogether with UIApplication’s begin-
IgnoringInteractionEvents, as I mentioned earlier in this chapter.

If user interaction is allowed during an animation that moves a view from one place to
another, then if the user taps on the animated view, the tap might mysteriously fail
because the view (the model layer) is elsewhere; conversely, the user might accidentally
tap where the view actually is, and the tap will hit the animated view even though it
appears to be elsewhere. If the position of a view or layer is being animated and you
want the user to be able to tap on it, therefore, you’ll need to hit-test the presentation
layer.

In this simple example, we have a superview containing a subview. To allow the user to
tap on the subview even when it is being animated, we implement hit-test munging in
the subview:

override func hitTest(point: CGPoint, withEvent event: UIEvent?) -> UIView? {
 let pres = self.layer.presentationLayer() as CALayer
 let suppt = self.convertPoint(point, toView: self.superview!)
 let prespt = self.superview!.layer.convertPoint(suppt, toLayer: pres)
 return super.hitTest(prespt, withEvent: event)
}

However, as Apple puts it in the WWDC 2011 videos, the animated view “swallows the
touch.” For example, suppose the view in motion is a button. Although our hit-test
munging makes it possible for the user to tap the button as it is being animated, and
although the user sees the button highlight in response, the button’s action message is
not sent in response to this highlighting if the animation is in-flight when the tap takes
place. This behavior seems unfortunate, but it’s generally possible to work around it (for
instance, with a gesture recognizer).

Initial Touch Event Delivery
When the touch situation changes, an event containing all touches is handed to the
UIApplication instance by calling its sendEvent:, and the UIApplication in turn hands
it to the relevant UIWindow by calling its sendEvent:. The UIWindow then performs
the complicated logic of examining, for every touch, the hit-test view and its superviews
and their gesture recognizers and deciding which of them should be sent a touches...
message, and does so.

You can override sendEvent: in a subclass of UIWindow or UIApplication (this is,
indeed, just about the only reason you might have for subclassing UIApplication). These
are delicate and crucial maneuvers, however, and you wouldn’t want to lame your ap‐

236 | Chapter 5: Touches

plication by interfering with them. Moreover, it is unlikely, nowadays, that you would
need to resort to such measures. A typical case before the advent of gesture recognizers
was that you needed to detect touches directed to an object of some built-in interface
class in a way that subclassing it wouldn’t permit. For example, you want to know when
the user swipes a UIWebView; you’re not allowed to subclass UIWebView, and in any
case it eats the touch. The solution used to be to subclass UIWindow and override send-
Event:; you would then work out whether this was a swipe on the UIWebView and
respond accordingly, or else call super. Now, however, you can attach a UISwipe‐
GestureRecognizer to the UIWebView.

Gesture Recognizer and View
When a touch first appears and is delivered to a gesture recognizer, it is also delivered
to its hit-test view, the same touches... method being called on both. Later, if a gesture
recognizer in a view’s swarm recognizes its gesture, that view is sent touches-
Cancelled:withEvent: for any touches that went to that gesture recognizer and were
hit-tested to that view, and subsequently the view no longer receives those touches.

This comes as a surprise to beginners, but it is the most reasonable approach, as it means
that touch interpretation by a view isn’t jettisoned just because gesture recognizers are
in the picture. Later on in the multitouch sequence, if all the gesture recognizers in a
view’s swarm declare failure to recognize their gesture, that view’s internal touch inter‐
pretation just proceeds as if gesture recognizers had never been invented.

Moreover, touches and gestures are two different things; sometimes you want to respond
to both. In one of my apps, where the user can tap cards, each card has a single tap
gesture recognizer and a double tap gesture recognizer, but it also responds directly to
touchesBegan:withEvent: by reducing its own opacity (and restores its opacity on
touchesEnded:withEvent: and touchesCancelled:withEvent:). The result is that the
user always sees feedback when touching a card, instantly, regardless of what the gesture
turns out to be.

This behavior can be changed by setting a gesture recognizer’s cancelsTouchesIn-
View property to false. If this is the case for every gesture recognizer in a view’s swarm,
the view will receive touch events more or less as if no gesture recognizers were in the
picture.

If a gesture recognizer happens to be ignoring a touch (because, for example, it was told
to do so by ignoreTouch:forEvent:), then touchesCancelled:withEvent: won’t be
sent to the view for that touch when that gesture recognizer recognizes its gesture. Thus,
a gesture recognizer’s ignoring a touch is the same as simply letting it fall through to the
view, as if the gesture recognizer weren’t there.

Gesture recognizers can also delay the delivery of touches to a view, and by default they
do. The UIGestureRecognizer property delaysTouchesEnded is true by default, mean‐

Touch Delivery | 237

ing that when a touch reaches .Ended and the gesture recognizer’s touchesEnded:with-
Event: is called, if the gesture recognizer is still allowing touches to be delivered to the
view because its state is still .Possible, it doesn’t deliver this touch until it has resolved
the gesture. When it does, either it will recognize the gesture, in which case the view
will have touchesCancelled:withEvent: called instead (as already explained), or it will
declare failure and now the view will have touchesEnded:withEvent: called.

The reason for this behavior is most obvious with a gesture where multiple taps are
required. The first tap ends, but this is insufficient for the gesture recognizer to declare
success or failure, so it withholds that touch from the view. In this way, the gesture
recognizer gets the proper priority. In particular, if there is a second tap, the gesture
recognizer should succeed and send touchesCancelled:withEvent: to the view — but
it can’t do that if the view has already been sent touchesEnded:withEvent:.

It is also possible to delay the entire suite of touches... methods from being called on
a view, by setting a gesture recognizer’s delaysTouchesBegan property to true. Again,
this delay would be until the gesture recognizer can resolve the gesture: either it will
recognize it, in which case the view will have touchesCancelled:withEvent: called, or
it will declare failure, in which case the view will receive touchesBegan:withEvent:
plus any further touches... calls that were withheld — except that it will receive at
most one touchesMoved:withEvent: call, the last one, because if a lot of these were
withheld, to queue them all up and send them all at once now would be simply insane.

It is unlikely that you’ll change a gesture recognizer’s delaysTouchesBegan property to
true, however. You might do so, for example, if you have an elaborate touch analysis
within a view that simply cannot operate simultaneously with a gesture recognizer, but
this is improbable, and the latency involved may look strange to your user.

When touches are delayed and then delivered, what’s delivered is the original touch with
the original event, which still have their original timestamps. Because of the delay, these
timestamps may differ significantly from now. For this reason (and many others), Apple
warns that touch analysis that is concerned with timing should always look at the time‐
stamp, not the clock.

Touch Exclusion Logic
It is up to the UIWindow’s sendEvent: to implement the logic of multipleTouch-
Enabled and exclusiveTouch.

If a new touch is hit-tested to a view whose multipleTouchEnabled is false and which
already has an existing touch hit-tested to it, then sendEvent: never delivers the new
touch to that view. However, that touch is delivered to the view’s swarm of gesture
recognizers.

238 | Chapter 5: Touches

Similarly, if there’s an exclusiveTouch view in the window, then sendEvent: must de‐
cide whether a particular touch should be delivered, in accordance with the meaning
of exclusiveTouch, which I described earlier. If a touch is not delivered to a view because
of exclusiveTouch restrictions, it is not delivered to its swarm of gesture recognizers
either.

The logic of touch delivery to gesture recognizers in response to exclusiveTouch has
changed in a confusing and possibly buggy way from system to system, but I believe
I’m describing it correctly for the current system. The statement in Apple’s Simple Ges‐
ture Recognizers sample code that “recognizers ignore the exclusive touch setting for
views” probably dates back to an earlier implementation; it appears to be flat-out false
nowadays. Apple’s comment continues: “This is so that they can consistently recognize
gestures even if they cross other views. For example, suppose you had two buttons, each
marked exclusive touch, and you added a pinch gesture recognizer to their superview.
That a finger came down in one of the buttons shouldn’t prevent you from pinching in
the general case.” That’s a good argument for how things should work, but it isn’t how
things actually work: a test project implementing that thought-experiment proves that
if the buttons are “marked exclusive touch,” that does “prevent you from pinching.”

Gesture Recognition Logic
When a gesture recognizer recognizes its gesture, everything changes. As we’ve already
seen, the touches for this gesture recognizer are sent to their hit-test views as a touches-
Cancelled:forEvent: message, and then no longer arrive at those views (unless the
gesture recognizer’s cancelsTouchesInView is false). Moreover, all other gesture rec‐
ognizers pending with regard to these touches are made to fail, and then are no longer
sent the touches they were receiving either.

If the very same event would cause more than one gesture recognizer to recognize,
there’s an algorithm for picking the one that will succeed and make the others fail: a
gesture recognizer lower down the view hierarchy (closer to the hit-test view) prevails
over one higher up the hierarchy, and a gesture recognizer more recently added to its
view prevails over one less recently added.

There are various means for modifying this “first past the post” behavior:
Dependency order

Certain methods institute a dependency order, causing a gesture recognizer to be
put on hold when it tries to transition from the .Possible state to the .Began
(continuous) or .Ended (discrete) state; only if a certain other gesture recognizer
fails is this one permitted to perform that transition. Apple says that in a dependency
like this, the gesture recognizer that fails first is not sent reset (and won’t receive
any touches) until the second finishes its state sequence and is sent reset, so that
they resume recognizing together. The methods are:

Touch Delivery | 239

• requireGestureRecognizerToFail: (sent to a gesture recognizer)
• shouldRequireFailureOfGestureRecognizer: (overridden in a subclass)
• shouldBeRequiredToFailByGestureRecognizer: (overridden in a subclass)
• gestureRecognizer:shouldRequireFailureOfGestureRecognizer: (imple‐

mented by the delegate)
• gestureRecognizer:shouldBeRequiredToFailByGestureRecognizer: (im‐

plemented by the delegate)

The first of those methods sets up a permanent relationship between two gesture
recognizers, and cannot be undone; but the others are sent every time a gesture
starts in a view whose swarm includes both gesture recognizers, and each applies
only on this occasion.

The delegate methods work together as follows. For each pair of gesture recognizers
in the hit-test view’s swarm, the members of that pair are arranged in a fixed order
(as I’ve already described). The first of the pair is sent shouldRequire and then
shouldBeRequired, and then the second of the pair is sent shouldRequire and then
shouldBeRequired. But if any of those four methods returns true, the relationship
between that pair is settled; the sequence stops (and we proceed to the next pair).

Success into failure
Certain methods, by returning false, turn success into failure; at the moment when
the gesture recognizer is about to declare that it recognizes its gesture, transitioning
from the .Possible state to the .Began (continuous) or .Ended (discrete) state, it
is forced to fail instead:

• UIView’s gestureRecognizerShouldBegin:
• The delegate’s gestureRecognizerShouldBegin:

Simultaneous recognition
A gesture recognizer succeeds, but some other gesture recognizer is not forced to
fail, in accordance with these methods:

• gestureRecognizer:shouldRecognizeSimultaneouslyWithGesture-

Recognizer: (implemented by the delegate)
• canPreventGestureRecognizer: (overridden in a subclass)
• canBePreventedByGestureRecognizer: (overridden in a subclass)

In the subclass methods, “prevent” means “by succeeding, you force failure upon
this other,” and “be prevented” means “by succeeding, this other forces failure on
you.” They work together as follows. canPreventGestureRecognizer: is called
first; if it returns false, that’s the end of the story for that gesture recognizer, and

240 | Chapter 5: Touches

canPreventGestureRecognizer: is called on the other gesture recognizer. But if
canPreventGestureRecognizer: returns true when it is first called, the other ges‐
ture recognizer is sent canBePreventedByGestureRecognizer:. If it returns true,
that’s the end of the story; if it returns false, the process starts over the other way
around, sending canPreventGestureRecognizer: to the second gesture recogniz‐
er, and so forth. In this way, conflicting answers are resolved without the device
exploding: prevention is regarded as exceptional (even though it is in fact the norm)
and will happen only if it is acquiesced to by everyone involved.

Touches and the Responder Chain
A UIView is a responder, and participates in the responder chain. In particular, if a touch
is to be delivered to a UIView (because, for example, it’s the hit-test view) and that view
doesn’t implement the relevant touches... method, a walk up the responder chain is
performed, looking for a responder that does implement it; if such a responder is found,
the touch is delivered to that responder. Moreover, the default implementation of the
touches... methods — the behavior that you get if you call super — is to perform the
same walk up the responder chain, starting with the next responder in the chain.

The relationship between touch delivery and the responder chain can be useful, but you
must be careful not to allow it to develop into an incoherency. For example, if touches-
Began:withEvent: is implemented in a superview but not in a subview, then a touch to
the subview will result in the superview’s touchesBegan:withEvent: being called, with
the first parameter (the touches) containing a touch whose view is the subview. But
most UIView implementations of the touches... methods rely upon the assumption
that the first parameter consists of all and only touches whose view is self; built-in
UIView subclasses certainly assume this.

Again, if touchesBegan:withEvent: is implemented in both a superview and a subview,
and you call super in the subview’s implementation, passing along the same arguments
that came in, then the same touch delivered to the subview will trigger both the subview’s
touchesBegan:withEvent: and the superview’s touchesBegan:withEvent: (and once
again the first parameter to the superview’s touchesBegan:withEvent: will contain a
touch whose view is the subview).

The solution is to behave rationally, as follows:

• If all the responders in the affected part of the responder chain are instances of your
own subclass of UIView itself or of your own subclass of UIViewController, you
will generally want to follow the simplest possible rule: implement all the
touches... events together in one class, so that touches arrive at an instance either
because it was the hit-test view or because it is up the responder chain from the hit-
test view, and do not call super in any of them. In this way, “the buck stops here”

Touch Delivery | 241

— the touch handling for this object or for objects below it in the responder chain
is bottlenecked into one well-defined place.

• If you subclass a built-in UIView subclass and you override its touch handling, you
don’t have to override every single touches... event, but you do need to call super
so that the built-in touch handling can occur.

• Don’t allow touches to arrive from lower down the responder chain at an instance
of a built-in UIView subclass that implements built-in touch handling, because such
a class is completely unprepared for the first parameter of a touches... method
containing a touch not intended for itself. Judicious use of userInteraction-
Enabled or hit-test munging can be a big help here.
I’m not saying, however, that you have to block all touches from percolating up the
responder chain; it’s normal for unhandled touches to arrive at the UIWindow or
UIApplication, for example, because these classes do not (by default) do any touch
handling — so those touches will remain unhandled and will percolate right off the
end of the responder chain, which is perfectly fine.

• Never call a touches... method directly (except to call super).

Apple’s documentation has some discussion of a technique called event forwarding
where you do call touches... methods directly. But you are far less likely to need
this now that gesture recognizers exist, and it can be extremely tricky and even
downright dangerous to implement, so I won’t give an example, and I suggest that
you not use it.

242 | Chapter 5: Touches

PART II

Interface

This part of the book is about view controllers, and about all the various kinds of view
provided by the Cocoa framework — the built-in building blocks with which you’ll
construct an app’s interface.

• Chapter 6 is about view controllers, the fundamental iOS mechanism for allowing
an entire interface to be replaced by another. Every app you write will have its
interface managed by at least one view controller.

• Chapter 7 is about scroll views, the iOS mechanism for letting the user scroll and
zoom the interface.

• Chapter 8 explains table views, a type of scroll view that lets the user navigate
through any amount of data, along with collection views, a generalization of table
views.

• Chapter 9 is about two forms of interface especially characteristic of the iPad —
popovers and split views.

• Chapter 10 describes several ways of presenting text (including styled text) in an
app’s interface — labels, text fields, text views, and text drawn directly.

• Chapter 11 discusses web views. A web view is an easy-to-use interface object
backed by the power of a full-fledged web browser.

• Chapter 12 describes all the remaining built-in iOS (UIKit) interface objects.
• Chapter 13 is about the forms of modal dialog that can appear in front of an app’s

interface.

CHAPTER 6

View Controllers

An iOS app’s interface is dynamic, and with good reason. On the desktop, an application’s
windows can be big, and there can be more than one of them, so there’s room for lots
of interface. With iOS, everything needs to fit on a single display consisting of a single
window, which in the case of the iPhone can be almost forbiddingly tiny. The iOS sol‐
ution is to introduce, at will, completely new interface — a new view, possibly with an
elaborate hierarchy of subviews — replacing or covering the previous interface.

For this to work, regions of interface material — often the entire contents of the screen
— must come and go in an agile fashion that is understandable to the user. There will
typically be a logical, structural, and functional relationship between the view that was
present and the view that replaces or covers it, and this relationship will need to be
maintained behind the scenes, in your code, as well as being indicated to the user:
multiple views may be pure alternatives or siblings of one another, or one view may be
a temporary replacement for another, or views may be like successive pages of a book.
Animation is often used to emphasize and clarify these relationships as one view is
superseded by another. Navigational interface and a vivid, suggestive gestural vocabu‐
lary give the user an ability to control what’s seen and an understanding of the possible
options: a tab bar whose buttons summon alternate views, a back button or a swipe
gesture for returning to a previously visited view, a tap on an interface element to dive
deeper into a conceptual world, a Done or Cancel button to escape from a settings screen,
and so forth.

In iOS, the management of this dynamic interface is performed through view control‐
lers. A view controller is an instance of UIViewController. Actually, a view controller is
most likely to be an instance of a UIViewController subclass; the UIViewController
class is designed to be subclassed, and you are very unlikely to use a plain vanilla
UIViewController object without subclassing it. You might write your own UIView‐
Controller subclass; you might use a built-in UIViewController subclass such as

245

UINavigationController or UITabBarController; or you might subclass a built-in
UIViewController subclass such as UITableViewController (Chapter 8).

A view controller manages a single view (which can, of course, have subviews); its view
property points to the view it manages. This is the view controller’s main view, or simply
its view. A view controller’s main view has no explicit pointer to the view controller that
manages it, but a view controller is a UIResponder and is in the responder chain just
above its view, so it is the view’s nextResponder.

View Controller Responsibilities
A view controller’s most important responsibility is its view. A view controller must have
a view (it is useless without one). If that view is to be useful, it must somehow get into
the interface, and hence onto the screen; a view controller is usually responsible for
seeing to that, too, but typically not the view controller whose view this is; rather, this
will be taken care of by some view controller whose view is already in the interface. In
many cases, this will happen automatically (I’ll talk more about that in the next section),
but you can participate in the process, and for some view controllers you may have to
do the work yourself. The reverse is also true: a view that comes may also eventually go,
and the view controller responsible for putting a view into the interface will also be
responsible for removing it.

A view controller will also typically provide animation of the interface as a view comes
or goes. Built-in view controller subclasses and built-in ways of summoning or removing
a view controller and its view come with built-in animations. We are all familiar, for
example, with tapping something to make new interface slide in from the right, and
then tapping a back button to make that interface slide back out to the right. In cases
where you are responsible for getting a view controller’s view onto the screen, you are
also responsible for providing the animation. And you can take complete charge of the
animation even for built-in view controllers.

View controllers, working together, can save and restore state automatically. This feature
helps you ensure that if your app is terminated in the background and subsequently
relaunched, it will quickly resume displaying the same interface that was showing when
the user last saw it.

The most powerful view controller is the root view controller. This is the view controller
managing the view that sits at the top of the view hierarchy, as the one and only direct
subview of the main window, acting as the superview for all other interface (the root
view). I described in Chapter 1 how this view controller attains its lofty position: it is
assigned to the window’s rootViewController property. The window then takes that
view controller’s main view, gives it the correct frame (resizing it if necessary), and makes
it its own subview. The root view controller bears ultimate responsibility for two im‐
portant decisions about the behavior of your app:

246 | Chapter 6: View Controllers

Rotation of the interface
The user can rotate the device, and you might like the interface to rotate in response,
to compensate. This decision is made, in large part, by the root view controller.

Manipulation of the status bar
The status bar is actually a secondary window belonging to the runtime, but the
runtime consults the root view controller as to whether the status bar should be
present and, if so, whether its text should be light or dark.

Finally, above and beyond all this, view controllers are typically the heart of any app, by
virtue of their role in the model–view–controller architecture: view controllers are
controllers (hence the name). Views give the user something to tap, and display data for
the user to see; they are view. The data itself is model. But the logic of determining, at
any given moment, what views are shown, what data those views display, and what the
response to the user’s gestures should be, is controller logic. Typically, that means view
controller logic. In any app, view controllers will be the most important controllers —
frequently, in fact, the only controllers. View controllers are where you’ll put the bulk
of the code that actually makes your app do what your app does.

View Controller Hierarchy
As I said in the previous section, there is always one root view controller, along with its
view, the root view. There may also be other view controllers, each of which has its own
main view. Such view controllers are subordinate to the root view controller. In iOS,
there are two subordination relationships between view controllers:
Parentage (containment)

A view controller can contain another view controller. The containing view con‐
troller is the parent of the contained view controller; the contained view controller
is a child of the containing view controller. A containment relationship between
two view controllers is reflected in their views: the child view controller’s view, if it
is in the interface at all, is a subview of the parent view controller’s view. (“Subview”
here means “subview at some depth.”)

Replacement of one view with another often involves a parent view controller
managing its children and their views. The parent view controller is responsible for
getting a child view controller’s view into the interface, by making it a subview of
its own view, and (if necessary) for removing it later.

A familiar example is the navigation interface: the user taps something and new
interface slides in from the right, replacing the current interface. Figure 6-1 shows
the TidBITS News app displaying a typical iPhone interface, consisting of a list of
story headlines and summaries. This interface is managed by a parent view con‐
troller (a UINavigationController) with a child view controller whose view is the
list of headlines and summaries. If the user taps an entry in the list, the whole list

View Controller Hierarchy | 247

Figure 6-1. The TidBITS News app

will slide away to the left and the text of that story will slide in from the right; the
parent view controller has added a new child view controller, and has manipulated
the views of its children to bring about this animated change of the interface. The
parent view controller itself, meanwhile, stays put — and so does its own view. (In
this example, the UINavigationController is the root view controller, and its view
is the root view.)

Presentation (modal views)
A view controller can present another view controller. The first view controller is
the presenting view controller (not the parent) of the second; the second view con‐
troller is the presented view controller (not a child) of the first. The second view
controller’s view replaces or covers, completely or partially, the first view controller’s
view.

The name of this mechanism, and of the relationship between the view controllers
involved, has changed over time. In iOS 4 and before, the presented view controller
was called a modal view controller, and its view was a modal view; there is an analogy
here to the desktop, where a window is modal if it sits in front of, and denies the
user access to, the rest of the interface until it is explicitly dismissed. The terms
presented view controller and presented view are more recent and more general, but
the historical term “modal” still appears in the documentation and in the API.

248 | Chapter 6: View Controllers

A presented view controller’s view does indeed sometimes look rather like a desktop
modal view; for example, it might have a button such as Done or Save for dismissing
the view, the implication being that this is a place where the user must make a
decision and can do nothing else until the decision is made. However, as I’ll explain
later, that isn’t the only use of a presented view controller.

There is thus a hierarchy of view controllers. In a properly constructed iOS app, there
should be exactly one root view controller, and it is the only nonsubordinate view con‐
troller — it has neither a parent view controller nor a presenting view controller. Any
other view controller, if its view appears in the interface, must be a child view controller
of some parent view controller or a presented view controller of some presenting view
controller — and that view controller’s view must be a subview of that parent or pre‐
senting view controller’s view. In this way, the actual views of the interface form a hier‐
archy dictated by and parallel to some portion of the view controller hierarchy: every
view visible in the interface owes its presence to a view controller’s view, either it because
it is a view controller’s view, or because it’s a subview of a view controller’s view.

The place of a view controller’s view in the view hierarchy will often be automatic. You
might never need to put a UIViewController’s view into the view hierarchy manually.
You’ll manipulate view controllers; their hierarchy and their built-in functionality will
construct and manage the view hierarchy for you.

For example, in Figure 6-1, we see two interface elements:

• The navigation bar, containing the TidBITS logo.
• The list of stories, which is actually a UITableView.

I will describe how all of this comes to appear on the screen through the view controller
hierarchy and the view hierarchy (Figure 6-2):

• The app’s root view controller is a UINavigationController; the UINavigation‐
Controller’s view is the window’s sole immediate subview (the root view). The nav‐
igation bar is a subview of that view.

• The UINavigationController contains a second UIViewController — a parent–
child relationship. The child is a custom UIViewController subclass; its view is what
occupies the rest of the window, as another subview of the UINavigationController’s
view. That view is the UITableView. This architecture means that when the user
taps a story listing in the UITableView, the whole table will slide out, to be replaced
by the view of a different UIViewController, while the navigation bar stays.

In Figure 6-2, notice the word “automatic” in the two large right-pointing arrows as‐
sociating a view controller with its view. This is intended to tell you how the view con‐
troller’s view became part of the view hierarchy. The UINavigationController’s view
became the window’s subview automatically, by virtue of the UINavigationController

View Controller Hierarchy | 249

Figure 6-2. The TidBITS News app’s initial view controller and view hierarchy

being the window’s rootViewController. The custom UIViewController’s view became
the UINavigationController’s view’s subview automatically, by virtue of the UIView‐
Controller being the UINavigationController’s child.

Sometimes, you’ll write your own parent view controller class. In that case, you will be
doing the kind of work that the UINavigationController was doing in that example, so
you will need to put a child view controller’s view into the interface manually, as a
subview (at some depth) of the parent view controller’s view.

I’ll illustrate with another app of mine (Figure 6-3). The interface displays a flashcard
containing information about a Latin word, along with a toolbar (the dark area at the
bottom) where the user can tap an icon to choose additional functionality.

Again, I will describe how the interface shown in Figure 6-3 comes to appear on the
screen through the view controller hierarchy and the view hierarchy (Figure 6-4). The
app actually contains over a thousand of these Latin words, and I want the user to be
able to navigate between flashcards to see the next or previous word; there is an excellent
built-in view controller for this purpose, the UIPageViewController. However, that’s just
for the card; the toolbar at the bottom stays there, so the toolbar can’t be inside the
UIPageViewController’s view. Therefore:

250 | Chapter 6: View Controllers

Figure 6-3. A Latin flashcard app

Figure 6-4. The Latin flashcard app’s initial view controller and view hierarchy

• The app’s root view controller is my own UIViewController subclass, which I call
RootViewController; its view contains the toolbar, and is also to contain the
UIPageViewController’s view. My RootViewController’s view becomes the win‐

View Controller Hierarchy | 251

Figure 6-5. The Latin flashcard app, in drill mode

dow’s subview (the root view) automatically, by virtue of the RootViewController’s
being the window’s rootViewController.

• In order for the UIPageViewController’s view to appear in the interface, since it is
not the root view controller, it must be some view controller’s child. There is only
one possible parent — my RootViewController. My RootViewController must
function as a custom parent view controller, with the UIPageViewController as its
child. So I have made that happen, and I have therefore also had to put the UIPage‐
ViewController’s view manually into my RootViewController’s view.

• I hand the UIPageViewController an instance of my CardController class (another
UIViewController subclass) as its child, and the UIPageViewController displays
the CardController’s view automatically.

Finally, here’s an example of a presented view controller. My Latin flashcard app has a
second mode, where the user is drilled on a subset of the cards in random order; the
interface looks very much like the first mode’s interface (Figure 6-5), but it behaves
completely differently.

To implement this, I have another UIViewController subclass, DrillViewController; it
is structured very much like RootViewController. When the user is in drill mode, a
DrillViewController is being presented by the RootViewController, meaning that the
DrillViewController’s interface takes over the screen automatically: the DrillView‐
Controller’s view, with its whole subview hierarchy, including the views of the Drill‐
ViewController’s children in the view controller hierarchy, replaces the RootView‐
Controller’s view and its whole subview hierarchy (Figure 6-6). The RootViewController
and its hierarchy of child view controllers remains in place, but the corresponding view
hierarchy is not in the interface; it will be returned to the interface automatically when

252 | Chapter 6: View Controllers

Figure 6-6. The Latin flashcard app’s drill mode view controller and view hierarchy

we leave drill mode (because the presented DrillViewController is dismissed), and the
situation will look like Figure 6-4 once again.

For any app that you write, you should be able to construct a diagram showing the
hierarchy of view controllers and charting how each view controller’s view fits into the
view hierarchy. The diagram should be similar to mine! The view hierarchy should run
neatly parallel with the view controller hierarchy; there should be no crossed wires or
orphan views. And every view controller’s view should be placed automatically into the
view hierarchy, unless you have written your own parent view controller.

View Controller Hierarchy | 253

Do not put a view controller’s view into the interface manually, unless one of the
following is the case:

• The view controller is the child of your custom parent view controller. There
is a complicated parent–child dance you have to do. See “Container View
Controllers” on page 337.

• You’re doing a custom transition animation. See “Custom Transition” on page
313.

View Controller Creation
A view controller is an instance like any other instance, and it is created like any other
instance — by instantiating its class. You might perform this instantiation in code; in
that case, you will of course have to initialize the instance properly as you create it. Here’s
an example from one of my own apps:

let llc = LessonListController(terms: self.data)
let nav = UINavigationController(rootViewController:llc)

In that example, LessonListController is my own UIViewController subclass, so I have
called its designated initializer, which I myself have defined; UINavigationController is
a built-in UIViewController subclass, and I have used one of its convenience initializers.

Alternatively, a view controller instance might come into existence through the loading
of a nib. To make it possible to get a view controller into the nib in the first place, view
controllers are included among the object types available through the Object library in
the nib editor.

It is legal, though in practice not common, for a .xib file to contain a view controller.
A .storyboard file, on the other hand, is chock full of view controllers; view controllers
are the basis of a storyboard’s structure, with each scene consisting of and corresponding
to one view controller object. A view controller in a storyboard will go into a nib file in
the built app, and that nib file will be loaded when the view controller instance is needed.
 Usually, that happens automatically. Nevertheless, a view controller in a storyboard is
an ordinary nib object and, if it is to be used in the running app, will be instantiated
through the loading of the nib just like any other nib object. I’ll give full details on how
and why a view controller is instantiated from a storyboard later in this chapter.

Once a view controller comes into existence, it must be retained so that it will persist.
This will happen automatically when the view controller is assigned a place in the view
controller hierarchy that I described in the previous section. A view controller assigned
as a window’s rootViewController is retained by the window. A view controller as‐
signed as another view controller’s child is retained by that other view controller (the
parent). A presented view controller is retained by the presenting view controller. The

254 | Chapter 6: View Controllers

parent view controller or presenting view controller then takes ownership, and will
release the other view controller in good order when it is no longer needed.

Here’s an example, from one of my apps, of view controllers being instantiated and then
being retained by being placed into the view controller hierarchy:

let llc = LessonListController(terms: self.data)
let nav = UINavigationController(rootViewController:llc)
self.presentViewController(nav, animated:true, completion:nil)

That’s the same code I showed a moment ago, extended by one line. It comes from a
view controller class called RootViewController. Here’s how view controller creation
and memory management works in those three lines:

I instantiate LessonListController.
I instantiate UINavigationController, and I assign the LessonListController
instance to the UINavigationController instance as its child; the
UINavigationController retains the LessonListController instance and takes
ownership of it.
I present the UINavigationController instance on self, a RootViewController
instance; the RootViewController instance is the presenting view controller, and
it retains and takes ownership of the UINavigationController instance as its
presented view controller. The RootViewController instance itself is already the
window’s rootViewController, and is retained by the window — and so the
view controller hierarchy is safely established.

All of this sounds straightforward, but it is worth dwelling on, because things can go
wrong. It is quite possible, if things are mismanaged, for a view controller’s view to get
into the interface while the view controller itself is allowed to go out of existence. This
must not be permitted. If such a thing happens, at the very least the view will apparently
misbehave, failing to perform its intended functionality, because that functionality is
embodied by the view controller, which no longer exists. (I’ve made this mistake, so I
speak from experience here.) If you instantiate a view controller in code, you should
immediately ask yourself who will be retaining this view controller.

If a view controller is instantiated automatically from a storyboard, on the other hand,
it will be retained automatically. That isn’t magic, however; it’s done in exactly the same
ways I just listed — by assigning it as the window’s rootViewController, or by making
it another view controller’s child view controller or presented view controller.

How a View Controller Gets Its View
Initially, when it first comes into existence, a view controller has no view. A view con‐
troller is a small, lightweight object; a view is a relatively heavyweight object, involving
interface elements that occupy memory. Therefore, a view controller postpones

How a View Controller Gets Its View | 255

obtaining its view until it has to do so, namely, when it is asked for the value of its view
property. At that moment, if its view property is nil, the view controller sets about
obtaining its view. (We say that a view controller loads its view lazily.) Typically, this
happens because it is time to put the view controller’s view into the interface.

In working with a newly instantiated view controller, be careful not to refer to its view
property if you don’t need to, since this will trigger the view controller’s obtaining its
view prematurely. To learn whether a view controller has a view without causing it to
load its view, call isViewLoaded. (As usual, I speak from experience here. I once made
the mistake of mentioning a UIViewController’s view in its awakeFromNib and caused
the view to be loaded twice.)

As soon as a view controller has its view, its viewDidLoad method is called. If this view
controller is an instance of your own UIViewController subclass, viewDidLoad is your
opportunity to modify the contents of this view — to populate it with subviews, to tweak
the subviews it already has, and so forth — as well as to perform other initializations of
the view controller consonant with its acquisition of a view. The view property is now
pointing to the view, so it is safe to refer to self.view. Bear in mind, however, that the
view may not yet be part of the interface! In fact, it almost certainly is not;
self.view.window will be nil. Thus, for example, you cannot necessarily rely on the
dimensions of the view at this point to be the dimensions that the view will assume when
it becomes visible in the interface. Performing certain customizations prematurely in
viewDidLoad is a common beginner mistake. I’ll have more to say about this later in the
chapter.

Before viewDidLoad will be called, however, the view controller must obtain its view.
The question of where and how the view controller will get its view is often crucial. In
some cases, to be sure, you won’t care about this; in particular, when a view controller
is an instance of a built-in UIViewController subclass such as UINavigationController
or UITabBarController, its view is out of your hands — you might never even have cause
to refer to it over the entire course of your app’s lifetime — and you simply trust that
the view controller will somehow generate its view. But when the view controller is an
instance of your own subclass of UIViewController, and when you yourself will design
or modify its view, it becomes essential to understand the process whereby a view con‐
troller gets its view.

This process is not difficult to understand, but it is rather elaborate, because there are
multiple possibilities. Most important, this process is not magic. Yet it quite possibly
causes more confusion to beginners than any other matter connected with iOS pro‐
gramming. Therefore, I will explain it in detail. The more you know about the details
of how a view controller gets its view, the deeper and clearer will be your understanding
of the entire workings of your app, its view controllers, its .storyboard and .xib files, and
so on.

256 | Chapter 6: View Controllers

The alternatives are as follows:

• The view may be created in the view controller’s own code, manually.
• The view may be created as an empty generic view, automatically.
• The view may be created in its own separate nib.
• The view may be created in a nib, which is the same nib from which the view

controller itself is instantiated.

Manual View
To supply a UIViewController’s view manually, in code, implement its loadView meth‐
od. Your job here is to obtain an instance of UIView (or a subclass of UIView) and assign
it to self.view. You must not call super (for reasons that I’ll make clear later on).

Do not confuse loadView with viewDidLoad. Yes, I’ve made this mistake myself. I
confess! loadView creates the view; viewDidLoad is called afterward.

Let’s try it. We are going to do everything manually, so we don’t need or want a story‐
board; therefore, start with an app without a main storyboard (I explained how to make
such an app at the start of Chapter 1), and modify it as follows:

1. We need a UIViewController subclass, so choose File → New → File; specify iOS
→ Source → Cocoa Touch Class. Click Next.

2. Name the class RootViewController, and specify that it is to be a UIViewController
subclass. Uncheck “Also create XIB file” (if it happens to be checked). Click Next.

3. Confirm that we’re saving into the appropriate folder and group, and that these files
will be part of the app target. Click Create.

We now have a RootViewController class, and we proceed to edit its code. In Root‐
ViewController.swift, we’ll implement loadView. To convince ourselves that the example
is working correctly, we’ll give the view an identifiable color, and we’ll put some interface
inside it, namely a “Hello, World” label:

override func loadView() {
 let v = UIView()
 v.backgroundColor = UIColor.greenColor()
 self.view = v
 let label = UILabel()
 v.addSubview(label)
 label.text = "Hello, World!"
 label.autoresizingMask =
 .FlexibleTopMargin |

How a View Controller Gets Its View | 257

 .FlexibleLeftMargin |
 .FlexibleBottomMargin |
 .FlexibleRightMargin
 label.sizeToFit()
 label.center = CGPointMake(v.bounds.midX, v.bounds.midY)
 label.frame.integerize()
}

We have not yet given a RootViewController instance a place in our view controller
hierarchy — in fact, we have no RootViewController instance (and no view controller
hierarchy). Let’s make one. To do so, we turn to AppDelegate.swift. (It’s a little frustrating
having to set things up in two different places before our labors can bear any visible
fruit, but such is life.)

In AppDelegate.swift, modify the implementation of application:didFinish-

LaunchingWithOptions: (see Appendix A) to create a RootViewController instance
and make it the window’s rootViewController (see Example 1-1). Observe that we
must do this after our window property actually has a UIWindow as its value:

import UIKit
@UIApplicationMain
class AppDelegate : UIResponder, UIApplicationDelegate {
 var window : UIWindow?
 func application(application: UIApplication,
 didFinishLaunchingWithOptions launchOptions: [NSObject: AnyObject]?)
 -> Bool {
 self.window = UIWindow(frame: UIScreen.mainScreen().bounds)
 let theRVC = RootViewController() // *
 self.window!.rootViewController = theRVC // *
 self.window!.backgroundColor = UIColor.whiteColor()
 self.window!.makeKeyAndVisible()
 return true
 }
}

Build and run the app. Sure enough, there’s our green background and our “Hello,
world” label!

When we created our view controller’s view (self.view), we never gave it a reasonable
frame. This is because we are relying on someone else to frame the view appropriately.
In this case, the “someone else” is the window, which responds to having its rootView-
Controller property set to a view controller by framing the view controller’s view ap‐
propriately as the root view before putting it into the window as a subview. In general,
it is the responsibility of whoever puts a view controller’s view into the interface to give
the view the correct frame — and this will never be the view controller itself (although
under some circumstances the view controller can express a preference in this regard).
Indeed, the size of a view controller’s view may be changed as it is placed into the in‐
terface, and you must keep in mind, as you design your view controller’s view and its
subviews, the possibility that this will happen.

258 | Chapter 6: View Controllers

Generic Automatic View
We should distinguish between creating a view and populating it. The preceding ex‐
ample fails to draw this distinction. The lines that create our RootViewController’s view
are merely these:

let v = UIView()
self.view = v

Everything else configures and populates the view, turning it green and putting a label
into it. A more appropriate place to populate a view controller’s view is in its viewDid-
Load implementation, which, as I’ve already mentioned, is called after the view exists
(so that it can be referred to as self.view). We could therefore rewrite the preceding
example like this (just for fun, I’ll use autolayout this time):

override func loadView() {
 let v = UIView()
 self.view = v
}
override func viewDidLoad() {
 super.viewDidLoad()
 let v = self.view
 v.backgroundColor = UIColor.greenColor()
 let label = UILabel()
 v.addSubview(label)
 label.text = "Hello, World!"
 label.setTranslatesAutoresizingMaskIntoConstraints(false)
 self.view.addConstraint(
 NSLayoutConstraint(item: label,
 attribute: .CenterX,
 relatedBy: .Equal,
 toItem: self.view,
 attribute: .CenterX,
 multiplier: 1, constant: 0))
 self.view.addConstraint(
 NSLayoutConstraint(item: label,
 attribute: .CenterY,
 relatedBy: .Equal,
 toItem: self.view,
 attribute: .CenterY,
 multiplier: 1, constant: 0))
}

But if we’re going to do that, we can go even further and remove our implementation
of loadView altogether! It turns out that if you don’t implement loadView, and if no
view is supplied in any other way, then UIViewController’s default implementation of
loadView will do exactly what we are already doing in code: it creates a generic UIView
object and assigns it to self.view. If we needed our view controller’s view to be a
particular UIView subclass, that wouldn’t be acceptable; but in this case, our view con‐
troller’s view is a generic UIView object, so it is acceptable. Comment out or delete the

How a View Controller Gets Its View | 259

entire loadView implementation from the preceding code, and build and run the app;
our example still works!

View in a Separate Nib
A view controller’s view can be supplied from a nib file. This approach gives you the
convenience of configuring and populating the view by designing it graphically in the
nib editor interface.

When the nib loads, the view controller instance will already have been created, and it
will serve as the nib’s owner. The view controller has a view property; the view control‐
ler’s representative in the nib has a view outlet, which must point to the view object in
the nib. Thus, when the nib loads, the view controller obtains its view through the nib-
loading mechanism.

I’ll illustrate by modifying the preceding example to use a .xib file. (I’ll deal later with
the use of a .storyboard file; knowing first how the process works for a .xib file will greatly
enhance your understanding of how it works for a .storyboard file.)

In a .xib file, the owner’s representative is the File’s Owner proxy object. Therefore, a .xib
file that is to serve as the source of a view controller’s view must be a .xib file in which
the following two things are true:

• The File’s Owner class must be set to a UIViewController subclass (depending on
the class of the view controller whose view this will be).

• The File’s Owner proxy now has a view outlet, corresponding to a UIView‐
Controller’s view property. This outlet must be connected to the view.

Let’s try it. We begin with the example we’ve already developed, with our RootView‐
Controller class. Delete the implementation of loadView and viewDidLoad from Root‐
ViewController.swift, because we want the view to come from a nib and we’re going to
populate it in the nib. Then:

1. Choose File → New → File and specify an iOS → User Interface → View document.
This will be a .xib file containing a UIView object. Click Next.

2. Name the file MyNib (or MyNib.xib). Confirm the appropriate folder and group,
and make sure that the file will be part of the app target. Click Create.

3. Edit MyNib.xib. Prepare it in the way I described a moment ago:
a. Set the File’s Owner class to RootViewController (in the Identity inspector).
b. Connect the File’s Owner view outlet to the View object.

4. Design the view. To make it clear that this is not the same view we were creating
previously, perhaps you should give the view a red background color (in the At‐

260 | Chapter 6: View Controllers

tributes inspector). Drag a UILabel into the middle of the view and give it some
text, such as “Hello, World!”

We have designed the nib, but we have done nothing as yet to associate this nib with
our RootViewController instance. To do so, let’s once again return to App‐
Delegate.swift, where we create our RootViewController instance:

let theRVC = RootViewController()
self.window!.rootViewController = theRVC

We’re going to modify this code so that our RootViewController instance, theRVC, is
aware of this nib file, MyNib.xib, as its own nib file. That way, when theRVC needs to
acquire its view, it will load that nib file with itself as owner, thus ending up with the
correct view as its own view property. A UIViewController has a nibName property for
this purpose. However, we are not allowed to set its nibName property (it is read-only).
Instead, as we instantiate the view controller, we use the designated initializer, init(nib-
Name:bundle:), like this:

let theRVC = RootViewController(nibName:"MyNib", bundle:nil)
self.window!.rootViewController = theRVC

(The nil argument to the bundle: parameter specifies the main bundle, which is almost
always what you want.)

To prove that this works, build and run. The red background appears! Our view is
loading from the nib.

Now I’m going to describe a shortcut based on the name of the nib. It turns out that if
the nib name passed to init(nibName:bundle:) is nil, a nib will be sought automatically
with the same name as the view controller’s class. Moreover, UIViewController’s init()
calls init(nibName:bundle:), passing nil for both arguments. This means, in effect,
that we can return to using init() to initialize the view controller, provided that the
nib file has a name that matches the name of the view controller class.

Let’s try it. Rename MyNib.xib to RootViewController.xib, and change the code that
instantiates and initializes our RootViewController back to what it was before, like this:

let theRVC = RootViewController()
self.window!.rootViewController = theRVC

Build and run, and… Oops, it doesn’t work! The window is empty.

The reason is that the Swift language itself is getting in the way. Remember, I said that
a nib will be sought with the same name as the view controller’s class. Unfortunately,
Swift has some funny ideas about the name of this class. You may think it’s called Root‐
ViewController, but Swift’s name for it prepends the name of the module, which by
default is the name of the project and the app. For example, if this project is called

How a View Controller Gets Its View | 261

TestNib, then Swift thinks that this class is called TestNib.RootViewController. The
nib-loading system doesn’t find a nib file with that name, so the nib is not found.

Here are four ways to work around this problem:

• Make the RootViewController class an Objective-C class, not a Swift class.
Objective-C’s name for this class is still RootViewController, so the nib file’s name
matches. That’s unacceptable and I’m not going to consider it further; this is a Swift
class and it’s going to stay a Swift class.

• Change the name of the .xib file to match Swift’s idea of the class name. For example,
if this project is called TestNib, the .xib file would have to be named TestNib.Root‐
ViewController.xib. That works, but it’s dreadfully inconvenient in numerous ways.

• Force Swift’s idea of the class name to match the Objective-C name. To do so, use
the @objc() notation when the view controller is declared, like this:

@objc(RootViewController) class RootViewController : UIViewController {

That’s a pretty good solution. It’s portable, reliable, reasonably convenient, and
presumably won’t break if Apple ever changes this behavior.

• Give up and use an explicit nib name when you call init(nibName:bundle:). There
are two ways to do this: you can call init(nibName:bundle:) everywhere you in‐
stantiate this nib, or you can override init() in your view controller subclass (in
which case you’ll also have to override init(coder:)), so that all other classes can
call init():

required init(coder: NSCoder) {
 fatalError("NSCoding not supported")
}
override init() {
 super.init(nibName:"RootViewController", bundle:nil)
}

There’s an additional aspect to this shortcut based on the name of the nib. It seems
ridiculous that we should end up with a nib that has “Controller” in its name merely
because our view controller, as is so often the case, has “Controller” in its name. A nib,
after all, is not a controller. It turns out that the runtime, in looking for a view controller’s
corresponding nib, will in fact try stripping “Controller” off the end of the view con‐
troller class’s name. Thus, we can name our nib file RootView.xib instead of RootView‐
Controller.xib, and it will still be properly associated with our RootViewController in‐
stance (once we’ve implemented one of the workarounds I’ve just listed).

Which of these is my favorite workaround? None of them! I prefer a fifth alternative:

• Override the getter for the UIViewController read-only nibName property, like this:

262 | Chapter 6: View Controllers

override var nibName : String {
 get {
 return "RootView"
 }
}

With that override in place, other code can instantiate this view controller with init()
and it finds its nib correctly. Note this approach does not participate in the automatic
stripping of “Controller” from the name. If the nib is named RootView.xib and you
supply "RootViewController" as the value of the nibName property in its getter, your
app will crash. The names must match exactly. (The documentation is misleading on
this point.)

When you create a UIViewController subclass, the Xcode dialog has a checkbox (which
we unchecked earlier) offering to create an eponymous .xib file at the same time. If you
accept that option, the nib is created with the File’s Owner’s class already set to the view
controller’s class and with its view outlet already hooked up to the view. This automat‐
ically created .xib file does not have “Controller” stripped off the end of its name; you
can rename it manually later (I generally do) if the default name bothers you.

Another convention involving the nib name has to do with the rules for loading re‐
sources by name generally. I mentioned in Chapter 2 that when an image file is sought
by calling init(named:) or pathForResource:ofType:, an image file with the specified
name but extended by the suffix ~ipad will be used, if there is one, when the app runs
on an iPad. The same rule applies to nib files. So, for example, a nib file named
RootViewController~ipad.xib will be loaded on an iPad when a nib named "RootView-
Controller" is sought, regardless of whether it is specified explicitly, as the first argu‐
ment to init(nibName:bundle:), or implicitly. This principle can greatly simplify your
life when you’re writing a universal app — though in Xcode and iOS 8, conditional
constraints (see Chapter 1) may permit you to design an interface differing on iPad and
iPhone in a single .xib file.

Finally, let’s be explicit about the place of this way of obtaining a view controller’s view
among the other of ways of obtaining it:

1. When the view controller first decides that it needs its view, loadView is always
called.

2. If we override loadView, we supply and set the view in code, and we do not call
super. Therefore the process of seeking a view comes to an end.

3. If we don’t override loadView, UIViewController’s built-in default implementation
of loadView is used. It is this default implementation of loadView that loads the
view controller’s associated nib (the one specified by its nibName, or, if that’s nil, the
one whose name matches the name of the view controller’s class).

How a View Controller Gets Its View | 263

That, indeed, is why, if we do override loadView, we must not call super — that
would cause us to get both behaviors!

4. If the previous steps all fail — we don’t override loadView, and there is no associated
nib — UIViewController’s default implementation of loadView proceeds to create
a generic UIView as discussed in the previous section.

It follows from what I’ve just said if a view controller’s view is to come from a nib,
you should not implement loadView. I’ve made this mistake. The results were not
pretty.

Nib-Instantiated View Controller
As I mentioned earlier, a view controller can be a nib object, to be instantiated through
the loading of the nib. In the nib editor, the Object library contains a View Controller
(UIViewController) as well as several built-in UIViewController subclasses. Any of
these can be dragged into the nib. This is the standard way of creating a scene in
a .storyboard file; doing the same with a .xib file is rare but perfectly possible.

When a view controller has been instantiated from a nib, and when it comes eventually
to obtain its view, all the ways I’ve already described whereby a view controller can obtain
its view still apply. (There’s also an additional way, which I’ll discuss in a moment.)

If you’d like to try it, start over with an empty project without a storyboard, and give it
a .xib file containing a view controller, as follows:

1. Choose File → New → File and specify an iOS → User Interface → Empty document.
Press Next.

2. Name the new file Main.xib, make sure it’s being saved into the right place and that
it is part of the app target, and click Create.

3. Edit Main.xib. Drag a plain vanilla View Controller object into the canvas.
4. In the view controller you just dragged into the canvas, there’s a View object serving

as the main view. Select it and delete it! Don’t worry, we’ll discuss in a moment what
it’s for.

In AppDelegate.swift, we must now arrange to load Main.xib and extract the view con‐
troller instance created from the nib object we just put into the nib, making that view
controller our app’s root view controller. Here’s one very simple way to do that:

let arr = UINib(nibName: "Main", bundle: nil)
 .instantiateWithOwner(nil, options: nil) as [UIViewController]
self.window!.rootViewController = arr[0]

264 | Chapter 6: View Controllers

You can now proceed, if you like, to experiment with various ways of helping this view
controller get its view. At the moment it is a plain UIViewController instance. Let’s make
it a class of our own:

1. Give the project a RootViewController class (a UIViewController subclass).
2. In Main.xib, select the view controller object and use its Identity inspector to set its

class to RootViewController.

Now you can help RootViewController get its view, in any of the ways we’ve already
explored:

• Implement loadView in RootViewController.
• Or, implement viewDidLoad but not loadView in RootViewController.
• Or, add another nib called RootViewController.xib (or RootView.xib) — and work

around the Swift behavior involving the class name.

There is also a way to specify in the nib editor the name of the nib that this view controller
should use to find its nib: select the view controller in its nib, and enter the name of the
view’s nib in the NIB Name field in its Attributes inspector. This is the equivalent of
specifying a nib name when you call init(nibName:bundle:).

When a nib contains a view controller, there is, as I hinted a moment ago, an additional
way for it to obtain its view — and you’ve probably already guessed what it is. When
you drag a View Controller into the canvas in the nib editor, it already contains a view,
hooked up and ready to act as its main view! The view controller, in fact, is portrayed
in the canvas more or less as if it were this view. Thus, using the nib editor we can design
the view controller’s main view’s interface in the view controller itself.

Let’s try it:

1. If you’ve been experimenting with the code in RootViewController.swift, remove
any implementation of loadView or viewDidLoad.

2. In Main.xib, find the plain vanilla View object in the Object library and drag it into
the view controller object in the canvas. (This replaces the view that we deleted
earlier.) This view object automatically becomes the view controller’s view, and is
drawn inside it in the canvas. Thus, you can now add further interface objects to
this view.

Build and run. The interface you designed inside the view object inside the view con‐
troller object in Main.xib appears in the running app.

How a View Controller Gets Its View | 265

Like any other nib object, when a view controller is instantiated from a nib, its
designated initializer in your code (init(nibName:bundle:)) is not called. If your
nib-instantiated UIViewController subclass needs access to the view controller in‐
stance very early in its lifetime, override init(coder:) or awakeFromNib.

Storyboard-Instantiated View Controller
If you’ve ever used a storyboard, it will not have escaped your attention that what we
just constructed in Main.xib, in the previous section — a view controller directly con‐
taining its view — looks a lot like a scene in a storyboard. That’s because, by default, this
is the structure of a scene in a storyboard. Indeed, we are now ready to appreciate and
understand exactly how a storyboard works.

Each scene in a .storyboard file is rather like a .xib file containing a view controller nib
object. A scene’s view controller is instantiated only when needed; the underlying
mechanism is that the scene’s view controller is stored in a nib file in the built app, inside
the .storyboardc bundle, and this nib file is loaded on demand and the view controller
is instantiated from it, as we did in the previous section.

Moreover, by default, the view controller in a scene in a .storyboard file comes equipped
with a view, which appears inside it in the canvas. You design the view and its subviews
in the nib editor. When the app is built, each view controller’s view goes into a separate
nib file, inside the .storyboardc bundle, and the view controller, once instantiated, loads
its view from that nib file lazily, exactly as we did earlier.

In this way, a storyboard embodies the very same mechanisms we’ve already explored
through .xib files. Even though a storyboard may appear, in the nib editor, to contain
many view controllers and their main views, each view controller and each main view
is loaded from its own nib in the running app, on demand, when needed, just as if we
had configured the project with multiple .xib files. Thus a storyboard combines the
memory management advantages of .xib files, which are not loaded until they’re needed,
and can be loaded multiple times to give additional instances of the same nib objects,
with the convenience to you of being able to see and edit a lot of your app’s interface
simultaneously in one place.

266 | Chapter 6: View Controllers

You don’t have to use the default scene structure in a storyboard. The default is that
a view controller in a storyboard contains its view — but you can delete the view. If
you do, then that view controller will obtain its view in any of the other ways we’ve
already discussed: by an implementation of loadView in the code of that view con‐
troller class, or by loading a nib file that comes from a .xib with the same name as
this view controller’s class — assuming you’ve worked around the Swift naming
issue — or even (if all of that fails) by creating a generic UIView. However, there’s
no way in a .storyboard file to specify as the source of a view controller’s view a .xib
file with a different name from the view controller’s class. The nib editor lacks the
NIB Name field in a view controller’s Attributes inspector when you’re working in
a storyboard.

The Xcode app templates start with a single main storyboard called Main.storyboard,
which is designated the app’s main storyboard by the Info.plist key “Main storyboard
file base name” (UIMainStoryboardFile). Therefore, as the app launches,
UIApplicationMain gets a reference to this storyboard (by calling the UIStoryboard
initializer init(name:bundle:)), instantiates its initial view controller (by calling
instantiateInitialViewController), and makes that instance the window’s root-
ViewController. If you edit the storyboard to contain segues, then when one of those
segues is performed — which can be configured to happen automatically in response
to the user tapping an interface object — the destination view controller is automatically
instantiated. In this way it is perfectly possible for a single storyboard to be the source
of every view controller that your app will ever instantiate, and for all of that instantiation
to take place automatically.

That’s convenient for beginners, but it can also be restrictive. You might have a feeling
that your app must have a main storyboard, and that every view controller must be
instantiated from it automatically. That’s not the case. It is possible to use storyboards
in a much more agile, intentional way, much as one would use .xib files. For example,
your app can have multiple storyboards. Why might that be useful? Well, since auto‐
layout is configured at the file level — either an entire .storyboard file uses autolayout
or none of it does — multiple storyboards constitute a very good way to use autolayout
selectively in only certain areas of your interface. Or you might use an ancillary story‐
board as a source of just one view controller, a more convenient and memory-efficient
way to do what we did with a view controller in a .xib file earlier.

I’ll summarize the ways in which a view controller can be instantiated from a storyboard.
You can get a reference to a storyboard either by calling the UIStoryboard initializer
init(name:bundle:) or through the storyboard property of a view controller that has
already been instantiated from that storyboard. With a storyboard instance in hand, a
view controller can be instantiated from that storyboard in one of four ways:

How a View Controller Gets Its View | 267

• At most one view controller in the storyboard is designated the storyboard’s initial
view controller. To instantiate that view controller, call instantiateInitialView-
Controller. The instance is returned.

• A view controller in a storyboard can be assigned an arbitrary string identifier; this
is its Storyboard ID in the Identity inspector. To instantiate that view controller, call
instantiateViewControllerWithIdentifier:. The instance is returned.

• A parent view controller in a storyboard may have immediate children, such as a
UINavigationController and its initial child view controller. The nib editor will
show a relationship connection between them. When the parent is instantiated (the
source of the relationship), the initial children (the destination of the relationship)
are instantiated automatically.

• A view controller in a storyboard may be (or contain) the source of a segue whose
destination is a future child view controller or a future presented view controller.
When the segue is triggered and performed, it instantiates the new view controller.

I’ll go into much greater detail about storyboards and segues later in this chapter.

View Resizing
A view controller’s view (meaning its main view) is likely to be resized. Other views can
be resized as well, of course, but this is typically by virtue of being subviews of a view
controller’s main view, which has itself been resized. A view controller’s view is resized
when it is put into the interface. It is resized when the app rotates. It may be resized in
response to interface changes, such as when a navigation bar gets taller or shorter, ap‐
pears or disappears. On the iPhone 6, it may even be resized because a change in the
Display Zoom setting changes the effective size of the screen. In iOS 8, Apple describes
views and view controllers as adaptive to size changes.

Because a view controller is a controller, it is typically the locus of logic for helping the
interface to cope with all this resizing. A view controller has properties and receives
events connected to the resizing of its view, so that it can correctly dictate the arrange‐
ment of the interface.

View Size in the Nib Editor
When you design your interface in the nib editor, you can be misled into forgetting
about view resizing. A view controller’s view has to be displayed at some definite size,
so you may design the interface for that size, as if what you see in the nib editor canvas
is what you’ll get when the app runs. That, however, is false. Suppose you design the
interface with the view sized like an iPhone 4s; then when the app loads on an iPhone
5, the view is a different size, and the interface as designed isn’t the interface you actually
see — and of course with the advent of the two iPhone 6 models, the problem is com‐

268 | Chapter 6: View Controllers

pounded. It’s crucial to remember that the size at which a view controller’s main view
is portrayed in the nib editor canvas has no effect on the size it will assume at runtime.

In the nib editor, you can display the view at the size of any actual device: for a storyboard,
select the view controller (for a .xib file, select the top-level view) and choose a specific
device from the Size pop-up menu under Simulated Metrics at the top of the Attributes
inspector. You can also specify an orientation, as well as the presence or absence of
interface elements that can affect layout (status bar, top bar, bottom bar). The Interface
Builder Preview feature can also be a big help here, allowing you to view your interface
laid out for multiple devices simultaneously. But don’t forget that the specific size you
see may not reflect runtime reality. From this point of view, Xcode 6’s “Use Size Classes”
option is a boon (see Chapter 1). By default, it shows a view controller’s main view as a
square — a neutral shape that will never be encountered in real life. This serves as a
reminder that the interface you are designing must adapt to a variety of real sizes when
the app runs.

Bars and Underlapping
A view controller’s view will often have to adapt to the presence of bars at the top and
bottom of the screen:
The status bar is underlapped

The status bar is transparent, so that the region of a view behind it is visible through
it. The root view, and any other fullscreen view, must occupy the entire window,
including the status bar area, the top 20 pixels of the view being visible behind the
transparent status bar. You’ll want to design your view so that its top doesn’t contain
any interface objects that will be overlapped by the status bar.

Top and bottom bars may be underlapped
The top and bottom bars displayed by a navigation controller (navigation bar, tool‐
bar) or tab bar controller (tab bar) can be translucent. When they are, your view
controller’s view displayed here is, by default, extended behind the translucent bar,
underlapping it.

The status bar may be present or absent. Top and bottom bars may be present or absent,
and, if present, their height can change. How will your interface cope with such changes?
The primary coping mechanism is the view controller’s layout guides.

Recall (from Chapter 1) that a view controller supplies two properties, its topLayout-
Guide and its bottomLayoutGuide. The position of these guide objects moves automat‐
ically at runtime to reflect the view’s environment:
topLayoutGuide

The topLayoutGuide is positioned as follows:

View Resizing | 269

• If there is a status bar and no top bar, the topLayoutGuide is positioned at the
bottom of the status bar.

• If there is a top bar, the topLayoutGuide is positioned at the bottom of the top
bar.

• If there is no top bar and no status bar, the topLayoutGuide is positioned at
the top of the view.

bottomLayoutGuide

The bottomLayoutGuide is positioned as follows:

• If there is a bottom bar, the bottomLayoutGuide is positioned at the top of the
bottom bar.

• If there is no bottom bar, the bottomLayoutGuide is positioned at the bottom
of the view.

The easiest way to involve the layout guides in your view layout is through autolayout
and constraints. By pinning a view by its top to the topLayoutGuide, or by its bottom
to the bottomLayoutGuide, you guarantee that the view will move when the layout guide
moves.

If you need actual numbers in order to perform layout-related calculations, a layout
guide’s distance from the corresponding edge of the view controller’s main view is re‐
ported by its length property. Note that viewDidLoad is too early to obtain a meaningful
value; the earliest coherent opportunity is probably viewWillLayoutSubviews (I’ll dis‐
cuss this event later).

Status bar visibility
The default behavior of the status bar is that it is present, except in landscape orientation
on an iPhone, where it is absent (this behavior is new in iOS 8). The root view controller,
as I mentioned at the start of this chapter, gets a say in this behavior; it also determines
the look of the status bar when present. Your UIViewController subclass can override
these methods:
preferredStatusBarStyle

Your choices (UIStatusBarStyle) are .Default and .LightContent, meaning dark
text and light text, respectively. Use light text for legibility if the view content un‐
derlapping the status bar is dark.

prefersStatusBarHidden

Return true to make the status bar invisible; return false to make the status bar
visible, even in landscape orientation on iPhone. (Return the result of a call to super
to get the default behavior.)

270 | Chapter 6: View Controllers

childViewControllerForStatusBarStyle
childViewControllerForStatusBarHidden

Used to delegate the decision on the status bar style or visibility to a child view
controller’s preferredStatusBarStyle or prefersStatusBarHidden instead of
this view controller. For example, a navigation controller implements these methods
to allow your view controller to decide the status bar style and visibility when your
view controller’s view occupies the navigation controller’s view.

You never call any of those methods yourself; they are called automatically when the
view controller situation changes (including, on iOS 8, when the interface rotates). If
you want them to be called immediately, because they are not being called when you
need them to be, or because the situation has changed and a call to one of them would
now give a different answer, call setNeedsStatusBarAppearanceUpdate on your view
controller. If this call is inside an animation block, the animation of the change in the
look of the status bar will have the specified duration. The character of the animation
from visible to invisible (and vice versa) is set by your view controller’s implementation
of preferredStatusBarUpdateAnimation; the value you return (UIStatusBar‐
Animation) can be .Fade, .Slide, or .None.

When you toggle the visibility of the status bar, the top layout guide will move up or
down by 20 points. If your main view has subviews with constraints to the top layout
guide, those subviews will move. If this happens when the main view is visible, the user
will see this movement as a jump. That is probably not what you want. To prevent it,
call layoutIfNeeded on your view in the same animation block in which you call set-
NeedsStatusBarAppearanceUpdate; your layout update will then be animated together
with the change in status bar visibility.

Extended layout
If your UIViewController’s parent is a navigation controller or tab bar controller, you
can govern whether its view underlaps a top bar (navigation bar) or bottom bar (toolbar,
tab bar) with these UIViewController properties:
edgesForExtendedLayout

A UIRectEdge. The default is .All, meaning that this view controller’s view will
underlap a translucent top bar or a translucent bottom bar. The other extreme
is .None, meaning that this view controller’s view won’t underlap top and bottom
bars. Other possibilities are .Top (underlap top bars only) and .Bottom (underlap
bottom bars only).

extendedLayoutIncludesOpaqueBars

If true, then if edgesForExtendedLayout permits underlapping of bars, those bars
will be underlapped even if they are opaque. The default is false, meaning that only
translucent bars are underlapped.

View Resizing | 271

Resizing Events
A UIViewController receives events that notify it of pending view size changes.

The following events, new in iOS 8, are associated primarily with rotation of the interface
(for trait collections and size classes, as well as view layout events, see Chapter 1):
willTransitionToTraitCollection:withTransitionCoordinator:

Sent when the app is about to undergo rotation, if this involves a change in the trait
collection (because the size classes will change). Rotation on an iPad does not
change the trait collection, so this event will not arrive. Rotation of 180 degrees on
an iPhone does not change the trait collection, so this event will not arrive. This
event is not sent on launch or when your view controller’s view is first embedded
into the interface. If you override this method, call super.

UIViewController receives this event by virtue of adopting the UIContent‐
Container protocol.

viewWillTransitionToSize:withTransitionCoordinator:

Sent when the app is about undergo rotation; may be sent even if the view’s size will
not change (because we are rotating 180 degrees). The new size is the first param‐
eter; the old size is available as self.view.bounds.size. This event is not sent on
launch or when your view controller’s view is first embedded into the interface. If
you override this method, call super.

UIViewController receives this event by virtue of adopting the UIContent‐
Container protocol.

traitCollectionDidChange:

Sent after the trait collection changes. The parameter is the old trait collection; the
new trait collection is available as self.traitCollection. Sent after the trait col‐
lection changes, including on launch or when the trait collection is set for the first
time (in which case the parameter will be nil).

UIViewController receives this event by virtue of adopting the UITraitEnvironment
protocol.

(I’ll describe the use of the transitionCoordinator: parameter later in this chapter.)

In addition, a UIViewController receives these events related to the layout of its view
(these are not new in iOS 8):
updateViewConstraints

The view is about to be told to update its constraints (updateConstraints), in‐
cluding at application launch. If you override this method, call super.

272 | Chapter 6: View Controllers

viewWillLayoutSubviews
viewDidLayoutSubviews

These events surround the moment when the view is sent layoutSubviews, in‐
cluding at application launch.

In a situation where all these events are sent, the order is:

• willTransitionToTraitCollection:withTransitionCoordinator:

• viewWillTransitionToSize:withTransitionCoordinator:

• updateViewConstraints

• traitCollectionDidChange:

• viewWillLayoutSubviews

• viewDidLayoutSubviews

It’s a pity that the viewWillTransitionToSize:... event is confined primarily to
rotation situations. Your view can be resized under many other circumstances, but
to detect these, you’ll have to fall back on layout events such as viewWillLayout-
Subviews.

Rotation
Your app can rotate, moving its top to correspond to a different edge of the device’s
screen. In earlier versions of the system, this rotation was something of an illusion: the
window remained pinned to the screen, and rotation was a matter of applying a rotate
transform to the root view and changing the bounds size to match the new orientation.
In iOS 8, however, the app really does rotate. Rotation expresses itself in two ways:
The status bar orientation changes

You can hear about this (though this will rarely be necessary) by way of these app
delegate events and notifications:

• application:willChangeStatusBarOrientation:duration: (and the corre‐
sponding UIApplicationWillChangeStatusBarOrientationNotification)

• application:didChangeStatusBarOrientation: (and the corresponding
UIApplicationDidChangeStatusBarOrientationNotification)

The current orientation (which is also the app’s current orientation) is available
from the UIApplication as its statusBarOrientation; the app delegate methods
also provide the other orientation (the one we are changing to or from, respectively)
as the second parameter. Possible values (UIInterfaceOrientation) are:

View Resizing | 273

• .Portrait

• .PortraitUpsideDown

• .LandscapeLeft

• .LandscapeRight

Global convenience functions UIInterfaceOrientationIsLandscape and
UIInterfaceOrientationIsPortrait take a UIInterfaceOrientation and return a
Bool.

The view controller’s view is resized
There may also be an accompanying change in the trait collection. Thus, the view
controller receives events related to resizing, as I described in the preceding section.

In iOS 8, all UIViewController instance methods from iOS 7 and before with
“Rotate,” “Rotation,” or “Rotating” in their names are deprecated. The events re‐
lated to app rotation are the resizing events listed in the previous section. App
rotation is to be regarded as an aspect of view resizing.

There are two complementary uses for rotation:
Compensatory rotation

The app rotates to compensate for the orientation of the device, so that the app
appears right way up with respect to how the user is holding the device. The chal‐
lenge of compensatory rotation stems, quite simply, from the fact that the screen is
not square. This means that if the app rotates 90 degrees, the interface no longer
fits the screen, and must be changed to compensate.

Forced rotation
The app rotates when a particular view appears in the interface, or when the app
launches, to indicate that the user needs to rotate the device in order to view the
app the right way up. This is typically because the interface has been specifically
designed, in the face of the fact that the screen is not square, to appear in one
particular mode (portrait or landscape).

In the case of the iPhone, no law says that your app has to perform compensatory
rotation. Most of my iPhone apps do not do so; indeed, I have no compunction about
doing just the opposite. My view controller views often look best in just one orientation
(or one pair of opposed orientations, either just portrait or just landscape), and they
stubbornly stay there regardless of how the user holds the device. A single app may
contain view controller views that work best in different orientations; thus, my app forces
the user to rotate the device differently depending on what view is being displayed. This
is reasonable, because the iPhone is small and easily reoriented with a twist of the user’s

274 | Chapter 6: View Controllers

wrist, and it has a natural right way up, especially because it’s a phone. (The iPod touch
isn’t a phone, but the same argument works by analogy.)

On the other hand, Apple would prefer iPad apps to rotate to at least two opposed
orientations (such as landscape with the button on the right and landscape with the
button on the left), and preferably to all four possible orientations, so that the user isn’t
restricted in how the device is held.

It’s fairly trivial to let your app rotate to two opposed orientations, because once the app
is set up to work in one of them, it can work with no change in the other. But allowing
a single interface to rotate between two orientations that are 90 degrees apart is trickier,
because its dimensions must change — roughly speaking, its height and width are
swapped — and this may require a change of layout and might even call for more sub‐
stantial alterations, such as removal or addition of part of the interface. A good example
is the behavior of Apple’s Mail app on the iPad: in landscape mode, the master pane and
the detail pane appear side by side, but in portrait mode, the master pane is removed
and must be summoned as a temporary overlay on top of the detail pane.

The orientation of your view as displayed in the nib editor has no effect on the
orientation of your app, any more than its size does. When the app runs, its runtime
characteristics (as I’m about to describe) will determine its rotation, just as they will
determine its size.

Permitting compensatory rotation
By default, when you create an Xcode project, the resulting app will perform compen‐
satory rotation in response to the user’s rotation of the device. For an iPhone app, this
means that the app can appear with its top at the top of the device or either of the two
sides of the device; having the app’s top appear at the bottom of the device (because the
device is held upside-down) is generally frowned on. For an iPad app, this means that
the app can assume any orientation.

If this isn’t what you want, it is up to you to prevent it. There are three levels at which
you can make changes:

• The app itself, in its Info.plist, may declare once and for all every orientation the
interface will ever be permitted to assume. It does this under the “Supported inter‐
face orientations” key, UISupportedInterfaceOrientations (supplemented, for a
universal app, by “Supported interface orientations (iPad),” UISupportedInterface-
Orientations~ipad). These keys can also be set through checkboxes when you edit
the app target, in the General tab.

• The app delegate may implement application:supportedInterface-

OrientationsForWindow:, returning a bitmask listing every orientation the inter‐

View Resizing | 275

face is permitted to assume. This list overrides the Info.plist settings. Thus, the app
delegate can do dynamically what the Info.plist can do only statically.
application:supportedInterfaceOrientationsForWindow: is called at least
once every time the device rotates.

• A view controller may implement supportedInterfaceOrientations, returning a
bitmask listing a set of orientations that intersects the set of orientations permitted
by the app or the app delegate. The resulting intersection will then be the set of
orientations permitted at that moment. This intersection must not be empty; if it
is, your app will crash (with a useful message: “Supported orientations has no com‐
mon orientation with the application”). supportedInterfaceOrientations is
called at least once every time the device rotates.
The view controller has a second way to interfere with the app’s permitted orien‐
tations: it can implement shouldAutorotate. This method returns a Bool, and the
default is true. shouldAutorotate is called at least once every time the device ro‐
tates; if it returns false, the interface will not rotate to compensate at this moment.
This can be a simpler way than supportedInterfaceOrientations to veto the app’s
rotation. If shouldAutorotate is implemented and returns false, supported-
InterfaceOrientations is not called.
Only the view controller at the top of the visible view controller hierarchy is con‐
sulted — that is, the root view controller, or a view controller presented fullscreen.
Built-in view controllers do not consult their children in response. Thus, if your
view controller is, say, a child view controller of a UINavigationController, it has
no say in how the app rotates. (This was a major change from iOS 5 to iOS 6, and
is still the cause of much confusion, not to mention gnashing of teeth.)

A UIViewController class method attemptRotationToDeviceOrientation prompts
the runtime to do immediately what it would do if the user were to rotate the device,
namely to walk the three levels I’ve just described and, if the results permit rotation of
the interface to match the current device orientation, to rotate the interface. This would
be useful if, say, your view controller had returned false from shouldAutorotate, so
that the interface does not match the current device orientation, but is now for some
reason prepared to return true and wants to be asked again, immediately.

The bitmask you return from application:supportedInterfaceOrientationsFor-
Window: or supportedInterfaceOrientations may be one of these values, or multiple
values combined with bitwise-or:

• UIInterfaceOrientationMask.Portrait

• UIInterfaceOrientationMask.LandscapeLeft

• UIInterfaceOrientationMask.LandscapeRight

276 | Chapter 6: View Controllers

• UIInterfaceOrientationMask.PortraitUpsideDown

• UIInterfaceOrientationMask.Landscape (a convenient combination of .Left
and .Right)

• UIInterfaceOrientationMask.All (a convenient combination of .Portrait, .Upside-
Down, .Left, and .Right)

• UIInterfaceOrientationMask.AllButUpsideDown (a convenient combination
of .Portrait, .Left, and .Right)

Unfortunately, the Swift notation is extremely clumsy, for two reasons:

• These methods expect you to return an Int, not a UIInterfaceOrientationMask.
• UIInterfaceOrientationMask is typed as a UInt, not an Int.

Therefore, in order to return a bitmask from these methods, you have to derive the
underlying value with rawValue and cast the result to Int. For example:

override func supportedInterfaceOrientations() -> Int {
 return Int(UIInterfaceOrientationMask.Portrait.rawValue)
}

In the preceding code, do not accidentally start with a different enum, such as
UIInterfaceOrientation. A different enum has a different set of values, so if you
implement supportedInterfaceOrientations to return, say, UIInterface-

Orientation.Portrait.rawValue, you’ll crash. Because supportedInterface-

Orientations expects an Int result, not a UIInterfaceOrientationMask, Swift’s strict
typing doesn’t prevent you from making this mistake!

If your code needs to know the current physical orientation of the device (as opposed
to the current orientation of the app), it can ask the device:

let orientation = UIDevice.currentDevice().orientation

Possible results (UIDeviceOrientation) are .Unknown, .Portrait, and so on. Global
convenience functions UIDeviceOrientationIsPortrait and UIDeviceOrientation-
IsLandscape take a UIDeviceOrientation and return a Bool. By the time you get a
rotation-related event, the device’s orientation has already changed.

Initial orientation
I’ve talked about how to determine what orientations your app can support in the course
of its lifetime; but what about its initial orientation, the very first orientation your app
will assume when it launches?

View Resizing | 277

On the iPad, an app has no fixed initial orientation. iPad apps are supposed to be more
or less orientation-agnostic, so the app will launch into whatever permitted orientation
is closest to the device’s current orientation at launch time.

On the iPhone, however, things are different. The rule is that the app will attempt to
launch into the first orientation listed in the app’s Info.plist file in the “Supported inter‐
face orientations” array (UISupportedInterfaceOrientations). There is no graphical
user interface for arranging the order of this array; you have to edit the Info.plist directly.
You can do this either by selecting the Info.plist in the Project navigator or by editing
the target and switching to the Info pane. From there, the editor lets you drag the ele‐
ments of the array to reorder them.

It is crucial that the order of the “Supported interface orientations” array entries in the
Info.plist should harmonize with the supportedInterfaceOrientations of the initial
root view controller. To illustrate what I mean, I’ll give an example of what you should
not do. Suppose that your app, over its lifetime, needs to support portrait, landscape
left, and landscape right, but your initial root view controller supports only landscape
left and landscape right. Then, in the Info.plist, portrait orientation (UIInterface-
OrientationPortrait) must not come first.

The reason is that, by definition, at the time the app launches, the app is not yet running.
Thus, there is not yet any root view controller, and so supportedInterface-
Orientations can’t yet be called. The only information the system has, as it launches
your app, is the Info.plist (it can read this by looking directly into the app bundle, and
it does so). So if portrait orientation comes first in the Info.plist, the app will try to launch
into portrait orientation, only to discover, as your code finally starts running and your
root view controller’s supportedInterfaceOrientations is called, that this was wrong.
This will cause trouble for the visible interface (the user will see a sudden rotation at
launch) and trouble for your code (you’ll get an extra initial set of rotation-related
events).

Initial layout
If you have code that performs or contributes to the initial construction and layout of
your app’s interface, where should that code go? If you’ve configured your permitted
orientations and initial orientation correctly, in iOS 8 your root view controller will
receive these events at launch:

• viewDidLoad

• traitCollectionDidChange:

• viewWillLayoutSubviews

There is a natural temptation to perform initial layout-related tasks in viewDidLoad,
because, being called just once as early as possible in the life of the view controller’s view,

278 | Chapter 6: View Controllers

Extra Rotation at Launch
In previous editions of this book, I warned that if your app’s initial orientation was
anything but portrait orientation, there would be an extra set of rotation events as the
app launches. This was because, regardless of your initial orientation settings, all apps
actually launched in portrait, even if the user never saw this. In iOS 8, though, that’s no
longer true! (This change is surely connected with the fact that in iOS 8, the app itself,
including the window, is what rotates.) Thus, that warning is no longer necessary. This
means that if your iOS 7 app’s initial orientation is landscape orientation, and if your
code was taking precautions to work around the extra initial rotation, those precautions
are no longer needed when you recompile for iOS 8.

It is still perfectly possible that you’ll get a rotation very early in the life of the app, but
this, if you’ve configured your app’s initial orientation correctly, will be a real rotation.
For example, if your iPhone app’s initial root view controller permits rotation to any
orientation, and your Info.plist specifies portrait orientation as the initial orientation,
and if the user is holding the device in landscape orientation as your app launches, then
the app will launch normally, correctly, and fully into portrait orientation, and will then
almost immediately afterward rotate to landscape. But this is essentially no different
than if the user had been holding the device in portrait orientation while launching your
app and then rotated it to landscape.

it is a conventional locus for preparation of the interface (as well as other view controller
initializations). This can be a mistake. At the time viewDidLoad is called, the view has
been loaded, but it has not yet been inserted into the interface! Thus it has not yet been
fully resized for the first time. A layout-related task that depends upon the absolute
dimensions of the view is therefore destined to generate erroneous results.

In iOS 8, however, this problem is not as severe as in previous versions of the system,
because the view’s size already matches the screen, regardless of initial orientation, by
the time viewDidLoad is called. viewDidLoad is still too early, though, to make accurate
decisions based on what the initial size of the view will be when the interface has settled
down; for example, the view’s height may subsequently be reduced by the presence of a
top or bottom bar.

If your initial layout involves autolayout, therefore, viewDidLoad is a perfectly reason‐
able place to do it, as long as you aren’t relying on a knowledge of the final absolute
dimensions of your view. In this (completely artificial) example, I’ll insert a small black
square at the top center of the interface, using constraints:

override func viewDidLoad() {
 super.viewDidLoad()
 let square = UIView()
 square.backgroundColor = UIColor.blackColor()
 self.view.addSubview(square)

View Resizing | 279

 square.setTranslatesAutoresizingMaskIntoConstraints(false)
 let side : CGFloat = 10
 square.addConstraint(
 NSLayoutConstraint(item:square, attribute:.Width,
 relatedBy:.Equal,
 toItem:nil, attribute:.NotAnAttribute,
 multiplier:1, constant:side))
 self.view.addConstraints(
 NSLayoutConstraint.constraintsWithVisualFormat("V:|[square(side)]",
 options:nil, metrics:["side":side],
 views:["square":square]))
 self.view.addConstraint(
 NSLayoutConstraint(item:square, attribute:.CenterX,
 relatedBy:.Equal,
 toItem:self.view, attribute:.CenterX,
 multiplier:1, constant:0))
}

Our view (self.view) may proceed to be resized further as the interface settles down,
but the small black square will still be positioned correctly, because the constraints
determine that position relative to whatever the size of our view may be.

If we were to do the same thing without using autolayout, viewDidLoad would be unwise
choice; we should use traitCollectionDidChange: or viewWillLayoutSubviews. This
leaves us in something of a quandary: such methods can be called multiple times over
the lifetime of a view controller, so how can we perform initializations just once? The
solution is to make use of a Bool property flag to ensure that our initialization code runs
only the first time. For example:

override func viewWillLayoutSubviews() {
 if !self.viewInitializationDone {
 self.viewInitializationDone = true // ensure we do this just once
 let square = UIView(frame:CGRectMake(0,0,10,10))
 square.backgroundColor = UIColor.blackColor()
 square.center = CGPointMake(self.view.bounds.midX,5)
 self.view.addSubview(square)
 }
}

The correctness of our layout depends upon the value of self.view.bounds; by the time
viewWillLayoutSubviews is called, initial view resizing is over and that value has settled
down, so our code works.

Responding to rotation
When your app rotates 90 degrees, your view controller’s main view may have its height
and width bounds dimensions effectively swapped. This is an extraordinarily dramatic
and extreme resizing, especially on an iPhone, where the typical aspect ratio is 16:9. In
iOS 8, you get a little extra usable height in landscape orientation — for example, the
status bar vanishes by default, and a navigation controller can be made to hide its top

280 | Chapter 6: View Controllers

and bottom bars automatically — but your interface may still need to be rearranged,
perhaps quite heavily, to cope with this change in size.

In many cases, autoresizing or (more likely) autolayout will handle the situation; in iOS
8, you can get a serious boost from conditional constraints and the ability to configure
your nib in Xcode 6’s nib editor so that views and constraints are removed and inserted
automatically in response to a trait collection change (see Chapter 1).

Sometimes, however, code is needed to perform or supplement the rearrangement of
your interface at rotation time. In iOS 8, you’ll want to implement willTransitionTo-
TraitCollection... or viewWillTransitionToSize... to respond to rotation. (Re‐
call that the former event is not sent when an iPad rotates, because iPad rotation does
not cause any change in the trait collection.)

Rotation is animated, and you’ll probably want your layout changes to harmonize with
and participate in that animation. This is where the transitionCoordinator: param‐
eter comes in. It is (not surprisingly) a transition coordinator; in particular, it’s an object
adopting the UIViewControllerTransitionCoordinator protocol, which means that it is
reponsible for governing a runtime animation (in this case, the rotation animation),
and that it implements this method:
animateAlongsideTransition:completion:

Takes an animation block and a completion block. The animation you supply is
incorporated into the transition coordinator’s animation. Returns a Bool, informing
you in case your commands couldn’t be animated.

Both blocks receive as parameter a context object implementing the UIView‐
ControllerTransitionCoordinatorContext protocol. This object, among other
things, has a targetTransform method that you can call to learn how far and in
what direction the interface is rotating. The transition coordinator, too, is such a
context object.

In particular, if rot is the result of calling targetTransform, the rotation is 180
degrees — the thing you’re most likely to want to know — if and only if both rot.b
and rot.c are 0.

(Other methods implemented by the transition coordinator and context object are ir‐
relevant to rotation; I’ll discuss them later in this chapter, in connection with custom
view controller transitions.)

In this (completely artificial) example, I’ll specify that our interface should display a
large black rectangle occupying the left side of the screen if the device is in landscape
orientation, but not if the device is in portrait orientation. Let’s say that this is an iPhone
app. In that case, I can be notified of the rotation by implementing willTransitionTo-
TraitCollection:withTransitionCoordinator:, and I can test which way we’re about

View Resizing | 281

to rotate by examining the new trait collection’s vertical size class. I’ll animate the black
rectangle on and off the screen in coordination with the rotation animation:

lazy var blackRect : UIView = self.makeBlackRect()
func makeBlackRect() -> UIView {
 var f = self.view.bounds
 if self.traitCollection.verticalSizeClass != .Compact {
 // probably will be called in portrait, swap dimensions
 (f.size.width, f.size.height) = (f.size.height, f.size.width)
 }
 f.size.width /= 3.0
 f.origin.x = -f.size.width
 let br = UIView(frame:f)
 br.backgroundColor = UIColor.blackColor()
 return br
}
override func willTransitionToTraitCollection(
 newCollection: UITraitCollection,
 withTransitionCoordinator coordinator:
 UIViewControllerTransitionCoordinator) {
 super.willTransitionToTraitCollection(
 newCollection, withTransitionCoordinator: coordinator)
 let v = self.blackRect
 var newFrameOriginX = v.frame.origin.x
 if newCollection.verticalSizeClass == .Compact { // landscape
 if v.superview == nil {
 self.view.addSubview(v)
 newFrameOriginX = 0
 }
 } else { // portrait
 if v.superview != nil {
 newFrameOriginX = -v.frame.size.width
 }
 }
 coordinator.animateAlongsideTransition({
 _ in
 v.frame.origin.x = newFrameOriginX // animate the change
 }, completion: {
 _ in
 if newCollection.verticalSizeClass != .Compact {
 self.blackRect.removeFromSuperview()
 }
 })
}

As usual, a constraint-based solution would be more robust. This is a good use of the
technique I described in Chapter 1, where we prepare two sets of constraints and swap
them in and out. I won’t even bother to remove the black rectangle from the interface;
I’ll add it once and for all as I configure the view initially, and just slide it onscreen and
offscreen as needed:

282 | Chapter 6: View Controllers

var blackRectConstraintsOnscreen : [NSLayoutConstraint]!
var blackRectConstraintsOffscreen : [NSLayoutConstraint]!
override func viewDidLoad() {
 let br = UIView()
 br.setTranslatesAutoresizingMaskIntoConstraints(false)
 br.backgroundColor = UIColor.blackColor()
 self.view.addSubview(br)
 // "b.r. is pinned to top and bottom of superview"
 self.view.addConstraints(
 NSLayoutConstraint.constraintsWithVisualFormat("V:|[br]|",
 options:nil, metrics:nil, views:["br":br]))
 // "b.r. is 1/3 the width of superview"
 self.view.addConstraint(
 NSLayoutConstraint(item:br, attribute:.Width,
 relatedBy:.Equal,
 toItem:self.view, attribute:.Width,
 multiplier:1.0/3.0, constant:0))
 // "onscreen, b.r.'s left is pinned to superview's left"
 let marrOn =
 NSLayoutConstraint.constraintsWithVisualFormat("H:|[br]",
 options:nil, metrics:nil, views:["br":br])
 // "offscreen, b.r.'s right is pinned to superview's left"
 let marrOff = [
 NSLayoutConstraint(item:br, attribute:.Right,
 relatedBy:.Equal,
 toItem:self.view, attribute:.Left,
 multiplier:1, constant:0)
]
 self.blackRectConstraintsOnscreen = marrOn as [NSLayoutConstraint]
 self.blackRectConstraintsOffscreen = marrOff
 // start out offscreen!
 self.view.addConstraints(self.blackRectConstraintsOffscreen)
}
override func willTransitionToTraitCollection(
 newCollection: UITraitCollection,
 withTransitionCoordinator coordinator:
 UIViewControllerTransitionCoordinator) {
 super.willTransitionToTraitCollection(
 newCollection, withTransitionCoordinator: coordinator)
 self.view.removeConstraints(self.blackRectConstraintsOnscreen)
 self.view.removeConstraints(self.blackRectConstraintsOffscreen)
 if newCollection.verticalSizeClass == .Compact {
 self.view.addConstraints(self.blackRectConstraintsOnscreen)
 } else {
 self.view.addConstraints(self.blackRectConstraintsOffscreen)
 }
}

The movement of the black rectangle is animated as the interface rotates, because any
constraint-based layout performed as the interface rotates is animated.

View Resizing | 283

For this particular example, an even more elegant solution is possible: the entire change
of interface can be configured in the nib, using conditional constraints. The details are
left as an exercise for the reader.

Presented View Controller
Back when the only iOS device was an iPhone, a presented view controller was called a
modal view controller. The root view controller remained in place, but its view was taken
out of the interface and the modal view controller’s view was used instead. Thus, this
was the simplest way to replace the entire interface with a different interface.

You can see why this configuration was characterized as “modal.” The presented view
controller’s view has, in a sense, blocked access to the “real” view, the root view con‐
troller’s view. The user is forced to work in the presented view controller’s view, until
that view is “dismissed” and the “real” view is visible again — similar to a modal dialog
in a desktop application, where the user can’t do anything else but work in the dialog as
long as it is present. A presented view controller’s view often reinforces this analogy
with obvious dismissal buttons with titles like Save, Done, or Cancel.

The color picker view in my own Zotz! app is a good example (Figure 6-7); this is an
interface that says, “You are now configuring a color, and that’s all you can do; change
the color or cancel, or you’ll be stuck here forever.” The user can’t get out of this view
without tapping Cancel or Done, and the view that the user was previously using is
visible as a blur behind this view, waiting for the user to return to it.

Figure 6-5, from my Latin flashcard app, is another example of a presented view. It has
a Cancel button, and the user is in a special “mode,” performing a drill exercise rather
than scrolling through flashcards.

Nevertheless, the “modal” characterization is not always apt. A presented view controller
might be no more than a technique that you, the programmer, have used to alter the
interface; the user needn’t be conscious of this. A presented view controller’s view may
have a complex interface; it may have child view controllers; it may present yet another
view controller; it may take over the interface permanently, with the user never returning
to the interface that it replaced.

Furthermore, the range of ways in which a presented view controller’s view can be
displayed now goes far beyond merely replacing the root view controller’s view. For
example:

• Instead of replacing the entire interface, a presented view controller’s view can re‐
place a subview within the existing interface. (This ability was originally confined
to the iPad alone; new in iOS 8, it is available on the iPhone as well.)

284 | Chapter 6: View Controllers

Figure 6-7. A modal view

• A presented view controller’s view may cover the existing interface only partially;
the existing interface is never removed. (This, too, was originally an iPad-only fea‐
ture; it became possible on the iPhone starting in iOS 7.)

Presenting a View
The two key methods for presenting and dismissing a view are:
presentViewController:animated:completion:

To make a view controller present another view controller, you send the first view
controller this message, handing it the second view controller, which you will prob‐
ably instantiate for this very purpose. (The first view controller is very typically
self.)

We now have two view controllers that stand in the relationship of presentingView-
Controller and presentedViewController, and the latter is retained. The pre‐
sented view controller’s view effectively replaces or covers the presenting view con‐
troller’s view in the interface (I’ll talk later about ways to refine that arrangement).

Presented View Controller | 285

dismissViewControllerAnimated:completion:

The “presented” state of affairs described in the previous paragraph persists until
the presenting view controller is sent this message. The presented view controller’s
view is then removed from the interface, and the presented view controller is re‐
leased; it will thereupon typically go out of existence, together with its view, its child
view controllers and their views, and so on.

As the view of the presented view controller appears, and again when it is dismissed,
there’s an option for animation to be performed as the transition takes place (the
animated: argument, a Bool). The completion: parameter, which can be nil, lets you
supply a block of code to be run after the transition (including the animation) has
occurred. I’ll talk later about how to determine the nature of the animation.

The presenting view controller (the presented view controller’s presentingView-
Controller) is not necessarily the view controller to which you sent presentView-
Controller:animated:completion:. It will help if we distinguish three roles that view
controllers can play in presenting a view controller:
Presented view controller

The view controller specified as the first argument to presentView-

Controller:animated:completion:.

Original presenter
The view controller to which presentViewController:animated:completion:
was sent. Apple sometimes refers to this view controller as the source; “original
presenter” is my own term.

The presented view controller is set as the original presenter’s presentedView-
Controller.

Presenting view controller
The presented view controller’s presentingViewController. This is the view con‐
troller whose view is replaced or covered by the presented view controller’s view.
By default, it is the view controller whose view is the entire interface — namely, either
the root view controller or an already existing presented view controller. It might
not be the same as the original presenter.

The presented view controller is set as the presenting view controller’s presented-
ViewController. Thus, the presented view controller might be the presentedView-
Controller of two different view controllers.

The receiver of dismissViewControllerAnimated:completion: may be any of those
three objects; the runtime will use the linkages between them to transmit the necessary
messages up the chain on your behalf to the presentingViewController.

286 | Chapter 6: View Controllers

A view controller can have at most one presentedViewController. If you send present-
ViewController:animated:completion: to a view controller whose presentedView-
Controller isn’t nil, nothing will happen (and you’ll get a warning from the runtime).
However, a presented view controller can itself present a view controller, so there can
be a chain of presented view controllers.

Conversely, you can test for a nil presentedViewController or presentingView-
Controller to learn whether view presentation is occurring. For example, a view con‐
troller whose presentingViewController is nil is not a presented view controller at
this moment.

Let’s make one view controller present another. We could do this simply by connecting
one view controller to another in a storyboard with a modal segue, but I don’t want you
to do that: a modal segue calls presentViewController:animated:completion: for
you, whereas I want you to call it yourself.

So start with an iPhone project made from the Single View Application template. This
contains one view controller class, called ViewController. Our first move must be to add
a second view controller class, an instance of which will function as the presented view
controller:

1. Choose File → New → File and specify iOS → Source → Cocoa Touch Class. Click
Next.

2. Name the class SecondViewController, make sure it is a subclass of UIView‐
Controller, and check the XIB checkbox so that we can design this view controller’s
view quickly and easily in a nib. Click Next.

3. Confirm the folder, group, and app target membership, and click Create.
4. Edit SecondViewController.xib, and do something there to make the view distinc‐

tive, so that you’ll recognize it when it appears; for example, give it a red background
color.

5. We need a way to trigger the presentation of SecondViewController. Edit
Main.storyboard and add a button to the ViewController’s view’s interface. Connect
that button to an action method in ViewController.swift; let’s call it doPresent:.

6. In ViewController.swift, write the code for doPresent:, as follows:
@IBAction func doPresent(sender:AnyObject?) {
 let svc = SecondViewController(
 nibName: "SecondViewController", bundle: nil)
 self.presentViewController(svc, animated:true, completion:nil)
}

Run the project. In ViewController’s view, tap the button. SecondViewController’s view
slides into place over ViewController’s view.

Presented View Controller | 287

In our lust for instant gratification, we have neglected to provide a way to dismiss the
presented view controller. If you’d like to do that, edit SecondViewController.xib, put a
button into SecondViewController’s view, and connect it to an action method in
SecondViewController.swift:

@IBAction func doDismiss(sender:AnyObject?) {
 self.presentingViewController!.dismissViewControllerAnimated(
 true, completion: nil)
}

Run the project. You can now alternate between ViewController’s view and Second‐
ViewController’s view, presenting and dismissing in turn.

Communication With a Presented View Controller
In real life, it is highly probable that the original presenter will have additional infor‐
mation to impart to the presented view controller as the latter is created and presented,
and that the presented view controller will want to pass information back to the original
presenter as it is dismissed. Knowing how to arrange this exchange of information is
very important.

Passing information from the original presenter to the presented view controller is usu‐
ally easy, because the original presenter typically has a reference to the presented view
controller before the latter’s view appears in the interface. For example, suppose the
presented view controller has a public data property. Then the original presenter can
easily set this property:

@IBAction func doPresent(sender:AnyObject?) {
 let svc = SecondViewController(
 nibName: "SecondViewController", bundle: nil)
 svc.data = "This is very important data!" // *
 self.presentViewController(svc, animated:true, completion:nil)
}

Indeed, if you’re calling presentViewController:animated:completion: explicitly
like this, you might even give your SecondViewController a designated initializer that
accepts — and thus requires — this data. In my Latin vocabulary app, for example, I’ve
given DrillViewController a designated initializer init(data:) precisely so that who‐
ever creates it must pass it the data it will need to do its job while it exists.

Passing information back from the presented view controller to the original presenter
is a more interesting problem. The presented view controller will need to know who the
original presenter is, but it doesn’t automatically have a reference to it (the original
presenter, remember, is not necessarily the same as the presentingViewController).
Moreover, the presented view controller will need to know the signature of some meth‐
od, implemented by the original presenter, which it can call in order to hand over the
information — and this needs to work regardless of the original presenter’s class.

288 | Chapter 6: View Controllers

The standard solution is to use delegation, as follows:

• The presented view controller defines a protocol declaring a method that the pre‐
sented view controller wants to call before it is dismissed.

• The original presenter conforms to this protocol: it declares adoption of the pro‐
tocol, and it implements the required method.

• The presented view controller provides a means whereby it can be handed a refer‐
ence to an object conforming to this protocol. Think of that reference as the pre‐
sented view controller’s delegate. Very often, this will be a property — perhaps called
delegate! — typed as the protocol. (Such a property should be weak, since an object
usually has no business retaining its delegate.)

• As the original presenter creates and configures the presented view controller, it
hands the presented view controller a reference to itself, in its role as adopter of the
protocol, by assigning itself as the presented view controller’s delegate.

This sounds elaborate, but with practice you’ll find yourself able to impement it very
quickly. And you can see why it works: because its delegate is typed as the protocol, the
presented view controller is guaranteed that, if it has a delegate, that delegate implements
the method declared in the protocol. Thus, the desired communication from the pre‐
sented view controller to whoever configured and created it is assured.

Let’s modify our example to embody this architecture. First, edit SecondView‐
Controller.swift to look like this:

protocol SecondViewControllerDelegate : class {
 func acceptData(data:AnyObject!)
}
class SecondViewController : UIViewController {
 var data : AnyObject?
 weak var delegate : SecondViewControllerDelegate?
 @IBAction func doDismiss(sender:AnyObject?) {
 self.delegate?.acceptData("Even more important data!")
 }
}

It is now ViewController’s job to adopt the SecondViewControllerDelegate protocol,
and to set itself as the SecondViewController’s delegate. When the delegate method is
called, ViewController will be handed the data, and it should then dismiss the Second‐
ViewController:

class ViewController : UIViewController, SecondViewControllerDelegate {
 @IBAction func doPresent(sender:AnyObject?) {
 let svc = SecondViewController(
 nibName: "SecondViewController", bundle: nil)
 svc.data = "This is very important data!"
 svc.delegate = self // *
 self.presentViewController(svc, animated:true, completion:nil)

Presented View Controller | 289

 }
 func acceptData(data:AnyObject!) {
 // do something with data here
 self.dismissViewControllerAnimated(true, completion: nil)
 }
}

That is a perfectly satisfactory implementation, and we could stop at this point. For
completeness, I’ll just show a possible variation. You might object that too much re‐
sponsibility rests upon the original presenter (the delegate): it is sent the data and then
it must also dismiss the presented view controller. Surely the presented view controller
should hand back any data and should then dismiss itself (as in the preceding section).
Even better, the presented view controller should hand back any data automatically,
regardless of how it is dismissed.

We can arrange that by putting all the responsibility on the presented view controller.
First, edit ViewController’s acceptData: so that it accepts the data and no more (it no
longer performs the dismissal). Second, back in SecondViewController, we will imple‐
ment both the task of dismissal and the task of handing back the data, separately. To
make the latter task automatic, SecondViewController will arrange to hear about its
own dismissal by implementing viewWillDisappear: (discussed later in this chapter),
which will then call acceptData: to ensure that the data is handed across. There is more
than one reason why viewWillDisappear: might be called; we can ensure that this really
is the moment of our own dismissal by calling isBeingDismissed. Here is what Second‐
ViewController looks like now:

protocol SecondViewControllerDelegate : class {
 func acceptData(data:AnyObject!)
}
class SecondViewController : UIViewController {
 var data : AnyObject?
 weak var delegate : SecondViewControllerDelegate?
 @IBAction func doDismiss(sender:AnyObject?) {
 self.presentingViewController!.dismissViewControllerAnimated(
 true, completion: nil)
 }
 override func viewWillDisappear(animated: Bool) {
 super.viewWillDisappear(animated)
 if self.isBeingDismissed() {
 self.delegate?.acceptData("Even more important data!")
 }
 }
}

If you’re using a storyboard, you may be able to make do without some of this
architecture, by using an unwind segue instead. I’ll discuss that later in this chapter.

290 | Chapter 6: View Controllers

Presented View Animation
When a view is presented and later when it is dismissed, a simple animation can be
performed, according to whether the animated: parameter of the corresponding meth‐
od is true. There are a few different built-in animation styles (modal transition styles)
to choose from.

Instead of choosing a simple built-in modal transition style, you can supply your
own animation, as I’ll explain later in the chapter.

Your choice of built-in animation style is not passed as a parameter when presenting or
dismissing a view controller; rather, it is attached beforehand to a view controller as its
modalTransitionStyle property. This value can be set in code or in the nib editor. Your
choices (UIModalTransitionStyle) are:
.CoverVertical (the default)

The presented view slides up from the bottom to cover the presenting view on
presentation and down to reveal the presenting view on dismissal. “Bottom” is de‐
fined differently depending on the orientation of the device and the orientations
the view controllers support.

.FlipHorizontal

The view flips on the vertical axis as if the two views were the front and back of a
piece of paper. The “vertical axis” is the device’s long axis, regardless of the app’s
orientation.

This animation style provides one of those rare occasions where the user may di‐
rectly glimpse the window behind the transitioning views. You may want to set the
window’s background color appropriately.

.CrossDissolve

The views remain stationary, and one fades into the other.

.PartialCurl

The first view curls up like a page in a notepad to expose most of the second view,
but remains covering the top-left region of the second view. Thus there must not
be any important interface in that region, as the user will not be able to see it.

If the user clicks on the curl, dismissViewControllerAnimated:completion: is
called on the original presenter. That’s convenient, but make sure it doesn’t disrupt
communication between your view controllers; this is another reason for factoring
out any final handing back of information from the presented view controller into
its viewWillDisappear:, as I did in the previous section.

Presented View Controller | 291

In iOS 8, as of this writing, after the Partial Curl animation, the curled page is not
present, but tapping where it would be dismisses the presented view controller.
That’s confusing, not to say incoherent, and is presumably a bug; this style should
be avoided until it is fixed.

Presentation Styles
By default, the presented view controller’s view occupies the entire screen, completely
replacing that of the presenting view controller. But you can choose from a few other
built-in options expressing how the presented view controller’s view should cover the
screen (modal presentation styles).

Instead of choosing a simple built-in modal presentation style, you can place the
presented view controller’s view anywhere you like, as I’ll explain later in this chap‐
ter.

To choose a presentation style, set the presented view controller’s modalPresentation-
Style property. This value can be set in code or in the nib editor. Your choices (UIModal‐
PresentationStyle) are:
.FullScreen

The default. The presenting view controller is the root view controller or a fullscreen
presented view controller, and its view — meaning the entire interface — is replaced.

.OverFullScreen

New in iOS 8. Similar to .FullScreen, but the presenting view controller’s view is
not replaced; instead, it stays where it is, possibly being visible during the transition,
and remaining visible behind the presented view controller’s view if the latter has
some transparency.

.PageSheet

Similar to .FullScreen, but in landscape orientation the presented view is nar‐
rower, with the presenting view controller’s view remaining partially visible (and
dimmed) behind it. Treated as .FullScreen on the iPhone.

.FormSheet

Similar to .PageSheet, but even smaller, allowing the user to see more of the pre‐
senting view controller’s view behind it. As the name implies, this is intended to
allow the user to fill out a form (Apple describes this as “gathering structured in‐
formation from the user”). Treated as .FullScreen on the iPhone.

292 | Chapter 6: View Controllers

In iOS 8, “on the iPhone” (with respect to the .PageSheet and .FormSheet styles)
means the iPhone except for the iPhone 6 Plus in landscape orientation, which is
treated as an iPad for this purpose. This is, in part, the significance of the fact that
the iPhone 6 Plus’s horizontal size class in landscape orientation is .Regular.

.CurrentContext

The presenting view controller can be any view controller, such as a child view
controller. The presented view controller’s view replaces the presenting view con‐
troller’s view, both of which may occupy only a portion of the screen. New in iOS
8, this works on both iPhone and iPad (previously, it was confined to iPad only).

.OverCurrentContext

New in iOS 8. Like .CurrentContext, but the presented view controller’s view cov‐
ers the presenting view controller’s view rather than replacing it (parallel to the
difference between .FullScreen and .OverFullScreen).

When the presented view controller’s modalPresentationStyle is .CurrentContext
or .OverCurrentContext, a decision has to be made by the runtime as to what view
controller should be the presenting view controller. This will determine what view will
be replaced or covered by the presented view controller’s view. The decision involves
another UIViewController property, definesPresentationContext (a Bool), and pos‐
sibly still another UIViewController property, providesPresentationContext-

TransitionStyle. Here’s how the decision operates:

1. Starting with the original presenter (the view controller to which presentView-
Controller:animated:completion: was sent), we walk up the chain of parent view
controllers, looking for one whose definesPresentationContext property is
true. If we find one, that’s the one; it will be the presentingViewController, and
its view will be replaced or covered by the presented view controller’s view.
(If we don’t find one, things work as if the presented view controller’s modal-
PresentationStyle had been .FullScreen.)

2. If, during the search just described, we find a view controller whose defines-
PresentationContext property is true, we look to see if that view controller’s
providesPresentationContextTransitionStyle property is also true. If so, that
view controller’s modalTransitionStyle is used for this transition animation, in‐
stead of using the presented view controller’s modalTransitionStyle.

To illustrate, I need a parent–child view controller arrangement to work with. This
chapter hasn’t yet discussed any parent view controllers in detail, but the simplest is
UITabBarController, which I discuss in the next section, and it’s easy to create a working
app with a UITabBarController-based interface, so that’s the example I’ll use.

Presented View Controller | 293

Start with the Tabbed Application project template. As in the previous example, I want
us to create and present the presented view controller manually, rather than letting the
storyboard do it automatically; so make a new view controller class with an accompa‐
nying .xib file, to use as a presented view controller — call it ExtraViewController. In
ExtraViewController.xib, give the view a distinctive background color, so you’ll recog‐
nize it when it appears.

In the storyboard, put a button in the First View Controller view, and connect it to an
action method in FirstViewController.swift that summons the new view controller as a
presented view controller:

@IBAction func doPresent(sender:AnyObject?) {
 let vc = ExtraViewController(nibName: "ExtraViewController", bundle: nil)
 self.presentViewController(vc, animated: true, completion: nil)
}

Run the project and tap the button. Observe that the presented view controller’s view
occupies the entire interface, covering even the tab bar; it replaces the root view, because
the presentation style is .FullScreen. The presenting view controller is the root view
controller, which is the UITabBarController.

Now change the code to look like this:

@IBAction func doPresent(sender:AnyObject?) {
 let vc = ExtraViewController(nibName: "ExtraViewController", bundle: nil)
 self.definesPresentationContext = true
 vc.modalPresentationStyle = .CurrentContext
 self.presentViewController(vc, animated: true, completion: nil)
}

Run the project and tap the button. The presented view controller’s view replaces only
the first view controller’s view; the tab bar remains, and you can switch back and forth
between the tab bar’s first and second views even while the first view remains covered
by the presented view. That’s because the presented view controller’s modal-
PresentationStyle is .CurrentContext, and definesPresentationContext is true
in FirstViewController, which is the original presenter. Thus the search for a context
stops in FirstViewController, which thus becomes the presenting view controller —
meaning that the presented view replaces FirstViewController’s view instead of the root
view.

We can also override the presented view controller’s transition animation through the
modalTransitionStyle property of the presenting view controller:

@IBAction func doPresent(sender:AnyObject?) {
 let vc = ExtraViewController(nibName: "ExtraViewController", bundle: nil)
 self.definesPresentationContext = true
 self.providesPresentationContextTransitionStyle = true
 self.modalTransitionStyle = .CoverVertical

294 | Chapter 6: View Controllers

 vc.modalPresentationStyle = .CurrentContext
 vc.modalTransitionStyle = .FlipHorizontal // this will be overridden
 self.presentViewController(vc, animated: true, completion: nil)
}

Because the presenting view controller’s providesPresentationContextTransition-
Style is true, the transition uses the .CoverVertical animation belonging to the pre‐
senting view controller, rather than the .FlipHorizontal animation of the presented
view controller.

The example just given also elicits a tab bar controller bug: if you summon the
presented view controller, switch to the Second tab, switch back to the First tab,
and dismiss the presented view controller, the First view is black. Until this is fixed,
this configuration should not be used in production code.

When a view controller is presented, if its presentation style is not .FullScreen, a ques‐
tion arises of whether its status bar methods (prefersStatusBarHidden and preferred-
StatusBarStyle) should be consulted. By default, the answer is no, because this view
controller is not the top-level view controller. To make the answer be yes, set this view
controller’s modalPresentationCapturesStatusBarAppearance to true.

Adaptive Presentation
I have said that the .PageSheet and .FormSheet presentation styles are treated as .Full-
Screen on the iPhone, but in fact you get a little more flexibility than that: you can
choose between .FullScreen and .OverFullScreen. To exercise this flexibility, you use
adaptive presentation. This means that, in adaptive situations — meaning, in this case,
that the horizontal size class is .Compact — your code is consulted in real time as to
how you want this presentation treated.

Adaptive presentation gives you even more power than that; you can elect to present a
different view controller from the one that was originally to be presented. Thus, you can
design one view controller and its view for the iPad, and a different view controller and
its view for the more limited screen space of the iPhone.

To implement adaptive presentation, iOS 8 introduces a new object, a view controller’s
presentation controller (presentationController, a UIPresentationController). Be‐
fore presenting a view controller, you set its presentation controller’s delegate
(UIAdaptivePresentationControllerDelegate). Before the presented view controller’s
view appears, the delegate is sent these messages:
adaptivePresentationStyleForPresentationController:

Asks for a presentation style. Return either .FullScreen or .OverFullScreen.
(There is also a .None option, whose significance I’ll discuss in Chapter 9.)

Presented View Controller | 295

presentationController:viewControllerForAdaptivePresentationStyle:

Called only if the previous method is implemented. Return a view controller to be
presented, substituting it for the current presented view controller.

Here’s how to present a view controller as a .PageSheet on iPad but as .OverFull-
Screen on iPhone:

class ViewController : UIViewController,
 UIAdaptivePresentationControllerDelegate {
 @IBAction func doPresent(sender:AnyObject?) {
 let svc = SecondViewController(
 nibName: "SecondViewController", bundle: nil)
 svc.modalPresentationStyle = .FormSheet
 svc.presentationController!.delegate = self // *
 self.presentViewController(svc, animated:true, completion:nil)
 }
 func adaptivePresentationStyleForPresentationController(
 controller: UIPresentationController)
 -> UIModalPresentationStyle {
 return .OverFullScreen // *
 }
}

And here’s an example of replacing the view controller presented on iPad with a different
view controller to be presented on iPhone:

class ViewController : UIViewController,
 UIAdaptivePresentationControllerDelegate {
 @IBAction func doPresent(sender:AnyObject?) {
 let svc = SecondViewController(
 nibName: "SecondViewController", bundle: nil)
 svc.modalPresentationStyle = .FormSheet
 svc.presentationController!.delegate = self
 self.presentViewController(svc, animated:true, completion:nil)
 }
 func adaptivePresentationStyleForPresentationController(
 controller: UIPresentationController)
 -> UIModalPresentationStyle {
 return .OverFullScreen
 }
 func presentationController(controller: UIPresentationController,
 viewControllerForAdaptivePresentationStyle
 style: UIModalPresentationStyle) -> UIViewController? {
 let newvc = ThirdViewController(
 nibName: "ThirdViewController", bundle: nil)
 return newvc
 }
}

In real life, of course, if you were really going to substitute a completely different view
controller, you’d probably need to prepare it before returning it (for example, giving it
data and setting its delegate). A more probable scenario is that you’d return a view

296 | Chapter 6: View Controllers

controller which is actually the same view controller, but wrapped in a navigation con‐
troller; I’ll illustrate in Chapter 9.

You might object that all of this could equally well be done with if-statements and run‐
time examination of the environment: if we’re on an iPad, use .FormSheet and Second‐
ViewController; otherwise, use .OverFullScreen and ThirdViewController. The pur‐
pose of this mechanism, though, is partly so that you don’t have to use if-statements;
the presentation is itself adaptive, and adapts when that’s appropriate. Besides, there’s
much more to the full power and purpose of the presentation controller, as I’ll explain
later in this chapter and in Chapter 9.

Rotation of a Presented View
When the presenting view controller is the top-level view controller — the root view
controller, or a fullscreen presented view controller — the presented view controller
becomes the new top-level view controller. This means that its supportedInterface-
Orientations is consulted and honored. If these supportedInterfaceOrientations
do not intersect with the app’s current orientation, the app’s orientation will rotate, as
the presented view appears, to an orientation that the presented view controller supports
— and the same thing will be true in reverse when the presented view controller is
dismissed.

Thus, a presented view controller allows you to force the interface to rotate. In fact, a
presented view controller is the only officially sanctioned way to force the interface to
rotate.

In iOS 5 and before, the interface could be forced to rotate by other kinds of view
controller transition, such as pushing a view controller onto a navigation controller’s
stack, but this is no longer the case; attempts to circumvent this change and emulate
the historic iOS 5 behavior are generally futile (and unnecessary).

Forced rotation is a perfectly reasonable thing to do, especially on the iPhone, where
the user can easily rotate the device to compensate for the new orientation of the inter‐
face. Some views work better in portrait than landscape; some views work better in
landscape than portrait (especially on the small screen). Forced rotation lets you ensure
that each view appears only in the orientation in which it works best.

The presented view controller’s supportedInterfaceOrientations may be a mask
permitting multiple possible orientations. Such a view controller may wish to specify
which of those orientations it would like to appear in initially when it is presented. To
do so, override preferredInterfaceOrientationForPresentation; this method is
called before supportedInterfaceOrientations, and should return a single
UIInterfaceOrientation (not a mask). For example:

Presented View Controller | 297

override func preferredInterfaceOrientationForPresentation()
 -> UIInterfaceOrientation {
 return .LandscapeLeft
}

Tab Bar Controller
A tab bar (UITabBar, see also Chapter 12) is a horizontal bar containing items. Each
item is a UITabBarItem; it displays, by default, an image and a title. At all times, exactly
one of these items is selected (highlighted); when the user taps an item, it becomes the
selected item.

If there are too many items to fit on a tab bar, the excess items are automatically sub‐
sumed into a final More item. When the user taps the More item, a list of the excess
items appears, and the user can select one; the user can also be permitted to edit the tab
bar, determining which items appear in the tab bar itself and which ones spill over into
the More list.

A tab bar is an independent interface object, but it is most commonly used in conjunc‐
tion with a tab bar controller (UITabBarController, a subclass of UIViewController) to
form a tab bar interface. The tab bar controller displays the tab bar at the bottom of its
own view. From the user’s standpoint, the tab bar items correspond to views; when the
user selects a tab bar item, the corresponding view appears. The user is thus employing
the tab bar to choose an entire area of your app’s functionality. In reality, the UITab‐
BarController is a parent view controller; you give it child view controllers, which the
tab bar controller then contains, and the views summoned by tapping the tab bar items
are the views of those child view controllers.

Familiar examples of a tab bar interface on the iPhone are Apple’s Clock app, which has
four tab bar items, and Apple’s Music app, which has four tab bar items plus a More
item that reveals a list of five more.

You can get a reference to the tab bar controller’s tab bar through its tabBar property.
In general, you won’t need this. When using a tab bar interface by way of a UITabBar‐
Controller, you do not interact (as a programmer) with the tab bar itself; you don’t create
it or set its delegate. You provide the UITabBarController with children, and it does the
rest; when the UITabBarController’s view is displayed, there’s the tab bar along with the
view of the selected item. You can, however, customize the look of the tab bar (see
Chapter 12 for details).

If a tab bar controller is the top-level view controller, it determines your app’s compen‐
satory rotation behavior. To take a hand in that determination without having to subclass
UITabBarController, make one of your objects the tab bar controller’s delegate (UITab‐
BarControllerDelegate) and implement these methods, as needed:

298 | Chapter 6: View Controllers

• tabBarControllerSupportedInterfaceOrientations:

• tabBarControllerPreferredInterfaceOrientationForPresentation:

A top-level tab bar controller also determines your app’s status bar appearance. However,
a tab bar controller implements childViewControllerForStatusBarStyle and child-
ViewControllerForStatusBarHidden so that the actual decision is relegated to the child
view controller whose view is currently being displayed. Thus, your preferredStatus-
BarStyle and prefersStatusBarHidden are consulted and obeyed.

Tab Bar Items
For each view controller you assign as a tab bar controller’s child, you’re going to need
a tab bar item, which will appear as its representative in the tab bar. This tab bar item
will be your child view controller’s tabBarItem. A tab bar item is a UITabBarItem; this
is a subclass of UIBarItem, an abstract class that provides some of its most important
properties, such as title, image, and enabled.

There are two ways to make a tab bar item:
By borrowing it from the system

Instantiate UITabBarItem using init(tabBarSystemItem:tag:), and assign the
instance to your child view controller’s tabBarItem. Consult the documentation
for the list of available system items. Unfortunately, you can’t customize a system
tab bar item’s title; you must accept the title the system hands you. (You can’t work
around this restriction by somehow copying a system tab bar item’s image.)

By making your own
Instantiate UITabBarItem using init(title:image:tag:) and assign the instance
to your child view controller’s tabBarItem. Alternatively, use the view controller’s
existing tabBarItem and set its image and title. Instead of setting the title of the
tabBarItem, you can set the title property of the view controller itself; doing this
automatically sets the title of its current tabBarItem (unless the tab bar item is a
system tab bar item), though the converse is not true.

You can add a separate selectedImage (possibly by initializing with
init(title:image:selectedImage:)). The selectedImage will be displayed in
place of the normal image when this tab bar item is selected in the tab bar.

The image (and selectedImage) for a tab bar item should be a 30×30 PNG; if it is larger,
it will be scaled down as needed. By default, it will be treated as a transparency mask (a
template): the hue of its pixels will be ignored, and the transparency of its pixels will be
combined with the tab bar’s tintColor, which may be inherited from higher up the
view hierarchy. However, you can instead display the image as is, and not as a trans‐

Tab Bar Controller | 299

parency mask, by deriving and using an image whose rendering mode is .Always-
Original (see Chapter 2 and the discussion of imageWithRenderingMode:).

You can also give a tab bar item a badge (see the documentation on the badgeValue
property). Other ways in which you can customize the look of a tab bar item are dis‐
cussed in Chapter 12. For example, you can control the font and style of the title, or you
can give it an empty title and offset the image.

Configuring a Tab Bar Controller
Basic configuration of a tab bar controller is very simple: just hand it the view controllers
that will be its children. To do so, collect those view controllers into an array and set the
UITabBarController’s viewControllers property to that array. The view controllers in
the array are now the tab bar controller’s child view controllers; the tab bar controller
is the parentViewController of the view controllers in the array. The tab bar controller
is also the tabBarController of the view controllers in the array and of all their children;
thus a child view controller at any depth can learn that it is contained by a tab bar
controller and can get a reference to that tab bar controller. The tab bar controller retains
the array, and the array retains the child view controllers.

Here’s a simple example from one of my apps, in which I construct and display a tab bar
interface in code (in the app delegate’s application:didFinishLaunchingWith-
Options:):

let viewController1 = GameBoardController()
let viewController2 = UINavigationController(
 rootViewController:SettingsController())
self.tabBarController.viewControllers = [viewController1, viewController2]
self.tabBarController.selectedIndex = 0
self.tabBarController.delegate = self
self.window!.rootViewController = self.tabBarController

The tab bar controller’s tab bar will automatically display the tabBarItem of each child
view controller. The order of the tab bar items is the order of the view controllers in the
tab bar controller’s viewControllers array. Thus, a child view controller will probably
want to configure its tabBarItem property early in its lifetime, so that the tabBarItem
is ready by the time the view controller is handed as a child to the tab bar controller.
Observe that viewDidLoad is not early enough! That’s because the view controllers (other
than the initially selected view controller) have no view when the tab bar controller
initially appears. Thus it is common to override init(nibName:bundle:) — or
init(coder:) or awakeFromNib, if appropriate — for this purpose.

Here’s an example from the same app as the previous code (in the GameBoardController
class):

300 | Chapter 6: View Controllers

override init() {
 super.init(nibName:nil, bundle:nil)
 // tab bar configuration
 self.tabBarItem.image = UIImage(named: "game.png")
 self.title = "Game"
}

In the tab bar, the image "game.png" is displayed as is, not as a template. I don’t have to
call imageWithRenderingMode: because the rendering mode is set directly in the asset
catalog that holds the image.

If you change the tab bar controller’s view controllers array later in its lifetime and you
want the corresponding change in the tab bar’s display of its items to be animated, call
setViewControllers:animated:.

Initially, by default, the first child view controller’s tab bar item is selected and its view
is displayed. To tell the tab bar controller which tab bar item should be selected, you can
couch your choice in terms of the contained view controller (selectedView-
Controller) or by index number in the array (selectedIndex). The same properties
also tell you what view controller’s view the user has displayed by tapping in the tab bar.

You can supply an animation when a tab bar controller’s selected tab item changes
and one child view controller’s view is replaced by another. I’ll discuss this topic
later in the chapter.

You can also set the UITabBarController’s delegate (adopting UITabBarController‐
Delegate). The delegate gets messages allowing it to prevent a given tab bar item from
being selected, and notifying it when a tab bar item is selected and when the user is
customizing the tab bar from the More item.

If the tab bar contains few enough items that it doesn’t need a More item, there won’t
be one, and the tab bar won’t be user-customizable. If there is a More item, you can
exclude some tab bar items from being customizable by setting the customizableView-
Controllers property to an array that lacks them; setting this property to nil means
that the user can see the More list but can’t rearrange the items. Setting the view-
Controllers property sets the customizableViewControllers property to the same
value, so if you’re going to set the customizableViewControllers property, do it after
setting the viewControllers property. The moreNavigationController property can
be compared with the selectedViewController property to learn whether the user is
currently viewing the More list; apart from this, the More interface is mostly out of your
control, but I’ll discuss some sneaky ways of customizing it in Chapter 12.

(If you allow the user to rearrange items, you would presumably want to save the new
arrangement and restore it the next time the app runs. You might use NSUserDefaults

Tab Bar Controller | 301

for this; you could also take advantage of the built-in automatic state saving and resto‐
ration facilities, discussed later in this chapter.)

You can also configure a UITabBarController in a .storyboard or .xib file. The UITab‐
BarController’s contained view controllers can be set directly — in a storyboard, there
will be a “view controllers” relationship between the tab bar controller and each of its
children — and the contained view controllers will be instantiated together with the tab
bar controller. Moreover, each contained view controller has a Tab Bar Item; you can
select this and set many aspects of the tabBarItem, such as its system item or its title,
image, selected image, and tag, directly in the nib. (If a view controller in a nib doesn’t
have a Tab Bar Item and you want to configure this view controller for use in a tab bar
interface, drag a Tab Bar Item from the Object library onto the view controller.)

To start a project with a main storyboard that has a UITabBarController as its root view
controller, begin with the Tabbed Application template.

Navigation Controller
A navigation bar (UINavigationBar, see also Chapter 12) is a horizontal bar displaying
a center title and a right button. When the user taps the right button, the navigation bar
animates, sliding its interface out to the left and replacing it with a new interface that
enters from the right. The new interface displays a back button at the left side, and a
new center title — and possibly a new right button. The user can tap the back button to
go back to the first interface, which slides in from the left; or, if there’s a right button in
the second interface, the user can tap it to go further forward to a third interface, which
slides in from the right.

The successive interfaces of a navigation bar thus behave like a stack. In fact, a navigation
bar does represent an actual stack — an internal stack of navigation items
(UINavigationItem). It starts out with one navigation item: the root or bottom item of
the stack. Since there is just one navigation item, this is also the top item of the stack
(the navigation bar’s topItem). It is the top item whose interface is always reflected in
the navigation bar. When the user taps a right button, a new navigation item is pushed
onto the stack; it becomes the top item, and its interface is seen. When the user taps a
back button, the top item is popped off the stack, and what was previously the next item
beneath it in the stack — the back item (the navigation bar’s backItem) — becomes the
top item, and its interface is seen.

The state of the stack is thus reflected in the navigation bar’s interface. The navigation
bar’s center title comes automatically from the top item, and its back button comes from
the back item. (See Chapter 12 for a complete description.) Thus, the title tells the user
what item is current, and the left side is a button telling the user what item we would
return to if the user were to tap that button. The animations reinforce this notion of
directionality, giving the user a sense of position within a chain of items.

302 | Chapter 6: View Controllers

A navigation bar is an independent interface object, but it is most commonly used in
conjunction with a navigation controller (UINavigationController, a subclass of
UIViewController) to form a navigation interface. Just as there is a stack of navigation
items in the navigation bar, there is a stack of view controllers in the navigation con‐
troller. These view controllers are the navigation controller’s children, and each navi‐
gation item belongs to a view controller — it is a view controller’s navigationItem.

The navigation controller performs automatic coordination of the navigation bar and
the overall interface. Whenever a view controller comes to the top of the navigation
controller’s stack, its view is displayed in the interface. At the same time, its navigation-
Item is automatically pushed onto the top of the navigation bar’s stack — and thus is
automatically displayed in the navigation bar. Moreover, the animation in the navigation
bar is reinforced by animation of the interface as a whole: by default, a view controller’s
view slides into the main interface from the left or right just as its navigation item slides
into the navigation bar from the left or right.

You can supply a different animation when a view controller is pushed onto or
popped off of a navigation controller’s stack. I’ll discuss this topic later in the chapter.

Your code can control the overall navigation, so in real life, the user may well navigate
to the right, not by tapping the right button in the navigation bar, but by tapping some‐
thing inside the main interface, such as a listing in a table view. (Figure 6-1 is a navigation
interface that works this way.) In this situation, your code is deciding in real time what
the next view should be; typically, you won’t even create the next view controller until
the user asks to navigate to it. The navigation interface thus becomes a master–detail
interface.

Conversely, you might put a view controller inside a navigation controller just to get the
convenience of the navigation bar, with its title and buttons, even when no actual push-
and-pop navigation is going to take place.

You can get a reference to the navigation controller’s navigation bar through its
navigationBar property. In general, you won’t need this. When using a navigation
interface by way of a UINavigationController, you do not interact (as a programmer)
with the navigation bar itself; you don’t create it or set its delegate. You provide the
UINavigationController with children, and it does the rest, handing each child view
controller’s navigationItem to the navigation bar for display and showing the child
view controller’s view each time navigation occurs. You can, however, customize the
look of the navigation bar (see Chapter 12 for details).

A navigation interface may also optionally display a toolbar at the bottom. A toolbar
(UIToolbar) is a horizontal view displaying a row of items, any of which the user can

Navigation Controller | 303

tap. Typically, the tapped item may highlight momentarily, but it is not selected; it rep‐
resents the initiation of an action, like a button. You can get a reference to a
UINavigationController’s toolbar through its toolbar property. The look of the toolbar
can be customized (Chapter 12). In a navigation interface, however, the contents of the
toolbar are determined automatically by the view controller that is currently the top
item in the stack: they are its toolbarItems.

A UIToolbar can also be used independently, and often is. It then typically appears
at the bottom on an iPhone — Figure 6-3 has a toolbar at the bottom — but often
appears at the top on an iPad, where it plays something of the role that the menu
bar plays on the desktop. When a toolbar is displayed by a navigation controller,
though, it always appears at the bottom.

A familiar example of a navigation interface is Apple’s Settings app on the iPhone. The
Mail app on the iPhone is a navigation interface that includes a toolbar.

If a navigation controller is the top-level view controller, it determines your app’s com‐
pensatory rotation behavior. To take a hand in that determination without having to
subclass UINavigationController, make one of your objects the navigation controller’s
delegate (UINavigationControllerDelegate) and implement these methods, as needed:

• navigationControllerSupportedInterfaceOrientations:

• navigationControllerPreferredInterfaceOrientationForPresentation:

A top-level navigation controller also determines your app’s status bar appearance.
However, a navigation controller implements childViewControllerForStatusBar-
Style and childViewControllerForStatusBarHidden so that the actual decision is
relegated to the child view controller whose view is currently being displayed — with
the following caveats:

• Your child view controllers can implement prefersStatusBarHidden, but showing
and hiding the status bar during navigation causes the navigation bar to stop work‐
ing in iOS 8 and should be avoided. (This is presumably a bug.)

• Your child view controllers can implement preferredStatusBarStyle, but the
navigation controller respects this only if the navigation bar is hidden. If the navi‐
gation bar is showing, the navigation controller sets the status bar style based on
the navigation bar’s barStyle — to .Default if the bar style is .Default, and
to .LightContent if the bar style is .Black. So, if the navigation bar is showing, the
way to change the status bar style is to change the navigation bar style.

304 | Chapter 6: View Controllers

Bar Button Items
The buttons in a UIToolbar or a UINavigationBar are bar button items — UIBar‐
ButtonItem, a subclass of UIBarItem. A bar button item comes in one of two broadly
different flavors:
Basic bar button item

The bar button item behaves like a simple button.

Custom view
The bar button item has no inherent behavior, but has (and displays) a customView.

UIBarItem is not a UIView subclass. A basic bar button item is button-like, but it has
no frame, no UIView touch handling, and so forth. A UIBarButtonItem’s customView,
however, is a UIView — indeed, it can be any kind of UIView. Thus, a bar button item
with a customView can display any sort of view in a toolbar or navigation bar, and that
view can implement touch handling however it likes.

Let’s start with the basic bar button item (no custom view). A bar button item, like a tab
bar item, inherits from UIBarItem the title, image, and enabled properties. The title
text color, by default, comes from the bar button item’s tintColor, which may be in‐
herited from the bar itself or from higher up the view hierarchy. Assigning an image
removes the title. The image should usually be quite small; Apple recommends 22×22.
By default, it will be treated as a transparency mask (a template): the hue of its pixels
will be ignored, and the transparency of its pixels will be combined with the bar button
item’s tintColor. However, you can instead display the image as is, and not as a trans‐
parency mask, by deriving and using an image whose rendering mode is .Always-
Original (see Chapter 2 and the discussion of imageWithRenderingMode:).

A basic bar button item has a style property (UIBarButtonItemStyle); this will usually
be .Plain. The alternative, .Done, causes the title to be bold. You can further refine the
title font and style. In addition, a bar button item can have a background image; this
will typically be a small, resizable image, and can be used to provide a border. Full details
appear in Chapter 12.

A bar button item also has target and action properties. These contribute to its button-
like behavior: tapping a bar button item can trigger an action method elsewhere.

There are three ways to make a bar button item:
By borrowing it from the system

Make a UIBarButtonItem with init(barButtonSystemItem:target: action:).
Consult the documentation for the list of available system items; they are not the
same as for a tab bar item. You can’t assign a title or change the image. (But you can
change the tint color or assign a background image.)

Navigation Controller | 305

By making your own basic bar button item
Make a UIBarButtonItem with init(title:style:target:action:) or with
init(image:style:target:action:).

An additional initializer, init(image:landscapeImagePhone:style:target:

action:), lets you supply two images, one for portrait orientation, the other for
landscape orientation; this is because by default, the bar’s height might change when
the interface is rotated. In iOS 8, you are more likely to use size class–aware images
to handle this situation (see Chapter 2).

By making a custom view bar button item
Make a UIBarButtonItem with init(customView:), supplying a UIView that the
bar button item is to display. The bar button item has no action and target; the
UIView itself must somehow implement button behavior if that’s what you want.
For example, the customView might be a UISegmentedButton, but then it is the
UISegmentedButton’s target and action that give it button behavior.

Bar button items in a toolbar are horizontally positioned automatically by the system.
You can provide hints to help with this positioning. If you know that you’ll be changing
an item’s title dynamically, you’ll probably want its width to accommodate the longest
possible title right from the start; to arrange that, set the possibleTitles property to
an NSSet of strings that includes the longest title. Alternatively, you can supply an ab‐
solute width. Also, you can incorporate spacers into the toolbar; these are created with
init(barButtonSystemItem:target:action:), but they have no visible appearance,
and cannot be tapped. Place .FlexibleSpace system items between the visible items to
distribute the visible items equally across the width of the toolbar. There is also a .Fixed-
Space system item whose width lets you insert a space of defined size.

Navigation Items and Toolbar Items
What appears in a navigation bar (UINavigationBar) depends upon the navigation items
(UINavigationItem) in its stack. In a navigation interface, the navigation controller will
manage the navigation bar’s stack for you, but you must still configure each navigation
item by setting properties of the navigationItem of each child view controller. The
UINavigationItem properties are as follows (see also Chapter 12):
title or titleView

Determines what is to appear in the center of the navigation bar when this naviga‐
tion item is at the top of the stack.

The title is a string. Setting the view controller’s title property sets the title of
the navigationItem automatically, and is usually the best approach.

The titleView can be any kind of UIView; if set, it will be displayed instead of the
title. The titleView can implement further UIView functionality; for example,

306 | Chapter 6: View Controllers

Figure 6-8. A segmented control in the center of a navigation bar

it can be tappable. Even if you are using a titleView, you should still give your view
controller a title, as it will be needed for the back button when a view controller
is pushed onto the stack on top of this one.

Figure 6-1 shows the TidBITS News master view, with the navigation bar displaying
a titleView which is a (tappable) image view; the master view controller’s title,
which is "TidBITS", is therefore not displayed. In the TidBITS News detail view
controller’s navigation item, the titleView is a segmented control providing a Pre‐
vious and Next button; when it is pushed onto the stack, the back button displays
the master view controller’s title (Figure 6-8).

prompt

An optional string to appear centered above everything else in the navigation bar.
The navigation bar’s height will be increased to accommodate it.

rightBarButtonItem or rightBarButtonItems
A bar button item or, respectively, an array of bar button items to appear at the right
side of the navigation bar; the first item in the array will be rightmost.

In Figure 6-8, the text size button is a right bar button item; it has nothing to do
with navigation, but is placed here merely because space is at a premium on the
small iPhone screen.

backBarButtonItem

When a view controller is pushed on top of this view controller, the navigation bar
will display at its left a button pointing to the left, whose title is this view controller’s
title. That button is this view controller’s navigation item’s backBarButtonItem.
That’s right: the back button displayed in the navigation bar belongs, not to the top
item (the navigationItem of the current view controller), but to the back item (the
navigationItem of the view controller that is one level down in the stack). In
Figure 6-8, the back button in the detail view is the master view controller’s default
back button, displaying its title.

The vast majority of the time, the default behavior is the behavior you’ll want, and
you’ll leave the back button alone. If you wish, though, you can customize the back
button by setting a view controller’s navigationItem.backBarButtonItem so that
it contains an image, or a title differing from the view controller’s title. The best
technique is to provide a new UIBarButtonItem whose target and action are nil; the

Navigation Controller | 307

runtime will add a correct target and action, so as to create a working back button.
Here’s how to create a back button with a custom image instead of a title:

let b = UIBarButtonItem(
 image:UIImage(named:"files.png"), style:.Plain, target:nil, action:nil)
self.navigationItem.backBarButtonItem = b

A Bool property, hidesBackButton, allows the top navigation item to suppress dis‐
play of the back item’s back bar button item. If you set this to true, you’ll probably
want to provide some other means of letting the user navigate back.

The visible indication that the back button is a back button is a left-pointing chevron
(the back indicator) that’s separate from the button itself. This chevron can also be
customized, but it’s a feature of the navigation bar, not the bar button item: set the
navigation bar’s backIndicatorImage and backIndicatorTransitionMask. (I’ll
give an example in Chapter 12.) Alternatively, if the back button is assigned a back‐
ground image, the back indicator is removed; it is up to the background image to
point left, if desired.

leftBarButtonItem or leftBarButtonItems
A bar button item or, respectively, an array of bar button items to appear at the left
side of the navigation bar; the first item in the array will be leftmost. The leftItems-
SupplementBackButton property, if set to true, allows both the back button and
one or more left bar button items to appear.

A view controller’s navigation item can have its properties set at any time while being
displayed in the navigation bar. This (and not direct manipulation of the navigation bar)
is the way to change the navigation bar’s contents dynamically. For example, in one of
my apps, the titleView is a progress view (UIProgressView, Chapter 12) that needs
updating every second, and the right bar button should be either the system Play button
or the system Pause button, depending on whether music from the library is playing,
paused, or stopped. So I have a timer that periodically checks the state of the music
player:

// change the progress bar
if let item = self.nowPlayingItem {
 let current = self.mp.currentPlaybackTime
 let total = item.valueForProperty(
 MPMediaItemPropertyPlaybackDuration).doubleValue
 self.prog.progress = CFloat(current) / CFloat(total)
} else {
 self.prog.progress = 0
}
// change the bar button
var whichButton : UIBarButtonSystemItem = .Cancel // placeholder
if self.mp.currentPlaybackRate > 0.1 {
 whichButton = .Pause
} else if self.mp.currentPlaybackRate <= 0.1 {
 whichButton = .Play

308 | Chapter 6: View Controllers

}
self.previousButton = whichButton
if whichButton == .Cancel {
 self.navigationItem.rightBarButtonItem = nil
} else {
 let bb = UIBarButtonItem(barButtonSystemItem: whichButton,
 target: self, action: "doPlayPause:")
 self.navigationItem.rightBarButtonItem = bb
}

Each view controller to be pushed onto the navigation controller’s stack is responsible
for supplying the items to appear in the navigation interface’s toolbar, if there is one. To
configure this, set the view controller’s toolbarItems property to an array of UIBar‐
ButtonItem instances. You can change the toolbar items even while the view controller’s
view and current toolbarItems are showing, optionally with animation, by sending
setToolbarItems:animated: to the view controller.

A view controller has the power to specify that its ancestor’s bottom bar (a navigation
controller’s toolbar, or a tab bar controller’s tab bar) should be hidden as this view
controller is pushed onto a navigation controller’s stack. To do so, set the view controller’s
hidesBottomBarWhenPushed property to true. The trick is that you must do this very
early, before the view loads; the view controller’s initializer is a good place. The bottom
bar remains hidden from the time this view controller is pushed to the time it is popped,
even if other view controllers are pushed and popped on top of it in the meantime. You
can also send setToolbarHidden:animated: to a UINavigationController at any time.

Configuring a Navigation Controller
You configure a navigation controller by manipulating its stack of view controllers. This
stack is the navigation controller’s viewControllers array property, though you will
rarely need to manipulate that property directly.

The view controllers in a navigation controller’s viewControllers array are the navi‐
gation controller’s child view controllers; the navigation controller is the parentView-
Controller of the view controllers in the array. The navigation controller is also the
navigationController of the view controllers in the array and of all their children;
thus a child view controller at any depth can learn that it is contained by a navigation
controller and can get a reference to that navigation controller. The navigation controller
retains the array, and the array retains the child view controllers.

The normal way to manipulate a navigation controller’s stack is by pushing or popping
one view controller at a time. When the navigation controller is instantiated, it is usually
initialized with init(rootViewController:); this is a convenience method that assigns
the navigation controller a single initial child view controller, the root view controller
that goes at the bottom of the stack:

Navigation Controller | 309

let fvc = FirstViewController()
let nav = UINavigationController(rootViewController:fvc)
self.window!.rootViewController = nav

Instead of init(rootViewController:), you might choose to create the navigation
controller with init(navigationBarClass:toolbarClass:), in order to set a custom
subclass of UINavigationBar or UIToolbar. Typically, this will be in order to customize
the appearance of the navigation bar and toolbar; sometimes you’ll create, say, a UI‐
Toolbar subclass for no other reason than to mark this kind of toolbar as needing a
certain appearance. I’ll explain about that in Chapter 12. If you use this initializer, you’ll
have to set the navigation controller’s root view controller separately.

You can also set the UINavigationController’s delegate (adopting UINavigation‐
ControllerDelegate). The delegate receives messages before and after a child view con‐
troller’s view is shown.

A navigation controller will typically appear on the screen initially containing just its
root view controller, and displaying its root view controller’s view. There will be no back
button, because there is no back item; there is nowhere to go back to. Subsequently,
when the user asks to navigate to a new view, you (typically meaning code in the current
view controller) obtain the next view controller (typically by creating it) and push it
onto the stack by calling pushViewController:animated: on the navigation controller.
The navigation controller performs the animation, and displays the new view control‐
ler’s view:

let svc = SecondViewController()
self.navigationController!.pushViewController(svc, animated: true)

There is usually no need to worry about going back; when the user taps the back button
to navigate back, the runtime will call popViewControllerAnimated: for you. When a
view controller is popped from the stack, the viewControllers array removes and re‐
leases the view controller, which is usually permitted to go out of existence at that point.

New in iOS 8, there’s a second way to push a view controller onto the navigation
controller’s stack, without referring to the navigation controller: showView-

Controller:sender:. This method lets the caller be agnostic about the current interface
situation; for example, it pushes onto a navigation controller if the view controller to
which it is sent is in a navigation interface, but generates a presented view controller if
not. I’ll talk more about this method in Chapter 9; meanwhile, I’ll continue using push-
ViewController:animated: in my examples.

Instead of tapping the back button, the user can go back by dragging a pushed view
controller’s view from the left edge of the screen. This is actually a way of calling pop-
ViewControllerAnimated:, with the difference that the animation is interactive. (In‐
teractive view controller transition animation is the subject of the next section.) The
UINavigationController uses a UIScreenEdgePanGestureRecognizer to detect and

310 | Chapter 6: View Controllers

track the user’s gesture. You can obtain a reference to this gesture recognizer as the
navigation controller’s interactivePopGestureRecognizer; thus you can disable the
gesture recognizer and prevent this way of going back, or you can mediate between your
own gesture recognizers and this one (see Chapter 5).

You can manipulate the stack more directly if you wish. You can call popViewController-
Animated: explicitly; to pop multiple items so as to leave a particular view controller at
the top of the stack, call popToViewController:animated:, or to pop all the items down
to the root view controller, call popToRootViewControllerAnimated:. All of these
methods return the popped view controller (or view controllers, as an array), in case
you want to do something with them.

To set the entire stack at once, call setViewControllers:animated:. You can access the
stack through the viewControllers property. Manipulating the stack directly is the only
way, for instance, to delete or insert a view controller in the middle of the stack.

The view controller at the top of the stack is the topViewController; the view controller
whose view is displayed is the visibleViewController. Those will normally be the
same, but they needn’t be, as the topViewController might present a view controller,
in which case the presented view controller will be the visibleViewController. Other
view controllers can be accessed through the viewControllers array by index number.
The root view controller is at index 0; if the array’s count is c, the back view controller
(the one whose navigationItem.backBarButtonItem is currently displayed in the nav‐
igation bar) is at index c-2.

The topViewController may need to communicate with the next view controller as the
latter is pushed onto the stack, or with the back view controller as it itself is popped off
the stack. The problem is parallel to that of communication between an original pre‐
senter and a presented view controller, which I discussed earlier in this chapter, so I
won’t say more about it here.

A child view controller will probably want to configure its navigationItem early in its
lifetime, so as to be ready for display in the navigation bar by the time the view controller
is handed as a child to the navigation controller. Apple warns (in the UIViewController
class reference, under navigationItem) that loadView and viewDidLoad are not ap‐
propriate places to do this, because the circumstances under which the view is needed
are not related to the circumstances under which the navigation item is needed. Apple’s
own code examples routinely violate this warning, but it is probably best to override
init(nibName:bundle:) — or init(coder:) or awakeFromNib, if appropriate — for
this purpose.

A navigation controller’s navigation bar is accessible as its navigationBar, and can be
hidden and shown with setNavigationBarHidden:animated:. (It is possible, though
not common, to maintain and manipulate a navigation stack through a navigation con‐

Navigation Controller | 311

troller whose navigation bar never appears.) Its toolbar is accessible as its toolbar, and
can be hidden and shown with setToolbarHidden:animated:.

New in iOS 8, a navigation controller can perform automatic hiding and showing of its
navigation bar (and, if normally shown, its toolbar) in response to various situations,
as configured by properties:
When tapped

If the navigation controller’s hidesBarsOnTap is true, a tap that falls through the
top view controller’s view is taken as a signal to toggle bar visibility.

When swiped
If the navigation controller’s hidesBarsOnSwipe is true, an upward or downward
swipe respectively hides or shows the bars.

In landscape
If the navigation controller’s hidesBarsWhenVerticallyCompact is true, bars are
automatically hidden when the app rotates to landscape on the iPhone (and hides-
BarsOnTap is treated as true, so the bars can be shown again by tapping).

When the user is typing
If the navigation controller’s hidesBarsWhenKeyboardAppears is true, bars are au‐
tomatically hidden when the onscreen keyboard appears (see Chapter 10).

You can also configure a UINavigationController or any view controller that is to serve
in a navigation interface in a .storyboard or .xib file. In the Attributes inspector, use a
navigation controller’s Bar Visibility and Hide Bars checkboxes to determine the pres‐
ence of the navigation bar and toolbar. The navigation bar and toolbar are themselves
subviews of the navigation controller, and you can configure them with the Attributes
inspector as well. A navigation controller’s root view controller can be specified; in a
storyboard, there will be a “root view controller” relationship between the navigation
controller and its root view controller.

A view controller in a .storyboard or .xib file has a Navigation Item where you can specify
its title, its prompt, and the text of its back button. (If a view controller in a nib doesn’t
have a Navigation Item and you want to configure this view controller for use in a
navigation interface, drag a Navigation Item from the Object library onto the view con‐
troller.) You can drag Bar Button Items into a view controller’s navigation bar in the
canvas to set the left button and right button of its navigationItem. Moreover, the
Navigation Item has outlets, one of which permits you to set its titleView. (However,
you can’t assign a navigation item multiple rightBarButtonItems or leftBarButton-
Items in the nib editor.) Similarly, you can give a view controller Bar Button Items that
will appear in the toolbar.

To start an iPhone project with a main storyboard that has a UINavigationController
as its root view controller, begin with the Master–Detail Application template. Alter‐

312 | Chapter 6: View Controllers

natively, start with the Single View Application template, remove the existing view con‐
troller from the storyboard, and add a Navigation Controller in its place. Unfortunately,
the nib editor assumes that the navigation controller’s root view controller should be a
UITableViewController. If that’s not the case, here’s a better way: start with the Single
View Application template, select the existing view controller, and choose Editor →
Embed In → Navigation Controller. A view controller to be subsequently pushed onto
the navigation stack can be configured in the storyboard as the destination of a push
segue; I’ll talk more about that later in the chapter.

Custom Transition
You can customize the transition that occurs between view controller views, as follows:

• When a tab bar controller changes which of its child view controllers is selected,
you can animate the change of views.

• When a navigation controller pushes or pops a child view controller, you can cus‐
tomize the animation of views.

• When a view controller is presented or dismissed, you can customize the animation
of views and the placement of the presented view.

Given the extensive animation resources of iOS 8 (see Chapter 4), this is an excellent
chance for you to provide your app with variety, interest, and distinctiveness. The view
of a child view controller pushed onto a navigation controller’s stack, for example,
needn’t arrive sliding from the right; it can expand by zooming from the middle of the
screen, drop from above and fall into place with a bounce, snap into place like a spring,
or whatever else you can dream up. A familiar example is Apple’s Calendar app, which
transitions from a year to a month, in a navigation controller, by zooming in.

A custom transition animation can optionally be interactive — meaning that it is driven
in real time by the user’s gesture. The user does not merely tap and cause an animation
to take place; the user performs an extended gesture and gradually summons the new
view to supersede the old one. The user can thus participate in the progress of the
transition. An example is the way a navigation controller’s view can be popped by drag‐
ging from the left edge of the screen. Another example is the iOS 8 Photos app, which
lets the user pinch a photo, in a navigation controller, to pop to the album containing
it.

In the case of a presented view controller, you also get to dictate the ultimate size and
position of the presented view, and how the presenting view is seen behind it; you can
also provide intermediate views that remain during the presentation. New in iOS 8, the
presentation controller (introduced earlier in this chapter) participates in, and is crucial
to, the transition.

Custom Transition | 313

I’ll start by talking about how to add a custom animation to a tab bar controller tran‐
sition, and work up to the more involved business of customizing a view controller
presentation.

Noninteractive Custom Transition Animation
Let’s start with the base case, where the custom animation is not interactive. Configuring
your custom animation requires three steps:

1. The view controller in charge of the transition must have a delegate.
2. As the transition begins, the delegate will be asked for an animation controller,

meaning any object adopting the UIViewControllerAnimatedTransitioning pro‐
tocol. Return nil to specify that the default animation (if any) should be used.

3. The animation controller will be sent two messages:
transitionDuration:

The animation controller must return the duration of the custom animation.
animateTransition:

The animation controller should perform the animation.

The implementation of animateTransition: works, in general, as follows:

1. The parameter is an object called the transition context (adopting the UIViewCon‐
trollerContextTransitioning protocol). By querying the transition context, you can
obtain:

• The container view, an already existing view within which all the action is to take
place.

• The outgoing and incoming view controllers.
• The outgoing and incoming views. These are probably the main views of the

outgoing and incoming view controllers, but (new in iOS 8) you should obtain
the views directly from the transition context, just in case they aren’t. The out‐
going view is already inside the container view.

• The initial frame of the outgoing view, and the ultimate frame of the incoming
view.

2. Having gathered this information, your mission is to put the incoming view into
the container view and animate it in such a way as to end up at its correct ultimate
position. You may also animate the outgoing view if you wish.

314 | Chapter 6: View Controllers

3. When the animation ends, you must call the transition context’s complete-
Transition: to tell it that the animation is over. The outgoing view is then removed
automatically.

To illustrate, consider the transition between two child view controllers of a tab bar
controller. By default, this transition isn’t animated; one view just replaces the other.
Let’s animate the transition.

One obvious custom animation is that the new view controller’s view should slide in
from one side while the old view controller’s view should slide out the other side. The
direction of the slide should depend on whether the index of the new view controller is
greater or less than that of the old view controller.

Take the steps in order. First, configure a delegate for the tab bar controller. Assume
that the tab bar controller is our app’s root view controller. For simplicity, I’ll set its
delegate in code, in the app delegate’s application:didFinishLaunchingWith-
Options:, and I’ll make that delegate be the app delegate itself:

(self.window!.rootViewController as UITabBarController).delegate = self

On to the second step. The app delegate, in its role as UITabBarControllerDelegate, will
now be sent a message whenever the tab bar controller is about to change view con‐
trollers. That message is:

• tabBarController:animationControllerForTransitionFromView-

Controller:toViewController:

We must implement this method to return an animation controller, namely, some object
implementing UIViewControllerAnimatedTransitioning. In this case, to keep things
simple, I’ll return self. Here we go:

func tabBarController(tabBarController: UITabBarController,
 animationControllerForTransitionFromViewController
 fromVC: UIViewController,
 toViewController toVC: UIViewController)
 -> UIViewControllerAnimatedTransitioning? {
 return self
}

(There is no particular reason why the animation controller should be self, or any
existing object; it can be a dedicated lightweight object instantiated just to govern this
transition. There is also no particular reason why the animation controller should be
the same object every time this method is called. We know, in real time, what’s about to
happen, because we receive the tab bar controller and both child view controllers as
parameters. Thus we could readily provide a different animation controller under dif‐
ferent circumstances, or we could return nil to use the default transition — meaning,
in this case, no animation.)

Custom Transition | 315

On to the third step! Here we are in the animation controller (UIViewController‐
AnimatedTransitioning). Our first job is to reveal in advance the duration of our ani‐
mation:

func transitionDuration(
 transitionContext: UIViewControllerContextTransitioning)
 -> NSTimeInterval {
 return 0.4
}

(Again, the value returned needn’t be the same every time this method is called. The
transition context has arrived as parameter, and we could query it to identify the two
view controllers involved and make a decision based on that. But make sure that the
value you return here is indeed the duration of the animation you’ll perform in animate-
Transition:.)

Finally, we come to animateTransition: itself:

func animateTransition(
 transitionContext: UIViewControllerContextTransitioning) {
 // ...
}

Once more, simply perform the steps in order. First, query the transition context. This
code is practically boilerplate for any custom view controller transition animation:

let vc1 = transitionContext.viewControllerForKey(
 UITransitionContextFromViewControllerKey)!
let vc2 = transitionContext.viewControllerForKey(
 UITransitionContextToViewControllerKey)!
let con = transitionContext.containerView()
let r1start = transitionContext.initialFrameForViewController(vc1)
let r2end = transitionContext.finalFrameForViewController(vc2)
let v1 = transitionContext.viewForKey(UITransitionContextFromViewKey)!
let v2 = transitionContext.viewForKey(UITransitionContextToViewKey)!

We have the view controllers and their views, and the initial frame of the outgoing view
and the destination frame of the incoming view. Now, to prepare for our intended ani‐
mation, we want to calculate the converse, namely the final frame of the outgoing view
and the initial frame of the incoming view. We are sliding the views sideways, so those
frames should be positioned sideways from the initial frame of the outgoing view and
the final frame of the incoming view. Which side they go on depends upon the relative
place of these view controllers among the children of the tab bar controller — is this to
be a leftward slide or a rightward slide? Since the animation controller is the app delegate,
we can get a reference to the tab bar controller the same way we did before:

let tbc = self.window!.rootViewController as UITabBarController
let ix1 = find(tbc.viewControllers as [UIViewController], vc1)
let ix2 = find(tbc.viewControllers as [UIViewController], vc2)
let dir : CGFloat = ix1 < ix2 ? 1 : -1

316 | Chapter 6: View Controllers

var r1end = r1start
r1end.origin.x -= r1end.size.width * dir
var r2start = r2end
r2start.origin.x += r2start.size.width * dir

We are now ready for the second step: put the second view controller’s view into the
container view at its initial frame, and perform the animation. The end of the animation
is also the moment to perform the all-important third step, namely to call complete-
Transition: to signal that our part has been played and our hands are off the views:

v2.frame = r2start
con.addSubview(v2)
UIView.animateWithDuration(0.4, animations: {
 v1.frame = r1end
 v2.frame = r2end
 }, completion: {
 _ in
 transitionContext.completeTransition(true)
 })

That’s all there is to it. Of course, that wasn’t a very complex animation; but an animation
needn’t be complex to be interesting, significant, and helpful to the user. And even a
more complex animation would be implemented along the same basic lines. One pos‐
sibility that I didn’t illustrate in my example is that you are free to introduce additional
views temporarily into the container view during the course of the animation; you’ll
probably want to remove them in the completion handler.

A custom transition for a navigation controller is similar to a custom transition for a
tab bar controller, so I don’t need to give a separate example. The only slight difference
lies in the name of the navigation controller delegate method that will be called to dis‐
cover whether there’s an animation controller:

• navigationController:animationControllerForOperation:fromView-

Controller:toViewController:

The operation: parameter allows you to distinguish a push from a pop.

Implementing a navigation controller custom push animation while returning nil
for the pop animation controller will cause the built-in swipe-to-pop interactive
transition to stop working.

Interactive Custom Transition Animation
With an interactive custom transition animation, the idea is that we track something
the user is doing, typically by means of a gesture recognizer (see Chapter 5), and perform
the “frames” of the transition in response. There are two ways to write an interactive
custom transition animation. In both cases, we’re going to need an interaction control‐

Custom Transition | 317

ler, namely an object that conforms to the UIViewControllerInteractiveTransitioning
protocol. The two ways of writing the code correspond to the two ways of supplying
this object:
Create a UIPercentDrivenInteractiveTransition instance

We supply an instance of the built-in UIPercentDrivenInteractiveTransition class
(let’s call this the percent driver). This percent driver object performs the frames of
the animation for us by calling our animateTransition: and “freezing” the ani‐
mation. All we have to do is track the gesture and repeatedly call the percent driver’s
updateInteractiveTransition:, telling it how far the gesture has proceeded; the
percent driver updates the interface, changing our animation’s “frame” to match the
extent of the gesture. At the end of the gesture, we decide whether to finish or cancel
the transition; accordingly, we call the percent driver’s finishInteractive-
Transition or cancelInteractiveTransition. Finally, we call the transition con‐
text’s completeTransition:.

Adopt UIViewControllerInteractiveTransitioning
We supply our own object with our own code. This object, conforming to the UI‐
ViewControllerInteractiveTransitioning protocol, will need to respond to start-
InteractiveTransition:, whose parameter will be the transition context. Once
we are told that the transition has started, we will set up the initial conditions for
the animation and then constantly track the gesture, changing the interface and
calling the transition context’s updateInteractiveTransition:. When the inter‐
action ends, we decide whether to finish or cancel the transition; accordingly, we
animate into the final or initial conditions, and call the transition context’s finish-
InteractiveTransition or cancelInteractiveTransition. Finally, we call the
transition context’s completeTransition:.

Using a percent driver
If we have already written a noninteractive version of our transition animation, using
the percent driver is going to be simplest, because we get to keep our existing animate-
Transition: code. The steps build upon those of a noninteractive transition animation:

1. The view controller in charge of the transition must have a delegate.
2. We observe that the user is gesturing in a way that should trigger a change of view

controller. We respond by triggering that change.
3. The delegate will be asked for an animation controller, as before. We return an object

adopting the UIViewControllerAnimatedTransitioning protocol, as before.
4. The delegate is also asked for an interaction controller. (This happened before, but

we didn’t supply one, which is why our transition animation wasn’t interactive.) We
have elected to use a UIPercentDrivenInteractiveTransition object. So we return
that object.

318 | Chapter 6: View Controllers

5. The animation controller is sent the same two messages as before:
transitionDuration:

The duration of the custom animation.
animateTransition:

The animation controller should perform the animation. But the animation
will not in fact proceed at this moment; it will be “frozen” and its “frames” will
be produced as the interaction proceeds.
(To perform this magic, the percent driver takes advantage of the fact that a
CALayer conforms to the CAMediaTiming protocol, as I explained in Chap‐
ter 4. It asks the transition context for the container view, obtains that view’s
layer, and sets the layer’s speed to 0. Subsequently, as we call the percent driver’s
updateInteractiveTransition:, it adjusts that layer’s timeOffset accord‐
ingly, thus displaying a different “frame” of the animation.)

6. We continue tracking the interaction, calling our percent driver’s update-
InteractiveTransition: to tell it how far the gesture has proceeded. The percent
driver displays that frame of our animation for us.

7. Sooner or later the gesture will end. At this point, we must decide whether to declare
the transition completed or cancelled. The usual approach is to say that if the user
performed more than half the full gesture, that constitutes completion; otherwise,
it constitutes cancellation. We call the percent driver’s finishInteractive-
Transition or cancelInteractiveTransition accordingly. The percent driver
either completes the animation or (if we cancelled) reverses the animation.

8. The animation is now completed, and its completion block is called. We call
completeTransition:, with the argument stating whether the transition was fin‐
ished or cancelled.

As an example, I’ll describe how to make an interactive version of the tab bar controller
transition animation that we developed in the previous section, such that the user can
drag the tab bar controller’s adjacent view controller in from the right or from the left.
All the code we’ve already written can be left more or less as is! To track the user’s gesture,
I’ll put a pair of UIScreenEdgePanGestureRecognizers into the interface, and keep ref‐
erences to them so they can be identified later. The gesture recognizers are attached to
the tab view controller’s view (tbc.view), as this will remain constant while the views
of its view controllers are sliding across the screen:

let sep = UIScreenEdgePanGestureRecognizer(target:self, action:"pan:")
sep.edges = UIRectEdge.Right
tbc.view.addGestureRecognizer(sep)
sep.delegate = self
self.rightEdger = sep
let sep2 = UIScreenEdgePanGestureRecognizer(target:self, action:"pan:")

Custom Transition | 319

sep2.edges = UIRectEdge.Left
tbc.view.addGestureRecognizer(sep2)
sep2.delegate = self
self.leftEdger = sep2

Acting as the delegate of the two gesture recognizers, we prevent either pan gesture
recognizer from operating unless there is another child of the tab view controller avail‐
able on that side of the current child:

func gestureRecognizerShouldBegin(g: UIGestureRecognizer) -> Bool {
 let tbc = self.window!.rootViewController as UITabBarController
 var result = false
 if g == self.rightEdger {
 result = (tbc.selectedIndex < tbc.viewControllers!.count - 1)
 }
 else {
 result = (tbc.selectedIndex > 0)
 }
 return result
}

If the gesture recognizer action handler pan: is called, we now know that this means
our interactive transition animation is to take place. I’ll break down the discussion
according to the gesture recognizer’s stages. First, I collect some information that will
be needed later:

func pan(g:UIScreenEdgePanGestureRecognizer) {
 let v = g.view!
 let tbc = self.window!.rootViewController as UITabBarController
 let delta = g.translationInView(v)
 let percent = fabs(delta.x/v.bounds.size.width)
 switch g.state {
 // ... to be continued ...
 }
}

As the gesture begins, we create the UIPercentDrivenInteractiveTransition object and
store it in an property (self.inter). We then set the tab bar controller’s selectedIndex:

case .Began:
 self.inter = UIPercentDrivenInteractiveTransition()
 self.interacting = true
 if g == self.rightEdger {
 tbc.selectedIndex = tbc.selectedIndex + 1
 } else {
 tbc.selectedIndex = tbc.selectedIndex - 1
 }

Changing the tab bar controller’s selectedIndex causes the runtime to turn to the tab
bar controller’s delegate to see whether there is an animation controller, and hence a
custom animation; as before, we make ourselves the animation controller:

320 | Chapter 6: View Controllers

func tabBarController(tabBarController: UITabBarController,
 animationControllerForTransitionFromViewController
 fromVC: UIViewController,
 toViewController toVC: UIViewController)
 -> UIViewControllerAnimatedTransitioning? {
 return self
}

The runtime now asks if there is also an interaction controller. There wasn’t one in our
previous example, but now there is — the percent driver:

func tabBarController(tabBarController: UITabBarController,
 interactionControllerForAnimationController
 animationController: UIViewControllerAnimatedTransitioning)
 -> UIViewControllerInteractiveTransitioning? {
 let result : UIViewControllerInteractiveTransitioning? =
 self.interacting ? self.inter : nil
 return result
}

The runtime now calls our percent driver’s startInteractiveTransition:, handing it
a reference to the transition context. The percent driver immediately turns around and
calls our animateTransition: method, without performing the animation. The percent
driver “freezes” the animation instead. Our job now is to keep calling the percent driver,
telling it what “frame” of the animation to display at every moment; the percent driver
will also call the transition context on our behalf.

We are now back in the gesture recognizer’s action handler. As the gesture proceeds, we
keep sending updateInteractiveTransition: to the percent driver:

case .Changed:
 self.inter.updateInteractiveTransition(percent)

When the gesture ends, we decide whether this counts as finishing or canceling, and we
report to the percent driver accordingly:

case .Ended:
 if percent > 0.5 {
 self.inter.finishInteractiveTransition()
 } else {
 self.inter.cancelInteractiveTransition()
 }
 self.interacting = false

If we call finishInteractiveTransition, the percent driver quickly plays the rest of
the animation forward to completion. If we call cancelInteractiveTransition, the
percent driver plays the animation backward to its beginning.

Finally, we find ourselves back inside animateTransition:, in the animation
completion: handler. This is the only place where a change is needed in our previously
existing code. As I’ve just said, the transition can complete in one of two ways. We must

Custom Transition | 321

still call completeTransition: ourselves, but we must tell the transition context which
way things turned out, so that the transition context can restore the previous state of
things if the transition was cancelled. Luckily, the transition context already knows
whether the transition was cancelled! So we simply ask it:

UIView.animateWithDuration(0.4, delay:0, options:opts, animations: {
 v1.frame = r1end
 v2.frame = r2end
 }, completion: {
 _ in
 let cancelled = transitionContext.transitionWasCancelled()
 transitionContext.completeTransition(!cancelled)
 })

That’s all there is to it, and in fact, as a bonus, I have sneakily added a bit of extra
functionality to our code: not only does this work as an interactive transition, but I’ve
also kept the noninteractive transition that we developed earlier. In other words, the
user can tap a tab bar item to get the original sliding animation left or right, or the user
can manually slide a view to get the interactive animation.

Without a percent driver
If we don’t use a percent driver, then the entire interactive transition is up to us. We
ourselves must repeatedly reposition the views at every stage of the gesture, and when
the gesture ends, we ourselves must animate them either into their final position or back
into their initial position. We will no longer need an animateTransition: method (it
must be present, to satisfy the protocol requirements, but it can be empty); all the logic
of initializing, positioning, and finalizing the moving views must be effectively decon‐
structed and folded into the various stages of our gesture recognizer action handler. At
every stage, we must keep talking to the transition context itself.

The resulting code is verbose, and can be difficult to express in a compact or object-
oriented way. However, it is more powerful, more flexible, and possibly more reliable
than using a percent driver. We don’t need to rely on the percent driver’s trick of using
a frozen animation; we can reposition the actual views (or their snapshots) as the gesture
proceeds.

I’ll just sketch out how to rewrite our tab bar controller interactive transition without
a percent driver. We have our gesture recognizer(s) as before. When the gesture begins,
the .Began section of the action handler triggers the transition as before. The delegate
is asked for an animation controller and an interaction controller; the interaction con‐
troller is now not a percent driver, but some object that we will supply — let’s say it’s self.

The result is that, in our role as adopter of the UIViewControllerInteractive‐
Transitioning protocol, our startInteractiveTransition: is called. Here, we set up
the initial conditions of the transition, putting the views into place, and storing a ref‐

322 | Chapter 6: View Controllers

erence to the transitionContext in a property where our gesture recognizer action
handler can access it:

func startInteractiveTransition(
 transitionContext: UIViewControllerContextTransitioning){
 // store transition context so the gesture recognizer can get at it
 self.context = transitionContext
 // ... set up initial conditions ...
 // ... store any additional instance variables ...
 self.r1end = r1end
 self.r2start = r2start
}

Our gesture recognizer action handler is called again, repeatedly, at the .Changed stage.
We keep repositioning our views in accordance with the progress of the interactive
gesture. At the same time, we keep informing the transition context of that progress:

case .Changed:
 // ... calculate progress (percent)
 // ... put views into position corresponding to current "frame" ...
 // ... and finally, notify the transition context
 v1.frame = // whatever
 v2.frame = // whatever
 tc.updateInteractiveTransition(percent)

(Why must we call updateInteractiveTransition: throughout the progress of the
gesture? For a tab bar controller’s transition, this call has little or no significance. But
in the case, say, of a navigation controller, the animation has a component separate from
what you’re doing — the change in the appearance of the navigation bar, as the old title
departs and the new title arrives and so forth. The transition context needs to coordinate
that animation with the interactive gesture and with your animation. So you need to
keep telling it where things are in the course of the interaction.)

Finally, our gesture recognizer action handler is called one last time, at the .Ended stage.
We now animate our views the rest of the way, or else back to the start, and call either
finishInteractiveTransition or cancelInteractiveTransition followed by
completeTransition: with the appropriate argument:

case .Ended:
 if percent > 0.5 {
 UIView.animateWithDuration(0.2, animations:{
 v1.frame = self.r1end
 v2.frame = r2end
 }, completion: {
 _ in
 tc.finishInteractiveTransition()
 tc.completeTransition(true)
 })
 }
 else {
 UIView.animateWithDuration(0.2, animations:{

Custom Transition | 323

 v1.frame = r1start
 v2.frame = self.r2start
 }, completion: {
 _ in
 tc.cancelInteractiveTransition()
 tc.completeTransition(false)
 })
 }

Custom Presented View Controller Transition
Customizing what happens when a view controller is presented is more complex, and
more powerful, than customizing a tab bar controller or navigation controller transition.
With a presented view controller, you can customize not only the animation but also
the final position of the presented view. Moreover, you can introduce extra views which
remain in the scene until dismissal; for example, if the presented view is smaller than
the presenting view and covers it only partially, you might add a dimming view between
them, to darken the presenting view (just as a .FormSheet presentation does).

What the runtime must do while a view is being presented in order to make the pre‐
sentation customizable is also more complex. There is no existing view to serve as the
container view; therefore, when the presentation starts, the runtime must construct the
container view and insert it into the interface and leave it there for only as long as the
view remains presented. In the case of a .FullScreen presentation, the runtime must
also rip the presenting view out of the interface and insert it into the container view,
because you might want the presenting view to participate in the animation. For other
styles of presentation, the container view is in front of the presenting view, which can’t
be animated and is left in place as the presentation proceeds.

In iOS 7, all the work of customizing a presentation was done through an animation
controller (or an interaction controller), parallel to customizing a tab bar controller
animation or a navigation controller animation. New in iOS 8, the work is distributed
between two objects: the animation controller (or interaction controller) on the one
hand, and the presentation controller on the other. The idea is that the animation con‐
troller should be responsible for only the animation, the movement of the presented
view into its final position. The determination of that final position is the job of the
presentation controller. The presentation controller is also responsible for inserting any
extra views, such as a dimming view, into the container view; Apple says that the ani‐
mation controller animates the content, while the presentation controller animates the
“chrome.” This distribution of responsibilities may require some extra effort on your
part, but in fact it also simplifies considerably the task of customizing the animation
itself.

324 | Chapter 6: View Controllers

Customizing the animation
I’ll start with a situation where we don’t need to use the presentation controller: all we
want to do is customize the animation part of a built-in presentation style. The steps
are almost completely parallel to how we customized a tab bar controller animation:

1. Give the presented view controller a delegate. Here, we assign to the presented view
controller’s transitioningDelegate property an object adopting the UIView‐
ControllerTransitioningDelegate protocol.

2. The delegate will be asked for an animation controller, and will return an object
adopting the UIViewControllerAnimatedTransitioning protocol. Unlike a tab bar
controller or navigation controller, a presented view controller’s view undergoes
two animations — the presentation and the dismissal — and therefore the delegate
is asked separately for controllers:

• animationControllerForPresentedController:presenting-

Controller:sourceController:

• interactionControllerForPresentation:

• animationControllerForDismissedController:

• interactionControllerForDismissal:

You are free to customize just one animation, leaving the other at the default by not
providing a controller for it.

3. The animation controller will implement transitionDuration and animate-
Transition:.

To illustrate, let’s say we’re on iPad, and we want to present a view using the .Form-
Sheet presentation style. But instead of using any of the built-in animation styles, we’ll
have the presented view appear to grow from the middle of the screen. The only mildly
tricky step is the first one. The problem is that the delegate must be assigned very early
in the presented view controller’s life — before the presentation begins. But the presented
view controller doesn’t exist before the presentation begins. The most reliable approach,
therefore, is for the presented view controller to assign its own delegate in its own ini‐
tializer:

required init(coder aDecoder: NSCoder) {
 super.init(coder:aDecoder)
 self.transitioningDelegate = self
}

On to step two. The transitioning delegate is asked for an animation controller; here,
I’ll have it supply self once again, and I’ll do this only for the presentation, leaving the
dismissal to use the default animation:

Custom Transition | 325

func animationControllerForPresentedController(
 presented: UIViewController,
 presentingController presenting: UIViewController,
 sourceController source: UIViewController)
 -> UIViewControllerAnimatedTransitioning? {
 return self
}

Finally, step three — the actual animation. This is extremely simple, especially because
we don’t care or inquire about the “From” view controller, which remains in place during
the presentation (indeed, its view isn’t even in the container view):

func transitionDuration(
 transitionContext: UIViewControllerContextTransitioning)
 -> NSTimeInterval {
 return 0.4
}
func animateTransition(
 transitionContext: UIViewControllerContextTransitioning) {
 let vc2 = transitionContext.viewControllerForKey(
 UITransitionContextToViewControllerKey)
 let con = transitionContext.containerView()
 let r2end = transitionContext.finalFrameForViewController(vc2!)
 let v2 = transitionContext.viewForKey(UITransitionContextToViewKey)!
 v2.frame = r2end
 v2.transform = CGAffineTransformMakeScale(0.1, 0.1)
 v2.alpha = 0
 con.addSubview(v2)
 UIView.animateWithDuration(0.4, animations: {
 v2.alpha = 1
 v2.transform = CGAffineTransformIdentity
 }, completion: {
 _ in
 transitionContext.completeTransition(true)
 })
}

There is just one complication when you animate a presented view controller’s view. If
you also animate the dismissal of that view, and if the animation controller is the same
object so that the same animateTransition: implementation is called, the roles are
reversed: on presentation, the presented view controller is the “To” view controller
(UITransitionContextToViewControllerKey and UITransitionContextToViewKey),
but on dismissal, it is the “From” view controller (UITransitionContextFromView-
ControllerKey and UITransitionContextFromViewKey). For a presentation that
isn’t .FullScreen, the unused view is nil, so you can distinguish the cases by structuring
your code like this:

326 | Chapter 6: View Controllers

let v1 = transitionContext.viewForKey(UITransitionContextFromViewKey)
let v2 = transitionContext.viewForKey(UITransitionContextToViewKey)
if let v2 = v2 { // presenting
 // ...
} else if let v1 = v1 {
 // ...
}

Customizing the presentation
Now let’s involve the presentation controller. This will require some additional steps:

1. In addition to setting a transitioningDelegate, we set the presented view con‐
troller’s modalPresentationStyle to .Custom.

2. The result of the preceding step is that the delegate is sent an additional message:

• presentationControllerForPresentedViewController:presentingView-

Controller:sourceViewController:

(The sourceViewController: parameter is what I have termed the “original pre‐
senter.”) Your mission is to return an instance of a custom UIPresentationController
subclass which you have previously declared and implemented. This will then be
the presented view controller’s presentation controller during the course of this
presentation, from the time presentation begins to the time dismissal ends. You
must create this instance by calling (directly or indirectly) the designated initializer:

• init(presentedViewController:presentingViewController:)

3. By overriding appropriate UIPresentationController methods in your
UIPresentationController subclass, you participate in the presentation, setting the
presented view controller’s position and adding “chrome” to the presentation as
desired.

The UIPresentationController has properties pointing to the presentingView-
Controller as well the presentedViewController and the presentedView, plus the
presentationStyle set by the presented view controller. It also obtains the container-
View, which it subsequently communicates to the animation controller’s transition con‐
text. It has some methods that you can override in your subclass, but you only need to
override the ones that require customization for your particular implementation:
frameOfPresentedViewInContainerView

Returns the final position of the presented view. The animation coordinator, if there
is one, will obtain this frame through the transition context’s finalFrameForView-
Controller: method and must cause the presented view to end up there (as you
already know).

Custom Transition | 327

It is perfectly legal for the transitioning delegate to supply a custom presentation
controller and no animation controller! In that case, a default animation will be
performed, but the presented view will end up at the position your custom presen‐
tation controller dictates. This is a good example of the delightful “separation of
powers” of the presentation controller and the animation controller in iOS 8.

presentationTransitionWillBegin
presentationTransitionDidEnd
dismissalTransitionWillBegin
dismissalTransitionDidEnd

Use these events as signals to add or remove “chrome” (extra views) to the container
view.

containerViewWillLayoutSubviews
containerViewDidLayoutSubviews

Use these layout events as signals to update the “chrome” views if needed.

shouldPresentInFullscreen

The default is to return true; returning false turns this presentation into
a .CurrentContext presentation.

shouldRemovePresentersView

The default is to return false, except that of course it is true for a standard .Full-
Screen presentation, meaning that the presenting view is ripped out of the interface
at the end of the presentation transition. You can return true for a custom presen‐
tation, but it would be rare to do this; even if the presented view completely covers
the presenting view, there is no harm in leaving the presenting view in place.

A UIPresentationController is not a UIViewController, but it adopts some protocols
that UIViewController adopts, and thus gets the same resizing-related messages that a
UIViewController gets, as I described earlier in this chapter. It adopts UITrait‐
Environment, meaning that it has a traitCollection and participates in the trait col‐
lection inheritance hierarchy, and receives the traitCollectionDidChange: message.
It also adopts UIContentContainer, meaning that it receives willTransitionToTrait-
Collection:withTransitionCoordinator: and viewWillTransitionToSize:with-
TransitionCoordinator:.

In addition, a presentation controller functions as the parent of the presented view
controller, and can override its inherited trait collection and respond to changes in its
preferredContentSize, as I’ll explain later.

To illustrate the use of a custom presentation controller, I’ll expand the preceding ex‐
ample to implement a custom presentation style that looks like a .FormSheet even on

328 | Chapter 6: View Controllers

iPhone. The first step is to set the presentation style to .Custom at the same time that we
set the transitioning delegate:

required init(coder aDecoder: NSCoder) {
 super.init(coder:aDecoder)
 self.transitioningDelegate = self
 self.modalPresentationStyle = .Custom
}

The result (step two) is that the extra delegate method is called so that we can provide
a custom presentation controller, and we do so:

func presentationControllerForPresentedViewController(
 presented: UIViewController,
 presentingViewController presenting: UIViewController!,
 sourceViewController source: UIViewController)
 -> UIPresentationController? {
 let pc = MyPresentationController(
 presentedViewController: presented,
 presentingViewController: presenting)
 return pc
}

Everything else happens in our implementation of MyPresentationController. To make
the presentation look like a .FormSheet, we inset the presented view’s frame:

override func frameOfPresentedViewInContainerView() -> CGRect {
 return super.frameOfPresentedViewInContainerView()
 .rectByInsetting(dx: 40, dy: 40)
}

We could actually stop at this point! The presented view now appears in the correct
position. However, the presenting view is appearing undimmed behind it. Let’s add
dimming, by inserting a translucent dimming view into the container view. Note that
we are careful to deal with the possibility of subsequent rotation:

override func presentationTransitionWillBegin() {
 let con = self.containerView
 let shadow = UIView(frame:con.bounds)
 shadow.backgroundColor = UIColor(white:0, alpha:0.4)
 con.insertSubview(shadow, atIndex: 0)
 shadow.autoresizingMask = .FlexibleWidth | .FlexibleHeight
}

Again, this works perfectly, but now I don’t like what happens when the presented view
is dismissed: the dimming view stays in place, and then vanishes suddenly at the end of
the dismissal. I’d rather have the dimming view fade out, and I’d like it to fade out in
coordination with the dismissal animation. The way to arrange that is through the object
vended by the presented view controller’s transitionCoordinator method. This object
is just like the transition coordinator I’ve already discussed earlier in this chapter in

Custom Transition | 329

connection with resizing events and rotation: in particular, we can call its animate-
AlongsideTransition: method to add our own animation:

override func dismissalTransitionWillBegin() {
 let con = self.containerView
 let shadow = (con.subviews as [UIView])[0]
 let tc = self.presentedViewController.transitionCoordinator()!
 tc.animateAlongsideTransition({
 _ in
 shadow.alpha = 0
 }, completion: nil)
}

Once again, we could stop at this point. But I’d like to add a further refinement. A .Form-
Sheet view has rounded corners. I’d like to make our presented view look the same way:

override func presentedView() -> UIView! {
 let v = super.presentedView()
 v.layer.cornerRadius = 6
 v.layer.masksToBounds = true
 return v
}

Finally, for completeness, it would be nice, during presentation, to dim the appearance
of any button titles and other tinted interface elements visible through the dimming
view, to emphasize that they are disabled:

override func presentationTransitionDidEnd(completed: Bool) {
 let vc = self.presentingViewController
 let v = vc.view
 v.tintAdjustmentMode = .Dimmed
}
override func dismissalTransitionDidEnd(completed: Bool) {
 let vc = self.presentingViewController
 let v = vc.view
 v.tintAdjustmentMode = .Automatic
}

Transition Coordinator
I have already mentioned, in the previous section, the UIViewController transition-
Coordinator method, which yields an object adopting the UIViewControllerTransition‐
Coordinator protocol. This object, the transition coordinator, is a kind of wrapper
around the transition context, and also adopts the UIViewControllerTransition‐
CoordinatorContext protocol, just like the transition context. Thus, in effect, view con‐
trollers can find out about the transition they are involved in.

In addition to the methods that it implements by virtue of adopting the UIView‐
ControllerTransitionCoordinatorContext protocol, a transition coordinator imple‐
ments the following methods:

330 | Chapter 6: View Controllers

animateAlongsideTransition:completion:

Takes an animation block and a completion block. The animation you supply is
incorporated into the transition coordinator’s animation. Returns a Bool, informing
you in case your commands couldn’t be animated. Both blocks receive the transition
context as a parameter. (See also “Responding to rotation” on page 280, where I
discussed this method in connection with rotation.)

A view controller’s use of this method will typically be to add animation of its view’s
internal interface as part of a transition animation. Observe that this works equally
for a custom animation or a built-in animation; in fact, the point is that the view
controller can behave agnostically with regard to how its own view is being ani‐
mated. In this example, a presented view controller animates part of its interface
into place as the animation proceeds (whatever that animation may be):

override func viewWillAppear(animated: Bool) {
 super.viewWillAppear(animated)
 if let tc = self.transitionCoordinator() {
 tc.animateAlongsideTransition({
 _ in
 self.button.frame.origin.y += 100
 }, completion: nil)
 }
}

animateAlongsideTransitionInView:animation:completion:

Just like the previous method, except that the animated view can be outside the
container view.

notifyWhenInteractionEndsUsingBlock:

Called at the moment the user abandons an interactive gesture and the transition
is about to be either completed or cancelled. This is useful particularly if the inter‐
active transition is being cancelled, as it may well be that what your view controller
wants to do will differ in this situation. The parameter to the block is the transition
context.

In this example, a navigation controller has pushed a view controller, and now the
user is popping it interactively (using the default drag-from-the-left-edge gesture).
If the user cancels, the back view controller can hear about it, like this:

override func viewWillAppear(animated: Bool) {
 super.viewWillAppear(animated)
 if let tc = self.transitionCoordinator() {
 if tc.initiallyInteractive() {
 tc.notifyWhenInteractionEndsUsingBlock {
 context in
 if context.isCancelled() {
 // ...
 }

Custom Transition | 331

 }
 }
 }
}

In iOS 8, I have not found any occasion when the child of a tab bar controller has
a non-nil transition coordinator. This is different from iOS 7, and feels like a bug.

Page View Controller
A page view controller (UIPageViewController) displays its child view controller’s view.
The user, by a gesture, can navigate in one direction or the other to see the next or the
previous child view controller’s view, successively — like turning the pages of a book.
In reality, the page view controller has only one child view controller at a time (or, if so
configured, two at a time); it navigates by releasing its existing child view controller and
replacing it with another.

Preparing a Page View Controller
To create a UIPageViewController, use its designated initializer:

• init(transitionStyle:navigationOrientation:options:)

Here’s what the parameters mean:
transitionStyle:

The animation style during navigation (UIPageViewControllerTransitionStyle).
Your choices are:

• .PageCurl

• .Scroll (sliding)

navigationOrientation:

The direction of navigation (UIPageViewControllerNavigationOrientation). Your
choices are:

• .Horizontal

• .Vertical

options:

A dictionary. Possible keys are:

332 | Chapter 6: View Controllers

UIPageViewControllerOptionSpineLocationKey

If you’re using the page curl transition, this is the position of the pivot line
around which those page curl transitions rotate. The value (UIPageView‐
ControllerSpineLocation) is one of the following:

• .Min (left or top)
• .Mid (middle; two pages are shown at once)
• .Max (right or bottom)

UIPageViewControllerOptionInterPageSpacingKey

If you’re using the scroll transition, this is the spacing between successive pages,
visible as a gap during the transition (the default is 0).

You assign the page view controller a dataSource, which should conform to the UIPage‐
ViewControllerDataSource protocol, and configure the page view controller’s initial
content by handing it its initial child view controller(s). You do that by calling this
method:

• setViewControllers:direction:animated:completion:

Here’s what the parameters mean:
viewControllers:

An array of one view controller, unless you’re using the page curl transition and
the .Mid spine location, in which case it’s an array of two view controllers.

direction:

The animation direction (UIPageViewControllerNavigationDirection). This prob‐
ably won’t matter when you’re assigning the page view controller its initial content,
as you are not likely to want any animation. Possible values are:

• .Forward

• .Backward

animated:, completion:
A Bool and a completion handler.

Here’s a minimal example. Each page in the page view controller is to portray an image
of a named Pep Boy. The first question is where the pages will come from. My data
model consists of an array (self.pep) of the string names of the three Pep Boys, along
with three eponymous image files in my app bundle portraying each Pep Boy. I’ve also
got a UIViewController subclass called Pep, capable of displaying a Pep Boy. I initialize
a Pep object with the designated initializer init(pepBoy:), supplying the name of a Pep
Boy from the array; the Pep object sets its own boy property:

Page View Controller | 333

init(pepBoy boy:String) {
 self.boy = boy
 super.init(nibName: "Pep", bundle: nil)
}

Pep’s viewDidLoad then fetches the corresponding image and assigns it as the image of
a UIImageView within its own view:

override func viewDidLoad() {
 super.viewDidLoad()
 self.pic.image = UIImage(named:"\(self.boy.lowercaseString).jpg")
}

Here’s how I create the page view controller itself (in my app delegate):

// make a page view controller
let pvc = UIPageViewController(
 transitionStyle: .Scroll,
 navigationOrientation: .Horizontal, options: nil)
// give it an initial page
let page = Pep(pepBoy: self.pep[0])
pvc.setViewControllers(
 [page], direction: .Forward, animated: false, completion: nil)
// give it a data source
pvc.dataSource = self
// puts its view into the interface
self.window!.rootViewController = pvc

The page view controller is a UIViewController, and its view must get into the interface
by standard means. You can make the page view controller the window’s rootView-
Controller, as I do here; you can make it a presented view controller; you can make it
a child view controller of a tab bar controller or a navigation controller. If you want the
page view controller’s view to be a subview of a custom view controller’s view, that view
controller must be a custom container view controller, as I’ll describe in the next section.

Page View Controller Navigation
We now have a page view controller’s view in our interface, itself containing and dis‐
playing the view of a Pep view controller that is its child. In theory, we also have three
pages, because we have three Pep Boys and their images — but the page view controller
knows about only one of them. Just as with a navigation controller, you don’t supply (or
even create) a page until the moment comes to navigate to it. When that happens, one
of these data source methods will be called:

• pageViewController:viewControllerAfterViewController:

• pageViewController:viewControllerBeforeViewController:

334 | Chapter 6: View Controllers

The job of those methods is to return the requested successive view controller. You’ll
need a strategy for doing that; the strategy you devise will depend on how your model
maintains the data.

My data is an array of unique strings, so all I have to do is find the previous name or the
next name in the array. Here’s one of my data source methods:

func pageViewController(pageViewController: UIPageViewController,
 viewControllerAfterViewController viewController: UIViewController)
 -> UIViewController? {
 let boy = (viewController as Pep).boy
 let ix = find(self.pep, boy)! + 1
 if ix >= self.pep.count {
 return nil
 }
 return Pep(pepBoy: self.pep[ix])
}

You can also, at any time, call setViewControllers:... to change programmatically
what page is being displayed, possibly with animation.

Page indicator
If you’re using the scroll style, the page view controller will optionally display a page
indicator (a UIPageControl, see Chapter 12). The user can look at this to get a sense of
what page we’re on, and can tap to the left or right of it to navigate. To get the page
indicator, you must implement two more data source methods; they are consulted in
response to setViewControllers:.... We called that method initially to configure the
page view controller; if we never call it again (because the user simply keeps navigating
to the next or previous page), these data source methods won’t be called again either,
but they don’t need to be: the page view controller will thenceforth keep track of the
current index on its own. Here’s my implementation for the Pep Boy example:

func presentationCountForPageViewController(
 pageViewController: UIPageViewController) -> Int {
 return self.pep.count
}
func presentationIndexForPageViewController(
 pvc: UIPageViewController) -> Int {
 let page = pvc.viewControllers[0] as Pep
 let boy = page.boy
 return find(self.pep, boy)!
}

Unfortunately, the page view controller’s page indicator by default has white dots and a
clear background, so it is invisible in front of a white background. Moreover, there is
no direct access to it. Use the appearance proxy (Chapter 12) to customize it. For ex‐
ample:

Page View Controller | 335

let proxy = UIPageControl.appearance()
proxy.pageIndicatorTintColor = UIColor.redColor().colorWithAlphaComponent(0.6)
proxy.currentPageIndicatorTintColor = UIColor.redColor()
proxy.backgroundColor = UIColor.yellowColor()

Navigation gestures

If you’ve assigned the page view controller the .PageCurl transition style, the user can
ask for navigation by tapping at either edge of the view or by dragging across the view.
These gestures are detected through two gesture recognizers, which you can access
through the page view controller’s gestureRecognizers property. The documentation
suggests that you might change where the user can tap or drag by attaching them to a
different view, and other customizations are possible as well. In this code, I change
a .PageCurl page view controller’s behavior so that the user must double tap to request
navigation:

for g in pvc.gestureRecognizers as [UIGestureRecognizer] {
 if let g = g as? UITapGestureRecognizer {
 g.numberOfTapsRequired = 2
 }
}

Of course you are also free to add to the user’s stock of gestures for requesting navigation.
You can supply any controls or gesture recognizers that make sense for your app, and
respond by calling setViewControllers:.... For example, if you’re using
the .Scroll transition style, there’s no tap gesture recognizer, so the user can’t tap at
either edge of the page view controller’s view to request navigation. Let’s change that.
I’ve added invisible views at either edge of my Pep view controller’s view, with tap gesture
recognizers attached. When the user taps, the tap gesture recognizer fires, and the action
handler posts a notification whose object is the tap gesture recognizer:

@IBAction func tap (sender: UIGestureRecognizer?) {
 NSNotificationCenter.defaultCenter().postNotificationName(
 "tap", object: sender)
}

I receive this notification and use the tap gesture recognizer’s view’s tag to learn which
view it is; I then navigate accordingly (n is the notification, pvc is the page view con‐
troller):

let g = n.object as UIGestureRecognizer
let which = g.view!.tag
let vc0 = pvc.viewControllers[0] as UIViewController
let vc = (which == 0 ?
 self.pageViewController(pvc, viewControllerBeforeViewController: vc0) :
 self.pageViewController(pvc, viewControllerAfterViewController: vc0))
if vc == nil {
 return

336 | Chapter 6: View Controllers

}
let dir : UIPageViewControllerNavigationDirection =
 which == 0 ? .Reverse : .Forward
pvc.setViewControllers([vc!], direction: dir, animated: true, completion: nil)

Other Page View Controller Configurations
It is possible to assign a page view controller a delegate (UIPageViewController‐
Delegate), which gets an event when the user starts turning the page and when the user
finishes turning the page, and can change the spine location dynamically in response
to a change in device orientation. As with a tab bar controller’s delegate or a navigation
controller’s delegate, a page view controller’s delegate also gets messages allowing it to
specify the page view controller’s rotation policy, so there’s no need to subclass UIPage‐
ViewController solely for that purpose.

One further bit of configuration applicable to a .PageCurl page view controller is the
doubleSided property. If it is true, the next page occupies the back of the previous page.
The default is false, unless the spine is in the middle, in which case it’s true and can’t
be changed. Your only option here, therefore, is to set it to true when the spine isn’t in
the middle, and in that case the back of each page would be a sort of throwaway page,
glimpsed by the user during the page curl animation.

A page view controller in a storyboard lets you configure its transition style, navigation
orientation, page spacing, spine location, and doubleSided property. (It also has dele‐
gate and data source outlets, but you’re not allowed to connect them to other view
controllers, because you can’t draw an outlet from one scene to another in a storyboard.)
It has no child view controller relationship, so you can’t set the page view controller’s
initial child view controller in the storyboard; you’ll have to complete the page view
controller’s initial configuration in code.

Container View Controllers
UITabBarController, UINavigationController, and UIPageViewController are built-in
parent view controllers: you hand them a child view controller and they put that child
view controller’s view into the interface for you, inside their own view. What if you want
your own view controller to do the same thing?

In iOS 3 and 4, that was illegal; the only way a view controller’s view could get into the
interface was if a built-in parent view controller put it there. You could put a view into
the interface, of course — but not a view controller’s view. (Naturally, developers ignored
this restriction, and got themselves into all kinds of difficulties.) In iOS 5, Apple intro‐
duced a coherent way for you to create your own parent view controllers, which can
legally manage child view controllers and put their views into the interface. A custom
parent view controller of this sort is called a container view controller.

Container View Controllers | 337

Container view controllers give you the flexibility and power to construct the kind of
hierarchy shown in Figure 6-4 from your own view controllers and their views, nesting
them in what whatever manner and degree you like. Your own view controller becomes
like one of the built-in parent view controllers, except that you get to define what it does
— what it means for a view controller to be a child of this kind of parent view controller,
how many children it has, which of its children appear in the interface and where they
appear, and so on.

In iOS 8, container view controllers are of increased importance, because when your
UIViewController subclass acts as a container view controller, it participates actively in
the business of trait collection inheritance and view resizing.

Adding and Removing Children
Your view controller has a childViewControllers array. You must not, however, just
wantonly populate this array. A child view controller needs to receive certain definite
events at particular moments:

• As it becomes a child view controller
• As its view is added to and removed from the interface
• As it ceases to be a child view controller

Therefore, to act as a parent view controller, your UIViewController subclass must fulfill
certain responsibilities:
Adding a child

When a view controller is to become your view controller’s child, your view controller
must do these things, in this order:

1. Send addChildViewController: to itself, with the child as argument. The child
is automatically added to your childViewControllers array and is retained.

2. Get the child view controller’s view into the interface (as a subview of your view
controller’s view), if that’s what adding a child view controller means.

3. Send didMoveToParentViewController: to the child with your view controller
as its argument.

Removing a child
When a view controller is to cease being your view controller’s child, your view
controller must do these things, in this order:

1. Send willMoveToParentViewController: to the child with a nil argument.
2. Remove the child view controller’s view from your interface.

338 | Chapter 6: View Controllers

3. Send removeFromParentViewController to the child. The child is automati‐
cally removed from your childViewControllers array and is released.

This is a clumsy and rather confusing dance. The underlying reason for it is that a child
view controller must always receive willMoveToParentViewController: followed by
didMoveToParentViewController: (and your own child view controllers can take
advantage of these events however you like). But it turns out that you don’t always send
both these messages explicitly, because:

• addChildViewController: automatically sends willMoveToParentView-

Controller: for you.
• removeFromParentViewController automatically sends didMoveToParentView-
Controller: for you.

Thus, in each case you must send manually the other message, the one that adding or
removing a child view controller doesn’t send for you — and of course you must send
it so that everything happens in the correct order, as dictated by the rules I just listed.

Example 6-1 provides a schematic approach for how to obtain an initial child view
controller and put its view into the interface, where no child view controller’s view was
previously. (Alternatively, a storyboard can do this work for you, with no code, as I’ll
explain later in this chapter.)

Example 6-1. Adding an initial child view controller
let vc = // whatever; this is the initial child view controller
self.addChildViewController(vc) // "will" called for us
vc.view.frame = // whatever, or use constraints
// insert view into interface between "will" and "did"
self.view.addSubview(vc.view)
// when we call add, we must call "did" afterwards
vc.didMoveToParentViewController(self)

The next question is how to replace one child view controller’s view in the interface with
another (comparable to how UITabBarController behaves when a different tab bar item
is selected). The simplest, most convenient way is for the parent view controller to send
itself this message:

• transitionFromViewController:toViewController:duration:options:

animations:completion:

That method manages the stages in good order, adding one child view controller’s view
to the interface before the transition and removing the other child view controller’s view
from the interface after the transition, and seeing to it that the child view controllers

Container View Controllers | 339

receive lifetime events (such as viewWillAppear:) at the right moment. Here’s what the
last three arguments are for:
options:

A bitmask (UIViewAnimationOptions) comprising the same possible options that
apply to any block-based view transition (see “Transitions” on page 158).

animations:

A block that may be used for additional view animations, besides the transition
animation specified in the options: argument. Alternatively, if none of the built-
in transition animations is suitable, you can animate the views yourself here; they
are both in the interface during this block.

completion:

This block will be important if the transition involves the removal or addition of a
child view controller. At the time when transitionFromViewController:toView-
Controller:... is called, both view controllers must be children of the parent view
controller; so if you’re going to remove one of the view controllers as a child, you’ll
do it in the completion: block. Similarly, if you owe a new child view controller a
didMoveToParentViewController: call, you’ll use the completion: block to fulfill
that debt.

Here’s an example. To keep things simple, suppose that our view controller has just one
child view controller at a time, and displays the view of that child view controller within
its own view. So let’s say that when our view controller is handed a new child view
controller, it substitutes that new child view controller for the old child view controller
and replaces the old child view controller’s view with the new child view controller’s
view. Here’s code that does that correctly; the view controllers are fromvc and tovc:

// we have already been handed the new view controller
// set up the new view controller's view's frame
tovc.view.frame = // ... whatever
// must have both as children before we can transition between them
self.addChildViewController(tovc) // "will" called for us
// note: when we call remove, we must call "will" (with nil) beforehand
fromvc.willMoveToParentViewController(nil)
// then perform the transition
self.transitionFromViewController(fromvc,
 toViewController:tovc,
 duration:0.4,
 options:.TransitionFlipFromLeft,
 animations:nil,
 completion:{
 _ in
 // finally, finish up

340 | Chapter 6: View Controllers

 // note: when we call add, we must call "did" afterwards
 tovc.didMoveToParentViewController(self)
 fromvc.removeFromParentViewController() // "did" called for us
 })

If we’re using constraints to position the new child view controller’s view, where will we
set up those constraints? Before transitionFromViewController:... is too soon, as
the new child view controller’s view is not yet in the interface. The completion: block
is too late: if the view is added with no constraints, it will have no initial size or position,
so the animation will be performed and then the view will suddenly seem to pop into
existence as we provide its constraints. The animations: block turns out to be a very
good place:

// must have both as children before we can transition between them
self.addChildViewController(tovc) // "will" called for us
// note: when we call remove, we must call "will" (with nil) beforehand
fromvc.willMoveToParentViewController(nil)
// then perform the transition
self.transitionFromViewController(fromvc,
 toViewController:tovc,
 duration:0.4,
 options:.TransitionFlipFromLeft,
 animations: {
 tovc.view.setTranslatesAutoresizingMaskIntoConstraints(false)
 // ... configure tovc.view constraints here ...
 },
 completion:{
 _ in
 // finally, finish up
 // note: when we call add, we must call "did" afterwards
 tovc.didMoveToParentViewController(self)
 fromvc.removeFromParentViewController() // "did" called for us
 })

Alternatively, you can use a layout-related event, such as viewWillLayoutSubviews;
still, I prefer the animations: block, as it is called just once at exactly the right moment.

If the built-in transition animations are unsuitable, you can set the options: argument
to .None and provide your own animation in the animations: block, at which time both
views are in the interface. In this example, I animate a substitute view (an image view
showing a snapshot of tovc.view) to grow from the top left corner; then I configure
the real view’s constraints and remove the substitute:

// tovc.view.frame is already set
UIGraphicsBeginImageContextWithOptions(tovc.view.bounds.size, true, 0)
tovc.view.layer.renderInContext(UIGraphicsGetCurrentContext())
let im = UIGraphicsGetImageFromCurrentImageContext()
UIGraphicsEndImageContext()
let iv = UIImageView(image:im)
iv.frame = CGRectZero
self.view.addSubview(iv)

Container View Controllers | 341

tovc.view.alpha = 0
// must have both as children before we can transition between them
self.addChildViewController(tovc) // "will" called for us
// note: when we call remove, we must call "will" (with nil) beforehand
fromvc.willMoveToParentViewController(nil)
// then perform the transition
self.transitionFromViewController(fromvc,
 toViewController:tovc,
 duration:0.4,
 options:.TransitionNone,
 animations: {
 iv.frame = tovc.view.frame // animate bounds change
 // ... configure tovc.view constraints here ...
 },
 completion:{
 _ in
 tovc.view.alpha = 1
 iv.removeFromSuperview()
 // finally, finish up
 // note: when we call add, we must call "did" afterwards
 tovc.didMoveToParentViewController(self)
 fromvc.removeFromParentViewController() // "did" called for us
 UIApplication.sharedApplication().endIgnoringInteractionEvents()
 })

If your parent view controller is going to be consulted about the status bar (whether it
should be shown or hidden, and if shown, whether its text should be light or dark), it
can elect to defer the decision to one of its children, by implementing these methods:

• childViewControllerForStatusBarStyle

• childViewControllerForStatusBarHidden

Container View Controllers, Traits, and Resizing
New in iOS 8, a container view controller participates in trait collection inheritance and
view resizing. In fact, you may well insert a container view controller into your view
controller hierarchy for no other purpose than to engage in such participation.

Thus far, I have treated trait collection inheritance as immutable; and for the most part,
it is. A UITraitEnvironment (an object with a traitCollection property: UIScreen,
UIView, UIViewController, or UIPresentationController) ultimately gets its trait col‐
lection from the environment, and the environment is simply a fact. Nevertheless, a
parent view controller has the amazing ability to lie to a child view controller about the
environment, thanks to this method:

• setOverrideTraitCollection:forChildViewController:

342 | Chapter 6: View Controllers

The first parameter is a UITraitCollection that will be combined with the inherited trait
collection and communicated to the specified child.

This is a UIViewController instance method, so only view controllers have this mighty
power. Moreover, you have to specify a child view controller, so only parent view con‐
trollers have this mighty power. However, UIPresentationController has a similar pow‐
er, through its overrideTraitCollection property; setting this property combines the
override trait collection with the inherited collection and communicates it to the pre‐
sented view controller.

Why would you want to do such a thing as lie to a child view controller about its envi‐
ronment? Well, imagine that we’re writing an iPad app, and we have a view controller
whose view can appear either fullscreen or as a small subview of a parent view controller’s
main view. The view’s interface might need to be different when it appears in the smaller
size. You could configure that using size classes (conditional constraints) in the nib
editor, with one interface for a .Regular horizontal size class (iPad) and another inter‐
face for a .Compact horizontal size class (iPhone). Then, when the view is to appear in
its smaller size, we lie to its view controller and tell it that this is an iPhone:

let vc = // the view controller we're going to use as a child
self.addChildViewController(vc)
let tc = UITraitCollection(horizontalSizeClass: .Compact)
self.setOverrideTraitCollection(tc, forChildViewController: vc) // heh heh
vc.view.frame = // whatever
self.view.addSubview(vc.view)
vc.didMoveToParentViewController(self)

Apple’s own motivating example involves UISplitViewController, a class that (new in
iOS 8) behaves differently depending on its trait environment. For example, by lying to
a split view controller and making it believe we’re on an iPad, you can cause the split
view controller to look like a split view controller (displaying two subviews, such as a
master table view and a detail view) even on an iPad. I’ll talk more about that in Chap‐
ter 9.

A parent view controller sets the size of a child view controller’s view. A child view
controller, however, can express a preference as to what size it would like its view to be,
by setting its own preferredContentSize property. The chief purpose of this property
is to be consulted by a parent view controller when this view controller is its child. This
property is a preference and no more; no law says that the parent must consult the child,
or that the parent must obey the child’s preference.

If a view controller’s preferredContentSize is set while it is a child view controller, the
runtime automatically communicates this fact to the parent view controller, by calling
this UIContentContainer method:

• preferredContentSizeDidChangeForChildContentContainer:

Container View Controllers | 343

The parent view controller may implement this method to consult the child’s preferred-
ContentSize and change the child’s view’s size in response. Again, no law requires the
parent to do this. This method, and the preferredContentSize property, are ways of
allowing a child view controller a voice in its view’s size; it is the parent who dictates
what that size will actually be.

A parent view controller, as an adopter of the UIContentContainer protocol (along with
UIPresentationController), is also responsible for communicating to its children that
their sizes are changing and what their new sizes will be. It is the parent view controller’s
duty to implement this method:
sizeForChildContentContainer:withParentContainerSize:

Should be implemented to return each child view controller’s correct size at any
moment. Failure to implement this method will cause the child view controller to
be handed the wrong size in its implementation of viewWillTransitionTo-
Size:withTransitionCoordinator: — it will be given the parent’s new size rather
than its own new size!

If your parent view controller implements viewWillTransitionToSize:with-

TransitionCoordinator:, calling super is sufficient to get the same message passed on
to the children. This works even if your implementation explicitly changed the size of
a child view controller at this time, provided that you implemented sizeForChild-
ContentContainer:withParentContainerSize: to return the new size.

Storyboards
Throughout this chapter, I’ve been describing how to create a view controller and
present it or make it another view controller’s child manually, entirely in code. But if
you’re using a storyboard, you will often (or always) allow the storyboard to do those
things for you automatically. A storyboard can be helpful and convenient in this regard,
though not, perhaps, for the reasons one might expect. It doesn’t necessarily reduce the
amount of code you’ll have to write; indeed, in some cases using a storyboard may
compel you to write more code, and in a less readable and maintainable way, than if you
were creating your view controllers manually. But a storyboard does clarify the rela‐
tionships between your view controllers over the course of your app’s lifetime. Instead
of having to hunt around in each of your classes to see which class creates which view
controller and when, you can view and manage the chain of view controller creation
graphically in the nib editor (Figure 6-9).

A storyboard, as I’ve already explained, is basically a collection of view controller nibs
(scenes) and view nibs. Each view controller is instantiated from its own nib, as needed,
and will then obtain its view, as needed — typically from a view nib that you’ve config‐
ured in the same storyboard by editing the view controller’s view. I described this process
in detail, and listed the ways in which a view controller in a storyboard can be instan‐

344 | Chapter 6: View Controllers

Figure 6-9. The storyboard of an actual app

tiated, in “Storyboard-Instantiated View Controller” on page 266. One of those ways is
manual (calling instantiateViewControllerWithIdentifier:); the other three are,
or can be, automatic:
Initial view controller

If your app has a main storyboard, as specified by its Info.plist, that storyboard’s
initial view controller will be instantiated and assigned as the window’s rootView-
Controller automatically as the app launches. To specify that a view controller is
a storyboard’s initial view controller, check the “Is Initial View Controller” checkbox
in its Attributes inspector. This will cause any existing initial view controller to lose
its initial view controller status. The initial view controller is distinguished graph‐
ically in the canvas by an arrow pointing to it from the left.

Relationship
Two built-in parent view controllers can specify their children directly in the story‐
board, setting their viewControllers array:

• UITabBarController can specify multiple children.
• UINavigationController can specify its single initial child (its root view

controller).

To add a view controller as a viewControllers child to a parent view controller,
Control-drag from the parent view controller to the child view controller; in the
little HUD that appears, choose (under Relationship Segue) “view controllers” for
a UITabBarController, or “root view controller” for a UINavigationController. The
result is a relationship whose source is the parent and whose destination is the child.
The destination view controller will be instantiated automatically when the source
view controller is instantiated, and will be assigned into its viewControllers array,
thus making it a child and retaining it.

Storyboards | 345

Segue
A segue configures a future situation, when the segue will be triggered. At that time,
one view controller that already exists will cause the instantiation of another, bring‐
ing the latter into existence. Two types of segue are particularly common; they have
new names in Xcode 6 if your .storyboard or .xib file uses size classes:
Push (with size classes: “show”)

The future view controller will be pushed onto the stack of the navigation con‐
troller of which the existing view controller is already a child.

The new name comes from the showViewController:sender: method, which
pushes a view controller onto the parent navigation controller if there is one,
but behaves adaptively if there is not (I’ll talk more about that in Chapter 9).

Modal (with size classes: “present modally”)
The future view controller will be a presented view controller (and the existing
view controller will be its original presenter).

Unlike a relationship, a segue does not have to emanate from a view controller; it
can emanate from certain kinds of gesture recognizer, or from an appropriate view
(such as a button or a table view cell) in the first view controller’s view. This is a
graphical shorthand signifying that the segue should be triggered, bringing the
second view controller into existence, when a tap or other gesture occurs.

To create a segue, Control-drag from the view in the first view controller, or from
the first view controller itself, to the second view controller. In the little HUD that
appears, choose the type of segue you want.

In the rest of this chapter, I’ll continue to use the older terms “push segue” and
“modal segue.” The new official names associated with size classes, “show segue”
and “present modally segue,” are too cumbersome. (Even Apple seems unsettled by
its own choice of names: in the Segue pop-up menu in the Attributes inspector, a
push segue is called “Show (e.g. Push)” — a clear case of renamer’s remorse.)

(The arrows to the left of the four view controllers in Figure 6-9 are, sequentially, the
initial view controller indicator, a relationship, a push segue, and a modal segue.)

Segues
Xcode confusingly and misleadingly tries to characterise relationships as a kind of segue
(“Relationship Segue”); but the segue that concerns us here is what Xcode terms a Man‐
ual Segue, such as a push segue or a modal segue. Such a segue is a full-fledged object,
an instance of UIStoryboardSegue (or your custom subclass thereof). In a storyboard,
however, it is not a nib object, in the sense that it is not instantiated by the loading of a

346 | Chapter 6: View Controllers

nib, and it cannot be pointed to by an outlet. Rather, it will be instantiated when the
segue is triggered, at which time its designated initializer will be called, namely
init(identifier:source:destination:). It can, however, be configured in the nib
editor, through the Attributes inspector.

A segue’s source and destination are the two view controllers between which it runs.
The segue is directional, so the source and destination are clearly distinguished. The
source view controller is the one that will exist at the time the segue is triggered;
the destination view controller is the one that the segue itself will be responsible for
instantiating.

A segue’s identifier is a string. You can set this string for a segue in a storyboard
through its Attributes inspector; this can be useful when you want to trigger the segue
manually in code (you’ll specify it by means of its identifier), or when you have code
that can receive a segue as parameter and you need to distinguish which segue this is.

In the case of a push segue, the identifier is the only thing you can customize in the
Attributes inspector. The segue is going to call pushViewController:animated: for
you, and you can’t change anything about that.

In the case of a modal segue, the Attributes inspector lets you specify the Presentation
(equivalent to the view controller’s modalPresentationStyle) and the Transition
(equivalent to the view controller’s modalTransitionStyle); if you change these settings
from Default, the segue will set that property to your choice when it instantiates the
destination view controller, overriding whatever setting the destination view controller
already has. The Animates checkbox is effectively the same as the second argument in
presentViewController:animated:completion:.

Custom transition animations work just fine with segues. A segue is calling pushView-
Controller:animated: or presentViewController:animated:completion: just as
you would do in code, so if the relevant view controller has a delegate which returns an
animation controller, your custom transition animation will be performed as usual.
Remember, though, to configure the view controller early enough; viewDidLoad will
not do as a place for a view controller to assign itself, say, a transitioningDelegate.
This view controller is being instantiated from a nib, so awakeFromNib or init(coder:)
is appropriate.

You can also specify a segue as a Custom segue, either in the HUD when you Control-
drag to create the segue, or in the Attributes inspector. The Attributes inspector for a
custom segue lets you specify a segue class, which must be a UIStoryboardSegue sub‐
class. In that subclass, you must override perform, which will be called after the segue
is triggered and instantiated. Your perform implementation can access the segue’s
identifier, sourceViewController, and destinationViewController properties.
The destinationViewController has already been instantiated, but that’s all; doing
something with this view controller so as to make it a child view controller or presented

Storyboards | 347

view controller, retaining it and causing its view to appear in the interface, is entirely up
to your code.

Now let’s talk about how a segue will be triggered:

• If a segue emanates from a gesture recognizer or from a tappable view, it will be
triggered automatically when the tap or other gesture occurs. The source view con‐
troller can prevent this; if you don’t want this segue triggered on this occasion,
implement shouldPerformSegueWithIdentifier:sender: and return false.

• If a segue emanates from a view controller as a whole, then triggering it is up to
your code. To do so, send performSegueWithIdentifier:sender: to the source
view controller. (In this case, shouldPerformSegueWithIdentifier:sender: will
not be called.)

When a segue is triggered, the destination view controller is instantiated automatically.
This is nice in the sense that automatic behavior is convenient, but it raises a crucial
question: how on earth are you going to communicate between the source view con‐
troller and the destination view controller? This, you’ll remember, was the subject of an
earlier section of this chapter (“Communication With a Presented View Controller” on
page 288), where I used this code as an example:

let svc = SecondViewController(
 nibName: "SecondViewController", bundle: nil)
svc.data = "This is very important data!"
svc.delegate = self
self.presentViewController(svc, animated:true, completion:nil)

In that code, the first view controller created the second view controller, and therefore
had an opportunity of passing along some data to it before presenting it. With a segue,
however, the second view controller is instantiated for you, and the segue itself is going
to call presentViewController:animated:completion:. So when and how will you be
able to set svc.data and set yourself as svc’s delegate?

The answer is that, after the segue has instantiated the second view controller but before
it is performed, the source view controller is sent prepareForSegue:sender:. (For a
custom segue, this happens before the segue’s own perform is called.) This is the moment
when the source view controller and the destination view controller meet! The source
view controller can thus perform configurations on the destination view controller, hand
it data, and so forth. The source view controller can work out which segue is being
triggered by examining the segue’s identifier and destinationViewController
properties, and the sender is the interface object that was tapped to trigger the segue
(or, if performSegueWithIdentifier:sender: was called in code, whatever object was
supplied as the sender: argument).

348 | Chapter 6: View Controllers

This solves the communication problem, though in a clumsy way; prepareFor-
Segue:sender: feels like a blunt instrument. The destinationViewController arrives
typed as a generic AnyObject, and it is up to your code to know its actual type, cast it,
and configure it. Moreover, if more than one segue emanates from a view controller,
they are all bottlenecked through the same prepareForSegue:sender: implementation,
which thus devolves into an ugly collection of conditions to distinguish them.

Container Views
You can configure a UITabViewController’s child view controllers or a UINavigation‐
Controller’s root view controller in a storyboard, because these are built-in parent view
controllers and the nib editor understands how they work. But if you write your own
custom container view controller, the nib editor doesn’t even know that your view con‐
troller is a container view controller. Nevertheless, you can perform some initial parent–
child configuration of your container view controller in a storyboard, if your situation
conforms to these assumptions:

• Your parent view controller will have one initial child view controller.
• You want the child view controller’s view placed somewhere in the parent view

controller’s view when the child view controller is instantiated.

Those are reasonable assumptions, and you can work around them if they don’t quite
give the desired effect. For example, if your parent view controller is to have additional
children, you can always add them later, in code; and if the child view controller’s view
is not to be initially visible in the parent view controller’s view, you can always hide it.

To configure your parent view controller in a storyboard, locate the Container View
object in the Object library and drag it into the parent view controller’s view in the
canvas. The result is a view, together with a segue from it to an additional child view
controller. You can then assign the child view controller its correct class in its Identity
inspector.

The segue here is an embed segue. When it is triggered, the destination view controller
is instantiated and made the source view controller’s child, and its view is placed exactly
inside the container view as its subview. Thus, the container view is not only a way of
generating the embed segue, but also a way of specifying where you want the child view
controller’s view to go. The entire child-addition dance is performed correctly and au‐
tomatically for you: addChildViewController: is called, the child’s view is put into the
interface, and didMoveToParentViewController: is called.

Despite its superficial resemblance to a relationship, an embed segue is a true segue. It
can have an identifier, and the standard messages are sent to the source view controller
when the segue is triggered. Nevertheless, it has this similarity to a relationship: when
the source (parent) view controller is instantiated, the runtime wants to trigger the segue

Storyboards | 349

automatically, instantiating the child view controller and embedding its view in the
container view now. If that isn’t what you want, override shouldPerformSegueWith-
Identifier:sender: in the parent view controller to return false for this segue, and
call performSegueWithIdentifier:sender: later when you do want the child view
controller instantiated.

The parent view controller is sent prepareForSegue:sender: before the child’s view
loads. At this time, the child has not yet been added to the parent’s childView-
Controllers array. If you allow the segue to be triggered when the parent view controller
is instantiated, then by the time the parent’s viewDidLoad is called, the child has been
added to the parent’s childViewControllers, and the child’s view is inside the parent’s
view.

Subsequently replacing one child view controller’s view with another in the interface
will require that you call transitionFromViewController:... just as you would have
done if a storyboard weren’t involved (as I described earlier in this chapter). Still, you
can configure this through a storyboard by using a custom segue and a UIStoryboard‐
Segue subclass.

Unwind Segues
Storyboards and segues would appear to be useful only half the time, because segues
are asymmetrical. There is a push segue but no pop segue. There is a modal segue that
presents a view controller but no modal segue that dismisses it.

In a nutshell, you can’t use a normal segue to mean “go back.” A segue’s destination is a
class; triggering the segue instantiates that class. But when dismissing a presented view
controller or popping a pushed view controller, we don’t need any new view controller
instances. We want to return, somehow, to an existing instance of a view controller.

A common mistake among beginners is to make a manual segue from view con‐
troller A to view controller B, and then try to express the notion “go back” by
making another manual segue from view controller B to view controller A. The
result, of course, is not presentation and subsequent dismissal, but presentation
piled on presentation, or push piled on push, one view controller instantiated on
top of another on top of another. Do not construct a cycle of segues. (Unfortunately,
the nib editor doesn’t alert you to this mistake.)

Thus, when storyboards were introduced in iOS 5, the way to call popViewController-
Animated: was to call it, in code (or let a back button call it for you), just as if there were
no such thing as a storyboard. The way to call dismissViewController-

Animated:completion: was to call it, in code, just as if there were no such thing as a
storyboard.

350 | Chapter 6: View Controllers

Figure 6-10. Creating an unwind segue

To deal with this shortcoming, iOS 6 introduced the unwind segue. An unwind segue
does let you express the notion “go back” in a storyboard. It works in an ingenious and
rather elaborate way. It has to, because (as I’ve just shown) it can’t possibly work like a
normal segue! So how does it work?

Let’s talk first about how you create an unwind segue in the first place. Before you can
do that, you must implement an unwind method in the class of any view controller
represented in the storyboard. This should be a method marked @IBAction as a hint to
the storyboard editor, and taking a single parameter, a UIStoryboardSegue. You can call
it unwind: if you like, but the name doesn’t really matter:

@IBAction func unwind(seg:UIStoryboardSegue!) {
 // ...
}

Now you can create an unwind segue. Doing so involves the use of the Exit proxy object
that appears in every scene of a storyboard. Control-drag from the view controller you
want to go back from, connecting it to the Exit proxy object in the same scene
(Figure 6-10). A little HUD appears, listing all the unwind methods known to this
storyboard (similar to how action methods are listed in the HUD when you connect a
button to its target). Click the name of the unwind method you want. You have now
made an unwind segue, bound to that unwind method.

Even so, the name of the unwind method to which the unwind segue is bound is only a
name. The unwind segue’s source view controller is the view controller that contains it.
But its destination view controller is unknown; it will not be determined until the app
runs and the segue is triggered. At runtime, when the unwind segue is triggered, the
runtime starts walking up the view controller hierarchy looking for a destination view
controller. Put simply, the first view controller it finds that implements the unwind
method will be the destination view controller. (I’ll describe the actual details of this
search in a moment.)

Once the destination view controller is found, the following steps are performed:

Storyboards | 351

1. The source view controller’s shouldPerformSegueWithIdentifier:sender: is
called — just as for a normal segue. This is your chance to stop the whole process
dead at this point by returning false.

2. The source view controller’s prepareForSegue:identifier: is called — just as for
a normal segue. The two view controllers are now in contact (because the other
view controller is the segue’s destinationViewController). This is an opportunity
for the source view controller to hand information to the destination view controller
before being destroyed! (Thus, an unwind segue is an alternative to a delegate
property as a way of putting one view controller into communication with another:
see “Communication With a Presented View Controller” on page 288.)

3. The destination view controller’s unwind method is called. Its parameter is the
segue; this segue can be identified through its identifier property. The two view
controllers are now in contact again (because the other view controller is the segue’s
sourceViewController). It is perfectly reasonable, however, for the unwind meth‐
od body to be empty; the unwind method’s real purpose is to mark this view con‐
troller as the destination view controller.

4. The segue is performed, destroying the source controller and any intervening view
controllers up to (but not including) the destination view controller, in good order.

Now I’ll go back and explain in detail how the destination view controller is found and
used to construct the actual segue. This is partly out of sheer interest (it’s a devilishly
clever procedure), and partly in case you need to customize the process.

When an unwind segue is triggered, the runtime starts walking up the view controller
hierarchy from the source view controller instance toward the root view controller. This
walk is well-defined: every view controller has either a parentViewController or a
presentingViewController, so the next view controller up the hierarchy is that view
controller. The runtime asks each view controller for the destination view controller, by
calling this UIViewController method:
viewControllerForUnwindSegueAction:fromViewController:withSender:

There are two possible responses:
A view controller returns nil

The runtime will proceed to the next view controller up the hierarchy.

A view controller returns a view controller (possibly itself)
The search ends: the destination view controller has been found.

The default UIViewController implementation of viewControllerForUnwindSegue-
Action:... is for a view controller to send itself this message:
canPerformUnwindSegueAction:fromViewController:withSender:

There are two possible outcomes:

352 | Chapter 6: View Controllers

canPerformUnwindSegueAction:... returns false
In that case, viewControllerForUnwindSegueAction:... returns nil, and the
search continues.

canPerformUnwindSegueAction:... returns true
In that case, viewControllerForUnwindSegueAction:... returns self, and
the search ends here.

The default implementation of canPerformUnwindSegueAction:..., in turn, is for a
view controller to send itself respondsToSelector: for the unwind method! Thus, the
normal outcome is that if a view controller implements the unwind method, it will end
up as the destination view controller, and otherwise, the search will continue on up the
hierarchy.

(You can, however, override canPerformUnwindSegueAction:... to return false, to
force the runtime search to continue on up the view controller hierarchy past this view
controller.)

What I have said so far, however, does not explain how a push is reversible. After all,
the next view controller that the runtime comes to as it walks up the hierarchy from a
pushed view controller is the parent of the pushed view controller, namely the
UINavigationController itself. But a push does not unwind to the navigation controller;
it unwinds (usually) by popping to the next sibling down the navigation controller’s
stack. How does that happen?

The answer is that the runtime walk does indeed come to the UINavigationController
itself, and does indeed ask the navigation controller for a destination by sending it view-
ControllerForUnwindSegueAction:...; but UINavigationController has its own elab‐
orate default implementation of viewControllerForUnwindSegueAction:.... It
doesn’t consider itself as a possible destination; that wouldn’t make sense. Instead, it
consults its children, starting at the top of the stack and polling them in reverse order,
looking for the first one that returns true from canPerformUnwindSegueAction:...;
if it finds one, it returns it (and otherwise it returns nil). Moreover, by default, can-
PerformUnwindSegueAction:... returns false if the fromViewController: is self.
This algorithm suffices to choose the correct view controller to pop to.

I have explained how the destination view controller is chosen, but not how the un‐
winding process itself is implemented. How does it come about that sometimes we
dismiss (a presented view controller) and sometimes we pop (a pushed view controller)
— and sometimes a combination of both?

The answer is that if a view controller supplies the runtime with a destination view
controller (by returning one from its viewControllerForUnwindSegueAction:...), it
is then also asked to supply the actual segue! This is done by sending it this message:

Storyboards | 353

segueForUnwindingToViewController:fromViewController:identifier:

Must return a segue whose perform method is tailor-made for the current situation,
dictating the entire “go back” sequence that will release the source view controller
and all intervening view controllers in good order, and performing an appropriate
transition animation.

The resulting segue’s identifier will be the identifier, if any, that you specified for
the original unwind segue in the storyboard; its sourceViewController will be the
source view controller from the storyboard (the fromViewController:); and its
destinationViewController will be the destination view controller we have at last
settled on (the toViewController:).

How is such a segue constructed? By calling this UIStoryboardSegue class method:
segueWithIdentifier:source:destination:performHandler:

Creates a segue on the fly. Its perform implementation will be the block (closure)
supplied as the performHandler: parameter.

To illustrate, let’s modify the segue performed by a navigation controller. Consider this
sequence: a navigation controller, its root view controller, a pushed view controller, and
a presented view controller. By default, if we unwind directly from the presented view
controller all the way back to the root view controller, we get only the reverse of the
presented view controller’s original animation. That’s not very clear to the user, since in
fact we’re going back two steps. Let’s improve that so that there are two successive ani‐
mations, a dismissal followed by a pop. We replace the UINavigationController with a
custom subclass, and override segueForUnwinding:... as follows:

override func segueForUnwindingToViewController(
 toViewController: UIViewController,
 fromViewController: UIViewController,
 identifier: String?) -> UIStoryboardSegue {
 let vcs = self.viewControllers as [UIViewController]
 if vcs.count == 2 && toViewController == vcs[0] {
 if fromViewController == self.presentedViewController {
 return UIStoryboardSegue(identifier: identifier,
 source: fromViewController,
 destination: toViewController) {
 self.dismissViewControllerAnimated(true) { // anim 1
 _ in
 self.popToViewController(
 toViewController, animated: true) // anim 2
 return
 }
 }
 }
 }

354 | Chapter 6: View Controllers

 return super.segueForUnwindingToViewController(
 toViewController, fromViewController: fromViewController,
 identifier: identifier)
}

New in iOS 8, if the runtime walk up the view controller hierarchy comes to a child view
controller, it turns immediately to the parent. In other words, in iOS 8, viewController-
ForUnwindSegueAction:... is never sent by the runtime to a child view controller. If a
view controller has a parent, the parent is consulted, not the child.

This is different from iOS 7 and before. The difference is manifest particularly in the edge
case where we unwind a presented view controller to a child view controller. Consider
again the same sequence I posited a moment ago: a navigation controller, its root view
controller, a pushed view controller, and a presented view controller, which unwinds.
In iOS 7, the first view controller to be sent viewControllerForUnwindSegue-
Action:... was the pushed view controller — although, if the pushed view controller
nominated itself as the destination, it was the navigation controller that had to supply
the segue. In iOS 8, the first view controller to be sent viewControllerForUnwindSegue-
Action:... is the navigation controller.

The iOS 8 approach is more rational, but it can break your existing code, especially if
you have a custom container view controller. If you want your custom container view
controller to work with unwind segues, it must do the kind of thing UINavigation‐
Controller does. The implementation is not difficult, but if unwind segues were working
with your existing parent view controller from iOS 7, they may appear to be broken
when your app is recompiled for iOS 8 until you adjust to deal with this edge case.

View Controller Lifetime Events
As views come and go, driven by view controllers and the actions of the user, events
arrive that give your view controller the opportunity to respond to the various stages of
its own existence and the management of its view. By overriding these methods, your
UIViewController subclass can perform appropriate tasks at appropriate moments.
Here’s a list:
viewDidLoad

The view controller has obtained its view. See the discussion earlier in this chapter
of how a view controller gets its view.

View Controller Lifetime Events | 355

willTransitionToTraitCollection:withTransitionCoordinator:
viewWillTransitionToSize:withTransitionCoordinator:
traitCollectionDidChange:

The view controller’s view is being resized or the trait environment is changing (or
both). See the discussion of resizing events earlier in this chapter. Your implemen‐
tation of the first two methods must call super.

updateViewConstraints
viewWillLayoutSubviews
viewDidLayoutSubviews

The view is receiving updateConstraints and layoutSubviews events. See Chap‐
ter 1, and the discussion of resizing events earlier in this chapter. Your implemen‐
tation of updateViewConstraints must call super.

willMoveToParentViewController:
didMoveToParentViewController:

The view controller is being added or removed as a child of another view controller.
See the discussion of container view controllers earlier in this chapter.

viewWillAppear:
viewDidAppear:
viewWillDisappear:
viewDidDisappear:

The view is being added to or removed from the interface. This includes being
supplanted by another view controller’s view or being restored by the removal of
another view controller’s view. A view that has appeared (or has not yet disappeared)
is in the window; it is part of your app’s active view hierarchy. A view that has
disappeared (or has not yet appeared) is not in the window; its window is nil. You
must call super in your override of any of these four methods; if you forget to do
so, things may go wrong in subtle ways.

To distinguish more precisely why your view is appearing or disappearing, call any
of these methods on self:

• isBeingPresented

• isBeingDismissed

• isMovingToParentViewController

• isMovingFromParentViewController

A good way to get a sense for when these events are useful is to track the sequence in
which they normally occur. Take, for example, a UIViewController being pushed onto
the stack of a navigation controller. It receives, in this order, the following messages:

356 | Chapter 6: View Controllers

• viewWillAppear:

• traitCollectionDidChange:

• viewWillLayoutSubviews

• updateViewConstraints

• viewDidLayoutSubviews

• viewDidAppear:

• didMoveToParentViewController:

(There is then a second round of layout messages.)

When this same UIViewController is popped off the stack of the navigation controller,
it receives, in this order, the following messages:

• willMoveToParentViewController: (with parameter nil)
• viewWillDisappear:

• viewWillLayoutSubviews

• updateViewConstraints

• viewDidLayoutSubviews

• viewDidDisappear:

• didMoveToParentViewController: (with parameter nil)

Disappearance, as I mentioned a moment ago, can happen because another view con‐
troller’s view supplants this view controller’s view. For example, consider a UIView‐
Controller functioning as the top (and visible) view controller of a navigation controller.
When another view controller is pushed on top of it, the first view controller gets these
messages:

• viewWillDisappear:

• viewWillLayoutSubviews

• updateViewConstraints

• viewDidLayoutSubviews

• viewDidDisappear:

• didMoveToParentViewController:

The converse is also true. For example, when a view controller is popped from a navi‐
gation controller, the view controller that was below it in the stack (the back view con‐
troller) receives these events:

View Controller Lifetime Events | 357

• viewWillAppear:

• viewWillLayoutSubviews

• updateViewConstraints

• viewDidLayoutSubviews

• viewDidAppear

• didMoveToParentViewController:

(There is then a second round of layout messages.)

Incoherencies in View Controller Events
Unfortunately, the exact sequence of events and the number of times they will be called
for any given view controller transition situation sometimes seems nondeterministic or
incoherent. The previous section contains a number of cases in point, and there are
others. For example:

• Sometimes didMoveToParentViewController: arrives without a corresponding
willMoveToParentViewController:.

• Sometimes didMoveToParentViewController: arrives even though this view con‐
troller was previously the child of this parent and remains the child of this parent.

• Sometimes the layout events (updateViewConstraints, viewWillLayout-

Subviews, viewDidLayoutSubviews) arrive more than once for the same view con‐
troller for the same transition.

• Sometimes the layout events arrive needlessly, as when the view controller’s view is
about to leave the interface and the view controller is about to be destroyed.

• Sometimes viewWillAppear: or viewWillDisappear: arrives without the corre‐
sponding viewDidAppear: or viewDidDisappear:. For example, if an interactive
transition animation begins and is cancelled, the cancelled view controller receives
viewWillAppear: at the start, without viewDidAppear:, and receives viewWill-
Disappear: and viewDidDisappear: at the end.

The best advice I can offer is that you should try to structure your code in such a way
that incoherencies of this sort don’t matter.

Appear and Disappear Events
The appear/disappear methods are particularly appropriate for making sure that a view
reflects the model or some form of saved state whenever it appears. Changes to the
interface performed in viewDidAppear: or viewWillDisappear: may be visible to the
user as they occur! If that’s not what you want, use the other member of the pair. For

358 | Chapter 6: View Controllers

example, in a certain view containing a long scrollable text, I want the scroll position to
be the same when the user returns to this view as it was when the user left it, so I save
the scroll position in viewWillDisappear: and restore it in viewWillAppear: (not view-
DidAppear:, where the user might see the scroll position jump).

Similarly, they are useful when something must be true exactly so long as a view is in
the interface. For example, a timer that must be running while a view is present can be
started in the view controller’s viewDidAppear: and stopped in its viewWill-
Disappear:. (This architecture also allows you to avoid the retain cycle that could result
if you waited to invalidate the timer in a deinit that might otherwise never arrive.)

A view does not disappear if a presented view controller’s view merely covers it rather
than supplanting it. For example, a view controller that presents another view controller
using the .FormSheet presentation style gets no lifetime events during presentation and
dismissal.

A view does not disappear merely because the app is backgrounded and suspended.
Once suspended, your app might be killed. So you cannot rely on viewWillDisappear:
and viewDidDisappear: alone for saving data that the app will need the next time it
launches. If you are to cover every case, you may need to ensure that your data-saving
code also runs in response to an application lifetime event such as applicationWill-
ResignActive: or applicationDidEnterBackground: (and see Appendix A for a dis‐
cussion of the application lifetime events).

Event Forwarding to a Child View Controller
A custom container (parent) view controller, as I explained earlier, must effectively send
willMoveToParentViewController: and didMoveToParentViewController: to its
children manually.

It must also forward resizing events to its children. This will happen automatically if
you call super in your implementation of willTransitionToTraitCollection:...
and viewWillTransitionToSize:.... By the same token, if you implement these
methods, failure to call super may prevent them from being forwarded correctly to the
child view controller.

The appear events are normally passed along automatically. However, you can take
charge of calling these events manually, by implementing this method:
shouldAutomaticallyForwardAppearanceMethods

If you override this method to return false, you are responsible for seeing that
these methods on your view controller’s children are called:

• viewWillAppear:

• viewDidAppear:

View Controller Lifetime Events | 359

• viewWillDisappear:

• viewDidDisappear:

You do not do this by calling these methods directly. The reason is that you have
no access to the correct moment for sending them. Instead, you call these two
methods on your child view controller:

• beginAppearanceTransition:animated:; the first parameter is a Bool saying
whether this view controller’s view is about to appear (true) or disappear
(false)

• endAppearanceTransition

Here’s what to do if you’ve implemented shouldAutomaticallyForwardAppearance-
Methods to return false. There are two main occasions on which your custom container
view controller must forward appear events to a child.

First, what happens when your custom container view controller’s own view itself ap‐
pears or disappears? If it has a child view controller’s view within its own view, it must
implement and forward all four appear events to that child. You’ll need an implemen‐
tation along these lines, for each of the four appear events:

override func viewWillAppear(animated: Bool) {
 super.viewWillAppear(animated)
 let child = // whatever
 if child.isViewLoaded() && child.view.superview != nil {
 child.beginAppearanceTransition(true, animated: true)
 }
}
override func viewDidAppear(animated: Bool) {
 super.viewDidAppear(animated)
 let child = // whatever
 if child.isViewLoaded() && child.view.superview != nil {
 child.endAppearanceTransition()
 }
}

(The implementations for viewDidAppear: and viewDidDisappear: are similar, except
that the first argument for beginAppearanceTransition: is false.)

Second, what happens when you swap one view controller’s child for another in your
interface? You must not call the UIViewController method transitionFromView-
Controller:toViewController:...! It takes charge of sending the appear calls to the
children itself, and it isn’t going to do so correctly in this situation. Instead, you must
perform the transition animation directly. A minimal correct implementation might
involve the UIView class method transitionFromView:toView:... (see Chapter 4).

360 | Chapter 6: View Controllers

Here, you can and should call beginAppearanceTransition: and endAppearance-
Transition yourself.

Here’s an example of a parent view controller swapping one child view controller and
its view for another, while taking charge of notifying the child view controllers of the
appearance and disappearance of their views. I’ve put asterisks to call attention to the
additional method calls that forward the appear events to the children:

self.addChildViewController(tovc)
fromvc.willMoveToParentViewController(nil)
fromvc.beginAppearanceTransition(false, animated:true) // *
tovc.beginAppearanceTransition(true, animated:true) // *
UIView.transitionFromView(fromvc.view,
 toView:tovc.view,
 duration:0.4,
 options:.TransitionFlipFromLeft,
 completion:{
 _ in
 tovc.endAppearanceTransition() // *
 fromvc.endAppearanceTransition() // *
 tovc.didMoveToParentViewController(self)
 fromvc.removeFromParentViewController()
 })

View Controller Memory Management
Memory is at a premium on a mobile device. Thus you want to minimize your app’s use
of memory. Your motivations, in the multitasking world, are partly altruistic and partly
selfish. You want to keep your memory usage as low as possible so that other apps can
be launched and the user can switch between suspended apps. You also want to prevent
your own app from being terminated! If your app is backgrounded and suspended while
using a lot of memory, it may be terminated in the background when memory runs
short. If your app uses an inordinate amount of memory while in the foreground, it may
be summarily killed before the user’s very eyes.

One strategy for avoiding using too much memory is to release any memory-hogging
objects you’re retaining if they are not needed at this moment. Because a view controller
is the basis of so much of your application’s architecture, it is likely to be a place where
you’ll concern yourself with releasing unneeded memory.

One of your view controller’s most memory-intensive objects is its view. Fortunately,
the iOS runtime manages a view controller’s view’s memory for you. If a view controller’s
view is not in the interface, it can be temporarily dispensed with. In such a situation, if
memory is getting tight, then even though the view controller itself persists, and even
though it retains its actual view, the runtime may release its view’s backing store (the
cached bitmap representing the view’s drawn contents). The view will then be redrawn
when and if it is to be shown again later.

View Controller Memory Management | 361

In addition, if memory runs low, your view controller may be sent this message:
didReceiveMemoryWarning

Sent to a view controller to advise it of a low-memory situation. It is preceded by a
call to the app delegate’s applicationDidReceiveMemoryWarning:, together with
a UIApplicationDidReceiveMemoryWarningNotification posted to any regis‐
tered objects. You are invited to respond by releasing any data that you can do
without. Do not release data that you can’t readily and quickly recreate! The doc‐
umentation advises that you should call super.

If you’re going to release data in didReceiveMemoryWarning, you must concern yourself
with how you’re going to get it back. A simple and reliable mechanism is lazy loading
— a getter that reconstructs or fetches the data if it is nil.

For example, suppose we have a property myBigData which might be a big piece of data.
We make this a calculated property, storing the real data in a private property (I’ll call
it myBigDataReal). Our calculated property’s setter simply writes through to the private
property. In didReceiveMemoryWarning we write myBigData out as a file to disk (Chap‐
ter 23) and set myBigData to nil — thus setting myBigDataReal to nil as well, and re‐
leasing the big data from memory. The getter for myBigData implements lazy loading:
if we try to get myBigData when myBigDataReal is nil, we attempt to fetch the data from
disk — and if we succeed, we delete it from disk (to prevent stale data):

private var myBigDataReal : NSData!
var myBigData : NSData! {
 set (newdata) {
 self.myBigDataReal = newdata
 }
 get {
 if myBigDataReal == nil {
 let fm = NSFileManager()
 let f = NSTemporaryDirectory()
 .stringByAppendingPathComponent("myBigData")
 if fm.fileExistsAtPath(f) {
 self.myBigDataReal = NSData(contentsOfFile: f)
 var err : NSError?
 let ok = fm.removeItemAtPath(f, error: &err)
 assert(ok, "Couldn't remove temp file")
 }
 }
 return self.myBigDataReal
 }
}
func saveAndReleaseMyBigData() {
 if let myBigData = self.myBigData {
 let f = NSTemporaryDirectory()
 .stringByAppendingPathComponent("myBigData")
 myBigData.writeToFile(f, atomically:false)
 self.myBigData = nil

362 | Chapter 6: View Controllers

 }
}
override func didReceiveMemoryWarning() {
 super.didReceiveMemoryWarning()
 self.saveAndReleaseMyBigData()
}

To test low-memory circumstances artificially, run your app in the Simulator and choose
Hardware → Simulate Memory Warning. I don’t believe this has any actual effect on
memory, but a memory warning of sufficient severity is sent to your app, so you can see
the results of triggering your low-memory response code, including the app delegate’s
applicationDidReceiveMemoryWarning: and your view controller’s didReceive-
MemoryWarning.

On the device, the equivalent is to call an undocumented method (in Objective-C):

[[UIApplication sharedApplication]
 performSelector:@selector(_performMemoryWarning)];

(Be sure to remove that code when it is no longer needed for testing, as the App Store
won’t accept it.)

You will also wish to concern yourself with releasing memory when your app is about
to be suspended. If your app has been backgrounded and suspended and the system
later discovers it is running short of memory, it will go hunting through the suspended
apps, looking for memory hogs that it can kill in order to free up that memory. If the
system decides that your suspended app is a memory hog, it isn’t politely going to wake
your app and send it a memory warning; it’s just going to terminate your app in its sleep.
The time to be concerned about releasing memory, therefore, is before the app is sus‐
pended. You’ll probably want your view controller to be registered with the shared
application to receive UIApplicationDidEnterBackgroundNotification. The arrival
of this notification is an opportunity to release any easily restored memory-hogging
objects, such as myBigData in the previous example:

override func viewDidLoad() {
 super.viewDidLoad()
 NSNotificationCenter.defaultCenter().addObserver(
 self, selector: "backgrounding:",
 name: UIApplicationDidEnterBackgroundNotification,
 object: nil)
}
func backgrounding(n:NSNotification) {
 self.saveAndReleaseMyBigData()
}

Testing how your app’s memory behaves in the background isn’t easy. In a WWDC 2011
video, an interesting technique is demonstrated. The app is run under Instruments on
the device, using the virtual memory instrument, and is then backgrounded by pressing
the Home button, thus revealing how much memory it voluntarily relinquishes at that

View Controller Memory Management | 363

time. Then a special memory-hogging app is launched on the device: its interface loads
and displays a very large image in a UIImageView. Even though your app is backgroun‐
ded and suspended, the virtual memory instrument continues to track its memory us‐
age, and you can see whether further memory is reclaimed under pressure from the
demands of the memory-hogging app in the foreground.

State Restoration
In the multitasking world, when the user leaves your app and then later returns to it,
one of two things might have happened in the meantime:
Your app was suspended

Your app was suspended in the background, and remained suspended while the
user did something else. When the user returns to your app, the system simply
unfreezes your app, and there it is, looking just as it did when the user left it.

Your app was terminated
Your app was suspended in the background, and then, as the user worked with other
apps, a moment came where the system decided it needed the resources (such as
memory) being held by your suspended app. Therefore it terminated your app.
When the user returns to your app, the app launches from scratch.

For most apps, a general goal should be to make those two situations more or less
indistinguishable to the user. The user, after all, doesn’t know the difference between
those two things, so why should the app behave differently some of the time? Ideally, it
should always feel to the user as if the app is being resumed from where it left off the
last time it was in the foreground, even if in fact the app was terminated while suspended
in the background. Otherwise, as the WWDC 2013 video on this topic puts it, the user
will feel that the app has mysteriously and annoyingly “lost my place.”

This goal is state restoration. Your app has a state at every moment: some view control‐
ler’s view is occupying the screen, and views within it are displaying certain values (for
example, a certain switch is set to On, or a certain table view is scrolled to a certain
position). The idea of state restoration is to save that information when the app goes
into the background, and use it to make all those things true again if the app is subse‐
quently launched from scratch.

iOS provides a general solution to the problem of state restoration. This solution is
centered around view controllers, which makes sense, since view controllers are the
heart of the problem. What is the user’s “place” in the app, which we don’t want to “lose”?
It’s the chain of view controllers that got us to where we were when the app was back‐
grounded, along with the configuration of each one. The goal of state restoration must
therefore be to reconstruct all existing view controllers, initializing each one into the state
it previously had.

364 | Chapter 6: View Controllers

Note that state, in this sense, is neither user defaults nor data. If something is a prefer‐
ence, make it a preference and store it in NSUserDefaults. If something is data (for
example, the underlying model on which your app’s functionality is based), keep it in a
file (Chapter 23). Don’t misuse the state saving and restoration mechanism for such
things. The reason for this is not only conceptual; it’s also because saved state can be
lost. You don’t want to commit anything to the state restoration mechanism if it would
be a disaster to have lost it the next time the app launches.

For example, suppose the user kills your app outright by double-clicking the Home
button to show the app switcher interface and flicking your app’s snapshot upward; the
system will throw away its state. Similarly, if your app crashes, the system will throw
away its state. In both cases, the system assumes that something went wrong, and doesn’t
want to launch your app into what might be a troublesome saved state. Instead, your
app will launch cleanly, from the beginning. There’s no problem for the user, barring a
mild inconvenience — as long as the only thing that gets thrown away is state.

How to Test State Restoration
To test whether your app is saving and restoring state as you expect:

1. Run the app as usual, in the Simulator or on a device.
2. At some point, in the Simulator or on the device, click the Home button (Hardware

→ Home in the Simulator). This causes the app to be suspended in good order, and
state is saved.

3. Now, back in Xcode, stop the running project (Product → Stop).
4. Run the project again. If there is saved state, it is restored.

(To test the app’s behavior from a truly cold start, delete it from the Simulator or device.
You might need to do this after changing something about the underlying save-and-
restore model.)

Apple also provides (at http://developer.apple.com/downloads) a number of debugging
tools:
restorationArchiveTool

A command-line tool letting you examine a saved state archive in textual format.
The archive is in a folder called Saved Application State in your app’s sandboxed
Library. See Chapter 23 for more about the app’s sandbox, and how to copy it to
your computer from a device.

StateRestorationDebugLogging.mobileconfig
A configuration profile. When installed on a device (through the iPhone Config‐
uration Utility, or by emailing it to yourself and opening it on the device), it causes
the console to dump information as state saving and restoration proceeds.

State Restoration | 365

http://developer.apple.com/downloads

StateRestorationDeveloperMode.mobileconfig
A configuration profile. When installed on a device, it prevents the state archive
from being jettisoned after unexpected termination of the app (a crash, or manual
termination through the app switcher interface). This can allow you to test state
restoration a bit more conveniently.

Participating in State Restoration
Built-in state restoration operates more or less automatically. All you have to do is tell
the system that you want to participate in it. To do so, you take three basic steps:
Implement app delegate methods

The app delegate must implement these methods to return true:

• application:shouldSaveApplicationState:

• application:shouldRestoreApplicationState:

(Naturally, your code can instead return false to prevent state from being saved
or restored on some particular occasion.)

Implement application:willFinishLaunchingWithOptions:
Although it is very early, application:didFinishLaunchingWithOptions: is too
late for state restoration. Your app needs its basic interface before state restoration
begins. The solution is to use a different app delegate method, application:will-
FinishLaunchingWithOptions:.

Typically, you can just change “did” to “will” in the name of this method, keeping
your existing code unchanged. However, your implementation must call makeKey-
AndVisible explicitly on the window if the existing code doesn’t already call it!
Otherwise, the interface doesn’t come into existence soon enough for restoration
to happen during launch.

Provide restoration IDs
Both UIViewController and UIView have a restorationIdentifier property,
which is a string. Setting this string to a non-nil value is your signal to the system
that you want this view controller (or view) to participate in state restoration. If a
view controller’s restorationIdentifier is nil, neither it nor any subsequent view
controllers down the chain will be saved or restored. (A nice feature of this archi‐
tecture is that it lets you participate partially in state restoration, omitting some
view controllers by not assigning them a restoration identifier.)

You can set the restorationIdentifier manually, in code; typically you’ll do that
early in a view controller’s lifetime. If a view controller or view is instantiated from
a nib, you’ll want to set the restoration identifier in the nib editor; the Identity
inspector has a Restoration ID field for this purpose. (If you’re using a storyboard,

366 | Chapter 6: View Controllers

it’s a good idea, in general, to make a view controller’s restoration ID in the story‐
board the same as its storyboard ID, the string used to identify the view controller
in a call to instantiateViewControllerWithIdentifier:; in fact, it’s such a good
idea that the storyboard editor provides a checkbox, “Use Storyboard ID,” that
makes the one value automatically the same as the other.)

In the case of a simple storyboard-based app, where each needed view controller instance
can be reconstructed directly from the storyboard, those steps alone can be sufficient
to bring state restoration to life, operating correctly at the view controller level. Let’s test
it. Start with a storyboard-based app with the following architecture (Figure 6-11):

• A navigation controller.
• Its root view controller, connected by a relationship from the navigation controller.

Call its class RootViewController.
■ A presented view controller, connected by a modal segue from a Present button

in the root view controller’s view. Call its class PresentedViewController. Its view
contains a Dismiss button.

• A second view controller, connected by a push segue from a Push bar button item
in the root view controller’s navigation item. Call its class SecondViewController.

■ The very same presented view controller (PresentedViewController), also con‐
nected by a modal segue from a Present button in the second view controller’s
view.

This storyboard-based app runs perfectly with just about no code at all; all we need is
an empty implementation of an unwind method in RootViewController and Second‐
ViewController so that we can create an unwind segue from the PresentedView‐
Controller Dismiss button.

We will now make this app implement state restoration:

1. Change the name of application:didFinishLaunchingWithOptions: in the app
delegate to application:willFinishLaunchingWithOptions:, and insert this line
of code if it isn’t already present:

self.window?.makeKeyAndVisible()

2. Implement application:shouldSaveApplicationState: and application:

shouldRestoreApplicationState: in the app delegate to return true.
3. Give all four view controller instances in the storyboard restoration IDs: let’s call

them "nav", "root", "second", and "presented".

That’s all! The app now saves and restores state.

State Restoration | 367

Figure 6-11. Architecture of an app for testing state restoration

Before calling makeKeyAndVisible, it may also be useful to assign the window a
restoration identifier: self.window!.restorationIdentifier = "window". This
might not make any detectable difference, but in some cases it can help restore size
class information.

Restoration ID, Identifier Path, and Restoration Class
Having everything done for us by the storyboard reveals nothing about what’s really
happening. To learn more, let’s rewrite the example without a storyboard. Throw away
the storyboard (and delete the Main Storyboard entry from the Info.plist) and imple‐
ment the same architecture using code alone:

// AppDelegate.swift:
func application(application: UIApplication,
 didFinishLaunchingWithOptions launchOptions: [NSObject: AnyObject]?)
 -> Bool {
 self.window = UIWindow(frame:UIScreen.mainScreen().bounds)
 let rvc = RootViewController()
 let nav = UINavigationController(rootViewController:rvc)
 self.window!.rootViewController = nav
 self.window!.backgroundColor = UIColor.whiteColor()
 self.window!.makeKeyAndVisible()

368 | Chapter 6: View Controllers

 return true
}

// RootViewController.swift:
override func viewDidLoad() {
 super.viewDidLoad()
 // ... color view background, create buttons ...
}
func doPresent(sender:AnyObject?) {
 let pvc = self.dynamicType.makePresentedViewController()
 self.presentViewController(pvc, animated:true, completion:nil)
}
func doPush(sender:AnyObject?) {
 let pvc = self.dynamicType.makeSecondViewController()
 self.navigationController!.pushViewController(pvc, animated:true)
}

// SecondViewController.swift:
override func viewDidLoad() {
 super.viewDidLoad()
 // ... color view background, create button ...
}
func doPresent(sender:AnyObject?) {
 let pvc = self.dynamicType.makePresentedViewController()
 self.presentViewController(pvc, animated:true, completion:nil)
}

// PresentedViewController.m:
override func viewDidLoad() {
 super.viewDidLoad()
 // ... color view background, create button ...
}
func doDismiss(sender:AnyObject?) {
 self.dismissViewControllerAnimated(true, completion: nil)
}

That’s a working app. Now let’s start adding state restoration, just as before:

1. Change the name of application:didFinishLaunchingWithOptions: in the app
delegate to application:willFinishLaunchingWithOptions:.

2. Implement application:shouldSaveApplicationState: and application:

shouldRestoreApplicationState: in the app delegate to return true.
3. Give all four view controller instances restoration IDs: let’s call them "nav", "root",

"second", and "presented". We’ll have to do this in code. We’re creating each view
controller instance manually, so we may as well assign its restoration-
Identifier in the next line, like this:

State Restoration | 369

let rvc = RootViewController()
rvc.restorationIdentifier = "root"
let nav = UINavigationController(rootViewController:rvc)
nav.restorationIdentifier = "nav"

And so on.

Run the app. We are not getting state restoration. Why not?

The reason is that the restorationIdentifier alone is not sufficient to tell the state
restoration mechanism what to do as the app launches. The restoration mechanism
knows the chain of view controller classes that needs to be generated, but it is up to us
to generate the instances of those classes. (Our storyboard-based example didn’t exhibit
this problem, because the storyboard itself was the source of the instances.) To do that,
we need to know about the identifier path and the restoration class.

The restorationIdentifier serves as a guide during restoration as to what view con‐
troller is needed at each point in the view controller hierarchy. Any particular view
controller instance, given its position in the view controller hierarchy, is uniquely iden‐
tified by the sequence of restorationIdentifier values of all the view controllers
(including itself) in the chain that leads to it. Those restorationIdentifier values,
taken together and in sequence, constitute the identifier path for any given view con‐
troller instance.

Each identifier path is, in fact, merely an array of strings. In effect, the identifier paths
are like a trail of breadcrumbs that you left behind as you created each view controller
while the app was running, and that will now be used to identify each view controller
again as the app launches.

For example, if we launch the app and press the Push button and then the Present button,
then all four view controllers have been instantiated; those instances are identified as:

• ["nav"]

• ["nav", "root"]

• ["nav", "second"]

• ["nav", "presented"] (because the navigation controller is the actual presenting
view controller)

Observe that a view controller’s identifier path is not a record of the full story of how
we got here. It’s just an identifier! The state-saving mechanism also saves a relational
tree of identifiers. For example, if the app is suspended in the current situation, then the
state-saving mechanism will record the true state of affairs, namely that the root view
controller has two children and a presented view controller, along with their identifiers.

370 | Chapter 6: View Controllers

Now consider what the state restoration mechanism needs to do when the app has been
suspended and killed, and comes back to life, from the situation I just described. We
need to restore four view controllers; we know their identifiers and mutual relationships.
State restoration doesn’t start until after application:willFinishLaunchingWith-
Options:. So when the state restoration mechanism starts examining the situation, it
discovers that the ["nav"] and ["nav", "root"] view controller instances have already
been created! However, the view controller instances for ["nav", "second"] and
["nav", "presented"] must also be created now. The state restoration mechanism
doesn’t know how to do that — so it’s going to ask your code for the instances.

But what code should it ask? One way of specifying this is for you to provide a restoration
class for each view controller instance that is not restored by the time application:will-
FinishLaunchingWithOptions: returns. Here’s how you do that:

1. Give the view controller a restorationClass. Typically, this will be the view con‐
troller’s own class, or the class of the view controller responsible for creating this
view controller instance.

2. Implement the class method viewControllerWithRestorationIdentifier-

Path:coder: on the class named by each view controller’s restorationClass
property, returning a view controller instance as specified by the identifier path.
Very often, the implementation will be to instantiate the view controller directly
and return that instance.

3. Specify formally that each class named as a restorationClass implements the
UIViewControllerRestoration protocol.

In the past, omitting that third step caused state restoration to fail silently and
mysteriously. New in iOS 8, you’ll get a delightful and helpful warning message at
runtime: “Restoration class for view controller does not conform to UIView‐
ControllerRestoration protocol.”

Let’s make our PresentedViewController and SecondViewController instances restor‐
able. I’ll start with PresentedViewController. Our app can have two PresentedView‐
Controller instances (though not simultaneously) — the one created by RootView‐
Controller, and the one created by SecondViewController. Let’s start with the one created
by RootViewController.

Since RootViewController creates and configures a PresentedViewController instance,
it can reasonably act also as the restoration class for that instance. In its implementation
of viewControllerWithRestorationIdentifierPath:coder:, RootViewController
should then create and configure a PresentedViewController instance exactly as it was
doing before we added state restoration to our app — except for putting it into the view

State Restoration | 371

controller hierarchy! The state restoration mechanism itself, remember, is responsible
for assembling the view controller hierarchy; our job is merely to supply any needed
view controller instances.

So RootViewController now must adopt UIViewControllerRestoration, and will con‐
tain this code:

func doPresent(sender:AnyObject?) {
 let pvc = PresentedViewController()
 pvc.restorationIdentifier = "presented"
 pvc.restorationClass = self.dynamicType // *
 self.presentViewController(pvc, animated:true, completion:nil)
}
class func viewControllerWithRestorationIdentifierPath(ip: [AnyObject],
 coder: NSCoder) -> UIViewController? {
 var vc : UIViewController? = nil
 let last = ip.last as String
 switch last {
 case "presented":
 let pvc = PresentedViewController()
 pvc.restorationIdentifier = "presented"
 pvc.restorationClass = self
 vc = pvc
 default: break
 }
 return vc
}

You can see what I mean when I say that the restoration class must do exactly what it
was doing before state restoration was added. Clearly this situation has led to some
annoying code duplication, so let’s factor out the common code. In doing so, we must
bear in mind that doPresent: is an instance method, whereas viewControllerWith-
RestorationIdentifierPath:coder: is a class method; our factored-out code must
therefore be a class method, so that they can both call it:

class func makePresentedViewController () -> UIViewController {
 let pvc = PresentedViewController()
 pvc.restorationIdentifier = "presented"
 pvc.restorationClass = self
 return pvc
}
func doPresent(sender:AnyObject?) {
 let pvc = self.dynamicType.makePresentedViewController()
 self.presentViewController(pvc, animated:true, completion:nil)
}
class func viewControllerWithRestorationIdentifierPath(ip: [AnyObject],
 coder: NSCoder) -> UIViewController? {
 var vc : UIViewController? = nil
 let last = ip.last as String
 switch last {
 case "presented":

372 | Chapter 6: View Controllers

 vc = self.makePresentedViewController()
 default: break
 }
 return vc
}

The structure of our viewControllerWithRestorationIdentifierPath:coder: is typ‐
ical. We test the identifier path — usually, it’s sufficient to examine its last element —
and return the corresponding view controller; ultimately, we are also prepared to return
nil, in case we are called with an identifier path we can’t interpret. We can also return
nil deliberately, to tell the restoration mechanism, “Go no further; don’t restore the view
controller you’re asking for here, or any view controller further down the same path.”

Continuing in the same vein, we expand RootViewController still further to make it
also the restoration class for SecondViewController, and SecondViewController can
make itself the restoration class for the PresentedViewController instance that it creates.
There’s no conflict in the notion that both RootViewController and SecondView‐
Controller can fulfill the role of PresentedViewController restoration class, as we’re
talking about two different PresentedViewController instances. The app now performs
state saving and restoration correctly! (The details are left as an exercise for the reader.)

I said earlier that the state restoration mechanism can ask your code for needed instances
in two ways. The second way is that you implement this method in your app delegate:

• application:viewControllerWithRestorationIdentifierPath:coder:

If you implement this method, it will be called for every view controller that doesn’t have
a restoration class. This works in a storyboard-based app, and thus is a chance for you
to intervene and prevent the restoration of a particular view controller on a particular
occasion (by returning nil). Be prepared to receive identifier paths for an existing view
controller! If that happens, return the existing view controller — don’t make a new one.

For example, if we were to implement application:viewControllerWithRestoration-
IdentifierPath:coder: in the example app I’ve been describing, it would be called for
["nav"] and for ["nav", "root"], because those view controllers have no restoration
class. But we needn’t, and we mustn’t, create a new view controller; those view controller
instances have already been created, and we must return those existing instances.

Restoring View Controller State
I have explained how the state restoration mechanism creates a view controller and
places it into the view controller hierarchy. But at that point, the work of restoration is
only half done. What about the state of that view controller?

A newly restored view controller probably won’t yet have the data and property values
it was holding at the time the app was terminated. The history of the creation and

State Restoration | 373

configuration of this view controller is not magically recapitulated during restoration.
If the view controller comes from a storyboard, then any settings in its Attributes in‐
spector are obeyed, but the segue that generated the view controller in the first place is
never run, so the previous view controller’s prepareForSegue:sender: is never called,
and the previous view controller never gets to hand this view controller any data. If the
view controller is created by a restoration class, it may have been given some initial
configuration, but this very likely falls short of the full state that the view controller was
holding when the app was terminated. Any additional communication between one
view controller and another to hand it data will be missing from the process. Indeed,
since the history of the app during its previous run is not recapitulated, there will be no
data to hand over in the first place.

It is up to each view controller, therefore, to restore its own state when it itself is restored.
And in order to do that, it must previously save its own state when the app is back‐
grounded. The state saving and restoration mechanism provides a way of helping your
view controllers do this, through the use of a coder (an NSCoder object). Think of this
coder as a box in which the view controller is invited to place its valuables for safekeep‐
ing, and from which it can retrieve them later. Each of these valuables needs to be
identified, so it is tagged with a key (an arbitrary string) when it is placed into the box,
and is then later retrieved by using the same key, much as in a dictionary.

Anyone who has anything to save at the time it is handed a coder can do so by sending
the coder an appropriate encode message with a key, such as encodeFloat:forKey: or
encodeObject:forKey:. If an object’s class doesn’t adopt the NSCoding protocol, you
may have to archive it to an NSData object before you can encode it. However, views
and view controllers can be handled by the coder directly, because they are treated as
references. Whatever was saved in the coder can later be extracted by sending the coder
the reverse operation using the same key, such as decodeFloatForKey: or decodeObject-
ForKey:.

The keys do not have to be unique across the entire app; they only need to be unique
for a particular view controller. Each object that is handed a coder is handed its own
personal coder. It is handed this coder at state saving time, and it is handed the same
coder (that is, a coder with the same archived objects and keys) at state restoration time.

Here’s the sequence of events involving coders:
When state is saved

When it’s time to save state (as the app is about to be backgrounded), the state saving
mechanism provides coders as follows:

1. The app delegate is sent application:shouldSaveApplicationState:. The
coder is the second parameter.

374 | Chapter 6: View Controllers

2. The app delegate is sent application:willEncodeRestorableStateWith-
Coder:. This is the same coder as in the previous step, because this is the same
object (the app delegate).

3. Each view controller down the chain, starting at the root view controller, is sent
encodeRestorableStateWithCoder: if it implements it. The implementation
should call super. Each view controller gets its own coder.

When state is restored
When the app is launched, if state is to be restored, the state restoration mechanism
provides coders as follows:

1. The app delegate is sent application:shouldRestoreApplicationState:.
The coder (the one belonging to the app delegate) is the second parameter.

2. As each view controller down the chain is to be created, one of these methods
is called (as I’ve already explained):
• The restoration class’s viewControllerWithRestorationIdentifier-

Path:coder:, if the view controller has a restoration class.
• The app delegate’s application:viewControllerWithRestoration-

IdentifierPath:coder:, if implemented.

The coder is the one appropriate to the view controller that’s to be created.
3. Each view controller down the chain, starting at the root view controller, is sent

decodeRestorableStateWithCoder: if it implements it. The implementation
should call super. The coder is the one appropriate to this view controller.

4. The app delegate is sent application:didDecodeRestorableStateWith-
Coder:. The coder is the same one sent to application:shouldRestore-
ApplicationState: (the one belonging to the app delegate).

The UIStateRestoration.h header file describes five built-in keys that are available from
every coder during restoration:
UIStateRestorationViewControllerStoryboardKey

A reference to the storyboard from which this view controller came, if any.

UIApplicationStateRestorationBundleVersionKey

Your Info.plist CFBundleVersion string when state saving happened.

UIApplicationStateRestorationUserInterfaceIdiomKey

An NSNumber wrapping a UIUserInterfaceIdiom value, either .Phone or .Pad,
telling what kind of device we were running on when state saving happened. You
can extract this information as follows:

State Restoration | 375

if let idiomraw = coder.decodeObjectForKey(
 UIApplicationStateRestorationUserInterfaceIdiomKey) as? Int {
 if let idiom = UIUserInterfaceIdiom(rawValue:idiomraw) {
 if idiom == .Phone {
 // ...
 }
 }
}

UIApplicationStateRestorationTimestampKey

An NSDate telling when state saving happened.

UIApplicationStateRestorationSystemVersionKey

A NSString telling the system version from when state saving happened.

One purpose of these keys is to allow your app to opt out of state restoration, wholly or
in part, because the archive is too old, was saved on the wrong kind of device (and
presumably migrated to this one by backup and restore), and so forth.

A typical implementation of encodeRestorableStateWithCoder: and decode-

RestorableStateWithCoder: will concern itself with properties and interface views.
decodeRestorableStateWithCoder: is guaranteed to be called after viewDidLoad, so
you know that viewDidLoad won’t overwrite any direct changes to the interface per‐
formed in decodeRestorableStateWithCoder:.

To illustrate, I’ll add state saving and restoration to my earlier UIPageViewController
example, the one that displays a Pep Boy on each page. Recall how that example is
architected. The project has no storyboard. The code defines just two classes, the app
delegate and the Pep view controller. The app delegate creates a UIPageViewController
and makes it the window’s root view controller, and makes itself the page view control‐
ler’s data source. The page view controller’s data source methods create and supply an
appropriate Pep instance whenever a page is needed for the page view controller, along
these lines:

// ... work out index of new name ...
return Pep(pepBoy: self.pep[ix])

The challenge is to restore the Pep object displayed in the page view controller as the
app launches. One solution involves recognizing that a Pep object is completely con‐
figured once created, and it is created just by handing it the name of a Pep Boy in its
designated initializer, which becomes its boy property. Thus we can mediate between a
Pep object and a mere string, and all we really need to save and restore is that string.

All the additional work, therefore, can be performed in the app delegate. As usual, we
change “did” to “will” so that we are now implementing application:willFinish-
LaunchingWithOptions:, and we implement application:shouldSaveApplication-
State: and application:shouldRestoreApplicationState: to return true. Now we

376 | Chapter 6: View Controllers

save and restore the current Pep Boy name in the app delegate’s encode and decode
methods:

func application(application: UIApplication,
 willEncodeRestorableStateWithCoder coder: NSCoder) {
 let pvc = self.window!.rootViewController as UIPageViewController
 let boy = (pvc.viewControllers[0] as Pep).boy
 coder.encodeObject(boy, forKey:"boy")
}
func application(application: UIApplication,
 didDecodeRestorableStateWithCoder coder: NSCoder) {
 let boy: AnyObject? = coder.decodeObjectForKey("boy")
 if let boy = boy as? String {
 let pvc = self.window!.rootViewController as UIPageViewController
 let pep = Pep(pepBoy: boy)
 pvc.setViewControllers(
 [pep], direction: .Forward, animated: false, completion: nil)
 }
}

A second solution, which is more realistic, assumes that we want our Pep view controller
class itself to be capable of saving and restoration. This means that every view controller
down the chain from the root view controller to our Pep view controller must have a
restoration identifier. In our simple app, there’s just one such view controller, the
UIPageViewController; the app delegate can assign it a restoration ID when it creates
it:

let pvc = UIPageViewController(transitionStyle: .Scroll,
 navigationOrientation: .Horizontal, options: nil)
pvc.restorationIdentifier = "pvc" // *

We’ll have a Pep object assign itself a restoration ID in its own designated initializer.
The Pep object will also need a restoration class; as I mentioned earlier, this can perfectly
well be the Pep class itself, and that seems most appropriate here:

required init(pepBoy boy:String) {
 self.boy = boy
 super.init(nibName: "Pep", bundle: nil)
 self.restorationIdentifier = "pep" // *
 self.restorationClass = self.dynamicType // *
}

The only state that a Pep object needs to save is its boy string. The coder in which that
boy value is saved will come back to us in Pep’s viewControllerWithRestoration-
IdentifierPath:coder:, so we can use it to create the new Pep object by calling the
designated initializer, thus avoiding code duplication:

override func encodeRestorableStateWithCoder(coder: NSCoder) {
 super.encodeRestorableStateWithCoder(coder)
 coder.encodeObject(self.boy, forKey:"boy")
}

State Restoration | 377

class func viewControllerWithRestorationIdentifierPath(
 ip: [AnyObject], coder: NSCoder) -> UIViewController? {
 let boy = coder.decodeObjectForKey("boy") as String
 return self(pepBoy: boy)
}

(Swift won’t permit a class to instantiate itself through an initializer on self unless we
guarantee that any subclass implements that initializer; our marking of init(pepBoy:)
as required constitutes just such a guarantee.)

Now comes a surprise. We run the app and test it, and we find that we’re not getting
saving and restoration of our Pep object. It isn’t being archived! Its encodeRestorable-
StateWithCoder: isn’t even being called! The reason is that the state saving mechanism
doesn’t work automatically for a UIPageViewController and its children (or for a custom
container view controller and its children, for that matter). It is up to us to see to it that
the current Pep object is archived.

To do so, we can archive and unarchive the current Pep object in an implementation of
encodeRestorableStateWithCoder: and decodeRestorableStateWithCoder: that is
being called. For our app, that would have to be in the app delegate. The code we’ve
written so far has all been necessary to make the current Pep object archivable and
restorable; now the app delegate will make sure that it is archived and restored:

func application(application: UIApplication,
 willEncodeRestorableStateWithCoder coder: NSCoder) {
 let pvc = self.window!.rootViewController as UIPageViewController
 let pep = pvc.viewControllers[0] as Pep
 coder.encodeObject(pep, forKey:"pep")
}
func application(application: UIApplication,
 didDecodeRestorableStateWithCoder coder: NSCoder) {
 let pep : AnyObject? = coder.decodeObjectForKey("pep")
 if let pep = pep as? Pep {
 let pvc = self.window!.rootViewController as UIPageViewController
 pvc.setViewControllers(
 [pep], direction: .Forward, animated: false, completion: nil)
 }
}

This solution may seem rather heavyweight, but it isn’t. We’re not really archiving an
entire Pep instance; it’s just a reference. The actual Pep instance is the one created by
viewControllerWithRestorationIdentifierPath:coder:.

Restoration Order of Operations
When you implement state saving and restoration for a view controller, the view con‐
troller ends up with two different ways of being configured. One way involves the life‐
time events I discussed earlier in this chapter (“View Controller Lifetime Events” on
page 355). The other involves the events I’ve been discussing in this section. You want

378 | Chapter 6: View Controllers

your view controller to be correctly configured no matter whether this view controller
is undergoing state restoration or not.

Before state saving and restoration, you were probably configuring your view controller,
at least in part, in viewWillAppear: and viewDidAppear:. With state saving and resto‐
ration added to the picture, you may also be receiving decodeRestorableStateWith-
Coder:. If you configure your view controller here, will you be overriding what happens
in viewWillAppear: and viewDidAppear:, or will they come along later and override
what you do in decodeRestorableStateWithCoder:?

The unfortunate fact is that you don’t know. For viewWillAppear: and viewDid-
Appear:, in particular, the only thing you do know during state restoration is that you’ll
get both of them for the top view controller (the one whose view actually appears). You
don’t know when they will arrive; it might be before or after decodeRestorableState-
WithCoder:. For other view controllers, you don’t even know whether viewDidAppear:
will arrive: it might well never arrive, even if viewWillAppear: arrives. This is another
of those view controller lifetime event incoherencies I complained about earlier in this
chapter.

However, there’s another event I haven’t mentioned yet: applicationFinished-
RestoringState. If you implement this method, it will be called if and only if we’re
doing state restoration, at a time when all view controllers have already been sent decode-
RestorableStateWithCoder:.

Thus, the known order of events during state restoration is like this:

• application:shouldRestoreApplicationState:

• application:viewControllerWithRestorationIdentifierPath:coder:

• viewControllerWithRestorationIdentifierPath:coder:, in order down the
chain

• viewDidLoad, in order down the chain; possibly interleaved with the foregoing
• decodeRestorableStateWithCoder:, in order down the chain
• application:didDecodeRestorableStateWithCoder:

• applicationFinishedRestoringState, in order down the chain

You still don’t know when viewWillAppear: and viewDidAppear: will arrive, or wheth‐
er viewDidAppear: will arrive at all. But in applicationFinishedRestoringState you
can reliably finish configuring your view controller and your interface.

Thus, a typical situation is that you will want to update your interface after all properties
have been set. So you’ll factor out your interface-updating code into a single method.
Now there are two possibilities, and they are both handled coherently:

State Restoration | 379

We’re not restoring state
Properties will be set through initialization and configuration, and then viewWill-
Appear: calls your interface-updating method.

We are restoring state
Properties will be set by decodeRestorableStateWithCoder:, and then
applicationFinishedRestoringState calls your interface-updating method.

There is still some indeterminacy as to what’s going to happen, but the interface-
updating method can mediate that indeterminacy by checking for two things that can
go wrong:
It is called too soon

The interface-updating method should check to see that the properties have in fact
been set; if not, it should just return. It will be called again when the properties have
been set.

It is called unnecessarily
The interface-updating method might run twice in quick succession with the same
set of properties. This is not a disaster, but if you don’t like it, you can prevent it by
comparing the properties to the interface and return if the interface has already
been configured with these properties.

If your app has additional state restoration work to do on a background thread
(Chapter 25), the documentation says you should call UIApplication’s extendState-
Restoration as you begin and completeStateRestoration when you’ve finished.
The idea is that if you don’t call completeStateRestoration, the system can assume
that something has gone very wrong (like, your app has crashed) and will throw
away the saved state information in case it is faulty.

Restoration of Other Objects
A view will participate in automatic saving and restoration of state if its view controller
does, and if it itself has a restoration identifier. Some built-in UIView subclasses also
have built-in restoration abilities. For example, a scroll view that participates in state
saving and restoration will automatically return to the point to which it was scrolled
previously. You should consult the documentation on each UIView subclass to see
whether it participates usefully in state saving and restoration, and I’ll mention a few
significant cases when we come to discuss those views in later chapters.

In addition an arbitrary object can be made to participate in automatic saving and
restoration of state. There are three requirements for such an object:

380 | Chapter 6: View Controllers

• The object’s class must adopt the UIStateRestoring protocol. This declares three
optional methods:

■ encodeRestorableStateWithCoder:
■ decodeRestorableStateWithCoder:
■ applicationFinishedRestoringState

• When the object is created, someone must register it with the runtime by calling
this UIApplication class method:

■ registerObjectForStateRestoration:restorationIdentifier:
• Someone who participates in state saving and restoration, such as a view controller,

must make the archive aware of this object by storing a reference to it in the archive
(typically in encodeRestorableStateWithCoder:) — much as we did with the Pep
object earlier.

So, for example, here’s an NSObject subclass Thing with a word property, that partici‐
pates in state saving and restoration:

class Thing : NSObject, UIStateRestoring {
 func encodeRestorableStateWithCoder(coder: NSCoder) {
 coder.encodeObject(self.word, forKey:"word")
 }
 func decodeRestorableStateWithCoder(coder: NSCoder) {
 self.word = coder.decodeObjectForKey("word") as String
 }
 func applicationFinishedRestoringState() {
 // not used
 }
}

And here’s a view controller with a Thing property (self.thing):

class func makeThing () -> Thing {
 let thing = Thing()
 UIApplication.registerObjectForStateRestoration(
 thing, restorationIdentifier: "thing")
 return thing
}
override func awakeFromNib() {
 super.awakeFromNib()
 self.thing = self.dynamicType.makeThing()
}
override func encodeRestorableStateWithCoder(coder: NSCoder) {
 super.encodeRestorableStateWithCoder(coder)
 coder.encodeObject(self.thing, forKey: "mything") // important!
}

That last line is crucial; it introduces our Thing object to the archive and brings its
UIStateRestoring methods to life.

State Restoration | 381

There is an optional objectRestorationClass property of the restorable object, and
an objectWithRestorationIdentifierPath:coder: method that the designated class
must implement. But our object is restorable even without an objectRestoration-
Class! Presumably, just calling registerObjectForStateRestoration:restoration-
Identifier: sufficiently identifies this object to the runtime. If you do want to assign
an objectRestorationClass, you’ll have to declare it:

var objectRestorationClass: UIObjectRestoration.Type!

The class in question should adopt the UIObjectRestoration protocol; its objectWith-
RestorationIdentifierPath:coder: will then be called, and can return the restorable
object, by creating it or pointing to it. Alternatively, it can return nil to prevent resto‐
ration.

Another optional property of the restorable object is restorationParent. Again, if you
want to assign to it, you’ll have to declare it:

var restorationParent: UIStateRestoring!

The parent should adopt the UIStateRestoring protocol. The purpose of the parent is
to give the restorable object an identifier path. For example, if we have a chain of view
controllers with a path ["nav", "second"], then if that last view controller is the
restorationParent of our Thing object, the Thing object’s identifier path in object-
WithRestorationIdentifierPath:coder: will be ["nav", "second", "thing"],
rather than simply ["thing"]. This is useful if we are worried that ["thing"] alone will
not uniquely identify this object.

Snapshot Suppression
When your app is backgrounded, the system takes a snapshot of your interface. It is
used in the app switcher interface, and as a launch image when your app is resumed.
But what happens if your app is killed in the background and relaunched?

If your app isn’t participating in state restoration, then its default launch image is used.
This makes sense, because your app is starting from scratch. But if your app is partici‐
pating in state restoration, then the snapshot is used as a launch image. This makes
sense, too, because the interface that was showing when the app was backgrounded is
presumably the very interface your state restoration process is about to restore.

However, you might decide, while saving state, that there is reason not to use the system’s
snapshot when relaunching. (Perhaps there is something in your interface that would
be inappropriate to display when the app is subsequently launched.) In that case, you
can call the UIApplication instance method ignoreSnapshotOnNextApplication-
Launch. When the app launches with state restoration, the user will see your app’s default
launch image, followed by a change to the restored interface. They may not match, but
at least there is a nice cross-dissolve between them.

382 | Chapter 6: View Controllers

By the same token, if the view controller whose view was showing at state saving time
is not restorable (it has no restoration ID), then if the app is killed in the background
and subsequently launches with state restoration, the restoration mechanism knows
that the snapshot taken at background time doesn’t match the interface we’re about to
restore to, so the user will initially see your app’s default launch image.

State Restoration | 383

CHAPTER 7

Scroll Views

A scroll view (UIScrollView) is a view whose content is larger than its bounds. To reveal
a desired area, the user can scroll the content by dragging, or you can reposition the
content in code.

A scroll view isn’t magic; it takes advantage of ordinary UIView features (Chapter 1).
The content is simply the scroll view’s subviews. When the scroll view scrolls, what’s
really changing is the scroll view’s own bounds origin; the subviews are positioned with
respect to the bounds origin, so they move with it. The scroll view’s clipsToBounds is
usually true, so any content positioned within the scroll view is visible and any content
positioned outside it is not.

In addition, a scroll view brings to the table some nontrivial abilities:

• It knows how to shift its bounds origin in response to the user’s gestures.
• It provides scroll indicators whose size and position give the user a clue as to the

content’s size and position.
• It can enforce paging, whereby the user can scroll only by a fixed amount.
• It supports zooming, so that the user can resize the content with a pinch gesture.
• It provides a plethora of delegate methods, so that your code knows exactly how

the user is scrolling and zooming.

As I’ve just said, a scroll view’s subviews, like those of any view, are positioned with
respect to its bounds origin; to scroll is to change the bounds origin. The scroll view
thus already knows how far it should be allowed to slide its subviews downward and
rightward — the limit is reached when the scroll view’s bounds origin is (0.0,0.0).
What the scroll view needs to know is how far it should be allowed to slide its subviews
upward and leftward. That is the scroll view’s content size — its contentSize property.
 The scroll view uses its contentSize, in combination with its own bounds size, to set

385

the limits on how large its bounds origin can become. It may also be helpful to think of
the scroll view’s scrollable content as the rectangle defined by CGRect(origin:CGPoint-
Zero, size:contentSize); this is the rectangle that the user can inspect by scrolling.

If a dimension of the contentSize isn’t larger than the same dimension of the scroll
view’s own bounds, the content won’t be scrollable in that dimension: there is nothing
to scroll, as the entire scrollable content is already showing. The default is that the
contentSize is (0.0,0.0) — meaning that the scroll view isn’t scrollable.

To get a working scroll view, therefore, it will be crucial to set its contentSize correctly.
You can do this directly, in code; or, if you’re using autolayout (Chapter 1), the content-
Size is calculated for you based on the constraints of the scroll view’s subviews. I’ll
demonstrate both approaches.

Creating a Scroll View in Code
I’ll start by creating a scroll view, providing it with subviews, and making those subviews
viewable by scrolling, entirely in code.

Manual Content Size
In the first instance, let’s not use autolayout. Our project is based on the Single View
Application template, with a single view controller class, ViewController, and with the
storyboard’s “Use Auto Layout” unchecked. In the ViewController’s viewDidLoad, I’ll
create the scroll view to fill the main view, and populate it with 30 UILabels whose text
contains a sequential number so that we can see where we are when we scroll:

let sv = UIScrollView(frame: self.view.bounds)
sv.autoresizingMask = .FlexibleWidth | .FlexibleHeight
self.view.addSubview(sv)
sv.backgroundColor = UIColor.whiteColor()
var y : CGFloat = 10
for i in 0 ..< 30 {
 let lab = UILabel()
 lab.text = "This is label \(i+1)"
 lab.sizeToFit()
 lab.frame.origin = CGPointMake(10,y)
 sv.addSubview(lab)
 y += lab.bounds.size.height + 10
}
var sz = sv.bounds.size
sz.height = y
sv.contentSize = sz // *

The crucial move is the last line, where we tell the scroll view how large its content is to
be. If we omit this step, the scroll view won’t be scrollable; the window will appear to
consist of a static column of labels.

386 | Chapter 7: Scroll Views

There is no rule about the order in which you perform the two operations of setting the
contentSize and populating the scroll view with subviews. In that example, we set the
contentSize afterward because it is more convenient to track the heights of the sub‐
views as we add them than to calculate their total height in advance. Similarly, you can
alter a scroll view’s content (subviews) or contentSize, or both, dynamically as the app
runs.

Any direct subviews of the scroll view may need to have their autoresizing set appro‐
priately in case the scroll view is resized, as would happen, for instance, if our app
performs compensatory rotation. To see this, add these lines to the preceding example,
inside the for loop:

lab.frame.width = self.view.bounds.width - 20
lab.backgroundColor = UIColor.redColor()
lab.autoresizingMask = .FlexibleWidth

Run the app, and rotate the device or the Simulator. The labels are wider in portrait
orientation because the scroll view itself is wider.

This, however, has nothing to do with the contentSize! The contentSize does not
change just because the scroll view’s bounds change; if you want the contentSize to
change in response to rotation, you will need to change it manually, in code. Conversely,
resizing the contentSize has no effect on the size of the scroll view’s subviews; it merely
determines the scrolling limit.

Automatic Content Size With Autolayout
With autolayout, things are different. The difficult thing to understand — and it is
certainly counterintuitive — is that a constraint between a scroll view and its direct
subview is not a way of positioning the subview relative to the scroll view (as it would
be if the superview were an ordinary UIView). Instead, it’s a way of describing the scroll
view’s contentSize.

To see this, let’s rewrite the preceding example to use autolayout. If the only change is
that the storyboard’s “Use Auto Layout” is checked, the example continues to work,
because the scroll view and its subviews all have their translatesAutoresizingMask-
IntoConstraints set to true by default; all constraints are implicit, as if we weren’t
using autolayout at all. But what if the scroll view and its subviews have their translates-
AutoresizingMaskIntoConstraints set to false, and we’re giving them explicit con‐
straints? Let’s try it:

let sv = UIScrollView()
sv.backgroundColor = UIColor.whiteColor()
sv.setTranslatesAutoresizingMaskIntoConstraints(false)
self.view.addSubview(sv)
self.view.addConstraints(
 NSLayoutConstraint.constraintsWithVisualFormat(

Creating a Scroll View in Code | 387

 "H:|[sv]|",
 options:nil, metrics:nil,
 views:["sv":sv]))
self.view.addConstraints(
 NSLayoutConstraint.constraintsWithVisualFormat(
 "V:|[sv]|",
 options:nil, metrics:nil,
 views:["sv":sv]))
var previousLab : UILabel? = nil
for i in 0 ..< 30 {
 let lab = UILabel()
 lab.setTranslatesAutoresizingMaskIntoConstraints(false)
 lab.text = "This is label \(i+1)"
 sv.addSubview(lab)
 sv.addConstraints(
 NSLayoutConstraint.constraintsWithVisualFormat(
 "H:|-(10)-[lab]",
 options:nil, metrics:nil,
 views:["lab":lab]))
 if previousLab == nil { // first one, pin to top
 sv.addConstraints(
 NSLayoutConstraint.constraintsWithVisualFormat(
 "V:|-(10)-[lab]",
 options:nil, metrics:nil,
 views:["lab":lab]))
 } else { // all others, pin to previous
 sv.addConstraints(
 NSLayoutConstraint.constraintsWithVisualFormat(
 "V:[prev]-(10)-[lab]",
 options:nil, metrics:nil,
 views:["lab":lab, "prev":previousLab!]))
 }
 previousLab = lab
}

The labels are correctly positioned relative to one another, but the scroll view isn’t
scrollable. Moreover, setting the contentSize manually doesn’t help. The solution is to
add one more constraint, showing the scroll view what the height of its contentSize
should be:

// last one, pin to bottom, this dictates content size height!
sv.addConstraints(
 NSLayoutConstraint.constraintsWithVisualFormat(
 "V:[lab]-(10)-|",
 options:nil, metrics:nil,
 views:["lab":previousLab!]))

The constraints of the scroll view’s subviews now describe the contentSize height: the
top label is pinned to the top of the scroll view, the next one is pinned to the one above
it, and so on — and the bottom one is pinned to the bottom of the scroll view.
Consequently, the runtime calculates the contentSize height from the inside out, as it

388 | Chapter 7: Scroll Views

were, as the sum of all the vertical constraints (including the intrinsic heights of the
labels), and the scroll view is vertically scrollable to show all the labels.

Using a Content View
Instead of putting all of our scroll view’s content directly inside the scroll view as its
immediate subviews, we can provide a generic UIView as the sole immediate subview
of the scroll view; everything else inside the scroll view is to be a subview of this generic
UIView, which we may term the content view. This is a commonly used arrangement.

Under autolayout, we then have two choices for setting the scroll view’s contentSize:

• Set the content view’s translatesAutoresizingMaskIntoConstraints to true,
and set the scroll view’s contentSize manually to the size of the content view.

• Set the content view’s translatesAutoresizingMaskIntoConstraints to false,
set its size with width and height constraints, and pin its edges to its superview (the
scroll view) with a constant of 0.

A convenient consequence of this arrangement is that it works independently of whether
the content view’s own subviews are positioned explicitly by their frames or using con‐
straints. There are thus four possible combinations.

I’ll illustrate by rewriting the previous example to use a content view. All four possible
combinations start the same way:

let sv = UIScrollView()
sv.backgroundColor = UIColor.whiteColor()
sv.setTranslatesAutoresizingMaskIntoConstraints(false)
self.view.addSubview(sv)
self.view.addConstraints(
 NSLayoutConstraint.constraintsWithVisualFormat(
 "H:|[sv]|",
 options:nil, metrics:nil,
 views:["sv":sv]))
self.view.addConstraints(
 NSLayoutConstraint.constraintsWithVisualFormat(
 "V:|[sv]|",
 options:nil, metrics:nil,
 views:["sv":sv]))
let v = UIView() // content view
sv.addSubview(v)

The first combination is that no constraints are used. It’s just like the first example in
the chapter, except that the labels are added to the content view, not to the scroll view:

var y : CGFloat = 10
for i in 0 ..< 30 {
 let lab = UILabel()
 lab.text = "This is label \(i+1)"

Creating a Scroll View in Code | 389

 lab.sizeToFit()
 lab.frame.origin = CGPointMake(10,y)
 v.addSubview(lab) // *
 y += lab.bounds.size.height + 10
}
// set content view frame and content size explicitly
v.frame = CGRectMake(0,0,0,y)
sv.contentSize = v.frame.size

The second combination is that the content view uses explicit constraints, but its sub‐
views don’t. It’s just like the preceding code, except that we set the content view’s con‐
straints rather than the scroll view’s content size:

var y : CGFloat = 10
for i in 0 ..< 30 {
 let lab = UILabel()
 lab.text = "This is label \(i+1)"
 lab.sizeToFit()
 lab.frame.origin = CGPointMake(10,y)
 v.addSubview(lab)
 y += lab.bounds.size.height + 10
}
// set content view width, height, and frame-to-superview constraints
// content size is calculated for us
v.setTranslatesAutoresizingMaskIntoConstraints(false)
sv.addConstraints(
 NSLayoutConstraint.constraintsWithVisualFormat("V:|[v(y)]|",
 options:nil, metrics:["y":y], views:["v":v]))
sv.addConstraints(
 NSLayoutConstraint.constraintsWithVisualFormat("H:|[v(0)]|",
 options:nil, metrics:nil, views:["v":v]))

The third combination is that explicit constraints are used throughout. This is just like
the second example in the chapter (except that the labels are added to the content view),
combined with the preceding code where we set the content view’s constraints:

var previousLab : UILabel? = nil
for i in 0 ..< 30 {
 let lab = UILabel()
 // lab.backgroundColor = UIColor.redColor()
 lab.setTranslatesAutoresizingMaskIntoConstraints(false)
 lab.text = "This is label \(i+1)"
 v.addSubview(lab)
 v.addConstraints(// *
 NSLayoutConstraint.constraintsWithVisualFormat(
 "H:|-(10)-[lab]",
 options:nil, metrics:nil,
 views:["lab":lab]))
 if previousLab == nil { // first one, pin to top
 v.addConstraints(// *
 NSLayoutConstraint.constraintsWithVisualFormat(
 "V:|-(10)-[lab]",
 options:nil, metrics:nil,

390 | Chapter 7: Scroll Views

 views:["lab":lab]))
 } else { // all others, pin to previous
 v.addConstraints(// *
 NSLayoutConstraint.constraintsWithVisualFormat(
 "V:[prev]-(10)-[lab]",
 options:nil, metrics:nil,
 views:["lab":lab, "prev":previousLab!]))
 }
 previousLab = lab
}
// last one, pin to bottom, this dictates content size height!
v.addConstraints(// *
 NSLayoutConstraint.constraintsWithVisualFormat(
 "V:[lab]-(10)-|",
 options:nil, metrics:nil,
 views:["lab":previousLab!]))
// set content view width and frame-to-superview constraints
// (height comes from subview constraints)
// content size is calculated for us
v.setTranslatesAutoresizingMaskIntoConstraints(false)
sv.addConstraints(
 NSLayoutConstraint.constraintsWithVisualFormat("V:|[v]|",
 options:nil, metrics:nil, views:["v":v])) // *
sv.addConstraints(
 NSLayoutConstraint.constraintsWithVisualFormat("H:|[v]|",
 options:nil, metrics:nil, views:["v":v]))

The fourth combination is a curious hybrid: the content view’s subviews are positioned
using constraints, but we set the content view’s frame and the scroll view’s content size
explicitly. There is no y to track as we position the subviews, so how can we find out the
final content size height? Fortunately, systemLayoutSizeFittingSize: tells us:

// ... starts the same as previous example ...
// last one, pin to bottom, this dictates content size height!
v.addConstraints(// *
 NSLayoutConstraint.constraintsWithVisualFormat(
 "V:[lab]-(10)-|",
 options:nil, metrics:nil,
 views:["lab":previousLab!]))
// autolayout helps us learn the consequences of those constraints
let minsz = v.systemLayoutSizeFittingSize(UILayoutFittingCompressedSize)
// set content view frame and content size explicitly
v.frame = CGRectMake(0,0,0,minsz.height)
sv.contentSize = v.frame.size

Scroll View in a Nib
A UIScrollView is available in the nib editor in the Object library, so you can drag it
into a view in the canvas and give it subviews. Alternatively, you can wrap existing views
in the canvas in a UIScrollView as an afterthought: to do so, select the views and choose

Scroll View in a Nib | 391

Figure 7-1. A scroll view in the nib editor

Editor → Embed In → Scroll View. The scroll view can’t be scrolled in the nib editor, so
to design its subviews, you make the scroll view large enough to accommodate them; if
this makes the scroll view too large, you can resize the actual scroll view instance when
the nib loads. If the scroll view is inside the view controller’s main view, you may have
to make that view too large, in order to see and work with the full scroll view and its
contents (Figure 7-1). Set the view controller’s Size pop-up menu in the Simulated Met‐
rics section of its Attributes inspector to Freeform; now you can change the main view’s
size, and the view controller’s size in the canvas will change with it.

If you’re not using autolayout, judicious use of autoresizing settings in the nib editor
can be a big help here. In Figure 7-1, the scroll view is the main view’s subview; the scroll
view’s edges are pinned (struts) to its superview, and its width and height are flexible
(springs). Thus, when the app runs and the main view is resized (as I discussed in
Chapter 6), the scroll view will be resized too, to fit the main view. The content view, on
the other hand, must not be resized, so its width and height are not flexible (they are
struts, not springs), and only its top and left edges are pinned to its superview (struts).

But although everything is correctly sized at runtime, the scroll view doesn’t scroll. That’s
because we have failed to set the scroll view’s contentSize. Unfortunately, the nib editor
provides no way to do that! Thus, we’ll have to do it in code. This, in fact, is why I’m
using a content view. The content view is the correct size in the nib, and it won’t be
resized through autoresizing, so at runtime, when the nib loads, its size will be the desired
contentSize. I have an outlet to the scroll view, and I set its contentSize to the content

392 | Chapter 7: Scroll Views

view’s size in viewDidLayoutSubviews. I don’t need an outlet to the content view, be‐
cause it is known to be the scroll view’s first subview:

override func viewDidLayoutSubviews() {
 if !self.didSetup {
 self.didSetup = true
 self.sv.contentSize = (self.sv.subviews[0] as UIView).bounds.size
 }
}

If you are using autolayout, constraints take care of everything; there is no need for any
code to set the scroll view’s contentSize. The scroll view’s edges are pinned to those of
its superview, the main view. The content view’s edges are pinned to those of its super‐
view, the scroll view. Be sure to set the constant of each constraint between the content
view and the scroll view to 0! That tells the scroll view: “The contentSize is the size of
the content view.”

The only question now is how you’d like to dictate the content view’s size. You have two
choices, roughly corresponding to the second and third combinations in the preceding
section: you can set the content view’s width and height constraints explicitly, or you
can let the content view’s width and height be completely determined by the constraints
of its subviews. Do whichever feels suitable. The nib editor understands this aspect of
scroll view configuration, and will alert you with a warning (about the “scrollable content
size”) until you’ve provided enough constraints to determine unambiguously the scroll
view’s contentSize.

Scrolling
For the most part, the purpose of a scroll view will be to let the user scroll. A number
of properties affect the user experience with regard to scrolling:
scrollEnabled

If false, the user can’t scroll, but you can still scroll in code (as explained later in
this section). You could put a UIScrollView to various creative purposes other than
letting the user scroll; for example, scrolling in code to a different region of the
content might be a way of replacing one piece of interface by another, possibly with
animation.

scrollsToTop

If true (the default), and assuming scrolling is enabled, the user can tap on the
status bar as a way of making the scroll view scroll its content to the top (that is, the
content moves all the way down). You can also override this setting dynamically
through the scroll view’s delegate, discussed later in this chapter.

Scrolling | 393

bounces

If true (the default), then when the user scrolls to a limit of the content, it is possible
to scroll somewhat further (possibly revealing the scroll view’s backgroundColor
behind the content, if a subview was covering it); the content then snaps back into
place when the user releases it. Otherwise, the user experiences the limit as a sudden
inability to scroll further in that direction.

alwaysBounceVertical
alwaysBounceHorizontal

If true, and assuming that bounces is true, then even if the contentSize in the
given dimension isn’t larger than the scroll view (so that no scrolling is actually
possible in that dimension), the user can nevertheless scroll somewhat and the
content then snaps back into place when the user releases it; otherwise, the user
experiences a simple inability to scroll in that dimension.

directionalLockEnabled

If true, and if scrolling is possible in both dimensions (even if only because the
appropriate alwaysBounce... is true), then the user, having begun to scroll in one
dimension, can’t scroll in the other dimension without ending the gesture and
starting over. In other words, the user is constrained to scroll vertically or hori‐
zontally but not both at once.

decelerationRate

The rate at which scrolling is damped out, and the content comes to a stop, after
the user’s gesture ends. As convenient examples, standard constants are provided:

• UIScrollViewDecelerationRateNormal (0.998)
• UIScrollViewDecelerationRateFast (0.99)

Lower values mean faster damping; experimentation suggests that values lower than
0.5 are viable but barely distinguishable from one another. You can also effectively
override this value dynamically through the scroll view’s delegate, discussed later
in this chapter.

showsHorizontalScrollIndicator
showsVerticalScrollIndicator

The scroll indicators are bars that appear only while the user is scrolling in a scrol‐
lable dimension (where the content is larger than the scroll view), and serve to
indicate both the size of the content in that dimension relative to the scroll view
and where the user is within it. The default is true for both.

Because the user cannot see the scroll indicators except when actively scrolling,
there is normally no indication that the view is scrollable. I regard this as somewhat
unfortunate, because it makes the possibility of scrolling less discoverable; I’d prefer
an option to make the scroll indicators constantly visible. Apple suggests that you

394 | Chapter 7: Scroll Views

call flashScrollIndicators when the scroll view appears, to make the scroll in‐
dicators visible momentarily.

The scroll indicators are subviews of the scroll view (they are actually UIImage‐
Views). Do not assume that the subviews you add to a UIScrollView are its only
subviews!

indicatorStyle

The way the scroll indicators are drawn. Your choices (UIScrollViewIndicatorStyle)
are .Black, .White, and .Default (black with a white border).

You can scroll in code even if the user can’t scroll. The content simply moves to the
position you specify, with no bouncing and no exposure of the scroll indicators. You
can specify the new position in two ways:
contentOffset

The point (CGPoint) of the content that is located at the scroll view’s top left (ef‐
fectively the same thing as the scroll view’s bounds origin). You can get this property
to learn the current scroll position, and set it to change the current scroll position.
The values normally go up from (0.0,0.0) until the limit dictated by the content-
Size and the scroll view’s own bounds size is reached.

To set the contentOffset with animation, call setContentOffset:animated:. The
animation does not cause the scroll indicators to appear; it just slides the content
to the desired position.

If a scroll view participates in state restoration (Chapter 6), its contentOffset is
saved and restored, so when the app is relaunched, the scroll view will reappear
scrolled to the same position as before.

scrollRectToVisible:animated:

Adjusts the content so that the specified CGRect of the content is within the scroll
view’s bounds. This is less precise than setting the contentOffset, because you’re
not saying exactly what the resulting scroll position will be, but sometimes guar‐
anteeing the visibility of a certain portion of the content is exactly what you’re after.

If you call a method to scroll with animation and you need to know when the animation
ends, implement scrollViewDidEndScrollingAnimation: in the scroll view’s delegate.

Finally, these properties affect the scroll view’s structural dimensions:
contentInset

A UIEdgeInsets struct (four CGFloats: top, left, bottom, right) specifying margin
space around the content.

Scrolling | 395

If a scroll view participates in state restoration (Chapter 6), its contentInset is
saved and restored.

scrollIndicatorInsets

A UIEdgeInsets struct specifying a shift in the position of the scroll indicators.

A typical use for the contentInset would be that your scroll view underlaps an interface
element, such as a status bar, navigation bar, or toolbar, and you want your content to
be visible even when scrolled to its limit.

A good example is the app with 30 labels that we created at the start of this chapter. The
scroll view occupies the entirety of the view controller’s main view. But that means that
the the scroll view underlaps the status bar. And that means that at launch time, and
whenever the scroll view’s content is scrolled all the way down, the first label, which is
as far down as it can go, is partly hidden by the text of the status bar. We can prevent
this by setting the scroll view’s contentInset:

sv.contentInset = UIEdgeInsetsMake(20, 0, 0, 0)

The scroll view still underlaps the status bar, and its scrolled content is still visible behind
the status bar; what’s changed is only that at the extreme scrolled-down position, where
the content offset is (0.0,0.0), the scroll view’s content is not behind the status bar.

When changing the contentInset, you will probably want to change the scroll-
IndicatorInsets to match. Consider again the scroll view whose contentInset we
have just set. When scrolled all the way down, it now has a nice gap between the bottom
of the status bar and the top of the first label; but the top of the scroll indicator is still
up behind the status bar. We can prevent this by setting the scrollIndicatorInsets
to the same value as the contentInset:

sv.contentInset = UIEdgeInsetsMake(20, 0, 0, 0)
sv.scrollIndicatorInsets = sv.contentInset

As I mentioned in Chapter 6, top bars and bottom bars are likely to be translucent, and
the runtime would like to make your view underlap them. With a scroll view, this looks
cool, because the scroll view’s contents are visible in a blurry way through the translucent
bar; but the contentInset and scrollIndicatorInsets need to be adjusted so that the
scrolling limits stay between the top bar and the bottom bar. Moreover, the height of
the bars can change, depending on such factors as how the interface is rotated. (Recall,
too, that this behavior is possible even if the bars are not translucent.)

Therefore, if a scroll view is going to underlap top and bottom bars, it would be nice,
instead of hard-coding the top inset of 20 as in the preceding code, to make the scroll
view’s inset respond to its environment. A layout event seems the best place for such a
response, and we can use the view controller’s topLayoutGuide and bottomLayout-
Guide to help us:

396 | Chapter 7: Scroll Views

override func viewWillLayoutSubviews() {
 if let sv = self.sv {
 let top = self.topLayoutGuide.length
 let bot = self.bottomLayoutGuide.length
 sv.contentInset = UIEdgeInsetsMake(top, 0, bot, 0)
 sv.scrollIndicatorInsets = self.sv.contentInset
 }
}

Even better, if our view controller’s main view contains one primary scroll view, and if
it contains it sufficiently early — in the nib, for example — then if our view controller’s
automaticallyAdjustsScrollViewInsets property is true, the runtime will adjust our
scroll view’s contentInset and scrollIndicatorInsets with no code on our part. This
property won’t help us in the examples earlier in this chapter where we create the scroll
view in code. But if the scroll view is created from the nib, as in Figure 7-1, this property
applies and works. Moreover, a value of true is the default. In the nib editor, you can
change it with the Adjust Scroll View Insets checkbox in the Attributes inspector. Be
sure to set this property to false if you want to take charge of adjusting a scroll view’s
contentInset and scrollIndicatorInsets yourself.

Paging
If its pagingEnabled property is true, the scroll view doesn’t let the user scroll freely;
instead, the content is considered to consist of equal-sized sections. The user can scroll
only in such a way as to move to a different section. The size of a section is set auto‐
matically to the size of the scroll view’s bounds. The sections are the scroll view’s pages.

When the user stops dragging, a paging scroll view gently snaps automatically to the
nearest whole page. For example, let’s say that the scroll view scrolls only horizontally,
and that its subviews are image views showing photos, sized to match the scroll view’s
bounds. If the user drags horizontally to the left to a point where less than half of the
next photo to the right is visible, and raises the dragging finger, the paging scroll view
snaps its content back to the right until the entire first photo is visible again. If the user
drags horizontally to the left to a point where more than half of the next photo to the
right is visible, and raises the dragging finger, the paging scroll view snaps its content
further to the left until the entire second photo is visible.

The usual arrangement is that a paging scroll view is at least as large, or nearly as large,
in its scrollable dimension, as the screen. A moment’s thought will reveal that, under
this arrangement, it is impossible for the user to move the content more than a single
page in any direction with a single gesture. The reason is that the size of the page is the
size of the scroll view’s bounds. Thus the user will run out of surface area to drag on
before being able to move the content the distance of a page and a half, which is what
would be needed to make the scroll view snap to a page not adjacent to the page we
started on.

Scrolling | 397

Sometimes, indeed, the paging scroll view will be slightly larger than the window in its
scrollable dimension. This allows each page’s content to fill the scroll view while also
providing gaps between the pages, visible when the user starts to scroll. The user is still
able to move from page to page, because it is still readily possible to drag more than half
a new page into view (and the scroll view will then snap the rest of the way when the
user raises the dragging finger).

When the user raises the dragging finger, the scroll view’s action in adjusting its content
is considered to be decelerating, and the scroll view’s delegate (discussed in more detail
later in this chapter) will receive scrollViewWillBeginDecelerating:, followed by
scrollViewDidEndDecelerating: when the scroll view’s content has stopped moving
and a full page is showing. Thus, these messages can be used to detect efficiently that
the page may have changed.

You can take advantage of this, for example, to coordinate a paging scroll view with a
UIPageControl (Chapter 12). In this example, a page control (pager) is updated when‐
ever the user causes a horizontally scrollable scroll view (sv) to display a different page:

func scrollViewDidEndDecelerating(scrollView: UIScrollView) {
 let x = self.sv.contentOffset.x
 let w = self.sv.bounds.size.width
 self.pager.currentPage = Int(x/w)
}

Conversely, we can scroll the scroll view to a new page manually when the user taps the
page control; in this case we have to calculate the page boundaries ourselves:

@IBAction func userDidPage(sender:AnyObject?) {
 let p = self.pager.currentPage
 let w = self.sv.bounds.size.width
 self.sv.setContentOffset(CGPointMake(CGFloat(p)*w,0), animated:true)
}

A useful interface is a paging scroll view where you supply pages dynamically as the
user scrolls. In this way, you can display a huge number of pages without having to put
them all into the scroll view at once. A scrolling UIPageViewController (Chapter 6)
provides exactly that interface. Its UIPageViewControllerOptionInterPageSpacing-
Key even provides the gap between pages that I mentioned earlier.

Prior to iOS 5, when UIPageViewController was introduced, I was using a paging
scroll view that did the same thing. If you’re curious about the technique I was using,
watch the Advanced Scroll View Techniques video from WWDC 2011, which de‐
scribes something very similar, calling it “infinite scrolling.”

A compromise between a UIPageViewController and a completely preconfigured pag‐
ing scroll view is a scroll view whose contentSize can accommodate all pages, but whose

398 | Chapter 7: Scroll Views

actual page content is supplied lazily. The only pages that have to be present at all times
are the page visible to the user and the two pages adjacent to it on either side (so that
there is no delay in displaying a new page’s content when the user starts to scroll). This
approach is exemplified by Apple’s PageControl sample code. Unfortunately, that ex‐
ample does not also remove page content that is no longer needed, so there is ultimately
no conservation of memory.

There are times when a scroll view, even one requiring a good deal of dynamic config‐
uration, is better than a scrolling UIPageViewController, because the scroll view pro‐
vides full information to its delegate about the user’s scrolling activity (as described later
in this chapter). For example, if you wanted to respond to the user’s dragging one area of
the interface by programmatically scrolling another area of the interface in a coordinated
fashion, you might want what the user is dragging to be a scroll view, because it tells you
what the user is up to at every moment.

Tiling
Suppose we have some finite but really big content that we want to display in a scroll
view, such as a very large image that the user can inspect, piecemeal, by scrolling. To
hold the entire image in memory may be onerous or impossible.

Tiling is one solution to this kind of problem. It takes advantage of the insight that there’s
really no need to hold the entire image in memory; all we need at any given moment is
the part of the image visible to the user right now. Mentally, divide the content rectangle
into a matrix of rectangles; these rectangles are the tiles. In reality, divide the huge image
into corresponding rectangles. Then whenever the user scrolls, we look to see whether
part of any empty tile has become visible, and if so, we supply its content. At the same
time, we can release the content of all tiles that are completely offscreen. Thus, at any
given moment, only the tiles that are showing have content. There is some latency as‐
sociated with this approach (the user scrolls, then any empty newly visible tiles are filled
in), but we will have to live with that.

There is actually a built-in CALayer subclass for helping us implement tiling —
CATiledLayer. Its tileSize property sets the dimensions of a tile. Its drawLayer:in-
Context: is called when content for an empty tile is needed; calling CGContextGetClip-
BoundingBox on the context reveals the location of the desired tile, and now we can
supply that tile’s content.

The usual approach is to implement drawRect: in a UIView that hosts the CATiledLayer.
Here, the CATiledLayer is the view’s underlying layer; therefore the view is the CATiled‐
Layer’s delegate (see Chapter 3). This means that when the CATiledLayer’s draw-
Layer:inContext: is called, the host view’s drawRect: is called, and the drawRect:
parameter is the same as the result of calling CGContextGetClipBoundingBox — namely,
it’s the rect of the tile we are to draw.

Scrolling | 399

The tileSize may need to be adjusted for the screen resolution. On a double-resolution
device, for example, the CATiledLayer’s contentsScale will be doubled, and the tiles
will be half the size that we ask for. If that isn’t acceptable, we can double the tile-
Size dimensions.

To illustrate, we’ll use some tiles already created for us as part of Apple’s own Photo‐
Scroller sample code. In particular, I’ll use a few of the “CuriousFrog_500” images. These
all have names of the form CuriousFrog_500_x_y.png, where x and y are integers cor‐
responding to the picture’s position within the matrix. The images are 256×256 pixels,
except for the ones on the extreme right and bottom edges of the matrix, which are
shorter in one dimension, but I won’t be using those in this example; I’ve selected a
square matrix of 9 square images.

We will give our scroll view (sv) one subview, a TiledView, a UIView subclass that exists
purely to give our CATiledLayer a place to live. TILESIZE is defined as 256, to match
the image dimensions:

override func viewDidLoad() {
 let f = CGRectMake(0,0,3*TILESIZE,3*TILESIZE)
 let content = TiledView(frame:f)
 let tsz = TILESIZE * content.layer.contentsScale
 (content.layer as CATiledLayer).tileSize = CGSizeMake(tsz, tsz)
 self.sv.addSubview(content)
 self.sv.contentSize = f.size
 self.content = content
}

Here’s the code for TiledView. As Apple’s sample code points out, we must fetch images
with init(contentsOfFile:) in order to avoid the automatic caching behavior of
init(named:) — after all, we’re going to all this trouble exactly to avoid using more
memory than we have to:

override class func layerClass() -> AnyClass {
 return CATiledLayer.self
}
override func drawRect(r: CGRect) {
 let tile = r
 let x = Int(tile.origin.x/TILESIZE)
 let y = Int(tile.origin.y/TILESIZE)
 let tileName = NSString(format:"CuriousFrog_500_\(x+3)_\(y)")
 let path = NSBundle.mainBundle().pathForResource(tileName, ofType:"png")!
 let image = UIImage(contentsOfFile:path)!
 image.drawAtPoint(CGPointMake(CGFloat(x)*TILESIZE,CGFloat(y)*TILESIZE))
}

400 | Chapter 7: Scroll Views

You may encounter a nasty issue where a CATiledLayer’s drawRect: is called si‐
multaneously on multiple threads. It isn’t clear to me whether this problem is
confined to the Simulator or whether it can also occur on a device. The workaround
is to wrap the whole interior of drawRect: in a call to dispatch_sync on a serial
queue (see Chapter 25).

There is no special call for invalidating an offscreen tile. You can call setNeeds-
Display or setNeedsDisplayInRect: on the TiledView, but this doesn’t erase offscreen
tiles. You’re just supposed to trust that the CATiledLayer will eventually clear offscreen
tiles if needed to conserve memory.

CATiledLayer has a class method fadeDuration that dictates the duration of the ani‐
mation that fades a new tile into view. You can create a CATiledLayer subclass and
override this method to return a value different from the default (0.25), but this is
probably not worth doing, as the default value is a good one. Returning a smaller value
won’t make tiles appear faster; it just replaces the nice fade-in with an annoying flash.

Zooming
To implement zooming of a scroll view’s content, you set the scroll view’s minimumZoom-
Scale and maximumZoomScale so that at least one of them isn’t 1 (the default). You also
implement viewForZoomingInScrollView: in the scroll view’s delegate to tell the scroll
view which of its subviews is to be the scalable view. The scroll view then zooms by
applying a scale transform (Chapter 1) to this subview. The amount of that transform
is the scroll view’s zoomScale property. Typically, you’ll want the scroll view’s entire
content to be scalable, so you’ll have one direct subview of the scroll view that acts as
the scalable view, and anything else inside the scroll view will be a subview of the scalable
view, so as to be scaled together with it. This is another reason for arranging your scroll
view’s subviews inside a single content view, as I suggested earlier.

To illustrate, we can start with any of the four content view–based versions of our scroll
view containing 30 labels. I called the content view v. Now we add these lines:

v.tag = 999
sv.minimumZoomScale = 1.0
sv.maximumZoomScale = 2.0
sv.delegate = self

We have assigned a tag to the view that is to be scaled, so that we can refer to it later. We
have set the scale limits for the scroll view. And we have made ourselves the scroll view’s
delegate. Now all we have to do is implement viewForZoomingInScrollView: to return
the scalable view:

Zooming | 401

func viewForZoomingInScrollView(scrollView: UIScrollView) -> UIView? {
 return scrollView.viewWithTag(999)
}

This works: the scroll view now responds to pinch gestures by scaling appropriately!
But it doesn’t look quite as good as I’d like when we zoom, and in particular I don’t like
the way the labels snap into place when we stop zooming. The reason is that, in my
earlier examples, I gave the content view and the contentSize a zero width; that was
sufficient to prevent the scroll view from scrolling horizontally, which was all that mat‐
tered. Now, however, these widths also affect how the content behaves as the user zooms
it. This particular example, I think, looks best while zooming if the content view width
is a bit wider than the widest label. (Implementing that is left as an exercise for the
reader.)

The user can actually scale considerably beyond the limits we set in both directions; in
that case, when the gesture ends, the scale snaps back to the limit value. If we wish to
confine scaling strictly to our defined limits, we can set the scroll view’s bouncesZoom
to false; when the user reaches a limit, scaling will simply stop.

The actual amount of zoom is reflected as the scroll view’s current zoomScale. If a scroll
view participates in state restoration, its zoomScale is saved and restored, so when the
app is relaunched, the scroll view will reappear zoomed by the same amount as before.

If the minimumZoomScale is less than 1, then when the scalable view becomes smaller
than the scroll view, it is pinned to the scroll view’s top left. If you don’t like this, you
can change it by subclassing UIScrollView and overriding layoutSubviews, or by im‐
plementing the scroll view delegate method scrollViewDidZoom:. Here’s a simple ex‐
ample (drawn from a WWDC 2010 video) demonstrating an override of layout-
Subviews that keeps the scalable view centered in either dimension whenever it is
smaller than the scroll view in that dimension:

override func layoutSubviews() {
 super.layoutSubviews()
 if let v = self.delegate?.viewForZoomingInScrollView?(self) {
 let svw = self.bounds.width
 let svh = self.bounds.height
 let vw = v.frame.width
 let vh = v.frame.height
 var f = v.frame
 if vw < svw {
 f.origin.x = (svw - vw) / 2.0
 } else {
 f.origin.x = 0
 }
 if vh < svh {
 f.origin.y = (svh - vh) / 2.0
 } else {
 f.origin.y = 0

402 | Chapter 7: Scroll Views

 }
 v.frame = f
 }
}

Zooming Programmatically
To zoom programmatically, you have two choices:
setZoomScale:animated:

Zooms in terms of scale value. The contentOffset is automatically adjusted to keep
the current center centered and the content occupying the entire scroll view.

zoomToRect:animated:

Zooms so that the given rectangle of the content occupies as much as possible of
the scroll view’s bounds. The contentOffset is automatically adjusted to keep the
content occupying the entire scroll view.

In this example, I implement double tapping as a zoom gesture. In my action handler
for the double-tap UITapGestureRecognizer attached to the scalable view, a double tap
means to zoom to maximum scale, minimum scale, or actual size, depending on the
current scale value:

@IBAction func tapped(tap : UIGestureRecognizer) {
 let v = tap.view!
 let sv = v.superview as UIScrollView
 if sv.zoomScale < 1 {
 sv.setZoomScale(1, animated:true)
 }
 else if sv.zoomScale < sv.maximumZoomScale {
 sv.setZoomScale(sv.maximumZoomScale, animated:true)
 }
 else {
 sv.setZoomScale(sv.minimumZoomScale, animated:true)
 }
}

Zooming with Detail
By default, when a scroll view zooms, it merely applies a scale transform to the scaled
view. The scaled view’s drawing is cached beforehand into its layer, so when we zoom
in, the bits of the resulting bitmap are drawn larger. This means that a zoomed-in scroll
view’s content may be fuzzy (pixellated). In some cases this might be acceptable, but in
others you might like the content to be redrawn more sharply at its new size.

(On a high-resolution device, this might not be such an issue. For example, if the user
is allowed to zoom only up to double scale, you can draw at double scale right from the
start; the results will look good at single scale, because the screen has high resolution,
as well as at double scale, because that’s the scale you drew at.)

Zooming | 403

One solution is to take advantage of a CATiledLayer feature that I didn’t mention earlier.
It turns out that CATiledLayer is aware not only of scrolling but also of scaling: you can
configure it to ask for tiles to be drawn when the layer is scaled to a new order of
magnitude. When your drawing routine is called, the graphics context itself has already
been scaled appropriately by a transform.

In the case of an image into which the user is to be permitted to zoom deeply, you would
be forearmed with multiple tile sets constituting the image, each set having double the
tile size of the previous set (as in Apple’s PhotoScroller example). In other cases, you
may not need tiles at all; you’ll just draw again, at the new resolution.

Besides its tileSize, you’ll need to set two additional CATiledLayer properties:
levelsOfDetail

The number of different resolutions at which you want to redraw, where each level
has twice the resolution of the previous level. So, for example, with two levels of
detail we can ask to redraw when zooming to double size (2x) and when zooming
back to single size (1x).

levelsOfDetailBias

The number of levels of detail that are larger than single size (1x). For example, if
levelsOfDetail is 2, then if we want to redraw when zooming to 2x and when
zooming back to 1x, the levelsOfDetailBias needs to be 1, because one of those
levels is larger than 1x. (If we were to leave levelsOfDetailBias at 0, the default,
we would be saying we want to redraw when zooming to 0.5x and back to 1x — we
have two levels of detail but neither is larger than 1x, so one must be smaller than
1x.)

The CATiledLayer will ask for a redraw at a higher resolution as soon as the view’s size
becomes larger than the previous resolution. In other words, if there are two levels of
detail with a bias of 1, the layer will be redrawn at 2x as soon as it is zoomed even a little
bit larger than 1x. This is an excellent approach, because although a level of detail would
look blurry if scaled up, it looks pretty good scaled down.

For example, let’s say I have a TiledView that hosts a CATiledLayer, in which I intend
to draw an image. I haven’t broken the image into tiles, because the maximum size at
which the user can view it isn’t prohibitively large; the original image is 838×958, and
can be held in memory easily. Rather, I’m using a CATiledLayer in order to take ad‐
vantage of its ability to change resolutions automatically. The image will be displayed
initially at 208×238, and if the user never zooms in to view it larger, we can save memory
by drawing a quarter-size version of the image.

The CATiledLayer is configured as follows:

404 | Chapter 7: Scroll Views

How Zooming Really Works
The scroll view zooms by applying a scale transform to the scalable view. This has two
important secondary consequences that can surprise you if you’re unprepared:

• The frame of the scalable view is scaled to match the current zoomScale. This follows
as a natural consequence of applying a scale transform to the scalable view.

• The scroll view is concerned to make scrolling continue to work correctly: the limits
as the user scrolls should continue to match the limits of the content, and commands
like scrollRectToVisible:animated: should continue to work the same way for
the same values. Therefore, the scroll view automatically scales its own content-
Size to match the current zoomScale.

let scale = lay.contentsScale
lay.tileSize = CGSizeMake(208*scale,238*scale)
lay.levelsOfDetail = 3
lay.levelsOfDetailBias = 2

The tileSize has been adjusted for screen resolution, so the result is as follows:

• As originally displayed at 208×238, there is one tile and we can draw our image at
quarter size.

• If the user zooms in, to show the image larger than its originally displayed size,
there will be 4 tiles and we can draw our image at half size.

• If the user zooms in still further, to show the image larger than double its originally
displayed size (416×476), there will be 16 tiles and we can draw our image at full
size, which will continue to look good as the user zooms all the way in to the full
size of the original image.

We do not, however, need to draw each tile individually. Each time we’re called upon to
draw a tile, we’ll draw the entire image into the TiledView’s bounds; whatever falls out‐
side the requested tile will be clipped out and won’t be drawn.

Here’s my TiledView’s drawRect: implementation. I have a UIImage property current-
Image, initialized to nil, and a CGRect property currentSize initialized to CGSize-
Zero. Each time drawRect: is called, I compare the tile size (the incoming rect param‐
eter’s size) to currentSize. If it’s different, I know that we’ve changed by one level of
detail and we need a new version of currentImage, so I create the new version of current-
Image at a scale appropriate to this level of detail. Finally, I draw currentImage into the
TiledView’s bounds:

Zooming | 405

override func drawRect(rect: CGRect) {
 let oldSize = self.currentSize
 if !CGSizeEqualToSize(oldSize, rect.size) {
 // make a new size
 self.currentSize = rect.size
 // make a new image
 let lay = self.layer as CATiledLayer
 let tr = CGContextGetCTM(UIGraphicsGetCurrentContext())
 let sc = tr.a/lay.contentsScale
 let scale = sc/4.0
 let path = NSBundle.mainBundle().pathForResource(
 "earthFromSaturn", ofType:"png")!
 let im = UIImage(contentsOfFile:path)!
 let sz = CGSizeMake(im.size.width * scale, im.size.height * scale)
 UIGraphicsBeginImageContextWithOptions(sz, true, 1)
 im.drawInRect(CGRectMake(0,0,sz.width,sz.height))
 self.currentImage = UIGraphicsGetImageFromCurrentImageContext()
 UIGraphicsEndImageContext()
 }
 self.currentImage.drawInRect(self.bounds)
}

An alternative and much simpler approach (from a WWDC 2011 video) is to make
yourself the scroll view’s delegate so that you get an event when the zoom ends, and then
change the scalable view’s contentScaleFactor to match the current zoom scale, com‐
pensating for the high-resolution screen at the same time:

func scrollViewDidEndZooming(scrollView: UIScrollView,
 withView view: UIView,
 atScale scale: CGFloat) {
 view.contentScaleFactor = scale * UIScreen.mainScreen().scale
}

In response, the scalable view’s drawRect: will be called, and its rect parameter will be
the CGRect to draw into. Thus, the view may appear fuzzy for a while as the user zooms
in, but when the user stops zooming, the view is redrawn sharply. That approach comes
with a caveat, however: you mustn’t overdo it. If the zoom scale, screen resolution, and
scalable view size are high, you will be asking for a very large graphics context to be
maintained in memory, which could cause your app to run low on memory or even to
be abruptly terminated by the system.

For more about displaying a large image in a zoomable scroll view, see Apple’s Large
Image Downsizing example.

Scroll View Delegate
The scroll view’s delegate (adopting the UIScrollViewDelegate protocol) receives lots
of messages that can help you track, in great detail, exactly what the scroll view is up to:

406 | Chapter 7: Scroll Views

scrollViewDidScroll:

If you scroll in code without animation, you will receive this message once after‐
ward. If the user scrolls, either by dragging or with the scroll-to-top feature, or if
you scroll in code with animation, you will receive this message repeatedly through‐
out the scroll, including during the time the scroll view is decelerating after the
user’s finger has lifted; there are other delegate messages that tell you, in those cases,
when the scroll has finally ended.

scrollViewDidEndScrollingAnimation:

If you scroll in code with animation, you will receive this message afterward, when
the animation ends.

scrollViewWillBeginDragging:
scrollViewWillEndDragging:withVelocity:targetContentOffset:
scrollViewDidEndDragging:willDecelerate:

If the user scrolls by dragging, you will receive these messages at the start and end
of the user’s finger movement. If the user brings the scroll view to a stop before
lifting the finger, willDecelerate is false and the scroll is over. If the user lets go
of the scroll view while the finger is moving, or when paging is turned on, will-
Decelerate is true and we proceed to the delegate messages reporting deceleration.

The purpose of scrollViewWillEndDragging:... is to let you customize the out‐
come of the content’s deceleration. The third argument is a pointer to a CGPoint;
you can use it to set a different CGPoint, specifying the contentOffset value the
scroll view should have when the deceleration is over.

scrollViewWillBeginDecelerating:
scrollViewDidEndDecelerating:

Sent once each after scrollViewDidEndDragging:willDecelerate: arrives with a
value of true. When scrollViewDidEndDecelerating: arrives, the scroll is over.

scrollViewShouldScrollToTop:
scrollViewDidScrollToTop:

These have to do with the feature where the user can tap the status bar to scroll the
scroll view’s content to its top. You won’t get either of them if scrollsToTop is
false, because the scroll-to-top feature is turned off in that case. The first lets you
prevent the user from scrolling to the top on this occasion even if scrollsToTop is
true. The second tells you that the user has employed this feature and the scroll is
over.

In addition, the scroll view has read-only properties reporting its state:
tracking

The user has touched the scroll view, but the scroll view hasn’t decided whether this
is a scroll or some kind of tap.

Scroll View Delegate | 407

dragging

The user is dragging to scroll.

decelerating

The user has scrolled and has lifted the finger, and the scroll is continuing.

So, if you wanted to do something after a scroll ends completely regardless of how the
scroll was performed, you’d need to implement multiple delegate methods:

• scrollViewDidEndDragging:willDecelerate: in case the user drags and stops
(willDecelerate is false).

• scrollViewDidEndDecelerating: in case the user drags and the scroll continues
afterward.

• scrollViewDidScrollToTop: in case the user uses the scroll-to-top feature.
• scrollViewDidEndScrollingAnimation: in case you scroll with animation.

(You don’t need a delegate method to tell you when the scroll is over after you scroll in
code without animation: it’s over immediately, so if you have work to do after the scroll
ends, you can do it in the next line of code.)

There are also three delegate messages that report zooming:
scrollViewWillBeginZooming:withView:

If the user zooms or you zoom in code, you will receive this message as the zoom
begins.

scrollViewDidZoom:

If you zoom in code, even with animation, you will receive this message once. If the
user zooms, you will receive this message repeatedly as the zoom proceeds. (You
will probably also receive scrollViewDidScroll:, possibly many times, as the
zoom proceeds.)

scrollViewDidEndZooming:withView:atScale:

If the user zooms or you zoom in code, you will receive this message after the last
scrollViewDidZoom:.

In addition, the scroll view has read-only properties reporting its state during a zoom:
zooming

The scroll view is zooming. It is possible for dragging to be true at the same time.

zoomBouncing

The scroll view is returning automatically from having been zoomed outside its
minimum or maximum limit. As far as I can tell, you’ll get only one scrollView-
DidZoom: while the scroll view is in this state.

408 | Chapter 7: Scroll Views

Scroll View Touches
Improvements in UIScrollView’s internal implementation have eliminated most of the
worry once associated with scroll view touches. A scroll view will interpret a drag or a
pinch as a command to scroll or zoom, and any other gesture will fall through to the
subviews; thus buttons and similar interface objects inside a scroll view work just fine.

You can even put a scroll view inside a scroll view, and this can be quite a useful thing
to do, in contexts where you might not think of it at first. Apple’s PhotoScroller example,
based on principles discussed in a delightful WWDC 2010 video, is an app where a
single photo fills the screen: you can page-scroll from one photo to the next, and you
can zoom into the current photo with a pinch gesture. This is implemented as a scroll
view inside a scroll view: the outer scroll view is for paging between images, and the
inner scroll view contains the current image and is for zooming (and for scrolling to
different parts of the zoomed-in image). Similarly, a WWDC 2013 video deconstructs
the iOS 7 lock screen in terms of scroll views embedded in scroll views.

Gesture recognizers (Chapter 5) have also greatly simplified the task of adding custom
gestures to a scroll view. For instance, some older code in Apple’s documentation,
showing how to implement a double tap to zoom in and a two-finger tap to zoom out,
uses old-fashioned touch handling, but this is no longer necessary. Simply attach to your
scroll view’s scalable subview any gesture recognizers for these sorts of gesture, and they
will mediate automatically among the possibilities.

In the past, making something inside a scroll view draggable required setting the scroll
view’s canCancelContentTouches property to false. (The reason for the name is that
the scroll view, when it realizes that a gesture is a drag or pinch gesture, normally sends
touchesCancelled:forEvent: to a subview tracking touches, so that the scroll view
and not the subview will be affected.) However, unless you’re implementing old-
fashioned direct touch handling, you probably won’t have to concern yourself with this.
Regardless of how canCancelContentTouches is set, a draggable control, such as a UI‐
Slider, remains draggable inside a scroll view.

Here’s an example of a draggable object inside a scroll view implemented through a
gesture recognizer. Suppose we have an image of a map, larger than the screen, and we
want the user to be able to scroll it in the normal way to see any part of the map, but we
also want the user to be able to drag a flag into a new location on the map. We’ll put the
map image in an image view and wrap the image view in a scroll view, with the scroll
view’s contentSize the same as the map image view’s size. The flag is a small image
view; it’s another subview of the scroll view, and it has a UIPanGestureRecognizer. The
gesture recognizer’s action handler allows the flag to be dragged, as described in Chap‐
ter 5:

Scroll View Touches | 409

Figure 7-2. A scrollable map with a draggable flag

@IBAction func dragging (p : UIPanGestureRecognizer) {
 let v = p.view!
 switch p.state {
 case .Began, .Changed:
 let delta = p.translationInView(v.superview!)
 v.center.x += delta.x
 v.center.y += delta.y
 p.setTranslation(CGPointZero, inView: v.superview)
 }
}

The user can now drag the map or the flag (Figure 7-2). Dragging the map brings the
flag along with it, but dragging the flag doesn’t move the map. The state of the scroll
view’s canCancelContentTouches is irrelevant, because the flag view isn’t tracking the
touches manually.

An interesting addition to that example would be to implement autoscrolling, meaning
that the scroll view scrolls itself when the user drags the flag close to its edge. This, too,
is greatly simplified by gesture recognizers; in fact, we can add autoscrolling code di‐
rectly to the dragging: action handler:

@IBAction func dragging (p : UIPanGestureRecognizer) {
 let v = p.view!
 switch p.state {
 case .Began, .Changed:

410 | Chapter 7: Scroll Views

 let delta = p.translationInView(v.superview!)
 v.center.x += delta.x
 v.center.y += delta.y
 p.setTranslation(CGPointZero, inView: v.superview)
 if p.state == .Changed {fallthrough}
 case .Changed:
 // autoscroll
 let sv = self.sv
 let loc = p.locationInView(sv)
 let f = sv.bounds
 var off = sv.contentOffset
 let sz = sv.contentSize
 var c = v.center
 // to the right
 if loc.x > CGRectGetMaxX(f) - 30 {
 let margin = sz.width - CGRectGetMaxX(sv.bounds)
 if margin > 6 {
 off.x += 5
 sv.contentOffset = off
 c.x += 5
 v.center = c
 self.keepDragging(p)
 }
 }
 // to the left
 if loc.x < f.origin.x + 30 {
 let margin = off.x
 if margin > 6 {
 // ...
 }
 }
 // to the bottom
 if loc.y > CGRectGetMaxY(f) - 30 {
 let margin = sz.height - CGRectGetMaxY(sv.bounds)
 if margin > 6 {
 // ...
 }
 }
 // to the top
 if loc.y < f.origin.y + 30 {
 let margin = off.y
 if margin > 6 {
 // ...
 }
 }
 default: break
 }
}
func keepDragging (p : UIPanGestureRecognizer) {
 let del = 0.1

Scroll View Touches | 411

 delay(del) {
 self.dragging(p)
 }
}

The delay in keepDragging: (see Appendix B), combined with the change in offset,
determines the speed of autoscrolling. The material marked as omitted in the second,
third, and fourth cases is obviously parallel to the first case, and is left as an exercise for
the reader.

A scroll view’s touch handling is itself based on gesture recognizers attached to the scroll
view, and these are available to your code through the scroll view’s panGesture-
Recognizer and pinchGestureRecognizer properties. This means that if you want to
customize a scroll view’s touch handling, it’s easy to add more gesture recognizers and
have them interact with those already attached to the scroll view.

To illustrate, I’ll build on the previous example. Suppose we want the flag to start out
offscreen, and we’d like the user to be able to summon it with a rightward swipe. We
can attach a UISwipeGestureRecognizer to our scroll view, but it will never recognize
its gesture because the scroll view’s own pan gesture recognizer will recognize first. But
we have access to the scroll view’s pan gesture recognizer, so we can compel it to yield
to our swipe gesture recognizer by sending it requireGestureRecognizerToFail::

self.sv.panGestureRecognizer.requireGestureRecognizerToFail(self.swipe)

The UISwipeGestureRecognizer will recognize a rightward swipe. In my implementa‐
tion of its action handler, we position the flag, which has been waiting invisibly offscreen,
just off to the top left of the scroll view’s visible content, and animate it onto the screen:

@IBAction func swiped (g: UISwipeGestureRecognizer) {
 let sv = self.sv
 let p = sv.contentOffset
 self.flag.frame.origin = p
 self.flag.frame.origin.x -= self.flag.bounds.size.width
 self.flag.hidden = false
 UIView.animateWithDuration(0.25, animations:{
 self.flag.frame.origin.x = p.x
 // thanks for the flag, now stop operating altogether
 g.enabled = false
 })
 }

Floating Scroll View Subviews
A scroll view’s subview will appear to “float” over the scroll view if it remains stationary
while the rest of the scroll view’s content is being scrolled. Before autolayout, this sort
of thing was rather tricky to arrange; you had to use a delegate event to respond to every
change in the scroll view’s bounds origin by shifting the “floating” view’s position to

412 | Chapter 7: Scroll Views

compensate, so as to appear to remain fixed. With autolayout, however, all you have to
do is set up constraints pinning the subview to something outside the scroll view. Here’s
an example:

let iv = UIImageView(image:UIImage(named:"smiley.png"))
iv.setTranslatesAutoresizingMaskIntoConstraints(false)
self.sv.addSubview(iv)
let sup = self.sv.superview!
sup.addConstraint(
 NSLayoutConstraint(item:iv,
 attribute:.Right,
 relatedBy:.Equal,
 toItem:sup, attribute:.Right,
 multiplier:1, constant:-5))
sup.addConstraint(
 NSLayoutConstraint(item:iv, attribute:.Top,
 relatedBy:.Equal,
 toItem:sup, attribute:.Top,
 multiplier:1, constant:25))

Scroll View Performance
At several points in earlier chapters I’ve mentioned performance problems and ways to
increase drawing efficiency. Nowhere are you so likely to need these as in connection
with a scroll view. As a scroll view scrolls, views must be drawn very rapidly as they
appear on the screen. If the view-drawing system can’t keep up with the speed of the
scroll, the scrolling will visibly stutter.

Performance testing and optimization is a big subject, so I can’t tell you exactly what to
do if you encounter stuttering while scrolling. But certain general suggestions (mostly
extracted from a really great WWDC 2010 video) should come in handy:

• Everything that can be opaque should be opaque: don’t force the drawing system
to composite transparency, and remember to tell it that an opaque view or layer is
opaque by setting its opaque property to true. If you really must composite trans‐
parency, keep the size of the nonopaque regions to a minimum; for example, if a
large layer is transparent at its edges, break it into five layers — the large central
layer, which is opaque, and the four edges, which are not.

• If you’re drawing shadows, don’t make the drawing system calculate the shadow
shape for a layer: supply a shadowPath, or use Core Graphics to create the shadow
with a drawing. Similarly, avoid making the drawing system composite the shadow
as a transparency against another layer; for example, if the background layer is
white, your opaque drawing can itself include a shadow already drawn on a white
background.

• Don’t make the drawing system scale images for you; supply the images at the target
size for the correct resolution.

Scroll View Performance | 413

• In a pinch, you can just eliminate massive swatches of the rendering operation by
setting a layer’s shouldRasterize to true. You could, for example, do this when
scrolling starts and then set it back to false when scrolling ends.

Apple’s documentation also says that setting a view’s clearsContextBeforeDrawing to
false may make a difference. I can’t confirm or deny this; it may be true, but I haven’t
encountered a case that positively proves it.

Xcode provides tools that will help you detect inefficiencies in the drawing system. In
the Simulator, the Debug menu shows you blended layers (where transparency is being
composited) and images that are being copied, misaligned, or rendered offscreen. On
the device, the Core Animation module of Instruments provides the same functionality,
plus it tracks the frame rate for you, allowing you to scroll and measure performance
objectively where it really counts.

414 | Chapter 7: Scroll Views

I’m gonna ask you the three big questions. — Go
ahead. — Who made you? — You did. — Who

owns the biggest piece of you? — You do. — What
would happen if I dropped you? — I’d go right

down the drain.
—Dialogue by Garson Kanin and Ruth Gordon,

Pat and Mike

CHAPTER 8

Table Views and Collection Views

A table view (UITableView) is a vertically scrolling UIScrollView (Chapter 7) containing
a single column of rectangular cells (UITableViewCell, a UIView subclass). It is a key‐
stone of Apple’s strategy for making the small iPhone screen useful and powerful, and
has three main purposes:
Presentation of information

The cells typically contain text, which the user can read. The cells are usually quite
small, in order to maximize the quantity appearing on the screen at once, so this
text is often condensed, truncated, or simplified.

Selection
A table view can provide the user with a column of choices. The user chooses by
tapping a cell, which selects the cell; the app responds appropriately to that choice.

Navigation
The appropriate response to the user’s choosing a cell is often navigation to another
interface. This might be done, for example, through a presented view controller or
a navigation interface (Chapter 6). An extremely common configuration is a mas‐
ter–detail interface, where the master view is a table view within a navigation in‐
terface: the user taps a table view cell to navigate to the details about that cell. This
is one reason why truncation of text in a table view cell is acceptable: the detail view
contains the full information.

415

Figure 8-1. Four table view variations

In addition to its column of cells, a table view can be extended by a number of other
features that make it even more useful and flexible:

• A table can display a header view at the top and a footer view at the bottom.
• The cells can be clumped into sections. Each section can have a header and footer,

and these remain visible as long as the section itself occupies the screen, giving the
user a clue as to where we are within the table. Moreover, a section index can be
provided, in the form of an overlay column of abbreviated section titles, which the
user can tap or drag to jump to the start of a section, thus making a long table
tractable.

• A table can have a grouped format. This is often used for presenting small numbers
of related cells.

• Tables can be editable: the user can be permitted to insert, delete, and reorder cells.

Figure 8-1 illustrates four variations of the table view:

• Apple’s Music app lists song titles and artists for a given album in truncated form
in a table view within a navigation interface which is itself within a tab bar interface;
tapping an album in a table of album titles summons the list of songs within that
album, and tapping a song in that list plays it.

• Apple’s Settings app uses table view cells in a grouped format with a header, within
a navigation interface, to display a switch and a list of Bluetooth devices; tapping a
device’s name searches for that device or connects to it.

• My Latin vocabulary app lists Latin words and their definitions in alphabetical
order, divided into sections by first letter, with section headers and a section index.

• Apple’s Music app allows a custom playlist to be edited, with interface for deleting
and rearranging cells.

416 | Chapter 8: Table Views and Collection Views

Figure 8-2. A grouped table view as an interface for choosing options

Table view cells, too, can be extremely flexible. Some basic cell formats are provided,
such as a text label along with a small image view, but you are free to design your own
cell as you would any other view. There are also some standard interface items that are
commonly used in a cell, such as a checkmark to indicate selection or a right-pointing
chevron to indicate that tapping the cell navigates to a detail view.

It would be difficult to overstate the importance of table views. An iOS app without a
table view somewhere in its interface would be a rare thing, especially on the small
iPhone screen. I’ve written apps consisting almost entirely of table views. Indeed, it is
not uncommon to use a table view even in situations that have nothing particularly
table-like about them, simply because it is so convenient.

For example, in one of my apps I want the user to be able to choose between three levels
of difficulty and two sets of images. In a desktop application I’d probably use radio
buttons; but there are no radio buttons among the standard iOS interface objects. In‐
stead, I use a grouped table view so small that it doesn’t even scroll. This gives me section
headers, tappable cells, and a checkmark indicating the current choice (Figure 8-2).

There is a UIViewController subclass, UITableViewController, whose main view is a
table view. You never really need to use a UITableViewController; it’s a convenience, but
it doesn’t do anything that you couldn’t do yourself by other means. Here’s some of what
using a UITableViewController gives you:

• UITableViewController’s init(style:) creates the table view with a plain or grou‐
ped format.

Table Views and Collection Views | 417

• The view controller is automatically made the table view’s delegate and data source,
unless you specify otherwise.

• The table view is made the view controller’s tableView. It is also, of course, the view
controller’s view, but the tableView property is typed as a UITableView, so you can
send table view messages to it without typecasting.

Table View Cells
Beginners may be surprised to learn that a table view’s structure and contents are gen‐
erally not configured in advance. Rather, you supply the table view with a data source
and a delegate (which will often be the same object), and the table view turns to these
in real time, as the app runs, whenever it needs a piece of information about its own
structure and contents.

This architecture may sound odd, but in fact it is part of a brilliant strategy to conserve
resources. Imagine a long table consisting of thousands of rows. It must appear, there‐
fore, to consist of thousands of cells as the user scrolls. But a cell is a UIView and is
memory-intensive; to maintain thousands of cells internally would put a terrible strain
on memory. Therefore, the table typically maintains only as many cells as are showing
simultaneously at any one moment (about ten, let’s say). As the user scrolls to reveal
new cells, those cells are created on the spot; meanwhile, the cells that have been scrolled
out of view are permitted to die.

This, you may reply, sounds ingenious but a bit wasteful, and possibly time-consuming;
wouldn’t it be even cleverer if, instead of letting a cell die as it is scrolled out of view, it
were whisked around to the other side and used again as one of the cells being scrolled
into view? Yes, and in fact that’s exactly what you’re supposed to do. You do it by assigning
each cell a reuse identifier.

As cells with a given reuse identifier are scrolled out of view, the table view maintains a
bunch of them in a pile. As cells are scrolled into view, you ask the table view for a cell
from that pile, specifying it by means of the reuse identifier. The table view hands an
old used cell back to you, and now you can configure it as the cell that is about to be
scrolled into view. Cells are thus reused to minimize not only the number of actual cells
in existence at any one moment, but the number of actual cells ever created. A table of
1000 rows might very well never need to create more than a dozen cells over the entire
lifetime of the app.

To facilitate this architecture, your code must be prepared, on demand, to supply the
table with pieces of requested data. Of these, the most important is the cell to be slotted
into a given position. A position in the table is specified by means of an index path
(NSIndexPath), a class used here to combine a section number with a row number, and
is often referred to simply as a row of the table. Your data source object may at any

418 | Chapter 8: Table Views and Collection Views

moment be sent the message tableView:cellForRowAtIndexPath:, and must respond
by returning the UITableViewCell to be displayed at that row of the table. And you must
return it fast: the user is scrolling now, so the table needs the next cell now.

In this section, I’ll discuss what you’re going to be supplying — the table view cell. After
that, I’ll talk about how you supply it.

Built-In Cell Styles
The simplest way to obtain a table view cell is to start with one of the four built-in table
view cell styles. To create a cell using a built-in style, call init(style:reuse-
Identifier:). The reuseIdentifier: is what allows cells previously assigned to rows
that are no longer showing to be reused for cells that are; it will usually be the same for
all cells in a table. Your choices of cell style (UITableViewCellStyle) are:
.Default

The cell has a UILabel (its textLabel), with an optional UIImageView (its image-
View) at the left. If there is no image, the label occupies the entire width of the cell.

.Value1

The cell has two UILabels (its textLabel and its detailTextLabel) side by side,
with an optional UIImageView (its imageView) at the left. The first label is left-
aligned; the second label is right-aligned. If the first label’s text is too long, the second
label won’t appear.

.Value2

The cell has two UILabels (its textLabel and its detailTextLabel) side by side.
No UIImageView will appear. The first label is right-aligned; the second label is left-
aligned. The label sizes are fixed, and the text of either will be truncated if it’s too
long.

.Subtitle

The cell has two UILabels (its textLabel and its detailTextLabel), one above the
other, with an optional UIImageView (its imageView) at the left.

To experiment with the built-in cell styles, do this:

1. Start with an empty application without a storyboard (I explained how to do that
at the start of Chapter 1).

2. Choose File → New → File and specify iOS → Source → Cocoa Touch Class. Click
Next.

3. Make this class a UITableViewController subclass called RootViewController. The
XIB checkbox should be checked; Xcode will create a .xib file containing a table
view, correctly hooked to our RootViewController class. Click Next.

Table View Cells | 419

Figure 8-3. The world’s simplest table

4. Make sure you’re saving into the correct folder and group, and that the app target
is checked. Click Create.

To get our table view into the interface, insert this line into AppDelegate’s
application:didFinishLaunchingWithOptions: at the appropriate spot:

self.window!.rootViewController = RootViewController(
 nibName: "RootViewController", bundle: nil)

Now modify the RootViewController class (which comes with a lot of templated code),
as in Example 8-1. Run the app to see the world’s simplest table (Figure 8-3).

Example 8-1. The world’s simplest table
let cellIdentifier = "Cell"
override func numberOfSectionsInTableView(tableView: UITableView)
 -> Int {
 return 1
}
override func tableView(tableView: UITableView,
 numberOfRowsInSection section: Int) -> Int {
 return 20
}
override func tableView(tableView: UITableView,
 cellForRowAtIndexPath indexPath: NSIndexPath) -> UITableViewCell {
 var cell =
 tableView.dequeueReusableCellWithIdentifier(
 cellIdentifier) as UITableViewCell!
 if cell == nil {
 cell = UITableViewCell(
 style:.Default, reuseIdentifier:cellIdentifier)
 cell.textLabel.textColor = UIColor.redColor()
 }
 cell.textLabel.text = "Hello there! \(indexPath.row)"
 return cell
}

The key parts of the code are:

420 | Chapter 8: Table Views and Collection Views

Our table will have one section.
Our table will consist of 20 rows. Having multiple rows will give us a sense of
how our cell looks when placed next to other cells.
This is where you specify the built-in table view cell style you want to experiment
with.
At this point in the code you can modify characteristics of the cell (cell) that
are to be the same for every cell of the table. For the moment, I’ve symbolized
this by assuming that every cell’s text is to be the same color.
We now have the cell to be used for this row of the table, so at this point in the
code you can modify characteristics of the cell (cell) that are unique to this row.
I’ve symbolized this by appending successive numbers to the text of each row.
Of course, in real life the different cells would reflect meaningful data. I’ll talk
about that later in this chapter.

Now you can experiment with your cell’s appearance by tweaking the code and running
the app. Feel free to try different built-in cell styles in the place where we are now
specifying .Default.

The flexibility of each built-in style is based mostly on the flexibility of UILabels. Not
everything can be customized, because after you return the cell some further configu‐
ration takes place, which may override your settings. For example, the size and position
of the cell’s subviews are not up to you. (I’ll explain, a little later, how to get around that.)
But you get a remarkable degree of freedom. Here are a few basic UILabel properties
for you to play with now (by customizing cell.textLabel), and I’ll talk much more
about UILabels in Chapter 10:
text

The string shown in the label.

textColor, highlightedTextColor
The color of the text. The highlightedTextColor applies when the cell is high‐
lighted or selected (tap on a cell to select it).

textAlignment

How the text is aligned; some possible choices (NSTextAlignment)
are .Left, .Center, and .Right.

numberOfLines

The maximum number of lines of text to appear in the label. Text that is long but
permitted to wrap, or that contains explicit linefeed characters, can appear com‐
pletely in the label if the label is tall enough and the number of permitted lines is
sufficient. 0 means there’s no maximum; the default is 1.

Table View Cells | 421

font

The label’s font. You could reduce the font size as a way of fitting more text into the
label. A font name includes its style. For example:

cell.textLabel.font = UIFont(name:"Helvetica-Bold", size:12.0)

shadowColor, shadowOffset
The text shadow. Adding a little shadow can increase clarity and emphasis for large
text.

You can also assign the image view (cell.imageView) an image. The frame of the image
view can’t be changed, but you can inset its apparent size by supplying a smaller image
and setting the image view’s contentMode to .Center. It’s probably a good idea in any
case, for performance reasons, to supply images at their drawn size and resolution rather
than making the drawing system scale them for you (see the last section of Chapter 7).
For example:

let im = UIImage(named:"moi.png")!
UIGraphicsBeginImageContextWithOptions(CGSizeMake(36,36), true, 0.0)
im.drawInRect(CGRectMake(0,0,36,36))
let im2 = UIGraphicsGetImageFromCurrentImageContext()
UIGraphicsEndImageContext()
cell.imageView.image = im2
cell.imageView.contentMode = .Center

The cell itself also has some properties you can play with:
accessoryType

A built-in type (UITableViewCellAccessoryType) of accessory view, which appears
at the cell’s right end. For example:

cell.accessoryType = .DisclosureIndicator

accessoryView

Your own UIView, which appears at the cell’s right end (overriding the accessory-
Type). For example:

let b = UIButton.buttonWithType(.System) as UIButton
b.setTitle("Tap Me", forState:.Normal)
b.sizeToFit()
// ... also assign button a target and action ...
cell.accessoryView = b

indentationLevel, indentationWidth
These properties give the cell a left margin, useful for suggesting a hierarchy among
cells. You can also set a cell’s indentation level in real time, with respect to the
table row into which it is slotted, by implementing the delegate’s table-
View:indentationLevelForRowAtIndexPath: method.

422 | Chapter 8: Table Views and Collection Views

separatorInset

A UIEdgeInsets. Only the left and right insets matter. The default is a left inset of
15, though if you don’t set it explicitly, the built-in table view cell styles may shift
it. This property affects both the drawing of the separator between cells and the
indentation of content of the built-in cell styles.

In iOS 8, the left separator inset in practice is set by default to 16, and an attempt
to reduce this value will fail. I regard this as a bug, presumably involving the layout-
Margins.

selectionStyle

How the background looks when the cell is selected (UITableViewCellSelection‐
Style). The default is solid gray (.Default), or you can choose .None.

(The blue and gray gradient backgrounds designated by .Blue and .Gray are left
over from iOS 6 and before. They are now abandoned, and are treated as equivalent
to .Default.)

backgroundColor
backgroundView
selectedBackgroundView

What’s behind everything else drawn in the cell. The selectedBackgroundView is
drawn in front of the backgroundView (if any) when the cell is selected, and will
appear instead of whatever the selectionStyle dictates. The backgroundColor is
behind the backgroundView. (Thus, if both the selectedBackgroundView and the
backgroundView have some transparency, both of them and the background-
Color can appear composited together when the cell is selected.)

There is no need to set the frame of the backgroundView and selectedBackground-
View; they will be resized automatically to fit the cell.

multipleSelectionBackgroundView

If defined (not nil), and if the table’s allowsMultipleSelection (or, if editing,
allowsMultipleSelectionDuringEditing) is true, used instead of the selected-
BackgroundView when the cell is selected.

In this example, we set the cell’s backgroundView to display an image with some trans‐
parency at the outside edges, so that the backgroundColor shows behind it, and we set
the selectedBackgroundView to an almost transparent blue rectangle, to darken that
image when the cell is selected (Figure 8-4):

Table View Cells | 423

Figure 8-4. A cell with an image background

cell.textLabel.textColor = UIColor.whiteColor()
let v = UIImageView() // no need to set frame
v.contentMode = .ScaleToFill
v.image = UIImage(named:"linen.png")
cell.backgroundView = v
let v2 = UIView() // no need to set frame
v2.backgroundColor = UIColor.blueColor().colorWithAlphaComponent(0.2)
cell.selectedBackgroundView = v2;
cell.backgroundColor = UIColor.redColor()

If those features are to be true of every cell ever displayed in the table, then that code
should go in the spot numbered 4 in Example 8-1; there’s no need to waste time doing
the same thing all over again when an existing cell is reused.

Finally, here are a few properties of the table view itself worth playing with:
rowHeight

The height of a cell. A taller cell may accommodate more information. You can also
change this value in the nib editor; the table view’s row height appears in the Size
inspector. The cell’s subviews have their autoresizing set so as to compensate cor‐
rectly. You can also set a cell’s height in real time by implementing the delegate’s
tableView:heightForRowAtIndexPath: method; thus a table’s cells may differ
from one another in height (more about that later in this chapter).

separatorStyle, separatorColor, separatorInset
These can also be set in the nib. The table’s separatorInset is adopted by individual
cells that don’t have their own explicit separatorInset. Separator styles (UITable‐
ViewCellSeparatorStyle) are .None and .SingleLine. (The former .SingleLine-
Etched style was abandoned in iOS 7, and equates to .None.)

backgroundColor, backgroundView
What’s behind all the cells of the table; this may be seen if the cells have transparency,
or if the user scrolls the cells beyond their limit. The backgroundView is drawn on
top of the backgroundColor.

424 | Chapter 8: Table Views and Collection Views

tableHeaderView, tableFooterView
Views to be shown before the first row and after the last row, respectively (as part
of the table’s scrolling content). Their background color is, by default, the back‐
ground color of the table, but you can change that. You dictate their heights; their
widths will be dynamically resized to fit the table. The user can, if you like, interact
with these views (and their subviews); for example, a view can be (or can contain)
a UIButton.

You can alter a table header or footer view dynamically during the lifetime of the
app; if you change its height, you must set the corresponding table view property
afresh to notify the table view of what has happened.

Registering a Cell Class
In tableView:cellForRowAtIndexPath:, there are two possible ways to obtain a reus‐
able cell:

• dequeueReusableCellWithIdentifier:

• dequeueReusableCellWithIdentifier:forIndexPath:

In Example 8-1, I used the first method; but I prefer the second method, which was
introduced in iOS 6, and will use it from now on. When I do, I’ll always slavishly pass
along, as the second parameter, the index path I received to begin with — and so should
you. This method has three advantages:
The result is never nil

Unlike dequeueReusableCellWithIdentifier:, the value returned by dequeue-
ReusableCellWithIdentifier:forIndexPath: is never nil (in Swift, it isn’t an
Optional). If there is a free reusable cell with the given identifier, it is returned. If
there isn’t, a new one is created for you. Step 3 of Example 8-1 can thus be eliminated!

The cell size is known earlier
Unlike dequeueReusableCellWithIdentifier:, the cell returned by dequeue-
ReusableCellWithIdentifier:forIndexPath: has its final bounds. That’s possi‐
ble because you’ve passed the index path as an argument, so the runtime knows this
cell’s ultimate destination within the table, and has already consulted the table’s row-
Height or the delegate’s tableView:heightForRowAtIndexPath:. This makes lay‐
ing out the cell’s contents much easier.

The identifier is consistent
A danger with dequeueReusableCellWithIdentifier: is that you may acciden‐
tally pass an incorrect reuse identifier, and end up not reusing cells. With dequeue-
ReusableCellWithIdentifier:forIndexPath:, that can’t happen.

Table View Cells | 425

Before you call dequeueReusableCellWithIdentifier:forIndexPath: for the first
time, you must register with the table itself. You do this by calling registerClass:for-
CellReuseIdentifier:. This associates a class (which must be UITableViewCell or a
subclass thereof) with a string identifier. That’s how dequeueReusableCellWith-
Identifier:forIndexPath: knows what class to instantiate when it creates a new cell
for you: you pass an identifier, and you’ve already told the table what class it signifies.
The only cell types you can obtain are those for which you’ve registered in this way; if
you pass a bad identifier, the app will crash (with a helpful log message).

This is a very elegant mechanism. It also raises some new questions:
When should I call registerClass:forCellReuseIdentifier:?

Call it early, before the table view starts generating cells. viewDidLoad is a good
place:

override func viewDidLoad() {
 super.viewDidLoad()
 self.tableView.registerClass(
 UITableViewCell.self, forCellReuseIdentifier: "Cell")
}

How do I specify a built-in table view cell style?
We are no longer calling init(style:reuseIdentifier:), so where do we make
our choice of built-in cell style? The default cell style is .Default, so if that’s what
you wanted, the problem is solved. Otherwise, subclass UITableViewCell and over‐
ride init(style:reuseIdentifier:) to substitute the cell style you’re after (pass‐
ing along the reuse identifier you were handed).

For example, let’s call our UITableViewCell subclass MyCell. So we now specify
MyCell.self in our call to registerClass:forCellReuseIdentifier:. MyCell’s
initializer looks like this:

override init(style: UITableViewCellStyle, reuseIdentifier: String?) {
 super.init(style:.Subtitle, reuseIdentifier: reuseIdentifier)
}

How do I know whether the returned cell is new or reused?
Good question! It’s important to know this, because there needs to be a way to
distinguish between step 4 of Example 8-1 (configurations to apply once and for all
to a new cell) and step 5 (configurations that differ for each row). The answer is: It’s
up to you, when performing one-time configuration on a cell, to give that cell some
distinguishing mark that you can look for later to determine whether a cell requires
one-time configuration.

For example, if every cell is to have a two-line text label, there is no point giving
every cell returned by dequeueReusableCellWithIdentifier:forIndexPath: a
two-line text label; the reused cells already have one. Now, however, no cell is nil,

426 | Chapter 8: Table Views and Collection Views

and we are never instantiating the cell ourselves. So how will we know which ones
need to be given a two-line text label? It’s easy: they are the ones without a two-line
text label:

override func tableView(tableView: UITableView,
 cellForRowAtIndexPath indexPath: NSIndexPath) -> UITableViewCell {
 let cell = tableView.dequeueReusableCellWithIdentifier(
 "Cell", forIndexPath:indexPath) as MyCell
 if cell.textLabel.numberOfLines != 2 { // never configured
 cell.textLabel.numberOfLines = 2
 // other one-time configurations here ...
 }
 cell.textLabel.text = // ...
 // other individual configurations here ...
 return cell
}

Custom Cells
The built-in cell styles give the beginner a leg up in getting started with table views, but
there is nothing sacred about them, and soon you’ll probably want to transcend them,
putting yourself in charge of how a table’s cells look and what subviews they contain.
The thing to remember is that the cell has a contentView property, which is one of its
subviews; things like the accessoryView are outside the contentView. All your cus‐
tomizations must be confined to subviews of the contentView; this allows the cell to
continue working correctly.

I’ll illustrate four possible approaches to customizing the contents of a cell:

• Start with a built-in cell style, but supply a UITableViewCell subclass and override
layoutSubviews to alter the frames of the built-in subviews.

• In tableView:cellForRowAtIndexPath:, add subviews to each cell’s content-
View as the cell is created. This approach can be combined with the previous one,
or you can ignore the built-in subviews and use your own exclusively.

• Design the cell in a nib, and load that nib in tableView:cellForRowAtIndexPath:
each time a cell needs to be created.

• Design the cell in a storyboard.

What causes the built-in subviews to be present is not the cell style but the fact that
you refer to them. As long as you never speak of the cell’s textLabel, detailText-
Label, or imageView, they are never created or inserted into the cell. Thus, you don’t
need to remove them if you don’t want to use them.

Table View Cells | 427

Figure 8-5. A cell with its label and image view swapped

Overriding a cell’s subview layout

You can’t directly change the frame of a built-in cell style subview in tableView:cell-
ForRowAtIndexPath:, because the cell’s layoutSubviews comes along later and over‐
rides your changes. The workaround is to override the cell’s layoutSubviews! This is a
straightforward solution if your main objection to a built-in style is the frame of an
existing subview.

To illustrate, let’s modify a .Default cell so that the image is at the right end instead of
the left end (Figure 8-5). We’ll make a UITableViewCell subclass, MyCell, remembering
to register MyCell with the table view, so that dequeueReusableCellWith-

Identifier:forIndexPath: produces a MyCell instance; here is MyCell’s layout-
Subviews:

override func layoutSubviews() {
 super.layoutSubviews()
 let cvb = self.contentView.bounds
 let imf = self.imageView.frame
 self.imageView.frame.origin.x = cvb.size.width - imf.size.width - 15
 self.textLabel.frame.origin.x = 15
}

Adding subviews in code
Instead of modifying the existing default subviews, you can add completely new views
to each UITableViewCell’s content view. The best place to do this in code is table-
View:cellForRowAtIndexPath:. Here are some things to keep in mind:

• The new views must be added when we instantiate a new cell, but not when we reuse
a cell (because a reused cell already has them).

• We must never send addSubview: to the cell itself — only to its contentView (or
some subview thereof).

• We should assign the new views an appropriate autoresizingMask or constraints,
because the cell’s content view might be resized.

• Each new view should be assigned a tag so that it can be referred to elsewhere.

I’ll rewrite the previous example (Figure 8-5) to use this technique. We are no longer
using a UITableViewCell subclass; the registered cell class is UITableViewCell itself. If
this is a new cell, we add the subviews and assign them tags. If this is a reused cell, we

428 | Chapter 8: Table Views and Collection Views

don’t add the subviews (the cell already has them), and we use the tags to refer to the
subviews:

override func tableView(tableView: UITableView,
 cellForRowAtIndexPath indexPath: NSIndexPath) -> UITableViewCell {
 let cell = tableView.dequeueReusableCellWithIdentifier(
 "Cell", forIndexPath:indexPath) as UITableViewCell
 if cell.viewWithTag(1) == nil { // no subviews! add them
 let iv = UIImageView()
 iv.tag = 1
 cell.contentView.addSubview(iv)
 let lab = UILabel()
 lab.tag = 2
 cell.contentView.addSubview(lab)
 // since we are now adding the views ourselves,
 // we can use autolayout to lay them out
 let d = ["iv":iv, "lab":lab]
 iv.setTranslatesAutoresizingMaskIntoConstraints(false)
 lab.setTranslatesAutoresizingMaskIntoConstraints(false)
 // image view is vertically centered
 cell.contentView.addConstraint(
 NSLayoutConstraint(item:iv, attribute:.CenterY,
 relatedBy:.Equal, toItem:cell.contentView,
 attribute:.CenterY, multiplier:1, constant:0))
 // it's a square
 cell.contentView.addConstraint(
 NSLayoutConstraint(item:iv, attribute:.Width,
 relatedBy:.Equal, toItem:iv,
 attribute:.Height, multiplier:1, constant:0))
 // label has height pinned to superview
 cell.contentView.addConstraints(
 NSLayoutConstraint.constraintsWithVisualFormat("V:|[lab]|",
 options:nil, metrics:nil, views:d))
 // horizontal margins
 cell.contentView.addConstraints(
 NSLayoutConstraint.constraintsWithVisualFormat(
 "H:|-15-[lab]-15-[iv]-15-|",
 options:nil, metrics:nil, views:d))
 }
 // can refer to subviews by their tags
 let lab = cell.viewWithTag(2) as UILabel
 let iv = cell.viewWithTag(1) as UIImageView
 // ...
 return cell
}

Using our own cell subviews instead of the built-in cell style subviews has some clear
advantages; we no longer have to perform an elaborate dance to escape from the re‐
strictions imposed by the runtime. Still, the verbosity of this code is somewhat over‐
whelming. We can avoid this by designing the cell in a nib.

Table View Cells | 429

Designing a cell in a nib
In designing a cell in a nib, we start by creating a .xib file that will consist, in effect, solely
of this one cell. In Xcode, create the .xib file by specify iOS → User Interface → View.
Let’s call it MyCell.xib. In the nib editor, delete the existing View and replace it with a
Table View Cell from the Object library.

The cell’s design window shows a standard-sized cell; you can resize it as desired, but
the actual size of the cell in the interface will be dictated by the table view’s width and
its rowHeight (or the delegate’s response to tableView:heightForRowAtIndexPath:).
The cell already has a contentView, and any subviews you add will be inside that; do
not subvert that arrangement.

You can choose a built-in table view cell style in the Style pop-up menu of the Attributes
inspector, and this gives you the default subviews, locked in their standard positions;
for example, if you choose Basic, the textLabel appears, and if you specify an image,
the imageView appears. If you set the Style pop-up menu to Custom, you start with a
blank slate. Let’s do that.

We’ll implement, from scratch, the same subviews we’ve already implemented in the
preceding two examples: a UILabel on the left side of the cell, and a UIImageView on
the right side. Just as when adding subviews in code, we should set each subview’s
autoresizing behavior or constraints, and give each subview a tag, so that later, in table-
View:cellForRowAtIndexPath:, we’ll be able to refer to the label and the image view
using viewWithTag:, exactly as in the previous example:

let lab = cell.viewWithTag(2) as UILabel
let iv = cell.viewWithTag(1) as UIImageView
// ...
return cell

The only remaining question is how to load the cell from the nib. This is the Really Cool
Part. When we register with the table view, which we’re currently doing in viewDid-
Load, instead of calling registerClass:forCellReuseIdentifier:, we call a different
method: registerNib:forCellReuseIdentifier:. To specify the nib, call UINib’s class
method nibWithNibName:bundle:, like this:

self.tableView.registerNib(
 UINib(nibName:"MyCell", bundle:nil), forCellReuseIdentifier: "Cell")

That’s all there is to it! In tableView:cellForRowAtIndexPath:, when we call dequeue-
ReusableCellWithIdentifier:forIndexPath:, if the table has no free reusable cell
already in existence, the nib will automatically be loaded and the cell will be instantiated
from it and returned to us.

You may wonder how that’s possible, when we haven’t specified a File’s Owner class or
added an outlet from the File’s Owner to the cell in the nib. The answer is that the nib
conforms to a specific format. The UINib instance method instantiateWith-

430 | Chapter 8: Table Views and Collection Views

Owner:options: can load a nib with a nil owner; regardless, it returns an array of the
nib’s instantiated top-level objects. A nib registered with the table view is expected to
have exactly one top-level object, and that top-level object is expected to be a UITable‐
ViewCell; that being so, the cell can easily be extracted from the resulting array, as it is
the array’s only element. Our nib meets those expectations!

The advantages of this approach should be immediately obvious. The subviews can now
be designed in the nib, and code that was creating and configuring each subview can be
deleted. For example, suppose we previously had this code:

if cell.viewWithTag(1) == nil {
 let iv = UIImageView()
 iv.tag = 1
 cell.contentView.addSubview(iv)
 let lab = UILabel()
 lab.tag = 2
 cell.contentView.addSubview(lab)
 // ... position views ...
 lab.font = UIFont(name:"Helvetica-Bold", size:16)
 lab.lineBreakMode = .ByWordWrapping
 lab.numberOfLines = 2
}

All of that can now be eliminated, including setting the label’s font, lineBreakMode,
and numberOfLines; those configurations are to be applied to the label in every cell, so
they can be performed in the nib instead.

The nib must conform to the format I’ve described: it must have exactly one top-
level object, a UITableViewCell. This means that some configurations are difficult
or impossible in the nib. Consider, for example, the cell’s backgroundView. The cell
in the nib has a backgroundView outlet, but if we drag a view into the canvas and
hook that outlet to it, our app will crash when the nib loads (because there are now
two top-level nib objects). The simplest workaround is to add the background-
View in code.

In tableView:cellForRowAtIndexPath:, we are still referring to the cell’s subviews by
way of viewWithTag:. There’s nothing wrong with that, but perhaps you’d prefer to use
names. Now that we’re designing the cell in a nib, that’s easy. Provide a UITableViewCell
subclass with outlet properties, and configure the nib file accordingly:

1. Create a UITableViewCell subclass — let’s call it MyCell — and declare two outlet
properties:

class MyCell : UITableViewCell {
 @IBOutlet var theLabel : UILabel!
 @IBOutlet var theImageView : UIImageView!
}

Table View Cells | 431

That is the entirety of MyCell’s code; it exists solely so that we can create these outlets.
2. Edit the table view cell nib MyCell.xib. Change the class of the cell to MyCell, and

link up the outlets from the cell to the respective subviews.

The result is that in our implementation of tableView:cellForRowAtIndexPath:, once
we’ve typed the cell as a MyCell, the compiler will let us use the property names to access
the subviews:

let cell = tableView.dequeueReusableCellWithIdentifier(
 "Cell", forIndexPath:indexPath) as MyCell
let lab = cell.theLabel
let iv = cell.theImageView

Designing a cell in a storyboard
When your table view comes from a storyboard, it is open to you to employ any of the
ways of obtaining and designing its cells that I’ve already described. There is also an
additional option, available only in a UITableViewController scene in the storyboard:
you can have the table view obtain the cells from the storyboard itself, and you can also
design the cell directly in the table view in the storyboard.

To experiment with this way of obtaining and designing a cell, start with a project based
on the Single View Application template:

1. In the storyboard, delete the View Controller scene. In the project, delete the View
Controller class file.

2. In the project, create a file for a UITableViewController subclass called RootView‐
Controller, without a corresponding .xib file.

3. In the storyboard, drag a Table View Controller into the empty canvas, and set its
class to RootViewController (and make sure it’s the initial view controller).

4. Now comes the Interesting Part. The table view controller in the storyboard comes
with a table view. In the storyboard, select that table view, and, in the Attributes
inspector, set the Content pop-up menu to Dynamic Prototypes, and set the number
of Prototype Cells to 1 (these are the defaults).

The table view now contains a single table view cell with a content view. You can do in
this cell exactly what we were doing before when designing a table view cell in a .xib file.

So, let’s do that. I like being able to refer to my custom cell subviews with property names.
Our procedure is just like what we did in the previous example:

1. In the project, add a UITableViewCell subclass — let’s call it MyCell — and declare
two outlet properties:

432 | Chapter 8: Table Views and Collection Views

class MyCell : UITableViewCell {
 @IBOutlet var theLabel : UILabel!
 @IBOutlet var theImageView : UIImageView!
}

2. In the storyboard, select the prototype cell and change its class to MyCell.
3. Drag a label and an image view into the prototype cell, position and configure them

as desired, and hook up the cell’s outlets to them appropriately.

So far, so good; but there is one crucial question I have not yet answered: How will your
code tell the table view to get its cells from the storyboard? Clearly, not by calling
registerClass:forCellReuseIdentifier:, and not by calling registerNib:forCell-
ReuseIdentifier:; each of those would do something perfectly valid, but not the thing
we want done in this case. The answer is that you don’t register anything with the table
view at all! Instead, when you call dequeueReusableCellWithIdentifier:forIndex-
Path:, you supply an identifier that matches the prototype cell’s identifier in the story‐
board.

So, return once more to the storyboard:

1. Select the prototype cell.
2. In the Attributes inspector, enter Cell in the Identifier field (capitalization counts).

Now RootViewController’s tableView:cellForRowAtIndexPath: works exactly as it
did in the previous example:

let cell = tableView.dequeueReusableCellWithIdentifier(
 "Cell", forIndexPath:indexPath) as MyCell
let lab = cell.theLabel
let iv = cell.theImageView

If you call dequeueReusableCellWithIdentifier:forIndexPath: with an identifier
that you have not registered with the table view and that doesn’t match the identifier of
a prototype cell in the storyboard, your app will crash (with a helpful message in the
console).

Table View Data
The structure and content of the actual data portrayed in a table view comes from the
data source, an object pointed to by the table view’s dataSource property and adopting
the UITableViewDataSource protocol. The data source is thus the heart and soul of the
table. What surprises beginners is that the data source operates not by setting the table
view’s structure and content, but by responding on demand. The data source, qua data
source, consists of a set of methods that the table view will call when it needs information;
in effect, it will ask your data source some questions. This architecture has important

Table View Data | 433

consequences for how you write your code, which can be summarized by these simple
guidelines:
Be ready

Your data source cannot know when or how often any of these methods will be
called, so it must be prepared to answer any question at any time.

Be fast
The table view is asking for data in real time; the user is probably scrolling through
the table right now. So you mustn’t gum up the works; you must be ready to supply
responses just as fast as you possibly can. (If you can’t supply a piece of data fast
enough, you may have to skip it, supply a placeholder, and insert the data into the
table later. This may involve you in threading issues that I don’t want to get into
here. I’ll give an example in Chapter 24.)

Be consistent
There are multiple data source methods, and you cannot know which one will be
called at a given moment. So you must make sure your responses are mutually
consistent at any moment. For example, a common beginner error is forgetting to
take into account, in your data source methods, the possibility that the data might
not yet be ready.

This may sound daunting, but you’ll be fine as long as you maintain an unswerving
adherence to the principles of model–view–controller. How and when you accumulate
the actual data, and how that data is structured, is a model concern. Acting as a data
source is a controller concern. So you can acquire and arrange your data whenever and
however you like, just so long as when the table view actually turns to you and asks what
to do, you can lay your hands on the relevant data rapidly and consistently. You’ll want
to design the model in such a way that the controller can access any desired piece of
data more or less instantly.

Another source of confusion for beginners is that methods are rather oddly distributed
between the data source and the delegate, an object pointed to by the table view’s
delegate property and adopting the UITableViewDelegate protocol; in some cases, one
may seem to be doing the job of the other. This is not usually a cause of any real difficulty,
because the object serving as data source will probably also be the object serving as
delegate. Nevertheless, it is rather inconvenient when you’re consulting the documen‐
tation; you’ll probably want to keep the data source and delegate documentation pages
open simultaneously as you work.

If a table view’s contents are known beforehand, you can alternatively design the
entire table, including the contents of individual cells, in a storyboard. I’ll give an
example later in this chapter.

434 | Chapter 8: Table Views and Collection Views

The Three Big Questions
Like Katherine Hepburn in Pat and Mike, the basis of your success (as a data source) is
your ability, at any time, to answer the Three Big Questions. The questions the table
view will ask you are a little different from the questions Mike asks Pat, but the principle
is the same: know the answers, and be able to recite them at any moment. Here they are:
How many sections does this table have?

The table will call numberOfSectionsInTableView:; respond with an integer. In
theory you can sometimes omit this method, as the default response is 1, which is
often correct. However, I never omit it; for one thing, returning 0 is a good way to
say that the table has no data, and will prevent the table view from asking any other
questions.

How many rows does this section have?
The table will call tableView:numberOfRowsInSection:. The table supplies a sec‐
tion number — the first section is numbered 0 — and you respond with an integer.
In a table with only one section, of course, there is probably no need to examine
the incoming section number.

What cell goes in this row of this section?
The table will call tableView:cellForRowAtIndexPath:. The index path is ex‐
pressed as an NSIndexPath; this is a sophisticated and powerful class, but you don’t
actually have to know anything about it, because UITableView provides a category
on it that adds two read-only properties — section and row. Using these, you
extract the requested section number and row number, and return a fully configured
UITableViewCell, ready for display in the table view. The first row of a section is
numbered 0. I have already explained how to obtain the cell in the first place, by
calling dequeueReusableCellWithIdentifier:forIndexPath:.

I have nothing particular to say about precisely how you’re going to fulfill these obli‐
gations. It all depends on your data model and what your table is trying to portray. The
important thing is to remember that you’re going to be receiving an NSIndexPath spec‐
ifying a section and a row, and you need to be able to lay your hands on the data cor‐
responding to that slot now and configure the cell now. So construct your model, and
your algorithm for consulting it in the Three Big Questions, and your way of configuring
the cell, in accordance with that necessity.

For example, suppose our table is to list the names of the Pep Boys. Our data model
might be an array of string names (self.pep). Our table has only one section. So our
code might look like this:

override func numberOfSectionsInTableView(tableView: UITableView) -> Int {
 if self.pep == nil {
 return 0
 }

Table View Data | 435

 return 1
}
override func tableView(tableView: UITableView,
 numberOfRowsInSection section: Int) -> Int {
 return self.pep.count
}
override func tableView(tableView: UITableView,
 cellForRowAtIndexPath indexPath: NSIndexPath) -> UITableViewCell {
 let cell = tableView.dequeueReusableCellWithIdentifier(
 "Cell", forIndexPath: indexPath) as UITableViewCell
 cell.textLabel.text = pep[indexPath.row]
 return cell
}

At this point you may be feeling some exasperation. You want to object: “But that’s
trivial!” Exactly so! Your access to the data model should be trivial. That’s the sign of a
data model that’s well designed for access by your table view’s data source. Your imple‐
mentation of tableView:cellForRowAtIndexPath: might have some interesting work
to do in order to configure the form of the cell, but accessing the actual data should be
simple and boring.

Reusing Cells
Another important goal of tableView:cellForRowAtIndexPath: should be to conserve
resources by reusing cells. As I’ve already explained, once a cell’s row is no longer visible
on the screen, that cell can be slotted into a row that is visible — with its portrayed data
appropriately modified, of course! — so that only a few more than the number of si‐
multaneously visible cells will ever need to be instantiated.

A table view is ready to implement this strategy for you; all you have to do is call dequeue-
ReusableCellWithIdentifier:forIndexPath:. For any given identifier, you’ll be
handed either a newly minted cell or a reused cell that previously appeared in the table
view but is now no longer needed because it has scrolled out of view.

The table view can maintain more than one cache of reusable cells; this could be useful
if your table view contains more than one type of cell (where the meaning of the concept
“type of cell” is pretty much up to you). This is why you must name each cache, by
attaching an identifier string to any cell that can be reused. All the examples in this
chapter (and in this book, and in fact in every UITableView I’ve ever created) use just
one cache and just one identifier, but there can be more than one. If you’re using a
storyboard as a source of cells, there would then need to be more than one prototype
cell.

To prove to yourself the efficiency of the cell-caching architecture, do something to
differentiate newly instantiated cells from reused cells, and count the newly instantiated
cells, like this:

436 | Chapter 8: Table Views and Collection Views

override func numberOfSectionsInTableView(tableView: UITableView) -> Int {
 return 1
}
override func tableView(
 tableView: UITableView, numberOfRowsInSection section: Int) -> Int {
 return 1000 // make a lot of rows this time!
}
override func tableView(tableView: UITableView,
 cellForRowAtIndexPath indexPath: NSIndexPath) -> UITableViewCell {
 let cell = tableView.dequeueReusableCellWithIdentifier(
 "Cell", forIndexPath:indexPath) as MyCell
 let lab = cell.theLabel
 // prove that many rows does not mean many cell objects
 lab.text = "This is row \(indexPath.row) of section \(indexPath.section)"
 if lab.tag != 999 {
 lab.tag = 999
 println("New cell \(++self.cells)")
 }
}

When we run this code and scroll through the table, every cell is numbered correctly,
so there appear to be 1000 cells. But the console messages show that only about a dozen
distinct cells are ever actually created.

Be certain that your table view code passes that test, and that you are truly reusing cells!
Fortunately, one of the benefits of calling dequeueReusableCellWithIdentifier:for-
IndexPath: is that it forces you to use a valid reuse identifier.

A common beginner error is to obtain a cell in some other way, such as instantiating
it directly every time tableView:cellForRowAtIndexPath: is called. I have even seen
beginners call dequeueReusableCellWithIdentifier:forIndexPath:, only to in‐
stantiate a fresh cell manually in the next line. Don’t do that.

When your tableView:cellForRowAtIndexPath: implementation configures individ‐
ual cells (stage 5 in Example 8-1), the cell might be new or reused; at this point in your
code, you don’t know or care which. Therefore, you should always configure everything
about the cell that might need configuring. If you fail to do this, and if the cell is reused,
you might be surprised when some aspect of the cell is left over from its previous use;
similarly, if you fail to do this, and if the cell is new, you might be surprised when some
aspect of the cell isn’t configured at all.

As usual, I learned that lesson the hard way. In the TidBITS News app, there is a little
loudspeaker icon that should appear in a given cell in the master view’s table view only
if there is a recording associated with this article. So I initially wrote this code:

Table View Data | 437

if (item.enclosures != nil) && (item.enclosures.count > 0) {
 cell.speaker.hidden = false
}

That turned out to be a mistake, because the cell might be reused. Every reused call
always had a visible loudspeaker icon if, in a previous usage, that cell had ever had a
visible loudspeaker icon! The solution was to rewrite the logic to cover all possibilities
completely, like this:

cell.speaker.hidden =
 !((item.enclosures != nil) && (item.enclosures.count > 0))

You do get a sort of second bite of the cherry: there’s a delegate method, tableView:will-
DisplayCell:forRowAtIndexPath:, that is called for every cell just before it appears in
the table. This is absolutely the last minute to configure a cell. But don’t misuse this
method. You’re functioning as the delegate here, not the data source; you may set the
final details of the cell’s appearance, but you shouldn’t be consulting the data model at
this point.

An additional delegate method is tableView:didEndDisplayingCell:forRowAtIndex-
Path:. This tells you that the cell no longer appears in the interface and has become free
for reuse. You could take advantage of this to tear down any resource-heavy customi‐
zation of the cell — I’ll give an example in Chapter 24 — or simply to prepare it somehow
for subsequent future reuse.

Table View Sections
Your table data may be expressed as divided into sections. You might clump your data
into sections for various reasons (and doubtless there are other reasons beyond these):

• You want to supply section headers (or footers, or both).
• You want to make navigation of the table easier by supplying an index down the

right side. You can’t have an index without sections.
• You want to facilitate programmatic rearrangement of the table. For example, it’s

very easy to hide or move an entire section at once, possibly with animation.

Section headers and footers
A section header or footer appears between the cells, before the first row of a section or
after the last row of a section, respectively. In addition, in a nongrouped table, a section
header or footer detaches itself while the user scrolls the table, positioning itself at the
top or bottom of the table view and floating over the scrolled rows, so that the user
always knows what section is currently being viewed. This can greatly clarify the pre‐
sentation of your data by giving the user a sense, at every moment, of where we are
within the table. Also, a section header or footer can contain custom views, so it’s a place

438 | Chapter 8: Table Views and Collection Views

where you might put additional information, or even functional interface, such as a
button the user can tap.

Don’t confuse the section headers and footers with the header and footer of the
table as a whole. The latter are view properties of the table view itself, its table-
HeaderView and tableFooterView, discussed earlier in this chapter. The table header
appears only when the table is scrolled all the way down; the table footer appears
only when the table is scrolled all the way up.

The number of sections is determined by your reply to numberOfSectionsInTable-
View:. For each section, the table view will consult your data source and delegate to
learn whether this section has a header or a footer, or both, or neither (the default).

The UITableViewHeaderFooterView class is a UIView subclass intended specifically for
use as the view of a header or footer; much like a table view cell, it is reusable. It has the
following properties:
textLabel

Label (UILabel) for displaying the text of the header or footer.

detailTextLabel

This label, if you set its text, appears only in a grouped style table.

contentView

A subview of the header or footer, to which you can add custom subviews. If you
do, you probably should not use the built-in textLabel; the textLabel is not inside
the contentView and in a sense doesn’t belong to you.

backgroundView

Any view you want to assign. The contentView is in front of the backgroundView.
The contentView has a clear background by default, so the backgroundView shows
through. An opaque contentView.backgroundColor, on the other hand, would
completely obscure the backgroundView.

If the backgroundView is nil (the default), the header or footer view will supply its
own background view whose backgroundColor is derived (in some annoyingly
unspecified way) from the table’s backgroundColor.

backgroundColor

You’re not supposed to set the header or footer’s backgroundColor; instead, set the
backgroundColor of its contentView, or assign a new backgroundView and con‐
figure it as you like.

Table View Data | 439

tintColor

This property appears to be a kind of dead letter; it exists, and you can set it, but it
doesn’t do anything. (This feels like a bug; the tintColor should affect the color of
subviews, such a UIButton’s title, but it doesn’t.)

You can supply a header or footer in two ways:
Header or footer title string

You implement the data source method tableView:titleForHeaderInSection:
or tableView:titleForFooterInSection: (or both). Return nil to indicate that
the given section has no header (or footer). The header or footer view itself is a
UITableViewHeaderFooterView, and is reused automatically: there will be only as
many as needed for simultaneous display on the screen. The string you supply
becomes the view’s textLabel.text.

(In a grouped style table, the string’s capitalization may be changed. To avoid that,
use the second way of supplying the header or footer.)

Header or footer view
You implement the delegate method tableView:viewForHeaderInSection: or
tableView:viewForFooterInSection: (or both). The view you supply is used as
the entire header or footer and is automatically resized to the table’s width and the
section header or footer height (I’ll discuss how the height is determined in a
moment).

You are not required to return a UITableViewHeaderFooterView, but you will
probably want to, in order to take advantage of reusability. To do so, the procedure
is much like making a cell reusable. You register beforehand with the table view by
calling registerClass:forHeaderFooterViewReuseIdentifier:. To supply the
reusable view, send the table view dequeueReusableHeaderFooterViewWith-
Identifier:; the result will be either a newly instantiated view or a reused view.

You can then configure this view as desired. For example, you can set its text-
Label.text, or you can give its contentView custom subviews. In the latter case,
be sure to set proper autoresizing or constraints, so that the subviews will be posi‐
tioned and sized appropriately when the view itself is resized.

The documentation lists a second way of registering a header or footer view for
reuse — registerNib:forHeaderFooterViewReuseIdentifier:. But the nib editor’s
Object library doesn’t include a UITableViewHeaderFooterView! This makes
registerNib:forHeaderFooterViewReuseIdentifier: pretty much useless, because
there’s no way to configure the view correctly in the nib.

440 | Chapter 8: Table Views and Collection Views

In addition, two pairs of delegate methods permit you to perform final configurations
on your header or footer views:
tableView:willDisplayHeaderView:forSection:
tableView:willDisplayFooterView:forSection:

You can perform further configuration here, if desired. A useful possibility is to
generate the default UITableViewHeaderFooterView by implementing title-
For... and then tweak its form slightly here. These delegate methods are matched
by tableView:didEndDisplayingHeaderView:forSection: and tableView:did-
EndDisplayingFooterView:forSection:.

tableView:heightForHeaderInSection:
tableView:heightForFooterInSection:

The runtime resizes your header or footer before displaying it. Its width will be the
table view’s width; its height will be the table view’s sectionHeaderHeight and
sectionFooterHeight unless you implement one of these methods to say other‐
wise.

It is possible to implement both viewFor... and titleFor.... In that case, viewFor...
is called first, and if it returns a UITableViewHeaderFooterView, titleFor... will set
its textLabel.text. If you implement both methods and you want heightFor... to
return the height as set by the table view based on titleFor..., return UITableView-
AutomaticDimension.

If you implement tableView:viewForHeaderInSection: and not tableView:title-
ForHeaderInSection:, and you neither set the table view’s sectionHeaderHeight
nor implement tableView:heightForHeaderInSection:, you may or may not see
any headers. (So too, of course, for footers.) The frustrating thing here is that this
configuration may seem to work just fine, until one day it doesn’t, and you will then
waste many hours wondering what went wrong. Can you guess how I know this?

Some lovely effects can be created by making use of the fact that a header or footer view
will be further forward than the table’s cells. For example, a header with transparency
shows the cells as they scroll behind it; a header with a shadow casts that shadow on the
adjacent cell.

When a header or footer view appears in the middle of the table view (between two
table cells), there is a transparent gap behind it. If the header or footer view has
some transparency, the table view’s background is visible through this gap. Be sure
to take this into account when planning your color scheme.

Table View Data | 441

Section data
Clearly, a table that is to have sections may require some advance planning in the for‐
mation of its data model. The row data somehow be clumped into sections, because
you’re going to be asked for a row with respect to its section. And, just as with a cell, a
section title must be readily available so that it can be supplied quickly in real time. A
structure that I commonly use is a pair of parallel arrays: an array of strings containing
the section names, and an array of subarrays containing the data for each section.

For example, suppose we intend to display the names of all 50 U.S. states in alphabetical
order as the rows of a table view, and that we wish to divide the table into sections
according to the first letter of each state’s name. Let’s say I have the alphabetized list as
a text file, which starts like this:

Alabama
Alaska
Arizona
Arkansas
California
Colorado
Connecticut
Delaware
...

I have properties already initialized as empty arrays, waiting to hold the data model:

var sectionNames = [String]()
var sectionData = [[String]]()

I’ll prepare the data model by loading the text file and walking through it, line by line,
creating a new section name and a new subarray when I encounter a new first letter:

let s = NSString(contentsOfFile: NSBundle.mainBundle().pathForResource(
 "states", ofType: "txt")!, encoding: NSUTF8StringEncoding, error: nil)!
let states = s.componentsSeparatedByString("\n") as [String]
var previous = ""
for aState in states {
 // get the first letter
 let c = (aState as NSString).substringWithRange(NSMakeRange(0,1))
 // only add a letter to sectionNames when it's a different letter
 if c != previous {
 previous = c
 self.sectionNames.append(c.uppercaseString)
 // and in that case also add new subarray to our array of subarrays
 self.sectionData.append([String]())
 }
 sectionData[sectionData.count-1].append(aState)
}

The value of this preparatory dance is evident when we are bombarded with questions
from the table view about cells and headers; supplying the answers is trivial, just as it
should be:

442 | Chapter 8: Table Views and Collection Views

override func numberOfSectionsInTableView(tableView: UITableView) -> Int {
 return self.sectionNames.count
}
override func tableView(tableView: UITableView,
 numberOfRowsInSection section: Int) -> Int {
 return self.sectionData[section].count
}
override func tableView(tableView: UITableView,
 cellForRowAtIndexPath indexPath: NSIndexPath) -> UITableViewCell {
 let cell = tableView.dequeueReusableCellWithIdentifier(
 "Cell", forIndexPath: indexPath) as UITableViewCell
 let s = self.sectionData[indexPath.section][indexPath.row]
 cell.textLabel.text = s
 return cell
}
override func tableView(tableView: UITableView,
 titleForHeaderInSection section: Int) -> String? {
 return self.sectionNames[section]
}

Let’s modify that example to illustrate customization of a header view. I’ve already reg‐
istered my header identifier in viewDidLoad:

self.tableView.registerClass(UITableViewHeaderFooterView.self,
 forHeaderFooterViewReuseIdentifier: "Header")

Now, instead of tableView:titleForHeaderInSection:, I’ll implement table-
View:viewForHeaderInSection:. For completely new views, I’ll place my own label
and an image view inside the contentView and give them their basic configuration; then
I’ll perform individual configuration on all views, new or reused (very much like table-
View:cellForRowAtIndexPath:). Note my deliberate misuse of the otherwise useless
tintColor property to mark whether a view needs basic configuration:

override func tableView(tableView: UITableView,
 viewForHeaderInSection section: Int) -> UIView? {
 let h = tableView.dequeueReusableHeaderFooterViewWithIdentifier(
 "Header") as UITableViewHeaderFooterView
 if h.tintColor != UIColor.redColor() {
 h.tintColor = UIColor.redColor() // invisible marker, tee-hee
 h.backgroundView = UIView()
 h.backgroundView?.backgroundColor = UIColor.blackColor()
 let lab = UILabel()
 lab.tag = 1
 lab.font = UIFont(name:"Georgia-Bold", size:22)
 lab.textColor = UIColor.greenColor()
 lab.backgroundColor = UIColor.clearColor()
 h.contentView.addSubview(lab)
 let v = UIImageView()
 v.tag = 2
 v.backgroundColor = UIColor.blackColor()
 v.image = UIImage(named:"us_flag_small.gif")
 h.contentView.addSubview(v)

Table View Data | 443

 lab.setTranslatesAutoresizingMaskIntoConstraints(false)
 v.setTranslatesAutoresizingMaskIntoConstraints(false)
 h.contentView.addConstraints(
 NSLayoutConstraint.constraintsWithVisualFormat(
 "H:|-5-[lab(25)]-10-[v(40)]",
 options:nil, metrics:nil, views:["v":v, "lab":lab]))
 h.contentView.addConstraints(
 NSLayoutConstraint.constraintsWithVisualFormat("V:|[v]|",
 options:nil, metrics:nil, views:["v":v]))
 h.contentView.addConstraints(
 NSLayoutConstraint.constraintsWithVisualFormat("V:|[lab]|",
 options:nil, metrics:nil, views:["lab":lab]))
 }
 let lab = h.contentView.viewWithTag(1) as UILabel
 lab.text = self.sectionNames[section]
 return h
}

Section index
If your table view has the plain style, you can add an index down the right side of the
table, where the user can tap or drag to jump to the start of a section — helpful for
navigating long tables. To generate the index, implement the data source method
sectionIndexTitlesForTableView:, returning an array of string titles to appear as en‐
tries in the index. For our list of state names, that’s trivial once again, just as it should
be:

override func sectionIndexTitlesForTableView(tableView: UITableView)
 -> [AnyObject]! {
 return self.sectionNames
}

The index can appear even if there are no section headers. It will appear only if the
number of rows exceeds the table view’s sectionIndexMinimumDisplayRowCount prop‐
erty value; the default is 0, so the index is always displayed by default. You will want the
index entries to be short — preferably just one character — because they will be partially
obscuring the right edge of the table; plus, each cell’s content view will shrink to com‐
pensate, so you’re sacrificing some cell real estate.

You can modify three properties that affect the index’s appearance:
sectionIndexColor

The index text color.

sectionIndexBackgroundColor

The index background color. I advise giving the index some background color, even
if it is clearColor, because otherwise the index distorts the colors of what’s behind
it in a distracting way.

444 | Chapter 8: Table Views and Collection Views

sectionIndexTrackingBackgroundColor

The index background color while the user’s finger is sliding over it. By default, it’s
the same as the sectionIndexBackgroundColor.

Normally, there will be a one-to-one correspondence between the index entries and the
sections; when the user taps an index entry, the table jumps to the start of the corre‐
sponding section. However, under certain circumstances you may want to customize
this correspondence.

For example, suppose there are 100 sections, but there isn’t room to display 100 index
entries comfortably on the iPhone. The index will automatically curtail itself, omitting
some index entries and inserting bullets to suggest the omission, but you might prefer
to take charge of the situation.

To do so, supply a shorter index, and implement the data source method table-
View:sectionForSectionIndexTitle:atIndex:, returning the number of the section
to jump to. You are told both the title and the index number of the section index listing
that the user chose, so you can use whichever is convenient.

Apple’s documentation elaborates heavily on the details of implementing the model
behind a table with an index and suggests that you rely on a class called UILocalized‐
IndexedCollation. This class is effectively a way of generating an ordered list of letters
of the alphabet, with methods for helping to sort an array of strings and separate it into
sections. This might be useful if you need your app to be localized, because the notion
of the alphabet and its order changes automatically depending on the user’s preferred
language.

Unfortunately, you can’t readily use a UILocalizedIndexCollation to implement your
own sort order. For example, UILocalizedIndexCollation was of no use to me in writing
my Greek and Latin vocabulary apps, in which the Greek words must be sorted, sec‐
tioned, and indexed according to the Greek alphabet, and the Latin words use a reduced
version of the English alphabet (no initial J, K, or V through Z). Thus I’ve never actually
bothered to use UILocalizedIndexedCollation.

Refreshing Table View Data
The table view has no direct connection to the underlying data. If you want the table
view display to change because the underlying data have changed, you have to cause the
table view to refresh itself; basically, you’re requesting that the Big Questions be asked
all over again. At first blush, this seems inefficient (“regenerate all the data??”); but it
isn’t. Remember, in a table that caches reusable cells, there are no cells of interest other
than those actually showing in the table at this moment. Thus, having worked out the
layout of the table through the section header and footer heights and row heights, the
table has to regenerate only those cells that are actually visible.

You can cause the table data to be refreshed using any of several methods:

Table View Data | 445

reloadData

The table view will ask the Three Big Questions all over again, including heights of
rows and section headers and footers, and the index, exactly as it does automatically
when the table view first appears.

reloadRowsAtIndexPaths:withRowAnimation:

The table view will ask the Three Big Questions all over again, including heights,
but not index entries. Cells are requested only for visible cells among those you
specify. The first parameter is an array of index paths; to form an index path, use
the initializer init(forRow:inSection:).

reloadSections:withRowAnimation:

The table view will ask the Three Big Questions all over again, including heights of
rows and section headers and footers, and the index. Cells, headers, and footers are
requested only for visible elements of the sections you specify. The first parameter
is an NSIndexSet.

The second two methods can perform animations that cue the user as to what’s changing.
For the rowAnimation: argument, you’ll pass one of the following (UITableViewRow‐
Animation):
.Fade

The old fades into the new.

.Right, .Left, .Top, .Bottom
The old slides out in the stated direction, and is replaced from the opposite
direction.

.None

No animation.

.Middle

Hard to describe; it’s a sort of venetian blind effect on each cell individually.

.Automatic

The table view just “does the right thing.” This is especially useful for grouped style
tables, because if you pick the wrong animation, the display can look very funny as
it proceeds.

If all you need to do is to refresh the index, call reloadSectionIndexTitles; this calls
the data source’s sectionIndexTitlesForTableView:.

If you want the table view to be laid out freshly without reloading any cells, send it begin-
Updates immediately followed by endUpdates. The section and row structure of the
table will be asked for, along with calculation of all heights, but no cells and no headers
or footers are requested. This is useful as a way of alerting the table that its measurements
have changed. It might be considered a misuse of an updates block (the real use of such

446 | Chapter 8: Table Views and Collection Views

a block is discussed later in this chapter); but Apple takes advantage of this trick in the
Table View Animations and Gestures example, in which a pinch gesture is used to
change a table’s row height in real time, so it must be legal.

It is also possible to access and alter a table’s individual cells directly. This can be a
lightweight approach to refreshing the table, plus you can supply your own animation
within the cell as it alters its appearance. It is important to bear in mind, however, that
the cells are not the data (view is not model). If you change the content of a cell manually,
make sure that you have also changed the model corresponding to it, so that the row
will appear correctly if its data is reloaded later.

To do this, you need direct access to the cell you want to change. You’ll probably want
to make sure the cell is visible within the table view’s bounds; nonvisible cells don’t really
exist (except as potential cells waiting in the reuse cache), and there’s no point changing
them manually, as they’ll be changed when they are scrolled into view, through the usual
call to tableView:cellForRowAtIndexPath:.

Here are some UITableView methods that mediate between cells, rows, and visibility:
visibleCells

An array of the cells actually showing within the table’s bounds.

indexPathsForVisibleRows

An array of the rows actually showing within the table’s bounds.

cellForRowAtIndexPath:

Returns a UITableViewCell if the table is maintaining a cell for the given row (typ‐
ically because this is a visible row); otherwise, returns nil.

indexPathForCell:

Given a cell obtained from the table view, returns the row into which it is slotted.

By the same token, you can get access to the views constituting headers and footers, by
calling headerViewForSection: or footerViewForSection:. Thus you could modify
a view directly. You should assume that if a section is returned by indexPathsFor-
VisibleRows, its header or footer might be visible.

If you want to grant the user some interface for requesting that a table view be refreshed,
you might like to use a UIRefreshControl. You aren’t required to use this; it’s just Apple’s
attempt to provide a standard interface. It is located behind the top of the scrolling part
of the table view. To request a refresh, the user scrolls the table view downward to reveal
the refresh control and holds long enough to indicate that this scrolling is deliberate.
The refresh control then acknowledges visually that it is refreshing, and remains visible
until refreshing is complete.

Table View Data | 447

The refresh control is located behind the table view’s backgroundView. If the table
view has an opaque background view, the refresh control will be impossible to see.

To give a table view a refresh control, assign a UIRefreshControl to the table view con‐
troller’s refreshControl property; to do this in the nib editor, set the table view con‐
troller’s Refreshing pop-up menu to Enabled. A refresh control is a control (UIControl,
Chapter 12), and you will want to hook its Value Changed event to an action method;
you can do that in the nib editor by making an action connection, or you can do it in
code. Here’s an example of creating and configuring a refresh control entirely in code:

self.refreshControl = UIRefreshControl()
self.refreshControl!.addTarget(
 self, action: "doRefresh", forControlEvents: .ValueChanged)

Once a refresh control’s action message has fired, the control remains visible and indi‐
cates by animation (similar to an activity indicator) that it is refreshing, until you send
it the endRefreshing message:

@IBAction func doRefresh(sender: AnyObject) {
 // ... refresh ...
 (sender as UIRefreshControl).endRefreshing()
}

You can initiate a refresh animation in code with beginRefreshing, but this does not
fire the action message or display the refresh control; to display it, scroll the table view:

self.tableView.setContentOffset(
 CGPointMake(0, -self.refreshControl!.bounds.height), animated:true)
self.refreshControl!.beginRefreshing()
self.doRefresh(self.refreshControl!) // fire action message manually

A refresh control also has these properties:
refreshing (read-only)

Whether the refresh control is refreshing.

tintColor

The refresh control’s color. It is not inherited from the view hierarchy (I regard this
as a bug).

attributedTitle

Styled text displayed below the refresh control’s activity indicator. On attributed
strings, see Chapter 10.

backgroundColor (inherited from UIView)
If you give a table view controller’s refreshControl a background color, that color
completely covers the table view’s own background color when the refresh control

448 | Chapter 8: Table Views and Collection Views

is revealed. For some reason, I find the drawing of the attributedTitle more
reliable if the refresh control has a background color.

Variable Row Heights
Most tables have rows that are all the same height, as set by the table view’s row-
Height. However, the delegate’s tableView:heightForRowAtIndexPath: can be used
to make different rows different heights. You can see an example in the TidBITS News
app (Figure 6-1).

Back when I first wrote TidBITS News, variable row heights were possible but virtually
unheard-of; I knew of no other app that was using them, and Apple provided no guid‐
ance, so I had to invent my own technique by sheer trial-and-error. There were three
main challenges:
Measurement

What should the height of a given row be?

Timing
When should the determination of each row’s height be made?

Layout
How should the subviews of each cell be configured for its individual height?

Over the years since then, implementing variable row heights has become considerably
easier. In iOS 6, with the advent of constraints, both measurement and layout became
much simpler. In iOS 7, new table view properties made it possible to improving the
timing. And, new in iOS 8, variable row heights can be implemented automatically,
without your having to worry about any of these problems.

I will briefly describe four different approaches that I have used, in historical order.
Perhaps you won’t use any of the first three, because iOS 8’s new automatic variable row
heights feature makes them unnecessary; nevertheless, a basic understanding of them
will give you an appreciation of what iOS 8 is doing for you. Besides, in my experience,
the new iOS 8 automatic variable row heights feature can be slow; for efficiency and
speed, you might want to revert to one of the earlier techniques.

Manual row height measurement
The TidBITS News app, in its earliest implementation, works as follows. Each cell con‐
tains two labels. The measurement question is, then, given the content that each label
will have in a particular cell in a particular row of the table, how tall should the cell be
in order to accomodate both labels and their contents?

The cells don’t use autolayout, so we have to measure the cells manually. The procedure
is simple but somewhat laborious. The NSAttributedString method boundingRectWith-
Size answers the question, “How tall would this text be if laid out at a fixed width?”

Table View Data | 449

Thus, for each cell, we must answer that question for each label, allow for any vertical
spacing above the first label, below the second label, and between the labels, and sum
the results.

Then, however, the question of timing intrudes. The problem is that the moment when
tableView:heightForRowAtIndexPath: is called is very different from the moment
when tableView:cellForRowAtIndexPath: is called. The runtime needs to know the
heights of everything in the table immediately, before it starts asking for any cells. Thus,
before we are asked tableView:cellForRowAtIndexPath: for even one row, we are
asked tableView:heightForRowAtIndexPath: for every row.

In effect, this means we have to gather all the data and lay out all the cells before we can
start showing the data in any single row. You can see why this can be problematic. We
are being asked up front to measure the entire table, row by row. If that measurement
takes a long time, the table view will remain blank during the calculation.

In addition, there is now a danger of duplicating our own work later on, during layout
(in tableView:cellForRowAtIndexPath:, or perhaps in tableView:willDisplay-
Cell:forRowAtIndexPath:); it appears we will ultimately be laying out every cell
twice, once when we’re asked for all the heights initially, and again later when we’re asked
for an actual cell.

My solution is to start with an empty array of CGFloat stored in a property, self.row-
Heights. (A single array is all that’s needed, because the table has just one section; the
row number can thus serve directly as an index into the array.) Once that array is con‐
structed, it can be used to supply a requested height instantly.

Calculating a cell height requires me to lay out that cell in at least a theoretical way. Thus,
I have a utility method that lays out a cell for a given row, using the actual data for that
row; let’s say its name is setUpCell:forIndexPath:. It takes a cell and an index path,
lays out the cell, and returns the cell’s required height as a CGFloat.

When the delegate’s tableView:heightForRowAtIndexPath: is called, either this is the
very first time it’s been called or it isn’t. Thus, either we’ve already constructed self.row-
Heights or we haven’t. If we haven’t, we construct it, by immediately calling the setUp-
Cell:forIndexPath: utility method for every row and storing each resulting height in
self.rowHeights. I have no real cells at this point in the story, but I’m using a UITable‐
ViewCell subclass designed in a nib, so I simply load the nib directly and pull out the
cell to use a model. Now I’m ready to answer tableView:heightForRowAtIndexPath:
for any row, immediately — all I have to do is return the appropriate value from the
self.rowHeights array.

Now we come to tableView:cellForRowAtIndexPath:. Every time it is called, I call
my setUpCell:forIndexPath: utility method again — but this time, I’m laying out the
real cell (and ignoring the returned height value).

450 | Chapter 8: Table Views and Collection Views

Measurement and layout with constraints

Constraints assist the process in two ways. Early in the process, in tableView:height-
ForRowAtIndexPath:, they perform the measurement for us. How do they do that? Well,
if the cell is designed with constraints that ultimately pin every subview to the content-
View in such a way as to size the contentView unambiguously from the inside out —
because every subview either is given explicit size constraints or else is the kind of view
that has an implicit size based on its contents, like a label or an image view — then we
can simply call systemLayoutSizeFittingSize: to tell us the resulting height of the
cell.

Later in the process, when we come to tableView:cellForRowAtIndexPath:, con‐
straints obviously help with layout of each cell, because that’s what constraints do.
Thanks to dequeueReusableCellWithIdentifier:forIndexPath:, the cell has the
correct height, so the constraints are now determining the size of the subviews from the
outside in.

The one danger to watch out for here is that a .SingleLine separator eats into the
cell height. This can cause the height of the cell in real life to differ very slightly
from its height as calculated by systemLayoutSizeFittingSize:. If you’ve overde‐
termined the subview constraints, this can result in a conflict among constraints.
Careful use of lowered constraint priorities can solve this problem nicely if it arises
(though it is simpler, in practice, to set the cell separator to .None).

I’ll show the actual code from another app of mine that uses this technique. My setUp-
Cell:forIndexPath: no longer needs to return a value; I hand it a reference to a cell,
it sets up the cell, and now I can do whatever I like with that cell. If this is the model cell
being used for measurement in tableView:heightForRowAtIndexPath:, I call system-
LayoutSizeFittingSize: to get the height; if it’s the real cell generated by dequeuing
in tableView:cellForRowAtIndexPath:, I return it. Thus, setUpCell:forIndexPath:
is extremely simple: it just configures the cell with actual data from the model:

func setUpCell(cell:UITableViewCell, forIndexPath indexPath:NSIndexPath) {
 let row = indexPath.row
 (cell.viewWithTag(1)! as UILabel).text = self.titles[row]
 (cell.viewWithTag(2)! as UILabel).text = self.artists[row]
 (cell.viewWithTag(3)! as UILabel).text = self.composers[row]
}

My self.rowHeights property is typed as [CGFloat?], and has been initialized to an
array the same size as my data model (self.titles and so on) with every element set
to nil. My implemention of tableView:heightForRowAtIndexPath:: is called repeat‐
edly (self.titles.count times, in fact) before the table is displayed; the first time it is
called, I calculate all the row height values once and store them all in self.rowHeights:

Table View Data | 451

override func tableView(tableView: UITableView,
 heightForRowAtIndexPath indexPath: NSIndexPath) -> CGFloat {
 let ix = indexPath.row
 if self.rowHeights[ix] == nil {
 let objects = UINib(nibName: "TrackCell2", bundle: nil)
 .instantiateWithOwner(nil, options: nil)
 let cell = objects.first as UITableViewCell
 for ix in 0..<self.rowHeights.count {
 let indexPath = NSIndexPath(forRow: ix, inSection: 0)
 self.setUpCell(cell, forIndexPath: indexPath)
 let v = cell.contentView
 let sz = v.systemLayoutSizeFittingSize(
 UILayoutFittingCompressedSize)
 self.rowHeights[ix] = sz.height
 }
 }
 return self.rowHeights[ix]!
}

My tableView:cellForRowAtIndexPath: implementation is trivial, because setUp-
Cell:forIndexPath: does all the real work:

override func tableView(tableView: UITableView,
 cellForRowAtIndexPath indexPath: NSIndexPath) -> UITableViewCell {
 let cell = tableView.dequeueReusableCellWithIdentifier(
 "TrackCell", forIndexPath: indexPath) as UITableViewCell
 self.setUpCell(cell, forIndexPath:indexPath)
 return cell
}

Estimated height
In iOS 7, three new table view properties were introduced:

• estimatedRowHeight

• estimatedSectionHeaderHeight

• estimatedSectionFooterHeight

To accompany those, there are also three table view delegate methods:

• tableView:estimatedHeightForRowAtIndexPath:

• tableView:estimatedHeightForHeaderInSection:

• tableView:estimatedHeightForFooterInSection:

The purpose of these properties and methods is to reduce the amount of time spent
calculating row heights at the outset. If you supply an estimated row height, for example,
then when tableView:heightForRowAtIndexPath: is called repeatedly before the table
is displayed, it is called only for the visible cells of the table; for the remaining cells, the

452 | Chapter 8: Table Views and Collection Views

estimated height is used. The runtime thus has enough information to lay out the entire
table very quickly: in a table with 300 rows, you don’t have to provide the real heights
for all 300 rows up front — you only have to provide real heights for, say, the half dozen
visible rows. The downside is that this layout is incorrect, and will have to be corrected
later: as new rows are scrolled into view, tableView:heightForRowAtIndexPath: will
be called again for those new rows, and the layout of the whole table will be revised
accordingly.

Thus, using an estimated height changes the timing of when tableView:heightForRow-
AtIndexPath: is called. To illustrate, I’ll revise the previous example to use estimated
heights. The estimated height is set in viewDidLoad:

self.tableView.estimatedRowHeight = 75

Now in my tableView:heightForRowAtIndexPath: implementation, when I find that
a requested height value in self.rowHeights is nil, I don’t fill in all the values of
self.rowHeights — I fill in just that one height. It’s simply a matter of removing the for
loop:

override func tableView(tableView: UITableView,
 heightForRowAtIndexPath indexPath: NSIndexPath) -> CGFloat {
 let ix = indexPath.row
 if self.rowHeights[ix] == nil {
 let objects = UINib(nibName: "TrackCell2", bundle: nil)
 .instantiateWithOwner(nil, options: nil)
 let cell = objects.first as UITableViewCell
 let indexPath = NSIndexPath(forRow: ix, inSection: 0)
 self.setUpCell(cell, forIndexPath: indexPath)
 let v = cell.contentView
 let sz = v.systemLayoutSizeFittingSize(
 UILayoutFittingCompressedSize)
 self.rowHeights[ix] = sz.height
 }
 return self.rowHeights[ix]!
}

Automatic row height
New in iOS 8, a completely automatic calculation of variable row heights is introduced.
This, in effect, simply does automatically what I’m already doing in tableView:height-
ForRowAtIndexPath: in the preceding code: it relies upon autolayout for the calculation
of each row’s height, and it calculates and caches a row’s height the first time it is needed,
as it is about to appear on the screen.

To use this mechanism, first configure your cell using autolayout to determine the size
of the contentView from the inside out. Now all you have to do is to set the table view’s
estimatedRowHeight and don’t implement tableView:heightForRowAtIndexPath: at
all!

Table View Data | 453

Thus, to adopt this approach in my app, all I have to do at this point is delete my table-
View:heightForRowAtIndexPath: implementation entirely.

This approach, however, though obviously easiest, is not necessarily best. You will have
to measure performance and decide which approach is most suitable. The four techni‐
ques I’ve outlined here run not only from oldest to newest but also from fastest to
slowest. Manual layout is faster than calling systemLayoutSizeFittingSize:, and cal‐
culating the heights of all rows up front, though it may cause a longer pause initially,
makes scrolling faster for the user because no row heights have to be calculated while
scrolling.

Table View Cell Selection
A table view cell has a normal state, a highlighted state (according to its highlighted
property), and a selected state (according to its selected property). It is possible
to change these states directly, possibly with animation, by calling set-

Highlighted:animated: or setSelected:animated: on the cell. But you don’t want to
act behind the table’s back, so you are more likely to manage selection through the table
view, letting the table view manage and track the state of its cells.

These two states are closely related. In particular, when a cell is selected, it propagates
the highlighted state down through its subviews by setting each subview’s highlighted
property if it has one. That is why a UILabel’s highlightedTextColor applies when the
cell is selected. Similarly, a UIImageView (such as the cell’s imageView) can have a
highlightedImage that is shown when the cell is selected, and a UIControl (such as a
UIButton) takes on its highlighted state when the cell is selected.

One of the chief purposes of your table view is likely to be to let the user select a cell.
This will be possible, provided you have not set the value of the table view’s allows-
Selection property to false. The user taps a normal cell, and the cell switches to its
selected state. By default, this will mean that the cell is redrawn with a gray background
view, but you can change this at the individual cell level, as I’ve already explained: you
can set a cell’s selectedBackgroundView (or multipleSelectionBackgroundView), or
change its selectionStyle. If the user taps an already selected cell, by default it stays
selected.

Table views can permit the user to select multiple cells simultaneously. Set the table
view’s allowsMultipleSelection property to true. If the user taps an already selected
cell, by default it is deselected.

Managing Cell Selection
Your code can learn and manage the selection through these UITableView instance
methods:

454 | Chapter 8: Table Views and Collection Views

indexPathForSelectedRow
indexPathsForSelectedRows

These methods report the currently selected row(s), or nil if there is no selection.
Don’t accidentally call the wrong one. For example, calling indexPathForSelected-
Row when the table view allows multiple selection gives a result that will have you
scratching your head in confusion. (As usual, I speak from experience.)

selectRowAtIndexPath:animated:scrollPosition:

The animation involves fading in the selection, but the user may not see this unless
the selected row is already visible. The last parameter dictates whether and how the
table view should scroll to reveal the newly selected row; your choices (UITable‐
ViewScrollPosition) are .Top, .Middle, .Bottom, and .None. For the first three op‐
tions, the table view scrolls (with animation, if the second parameter is true) so
that the selected row is at the specified position among the visible cells.
For .None, the table view does not scroll; if the selected row is not already visible,
it does not become visible.

deselectRowAtIndexPath:animated:

Deselects the given row (if it is selected); the optional animation involves fading
out the selection. No automatic scrolling takes place.

To deselect all currently selected rows, call selectRowAtIndexPath:animated:scroll-
Position: with a nil index path. Reloading a cell’s data also deselects that cell, and calling
reloadData deselects all selected rows.

Responding to Cell Selection
Response to user selection is through the table view’s delegate:

• tableView:shouldHighlightRowAtIndexPath:

• tableView:didHighlightRowAtIndexPath:

• tableView:didUnhighlightRowAtIndexPath:

• tableView:willSelectRowAtIndexPath:

• tableView:didSelectRowAtIndexPath:

• tableView:willDeselectRowAtIndexPath:

• tableView:didDeselectRowAtIndexPath:

Despite their names, the two “will” methods are actually “should” methods and expect
a return value:

• Return nil to prevent the selection (or deselection) from taking place.

Table View Cell Selection | 455

• Return the index path handed in as argument to permit the selection (or deselec‐
tion), or a different index path to cause a different cell to be selected (or deselected).

The “highlight” methods are more sensibly named, and they arrive first, so you can
return false from tableView:shouldHighlightRowAtIndexPath: to prevent a cell
from being selected.

Let’s focus in more detail on the relationship between a cell’s highlighted state and its
selected state. They are, in fact, two different states. When the user touches a cell, the
cell passes through a complete highlight cycle. Then, if the touch turns out to be the
beginning of a scroll motion, the cell is unhighlighted immediately, and the cell is not
selected. Otherwise, the cell is unhighlighted and selected.

But the user doesn’t know the difference between these two states: whether the cell is
highlighted or selected, the cell’s subviews are highlighted, and the selectedBackground-
View appears. Thus, if the user touches and scrolls, what the user sees is the flash of the
selectedBackgroundView and the highlighted subviews, until the table begins to scroll
and the cell returns to normal. If the user touches and lifts the finger, the selected-
BackgroundView and highlighted subviews appear and remain; there is actually a mo‐
ment in the sequence where the cell has been highlighted and then unhighlighted and
not yet selected, but the user doesn’t see any momentary unhighlighting of the cell,
because no redraw moment occurs (see Chapter 4).

Here’s a summary of the sequence:

1. The user’s finger goes down. If shouldHighlight permits, the cell highlights, which
propagates to its subviews. Then didHighlight arrives.

2. There is a redraw moment. Thus, the user will see the cell as highlighted (including
the appearance of the selectedBackgroundView), regardless of what happens next.

3. The user either starts scrolling or lifts the finger. The cell unhighlights, which also
propagates to its subviews, and didUnhighlight arrives.
a. If the user starts scrolling, there is a redraw moment, so the user now sees the

cell unhighlighted. The sequence ends.
b. If the user merely lifts the finger, there is no redraw moment, so the cell keeps

its highlighted appearance. The sequence continues.
4. If willSelect permits, the cell is selected, and didSelect arrives. The cell is not

highlighted, but highlighting is propagated to its subviews.
5. There’s another redraw moment. The user still sees the cell as highlighted (including

the appearance of the selectedBackgroundView).

456 | Chapter 8: Table Views and Collection Views

When tableView:willSelectRowAtIndexPath: is called because the user taps a cell,
and if this table view permits only single cell selection, tableView:willDeselectRowAt-
IndexPath: will be called subsequently for any previously selected cells.

Here’s an example of implementing tableView:willSelectRowAtIndexPath:. The de‐
fault behavior for allowsSelection (not multiple selection) is that the user can select
by tapping, and the cell remains selected; if the user taps a selected row, the selection
does not change. We can alter this so that tapping a selected row deselects it:

override func tableView(tableView: UITableView,
 willSelectRowAtIndexPath indexPath: NSIndexPath) -> NSIndexPath? {
 if tableView.cellForRowAtIndexPath(indexPath)!.selected {
 tableView.deselectRowAtIndexPath(indexPath, animated:false)
 return nil
 }
 return indexPath
}

Navigation From a Table View
An extremely common response to user selection is navigation. A master–detail archi‐
tecture is typical: the table view lists things the user can see in more detail, and a tap
displays the detailed view of the selected thing. On the iPhone, very often the table view
will be in a navigation interface, and you will respond to user selection by creating the
detail view and pushing it onto the navigation controller’s stack.

For example, here’s the code from my Albumen app that navigates from the list of albums
to the list of songs in the album that the user has tapped:

override func tableView(tableView: UITableView,
 didSelectRowAtIndexPath indexPath: NSIndexPath) {
 let t = TracksViewController(
 mediaItemCollection: self.albums[indexPath.row])
 self.navigationController!.pushViewController(t, animated: true)
}

In a storyboard, when you draw a segue from a UITableViewCell, you are given a choice
of two segue triggers: Selection Segue and Accessory Action. If you create a Selection
Segue, the segue will be triggered when the user selects a cell. Thus you can readily push
or present another view controller in response to cell selection.

If you’re using a UITableViewController, then by default, whenever the table view ap‐
pears, the selection is cleared automatically in viewWillAppear:, and the scroll indica‐
tors are flashed in viewDidAppear:. You can prevent this automatic clearing of the
selection by setting the table view controller’s clearsSelectionOnViewWillAppear to
false. I sometimes do that, preferring to implement deselection in viewDidAppear:;
the effect is that when the user returns to the table, the row is still momentarily selected
before it deselects itself.

Table View Cell Selection | 457

By convention, if selecting a table view cell causes navigation, the cell should be given
an accessoryType (UITableViewCellAccessory) of .DisclosureIndicator. This is a
plain gray right-pointing chevron at the right end of the cell. The chevron itself doesn’t
respond to user interaction; it’s not a button, but is just a visual cue that the user can tap
the cell to learn more.

Two additional accessoryType settings are buttons:
.DetailButton

Drawn as a letter “i” in a circle.

.DetailDisclosureButton

Drawn like .DetailButton, along with a disclosure indicator chevron to its right.

To respond to the tapping of an accessory button, implement the table view delegate’s
tableView:accessoryButtonTappedForRowWithIndexPath:. Or, in a storyboard, you
can Control-drag a connection from a cell and choose an Accessory Action segue.

A common convention is that selecting the cell as a whole does one thing and tapping
the detail button does something else. For example, in Apple’s Phone app, tapping a
contact’s listing in the Recents table places a call to that contact, but tapping the detail
button navigates to that contact’s detail view.

Cell Choice and Static Tables
Another use of cell selection is to implement a choice among cells, where a section of a
table effectively functions as an iOS alternative to OS X radio buttons. The table view
usually has the grouped format. An accessoryType of .Checkmark is typically used to
indicate the current choice. Implementing radio button behavior is up to you.

As an example, I’ll implement the interface shown in Figure 8-2. The table view has the
grouped style, with two sections. The first section, with a “Size” header, has three mu‐
tually exclusive choices: “Easy,” “Normal,” and “Hard.” The second section, with a “Style”
header, has two choices: “Animals” or “Snacks.”

This is a static table; its contents are known beforehand and won’t change. In a case like
this, if we’re using a UITableViewController subclass instantiated from a storyboard,
the nib editor lets us design the entire table, including the headers and the cells and their
content, directly in the storyboard. Select the table and set its Content pop-up menu in
the Attributes inspector to Static Cells to make the table editable in this way (Figure 8-6).

Even though each cell is designed initially in the storyboard, I can still implement table-
View:cellForRowAtIndexPath: to call super and then add further functionality. That’s
how I’ll add the checkmarks. The user defaults are storing the current choice in each of
the two categories; there’s a "Size" preference and a "Style" preference, each consisting
of a string denoting the title of the chosen cell:

458 | Chapter 8: Table Views and Collection Views

Figure 8-6. Designing a static table in the storyboard editor

override func tableView(tv: UITableView,
 cellForRowAtIndexPath indexPath: NSIndexPath) -> UITableViewCell {
 let cell = super.tableView(
 tv, cellForRowAtIndexPath:indexPath) as UITableViewCell
 let ud = NSUserDefaults.standardUserDefaults()
 cell.accessoryType = .None
 if ud.valueForKey("Style") as? String == cell.textLabel.text! ||
 ud.valueForKey("Size") as? String == cell.textLabel.text! {
 cell.accessoryType = .Checkmark
 }
 return cell
}

When the user taps a cell, the cell is selected. I want the user to see that selection mo‐
mentarily, as feedback, but then I want to deselect, adjusting the checkmarks so that
that cell is the only one checked in its section. In tableView:didSelectRowAtIndex-
Path:, I set the user defaults, and then I reload the table view’s data. This removes the
selection and causes tableView:cellForRowAtIndexPath: to be called to adjust the
checkmarks:

override func tableView(tv: UITableView,
 didSelectRowAtIndexPath indexPath: NSIndexPath) {
 let ud = NSUserDefaults.standardUserDefaults()
 let setting = tv.cellForRowAtIndexPath(indexPath)!.textLabel.text
 let header = self.tableView(
 tv, titleForHeaderInSection:indexPath.section)!
 ud.setValue(setting, forKey:header)
 tv.reloadData()
}

Table View Cell Selection | 459

Table View Scrolling and Layout
A UITableView is a UIScrollView, so everything you already know about scroll views is
applicable (Chapter 7). In addition, a table view supplies two convenience scrolling
methods:

• scrollToRowAtIndexPath:atScrollPosition:animated:

• scrollToNearestSelectedRowAtScrollPosition:animated:

The scrollPosition parameter is as for selectRowAtIndexPath:..., discussed earlier
in this chapter.

The following UITableView methods mediate between the table’s bounds coordinates
on the one hand and table structure on the other:

• indexPathForRowAtPoint:

• indexPathsForRowsInRect:

• rectForSection:

• rectForRowAtIndexPath:

• rectForFooterInSection:

• rectForHeaderInSection:

The table’s own header and footer are direct subviews of the table view, so their positions
within the table’s bounds are given by their frames.

Table View State Restoration
If a UITableView participates in state saving and restoration (Chapter 6), the restoration
mechanism would like to restore the selection and the scroll position. This behavior is
automatic; the restoration mechanism knows both what cells should be visible and what
cells should be selected, in terms of their index paths. If that’s satisfactory, you’ve no
further work to do.

In some apps, however, there is a possibility that when the app is relaunched, the un‐
derlying data may have been rearranged somehow. Perhaps what’s meaningful in dic‐
tating what the user should see in such a case is not the previous rows but the previous
data. The state saving and restoration mechanism doesn’t know anything about the
relationship between the cells and the underlying data. If you’d like to tell it, adopt the
UIDataSourceModelAssociation protocol and implement two methods:

460 | Chapter 8: Table Views and Collection Views

modelIdentifierForElementAtIndexPath:inView:

Based on the index path, you return some string that you will later be able to use
to identify uniquely this bit of model data.

indexPathForElementWithModelIdentifier:inView:

Based on the unique identifier you provided earlier, you return the index path at
which this bit of model data is displayed in the table now.

Devising a system of unique identification and incorporating it into your data model is
up to you.

Table View Searching
A common need is to make a table view searchable, typically through a search field (a
UISearchBar; see Chapter 12). A commonly used interface for presenting the results of
such a search is a table view! Thus, in effect, entering characters in the search field
appears to filter the original table.

New in iOS 8, this interface is managed through a new UIViewController subclass,
UISearchController. (This effectively displaces the UISearchDisplayController class
from iOS 7 and before, which is not discussed in this edition.) It is extremely important
to understand, before I tell you about UISearchController, that it has nothing to do, per
se, with table views! A table view is not the only thing you might want to search, and a
table view is not the only way you might want to present the results of a search. That,
indeed, is exactly why UISearchController has been introduced in iOS 8 — it’s a way of
making the presentation of search results completely agnostic about the form of those
results. However, I’m introducing this class in a chapter about table views, so what I’m
going to describe is the particular (and common) case of how to use a table view to
present the results of searching a table view.

Configuring a Search Controller
Here are the steps for configuring a UISearchController:

1. Create and retain a UISearchController instance.
2. As part of the previous step, you’ll call the designated initializer, init(search-

ResultsController:). The parameter is a view controller — a UIViewController
subclass instance that you will have created for this purpose. The search controller
will retain this view controller as a child view controller. When the time comes to
display search results, the search controller will present itself as a presented view
controller, with this view controller’s view inside its own view; that is where the
search results are to be displayed.

Table View Searching | 461

3. Assign to the search controller’s searchResultsUpdater an object to be notified
when the search results change. This must be an object adopting the UISearchRe‐
sultsUpdating protocol, which means that it implements one method: update-
SearchResultsForSearchController:. Very typically, this will be the same view
controller that you passed as the searchResultsController: parameter when you
initialized the search controller, but no law says that it has to be the same object or
even that it has to be a view controller.

4. Acquire the search controller’s searchBar and put it into the interface.

Thinking about these steps, you can see what the search controller is proposing to do
for you — and what it isn’t going to do for you. It isn’t going to display the search results.
It isn’t going to manage the search results. It isn’t even going to do any searching! It owns
a search bar, which you have placed into the interface; and it’s going to keep an eye on
that search bar. When the user taps in that search bar to begin searching, the search
controller will respond by presenting itself and managing the view controller you speci‐
fied. Then, as the user enters characters in the search bar, the search controller will keep
calling the search results updater’s updateSearchResultsForSearchController:. Fi‐
nally, when the user taps the search bar’s Cancel button, the search controller will dismiss
itself.

A UISearchController has just a few other properties you might want to configure:
dimsBackgroundDuringPresentation

Whether a “dimming view” should appear behind the search controller’s own view.
Defaults to true, but I’ll give an example later where it needs to be set to false.

hidesNavigationBarDuringPresentation

Whether a navigation bar, if present, should be hidden. The default is true.

A UISearchController can also be assigned a delegate (UISearchControllerDelegate),
which is notified before and after presentation and dismissal (and has one more im‐
portant ability that I’ll mention a bit later).

The minimalistic nature of the search controller’s behavior is exactly the source of its
power and flexibility, because it leaves you the freedom to take care of the details however
you please, as I shall now demonstrate.

Using a Search Controller
I’ll demonstrate several variations on the theme of using a search controller to make a
table view searchable.

462 | Chapter 8: Table Views and Collection Views

Figure 8-7. Searching a table

Minimal search results table
Let’s start with what I take to be the simplest possible case. We will have two table view
controllers — one managing the original table, the other managing the search results
table. The original table can be as elaborate as you please; we’ll use the table of U.S. states,
with sections and an index, developed earlier in this chapter. The search results table,
on the other hand, can be as minimal as you please; I propose to use a rock-bottom table
with .Default style cells, and each search result will be the text of a cell’s textLabel
(Figure 8-7).

Here’s the configuration of the original table’s UITableViewController. I have a property,
self.searcher, waiting to retain the search controller. I also have a second UITable‐
ViewController subclass, which I have rather boringly called SearchResultsController,
whose job will be to obtain and present the search results. In viewDidLoad, I instantiate
SearchResultsController, create the UISearchController, and put its search bar into the
interface as the table view’s header view (and scroll to hide that search bar initially, a
common convention):

let src = SearchResultsController(data: self.sectionData)
let searcher = UISearchController(searchResultsController: src)
self.searcher = searcher
searcher.searchResultsUpdater = src
let b = searcher.searchBar
b.sizeToFit() // crucial, trust me on this one
b.autocapitalizationType = .None
self.tableView.tableHeaderView = b
self.tableView.reloadData()
self.tableView.scrollToRowAtIndexPath(
 NSIndexPath(forRow: 0, inSection: 0),
 atScrollPosition:.Top, animated:false)

Table View Searching | 463

Adding the search bar as the table view’s header view has an odd side effect: it causes
the table view’s background color to be covered by an ugly gray color, visible above
the search bar when the user scrolls down. The official workaround is to assign the
table view a backgroundView with the desired color.

Now we turn to SearchResultsController. It is a completely vanilla table view controller,
qua table view controller. But I’ve given it two special features:

• It is capable of receiving the searchable data. You can see this happening, in fact, in
the first line of the preceding code.

• It is capable of filtering that data and displaying the filtered data in its table view.

I’m not using sections in the SearchResultsController’s table, so it will simplify things
if, as I receive the searchable data in the SearchResultsController, I flatten it from an
array of arrays to a simple array:

init(data:[[String]]) {
 self.originalData = data.reduce([String](),+)
 super.init(nibName: nil, bundle: nil)
}

I have stored the flattened data in the self.originalData array, but what I display in
the table view is a different array, self.filteredData. This is initially empty, because
there are no search results until the user starts typing in the search field:

override func numberOfSectionsInTableView(tableView: UITableView) -> Int {
 return 1
}
override func tableView(tableView: UITableView,
 numberOfRowsInSection section: Int) -> Int {
 return self.filteredData.count
}
override func tableView(tableView: UITableView,
 cellForRowAtIndexPath indexPath: NSIndexPath) -> UITableViewCell {
 let cell = tableView.dequeueReusableCellWithIdentifier(
 "Cell", forIndexPath: indexPath) as UITableViewCell
 cell.textLabel.text = self.filteredData[indexPath.row]
 return cell
}

All of that is sheer boilerplate and is perfectly obvious; but how does our search results
table go from being empty to displaying any search results? That’s the second special
feature of SearchResultsController. It adopts UISearchResultsUpdating, so it imple‐
ments updateSearchResultsForSearchController:. In that implementation, it uses
the current text of the search controller’s searchBar to filter self.originalData into
self.filteredData and reloads the table view:

464 | Chapter 8: Table Views and Collection Views

func updateSearchResultsForSearchController(
 searchController: UISearchController) {
 let sb = searchController.searchBar
 let target = sb.text
 self.filteredData = self.originalData.filter {
 s in
 let options = NSStringCompareOptions.CaseInsensitiveSearch
 let found = s.rangeOfString(target, options: options)
 return (found != nil)
 }
 self.tableView.reloadData()
}

That’s all! Of course, it’s an artificially simple example; I’m describing the interface and
the use of a UISearchController, not a real app. In real life you would presumably want
to allow the user to do something with the search results, perhaps by tapping on a cell
in the search results table.

Search bar scope buttons

If we wanted our search bar to have scope buttons, we would set its scopeButton-
Titles immediately after calling sizeToFit in the preceding code:

let b = searcher.searchBar
b.sizeToFit() // crucial, trust me on this one
b.scopeButtonTitles = ["Starts", "Contains"]

The scope buttons don’t appear in the table header view, but they do appear when the
search controller presents itself. However, the search controller does not automatically
call us back in updateSearchResultsForSearchController: when the user taps on a
scope button. I regard that as a bug, but it’s easy to work around it: we must simply make
ourselves the search bar’s delegate, so as to be notified through the delegate method
searchBar:selectedScopeButtonIndexDidChange: — which can then turn right
around and call updateSearchResultsForSearchController: (provided it has a ref‐
erence to the search controller, which is easy to arrange beforehand). Here, I’ll make
our SearchResultsController respond to the distinction that a state name either starts
with or contains the search text:

func updateSearchResultsForSearchController(
 searchController: UISearchController) {
 self.searchController = searchController // weak reference
 let sb = searchController.searchBar
 let target = sb.text
 self.filteredData = self.originalData.filter {
 s in
 var options = NSStringCompareOptions.CaseInsensitiveSearch
 // we now have scope buttons; 0 means "starts with"
 if searchController.searchBar.selectedScopeButtonIndex == 0 {
 options = options | .AnchoredSearch
 }

Table View Searching | 465

 let found = s.rangeOfString(target, options: options)
 return (found != nil)
 }
 self.tableView.reloadData()
}
func searchBar(searchBar: UISearchBar!,
 selectedScopeButtonIndexDidChange selectedScope: Int) {
 self.updateSearchResultsForSearchController(self.searchController!)
}

Customizing the presentation
What should really have you jumping out of your skin with excitement is that the search
controller is a presented view controller. This means that the presentation is customiz‐
able, as I explained in “Custom Presented View Controller Transition” on page 324. In
particular:

• You can customize the presentation animation by setting the search controller’s
transitioningDelegate.

• As part of customizing the animation, you can (in fact you must) take charge of
placing the search bar into the search controller’s view; of course you can animate
this however you like.

• The search controller’s presentation controller is a normal presentation controller,
and thus can be adaptive. The significance of this will be clearer when I talk about
presenting search results in a popover in Chapter 9.

• If the search controller’s delegate implements presentSearchController:, the very
act of presenting the search controller is left up to you. If you don’t call presentView-
Controller:animated:completion: here, it will be called for you, but this is your
chance to perform preparatory customizations, to add a completion handler, to
present without animation, and so on.

I was hoping that it would be possible also to customize the presentation position
and chrome by setting the search controller’s modalPresentationStyle to .Custom,
but in my tests that didn’t work, in the sense that the transitioning delegate’s
presentationControllerForPresentedViewController:... was never called.

In this excerpt from the animation controller’s animateTransition:, I cause the search
bar to appear during the presentation by sliding it down from above:

if let v2 = v2 { // presenting, vc2 is the search controller
 con.addSubview(v2) // con is the container view
 v2.frame = r2end
 let sc = vc2 as UISearchController
 let sb = sc.searchBar

466 | Chapter 8: Table Views and Collection Views

 sb.removeFromSuperview() // take it out of the original table view
 sb.showsScopeBar = true
 sb.sizeToFit()
 v2.addSubview(sb)
 sb.frame.origin.y = -sb.frame.height
 UIView.animateWithDuration(0.3, animations: {
 sb.frame.origin.y = 0
 }, completion: {
 _ in
 sb.setShowsCancelButton(true, animated: true)
 transitionContext.completeTransition(true)
 })
}

No secondary search results view controller
As a final variation, I’ll demonstrate how to use a search controller without a distinct
search results view controller. There will be no SearchResultsController; instead, we’ll
present the search results in the original table view.

To configure our search controller, we pass nil as its searchResultsController and set
ourselves as the searchResultsUpdater. We also set the search controller’s dims-
BackgroundDuringPresentation to false; this allows the original table view to remain
visible and touchable behind the search controller’s view:

let searcher = UISearchController(searchResultsController:nil)
self.searcher = searcher
searcher.dimsBackgroundDuringPresentation = false
searcher.searchResultsUpdater = self
searcher.delegate = self

The implementation is a simple problem in table data source management. We keep an
immutable copy of our data model arrays, self.sectionData and self.section-
Names — let’s call the copies self.originalSectionData and self.originalSection-
Names. These copies are unused if we’re not searching. If we are searching, we hear about
it through the search controller’s delegate methods, and we raise a Bool flag in a property:

func willPresentSearchController(searchController: UISearchController) {
 self.searching = true
}
func willDismissSearchController(searchController: UISearchController) {
 self.searching = false
}

Any of our table view delegate or data source methods can consult this flag. For example,
it might be nice to remove the index while searching is going on:

override func sectionIndexTitlesForTableView(tableView: UITableView)
 -> [AnyObject]! {
 return self.searching ? nil : self.sectionNames
}

Table View Searching | 467

All that remains is to implement updateSearchResultsForSearchController: to filter
self.originalSectionData and self.originalSectionNames into the data model ar‐
rays self.sectionData and self.sectionNames — or to copy them unfiltered if the
search bar’s text is empty, which is also the signal that the search controller presentation
is over:

func updateSearchResultsForSearchController(
 searchController: UISearchController) {
 let sb = searchController.searchBar
 let target = sb.text
 if target == "" {
 self.sectionNames = self.originalSectionNames
 self.sectionData = self.originalSectionData
 self.tableView.reloadData()
 return
 }
 // we have a target string
 self.sectionData = self.originalSectionData.map {
 (sec:[String]) -> [String] in
 let newsec = sec.filter {
 s in
 let options = NSStringCompareOptions.CaseInsensitiveSearch
 let found = s.rangeOfString(target, options: options)
 return (found != nil)
 }
 return newsec
 }.filter {$0.count > 0} // Swift is cool...
 self.sectionNames = self.sectionData.map {
 (sec:[String]) -> String in
 return String(Array(sec[0])[0]) // ...except when it isn't
 }
 self.tableView.reloadData()
}

Table View Editing
A table view cell has a normal state and an editing state, according to its editing
property. The editing state is typically indicated visually by one or more of the following:
Editing controls

At least one editing control will usually appear, such as a Minus button (for deletion)
at the left side.

Shrinkage
The content of the cell will usually shrink to allow room for an editing control. If
there is no editing control, you can prevent a cell shifting its left end rightward in
editing mode with the table delegate’s tableView:shouldIndentWhileEditingRow-
AtIndexPath:. (There is also a cell property shouldIndentWhileEditing, but I find
it unreliable.)

468 | Chapter 8: Table Views and Collection Views

Changing accessory view
The cell’s accessory view will change automatically in accordance with its editing-
AccessoryType or editingAccessoryView. If you assign neither, so that they are
nil, the cell’s existing accessory view will vanish when in editing mode.

As with selection, you could set a cell’s editing property directly (or use set-
Editing:animated: to get animation), but you are more likely to let the table view
manage editability. Table view editability is controlled through the table view’s editing
property, usually by sending the table the setEditing:animated: message. The table
is then responsible for putting its cells into edit mode.

A cell in edit mode can also be selected by the user if the table view’s allowsSelection-
DuringEditing or allowsMultipleSelectionDuringEditing is true. But this would
be unusual.

Putting the table into edit mode is usually left up to the user. A typical interface would
be an Edit button that the user can tap. In a navigation interface, we might have our
view controller supply the button as a bar button item in the navigation bar:

let b = UIBarButtonItem(
 barButtonSystemItem: .Edit, target: self, action: "doEdit:")
self.navigationItem.rightBarButtonItem = b

Our action handler will be responsible for putting the table into edit mode, so in its
simplest form it might look like this:

func doEdit(sender:AnyObject?) {
 self.tableView.setEditing(true, animated:true)
}

But that does not solve the problem of getting out of editing mode. The standard solution
is to have the Edit button replace itself by a Done button:

func doEdit(sender:AnyObject?) {
 var which : UIBarButtonSystemItem
 if !self.tableView.editing {
 self.tableView.setEditing(true, animated:true)
 which = .Done
 } else {
 self.tableView.setEditing(false, animated:true)
 which = .Edit
 }
 let b = UIBarButtonItem(
 barButtonSystemItem: which, target: self, action: "doEdit:")
 self.navigationItem.rightBarButtonItem = b
}

However, it turns out that all of that is completely unnecessary! If we want standard
behavior, it’s already implemented for us. A UIViewController’s editButtonItem meth‐
od vends a bar button item that calls the UIViewController’s setEditing:animated:

Table View Editing | 469

when tapped, tracks whether we’re in edit mode with the UIViewController’s editing
property, and changes its own title accordingly (Edit or Done). Moreover, a UITable‐
ViewController’s implementation of setEditing:animated: is to call set-

Editing:animated: on its table view. Thus, if we’re using a UITableViewController, we
get all of that behavior for free, just by calling editButtonItem and inserting the re‐
sulting button into our interface:

self.navigationItem.rightBarButtonItem = self.editButtonItem()

When the table view enters edit mode, it consults its data source and delegate about the
editability of individual rows:
tableView:canEditRowAtIndexPath: to the data source

The default is true. The data source can return false to prevent the given row from
entering edit mode.

tableView:editingStyleForRowAtIndexPath: to the delegate
Each standard editing style corresponds to a control that will appear in the cell. The
choices (UITableViewCellEditingStyle) are:
.Delete

The cell shows a Minus button at its left end. The user can tap this to summon
a Delete button, which the user can then tap to confirm the deletion. This is
the default.

.Insert

The cell shows a Plus button at its left end; this is usually taken to be an insert
button.

.None

No editing control appears.

If the user taps an insert button (the Plus button) or a delete button (the Delete button
that appears after the user taps the Minus button), the data source is sent the table-
View:commitEditingStyle:forRowAtIndexPath: message and is responsible for obey‐
ing it. In your response, you will probably want to alter the structure of the table, and
UITableView methods for doing this are provided:

• insertRowsAtIndexPaths:withRowAnimation:

• deleteRowsAtIndexPaths:withRowAnimation:

• insertSections:withRowAnimation:

• deleteSections:withRowAnimation:

• moveSection:toSection:

• moveRowAtIndexPath:toIndexPath:

470 | Chapter 8: Table Views and Collection Views

The row animations here are effectively the same ones discussed earlier in connection
with refreshing table data; .Left for an insertion means to slide in from the left, and
for a deletion it means to slide out to the left, and so on. The two “move” methods
provide animation with no provision for customizing it.

If you’re issuing more than one of these commands, you can combine them by sur‐
rounding them with beginUpdates and endUpdates, forming an updates block. An up‐
dates block combines not just the animations but the requested changes themselves.
This relieves you from having to worry about how a command is affected by earlier
commands in the same updates block; indeed, order of commands within an updates
block doesn’t really matter.

For example, if you delete row 1 of a certain section and then (in a separate command)
delete row 2 of the same section, you delete two successive rows, just as you would
expect; the notion “2” does not change its meaning because you deleted an earlier row
first, because you didn’t delete an earlier row first — the updates block combines the
commands for you, interpreting both index paths with respect to the state of the table
before any changes are made. If you perform insertions and deletions together in one
animation, the deletions are performed first, regardless of the order of your commands,
and the insertion row and section numbers refer to the state of the table after the
deletions.

An updates block can also include reloadRows... and reloadSections... commands
(but not reloadData).

I need hardly emphasize once again (but I will anyway) that view is not model. It is one
thing to rearrange the appearance of the table, another to alter the underlying data. It
is up to you to make certain you do both together. Do not, even for a moment, permit
the data and the view to get out of synch with each other! If you delete a row, remove
from the model the datum that it represents. The runtime will try to help you with error
messages if you forget to do this, but in the end the responsibility is yours. I’ll give
examples as we proceed.

Deleting Cells
Deletion of cells is the default, so there’s not much for us to do in order to implement
it. If our view controller is a UITableViewController and we’ve displayed the Edit button
in a navigation bar, everything happens automatically: when the user taps the Edit but‐
ton, the view controller’s setEditing:animated: is called, the table view’s set-
Editing:animated: is called, and the cells all show the Minus button at the left end.
The user can then tap a Minus button; a Delete button is shown at the cell’s right end.
You can customize the Delete button’s title with the table view delegate method table-
View:titleForDeleteConfirmationButtonForRowAtIndexPath:.

Table View Editing | 471

What is not automatic is the actual response to the Delete button. For that, we need to
implement tableView:commitEditingStyle:forRowAtIndexPath:. Typically, you’ll
remove the corresponding entry from the underlying model data, and you’ll call delete-
RowsAtIndexPaths:withRowAnimation: or deleteSections:withRowAnimation: to
update the appearance of the table. As I said a moment ago, you must delete the row or
section in such a way as to keep the table display coordinated with the model’s structure.
Otherwise, the app may crash (with an extremely helpful error message).

To illustrate, let’s suppose once again that the underlying model is a pair of parallel arrays
of strings (self.sectionNames) and arrays (self.sectionData). Our approach will be
in two stages:

1. Deal with the model data. We’ll delete the datum for the requested row; if this
empties the section array, we’ll also delete that section array and the corresponding
section name.

2. Deal with the table’s appearance. If we deleted the section array, we’ll call delete-
Sections:withRowAnimation: (and reload the section index if there is one); other‐
wise, we’ll call deleteRowsAtIndexPaths:withRowAnimation::

override func tableView(tableView: UITableView,
 commitEditingStyle editingStyle: UITableViewCellEditingStyle,
 forRowAtIndexPath ip: NSIndexPath) {
 switch editingStyle {
 case .Delete:
 if self.sectionData[ip.section].count == 0 {
 self.sectionData.removeAtIndex(ip.section)
 self.sectionNames.removeAtIndex(ip.section)
 tableView.deleteSections(NSIndexSet(index: ip.section),
 withRowAnimation:.Automatic)
 tableView.reloadSectionIndexTitles()
 } else {
 tableView.deleteRowsAtIndexPaths([ip],
 withRowAnimation:.Automatic)
 }
 default: break
 }
}

The user can also delete a row by sliding it to the left to show its Delete button without
having explicitly entered edit mode; no other row is editable, and no other editing con‐
trols are shown. This feature is implemented “for free” by virtue of our having supplied
an implementation of tableView:commitEditingStyle:forRowAtIndexPath:. If
you’re like me, your first response will be: “Thanks for the free functionality, Apple, and
now how do I turn this off?” Because the Edit button is already using the UIView‐
Controller’s editing property to track edit mode, we can take advantage of this and
refuse to let any cells be edited unless the view controller is in edit mode:

472 | Chapter 8: Table Views and Collection Views

override func tableView(tableView: UITableView,
 editingStyleForRowAtIndexPath indexPath: NSIndexPath)
 -> UITableViewCellEditingStyle {
 return self.editing ? .Delete : .None
}

Custom Action Buttons
The table cell is itself inside a little horizontal scroll view; the user who slides a cell to
the left is actually scrolling the cell to the left, revealing the Delete button behind it. New
in iOS 8, you can customize what buttons will appear when the user slides a cell leftward
to enter edit mode, or enters edit mode and taps the Minus button.

To configure the buttons for a row of the table, implement the table view delegate method
tableView:editActionsForRowAtIndexPath: and return an array of UITableViewRo‐
wAction objects in right-to-left order (or nil to get the default Delete button). Create a
row action button with its initializer, init(style:title:handler:). The parameters
are:
style:

A UITableViewRowActionStyle, either .Default or .Normal. By default, .Default
is a red button signalling a destructive action, like the Delete button,
while .Normal is a gray button. You can subsequently change the color by setting
the button’s backgroundColor.

title:

The text of the button.

handler:

A block (closure) to be called when the button is tapped; it takes two parameters,
a reference to the row action and the index path for this cell.

If you want the user to be able to slide the cell to reveal the buttons, you must implement
tableView:commitEditingStyle:forRowAtIndexPath:, even if your implementation
is empty. But even if you don’t implement this method, the buttons can be revealed by
putting the table view into edit mode and tapping the Minus button. Your handler: can
call tableView:commitEditingStyle:forRowAtIndexPath: if appropriate; a custom
Delete button, for example, might do so.

In this example, we give our cells a blue Mark button in addition to the default Delete
button:

override func tableView(tableView: UITableView,
 editActionsForRowAtIndexPath indexPath: NSIndexPath) -> [AnyObject]? {
 let act = UITableViewRowAction(style: .Normal, title: "Mark") {
 action, ip in
 println("Mark") // in real life, do something here
 }

Table View Editing | 473

Figure 8-8. A simple phone directory app

 act.backgroundColor = UIColor.blueColor()
 let act2 = UITableViewRowAction(style: .Default, title: "Delete") {
 action, ip in
 self.tableView(self.tableView, commitEditingStyle:.Delete,
 forRowAtIndexPath:ip)
 }
 return [act2, act]
}

Configuration of these buttons is disappointingly inflexible — for example, you can’t
achieve anything like the iOS 8 Mail app’s interface — and many developers will prefer
to continue rolling their own sliding table cells, as in the past.

Editable Content in Cells
A cell might have content that the user can edit directly, such as a UITextField (Chap‐
ter 10). Because the user is working in the view, you need a way to reflect the user’s
changes into the model. This will probably involve putting yourself in contact with the
interface objects where the user does the editing.

To illustrate, I’ll implement a table view cell with a text field that is editable when the
cell is in editing mode. Imagine an app that maintains a list of names and phone num‐
bers. A name and phone number are displayed as a grouped style table, and they become
editable when the user taps the Edit button (Figure 8-8).

We don’t need a button at the left end of the cell when it’s being edited:

override func tableView(tableView: UITableView,
 editingStyleForRowAtIndexPath indexPath: NSIndexPath)
 -> UITableViewCellEditingStyle {
 return .None
}

474 | Chapter 8: Table Views and Collection Views

A UITextField is editable if its enabled is true. To tie this to the cell’s editing state, it
is probably simplest to implement a custom UITableViewCell class. I’ll call it MyCell,
and I’ll design it in the nib, giving it a single UITextField that’s pointed to through an
outlet property called textField. In the code for MyCell, we override didTransition-
ToState:, as follows:

class MyCell : UITableViewCell {
 @IBOutlet weak var textField : UITextField!
 override func didTransitionToState(state: UITableViewCellStateMask) {
 let editing =
 UITableViewCellStateMask.ShowingEditControlMask.rawValue
 if state.rawValue & editing != 0 {
 self.textField.enabled = true
 }
 else {
 self.textField.enabled = false
 }
 }
}

In the table view’s data source, we make ourselves the text field’s delegate when we create
and configure the cell:

override func tableView(tableView: UITableView,
 cellForRowAtIndexPath indexPath: NSIndexPath) -> UITableViewCell {
 let cell = tableView.dequeueReusableCellWithIdentifier(
 "Cell", forIndexPath:indexPath) as MyCell
 switch indexPath.section {
 case 0:
 cell.textField.text = self.name
 case 1:
 cell.textField.text = self.numbers[indexPath.row]
 cell.textField.keyboardType = .NumbersAndPunctuation
 default: break
 }
 cell.textField.delegate = self
 return cell
}

We are the UITextField’s delegate, so we are responsible for implementing the Return
button in the keyboard to dismiss the keyboard (I’ll talk more about this in Chapter 10):

func textFieldShouldReturn(textField: UITextField) -> Bool {
 textField.endEditing(true)
 return false
}

When a text field stops editing, we are its delegate, so we can hear about it in textField-
DidEndEditing:. We work out which cell this text field belongs to — I like to do this
by simply walking up the view hierarchy until I come to a table view cell — and update
the model accordingly:

Table View Editing | 475

Figure 8-9. Phone directory app in editing mode

func textFieldDidEndEditing(textField: UITextField) {
 // some cell's text field has finished editing; which cell?
 var v : UIView = textField
 do { v = v.superview! } while !(v is UITableViewCell)
 let cell = v as MyCell
 // update data model to match
 let ip = self.tableView.indexPathForCell(cell)!
 if ip.section == 1 {
 self.numbers[ip.row] = cell.textField.text
 } else if ip.section == 0 {
 self.name = cell.textField.text
 }
}

Inserting Cells
You are unlikely to attach a Plus (insert) button to every row. A more likely interface is
that when a table is edited, every row has a Minus button except the last row, which has
a Plus button; this shows the user that a new row can be appended at the end of the list.

Let’s implement this for phone numbers in our name-and-phone-number app, allowing
the user to give a person any quantity of phone numbers (Figure 8-9):

override func tableView(tableView: UITableView,
 editingStyleForRowAtIndexPath indexPath: NSIndexPath)
 -> UITableViewCellEditingStyle {
 if indexPath.section == 1 {
 let ct = self.tableView(
 tableView, numberOfRowsInSection:indexPath.section)
 if ct-1 == indexPath.row {
 return .Insert
 }

476 | Chapter 8: Table Views and Collection Views

 return .Delete;
 }
 return .None
}

The person’s name has no editing control (a person must have exactly one name), so we
prevent it from indenting in edit mode:

override func tableView(tableView: UITableView,
 shouldIndentWhileEditingRowAtIndexPath indexPath: NSIndexPath)
 -> Bool {
 if indexPath.section == 1 {
 return true
 }
 return false
}

When the user taps an editing control, we must respond. We immediately force our text
fields to cease editing: the user have may tapped the editing control while editing, and
we want our model to contain the very latest changes, so this is effectively a way of
causing our textFieldDidEndEditing: to be called. The model for our phone numbers
is an array of strings (self.numbers). We already know what to do when the tapped
control is a delete button; things are similar when it’s an insert button, but we’ve a little
more work to do. The new row will be empty, and it will be at the end of the table; so
we append an empty string to the self.numbers model array, and then we insert a
corresponding row at the end of the table view. But now two successive rows have a Plus
button; the way to fix that is to reload the first of those rows. Finally, we also show the
keyboard for the new, empty phone number, so that the user can start editing it imme‐
diately; we do that outside the updates block:

override func tableView(tableView: UITableView,
 commitEditingStyle editingStyle: UITableViewCellEditingStyle,
 forRowAtIndexPath indexPath: NSIndexPath) {
 tableView.endEditing(true)
 if editingStyle == .Insert {
 self.numbers += [""]
 let ct = self.numbers.count
 tableView.beginUpdates()
 tableView.insertRowsAtIndexPaths(
 [NSIndexPath(forRow:ct-1, inSection:1)],
 withRowAnimation:.Automatic)
 tableView.reloadRowsAtIndexPaths(
 [NSIndexPath(forRow:ct-2, inSection:1)],
 withRowAnimation:.Automatic)
 tableView.endUpdates()
 // crucial that this next bit be *outside* the update block
 let cell = self.tableView.cellForRowAtIndexPath(
 NSIndexPath(forRow:ct-1, inSection:1))
 (cell as MyCell).textField.becomeFirstResponder()
 }
 if editingStyle == .Delete {

Table View Editing | 477

 self.numbers.removeAtIndex(indexPath.row)
 tableView.beginUpdates()
 tableView.deleteRowsAtIndexPaths(
 [indexPath], withRowAnimation:.Automatic)
 tableView.reloadSections(
 NSIndexSet(index:1), withRowAnimation:.Automatic)
 tableView.endUpdates()
 }
}

Rearranging Cells
If the data source implements tableView:moveRowAtIndexPath:toIndexPath:, the
table displays a reordering control at the right end of each row in editing mode
(Figure 8-9), and the user can drag it to rearrange cells. The reordering control can be
suppressed for individual cells by implementing tableView:canMoveRowAtIndex-
Path:. The user is free to move rows that display a reordering control, but the delegate
can limit where a row can be moved to by implementing tableView:targetIndexPath-
ForMoveFromRowAtIndexPath:toProposedIndexPath:.

To illustrate, we’ll add to our name-and-phone-number app the ability to rearrange
phone numbers. There must be multiple phone numbers to rearrange:

override func tableView(tableView: UITableView,
 canMoveRowAtIndexPath indexPath: NSIndexPath) -> Bool {
 if indexPath.section == 1 && self.numbers.count > 1 {
 return true
 }
 return false
}

A phone number must not be moved out of its section, so we implement the delegate
method to prevent this. We also take this opportunity to dismiss the keyboard if it is
showing.

override func tableView(tableView: UITableView,
 targetIndexPathForMoveFromRowAtIndexPath sourceIndexPath: NSIndexPath,
 toProposedIndexPath proposedDestinationIndexPath: NSIndexPath)
 -> NSIndexPath {
 tableView.endEditing(true)
 if proposedDestinationIndexPath.section == 0 {
 return NSIndexPath(forRow:0, inSection:1)
 }
 return proposedDestinationIndexPath
}

After the user moves an item, tableView:moveRowAtIndexPath:toIndexPath: is
called, and we trivially update the model to match. We also reload the table, to fix the
editing controls:

478 | Chapter 8: Table Views and Collection Views

override func tableView(tableView: UITableView,
 moveRowAtIndexPath fromIndexPath: NSIndexPath,
 toIndexPath: NSIndexPath) {
 let s = self.numbers[fromIndexPath.row]
 self.numbers.removeAtIndex(fromIndexPath.row)
 self.numbers.insert(s, atIndex: toIndexPath.row)
 tableView.reloadData()
}

Dynamic Cells
A table may be rearranged not just in response to the user working in edit mode, but
for some other reason entirely. In this way, many interesting and original interfaces are
possible.

In this example, we permit the user to double tap on a section header as a way of col‐
lapsing or expanding the section — that is, we’ll suppress or permit the display of the
rows of the section, with a nice animation as the change takes place. (This idea is
shamelessly stolen from a WWDC 2010 video.)

One more time, our data model consists of the two arrays, self.sectionNames and
self.sectionData. I’ve also got an NSMutableSet, self.hiddenSections, in which I’ll
list the sections that aren’t displaying their rows. That list is all I’ll need, since either a
section is showing all its rows or it’s showing none of them:

override func tableView(tableView: UITableView,
 numberOfRowsInSection section: Int) -> Int {
 if self.hiddenSections.containsObject(section) {
 return 0
 }
 return self.sectionData[section].count
}

We need a correspondence between a section header and the number of its section. It’s
odd that UITableView doesn’t give us such a correspondence; it provides indexPathFor-
Cell:, but there is no sectionForHeaderFooterView:. My solution is to subclass UI‐
TableViewHeaderFooterView and give my subclass a public property section:

class MyHeaderView : UITableViewHeaderFooterView {
 var section = 0
}

Whenever tableView:viewForHeaderInSection: is called, I set the header view’s
section property:

override func tableView(tableView: UITableView,
 viewForHeaderInSection section: Int) -> UIView {
 let h = tableView.dequeueReusableHeaderFooterViewWithIdentifier(
 "Header") as MyHeaderView

Table View Editing | 479

 // ...
 h.section = section // *
 return h
}

The section headers are a UITableViewHeaderFooterView subclass with user-
InteractionEnabled set to true and a UITapGestureRecognizer attached, so we can
detect a double tap. When the user double taps a section header, we learn from the
header what section this is, we find out from the model how many rows this section has,
and we derive the index paths of the rows we’re about to insert or remove. Now we look
for the section number in our hiddenSections set. If it’s there, we’re about to display
the rows, so we remove that section number from hiddenSections, and we insert the
rows. If it’s not there, we’re about to hide the rows, so we insert that section number into
hiddenSections, and we delete the rows:

func tap (g : UIGestureRecognizer) {
 let v = g.view as MyHeaderView
 let sec = v.section
 let ct = self.sectionData[sec].count
 let arr = Array(0..<ct).map {NSIndexPath(forRow:$0, inSection:sec)}
 if self.hiddenSections.containsObject(sec) {
 self.hiddenSections.removeObject(sec)
 self.tableView.beginUpdates()
 self.tableView.insertRowsAtIndexPaths(arr,
 withRowAnimation:.Automatic)
 self.tableView.endUpdates()
 self.tableView.scrollToRowAtIndexPath(arr[ct-1],
 atScrollPosition:.None,
 animated:true)
 } else {
 self.hiddenSections.addObject(sec)
 self.tableView.beginUpdates()
 self.tableView.deleteRowsAtIndexPaths(arr,
 withRowAnimation:.Automatic)
 self.tableView.endUpdates()
 }
}

Table View Menus
A menu, in iOS, is a sort of balloon containing tappable words such as Copy, Cut, and
Paste. You can permit the user to display a menu from a table view cell by performing
a long press on the cell. The long press followed by display of the menu gives the cell a
selected appearance, which goes away when the menu is dismissed.

To allow the user to display a menu from a table view’s cells, you implement three
delegate methods:

480 | Chapter 8: Table Views and Collection Views

Figure 8-10. A table view cell with a menu

tableView:shouldShowMenuForRowAtIndexPath:

Return true if the user is to be permitted to summon a menu by performing a long
press on this cell.

tableView:canPerformAction:forRowAtIndexPath:withSender:

You’ll be called repeatedly with selectors for various actions that the system knows
about. Returning true, regardless, causes the Copy, Cut, and Paste menu items to
appear in the menu, corresponding to the copy:, cut:, and paste: actions; return
false to prevent the menu item for an action from appearing. The menu itself will
then appear unless you return false to all three actions. The sender is the shared
UIMenuController.

tableView:performAction:forRowAtIndexPath:withSender:

The user has tapped one of the menu items; your job is to respond to it somehow.

Here’s an example where the user can summon a Copy menu from any cell (Figure 8-10):

override func tableView(tableView: UITableView,
 shouldShowMenuForRowAtIndexPath indexPath: NSIndexPath) -> Bool {
 return true
}
override func tableView(tableView: UITableView,
 canPerformAction action: Selector,
 forRowAtIndexPath indexPath: NSIndexPath,
 withSender sender: AnyObject) -> Bool {
 return action == "copy:"
}
override func tableView(tableView: UITableView,
 performAction action: Selector,
 forRowAtIndexPath indexPath: NSIndexPath,
 withSender sender: AnyObject) {
 if action == "copy:" {
 // ... do whatever copying consists of ...
 }
}

Table View Menus | 481

To add a custom menu item to the menu (other than copy:, cut:, and paste:) is a little
more work. First, you must tell the shared UIMenuController to append the menu item
to the global menu; the tableView:shouldShowMenuForRowAtIndexPath: delegate
method is a good place to do this:

override func tableView(tableView: UITableView,
 shouldShowMenuForRowAtIndexPath indexPath: NSIndexPath) -> Bool {
 let mi = UIMenuItem(title: "Abbrev", action: "abbrev:")
 UIMenuController.sharedMenuController().menuItems = [mi]
 return true
}

We have now given the menu an additional menu item whose title is Abbrev, and whose
action when the menu item is tapped is abbrev:. (I am imagining here a table of the
names of U.S. states, where one can copy a state’s two-letter abbreviation to the clip‐
board.) If we want this menu item to appear in the menu, and if we want to respond to
it when the user taps it, we must add that selector to the two performAction: delegate
methods:

override func tableView(tableView: UITableView,
 canPerformAction action: Selector,
 forRowAtIndexPath indexPath: NSIndexPath,
 withSender sender: AnyObject) -> Bool {
 return action == "copy:" || action == "abbrev:"
}
override func tableView(tableView: UITableView,
 performAction action: Selector,
 forRowAtIndexPath indexPath: NSIndexPath,
 withSender sender: AnyObject) {
 if action == "copy:" {
 // ... do whatever copying consists of ...
 }
 if action == "abbrev:" {
 // ... do whatever abbreviating consists of ...
 }
 }

Now comes the tricky part: we must implement our custom selector, abbrev:, in the
cell. We will therefore need our table to use a custom UITableViewCell subclass. Let’s
call it MyCell:

class MyCell : UITableViewCell {
 func abbrev(sender:AnyObject!) {
 // ...
 }
}

The Abbrev menu item now appears when the user long-presses a cell of our table, and
the cell’s abbrev: method is called when the user taps that menu item. We could respond
directly to the tap in the cell, but it seems more consistent that our table view delegate

482 | Chapter 8: Table Views and Collection Views

should respond. So we work out what table view this cell belongs to and send its delegate
the very message it is already expecting:

func abbrev(sender:AnyObject!) {
 // find my table view
 var v : UIView = self
 do {v = v.superview!} while !(v is UITableView)
 let tv = v as UITableView
 // ask it what index path we are
 let ip = tv.indexPathForCell(self)!
 // talk to its delegate
 let action = Selector(__FUNCTION__ + ":") // *
 tv.delegate?.tableView?(
 tv, performAction:action, forRowAtIndexPath:ip, withSender:sender)
}

The starred line calls attention to the fact that Swift’s __FUNCTION__ literal does not
evaluate to a valid Objective-C selector string; I regard this as a bug.

Collection Views
A collection view (UICollectionView) is a UIScrollView subclass that generalizes the
notion of a UITableView. It has many similarities to a table view; indeed, knowing about
table views, you know a great deal about collection views already:

• Like a UITableView, you might well manage your UICollectionView through a
UIViewController subclass — a subclass of UICollectionViewController.

• Like a UITableView, a collection view has reusable cells. These are UICollection‐
ViewCell instances, and are extremely minimal.

• Like a UITableView, you’ll make the cells reusable by registering a class or nib with
the collection view:

■ registerClass:forCellWithReuseIdentifier:
■ registerNib:forCellWithReuseIdentifier:.

Alternatively, if you’ve started with a UICollectionViewController in a storyboard,
just assign the reuse identifier in the storyboard.

• Like a UITableView, a collection view has a data source (UICollectionViewData‐
Source) and a delegate (UICollectionViewDelegate), and it’s going to ask the data
source Three Big Questions:

■ numberOfSectionsInCollectionView:
■ collectionView:numberOfItemsInSection:
■ collectionView:cellForItemAtIndexPath:

Collection Views | 483

• Like a UITableView, to answer the third Big Question, your data source will supply
a cell by calling dequeueReusableCellWithReuseIdentifier:forIndexPath:.

• Like a UITableView, a collection view allows the user to select a cell, or multiple
cells. The delegate is notified of highlighting and selection just like a table view
delegate. Your code can rearrange the cells, inserting, moving, and deleting cells or
entire sections. If the delegate permits, the user can long-press a cell to produce a
menu.

• A collection view can clump its data into sections, identified by section number.

At this point we come to a slight difference between table views and collection views.
With a collection view, a section can have a header and footer, but the collection view
itself does not call them that; instead, it generalizes its subview types into cells, on the
one hand, and supplementary views, on the other. A supplementary view is just a UI‐
CollectionReusableView, which happens to be UICollectionViewCell’s superclass. A
supplementary view is associated with a kind, which is just an NSString identifying its
type; thus you can have a header as one kind, a footer as another kind, and anything
else you can imagine. The similarities then resume:

• As with a UITableView, you can make supplementary views reusable by registering
a class with the collection view. The data source method where you are asked for a
supplementary view will be:

■ collectionView:viewForSupplementaryElementOfKind:atIndexPath:
• As with a UITableView, your data source will then supply a supplementary view by

dequeuing it from the collection view.

The big difference between a table view and a collection view is how the collection view
lays out its elements (cells and supplementary views). A table view lays out its cells in
just one way: a vertically scrolling column, where the cells are the width of the table
view, the height dictated by the table view or the delegate, and touching one another. A
collection view doesn’t do that. In fact, a collection view doesn’t lay out its elements at
all! That job is left to another class, a subclass of UICollectionViewLayout.

A UICollectionViewLayout subclass instance is responsible for the overall layout of the
collection view that owns it. It does this by answering some Big Questions of its own,
posed by the collection view; the most important are these:
collectionViewContentSize

How big is the entire layout? The collection view needs to know this, because the
collection view is a scroll view (Chapter 7), and this will be the content size of the
scrollable material that it will display.

484 | Chapter 8: Table Views and Collection Views

layoutAttributesForElementsInRect:

Where do all the elements go? The layout attributes, as I’ll explain in more detail
in a moment, are bundles of positional information.

To answer these questions, the collection view layout needs to ask the collection view
some questions of its own, such as numberOfSections and numberOfItemsIn-
Section:. (The collection view, in turn, gets the answers to those questions from its
data source.)

The collection view layout can thus assign the elements any positions it likes, and the
collection view will faithfully draw them in those positions within its content rectangle.
That seems very open-ended, and indeed it is. To get you started, there’s a built-in
UICollectionViewLayout subclass — UICollectionViewFlowLayout.

UICollectionViewFlowLayout arranges its cells in something like a grid. The grid can
be scrolled either horizontally or vertically, so this grid is a series of rows or columns.
Through properties and a delegate protocol of its own (UICollectionViewDelegate‐
FlowLayout), the UICollectionViewFlowLayout instance lets you provide hints about
how big the cells are and how they should be spaced out. It defines two supplementary
view types, using them to let you give each section a header and a footer.

Figure 8-11 shows a collection view, laid out with a flow layout, from my Latin flashcard
app. This interface simply lists the chapters and lessons into which the flashcards them‐
selves are divided, and allows the user to jump to a desired lesson by tapping it. Previ‐
ously, I was using a table view to present this list; when collection views were introduced
(in iOS 6), I adopted one for this interface, and you can see why. Instead of a lesson item
like “1a” occupying an entire row that stretches the whole width of a table, it’s just a little
rectangle; in landscape orientation, the flow layout fits five of these rectangles onto a
line for me. So a collection view is a much more compact and appropriate way to present
this interface than a table view.

If UICollectionViewFlowLayout doesn’t quite meet your needs, you can subclass it, or
you can subclass UICollectionViewLayout itself. I’ll talk more about that later on.

(In addition to cells and supplementary views, a collection view supports decoration
views. These are not directly analogous to anything in a table view; they are closest,
perhaps, to the section index. They don’t represent data; the collection view won’t ask
the data source about them, and the collection view has no methods about them. They
are purely up to the collection view layout; it defines any decoration view types, gives
its decoration views actual view content, and states the positions its decoration views
are to have. I’ve never written or used a collection view layout that implemented deco‐
ration views, and I’m not going to say any more about them.)

Collection Views | 485

Figure 8-11. A collection view in my Latin flashcard app

Collection View Classes
Here are the main classes associated with UICollectionView. This is just a conceptual
overview; I don’t recite all the properties and methods of each class, which you can learn
from the documentation:
UICollectionViewController

A UIViewController subclass. Like a table view controller, UICollectionView‐
Controller is convenient if a UICollectionView is to be a view controller’s view, but
is not required. It is the delegate and data source of its collectionView by default.
The designated initializer requires you to supply a layout instance:

let rvc =
 RootViewController(collectionViewLayout:UICollectionViewFlowLayout())

Alternatively, there is a Collection View Controller nib object.

UICollectionView
A UIScrollView subclass. It has a backgroundColor (because it’s a view) and op‐
tionally a backgroundView in front of that. Its designated initializer requires you to
supply a layout instance, which will be its collectionViewLayout. Alternatively,
there is a Collection View nib object, which comes with a Collection View Flow
Layout by default; you can change the collection view layout class with the Layout
pop-up menu in the Collection View’s Attributes inspector.

A collection view’s methods are very much parallel to those of a UITableView, but
fewer and simpler:

486 | Chapter 8: Table Views and Collection Views

• Where a table view speaks of rows, a collection view speaks of items. UICol‐
lectionView even adds a category to NSIndexPath so that you can refer to its
item property instead of its row property.

• Where a table view speaks of a header or footer, a collection view speaks of a
supplementary view.

• A UICollectionView doesn’t do layout, so it is not where things like header and
cell size are configured.

• A UICollectionView has no notion of editing.
• A UICollectionView has no section index.
• Where a table view batches updates with beginUpdates and endUpdates, a

collection view uses performBatchUpdates:completion:, which takes blocks.
• A collection view performs animation when you insert, delete, or move sections

or items, but you don’t specify an animation type. (The layout can modify the
animation.)

Having made those mental adjustments, you can guess correctly all the methods of
a UICollectionView, except for a couple whose names begin with layout-
Attributes.... To understand what they do, you need to know about UICollection‐
ViewLayoutAttributes.

UICollectionViewLayoutAttributes
A UICollectionViewLayoutAttributes object is basically just a glorified struct, tying
together an element’s indexPath with the specifications for how and where it should
be drawn — specifications that are remarkably reminiscent of view or layer prop‐
erties, with names like frame, center, size, transform, and so forth. Layout at‐
tributes objects function as the mediators between the layout and the collection
view; they are what the layout passes to the collection view to tell it where all the
elements of the view should go.

UICollectionViewCell
An extremely minimal view class. It has a highlighted property and a selected
property. It has a contentView, a selectedBackgroundView, a backgroundView,
and of course (since it’s a view) a backgroundColor, layered in that order, just like
a table view cell; everything else is up to you.

If you start with a collection view controller in a storyboard, you get prototype cells,
which you obtain by dequeuing. Otherwise, you obtain cells through registration
and dequeuing.

UICollectionReusableView
The superclass of UICollectionViewCell — so it is even more minimal! This is the
class of supplementary views such as headers and footers. You obtain reusable views

Collection Views | 487

through registration and dequeuing; if you’re using a flow layout in a storyboard,
you are given a header and footer prototype view.

UICollectionViewLayout
The layout workhorse class for a collection view. A collection view cannot exist
without a layout instance! As I’ve already said, the layout knows how much room
all the subviews occupy, and supplies the collectionViewContentSize that sets
the contentSize of the collection view, qua scroll view. In addition, the layout must
answer questions from the collection view, by supplying a UICollectionView‐
LayoutAttributes object, or an array of such objects, saying where and how elements
should be drawn. These questions come in two categories:
Static attributes

The collection view wants to know the layout attributes of an item, supple‐
mentary view, or decoration view, specified by index path, or of all elements
within a given rect.

Dynamic attributes
The collection view is inserting or removing elements. It asks for the layout
attributes that an element, specified by index path, should have before insertion
or after removal. The collection view can thus animate between the element’s
static attributes and these dynamic attributes. For example, if an element’s lay‐
out attributes alpha is 0 after removal, the element will appear to fade away as
it is removed.

The collection view also notifies the layout of pending changes through some
methods whose names start with prepare and finalize. This is another way for
the layout to participate in animations, or to perform other kinds of preparation
and cleanup.

UICollectionViewLayout is an abstract class; to use it, you must subclass it, or start
with the built-in subclass, UICollectionViewFlowLayout.

UICollectionViewFlowLayout
A concrete subclass of UICollectionViewLayout; you can use it as is, or you can
subclass it. It lays out items in a grid that can be scrolled either horizontally or
vertically, and it defines two supplementary element types to serve as the header
and footer of a section. A collection view in the nib editor has a Layout pop-up
menu that lets you choose a Flow layout, and you can configure the flow layout in
the Size inspector; in a storyboard, you can even add and design a header and a
footer.

A flow layout has the following configurations:

• A scroll direction
• A sectionInset (the margins for a section)

488 | Chapter 8: Table Views and Collection Views

• An itemSize, along with a minimumInteritemSpacing and minimumLine-
Spacing

• A headerReferenceSize and footerReferenceSize

That’s all! At a minimum, if you want to see any section headers, you must assign
the flow layout a headerReferenceSize, because the default is (0.0,0.0). Other‐
wise, you get initial defaults that will at least allow you to see something immediately,
such as an itemSize of (50.0,50.0) and reasonable default spacing between items
and lines.

UICollectionViewFlowLayout also defines a delegate protocol of its own,
UICollectionViewDelegateFlowLayout. The flow layout automatically treats the
collection view’s delegate as its own delegate. The section margins, item size, item
spacing, line spacing, and header and footer size can be set for individual sections,
cells, and supplementary views through this delegate.

Using a Collection View
To show that using a collection view is easy, here’s how the view shown in Figure 8-11
is created. I have a UICollectionViewController subclass, LessonListController. Every
collection view must have a layout, so LessonListController’s designated initializer in‐
itializes itself with a UICollectionViewFlowLayout:

init?(terms data:NSArray) {
 self.terms = data
 let layout = UICollectionViewFlowLayout()
 super.init(collectionViewLayout:layout)
 // ... other self-initializations here ...
}

In viewDidLoad, we give the flow layout its hints about the sizes of the margins, cells,
and headers, as well as registering for cell and header reusability:

override func viewDidLoad() {
 super.viewDidLoad()
 let layout = self.collectionView
 .collectionViewLayout as UICollectionViewFlowLayout
 layout.sectionInset = UIEdgeInsetsMake(10, 20, 10, 20)
 layout.headerReferenceSize = CGSizeMake(0,40)
 layout.itemSize = CGSizeMake(70,45)
 self.collectionView.registerNib(
 UINib(nibName:"LessonCell", bundle:nil),
 forCellWithReuseIdentifier: "LessonCell")
 self.collectionView.registerClass(
 UICollectionReusableView.self,
 forSupplementaryViewOfKind: UICollectionElementKindSectionHeader,

Collection Views | 489

 withReuseIdentifier: "LessonHeader")
 self.collectionView.backgroundColor = UIColor.myGolden()
 // ...
}

The first two of the Three Big Questions to the data source are boring and familiar:

override func numberOfSectionsInCollectionView(
 collectionView: UICollectionView) -> Int {
 return self.sectionNames.count
}
override func collectionView(collectionView: UICollectionView,
 numberOfItemsInSection section: Int) -> Int {
 return self.sectionData[section].count
}

The third of the Three Big Questions to the data source creates and configures the cells.
In a .xib file, I’ve designed the cell with a single subview, a UILabel with tag 1; if the text
of that label is still "Label", this is a sign that the cell has come freshly minted from the
nib and needs further initial configuration. Among other things, I assign each new cell
a selectedBackgroundView and give the label a highlightedTextColor, to get an au‐
tomatic indication of selection:

override func collectionView(collectionView: UICollectionView,
 cellForItemAtIndexPath indexPath: NSIndexPath)
 -> UICollectionViewCell {
 let cell = collectionView.dequeueReusableCellWithReuseIdentifier(
 "LessonCell", forIndexPath: indexPath) as UICollectionViewCell
 let lab = cell.viewWithTag(1) as UILabel
 if lab.text == "Label" {
 lab.highlightedTextColor = UIColor.whiteColor()
 cell.backgroundColor = UIColor.myPaler()
 cell.layer.borderColor = UIColor.brownColor().CGColor
 cell.layer.borderWidth = 5
 cell.layer.cornerRadius = 5
 let v = UIView()
 v.backgroundColor =
 UIColor.blueColor().colorWithAlphaComponent(0.8)
 cell.selectedBackgroundView = v
 }
 let term = self.sectionData[indexPath.section][indexPath.item]
 lab.text = term.lesson + term.sectionFirstWord
 return cell
}

The fourth data source method asks for the supplementary element views; in my case,
these are the section headers. I haven’t bothered to design the header in a nib; instead,
I configure the entire thing in code. Again I distinguish between newly minted views
and reused views; the latter will already have a single subview, a UILabel:

490 | Chapter 8: Table Views and Collection Views

override func collectionView(collectionView: UICollectionView,
 viewForSupplementaryElementOfKind kind: String,
 atIndexPath indexPath: NSIndexPath) -> UICollectionReusableView {
 let v = collectionView.dequeueReusableSupplementaryViewOfKind(
 UICollectionElementKindSectionHeader,
 withReuseIdentifier: "LessonHeader",
 forIndexPath: indexPath) as UICollectionReusableView
 if v.subviews.count == 0 {
 let lab = UILabel(frame:CGRectMake(10,0,100,40))
 lab.font = UIFont(name:"GillSans-Bold", size:20)
 lab.backgroundColor = UIColor.clearColor()
 v.addSubview(lab)
 v.backgroundColor = UIColor.blackColor()
 lab.textColor = UIColor.myPaler()
 }
 let lab = v.subviews[0] as UILabel
 lab.text = self.sectionNames[indexPath.section]
 return v
}

As you can see from Figure 8-11, the first section is treated specially — it has no header,
and its cell is wider. I take care of that with two UICollectionViewDelegateFlowLayout
methods:

func collectionView(collectionView: UICollectionView,
 layout collectionViewLayout: UICollectionViewLayout,
 sizeForItemAtIndexPath indexPath: NSIndexPath) -> CGSize {
 var sz =
 (collectionViewLayout as UICollectionViewFlowLayout)
 .itemSize
 if indexPath.section == 0 {
 sz.width = 150
 }
 return sz
}
func collectionView(collectionView: UICollectionView,
 layout collectionViewLayout: UICollectionViewLayout,
 referenceSizeForHeaderInSection section: Int) -> CGSize {
 var sz =
 (collectionViewLayout as UICollectionViewFlowLayout)
 .headerReferenceSize
 if section == 0 {
 sz.height = 0
 }
 return sz
}

When the user taps a cell, I hear about it through the delegate method collection-
View:didSelectItemAtIndexPath: and respond accordingly. That is the entire code
for managing this collection view!

Collection Views | 491

Here’s an example of deleting cells in a collection view. Let’s assume that the cells to be
deleted have been selected, with multiple selection being possible. If there are selected
cells, they are provided as an array of NSIndexPaths. My data model is once again the
usual pair of parallel arrays of strings (sectionNames) and arrays (sectionData); each
NSIndexPath gets me directly to the corresponding piece of data in sectionData, so I
delete each piece of data in reverse order, keeping track of any arrays (sections) that end
up empty. Finally, I delete the items from the collection view, and then do the same for
the sections:

func doDelete(sender:AnyObject) { // button, delete selected cells
 let arr = self.collectionView.indexPathsForSelectedItems()
 as [NSIndexPath]
 if arr.count == 0 {
 return
 }
 // sort, reverse
 let arr2 = (arr as NSArray).sortedArrayUsingSelector(
 Selector("compare:")).reverse() as [NSIndexPath]
 // delete data
 var empties = [Int]() // keep track of what sections get emptied
 for ip in arr2 {
 self.sectionData[ip.section].removeAtIndex(ip.item)
 if self.sectionData[ip.section].count == 0 {
 empties += [ip.section]
 }
 }
 // will need an NSIndexSet version of that empties list
 let emptyset = NSMutableIndexSet()
 for i in empties {
 emptyset.addIndex(i)
 }
 // delete from view, deal with empty sections
 self.collectionView.performBatchUpdates({
 self.collectionView.deleteItemsAtIndexPaths(arr2)
 if empties.count > 0 { // delete empty sections
 self.sectionNames.removeAtIndexes(empties)
 self.sectionData.removeAtIndexes(empties)
 self.collectionView.deleteSections(emptyset)
 }
 }, completion: nil)
}

(For the removeAtIndexes: utility, see Appendix B.)

Menu handling is also completely parallel to a table view; if you want additional menu
items beyond the standard Copy, Cut, and Paste, the corresponding custom selectors
must be implemented in a UICollectionViewCell subclass.

492 | Chapter 8: Table Views and Collection Views

Custom Collection View Layouts
To explore what might be involved in writing your own layout class, let’s introduce a
simple modification of UICollectionViewFlowLayout.

By default, the flow layout wants to full-justify every row of cells horizontally, spacing
the cells evenly between the left and right margins, except for the last row, which is left-
aligned. Let’s say that this isn’t what you want — you’d rather that every row be left-
aligned, with every cell as far to the left as possible given the size of the preceding cell
and the minimum spacing between cells.

To achieve this, you’ll need to subclass UICollectionViewFlowLayout and override two
methods, layoutAttributesForElementsInRect: and layoutAttributesForItemAt-
IndexPath:. Fortunately, we’re starting with a layout, UICollectionViewFlowLayout,
whose answers to these questions are almost right. So we call super and make modifi‐
cations as necessary.

The really important method here is layoutAttributesForItemAtIndexPath:, which
returns a single UICollectionViewLayoutAttributes object.

If the index path’s item is 0, we have a degenerate case: the answer we got from super
is right. Alternatively, if this cell is at the start of a row — we can find this out by asking
whether the left edge of its frame is close to the margin — we have another degenerate
case: the answer we got from super is right.

Otherwise, where this cell goes depends on where the previous cell goes, so we obtain
the frame of the previous cell recursively; we propose to position our left edge a minimal
spacing amount from the right edge of the previous cell. We do that by changing the
frame of the UICollectionViewLayoutAttributes object. Then we return that object:

override func layoutAttributesForItemAtIndexPath(indexPath: NSIndexPath)
 -> UICollectionViewLayoutAttributes! {
 let atts = super.layoutAttributesForItemAtIndexPath(indexPath)
 if indexPath.item == 0 {
 return atts // degenerate case 1
 }
 if atts.frame.origin.x - 1 <= self.sectionInset.left {
 return atts // degenerate case 2
 }
 let ipPv = NSIndexPath(
 forItem:indexPath.item-1, inSection:indexPath.section)
 let fPv = self.layoutAttributesForItemAtIndexPath(ipPv).frame
 let rightPv =
 fPv.origin.x + fPv.size.width + self.minimumInteritemSpacing
 atts.frame.origin.x = rightPv
 return atts
}

Collection Views | 493

The other method, layoutAttributesForElementsInRect:, returns an array of UI‐
CollectionViewLayoutAttributes objects for all the cells and supplementary views in a
rect. Again we call super and modify the resulting array so that if an element is a cell,
its UICollectionViewLayoutAttributes is the result of our layoutAttributesForItem-
AtIndexPath::

override func layoutAttributesForElementsInRect(rect: CGRect)
 -> [AnyObject]? {
 let arr = super.layoutAttributesForElementsInRect(rect)
 as [UICollectionViewLayoutAttributes]
 return arr.map {
 atts in
 if atts.representedElementKind == nil {
 let ip = atts.indexPath
 atts.frame =
 self.layoutAttributesForItemAtIndexPath(ip).frame
 }
 return atts
 }
}

Apple supplies some further interesting examples of subclassing UICollectionView‐
FlowLayout. For instance, the LineLayout example (accompanying the WWDC 2012
videos) implements a single row of horizontally scrolling cells, where a cell grows as it
approaches the center of the screen and shrinks as it moves away. To do this, it first of
all overrides a UICollectionViewLayout method I didn’t mention earlier, should-
InvalidateLayoutForBoundsChange:; this causes layout to happen repeatedly while
the collection view is scrolled. It then overrides layoutAttributesForElementsIn-
Rect: to do the same sort of thing I did a moment ago: it calls super and then modifies,
as needed, the transform3D property of the UICollectionViewLayoutAttributes for the
onscreen cells.

You can also subclass UICollectionViewLayout itself. The WWDC 2012 videos demon‐
strate a UICollectionViewLayout subclass that arranges its cells in a circle; the WWDC
2013 videos demonstrate a UICollectionViewLayout subclass that piles its cells into a
single stack in the center of the collection view, like a deck of cards seen from above.

A collection view layout can be powerful and complex, but getting started writing one
from scratch is not difficult. To illustrate, I’ll write a collection view layout that ignores
sections and presents all cells as a simple grid of squares.

In my UICollectionViewLayout subclass, called MyLayout, the really big questions I
need to answer are collectionViewContentSize and layoutAttributesForElements-
InRect:. To answer them, I’ll calculate the entire layout of my grid beforehand. The
prepareLayout method is the perfect place to do this; it is called every time something
about the collection view or its data changes. I’ll calculate the grid of cells and express

494 | Chapter 8: Table Views and Collection Views

their positions as an array of UICollectionViewLayoutAttributes objects; I’ll store that
array in a property self.atts, and I’ll store the size of the grid in a property self.sz:

override func prepareLayout() {
 let sections = self.collectionView!.numberOfSections()
 // how many items are there in total?
 let total = Array(0 ..< sections).map {
 self.collectionView!.numberOfItemsInSection($0)
 }.reduce(0, +)
 // work out cell size based on bounds size
 let sz = self.collectionView!.bounds.size
 let width = sz.width
 let shortside = floor(width/50.0)
 let cellside = width/shortside
 // generate attributes for all cells
 var x = 0
 var y = 0
 var atts = [UICollectionViewLayoutAttributes]()
 for i in 0 ..< sections {
 let jj = self.collectionView!.numberOfItemsInSection(i)
 for j in 0 ..< jj {
 let att = UICollectionViewLayoutAttributes(
 forCellWithIndexPath:
 NSIndexPath(forItem:j, inSection:i))
 att.frame = CGRectMake(
 CGFloat(x)*cellside,CGFloat(y)*cellside,cellside,cellside)
 atts += [att]
 x++
 if CGFloat(x) >= shortside {
 x = 0
 y++
 }
 }
 }
 self.atts = atts
 let fluff = (x == 0) ? 0 : 1
 self.sz = CGSizeMake(width, CGFloat(y+fluff) * cellside)
}

collectionViewContentSize and layoutAttributesForElementsInRect: are obvi‐
ous: I’ll just return the sz or atts property, respectively:

override func collectionViewContentSize() -> CGSize {
 return self.sz
}
override func layoutAttributesForElementsInRect(rect: CGRect)
 -> [AnyObject]? {
 return self.atts
}

layoutAttributesForItemAtIndexPath: is implemented by looking up the corre‐
sponding value in my self.atts array:

Collection Views | 495

override func layoutAttributesForItemAtIndexPath(indexPath: NSIndexPath)
 -> UICollectionViewLayoutAttributes! {
 for att in self.atts {
 if att.indexPath == indexPath {
 return att
 }
 }
 return nil // shouldn't happen
}

Finally, I want to implement shouldInvalidateLayoutForBoundsChange: to return
true, so that if the interface is rotated, my prepareLayout will be called again to recal‐
culate the grid. There’s a potential source of inefficiency here, though: the user scrolling
the collection view counts as a bounds change as well. Therefore I return false unless
the bounds width has changed:

override func shouldInvalidateLayoutForBoundsChange(newBounds: CGRect)
 -> Bool {
 let ok = newBounds.size.width != self.sz.width
 return ok
}

Switching Layouts
An astonishing and delightful feature of a collection view is that its layout object can be
swapped out on the fly. You can substitute one layout for another, by calling set-
CollectionViewLayout:animated:completion:. The data hasn’t changed, and the col‐
lection view can identify each element uniquely and persistently, so it responds by
moving every element from its position according to the old layout to its position
according to the new layout — and, if the animated: argument is true, it does this with
animation! Thus the elements are seen to rearrange themselves, as if by magic.

This animated change of layout can even be driven interactively (in response, for ex‐
ample, to a user gesture; compare Chapter 6 on interactive transitions). You call start-
InteractiveTransitionToCollectionViewLayout:completion: on the collection
view, and a special layout object is returned — a UICollectionViewTransitionLayout
instance (or a subclass thereof; to make it a subclass, you need to have implemented
collectionView:transitionLayoutForOldLayout:newLayout: in your collection
view delegate). This transition layout is temporarily made the collection view’s layout,
and your job is then to keep it apprised of the transition’s progress (through its
transitionProgress property) and ultimately to call finishInteractive-

Transition or cancelInteractiveTransition on the collection view.

Furthermore, when one collection view controller is pushed on top of another in a
navigation interface, the runtime will do exactly the same thing for you, as a custom
view controller transition (again, compare Chapter 6). To arrange this, the first collec‐
tion view controller’s useLayoutToLayoutNavigationTransitions property must be

496 | Chapter 8: Table Views and Collection Views

false and the second collection view controller’s useLayoutToLayoutNavigation-
Transitions property must be true. The result is that when the second collection view
controller is pushed onto the navigation controller, the collection view remains in
place, and the layout specified by the second collection view controller is substituted for
the collection view’s existing layout, with animation.

The effect, as the second collection view controller is pushed onto the navigation stack,
is conceptually rather unsettling. Although there are two collection view controllers,
and although the second view controller has a view (the collection view), and its view-
DidLoad and viewWillAppear: (as well as the first view controller’s viewWill-
Disappear:) are called as you would expect, the same collection view is also still the
first view controller’s view, and the collection view’s data source and delegate are still
the first view controller. Later, after the transition is complete, the collection view’s
delegate becomes the second view controller, but its data source is still the first view
controller. I find this profoundly weird.

Collection Views and UIKit Dynamics
The UICollectionViewLayoutAttributes class adopts the UIDynamicItem protocol (see
Chapter 4). Thus, collection view elements can be animated under UIKit dynamics. The
world of the animator here is not a superview but the layout itself; instead of
init(referenceView:), you’ll create the UIDynamicAnimator with init(collection-
ViewLayout:). The layout’s collectionViewContentSize determines the bounds of
this world. Convenience methods are provided so that your code can access an animated
collection view item’s layout attributes directly from the animator.

You’ll need a custom collection view layout subclass, because otherwise you won’t be
able to see any animation. On every frame of its animation, the UIDynamicAnimator
is going to change the layout attributes of some items, but the collection view is still
going to draw those items in accordance with the layout’s layoutAttributesFor-
ElementsInRect:. The simplest solution is to override layoutAttributesForElements-
InRect: so as to obtain those layout attributes from the UIDynamicAnimator. This
cooperation will be easiest if the layout itself owns and configures the animator.

In this example, we’re in the layout subclass, setting up the animation. The layout sub‐
class has a property to hold the animator, as well as a Bool property to signal when an
animation is in progress:

let visworld = self.collectionView!.bounds
let anim = UIDynamicAnimator(collectionViewLayout:self)
self.animator = anim
self.animating = true
// ... configure rest of animation

Our implementation of layoutAttributesForElementsInRect:, if we are animating,
substitutes the layout attributes that come from the animator for those we would nor‐

Collection Views | 497

mally return; the technique I use here relies on the fact that the animator convenience
methods layoutAttributesForCellAtIndexPath: and so forth return nil if the speci‐
fied item is not being animated. In this particular example, both cells and supplementary
items (headers and footers) can be animated, so the two cases have to be distinguished:

override func layoutAttributesForElementsInRect(rect: CGRect)
 -> [AnyObject] {
 let sup = super.layoutAttributesForElementsInRect(rect)
 as [UICollectionViewLayoutAttributes]
 let arr = sup.map {
 atts -> UICollectionViewLayoutAttributes in
 if atts.representedElementKind == nil {
 let ip = atts.indexPath
 atts.frame =
 self.layoutAttributesForItemAtIndexPath(ip).frame
 }
 return atts
 }
 if self.animating {
 var marr = [UICollectionViewLayoutAttributes]()
 for atts in arr {
 let path = atts.indexPath
 var atts2 : UICollectionViewLayoutAttributes? = nil
 switch atts.representedElementCategory {
 case .Cell:
 atts2 = self.animator
 .layoutAttributesForCellAtIndexPath(path)
 case .SupplementaryView:
 let kind = atts.representedElementKind
 atts2 = self.animator
 .layoutAttributesForSupplementaryViewOfKind(
 kind, atIndexPath:path)
 default: break
 }
 marr += [atts2 ?? atts]
 }
 return marr
 }
 return arr
}

498 | Chapter 8: Table Views and Collection Views

CHAPTER 9

Popovers and Split Views

Popovers and split views are forms of interface designed originally for the iPad. In iOS
7 and before, they existed only on the iPad. New in iOS 8, both are available also on the
iPhone, where they can either adapt — appearing in an altered form, more appropriate
to the smaller screen — or appear just as they do on the iPad.

Popovers
A popover is a sort of secondary window or dialog: it displays a view layered on top of
the main interface. It is usually associated, through a sort of arrow, with a view in the
main interface — usually the button that the user tapped to summon the popover. The
popover dims out the rest of the screen, like a .FormSheet presented view (see Chap‐
ter 6). It might be effectively modal, preventing the user from working in the rest of the
interface; alternatively, it might vanish if the user taps outside it.

A popover can bring to the larger iPad the smaller, more lightweight flavor of the iPhone.
For example, in my LinkSame app, both the settings view (where the user configures
the game) and the help view (which describes how to play the game) are popovers
(Figure 9-1). On the iPhone, both these views would occupy the entire screen; for each,
we’d need a way to navigate to it, and then the user would have to return to the main
interface afterward. But with the larger iPad screen, neither view is large enough, or
important enough, to occupy the entire screen exclusively. As popovers, they are char‐
acterized as smaller, secondary views which the user summons temporarily and then
dismisses.

New in iOS 8, a popover is in fact a form of presented view controller — a presented view
controller with a modalPresentationStyle of .Popover (which I didn’t tell you about
in Chapter 6). This brilliant innovation, which is really how popovers should have
worked all along, brings with it some tremendous advantages:

499

Figure 9-1. Two popovers

Memory management
In iOS 7 and before, it was necessary to create a UIPopoverController and retain it
explicitly. A presented view controller, on the other hand, is retained automatically
by its presenting view controller.

Singularity
In iOS 7 and before, nothing enforced Apple’s guideline that a maximum of one
popover at a time should be shown. A presented view controller, on the other hand,
enforces it automatically (a view controller can’t have more than one presented view
controller at a time).

Adaptibility
In iOS 7 and before, a popover was illegal on the iPhone. Your universal app there‐
fore had to be filled with conditional code: “If we’re running on an iPad, show this
view controller as a popover; otherwise, make it a presented view controller.” Dis‐
missal and cleanup were conditional too, and could be even harder to manage. A
presented view controller, on the other hand, can adapt. A .Popover presented view
controller is automatically treated by default as .FullScreen on the iPhone (similar
to a .FormSheet presented view controller). Moreover, if you don’t want the default,

500 | Chapter 9: Popovers and Split Views

you don’t have to accept it; it is legal for a popover to appear on the iPhone as a
popover.

Preparing a Popover
To show a popover, you’re going present a view controller. Before that presentation takes
place, you’ll turn this into a popover presentation by setting the view controller’s modal-
PresentationStyle to .Popover:

let vc = MyViewController()
vc.modalPresentationStyle = .Popover
self.presentViewController(vc, animated: true, completion: nil)

This, however, is insufficient; without a little further configuration, that code will crash
at runtime when the popover is presented. The additional configuration is performed
through the UIPopoverPresentationController (a UIPresentationController subclass)
that is responsible for showing this popover. Here’s how that UIPopoverPresentation‐
Controller is created and accessed:

• Setting the view controller’s modalPresentationStyle to .Popover causes its
presentationController to become a UIPopoverPresentationController.

• After the view controller has been presented, its popoverPresentation-

Controller points to that UIPopoverPresentationController. Oddly enough, it is
perfectly legal (and effective) to finish configuring the popover after presenting it.

Arrow source and direction
At a minimum, the UIPopoverPresentationController needs you to set one of the fol‐
lowing:
barButtonItem

A bar button item in the interface, with which the popover should be associated.
The popover’s arrow will point to this bar button item. Typically, this will be the
bar button item that was tapped in order to summon the popover (as in Figure 9-1).

sourceView, sourceRect
A UIView in the interface, along with the CGRect in that view’s coordinate system,
with which the popover should be associated. The popover’s arrow will point to this
rect. Typically, the sourceView will be the view that was tapped in order to summon
the popover, and the sourceRect will be its bounds.

Thus, here’s a minimal popover presentation that actually works; the popover is sum‐
moned by tapping a UIButton in the interface, and this is that button’s action method:

Popovers | 501

@IBAction func doButton(sender: AnyObject) {
 let vc = MyViewController()
 vc.modalPresentationStyle = .Popover
 self.presentViewController(vc, animated: true, completion: nil)
 if let pop = vc.popoverPresentationController {
 let v = sender as UIView
 pop.sourceView = v
 pop.sourceRect = v.bounds
 }
}

In addition to the arrow source, you can set the desired arrow direction, as the popover
presentation controller’s permittedArrowDirections. This is a bitmask with possible
values .Up, .Down, .Left, and .Right. The default is .Any, comprising all four bitmask
values; this is the default and will usually be what you want.

Popover size and position
The presentation of the popover won’t fail if you don’t supply a size for the popover, but
you probably will want to supply one, as the default is unlikely to be desirable. In iOS
8, this information is provided through the presented view controller’s preferred-
ContentSize.

Recall from Chapter 6 that a view controller can use its preferredContentSize to
communicate to a parent view controller the size that it would like to be. The popover
presentation controller is a presentation controller (UIPresentationController), and is
therefore also a UIContentContainer; the presentation controller acts as the parent of
the presented view controller, and in this situation will consult the presented view con‐
troller’s wishes and will try to respect them.

I’m deliberately leaving open the question of who will set the presented view controller’s
preferredContentSize and when. The presented view controller might set its own
value here; its viewDidLoad is a reasonable place, or, if the view controller is instantiated
from a nib, the nib editor provides Content Size fields in the Attributes inspector. Al‐
ternatively, the presenting view controller might override the will of the presented view
controller; in that case, the place where the rest of the configuration is performed will
work just fine:

if let pop = vc.popoverPresentationController {
 let v = sender as UIView
 pop.sourceView = v
 pop.sourceRect = v.bounds
 vc.preferredContentSize = CGSizeMake(200,500)
}

It is possible to change the presented view controller’s preferredContentSize while the
popover is showing. The popover presentation controller will hear about this (through

502 | Chapter 9: Popovers and Split Views

the mechanism discussed in Chapter 6) and will respond by changing the popover’s size,
with animation.

If the popover is a navigation controller, the navigation controller will look at its current
view controller’s preferredContentSize, adjust for the presence of the navigation bar,
and set its own preferredContentSize appropriately. This is delightful, but it is prob‐
ably unwise to press it too far; subsequently pushing or popping a view controller with
a different preferredContentSize may not work as you expect — to be precise, the
popover’s width will change to match the new preferred width, but the popover’s height
will change only if the new preferred height is taller. (It is possible to work around this
by resetting the navigation controller’s preferredContentSize in a navigation control‐
ler delegate method.)

In theory, it should also be possible to set the popover presentation controller’s
popoverLayoutMargins as a way of encouraging the popover to keep a certain dis‐
tance from the edges of the presenting view controller’s view. In fact, however, my
experience is that this setting is ignored; I regard this as a bug.

Popover appearance
By default, a popover presentation controller takes charge of the background color of
the presented view controller’s view, including the arrow, as well the navigation bar in
a navigation interface. You can see this in Figure 9-1; the first popover, along with its
navigation bar, has automatically adopted a slightly transparent cream color that is ap‐
parently derived somehow from the color of what’s behind it, and the second popover
has the same color on its arrow, causing a mismatch with the background color of the
web view displaying the text.

If you don’t want this automatic background color and transparency, you can set the
popover presentation controller’s backgroundColor. (In a navigation interface, you can
change the navigation bar’s color separately, and customize the position and appearance
of the navigation bar’s bar button items; see Chapter 12.)

You can also customize the outside of the popover — that is, the “frame” surrounding
the content, including the arrow. To do so, you set the UIPopoverPresentationControl‐
ler’s popoverBackgroundViewClass to your own subclass of UIPopoverBackground‐
View (a UIView subclass) — at which point you can achieve just about anything you
want, including the very silly popover shown in Figure 9-2.

Configuring your UIPopoverBackgroundView subclass is a bit tricky, because this single
view is responsible for drawing both the arrow and the frame. Thus, in a complete and
correct implementation, you’ll have to draw differently depending on the arrow direc‐
tion, which you can learn from the UIPopoverBackgroundView’s arrowDirection
property.

Popovers | 503

Figure 9-2. A very silly popover

I’ll give a simplified example in which I cheat by assuming that the arrow direction will
be .Up. I start by defining a nested struct to hold two constant values I’m going to need
later, the arrow’s height and the width of its base:

class MyPopoverBackgroundView : UIPopoverBackgroundView {
 struct Arrow {
 static let ARBASE : CGFloat = 20
 static let ARHEIGHT : CGFloat = 20
 }
 // ...
}

(I use a nested struct rather than simple constant properties because there are some class
functions coming up that will need to access these values: a class function can’t access
an instance variable, and Swift doesn’t have class variables.)

Drawing the frame (drawRect:) is easy: here, I divide the view’s overall rect into two
areas, the arrow area on top and the frame area on the bottom, and I draw the frame
into the bottom area as a resizable image (Chapter 2):

let linOrig = UIImage(named: "linen.png")!
let capw = linOrig.size.width / 2.0 - 1
let caph = linOrig.size.height / 2.0 - 1
let lin = linOrig.resizableImageWithCapInsets(
 UIEdgeInsetsMake(caph, capw, caph, capw),resizingMode:.Tile)
// ... draw arrow here ...

504 | Chapter 9: Popovers and Split Views

var arrow = CGRectZero
var body = CGRectZero
CGRectDivide(rect, &arrow, &body, Arrow.ARHEIGHT, .MinYEdge)
lin.drawInRect(body)

I omitted the drawing of the arrow; now let’s insert it. The UIPopoverBackgroundView
has arrowHeight and arrowBase class methods that we’ve overridden to describe the
arrow dimensions to the runtime; here, their values are the two constant static struct
variables, ARHEIGHT and ARBASE:

override class func arrowBase() -> CGFloat {
 return Arrow.ARBASE
}
override class func arrowHeight() -> CGFloat {
 return Arrow.ARHEIGHT
}

My arrow will consist simply of a texture-filled isosceles triangle, with an excess base
consisting of a rectangle joining it to the frame. The UIPopoverBackgroundView has
an arrowOffset property that the runtime has set to tell you where to draw the arrow:
this offset measures the positive distance between the center of the view’s edge and the
center of the arrow. However, the runtime will have no hesitation in setting the arrow-
Offset all the way at the edge of the view, or even beyond its bounds (in which case it
won’t be drawn); to prevent this, I provide a maximum offset limit:

let con = UIGraphicsGetCurrentContext()
CGContextSaveGState(con)
var proposedX = self.arrowOffset
let limit : CGFloat = 22.0
let maxX = rect.size.width/2.0 - limit
if proposedX > maxX {
 proposedX = maxX
}
if proposedX < limit {
 proposedX = limit
}
CGContextTranslateCTM(con, rect.size.width/2.0 + proposedX - Arrow.ARBASE/2.0, 0)
CGContextMoveToPoint(con, 0, Arrow.ARHEIGHT)
CGContextAddLineToPoint(con, Arrow.ARBASE / 2.0, 0)
CGContextAddLineToPoint(con, Arrow.ARBASE, Arrow.ARHEIGHT)
CGContextClosePath(con)
CGContextAddRect(con, CGRectMake(0,Arrow.ARHEIGHT,Arrow.ARBASE,15))
CGContextClip(con)
lin.drawAtPoint(CGPointMake(-40,-40))
CGContextRestoreGState(con)

Finally, the thickness of the four sides of the frame is dictated by implementing the
contentViewInsets class method:

Popovers | 505

override class func contentViewInsets() -> UIEdgeInsets {
 return UIEdgeInsetsMake(20,20,20,20)
}

Passthrough views
When you’re configuring your popover, you’ll want to plan ahead for how the popover
is to be dismissed. The base default case is that the user can tap anywhere outside the
popover to dismiss it, and this will usually be just what you want. You can, however,
modify this behavior in two ways:
UIPopoverPresentationController’s passthroughViews property

An array of views in the interface behind the popover; the user can interact normally
with these views while the popover is showing, and the popover will not be dis‐
missed.

What happens if the user taps a view that is not listed in the passthroughViews
array depends on the modalInPopover property.

UIViewController’s modalInPopover property
If this is true for the presented view controller (or for its current child view con‐
troller, as in a tab bar interface or navigation interface), then if the user taps outside
the popover on a view not listed in the popover presentation controller’s
passthroughViews, nothing happens (the popover is not dismissed). The default is
false.

Clearly, if you’ve set this property to true, you’ve removed the user’s ability to
dismiss the popover by tapping outside it. You would then presumably provide
some other way of letting the user dismiss the popover — typically, a button inside
the popover which the user can tap to call dismissViewController-

Animated:completion:.

The claim made by the documentation that modalInPopover prevents all user in‐
teraction outside a popover is wrong. The user can still interact with a view listed
in the passthroughViews, even if modalInPopover is true.

Unfortunately — and I can’t believe I’m still having to warn about this after all these
years — a popover sometimes doesn’t conform correctly to the base default case. In
particular, if a popover is summoned by the user tapping a UIBarButton item in a tool‐
bar, other UIBarButtonItems in that toolbar are passthrough views! This means that the
user can tap any other button in the toolbar — including a button that summons another
popover.

Working around this annoying problem is not easy. Setting the popover presentation
controller’s passthroughViews to nil or an empty array just after presenting it doesn’t

506 | Chapter 9: Popovers and Split Views

help; your setting is overridden by the runtime. My rather hacky solution is to provide
some extra delay, so as to assert my will after the runtime:

if let pop = vc.popoverPresentationController {
 // ... other configurations go here ...
 delay(0.1) {
 pop.passthroughViews = nil
 }
}

Popover Presentation, Dismissal, and Delegate
In iOS 8, because a popover is now just a form of presented view controller, it is shown
with presentViewController:animated:completion:. If you want to dismiss a
popover in code, rather than letting the user dismiss it by tapping outside it, you’ll
dismiss it with dismissViewControllerAnimated:completion:.

Messages to the popover presentation controller’s delegate (UIPopoverPresentation‐
ControllerDelegate) provide further information and control. Typically, you’ll set the
delegate in the same place you’re performing the other configurations:

if let pop = vc.popoverPresentationController {
 // ... other configurations go here ...
 pop.delegate = self
}

The three most commonly used delegate methods are:
prepareForPopoverPresentation:

The popover is being presented. There is time to perform further initial configu‐
rations here (but this method is still called too early for you to work around the
passthroughViews issue I discussed a moment ago).

popoverPresentationControllerShouldDismissPopover:

The user is dismissing the popover by tapping outside it. Return false to prevent
dismissal. Not called when you dismiss the popover in code.

popoverPresentationControllerDidDismissPopover:

The user has dismissed the popover by tapping outside it. The popover is gone from
the screen and dismissal is complete, even though the popover presentation con‐
troller still exists. Not called when you dismissed the popover in code.

The delegate methods all provide the popover presentation controller as parameter, and
if necessary you can probably identify the popover more precisely by querying it further.
For example, you can learn what view controller is being presented by examining its
presentedViewController, or what interface object its arrow is connected to by ex‐
amining its sourceView or barButtonItem. Clearly, these delegate methods make up
for the fact that, when the user dismisses the popover, you don’t have the sort of direct

Popovers | 507

information and control that you get from calling dismissViewController-

Animated:completion: and setting a completion handler.

If the user can dismiss the popover either by tapping outside the popover or by tapping
an interface item that calls dismissViewControllerAnimated:completion:, you may
have to duplicate some code in order to cover all cases. For example, consider the first
popover shown in Figure 9-1. It has a Done button and a Cancel button; the idea here
is that the user sets up a desired game configuration and then, while dismissing the
popover, either saves it (Done) or doesn’t (Cancel). My approach is to save the user’s
configuration (into NSUserDefaults) in real time as the user works within the popover.
But what if the user then cancels? To prepare for that possibility, I copy the relevant user
defaults into a property before the popover appears:

func prepareForPopoverPresentation(pop: UIPopoverPresentationController!) {
 if pop.presentedViewController is UINavigationController {
 self.oldDefs = ud.dictionaryWithValuesForKeys(
 [Default.kStyle, Default.kSize, Default.kLastStage])
 }
}

If the user taps Done, I dismiss the popover, clear out that property, and proceed to start
a new game:

func saveNewGame(_:AnyObject?) {
 self.dismissViewControllerAnimated(true, completion: nil)
 self.oldDefs = nil
 self.setUpInterface(nil)
 // ...
}

If the user taps Cancel, I dismiss the popover, restore the defaults from the property,
and clear out the property:

func cancelNewGame(_:AnyObject?) {
 self.dismissViewControllerAnimated(true, completion: nil)
 if (self.oldDefs != nil) {
 ud.setValuesForKeysWithDictionary(self.oldDefs)
 self.oldDefs = nil
 }
}

But what if the user taps outside the popover? I interpret that as cancellation. So I’ve
implemented the shouldDismiss delegate method to duplicate what I would have done
if the user had tapped Cancel:

func popoverPresentationControllerShouldDismissPopover(
 pop: UIPopoverPresentationController) -> Bool {
 if pop.presentedViewController is UINavigationController {
 if (self.oldDefs != nil) {
 ud.setValuesForKeysWithDictionary(self.oldDefs)
 self.oldDefs = nil

508 | Chapter 9: Popovers and Split Views

 }
 }
 return true
}

There is one further delegate method:
popoverPresentationController:willRepositionPopoverToRect:inView:

Called because the popover’s sourceView is involved in new layout activity. Typi‐
cally, this is because the interface is rotating. The rect: and view: parameters are
mutable pointers, so you can set their memory properties to change the source-
Rect or sourceView, thus changing the attachment of the arrow.

In this (unlikely) example, when the interface rotates, I move the popover’s arrow from
one button to another:

func popoverPresentationController(
 popoverPresentationController: UIPopoverPresentationController,
 willRepositionPopoverToRect rect: UnsafeMutablePointer<CGRect>,
 inView view: AutoreleasingUnsafeMutablePointer<UIView?>) {
 if view.memory == self.button {
 rect.memory = self.button2.bounds
 view.memory = self.button2
 }
}

Adaptive Popovers
A popover presentation controller, in iOS 8, is a presentation controller (UIPresentation‐
Controller), and presentation controllers are adaptive. This means that, by default, in a
horizontally compact environment (i.e. on an iPhone), the .Popover modal presenta‐
tion style will be treated as .FullScreen. What appears as a popover on the iPad will
appear as a fullscreen presented view on the iPhone, completely replacing the interface.

This rescues you from the trouble, so pervasive in iOS 7 and before, of having to code
the use of the same view controller twice, conditioned upon the environment. A primary
source of inconvenience used to be that the command for showing a presented view
controller was not the same as for showing a popover; in addition, memory management
of a popover controller was entirely up to you. This pattern (iOS 7, Objective-C) was
typical:

// iOS 7 code!
if (UI_USER_INTERFACE_IDIOM() == UIUserInterfaceIdiomPhone)
 [self presentViewController:picker animated:YES completion:nil];
else {
 UIPopoverController* pop =
 [[UIPopoverController alloc] initWithContentViewController:picker];

Popovers | 509

 [pop presentPopoverFromRect:[sender bounds] inView:sender
 permittedArrowDirections:UIPopoverArrowDirectionAny animated:YES];
 self.currentPop = pop;
}

The same sort of thing could happen on dismissal — because, once again, the command
for dismissing a presented view controller was not the same as for dismissing a popover:

// iOS 7 code!
-(void)imagePickerController:(UIImagePickerController *)picker
 didFinishPickingMediaWithInfo:(NSDictionary *)info {
 if (self.currentPop && self.currentPop.popoverVisible) {
 [self.currentPop dismissPopoverAnimated:YES];
 } else {
 [self dismissViewControllerAnimated:YES completion:nil];
 }
}

In iOS 8, none of that bifurcation is needed. A popover is simply a form of presented
view controller. You present it and dismiss it, and the right thing happens on both iPad
and iPhone.

Nevertheless, the default behavior might not be quite what you want. A case in point
appears in Figure 9-1. The popover on the right, containing our help info, has no internal
button for dismissal. It doesn’t need one, because, on the iPad, the user can dismiss the
popover by tapping outside it. But suppose now that this is a universal app. The same
help info will appear on the iPhone as a fullscreen presented view, and the user will have
no way to dismiss it.

One solution is to design the interface in the nib editor with conditional constraints:
this view controller’s view can then have one interface for a .Regular horizontal size
class (iPad) and another interface for a .Compact horizontal size class (iPhone) — and
the difference might involve the presence or absence of a Done button.

Another solution is to take advantage of UIPresentationController delegate methods.
When you set a popover presentation controller’s delegate, you set its delegate not only
qua UIPopoverPresentationController (UIPopoverPresentationControllerDelegate)
but also qua UIPresentationController (UIAdaptivePresentationControllerDelegate).
You can therefore implement delegate methods to tweak the popover’s behavior when
it adapts.

A standard solution in this situation would be to implement presentation-
Controller:viewControllerForAdaptivePresentationStyle: to substitute a differ‐
ent view controller. Typically, this new view controller might be nothing but the old view
controller wrapped in a UINavigationController! If this view controller has a
navigationItem with a working Done button, the problem is now solved: on iPhone,
there’s a navigation bar at the top of the interface, and the Done button appears in it.

In order for this trick to work, you must do two additional things:

510 | Chapter 9: Popovers and Split Views

• Implement the other delegate method, adaptivePresentationStyleFor-

PresentationController: — even if only to return the default, .FullScreen.
• Set the presentation controller’s delegate before calling presentView-

Controller:animated:completion:.

If you don’t do both of those things, presentationController:viewControllerFor-
AdaptivePresentationStyle: won’t be called.

Thus, here’s a full working example:

@IBAction func doButton(sender: AnyObject) {
 let vc = MyViewController()
 vc.preferredContentSize = CGSizeMake(400,500)
 vc.modalPresentationStyle = .Popover
 if let pres = vc.popoverPresentationController {
 pres.delegate = self // must be _before_ presentViewController
 }
 self.presentViewController(vc, animated: true, completion: nil)
 if let pop = vc.popoverPresentationController {
 pop.sourceView = (sender as UIView)
 pop.sourceRect = (sender as UIView).bounds
 }
}
func adaptivePresentationStyleForPresentationController(
 controller: UIPresentationController) -> UIModalPresentationStyle {
 return .FullScreen
}
func presentationController(controller: UIPresentationController,
 viewControllerForAdaptivePresentationStyle style:
 UIModalPresentationStyle) -> UIViewController? {
 let vc = controller.presentedViewController
 let nav = UINavigationController(rootViewController: vc)
 return nav
}

Another possible override of standard adaptivity behavior is to return .None, instead
of .FullScreen, from adaptivePresentationStyleForPresentationController:. If
you do, the presented view controller will be treated as a popover even on iPhone
(Figure 9-3).

Popover Segues
If you’re using a storyboard, you can draw (Control-drag) a segue from the button (or
view controller) that is to summon the popover to the view controller that is to be the
popover, and specify “popover presentation” as the segue type. The result is a popover
segue.

Popovers | 511

Figure 9-3. A popover appears on an iPhone

A popover segue, when it is triggered, will be an instance of UIStoryboardPopover‐
PresentationSegue, an undocumented subclass of UIStoryboardSegue. The segue, as it
is triggered, configures the presentation just as you would configure it in code. It in‐
stantiates and initializes the presented view controller, sets its modal presentation style
to .Popover, and presents it. You can implement prepareForSegue: to perform addi‐
tional configurations: obtain the segue’s destinationViewController, get a reference
to its popoverPresentationController, and configure it. At the time prepareFor-
Segue: is called, the presentation has not yet begun, so you can successfully set the
popover presentation controller’s delegate here as well. You can set its passthrough-
Views too, but you’ll still have to provide a delay if your goal is to overcome the default
behavior of bar button items:

override func prepareForSegue(segue: UIStoryboardSegue, sender: AnyObject?) {
 let dest = segue.destinationViewController as UIViewController
 if let pop = dest.popoverPresentationController {
 pop.delegate = self
 delay(0.1) {
 pop.passthroughViews = nil
 }
 }
}

512 | Chapter 9: Popovers and Split Views

You’ll notice that I didn’t set the sourceView or barButtonItem in that code; that’s be‐
cause those properties can be set in the nib editor (Anchor, in the segue’s Attributes
inspector). You can also set the passthrough views in the nib editor, but not in such a
way as to override the unwanted default bar button item behavior; thus, I’ve had to do
that in code.

The popover version of an unwind segue is dismissal of the popover. Thus, both pre‐
sentation and dismissal can be managed through the storyboard.

You must be using size classes in your storyboard in order to get the iOS 8 imple‐
mentation of popovers. Otherwise, the segue type will be “popover,” it will be a
UIStoryboardPopoverSegue, and the popover will be managed by a UIPopover‐
Controller, as in iOS 7 and before.

Popover Presenting a View Controller
A popover can present a view controller internally; you’ll specify a modalPresentation-
Style of .CurrentContext or .OverCurrentContext, because otherwise the presented
view will be fullscreen by default (see Chapter 6). In iOS 7 and before, it was necessary
to restrict the modal transition style to .CoverVertical; new in iOS 8, that restriction
is lifted, with only .PartialCurl being forbidden (and I’ve already suggested that you
not use it in any case).

In iOS 7, the internal presented view controller’s modalInPopover was automatically set
to true. In iOS 8, it isn’t, and setting it to true in code has no effect. This means that,
during the internal presentation, you can’t prevent the user from dismissing the entire
popover (including the internal presented view controller) by tapping outside it. I regard
this as a bug. One workaround is to set the original popover’s modalInPopover to true
beforehand; but that might not be acceptable. Another workaround is to implement the
delegate method popoverPresentationControllerShouldDismissPopover: to pre‐
vent dismissal if the popover is itself presenting a view controller:

func popoverPresentationControllerShouldDismissPopover(
 pop: UIPopoverPresentationController) -> Bool {
 let ok = pop.presentedViewController.presentedViewController == nil
 return ok
}

Popover Search Results
As I explained in Chapter 8, in iOS 8 a UISearchController is a UIViewController that
presents itself when search results are to be displayed. There is thus no reason why you
shouldn’t tell the UISearchController to present itself as a popover! Simply set its modal
presentation style to .Popover.

Popovers | 513

In this example, my searchable interface belongs to a view controller whose parent is a
UINavigationController. Therefore, I add the UISearchController’s searchBar to the
view controller’s navigationItem, so that it appears in the navigation bar:

let src = SearchResultsController(data: self.sectionData)
let searcher = UISearchController(searchResultsController: src)
self.searcher = searcher
searcher.modalPresentationStyle = .Popover // *
searcher.searchResultsUpdater = src
let b = searcher.searchBar
self.navigationItem.titleView = b
searcher.delegate = self
searcher.presentationController?.delegate = self

The last two lines allow me to hear about presentation and dismissal of the popover.
However, there are some buggy behaviors:
Search controller delegate dismissal methods are not called

The UISearchControllerDelegate methods willPresentSearchController: and
didPresentSearchController: are called, but the corresponding methods will-
DismissSearchController: and didDismissSearchController: are not. I can
live with this, because the popover delegate dismissal methods are called instead.

Popover delegate methods are called just once
The UIPopoverPresentationControllerDelegate methods are called the first time
the popover appears and is dismissed, and then never again. I scratched my head
over this for a long time until I realized that in fact the popover presentation con‐
troller itself was going out of existence after dismissal, and was being replaced by
another popover presentation controller — whose delegate, of course, had not been
set. My workaround is to set the delegate again, in the last dismissal method:

func popoverPresentationControllerDidDismissPopover(
 pop: UIPopoverPresentationController) {
 self.searcher.presentationController?.delegate = self
}

Dismissal doesn’t empty the search bar
When the user dismisses the popover, the search bar is not emptied; if it has text in
it, that text remains. My workaround is to empty the search bar in code, in the first
dismissal method:

func popoverPresentationControllerShouldDismissPopover(
 pop: UIPopoverPresentationController) -> Bool {
 self.searcher.searchBar.text = nil
 return true
}

514 | Chapter 9: Popovers and Split Views

Figure 9-4. A familiar split view interface

Split Views
A split view appears in its typical configuration on the iPad as a combination of two
views, the first having the width of an iPhone screen in portrait orientation. Under the
hood, there is a split view controller (UISplitViewController); the two views are the main
views of its two child view controllers. The split view controller manages those views
differently depending on the orientation of the device:
The iPad is in landscape orientation

The two views appear side by side.

The iPad is in portrait orientation
There are two possibilities:

• Both views continue to appear side by side; the second view is narrower than
in landscape orientation, because the screen is narrower. Apple’s Settings app
is an example.

• Only the second view appears, with an option to summon the first view from
the left as an overlay, either by tapping a bar button item or by swiping from
left to right. Apple’s Mail app is an example (Figure 9-4).

A split view typically expresses a master–detail architecture. The smaller, first view is a
UITableView where the user is presented with a list (the master). The user taps an item
of that list to specify what should appear in the larger, second view (the detail). We may
thus speak of the two children of the split view controller as the master view controller
and the detail view controller. Apple also sometimes calls them the primary and secon‐
dary view controllers. A UIViewController that is a child, at any depth, of a UISplit‐

Split Views | 515

ViewController has a reference to the UISplitViewController through its splitView-
Controller property.

On the smaller iPhone screen, a master–detail interface would usually be expressed as
a navigation interface: the user sees the master list, which occupies the entire interface,
and taps an item of the list to navigate to the corresponding detail, which again occupies
the entire interface — because it has been pushed onto the navigation stack. On the
larger iPad screen, that interface seems overblown and unnecessary: there is room,
especially in landscape orientation, for the master view and the detail view to appear
simultaneously. That is exactly what the split view does.

In iOS 7 and before, writing a universal app that uses a split view in its iPad incarnation
can be challenging. You have to implement two completely different interfaces using
two completely different types of view controller — a split view controller on the iPad,
but a navigation controller on the iPhone. And over the lifetime of the app, modification
of that interface proceeds in two completely different ways: when the user taps an item
of the master table view, the iPad version alters the split view controller’s detail view
controller, whereas the iPhone version pushes a new view controller onto the navigation
stack.

New in iOS 8, however, a split view is adaptive. This means that UISplitViewController
can create and manage the entire architecture on both types of device — side by side on
iPad, navigation interface on iPhone. And this management is flexible; the iPhone ver‐
sion doesn’t have to be a navigation interface — in fact, it can even keep the iPad’s side
by side interface. Also new in iOS 8, the split view controller’s interface is structurally
flexible; for example, in the side by side arrangement, the width of the views is up to
you.

If a split view controller is the top-level view controller, it determines your app’s com‐
pensatory rotation behavior. To take a hand in that determination without having to
subclass UISplitViewController, make one of your objects the split view controller’s
delegate (UISplitViewControllerDelegate) and implement these methods, as needed:

• splitViewControllerSupportedInterfaceOrientations:

• splitViewControllerPreferredInterfaceOrientationForPresentation:

A split view controller does not relegate decisions about the status bar appearance
to its children. Thus, for example, to hide the status bar when a split view controller
is the root view controller, you will have to subclass UISplitViewController. Alter‐
natively, you might wrap the split view controller in a custom container view con‐
troller, as I describe later in this chapter.

516 | Chapter 9: Popovers and Split Views

Expanded Split View Controller (iPad)
Xcode 6’s Master–Detail Application template will give you a complete adaptive UISplit‐
ViewController with no work on your part, but for pedagogical purposes I’ll start by
constructing a split view architecture entirely in code, starting from a completely empty
app project with no storyboard (see Chapter 1). We’ll get it working on the iPad before
proceeding to the iPhone version. For reasons that will be clear later, a split view con‐
troller on the iPad, by default, is called an expanded split view controller. An expanded
split view controller has two child view controllers, as I’ve already described.

Our master view (owned by MasterViewController) will be a table view listing the names
of the three Pep boys. Our detail view (owned by DetailViewController) will contain a
single label displaying the name of the Pep boy selected in the Master view.

Our first cut at writing MasterViewController merely displays the table view:

class MasterViewController: UITableViewController {
 let model = ["Manny", "Moe", "Jack"]
 override func viewDidLoad() {
 super.viewDidLoad()
 self.tableView.registerClass(
 UITableViewCell.self, forCellReuseIdentifier: "Cell")
 }
 override func numberOfSectionsInTableView(
 tableView: UITableView) -> Int {
 return 1
 }
 override func tableView(tableView: UITableView,
 numberOfRowsInSection section: Int) -> Int {
 return model.count
 }
 override func tableView(tableView: UITableView,
 cellForRowAtIndexPath indexPath: NSIndexPath) -> UITableViewCell {
 let cell = tableView.dequeueReusableCellWithIdentifier(
 "Cell", forIndexPath: indexPath) as UITableViewCell
 cell.textLabel.text = model[indexPath.row]
 return cell
 }
}

DetailViewController, in its viewDidLoad implementation, puts the label (self.lab)
into the interface; it also has a public boy string property whose value appears in the
label. We are deliberately agnostic about the order of events; our interface works cor‐
rectly regardless of whether boy is set before or after viewDidLoad is called:

class DetailViewController: UIViewController {
 var lab : UILabel!
 var boy : String = "" {
 didSet {
 if self.lab != nil {
 self.lab.text = self.boy

Split Views | 517

 }
 }
 }
 override func viewDidLoad() {
 super.viewDidLoad()
 self.view.backgroundColor = UIColor.whiteColor()
 let lab = UILabel(frame:CGRectMake(100,100,100,30))
 self.view.addSubview(lab)
 self.lab = lab
 self.lab.text = self.boy
 }
}

Our app delegate constructs the interface by making a UISplitViewController, giving it
its two initial children, and putting its view into the window:

func application(application: UIApplication,
 didFinishLaunchingWithOptions launchOptions: [NSObject: AnyObject]?)
 -> Bool {
 self.window = UIWindow(frame:UIScreen.mainScreen().bounds)
 let svc = UISplitViewController()
 svc.addChildViewController(MasterViewController())
 svc.addChildViewController(DetailViewController())
 self.window!.rootViewController = svc
 self.window!.backgroundColor = UIColor.whiteColor()
 self.window!.makeKeyAndVisible()
 return true
}

This is already a working split view interface. In landscape orientation, the two views
appear side by side. In portrait orientation, only the detail view appears; but the master
view can be summoned by swiping from left to right, and can be dismissed by tapping
outside it. However, the app itself doesn’t yet do anything. In particular, when we tap on
a Pep boy’s name in the master view, the detail view doesn’t change. Let’s add that code
(to MasterViewController):

override func tableView(tableView: UITableView,
 didSelectRowAtIndexPath indexPath: NSIndexPath) {
 let detail = DetailViewController()
 detail.boy = model[indexPath.row]
 self.showDetailViewController(detail, sender: self)
}

The last line is the surprise. We have not implemented any showDetailView-
Controller:sender: method; yet we are able to send this message to ourselves, and it
works: the new, correctly configured detail view seamlessly replaces the existing detail
view, causing the selected Pep boy’s name to appear in the interface. How can this be?
This method, new in iOS 8, effectively walks up the view controller hierarchy, looking
for someone to handle it. (The details are a bit more complicated; I’ll discuss them later.)
Our DetailViewController can’t handle it, but its parent view controller, the UISplit‐

518 | Chapter 9: Popovers and Split Views

ViewController, can! It responds by making the specified view controller its second
child.

Our app still doesn’t quite look like a standard master–detail view interface. The usual
thing is for both the master view and the detail view to contain a navigation bar. The
detail view in portrait orientation can then display in its navigation bar a left button that
summons the master view, so that the user doesn’t have to know about the swipe gesture.
In iOS 8, this button is vended by the UISplitViewController, through the displayMode-
ButtonItem method. Thus, we need to change our app delegate code as follows:

let svc = UISplitViewController()
let master = MasterViewController()
master.title = "Pep"
let nav1 = UINavigationController(rootViewController:master)
svc.addChildViewController(nav1)
let detail = DetailViewController()
let nav2 = UINavigationController(rootViewController:detail)
svc.addChildViewController(nav2)
self.window!.rootViewController = svc
let b = svc.displayModeButtonItem()
detail.navigationItem.leftBarButtonItem = b

But we are still not quite done. Consider what will happen when the user taps a Pep boy
name in the master view. At the moment, we are making a new DetailViewController
and making it the split view controller’s second child. That is now wrong; we must make
a new UINavigationController instead, with a new DetailViewController as its child.
Moreover, this new DetailViewController doesn’t automatically have the displayMode-
ButtonItem as its leftBarButtonItem — we have to set it:

override func tableView(tableView: UITableView,
 didSelectRowAtIndexPath indexPath: NSIndexPath) {
 let detail = DetailViewController()
 detail.boy = model[indexPath.row]
 let b = self.splitViewController!.displayModeButtonItem()
 detail.navigationItem.leftBarButtonItem = b
 detail.navigationItem.leftItemsSupplementBackButton = true
 let nav = UINavigationController(rootViewController: detail)
 self.showDetailViewController(nav, sender: self)
}

Unlike iOS 7 and before, the iOS 8 displayModeButtonItem automatically hides itself
when the app is in landscape orientation with the two views displayed side by side. Our
iPad split view implementation is therefore finished.

Collapsed Split View Controller (iPhone)
Astoundingly, if we now launch our existing app on iPhone, it works almost perfectly.
There’s a navigation interface. Tapping a Pep boy’s name in the master view pushes the
new detail view controller onto the navigation stack, with its view displaying that name.

Split Views | 519

The detail view’s navigation bar has a back button that pops the detail view controller
and returns us to the master view.

The only thing that isn’t quite right is that the app launches with the detail view showing,
rather than the master view. To fix that, we first modify our app delegate to function as
the UISplitViewController’s delegate:

let svc = UISplitViewController()
svc.delegate = self
// ... the rest as before ...

We then implement splitViewController:collapseSecondaryViewController:

ontoPrimaryViewController: to return true:

func splitViewController(splitViewController: UISplitViewController,
 collapseSecondaryViewController
 secondaryViewController: UIViewController!,
 ontoPrimaryViewController
 primaryViewController: UIViewController!) -> Bool {
 return true
}

That’s all! On the iPhone, the app now behaves correctly.

How can this be? To understand what the split view controller is up to, you need to know
that it adopts one of two states: it is or it isn’t collapsed. This distinction corresponds
to whether or not the environment’s trait collection has a .Compact horizontal size class:
if so, the split view controller collapses. Thus, the split view controller collapses as it
launches on an iPhone.

A collapsed split view controller has only one child view controller. This raises the
question of how to get from the expanded state to the collapsed state. As the split view
controller collapses, it asks its delegate how to proceed. In particular, it calls these del‐
egate methods:
primaryViewControllerForCollapsingSplitViewController:

The collapsed split view controller will have only one child view controller. What
view controller should this be? By default, it will be the current first view controller,
but you can implement this method to return a different answer.

splitViewController:collapseSecondaryViewController:ontoPrimaryView-

Controller:

The collapsing split view controller is going to jettison its second view controller.
Return true to permit this to happen. What happens to the second view controller
is now up to you.

If this method returns false (the default), the split view controller sends collapse-
SecondaryViewController:forSplitViewController: to the first view control‐
ler. What happens to the second view controller is now up to the first view controller.

520 | Chapter 9: Popovers and Split Views

We are now ready to describe what happens when our app launches on an iPhone:

1. This is a horizontally compact environment, so the split view controller collapses.
2. The split view controller calls its delegate’s primaryViewControllerForCollapsing-

SplitViewController:. We didn’t implement this method. The default is to make
the first view controller the sole view controller, which is what we want: we want
our split view controller to contain the navigation controller containing the Master‐
ViewController displaying the table view.

3. The split view controller calls its delegate’s splitViewController:collapse-
SecondaryViewController:ontoPrimaryViewController:, which can return
false or true:

• The default is to return false, which causes collapseSecondaryView-

Controller:forSplitViewController: to be sent to the first view controller.
There are two possible outcomes:

■ For a plain vanilla UIViewController, the default implementation of collapse-
SecondaryViewController:forSplitViewController: does nothing.

■ It happens, however, that our first view controller is a UINavigationController
— and UINavigationController implements this method to push the specified
view controller (the first parameter) onto its stack!

We must therefore prevent collapseSecondaryViewController:forSplitView-
Controller: from being sent to the first view controller if we don’t want the app
to launch with the second view controller showing.

• We do prevent it, by returning true instead! We don’t do anything with the second
view controller, so it is simply thrown away — which is exactly what we want.

Our app has now launched. Its root view controller is the split view controller. The split
view controller has one child — a UINavigationController which, in turn, has one child,
namely our MasterViewController. Thus, the table view is visible in a navigation inter‐
face. The user taps a row of the table, and our code sends showDetailView-
Controller:sender: to the MasterViewController. As I mentioned before, the result
is a walk up the view controller hierarchy, looking for someone to handle this method.
Here’s what happens:

1. MasterViewController doesn’t handle it, so we proceed to its parent, the
UINavigationController.

2. UINavigationController doesn’t handle it either! So we proceed to its parent, the
UISplitViewController.

3. UISplitViewController does handle this message, in one of two ways:

Split Views | 521

• If the split view controller is not collapsed, it accepts the specified view controller
and substitutes it as its own second view controller. The second view controller’s
view is displayed, so the user now sees it as the detail view. That is what happened
when our app ran on the iPad.

• If the split view controller is collapsed, it sends showViewController:sender:
to its first view controller. The first view controller happens to be a UINavigation‐
Controller, and we already know (from Chapter 6) how it responds: it pushes the
specified view controller onto its stack.

In our example, the second view controller is a UINavigationController. We are
therefore pushing a UINavigationController onto a UINavigationController’s stack.
This is an odd thing to do, but thanks to some internal voodoo, the parent
UINavigationController will do the right thing: in displaying this child’s view, it
turns to the child UINavigationController’s topViewController and displays its view
(and its navigationItem), and the child UINavigationController’s navigation bar
never gets into the interface.

Expanding Split View Controller (iPhone 6 Plus)
The iPhone 6 Plus is an interesting hybrid case: it’s horizontally compact in portrait
orientation, but not in landscape orientation. Thus, in effect, the split view controller
thinks it’s on an iPhone when the iPhone 6 Plus is in portrait, but it thinks it has been
magically moved over to an iPad when the iPhone 6 Plus interface rotates to landscape.
Thus, the split view controller alternates between collapsed being true and false on
a single device. In portrait, the split view displays a single navigation interface, with the
master view controller at its root, like an iPhone. In landscape, the master and detail
views are displayed side by side, like an iPad.

When the app, running on the iPhone 6 Plus, rotates to portrait, or if it launches into
portrait, the split view controller goes through the very same procedure I just described
for an iPhone. But when it rotates to landscape, it performs the opposite of collapsing
— which Apple, not surprisingly, describes as expanding. As the split view controller
expands, it asks its delegate how to proceed:
primaryViewControllerForExpandingSplitViewController:

The collapsed split view controller has just one child. The expanded split view con‐
troller will have two children. What view controller should be its first child view
controller? By default, it will be the current child view controller, but you can im‐
plement this method to return a different answer.

522 | Chapter 9: Popovers and Split Views

splitViewController:separateSecondaryViewControllerFromPrimaryView-

Controller:

What view controller should be the expanded split view controller’s second child
view controller? Implement this method to provide an answer.

If you don’t implement this method, or if you return nil, the split view controller
sends separateSecondaryViewControllerForSplitViewController: to the first
view controller. This method returns a view controller, or nil. If it returns a view
controller, the split view controller makes that view controller its second view con‐
troller.

The default response of a plain vanilla UIViewController to separateSecondaryView-
ControllerForSplitViewController: is to return nil. A UINavigationController,
however, pops its own topViewController and returns that view controller. Thus, when
our app is rotated from portrait to landscape, exactly the right thing happens: if the
navigation controller has pushed a DetailViewController onto its stack, it now pops it
and hands it to the split view controller, which displays its view as the detail view.

One other new feature of our app’s behavior on the iPhone 6 Plus is that the display-
ModeButtonItem is present in landscape (whereas it disappears automatically on an iPad
in landscape). It takes on a new form: instead of appearing as a “back” chevron, it’s an
“expand” symbol. When the user taps it, the master view is hidden and the detail view
occupies the entire screen — and the displayModeButtonItem changes to a chevron.
Tapping the chevron toggles back the other way: the master view is shown again.

Customizing a Split View Controller
Properties and delegate methods of a UISplitViewController (mostly new in iOS 8) allow
easy customization:
presentsWithGesture

A Bool. If false, the left-to-right swipe gesture that shows the master view in por‐
trait orientation on an iPad is disabled. The default is true.

preferredDisplayMode

Set this to change the current display mode of an expanded split view controller
programmatically. To specify the default mode, use .Automatic. To learn the actual
display mode being used, ask for the current displayMode.

An expanded split view controller has three possible display modes (UISplitView‐
ControllerDisplayMode) — .PrimaryHidden, .AllVisible, and .Primary-

Overlay. The default automatic behaviors are:
iPad in landscape

The displayModeButtonItem is hidden and the display mode is .All-
Visible.

Split Views | 523

iPad in portrait
The displayModeButtonItem is shown, and the display mode toggles
between .PrimaryHidden and .PrimaryOverlay.

iPhone 6 Plus in landscape
The displayModeButtonItem is shown, and the display mode toggles
between .PrimaryHidden and .AllVisible.

preferredPrimaryColumnWidthFraction

Sets the master view width in .AllVisible and .PrimaryOverlay display modes,
as a percentage of the whole split view (between 0 and 1). Your setting may have no
effect unless you also constrain the width limits absolutely through the minimum-
PrimaryColumnWidth and maximumPrimaryColumnWidth properties. To specify the
default width, use UISplitViewControllerAutomaticDimension. To learn the ac‐
tual width being used, ask for the current primaryColumnWidth.

You can also track and govern the display mode with these delegate methods:
splitViewController:willChangeToDisplayMode:

The displayMode of an expanded split view controller is about to change, meaning
that its first view controller’s view will be shown or hidden. You might want to alter
the interface somehow in response.

targetDisplayModeForActionInSplitViewController:

Called whenever something happens that might affect the display mode. For ex‐
ample:

• The split view controller is showing for the first time.
• The interface is rotating.
• The user summons or dismisses the primary view.

Return a display mode to specify what the user’s tapping the displayModeButton-
Item should subsequently do (and, by extension, how the displayModeButton-
Item is portrayed), or .Automatic to accept what the split view would normally do.

Customizations on a more structural level are performed through the other delegate
methods. For example, there might be additional view controllers present, or you might
use a split view controller in some completely different way, so that the default collapsed
version of a split view controller might not be appropriate. Thus you would implement
the delegate methods I described in the preceding two sections to determine how the
view controller structure should be rearranged when the split view controller collapses
and expands:

524 | Chapter 9: Popovers and Split Views

• primaryViewControllerForCollapsingSplitViewController:

• splitViewController:collapseSecondaryViewController:ontoPrimaryView-

Controller:

• primaryViewControllerForExpandingSplitViewController:

• splitViewController:separateSecondaryViewControllerFromPrimaryView-

Controller:

Also, your custom view controller can implement collapseSecondaryView-

Controller:forSplitViewController: and separateSecondaryViewControllerFor-
SplitViewController:, so that it can take a hand in what happens when it is the primary
view controller during collapsing and expanding.

After collapsing or expanding, a UISplitViewController emits the UIView-

ControllerShowDetailTargetDidChangeNotification.

Setting the Collapsed State
The split view controller can be in a collapsed or an expanded state — its collapsed
property can be true or false. But this property is read-only. How, then, would you set
the collapsed state? For example, perhaps you want side-by-side display of the two child
view controllers’ views in landscape even on an iPhone. How would you arrange that?

The split view controller decides which state to adopt depending on the environment
— in particular, whether the current trait collection’s horizontal size class is .Compact.
The solution, therefore, is to lie to the split view controller about its trait collection
environment, effectively making it believe, for example, that it’s on an iPad even though
it’s really on an iPhone.

You can do that by interposing your own custom container view controller above the
split view controller in the view controller hierarchy — typically, as the split view con‐
troller’s direct parent. You can then send your container view controller the setOverride-
TraitCollection:forChildViewController: message, thus causing it to pass the trait
collection of your choosing down the view controller hierarchy to the split view con‐
troller.

In this example, our container view controller is the app’s root view controller; its child
is a split view controller. The split view controller’s view completely occupies the con‐
tainer view controller’s view (in other words, the container’s own view is never seen
independently; the container view controller exists solely in order to manage the split
view controller). Early in the life of the app, the container view controller configures the
split view controller and lies to it about the environment. The result is that the split view

Split Views | 525

controller displays both its children’s views side by side, both in portrait and landscape,
like the Settings app on the iPad, even on the iPhone:

override func viewWillLayoutSubviews() {
 if !self.didInitialSetup {
 self.didInitialSetup = true
 let svc = self.childViewControllers[0] as UISplitViewController
 svc.preferredDisplayMode = .AllVisible
 svc.preferredPrimaryColumnWidthFraction = 0.5
 svc.maximumPrimaryColumnWidth = 500
 let traits = UITraitCollection(traitsFromCollections: [
 UITraitCollection(horizontalSizeClass: .Regular)
])
 self.setOverrideTraitCollection(traits, forChildViewController: svc)
 }
}

Another possibility, based on Apple’s AdaptivePhotos sample code, might be to make
the iPhone behave like an iPhone 6 Plus, with a .Regular horizontal size class in land‐
scape (the split view controller expands) but a .Compact horizontal size class in portrait
(the split view controller collapses):

override func viewWillTransitionToSize(size: CGSize,
 withTransitionCoordinator
 coordinator: UIViewControllerTransitionCoordinator) {
 let svc = self.childViewControllers[0] as UISplitViewController
 if size.width > 320 {
 let traits = UITraitCollection(traitsFromCollections: [
 UITraitCollection(horizontalSizeClass: .Regular)])
 self.setOverrideTraitCollection(
 traits, forChildViewController: svc)
 } else {
 self.setOverrideTraitCollection(
 nil, forChildViewController: svc)
 }
 super.viewWillTransitionToSize(
 size, withTransitionCoordinator: coordinator)
}

Replacing the Child View Controllers
The master–detail architecture that I’ve been using as an example throughout this dis‐
cussion uses showDetailViewController:sender: as the standard response to the user
tapping an entry in the master list. However, I have not been sending this message
directly to the split view controller; instead, I’ve sent it to self (the master view con‐
troller), with an assurance that the message will percolate up to the split view controller.
It’s now time to talk in more detail about this percolation process.

iOS 8 introduces a new generalized architecture for percolating a message up the view
controller hierarchy. The heart of this architecture is the method targetView-

526 | Chapter 9: Popovers and Split Views

ControllerForAction:sender:, where the action: parameter is the selector for the
method we’re inquiring about. This method, using some deep introspective voodoo,
looks to see whether the view controller to which the message was sent overrides the
UIViewController implementation of the method in question. If so, it returns self; if
not, it returns the result of calling targetViewControllerForAction:sender: (with
the same parameters) on its parent view controller or presenting view controller — or
nil if no view controller is ultimately returned to it.

A view controller subclass that does override the method in question but does not
want to be the target view controller can implement the UIResponder method can-
PerformAction:withSender: to return false.

The idea is that any UIViewController method can be implemented so as to percolate
up the view controller hierarchy in this way, analogously to how the responder chain
operates. In particular, two UIViewController methods are implemented in this way:

• showViewController:sender:

• showDetailViewController:sender:

These methods are implemented to call targetViewControllerForAction:sender:. If
this returns a target, they send themselves to that target. If it doesn’t return a target, they
call presentViewController:animated:completion:.

Thus, what actually happens when I send showDetailViewController:sender: to self
(the master view controller) is:

1. The master view controller doesn’t implement showDetailView-

Controller:sender:; it inherits the UIViewController implementation, which is
called.

2. The UIViewController implementation of showDetailViewController:sender:
calls targetViewControllerForAction:sender: on self (the master view con‐
troller) with "showDetailViewController:sender:" as its action: parameter.

3. targetViewControllerForAction:sender: sees that showDetailView-

Controller:sender: is not overridden by this view controller (the master view
controller), so it calls targetViewControllerForAction:sender: on the parent
view controller, which is a UINavigationController.

4. targetViewControllerForAction:sender: sees that showDetailView-

Controller:sender: is not overridden by this view controller (the navigation view
controller), so it calls targetViewControllerForAction:sender: on its parent
view controller, which is a UISplitViewController.

Split Views | 527

5. It happens that UISplitViewController does override the UIViewController imple‐
mentation of showDetailViewController:sender:. Thus, targetView-

ControllerForAction:sender: in the split view controller returns the split view
controller instance, and all the nested calls to targetViewControllerFor-
Action:sender: return with the split view controller as the result.

6. We are now back in showDetailViewController:sender:, originally sent to the
master view controller. From its call to targetViewControllerFor-

Action:sender:, it has acquired a target — the split view controller. So it finishes
by sending showDetailViewController:sender: to the split view controller.

The flexibility illustrated here is what allows these two methods to work differently
depending on (not the identity, but) the environment of the view controller to which
they are originally sent — that is, depending upon its place in the view controller hier‐
archy. Two built-in UIViewController subclasses override one or both of these methods,
and thus, if they are further up the view controller hierarchy than the view controller
on which these methods are called, will affect what happens:
UINavigationController showViewController:sender:

UINavigationController implements showViewController:sender: to call push-
ViewController:animated:.

Thus, if you send showViewController:sender: to a view controller whose parent
is a UINavigationController, it is the navigation controller’s implementation that
will be called, meaning that the parameter view controller is pushed onto the stack.
But if you send showViewController:sender: to a view controller without a parent
that overrides this method, the default implementation is used, meaning that the
parameter view is presented.

UISplitViewController showDetailViewController:sender:
UISplitViewController implements showDetailViewController:sender: as fol‐
lows. First, it calls the delegate method splitViewController:showDetailView-
Controller:sender:; if the delegate returns true, UISplitViewController does
nothing. (In that case, you would be responsible for getting the parameter view
controller’s view into the interface.) Otherwise:
If the split view controller is expanded

It replaces its second child view controller with the parameter view controller.

If the split view controller is collapsed
If its first (and only) child view controller is a UINavigationController, it sends
showViewController:sender: to it. Otherwise, it calls presentView-

Controller:animated:completion:.

528 | Chapter 9: Popovers and Split Views

UISplitViewController showViewController:sender:
UISplitViewController implements showViewController:sender: as follows.
First, it calls the delegate method splitViewController:showView-

Controller:sender:; if the delegate returns true, UISplitViewController does
nothing. (In that case, you would be responsible for getting the parameter view
controller’s view into the interface.) Otherwise:
If the split view controller is expanded

If the sender: is the first view controller, the split view controller replaces the
first view controller with the parameter view controller. Otherwise, it replaces
its second view controller with the parameter view controller.

If the split view controller is collapsed
It calls presentViewController:animated:completion:.

In general, sending showViewController:sender: to a split view controller is buggy
and not recommended. In particular, in the case where it replaces the first view
controller, the .PrimaryOverlay version of the first view controller is not replaced.

Now that you understand the percolation mechanism, perhaps you’d like to know
whether your own custom methods can participate in it. They can, easily. Extend
UIViewController to implement your method such that it calls targetViewController-
ForAction:sender: on self and sends the action method to the target if there is one.
For example:

extension UIViewController {
 func showHide(sender:AnyObject?) {
 let target =
 self.targetViewControllerForAction("showHide:", sender:sender)
 if target != nil {
 target!.showHide(self)
 }
 }
}

In that example, I don’t know what any particular UIViewController subclass’s override
of showHide: may do, and I don’t care! What matters is that if showHide: is sent to a
view controller that doesn’t override it, it will percolate up the view controller hierarchy
until we find a view controller that does override it, and it is that override that will be
called.

Split View Controller in a Storyboard
To see how to configure a split view controller in a storyboard, make a new project from
the iPad or Universal version of the Master–Detail Application template and study the

Split Views | 529

storyboard that it provides. This storyboard contains essentially the same configuration
I created in code at the start of this section. The split view controller has two relation‐
ships, “master view controller” and “detail view controller,” specifying its two children.
Those two children are both navigation controllers. The first navigation controller has
a “root view controller” relationship to a MasterViewController; the second has a “root
view controller” relationship to a DetailViewController.

There’s one more object in the storyboard, and it’s the interesting object: from the pro‐
totype table view cell in the Master table view comes a manual segue, triggered by the
user selecting the cell — a “show detail” segue whose destination is the Detail navigation
controller. It should now be clear what a “show detail” segue does: it calls showDetail-
ViewController:sender:. As you know, this means that when the split view controller
is expanded, the newly instantiated Detail navigation controller will replace the split
view controller’s second child view controller; when the split view controller is collapsed,
the newly instantiated Detail navigation controller will be pushed onto the Master nav‐
igation controller’s stack. (The “show detail” segue, new in iOS 8, supersedes the “re‐
place” segue from iOS 7 and before.)

Personally, I prefer to assemble my split view controllers in code. The storyboard ver‐
sion, in my view, is considerably less convenient, because there is so much that remains
to be done in code, and it must be done rather clumsily, because the architecture has
already been constructed behind your back by the time your code has a chance to run.
For example, the app delegate template code configures and adds the displayMode-
ButtonItem(); to do this, it must verbosely obtain a reference to the split view controller
and to the detail view controller:

let splitViewController =
 self.window!.rootViewController as UISplitViewController
let navigationController = splitViewController.viewControllers[
 splitViewController.viewControllers.count-1] as UINavigationController
navigationController.topViewController.navigationItem.leftBarButtonItem =
 splitViewController.displayModeButtonItem()

Similarly, the master view controller, when the “show detail” segue is triggered, must
verbosely get a reference to the Detail view controller:

let controller =
 (segue.destinationViewController as UINavigationController)
 .topViewController as DetailViewController

That sort of thing is error-prone and opaque. Code that creates a view controller man‐
ually has a direct reference to that view controller, and is clearer and cleaner.

530 | Chapter 9: Popovers and Split Views

CHAPTER 10

Text

Drawing text into your app’s interface is one of the most complex and powerful things
that iOS does for you. Fortunately, iOS also shields you from much of that complexity.
All you need is some text to draw, and possibly an interface object to draw it for you.

Text to appear in your app’s interface will be an NSString or an NSAttributedString.
NSAttributedString adds text styling to an NSString, including runs of different char‐
acter styles, along with paragraph-level features such as alignment, line spacing, and
margins.

To make your NSString or NSAttributedString appear in the interface, you can draw it
into a graphics context, or hand it to an interface object that knows how to draw it:
Self-drawing text

Both NSString and NSAttributedString have methods (supplied by the NSString‐
Drawing category) for drawing themselves into any graphics context.

Text-drawing interface objects
Interface objects that know how to draw an NSString or NSAttributedString are:
UILabel

Displays text, possibly consisting of multiple lines; neither scrollable nor
editable.

UITextField
Displays a single line of user-editable text; may have a border, a background
image, and overlay views at its right and left end.

UITextView
Displays scrollable multiline text, possibly user-editable.

Deep under the hood, all text drawing is performed through a low-level technology with
a C API called Core Text. Before iOS 7, certain powerful and useful text-drawing features

531

were available only by working with Core Text. Now, however, iOS provides Text Kit, a
middle-level technology lying on top of Core Text. UITextView is largely just a light‐
weight drawing wrapper around Text Kit, and Text Kit can also draw directly into a
graphics context. By working with Text Kit, you can readily do all sorts of useful text-
drawing tricks that previously would have required you to sweat your way through Core
Text.

(Another way of drawing text is to use a web view, a scrollable view displaying rendered
HTML. A web view can also display various additional document types, such as PDF,
RTF, and .doc. Web views draw their text using a somewhat different technology, and
are discussed in Chapter 11.)

Fonts and Font Descriptors
There are two ways of describing a font: as a UIFont (suitable for use with an NSString
or a UIKit interface object) or as a CTFont (suitable for Core Text). Before iOS 7, CTFont
and UIFont were unfortunately not toll-free bridged to one another, and what you usu‐
ally started with and wanted to end with was a UIFont; thus, in order to perform font
transformations, it was necessary to convert a UIFont to a CTFont manually, work with
the CTFont, and then convert back to a UIFont manually — which was by no means
trivial. Now, however, UIFont and CTFont are toll-free bridged to one another. More‐
over, another important Core Text type, CTFontDescriptor, is toll-free bridged to UI‐
FontDescriptor, which can be helpful for performing font transformations.

Fonts
A font (UIFont, toll-free bridged to Core Text’s CTFont) is an extremely simple object.
You specify a font by its name and size by calling the UIFont initializer
init(name:size:), and you can also transform a font of one size to the same font in a
different size. UIFont also provides some methods for learning a font’s various meas‐
urements, such as its lineHeight and capHeight.

To ask for a font by name, you have to know the font’s name. Every font variant (bold,
italic, and so on) counts as a different font, and font variants are clumped into families.
 UIFont has class methods that tell you the names of the families and the names of the
fonts within them. To learn, in the console, the name of every installed font, you would
say:

println((UIFont.familyNames() as [String])
 .map{UIFont.fontNamesForFamilyName($0)})

You can specify a font by its family name or by its font name (technically, its PostScript
name). For example, "Avenir" is a family name; the plain font within that family is
"Avenir-Roman". Either is legal as the first argument of init(name:size:).

532 | Chapter 10: Text

A few fonts can be obtained with reference to their functionality; for example, you can
ask for systemFontOfSize: to get the font used by default in a UIButton. You should
never use the name of such a font for anything, as the details are private and subject to
change.

Dynamic Type fonts
The Dynamic Type fonts (introduced in iOS 7) are linked to the slider that the user can
adjust in the Settings app, under Display & Brightness → Text Size. The idea is that if
you have text for the user to read or edit (as opposed, say, to the static text of a button),
you can use a Dynamic Type font; it will be sized and styled for you in accordance with
the user’s Text Size preference and the role that this text is to play in your layout.

To obtain a Dynamic Type font, call the UIFont class method preferredFontForText-
Style:. Possible roles that you can supply as the argument are:

• UIFontTextStyleHeadline

• UIFontTextStyleSubheadline

• UIFontTextStyleBody

• UIFontTextStyleFootnote

• UIFontTextStyleCaption1

• UIFontTextStyleCaption2

You’ll probably want to experiment with specifying various roles for your individual
pieces of text, to see which looks appropriate in context. For example, in Figure 6-1, the
headlines are UIFontTextStyleSubheadline and the blurbs are UIFontTextStyle-
Caption1.

Disappointingly, Dynamic Type fonts are not actually dynamic; preferredFontForText-
Style: will return a font whose size is proportional to the user’s Text Size preference
only at the moment when it is called. If the user changes that preference, you are expected
to call preferredFontForTextStyle: again. To hear about such changes, register for
UIContentSizeCategoryDidChangeNotification. When the notification arrives, you
are supposed to set the fonts for your Dynamic Type–savvy text all over again. This, in
turn, may have consequences for the physical features of your interface as a whole;
autolayout can be a big help here (Chapter 1).

In the nib editor, wherever the Attributes inspector lets you supply a font for an interface
object, the Dynamic Type roles are available in a pop-up menu. But you will still have
to set the font of every such interface object again, in code, when UIContentSize-
CategoryDidChangeNotification arrives.

Fonts and Font Descriptors | 533

In this example, we have a label (self.lab) whose font uses Dynamic Type; we have set
its font to UIFontTextStyleHeadline in the nib editor. We must therefore also update
its font manually whenever UIContentSizeCategoryDidChangeNotification subse‐
quently arrives:

override func viewDidLoad() {
 super.viewDidLoad()
 NSNotificationCenter.defaultCenter().addObserver(
 self, selector: "doDynamicType:",
 name: UIContentSizeCategoryDidChangeNotification, object: nil)
}
func doDynamicType(n:NSNotification) {
 let style = self.lab.font.fontDescriptor()
 .objectForKey(UIFontDescriptorTextStyleAttribute) as String
 self.lab.font = UIFont.preferredFontForTextStyle(style)
}

Needless to say, that kind of thing gets very old very fast — it’s enough to put one off
using Dynamic Type at all. Fortunately, new in iOS 8, a UITableView whose cells contain
labels will watch for UIContentSizeCategoryDidChangeNotification for you and will
update the label fonts for you automatically. So Dynamic Type in a table view, at least,
is dynamic.

Adding fonts
You are not limited to fonts installed by default as part of the system. There are two ways
to obtain additional fonts:
Include a font in your app bundle

A font included at the top level of your app bundle will be loaded at launch time if
your Info.plist lists it under the “Fonts provided by application” key (UIAppFonts).

Download a font in real time
All OS X fonts are available for download from Apple’s servers; you can obtain and
install one while your app is running.

To download a font in real time, you’ll have specify the font as a font descriptor (dis‐
cussed in the next section) and drop down to the level of Core Text (import Core-
Text) to call CTFontDescriptorMatchFontDescriptorsWithProgressHandler. This
function takes a block which is called repeatedly at every stage of the download process;
the block is called on a background thread, so if you want to use the downloaded font
immediately in the interface, you must step out to the main thread (see Chapter 25).

In this example, I’ll attempt to use Nanum Brush Script as my UILabel’s font; if it isn’t
installed, I’ll attempt to download it and then use it as my UILabel’s font. I’ve inserted
a lot of unnecessary logging to mark the stages of the download process (using NSLog
because println isn’t thread-safe):

534 | Chapter 10: Text

let name = "NanumBrush"
let size : CGFloat = 24
let f : UIFont! = UIFont(name:name, size:size)
if f != nil {
 self.lab.font = f
 println("already installed")
 return
}
println("attempting to download font")
let desc = UIFontDescriptor(name:name, size:size)
CTFontDescriptorMatchFontDescriptorsWithProgressHandler(
 [desc], nil, {
 (state:CTFontDescriptorMatchingState, prog:CFDictionary!)
 -> Bool in
 switch state {
 case .DidBegin:
 NSLog("%@", "matching did begin")
 case .WillBeginDownloading:
 NSLog("%@", "downloading will begin")
 case .Downloading:
 let d = prog as NSDictionary
 let key = kCTFontDescriptorMatchingPercentage
 let cur : AnyObject? = d[key as NSString]
 if let cur = cur as? NSNumber {
 NSLog("progress: %@%%", cur)
 }
 case .DidFinishDownloading:
 NSLog("%@", "downloading did finish")
 case .DidFailWithError:
 NSLog("%@", "downloading failed")
 case .DidFinish:
 NSLog("%@", "matching did finish")
 dispatch_async(dispatch_get_main_queue(), {
 let f : UIFont! = UIFont(name:name, size:size)
 if f != nil {
 NSLog("%@", "got the font!")
 self.lab.font = f
 }
 })
 default:break
 }
 return true
 })

Font Descriptors
A font descriptor (UIFontDescriptor, toll-free bridged to Core Text’s CTFont‐
Descriptor) is a way of specifying a font, or converting between one font description
and another, in terms of its features. For example, given a font descriptor desc, you can
ask for a corresponding italic font descriptor like this:

Fonts and Font Descriptors | 535

Figure 10-1. A Dynamic Type font with an italic variant

let desc2 = desc.fontDescriptorWithSymbolicTraits(.TraitItalic)

If desc was originally a descriptor for Avenir 15, desc2 is now a descriptor for Avenir-
Oblique 15. However, it is not the font Avenir-Oblique 15; a font descriptor is not a font.

To convert from a font to a font descriptor, call its fontDescriptor method; to
convert from a font descriptor to a font, call the UIFont initializer
init(descriptor:size:), typically supplying a size of 0 to signify that the size should
not change. Thus, this will be a typical pattern in your code, as you convert from font
to font descriptor to perform some transformation, and then back to font:

let font = // ...
let desc = font.fontDescriptor()
let desc2 = // font descriptor derived from desc
let font2 = UIFont(descriptor: desc2, size: 0)

This same technique is useful for obtaining styled variants of the Dynamic Type fonts.
A UIFontDescriptor class method, preferredFontDescriptorWithTextStyle:, saves
you from having to start with a UIFont. In this example, I prepare to form an
NSAttributedString whose font is mostly UIFontTextStyleBody, but with one italicized
word (Figure 10-1):

let body = UIFontDescriptor
 .preferredFontDescriptorWithTextStyle(UIFontTextStyleBody)
let emphasis = body.fontDescriptorWithSymbolicTraits(.TraitItalic)
let fbody = UIFont(descriptor: body, size: 0)
let femphasis = UIFont(descriptor: emphasis, size: 0)

Unfortunately, converting between fonts by calling fontDescriptorWithSymbolic-
Traits: doesn’t work for every font family. (I regard this as a bug.) You might have to
drop down to the level of Core Text. Fortunately, CTFont and UIFont are toll-free
bridged. Unfortunately, Swift is unaware of that fact, so you have to double-cast, passing
through AnyObject. Here’s an example (don’t forget to import CoreText):

let fbody = UIFont(name: "GillSans", size: 15)
let result = CTFontCreateCopyWithSymbolicTraits(
 fbody as AnyObject as CTFont, 0, nil, .ItalicTrait, .ItalicTrait)
let femphasis = result as AnyObject as UIFont

(You’re probably wondering why .ItalicTrait appears twice. CTFontCreateCopyWith-
SymbolicTraits takes two bitmasks: the first lists the traits you care about, and the
second says which traits those are. For example, suppose I’m starting with a font that
might or might not be bold, and I want to obtain its italic variant — meaning that if it

536 | Chapter 10: Text

Figure 10-2. A small caps font variant

is bold, I want a bold italic font. It isn’t enough to supply a bitmask whose value is .Italic-
Trait, because this appears to switch italics on and everything else off. Thus, the second
bitmask says, “Only this one bit is important to me.” By the same token, to get a nonitalic
variant of a font that might be italic, you’d supply 0 as the fourth argument and .Italic-
Trait as the fifth argument.)

You can explore a font’s features by way of UIFontDescriptor’s fontAttributes method,
which returns a dictionary of attributes and their values. If you know the name of the
attribute whose value you want, you can send objectForKey: directly to a UIFont‐
Descriptor, as I did in an earlier example.

Another use of font descriptors is to access hidden built-in typographical features of
individual fonts. In this example, I’ll obtain a variant of the Didot font that draws its
minuscules as small caps (Figure 10-2). You will need to import CoreText to get the
symbolic feature names kLetterCaseType and kSmallCapsSelector:

let desc = UIFontDescriptor(name:"Didot", size:18)
let d = [
 UIFontFeatureTypeIdentifierKey:kLetterCaseType,
 UIFontFeatureSelectorIdentifierKey:kSmallCapsSelector
]
let desc2 = desc.fontDescriptorByAddingAttributes([
 UIFontDescriptorFeatureSettingsAttribute:[d]
])
let f = UIFont(descriptor: desc2, size: 0)

Attributed Strings
Styled text — that is, text consisting of multiple style runs, with different font, size, color,
and other text features in different parts of the text — is expressed an attributed string.
Attributed strings (NSAttributedString and its mutable subclass, NSMutableAttribu‐
tedString) have been around in iOS for a long time, but before iOS 6 they were difficult
to use — you had to drop down to the level of Core Text — and they couldn’t be used
at all in connection with UIKit interface classes such as UILabel and UITextView. Thus,
such interface classes couldn’t display styled text. In iOS 6, NSAttributedString became
a first-class citizen; it can now be used to draw styled text directly, and can be drawn by
built-in interface classes.

Attributed Strings | 537

In general, interface object methods and properties that accept attributed strings
stand side by side with their pre-iOS 6 equivalents; the new ones tend to have
“attributed” in their name. Thus, you don’t have to use attributed strings. If a UI‐
Label, for example, is to display text in a single font, size, color, and alignment, it
might be easiest to use the pre-iOS 6 plain-old-NSString features of UILabel. If you
do use an attributed string with an interface object, it is best not to mix in any of
the pre-iOS 6 settings: let the attributed string do all the work of dictating text style
features.

An NSAttributedString consists of an NSString (its string) plus the attributes, applied
in ranges. For example, if the string “one red word” is blue except for the word “red”
which is red, and if these are the only changes over the course of the string, then there
are three distinct style runs — everything before the word “red,” the word “red” itself,
and everything after the word “red.” However, we can apply the attributes in two steps,
first making the whole string blue, and then making the word “red” red, just as you
would expect.

Attributed String Attributes
The attributes applied to a range of an attributed string are described in dictionaries.
Each possible attribute has a predefined name, used as a key in these dictionaries; here
are some of the most important attributes (for the full list, see Apple’s NSAttributedString
UIKit Additions Reference):
NSFontAttributeName

A UIFont.

NSForegroundColorAttributeName

The text color, a UIColor.

NSBackgroundColorAttributeName

The color behind the text, a UIColor. You could use this to highlight a word, for
example.

NSLigatureAttributeName

An NSNumber wrapping 0 or 1, expressing whether or not you want ligatures used.
NSKernAttributeName

An NSNumber wrapping the floating-point amount of kerning. A negative value
brings a glyph closer to the following glyph; a positive value adds space between
them.

538 | Chapter 10: Text

NSStrikethroughStyleAttributeName
NSUnderlineStyleAttributeName

An NSNumber wrapping one of these values (NSUnderlineStyle) describing the
line weight:

• .StyleNone

• .StyleSingle

• .StyleDouble

• .StyleThick

Optionally, you may append (using logical-or) a specification of the line pattern,
with names like .PatternDot, .PatternDash, and so on.

Optionally, you may append (using logical-or) .ByWord; if you do not, then if the
underline or strikethrough range involves multiple words, the whitespace between
the words will be underlined or struck through.

NSStrikethroughColorAttributeName
NSUnderlineColorAttributeName

A UIColor. If not defined, the foreground color is used.

NSStrokeWidthAttributeName

An NSNumber wrapping a float. The stroke width is peculiarly coded. If it’s positive,
then the text glyphs are stroked but not filled, giving an outline effect, and the
foreground color is used unless a separate stroke color is defined. If it’s negative,
then its absolute value is the width of the stroke, and the glyphs are both filled (with
the foreground color) and stroked (with the stroke color).

NSStrokeColorAttributeName

The stroke color, a UIColor.

NSShadowAttributeName

An NSShadow object. An NSShadow is just a glorified struct (what Apple calls a
“value object”), combining a shadowOffset, shadowColor, and shadowBlurRadius.

NSTextEffectAttributeName

If defined, the only possible value is NSTextEffectLetterpressStyle.

NSAttachmentAttributeName

An NSTextAttachment object. A text attachment is basically an inline image. I’ll
discuss text attachments later on.

NSLinkAttributeName

An NSURL. In a noneditable, selectable UITextView, the link is tappable to go to
the URL (depending on your implementation of the UITextViewDelegate method

Attributed Strings | 539

textView:shouldInteractWithURL:inRange:). By default, appears as blue
without an underline in a UITextView. Appears as blue with an underline in a
UILabel, but is not a tappable link there.

NSBaselineOffsetAttributeName
NSObliquenessAttributeName
NSExpansionAttributeName

An NSNumber wrapping a float.

NSParagraphStyleAttributeName

An NSParagraphStyle object. This is basically just a glorified struct, assembling text
features that apply properly to paragraphs as a whole, not merely to characters, even
if your string consists only of a single paragraph. Here are its most important
properties:

• alignment (NSTextAlignment)
■ .Left
■ .Center
■ .Right
■ .Justified
■ .Natural (left-aligned or right-aligned depending on the writing direction)

• lineBreakMode (NSLineBreakMode)
■ .ByWordWrapping
■ .ByCharWrapping
■ .ByClipping
■ .ByTruncatingHead
■ .ByTruncatingTail
■ .ByTruncatingMiddle

• firstLineHeadIndent, headIndent (left margin), tailIndent (right margin)
• lineHeightMultiple, maximumLineHeight, minimumLineHeight
• lineSpacing

• paragraphSpacing, paragraphSpacingBefore
• hyphenationFactor (0 or 1)
• defaultTabInterval, tabStops (the tab stops are an array of NSTextTab ob‐

jects)

540 | Chapter 10: Text

To construct an NSAttributedString, you can call init(string:attributes:) if the
entire string has the same attributes; otherwise, you’ll use its mutable subclass
NSMutableAttributedString, which lets you set attributes over a range.

To construct an NSParagraphStyle, you’ll use its mutable subclass NSMutableParagraph‐
Style. (The properties of NSParagraphStyle itself are all read-only, for historical reasons.)
It is sufficient to apply a paragraph style to the first character of a paragraph; to put it
another way, the paragraph style of the first character of a paragraph dictates how the
whole paragraph is rendered.

Both NSAttributedString and NSParagraphStyle come with default values for all at‐
tributes, so you only have to set the attributes you care about.

Making an Attributed String
We now know enough for an example! I’ll draw my attributed strings in a disabled
(noninteractive) UITextView; its background is white, but its superview’s background
is gray, so you can see the text view’s bounds relative to the text. (Ignore the text’s vertical
positioning, which is configured by applying a top contentInset.)

First, two words of my attributed string are made extra-bold by stroking in a different
color. I start by dictating the entire string and the overall style of the text; then I apply
the special style to the two stroked words (Figure 10-3):

var content : NSMutableAttributedString!
let s1 = "The Gettysburg Address, as delivered on a certain occasion " +
 "(namely Thursday, November 19, 1863) by A. Lincoln"
content = NSMutableAttributedString(string:s1, attributes:[
 NSFontAttributeName: UIFont(name:"Arial-BoldMT", size:15)!,
 NSForegroundColorAttributeName: UIColor(
 red:0.251, green:0.000, blue:0.502, alpha:1)
])
let r = (s1 as NSString).rangeOfString("Gettysburg Address")
content.addAttributes([
 NSStrokeColorAttributeName: UIColor.redColor(),
 NSStrokeWidthAttributeName: -2.0
], range: r)
self.tv.attributedText = content

Carrying on from the previous example, I’ll also make the whole paragraph centered
and indented from the edges of the text view. To do so, I create a paragraph style and
apply it to the first character. Note how the margins are dictated: the tailIndent is
negative, to bring the right margin leftward, and the firstLineHeadIndent must be set
separately, as the headIndent does not automatically apply to the first line (Figure 10-4):

let para = NSMutableParagraphStyle()
para.headIndent = 10
para.firstLineHeadIndent = 10
para.tailIndent = -10

Attributed Strings | 541

Figure 10-3. An attributed string

Figure 10-4. An attributed string with a paragraph style

para.lineBreakMode = .ByWordWrapping
para.alignment = .Center
para.paragraphSpacing = 15
content.addAttribute(
 NSParagraphStyleAttributeName,
 value:para, range:NSMakeRange(0,1))
self.tv.attributedText = content

When working with a value class, it feels clunky to be forced to instantiate the class
and configure the instance before using it for the one and only time. So I’ve written
a little Swift generic function, lend (see Appendix B), that lets me do all that in a
closure at the point where the value class is used.

In this next example, I’ll enlarge the first character of a paragraph. I assign the first
character a larger font size, I expand its width slightly, and I reduce its kerning
(Figure 10-5):

var content2 : NSMutableAttributedString!
let s2 = "Fourscore and seven years ago, our fathers brought forth " +
 "upon this continent a new nation, conceived in liberty and " +
 "dedicated to the proposition that all men are created equal."
content2 = NSMutableAttributedString(string:s2, attributes: [
 NSFontAttributeName: UIFont(name:"HoeflerText-Black", size:16)!

542 | Chapter 10: Text

Figure 10-5. An attributed string with an expanded first character

Figure 10-6. An attributed string with justification and autohyphenation

])
content2.addAttributes([
 NSFontAttributeName: UIFont(name:"HoeflerText-Black", size:24)!,
 NSExpansionAttributeName: 0.3,
 NSKernAttributeName: -4
], range:NSMakeRange(0,1))
self.tv.attributedText = content2

Carrying on from the previous example, I’ll once again construct a paragraph style and
add it to the first character. My paragraph style illustrates full justification and automatic
hyphenation (Figure 10-6):

content2.addAttribute(NSParagraphStyleAttributeName,
 value:lend(){
 (para:NSMutableParagraphStyle) in
 para.headIndent = 10
 para.firstLineHeadIndent = 10
 para.tailIndent = -10
 para.lineBreakMode = .ByWordWrapping
 para.alignment = .Justified
 para.lineHeightMultiple = 1.2
 para.hyphenationFactor = 1.0
 }, range:NSMakeRange(0,1))
self.tv.attributedText = content2

Attributed Strings | 543

Figure 10-7. A single attributed string comprising differently styled paragraphs

Now we come to the Really Amazing Part. I can make a single attributed string consisting
of both paragraphs, and a single text view can portray it (Figure 10-7):

let end = content.length
content.replaceCharactersInRange(NSMakeRange(end, 0), withString:"\n")
content.appendAttributedString(content2)
self.tv.attributedText = content

Tab stops

A tab stop is an NSTextTab, the initializer of which lets you set its location (points from
the left edge) and alignment. An options dictionary lets you set the tab stop’s column
terminator characters; a common use is to create a decimal tab stop, for aligning cur‐
rency values at their decimal point. The key, in that case, is NSTabColumnTerminators-
AttributeName; you can obtain a value appropriate to a given NSLocale by calling
NSTextTab’s class method columnTerminatorsForLocale:.

Here’s an example (Figure 10-8); I have deliberately omitted the “0” from the end of the
second currency value, to prove that the tab stop really is aligning the numbers at their
decimal points:

let s = "Onions\t$2.34\nPeppers\t$15.2\n"
let mas = NSMutableAttributedString(string:s, attributes:[
 NSFontAttributeName:UIFont(name:"GillSans", size:15)!,
 NSParagraphStyleAttributeName:lend() {
 (p:NSMutableParagraphStyle) in
 var tabs = [NSTextTab]()
 let terms = NSTextTab.columnTerminatorsForLocale(
 NSLocale.currentLocale())
 let tab = NSTextTab(
 textAlignment:.Right, location:170, options:[
 NSTabColumnTerminatorsAttributeName:terms])
 tabs += [tab]

544 | Chapter 10: Text

Figure 10-8. Tab stops in an attributed string

 p.tabStops = tabs
 p.firstLineHeadIndent = 20
 }
])
self.tv.attributedText = mas

Text attachments
A text attachment is basically an inline image. To make one, you need an instance of
NSTextAttachment initialized with image data; the easiest way is to start with a UIImage
and assign directly to the NSTextAttachment’s image property. You must also give the
NSTextAttachment a nonzero bounds; the image will be scaled to the size of the bounds
you provide, and a zero origin places the image on the text baseline.

A text attachment is attached to an NSAttributedString using the NSAttachment-
AttributeName key; the text attachment itself is the value. The range of the string that
has this attribute must be a special nonprinting character whose codepoint is
NSAttachmentCharacter (0xFFFC). The simplest way to arrange that is to call the
NSAttributedString initializer init(attachment:); you hand it an NSTextAttachment
and it hands you an attributed string consisting of the NSAttachmentCharacter with
the NSAttachmentAttributeName attribute set to that text attachment. You can then
insert this attributed string into your own attributed string at the point where you want
the image to appear.

To illustrate, I’ll add an image of onions and an image of peppers just after the words
“Onions” and “Peppers” in the attributed string (mas) that I created in the previous
example (Figure 10-9):

let onions = // ...
let peppers = // ...
let onionatt = NSTextAttachment()
onionatt.image = onions
onionatt.bounds = CGRectMake(0,-5,onions.size.width,onions.size.height)
let onionattchar = NSAttributedString(attachment:onionatt)
let pepperatt = NSTextAttachment()
pepperatt.image = peppers
pepperatt.bounds = CGRectMake(0,-1,peppers.size.width,peppers.size.height)
let pepperattchar = NSAttributedString(attachment:pepperatt)
let r = (mas.string as NSString).rangeOfString("Onions")

Attributed Strings | 545

Figure 10-9. Text attachments in an attributed string

mas.insertAttributedString(onionattchar, atIndex:(r.location + r.length))
let r2 = (mas.string as NSString).rangeOfString("Peppers")
mas.insertAttributedString(pepperattchar, atIndex:(r2.location + r2.length))
self.tv.attributedText = mas

Other ways to create an attributed string
The nib editor includes an ingenious interface for letting you construct attributed strings
wherever built-in interface objects (such as UILabel or UITextView) accept them as a
property; it’s not perfect, however, and isn’t suitable for lengthy or complex text.

It is also possible to import an attributed string from text in some other standard format,
such as HTML or RTF. To do so, get the target text into an NSData and call
init(data:options:documentAttributes:error:), or start with a file and call
init(fileURL:options:documentAttributes:error:). The options: allow you to
specify the target text’s format. For example, here we read an RTF file from the app
bundle as an attributed string and show it in a UITextView:

let url = NSBundle.mainBundle().URLForResource(
 "test", withExtension: "rtf")!
let opts = [NSDocumentTypeDocumentAttribute:NSRTFTextDocumentType]
let s = NSAttributedString(
 fileURL: url, options: opts, documentAttributes: nil, error: nil)
self.tv.attributedText = s

I have not experimented to see how much can get lost in the translation or whether
longer strings can cause a delay, but this is certainly an excellent way to generate relatively
short, simple strings painlessly. There are also corresponding export methods.

Modifying and Querying an Attributed String
Although attributes are applied to ranges, they actually belong to each individual char‐
acter. Thus we can coherently modify just the string part of a mutable attributed string.
The key method here is replaceCharactersInRange:withString:, which can be used
to replace characters with a plain string or, using a zero range length, to insert a plain
string at the start, middle, or end of an attributed string. The question is then what
attributes will be applied to the inserted string. The rule is:

• If we replace characters, the inserted string takes on the attributes of the first replaced
character.

546 | Chapter 10: Text

Underlining is Tricky
Underlining is tricky for two reasons:

• NSUnderlineStyle should be an Int, but Swift wrongly sees it as an enum. Therefore
you have to extract the underlying value with rawValue.

• If any of an attributed string has an NSUnderlineStyleAttributeName value, all of
it must, or you might not see any underlining at all. (This is new in iOS 8; I regard
it as a bug.)

So, for example, to create an attributed string “Buy beer” with the word “beer” under‐
lined, you would underline the whole string with .StyleNone before underlining “beer”
with .StyleSingle:

let mas = NSMutableAttributedString(string: "Buy beer", attributes: [
 NSUnderlineStyleAttributeName: NSUnderlineStyle.StyleNone.rawValue
])
mas.addAttributes([
 NSUnderlineStyleAttributeName: NSUnderlineStyle.StyleSingle.rawValue
], range: NSMakeRange(4, mas.length-4))

• If we insert characters, the inserted string takes on the attributes of the character
preceding the insertion — except that, if we insert at the start, there is no preceding
character, so the inserted string takes on the attributes of the character following
the insertion.

You can query an attributed string about its attributes one character at a time — asking
either about all attributes at once (attributesAtIndex:effectiveRange:) or about a
particular attribute by name (attribute:atIndex:effectiveRange:). In those meth‐
ods, the effectiveRange parameter is a pointer to an NSRange variable, which will be
set by indirection to the range over which this same attribute value, or set of attribute
values, applies:

var range : NSRange = NSMakeRange(0,0)
let d = content.attributesAtIndex(content.length-1, effectiveRange:&range)

Because style runs are something of an artifice, the effectiveRange might not be what
you would think of as the entire style run. The methods with longestEffectiveRange:
in their names do (at the cost of some efficiency) work out the entire style run for you.
In practice, however, you typically don’t need the entire style run range, because you’re
cycling through ranges, and speed, even at the cost of more iterations, matters more
than getting the longest effective range on every iteration.

In this example, I start with the combined two-paragraph Gettysburg Address attributed
string constructed earlier, and change all the size 15 material to Arial Bold 20. I don’t

Attributed Strings | 547

care whether I’m handed longest effective ranges (and my code explicitly says so); I just
want to cycle efficiently:

let opts : NSAttributedStringEnumerationOptions =
 .LongestEffectiveRangeNotRequired
content.enumerateAttribute(NSFontAttributeName,
 inRange:NSMakeRange(0,content.length),
 options:opts,
 usingBlock: {
 (value:AnyObject!, range:NSRange,
 stop:UnsafeMutablePointer<ObjCBool>) -> Void in
 let font = value as UIFont
 if font.pointSize == 15 {
 content.addAttribute(NSFontAttributeName,
 value:UIFont(name: "Arial-BoldMT", size:20)!,
 range:range)
 }
 })

Custom Attributes
You are permitted to apply your own custom attributes to a stretch of text in an attributed
string. Your attributes won’t directly affect how the string is drawn, because the text
engine doesn’t know what to make of them; but it doesn’t object to them either. In this
way, you can mark a stretch of text invisibly for your own future use.

In this example, I have a UILabel containing some text and a date. Every so often, I want
to replace the date by the current date. The problem is that when the moment comes to
replace the date, I don’t know where it is: I know neither its length nor the length of the
text that precedes it. The solution is to use an attributed string, and to mark the date
with a secret custom attribute when I first insert it. (My attribute is called "HERE", and
I’ve assigned it a value of 1.) Now I can readily find the date again later, because the text
engine will tell me where it is:

@IBAction func doUpdateLabel(sender:AnyObject?) {
 let mas =
 self.lab.attributedText.mutableCopy() as NSMutableAttributedString
 mas.enumerateAttribute(
 "HERE", inRange: NSMakeRange(0, mas.length), options: nil) {
 (value:AnyObject!, r:NSRange,
 stop:UnsafeMutablePointer<ObjCBool>) -> Void in
 if let value = value as? Int {
 if value == 1 {
 mas.replaceCharactersInRange(
 r, withString: NSDate().description)
 stop.memory = true
 }

548 | Chapter 10: Text

 }
 }
 self.lab.attributedText = mas
}

Drawing and Measuring an Attributed String
You can draw an attributed string directly, without hosting it in a built-in interface
object, and sometimes this will prove to be the most reliable approach. An NSString can
be drawn into a rect with drawInRect:withAttributes: and related methods; an
NSAttributedString can be drawn with drawAtPoint:, drawInRect:, and drawWith-
Rect:options:context:.

Here, I draw an attributed string into an image (which might then be displayed by an
image view):

UIGraphicsBeginImageContextWithOptions(rect.size, true, 0)
UIColor.whiteColor().setFill()
CGContextFillRect(UIGraphicsGetCurrentContext(), rect)
content.drawInRect(rect) // draw attributed string
let im = UIGraphicsGetImageFromCurrentImageContext()
UIGraphicsEndImageContext()

Similarly, you can draw an attributed string directly in a UIView’s drawRect:. For ex‐
ample, imagine that we have a UIView subclass called StringDrawer that has an
attributedText property. The idea is that we just assign an attributed string to that
property and the StringDrawer redraws itself:

self.drawer.attributedText = content

And here’s StringDrawer:

class StringDrawer : UIView {
 @NSCopying var attributedText : NSAttributedString! {
 didSet {
 self.setNeedsDisplay()
 }
 }
 override func drawRect(rect: CGRect) {
 let r = rect.rectByOffsetting(dx: 0, dy: 2)
 let opts = NSStringDrawingOptions.UsesLineFragmentOrigin
 self.attributedText.drawWithRect(r, options: opts, context: nil)
 }
}

The use of .UsesLineFragmentOrigin is crucial here. Without it, the string is drawn
with its baseline at the rect origin (so that it appears above that rect) and it doesn’t wrap.
The rule is that .UsesLineFragmentOrigin is the implicit default for simple drawIn-
Rect:, but with drawWithRect:options:context: you must specify it explicitly.

Attributed Strings | 549

There’s an annoying Swift bug where multiple NSStringDrawingOptions can’t be com‐
bined; it’s a bitmask, but someone forgot to tell Swift. For example, let’s say that in the
previous code we also want to end the paragraph with an ellipsis if the text is too long
for the size of the view. The way to specify that is with .TruncatesLastVisibleLine.
So we’d need to logical-or .UsesLineFragmentOrigin together with .TruncatesLast-
VisibleLine to form the bitmask, but Swift won’t let us. The solution is to write an
Objective-C category on NSString (I didn’t write this code; see http://stackoverflow.com/
a/25029448/341994):

@implementation NSString (Drawfixer)
+ (NSStringDrawingOptions) combine:(NSStringDrawingOptions)option1
 with:(NSStringDrawingOptions)option2 {
 return option1 | option2;
}
@end

Now we can revise our drawRect: implementation:

let opts = NSString.combine(
 .TruncatesLastVisibleLine, with:.UsesLineFragmentOrigin)

NSAttributedString also provides methods to measure an attributed string, such as
boundingRectWithSize:options:context:. Again, the option .UsesLineFragment-
Origin is crucial; without it, the measured text doesn’t wrap and the returned height
will be very small. The documentation warns that the returned height can be fractional
and that you should round up with the ceil function if the height of a view is going to
depend on this result.

The context: parameter of methods such as drawWithRect:options:context: lets
you attach an instance of NSStringDrawingContext, a simple value class whose total-
Bounds property tells you where you just drew.

Other features of NSStringDrawingContext, such as its minimumScaleFactor, ap‐
pear to be nonfunctional.

Labels
A label (UILabel) is a simple built-in interface object for displaying strings. I listed some
of its chief properties in Chapter 8 (in “Built-In Cell Styles” on page 419).

If you’re displaying a plain NSString in a label, by way of the label’s text property, then
you are likely also to set its font, textColor, and textAlignment properties, and pos‐
sibly its shadowColor and shadowOffset properties. The label’s text can have an alternate
highlightedTextColor, to be used when its highlighted property is true — as hap‐
pens, for example, when the label is in a selected cell of a table view.

550 | Chapter 10: Text

http://stackoverflow.com/a/25029448/341994
http://stackoverflow.com/a/25029448/341994

On the other hand, if you’re using an NSAttributedString, then you’ll set just the label’s
attributedText property and let the attributes dictate things like color, alignment, and
shadow. Those other UILabel properties do mostly still work, but they’re going to change
the attributes of your entire attributed string, in ways that you might not intend. Setting
the text of a UILabel that has attributedText will basically eliminate the attributes.
The highlightedTextColor property affects the attributedText only if the latter is
black.

Number of Lines
A UILabel’s numberOfLines property is extremely important. Together with the label’s
line breaking behavior and resizing behavior, it determines how much of the text will
appear. The default is 1 — a single line — which can come as a surprise. To make a label
display more than one line of text, you must explicitly set its numberOfLines to a value
greater than 1, or to 0 to indicate that there is to be no maximum.

Line break characters in a label’s text are honored. Thus, for example, in a single-line
label, you won’t see whatever follows the first line break character.

Wrapping and Truncation
UILabel line breaking (wrapping) and truncation behavior, which applies to both single-
line and multiline labels, is determined by the lineBreakMode (of the label or the at‐
tributed string). The options (NSLineBreak) are those that I listed earlier in discussing
NSParagraphStyle, but their behavior within a label needs to be described:
.ByWordWrapping

Lines break at word-end, but if this is a single-line label, indistinguishable from .By-
Clipping.

.ByClipping

Lines break at word-end, but the last line can continue past its boundary, even if
this leaves a character showing only partially.

.ByCharWrapping

Lines break in mid-word in order to maximize the number of characters in each
line.

(.ByCharWrapping was broken in iOS 7: it behaved identically to .ByWord-
Wrapping. iOS 8 fixes this breakage, restoring the behavior from iOS 6 and before.)

Labels | 551

.ByTruncatingHead

.ByTruncatingMiddle

.ByTruncatingTail

Lines break at word-end; if the text is too long for the label, then the last line displays
an ellipsis at the start, middle, or end of the line respectively, and text is omitted at
the point of the ellipsis.

The default line break mode for a new label is .ByTruncatingTail. But the default line
break mode for an attributed string’s NSParagraphStyle is .ByWordWrapping.

UILabel line break behavior is not the same as what happens when an NSAttributed‐
String draws itself — for example, in an image context or a plain UIView, as I
described earlier. An NSAttributedString whose NSParagraphStyle’s lineBreak-
Mode doesn’t have “Wrap” in its name doesn’t wrap when it draws itself — it consists
of a single line.

Label Resizing
If a label is too small for its text, the entire text won’t show. If a label is too big for its
text, the text is vertically centered in the label, with space above and below, which may
be undesirable. You might like to shrink or grow a label to fit its text exactly.

If you’re not using autolayout, in most simple cases sizeToFit will do exactly the right
thing; I believe that behind the scenes it is calling boundingRectWithSize:options:
context:.

There are cases where UILabel’s sizeToFit will misbehave. The problem arises
particularly with paragraph styles involving margins (headIndent and tail-
Indent) — presumably because boundingRectWithSize:options:context: ignores
the margins.

If you’re using autolayout, a label will correctly configure its own intrinsicContent-
Size automatically, based on its contents — and therefore, all other things being equal,
will size itself to fit its contents with no code at all. Every time you reconfigure the label
in a way that affects its contents (setting its text, changing its font, setting its attributed
text, and so forth), the label automatically invalidates and recalculates its intrinsic con‐
tent size. There are two general cases to consider:
Short single-line label

You might give the label no width or height constraints; you’ll constrain its position,
but you’ll let the label’s intrinsicContentSize provide both the label’s width and
its height.

552 | Chapter 10: Text

Multiline label
In this case, it is more likely that you’ll want to dictate the label’s width, while letting
the label’s height change automatically to accommodate its contents. There are two
ways to do this:
Set the label’s width constraint

This is appropriate particularly when the label’s width is to remain fixed ever
after.

Set the label’s preferredMaxLayoutWidth
This property is a hint to help the label’s calculation of its intrinsicContent-
Size. It is the width at which the label, as its contents increase, will stop growing
horizontally to accommodate those contents, and start growing vertically in‐
stead.

If a label’s width is to be permitted to vary because of constraints, you can tell it recal‐
culate its height to fit its contents by setting its preferredMaxLayoutWidth to its actual
width. For example, consider a label whose left and right edges are both pinned to the
superview. And imagine that the superview’s width can change, thus changing the width
of the label. For example, perhaps the superview is a view controller’s main view, and is
resized as the nib loads; and perhaps the app’s interface is permitted to rotate, thus
changing the main view’s width to match the new orientation of the screen. Nevertheless,
if the preferredMaxLayoutWidth is adjusted after every such change, the label’s height
will always perfectly fit its contents.

So how will you ensure that the preferredMaxLayoutWidth is adjusted when the label’s
width changes? Before giving the label constraints and text, set its preferredMaxLayout-
Width to 0! This happens to be the default, so there is nothing to do. Now the label will
change its preferredMaxLayoutWidth automatically as its width changes, and will
therefore always fit its contents, with no further effort on your part. Here’s an example
of creating such a label in code:

let lab = UILabel() // preferredMaxLayoutWidth is 0
lab.numberOfLines = 0
lab.backgroundColor = UIColor.yellowColor()
lab.setTranslatesAutoresizingMaskIntoConstraints(false)
self.view.addSubview(lab)
self.view.addConstraints(
 NSLayoutConstraint.constraintsWithVisualFormat(
 "H:|-(30)-[v]-(30)-|",
 options: nil, metrics: nil, views: ["v":lab])
)
self.view.addConstraints(
 NSLayoutConstraint.constraintsWithVisualFormat(
 "V:|-(30)-[v]",
 options: nil, metrics: nil, views: ["v":lab])
)
lab.attributedText = // whatever

Labels | 553

New in iOS 8, you can also perform this configuration in the nib editor: at the top of
the Size Inspector, uncheck the Explicit checkbox.

If a situation arises where you need a label to adjust its preferredMaxLayoutWidth
explicitly in response to being resized, implement layoutSubviews in a subclass (this
was the standard technique before iOS 7, when automatic adjustment was introduced):

class MyLabel : UILabel {
 override func layoutSubviews() {
 super.layoutSubviews()
 self.preferredMaxLayoutWidth = self.bounds.width
 }
}

Instead of letting a label grow, you can elect to permit its text font size to shrink if this
would allow more of the text to fit. How the text is repositioned when the font size
shrinks is determined by the label’s baselineAdjustment property. The conditions un‐
der which this feature operates are:

• The label’s adjustsFontSizeToFitWidth property must be true.
• The label’s minimumScaleFactor must be less than 1.0.
• The label’s size must be limited.
• Either this must be a single-line label (numberOfLines is 1) or the line break mode

(of the label or the attributed string) must not have “Wrapping” in its name.

Customized Label Drawing
Methods that you can override in a subclass to modify a label’s drawing are drawText-
InRect: and textRectForBounds:limitedToNumberOfLines:.

For example, this is the code for a UILabel subclass that outlines the label with a black
rectangle and puts a five-point margin around the label’s contents:

class BoundedLabel: UILabel {
 override func awakeFromNib() {
 super.awakeFromNib()
 self.backgroundColor = UIColor.myPaler()
 self.layer.borderWidth = 2.0
 self.layer.cornerRadius = 3.0
 }
 override func drawTextInRect(rect: CGRect) {
 super.drawTextInRect(
 rect.rectByInsetting(dx: 5, dy: 5).integerRect)
 }
}

554 | Chapter 10: Text

A CATextLayer (Chapter 3) is like a lightweight, layer-level version of a UILabel. If
the width of the layer is insufficient to display the entire string, we can get truncation
behavior with the truncationMode property. If the wrapped property is set to true,
the string will wrap. We can also set the alignment with the alignmentMode property.
And its string property can be an NSAttributedString.

Text Fields
A text field (UITextField) portrays just a single line of text; any line break characters in
its text are treated as spaces. It has many of the same properties as a label. You can provide
it with a plain NSString, setting its text, font, textColor, and textAlignment, or pro‐
vide it with an attributed string, setting its attributedText. You can learn a text field’s
overall text attributes as an attributes dictionary through its defaultTextAttributes
property. (Under the hood, the text is always attributed text, so the displayed text can
end up as a combination of, say, the attributedText and the textColor.)

Under autolayout, a text field’s intrinsicContentSize will attempt to set its width to
fit its contents; if its width is fixed, you can set its adjustsFontSizeToFitWidth and
minimumFontSize properties to allow the text size to shrink somewhat.

Text that is too long for the text field is displayed with an ellipsis at the end. A text field
has no lineBreakMode, but you can change the position of the ellipsis by assigning the
text field an attributed string with different truncation behavior, such as .ByTruncating-
Head. When long text is being edited, the ellipsis (if any) is removed, and the text shifts
horizontally to show the insertion point.

Regardless of whether you originally supplied a plain string or an attributed string, if
the text field’s allowsEditingTextAttributes property is true, the user, when editing
in the text field, can summon a menu toggling the selected text’s bold, italics, or underline
features. (Oddly, there’s no way to set this property in a nib.)

A text field has a placeholder property, which is the text that appears faded within the
text field when it has no text (its text or attributedText has been set to nil, or the user
has removed all the text); the idea is that you can use this to suggest to the user what
the text field is for. It has a styled text alternative, attributedPlaceholder; the runtime
will apply an overall light gray color to your attributed string.

If a text field’s clearsOnBeginEditing property is true, it automatically deletes its ex‐
isting text (and displays the placeholder) when editing begins within it. If a text field’s
clearsOnInsertion property is true, then when editing begins within it, the text re‐
mains, but is invisibly selected, and will be replaced by the user’s typing.

A text field’s border drawing is determined by its borderStyle property. Your options
(UITextFieldBorderStyle) are:

Text Fields | 555

.None

No border.

.Line

A plain black rectangle.

.Bezel

A gray rectangle, where the top and left sides have a very slight, thin shadow.

.RoundedRect

A larger rectangle with slightly rounded corners and a flat, faded gray color.

Calling sizeToFit on a text field whose border style is .RoundedRect doesn’t work
properly.

You can supply a background image (background); if you combine this with a border-
Style of .None, or if the image has no transparency, you thus get to supply your own
border — unless the borderStyle is .RoundedRect, in which case the background is
ignored. The image is automatically resized as needed (and you will probably supply a
resizable image). A second image (disabledBackground) can be displayed when the
text field’s enabled property, inherited from UIControl, is false. The user can’t interact
with a disabled text field, but without a disabledBackground image, the user may lack
any visual clue to this fact. You can’t set the disabledBackground unless you have also
set the background.

A text field may contain one or two ancillary overlay views, its leftView and right-
View, and possibly a Clear button (a gray circle with a white X). The automatic visibility
of each of these is determined by the leftViewMode, rightViewMode, and clearView-
Mode, respectively. The view mode values (UITextFieldViewMode) are:
.Never

The view never appears.

.WhileEditing

A Clear button appears if there is text in the field and the user is editing. A left or
right view appears if there is no text in the field and the user is editing.

.UnlessEditing

A Clear button appears if there is text in the field and the user is not editing. A left
or right view appears if the user is not editing, or if the user is editing but there is
no text in the field.

.Always

A Clear button appears if there is text in the field. A left or right view always appears.

556 | Chapter 10: Text

Depending on what sort of view you use, your leftView and rightView may have to
be sized manually so as not to overwhelm the text view contents. If a right view and a
Clear button appear at the same time, the right view may cover the Clear button unless
you reposition it.

The positions and sizes of any of the components of the text field can be set in relation
to the text field’s bounds by overriding the appropriate method in a subclass:

• clearButtonRectForBounds:

• leftViewRectForBounds:

• rightViewRectForBounds:

• borderRectForBounds:

• textRectForBounds:

• placeholderRectForBounds:

• editingRectForBounds:

You should make no assumptions about when or how frequently these methods
will be called; the same method might be called several times in quick succession.
Also, these methods should all be called with a parameter that is the bounds of the
text field, but some are sometimes called with a 100×100 bounds; this feels like a
bug.

You can also override in a subclass the methods drawTextInRect: and draw-
PlaceholderInRect:. You should either draw the specified text or call super to draw
it; if you do neither, the text won’t appear. Both these methods are called with a parameter
whose size is the dimensions of the text field’s text area, but whose origin is
(0.0,0.0). In effect what you’ve got is a graphics context for just the text area; any
drawing you do outside the given rectangle will be clipped.

Summoning and Dismissing the Keyboard
Making the onscreen simulated keyboard appear when the user taps in a text field is no
work at all — it’s automatic, as you’ve probably observed already. Making the keyboard
vanish again, on the other hand, can be a bit tricky. (Another problem is that the key‐
board can cover the text field that the user just tapped in; I’ll talk about that in a moment.)

The presence or absence of the keyboard, and a text field’s editing state, are intimately
tied to one another, and to the text field’s status as the first responder:

• When a text field is first responder, it is being edited and the keyboard is present.

Text Fields | 557

• When a text field is no longer first responder, it is no longer being edited, and if no
other text field (or text view) becomes first responder, the keyboard is not present.
The keyboard is not dismissed if one text field takes over first responder status from
another.

Thus, you can programmatically control the presence or absence of the keyboard, to‐
gether with a text field’s editing state, by way of the text field’s first responder status:
Becoming first responder

To make the insertion point appear within a text field and to cause the keyboard to
appear, you send becomeFirstResponder to that text field.

You won’t typically have to do that; usually, the user will tap in a text field and it will
become first responder automatically. Still, sometimes it’s useful to make a text field
the first responder programmatically; an example appeared in Chapter 8 (“Inserting
Cells” on page 476).

Resigning first responder
To make a text field stop being edited and to cause the keyboard to disappear, you
send resignFirstResponder to that text field. (Actually, resignFirstResponder
returns a Bool, because a responder might return false to indicate that for some
reason it refuses to obey this command.)

Alternatively, send the UIView endEditing: method to the first responder or any
superview (including the window) to ask or compel the first responder to resign
first responder status.

In a view presented in the .FormSheet modal presentation style on the iPad (Chap‐
ter 6), the keyboard, by default, does not disappear when a text field resigns first
responder status. This is presumably because a form sheet is intended primarily
for text input, so the keyboard is felt as accompanying the form as a whole, not
individual text fields. Optionally, you can prevent this exceptional behavior: in your
UIViewController subclass, override disablesAutomaticKeyboardDismissal to re‐
turn false.

There is no simple way to learn what view is first responder! This is very odd, because
a window surely knows what its first responder is — but it won’t tell you. There’s a
method isFirstResponder, but you’d have to send it to every view in a window until
you find the first responder. One workaround is to store a reference to the first responder
yourself, typically in your implementation of the text field delegate’s textFieldDid-
BeginEditing:.

Once the user has tapped in a text field and the keyboard has automatically appeared,
how is the user supposed to get rid of it? On the iPad, the keyboard typically contains

558 | Chapter 10: Text

a special button that dismisses the keyboard. But on the iPhone, this is an oddly tricky
issue. You would think that the “return” button in the keyboard would dismiss the
keyboard; but, of itself, it doesn’t.

One solution is to be the text field’s delegate and to implement a text field delegate
method, textFieldShouldReturn:. When the user taps the Return key in the keyboard,
we hear about it through this method, and we tell the text field to resign its first responder
status, which dismisses the keyboard:

func textFieldShouldReturn(tf: UITextField) -> Bool {
 tf.resignFirstResponder()
 return true
}

I’ll provide a more automatic solution later in this chapter.

Keyboard Covers Text Field
The keyboard has a position “docked” at the bottom of the screen. This may cover the
text field in which the user wants to type, even if it is first responder. On the iPad, this
may not be an issue, because the user can “undock” the keyboard (possibly also splitting
and shrinking it) and slide it up and down the screen freely. On the iPhone, you’ll
typically want to do something to reveal the text field.

To help with this, you can register for keyboard-related notifications:

• UIKeyboardWillShowNotification

• UIKeyboardDidShowNotification

• UIKeyboardWillHideNotification

• UIKeyboardDidHideNotification

Those notifications all have to do with the docked position of the keyboard. On the
iPhone, keyboard docking and keyboard visibility are equivalent: the keyboard is visible
if and only if it is docked. On the iPad, the keyboard is said to “show” if it is being docked,
whether that’s because it is appearing from offscreen or because the user is docking it;
and it is said to “hide” if it is undocked, whether that’s because it is moving offscreen or
because the user is undocking it.

Two additional notifications are sent both when the keyboard enters and leaves the
screen and (on the iPad) when the user drags it, splits or unsplits it, and docks or undocks
it:

• UIKeyboardWillChangeFrameNotification

• UIKeyboardDidChangeFrameNotification

Text Fields | 559

The notification’s userInfo dictionary contains information about the keyboard de‐
scribing what it will do or has done, under these keys:

• UIKeyboardFrameBeginUserInfoKey

• UIKeyboardFrameEndUserInfoKey

• UIKeyboardAnimationDurationUserInfoKey

• UIKeyboardAnimationCurveUserInfoKey

Thus, to a large extent, you can coordinate your actions with those of the keyboard. In
particular, by looking at the UIKeyboardFrameEndUserInfoKey, you know what position
the keyboard is moving to; you can compare this with the screen bounds to learn whether
the keyboard will now be on or off the screen and, if it will now be on the screen, you
can see whether it will cover a text field.

Finding a strategy for dealing with the keyboard’s presence depends on the needs of
your particular app. I’ll concentrate on the most universal case, where the keyboard
moves into and out of docked position and we detect this with UIKeyboardWillShow-
Notification and UIKeyboardWillHideNotification. What should we do if, when
the keyboard appears, it covers the text field being edited?

Sliding the interface
One natural-looking approach is to slide the entire interface upward as the keyboard
appears. To make this easy, you might start with a view hierarchy like this: the root view
contains a transparent view that’s the same size as the root view; everything else is
contained in that transparent view. The transparent view’s purpose is to host the rest of
the interface; if we slide it upward, the whole interface will slide upward.

Here’s an implementation involving constraints. The transparent view, which I’ll called
the sliding view, is pinned by constraints at the top and bottom to its superview with a
constant of 0, and we have outlets to those constraints. We also have an outlet to the
sliding view itself, and we’ve got a property prepared to hold the first responder:

@IBOutlet var topConstraint : NSLayoutConstraint!
@IBOutlet var bottomConstraint : NSLayoutConstraint!
@IBOutlet var slidingView : UIView!
var fr : UIView?

In our view controller’s viewDidLoad, we register for the keyboard notifications:

super.viewDidLoad()
NSNotificationCenter.defaultCenter().addObserver(
 self, selector: "keyboardShow:",
 name: UIKeyboardWillShowNotification, object: nil)
NSNotificationCenter.defaultCenter().addObserver(
 self, selector: "keyboardHide:",
 name: UIKeyboardWillHideNotification, object: nil)

560 | Chapter 10: Text

We are the delegate of the various text fields in our interface. When one of them starts
editing, we keep a reference to it as first responder:

func textFieldDidBeginEditing(tf: UITextField) {
 self.fr = tf // keep track of first responder
}

As I suggested in the previous section, we also dismiss the keyboard by resigning first
responder when the user taps the Return button in the keyboard:

func textFieldShouldReturn(tf: UITextField) -> Bool {
 tf.resignFirstResponder()
 self.fr = nil
 return true
}

As the keyboard threatens to appear, we examine where its top will be. If the keyboard
will cover the text field that’s about to be edited, we animate the sliding view upward to
compensate, by changing the constant value of the constraints that pin its top and
bottom:

func keyboardShow(n:NSNotification) {
 let d = n.userInfo!
 var r = (d[UIKeyboardFrameEndUserInfoKey] as NSValue).CGRectValue()
 r = self.slidingView.convertRect(r, fromView:nil)
 let f = self.fr!.frame
 let y : CGFloat =
 f.maxY + r.size.height - self.slidingView.bounds.height + 5
 if r.origin.y < f.maxY {
 self.topConstraint.constant = -y
 self.bottomConstraint.constant = y
 self.view.layoutIfNeeded()
 }
}

When the keyboard disappears, we put the sliding view back again:

func keyboardHide(n:NSNotification) {
 self.topConstraint.constant = 0
 self.bottomConstraint.constant = 0
 self.view.layoutIfNeeded()
}

This entire procedure is much easier in iOS 8 than in previous systems, because our
code is executed inside the keyboard’s animation block: our changes to animatable view
properties are automatically animated together with the keyboard.

Text field in a scroll view
Changing the sliding view’s constraints is a way of changing its frame origin. Since all
we really want is to move the sliding view’s subviews, it would be more suitable to change
its bounds origin. If we’re going to do that, we might as well make the sliding view a view

Text Fields | 561

that already knows all about shifting its bounds origin — a scroll view! This approach
has two notable advantages over the preceding approach:

• We can permit the user to scroll the view within the area not covered by the key‐
board. This is a job for contentInset, whose purpose, you will recall (Chapter 7),
is precisely to make it possible for the user to view all of the scroll view’s content
even though part of the scroll view is being covered by something.
(This behavior is in fact implemented automatically by a UITableViewController.
When a text field inside a table cell is first responder, the table view controller adjusts
the table view’s contentInset and scrollIndicatorInsets to compensate for the
keyboard. The result is that the entire table view is available within the space be‐
tween the top of the table view and the top of the keyboard.)

• A scroll view has some built-in behavior that will help us: it scrolls automatically
to reveal the first responder. Furthermore, a UIScrollView has a keyboardDismiss-
Mode, governing what will happen to the keyboard when the user scrolls.

Let’s imitate UITableViewController’s behavior with a scroll view containing text fields.
In viewDidLoad, we register for keyboard notifications, and we are the delegate of any
text fields, exactly as in the previous example. When the keyboard appears, we store the
current content offset, content inset, and scroll indicator insets; then we alter the insets
and allow the scroll view to scroll the first responder into view for us:

func keyboardShow(n:NSNotification) {
 self.oldContentInset = self.scrollView.contentInset
 self.oldIndicatorInset = self.scrollView.scrollIndicatorInsets
 self.oldOffset = self.scrollView.contentOffset
 let d = n.userInfo!
 var r = (d[UIKeyboardFrameEndUserInfoKey] as NSValue).CGRectValue()
 r = self.scrollView.convertRect(r, fromView:nil)
 self.scrollView.contentInset.bottom = r.size.height
 self.scrollView.scrollIndicatorInsets.bottom = r.size.height
}

When the keyboard disappears, we restore the saved values:

func keyboardHide(n:NSNotification) {
 self.scrollView.bounds.origin = self.oldOffset
 self.scrollView.scrollIndicatorInsets = self.oldIndicatorInset
 self.scrollView.contentInset = self.oldContentInset
}

UIScrollView’s keyboardDismissMode provides ways of letting the user dismiss the
keyboard. The options (UIScrollViewKeyboardDismissMode) are:
.None

The default; we must use code to dismiss the keyboard.

562 | Chapter 10: Text

.Interactive

The user can dismiss the keyboard by dragging it down.

.OnDrag

The keyboard dismisses itself if the user scrolls the scroll view.

Configuring the Keyboard
A UITextField implements the UITextInputTraits protocol, which defines properties on
the UITextField that you can set to determine how the keyboard will look and how
typing in the text field will behave. (These properties can also be set in the nib.) For
example, you can set the keyboardType to .PhonePad to make the keyboard for this text
field consist of digits only. You can set the returnKeyType to determine the text of the
Return key (if the keyboard is of a type that has one). You can give the keyboard a dark
or light shade (keyboardAppearance). You can turn off autocapitalization
(autocapitalizationType) or autocorrection (autocorrectionType), make the Re‐
turn key disable itself if the text field has no content (enablesReturnKey-
Automatically), and make the text field a password field (secureTextEntry). You can
even supply your own keyboard or other input mechanism by setting the text field’s
inputView.

New in iOS 8, your app can supply other apps with a keyboard. See the Custom
Keyboard chapter of Apple’s App Extension Programming Guide.

You can attach an accessory view to the top of the keyboard by setting the text field’s
inputAccessoryView. In this example, the accessory view has been loaded from a nib
and is available through a property, self.accessoryView. When editing starts, we con‐
figure the keyboard as we store our reference to the text field:

func textFieldDidBeginEditing(tf: UITextField!) {
 self.fr = tf // keep track of first responder
 tf.inputAccessoryView = self.accessoryView
}

We have an array property populated with references to all our text fields (this might
be an appropriate use of an outlet collection). The accessory view contains a Next button,
whose action method is doNextField:. When the user taps the button, we move editing
to the next text field:

Text Fields | 563

func doNextButton(sender:AnyObject) {
 var ix = (self.textFields as NSArray).indexOfObject(self.fr)
 ix = ++ix % self.textFields.count
 let v = self.textFields[ix]
 v.becomeFirstResponder()
}

The user can control the localization of the keyboard character set in the Settings app,
either through a choice of the system’s base language or with General → Keyboard →
Keyboards (and possibly Add New Keyboard). In the latter case, the user can switch
among keyboard character sets while the keyboard is showing. But, as far as I can tell,
your code can’t make this choice; you cannot, for example, force a certain text field to
display the Cyrillic keyboard. You can ask the user to switch keyboards manually, but
if you really want a particular keyboard to appear regardless of the user’s settings and
behavior, you’ll have to create it yourself and provide it as the inputView.

Text Field Delegate and Control Event Messages
As editing begins and proceeds in a text field, a sequence of messages is sent to the text
field’s delegate, adopting the UITextFieldDelegate protocol. Some of these messages are
also available as notifications. Using them, you can customize the text field’s behavior
during editing:
textFieldShouldBeginEditing:

Return false to prevent the text field from becoming first responder.

textFieldDidBeginEditing:
UITextFieldTextDidBeginEditingNotification

The text field has become first responder.

textFieldShouldClear:

Return false to prevent the operation of the Clear button or of automatic clearing
on entry (clearsOnBeginEditing). This event is not sent when the text is cleared
because clearsOnInsertion is true, because the user is not clearing the text but
rather changing it.

textFieldShouldReturn:

The user has tapped the Return button in the keyboard. We have already seen that
this can be used as a signal to dismiss the keyboard.

textField:shouldChangeCharactersInRange:replacementString:

Sent when the user changes the text in the field by typing or pasting, or by back‐
spacing or cutting (in which case the replacement string will have zero length).
Return false to prevent the proposed change; you can substitute text by changing
the text field’s text directly (there is no circularity, as this delegate method is not
called when you do that).

564 | Chapter 10: Text

In this example, the user can enter only lowercase characters:

func textField(textField: UITextField,
 shouldChangeCharactersInRange range: NSRange,
 replacementString string: String) -> Bool {
 if string == "\n" {
 return true
 }
 let lc = string.lowercaseString
 textField.text =
 (textField.text as NSString)
 .stringByReplacingCharactersInRange(
 range, withString:lc)
 return false
}

It is common practice to implement textField:shouldChangeCharactersIn-
Range:replacementString: as a way of learning that the text has been changed,
even if you then always return true. This method is not called when the user changes
text styling through the Bold, Italics, or Underline menu items.

UITextFieldTextDidChangeNotification corresponds loosely.
textFieldShouldEndEditing:

Return false to prevent the text field from resigning first responder (even if you
just sent resignFirstResponder to it). You might do this, for example, because the
text is invalid or unacceptable in some way. The user will not know why the text
field is refusing to end editing, so the usual thing is to put up an alert (Chapter 13)
explaining the problem.

textFieldDidEndEditing:
UITextFieldTextDidEndEditingNotification

The text field has resigned first responder. See Chapter 8 (“Editable Content in
Cells” on page 474) for an example of using textFieldDidEndEditing: to fetch the
text field’s current text and store it in the model.

A text field is also a control (UIControl; see also Chapter 12). This means you can attach
a target–action pair to any of the events that it reports in order to receive a message
when that event occurs:

• The user can touch and drag, triggering Touch Down and the various Touch Drag
events.

• If the user touches in such a way that the text field enters editing mode (and the
keyboard appears), Editing Did Begin and Touch Cancel are triggered; if the user
causes the text field to enter editing mode in some other way (such as by tabbing
into it), Editing Did Begin is triggered without any Touch events.

• As the user edits (including changing attributes), Editing Changed is triggered.

Text Fields | 565

• If the user taps while in editing mode, Touch Down (and possibly Touch Down
Repeat) and Touch Cancel are triggered.

• When editing ends, Editing Did End is triggered; if the user stops editing by tapping
Return in the keyboard, Did End on Exit is triggered first.

In general, you’re more likely to treat a text field as a text field (through its delegate
messages) than as a control (through its control events). However, the Did End on Exit
event message has an interesting property: it provides an alternative way to dismiss the
keyboard when the user taps a text field keyboard’s Return button. If there is a Did End
on Exit target–action pair for this text field, then if the text field’s delegate does not
return false from textFieldShouldReturn:, the keyboard will be dismissed automat‐
ically when the user taps the Return key. The action handler for Did End on Exit doesn’t
actually have to do anything.

Thus we have a splendid trick for getting automatic keyboard dismissal with no code at
all. In the nib, edit the First Responder proxy object in the Attributes inspector, adding
a new First Responder Action; let’s call it dummy:. Now hook the Did End on Exit event
of the text field to the dummy: action of the First Responder proxy object. That’s it!
Because the text field’s Did End on Exit event now has a target–action pair, the text field
automatically dismisses its keyboard when the user taps Return; there is no penalty for
not finding a handler for a message sent up the responder chain, so the app doesn’t crash
even though there is no implementation of dummy: anywhere.

Alternatively, you can implement the same trick in code:

textField.addTarget(
 nil, action:"dummy:", forControlEvents:.EditingDidEndOnExit)

A disabled text field emits no delegate messages or control events.

Text Field Menu
When the user double-taps or long-presses in a text field, the menu appears. It contains
menu items such as Select, Select All, Paste, Copy, Cut, and Replace; which menu items
appear depends on the circumstances. Many of the selectors for these standard menu
items are listed in the UIResponderStandardEditActions informal protocol. Commonly
used standard actions are:

• cut:

• copy:

• select:

• selectAll:

• paste:

566 | Chapter 10: Text

• delete:

• _promptForReplace:

• _define:

• _showTextStyleOptions:

• toggleBoldface:

• toggleItalics:

• toggleUnderline:

The menu can also be customized; just as with a table view cell’s menus (Chapter 8), this
involves setting the shared UIMenuController object’s menuItems property to an array
of UIMenuItem instances representing the menu items that may appear in addition to
those that the system puts there.

Actions for menu items are nil-targeted, so they percolate up the responder chain. You
can thus implement a menu item’s action anywhere up the responder chain; if you do
this for a standard menu item at a point in the responder chain before the system receives
it, you can interfere with and customize what it does. You govern the presence or absence
of a menu item by implementing the UIResponder method canPerformAction:with-
Sender: in the responder chain.

As an example, we’ll devise a text field whose menu includes our own menu item, Ex‐
pand. I’m imagining here, for instance, a text field where the user can select a U.S. state
two-letter abbreviation (such as “CA”) and can then summon the menu and tap Expand
to replace it with the state’s full name (such as “California”).

I’ll implement this in a UITextField subclass, in order to guarantee that the Expand
menu item will be available when an instance of this subclass is first responder, but at
no other time. My subclass has a property, self.list, which has been set to an array
of state name abbreviations, each followed by its expanded state name. A utility function
looks to see whether a string appears in the list:

func stateForAbbrev(abbrev:String) -> String? {
 let ix = find(self.list, abbrev.uppercaseString)
 return ix != nil ? list[ix!+1] : nil
}

At some moment before the user taps in an instance of our UITextField subclass (such
as viewDidLoad), we modify the global menu:

let mi = UIMenuItem(title:"Expand", action:"expand:")
let mc = UIMenuController.sharedMenuController()
mc.menuItems = [mi]

We implement canPerformAction:withSender: to govern the contents of the menu.
Let’s presume that we want our Expand menu item to be present only if the selection

Text Fields | 567

consists of a two-letter state abbreviation. UITextField itself provides no way to learn
the selected text, but it conforms to the UITextInput protocol, which does:

override func canPerformAction(
 action: Selector, withSender sender: AnyObject?) -> Bool {
 if action == "expand:" {
 if let r = self.selectedTextRange {
 let s = self.textInRange(r)
 return
 countElements(s) == 2 && self.stateForAbbrev(s) != nil
 }

 }
 return super.canPerformAction(action, withSender:sender)
}

When the user chooses the Expand menu item, the expand: message is sent up the
responder chain. We catch it in our UITextField subclass and obey it by replacing the
selected text with the corresponding state name:

func expand(sender:AnyObject?) {
 if let r = self.selectedTextRange {
 let s = self.textInRange(r)
 if let ss = self.stateForAbbrev(s) {
 self.replaceRange(r, withText:ss)
 }
 }
}

We can also implement the selector for, and thus modify the behavior of, any of the
standard menu items. For example, I’ll implement copy: and modify its behavior. First
we call super to get standard copying behavior; then we modify what’s now on the
pasteboard:

override func copy(sender:AnyObject?) {
 super.copy(sender)
 let pb = UIPasteboard.generalPasteboard()
 if let s = pb.string {
 let ss = // ... alter s here ...
 pb.string = ss
 }
}

(Implementing the selectors for toggleBoldface:, toggleItalics:, and toggle-
Underline: is probably the best way to get an event when the user changes these
attributes.)

568 | Chapter 10: Text

Text Views
A text view (UITextView) is a scroll view subclass (UIScrollView); it is not a control.
Many of its properties are similar to those of a text field:

• A text view has text, font, textColor, and textAlignment properties; it can be
user-editable or not, according to its editable property.

• A text view has attributedText, allowsEditingTextAttributes, and typing-
Attributes properties, as well as clearsOnInsertion.

• An editable text view governs its keyboard just as a text field does: when it is first
responder, it is being edited and shows the keyboard, and it implements the UIText‐
Input protocol and has inputView and inputAccessoryView properties.

• A text view’s menu works the same way as a text field’s.

A text view provides (official) information about, and control of, its selection: it has a
selectedRange property which you can get and set, along with a scrollRangeTo-
Visible: method so that you can scroll in terms of a range of its text.

A text view’s delegate messages (UITextViewDelegate protocol) and notifications, too,
are similar to those of a text field. The following delegate methods (and notifications)
should have a familiar ring:

• textViewShouldBeginEditing:

• textViewDidBeginEditing:, UITextViewTextDidBeginEditingNotification
• textViewShouldEndEditing:

• textViewDidEndEditing:, UITextViewTextDidEndEditingNotification
• textView:shouldChangeTextInRange:replacementText:

Some differences are:
textViewDidChange:
UITextViewTextDidChangeNotification

Sent when the user changes text or attributes. A text field has no corresponding
delegate method, though the Editing Changed control event and notification are
similar.

textViewDidChangeSelection:

In contrast, a text field is officially uninformative about the selection.

A text view’s delegate can also decide how to respond when the user taps on a text
attachment or a link. The text view must have its selectable property set to true, and
its editable property set to false:

Text Views | 569

textView:shouldInteractWithTextAttachment:inRange:

The default is false. If you return true, the user sees an action sheet offering to
copy the image to the clipboard or the photo library.

textView:shouldInteractWithURL:inRange:

The default is true: the URL is opened in Safari, or if the user long-presses, an action
sheet appears with options Open, Add to Reading List, and Copy.

By returning false from either of those methods, you can substitute your own response,
effectively treating the image or URL as a button.

A text view also has a dataDetectorTypes property; this, too, if the text view is selectable
but not editable, allows text of certain types, specified as a bitmask (and presumably
located using NSDataDetector), to be treated as tappable links; the types (UIData‐
DetectorTypes) are:
.Link

The default response is the same as for a link created using NSLinkAttributeName.

.PhoneNumber

The default response to a tap is an alert with an option to call the number; the default
response to a long press is an action sheet with options Call, Send Message, Add to
Contacts, and Copy.

.Address

The default response to a tap is to search for the address in the Maps app; the default
response to a long press is an action sheet with options Open in Maps, Add to
Contacts, and Copy.

.CalendarEvent

The default response is an action sheet with options Create Event, Show in Calendar,
and Copy.

The delegate’s implementation of textView:shouldInteractWithURL:inRange: catch‐
es data detector taps as well, so you can prevent the default behavior and substitute your
own. You can distinguish a phone number through the URL’s scheme (it will be "tel"),
but an address or calendar event will be more or less opaque (the scheme is
"x-apple-data-detectors") and returning false probably makes no sense. The del‐
egate method doesn’t distinguish a tap from a long press for you.

Text View as Scroll View
A text view is a scroll view, so everything you know about scroll views applies (see
Chapter 7). It has, by default, no border, because a scroll view has no border. It can be
user-scrollable or not.

570 | Chapter 10: Text

A text view’s contentSize is maintained for you automatically as the text changes, so
as to contain the text exactly; thus, if the text view is scrollable, the user can see any of
its text. You can track changes to the content size by tracking changes to the text. A
common reason for doing so is to implement a self-sizing text view, that is, a text view
that adjusts its height automatically to embrace the amount of text it contains. In this
example, we have an outlet to the text view’s internal height constraint; the rather hacky
quality of the code prevents some unfortunate misbehaviors of the text view:

func adjustHeight() {
 let sz = self.tv.sizeThatFits(CGSizeMake(self.tv.bounds.width, 10000))
 self.heightConstraint.constant = ceil(sz.height)
}
func textView(textView: UITextView!,
 shouldChangeTextInRange range: NSRange,
 replacementText text: String!) -> Bool {
 textView.text = (textView.text as NSString)
 .stringByReplacingCharactersInRange(range, withString:text)
 self.adjustHeight()
 return false
}

Text View and Keyboard
The fact that a text view is a scroll view comes in handy also when the keyboard partially
covers a text view. The text view quite often dominates the screen, or a large portion of
the screen, and you can respond to the keyboard partially covering it by adjusting the
text view’s contentInset, just as we did earlier in this chapter with a scroll view (“Text
field in a scroll view” on page 561). As with a scroll view, this is much easier in iOS 8
than it was in iOS 7: we don’t have to perform any animation explicitly, and a number
of touchy iOS 7 bugs are gone — in particular, once we play our part by setting the
contentInset, the text view will scroll as needed to reveal the insertion point.

Now let’s talk about what happens when the keyboard is dismissed. First of all, how is
the keyboard to be dismissed? On the iPad, the virtual keyboard usually contains a
button that dismisses the keyboard. But what about the iPhone? The Return key is
meaningful for character entry; you aren’t likely to want to misuse it as a way of dis‐
missing the keyboard.

On the iPhone, the interface might well consist of a text view and the keyboard, which
is always showing: instead of dismissing the keyboard, the user dismisses the entire
interface. For example, in Apple’s Mail app on the iPhone, when the user is composing
a message, in what is presumably a presented view controller, the keyboard is present
the whole time; the keyboard is dismissed because the user sends or cancels the message
and the presented view controller is dismissed.

Alternatively, you can provide interface for dismissing the keyboard explicitly. For ex‐
ample, in Apple’s Notes app, a note alternates between being read fullscreen and being

Text Views | 571

edited with the keyboard present; in the latter case, a Done button appears, and the user
taps it to dismiss the keyboard. If there’s no good place to put a Done button in the
interface, you could attach an accessory view to the keyboard itself.

Here’s a possible implementation of a Done button’s action method, with resulting dis‐
missal of the keyboard:

func doDone(sender:AnyObject?) {
 self.view.endEditing(false)
}
func keyboardHide(n:NSNotification) {
 self.tv.contentInset = UIEdgeInsetsZero
 self.tv.scrollIndicatorInsets = UIEdgeInsetsZero
}

Text Kit
Text Kit comes originally from OS X, where you may already be more familiar with its
use than you realize. For example, much of the text-editing “magic” of Xcode is due to
Text Kit. It comprises a small group of classes that are responsible for drawing text;
simply put, they turn an NSAttributedString into graphics. You can take advantage of
Text Kit to modify text drawing in ways that were once possible (if at all) only by dipping
down to the low-level C-based world of Core Text.

A UITextView provides direct access to the underlying Text Kit engine. It has the fol‐
lowing Text Kit–related properties:
textContainer

The text view’s text container (an NSTextContainer instance). UITextView’s desig‐
nated initializer is init(frame:textContainer:); the textContainer: can be nil
to get a default text container, or you can supply your own custom text container.

textContainerInset

The margins of the text container, designating the area within the contentSize
rectangle in which the text as a whole is drawn. Changing this value changes the
margins immediately, causing the text to be freshly laid out.

layoutManager

The text view’s layout manager (an NSLayoutManager instance).

textStorage

The text view’s text storage (an NSTextStorage instance).

When you initialize a text view with a custom text container, you hand it the entire
“stack” of Text Kit instances: a text container, a layout manager, and a text storage. In
the simplest and most common case, a text storage has a layout manager, and a layout

572 | Chapter 10: Text

manager has a text container, thus forming the “stack.” If the text container is a UIText‐
View’s text container, the stack is retained, and the text view is operative. Thus, the
simplest case might look like this:

let r = // frame for the new text view
let lm = NSLayoutManager()
let ts = NSTextStorage()
ts.addLayoutManager(lm)
let tc = NSTextContainer(size:CGSizeMake(r.width, CGFloat.max))
lm.addTextContainer(tc)
let tv = UITextView(frame:r, textContainer:tc)

Here’s what the three chief Text Kit classes do:
NSTextStorage

A subclass of NSMutableAttributedString. It is, or holds, the underlying text. It has
one or more layout managers, and notifies them when the text changes. By sub‐
classing and delegation (NSTextStorageDelegate), its behavior can be modified so
that it applies attributes in a custom fashion.

NSTextContainer
It is owned by a layout manager, and helps that layout manager by defining the
region in which the text is to be laid out. It does this in three primary ways:
Size

The text container’s top left is the origin for the text layout coordinate system,
and the text will be laid out within the text container’s rectangle.

Exclusion paths
The exclusionPaths property consists of UIBezierPath objects within which
no text is to be drawn.

Subclassing
By overriding lineFragmentRectForProposedRect:atIndex:writing-

Direction:remainingRect:, you can place each chunk of text drawing any‐
where at all (except inside an exclusion path).

NSLayoutManager
This is the master text drawing class! It has one or more text containers, and is
owned by a text storage — thus forming the Text Kit stack. It draws the text storage’s
text into the boundaries defined by the text container(s).

A layout manager can have a delegate (NSLayoutManagerDelegate), and can be
subclassed. This, as you may well imagine, is a powerful and sophisticated class.

Text Kit | 573

Text Container
An NSTextContainer has a size, within which the text will be drawn. By default, as in
the preceding code, a text view’s text container’s width is the width of the text view, while
its height is effectively infinite, allowing the drawing of the text to grow vertically but
not horizontally beyond the bounds of the text view, and making it possible to scroll the
text vertically.

It also has heightTracksTextView and widthTracksTextView properties, causing the
text container to be resized to match changes in the size of the text view — for example,
if the text view is resized because of interface rotation. By default, as you might expect,
widthTracksTextView is true (the documentation is wrong about this), while height-
TracksTextView is false: the text fills the width of the text view, and is laid out freshly
if the text view’s width changes, but its height remains effectively infinite. The text view
itself, of course, configures its own contentSize so that the user can scroll just to the
bottom of the existing text.

When you change a text view’s textContainerInset, it modifies its text container’s size
to match, as necessary. In the default configuration, this means that it modifies the text
container’s width; the top and bottom insets are implemented through the text con‐
tainer’s position within the content rect. Within the text container, additional side mar‐
gins correspond to the text container’s lineFragmentPadding; the default is 5, but you
can change it.

If the text view’s scrollEnabled is false, then by default its text container’s height-
TracksTextView and widthTracksTextView are both true, and the text container size
is adjusted so that the text fills the text view. In that case, you can also set the text
container’s lineBreakMode. This works like the line break mode of a UILabel. For ex‐
ample, if the line break mode is .ByTruncatingTail, then the last line has an ellipsis at
the end (if the text is too long for the text view). You can also set the text container’s
maximumNumberOfLines, which is like a UILabel’s numberOfLines. In effect, you’ve
turned the text view into a label!

But, of course, a nonscrolling text view isn’t just a label, because you’ve got access to the
Text Kit stack that backs it. For example, you can apply exclusion paths to the text
container. Figure 10-10 shows a case in point. The text wraps in longer and longer lines,
and then in shorter and shorter lines, because there’s an exclusion path on the right side
of the text container that’s a rectangle with a large V-shaped indentation.

In Figure 10-10, the text view (self.tv) is initially configured in the view controller’s
viewDidLoad:

self.tv.attributedText = // ...
self.tv.textContainerInset = UIEdgeInsetsMake(20, 20, 20, 0)
self.tv.scrollEnabled = false

574 | Chapter 10: Text

Figure 10-10. A text view with an exclusion path

The exclusion path is then drawn and applied in viewDidLayoutSubviews:

override func viewDidLayoutSubviews() {
 let sz = self.tv.textContainer.size
 let p = UIBezierPath()
 p.moveToPoint(CGPointMake(sz.width/4.0,0))
 p.addLineToPoint(CGPointMake(sz.width,0))
 p.addLineToPoint(CGPointMake(sz.width,sz.height))
 p.addLineToPoint(CGPointMake(sz.width/4.0,sz.height))
 p.addLineToPoint(CGPointMake(sz.width,sz.height/2.0))
 p.closePath()
 self.tv.textContainer.exclusionPaths = [p]
}

Instead of (or in addition to) an exclusion path, you can subclass NSTextContainer to
modify the rectangle in which the layout manager wants to position a piece of text. (Each
piece of text is actually a line fragment; I’ll explain in the next section what a line frag‐
ment is.) In Figure 10-11, the text is inside a circle.

To achieve the layout shown in Figure 10-11, I set the attributed string’s line break mode
to .ByCharWrapping (to bring the right edge of each line as close as possible to the
circular shape), and constructed the TextKit stack by hand to include an instance of my
NSTextContainer subclass:

let r = self.tv.frame
let lm = NSLayoutManager()
let ts = NSTextStorage()
ts.addLayoutManager(lm)
let tc = MyTextContainer(size:CGSizeMake(r.width, r.height))
lm.addTextContainer(tc)
let tv = UITextView(frame:r, textContainer:tc)

Text Kit | 575

Figure 10-11. A text view with a subclassed text container

That subclass contains this code, in which I simplemindedly increase each line frag‐
ment’s horizontal origin and decrease its width until its top edge fits entirely within a
circle:

override func lineFragmentRectForProposedRect(
 proposedRect: CGRect, atIndex characterIndex: Int,
 writingDirection baseWritingDirection: NSWritingDirection,
 remainingRect: UnsafeMutablePointer<CGRect>) -> CGRect {
 var result = super.lineFragmentRectForProposedRect(
 proposedRect, atIndex:characterIndex,
 writingDirection:baseWritingDirection,
 remainingRect:remainingRect)
 let r = CGRectMake(0,0,self.size.width,self.size.height)
 let circle = UIBezierPath(ovalInRect:r)
 while !circle.containsPoint(result.origin) {
 result.origin.x += 0.1
 }
 while !circle.containsPoint(
 CGPointMake(result.maxX, result.origin.y)) {
 result.size.width -= 0.1
 }
 return result
 }

Alternative Text Kit Stack Architectures
The default Text Kit stack is one text storage, which has one layout manager, which has
one text container. But a text storage can have multiple layout managers, and a layout
manager can have multiple text containers. What’s that all about?

If a layout manager has multiple text containers, the overflow from each text container
is drawn in the next one. For example, in Figure 10-12, there are two text views; the text
has filled the first text view, and has then continued by flowing into and filling the second

576 | Chapter 10: Text

Figure 10-12. A layout manager with two text containers

text view. As far as I can tell, the text views can’t be made editable in this configuration.
But clearly this is a way to achieve a multicolumn or multipage layout, or you could use
text views of different sizes for a magazine-style layout.

It is possible to achieve that arrangement by disconnecting the layout managers of ex‐
isting text views from their text containers and rebuilding the stack from below. How‐
ever, I think it’s probably safer to build the entire stack by hand:

let r = // frame
let r2 = // frame
let mas = // content
let ts1 = NSTextStorage(attributedString:mas)
let lm1 = NSLayoutManager()
ts1.addLayoutManager(lm1)
let tc1 = NSTextContainer(size:r.size)
lm1.addTextContainer(tc1)
let tv = UITextView(frame:r, textContainer:tc1)
tv.scrollEnabled = false
let tc2 = NSTextContainer(size:r2.size)
lm1.addTextContainer(tc2)
let tv2 = UITextView(frame:r2, textContainer:tc2)
tv2.scrollEnabled = false

If a text storage has multiple layout managers, then each layout manager is laying out
the same text. For example, in Figure 10-13, there are two text views displaying the same
text. The remarkable thing is that if you edit one text view, the other changes to match.
(That’s how Xcode lets you edit the same code file in different windows, tabs, or panes.)

Again, this arrangement is probably best achieved by building the entire text stack by
hand:

Text Kit | 577

Figure 10-13. A text storage with two layout managers

let r = // frame
let r2 = // frame
let mas = // content
let ts1 = NSTextStorage(attributedString:mas)
let lm1 = NSLayoutManager()
ts1.addLayoutManager(lm1)
let lm2 = NSLayoutManager()
ts1.addLayoutManager(lm2)
let tc1 = NSTextContainer(size:r.size)
let tc2 = NSTextContainer(size:r2.size)
lm1.addTextContainer(tc1)
lm2.addTextContainer(tc2)
let tv = UITextView(frame:r, textContainer:tc1)
let tv2 = UITextView(frame:r2, textContainer:tc2)

Layout Manager
The first thing to know about a layout manager is the geometry in which it thinks. To
envision a layout manager’s geometrical world, think in terms of glyphs and line
fragments:
Glyph

The drawn analog of a character. The layout manager’s primary job is to get glyphs
from a font and draw them.

Line fragment
A rectangle in which glyphs are drawn, one after another. (The reason it’s a line
fragment, and not just a line, is that a line might be interrupted by the text container’s
exclusion paths.)

A glyph has a location in terms of the line fragment into which it is drawn. A line
fragment’s coordinates are in terms of the text container. The layout manager can con‐
vert between these coordinate systems, and between text and glyphs. Given a range of

578 | Chapter 10: Text

text in the text storage, it knows where the corresponding glyphs are drawn in the text
container. Conversely, given a location in the text container, it knows what glyph is
drawn there and what range of text in the text storage that glyph represents.

What’s missing from that geometry is what, if anything, the text container corresponds
to in the real world. A text container is not, itself, a real rectangle in the real world; it’s
just a class that tells the layout manager a size to draw into. Making that rectangle
meaningful for drawing purposes is up to some other class outside the Text Kit stack.
A UITextView, for example, has a text container, which it shares with a layout manager.
The text view knows how its own content is scrolled and how the rectangle represented
by its text container is inset within that scrolling content. The layout manager, however,
doesn’t know anything about that; it sees the text container as a purely theoretical rec‐
tangular boundary. Only when the layout manager actually draws does it make contact
with the real world of some graphics context — and it must be told, on those occasions,
how the text container’s rectangle is offset within that graphics context.

To illustrate, I’ll use a TextKit method to learn the index of the first character visible at
the top left of a text view (self.tv); I’ll then use NSLinguisticTagger to derive the first
word visible at the top left of the text view. I can ask the layout manager what character
or glyph corresponds to a certain point in the text container, but what point should I
ask about? Translating from the real world to text container coordinates is up to me; I
must take into account both the scroll position of the text view’s content and the inset
of the text container within that content:

let off = self.tv.contentOffset
let top = self.tv.textContainerInset.top
var tctopleft = CGPointMake(0, off.y - top)

Now I’m speaking in terms of text container coordinates, which are layout manager
coordinates. One possibility is then to ask directly for the index (in the text storage’s
string) of the corresponding character:

var ix = self.tv.layoutManager.characterIndexForPoint(tctopleft,
 inTextContainer:self.tv.textContainer,
 fractionOfDistanceBetweenInsertionPoints:nil)

That, however, does not give quite the results one might intuitively expect. If any of a
word is poking down from above into the visible area of the text view, that is the word
whose first character is returned. I think we intuitively expect, if a word isn’t fully visible,
that the answer should be the word that starts the next line, which is fully visible. So I’ll
modify that code in a simpleminded way. I’ll obtain the index of the glyph at my initial
point; from this, I can derive the rect of the line fragment containing it. If that line
fragment is not at least three-quarters visible, I’ll add one line fragment height to the
starting point and derive the glyph index again. Then I’ll convert the glyph index to a
character index:

Text Kit | 579

var ix = self.tv.layoutManager.glyphIndexForPoint(tctopleft,
 inTextContainer:self.tv.textContainer,
 fractionOfDistanceThroughGlyph:nil)
let frag = self.tv.layoutManager.lineFragmentRectForGlyphAtIndex(
 ix, effectiveRange:nil)
if tctopleft.y > frag.origin.y + 0.5*frag.size.height {
 tctopleft.y += frag.size.height
 ix = self.tv.layoutManager.glyphIndexForPoint(tctopleft,
 inTextContainer:self.tv.textContainer,
 fractionOfDistanceThroughGlyph:nil)
}
let charRange = self.tv.layoutManager.characterRangeForGlyphRange(
 NSMakeRange(ix,0), actualGlyphRange:nil)
ix = charRange.location

Finally, I’ll use NSLinguisticTagger to get the range of the entire word to which this
character belongs:

let sch = NSLinguisticTagSchemeTokenType
let t = NSLinguisticTagger(tagSchemes:[sch], options:0)
t.string = self.tv.text
var r : NSRange = NSMakeRange(0,0)
let tag = t.tagAtIndex(ix, scheme:sch, tokenRange:&r, sentenceRange:nil)
if tag == NSLinguisticTagWord {
 println((self.tv.text as NSString).substringWithRange(r))
}

Clearly, the same sort of technique could be used to formulate a custom response to a
tap (“what word did the user just tap on?”).

By subclassing NSLayoutManager (and by implementing its delegate), many powerful
effects can be achieved. As a simple example, I’ll carry on from the preceding code by
drawing a rectangular outline around the word we just located. To make this possible,
I have an NSLayoutManager subclass, MyLayoutManager, an instance of which is built
into the Text Kit stack for this text view. MyLayoutManager has a public NSRange
property, wordRange. Having worked out what word I want to outline, I set the layout
manager’s wordRange and invalidate its drawing of that word, to force a redraw:

let lm = self.tv.layoutManager as MyLayoutManager
lm.wordRange = r
lm.invalidateDisplayForCharacterRange(r)

In MyLayoutManager, I’ve overridden the method that draws the background behind
glyphs. At the moment this method is called, there is already a graphics context.

First, I call super. Then, if the range of glyphs to be drawn includes the glyphs for the
range of characters in self.wordRange, I ask for the rect of the bounding box of those
glyphs, and stroke it to form the rectangle. As I mentioned earlier, the bounding box is
in text container coordinates, but now we’re drawing in the real world, so I have to
compensate by offsetting the drawn rectangle by the same amount that the text container

580 | Chapter 10: Text

is supposed to be offset in the real world; fortunately, the text view tells us (through the
origin: parameter) what that offset is:

override func drawBackgroundForGlyphRange(
 glyphsToShow: NSRange, atPoint origin: CGPoint) {
 super.drawBackgroundForGlyphRange(
 glyphsToShow, atPoint:origin)
 if self.wordRange.length == 0 {
 return
 }
 var range = self.glyphRangeForCharacterRange(
 self.wordRange, actualCharacterRange:nil)
 range = NSIntersectionRange(glyphsToShow, range)
 if range.length == 0 {
 return
 }
 if let tc = self.textContainerForGlyphAtIndex(
 range.location, effectiveRange:nil) {
 var r = self.boundingRectForGlyphRange(
 range, inTextContainer:tc)
 r.origin.x += origin.x
 r.origin.y += origin.y
 let c = UIGraphicsGetCurrentContext()
 CGContextSaveGState(c)
 CGContextSetStrokeColorWithColor(
 c, UIColor.blackColor().CGColor)
 CGContextSetLineWidth(c, 1.0)
 CGContextStrokeRect(c, r)
 CGContextRestoreGState(c)
 }
}

Text Kit Without a Text View
UITextView is the only built-in iOS class that has a Text Kit stack to which you are given
programmatic access. But that doesn’t mean it’s the only place where you can draw with
Text Kit! You can draw with Text Kit anywhere you can draw — that is, in any graphics
context (Chapter 2). When you do so, you should always call both drawBackgroundFor-
GlyphRange:atPoint: (the method I overrode in the previous example) and draw-
GlyphsForGlyphRange:atPoint:, in that order. The point: argument is where you
consider the text container’s origin to be within the current graphics context.

To illustrate, I’ll change the implementation of the StringDrawer class that I described
earlier in this chapter. Previously, StringDrawer’s drawRect: implementation told the
attributed string (self.attributedText) to draw itself:

Text Kit | 581

override func drawRect(rect: CGRect) {
 let r = rect.rectByOffsetting(dx: 0, dy: 2)
 let options = NSString.combine(
 .TruncatesLastVisibleLine, with:.UsesLineFragmentOrigin)
 self.attributedText.drawWithRect(r, options: options, context: nil)
}

Instead, I’ll construct the Text Kit stack and tell its layout manager to draw the text:

override func drawRect(rect: CGRect) {
 let lm = NSLayoutManager()
 let ts = NSTextStorage(attributedString:self.attributedText)
 ts.addLayoutManager(lm)
 let tc = NSTextContainer(size:rect.size)
 lm.addTextContainer(tc)
 tc.lineBreakMode = .ByTruncatingTail
 tc.lineFragmentPadding = 0
 let r = lm.glyphRangeForTextContainer(tc)
 lm.drawBackgroundForGlyphRange(r, atPoint:CGPointMake(0,2))
 lm.drawGlyphsForGlyphRange(r, atPoint:CGPointMake(0,2))
}

Building the entire Text Kit stack by hand may seem like overkill for that simple example,
but imagine what else I could do now that I have access to the entire Text Kit stack! I
can use properties, subclassing and delegation, and alternative stack architectures to
achieve customizations and effects that, before TextKit was migrated to iOS, were dif‐
ficult or impossible to achieve without dipping down to the level of Core Text.

For example, the two-column display of U.S. state names on the iPad shown in
Figure 10-14 was a Core Text example in early editions of this book, requiring 50 or 60
lines of elaborate C code, complicated by the necessity of flipping the context to prevent
the text from being drawn upside-down. Nowadays, it can be achieved easily through
Text Kit — effectively just by reusing code from earlier examples in this chapter.

Furthermore, the example from previous editions went on to describe how to make the
display of state names interactive, with the name of the tapped state briefly outlined
with a rectangle (Figure 10-15). With Core Text, this was almost insanely difficult, not
least because we had to keep track of all the line fragment rectangles ourselves. But it’s
easy with Text Kit, because the layout manager knows all the answers.

We have a UIView subclass, StyledText. In its layoutSubviews, it creates the Text Kit
stack — a layout manager with two text containers, to achieve the two-column layout
— and stores the whole stack, along with the rects at which the two text containers are
to be drawn, in properties:

override func layoutSubviews() {
 super.layoutSubviews()
 var r1 = self.bounds
 r1.origin.y += 2 // a little top space
 r1.size.width /= 2.0 // column 1

582 | Chapter 10: Text

Figure 10-14. Two-column text in small caps

Figure 10-15. The user has tapped on California

 var r2 = r1
 r2.origin.x += r2.size.width // column 2
 let lm = MyLayoutManager()
 let ts = NSTextStorage(attributedString:self.text)
 ts.addLayoutManager(lm)
 let tc = NSTextContainer(size:r1.size)
 lm.addTextContainer(tc)
 let tc2 = NSTextContainer(size:r2.size)
 lm.addTextContainer(tc2)
 self.lm = lm
 self.ts = ts
 self.tc = tc
 self.tc2 = tc2
 self.r1 = r1
 self.r2 = r2
}

Text Kit | 583

Our drawRect: is just like the previous example, except that we have two text containers
to draw:

override func drawRect(rect: CGRect) {
 let range1 = self.lm.glyphRangeForTextContainer(self.tc)
 self.lm.drawBackgroundForGlyphRange(range1, atPoint: self.r1.origin)
 self.lm.drawGlyphsForGlyphRange(range1, atPoint: self.r1.origin)
 let range2 = self.lm.glyphRangeForTextContainer(self.tc2)
 self.lm.drawBackgroundForGlyphRange(range2, atPoint: self.r2.origin)
 self.lm.drawGlyphsForGlyphRange(range2, atPoint: self.r2.origin)
}

So much for drawing the text! Now, when the user taps on our view, a tap gesture
recognizer’s action handler is called. We are using the same layout manager subclass
developed earlier in this chapter: it draws a rectangle around the glyphs corresponding
to the characters of its wordRange property. Thus, all we have to do in order to make the
flashing rectangle around the tapped word is work out what that range is, set the layout
manager’s wordRange and redraw ourselves, and then (after a short delay) set the layout
manager’s wordRange back to a zero range and redraw ourselves again to remove the
rectangle.

We start by working out which column the user tapped in; this tells us which text con‐
tainer it is, and what the tapped point is in text container coordinates:

var p = g.locationInView(self) // g is the tap gesture recognizer
var tc = self.tc
if !CGRectContainsPoint(self.r1, p) {
 tc = self.tc2
 p.x -= self.r1.size.width
}

Now we can ask the layout manager what glyph the user tapped on, and hence the whole
range of glyphs within the line fragment the user tapped in. If the user tapped to the left
of the first glyph or to the right of the last glyph, no word was tapped, and we return:

var f : CGFloat = 0
let ix = self.lm.glyphIndexForPoint(
 p, inTextContainer:tc, fractionOfDistanceThroughGlyph:&f)
var glyphRange : NSRange = NSMakeRange(0,0)
self.lm.lineFragmentRectForGlyphAtIndex(ix, effectiveRange:&glyphRange)
if ix == glyphRange.location && f == 0.0 {
 return
}
if ix == glyphRange.location + glyphRange.length - 1 && f == 1.0 {
 return
}

If the last glyph of the line fragment is a whitespace glyph, we don’t want to include it
in our rectangle, so we subtract it from the end of our range. Now we’re ready to convert

584 | Chapter 10: Text

to a character range, and thus we can learn the name of the state that the user tapped
on:

func lastCharIsControl () -> Bool {
 let lastCharRange = glyphRange.location + glyphRange.length - 1
 let property = self.lm.propertyForGlyphAtIndex(lastCharRange)
 let mask1 = property.rawValue
 let mask2 = NSGlyphProperty.ControlCharacter.rawValue
 return mask1 & mask2 != 0
}
while lastCharIsControl() {
 glyphRange.length -= 1
}
let characterRange =
 self.lm.characterRangeForGlyphRange(glyphRange, actualGlyphRange:nil)
let s = (self.text.string as NSString).substringWithRange(characterRange)

Finally, we flash the rectangle around the state name by setting and resetting the word-
Range property of the subclassed layout manager:

let lm = self.lm as MyLayoutManager
lm.wordRange = characterRange
self.setNeedsDisplay()
delay(0.3) {
 lm.wordRange = NSMakeRange(0, 0)
 self.setNeedsDisplay()
}

Text Kit | 585

CHAPTER 11

Web Views

A web view is a UIView subclass whose primary purpose is to act as a web browser;
therefore, it knows how to fetch resources from the Internet, and it understands and
can render text in HTML, along with associated information coded as CSS and Java‐
Script. Thus it is an asynchronous network communication engine on the one hand,
and a powerful engine for layout, animation, and media display on the other.

All of that power comes “for free” with a web view. It gives your app a browser interface,
comparable to Mobile Safari; you can just stand back and let it do its work. You don’t
have to know anything about networking. Links and other ancillary resources work
automatically. If your web view’s HTML refers to an image, the web view will fetch it
and display it. If the user taps on a link, the web view will fetch that content and display
it; if the link is to some sort of media (a sound or video file), the web view will allow the
user to play it.

A web view also knows how to display various other types of content commonly en‐
countered as Internet resources. For example, a web view is an excellent way to display
PDF files. It can also display documents in such formats as Microsoft Word (.doc
and .docx) and Pages. (A Pages file that is actually a bundle must be compressed to form
a single .pages.zip resource.)

A web view should also be able to display .rtf and (compressed) .rtfd files; as of this
writing, .rtf files are working in iOS 8.1, but .rtfd files are not. Apple suggests that
you convert to an attributed string (as I described in Chapter 10; specify a document
type of NSRTFDTextDocumentType), or use a QLPreviewController (Chapter 23).

Web view content is loaded asynchronously (gradually, in a thread of its own), and it
might not be loaded at all (because the user might not be connected to the Internet, the
server might not respond properly, and so on). If you’re loading a resource directly from

587

disk, loading is quick and nothing is going to go wrong; nevertheless, rendering the
content can take time, and even a resource loaded from disk, or content formed directly
as an HTML string, might refer to material out on the Internet that takes time to fetch.

Your app’s interface, however, is not blocked or frozen while the content is loading. On
the contrary, it remains accessible and operative; that’s what “asynchronous” means. The
web view, in fetching a web page and its linked components, is doing something quite
complex, involving both threading and network interaction — I’ll have a lot more to
say about this in Chapters 24 and 25 — but it shields you from this complexity. Your
own interaction with the web view stays on the main thread and is straightforward. You
ask the web view to load some content; then you sit back and let it worry about the
details.

In iOS 8, there are actually two web view objects: UIWebView, which has been around
since the earliest days of iOS, and WKWebView, the new kid on the block. The “WK”
in WKWebView stands for WebKit; confusingly, both WKWebView and UIWebView
use WebKit as their rendering engine, but WebKit is also the name of a framework that
is new in iOS 8. The arrival of the WebKit framework allows WKWebKit to perform
some cool tricks that UIWebKit can’t do.

Unfortunately, the new kid is having some teething pains; thus, depending on your use
case, you may not be able to take advantage of WKWebView’s cool new features. The
most obvious limitation is that, as of this writing, a URL pointing to resource on disk
— including inside your app’s bundle — will fail with a WKWebView. This is a pity,
because that’s a great use of a web view. For example, in my Latin flashcard app and my
Zotz! game, I present the Help documentation in a UIWebView just because it’s so
convenient for laying out styled text with pictures; the documentation comes from my
app bundle, so I can’t substitute a WKWebView. Another shortcoming of WKWebView
is that it can’t be instantiated from a nib.

Therefore, since you might be using either WKWebView or UIWebView, I will describe
both of them.

It is possible to design an entire app that is effectively nothing but a web view —
especially if you have control of the server with which the user is interacting. Indeed,
before the advent of iOS, an iPhone app was a web application. There are still iOS
apps that work this way, but such an approach to app design is outside the scope of
this book.

WKWebView
WKWebView is part of the WebKit framework; to use it, you’ll need to import Web-
Kit and create the web view in code. The designated initializer for WKWebView is

588 | Chapter 11: Web Views

init(frame:configuration:), where the configuration: is a WKWebView‐
Configuration. You can create a configuration beforehand:

let config = WKWebViewConfiguration()
// ... configure config here ...
let wv = WKWebView(frame: CGRectZero, configuration:config)

Alternatively, you can initialize your web view with init(frame:) to get a default con‐
figuration and modify it through the web view’s configuration property later:

let wv = WKWebView(frame: CGRectZero)
// ... configure wv.configuration here ...

Either way, you’ll probably want to perform configurations before the web view has a
chance to load any content, because some settings will affect how it loads or renders that
content.

Here are some of the more important WKWebViewConfiguration properties:
suppressesIncrementalRendering

If true, the web view’s visible content doesn’t change until all linked renderable
resources (such as images) have finished loading. The default is false.

allowsInlineMediaPlayback

If true, linked media are played inside the web page. The default is false (the
fullscreen player is used).

mediaPlaybackRequiresUserAction

If false, linked media are played automatically. The default is true.

preferences

A WKPreferences object. This is a simple value class (a glorified struct) embodying
three properties:

• minimumFontSize

• javaScriptEnabled

• javaScriptCanOpenWindowsAutomatically

userContentController

A WKUserContentController object. This is how you can inject JavaScript into a
web page and communicate between your code and the web page’s content. I’ll give
an example later.

Having created your web view, you’ll place it in your interface and, if necessary, size and
position it:

WKWebView | 589

self.view.addSubview(wv)
wv.setTranslatesAutoresizingMaskIntoConstraints(false)
self.view.addConstraints(
 NSLayoutConstraint.constraintsWithVisualFormat(
 "H:|[wv]|", options: nil, metrics: nil, views: ["wv":wv])
)
self.view.addConstraints(
 NSLayoutConstraint.constraintsWithVisualFormat(
 "V:|[wv]|", options: nil, metrics: nil, views: ["wv":wv])
)

A WKWebView is not a scroll view, but it has a scroll view (scrollView). You can use
this to scroll the web view’s content programatically; you can also get references to its
gesture recognizers, and add gesture recognizers of your own (see Chapter 7).

WKWebView Content
You can supply a web view with content in one of two forms:
An NSURLRequest

Formed with an NSURL, using init(URL:). (Recall that local file URLs are currently
not working for WKWebView!) Optionally, you can add a cache policy and a time‐
out interface, using init(URL:cachePolicy:timeoutInterval:). For additional
configuration, start with an NSMutableURLRequest; now you can set such prop‐
erties as allowsCellularAccess. When ready, call loadRequest:.

An HTML string
Prepare a string consisting of valid HTML, and call loadHTMLString:baseURL:.
(The baseURL: specifies how partial URLs in your HTML are to be resolved.)

For example, starting with a URL:

let url = NSURL(string: "http://www.apple.com")!
self.wv.loadRequest(NSURLRequest(URL:url))

Starting with an HTML string is useful particularly when you want to construct your
HTML programmatically or make changes to it before handing it to the web view. In
this example, I have a template file in my app bundle containing placeholders to be filled
in depending on the circumstances at runtime:

let templatepath = NSBundle.mainBundle().pathForResource(
 "htmlTemplate", ofType:"txt")!
let base = NSURL.fileURLWithPath(templatepath)!
var s = NSString(contentsOfFile:templatepath,
 encoding:NSUTF8StringEncoding, error:nil)!
let ss = // actual body content for this page
s = s.stringByReplacingOccurrencesOfString("<content>", withString:ss)
// ... additional modifications go here ...
self.wv.loadHTMLString(s, baseURL:base)

590 | Chapter 11: Web Views

Tracking Changes in a WKWebView
A WKWebView has properties that can be tracked with key–value observing, such as:

• loading

• estimatedProgress

• URL

• title

You can observe these properties to be notified as a web page loads or changes. For
example, as preparation to give the user feedback while a page is loading, I’ll put an
activity indicator (Chapter 12) in the center of my web view, keep a reference to it, and
observe the web view’s loading property:

let act = UIActivityIndicatorView(activityIndicatorStyle:.WhiteLarge)
act.backgroundColor = UIColor(white:0.1, alpha:0.5)
self.activity = act
wv.addSubview(act)
act.setTranslatesAutoresizingMaskIntoConstraints(false)
self.view.addConstraint(
 NSLayoutConstraint(
 item: act, attribute: .CenterX, relatedBy: .Equal,
 toItem: wv, attribute: .CenterX, multiplier: 1, constant: 0)
)
self.view.addConstraint(
 NSLayoutConstraint(
 item: act, attribute: .CenterY, relatedBy: .Equal,
 toItem: wv, attribute: .CenterY, multiplier: 1, constant: 0)
)
wv.addObserver(self, forKeyPath: "loading", options: .New, context: nil)

When the web view starts loading or stops loading, I’m notified, so I can show or hide
the activity view:

override func observeValueForKeyPath(keyPath: String,
 ofObject object: AnyObject, change: [NSObject : AnyObject],
 context: UnsafeMutablePointer<()>) {
 if let wv = object as? WKWebView {
 switch keyPath {
 case "loading":
 if let val:AnyObject = change[NSKeyValueChangeNewKey] {
 if let val = val as? Bool {
 if val {
 self.activity.startAnimating()
 } else {
 self.activity.stopAnimating()
 }
 }
 }

WKWebView | 591

 default:break
 }
 }
}

Do not forget to remove yourself as an observer as you go out of existence. If, as is
usually the case, this means also that the web view itself is going out of existence, I like
to stop any loading that it may be doing at that moment as well:

deinit {
 self.wv.removeObserver(self, forKeyPath: "loading")
 self.wv.stopLoading()
}

WKWebView Navigation
A WKWebView maintains a back and forward list of the URLs to which the user has
navigated. The list is its backForwardList, a WKBackForwardList, which is a collection
of read-only properties (and one method) such as:

• currentItem

• backItem

• forwardItem

• itemAtIndex:

Each item in the list is a WKBackForwardItem, a simple value class basically consisting
of a URL and a title.

The WKWebView itself responds to goBack, goForward and goToBackForwardList-
Item:, so you can tell it in code to navigate the list. Its properties canGoBack and canGo-
Forward are key–value observable; typically you would use that fact to enable or disable
a Back and Forward button in your interface in response to the list changing.

A WKWebView also has one settable property, allowsBackForwardNavigation-
Gestures. The default is false; if true, the user can supposedly swipe sideways to go
back and forward in the list, but I have not in fact been able to make this gesture.

To prevent or reroute navigation that the user tries to perform by tapping links, set
yourself as the WKWebView’s navigationDelegate (WKNavigationDelegate) and im‐
plement webView:decidePolicyForNavigationAction:decisionHandler:. You are
handed a decisionHandler closure which you must call, handing it a WKNavigation‐
ActionPolicy — either .Cancel or .Allow. You can examine the incoming navigation-
Action (a WKNavigationAction) to help make your decision. It has a request which is
the NSURLRequest we are proposing to perform — and you can look at its URL to see

592 | Chapter 11: Web Views

where we proposing to go — along with a navigationType which will be one of the
following (WKNavigationType):

• .LinkActivated

• .BackForward

• .Reload

• .FormSubmitted

• .FormResubmitted

• .Other

In this example, I permit navigation in the most general case — otherwise nothing would
ever appear in my web view! — but if the user taps a link, I forbid it and show that URL
in Mobile Safari instead:

func webView(webView: WKWebView,
 decidePolicyForNavigationAction navigationAction: WKNavigationAction,
 decisionHandler: ((WKNavigationActionPolicy) -> Void)) {
 if navigationAction.navigationType == .LinkActivated {
 let url = navigationAction.request.URL
 UIApplication.sharedApplication().openURL(url)
 decisionHandler(.Cancel)
 return
 }
 decisionHandler(.Allow)
}

Several other WKNavigationDelegate methods can notify you as a page loads (or fails
to load). Under normal circumstances, you’ll receive them in this order:

• webView:didStartProvisionalNavigation:

• webView:didCommitNavigation:

• webView:didFinishNavigation:

Those delegate methods, and all navigation commands, supply a WKNavigation object.
This object is completely opaque and has no properties, but you can use it in an equality
comparison to determine whether the navigations referred to in different methods are
the same navigation (roughly speaking, the same page-loading operation).

Communicating With a WKWebView Web Page
Your code can get messages into and out of a WKWebView’s web page, thus allowing
you to change the page’s contents or respond to changes within it, even while it is being
displayed.

WKWebView | 593

To send a message into an already loaded WKWebView web page, call evaluateJava-
Script:completionHandler:. Your JavaScript runs within the context of the web page.

In this example, the user is able to decrease the size of the text in the web page. We have
prepared some JavaScript that generates a <style> element containing CSS that sets the
font-size for the page’s <body> in accordance with a property, self.fontsize:

var fontsize = 18
var cssrule : String {
get {
 var s = "var s = document.createElement('style');\n"
 s += "s.textContent = '"
 s += "body { font-size: \(self.fontsize)px; }"
 s += "';\n"
 s += "document.documentElement.appendChild(s);\n"
 return s
}
}

When the user taps a button, we decrement self.fontsize, construct that JavaScript,
and send it to the web page:

func doDecreaseSize (sender:AnyObject) {
 self.fontsize -= 1
 let s = self.cssrule
 self.wv.evaluateJavaScript(s, completionHandler: nil)
}

That’s clever, but we have not done anything about setting the web page’s initial
font-size. A WKWebView allows us to inject JavaScript into the web page at the time
it is loaded. To do so, we use the userContentController of the WKWebView’s
configuration. We create a WKUserScript, specifying the JavaScript it contains, along
with an injectionTime which can be either before (.DocumentStart) or after
(.DocumentEnd) a page’s content has loaded. In this case, we want it to be before; other‐
wise, the user will see the font size change suddenly:

let s = self.cssrule
let script = WKUserScript(
 source: s, injectionTime: .AtDocumentStart, forMainFrameOnly: true)
self.wv.configuration.userContentController.addUserScript(script)

To communicate out of a web page, you need first to install a message handler to receive
the communication. Again, this involves the userContentController. You call add-
ScriptMessageHandler:name:, where the first argument is an object that must imple‐
ment the WKScriptMessageHandler protocol, so that its userContentController:did-
ReceiveScriptMessage: method can be called later:

self.wv.configuration.userContentController.addScriptMessageHandler(
 self, name: "playbutton")

594 | Chapter 11: Web Views

We have now installed a playbutton message handler. This means that the DOM for
our web page now contains an element, among its window.webkit.messageHandlers,
called playbutton. A message handler sends its message when it receives a post-
Message() function call. Thus, to sum up, self will get a call to its userContent-
Controller:didReceiveScriptMessage: method if JavaScript inside the web page calls
window.webkit.messageHandlers.playbutton.postMessage().

To make that actually happen, I’ve put an tag into my web page’s HTML, specifying
an image that will act as a tappable button:

<img src=\"listen.png\"
onclick=\"window.webkit.messageHandlers.playbutton.postMessage('play')\">

When the user taps that image, the message is posted, and so my code runs and I can
respond:

func userContentController(
 userContentController: WKUserContentController,
 didReceiveScriptMessage message: WKScriptMessage) {
 if message.name == "playbutton" {
 if let body = message.body as? String {
 if body == "play" {
 // ... do stuff here! ...
 }
 }
 }
}

There’s just one little problem: that code causes a retain cycle. The reason is that a
WKUserContentController leaks, and it retains the WKScriptMessageHandler, which
in this case is self — and so self will never be deallocated. My solution is to create an
intermediate trampoline object that can be harmlessly retained, and that has a weak
reference to self:

class MyMessageHandler : NSObject, WKScriptMessageHandler {
 weak var delegate : WKScriptMessageHandler?
 init(delegate:WKScriptMessageHandler) {
 self.delegate = delegate
 super.init()
 }
 func userContentController(
 userContentController: WKUserContentController,
 didReceiveScriptMessage message: WKScriptMessage) {
 delegate?.userContentController(
 userContentController, didReceiveScriptMessage: message)
 }
}

Now when I add myself as a script message handler, I do it by way of the trampoline
object:

WKWebView | 595

self.wv.configuration.userContentController.addScriptMessageHandler(
 MyMessageHandler(delegate:self), name: "playbutton")

The trampoline object leaks, but it’s an extremely lightweight object so it doesn’t matter
much. However, I can do even better; now that I’ve broken the retain cycle, my own
deinit is called, and I can release the offending objects:

deinit {
 self.wv.removeObserver(self, forKeyPath: "loading")
 self.wv.stopLoading()
 // break all retains
 self.wv.configuration.userContentController
 .removeAllUserScripts()
 self.wv.configuration.userContentController
 .removeScriptMessageHandlerForName("playbutton")
}

UIWebView
Despite the advent of WKWebView, you may find that you prefer to stay with UIWeb‐
View for now. It has some automatic features that WKWebView lacks; it can load content
using a file URL, including from inside your app bundle; and it works in connection
with view controller state restoration.

UIWebView’s back and forward list is much simpler than WKWebView’s; two proper‐
ties, canGoBack and canGoForward, and two methods, goBack and goForward, let you
interact with the list.

Like WKWebView, a UIWebView has a scrollView property.

A UIWebView is zoomable if its scalesToFit property is true. In that case, it initially
scales its content to fit, and the user can zoom the content; this includes use of the
gesture, familiar from Mobile Safari, whereby double-tapping part of a web page zooms
to that region of the page.

Like a text view (Chapter 10), a UIWebView’s dataDetectorTypes property lets you set
certain types of data to be automatically converted to tappable links.

The suppressesIncrementalRendering property is just like that of a WKWebView‐
Configuration.

UIWebView Content
Providing a UIWebView with content is much like providing a WKWebView with con‐
tent. You will need one of three things:
An NSURLRequest

Construct an NSURLRequest and call loadRequest:.

596 | Chapter 11: Web Views

An HTML string
Construct a string consisting of valid HTML and call loadHTMLString:baseURL:.

Data and a MIME type
Obtain an NSData object and call loadData:MIMEType:textEncodingName:base-
URL:.

UIWebView Navigation
A UIWebView’s delegate (UIWebViewDelegate) gets three messages that notify you of
the start and end of the loading process:

• webViewDidStartLoad:

• webViewDidFinishLoad:

• webView:didFailLoadWithError:

A web view’s loading property tells you whether it is in the process of loading a request.
If, at the time a web view is to be destroyed, its loading is YES, it is up to you to cancel
the request by sending it the stopLoading message first; actually, it does no harm to
send the web view stopLoading in any case. In addition, UIWebView is one of those
weird classes whose memory management behavior is odd: Apple’s documentation
warns that if you assign a UIWebView a delegate, you must nilify its delegate property
before releasing the web view. Thus, in a view controller class whose view contains a
web view, I do an extra little dance in deinit:

deinit {
 self.wv.stopLoading()
 self.wv.delegate = nil
}

A related problem is that a web view will sometimes leak memory. I’ve never understood
what causes this, but the workaround appears to be to load the empty string into the
web view:

override func viewWillDisappear(animated: Bool) {
 if self.isMovingFromParentViewController() {
 self.wv.loadHTMLString("", baseURL:nil)
 }
}

To customize what happens when content is about to load, implement the delegate
method webView:shouldStartLoadWithRequest:navigationType:. This is roughly
parallel to WKWebView’s webView:decidePolicyForNavigationAction:decision-
Handler:. If you return false, the content won’t load. The second parameter is an
NSURLRequest, whose URL property you can examine. The third parameter is a constant

UIWebView | 597

describing the type of navigation involved, whose value (UIWebViewNavigationType)
will be one of the following:

• .LinkClicked

• .BackForward

• .Reload

• .FormSubmitted

• .FormResubmitted

• .Other

This is the UIWebView equivalent of the WKWebView code I showed earlier:

func webView(webView: UIWebView,
 shouldStartLoadWithRequest r: NSURLRequest,
 navigationType nt: UIWebViewNavigationType) -> Bool {
 if nt == .LinkClicked { // disable link-clicking
 UIApplication.sharedApplication().openURL(r.URL)
 return false
 }
 return true
}

Communicating with a UIWebView
Communication from your code into a UIWebView’s content is similar to a WKWeb‐
View: you construct some JavaScript and call stringByEvaluatingJavaScriptFrom-
String:.

There is no provision for communication in the other direction, from the UIWebView’s
content to your code. What I do is misuse webView:shouldStartLoadWith-

Request:navigationType:. Recall my WKWebView example of a tappable image,
where my code is to be notified when the image is tapped. With UIWebView, I add an
onclick handler that uses a custom scheme:

document.location='play:me'

When the user taps the image, the web view delegate’s webView:shouldStartLoadWith-
Request:navigationType: gets an NSURLRequest play:me. That’s the signal telling
me that the user has tapped the Listen image:

func webView(webView: UIWebView,
 shouldStartLoadWithRequest r: NSURLRequest,
 navigationType nt: UIWebViewNavigationType) -> Bool {
 if r.URL.scheme == "play" {
 // ... do something ...
 return false

598 | Chapter 11: Web Views

 }
 // ...
 return true
}

Paginated Web Views
A UIWebView can break its content into pages, allowing the user to browse that content
in chunks by scrolling horizontally or vertically. This may seem an unaccustomed way
of viewing web pages, but as I mentioned earlier, a web view is good for content that is
not obviously a web page.

Configuration can be as simple as setting the web view’s paginationMode property:

self.wv.paginationMode = .LeftToRight

The result of that code is that the web view’s content is rendered into columns; instead
of scrolling down in one long single column to read the content, the user scrolls left or
right to see one screenful at a time. Scrolling does not automatically snap to pages, but
you can enable that through the web view’s scrollView:

self.wv.paginationMode = .LeftToRight
self.wv.scrollView.pagingEnabled = true

You can set the page size (pageLength, the same as the viewport size by default) and the
gap between pages (gapBetweenPages, 0 by default).

UIWebView State Restoration
If you provided an HTML string to your web view, then restoring its state when the app
is relaunched is up to you; you can use the built-in state saving and restoration to help
you, but you’ll have to do all the work yourself. The web view has a scrollView which
has a contentOffset, so it’s easy to save the scroll position in encodeRestorableState-
WithCoder:, and restore it in decodeRestorableStateWithCoder:. In this example, I
use a property (self.oldOffset) which is an NSValue wrapping a CGPoint:

override func encodeRestorableStateWithCoder(coder: NSCoder) {
 super.encodeRestorableStateWithCoder(coder)
 let off = self.wv.scrollView.contentOffset
 coder.encodeObject(NSValue(CGPoint:off), forKey:"oldOffset")
}
override func decodeRestorableStateWithCoder(coder: NSCoder) {
 super.decodeRestorableStateWithCoder(coder)
 self.oldOffset = coder.decodeObjectForKey("oldOffset") as? NSValue
}

Observe that I have not yet set the contentOffset of the UIWebView’s scrollView.
That’s because we don’t yet have any content! In viewDidAppear:, we load the content
manually; when the content has loaded, we set its scroll position:

UIWebView | 599

func webViewDidFinishLoad(wv: UIWebView) {
 if self.oldOffset != nil {
 wv.scrollView.contentOffset = self.oldOffset!.CGPointValue()
 }
 self.oldOffset = nil
}

If, however, the web view had a URL request (not an HTML string) when the user left
the app, then the state restoration mechanism will automatically restore that request,
in the web view’s request property, along with its Back and Forward lists. To restore
the web view’s actual content, simply send it the reload message. The web view will
then restore its old contents and its old scroll position! A good place to do this is
applicationFinishedRestoringState:

override func applicationFinishedRestoringState() {
 if self.wv.request != nil {
 self.wv.reload()
 }
}

I have not discovered any evidence that WKWebView participates in state restoration
— and you can’t readily hack your way around this, because a WKWebView’s back-
ForwardList is not writable — so this could be a good reason for preferring to stick
with UIWebView.

Developing Web View Content
Before designing the HTML to be displayed in a web view, you might want to read up
on the brand of HTML native to the mobile WebKit rendering engine. There are certain
limitations; for example, mobile WebKit notoriously doesn’t use plug-ins, such as Flash,
and it imposes limits on the size of resources (such as images) that it can display. On
the plus side, WebKit is in the forefront of the march toward HTML 5 and CSS 3, and
has many special capabilities suited for display on a mobile device. For documentation
and other resources, see Apple’s Safari Dev Center.

A good place to start is the Safari Web Content Guide. It contains links to other relevant
documentation, such as the Safari CSS Visual Effects Guide, which describes some things
you can do with WebKit’s implementation of CSS3 (like animations), and the Safari
HTML5 Audio and Video Guide, which describes WebKit’s audio and video player sup‐
port.

If nothing else, you’ll want to be aware of one important aspect of web page content —
the viewport. This is typically set through a <meta> tag in the <head> area. For example:

<meta name="viewport" content="initial-scale=1.0, user-scalable=no">

Without that line, or something similar, a web page may be laid out incorrectly when it
is rendered. This is noticeable especially if the web view changes size (perhaps because

600 | Chapter 11: Web Views

Figure 11-1. The Web Inspector inspects an app running in the Simulator

the app’s interface rotates): in one orientation or the other, the page will be too wide for
the web view, and the user has to scroll horizontally to read it. The Safari Web Content
Guide explains why: if no viewport is specified, the viewport can change when the app
rotates. Setting the initial-scale causes the viewport size to adopt correct values in
both orientations.

Another important section of the Safari Web Content Guide describes how you can use
a media attribute in the <link> tag that loads your CSS to load different CSS depending
on what kind of device your app is running on. For example, you might have one CSS
file that lays out your web view’s content on an iPhone, and another that lays it out on
an iPad.

Inspecting, debugging, and experimenting with web view content is greatly eased by the
Web Inspector, built into Safari on the desktop. It can see a web view in your app running
in the Simulator, and lets you analyze every aspect of how it works. For example, in
Figure 11-1, I’m examining an image to see how it is sized and scaled.

Moreover, the Web Inspector lets you change your web view’s content in real time, with
many helpful features such as CSS autocompletion; this can be a better way to discover
WebKit CSS features than the documentation, which isn’t always kept up to date. For
example, your web view can display Dynamic Type fonts, as discussed in Chapter 10,
by setting the font CSS property to -apple-system-body and so forth; but, as of this
writing, the only way to discover that is apparently through the Web Inspector’s auto‐
completion.

Developing Web View Content | 601

JavaScript and the document object model (DOM) are also extremely powerful. Event
listeners allow JavaScript code to respond directly to touch and gesture events, so that
the user can interact with elements of a web page much as if they were touchable views;
it can also take advantage of Core Location and Core Motion facilities to respond to
where the user is on earth and how the device is positioned (Chapter 22). Additional
helpful documentation includes Apple’s WebKit DOM Programming Topics and Safari
DOM Additions Reference.

602 | Chapter 11: Web Views

CHAPTER 12

Controls and Other Views

This chapter discusses all UIView subclasses provided by UIKit that haven’t been dis‐
cussed already. It’s remarkable how few of them there are; UIKit exhibits a notable
economy of means in this regard.

Additional UIView subclasses, as well as UIViewController subclasses that create in‐
terface, are provided by other frameworks. There will be lots of examples in Part III.
For example, the Map Kit framework provides the MKMapView (Chapter 21); and the
MessageUI framework provides MFMailComposeViewController, which supplies a
user interface for composing and sending a mail message (Chapter 20).

UIActivityIndicatorView
An activity indicator (UIActivityIndicatorView) appears as the spokes of a small wheel.
 You set the spokes spinning with startAnimating, giving the user a sense that some
time-consuming process is taking place. You stop the spinning with stopAnimating. If
the activity indicator’s hidesWhenStopped is true (the default), it is visible only while
spinning.

An activity indicator comes in a style, its activityIndicatorViewStyle; if it is created
in code, you’ll set its style with init(activityIndicatorStyle:). Your choices
(UIActivityIndicatorViewStyle) are:

• .WhiteLarge

• .White

• .Gray

An activity indicator has a standard size, which depends on its style. Changing its size
in code changes the size of the view, but not the size of the spokes. For bigger spokes,
you can resort to a scale transform.

603

Figure 12-1. A large activity indicator

You can assign an activity indicator a color; this overrides the color assigned through
the style. An activity indicator is a UIView, so you can set its backgroundColor; a nice
effect is to give an activity indicator a contrasting background color and to round its
corners by way of the view’s layer (Figure 12-1).

Here’s some code from a UITableViewCell subclass in one of my apps. In this app, it
takes some time, after the user taps a cell to select it, for me to construct the next view
and navigate to it; to cover the delay, I show a spinning activity indicator in the center
of the cell while it’s selected:

override func setSelected(selected: Bool, animated: Bool) {
 super.setSelected(selected, animated: animated)
 if selected {
 let v = UIActivityIndicatorView(activityIndicatorStyle:.WhiteLarge)
 v.color = UIColor.yellowColor()
 dispatch_async(dispatch_get_main_queue()) {
 v.backgroundColor = UIColor(white:0.2, alpha:0.6)
 }
 v.layer.cornerRadius = 10
 v.frame = v.frame.rectByInsetting(dx: -10, dy: -10)
 let cf = self.contentView.convertRect(self.bounds, fromView:self)
 v.center = CGPointMake(cf.midX, cf.midY);
 v.tag = 1001
 self.contentView.addSubview(v)
 v.startAnimating()
 } else {
 if let v = self.viewWithTag(1001) {
 v.removeFromSuperview()
 }
 }
}

If activity involves the network, you might want to set UIApplication’s networkActivity-
IndicatorVisible to true. This displays a small spinning activity indicator in the status
bar. The indicator is not reflecting actual network activity; if it’s visible, it’s spinning. Be
sure to set it back to false when the activity is over.

An activity indicator is simple and standard, but you can’t change the way it’s drawn.
One obvious alternative would be a UIImageView with an animated image, as described
in Chapter 4.

604 | Chapter 12: Controls and Other Views

Figure 12-2. A progress view

UIProgressView
A progress view (UIProgressView) is a “thermometer,” graphically displaying a per‐
centage. It is often used to represent a time-consuming process whose percentage of
completion is known (if the percentage of completion is unknown, you’re more likely
to use an activity indicator). But it’s good for static percentages too. In one of my apps,
I use a progress view to show the current position within the song being played by the
built-in music player; in another app, which is a card game, I use a progress view to
show how many cards are left in the deck.

A progress view comes in a style, its progressViewStyle; if the progress view is created
in code, you’ll set its style with init(progressViewStyle:). Your choices (UIProgress‐
ViewStyle) are:

• .Default

• .Bar

A .Bar progress view is intended for use in a UIBarButtonItem, as the title view of a
navigation item, and so on. Both styles by default draw the thermometer extremely thin
— just 2 pixels and 3 pixels, respectively. (Figure 12-2 shows a .Default progress view.)
Changing a progress view’s frame height directly has no visible effect on how the ther‐
mometer is drawn. Under autolayout, to make a thicker thermometer, supply a height
constraint with a larger value (thus overriding the intrinsic content height). Alterna‐
tively, subclass UIProgressView and override sizeThatFits:.

The fullness of the thermometer is the progress view’s progress property. This is a value
between 0 and 1, inclusive; you’ll usually need to do some elementary arithmetic in
order to convert from the actual value you’re reflecting to a value within that range. (It
is also a Float; in Swift, you may have to cast explicitly.) For example, to reflect the
number of cards remaining in a deck of 52 cards:

let r = self.deck.cards().count
self.prog.progress = Float(r) / 52

A change in progress value can be animated by calling setProgress:animated:.

The default color of the filled portion of a progress view is the tintColor (which may
be inherited from higher up the view hierarchy). The default color for the unfilled por‐
tion is gray for a .Default progress view and transparent for a .Bar progress view. You

UIProgressView | 605

Figure 12-3. A thicker progress view using a custom progress image

can customize the colors; set the progress view’s progressTintColor and trackTint-
Color, respectively. This can also be done in the nib.

In theory, you should alternatively be able to customize the image used to draw the filled
portion of the progress view, its progressImage, along with the image used to draw the
unfilled portion, the trackImage. This can also be done in the nib. Each image must be
stretched to the length of the filled or unfilled area, so you’ll want to use a resizable
image.

Here’s a simple example from one of my apps (Figure 12-3):

self.prog.backgroundColor = UIColor.blackColor()
self.prog.trackTintColor = UIColor.blackColor()
UIGraphicsBeginImageContextWithOptions(CGSizeMake(10,10), true, 0)
let con = UIGraphicsGetCurrentContext()
CGContextSetFillColorWithColor(con, UIColor.yellowColor().CGColor)
CGContextFillRect(con, CGRectMake(0, 0, 10, 10))
let r = CGRectInset(CGContextGetClipBoundingBox(con),1,1)
CGContextSetLineWidth(con, 2)
CGContextSetStrokeColorWithColor(con, UIColor.blackColor().CGColor)
CGContextStrokeRect(con, r)
CGContextStrokeEllipseInRect(con, r)
let im =
 UIGraphicsGetImageFromCurrentImageContext()
 .resizableImageWithCapInsets(
 UIEdgeInsetsMake(4, 4, 4, 4), resizingMode:.Stretch)
UIGraphicsEndImageContext()
self.prog.progressImage = im

I say “in theory” because that code, which worked for years up through iOS 7.0, broke
in iOS 7.1 and hasn’t worked since then. Of course I regard this as a huge bug. A possible
workaround, which is extremely fragile and hacky, is to try to find the UIImageView
that is intended to hold the UIProgressView’s progressImage and set its image directly:

let ims =
 self.prog.subviews.filter {$0 is UIImageView}.map {$0 as UIImageView}
ims[1].image = im // progressImage

For maximum flexibility, you can design your own UIView subclass that draws some‐
thing similar to a thermometer. Figure 12-4 shows a simple custom thermometer view;
it has a value property, and you set this to something between 0 and 1 and call setNeeds-
Display to make the view redraw itself. Here’s its drawRect: code:

606 | Chapter 12: Controls and Other Views

Figure 12-4. A custom progress view

override func drawRect(rect: CGRect) {
 let c = UIGraphicsGetCurrentContext()
 UIColor.whiteColor().set()
 let ins : CGFloat = 2.0
 let r = self.bounds.rectByInsetting(dx: ins, dy: ins)
 let radius : CGFloat = r.size.height / 2.0
 let mpi = CGFloat(M_PI)
 let path = CGPathCreateMutable()
 CGPathMoveToPoint(path, nil, r.maxX - radius, ins)
 CGPathAddArc(path, nil,
 radius+ins, radius+ins, radius, -mpi/2.0, mpi/2.0, true)
 CGPathAddArc(path, nil,
 r.maxX - radius, radius+ins, radius, mpi/2.0, -mpi/2.0, true)
 CGPathCloseSubpath(path)
 CGContextAddPath(c, path)
 CGContextSetLineWidth(c, 2)
 CGContextStrokePath(c)
 CGContextAddPath(c, path)
 CGContextClip(c)
 CGContextFillRect(c, CGRectMake(
 r.origin.x, r.origin.y, r.size.width * self.value, r.size.height))
}

UIPickerView
A picker view (UIPickerView) displays selectable choices using a rotating drum meta‐
phor. It has a standard legal range of possible heights, which is undocumented but seems
to be between 162 and 180; its width is largely up to you. Each drum, or column, is called
a component.

Your code configures the UIPickerView’s content through its data source (UIPicker‐
ViewDataSource) and delegate (UIPickerViewDelegate), which are usually the same
object. Your data source and delegate must answer questions similar to those posed by
a UITableView (Chapter 8):
numberOfComponentsInPickerView: (data source)

How many components (drums) does this picker view have?

pickerView:numberOfRowsInComponent: (data source)
How many rows does this component have? The first component is numbered 0.

UIPickerView | 607

pickerView:titleForRow:forComponent:
pickerView:attributedTitleForRow:forComponent:
pickerView:viewForRow:forComponent:reusingView: (delegate)

What should this row of this component display? The first row is numbered 0. You
can supply a simple string, an attributed string (Chapter 10), or an entire view such
as a UILabel; but you should supply every row of every component the same way.
The reusingView: parameter, if not nil, is supposed to be a view that you supplied
for a row now no longer visible, giving you a chance to reuse it, much as cells are
reused in a table view.

In actual fact, the reusingView: parameter is always nil; views are not reused. They
don’t leak — they go out of existence in good order when they are no longer visible
— but they aren’t reused either. I regard this as a bug.

Here’s the code for a UIPickerView (Figure 12-5) that displays the names of the
50 U.S. states, stored in an array. We implement pickerView:viewForRow:for-
Component:reusingView: just because it’s the most interesting case; as our views, we
supply UILabel instances. The state names appear centered because the labels are cen‐
tered within the picker view:

func numberOfComponentsInPickerView(pickerView: UIPickerView) -> Int {
 return 1
}
func pickerView(pickerView: UIPickerView,
 numberOfRowsInComponent component: Int) -> Int {
 return 50
}
func pickerView(pickerView: UIPickerView, viewForRow row: Int,
 forComponent component: Int, reusingView view: UIView!) -> UIView {
 var lab : UILabel
 if let label = view as? UILabel { // never happens
 lab = label
 } else {
 lab = UILabel()
 }
 lab.text = self.states[row]
 lab.backgroundColor = UIColor.clearColor()
 lab.sizeToFit()
 return lab
}

The delegate may further configure the UIPickerView’s physical appearance by means
of these methods:

608 | Chapter 12: Controls and Other Views

Figure 12-5. A picker view

• pickerView:rowHeightForComponent:

• pickerView:widthForComponent:

The delegate may implement pickerView:didSelectRow:inComponent: to be notified
each time the user spins a drum to a new position. You can also query the picker view
directly by sending it selectedRowInComponent:.

You can set the value to which any drum is turned using selectRow:in-

Component:animated:. Other handy picker view methods allow you to request that the
data be reloaded, and there are properties and methods to query the picker view’s con‐
tents (though of course they do not relieve you of responsibility for knowing the data
model from which the picker view’s contents are supplied):

• reloadComponent:

• reloadAllComponents

• numberOfComponents

• numberOfRowsInComponent:

• viewForRow:forComponent:

By implementing pickerView:didSelectRow:inComponent: and using reload-

Component:, you can make a picker view where the values displayed by one drum depend
dynamically on what is selected in another. For example, one can imagine expanding
our U.S. states example to include a second drum listing major cities in each state; when
the user switches to a different state in the first drum, a different set of major cities
appears in the second drum.

UISearchBar
A search bar (UISearchBar) is essentially a wrapper for a text field; it has a text field as
one of its subviews, though there is no official access to it. It is displayed by default as a
rounded rectangle containing a magnifying glass icon, where the user can enter text

UISearchBar | 609

Figure 12-6. A search bar with a search results button

(Figure 12-6). It does not, of itself, do any searching or display the results of a search; a
common interface involves displaying the results of a search as a table, and the UI‐
SearchController class makes this easy to do (see Chapter 8).

A search bar’s current text is its text property. It can have a placeholder, which appears
when there is no text. A prompt can be displayed above the search bar to explain its
purpose. Delegate methods (UISearchBarDelegate) notify you of editing events; for
their use, compare the text field and text view delegate methods discussed in Chapter 10:

• searchBarShouldBeginEditing:

• searchBarTextDidBeginEditing:

• searchBar:textDidChange:

• searchBar:shouldChangeTextInRange:replacementText:

• searchBarShouldEndEditing:

• searchBarTextDidEndEditing:

A search bar has a barStyle, for which your choices and their default appearances are
(UIBarStyle):

• .Default, a flat light gray background and a white search field
• .Black, a black background and a black search field

In addition, there’s a searchBarStyle property (UISearchBarStyle):

• .Default, as already described
• .Prominent, identical to .Default
• .Minimal, transparent background and dark transparent search field

Alternatively, you can set a search bar’s barTintColor to change its background color;
if the bar style is .Black, the barTintColor will also tint the search field itself. An opaque
barTintColor is a way to make a search bar opaque. The tintColor property, mean‐
while, whose value may be inherited from higher up the view hierarchy, governs the
color of search bar components such as the Cancel button title and the flashing insertion
cursor.

610 | Chapter 12: Controls and Other Views

A search bar can also have a custom backgroundImage; this will be treated as a resizable
image. The full setter method is setBackgroundImage:forBarPosition:bar-

Metrics:; I’ll talk later about what bar position and bar metrics are. The background-
Image overrides all other ways of determining the background, and the search bar’s
backgroundColor, if any, appears behind it — though under some circumstances, if the
search bar’s translucent is false, the barTintColor may appear behind it instead.

The search field area where the user enters text can be offset with respect to its back‐
ground, using the searchFieldBackgroundPositionAdjustment property; you might
do this, for example, if you had enlarged the search bar’s height and wanted to position
the search field within that height. The text can be offset within the search field with the
searchTextPositionAdjustment property.

You can also replace the image of the search field itself; this is the image that is normally
a rounded rectangle. To do so, call setSearchFieldBackgroundImage:forState:. Ac‐
cording to the documentation, the possible state: values are .Normal

and .Disabled; but the API provides no way to disable a search field, so what does Apple
have in mind here? The only way I’ve found is to cycle through the search bar’s subviews,
find the text field, and disable that:

for v in (self.sb.subviews[0] as UIView).subviews as [UIView] {
 if let tf = v as? UITextField {
 tf.enabled = false
 break
 }
}

The search field image will be drawn vertically centered in front of the background and
behind the contents of the search field (such as the text); its width will be adjusted for
you, but it is up to you choose an appropriate height, and to ensure an appropriate color
in the middle so the user can read the text.

A search bar displays an internal cancel button automatically (normally an X in a circle)
if there is text in the search field. Internally, at its right end, a search bar may display a
search results button (showsSearchResultsButton), which may be selected or not
(searchResultsButtonSelected), or a bookmark button (showsBookmarkButton); if
you ask to display both, you’ll get the search results button. These buttons vanish if text
is entered in the search bar so that the cancel button can be displayed. There is also an
option to display a Cancel button externally (showsCancelButton, or call setShows-
CancelButton:animated:). The internal cancel button works automatically to remove
whatever text is in the field; the other buttons do nothing, but delegate methods notify
you when they are tapped:

• searchBarResultsListButtonClicked:

• searchBarBookmarkButtonClicked:

UISearchBar | 611

• searchBarCancelButtonClicked:

You can customize the images used for the search icon (a magnifying glass, by default)
and any of the internal right icons (the internal cancel button, the search results button,
and the bookmark button) with setImage:forSearchBarIcon:state:. The images will
be resized for you, except for the internal cancel button, for which about 20×20 seems
to be a good size. The icons are specified with constants (UISearchBarIcon):

• .Search

• .Clear (the internal cancel button)
• .Bookmark

• .ResultsList

The documentation says that the possible state: values are .Normal and .Disabled,
but this is wrong; the choices are .Normal and .Highlighted. The highlighted image
appears while the user taps on the icon (except for the search icon, which isn’t a button).
If you don’t supply a normal image, the default image is used; if you supply a normal
image but no highlighted image, the normal image is used for both. Setting search-
ResultsButtonSelected to true reverses the search results button’s behavior: it displays
the highlighted image, but when the user taps it, it displays the normal image.

The position of an icon can be adjusted with setPositionAdjustment:forSearchBar-
Icon:.

A search bar may also display scope buttons (see the example in Chapter 8). These are
intended to let the user alter the meaning of the search; precisely how you use them is
up to you. To make the scope buttons appear, use the showsScopeBar property; the
button titles are the scopeButtonTitles property, and the currently selected scope
button is the selectedScopeButtonIndex property. The delegate is notified when the
user taps a different scope button:

• searchBar:selectedScopeButtonIndexDidChange:

The overall look of the scope bar can be heavily customized. Its background is the scope-
BarBackgroundImage, which will be stretched or tiled as needed. To set the background
of the smaller area constituting the actual buttons, call setScopeBarButtonBackground-
Image:forState:; the states are .Normal and .Selected. If you don’t supply a separate
selected image, a darkened version of the normal image is used. If you don’t supply a
resizable image, the image will be made resizable for you; the runtime decides what
region of the image will be stretched behind each button.

The dividers between the buttons are normally vertical lines, but you can customize
them as well: call setScopeBarButtonDividerImage:forLeftSegmentState:right-

612 | Chapter 12: Controls and Other Views

Figure 12-7. A horrible search bar

SegmentState:. A full complement of dividers consists of three images, one when the
buttons on both sides of the divider are normal (unselected) and one each when a button
on one side or the other is selected; if you supply an image for just one state combination,
it is used for the other two state combinations. The height of the divider image is adjusted
for you, but the width is not; you’ll normally use an image just a few pixels wide.

The font attributes of the titles of the scope buttons can customized by calling setScope-
BarButtonTitleTextAttributes:forState:. The attributes: argument is an
NSAttributedString attributes dictionary.

It may appear that there is no way to customize the external Cancel button, but in
fact, although you’ve no official direct access to it through the search bar, the Cancel
button is a UIBarButtonItem and you can customize it using the UIBarButtonItem
appearance proxy, discussed later in this chapter.

By combining the various customization possibilities, a completely unrecognizable
search bar of inconceivable ugliness can easily be achieved (Figure 12-7). Let’s be careful
out there.

The problem of allowing the keyboard to appear without hiding the search bar is exactly
as for a text field (Chapter 10). Text input properties of the search bar configure its
keyboard and typing behavior like a text field as well:

• keyboardType

• autocapitalizationType

• autocorrectionType

• spellCheckingType

• inputAccessoryView

When the user taps the Search key in the keyboard, the delegate is notified, and it is
then up to you to dismiss the keyboard (resignFirstResponder) and perform the
search:

UISearchBar | 613

• searchBarSearchButtonClicked:

A common interface is a search bar at the top of the screen. On the iPad, a search bar
can be embedded as a bar button item’s view in a toolbar at the top of the screen. On
the iPhone, a search bar can be a navigation item’s titleView. In Chapter 9, I gave an
example of a search bar in a navigation bar. A search bar used in this way, however, has
some limitations: for example, there may be no room for a prompt, scope buttons, or
an external Cancel button, and you might not be able to assign it a background image
or change its barTintColor.

Alternatively, a UISearchBar can itself function as a top bar, like a navigation bar without
being in a navigation bar. If you use a search bar in this way, you’ll want its height to be
extended automatically under the status bar; I’ll explain later in this chapter how to
arrange that.

UIControl
UIControl is a subclass of UIView whose chief purpose is to be the superclass of several
further built-in classes (controls) and to endow them with common behavior.

The most important thing that controls have in common is that they automatically track
and analyze touch events (Chapter 5) and report them to your code as significant control
events by way of action messages. Each control implements some subset of the possible
control events. The full set of control events is listed under UIControlEvents in the
Constants section of the UIControl class documentation:

• .TouchDown

• .TouchDownRepeat

• .TouchDragInside

• .TouchDragOutside

• .TouchDragEnter

• .TouchDragExit

• .TouchUpInside

• .TouchUpOutside

• .TouchCancel

• .ValueChanged

• .EditingDidBegin

• .EditingChanged

• .EditingDidEnd

614 | Chapter 12: Controls and Other Views

• .EditingDidEndOnExit

• .AllTouchEvents

• .AllEditingEvents

• .AllEvents

The control events also have informal names that are visible in the Connections in‐
spector when you’re editing a nib. I’ll mostly use the informal names in the next couple
of paragraphs.

Control events fall roughly into three groups: the user has touched the screen (Touch
Down, Touch Drag Inside, Touch Up Inside, etc.), edited text (Editing Did Begin, Ed‐
iting Changed, etc.), or changed the control’s value (Value Changed).

Apple’s documentation is rather coy about which controls normally emit actions for
which control events, so here’s a list obtained through experimentation (but keep in
mind that Apple’s silence on this matter may mean that the details are subject to change):
UIButton

All “Touch” events.

UIDatePicker
Value Changed.

UIPageControl
All “Touch” events, Value Changed.

UIRefreshControl
Value Changed.

UISegmentedControl
Value Changed.

UISlider
All “Touch” events, Value Changed.

UISwitch
All “Touch” events, Value Changed.

UIStepper
All “Touch” events, Value Changed.

UITextField
All “Touch” events except the “Up” events, and all “Editing” events (see Chapter 10
for details).

UIControl (generic)
All “Touch” events.

UIControl | 615

Touch Inside and Touch Outside
There is no explicit “Touch Down Inside” event, because any sequence of “Touch” events
begins with “Touch Down,” which must be inside the control. If it weren’t, this sequence
of touches would not “belong” to this control, and there would be no control events at
all!

When the user taps within a control and starts dragging, the “Inside” events are triggered
even after the drag moves outside the control’s bounds. But after a certain distance from
the control is exceeded, an invisible boundary is crossed, Touch Drag Exit is triggered,
and now “Outside” events are reported until the drag crosses back within the invisible
boundary, at which point Touch Drag Enter is triggered and the “Inside” events are
reported again. In the case of a UIButton, the crossing of this invisible boundary is
exactly when the button automatically unhighlights (as the drag exits). Thus, to catch a
legitimate button press, you probably want to consider only Touch Up Inside.

For other controls, there may be some slight complications. For example, a UISwitch
will unhighlight when a drag reaches a certain distance from it, but the touch is still
considered legitimate and can still change the UISwitch’s value; therefore, when the
user’s finger leaves the screen, the UISwitch reports a Touch Up Inside event, even while
reporting Touch Drag Outside events.

For each control event that you want to hear about automatically, you attach to the
control one or more target–action pairs. You can do this in the nib or in code.

For any given control, each control event and its target–action pairs form a dispatch
table. The following methods permit you to manipulate and query the dispatch table:

• addTarget:action:forControlEvents:

• removeTarget:action:forControlEvents:

• actionsForTarget:forControlEvent:

• allTargets

• allControlEvents (a bitmask of control events to which a target–action pair is
attached)

An action method (the method that will be called on the target when the control event
occurs) may adopt any of three signatures, whose parameters are:

• The control and the UIEvent
• The control only
• No parameters

616 | Chapter 12: Controls and Other Views

The second signature is by far the most common. It’s unlikely that you’d want to dispense
altogether with the parameter telling you which control sent the control event. On the
other hand, it’s equally unlikely that you’d want to examine the original UIEvent that
triggered this control event, since control events deliberately shield you from dealing
with the nitty-gritty of touches. (I suppose you might, on rare occasions, have some
reason to examine the UIEvent’s timestamp.)

When a control event occurs, the control consults its dispatch table, finds all the target–
action pairs associated with that control event, and reports the control event by sending
each action message to the corresponding target.

The action messaging mechanism is actually more complex than I’ve just stated.
The UIControl does not really send the action message directly; rather, it tells the
shared application to send it. When a control wants to send an action message
reporting a control event, it calls its own sendAction:to:forEvent: method. This
in turn calls the shared application instance’s sendAction:to:from:forEvent:,
which actually sends the specified action message to the specified target. In theory,
you could call or override either of these methods to customize this aspect of the
message-sending architecture, but it is extremely unlikely that you would do so.

To make a control emit its action message(s) corresponding to a particular control event
right now, in code, call its sendActionsForControlEvents: method (which is never
called automatically by the runtime). For example, suppose you tell a UISwitch pro‐
grammatically to change its setting from Off to On. This doesn’t cause the switch to
report a control event, as it would if the user had slid the switch from Off to On; if you
wanted it to do so, you could use sendActionsForControlEvents:, like this:

self.sw.setOn(true, animated: true)
self.sw.sendActionsForControlEvents(.ValueChanged)

You might also use sendActionsForControlEvents: in a subclass to customize the
circumstances under which a control reports control events. I’ll give an example later
in this chapter.

A control has enabled, selected, and highlighted properties; any of these can be true
or false independently of the others. Together, they correspond to the control’s
state, which is reported as a bitmask of three possible values (UIControlState):

• .Highlighted

• .Disabled

• .Selected

UIControl | 617

Figure 12-8. A switch

A fourth state, .Normal, corresponds to a zero state bitmask, and means that enabled
is true and selected, and highlighted are false.

A control that is not enabled does not respond to user interaction. Whether the control
also portrays itself differently, to cue the user to this fact, depends upon the control. For
example, a disabled UISwitch is faded; but a rounded rect text field gives the user no
cue that it is disabled. The visual nature of control selection and highlighting, too, de‐
pends on the control. Neither highlighting nor selection make any difference to the
appearance of a UISwitch, but a highlighted UIButton usually looks quite different from
a nonhighlighted UIButton.

A control has contentHorizontalAlignment and contentVerticalAlignment prop‐
erties. These matter only if the control has content that can be aligned. You are most
likely to use them in connection with a UIButton to position its title and internal image.

A text field (UITextField) is a control; see Chapter 10. A refresh control (UIRefresh‐
Control) is a control; see Chapter 8. The remaining controls are covered here, and then
I’ll give a simple example of writing your own custom control.

UISwitch
A switch (UISwitch, Figure 12-8) portrays a Bool value: it looks like a sliding switch,
and its on property is either true or false. The user can slide or tap to toggle the switch’s
position. When the user changes the switch’s position, the switch reports a Value
Changed control event. To change the on property’s value with accompanying anima‐
tion, call setOn:animated:.

A switch has only one size (51×31); any attempt to set its size will be ignored.

You can customize a switch’s appearance by setting these properties:
onTintColor

The color of the track when the switch is in the On position.

thumbTintColor

The color of the slidable button.

tintColor

The color of the outline when the switch is in the Off position.

618 | Chapter 12: Controls and Other Views

Figure 12-9. A stepper

A switch’s track when the switch is in the Off position is transparent, and can’t be cus‐
tomized. I regard this as a bug. (Changing the switch’s backgroundColor is not a suc‐
cessful workaround, because the background color shows outside the switch’s outline.)

The UISwitch properties onImage and offImage, added in iOS 6 after much clam‐
oring (and hacking) by developers, were unfortunately withdrawn in iOS 7, making
a UISwitch once again almost impossible to customize to any appreciable degree.
I regard this as a bug.

UIStepper
A stepper (UIStepper, Figure 12-9) lets the user increase or decrease a numeric value:
it looks like two buttons side by side, one labeled (by default) with a minus sign, the
other with a plus sign. The user can tap or hold a button, and can slide a finger from
one button to the other as part of the same interaction with the stepper. It has only one
size (apparently 94×29). It maintains a numeric value, which is its value. Each time the
user increments or decrements the value, it changes by the stepper’s stepValue. If the
minimumValue or maximumValue is reached, the user can go no further in that direction,
and to show this, the corresponding button is disabled — unless the stepper’s wraps
property is true, in which case the value goes beyond the maximum by starting again
at the minimum, and vice versa.

As the user changes the stepper’s value, a Value Changed control event is reported.
Portraying the numeric value itself is up to you; you might, for example, use a label or
(as here) a progress view:

@IBAction func doStep(sender:AnyObject!) {
 let step = sender as UIStepper
 self.prog.setProgress(
 Float(step.value / (step.maximumValue - step.minimumValue)),
 animated:true)
}

If a stepper’s continuous is true (the default), a long touch on one of the buttons will
update the value repeatedly; the updates start slowly and get faster. If the stepper’s
autorepeat is false, the updated value is not reported as a Value Changed control event
until the entire interaction with the stepper ends; the default is true.

UIControl | 619

Figure 12-10. A customized stepper

The appearance of a stepper can be customized. The color of the outline and the button
captions is the stepper’s tintColor, which may be inherited from further up the view
hierarchy. You can also dictate the images that constitute the stepper’s structure with
these methods:

• setDecrementImageForState:

• setIncrementImageForState:

• setDividerImage:forLeftSegmentState:rightSegmentState:

• setBackgroundImage:forState:

The images work similarly to a search bar’s scope bar (described earlier in this chapter).
The background images should probably be resizable. They are stretched behind both
buttons, half the image being seen as the background of each button. If the button is
disabled (because we’ve reached the value’s limit in that direction), it displays
the .Disabled background image; otherwise, it displays the .Normal background image,
except that it displays the .Highlighted background image while the user is tapping it.
You’ll probably want to provide all three background images if you’re going to provide
any; the default is used if a state’s background image is nil. You’ll probably want to
provide three divider images as well, to cover the three combinations normal-left and
normal-right, highlighted-left and normal-right, and normal-left and highlighted-right.
The increment and decrement images, replacing the default minus and plus signs, are
composited on top of the background image; they are treated as template images, colored
by the tintColor, unless you explicitly provide an .AlwaysOriginal image. If you pro‐
vide only a .Normal image, it will be adjusted automatically for the other two states.
Figure 12-9 shows a customized stepper.

UIPageControl
A page control (UIPageControl) is a row of dots; each dot is called a page, because it is
intended to be used in conjunction with some other interface that portrays something
analogous to pages, such as a UIScrollView with its pagingEnabled set to true. Coor‐
dinating the page control with this other interface is usually up to you; see Chapter 7
for an example. A UIPageViewController in scroll style can optionally display a page
control that’s automatically coordinated with its content (Chapter 6).

620 | Chapter 12: Controls and Other Views

The number of dots is the page control’s numberOfPages. To learn the minimum size
required for a given number of pages, call sizeForNumberOfPages:. You can make the
page control wider than the dots to increase the target region on which the user can tap.
The user can tap to one side or the other of the current page’s dot to increment or
decrement the current page; the page control then reports a Value Changed control
event. It is possible to set a page control’s backgroundColor to show the user the tappable
area, but that isn’t commonly done: the background is usually transparent.

The dot colors differentiate the current page, the page control’s currentPage, from the
others; by default, the current page is portrayed as a solid dot, while the others are slightly
transparent. You can customize a page control’s pageIndicatorTintColor (the color of
the dots in general) and currentPageIndicatorTintColor (the color of the current
page’s dot); you will almost certainly want to do this, as the default dot color is white,
which under normal circumstances may be impossible to see.

If a page control’s hidesForSinglePage is true, the page control becomes invisible
when its numberOfPages changes to 1.

If a page control’s defersCurrentPageDisplay is true, then when the user taps to in‐
crement or decrement the page control’s value, the display of the current page is not
changed. A Value Changed control event is reported, but it is up to your code to handle
this action and call updateCurrentPageDisplay. A case in point might be if the user’s
changing the current page triggers an animation, and you don’t want the current page
dot to change until the animation ends.

UIDatePicker
A date picker (UIDatePicker) looks like a UIPickerView (discussed earlier in this chap‐
ter), but it is not a UIPickerView subclass; it uses a UIPickerView to draw itself, but it
provides no official access to that picker view. Its purpose is to express the notion of a
date and time, taking care of the calendrical and numerical complexities so that you
don’t have to. When the user changes its setting, the date picker reports a Value Changed
control event.

A UIDatePicker has one of four modes (datePickerMode), determining how it is drawn
(UIDatePickerMode):
.Time

The date picker displays a time; for example, it has an hour component and a mi‐
nutes component.

.Date

The date picker displays a date; for example, it has a month component, a day
component, and a year component.

UIControl | 621

.DateAndTime

The date picker displays a date and time; for example, it has a component showing
day of the week, month, and day, plus an hour component and a minutes compo‐
nent.

.CountDownTimer

The date picker displays a number of hours and minutes; for example, it has an
hours component and a minutes component.

Exactly what components a date picker displays, and what values they contain, depends
by default upon the user’s preferences in the Settings app (General → Language & Region
→ Region). For example, a U.S. time displays an hour numbered 1 through 12 plus
minutes and AM or PM, but a British time displays an hour numbered 1 through 24
plus minutes. If the user changes the region format in the Settings app, the date picker’s
display will change immediately.

A date picker has calendar and timeZone properties, respectively an NSCalendar and
an NSTimeZone; these are nil by default, meaning that the date picker responds to the
user’s system-level settings. You can also change these values manually; for example, if
you live in California and you set a date picker’s timeZone to GMT, the displayed time
is shifted forward by 8 hours, so that 11 AM is displayed as 7 PM (if it is winter).

Don’t change the timeZone of a .CountDownTimer date picker; if you do, the dis‐
played value will be shifted, and you will confuse the heck out of yourself (and your
users).

The minutes component, if there is one, defaults to showing every minute, but you can
change this with the minuteInterval property. The maximum value is 30, in which case
the minutes component values are 0 and 30. An attempt to set the minuteInterval to
a value that doesn’t divide evenly into 60 will be silently ignored.

The date represented by a date picker (unless its mode is .CountDownTimer) is its date
property, an NSDate. The default date is now, at the time the date picker is instantiated.
For a .Date date picker, the time by default is 12 AM (midnight), local time; for
a .Time date picker, the date by default is today. The internal value is reckoned in the
local time zone, so it may be different from the displayed value, if you have changed the
date picker’s timeZone.

The maximum and minimum values enabled in the date picker are determined by its
maximumDate and minimumDate properties. Values outside this range may appear dis‐
abled. There isn’t really any practical limit on the range that a date picker can display,
because the “drums” representing its components are not physical, and values are added
dynamically as the user spins them. In this example, we set the initial minimum and

622 | Chapter 12: Controls and Other Views

maximum dates of a date picker (dp) to the beginning and end of 1954. We also set the
actual date, so that the date picker will be set initially to a value within the minimum–
maximum range:

dp.datePickerMode = .Date
let dc = NSDateComponents()
dc.year = 1954
dc.month = 1
dc.day = 1
let c = NSCalendar(calendarIdentifier:NSCalendarIdentifierGregorian)!
let d1 = c.dateFromComponents(dc)!
dp.minimumDate = d1
dp.date = d1
dc.year = 1955
let d2 = c.dateFromComponents(dc)!
dp.maximumDate = d2
self.view.addSubview(dp)

Don’t set the maximumDate and minimumDate properties values for a .CountDown-
Timer date picker; if you do, you might cause a crash with an out-of-range excep‐
tion.

To convert between an NSDate and a string, you’ll need an NSDateFormatter (see
Apple’s Date and Time Programming Guide):

func dateChanged(sender:AnyObject) {
 let dp = sender as UIDatePicker
 let d = dp.date
 let df = NSDateFormatter()
 df.timeStyle = .FullStyle
 df.dateStyle = .FullStyle
 println(df.stringFromDate(d))
 // Tuesday, August 10, 1954 at 3:16:00 AM GMT-07:00
}

The value displayed in a .CountDownTimer date picker is its countDownDuration; this
is an NSTimeInterval, which is a double representing a number of seconds, even though
the minimum interval displayed is a minute. A .CountDownTimer date picker does not
actually do any counting down! You are expected to use some other interface to display
the countdown. The Timer tab of Apple’s Clock app shows a typical interface; the user
configures the date picker to set the countDownDuration initially, but once the counting
starts, the date picker is hidden and a label displays the remaining time.

Converting the countDownDuration from an NSTimeInterval to hours and minutes is
up to you; if your purpose is to display a string, you could use NSDateComponents‐
Formatter (new in iOS 8):

UIControl | 623

let t = dp.countDownDuration
let f = NSDateComponentsFormatter()
f.allowedUnits = .CalendarUnitHour | .CalendarUnitMinute
f.unitsStyle = .Abbreviated
if let s = f.stringFromTimeInterval(t) {
 println(s) // "1h 12m"
}

A nasty bug makes the Value Changed event from a .CountDownTimer date picker
unreliable (especially just after the app launches, and whenever the user has tried
to set the timer to zero). The workaround is not to rely on the Value Changed event;
for example, provide a button in the interface that the user can tap to make your
code read the date picker’s countDownDuration.

UISlider
A slider (UISlider) is an expression of a continuously settable value (its value, a Float)
between some minimum and maximum (its minimumValue and maximumValue; they are
0 and 1 by default). It is portrayed as an object, the thumb, positioned along a track. As
the user changes the thumb’s position, the slider reports a Value Changed control event;
it may do this continuously as the user presses and drags the thumb (if the slider’s
continuous is true, the default) or only when the user releases the thumb (if its
continuous is false). While the user is pressing on the thumb, the slider is in the
highlighted state.

According to the documentation, you should be able to change a slider’s value with
animation by calling setValue:animated:. But this broke in iOS 7 — there is no
animation — and has not been fixed in iOS 8.

A commonly expressed desire is to modify a slider’s behavior so that if the user taps on
its track, the slider moves to the spot where the user tapped. Unfortunately, a slider does
not, of itself, respond to taps on its track; such a tap doesn’t even cause it to report a
Touch Up Inside control event. However, with a gesture recognizer, most things are
possible; here’s the action handler for a UITapGestureRecognizer attached to a UISlider:

func tapped(g:UIGestureRecognizer) {
 let s = g.view as UISlider
 if s.highlighted {
 return // tap on thumb, let slider deal with it
 }
 let pt = g.locationInView(s)
 let track = s.trackRectForBounds(s.bounds)
 if !CGRectContainsPoint(CGRectInset(track, 0, -10), pt) {
 return // not on track, forget it
 }

624 | Chapter 12: Controls and Other Views

Figure 12-11. Repositioning a slider’s images and track

 let percentage = Float(pt.x / s.bounds.size.width)
 let delta = percentage * (s.maximumValue - s.minimumValue)
 let value = s.minimumValue + delta
 s.setValue(value, animated:true) // but animation is broken
}

A slider’s tintColor (which may be inherited from further up the view hierarchy) de‐
termines the color of the track to the left of the thumb. You can change the color of the
two parts of the track with the minimumTrackTintColor and maximumTrackTintColor
properties.

To go further, you can provide your own thumb image and your own track image, along
with images to appear at each end of the track, and you can override in a subclass the
methods that position these.

The images at the ends of the track are the slider’s minimumValueImage and maximum-
ValueImage, and they are nil by default. If you set them to actual images (which can
also be done in the nib), the slider will attempt to position them within its own bounds,
shrinking the drawing of the track to compensate.

You can change that behavior by overriding minimumValueImageRectForBounds:,
maximumValueImageRectForBounds:, and trackRectForBounds: in a subclass. The
bounds passed in are the slider’s bounds. In this example (Figure 12-11), we expand the
track width to the full width of the slider, and draw the images outside the slider’s bounds.
The images are still visible, because the slider does not clip its subviews to its bounds.
In the figure, I’ve given the slider a background color so you can see how the track and
images are related to its bounds:

override func maximumValueImageRectForBounds(bounds: CGRect) -> CGRect {
 return super.maximumValueImageRectForBounds(bounds)
 .rectByOffsetting(dx: 31, dy: 0)
}
override func minimumValueImageRectForBounds(bounds: CGRect) -> CGRect {
 return super.minimumValueImageRectForBounds(bounds)
 .rectByOffsetting(dx: -31, dy: 0)
}
override func trackRectForBounds(bounds: CGRect) -> CGRect {
 var result = super.trackRectForBounds(bounds)
 result.origin.x = 0
 result.size.width = bounds.size.width
 return result
}

UIControl | 625

Figure 12-12. Replacing a slider’s thumb

The thumb is also an image, and you set it with setThumbImage:forState:. There are
two chiefly relevant states, .Normal and .Highlighted. If you supply images for both,
the thumb will change automatically while the user is dragging it. By default, the image
will be centered in the track at the point represented by the slider’s current value; you
can shift this position by overriding thumbRectForBounds:trackRect:value: in a sub‐
class. In this example, the image is repositioned upward slightly (Figure 12-12):

override func thumbRectForBounds(
 bounds: CGRect, trackRect rect: CGRect, value: Float) -> CGRect {
 return super.thumbRectForBounds(
 bounds, trackRect: rect, value: value)
 .rectByOffsetting(dx: 0, dy: -7)
}

Enlarging or offsetting a slider’s thumb can mislead the user as to the area on which it
can be touched to drag it. The slider, not the thumb, is the touchable UIControl; only
the part of the thumb that intersects the slider’s bounds will be draggable. The user may
try to drag the part of the thumb that is drawn outside the slider’s bounds, and will fail
(and be confused). A solution is to increase the slider’s height; if you’re using autolayout,
you can add an explicit height constraint in the nib, or override intrinsicContent-
Size in code (Chapter 1).

The track is two images, one appearing to the left of the thumb, the other to its right.
They are set with setMinimumTrackImage:forState: and setMaximumTrackImage:for-
State:. If you supply images both for .Normal state and for .Highlighted state, the
images will change while the user is dragging the thumb.

The images should be resizable, because that’s how the slider cleverly makes it look like
the user is dragging the thumb along a single static track. In reality, there are two images;
as the user drags the thumb, one image grows horizontally and the other shrinks hori‐
zontally. For the left track image, the right end cap inset will be partially or entirely
hidden under the thumb; for the right track image, the left end cap inset will be partially
or entirely hidden under the thumb. Figure 12-13 shows a track derived from a single
15×15 image of a circular object (a coin):

let coinEnd = UIImage(named:"coin.png")!.resizableImageWithCapInsets(
 UIEdgeInsetsMake(0,7,0,7), resizingMode: .Stretch)
self.setMinimumTrackImage(coinEnd, forState: .Normal)
self.setMaximumTrackImage(coinEnd, forState: .Normal)

626 | Chapter 12: Controls and Other Views

Figure 12-13. Replacing a slider’s track

Figure 12-14. A segmented control

The thumbTintColor property does nothing. It stopped working in iOS 7 and doesn’t
work in iOS 8 either.

UISegmentedControl
A segmented control (UISegmentedControl, Figure 12-14) is a row of tappable seg‐
ments; a segment is rather like a button. The user is thus choosing among options. By
default (momentary is false), the most recently tapped segment remains selected. Al‐
ternatively (momentary is true), the tapped segment is shown as highlighted momen‐
tarily (by default, highlighted is indistinguishable from selected, but you can change
that); afterward, no segment selection is displayed, though internally the tapped segment
remains the selected segment.

The selected segment can be set and retrieved with the selectedSegmentIndex prop‐
erty; when you set it in code, the selected segment remains visibly selected, even for a
momentary segmented control. A selectedSegmentIndex value of UISegmented-
ControlNoSegment means no segment is selected. When the user taps a segment that
isn’t already visibly selected, the segmented control reports a Value Changed event.

A segment can be separately enabled or disabled with setEnabled:forSegmentAt-
Index:, and its enabled state can be retrieved with isEnabledForSegmentAtIndex:. A
disabled segment, by default, is drawn faded; the user can’t tap it, but it can still be
selected in code.

A segment has either a title or an image; when one is set, the other becomes nil. An
image is treated as a template image, colored by the tintColor, unless you explicitly
provide an .AlwaysOriginal image. The methods for setting and fetching the title and
image for existing segments are:

UIControl | 627

• setTitle:forSegmentAtIndex:, titleForSegmentAtIndex:
• setImage:forSegmentAtIndex:, imageForSegmentAtIndex:

You will also want to set the title or image when creating the segment. You can do this
in code if you’re creating the segmented control from scratch, with init(items:), which
takes an array each item of which is either a string or an image:

let seg = UISegmentedControl(
 items: [
 UIImage(named:"one.png")!.imageWithRenderingMode(.AlwaysOriginal),
 "Two"
])
seg.frame.origin = CGPointMake(30,30)
self.view.addSubview(seg)

Methods for managing segments dynamically are:

• insertSegmentWithTitle:atIndex:animated:

• insertSegmentWithImage:atIndex:animated:

• removeSegmentAtIndex:animated:

• removeAllSegments

The number of segments can be retrieved with the read-only numberOfSegments
property.

A segmented control has a standard height; if you’re using autolayout, you can change
the height through constraints or by overriding intrinsicContentSize — or by setting
its background image, as I’ll describe in a moment.

If you’re using autolayout, the widths of all segments and the intrinsicContentSize
width of the entire segmented control are adjusted automatically whenever you set a
segment’s title or image. If the segmented control’s apportionsSegmentWidthsBy-
Content property is false, segment sizes will be made equal to one another; if it is
true, each segment will be sized individually to fit its content. Alternatively, you can set
a segment’s width explicitly with setWidth:forSegmentAtIndex: (and retrieve it with
widthForSegmentAtIndex:); setting a width of 0 means that this segment is to be sized
automatically.

To change the position of the content (title or image) within a segment, call setContent-
Offset:forSegmentAtIndex: (and retrieve it with contentOffsetForSegmentAt-
Index:).

The color of a segmented control’s outline, title text, and selection are dictated by its
tintColor, which may be inherited from further up the view hierarchy.

628 | Chapter 12: Controls and Other Views

Figure 12-15. A segmented control, customized

Further methods for customizing a segmented control’s appearance are parallel to those
for setting the look of a stepper or the scope bar portion of a search bar, both described
earlier in this chapter. You can set the overall background, the divider image, the text
attributes for the segment titles, and the position of segment contents:

• setBackgroundImage:forState:barMetrics:

• setDividerImage:forLeftSegmentState:rightSegmentState:barMetrics:

• setTitleTextAttributes:forState:

• setContentPositionAdjustment:forSegmentType:barMetrics:

You don’t have to customize for every state, as the segmented control will use
the .Normal state setting for the states you don’t specify. As I mentioned a moment ago,
setting a background image changes the segmented control’s height.

Here’s the code that achieved Figure 12-15. Selecting a segment automatically darkens
the background image for us (similar to a button’s adjustsImageWhenHighlighted,
described in the next section), so there’s no need to specify a separate selected image;
for imageOfSize:, see Appendix B:

// background, set desired height but make width resizable
// sufficient to set for Normal only
let sz = CGSizeMake(100,60)
let im = imageOfSize(sz) {
 UIImage(named:"linen.png")!
 .drawInRect(CGRect(origin: CGPoint(), size: sz))
 }.resizableImageWithCapInsets(
 UIEdgeInsetsMake(0,10,0,10), resizingMode: .Stretch)
self.seg.setBackgroundImage(im, forState: .Normal, barMetrics: .Default)
// segment images, redraw at final size
let pep = ["manny", "moe", "jack"].map {$0 + ".jpg"}
for (i, boy) in enumerate(pep) {
 let sz = CGSizeMake(30,30)
 let im = imageOfSize(sz) {
 UIImage(named:boy)!
 .drawInRect(CGRect(origin: CGPoint(), size: sz))
 }.imageWithRenderingMode(.AlwaysOriginal)
 self.seg.setImage(im, forSegmentAtIndex: i)
 self.seg.setWidth(80, forSegmentAtIndex: i)
}
// divider, set at desired width, sufficient to set for Normal only

UIControl | 629

let sz2 = CGSizeMake(2,10)
let div = imageOfSize(sz2) {
 UIColor.whiteColor().set()
 CGContextFillRect(UIGraphicsGetCurrentContext(),
 CGRect(origin: CGPoint(), size: sz2))
}
self.seg.setDividerImage(div,
 forLeftSegmentState: .Normal, rightSegmentState: .Normal,
 barMetrics: .Default)

The segmentType: parameter in setContentPositionAdjustment:forSegmentType:
barMetrics: is needed because, by default, the segments at the two extremes have
rounded ends (and, if a segment is the lone segment, both its ends are rounded). The
argument (UISegmentedControlSegment) allows you distinguish between the various
possibilities:

• .Any

• .Left

• .Center

• .Right

• .Alone

The barMetrics: parameter will be ignored unless its value is .Default.

UIButton
A button (UIButton) is a fundamental tappable control, which may contain a title, an
image, and a background image (and may have a backgroundColor). A button has a
type, and the code creation method is a class method, buttonWithType: (which, mad‐
deningly, returns an AnyObject, which means that in Swift you’ll have to cast explicitly
to UIButton). The types (UIButtonType) are:
.System

The title text appears in the button’s tintColor, which may be inherited from fur‐
ther up the view hierarchy; when the button is tapped, the title text color momen‐
tarily changes to a color derived from what’s behind it (which might be the button’s
backgroundColor). The image is treated as a template image, colored by the tint-
Color, unless you explicitly provide an .AlwaysOriginal image; when the button
is tapped, the image (even if it isn’t a template image) is momentarily tinted to a
color derived from what’s behind it.

.DetailDisclosure

.InfoLight

630 | Chapter 12: Controls and Other Views

.InfoDark

.ContactAdd

Basically, these are all .System buttons whose image is set automatically to standard
button images. The first three are an “i” in a circle, and the last is a Plus in a circle;
the two Info types are identical, and they differ from the DetailDisclosure type
only in that their showsTouchWhenHighlighted is true by default.

.Custom

Similar to .System, except that there’s no automatic coloring of the title or image
by the tintColor or the color of what’s behind the button, and the image is a normal
image by default.

There is no built-in button type with an outline (border), comparable to the Rounded
Rect style of iOS 6 and before. You can add an outline — by adding a background image,
for example, or by manipulating the button’s layer — but the default look of a button is
the text or image alone. In one of my apps, I make a button stand out a bit more entirely
through settings made in the nib:

• In the Attributes inspector, I give the button a background color.
• In the Identity inspector, I use the User Defined Runtime Attributes to set the but‐

ton’s layer.borderWidth to 2 and its layer.cornerRadius to 5.

A button has a title, a title color, and a title shadow color — or you can supply an
attributed title, thus dictating these features and more in a single value through an
NSAttributedString (Chapter 10).

Distinguish a button’s image, which is an internal image, from its background image.
The background image, if any, is stretched, if necessary, to fill the button’s bounds
(technically, its backgroundRectForBounds:). The internal image, on the other hand,
if smaller than the button, is not resized. The button can have both a title and an image,
if the image is small enough; in that case, the image is shown to the left of the title by
default.

These six features (title, title color, title shadow color, attributed title, image, and back‐
ground image) can all be made to vary depending on the button’s current
state: .Highlighted, .Selected, .Disabled, and .Normal. The button can be in more
than one state at once, except for .Normal which means “none of the other states.” A
state change, whether automatic (the button is highlighted while the user is tapping it)
or programmatically imposed, will thus in and of itself alter a button’s appearance. The
methods for setting these button features, therefore, all involve specifying a corre‐
sponding state — or multiple states, using a bitmask:

• setTitle:forState:

• setTitleColor:forState:

UIControl | 631

• setTitleShadowColor:forState:

• setAttributedTitle:forState:

• setImage:forState:

• setBackgroundImage:forState:

Similarly, when getting these button features, you must either specify a single state you’re
interested in or ask about the feature as currently displayed:

• titleForState:, currentTitle
• titleColorForState:, currentTitleColor
• titleShadowColorForState:, currentTitleShadowColor
• attributedTitleForState:, currentAttributedTitle
• imageForState:, currentImage
• backgroundImageForState:, currentBackgroundImage

If you don’t specify a feature for a particular state, or if the button adopts more than one
state at once, an internal heuristic is used to determine what to display. I can’t describe
all possible combinations, but here are some general observations:

• If you specify a feature for a particular state (highlighted, selected, or disabled), and
the button is in only that state, that feature will be used.

• If you don’t specify a feature for a particular state (highlighted, selected, or disabled),
and the button is in only that state, the normal version of that feature will be used
as fallback. (That’s why many examples earlier in this book have assigned a title
for .Normal only; this is sufficient to give the button a title in every state.)

• Combinations of states often cause the button to fall back on the feature for normal
state. For example, if a button is both highlighted and selected, the button will
display its normal title, even if it has a highlighted title, a selected title, or both.

A .System button with an attributed normal title will tint the title to the tintColor if
you don’t give the attributed string a color, and will tint the title while highlighted to the
color derived from what’s behind the button if you haven’t supplied a highlighted title
with its own color. But a .Custom button will not do any of that; it leaves control of the
title color for each state completely up to you.

In addition, a UIButton has some properties determining how it draws itself in various
states, which can save you the trouble of specifying different images for different states:
showsTouchWhenHighlighted

If true, then the button projects a circular white glow when highlighted. If the
button has an internal image, the glow is centered behind it. Thus, this feature is

632 | Chapter 12: Controls and Other Views

suitable particularly if the button image is small and circular; for example, it’s the
default behavior for a .InfoLight or .InfoDark button. If the button has no internal
image, the glow is centered at the button’s center. The glow is drawn on top of the
background image or color, if any.

adjustsImageWhenHighlighted

In a .Custom button, if this property is true (the default), then if there is no separate
highlighted image (and if showsTouchWhenHighlighted is false), the normal im‐
age is darkened when the button is highlighted. This applies equally to the internal
image and the background image. (A .System button is already tinting its high‐
lighted image, so this property doesn’t apply.)

adjustsImageWhenDisabled

If true, then if there is no separate disabled image, the normal image is shaded
when the button is disabled. This applies equally to the internal image and the
background image. The default is true for a .Custom button and false for
a .System button.

A button has a natural size in relation to its contents. If you’re using autolayout, the
button can adopt that size automatically as its intrinsicContentSize, and you can
modify the way it does this by overriding intrinsicContentSize in a subclass or by
applying explicit constraints. If you’re not using autolayout and you create a button in
code, send it sizeToFit or give it an explicit size — otherwise, the button will have a
zero size and you’ll be left wondering why your button hasn’t appeared in the interface.

The title is a UILabel (Chapter 10), and the label features of the title can be accessed
through the button’s titleLabel. Its properties may be set, provided they do not conflict
with existing UIButton features. For example, you can set the title’s font and shadow-
Offset by way of the label, but the title’s text, color, and shadow color should be set
using the appropriate button methods. If the title is given a shadow in this way, then the
button’s reversesTitleShadowWhenHighlighted property also applies: if true, the
shadowOffset values are replaced with their additive inverses when the button is high‐
lighted. Similarly, you can manipulate the label’s wrapping behavior to make the button’s
title consist of multiple lines. The modern way, however, is to manipulate all these fea‐
tures using attributed strings.

The internal image is drawn by a UIImageView (Chapter 2), whose features can be
accessed through the button’s imageView. Thus, for example, you can change the internal
image view’s alpha to make the image more transparent.

The internal position of the image and title as a whole are governed by the button’s
contentVerticalAlignment and contentHorizontalAlignment (inherited from UI‐
Control). You can also tweak the position of the image and title, together or separately,
by setting the button’s contentEdgeInsets, titleEdgeInsets, or imageEdgeInsets.

UIControl | 633

Increasing an inset component increases that margin; thus, for example, a positive top
component makes the distance between that object and the top of the button larger than
normal (where “normal” is where the object would be according to the alignment set‐
tings). The titleEdgeInsets or imageEdgeInsets values are added to the overall
contentEdgeInsets values. So, for example, if you really wanted to, you could make
the internal image appear to the right of the title by decreasing the left titleEdge-
Insets and increasing the left imageEdgeInsets.

Four methods also provide access to the button’s positioning of its elements:

• titleRectForContentRect:

• imageRectForContentRect:

• contentRectForBounds:

• backgroundRectForBounds:

These methods are called whenever the button is redrawn, including every time it
changes state. The content rect is the area in which the title and image are placed. By
default, contentRectForBounds: and backgroundRectForBounds: yield the same re‐
sult. You can override these methods in a subclass to change the way the button’s ele‐
ments are positioned.

Here’s an example of a customized button. In a UIButton subclass, we increase the
button’s intrinsicContentSize to give it larger margins around its content, and we
override backgroundRectForBounds to shrink the button slightly when highlighted as
a way of providing feedback; for sizeByDelta, see Appendix B:

override func backgroundRectForBounds(bounds: CGRect) -> CGRect {
 var result = super.backgroundRectForBounds(bounds)
 if self.highlighted {
 result.inset(dx: 3, dy: 3)
 }
 return result
}
override func intrinsicContentSize() -> CGSize {
 return super.intrinsicContentSize().sizeByDelta(dw:25, dh: 20)
}

The button, which is a .Custom button, is assigned an internal image and a background
image from the same resizable image, along with attributed titles for the .Normal
and .Highlighted states. The internal image glows when highlighted, thanks to adjusts-
ImageWhenHighlighted (Figure 12-16).

634 | Chapter 12: Controls and Other Views

Figure 12-16. A custom button

Custom Controls
If you create your own UIControl subclass, you automatically get the built-in “Touch”
events; in addition, there are several methods that you can override in order to customize
touch tracking, along with properties that tell you whether touch tracking is going on:

• beginTrackingWithTouch:withEvent:

• continueTrackingWithTouch:withEvent:

• endTrackingWithTouch:withEvent:

• cancelTrackingWithEvent:

• tracking (property)
• touchInside (property)

With the advent of gesture recognizers (Chapter 5), such direct involvement with touch
tracking is probably less needed than it used to be, especially if your purpose is to modify
the behavior of a built-in UIControl subclass. So, to illustrate their use, I’ll give a simple
example of creating a custom control. The main reason for doing this (rather than using,
say, a UIView and gesture recognizers) would probably be to obtain the convenience of
control events. Also, the touch-tracking methods, though not as high-level as gesture
recognizers, are at least a level up from the UIResponder touches... methods (Chap‐
ter 5): they track a single touch, and both beginTracking... and continueTracking...
return a Bool, giving you a chance to stop tracking the current touch.

We’ll build a simplified knob control (Figure 12-17). The control starts life at its mini‐
mum position, with an internal angle value of 0; it can be rotated clockwise with a single
finger as far as its maximum position, with an internal angle value of 5 (radians). To
keep things simple, the words “Min” and “Max” appearing in the interface are actually
labels; the control just draws the knob, and to rotate it we’ll apply a rotation transform.

Our control is a UIControl subclass, MyKnob. It has a public CGFloat angle property,
and a private CGFloat property self.initialAngle that we’ll use internally during
rotation. Because a UIControl is a UIView, it can draw itself, which it does with an image
file included in our app bundle:

UIControl | 635

Figure 12-17. A custom control

override func drawRect(rect: CGRect) {
 UIImage(named:"knob.png")!.drawInRect(rect)
}

We’ll need a utility function for transforming a touch’s Cartesian coordinates into polar
coordinates, giving us the angle to be applied as a rotation to the view:

func pToA (touch:UITouch) -> CGFloat {
 let loc = touch.locationInView(self)
 let c = CGPointMake(self.bounds.midX, self.bounds.midY)
 return atan2(loc.y - c.y, loc.x - c.x)
}

Now we’re ready to override the tracking methods. beginTrackingWithTouch:with-
Event: simply notes down the angle of the initial touch location. continueTracking-
WithTouch:withEvent: uses the difference between the current touch location’s angle
and the initial touch location’s angle to apply a transform to the view, and updates the
angle property. endTrackingWithTouch:withEvent: triggers the Value Changed con‐
trol event. So our first draft looks like this:

override func beginTrackingWithTouch(
 touch: UITouch, withEvent event: UIEvent) -> Bool {
 self.initialAngle = pToA(touch)
 return true
}
override func continueTrackingWithTouch(
 touch: UITouch, withEvent event: UIEvent) -> Bool {
 let ang = pToA(touch) - self.initialAngle
 let absoluteAngle = self.angle + ang
 self.transform = CGAffineTransformRotate(self.transform, ang)
 self.angle = absoluteAngle
 return true
}
override func endTrackingWithTouch(
 touch: UITouch, withEvent event: UIEvent) {
 self.sendActionsForControlEvents(.ValueChanged)
}

636 | Chapter 12: Controls and Other Views

This works: we can put a MyKnob into the interface and hook up its Value Changed
control event (this can be done in the nib editor), and sure enough, when we run the
app, we can rotate the knob and, when our finger lifts from the knob, the Value Changed
action handler is called.

However, our class needs modification. When the angle is set programmatically, we
should respond by rotating the knob; at the same time, we need to peg the incoming
value at the allowable minimum or maximum:

var angle : CGFloat = 0 {
 didSet {
 if self.angle < 0 {
 self.angle = 0
 }
 if self.angle > 5 {
 self.angle = 5
 }
 self.transform = CGAffineTransformMakeRotation(self.angle)
 }
}

Now we should revise continueTrackingWithTouch:withEvent:. We no longer need
to perform the rotation, since setting the angle will do that for us. On the other hand,
we do need to peg the gesture when the minimum or maximum rotation is exceeded.
My solution is simply to stop tracking; in that case, endTracking... will never be called,
so we also need to trigger the Value Changed control event. Also, it might be nice to
give the programmer the option to have the Value Changed control event reported
continuously as continueTracking... is called repeatedly; so we’ll add a public
continuous Bool property and obey it. Here, then, is our revised continueTracking...
implementation:

override func continueTrackingWithTouch(
 touch: UITouch, withEvent event: UIEvent) -> Bool {
 let ang = pToA(touch) - self.initialAngle
 let absoluteAngle = self.angle + ang
 switch absoluteAngle {
 case let ang where ang < 0:
 self.angle = 0
 self.sendActionsForControlEvents(.ValueChanged)
 return false
 case let ang where ang > 5:
 self.angle = 5
 self.sendActionsForControlEvents(.ValueChanged)
 return false
 default:
 self.angle = absoluteAngle
 if self.continuous {
 self.sendActionsForControlEvents(.ValueChanged)

UIControl | 637

 }
 return true
 }
}

Bars
There are three bar types: navigation bar (UINavigationBar), toolbar (UIToolbar), and
tab bar (UITabBar). They are often used in conjunction with a built-in view controller
(Chapter 6):

• A UINavigationController has a UINavigationBar.
• A UINavigationController has a UIToolbar.
• A UITabBarController has a UITabBar.

You can also use these bar types independently. You are most likely to do that with a
UIToolbar, which is often used as an independent bottom bar. On the iPad, it can also
be used as a top bar, adopting a role analogous to a menu bar on the desktop.

This section summarizes the facts about the three bar types (along with UISearchBar,
which can act as a top bar), and about the items that populate them.

Bar Position and Bar Metrics
If a bar is to occupy the top of the screen, its height should be increased to underlap the
transparent status bar. To make this possible, iOS provides the notion of a bar posi‐
tion. The UIBarPositioning protocol, adopted by UINavigationBar, UIToolbar, and
UISearchbar — the bars that can go at the top of the screen — defines one property,
barPosition, whose possible values (UIBarPosition) are:

• .Any

• .Bottom

• .Top

• .TopAttached

But barPosition is read-only, so how are you supposed to set it? Use the bar’s delegate!
The delegate protocols UINavigationBarDelegate, UIToolbarDelegate, and UISearch‐
BarDelegate all conform to UIBarPositioningDelegate. The UIBarPositioningDelegate
protocol defines one method, positionForBar:. This provides a way for a bar’s delegate
to dictate the bar’s barPosition.

638 | Chapter 12: Controls and Other Views

The rule is that the bar’s height will be extended upward, so that its top can go behind
the status bar, if the bar’s delegate returns .TopAttached from its implementation of
positionForBar:. To get the final position right, the bar’s top should also have a zero-
length constraint to the view controller’s top layout guide. (If you’re not using autolay‐
out, then the bar’s top should have a y value of 20.)

A bar’s height is reflected also by its bar metrics. This refers to a change in the standard
height of the bar in reponse to a change in the orientation of the app. This change is
performed automatically by a UINavigationController on its own navigation bar or
toolbar. The standard heights are 44 (portrait) and 32 (landscape) — plus 20 if the bar
also underlaps the status bar, but this is not reported as part of the bounds height.
Possible bar metrics values are (UIBarMetrics):

• .Default

• .Compact

• .DefaultPrompt

• .CompactPrompt

The “Compact” metrics apply in a vertically compact environment, such as an iPhone
app in landscape orientation. The “Prompt” metrics apply to a bar whose height is
extended downward to accommodate prompt text (and to a search bar whose scope
buttons are showing).

The older names for the “Compact” values, containing the word “Landscape,” are
deprecated in iOS 8, which emphasizes size classes over orientation.

When you’re customizing a feature of a bar, you may find yourself calling a method that
takes a bar metrics parameter, and possibly a bar position parameter as well. The idea
is that you can customize that feature differently depending on the bar metrics and the
bar position. You don’t have to set that value for every possible combination of bar
position and bar metrics! In general (though, unfortunately, the details are a little in‐
consistent from class to class), UIBarPosition.Any and UIBarMetrics.Default are
treated as defaults that encompass any positions and metrics you don’t specify.

The interface object classes and their features that participate in this system are:
UISearchBar

A search bar can function as a top bar and can have a prompt. You can set its
background image.

Bars | 639

UINavigationBar
A navigation bar can function as a top bar, it can have a prompt, and its height in
a navigation interface is changed automatically on the iPhone depending on the
app’s orientation. You can set its background image. In addition, the vertical offset
of its title can depend on the bar metrics.

UIToolbar
A toolbar can function as a top bar or a bottom bar, and its height in a navigation
interface is changed automatically on the iPhone depending on the app’s orienta‐
tion. You can set its background image. In addition, its shadow can depend on its
bar position.

UIBarButtonItem
You can set a bar button item’s image, image inset, background image, title offset,
and background offset, so as to depend upon the bar metrics of the containing bar,
either a UINavigationBar or a UIToolbar (and the bar position is irrelevant).

Bar Appearance
The overall look of the three bar types is identical by default. A bar can be styled at three
levels:
barStyle, translucent

The barStyle options are (UIBarStyle):

• .Default

• .Black

The bar styles are flat white and flat black respectively. The translucent property
turns on or off the characteristic blurry translucency.

barTintColor

This property tints the bar with a solid color. If you set the barTintColor and you
want translucency, then supplying a color with a low alpha component is up to you.
However, if you set the bar’s translucent to false, then the barTintColor is treated
as opaque.

backgroundImage

This, as I’ve just explained, can vary depending on the bar position and bar metrics
(setBackgroundImage:forBarPosition:barMetrics:). The transparency of the
image is obeyed, but if you set the bar’s translucent to false, then the barTint-
Color will appear opaque behind the image. If the image is too large, it is sized down
to fit; if it is too small, it is tiled by default, but you can change that behavior by
supplying a resizable image.

640 | Chapter 12: Controls and Other Views

If you assign a bar a background image, you can also customize its shadow, which is
cast from the bottom of the bar (if the bar is at the top) or the top of the bar (if the bar
is at the bottom) on whatever is behind it. The setter is usually the shadowImage property,
but a toolbar can be either at the top or the bottom, so its setter is setShadowImage:for-
ToolbarPosition:, and the barPosition is used to decide whether the shadow should
appear at the top or the bottom of the toolbar.

You’ll want a shadow image to be very small and very transparent; the image will be
tiled horizontally. Here’s an example for a navigation bar:

let sz = CGSizeMake(4,4)
self.navbar.shadowImage = imageOfSize(sz) {
 UIColor.grayColor().colorWithAlphaComponent(0.3).setFill()
 CGContextFillRect(UIGraphicsGetCurrentContext(), CGRectMake(0,0,4,2))
 UIColor.grayColor().colorWithAlphaComponent(0.15).setFill()
 CGContextFillRect(UIGraphicsGetCurrentContext(), CGRectMake(0,2,4,2))
}

In a UINavigationController, there is a reason why you might set the navigation
bar’s barStyle even if you are configuring the bar’s appearance in some other way
— namely, because the navigation controller will pass this setting along in its im‐
plementation of preferredStatusBarStyle. In other words, you set the navigation
controller’s navigation bar’s bar style as a way of setting the status bar’s bar style.

UIBarButtonItem
The only things that can appear inside a navigation bar or a toolbar — aside from a
navigation bar’s title and prompt — are bar button items (UIBarButtonItem, a subclass
of UIBarItem). This is not much of a limitation, however, because a bar button item can
contain a custom view, which can be any type of UIView at all. A bar button item itself,
however, is not a UIView subclass.

A bar button item may be instantiated with any of five methods:

• init(barButtonSystemItem:target:action:)

• init(title:style:target:action:)

• init(image:style:target:action:)

• init(image:landscapeImagePhone:style:target:action:)

• init(customView:)

A bar button item’s image is treated by default as a template image, unless you explicitly
provide an .AlwaysOriginal image.

The style: options are (UIBarButtonItemStyle):

Bars | 641

• .Plain

• .Done (the title text is bold)

As I mentioned a moment ago, many aspects of a bar button item can be made dependent
upon the bar metrics of the containing bar. Thus, you can initialize a bar button item
with both an image and a landscapeImagePhone, the latter to be used when the bar
metrics has “Compact” in its name. (Ironically, iOS 8 has caused a naming mismatch
by deprecating the “Landscape” terminology in the bar metrics names.) A bar button
item inherits from UIBarItem the ability to adjust the image position with image-
Insets (and landscapeImagePhoneInsets), plus the enabled and tag properties. Recall
from Chapter 6 that you can also set a bar button item’s possibleTitles and width
properties, to determine its width.

A bar button item’s tintColor property tints the title text or template image of the
button; it is inherited from the tintColor of the bar, or you can override it for an
individual bar button item.

You can apply an attributes dictionary to a bar button item’s title, and you can give it a
background image:

• setTitleTextAttributes:forState: (inherited from UIBarItem)
• setTitlePositionAdjustment:forBarMetrics:

• setBackgroundImage:forState:barMetrics:

• setBackgroundImage:forState:style:barMetrics:

• setBackgroundVerticalPositionAdjustment:forBarMetrics:

In addition, these methods apply only if the bar button item is being used as a back
button item in a navigation bar (as I’ll describe in the next section):

• setBackButtonTitlePositionAdjustment:forBarMetrics:

• setBackButtonBackgroundImage:forState:barMetrics:

• setBackButtonBackgroundVerticalPositionAdjustment:forBarMetrics:

In a bar button item with a custom view, the background vertical position adjust‐
ment doesn’t apply (because the custom view is the button’s content, not its back‐
ground). To shift the apparent position of a custom view, construct the custom view
as a subview within a superview, and shift the position of the subview. This technique
can cause the subview to appear outside the containing bar, so be careful.

642 | Chapter 12: Controls and Other Views

Figure 12-18. A bar button item with a border

No bar button item style supplies an outline (border); the default look of a button is just
the text or image. (The pre–iOS 7 bar button item style .Bordered is now deprecated,
and its appearance is identical to .Plain.) If you want an outline, you have to supply it
yourself by way of the background image. Here’s how I create the background image
for the left bar button item in the settings view of my Zotz! app (Figure 12-18):

b.setBackgroundImage(imageOfSize(CGSizeMake(15,15)) {
 let grad = CAGradientLayer()
 grad.frame = CGRectMake(0,0,15,15)
 grad.colors = [
 UIColor(red: 1, green: 1, blue: 0, alpha: 0.8).CGColor,
 UIColor(red: 0.7, green: 0.7, blue: 0.3, alpha: 0.8).CGColor]
 let p = UIBezierPath(
 roundedRect: CGRectMake(0,0,15,15), cornerRadius: 8)
 p.addClip()
 grad.renderInContext(UIGraphicsGetCurrentContext())
 UIColor.blackColor().setStroke()
 p.lineWidth = 2
 p.stroke()
}.resizableImageWithCapInsets(
 UIEdgeInsetsMake(7,7,7,7), resizingMode: .Stretch),
 forState: .Normal)

UINavigationBar
A navigation bar (UINavigationBar) is populated by navigation items (UINavigation‐
Item). The UINavigationBar maintains a stack; UINavigationItems are pushed onto and
popped off of this stack. Whatever UINavigationItem is currently topmost in the stack
(the UINavigationBar’s topItem), in combination with the UINavigationItem just be‐
neath it in the stack (the UINavigationBar’s backItem), determines what appears in the
navigation bar:
title, titleView

The title (string) or titleView (UIView) of the topItem appears in the center of
the navigation bar.

prompt

The prompt (string) of the topItem appears at the top of the navigation bar, whose
height increases to accommodate it.

Bars | 643

Figure 12-19. A back button animating to the left

rightBarButtonItem, leftBarButtonItem
The rightBarButtonItem and leftBarButtonItem appear at the right and left ends
of the navigation bar. A UINavigationItem can have multiple right bar button items
and multiple left bar button items; its rightBarButtonItems and leftBarButton-
Items properties are arrays (of bar button items). The bar button items are displayed
from the outside in: that is, the first item in the leftBarButtonItems is leftmost,
while the first item in the rightBarButtonItems is rightmost. If there are multiple
buttons on a side, the rightBarButtonItem is the first item of the rightBarButton-
Items array, and the leftBarButtonItem is the first item of the leftBarButton-
Items array.

backBarButtonItem

The backBarButtonItem of the backItem appears at the left end of the navigation
bar. It is automatically configured so that, when tapped, the topItem is popped off
the stack. If the backItem has no backBarButtonItem, then there is still a back
button at the left end of the navigation bar, taking its title from the title of the
backItem. However, if the topItem has its hidesBackButton set to true, the back
button is suppressed. Also, unless the topItem has its leftItemsSupplementBack-
Button set to true, the back button is suppressed if the topItem has a leftBar-
ButtonItem.

The indication that the back button is a back button is supplied by the navigation bar’s
backIndicatorImage, which by default is a left-pointing chevron appearing to the left
of the back button. You can customize this image; the image that you supply is treated
as a template image by default. If you set the backIndicatorImage, you must also supply
a backIndicatorTransitionMaskImage. The purpose of the mask image is to indicate
the region where the back button should disappear as it slides out to the left when a new
navigation item is pushed onto the stack. For example, in Figure 12-19, the back button
title, which is sliding out to the left, is visible to the right of the chevron but not to the
left of the chevron; that’s because on the left side of the chevron it is masked out.

In this example, I replace the chevron with a vertical bar. The vertical bar is not the
entire image; the image is actually a wider rectangle, with the vertical bar at its right
side. The mask is the entire wider rectangle, and is completely transparent; thus, the
back button disappears as it passes behind the bar and stays invisible as it continues on
to the left:

644 | Chapter 12: Controls and Other Views

self.navbar.backIndicatorImage =
 imageOfSize(CGSizeMake(10,20)) {
 CGContextFillRect(
 UIGraphicsGetCurrentContext(), CGRectMake(6,0,4,20))
self.navbar.backIndicatorTransitionMaskImage =
 imageOfSize(CGSizeMake(10,20)) {}

Changes to the navigation bar’s buttons can be animated by sending its topItem any of
these messages:

• setRightBarButtonItem:animated:

• setLeftBarButtonItem:animated:

• setRightBarButtonItems:animated:

• setLeftBarButtonItems:animated:

• setHidesBackButton:animated:

UINavigationItems are pushed and popped with pushNavigationItem:animated: and
popNavigationItemAnimated:, or you can set all items on the stack at once with set-
Items:animated:.

You can set the title’s attributes dictionary (titleTextAttributes), and you can shift
the title’s vertical position by calling setTitleVerticalPositionAdjustment:forBar-
Metrics:.

When you use a UINavigationBar implicitly as part of a UINavigationController inter‐
face, the navigation controller is the navigation bar’s delegate. If you were to use a
UINavigationBar on its own, you might want to supply your own delegate. The delegate
methods are:

• navigationBar:shouldPushItem:

• navigationBar:didPushItem:

• navigationBar:shouldPopItem:

• navigationBar:didPopItem:

This simple (and silly) example of a standalone UINavigationBar implements the leg‐
endary baseball combination trio of Tinker to Evers to Chance; see the relevant Wiki‐
pedia article if you don’t know about them (Figure 12-20, which also shows the custom
back indicator and shadow I described earlier):

override func viewDidLoad() {
 super.viewDidLoad()
 let ni = UINavigationItem(title: "Tinker")
 let b = UIBarButtonItem(
 title: "Evers", style: .Plain, target: self, action: "pushNext:")

Bars | 645

Figure 12-20. A navigation bar

Figure 12-21. A toolbar

 ni.rightBarButtonItem = b
 self.navbar.items = [ni]
}
func pushNext(sender:AnyObject) {
 let oldb = sender as UIBarButtonItem
 let s = oldb.title
 let ni = UINavigationItem(title:s)
 if s == "Evers" {
 let b = UIBarButtonItem(title:"Chance",
 style: .Plain, target:self, action:"pushNext:")
 ni.rightBarButtonItem = b
 }
 self.navbar.pushNavigationItem(ni, animated:true)
}

UIToolbar
A toolbar (UIToolbar, Figure 12-21) is intended to appear at the bottom of the screen;
on the iPad, it may appear at the top. It displays a row of UIBarButtonItems, which are
its items. The items are displayed from left to right in the order in which they appear
in the items array. You can set the items with animation by calling set-

Items:animated:. The items within the toolbar are positioned automatically; you can
intervene in this positioning by using the system bar button items .FlexibleSpace
and .FixedSpace, along with the UIBarButtonItem width property.

UITabBar
A tab bar (UITabBar) displays tab bar items (UITabBarItem), its items, each consisting
of an image and a name. To change the items in an animated fashion, call set-
Items:animated:.

The tab bar maintains a current selection among its items, its selectedItem, which is
a UITabBarItem, not an index number; you can set it in code, or the user can set it by

646 | Chapter 12: Controls and Other Views

tapping on a tab bar item. To hear about the user changing the selection, implement
tabBar:didSelectItem: in the delegate (UITabBarDelegate).

You get some control over how the tab bar items are laid out:
itemPositioning

There are three possible values (UITabBarItemPositioning):
.Centered

The items are crowded together at the center.

.Fill

The items are spaced out evenly.

.Automatic

On the iPad, the same as .Centered; on the iPhone, the same as .Fill.

itemSpacing

The space between items, if the positioning is .Centered. For the default space,
specify 0.

itemWidth

The width of items, if the positioning is .Centered. For the default width, specify 0.

You can set the image drawn behind the selected tab bar item to indicate that it’s selected,
the selectionIndicatorImage.

A UITabBarItem is created with one of these two methods:

• init(tabBarSystemItem:tag:)

• init(title:image:tag:)

UITabBarItem is a subclass of UIBarItem, so in addition to its title and image it inherits
the ability to adjust the image position with imageInsets, plus the enabled and tag
properties.

A bar item title text and template image are tinted, by default, with the tab bar’s tint-
Color when selected; there’s no way to set the deselected tint color (this was possible
before iOS 7, so I regard the change as a bug).

A tab bar item’s image is treated as a template image, but you can override that by
supplying an .AlwaysOriginal image. Similarly, you can customize a tab bar item’s title
(including its color) with an attributes dictionary (setTitleTextAttributes:for-
State:, inherited from UIBarItem), and you can adjust the title’s position with the title-
PositionAdjustment property.

Bars | 647

Figure 12-22. A tab bar

Figure 12-22 is an example of a customized tab bar; I’ve set the selection indicator image
(the checkmark), the tint color, and the text attributes (including the color, when se‐
lected) of the tab bar items.

The user can be permitted to alter the contents of the tab bar, setting its tab bar items
from among a larger repertory of tab bar items. To summon the interface that lets the
user do this, call beginCustomizingItems:, passing an array of UITabBarItems that
may or may not appear in the tab bar. (To prevent the user from removing an item from
the tab bar, include it in the tab bar’s items and don’t include it in the argument passed
to beginCustomizingItems:.) A presented view with a Done button appears, behind
the tab bar but in front of everything else, displaying the customizable items. The user
can then drag an item into the tab bar, replacing an item that’s already there. To hear
about the customizing view appearing and disappearing, implement delegate methods:

• tabBar:willBeginCustomizingItems:

• tabBar:didBeginCustomizingItems:

• tabBar:willEndCustomizingItems:changed:

• tabBar:didEndCustomizingItems:changed:

A UITabBar on its own (outside a UITabBarController) does not provide any automatic
access to the user customization interface; it’s up to you. In this (silly) example, we
populate a UITabBar with four system tab bar items and a More item; we also populate
an instance variable array with those same four system tab bar items, plus three more.
When the user taps the More item, we show the user customization interface with all
seven tab bar items:

var items : [UITabBarItem] = {
 Array(1..<8).map {
 UITabBarItem(
 tabBarSystemItem:UITabBarSystemItem(rawValue:$0)!, tag:$0)
 }
}()
override func viewDidLoad() {
 super.viewDidLoad()
 self.tabbar.items = Array(self.items[0..<4]) +
 [UITabBarItem(tabBarSystemItem: .More, tag: 0)]
 self.tabbar.selectedItem = self.tabbar.items![0] as? UITabBarItem
}
func tabBar(tabBar: UITabBar, didSelectItem item: UITabBarItem!) {

648 | Chapter 12: Controls and Other Views

Figure 12-23. Automatically generated More list

 if item.tag == 0 {
 // More button
 tabBar.selectedItem = nil
 tabBar.beginCustomizingItems(self.items)
 }
}
func tabBar(tabBar: UITabBar, didEndCustomizingItems items: [AnyObject],
 changed: Bool) {
 self.tabbar.selectedItem = self.tabbar.items![0] as? UITabBarItem
}

When used in conjunction with a UITabBarController, the customization interface is
provided automatically, in an elaborate way. If there are a lot of items, a More item is
automatically present, and can be used to access the remaining items in a table view.
Here, the user can select any of the excess items, navigating to the corresponding view.
Or, the user can switch to the customization interface by tapping the Edit button. (See
the iPhone Music app for a familiar example.) Figure 12-23 shows how a More list looks
by default.

The way this works is that the automatically provided More item corresponds to a
UINavigationController with a root view controller (UIViewController) whose view is
a UITableView. Thus, a navigation interface containing this UITableView appears
through the tabbed interface when the user taps the More button. When the user selects
an item in the table, the corresponding UIViewController is pushed onto the
UINavigationController’s stack.

You can access this UINavigationController: it is the UITabBarController’s more-
NavigationController. Through it, you can access the root view controller: it is the
first item in the UINavigationController’s viewControllers array. And through that,
you can access the table view: it is the root view controller’s view. This means you can
customize what appears when the user taps the More button! For example, let’s make
the navigation bar red with white button titles, and let’s remove the word More from its
title:

Bars | 649

let more = self.tabBarController.moreNavigationController
let list = more.viewControllers[0] as UIViewController
list.title = ""
let b = UIBarButtonItem()
b.title = "Back"
list.navigationItem.backBarButtonItem = b
more.navigationBar.barTintColor = UIColor.redColor()
more.navigationBar.tintColor = UIColor.whiteColor()

We can go even further by supplementing the table view’s data source with a data source
of our own, thus proceeding to customize the table itself. This is tricky because we have
no internal access to the actual data source, and we mustn’t accidentally disable it from
populating the table. Still, it can be done. I’ll start by replacing the table view’s data
source with an instance of my own MyDataSource, initializing it with a reference to the
original data source object:

let tv = list.view as UITableView
let mds = MyDataSource(originalDataSource: tv.dataSource!)
self.myDataSource = mds
tv.dataSource = mds

In MyDataSource, I’ll use message forwarding (see Apple’s Objective-C Runtime Pro‐
gramming Guide) so that MyDataSource acts as a front end for originalDataSource.
MyDataSource will magically appear to respond to any message that originalData-
Source responds to, and any message that arrives that MyDataSource can’t handle will
be magically forwarded to originalDataSource. This way, the insertion of the My‐
DataSource instance as data source doesn’t break whatever the original data source does:

override func forwardingTargetForSelector(aSelector: Selector)
 -> AnyObject? {
 if self.originalDataSource.respondsToSelector(aSelector) {
 return self.originalDataSource
 }
 return super.forwardingTargetForSelector(aSelector)
}

Finally, we’ll implement the two Big Questions required by the UITableViewDataSource
protocol, to quiet the compiler. In both cases, we first pass the message along to original-
DataSource (somewhat analogous to calling super); then we add our own customiza‐
tions as desired. Here, just as a proof of concept, I’ll change each cell’s text font
(Figure 12-24):

func tableView(tv: UITableView, numberOfRowsInSection sec: Int) -> Int {
 return self.originalDataSource.tableView(
 tv, numberOfRowsInSection: sec)
}
func tableView(tv: UITableView, cellForRowAtIndexPath ip: NSIndexPath)
 -> UITableViewCell {
 let cell = self.originalDataSource.tableView(

650 | Chapter 12: Controls and Other Views

Figure 12-24. Customized More list

 tv, cellForRowAtIndexPath: ip)
 cell.textLabel.font = UIFont(name: "GillSans-Bold", size: 14)!
 return cell
}

Tint Color
The UIView and UIBarButtonItem tintColor property has a remarkable built-in fea‐
ture: its value, if not set explicitly (or if set to nil), is inherited from its superview. The
idea is to simplify the task of giving your app a consistent overall appearance.

This works exactly the way you would expect. You can set the tintColor of your UI‐
Window instance, and its value will be inherited by every view that ever appears. Any
built-in interface object whose details are colored by the tintColor will display this
same color. For example, if you set your window’s tintColor to red, then
every .System button that appears anywhere in your interface will have red title text by
default.

Moreover, the inherited tintColor can be overridden by setting a view’s tintColor
explicitly. In other words, you can set the tintColor of a view partway down the view
hierarchy so that it and all its subviews have a different tintColor from the rest of the
interface. In this way, you might subtly suggest that the user has entered a different
world.

If you change the tintColor of a view, the change immediately propagates down the
hierarchy of its subviews — except, of course, that a view whose tintColor has been
explicitly set to a color of its own is unaffected, along with its subviews.

When you ask a view for its tintColor, what you get is the tintColor of the view itself,
if its own tintColor has been explicitly set to a color, or else the tintColor inherited
from up the view hierarchy. In this way, you can always learn what the effective tint color
of a view is.

Tint Color | 651

Whenever a view’s tintColor changes, including when its tintColor is initially set at
launch time, it and all its affected subviews are sent the tintColorDidChange message.
A subview whose tintColor has previously been explicitly set to a color of its own isn’t
affected, so it is not sent the tintColorDidChange message merely because its super‐
view’s tintColor changes — the subview’s own tintColor didn’t change.

A UIView also has a tintAdjustmentMode. Under certain circumstances, such as the
summoning of an alert (Chapter 13) or a popover (Chapter 9), the system will set the
tintAdjustmentMode of the view at the top of the view hierarchy to .Dimmed. This causes
the tintColor to change to a variety of gray. The idea is that the tinting of the back‐
ground should become monochrome, thus emphasizing the primacy of the view that
occupies the foreground (the alert or popover). This change in the tintAdjustment-
Mode propagates all the way down the view hierarchy, changing all tintAdjustment-
Mode values and all tintColor values — and sending all subviews the tintColorDid-
Change message. When the foreground view goes away, the system will set the topmost
view’s tintAdjustmentMode to .Normal, and that change will propagate down the hi‐
erarchy.

The default tintAdjustmentMode value is .Automatic, meaning that you want this
view’s tintAdjustmentMode to adopt its superview’s tintAdjustmentMode automati‐
cally. When you ask for such a view’s tintAdjustmentMode, what you get is just like
what you get for tintColor — you’re told the effective tint adjustment mode
(.Normal or .Dimmed) inherited from up the view hierarchy.

If, on the other hand, you set a view’s tintAdjustmentMode explicitly to .Normal
or .Dimmed, this tells the system that you want to be left in charge of the tintAdjustment-
Mode for this part of the hierarchy; the automatic propagation of the tintAdjustment-
Mode down the view hierarchy is prevented. To turn automatic propagation back on, set
the tintAdjustmentMode back to .Automatic. (See “Custom Presented View Controller
Transition” on page 324 for an example of setting the interface’s tintAdjustmentMode
to .Dimmed.)

You can take advantage of tintColorDidChange to make your custom UIView subclass
behave like a built-in UIView subclass. For example, a .Custom UIButton might not
automatically dim the title text color. But the button’s tintColor is still being dimmed,
even though that color isn’t being applied to the visible interface; thus, to imitate
a .System UIButton, you can apply the tintColor yourself.

In this example, my .Custom UIButton subclass has an attributed title; I respond to tint-
ColorDidChange by swapping that attributed title with one whose color is the dimmed
tintColor:

652 | Chapter 12: Controls and Other Views

override func tintColorDidChange() {
 let mas = self.attributedTitleForState(.Normal)!.mutableCopy()
 as NSMutableAttributedString
 switch self.tintAdjustmentMode {
 case .Dimmed:
 self.oldTitle = self.attributedTitleForState(.Normal)!
 mas.addAttribute(NSForegroundColorAttributeName,
 value:self.tintColor!, range:NSMakeRange(0,mas.length))
 self.setAttributedTitle(mas, forState:.Normal)
 default:
 self.setAttributedTitle(self.oldTitle, forState:.Normal)
 }
}

Don’t set the tintColor from within tintColorDidChange without taking precau‐
tions against an infinite recursion.

Appearance Proxy
When you want to customize the look of an interface object, instead of sending a message
to the object itself, you can send that message to an appearance proxy for that object’s
class. The appearance proxy then passes that same message along to the actual future
instances of that class. You’ll usually configure your appearance proxies very early in
the lifetime of the app, and never again. The app delegate’s application:didFinish-
LaunchingWithOptions:, before the app’s window has been displayed, is the most ob‐
vious and common location.

Like the tintColor that I discussed in the previous section, this architecture helps you
give your app a consistent appearance, as well as saving you from having to write a lot
of code. For example, instead of having to send setTitleTextAttributes:forState:
to every UIBarButtonItem your app ever instantiates, you send it once to the appearance
proxy, and it is sent to all future UIBarButtonItems for you:

UIBarButtonItem.appearance()
 .setTitleTextAttributes(
 [NSFontAttributeName: UIFont(name:"GillSans-Bold", size:16)!],
 forState: .Normal)

Also, the appearance proxy sometimes provides access to interface objects that might
otherwise be difficult to refer to. For example, you don’t get direct access to a search
bar’s external Cancel button, but it is a UIBarButtonItem and you can customize it
through the UIBarButtonItem appearance proxy.

There are four class methods for obtaining an appearance proxy:
appearance

Returns a general appearance proxy for the receiver class.

Appearance Proxy | 653

appearanceForTraitCollection:

Returns an appearance proxy applicable to situations where the environment
matches the specified trait collection. This method is new in iOS 8.

appearanceWhenContainedIn:

The argument is a nil-terminated comma-separated list (not an array!) of classes,
arranged in order of containment from inner to outer. The method you send to the
appearance proxy returned from this call will be passed on only to instances of the
receiver class that are actually contained in the way you describe. The notion of
what “contained” means is deliberately left vague; basically, it works the way you
intuitively expect it to work.

appearanceForTraitCollection:whenContainedIn:

A combination of the preceding two: returns an appearance proxy applicable when
both the specified trait collection and the specified containment hierarchy are
matched.

The whenContainedIn: parameter can’t be expressed in Swift. You’ll have to use
Objective-C code to call those two methods.

When configuring appearance proxy objects, specificity trumps generality. Thus, you
could call appearance to say what should happen for most instances of some class, and
call appearanceForTraitCollection: or appearanceWhenContainedIn: to say what
should happen instead for certain instances of that class. Similarly, longer appearance-
WhenContainedIn: chains are more specific than shorter ones.

For example, here’s some code from my Latin flashcard app (myGolden and myPaler are
methods defined by a category on UIColor; the code is in Objective-C, because I need
to call appearanceWhenContainedIn:):

[[UIBarButtonItem appearance]
 setTintColor: [UIColor myGolden]];
[[UIBarButtonItem appearanceWhenContainedIn:
 [UIToolbar class], nil]
 setTintColor: [UIColor myPaler]];
[[UIBarButtonItem appearanceWhenContainedIn:
 [UIToolbar class], [DrillViewController class], nil]
 setTintColor: [UIColor myGolden]];

That means:

In general, bar button items should be tinted golden.
But bar button items in a toolbar are an exception: they should be tinted paler.

654 | Chapter 12: Controls and Other Views

But bar button items in a toolbar in DrillViewController’s view are an exception
to the exception: they should be tinted golden.

(If you’re looking at this book’s figures in color, you can see this difference made manifest
in Figures 6-3 and 6-5.)

Sometimes, in order to express sufficient specificity, I find myself defining subclasses
for no other purpose than to refer to them when obtaining an appearance proxy. For
example, here’s some more code from my Latin flashcard app:

[[UINavigationBar appearance] setBackgroundImage:marble2
 forBarMetrics:UIBarMetricsDefault];
// counteract the above for the black navigation bar
[[BlackNavigationBar appearance] setBackgroundImage:nil
 forBarMetrics:UIBarMetricsDefault];

In that code, BlackNavigationBar is a UINavigationBar subclass that does nothing
whatever. Its sole purpose is to tag one navigation bar in my interface so that I can refer
to it in that code! Thus, I’m able to say, in effect, “All navigation bars in this app should
have marble2 as their background image, unless they are instances of BlackNavigation‐
Bar.”

The ultimate in specificity is, of course, to customize the look of an instance directly.
Thus, for example, if you set one particular UIBarButtonItem’s tintColor property,
then setting the tint color by way of a UIBarButtonItem appearance proxy will have no
effect on that particular bar button item.

Be warned, however, that not every message that can be sent to an instance of a class
can be sent to that class’s appearance proxy. Unfortunately, the compiler can’t help you
here; illegal code like this will compile, but will crash at runtime:

UIBarButtonItem.appearance().action = "crashme" // thanks, I will

When in doubt, look at the class documentation; there should be a section that lists the
properties and methods applicable to the appearance proxy for this class. For example,
the UINavigationBar class documentation has a section called “Customizing the Bar
Appearance,” the UIBarButtonItem class documentation has a section called “Custom‐
izing Appearance,” and so forth.

The headers and other documentation may appear to warn that tintColor is not a
legal appearance proxy message. Don’t worry; it is legal. However, it is also true that
the normal tintColor property can conflict with appearance proxy settings. For
example, setting an object’s tintColor directly can undo a UIBarButtonItem’s title
font set previously through the appearance proxy’s title text attributes.

Appearance Proxy | 655

CHAPTER 13

Modal Dialogs

A modal dialog demands attention; while it is present, the user can do nothing other
than work within it or dismiss it. You might need to put up a simple modal dialog in
order to give the user some information or to ask the user how to proceed. iOS provides
two types of rudimentary modal dialog — alerts and action sheets.

A local notification is an alert that the system presents at a predetermined time on your
app’s behalf when your app isn’t frontmost. I discuss local notifications in this chapter
as well. I’ll also talk about today extensions, a mechanism whereby your app can present
interface on the Today side of the notification center.

An activity view is a modal dialog displaying icons representing possible courses of
action, and intended in certain circumstances to replace the action sheet. For example,
Mobile Safari presents an activity view from its Action button; the icons represent ex‐
ternal modes of sharing a URL such as Mail, Message, and Twitter, as well as internal
actions such as Bookmark and Add to Reading List. I’ll describe how to present an
activity view and how to provide your own activities, either privately within your app
or publicly as an action extension.

Alerts and Action Sheets
New in iOS 8, alerts and action sheets are both forms of presented view controller. They
are managed through the UIAlertController class, a UIViewController subclass. (This
architecture replaces that of iOS 7 and before, where alerts and action sheets were win‐
dows interposed in front of your app by the system, and were configured through the
UIAlertView and UIActionSheet classes.)

To show an alert or an action sheet is a three-step process:

1. Instantiate UIAlertController by calling init(title:message:preferred-

Style:). The title: and message: are large and small descriptive text to appear

657

at the top of the dialog. The preferredStyle: (UIAlertControllerStyle) will be
either .Alert or .ActionSheet.

2. Configure the dialog by calling addAction: on the UIAlertController as many times
as needed. An action is a UIAlertAction, which basically means it’s a button to
appear in the dialog, along with a closure to be executed when the button is tapped;
to create one, call init(title:style:handler:). (This closure-based architecture
is much clearer and more self-contained than the old delegate-based architecture
of iOS 7 and before.) Possible style: values are (UIAlertActionStyle):

• .Default

• .Cancel

• .Destructive

An alert may also have text fields (I’ll talk about that in a moment).
3. Call presentViewController:animated:completion: to present the UIAlert‐

Controller.

The dialog is automatically dismissed when the user taps any button.

Alerts
An alert (UIAlertController style .Alert) pops up unexpectedly in the middle of the
screen, with an elaborate animation, and may be thought of as an attention-getting
interruption. It contains a title, a message, and some number of buttons, one of which
may be the cancel button, meaning that it does nothing but dismiss the alert. In addition,
an alert may contain one or two text fields.

Alerts are minimal, but intentionally so; they are intended for simple, quick interaction
or display of information. Often there is only a cancel button, the primary purpose of
the alert being to show the user the message (“You won the game”); additional buttons
may be used to give the user a choice of how to proceed (“You won the game; would
you like to play another?” “Yes,” “No,” “Replay”). Text fields might allow the user to
supply login credentials.

Figure 13-1 shows a basic alert, illustrating the title, the message, and the three button
styles: .Destructive, .Default, and .Cancel respectively. Here’s the code that gener‐
ated it:

let alert = UIAlertController(title: "Not So Fast!",
 message: "Do you really want to do this " +
 "tremendously destructive thing?",
 preferredStyle: .Alert)
func handler(act:UIAlertAction!) {
 println("User tapped \(act.title)")

658 | Chapter 13: Modal Dialogs

Figure 13-1. An alert

}
alert.addAction(UIAlertAction(
 title: "No", style: .Cancel, handler: handler))
alert.addAction(UIAlertAction(
 title: "Yes", style: .Destructive, handler: handler))
alert.addAction(UIAlertAction(
 title: "Maybe", style: .Default, handler: handler))
self.presentViewController(alert, animated: true, completion: nil)

In Figure 13-1, observe that the .Destructive button appears first and the .Cancel
button appears last, without regard to the order in which they are defined.
The .Default button order of definition, on the other hand, will be the order of the
buttons themselves. If no .Cancel button is defined, the last .Default button will be
displayed as a .Cancel button.

As I’ve already mentioned, the dialog is dismissed automatically when the user taps a
button. If you don’t want to respond to the tap of a particular button, you can assign a
nil handler: argument. In the preceding code, I’ve provided a minimal handler: func‐
tion for each button, just to show what one looks like. As the example demonstrates,
the function receives the original UIAlertAction as a parameter, and can examine it as
desired. The function can also access the alert controller itself, if necessary, provided
the alert controller is in scope at the point where the handler function is defined (which
will usually be the case). My example code assigns the same function to all three buttons,
but more often you’ll give each button its own individual handler.

Now let’s talk about adding text fields to an alert. Because space is limited on the smaller
iPhone screen, especially when the keyboard is present, an alert that is to contain a text
field should probably should have at most two buttons, with short titles such as “OK”
and “Cancel,” and at most two text fields. To add a text field to an alert, call addText-
FieldWithConfigurationHandler:. The handler will receive the text field as a param‐

Alerts and Action Sheets | 659

eter; it is called before the alert appears, and can be used to configure the text field. Other
handlers, such as the handler of a button, can access the text field through the alert’s
textFields property, which is an array. In this example, the user is invited to enter a
number in the text field; if the alert is dismissed with the OK button, its handler reads
the text from the text field:

let alert = UIAlertController(
 title: "Enter a number:", message: nil, preferredStyle: .Alert)
alert.addTextFieldWithConfigurationHandler {
 (tf:UITextField!) in
 tf.keyboardType = .NumberPad
}
func handler(act:UIAlertAction!) {
 let tf = alert.textFields![0] as UITextField
 let s = tf.text // ... and now do something with the text ...
}
alert.addAction(UIAlertAction(
 title: "Cancel", style: .Cancel, handler: nil))
alert.addAction(UIAlertAction(
 title: "OK", style: .Default, handler: handler))
self.presentViewController(alert, animated: true, completion: nil)

A puzzle arises as to how to prevent the user from dismissing the alert if the text fields
are not acceptably filled in. The alert will be dismissed if the user taps a button, and no
button handler can prevent this. The solution is to disable the relevant buttons until the
text fields are satisfactory. A UIAlertAction has an enabled property for this very pur‐
pose. I’ll modify the preceding example so that the OK button can’t initially be tapped:

alert.addAction(
 UIAlertAction(title: "Cancel", style: .Cancel, handler: nil))
alert.addAction(
 UIAlertAction(title: "OK", style: .Default, handler: handler))
(alert.actions[1] as UIAlertAction).enabled = false
self.presentViewController(alert, animated: true, completion: nil)

But this raises a new puzzle: how will the OK button be enabled? The text field can have
a delegate or a control event target–action pair, and so we can hear about the user typing
in it. I’ll modify the example again so that I’m notified as the user edits in the text field:

alert.addTextFieldWithConfigurationHandler {
 (tf:UITextField!) in
 tf.keyboardType = .NumberPad
 tf.addTarget(self,
 action: "textChanged:", forControlEvents: .EditingChanged)
}

Our textChanged: method will now be called when the user edits, but this raises one
final puzzle: how will this method, which receives a reference to the text field, get a
reference to the OK button in the alert in order to enable it? My approach is to work

660 | Chapter 13: Modal Dialogs

my way up the responder chain from the text field to the alert controller. Here, I enable
the OK button if and only if the text field contains some text:

func textChanged(sender:AnyObject) {
 let tf = sender as UITextField
 var resp : UIResponder! = tf
 while !(resp is UIAlertController) { resp = resp.nextResponder() }
 let alert = resp as UIAlertController
 (alert.actions[1] as UIAlertAction).enabled = (tf.text != "")
}

Action Sheets
An action sheet (UIAlertController style .ActionSheet) may be considered the iOS
equivalent of a menu; it consists primarily of buttons. On the iPhone, it slides up from
the bottom of the screen; on the iPad, it appears as a popover.

Where an alert is an interruption, an action sheet is a logical branching of what the user
is already doing: it typically divides a single piece of interface into multiple possible
courses of action. For example, in Apple’s Mail app, a single Action button summons
an action sheet that lets the user reply to the current message, forward it, or print it (or
cancel and do nothing).

Figure 13-2 shows a basic action sheet on the iPhone. Here’s the code that constructed
it:

let action = UIAlertController(
 title: "Choose New Layout", message: nil, preferredStyle: .ActionSheet)
action.addAction(UIAlertAction(
 title: "Cancel", style: .Cancel, handler: nil))
func handler(act:UIAlertAction!) {
 let s = act.title // ... and do something with that info here ...
}
for s in ["3 by 3", "4 by 3", "4 by 4", "5 by 4", "5 by 5"] {
 action.addAction(
 UIAlertAction(title: s, style: .Default, handler: handler))
}
self.presentViewController(action, animated: true, completion: nil)

On the iPad, the action sheet wants to be a popover. This means that a UIPopover‐
PresentationController will take charge of it. It will thus be incumbent upon you to
provide something for the popover’s arrow to point to; otherwise, you’ll crash at run‐
time. Recall (from Chapter 9) that the way to deal with this situation is to test for a
popoverPresentationController after presenting the action sheet; that way, the same
code will work equally well on an iPhone and on an iPad:

Alerts and Action Sheets | 661

Figure 13-2. An action sheet on the iPhone

self.presentViewController(action, animated: true, completion: nil)
if let pop = action.popoverPresentationController {
 let v = sender as UIView
 pop.sourceView = v
 pop.sourceRect = v.bounds
}

In that code, we’re assuming that the sender (whatever was tapped in order to summon
the action sheet) is a UIView. If it’s a UIBarButtonItem, then obviously you’ll set the
popover presentation controller’s barButtonItem, and you may want to do the little
dance I demonstrated in Chapter 9 to set its passthroughViews to nil.

The Cancel button for a popover action sheet is suppressed, because the user can dismiss
the popover by tapping outside it.

An action sheet can also be presented inside a popover. In that case, the containing
popover is treated as an iPhone: the action sheet slides up from the bottom of the po‐
pover, and the Cancel button is not suppressed. The action sheet’s modal presentation
style defaults to .OverCurrentContext, which is exactly what we want, so there is no
need to set it. You are then presenting a view controller inside a popover; see “Popover
Presenting a View Controller” on page 513 for the considerations that apply.

Dialog Alternatives
Alerts and action sheets are limited, inflexible, and inappropriate to any but the simplest
cases. Their interface can contain title text, buttons, and (for an alert) one or two text
fields, and that’s all. What if you wanted more interface than that?

662 | Chapter 13: Modal Dialogs

Figure 13-3. A presented view behaving like an alert

Some developers have hacked into their alerts or action sheets in an attempt to force
them to be more customizable. This is wrong, and in any case there is no need for such
extremes. These are just presented view controllers, after all, and if you don’t like what
they contain, you can make your own presented view controller with its own customized
view. As I have already shown (“Custom Presented View Controller Transition” on page
324), it is easy to create a small presented view that looks and behaves quite like an alert
or action sheet, floating in front of the main interface and darkening everything behind
it — the difference being that this is an ordinary view controller’s view, belonging entirely
to you, and capable of being populated with any interface you like (Figure 13-3). You
can even add a UIMotionEffect to your presented view, giving it the same parallax as a
real alert.

More generally, it is worthwhile asking yourself whether an alert or action sheet is even
needed. On the iPhone, for example, it is always possible to navigate to a new screenful
of interface, whether by way of a navigation interface or by using a presented view
(Chapter 6). The color picker in my Zotz! app (Figure 13-4) has the same lightweight,
temporary quality that an alert offers, and on the desktop would probably be presented
as part of a secondary Preferences window; it happens that, on the iPhone, it occupies
the entire screen, but it is still effectively a modal dialog.

On the iPad, a popover is virtually a secondary window, and can be truly modal. The
popovers in Figure 9-1, for example, are effectively modal dialogs. A popover can in‐
ternally display a secondary presented view or even an action sheet, as we’ve already
seen. Also on the iPad, a presented view can use the UIModalPresentationFormSheet
presentation style, which is effectively a dialog window smaller than the screen; and
even a smaller presented view, such as the one shown in Figure 13-3, works just as well
on the iPad as on the iPhone.

Local Notifications
A local notification is an alert to the user that can appear even if your app is not running.
Where it may appear depends upon the user’s preferences in the Settings app, either
under Notification Center or under your app’s own listing which, new in iOS 8, is created

Local Notifications | 663

Figure 13-4. A presented view functioning as a modal dialog

automatically for this purpose. In addition to optionally producing a sound, a local
notification’s interface possibilities are (Figure 13-5, clockwise from the top left):

• A modal alert, similar to a UIAlertController’s alert
• A momentary banner at the top of the screen, which vanishes automatically if the

user does nothing; this interface is mutually exclusive with the modal alert interface
• A row on the lock screen
• A row in the notification center

This use of the term notification has nothing to do with NSNotification; the ambi‐
guity is unfortunate.

Your app does not present a local notification; the system does. You hand the system
instructions for when the local notification is to fire, and then you just stand back and
let the system deal with it. That’s why the local notification can appear even if your app
isn’t frontmost or isn’t even running. Indeed, if your app is frontmost, the local notifi‐
cation’s alert or banner does not automatically appear when it fires; instead, your app is

664 | Chapter 13: Modal Dialogs

Figure 13-5. Local notification interface possibilities

Figure 13-6. The user will see this only once

notified, and you can notify the user if you like. The only local notification alert that
can appear when your app is frontmost is some other app’s local notification (and in that
case, your app will become inactive; see Appendix A).

The user, in the Settings app, can veto any of your local notification’s interface options,
or turn off your app’s local notifications entirely. Thus, your local notification can be
effectively suppressed; you can still create a local notification, but when it fires, only
your app will hear about it, and only if it is frontmost. New in iOS 8, moreover, the
system will suppress your local notifications by default unless the user approves first.
Thus, in contrast to iOS 7 and before, where your local notification might appear for
the first time, and then the user who preferred to suppress it would opt out in the Settings
app, in iOS 8 the user must deliberately opt in if your notification is ever to appear in
any form. Figure 13-6 shows the alert that the system will show your user, once, offering
the initial opportunity to opt in to your local notifications.

Local Notifications | 665

Figure 13-7. Local notifications with custom actions

The interface whereby a notification presents itself provides a way for the user to sum‐
mon your app in response, bringing it to the front if it is backgrounded, and launching
it if it isn’t running. In iOS 7 and before, a notification could also have an action button,
in at least some of its forms; new in iOS 8, an action button can appear in any of a
notification’s forms, you can customize it, you can have more than one, and an action
button can communicate with your app without bringing it to the front. Thus, from a
presented notification, the user can elect to open your app or to tap an action button;
either way, your app will know what happened, as I’ll explain in a moment.

Figure 13-7 shows how two custom action buttons appear in each of a local notification’s
interface possibilities. In the alert (top left), the user has tapped the Options button in
the first alert from Figure 13-5; in the banner, the user has pulled down; in the lock
screen and notification center, the user has slid the row to the left.

I’ll treat the creation of a local notification in iOS 8 as involving three steps:

1. Your app must register for notifications. This is new in iOS 8. Registration states
what sorts of interface your notifications will want to use, and ensures that the user
has seen the opt-in dialog (Figure 13-6). This is also the moment when you provide
action buttons. You may register as many times as you like (the opt-in dialog won’t
be repeated); each registration cancels the previous registration settings and repla‐
ces them with new ones.

666 | Chapter 13: Modal Dialogs

2. Your app creates and schedules a local notification.
3. Your app is prepared to hear about the user responding to the notification.

Registering a Notification
When should registration be performed? Apple has not provided clear guidance; they
say only “during your launch cycle.” This would seem to suggest application:did-
FinishLaunchingWithOptions: as a possible location. But this, as my test reveals, has
a fatal flaw in the following scenario:

1. You register in application:didFinishLaunchingWithOptions:.
2. The user sees the dialog and refuses to allow your app to present local notifications.
3. Some time later, the user goes to the Settings app and enables local notifications for

your app.
4. You present a local notification — and your custom actions are missing. This is

because you registered only once, and the user declined on that occasion, so your
custom actions were never registered.

To work around this scenario (which I regard as a bug), I recommend also registering
in applicationWillEnterForeground:. You’ll be registering every time your app
comes to the front, which is wasteful but mostly harmless, and at least you are guaranteed
of registering your custom actions if the user has visited the Settings app in the mean‐
time.

To register, you must supply two things:
Interface types

Interface types (UIUserNotificationType) are .Alert (meaning alerts and ban‐
ners), .Sound, and .Badge, forming a bitmask. Omit any that your app will never
use, and that type will be omitted from Settings for your app; regardless of your
registered interface types, the user will always see the options to show your notifi‐
cations in the notification center and the lock screen.

Categories
A category (UIUserNotificationCategory, along with its mutable subclass) is a value
class comprising a string identifier along with any custom action buttons. When
you create and schedule a local notification, you will associate it with a category by
using the string identifier, thus determining what custom action buttons will be
present.

An action button (UIUserNotificationAction, along with its mutable subclass) has the
following properties:

Local Notifications | 667

identifier

A private string identifier; this is how your app will know what button was tapped.

title

The visible title of the button. Keep it short!

destructive

If true, the button will be shown in red.

activationMode

A UIUserNotificationActivationMode, either .Foreground or .Background. In the
latter case, your app will not be brought to the front when the user taps this button;
instead, your app will be permitted to run briefly in the background.

authenticationRequired

If true, and if this is a .Background button, then if the user’s device requires a
passcode to go beyond the lock screen, tapping this button in the lock screen will
also require a passcode. The idea is to prevent performance of a dangerous action
without authentication directly from the lock screen.

We now know enough for an example! Here’s the code that registers the notification
shown in Figure 13-7:

let types : UIUserNotificationType = .Alert | .Sound
let category = UIMutableUserNotificationCategory()
category.identifier = "coffee"
let action1 = UIMutableUserNotificationAction()
action1.identifier = "yum"
action1.title = "Yum" // user will see this
action1.activationMode = .Foreground
let action2 = UIMutableUserNotificationAction()
action2.identifier = "ohno"
action2.title = "Oh, No!" // user will see this
action2.activationMode = .Background
category.setActions([action1, action2], forContext: .Default)
let settings = UIUserNotificationSettings(
 forTypes: types, categories: NSSet(array: [category]))
application.registerUserNotificationSettings(settings)

In setActions:forContext:, the possible contexts are .Default and .Minimal.
A .Default context, a full-fledged alert, can have a maximum of four buttons; the other
forms of interface can have a maximum of two. Thus, if you had more than two buttons
for the .Default context, you would use an additional call to setActions:forContext:
to say which buttons should appear in the .Minimal context.

Your code can subsequently discover whether the user has granted permissions for the
notification types you requested. For example:

668 | Chapter 13: Modal Dialogs

let settings = UIApplication.sharedApplication()
 .currentUserNotificationSettings()
if settings.types.rawValue & UIUserNotificationType.Alert.rawValue != 0 {
 // alerts are enabled
}

It is difficult, however, to see how this information is useful, as there is unfortunately
no way to learn whether the user has completely turned off notifications for your app.
Thus, although Apple claims you might call currentUserNotificationSettings in
order to save yourself the trouble of preparing a certain notification, I don’t think you
would ever not send one, as there is always a chance that, even if alerts are turned off,
your notification might appear in the notification center or the lock screen.

After you call registerUserNotificationSettings:, your app delegate will receive
application:didRegisterUserNotificationSettings:. I don’t understand why this
useful either, since you know perfectly well that you just registered, and if you want to
know what the notification settings are you can always call currentUserNotification-
Settings.

Scheduling a Notification
We are now ready for the second step — creating and scheduling a notification. To create
a local notification, you configure a UILocalNotification object and hand it to the shared
UIApplication instance by calling scheduleLocalNotification:. The UILocal‐
Notification object has properties as follows:
category

The identifier of a category you provided when you registered (new in iOS 8). If
your category has actions, this also tells the runtime to provide them. (The has-
Action and alertAction properties from iOS 7 and before are thus superseded.)

alertBody

The message to be displayed in the notification.
soundName

The name of a sound file at the top level of your app bundle, to be played when the
alert appears. This should be an uncompressed sound (AIFF or WAV). Alterna‐
tively, you can specify the default sound, UILocalNotificationDefaultSound-
Name. If you don’t set this property, there won’t be a sound (and of course the user
can prevent your app’s notifications from emitting any sound).

userInfo

An optional dictionary whose contents are up to you. Your app can retrieve this
dictionary later on, if it receives the notification after the notification fires.

Local Notifications | 669

fireDate, timeZone
When you want the local notification to fire. The fireDate is an NSDate. If you
don’t include a timeZone, the date is measured against universal time; if you do
include a timeZone, the date is measured against the user’s local time zone, and thus
it keeps working correctly if that time zone changes (because the user travels, for
instance).

repeatInterval, repeatCalendar
If set, the local notification will recur. The repeatInterval (an NSCalendarUnit)
must be a minute or longer; setting it to .SecondCalendarUnit will result in a value
of .MinuteCalendarUnit. Recurrence survives a restart of the device.

Additional UIApplication methods let you manipulate the list of local notifications
you’ve already scheduled. You can cancel one or all scheduled local notifications (cancel-
LocalNotification:, cancelAllLocalNotifications:); you can also manipulate the
list directly by setting UIApplication’s scheduledLocalNotifications, an array prop‐
erty.

Canceling a recurring local notification is up to your code; if you don’t provide a
way of doing that, and if the user wants to prevent the notification from recurring,
the user’s only recourse will be to delete your app.

Here’s the code for creating and scheduling the local notification that results in
Figure 13-5:

let ln = UILocalNotification()
ln.category = "coffee" // causes action buttons to spring to life
ln.alertBody = "Time for another cup of coffee!"
ln.fireDate = NSDate(timeIntervalSinceNow:15)
ln.soundName = UILocalNotificationDefaultSoundName
UIApplication.sharedApplication().scheduleLocalNotification(ln)

Hearing About a Local Notification
Now let’s talk about what happens when one of your scheduled local notifications fires.
There are three possibilities, depending on the state of your app at that moment:
Your app is frontmost

The user won’t be informed by the system that the notification has fired; there won’t
be any sound, alert, or banner. Your notification will be listed in the notification
center if the user has granted permission.

Your app delegate will receive application:didReceiveLocalNotification:,
where the second parameter is the UILocalNotification, and your application’s
applicationState will be .Active.

670 | Chapter 13: Modal Dialogs

Your app is suspended or not running
What happens depends on what the user does in response to the firing of the alert:
The user summons your app

If the user taps the top of the banner or the Open button in the alert, or taps
your notification in the notification center, or slides your notification in the
lock screen to the right, your app is brought to the front, and:

• If your app was suspended, your app delegate will receive application:did-
ReceiveLocalNotification:, where the second parameter is the UILocal‐
Notification, and your application’s applicationState will be .Inactive.

• If your app was not running, your app delegate will receive
application:didFinishLaunchingWithOptions:, with a dictionary pa‐
rameter that includes the UIApplicationLaunchOptionsLocal-

NotificationKey, whose value is the UILocalNotification.

The user taps an action button
If the user taps an action button, then your app delegate will receive
application:handleActionWithIdentifier:forLocalNotification:com-

pletionHandler:. You must call the completion handler at the end of your
implementation!

If this is a .Foreground button and your app wasn’t running, your app delegate
will of course also receive application:didFinishLaunchingWithOptions:,
but the options dictionary will be nil.

If this is a .Background button, your app is now running in the background.
You have very little time before being suspended, so respond quickly.

Nothing (or close)
If the user does nothing, or closes the banner, or taps Close in the alert, that’s
the end of the matter; your app will never be informed that the notification
fired.

Here’s a minimal implementation of application:handleActionWithIdentifier:for-
LocalNotification:completionHandler::

func application(application: UIApplication,
 handleActionWithIdentifier id: String?,
 forLocalNotification n: UILocalNotification,
 completionHandler: () -> Void) {
 // ... examine id and n as desired ...
 completionHandler() // crucial!
}

Thus, to cover all possible cases, you should implement all three app delegate methods:

Local Notifications | 671

application:didFinishLaunchingWithOptions:

Check its second parameter to see whether we are launching in response to a local
notification.

application:didReceiveLocalNotification:

Check the UIApplication’s applicationState and the notification as desired.

application:handleActionWithIdentifier:forLocalNotification:completion-

Handler:

Check the identifier and notification as desired, and remember to call the comple‐
tion handler.

It is a pity that your app, when coming to the front, can’t learn that a notification fired
while it was suspended or not running, if the user doesn’t use the notification interface
to bring the app to the front and doesn’t tap an action button. If your app’s logic is about
firing notifications at certain times, you’ll need to implement your own model to keep
track of those times and look to see, when you come the front, whether those times have
passed.

If your app wasn’t frontmost and the user summons it from a notification, you may want
to show the user, immediately, some interface appropriate to this local notification.
However, as your app appears, the user will first see either your default launch image
(if the app is launched from scratch) or the screenshot image taken by the system when
your app was suspended (if the app is activated from the background). To prevent a
mismatch between that image and what the user will see when your app’s interface
actually appears, you can include in the original UILocalNotification an alertLaunch-
Image that more closely matches your app’s interface.

Under some special circumstances (addressed, for example, in Chapters 14 and 22),
your app might be running, not suspended, in the background, when your notification
fires. In this case, the situation is similar to what happens when your app is suspended:
the user may be notified, and can summon your app to the front. Your running-in-the-
background app can even schedule a notification to fire immediately with the conve‐
nience method presentLocalNotificationNow:.

New in iOS 8, a local notification can fire in response to the user’s location rather
than in reponse to the arrival of a certain time. I’ll talk about that in Chapter 21.

Today Extensions
New in iOS 8, your app can obtain a bit of real estate on the other side of the notification
center — the Today side, as opposed to the Notifications side. To do so, you add to your

672 | Chapter 13: Modal Dialogs

Figure 13-8. A today extension

app a today extension. Your app vends the extension, and the user has the option of
adding it to the Today side of the notification center (Figure 13-8).

To add a today extension to your app, create a new target and specify iOS → Application
Extension → Today Extension. The template gives you a good start on your extension.
You have a storyboard with a single scene, and the code for a corresponding view con‐
troller that adopts the NCWidgetProviding protocol. You might need to edit the ex‐
tension’s Info.plist and set the “Bundle display name” entry — this is the title that will
appear above your extension in the notification center.

Design your extension’s interface in the storyboard provided. Use autolayout to position
your views, and provide sufficient constraints to determine the full height of your ex‐
tension’s interface from the inside out. (Apple says that you can alternatively determine
your extension’s height by setting your view controller’s preferredContentSize, but in
my experimentation, autolayout proved more reliable.) If you want to add a UIVisual‐
EffectView with vibrancy, do so in code, initializing the view’s effect by calling
UIVibrancyView’s class method notificationCenterVibrancyEffect:

let v = UIVisualEffectView(
 effect: UIVibrancyEffect.notificationCenterVibrancyEffect())

Your interface will appear aligned to the notification center’s margins, which by default
involve a large left margin. To counteract that, implement the NCWidgetProviding
protocol method widgetMarginInsetsForProposedMarginInsets:. For example:

func widgetMarginInsetsForProposedMarginInsets(
 defaultMarginInsets: UIEdgeInsets) -> UIEdgeInsets {
 return UIEdgeInsetsMake(0,16,0,16)
}

Each time your today extension’s interface is about to appear, your code is given an
opportunity to update its interface, through its implementation of widgetPerform-
UpdateWithCompletionHandler:. Be sure to finish up by calling the completion-
Handler, handing it an NCUpdateResult, which will be .NewData, .NoData, or .Failed.
Time-consuming work should be performed off the main thread (see Chapter 25):

Local Notifications | 673

Figure 13-9. A custom URL declaration

func widgetPerformUpdateWithCompletionHandler(
 completionHandler: ((NCUpdateResult) -> Void)!) {
 // ... do stuff off the main thread here ...
 // ... then get back on the main thread and call:
 completionHandler(NCUpdateResult.NewData)
}

That’s basically all there is to a today extension, but be sure to read the NCWidget‐
Providing protocol header and the “Today” chapter of Apple’s App Extension Program‐
ming Guide. Also, look at the “Handling Common Scenarios” section to understand
how to communicate data and messages between your app and the extension. The ex‐
tension is not running within your app, but is being hosted by some other app; thus,
there are some calls you can’t make — for example, there is no shared application object
— and communication can be a bit tricky. In Figure 13-8, two buttons invite the user
to set up a reminder; I’ve implemented these to open our CoffeeTime app by calling
openURL:completionHandler: — a method of the automatically provided extension-
Context, not the shared application:

@IBAction func doButton(sender: AnyObject) {
 let v = sender as UIView
 let t = v.tag // tag is number of minutes
 if let url = NSURL(string:"coffeetime://\(String(t))") {
 self.extensionContext?.openURL(url, completionHandler: nil)
 }
}

The CoffeeTime app receives this message because I’ve given it two things:
A custom URL scheme

The coffeetime scheme is declared in the app’s Info.plist (Figure 13-9).
An implementation of application:handleOpenURL:

In the app delegate, I’ve implemented application:handleOpenURL: to analyze the
URL when it arrives. I’ve coded the original URL so that the “host” is actually the
number of minutes announced in the tapped button; thus, I can respond appro‐
priately (presumably by scheduling a local notification for that number of minutes
from now):

674 | Chapter 13: Modal Dialogs

func application(
 application: UIApplication, handleOpenURL url: NSURL) -> Bool {
 let scheme = url.scheme
 let host = url.host
 if scheme == "coffeetime" {
 if let min = host?.toInt() {
 // ... do something here ...
 return true
 }
 }
 return false
}

Activity Views
An activity view is the view belonging to a UIActivityViewController. You start with
one or more pieces of data, such as a string, that you want the user to have the option
of sharing or working with in your app. The activity view contains an icon for every
activity (UIActivity) that can work with this type of data. The user may tap an icon in
the activity view, and is then perhaps shown additional interface, belonging to the pro‐
vider of the chosen activity.

Don’t confuse UIActivityViewController, UIActivity, UIActivityItemProvider, and
UIActivityItemSource, on the one hand, with UIActivityIndicatorView (Chapter 12)
on the other. The similarity of the names is unfortunate.

There are 14 built-in activities, and your app can provide more activities that are avail‐
able only within your app. Figure 13-10 shows an example, from Mobile Safari:

In Figure 13-10, the top row of the activity view lists some applicable built-in system-
wide activites; the bottom row shows some activities provided internally by Safari itself.
New in iOS 8, an app can provide system-wide activities that are available in any app.
Such activities come in two forms:
Share extensions

A share extension is shown in the upper row of an activity view. Share extensions
are for situations where you run some kind of server and are offering to give the
user interface for posting information to it — similar to the activities that appear
there by default, such as Twitter and Facebook.

Action extensions
An action extension is shown in the lower row of an activity view. Action extensions
offer to perform some kind of manipulation on the data provided by the host app,
and can even hand back data in reply.

Activity Views | 675

Figure 13-10. An activity view

I’ll describe how to present an activity view and how to construct an activity that’s private
to your app. Then I’ll give an example of writing an action extension. (Share extensions
require a custom server and are beyond the scope of this book.)

Presenting an Activity View
To present an activity view:

1. Instantiate UIActivityViewController. The initializer you’ll be calling is
init(activityItems:applicationActivities:), where the first argument is an
array of objects to be shared or operated on, such as string or image objects. Pre‐
sumably these are objects associated somehow with the interface the user is looking
at right now.

2. Set the controller’s completionWithItemsHandler (superseding the completion-
Handler from iOS 7 and before) to a closure that will be called when the user’s
interaction with the activity interface ends.

3. Present the controller, as a presented view controller; on the iPad, it will be a po‐
pover, so you’ll also configure the popover presentation controller if there is one.
The presented view or popover will be dismissed automatically when the user can‐
cels or chooses an activity.

So, for example:

let url = NSBundle.mainBundle().URLForResource(
 "sunglasses", withExtension:"png")!
let things = ["This is cool", url] // a string and an image file URL
let avc = UIActivityViewController(

676 | Chapter 13: Modal Dialogs

 activityItems:things, applicationActivities:nil)
avc.completionWithItemsHandler = {
 (s: String!, ok: Bool, items: [AnyObject]!, err:NSError!) -> Void in
 // ... optionally do something here; only the ok parameter matters ...
}
self.presentViewController(avc, animated:true, completion:nil)
if let pop = avc.popoverPresentationController {
 let v = sender as UIView
 pop.sourceView = v
 pop.sourceRect = v.bounds
}

There is no Cancel button in the popover presentation of the activity view; the user
cancels by tapping outside the popover. Actually, the user can cancel by tapping outside
the activity view even on the iPhone.

The activity view is populated automatically with known system-wide activities that can
handle any of the types of data you provided as the activityItems: argument. These
activities represent UIActivity types, and are designated by string constants:

• UIActivityTypePostToFacebook

• UIActivityTypePostToTwitter

• UIActivityTypePostToWeibo

• UIActivityTypeMessage

• UIActivityTypeMail

• UIActivityTypePrint

• UIActivityTypeCopyToPasteboard

• UIActivityTypeAssignToContact

• UIActivityTypeSaveToCameraRoll

• UIActivityTypeAddToReadingList

• UIActivityTypePostToFlickr

• UIActivityTypePostToVimeo

• UIActivityTypePostToTencentWeibo

• UIActivityTypeAirDrop

Consult the UIActivity class documentation to learn what types of activity item each of
these activities can handle. For example, the UIActivityTypeMail activity will accept a
string, an image, or a file on disk (such as an image file) designated by an NSURL; it
will present a mail composition interface with the activity item(s) in the body of the
email.

Activity Views | 677

Since the default is to include all the system-wide activities that can handle the provided
data, if you don’t want a certain system-wide activity included in the activity view, you
must exclude it explicitly. You do this by setting the UIActivityViewController’s
excludedActivityTypes property to an array of activity type constants.

The UIActivityItemSource protocol and the UIActivityItemProvider class give you
a way to supply an activity item whose real value differs from its surface value, or
whose real data takes time to obtain. I’m not going to describe them here.

Custom Activities
The purpose of the applicationActivities: parameter of init(activity-

Items:applicationActivities:) is for you to list any additional activities imple‐
mented internally by your own app, so that their icons will appear as choices in the
activity view as well. Each activity will be an instance of one of your own UIActivity
subclasses.

To illustrate, I’ll create a minimal (and nonsensical) activity called Be Cool that accepts
string activity items. It is a UIActivity subclass called MyCoolActivity. So, to include Be
Cool among the choices presented to the user by a UIActivityViewController, I’d say:

let avc = UIActivityViewController(
 activityItems:things, applicationActivities:[MyCoolActivity()])

Now let’s implement MyCoolActivity. It has an array property called items, for reasons
that will be apparent in a moment. We need to arm ourselves with an image to represent
this activity in the activity view; this will be treated as a template image. It should be no
larger than 60×60 (76×76 on iPad); it can be smaller, and looks better if it is, because
the system will draw a rounded rectangle around it, and the image should be somewhat
inset from this. It needn’t be square, as it will be centered in the rounded rectangle
automatically.

Here’s the preparatory part of the implementation of MyCoolActivity:

override class func activityCategory() -> UIActivityCategory {
 return .Action // the default
}
override func activityType() -> String? {
 return "com.neuburg.matt.coolActivity"
}
override func activityTitle() -> String? {
 return "Be Cool"
}
override func activityImage() -> UIImage? {
 return self.image // prepared beforehand
}
override func canPerformWithActivityItems(

678 | Chapter 13: Modal Dialogs

 activityItems: [AnyObject]) -> Bool {
 for obj in activityItems {
 if obj is String {
 return true
 }
 }
 return false
}
override func prepareWithActivityItems(activityItems: [AnyObject]) {
 self.items = activityItems
}

If we return true from canPerformWithActivityItems:, then an icon for this activity,
labeled Be Cool and displaying our activityImage, will appear in the activity view. If
the user taps our icon, prepareWithActivityItems: will be called. We retain the
activityItems into a property, because they won’t be arriving again when we are ac‐
tually told to perform the activity.

To perform the activity, we implement one of two methods:
performActivity

We simply perform the activity directly, using the activity items we’ve already re‐
tained. If the activity is time-consuming, the activity should be performed on a
background thread (Chapter 25) so that we can return immediately; the activity
view interface will be taken down and the user will be able to go on interacting with
the app.

activityViewController

We have further interface that we’d like to show the user as part of the activity, so
we return a UIViewController subclass. The activity view mechanism will present
this UIViewController for us; it is not our job to present or dismiss it. (We may,
however, present or dismiss dependent interface. For example, if our UIView‐
Controller is a navigation controller with a custom root view controller, we might
push another view controller onto its stack while the user is working on the activity.)

No matter which of these two methods we implement, we must eventually call this
activity instance’s activityDidFinish:. This is the signal to the activity view mecha‐
nism that the activity is over. If the activity view mechanism is still presenting any
interface, it will be taken down, and the argument we supply here, a Bool signifying
whether the activity completed successfully, will be passed into the block we supplied
earlier as the activity view controller’s completionWithItemsHandler. So, for example:

override func performActivity() {
 // ... do something with self.items here ...
 self.activityDidFinish(true)
}

Activity Views | 679

If your UIActivity is returning a view controller from activityViewController, it will
want to hand that view controller a reference to self before returning it, so that the
view controller can call its activityDidFinish: when the time comes.

For example, suppose our activity involves letting the user draw a mustache on a photo
of someone. Our view controller will provide interface for doing that, including some
way of letting the user signal completion, such as a Cancel button and a Done button.
When the user taps either of those, we’ll do whatever else is necessary (such as saving
the altered photo somewhere if the user tapped Done) and then call activityDid-
Finish:. Thus, we could implement activityViewController like this:

override func activityViewController() -> UIViewController? {
 let mvc = MustacheViewController(activity: self, items: self.items!)
 return evc
}

And then MustacheViewController would have code like this:

weak var activity : UIActivity?
var items: [AnyObject]
init(activity:UIActivity, items:[AnyObject]) {
 self.activity = activity
 self.items = items
 super.init(nibName: "MustacheViewController", bundle: nil)
}
// ... other stuff ...
@IBAction func doCancel(sender:AnyObject) {
 self.activity?.activityDidFinish(false)
}
@IBAction func doDone(sender:AnyObject) {
 self.activity?.activityDidFinish(true)
}

Note that MustacheViewController’s reference to the UIActivity (self.activity) is
weak; otherwise, a retain cycle ensues.

Action Extensions
To provide a system-wide activity, you can write an action extension (new in iOS 8). As
with today extensions, start with the appropriate target template, iOS → Application
Extension → Action Extension. There are two kinds of action extension, with or without
an interface; you’ll make your choice in the second pane as your create the target.

Preparation of the Info.plist is a bit more elaborate than for a today extension. In addition
to setting the bundle name, which will appear below the activity’s icon in the activity
view, you’ll use the Info.plist to specify what types of data this activity accepts as its
operands. In the NSExtensionActivationRule dictionary, you’ll provide one or more
keys, such as:

680 | Chapter 13: Modal Dialogs

Figure 13-11. An activity view

• NSExtensionActivationSupportsFileWithMaxCount

• NSExtensionActivationSupportsImageWithMaxCount

• NSExtensionActivationSupportsMovieWithMaxCount

• NSExtensionActivationSupportsText

• NSExtensionActivationSupportsWebURLWithMaxCount

(For the full list, see the “Action Extension Keys” section of Apple’s Information Property
List Key Reference.) Figure 13-11 shows the relevant part of the Info.plist for an action
extension that accepts one text object.

Your app will provide your action extension to the system, and it will appear in an activity
view for any app that provides the appropriate type(s) of data. There is, however, one
huge difference between an action extension and a custom UIActivity: an action ex‐
tension can return data to the calling app. The transport mechanism for this data is
rather elaborate.

There is much more to action extensions than this chapter has room to discuss. My
example will get you started with a conceptual understanding, but you’ll want to
study the relevant documentation and WWDC 2014 videos.

Action extension without an interface
I’ll start by giving an example of an action extension that has no interface. This extension
takes a string object and returns a string. In particular, it accepts a string that might be
the two-letter abbreviation of one of the U.S. states, and if it is, it returns the name of
the actual state. The class provided by the template, ActionRequestHandler, is an
NSObject subclass. To prepare, we provide some properties:

let list : [String] = {
 let path = NSBundle.mainBundle().URLForResource(
 "abbreviations", withExtension:"txt")!
 let s = String(
 contentsOfURL:path, encoding:NSUTF8StringEncoding, error:nil)!

Activity Views | 681

 return s.componentsSeparatedByString("\n") as [String]
 }()
var extensionContext: NSExtensionContext?
let desiredType = kUTTypePlainText // import MobileCoreServices

self.list is a string alternating abbreviations with state names; observe that we are
permitted to read a text file out of our extension’s bundle. self.extensionContext is
a place to store the NSExtensionContext that will be provided to us. self.desired-
Type is just a convenient constant expressing the acceptable data type.

There is just one entry point into our extension’s code — beginRequestWithExtension-
Context:. Here we must store a reference to the incoming NSExtensionContext, retrieve
the data, process the data, and return the result. You will probably want to factor the
processing of the data out into a separate function; I’ve called mine processItem:. Here’s
a sketch of my beginRequestWithExtensionContext: implementation:

func beginRequestWithExtensionContext(context: NSExtensionContext!) {
 self.extensionContext = context
 let items = self.extensionContext!.inputItems
 // ... retrieve the data ...
 // if there is data, call self.processItem on the main thread
 // if we get here, there is no data
 self.processItem(nil)
}

As you can see, I’ve omitted retrieval of the data from items for now. Our code contains
two possible calls to self.processItem:, one passing the string retrieved from items
(and then returning), the other passing nil.

Now let’s implement the retrieval of the data. Think of this as a series of envelopes (or
nested matryoshka dolls) that we must examine and open:

• Our local items variable is an array, presumably containing NSExtensionItem ob‐
jects.

• An NSExtensionItem may have an attachments array, presumably containing
NSItemProvider objects.

• An NSItemProvider vends items; in particular:
■ We can ask whether an NSItemProvider has an item of a particular type, by

calling hasItemConformingToTypeIdentifier:.
■ We can retrieve the item of a particular type, by calling loadItemForType-
Identifier:options:completionHandler:. The item may take time to prepare
and provide, so we proceed in the completionHandler: to receive the item and
do something with it.

682 | Chapter 13: Modal Dialogs

Fortunately, we are expecting only one item, so it will be provided by the first NSItem‐
Provider inside the first NSExtensionItem. Here, then, is the code that I omitted from
beginRequestWithExtensionContext:

if let extensionItem = items[0] as? NSExtensionItem {
 if let provider = extensionItem.attachments?[0] as? NSItemProvider {
 if provider.hasItemConformingToTypeIdentifier(self.desiredType) {
 provider.loadItemForTypeIdentifier(
 self.desiredType, options:nil) {
 (item:NSSecureCoding!, err:NSError!) -> () in
 dispatch_async(dispatch_get_main_queue()) {
 self.processItem(item as? String)
 }
 }
 return
 }
 }
}

Now we’re ready for processItem:. It must do two things: it should call the NSExtension‐
Context’s completeRequestReturningItems:completionHandler: to hand back the
data, and it should release the NSExtensionContext by setting our retaining property
to nil.

I’ll start with the simplest case: we didn’t get any data. In that case, the returned value
is nil:

func processItem(item:String?) {
 if (item == nil) {
 self.extensionContext?.completeRequestReturningItems(
 nil, completionHandler: nil)
 } else {
 // hmmm....
 }
 self.extensionContext = nil
}

That was easy, because we cleverly omitted the only case where we have any work to do.
Now let’s implement that case. We have received a string in the item parameter. The
first question is: is it the abbreviation of a state? To answer that question, I’ve imple‐
mented a utility function:

func stateForAbbrev(abbrev:String) -> String? {
 let ix = find(list, abbrev.uppercaseString)
 return ix != nil ? list[ix!+1] : nil
}

If we call that method with our item string and the answer comes back nil, we simply
proceed just as before — we return nil:

Activity Views | 683

if let abbrev = self.stateForAbbrev(item!) {
 // hmmm....
} else {
 self.extensionContext?.completeRequestReturningItems(
 nil, completionHandler: nil)
}

We come at last to the dreaded moment that I have been tantalizingly postponing all
this time. What if we get an abbreviation? In that case, we must reverse the earlier process
of opening envelopes: we must put envelopes within envelopes and hand back an array
of NSExtensionItems. We have only one result, so this will be an array of one
NSExtensionItem, whose attachments is an array of one NSItemProvider, whose item
is the string and whose typeIdentifier is the type of that string. Confused? Here, I’ve
written a little utility function that should clarify:

func stuffThatEnvelope(item:String) -> [NSExtensionItem] {
 let extensionItem = NSExtensionItem()
 let itemProvider = NSItemProvider(
 item: item, typeIdentifier: self.desiredType)
 extensionItem.attachments = [itemProvider]
 return [extensionItem]
}

We can now write the full implementation of processItem:, and our action extension
is finished:

func processItem(item:String?) {
 if (item == nil) {
 self.extensionContext?.completeRequestReturningItems(
 nil, completionHandler: nil)
 } else {
 if let abbrev = self.stateForAbbrev(item!) {
 self.extensionContext?.completeRequestReturningItems(
 self.stuffThatEnvelope(abbrev), completionHandler: nil)
 } else {
 self.extensionContext?.completeRequestReturningItems(
 nil, completionHandler: nil)
 }
 }
 self.extensionContext = nil
}

Action extension with an interface
If an action extension has an interface, then the template provides a storyboard with
one scene, along with the code for a corresponding UIViewController class. The code
is actually simpler, because:

• A view controller already has an extensionContext property and it is automatically
set for us.

684 | Chapter 13: Modal Dialogs

• There are no special entry points to our code. This is a UIViewController, and
everything happens just as you would expect.

So, in my implementation, I use viewDidLoad to open the data envelope from
self.extensionContext, get the abbreviation if there is one (storing it in a property,
self.abbrev), and stop. The interface contains a Done button and a Cancel button. The
action handlers for those buttons are where I hand the result back to the extension-
Context:

@IBAction func cancel(sender: AnyObject) {
 self.extensionContext?.completeRequestReturningItems(
 nil, completionHandler: nil)
}
@IBAction func done(sender: AnyObject) {
 self.extensionContext?.completeRequestReturningItems(
 self.stuffThatEnvelope(self.abbrev!), completionHandler: nil)
}

The runtime responds by dismissing the interface in good order.

Receiving data from an action extension
Recall the earlier discussion of how your app presents a UIActivityViewController. In
a world containing action extensions, presenting the UIActivityViewController is no
different; but retrieving the returned data is. In my earlier implementation, I avoided
this issue by pretending that action extensions didn’t exist. Here’s a sketch for a more
complete implementation:

let avc = UIActivityViewController(
 activityItems:things, applicationActivities:nil)
avc.completionWithItemsHandler = {
 (s: String!, ok: Bool, items: [AnyObject]!, err:NSError!) -> Void in
 if ok {
 if items == nil || items.count == 0 {
 return // nothing returned, nothing to do
 }
 // ... open the envelopes!
 }
}
self.presentViewController(avc, animated:true, completion:nil)

If what the user interacted with in the activity view is one of the built-in UIActivity
types, or is one of our own internal custom UIActivity subclasses, then only the ok
parameter matters. It will be either true or false, but even if it is true, the other pa‐
rameters will be empty. No data value has been returned.

But if the user interacted with an action extension, then it is up to us to open the items
envelopes. The structure here is exactly the same as the items of an NSExtension‐
Context: items is an array, each element of which is presumably an NSExtensionItem,

Activity Views | 685

whose attachments is presumably an array of NSItemProvider objects, each of which
can be queried for its data.

In the case where we know in advance that we are expecting a single string, therefore,
the code is effectively just the same as the envelope-opening code from earlier in this
chapter. In the more general case, however, you would presumably need to be more
exploratory. Unfortunately, Apple has not demonstrated how you’re supposed to do this,
and it seems to me that there is insufficient API for your UIActivityViewController to
determine what action extensions the user may have loaded into it, how their returned
data is structured, and whether that data is something your app even wants to receive
and do something with.

686 | Chapter 13: Modal Dialogs

PART III

Some Frameworks

Cocoa supplies numerous specialized optional frameworks. This part of the book ex‐
plains the basics of some of these frameworks, showing you how to get started, and
training you to understand and explore these and related frameworks independently if
your app requires a further level of depth and detail.

• Chapter 14 introduces the various iOS means for playing sound files, including
audio sessions and playing sounds in the background.

• Chapter 15 describes some basic ways of playing video (movies), along with an
introduction to the powerful AV Foundation framework.

• Chapter 16 is about how an app can access the user’s music library.
• Chapter 17 is about how an app can access the user’s photo library, along with the

ability to take photos and capture movies.
• Chapter 18 discusses how an app can access the user’s address book.
• Chapter 19 talks about how an app can access the user’s calendar data.
• Chapter 20 describes how an app can allow the user to compose and send email

and SMS messages and social media posts.
• Chapter 21 explains how an app can display a map, along with custom annotations

and overlays. It also talks about how a map can display the user’s current location
and how to convert between a location and an address.

• Chapter 22 is about how an app can learn where the device is located, how it is
moving, and how it is oriented.

CHAPTER 14

Audio

iOS provides various means and technologies for allowing your app to produce, record,
and process sound. The topic is a large one, so this chapter can only introduce it; I’ll
concentrate on basic sound production. You’ll want to read Apple’s Multimedia Pro‐
gramming Guide and Core Audio Overview.

None of the classes discussed in this chapter provides any user interface within your
application for allowing the user to stop and start playback of sound. You can create
your own such interface, and I’ll discuss how you can associate the “remote control”
buttons with your application. Also, a web view (Chapter 11) supports the HTML 5
<audio> tag; this can be a simple, lightweight way to play audio and to allow the user to
control playback. (By default, a web view even allows use of AirPlay.) Alternatively, you
could treat the sound as a movie and use the classes discussed in Chapter 15; this can
also be a good way to play a sound file located remotely over the Internet.

System Sounds
The simplest form of sound is system sound, which is the iOS equivalent of the basic
computer “beep.” This is implemented through System Sound Services, part of the Audio
Toolbox framework; you’ll need to import AudioToolbox. You’ll be calling one of two
C functions, which behave very similarly to one another:
AudioServicesPlayAlertSound

On an iPhone, may also vibrate the device, depending on the user’s settings.

AudioServicesPlaySystemSound

On an iPhone, there won’t be an accompanying vibration, but you can specifically
elect to have this “sound” be a device vibration (by passing kSystemSound-
ID_Vibrate as the name of the “sound”).

689

The sound file to be played needs to be an uncompressed AIFF or WAV file (or an Apple
CAF file wrapping one of these). To hand the sound to these functions, you’ll need a
SystemSoundID, which you obtain by calling AudioServicesCreateSystemSoundID
with an NSURL that points to a sound file. In this example, the sound file is in our app
bundle:

let sndurl = NSBundle.mainBundle().URLForResource(
 "test", withExtension: "aif")
var snd : SystemSoundID = 0
AudioServicesCreateSystemSoundID(sndurl, &snd)
AudioServicesPlaySystemSound(snd)

However, there’s a problem with that code: we have failed to exercise proper memory
management. We need to call AudioServicesDisposeSystemSoundID to release our
SystemSoundID. But when shall we do this? AudioServicesPlaySystemSound executes
asynchronously. So the solution can’t be to call AudioServicesDisposeSystemSoundID
in the next line of the same snippet, because this would release our sound just as it is
about to start playing, resulting in silence.

The solution is to implement a sound completion handler, a function that is called when
the sound has finished playing. The sound completion handler is specified by calling
AudioServicesAddSystemSoundCompletion. Unfortunately, this function requires that
the actual sound completion handler be supplied as a C function address — which can’t
be obtained in Swift. The simplest approach is to write a small Objective-C helper class
that implements the sound completion handler along with a method returning its ad‐
dress. I call mine SystemSoundHelper:

// SystemSoundHelper.h:
#import <UIKit/UIKit.h>
@import AudioToolbox;
@interface SystemSoundHelper : NSObject
- (AudioServicesSystemSoundCompletionProc) completionHandler;
@end
// SystemSoundHelper.m:
@implementation SystemSoundHelper
void SoundFinished (SystemSoundID snd, void* context) {
 AudioServicesRemoveSystemSoundCompletion(snd);
 AudioServicesDisposeSystemSoundID(snd);
}
- (AudioServicesSystemSoundCompletionProc) completionHandler {
 return SoundFinished;
}
@end

Note that in SoundFinished, when we are about to release the sound, we first release
the sound completion handler information applied to it.

Back in Swift, we add a SystemSoundHelper property:

let helper = SystemSoundHelper()

690 | Chapter 14: Audio

And our sound-playing code now looks like this:

let sndurl = NSBundle.mainBundle().URLForResource(
 "test", withExtension: "aif")
var snd : SystemSoundID = 0
AudioServicesCreateSystemSoundID(sndurl, &snd)
AudioServicesAddSystemSoundCompletion(
 snd, nil, nil, self.helper.completionHandler(), nil)
AudioServicesPlaySystemSound(snd)

Audio Session
If your app is going to use a more sophisticated way of producing sound, such as an
audio player (discussed in the next section), it must specify a policy regarding that sound.
This policy will answer such questions as:

• Should sound stop when the screen is locked?
• Should sound interrupt existing sound (being played, for example, by the Music

app) or should it be layered on top of it?

Your policy is declared in an audio session, which is a singleton AVAudioSession instance
created automatically as your app launches. This is part of the AV Foundation frame‐
work; you’ll need to import AVFoundation. You’ll refer to your app’s AVAudioSession
by way of the class method sharedInstance. This shared audio session instance is ac‐
tually your pipeline to the part of the system that mediates all audio belonging to all
apps and processes, the media services daemon; this daemon must juggle many demands,
which is why your app’s audio can be affected and even overruled by other apps and
external factors.

To declare your audio session’s policy, you’ll set its category, by calling set-
Category:withOptions:error:. The basic policies for audio playback are:
Ambient (AVAudioSessionCategoryAmbient)

Your app’s audio plays even while Music app music or other background audio is
playing, and is silenced by the phone’s Silent switch and screen locking.

Solo Ambient (AVAudioSessionCategorySoloAmbient, the default)
Your app stops Music app music or other background audio from playing, and is
silenced by the phone’s Silent switch and screen locking.

Playback (AVAudioSessionCategoryPlayback)
Your app stops Music app music or other background audio from playing, and is
not silenced by the Silent switch. It is silenced by screen locking, unless it is also
configured to play in the background (as explained later in this chapter).

Audio Session | 691

Audio session category options, supplied as the withOptions: parameter of set-
Category:withOptions:error:, allow you to modify the playback policies to some
extent (AVAudioSessionCategoryOptions):
Mixable audio

You can override the Playback policy so as to allow Music app music or other back‐
ground audio to play (.MixWithOthers). Your sound is then said to be mixable. If
you don’t make your sound mixable, then mixable background audio will still be
able to play, but non-mixable background audio won’t be able to play.

Ducking audio
You can override a policy that allows Music app music or other background audio
to play, so as to duck (diminish the volume of) that background audio (.Duck-
Others). Ducking does not depend automatically on whether your app is actively
producing any sound; rather, it starts as soon as you turn this override on and
remains in place until your audio session is deactivated.

It is common practice to declare your app’s initial audio session policy very early in the
life of the app, possibly as early as application:didFinishLaunchingWithOptions:.
You can later, if necessary, change your audio session policy as your app runs.

Your audio session policy is not in effect, however, unless your audio session is also
active. By default, it isn’t. Thus, asserting your audio session policy is done by a com‐
bination of configuring the audio session and activating the audio session. To activate
(or deactivate) your audio session, you call setActive:withOptions:error:.

The question then is when to call setActive:withOptions:error:. This is a little tricky
because of multitasking. Your audio session can be deactivated automatically if your app
is no longer active. So if you want your policy to be obeyed under all circumstances, you
must explicitly activate your audio session each time your app becomes active. The best
place to do this is in applicationDidBecomeActive:, as this is the only method guar‐
anteed to be called every time your app is reactivated under circumstances where your
audio session might have been deactivated in the background (see Appendix A).

Apple suggests that you might want to register for AVAudioSessionMediaServices-
WereResetNotification. If this notification arrives, the media services daemon was
somehow hosed, and your whole audio session has probably been blown away as
well. Thus you should activate your audio session in response, as well as resetting
and recreating any audio-related objects. See Apple’s Technical Q&A QA1749.

The first parameter to setActive:withOptions:error: is a Bool saying whether we
want to activate or deactivate our audio session. There are various reasons why you
might deactivate (and perhaps reactivate) your audio session over the lifetime of your
app.

692 | Chapter 14: Audio

One such reason is that you no longer need to hog the device’s audio, and you want to
yield to other apps to play music in the background. The second parameter to set-
Active:withOptions:error: lets you supply a single AVAudioSessionSetActive-
Options option, .OptionNotifyOthersOnDeactivation (only when the first parameter
is false). I’ll give an example later in this chapter.

Another reason for deactivating (and reactivating) your audio session is to bring a
change of audio policy into effect. A good example is ducking. Let’s say that, in general,
we don’t play any sounds, and we want background sound, such as Music app sound,
to continue playing while our app runs. So we configure our audio session to use the
Ambient policy in application:didFinishLaunchingWithOptions:, as follows:

AVAudioSession.sharedInstance().setCategory(
 AVAudioSessionCategoryAmbient, withOptions: nil, error: nil)

We aren’t interrupting any other audio with our Ambient policy, so it does no harm to
activate our audio session every time our app becomes active, no matter how, in
applicationDidBecomeActive:, like this:

AVAudioSession.sharedInstance().setActive(
 true, withOptions: nil, error: nil)

That’s all it takes to set and enforce your app’s overall audio session policy. Now let’s say
we do sometimes play a sound, but it’s brief and doesn’t require background sound to
stop entirely; it suffices for background audio to be quieter momentarily while we’re
playing our sound. That’s ducking! So, just before we play our sound, we duck any
background sound by changing the options on our Ambient category:

AVAudioSession.sharedInstance().setCategory(
 AVAudioSessionCategoryAmbient, withOptions: .DuckOthers, error: nil)

When we finish playing our sound, we turn off ducking. This is the tricky part. Not only
must we remove the ducking property from our audio session policy, but we must also
deactivate our audio session to make the change take effect immediately and bring the
background sound back to its original level; there is then no harm in reactivating our
audio session:

let sess = AVAudioSession.sharedInstance()
sess.setActive(false, withOptions: nil, error: nil)
sess.setCategory(
 AVAudioSessionCategoryAmbient, withOptions: nil, error: nil)
sess.setActive(true, withOptions: nil, error: nil)

Interruptions
Your audio session can be interrupted. This could mean that some other app deactivates
it: for example, on an iPhone a phone call can arrive or an alarm can go off. In the
multitasking world, it could mean that another app asserts its audio session over yours.

Audio Session | 693

To learn of interruptions, register for AVAudioSessionInterruptionNotification.

To learn whether the interruption began or ended, examine the AVAudioSession-
InterruptionTypeKey entry in the notification’s userInfo dictionary; this will be a UInt
equating to an AVAudioSessionInterruptionType, either .Began or .Ended. So, for ex‐
ample:

NSNotificationCenter.defaultCenter().addObserverForName(
 AVAudioSessionInterruptionNotification, object: nil,
 queue: NSOperationQueue.mainQueue(), usingBlock: {
 (note:NSNotification!) in
 let why : AnyObject? =
 note.userInfo?[AVAudioSessionInterruptionTypeKey]
 if let why = why as? UInt {
 if let why = AVAudioSessionInterruptionType(rawValue: why) {
 if why == .Began {
 // began
 } else {
 // ended
 }
 }
 }
 })

When an interruption ends, the userInfo dictionary may also contain an AVAudio-
SessionInterruptionOptionKey entry. If so, it will be a UInt whose value, as an AVAudio-
SessionInterruptionOptions, may be .OptionShouldResume:

let opt : AnyObject? = note.userInfo![AVAudioSessionInterruptionOptionKey]
if let opt = opt as? UInt {
 let opts = AVAudioSessionInterruptionOptions(opt)
 if opts == .OptionShouldResume {
 // ...
 }
}

.OptionShouldResume is the flip side of .OptionNotifyOthersOnDeactivation, which
I mentioned earlier: some other app that interrupted you has now deactivated its audio
session, and is telling you to feel free to resume your audio.

Interruptions are not as intrusive as you might suppose. When your audio session is
interrupted, your audio has already stopped and your audio session has been deactiva‐
ted; you might respond by altering something about your app’s user interface to reflect
the fact that your audio isn’t playing, but apart from this there’s no particular work for
you to do. When the interruption ends, on the other hand, activating your audio session
and possibly resuming playback of your audio might be up to you.

In the multitasking world, when your app switches to the background, your audio is
paused (unless your app plays audio in the background, as discussed later in this chap‐
ter). Various things can happen when your app comes back to the front:

694 | Chapter 14: Audio

• If you were playing audio with an audio player (AVAudioPlayer, discussed in the
next section), it’s possible that the AVAudioPlayer will handle the entire situation:
it will automatically reactivate your audio session and resume playing, and you won’t
get any interruption notifications.

• If you’re not using an AVAudioPlayer, it is likely that being moved into the back‐
ground will count as an interruption of your audio session. You don’t get any no‐
tifications while you’re suspended in the background, so everything happens at once
when your app comes back to the front: at that time, you’ll be notified that the
interruption began, then notified that it ended, and then your applicationDid-
BecomeActive: will be called, all in quick succession (and in that order). Make sure
that your responses to these events, arriving in a sudden cluster, don’t step on each
other’s toes.

Secondary Audio
When your app is frontmost and the user brings up the control center and uses the Play
button to resume the current Music app song, you may get a notification that an inter‐
ruption began; when the user dismisses the control center, you get applicationDid-
BecomeActive:, but — even if the user has stopped play of the Music app from the
control center — you do not get any notification that the interruption has ended (and
an AVAudioPlayer does not automatically resume playing).

In previous editions of this book I complained that this seems incoherent. New in iOS
8, however, is another notification that takes care of the situation nicely — AVAudio-
SessionSilenceSecondaryAudioHintNotification.

This notification, corresponding to a new AVAudioSession Bool property secondary-
AudioShouldBeSilencedHint, expresses a fine-grained distinction between primary
and secondary audio. Apple’s example is a game app, where intermittent sound effects
are the primary audio, while an ongoing underlying soundtrack is the secondary audio.
The idea is that the user might start playing a song from the Music app, and that your
app would therefore pause its secondary audio while continuing to produce its primary
audio — because the user’s chosen Music track will do just as well as a background
soundtrack behind your game’s sound effects. You’ll receive this notification only while
your app is in the foreground — for example, during exactly the sort of control center–
based Music app manipulation I described a moment ago.

To respond to this notification, examine the AVAudioSessionSilenceSecondaryAudio-
HintTypeKey entry in the notification’s userInfo dictionary; this will be a UInt equating
to an AVAudioSessionSilenceSecondaryAudioHintType, either .Begin or .End. So, for
example:

Audio Session | 695

NSNotificationCenter.defaultCenter().addObserverForName(
 AVAudioSessionSilenceSecondaryAudioHintNotification, object: nil,
 queue: NSOperationQueue.mainQueue(), usingBlock: {
 (note:NSNotification!) in
 let why : AnyObject? =
 note.userInfo?[AVAudioSessionSilenceSecondaryAudioHintTypeKey]
 if let why = why as? UInt {
 if let why = AVAudioSessionSilenceSecondaryAudioHintType(
 rawValue:why) {
 if why == .Begin {
 // silence secondary audio
 } else {
 // resume secondary audio
 }
 }
 }
 })

Routing Changes
Your audio is routed through a particular output (and input). The user can make changes
in this routing — for example, by plugging headphones into the device, which causes
sound to stop coming out of the speaker and to come out of the headphones instead.
By default, your audio continues uninterrupted if any is playing, but your code might
like to be notified when routing is changed. You can register for AVAudioSessionRoute-
ChangeNotification to hear about routing changes.

The notification’s userInfo dictionary is chock full of useful information about what
just happened. Here’s the console display of the dictionary that results when I detach
headphones from the device:

AVAudioSessionRouteChangeReasonKey: 2,
AVAudioSessionRouteChangePreviousRouteKey:
<AVAudioSessionRouteDescription: 0x17d8e910,
 inputs = (null);
 outputs = (
 "<AVAudioSessionPortDescription: 0x17d76e20,
 type = Headphones;
 name = Headphones;
 UID = Wired Headphones;
 selectedDataSource = (null)>"
)>

Upon receipt of this notification, I can find out what the audio route is now, by calling
AVAudioSession’s currentRoute method:

<AVAudioSessionRouteDescription: 0x17d74ea0,
 inputs = (null);
 outputs = (
 "<AVAudioSessionPortDescription: 0x17d828b0,
 type = Speaker;

696 | Chapter 14: Audio

 name = Speaker;
 UID = Built-In Speaker;
 selectedDataSource = (null)>"
)>

The classes mentioned here — AVAudioSessionRouteDescription and AVAudioSession‐
PortDescription — are value classes (glorified structs). The AVAudioSessionRoute‐
ChangeReasonKey encodes an AVAudioSessionRouteChangeReason; the value here,
2, is .OldDeviceUnavailable — we stopped using the headphones because there are
no headphones any longer.

A routing change may not of itself interrupt your sound, but Apple suggests that in this
particular situation you might like to respond by stopping your audio deliberately, be‐
cause otherwise sound may now suddenly be coming out of the speaker in a public place.

Audio Player
An audio player (AVAudioPlayer) is the easiest way to play sounds with any degree of
sophistication. A wide range of sound types is acceptable, including MP3, AAC, and
ALAC, as well as AIFF and WAV. You can set a sound’s volume and stereo pan features,
loop a sound, synchronize the playing of multiple sounds simultaneously, change the
playing rate, and set playback to begin somewhere in the middle of a sound.

AVAudioPlayer is part of the AV Foundation framework; you’ll need to import
AVFoundation. An audio player should always be used in conjunction with an audio
session.

An audio player can possess and play only one sound, but it can play that sound re‐
peatedly, and you can have multiple audio players, possibly playing simultaneously. An
audio player is initialized with its sound, using a local file URL or NSData; optionally,
the initializer can also state the expected sound file format. To play the sound, first tell
the audio player to prepareToPlay, causing it to load buffers and initialize hardware;
then tell it to play. The audio player’s delegate (AVAudioPlayerDelegate) is notified
when the sound finishes playing (audioPlayerDidFinishPlaying:successfully:); do
not repeatedly check the audio player’s playing property to learn its state. Other useful
methods include pause and stop; the chief difference between them is that pause doesn’t
release the buffers and hardware set up by prepareToPlay, but stop does, so you’d want
to call prepareToPlay again before resuming play. Neither pause nor stop changes the
playhead position, the point in the sound where playback will start if play is sent again;
for that, use the currentTime property.

Devising a strategy for instantiating, retaining, and releasing your audio players is up
to you. In one of my apps, I define a class called Player, which implements a playFile-
AtPath: method expecting a string path to a sound file. This method creates a new
AVAudioPlayer, stores it as a property, and tells it to play the sound file; it also sets itself

Audio Player | 697

up as that audio player’s delegate, and notifies its own delegate when the sound finishes
playing (by way of a PlayerDelegate protocol that I also define). In this way, by main‐
taining a single Player instance, I can play different sounds in succession:

var player : AVAudioPlayer!
weak var delegate : PlayerDelegate?
func playFileAtPath(path:NSString) {
 self.player?.delegate = nil
 self.player?.stop()
 let fileURL = NSURL(fileURLWithPath: path)
 self.player = AVAudioPlayer(contentsOfURL: fileURL, error: nil)
 self.player.prepareToPlay()
 self.player.delegate = self
 self.player.play()
}
func audioPlayerDidFinishPlaying(AVAudioPlayer!, successfully: Bool) {
 self.delegate?.soundFinished(self)
}

Here are some useful audio player properties:
pan, volume

Stereo positioning and loudness, respectively.

numberOfLoops

How many times the sound should repeat after it finishes playing; 0 (the default)
means it doesn’t repeat. A negative value causes the sound to repeat indefinitely
(until told to stop).

duration

The length of the sound (read-only).

currentTime

The playhead position within the sound. If the sound is paused or stopped, play
will start at the currentTime. You can set this in order to “seek” to a playback po‐
sition within the sound.

enableRate, rate
These properties allow the sound to be played at anywhere from half speed (0.5)
to double speed (2.0). Set enableRate to true before calling prepareToPlay; you
are then free to set the rate.

meteringEnabled

If true (the default is false), you can call updateMeters followed by averagePower-
ForChannel: and/or peakPowerForChannel:, periodically, to track how loud the
sound is. Presumably this would be so you could provide some sort of graphical
representation of this value in your interface.

698 | Chapter 14: Audio

Figure 14-1. The software remote controls in the control center

settings

A read-only dictionary describing features of the sound, such as its bit rate
(AVEncoderBitRateKey), its sample rate (AVSampleRateKey), and its data format
(AVFormatIDKey).

The playAtTime: method allows playing to be scheduled to start at a certain time. The
time should be described in terms of the audio player’s deviceCurrentTime property.

As I mentioned in the previous section, an audio player handles interruptions seam‐
lessly; in particular, it resumes playing when your app comes to the front if it was playing
and was forced to stop playing when your app was moved to the background.

Delegate methods audioPlayerBeginInterruption: and audioPlayerEnd-

Interruption:withOptions: from iOS 7 and before are deprecated in iOS 8. If you
need to hear about interruptions, use the AVAudioSession notifications instead.

Remote Control of Your Sound
Various sorts of signal constitute remote control. There is hardware remote control; the
user might be using earbuds with buttons, for example. There is also software remote
control — for example, the playback controls that you see in the control center
(Figure 14-1) and in the lock screen (Figure 14-2).

Your app can arrange to be targeted by remote control events reporting that the user has
tapped a remote control. Your sound-playing app can respond to the remote play/pause
button, for example, by playing or pausing its sound.

Remote control events are a form of UIEvent, and they are sent initially to the first
responder. To arrange to be a recipient of remote control events:

Remote Control of Your Sound | 699

Figure 14-2. The software remote controls on the locked screen

• Your app must contain a UIResponder in its responder chain that returns true from
canBecomeFirstResponder, and that responder must actually be first responder.

• Some UIResponder in the responder chain, at or above the first responder, must
implement remoteControlReceivedWithEvent:.

• Your app must call the UIApplication instance method beginReceivingRemote-
ControlEvents.

• Your app’s audio session policy must be Playback.
• Your app must emit some sound. The rule is that the running app that is capable of

receiving remote control events and that last actually produced sound is the target
of remote events. The remote control event target defaults to the Music app if no
other app takes precedence by this rule.

A typical place to put all of this is in your view controller, which is, after all, a
UIResponder:

override func canBecomeFirstResponder() -> Bool {
 return true
}
override func viewDidAppear(animated: Bool) {
 super.viewDidAppear(animated)
 self.becomeFirstResponder()
 UIApplication.sharedApplication().beginReceivingRemoteControlEvents()
}
override func remoteControlReceivedWithEvent(event: UIEvent) {
 // ...
}

The question is then how to implement remoteControlReceivedWithEvent:. Your im‐
plementation will examine the subtype of the incoming UIEvent to decide what to do.
There are various possible subtype values (UIEventSubtype). Earbuds with a central
button will probably send .RemoteControlTogglePlayPause. In iOS 6 and before, the
software remote control play/pause button used to send .RemoteControlTogglePlay-
Pause as well; starting with iOS 7, however, it now sends .RemoteControlPlay
or .RemoteControlPause. So your code needs to cover all three possibilities at a mini‐
mum. Here’s an example in an app where sound is produced by an AVAudioPlayer:

700 | Chapter 14: Audio

override func remoteControlReceivedWithEvent(event: UIEvent) {
 let rc = event.subtype
 let p = // our AVAudioPlayer
 switch rc {
 case .RemoteControlTogglePlayPause:
 if p.playing { p.pause() } else { p.play() }
 case .RemoteControlPlay:
 p.play()
 case .RemoteControlPause:
 p.pause()
 default:break
 }
}

You can also influence what information the user will see, in the remote control interface,
about what’s being played. For that, you’ll use MPNowPlayingInfoCenter, from the Me‐
dia Player framework; you’ll need to import MediaPlayer. Call the class method
defaultCenter and set the resulting instance’s nowPlayingInfo property to a dictio‐
nary. The relevant keys are listed in the class documentation; they will make more sense
after you’ve read Chapter 16, which discusses the Media Player framework. Here’s some
example code from my TidBITS News app:

let mpic = MPNowPlayingInfoCenter.defaultCenter()
mpic.nowPlayingInfo = [
 MPMediaItemPropertyTitle: self.titleLabel.text,
 MPMediaItemPropertyArtist: self.authorLabel.text
]

Playing Sound in the Background
In the multitasking world, when the user switches away from your app to another app,
by default, your app is suspended and stops producing sound. But if the business of
your app is to play sound, you might like your app to continue playing sound in the
background. In earlier sections of this chapter, I’ve spoken about how your app, in the
foreground, relates its sound production to background sound such as the Music app.
Now we’re talking about how your app can be the source of that background sound,
possibly playing sound while some other app is in the foreground.

To play sound in the background, your app must do these things:

• In your Info.plist, you must include the “Required background modes” key
(UIBackgroundModes) with a value that includes “App plays audio” (audio). The
simplest way to arrange this is through the checkbox in the Capabilities tab of the
target editor (Figure 14-3).

• Your audio session’s policy must be active and must be Playback.

Playing Sound in the Background | 701

Figure 14-3. Using Capabilities to enable background audio

If those things are true, then the sound that your app is playing, when the user clicks
the Home button and dismisses your app or switches to another app, will go right on
playing. Also, when the screen is locked, your app can continue to play sound only if it
is capable of playing sound in the background.

Moreover, your app may be able to start playing in the background even if it was not
playing previously — namely, if it is mixable (.MixWithOthers, see earlier in this chap‐
ter), or if it is capable of being the remote control target. Indeed, an extremely cool
feature of playing sound in the background is that remote control events continue to
work. Even if your app was not actively playing at the time it was put into the background,
it may nevertheless be the remote control target (because it was playing sound earlier,
as explained in the preceding section). In that case, if the user causes a remote control
event to be sent, your app, if suspended in the background, will be woken up (still in
the background) in order to receive the remote control event and can begin playing
sound. However, the rules for interruptions still apply; another app can interrupt your
app’s audio session while your app is in the background, and if that app receives remote
control events, then your app is no longer the remote control target.

If your app is the remote control target in the background, then another app can inter‐
rupt your app’s audio, play some audio of its own, and then deactivate its own audio
session with the option telling your app to resume playing. I’ll give a minimal example
of how this works with an AVAudioPlayer.

Let’s call the two apps BackgroundPlayer and Interrupter. Suppose Interrupter has an
audio session policy of Ambient. This means that when Interrupter comes to the front,
background audio doesn’t stop. But now Interrupter wants to play a brief sound of its
own, temporarily stopping background audio. To pause the background audio, it sets
its own audio session policy to Playback before telling its AVAudioPlayer to play:

702 | Chapter 14: Audio

AVAudioSession.sharedInstance().setCategory(
 AVAudioSessionCategoryPlayback, withOptions: nil, error: nil)
AVAudioSession.sharedInstance().setActive(
 true, withOptions: nil, error: nil)
self.player.prepareToPlay()
self.player.delegate = self
self.player.play()

When Interrupter’s sound finishes playing, its AVAudioPlayer’s delegate is notified. In
response, Interrupter deactivates its audio session with the .OptionNotifyOthersOn-
Deactivation option; then it’s fine for it to switch its audio session policy back to Am‐
bient and activate it once again:

func audioPlayerDidFinishPlaying(AVAudioPlayer!, successfully: Bool) {
 let sess = AVAudioSession.sharedInstance()
 sess.setActive(
 false, withOptions: .OptionNotifyOthersOnDeactivation, error: nil)
 sess.setCategory(
 AVAudioSessionCategoryAmbient, withOptions: nil, error: nil)
 sess.setActive(true, withOptions: nil, error: nil)
}

So much for Interrupter. Now let’s turn to BackgroundPlayer, which was playing in the
background when Interrupter came along:
When Interrupter changes its audio session policy to Playback

BackgroundPlayer receives AVAudioSessionInterruptionNotification (if regis‐
tered for it) with AVAudioSessionInterruptionTypeKey set to .Began — and
BackgroundPlayer’s AVAudioPlayer automatically stops playing.

When Interrupter deactivates its audio session
BackgroundPlayer receives AVAudioSessionInterruptionNotification (if regis‐
tered for it) with AVAudioSessionInterruptionTypeKey set to .Ended — but its
AVAudioPlayer does not automatically resume.

Thus, it is up to BackgroundPlayer to notice that the interruption has ended, and to
resume its AVAudioPlayer manually. For example:

self.observer = NSNotificationCenter.defaultCenter().addObserverForName(
 AVAudioSessionInterruptionNotification,
 object: nil, queue: NSOperationQueue.mainQueue(), usingBlock: {
 [weak self](n:NSNotification!) in
 let why : AnyObject? =
 n.userInfo?[AVAudioSessionInterruptionTypeKey]
 if let why = why as? UInt {
 if let why = AVAudioSessionInterruptionType(rawValue: why) {
 if why == .Ended {
 let opt : AnyObject? =
 n.userInfo![AVAudioSessionInterruptionOptionKey]
 if let opt = opt as? UInt {
 let opts = AVAudioSessionInterruptionOptions(opt)

Playing Sound in the Background | 703

 if opts == .OptionShouldResume {
 self?.player.prepareToPlay()
 self?.player.play()
 }
 }
 }
 }
 }
})

In that code, when the interruption ends, I examine the secondary AVAudioSession-
InterruptionOptionKey to see whether it is .OptionShouldResume. In this case, it is
— because Interrupter deactivated its audio session with the .OptionNotifyOthersOn-
Deactivation option. Thus, everyone in this story is a good citizen.

An interesting byproduct of your app being capable of playing sound in the background
is that while it is playing sound, an NSTimer can fire. The timer must have been created
and scheduled in the foreground, but after that, it will fire even while your app is in the
background, unless your app is currently not playing any sound. This is remarkable,
because many other sorts of activity are forbidden when your app is running in the
background.

Another byproduct of your app playing sound in the background has to do with app
delegate events (see Appendix A). Typically, your app delegate will probably never re‐
ceive the applicationWillTerminate: message, because by the time the app termi‐
nates, it will already have been suspended and incapable of receiving any events. How‐
ever, an app that is playing sound in the background is not suspended, even though it
is in the background. If it is terminated while playing sound in the background, it will
receive applicationDidEnterBackground:, even though it has already received this
event previously when it was moved into the background, and then it will receive
applicationWillTerminate:. This is one of the few situations in which application-
WillTerminate: is sent to an app in the modern multitasking world.

AVAudioEngine
New in iOS 8 is AVAudioEngine, which is modeled after a mixer board. You can con‐
struct and manipulate a graph of sound-producing objects in real time, varying their
relative volumes and other attributes, mixing them down to a single sound (which can
optionally be recorded into a file as it plays). This is a deep topic; I’ll just provide an
introductory overview.

The key classes are:
AVAudioEngine

The overall engine object, representing the world in which everything else happens.
You’ll probably make and retain just one. Its chief jobs are:

704 | Chapter 14: Audio

• To connect and disconnect nodes (AVAudioNode), analogous to patch cords
on a mixer board. The engine has three built-in nodes: its inputNode, its output-
Node, and its mixerNode.

• To start and stop the production of sound.

AVAudioNode
An abstract class embracing the various types of object for producing, processing,
and receiving sound in the mixer. An audio node has inputs and outputs, and may
optionally be given a tap, a buffer through which the node’s sound can be analyzed
and recorded. Some subclasses are:
AVAudioMixerNode

A node with an output volume; it mixes its inputs down to a single output. The
AVAudioEngine’s built-in mixerNode is an AVAudioMixerNode.

AVAudioIONode
A node that patches through to the system’s (device’s) own input (AVAudio‐
InputNode) or output (AVAudioOutputNode). The AVAudioEngine’s built-in
inputNode and outputNode are AVAudioIONodes.

AVAudioPlayerNode
A node that produces sound, analogous to an AVAudioPlayer. It can play from
a file or from a buffer.

AVAudioUnit
A node that processes its input with special effects before passing it to the
output. Built-in subclasses include:
AVAudioUnitTimePitch

Independently changes the pitch and rate of the input.

AVAudioUnitVarispeed
Changes the pitch and rate of the input together.

AVAudioUnitDelay
Adds to the input a delayed version of itself.

AVAudioUnitDistortion
Adds distortion to the input.

AVAudioUnitEQ
Constructs an equalizer, for processing different frequency bands sepa‐
rately.

AVAudioUnitReverb
Adds a reverb effect to the input.

AVAudioEngine | 705

Just to give an idea of what working with AVAudioEngine looks like, I’ll start by simply
playing a file. We need an AVAudioPlayerNode and an AVAudioFile. We hand the
AVAudioPlayerNode to the engine and patch it to the engine’s built-in mixer node. (In
this simple case, we could have patched the player node to the engine’s output node; but
the engine’s mixer node is already patched to the output node, so it makes no difference.)
We associate the file with the player node and start the engine running. Finally, we tell
the player node to play:

let player = AVAudioPlayerNode()
let url = NSBundle.mainBundle().URLForResource(
 "aboutTiagol", withExtension: "m4a")
let f = AVAudioFile(forReading: url, error: nil)
let mixer = engine.mainMixerNode
engine.attachNode(player)
engine.connect(player, to: mixer, format: f.processingFormat)
player.scheduleFile(f, atTime: nil, completionHandler:nil)
engine.prepare()
engine.startAndReturnError(nil)
player.play()

You can also play sound from a buffer. This is a little more involved, but not much. Here,
I’ll start with an AVAudioFile again, but this time I’ll feed it into a buffer; this allows me
to do a little trickery, such as cutting out everything but the first third of the file:

let url2 = NSBundle.mainBundle().URLForResource(
 "Hooded", withExtension: "mp3")
let f2 = AVAudioFile(forReading: url2, error: nil)
let buffer = AVAudioPCMBuffer(
 PCMFormat: f2.processingFormat, frameCapacity: UInt32(f2.length/3))
f2.readIntoBuffer(buffer, error: nil)
let player2 = AVAudioPlayerNode()
engine.attachNode(player2)
let mixer = engine.mainMixerNode
engine.connect(player2, to: mixer, format: f2.processingFormat)
player2.scheduleBuffer(
 buffer, atTime: nil, options: nil, completionHandler: nil)
engine.prepare()
engine.startAndReturnError(nil)
player2.play()

So far, we’ve done virtually nothing that we couldn’t have done with an AVAudioPlayer.
But now let’s start patching some more nodes into the graph. I’ll play both files simul‐
taneously; I’ll pass the first sound through a time-pitch effect node and then through a
reverb effect node; I’ll loop the second sound; and I’ll set the volumes and pan positions
of the sounds:

// first sound
let player = AVAudioPlayerNode()
let url = NSBundle.mainBundle().URLForResource(
 "aboutTiagol", withExtension: "m4a")
let f = AVAudioFile(forReading: url, error: nil)

706 | Chapter 14: Audio

engine.attachNode(player)
// add some effect nodes to the chain
let effect = AVAudioUnitTimePitch()
effect.rate = 0.9
effect.pitch = -300
engine.attachNode(effect)
engine.connect(player, to: effect, format: f.processingFormat)
let effect2 = AVAudioUnitReverb()
effect2.loadFactoryPreset(.Cathedral)
effect2.wetDryMix = 40
engine.attachNode(effect2)
engine.connect(effect, to: effect2, format: f.processingFormat)
// patch last node into engine mixer and start playing first sound
let mixer = engine.mainMixerNode
engine.connect(effect2, to: mixer, format: f.processingFormat)
player.scheduleFile(f, atTime: nil, completionHandler:nil)
engine.prepare()
engine.startAndReturnError(nil)
player.play()
// second sound; loop it this time
let url2 = NSBundle.mainBundle().URLForResource(
 "Hooded", withExtension: "mp3")
let f2 = AVAudioFile(forReading: url2, error: nil)
let buffer = AVAudioPCMBuffer(
 PCMFormat: f2.processingFormat, frameCapacity: UInt32(f2.length/3))
f2.readIntoBuffer(buffer, error: nil)
let player2 = AVAudioPlayerNode()
engine.attachNode(player2)
engine.connect(player2, to: mixer, format: f2.processingFormat)
player2.scheduleBuffer(
 buffer, atTime: nil, options: .Loops, completionHandler: nil)
// mix down a little, start playing second sound
player.pan = -0.5
player2.volume = 0.5
player2.pan = 0.5
player2.play()

Finally, I’ll demonstrate how to patch the sound produced from one file into a new file.
This is done by installing a tap on a node to collect its sound into a buffer and writing
the buffer into a file. When I started writing this example, I was hoping that the pro‐
cessing would be done rapidly in the background, but that’s not how AVAudioEngine
works: you have to play the sound in real time.

So, I’ll pass a sound file through a reverb effect and patch the output into a new file. The
most interesting challenge in this example turned out to be knowing when to stop! You
can’t just stop when the original input file buffer empties, because the reverb effect has
yet to finish fading away. To know when that happens, I watch for the last output buffer
value to become very small:

AVAudioEngine | 707

let url2 = NSBundle.mainBundle().URLForResource(
 "Hooded", withExtension: "mp3")
let f2 = AVAudioFile(forReading: url2, error: nil)
let buffer = AVAudioPCMBuffer(
 PCMFormat: f2.processingFormat, frameCapacity: UInt32(f2.length/3))
f2.readIntoBuffer(buffer, error: nil)
let player2 = AVAudioPlayerNode()
engine.attachNode(player2)
let effect = AVAudioUnitReverb()
effect.loadFactoryPreset(.Cathedral)
effect.wetDryMix = 40
engine.attachNode(effect)
engine.connect(player2, to: effect, format: f2.processingFormat)
let mixer = engine.mainMixerNode
engine.connect(effect, to: mixer, format: f2.processingFormat)
// create the output file
let fm = NSFileManager.defaultManager()
let doc = fm.URLForDirectory(
 .DocumentDirectory, inDomain: .UserDomainMask,
 appropriateForURL: nil, create: true, error: nil)
let outurl = doc!.URLByAppendingPathComponent("myfile.aac")
var err : NSError?
let outfile = AVAudioFile(forWriting: outurl, settings: [
 AVFormatIDKey : kAudioFormatMPEG4AAC,
 AVNumberOfChannelsKey : 1,
 AVSampleRateKey : 22050,
 AVEncoderBitRatePerChannelKey : 16
], error: &err)
// install a tap on the reverb effect node
var done = false // flag: don't stop until input buffer is empty!
effect.installTapOnBus(0, bufferSize: 4096,
 format: outfile.processingFormat, block: {
 (buffer : AVAudioPCMBuffer!, time : AVAudioTime!) in
 let dataptrptr = buffer.floatChannelData
 let dataptr = dataptrptr.memory
 let datum = dataptr[buffer.frameLength-1]
 // stop when input is empty and sound is very quiet
 if done && fabs(datum) < 0.000001 {
 self.engine.stop()
 return
 }
 var err : NSError?
 let ok = outfile.writeFromBuffer(buffer, error:&err)
 if !ok {
 println(err)
 }
 })
player2.scheduleBuffer(buffer, atTime: nil, options: nil,
 completionHandler: {
 done = true // raise flag: input buffer is empty!

708 | Chapter 14: Audio

})
engine.prepare()
engine.startAndReturnError(nil)
player2.play()

As I’ve said, there’s much more to know about AVAudioEngine, but that should suffice
to suggest some of the possibilities.

Speech Synthesis
Text can be transformed into synthesized speech. This can be extremely easy to do, using
the AVSpeechUtterance and AVSpeechSynthesizer classes. In this example, I also use
the AVSpeechSynthesisVoice class to make sure the device speaks the text in English,
regardless of the user’s language settings:

let utter = AVSpeechUtterance(string:"Polly, want a cracker?")
let v = AVSpeechSynthesisVoice(language: "en-US")
utter.voice = v
self.talker.delegate = self
self.talker.speakUtterance(utter)

You can also set the speech rate. The delegate (AVSpeechSynthesizerDelegate) is told
when the speech starts, when it comes to a new range of text (usually a word), and when
it finishes.

Further Topics in Sound
iOS is a powerful milieu for production and processing of sound; its sound-related
technologies are extensive. This is a big topic, and an entire book could be written about
it (in fact, such books do exist). I’ll talk in Chapter 16 about accessing sound files in the
user’s music library. But here are some further topics that there is no room to discuss
here:
Other audio session policies

If your app accepts sound input or does audio processing, you’ll want to look into
additional audio session policies I didn’t talk about earlier — Record, Play and
Record, and Audio Processing. In addition, if you’re using Record or Play and Re‐
cord, there are modes — voice chat, video recording, and measurement (of the
sound being input) — that optimize how sound is routed (for example, what mi‐
crophone is used) and how it is modified.

Speech Synthesis | 709

Your app must obtain the user’s permission to use the microphone. This permission
will be requested on your behalf when you adopt a Record audio session policy. You
can modify the body of the system alert by setting the “Privacy — Microphone
Usage Description” key (NSMicrophoneUsageDescription) in your app’s Info.plist.
New in iOS 8, you can learn whether permission has been granted by calling the
audio session’s recordPermission method.

Recording sound
To record sound simply, use AVAudioRecorder. Your audio session policy will need
to adopt a Record policy before recording begins.

Audio queues
Audio queues implement sound playing and recording through a C API with more
granularity than the Objective-C AVAudioPlayer and AVAudioRecorder (though
it is still regarded as a high-level API), giving you access to the buffers used to move
chunks of sound data between a storage format (a sound file) and sound hardware.

Extended Audio File Services
A C API for reading and writing sound files in chunks. It is useful in connection
with technologies such as audio queues.

Audio Converter Services
A C API for converting sound files between formats.

Streaming audio
Audio streamed in real time over the network, such as an Internet radio station,
can be played with Audio File Stream Services, in connection with audio queues.

OpenAL
An advanced technology for playing sound with fine control over its stereo stage
and directionality.

Audio units
Plug-ins that filter and modify the nature and quality of a sound as it passes through
them. See the Audio Unit Hosting Guide for iOS.

MIDI
The CoreMIDI framework allows interaction with MIDI devices. The Audio Tool‐
box framework allows you to play a MIDI file, possibly passing it through an AU‐
Graph that uses the AUSampler audio unit to produce synthesized sound.

Sound sharing
Sound generated or processed by one app can be streamed to and recorded by
another app.

710 | Chapter 14: Audio

CHAPTER 15

Video

Video playback is performed using classes such as AVPlayer provided by the AV Foun‐
dation framework (import AVFoundation). An AVPlayer is not a view; rather, an AV‐
Player’s content is made visible through a CALayer subclass, AVPlayerLayer, which can
be added to your app’s interface.

New in iOS 8, an AV Foundation video playback interface can be wrapped in a simple
view controller, AVPlayerViewController, provided by the AVKit framework (import
AVKit): you provide an AVPlayer, and the AVPlayerViewController automatically hosts
an associated AVPlayerLayer in its own main view, providing standard playback trans‐
port controls so that the user can start and stop play, seek to a different frame, and so
forth.

AVPlayerViewController effectively supersedes the Media Player framework’s
MPMoviePlayerController and MPMoviePlayerViewController, which are not dis‐
cussed in this edition.

A simple interface for letting the user trim video (UIVideoEditorController) is also
supplied. Sophisticated video editing can be performed through the AV Foundation
framework, as I’ll demonstrate later in this chapter.

If an AVPlayer produces sound, you may need to concern yourself with your applica‐
tion’s audio session; see Chapter 14. AVPlayer deals gracefully with the app being sent
into the background: it will pause when your app is backgrounded and resume when
your app returns to the foreground.

A movie file can be in a standard movie format, such as .mov or .mp4, but it can also be
a sound file. An AVPlayerViewController is thus an easy way to play a sound file, in‐
cluding a sound file obtained in real time over the Internet, along with standard controls

711

for pausing the sound and moving the playhead — unlike AVAudioPlayer, which, as I
pointed out in Chapter 14, lacks a user interface.

A mobile device does not have unlimited power for decoding and presenting video in
real time. A video that plays on your computer might not play at all on an iOS device.
See the “Media Layer” chapter of Apple’s iOS Technology Overview for a list of specifi‐
cations and limits within which video is eligible for playing.

A web view (Chapter 11) supports the HTML 5 <video> tag. This can be a simple
lightweight way to present video and to allow the user to control playback. Both web
view video and AVPlayer support AirPlay.

AVPlayerViewController
An AVPlayerViewController, new in iOS 8, is a view controller; thus, you already know
how to display its view. There are two main approaches:
Fullscreen AVPlayerViewController

Create an AVPlayerViewController and add it to your view controller hierarchy,
typically as a presented view controller or pushed onto a navigation controller’s
stack.

Embedded AVPlayerViewController
Structure your own view controller as a custom container view controller, make an
AVPlayerViewController its child view controller, and place the AVPlayerView‐
Controller’s view manually into your own view controller’s view.

You can instantiate an AVPlayerViewController from a storyboard; look for the
AVKit Player View Controller object in the Object library. However, you will then
need to link your target manually to the AVKit framework: edit the target and add
AVKit.framework under Linked Frameworks and Libraries in the General tab.

Fullscreen AVPlayerViewController
The absolute rock-bottom simplest way to display video is to use an AVPlayerView‐
Controller as a presented view controller. All you need to know is that an AVPlayer‐
ViewController must be assigned a player, which is an AVPlayer, and that an AVPlayer
can be initialized directly from the URL of the video it is to play, with init(URL:). In
this example, I present a video from the app bundle:

let av = AVPlayerViewController()
let url = NSBundle.mainBundle().URLForResource(
 "ElMirage", withExtension: "mp4")
let player = AVPlayer(URL: url)
av.player = player
self.presentViewController(av, animated: true, completion: nil)

712 | Chapter 15: Video

Figure 15-1. A presented AVPlayerViewController

The resulting view is intelligently adapted to its environment. It knows that it’s being
shown as a presented view controller’s view, so it provides fullscreen video controls,
including a Done button which automatically dismisses the presented view controller.
Thus, there is literally no further work for you to do.

Figure 15-1 shows a presented AVPlayerViewController. Exactly what controls you’ll
see depends on the circumstances; in my case, at the top there’s the Done button, the
current playhead position slider, and the expand/contract button, and at the bottom
there are the three standard transport buttons and a volume slider. (If my network were
more interesting, we would also see an AirPlay button.) The user can hide or show the
controls by tapping the video, and can expand or contract the video by double-tapping
it.

The black color of the background is the backgroundColor of the AVPlayerView‐
Controller’s view, which you are free to change.

If the movie file is in fact a sound file, the central region is replaced by a QuickTime
symbol, and the controls can’t be hidden (Figure 15-2).

Instead of presenting an AVPlayerViewController, you might push it onto a navigation
controller’s stack. Again, the AVPlayerViewController behaves intelligently. There is
now no Done button. Instead, the lower controls include a fullscreen button. Tapping
the fullscreen button results in almost exactly the same interface shown in
Figure 15-1: the view is displayed fullscreen, and its controls then include a Done button
which exits fullscreen mode.

AVPlayerViewController | 713

Figure 15-2. A presented AVPlayerViewController with a sound file

Embedded AVPlayerViewController
If you want the convenience and the control interface that come from using an AV‐
PlayerViewController, while displaying its view as a subview of your own view control‐
ler’s view, make your view controller a parent view controller and add the AVPlayer‐
ViewController’s view in good order:

let url = NSBundle.mainBundle().URLForResource(
 "ElMirage", withExtension:"mp4")
let player = AVPlayer(URL:url)
let av = AVPlayerViewController()
av.player = player
av.view.frame = CGRectMake(10,10,300,200)
self.addChildViewController(av)
self.view.addSubview(av.view)
av.didMoveToParentViewController(self)

Once again, the AVPlayerViewController behaves intelligently, reducing its controls to
a minimum to adapt to the reduced size of its view. On my device, at the given view size,
there is room for a play button, a playhead position slider, a full-screen button, and
nothing else (Figure 15-3). However, the user can enter full-screen mode, either by
tapping the full-screen button or by pinching outwards on the video view, and now the
full complement of controls is present.

Other AVPlayerViewController Properties
An AVPlayerViewController has very few properties:

714 | Chapter 15: Video

Figure 15-3. An embedded AVPlayerViewController’s view

player

The view controller’s AVPlayer, whose AVPlayerLayer will be hosted in the view
controller’s view. You can set the player while the view is visible, to change what
video it displays (though you are more likely to keep the player and tell it to change
the video). It is legal to assign an AVQueuePlayer, an AVPlayer subclass; an
AVQueuePlayer has multiple items, and the AVPlayerViewController will treat
these as chapters of the video. (I’ll give an example of using an AVQueuePlayer in
Chapter 16.)

showsPlaybackControls

If false, the controls are hidden. This could be useful, for example, if you want to
display a video for decorative purposes, or if you are substituting your own controls.

contentOverlayView

A UIView to which you are free to add subviews. These subviews will appear over‐
laid in front of the video but behind the playback controls.

videoGravity

How the video should be positioned within the view. Possible values are:

• AVLayerVideoGravityResizeAspect (the default)
• AVLayerVideoGravityResizeAspectFill

• AVLayerVideoGravityResize (fills the view, possibly distorting the video)

videoBounds
readyForDisplay

The video position within the view, and the ability of the video to display its first
frame and start playing, respectively. If the video is not ready for display, we prob‐
ably don’t yet know its bounds either. In any case, readyForDisplay will initially
be false and the videoBounds will initially be reported as CGRectZero. This is
because, with video, things take time to prepare. I’ll discuss this further in a moment.

AVPlayerViewController | 715

Everything else there is to know about an AVPlayerViewController comes from its
player, an AVPlayer. Thus, it is now time to turn to AVPlayer and some related basic
AV Foundation classes.

Introducing AV Foundation
The video display performed by AVPlayerViewController is supplied by classes from
the AV Foundation framework. This is a big framework with a lot of classes; the AV
Foundation Framework Reference lists about 130 classes and 20 protocols. This may
seem daunting, but there’s a good reason for it: video has a lot of structure and can be
manipulated in many ways, and AV Foundation very carefully and correctly draws all
the distinctions needed for good object-oriented encapsulation.

Because AV Foundation is so big, all I can do here is introduce it. I’ll point out some of
the principal classes, features, and techniques associated with video. Further AV Foun‐
dation examples will appear in Chapters 16 and 17. Eventually you’ll want to read Apple’s
AV Foundation Programming Guide for a full overview.

Some AV Foundation Classes
The heart of AV Foundation video playback is AVPlayer. It is not a UIView; rather, it is
the locus of video transport (and the actual video, if shown, appears in an AVPlayerLayer
associated with the AVPlayer). For example, AVPlayerViewController provides a play
button, but what if you wanted to start video playback in code? You’d tell the AVPlayer‐
ViewController’s player (an AVPlayer) to play.

An AVPlayer’s video is its currentItem, an AVPlayerItem. This may come as a surprise,
because in the examples earlier in this chapter we initialized an AVPlayer directly from
a URL, with no reference to any AVPlayerItem. That, however, was just a shortcut.
AVPlayer’s real initializer is init(playerItem:); when we called init(URL:), the
AVPlayerItem was created for us.

An AVPlayerItem, too, can be initialized from a URL with init(URL:), but again, this
is just a shortcut. AVPlayerItem’s real initalizer is init(asset:), which takes an AVAs‐
set. An AVAsset is an actual video resource, and comes in one of two subclasses:
AVURLAsset

An asset specified through an NSURL.

AVComposition

An asset constructed by editing video in code. I’ll give an example later in this
chapter.

Thus, to configure an AVPlayer using the complete “stack” of objects that constitute it,
you could say something like this:

716 | Chapter 15: Video

let url = NSBundle.mainBundle().URLForResource(
 "ElMirage", withExtension:"mp4")
let asset = AVURLAsset(URL:url, options:nil)
let item = AVPlayerItem(asset:asset)
let player = AVPlayer(playerItem:item)

Once an AVPlayer exists and has an AVPlayerItem, that player item’s tracks, as seen
from the player’s perspective, are AVPlayerItemTrack objects, which can be individually
enabled or disabled. That’s different from an AVAssetTrack, which is a fact about an
AVAsset. This distinction is a good example of what I said earlier about how AV Foun‐
dation encapsulates its objects correctly: an AVAssetTrack is a hard and fast reality, but
an AVPlayerItemTrack lets a track be manipulated for purposes of playback on a par‐
ticular occasion.

Another important use of an AVPlayerItem is as the locus of information about the
arrival and playback of an AVAsset from across the network. Properties such as
playbackLikelyToKeepUp and accessLog, along with notifications such as AVPlayer-
ItemPlaybackStalledNotification, can be helpful in keeping you abreast of any is‐
sues.

Things Take Time
Working with video is time-consuming. Just because you give an AVPlayer a command
or set a property doesn’t mean that reaction time is immediate. All sorts of operations,
from reading a video file and learning its metadata to transcoding and saving a video
file, take a significant amount of time. The user interface must not freeze while a video
task is in progress, so AV Foundation relies heavily on threading (Chapter 25). In this
way, AV Foundation covers the complex and time-consuming nature of its operations;
but your code must cooperate. You’ll frequently use key–value observing and callbacks
to run your code at the right moment.

Here’s a simple example. There’s an elementary interface flaw in the code presented
earlier for displaying an embedded video:

let url = NSBundle.mainBundle().URLForResource(
 "ElMirage", withExtension:"mp4")
let player = AVPlayer(URL:url)
let av = AVPlayerViewController()
av.player = player
av.view.frame = CGRectMake(10,10,300,200)
self.addChildViewController(av)
self.view.addSubview(av.view)
av.didMoveToParentViewController(self)

The problem is that the AVPlayerViewController’s view is appearing in the interface
when the video is not yet ready for display — resulting in a visible, rather nasty flash
when the video is ready for display. To prevent this flash, let’s start with the AVPlayer‐
ViewController’s view hidden and not show it until readyForDisplay is true.

Introducing AV Foundation | 717

But how will we know when that is? Not by repeatedly polling the readyForDisplay
property! That sort of behavior is absolutely wrong. Rather, we will use KVO to register
as an observer of this property:

av.view.frame = CGRectMake(10,10,300,200)
av.view.hidden = true // *
self.addChildViewController(av)
self.view.addSubview(av.view)
av.didMoveToParentViewController(self)
av.addObserver(
 self, forKeyPath: "readyForDisplay", options: nil, context: nil) // *

Sooner or later, readyForDisplay will become true, and we’ll be notified. Now we can
unregister from KVO and show the AVPlayerViewController’s view:

override func observeValueForKeyPath(
 keyPath: String, ofObject object: AnyObject,
 change: [NSObject : AnyObject],
 context: UnsafeMutablePointer<()>) {
 if keyPath == "readyForDisplay" {
 dispatch_async(dispatch_get_main_queue(), {
 self.finishConstructingInterface()
 })
 }
}
func finishConstructingInterface () {
 let vc = self.childViewControllers[0] as AVPlayerViewController
 if !vc.readyForDisplay {
 return
 }
 vc.removeObserver(self, forKeyPath:"readyForDisplay")
 vc.view.hidden = false
}

Note that, in that code, I make no assumptions about what thread KVO calls me back
on: I intend to operate on the interface, so I step out to the main thread.

In the same way, you can observe an embedded AVPlayerViewController’s video-
Bounds property as a way of learning when the user toggles it into fullscreen mode.

For the sake of efficiency, many AV Foundation object properties are never evaluated
unless you specifically ask for them. AV Foundation objects that behave this way con‐
form to the AVAsynchronousKeyValueLoading protocol. You call loadValues-
AsynchronouslyForKeys:completionHandler: for any properties you’re going to be
interested in. When your completionHandler: is called, you check the status of a key
and, if its status is .Loaded, you are now free to access it.

Here’s a rather overblown example (deliberately so, because I want to illustrate asyn‐
chronous key loading). In the preceding code, I’ve been assigning the AVPlayerView‐
Controller’s view an arbitrary size, thus causing some letterboxing above and below the

718 | Chapter 15: Video

actual video when it appears. Let’s say that I’d like to learn the video’s actual size and
give the AVPlayerViewController’s view the same aspect ratio. An AVAsset has tracks
(AVAssetTrack); in particular, an AVAsset representing a video has a video track. A video
track has a naturalSize. Both AVAsset’s tracks and AVAssetTrack’s naturalSize are
properties that we can load asynchronously.

I’ll start by creating the AVAsset and then stop, waiting to hear that its tracks property
is ready:

let url = NSBundle.mainBundle().URLForResource(
 "ElMirage", withExtension:"mp4")
let asset = AVURLAsset(URL:url, options:nil)
asset.loadValuesAsynchronouslyForKeys(["tracks"], completionHandler: {
 let status = asset.statusOfValueForKey("tracks", error: nil)
 if status == .Loaded {
 dispatch_async(dispatch_get_main_queue(), {
 self.getVideoTrack(asset)
 })
 }
})

When the tracks property is ready, my getVideoTrack method is called. I obtain the
video track and stop once again, waiting to hear when the video track’s naturalSize
property is ready:

func getVideoTrack(asset:AVAsset) {
 let vtrack = asset.tracksWithMediaCharacteristic(
 AVMediaCharacteristicVisual)[0] as AVAssetTrack
 vtrack.loadValuesAsynchronouslyForKeys(
 ["naturalSize"], completionHandler: {
 let status =
 vtrack.statusOfValueForKey("naturalSize", error: nil)
 if status == .Loaded {
 dispatch_async(dispatch_get_main_queue(), {
 self.getNaturalSize(vtrack, asset)
 })
 }
 })
}

When the naturalSize property is ready, my getNaturalSize method is called. I get
the natural size and use it to finish constructing the AVPlayer and to set AVPlayer‐
Controller’s frame — and the rest is as before:

func getNaturalSize(vtrack:AVAssetTrack, _ asset:AVAsset) {
 let sz = vtrack.naturalSize
 let item = AVPlayerItem(asset:asset)
 let player = AVPlayer(playerItem:item)
 let av = AVPlayerViewController()
 av.view.frame = AVMakeRectWithAspectRatioInsideRect(

Introducing AV Foundation | 719

 sz, CGRectMake(10,10,300,200))
 av.player = player
 // ...
}

AVPlayerItem provides another way of loading an asset’s properties: initialize it with
init(asset:automaticallyLoadedAssetKeys:) and observe its status using KVO.
When that status is .ReadyToPlay, you are guaranteed that the player item’s asset has
attempted to load those keys, and you can query them just as you would in loadValues-
AsynchronouslyForKeys:completionHandler:.

Time is Measured Oddly
Another peculiarity of AV Foundation is that time is measured in an unfamiliar way.
This is necessary because calculations using an ordinary built-in numeric class such as
CGFloat will always have slight rounding errors that quickly begin to matter when you’re
trying to specify a time within a large piece of media.

Therefore, the Core Media framework (import CoreMedia) provides the CMTime class,
which under the hood is a pair of integers; they are called the value and the
timescale, but they are simply the numerator and denominator of a rational number.
The denominator represents the degree of granularity; a typical value is 600, sufficient
to specify individual frames in common video formats.

In the convenience function CMTimeMakeWithSeconds, however, the two arguments are
not the numerator and denominator; they are the time’s equivalent in seconds and the
denominator. For example, CMTimeMakeWithSeconds(2.5,600) yields the CMTime
(1500,600).

Constructing Media
AV Foundation allows you to construct your own media asset in code as an AVCom‐
position, an AVAsset subclass, using its subclass, AVMutableComposition. An
AVMutableComposition is an AVAsset, so given an AVMutableComposition comp we
could make an AVPlayerItem from it and hand it over to an AVPlayerViewController’s
player:

let item = AVPlayerItem(asset:comp)
let vc = self.childViewControllers[0] as AVPlayerViewController
let p = vc.player
p.replaceCurrentItemWithPlayerItem(item)

Let’s try it! In this example, I start with an AVAsset (a video file) and assemble its first
5 seconds of video and its last 5 seconds of video into a new AVAsset:

720 | Chapter 15: Video

let oldAsset = p.currentItem.asset
let type = AVMediaTypeVideo
let arr = oldAsset.tracksWithMediaType(type)
let track = arr.last as AVAssetTrack
let duration : CMTime = track.timeRange.duration
let comp = AVMutableComposition()
let comptrack = comp.addMutableTrackWithMediaType(type,
 preferredTrackID: Int32(kCMPersistentTrackID_Invalid))
comptrack.insertTimeRange(
 CMTimeRangeMake(
 CMTimeMakeWithSeconds(0,600),
 CMTimeMakeWithSeconds(5,600)),
 ofTrack:track, atTime:CMTimeMakeWithSeconds(0,600), error:nil)
comptrack.insertTimeRange(
 CMTimeRangeMake(
 CMTimeSubtract(duration, CMTimeMakeWithSeconds(5,600)),
 CMTimeMakeWithSeconds(5,600)),
 ofTrack:track, atTime:CMTimeMakeWithSeconds(5,600), error:nil)

This works perfectly. We are not very good video editors, however, as we have forgotten
the corresponding soundtrack. Let’s go back and get it and add it to our AVMutable‐
Composition (comp):

let type2 = AVMediaTypeAudio
let arr2 = oldAsset.tracksWithMediaType(type2)
let track2 = arr2.last as AVAssetTrack
let comptrack2 = comp.addMutableTrackWithMediaType(type2,
 preferredTrackID:Int32(kCMPersistentTrackID_Invalid))
comptrack2.insertTimeRange(
 CMTimeRangeMake(
 CMTimeMakeWithSeconds(0,600),
 CMTimeMakeWithSeconds(5,600)),
 ofTrack:track2, atTime:CMTimeMakeWithSeconds(0,600), error:nil)
comptrack2.insertTimeRange(
 CMTimeRangeMake(
 CMTimeSubtract(duration, CMTimeMakeWithSeconds(5,600)),
 CMTimeMakeWithSeconds(5,600)),
 ofTrack:track2, atTime:CMTimeMakeWithSeconds(5,600), error:nil)

But wait! Now let’s overlay another audio track; this might be, for example, some addi‐
tional narration:

let type3 = AVMediaTypeAudio
let s = NSBundle.mainBundle().URLForResource(
 "aboutTiagol", withExtension:"m4a")
let asset = AVURLAsset(URL:s, options:nil)
let arr3 = asset.tracksWithMediaType(type3)
let track3 = arr3.last as AVAssetTrack
let comptrack3 = comp.addMutableTrackWithMediaType(type3,
 preferredTrackID:Int32(kCMPersistentTrackID_Invalid))
comptrack3.insertTimeRange(

Introducing AV Foundation | 721

 CMTimeRangeMake(
 CMTimeMakeWithSeconds(0,600),
 CMTimeMakeWithSeconds(10,600)),
 ofTrack:track3, atTime:CMTimeMakeWithSeconds(0,600), error:nil)

You can also apply audio volume changes and video opacity and transform changes to
the playback of individual tracks. I’ll continue from the previous example, applying a
fadeout to the last three seconds of the narration track (comptrack3) by creating an
AVAudioMix:

let params = AVMutableAudioMixInputParameters(track:comptrack3)
params.setVolume(1, atTime:CMTimeMakeWithSeconds(0,600))
params.setVolumeRampFromStartVolume(
 1, toEndVolume:0,
 timeRange:CMTimeRangeMake(
 CMTimeMakeWithSeconds(7,600),
 CMTimeMakeWithSeconds(3,600)))
let mix = AVMutableAudioMix()
mix.inputParameters = [params]

The audio mix must be applied to a playback milieu, such as an AVPlayerItem. So when
we make an AVPlayerItem out of our AVComposition (comp), as I showed at the start
of this section, we can set its audioMix property to mix.

Synchronizing Animation With Video
An intriguing feature of AV Foundation is AVSynchronizedLayer, a CALayer subclass
that effectively crosses the bridge between video time (the CMTime within the progress
of a movie) and Core Animation time (the time within the progress of an animation).
This means that you can coordinate animation in your interface (Chapter 4) with the
playback of a movie. You attach an animation to a layer in more or less the usual way,
but the animation takes place in movie playback time: if the movie is stopped, the ani‐
mation is stopped; if the movie is run at double rate, the animation runs at double rate;
and the current “frame” of the animation always corresponds to the current frame,
within its entire duration, of the video.

The synchronization is performed with respect to an AVPlayer’s AVPlayerItem. To
demonstrate, I’ll draw a long thin gray rectangle containing a little black square; the
horizontal position of the black square within the gray rectangle will be synchronized
to the movie playhead position:

let vc = self.childViewControllers[0] as AVPlayerViewController
let p = vc.player
let item = p.currentItem
let syncLayer = AVSynchronizedLayer(playerItem:item)
// put synch layer into the interface
syncLayer.frame = CGRectMake(10,220,300,10)
syncLayer.backgroundColor = UIColor.lightGrayColor().CGColor
self.view.layer.addSublayer(syncLayer)

722 | Chapter 15: Video

Figure 15-4. The black square’s position is synchronized to the movie

// give synch layer a sublayer
let subLayer = CALayer()
subLayer.backgroundColor = UIColor.blackColor().CGColor
subLayer.frame = CGRectMake(0,0,10,10)
syncLayer.addSublayer(subLayer)
// animate the sublayer
let anim = CABasicAnimation(keyPath:"position")
anim.fromValue = NSValue(CGPoint: subLayer.position)
anim.toValue = NSValue(CGPoint: CGPointMake(295,5))
anim.removedOnCompletion = false
anim.beginTime = AVCoreAnimationBeginTimeAtZero // important trick
anim.duration = CMTimeGetSeconds(item.asset.duration)
subLayer.addAnimation(anim, forKey:nil)

The result is shown in Figure 15-4. The gray rectangle is the AVSynchronizedLayer, tied
to our movie. The little black square inside it is its sublayer; when we animate the black
square, that animation will be synchronized to the movie, changing its position from
the left end of the gray rectangle to the right end, starting at the beginning of the movie
and with the same duration as the movie. Thus, although we attach this animation to
the black square layer in the usual way, that animation is frozen: the black square doesn’t
move until we start the movie playing. Moreover, if we pause the movie, the black square
stops. The black square is thus automatically representing the current play position
within the movie. This may seem a silly example, but if you were to suppress the video
controls it could prove downright useful.

AVPlayerLayer
An AVPlayer is not an interface object. The corresponding interface object — an AV‐
Player made visible, as it were — is an AVPlayerLayer (a CALayer subclass). It has no
controls for letting the user play and pause a movie and visualize its progress; it just
shows the movie, acting as a bridge between the AV Foundation world of media and
the CALayer world of things the user can see.

Introducing AV Foundation | 723

AVKit and AVPlayerViewController host an AVPlayerLayer for you automatically;
otherwise you would not see any video in the AVPlayerViewController’s view. But there
may certainly be situations where you find AVPlayerViewController too heavyweight,
where you don’t need the standard transport controls, where you don’t want the video
to be expandable or to have a fullscreen mode — you just want the simple direct power
that can be obtained only by putting an AVPlayerLayer into the interface yourself. And
you are free to do so!

Here, I’ll display the same movie as before, but without an AVPlayerViewController:

let m = NSBundle.mainBundle().URLForResource(
 "ElMirage", withExtension:"mp4")
let asset = AVURLAsset(URL:m, options:nil)
let item = AVPlayerItem(asset:asset)
let p = AVPlayer(playerItem:item)
self.player = p // might need a reference later
let lay = AVPlayerLayer(player:p) // *
lay.frame = CGRectMake(10,10,300,200)
self.view.layer.addSublayer(lay) // *

As before, if we want to prevent a flash when the video becomes ready for display, we
can postpone adding the AVPlayerLayer to our interface until its readyForDisplay
property becomes true — which we can learn through KVO.

The movie is now visible in the interface, but it isn’t doing anything. We haven’t told
our AVPlayer to play, and there are no transport controls, so the user can’t tell the video
to play either. This is why I kept a reference to the AVPlayer in a property! We can start
play either by calling play or by setting the AVPlayer’s rate. Here, I imagine that we’ve
provided a simple play/pause button that toggles the playing status of the movie by
changing its rate:

@IBAction func doButton (sender:AnyObject!) {
 let rate = self.player.rate
 if rate < 0.01 {
 self.player.rate = 1
 } else {
 self.player.rate = 0
 }
}

Without trying to replicate the transport controls, we might also like to give the user a
way to jump the playhead back to the start of the movie. The playhead position is a
feature, not of an AVPlayer, but of an AVPlayerItem:

@IBAction func restart (sender:AnyObject!) {
 let item = self.player.currentItem
 item.seekToTime(CMTimeMake(0, 1))
}

724 | Chapter 15: Video

Further Exploration of AV Foundation
Here are some other things you can do with AV Foundation:

• Extract single images (“thumbnails”) from a movie (AVAssetImageGenerator).
• Export a movie in a different format (AVAssetExportSession), or read/write raw

uncompressed data through a buffer to or from a track (AVAssetReader, AVAsset‐
ReaderOutput, AVAssetWriter, AVAssetWriterInput, and so on).

• Capture audio, video, and stills through the device’s hardware (AVCaptureSession
and so on). I’ll say more about this in Chapter 17.

• Tap into video and audio being captured or played, including capturing video
frames as still images (AVPlayerItemVideoOutput, AVCaptureVideoDataOutput,
and so on; and see Apple’s Technical Q&A QA1702).

UIVideoEditorController
UIVideoEditorController is a view controller that presents an interface where the user
can trim video. Its view and internal behavior are outside your control, and you’re not
supposed to subclass it. You are expected to treat the view controller as a presented view
controller on the iPhone or as a popover on the iPad, and respond by way of its delegate.

UIVideoEditorController is one of the creakiest pieces of interface in iOS. It dates
back to iOS 3.1, and hasn’t been revised since its inception — and it looks and feels
like it. It has never worked properly on the iPad, and still doesn’t. I’m going to show
how to use it, but I’m not going to explore its bugginess in any depth or we’d be
here all day.

Before summoning a UIVideoEditorController, be sure to call its class method canEdit-
VideoAtPath:. (This call can take some noticeable time to return.) If this call returns
false, don’t instantiate UIVideoEditorController to edit the given file. Not every video
format is editable, and not every device supports video editing. You must also set the
UIVideoEditorController instance’s delegate and videoPath before presenting it; the
delegate should adopt both UINavigationControllerDelegate and UIVideoEditor‐
ControllerDelegate. Setting the UIVideoEditorController’s modalPresentationStyle
to .Popover on the iPad is up to you (a good instance of the creakiness I was just referring
to):

let path = NSBundle.mainBundle().pathForResource(
 "ElMirage", ofType: "mp4")!
let can = UIVideoEditorController.canEditVideoAtPath(path)
if !can {

UIVideoEditorController | 725

 println("can't edit this video")
 return
}
let vc = UIVideoEditorController()
vc.delegate = self
vc.videoPath = path
if UIDevice.currentDevice().userInterfaceIdiom == .Pad {
 vc.modalPresentationStyle = .Popover
}
self.presentViewController(vc, animated: true, completion: nil)
if let pop = vc.popoverPresentationController {
 let v = sender as UIView
 pop.sourceView = v
 pop.sourceRect = v.bounds
 pop.delegate = self
}

The view’s interface (on the iPhone) contains Cancel and Save buttons, a trimming box
displaying thumbnails from the movie, a play/pause button, and the movie itself. The
user slides the ends of the trimming box to set the beginning and end of the saved movie.
The Cancel and Save buttons do not dismiss the presented view; you must do that in
your implementation of the delegate methods. There are three of them, and you should
implement all three and dismiss the presented view in all of them:

• videoEditorController:didSaveEditedVideoToPath:

• videoEditorControllerDidCancel:

• videoEditorController:didFailWithError:

Implementing the second two delegate methods is straightforward:

func videoEditorControllerDidCancel(editor: UIVideoEditorController!) {
 self.dismissViewControllerAnimated(true, completion: nil)
}
func videoEditorController(editor: UIVideoEditorController!,
 didFailWithError error: NSError!) {
 println("error: \(error.localizedDescription)")
 self.dismissViewControllerAnimated(true, completion: nil)
}

Saving the trimmed video is more involved. Like everything else about a movie, it takes
time. When the user taps Save, there’s a progress view while the video is trimmed and
compressed. By the time the delegate method videoEditorController:didSaveEdited-
VideoToPath: is called, the trimmed video has already been saved to a file in your app’s
temporary directory (the same directory returned from a call to NSTemporary-
Directory).

Doing something useful with the saved file at this point is up to you; if you merely leave
it in the temporary directory, you can’t rely on it to persist. In this example, I copy the

726 | Chapter 15: Video

edited movie into the user’s photo library. That takes time too, so when I call UISave-
VideoAtPathToSavedPhotosAlbum, I configure a callback to a method that dismisses
the editor after the saving is over:

func videoEditorController(editor: UIVideoEditorController!,
 didSaveEditedVideoToPath editedVideoPath: String!) {
 if UIVideoAtPathIsCompatibleWithSavedPhotosAlbum(
 editedVideoPath) {
 UISaveVideoAtPathToSavedPhotosAlbum(
 editedVideoPath, self,
 "video:savedWithError:ci:", nil)
 } else {
 // need to think of something else to do with it
 }
}

In our callback method (here, video:savedWithError:ci:), it’s important to check for
errors, because things can still go wrong. In particular, the user could deny us access to
the photo library (see Chapter 17 for more about that). If that’s the case, we’ll get an
NSError whose domain is ALAssetsLibraryErrorDomain:

func video(video:NSString!, savedWithError error:NSError!,
 ci:UnsafeMutablePointer<()>) {
 if error != nil {
 println("did save, error:\(error)")
 }
 self.dismissViewControllerAnimated(true, completion: nil)
}

UIVideoEditorController | 727

CHAPTER 16

Music Library

An iOS device can be used for the same purpose as the original iPod — to hold and play
music, podcasts, and audiobooks. These items constitute the device’s music library. (The
relevant guide in Apple’s documentation, iPod Library Access Programming Guide, pre‐
serves a more archaic name.) iOS provides the programmer with various forms of access
to the device’s music library; you can:

• Explore the music library.
• Play an item from the music library.
• Learn and control what the Music app’s music player is doing.
• Present a standard interface for allowing the user to select a music library item.

These abilities are provided by the Media Player framework; you’ll need to import
MediaPlayer.

Exploring the Music Library
Everything in the music library, as seen by your code, is an MPMediaEntity. This is an
abstract class that endows its subclasses with the ability to describe themselves through
key–value pairs called properties.

The property keys have names like MPMediaItemPropertyTitle. To fetch a property’s
value, call valueForProperty: with its key. You can fetch multiple properties with
enumerateValuesForProperties:usingBlock:. Thus, the use of the word “properties”
here has nothing to do with object properties; these properties are more like entries in
an NSDictionary. However, starting in iOS 7, an MPMediaEntity is endowed with some
object properties whose names correspond to the property names. Thus, for example,
you can say either myItem.valueForProperty(MPMediaItemPropertyTitle) or
myItem.title.

729

MPMediaEntity has two concrete subclasses, MPMediaItem and MPMediaCollection.
An MPMediaItem is a single item (a “song”). An MPMediaCollection is an ordered list
of MPMediaItems, rather like an array; it has a count, and its items property is an array.

An MPMediaItem has a type, according to the value of its MPMediaItemPropertyMedia-
Type: it might, for example, be music, a podcast, an audiobook, or a video. A media
item’s properties will be intuitively familiar from your use of iTunes: it has a title, an
album title, a track number, an artist, a composer, and so on. Different types of item
have slightly different properties; for example, a podcast, in addition to its normal title,
has a podcast title.

A playlist is an MPMediaPlaylist, a subclass of MPMediaCollection. Its properties in‐
clude a title, a flag indicating whether it is a “smart” playlist, and so on.

An item’s artwork image is an instance of the MPMediaItemArtwork class, from which
you are supposed to be able to get the image itself scaled to a specified size by calling
imageWithSize:; my experience is that in reality you’ll receive an image of any old size
the system cares to give you, so you may have to scale it further yourself. This, for
example, is what my Albumen app does:

let art : MPMediaItemArtwork = // ...
var im = art.imageWithSize(CGSizeMake(36,36))
if im != nil {
 // it probably *isn't* 36 by 36; scale it so that it is
 let r = AVMakeRectWithAspectRatioInsideRect(
 im.size, CGRectMake(0,0,36,36))
 UIGraphicsBeginImageContextWithOptions(r.size, false, 0)
 im.drawInRect(r)
 im = UIGraphicsGetImageFromCurrentImageContext()
 UIGraphicsEndImageContext()
}

Querying the Music Library
Obtaining actual information from the music library requires a query, an MPMedia‐
Query. First, you form the query. There are three main ways to do this:
Without limits

Create a simple MPMediaQuery by calling init. The result is an unlimited query;
it asks for everything in the music library.

With a convenience constructor
MPMediaQuery provides several class methods that form a query ready to ask the
music library for a limited subset of its contents — all of its songs, or all of its
podcasts, and so on. Here’s the complete list:

• songsQuery

• podcastsQuery

730 | Chapter 16: Music Library

• audiobooksQuery

• playlistsQuery

• albumsQuery

• artistsQuery

• composersQuery

• genresQuery

• compilationsQuery

With filter predicates
You can limit a query more precisely by attaching to the query one or more
MPMediaPropertyPredicate instances, forming a set (NSSet) of predicates. These
predicates filter the music library according to criteria you specify; to be included
in the result, a media item must successfully pass through all the filters (in other
words, the predicates are combined using logical-and). A predicate is a simple
comparison. It has three aspects:
A property

The key to the property you want to compare against. Not every property can
be used in a filter predicate; the documentation makes the distinction clear (and
you can get additional help from an MPMediaEntity class method, canFilter-
ByProperty:).

A value
The value that the property must have in order to pass through the filter.

A comparison type (optional)
An MPMediaPredicateComparison. In order to pass through the filter, a media
item’s property value can either match the value you provide (.EqualTo, the
default) or contain the value you provide (.Contains).

The two ways of forming a limited query are actually the same; a convenience con‐
structor is just a quick way of obtaining a query already endowed with a filter predicate.

A query also groups its results, according to its groupingType (MPMediaGrouping).
Your choices are:

• .Title

• .Album

• .Artist

• .AlbumArtist

• .Composer

Exploring the Music Library | 731

• .Genre

• .Playlist

• .PodcastTitle

The query convenience constructors all supply a groupingType in addition to a filter
predicate. Indeed, the grouping is often the salient aspect of the query. For example, an
albumsQuery is in fact merely a songsQuery with the added feature that its results are
grouped by album.

The groups resulting from a query are collections; that is, each is an MPMediaItem‐
Collection. This class, you will recall, is an MPMediaEntity subclass, so a collection has
properties. In addition, it has items and a count. It also has a representativeItem
property, which gives you just one item from the collection. The reason you need this
is that properties of a collection are often embodied in its items rather than in the
collection itself. For example, an album has no title; rather, its items have album titles
that are all the same. So to learn the title of an album, you ask for the album title of a
representative item.

After you form the query, you perform the query. You do this simply by asking for the
query’s results. You can ask either for its collections (if you care about the groups
returned from the query) or for its items. Here, I’ll discover the titles of all the albums:

let query = MPMediaQuery.albumsQuery()
let result = query.collections as [MPMediaItemCollection]
// prove we've performed the query, by logging the album titles
for album in result {
 println(album.representativeItem.albumTitle)
}
/*
Output starts like this on my device:
Beethoven Canons
Beethoven Dances
Beethoven Piano Duet
Beethoven Piano Other
Brahms Lieder
...
*/

Now let’s make our query more elaborate; we’ll get the titles of all the albums whose
name contains “Beethoven.” Observe that what we really do is to ask for all songs whose
album title contains “Beethoven” grouped by album; then we learn the album title of a
representative item from each resulting collection:

let query = MPMediaQuery.albumsQuery()
let hasBeethoven = MPMediaPropertyPredicate(value:"Beethoven",
 forProperty:MPMediaItemPropertyAlbumTitle,
 comparisonType:.Contains)
query.addFilterPredicate(hasBeethoven)

732 | Chapter 16: Music Library

let result = query.collections as [MPMediaItemCollection]
for album in result {
 println(album.representativeItem.albumTitle)
}
/*
Output on my device:
Beethoven Canons
Beethoven Dances
Beethoven Piano Duet
Beethoven Piano Other
*/

Similarly, we can get the titles of all the albums containing any songs whose name con‐
tains “Sonata.” To do so, we ask for all songs whose title contains “Sonata” grouped by
album; then, as before, we learn the album title of a representative item from each
resulting collection:

let query = MPMediaQuery.albumsQuery()
let hasSonata = MPMediaPropertyPredicate(value:"Sonata",
 forProperty:MPMediaItemPropertyTitle,
 comparisonType:.Contains)
query.addFilterPredicate(hasSonata)
let result = query.collections as [MPMediaItemCollection]
for album in result {
 println(album.representativeItem.albumTitle)
}
/*
Output on my device:
Beethoven Piano Duet
Beethoven Piano Other
Scarlatti Complete Sonatas, Vol. I
*/

An interesting complication is that the Scarlatti album listed in the results of that ex‐
ample is not actually present on my device. The user’s music library can include pur‐
chases and iTunes Match songs that are actually off in “the cloud.” The user can prevent
such songs from appearing in the Music app (in the Settings app, Music → Show All
Music → Off), but they are still present in the library, and therefore in the results of our
queries.

I’ll modify the previous example to list only albums containing “Sonata” songs that are
also present on the device. The concept “present on the device” is embodied by MPMedia-
ItemPropertyIsCloudItem. All we have to do is add a second predicate:

let query = MPMediaQuery.albumsQuery()
let hasSonata = MPMediaPropertyPredicate(value:"Sonata",
 forProperty:MPMediaItemPropertyTitle,
 comparisonType:.Contains)
query.addFilterPredicate(hasSonata)
let isPresent = MPMediaPropertyPredicate(value:false,
 forProperty:MPMediaItemPropertyIsCloudItem,

Exploring the Music Library | 733

 comparisonType:.EqualTo)
query.addFilterPredicate(isPresent)
let result = query.collections as [MPMediaItemCollection]
for album in result {
 println(album.representativeItem.albumTitle)
}
/*
Output on my device:
Beethoven Piano Duet
Beethoven Piano Other
*/

The results of an albumsQuery are actually songs (MPMediaItems). That means we can
immediately access any song in any of those albums. Let’s modify the output from our
previous query to print the titles of all the matching songs in the first album returned,
which happens to be the Beethoven Piano Duet album. We don’t have to change our
query, so I’ll start at the point where we perform it; result is the array of collections
returned from our query:

// ... same as before ...
let album = result[0]
for song in album.items as [MPMediaItem] {
 println(song.title)
}
/*
Output on my device:
Sonata for piano 4-hands in D major Op. 6 - 1. Allegro molto
Sonata for piano 4-hands in D major Op. 6 - 2. Rondo
*/

Persistence and Change in the Music Library
One of the properties of an MPMediaEntity is its persistent ID, which uniquely identifies
this song (MPMediaItemPropertyPersistentID) or playlist (MPMediaPlaylist-
PropertyPersistentID). No other means of identification is guaranteed unique; two
songs or two playlists can have the same title, for example. Using the persistent ID, you
can retrieve again at a later time the same song or playlist you retrieved earlier, even
across launches of your app. All sorts of things have persistent IDs — entities in general
(MPMediaEntityPropertyPersistentID), albums, artists, composers, and more.

While you are maintaining the results of a search, the contents of the music library may
themselves change. For example, the user might connect the device to a computer and
add or delete music with iTunes. This can put your results out of date. For this reason,
the library’s own modified date is available through the MPMediaLibrary class. Call the
class method defaultMediaLibrary to get the actual library instance; now you can ask
it for its lastModifiedDate. You can also register to receive a notification, MPMedia-
LibraryDidChangeNotification, when the music library is modified. This notification
is not emitted unless you first send the library beginGeneratingLibraryChange-

734 | Chapter 16: Music Library

Notifications; you should eventually balance this with endGeneratingLibrary-
ChangeNotifications.

The library’s notion of what constitutes a change can be somewhat incoherent with
regard to cloud-based items. For example, the user can explicitly download a cloud
song; this can cause MPMediaLibraryDidChangeNotification to be triggered nu‐
merous times in quick succession.

Music Player
The Media Player framework class for playing an MPMediaItem is MPMusicPlayer‐
Controller. It comes in two flavors, depending on which class method you use to get an
instance:
systemMusicPlayer

The global music player — the very same player used by the Music app. This might
already be playing an item, or might be paused with a current item, at any time
while your app runs; you can learn or change what item this is. The global music
player continues playing independently of the state of your app, and the user, by
way of the Music app, can at any time alter what it is doing. (The name systemMusic-
Player, new in iOS 8, supersedes the name iPodMusicPlayer from iOS 7 and be‐
fore, which is deprecated.)

applicationMusicPlayer

Plays an MPMediaItem from the music library within your application. The song
being played by the applicationMusicPlayer can be different from the Music app’s
current song. This player stops when your app is not in the foreground.

An applicationMusicPlayer MPMusicPlayerController is not really inside your
app. It is actually the global music player behaving differently. It has its own audio
session. You cannot play its audio when your app is in the background. You cannot
make it the target of remote control events. If these limitations prove troublesome,
use the systemMusicPlayer (or some other means of playing the song, as discussed
later in this chapter).

A music player doesn’t merely play an item; it plays from a queue of items. This behavior
is familiar from iTunes and the Music app. For example, in iTunes, when you switch to
a playlist and double-click the first song to start playing, when iTunes comes to the end
of that song, it proceeds by default to the next song in the playlist. So at that moment,
its queue is the totality of songs in the playlist. The music player behaves the same way;
when it reaches the end of a song, it proceeds to the next song in its queue.

Your methods for controlling playback also reflect this queue-based orientation. In ad‐
dition to the expected play, pause, and stop commands, there’s a skipToNextItem and

Music Player | 735

skipToPreviousItem command. Anyone who has ever used iTunes or the Music app
(or, for that matter, an old-fashioned iPod) will have an intuitive grasp of this and ev‐
erything else a music player does. For example, you can also set a music player’s repeat-
Mode and shuffleMode, just as in iTunes.

You provide a music player with its queue in one of two ways:
With a query

You hand the music player an MPMediaQuery. The query’s items are the items of
the queue.

With a collection
You hand the music player an MPMediaItemCollection. This might be obtained
from a query you performed, but you can also assemble your own collection of
MPMediaItems in any way you like, putting them into an array and calling
init(items:).

In this example, we collect all songs actually present in the library shorter than 30 sec‐
onds into a queue and set the queue playing in random order using the application-
internal music player:

let query = MPMediaQuery.songsQuery()
let isPresent = MPMediaPropertyPredicate(value:false,
 forProperty:MPMediaItemPropertyIsCloudItem,
 comparisonType:.EqualTo)
query.addFilterPredicate(isPresent)
let shorties = (query.items as [MPMediaItem]).filter {
 let dur = $0.playbackDuration
 return dur < 30
}
if shorties.count == 0 {
 println("no songs that short!")
 return
}
let queue = MPMediaItemCollection(items:shorties)
let player = MPMusicPlayerController.applicationMusicPlayer()
player.setQueueWithItemCollection(queue)
player.shuffleMode = .Songs
player.play()

If a music player is currently playing, setting its queue will stop it; restarting play is up
to you.

You can ask a music player for its nowPlayingItem, and since this is an MPMediaItem,
you can learn all about it through its properties. Unfortunately, you can’t query a music
player as to its queue, but you can keep your own pointer to the MPMediaItemCollection
constituting the queue when you hand it to the music player, and you can ask the music
player which song within the queue is currently playing (indexOfNowPlayingItem). The

736 | Chapter 16: Music Library

user can completely change the queue of the systemMusicPlayer, so if control over the
queue is important to you, use the applicationMusicPlayer.

A music player has a playbackState that you can query to learn what it’s doing (whether
it is playing, paused, stopped, or seeking). It also emits notifications so you can hear
about changes in its state:

• MPMusicPlayerControllerPlaybackStateDidChangeNotification

• MPMusicPlayerControllerNowPlayingItemDidChangeNotification

• MPMusicPlayerControllerVolumeDidChangeNotification

These notifications are not emitted until you tell the music player to beginGenerating-
PlaybackNotifications. This is an instance method, so you can arrange to receive
notifications from just one of the two possible music players. If you do receive notifi‐
cations from both, you can distinguish them by examining the NSNotification’s object
and comparing it to each player. You should eventually balance this call with end-
GeneratingPlaybackNotifications.

To illustrate, I’ll extend the previous example to set the text of a UILabel in our interface
(self.label) every time a different song starts playing. Before we start the player play‐
ing, we insert these lines to generate the notifications:

player.beginGeneratingPlaybackNotifications()
NSNotificationCenter.defaultCenter().addObserver(
 self, selector: "changed:",
 name: MPMusicPlayerControllerNowPlayingItemDidChangeNotification,
 object: player)
self.q = queue // retain a pointer to the queue

And here’s how we respond to those notifications:

func changed(n:NSNotification) {
 self.label.text = ""
 let player = MPMusicPlayerController.applicationMusicPlayer()
 if n.object === player { // just playing safe
 if let title : AnyObject = player.nowPlayingItem?.title {
 if let title = title as? String {
 let ix = player.indexOfNowPlayingItem
 if ix != NSNotFound {
 self.label.text =
 "\(ix+1) of \(self.q.count): \(title)"
 }
 }
 }
 }
}

There’s no periodic notification as a song plays and the current playhead position ad‐
vances. To get this information, you’ll have to resort to polling. This is not objectionable

Music Player | 737

as long as your polling interval is reasonably sparse; your display may occasionally fall
a little behind reality, but this won’t usually matter. To illustrate, let’s add to our existing
example a UIProgressView (self.prog) showing the current percentage of the current
song being played by the music player. I’ll use an NSTimer to poll the state of the player
every second:

self.timer = NSTimer.scheduledTimerWithTimeInterval(
 1, target: self, selector: "timerFired:",
 userInfo: nil, repeats: true)
self.timer.tolerance = 0.1

When the timer fires, the progress view displays the state of the currently playing item:

func timerFired(_:AnyObject) {
 let player = MPMusicPlayerController.applicationMusicPlayer()
 let item = player.nowPlayingItem
 if item == nil || player.playbackState == .Stopped {
 self.prog.hidden = true
 return
 }
 self.prog.hidden = false
 let current = player.currentPlaybackTime
 let total = item.playbackDuration
 self.prog.progress = Float(current / total)
}

The applicationMusicPlayer has no user interface, unless you count the remote play‐
back controls (Figure 14-1); if you want the user to have controls for playing and stop‐
ping a song, you’ll have to create them yourself. The systemMusicPlayer has its own
natural interface — the Music app.

MPVolumeView
The Media Player framework offers a slider for letting the user set the system output
volume, along with an AirPlay route button if appropriate; this is an MPVolumeView.
An MPVolumeView works only on a device — not in the Simulator. It is customizable
similarly to a UISlider (Chapter 12); you can set the images for the two halves of the
track, the thumb, and even the AirPlay route button, for both the normal and the high‐
lighted state (while the user is touching the thumb). You can also customize the image
(volumeWarningSliderImage) that flashes in the right half of the track when the user
tries to exceed the volume limit (set in the Settings app, Music → Volume Limit).

In my testing, the orange warning flash never appears unless the EU Volume Limit
setting is also switched to On (Developer → EU Volume Limit in the Settings app).
Presumably this feature works on devices destined for the European Union market,
but on my device, the MPVolumeView ignores the Volume Limit from the Settings
app.

738 | Chapter 16: Music Library

For further customization, you can subclass MPVolumeView and override volume-
SliderRectForBounds:. (An additional overridable method is documented, volume-
ThumbRectForBounds:volumeSliderRect:value:, but in my testing it is never called;
I regard this as a bug.)

You can register for notifications when a wireless route (Bluetooth or AirPlay) appears
or disappears (MPVolumeViewWirelessRoutesAvailableDidChangeNotification)
and when a wireless route becomes active or inactive (MPVolumeViewWirelessRoute-
ActiveDidChangeNotification).

Playing Songs With AV Foundation
MPMusicPlayerController is convenient and simple, but it’s also simpleminded. Its au‐
dio session isn’t your audio session; the music player doesn’t really belong to you. An
MPMediaItem, however, has an MPMediaItemPropertyAssetURL key whose value is a
URL. Now everything from Chapters 14 and 15 comes into play.

So, for example, having obtained an MPMediaItem’s MPMediaItemPropertyAssetURL,
you could use that URL to initialize an AVAudioPlayer, an AVPlayer, or an AVAsset.
Each of these ways of playing an MPMediaItem has its advantages. For example, an
AVAudioPlayer is easy to use, and lets you loop a sound, poll the power value of its
channels, and so forth. An AVPlayer assigned to an AVPlayerViewController gives you
a built-in play/pause button and playhead slider. An AVAsset gives you the full power
of the AV Foundation framework, letting you edit the sound, assemble multiple sounds,
perform a fadeout effect, and even attach the sound to a video (and then play it with an
AVPlayer).

In this example, I’ll use an AVQueuePlayer (an AVPlayer subclass) to play a sequence
of MPMediaItems, just as MPMusicPlayerController does:

let arr = // array of MPMediaItem
let assets = arr.map {
 let url = $0.assetURL
 let asset = AVAsset.assetWithURL(url) as AVAsset
 return AVPlayerItem(asset: asset)
}
self.qp = AVQueuePlayer(items:assets)
self.qp.play()

That works, but I have the impression, based on something said in one of the WWDC
2011 videos, that instead of adding a whole batch of AVPlayerItems to an AVQueue‐
Player all at once, you’re supposed to add just a few AVPlayerItems to start with and
then add each additional AVPlayerItem when an item finishes playing. So I’ll start out
by adding just three AVPlayerItems, and use key–value observing to watch for changes
in the AVQueuePlayer’s currentItem:

Playing Songs With AV Foundation | 739

let arr = // array of MPMediaItem
self.assets = arr.map {
 let url = $0.assetURL
 let asset = AVAsset.assetWithURL(url) as AVAsset
 return AVPlayerItem(
 asset: asset, automaticallyLoadedAssetKeys: ["duration"])
 // duration needed later
}
self.total = self.assets.count
let seed = min(3,self.assets.count)
self.qp = AVQueuePlayer(items:Array(self.assets[0..<0+seed]))
self.assets = Array(self.assets[seed..<self.assets.count])
// use .Initial option so that we get an observation for the first item
self.qp.addObserver(
 self, forKeyPath:"currentItem", options:.Initial, context:nil)
self.qp.play()

In observeValueForKeyPath:..., we pull an AVPlayerItem off the front of our assets
mutable array and add it to the end of the AVQueuePlayer’s queue. The AVQueuePlayer
itself deletes an item from the start of its queue after playing it, so in this way the queue
never exceeds three items in length:

let item = self.qp.currentItem
if self.assets.count == 0 {
 return
}
let newItem = self.assets.removeAtIndex(0)
self.qp.insertItem(
 newItem, afterItem:self.qp.items().last as AVPlayerItem)

As long as observeValueForKeyPath:... is notifying us each time a new song starts
playing, let’s insert some code to update a label’s text with the title of each successive
song. This will demonstrate how to extract metadata from an AVAsset by way of an
AVMetadataItem; in this case, we fetch the AVMetadataCommonKeyTitle and get its
value property, as the equivalent of fetching an MPMediaItem’s MPMediaItemProperty-
Title in our earlier code:

self.curnum++
var arr = item.asset.commonMetadata
arr = AVMetadataItem.metadataItemsFromArray(arr,
 withKey:AVMetadataCommonKeyTitle,
 keySpace:AVMetadataKeySpaceCommon)
let met = arr[0] as AVMetadataItem
met.loadValuesAsynchronouslyForKeys(["value"]) {
 if met.statusOfValueForKey("value", error: nil) == .Loaded {
 dispatch_async(dispatch_get_main_queue()) {
 self.label.text =
 "\(self.curnum) of \(self.total): \(met.value)"
 }
 }
}

740 | Chapter 16: Music Library

We can also update a progress view in response to the firing of a timer to reflect the
current item’s current time and duration. I created the AVPlayerItem with
init(asset:automaticallyLoadedAssetKeys:) to guarantee that the duration prop‐
erty would have attempted to load by now, but it is still necessary to check that it has
loaded:

func timerFired(sender:AnyObject) {
 if let item = self.qp.currentItem {
 let asset = item.asset
 if asset.statusOfValueForKey("duration", error: nil) == .Loaded {
 let cur = self.qp.currentTime()
 let dur = asset.duration
 self.prog.progress =
 Float(CMTimeGetSeconds(cur)/CMTimeGetSeconds(dur))
 self.prog.hidden = false
 }
 } else { // finished!
 self.label.text = ""
 self.prog.hidden = true
 self.timer.invalidate()
 }
}

Media Picker
The media picker (MPMediaPickerController), supplied by the Media Player frame‐
work, is a view controller whose view is a self-contained interface in which the user can
select a media item from the music library, similar to the Music app. You are expected
to present the view controller (presentViewController:animated:completion:).

You can limit the type of media items displayed by creating the media picker using
init(mediaTypes:). You can make a prompt appear at the top of the navigation bar
(prompt). And you can govern whether the user can choose multiple media items or
just one, with the allowsPickingMultipleItems property. You can filter out items
stored in the cloud by setting showsCloudItems to false.

While the view is showing, you learn what the user is doing through two delegate meth‐
ods (MPMediaPickerControllerDelegate); the presented view controller is not auto‐
matically dismissed, so it is up to you dismiss it in these delegate methods:

• mediaPicker:didPickMediaItems:

• mediaPickerDidCancel:

Media Picker | 741

The behavior of the delegate methods depends on the value of the controller’s allows-
PickingMultipleItems:
The controller’s allowsPickingMultipleItems is false (the default)

There’s a Cancel button. When the user taps a media item, your mediaPicker:did-
PickMediaItems: is called, handing you an MPMediaItemCollection consisting of
that item; you are likely to dismiss the presented view controller at this point. When
the user taps Cancel, your mediaPickerDidCancel: is called.

The controller’s allowsPickingMultipleItems is true
There’s a Done button. Every time the user taps a media item, it is disabled to
indicate that it has been selected. When the user taps Done, mediaPicker:didPick-
MediaItems: is called, handing you an MPMediaItemCollection consisting of all
items the user tapped. Your mediaPickerDidCancel: is never called.

In this example, we put up the media picker; we then play the user’s chosen media item(s)
with the application’s music player. The example works equally well whether allows-
PickingMultipleItems is true or false:

func presentPicker (sender:AnyObject) {
 let picker = MPMediaPickerController(mediaTypes:.Music)
 picker.delegate = self
 // picker.allowsPickingMultipleItems = true
 self.presentViewController(picker, animated: true, completion: nil)
}
func mediaPicker(mediaPicker: MPMediaPickerController!,
 didPickMediaItems mediaItemCollection: MPMediaItemCollection!) {
 let player = MPMusicPlayerController.applicationMusicPlayer()
 player.setQueueWithItemCollection(mediaItemCollection)
 player.play()
 self.dismissViewControllerAnimated(true, completion: nil)
}
func mediaPickerDidCancel(mediaPicker: MPMediaPickerController!) {
 self.dismissViewControllerAnimated(true, completion: nil)
}

On the iPad, the media picker can be displayed as a presented view, and I think it looks
best that way. But it also works reasonably well in a popover, especially if we increase
its preferredContentSize. This code presents as fullscreen on an iPhone and as a
reasonably-sized popover on an iPad:

742 | Chapter 16: Music Library

func presentPicker (sender:AnyObject) {
 let picker = MPMediaPickerController(mediaTypes:.Music)
 picker.delegate = self
 picker.allowsPickingMultipleItems = true
 picker.modalPresentationStyle = .Popover
 picker.preferredContentSize = CGSizeMake(500,600)
 self.presentViewController(picker, animated: true, completion: nil)
 if let pop = picker.popoverPresentationController {
 if let b = sender as? UIBarButtonItem {
 pop.barButtonItem = b
 }
 }
}

Media Picker | 743

CHAPTER 17

Photo Library and Image Capture

The photos and videos accessed by the user through the Photos app constitute the
device’s photo library. Your app can give the user an interface for exploring this library
through the UIImagePickerController class.

In addition, the Photos framework lets you access the photo library and its contents
programmatically — including the ability to modify a photo’s image. You’ll need to
import Photos.

The UIImagePickerController class can also be used to give the user an interface similar
to the Camera app, letting the user take photos and videos on devices with the necessary
hardware. At a deeper level, the AV Foundation framework (Chapter 15) provides direct
control over the camera hardware. You’ll need to import AVFoundation (and probably
CoreMedia).

Constants such as kUTTypeImage, referred to in this chapter, are provided by the Mobile
Core Services framework; you’ll need to import MobileCoreServices.

Photo Library Authorization
Access to the photo library requires user authorization. You can use UIImagePicker‐
Controller without prior authorization, as authorization will be requested for you au‐
tomatically and the interface works coherently if authorization has been refused. Nev‐
ertheless, it is probably good policy for any app that’s going to need photo library access
to ascertain authorization status at launch time, and to try to obtain authorization if
needed. My strategy is to check the authorization status every time the root view con‐
troller appears and whenever the app is brought to the foreground:

override func viewDidAppear(animated: Bool) {
 super.viewDidAppear(animated)
 self.determineStatus()
 NSNotificationCenter.defaultCenter().addObserver(self,

745

 selector: "determineStatus",
 name: UIApplicationWillEnterForegroundNotification,
 object: nil)
}

My determineStatus method returns a Bool, even though I’m disregarding the re‐
turned value in the preceding code; that way, I can also learn authorization status at any
time while the app runs. In determineStatus, I first ask what our authorization status
is. That’s done by way of the Photos framework, by calling PHPhoto-

Library.authorizationStatus(). There are four possible status responses:
Not determined

Authorization has never been requested. In that case, I explicitly request it by calling
PHPhotoLibrary.requestAuthorization(), which causes the runtime to present
an authorization request alert on our behalf. It is possible to supply a completion
handler here, which will be called when the user dismisses the alert; but there is
nothing of any particular importance to be learned at this point, since I can always
check the status again later, so I don’t use a completion handler.

Authorized
There is nothing do; we’re already authorized.

Restricted
This means that we have been denied authorization and that the user may not have
the power to authorize us. There’s no point harassing the user about this, so I do
nothing.

Denied
This means that we have been denied authorization. I could do nothing, but it is
also reasonable to put up an alert begging for authorization. New in iOS 8, you can
now take the user directly to the spot in the Settings app where the user can provide
authorization, so I offer to do that.

Here’s my determineStatus method for the photo library:

func determineStatus() -> Bool {
 let status = PHPhotoLibrary.authorizationStatus()
 switch status {
 case .Authorized:
 return true
 case .NotDetermined:
 PHPhotoLibrary.requestAuthorization(nil)
 return false
 case .Restricted:
 return false
 case .Denied:
 let alert = UIAlertController(
 title: "Need Authorization",
 message: "Wouldn't you like to authorize this app " +

746 | Chapter 17: Photo Library and Image Capture

Figure 17-1. The system prompts for photo library access

 "to use your Photo library?",
 preferredStyle: .Alert)
 alert.addAction(UIAlertAction(
 title: "No", style: .Cancel, handler: nil))
 alert.addAction(UIAlertAction(
 title: "OK", style: .Default, handler: {
 _ in
 let url = NSURL(string:UIApplicationOpenSettingsURLString)!
 UIApplication.sharedApplication().openURL(url)
 }))
 self.presentViewController(alert, animated:true, completion:nil)
 return false
 }
}

One final bit of preparation is needed: The Info.plist should contain some text that the
system authorization request alert can use to explain why your app wants access. For
the photo library, the relevant key is “Privacy — Photo Library Usage Description”
(NSPhotoLibraryUsageDescription). Figure 17-1 shows the authorization request
alert containing my (rather bland) usage description:

To retest the system authorization request alert and other access-related behaviors,
go to the Settings app and choose General → Reset → Reset Location & Privacy.
This, unfortunately, causes the system to revert to its default settings for everything
in the Privacy section of Settings: Location Services and all System Services will be
On, and all permissions lists will be empty.

Choosing From the Photo Library
UIImagePickerController is a view controller providing an interface in which the user
can choose an item from the photo library, similar to the Photos app. You are expected
treat the UIImagePickerController as a presented view controller (by calling present-
ViewController:animated:completion:). You can use a popover on the iPad, but it
looks good as a fullscreen presented view.

Choosing From the Photo Library | 747

The documentation claims that a fullscreen presented view is forbidden on the iPad;
this is not true (though it was true in early versions of iOS).

To let the user choose an item from the photo library, instantiate UIImagePicker‐
Controller and assign its sourceType one of these values (UIImagePickerController‐
SourceType):
.PhotoLibrary

The user is shown a table of all albums, and can navigate into any of them.

.SavedPhotosAlbum

In theory, the user is confined to the contents of the Camera Roll album. In reality,
in iOS 8, the interface is called Moments and all photos are shown (I regard this as
an atrocious bug).

You should call the class method isSourceTypeAvailable: beforehand; if it doesn’t
return true, don’t present the controller with that source type.

You’ll probably want to specify an array of mediaTypes you’re interested in. This array
will usually contain kUTTypeImage, kUTTypeMovie, or both; or you can specify all avail‐
able types by calling the class method availableMediaTypesForSourceType:.

After doing all of that, and having supplied a delegate (adopting UIImagePicker‐
ControllerDelegate and UINavigationControllerDelegate), present the UIImagePicker‐
Controller:

let src = UIImagePickerControllerSourceType.SavedPhotosAlbum
let ok = UIImagePickerController.isSourceTypeAvailable(src)
if !ok {
 println("alas")
 return
}
let arr = UIImagePickerController.availableMediaTypesForSourceType(src)
if arr == nil {
 println("no available types")
 return
}
let picker = UIImagePickerController()
picker.sourceType = src
picker.mediaTypes = arr!
picker.delegate = self
self.presentViewController(picker, animated: true, completion: nil)

If authorization has not been granted, the UIImagePickerController is presented, but
it will be empty (with a reminder that the user has denied your app access to the photo
library) and the user won’t be able to do anything but cancel (Figure 17-2). Thus, your
code is unaffected.

748 | Chapter 17: Photo Library and Image Capture

Figure 17-2. The image picker, when the user has denied access

The delegate will receive one of these messages:

• imagePickerController:didFinishPickingMediaWithInfo:

• imagePickerControllerDidCancel:

If a UIImagePickerControllerDelegate method is not implemented, the view controller
is dismissed automatically at the point where that method would be called; but rather
than relying on this, you should probably implement both delegate methods and dismiss
the view controller yourself in each.

The didFinish... method is handed a dictionary of information about the chosen
item. The keys in this dictionary depend on the media type:
An image

The keys are:
UIImagePickerControllerMediaType

A UTI; probably "public.image", which is the same as kUTTypeImage.

UIImagePickerControllerReferenceURL

An asset URL pointing to the original image file in the library.

UIImagePickerControllerOriginalImage

A UIImage. This is the output you are expected to use. For example, you might
display it in a UIImageView.

A movie
The keys are:
UIImagePickerControllerMediaType

A UTI; probably "public.movie", which is the same as kUTTypeMovie.

Choosing From the Photo Library | 749

UIImagePickerControllerReferenceURL

An asset URL pointing to the original movie file in the library.

UIImagePickerControllerMediaURL

A file URL to a copy of the movie saved into a temporary directory. This is the
output you are expected to use. For example, you might display it in an AV‐
PlayerViewController’s view or an AVPlayerLayer (Chapter 15).

Optionally, you can set the view controller’s allowsEditing to true. In the case of an
image, the interface then allows the user to scale the image up and to move it so as to
be cropped by a preset rectangle; the dictionary will include two additional keys:
UIImagePickerControllerCropRect

An NSValue wrapping a CGRect.

UIImagePickerControllerEditedImage

A UIImage. This becomes the image you are expected to use.

In the case of a movie, if the view controller’s allowsEditing is true, the user can trim
the movie just as with a UIVideoEditorController (Chapter 15). The dictionary keys are
the same as before.

Here’s an example implementation of imagePickerController:didFinishPicking-
MediaWithInfo: that covers the fundamental cases:

func imagePickerController(picker: UIImagePickerController!,
 didFinishPickingMediaWithInfo info: [NSObject : AnyObject]!) {
 let url = info[UIImagePickerControllerMediaURL] as NSURL?
 var im = info[UIImagePickerControllerOriginalImage] as UIImage?
 var edim = info[UIImagePickerControllerEditedImage] as UIImage?
 if edim != nil {
 im = edim
 }
 self.dismissViewControllerAnimated(true) {
 let type = info[UIImagePickerControllerMediaType] as String?
 if type != nil {
 switch type! {
 case kUTTypeImage:
 if im != nil {
 self.showImage(im!)
 }
 case kUTTypeMovie:
 if url != nil {
 self.showMovie(url!)
 }
 default:break
 }
 }
 }
}

750 | Chapter 17: Photo Library and Image Capture

UIImagePickerController provides no way to govern its supported interface ori‐
entations (rotation). The delegate method navigationControllerSupported-

InterfaceOrientations: is ineffective. My solution is to subclass.

Photos Framework
The Photos framework, also known as Photo Kit, does for the photo library roughly
what the Media Player framework does for the music library (Chapter 16), letting your
code explore the library’s contents — and then some. You can manipulate albums, and
can even perform edits on the user’s photos.

The Photos framework is new in iOS 8, and supersedes the Assets Library frame‐
work from iOS 7 and before. The Assets Library framework is not discussed in this
edition.

The photo library itself is represented by the PHPhotoLibrary class — which I used
earlier in this chapter to authorize access — and by its shared instance, which you can
obtain through the sharedPhotoLibrary method. You will not often need to use this
class, however, and you do not need to retain the shared photo library instance. More
important are the classes representing the kinds of things that inhabit the library (the
photo entities):
PHAsset

A single photo or video file.

PHCollection

An abstract class representing collections of all kinds. Its concrete subclasses are:
PHAssetCollection

A collection of photos; albums and moments are PHAssetCollections.

PHCollectionList

A collection of asset collections. For example, a year of moments is a collection
list; a folder of albums is a collection list.

Finer typological distinctions are drawn, not through subclasses, but through a system
of types and subtypes. For example, a PHAsset might have a mediaType of .Image and
a mediaSubtypes of .PhotoPanorama; a PHAssetCollection might have an asset-
CollectionType of .Album and an assetCollectionSubtype of .AlbumRegular; and
so on.

The photo entity classes are actually all subclasses of PHObject, an abstract class that
endows them all with a localIdentifier property that functions as a persistent unique
identifier.

Photos Framework | 751

Querying the Photo Library
The photo entity classes supply class methods whose names begin with fetch.... These
are the methods you’ll call in order to probe the photo library. Many of them have
options that help to limit and define the search. In addition, you can supply a PHFetch‐
Options object letting you refine the results even further: you can set its predicate to
limit your request results, and its sortDescriptors to determine the results order.

The result of calling a fetch... method is a PHFetchResult, a collection object that
behaves very like an array: you can ask for its count, obtain the object at a given index
(including the use of subscripting), look for an object within the collection, and enu‐
merate the collection with an enumerate... method. The objects within the collection
are of the class you started with — the one you said fetch... to originally. To put it
another way: the photo entity class you start with is the class of object you want to fetch
a collection of.

For example, let’s say we want to know how moments are divided into years. A year’s
worth of moments is a PHCollectionList, so the relevant class is PHCollectionList. This
code is a fairly standard template for any sort of information fetching:

let opts = PHFetchOptions()
let desc = NSSortDescriptor(key: "startDate", ascending: true)
opts.sortDescriptors = [desc]
let result = PHCollectionList.fetchCollectionListsWithType(
 .MomentList, subtype: .MomentListYear, options: opts)
result.enumerateObjectsUsingBlock {
 (obj:AnyObject!, ix:Int, stop:UnsafeMutablePointer<ObjCBool>) in
 let list = obj as PHCollectionList
 let f = NSDateFormatter()
 f.dateFormat = "yyyy"
 println(f.stringFromDate(list.startDate))
}
/*
output on my device:
1987
1988
1989
1990
...
*/

Each resulting list object in the preceding code is a new PHCollectionList comprising
a list of moments. Let’s dive into that object to see how those moments are clumped into
clusters. A cluster of moments is a PHAssetCollection, so the relevant class is
PHAssetCollection:

752 | Chapter 17: Photo Library and Image Capture

let result = PHAssetCollection.fetchMomentsInMomentList(
 list, options: nil)
result.enumerateObjectsUsingBlock {
 (obj:AnyObject!, ix:Int, stop:UnsafeMutablePointer<ObjCBool>) in
 let coll = obj as PHAssetCollection
 if ix == 0 {
 println("======= \(result.count) clusters")
 }
 f.dateFormat = ("yyyy-MM-dd")
 println("starting \(f.stringFromDate(coll.startDate)): " +
 "\(coll.estimatedAssetCount)")
}
/*
output on my device:
======= 12 clusters
starting 1987-05-15: 2
starting 1987-05-16: 6
starting 1987-05-17: 2
starting 1987-05-20: 4
....
*/

Observe that in that code we can learn how many actual moments are in each cluster
only as its estimatedAssetCount. This is probably the right answer, but to obtain the
real count, we’d have to dive one level deeper and fetch the cluster’s actual moments.

Next, let’s list all albums that have been synced onto the device from iPhoto. An album
is a PHAssetCollection, so the relevant class is PHAssetCollection:

let result = PHAssetCollection.fetchAssetCollectionsWithType(
 .Album, subtype: .AlbumSyncedAlbum, options: nil)
result.enumerateObjectsUsingBlock {
 (obj:AnyObject!, ix:Int, stop:UnsafeMutablePointer<ObjCBool>) in
 let album = obj as PHAssetCollection
 println("\(album.localizedTitle)")
}

Again, let’s dive further: given an album, let’s fetch its photos (assets). A photo is a
PHAsset, so the relevant class is PHAsset:

let result = PHAsset.fetchAssetsInAssetCollection(album, options: nil)
result.enumerateObjectsUsingBlock {
 (obj:AnyObject!, ix:Int, stop:UnsafeMutablePointer<ObjCBool>) in
 let asset = obj as PHAsset
 println(asset)
}

There are many more fetch... methods, and thus many other ways to fetch informa‐
tion from the photo library. You can fetch PHAssets by identifier, by URL, by media
type; you can fetch PHAssetCollections by identifier, by URL, by whether they contain
a given PHAsset; you can fetch PHCollectionLists by identifier, by whether they contain
given a PHAssetCollection; and more.

Photos Framework | 753

Modifying the Library
Structural modifications to the photo library are performed through a change request
class corresponding to the class of photo entity we wish to modify. Thus:

• For PHAsset, there’s the PHAssetChangeRequest class.
• For PHAssetCollection, there’s the PHAssetCollectionChangeRequest class.
• For PHCollectionList, there’s the PHCollectionListChangeRequest class.

A change request is usable only with a performChanges: block sent to the shared photo
library. Typically, the method in question will be performChanges:completion-
Handler:, which takes two closures: the first is where you specify the changes you want
performed; the second is called back after the changes have been performed.

The reason for this peculiar structure is that the photo library is a live database. While
we are working, the photo library can change. Therefore, a performChanges: block is
used to batch our desired changes and send them off as a single transaction to the photo
library, which responds when the outcome of the entire batch is known.

For example, let’s create an album called “Test Album.” An album is a PHAsset‐
Collection, so we start with the PHAssetCollectionChangeRequest class and call its cre‐
ation method in the performChanges: block:

PHPhotoLibrary.sharedPhotoLibrary().performChanges({
 let t = "TestAlbum"
 let creat = PHAssetCollectionChangeRequest
 .creationRequestForAssetCollectionWithTitle(t)
 }, completionHandler: {
 (ok:Bool, err:NSError!) in
 println("created TestAlbum: \(ok)")
})

It may appear, in that code, that we didn’t actually do anything — we asked for a creation
request, but we didn’t tell it to do any creating. Nevertheless, that code is sufficient;
generating the creation request for a new asset collection in the performChanges: block
constitutes an instruction to create an asset collection.

It is also possible to obtain a change request for an existing asset collection, by calling
changeRequestForAssetCollection:. This does not, of itself, cause any changes to be
performed. Rather, both creationRequestForAssetCollectionWithTitle: and
changeRequestForAssetCollection: return a PHAssetCollectionChangeRequest in‐
stance that can then be used to perform changes to the asset collection it refers to. For
example, to add an asset to an asset collection, we would send addAssets: to a PHAsset‐
CollectionChangeRequest returned by either of those methods.

In this example, I’ll create an album and immediately add to it the first asset from the
Recently Added smart album. I start by fetching the Recently Added smart album; then

754 | Chapter 17: Photo Library and Image Capture

I fetch its first asset; finally, I create a batch request to create the new album and add the
asset to it:

let result = PHAssetCollection.fetchAssetCollectionsWithType(
 .SmartAlbum, subtype: .SmartAlbumRecentlyAdded, options: nil)
let rec = result.firstObject as PHAssetCollection!
if rec == nil {
 return // no album
}
let result2 = PHAsset.fetchAssetsInAssetCollection(rec, options: nil)
let ph = result2.firstObject as PHAsset!
if ph == nil {
 return // no asset
}
PHPhotoLibrary.sharedPhotoLibrary().performChanges({
 let t = "My Cool Album"
 let creat = PHAssetCollectionChangeRequest
 .creationRequestForAssetCollectionWithTitle(t)
 creat.addAssets([ph])
 }, completionHandler: {
 (ok:Bool, err:NSError!) in
 println("created My Cool Album: \(ok)")
})

In addition to addAssets:, there are change request instance methods for operations
such as inserting an asset at a certain position, replacing one asset with another, moving
an asset from one position to another, and removing an asset.

In that example, we created an asset collection and added something to it, all in one
batch request. But what if we created an asset collection and wanted to add it to some‐
thing (presumably to a PHCollectionList), all in one batch request? Requesting the
creation of an asset collection gives us a PHAssetCollectionChangeRequest; you can’t
add that to a collection. And the requested PHAssetCollection itself hasn’t been created
yet! The solution is to call the change request instance method placeholderForCreated-
AssetCollection; this yields a PHObjectPlaceholder object, which has the remarkable
feature that it can be used instead of a “real” object in the parameter of calls such as add-
ChildCollections: (because it is a PHObject subclass).

Everything that I’ve just said about PHAssetCollection and PHAssetCollectionChange‐
Request is equally true of PHCollectionList and PHCollectionListChangeRequest. The
third group, PHAsset and PHAssetChangeRequest, is obviously slightly different, be‐
cause a PHAsset isn’t a collection, but it isn’t that different: you can create an asset, delete
an asset, or generate a change request from which you can alter such features as the
asset’s creation date or its associated geographical location.

When the library is modified, either by your code or by some other means while your
app is running, any information you’ve collected about the library — information which
you may even be displaying in your interface at that very moment — may become out-

Photos Framework | 755

of-date. To cope with this possibility, you should, early in the life of your app, register
a change observer (adopting the PHPhotoLibraryChangeObserver protocol) with the
photo library:

PHPhotoLibrary.sharedPhotoLibrary().registerChangeObserver(self)

The outcome is that, whenever the library changes, the observer is sent the photo-
LibraryDidChange: method, with a PHChange object encapsulating a description of
the change. The observer can then probe the PHChange object, using one (or both) of
these methods:
changeDetailsForObject:

The parameter is a single PHAsset, PHAssetCollection, or PHCollectionList you’re
interested in. The result is a PHObjectChangeDetails object, with properties like
objectBeforeChanges, objectAfterChanges, and objectWasDeleted.

changeDetailsForFetchResult:

The parameter is a previously obtained PHFetchResult. The result is a PHFetch‐
ResultChangeDetails object, with properties like fetchResultBeforeChanges,
fetchResultAfterChanges, removedObjects, insertedObjects, and many oth‐
ers.

For example, suppose my interface is displaying a list of album names, which I obtained
originally through a fetch request like this:

self.albums = PHAssetCollection.fetchAssetCollectionsWithType(
 .Album, subtype: .AlbumRegular, options: nil)

The key move here is that I retain, in a property, a reference to the fetch result. Thus, if
my photoLibraryDidChange: method is called, I can find out whether any albums were
added or removed, update the fetch result, and change my interface accordingly:

func photoLibraryDidChange(changeInfo: PHChange!) {
 if self.albums !== nil {
 if let details =
 changeInfo.changeDetailsForFetchResult(self.albums) {
 dispatch_async(dispatch_get_main_queue()) {
 if details.insertedObjects != nil {
 self.albums = details.fetchResultAfterChanges
 // adjust interface here ...
 }
 }
 }
 }
}

One word of caution: merely performing a fetch request can generate a PHChange
report. If you don’t want that, supply to the fetch request a PHFetchOptions object whose
wantsIncrementalChangeDetails is false.

756 | Chapter 17: Photo Library and Image Capture

Displaying Images
Up to this point, we’ve been gathering and changing structural information about the
contents of the photo library, but we haven’t yet used that information to display any
photos.

Actual PHAsset data is retrieved through the PHImageManager defaultManager ob‐
ject. For example, to obtain a UIImage from a photo asset, you would call requestImage-
ForAsset:targetSize:contentMode:options:resultHandler:. The process of ob‐
taining an image can be time-consuming, and information about the image may in‐
crease in accuracy and detail as it proceeds — with the curious consequence that your
resultHandler: is not only called asynchronously but may be called multiple times.

In this example, I have a view controller called DataViewController, good for viewing
one photo. It has an image view outlet (self.iv). It also has a PHAsset property,
self.dataObject, which is assumed to have been set when this DataViewController
instance was created. In viewWillAppear:, I call my setUpInterface utility method to
populate the interface:

func setUpInterface() {
 if self.dataObject == nil {
 return
 }
 PHImageManager.defaultManager().requestImageForAsset(
 self.dataObject, targetSize: CGSizeMake(300,300),
 contentMode: .AspectFit, options: nil) {
 (im:UIImage!, info:[NSObject : AnyObject]!) in
 self.iv.image = im
 }
}

This may result in the image view’s image being set multiple times as the requested
image’s quality improves, but there is nothing wrong with that.

Now imagine an app whose interface is a UIPageViewController permitting the user to
view each individual image in an album. Let’s say, for example, that the album is the
user’s Camera Roll. I’ll start by obtaining a fetch result collecting all the image assets in
the Camera Roll:

let result = PHAssetCollection.fetchAssetCollectionsWithType(
 .SmartAlbum, subtype: .SmartAlbumUserLibrary, options: nil)
let rec = result.firstObject as PHAssetCollection!
if rec == nil {
 return
}
let options = PHFetchOptions() // photos only, please
let pred = NSPredicate(format: "mediaType = %@", NSNumber(

Photos Framework | 757

 integer:PHAssetMediaType.Image.rawValue))
options.predicate = pred
let result2 = PHAsset.fetchAssetsInAssetCollection(rec, options: options)
self.photos = result2

The fetch result, self.photos, is now our model object. Given an index number, I can
provide a DataViewController displaying the corresponding photo:

func viewControllerAtIndex(index: Int, storyboard: UIStoryboard)
 -> DataViewController? {
 if self.photos == nil ||
 self.photos.count == 0 ||
 index >= self.photos.count {
 return nil
 }
 let dvc = storyboard.instantiateViewControllerWithIdentifier(
 "DataViewController") as DataViewController
 dvc.dataObject = self.photos[index] as PHAsset
 return dvc
}

I can also find the index of any DataViewController’s corresponding dataObject in
self.photos:

func indexOfViewController(dvc: DataViewController) -> Int {
 let asset = dvc.dataObject
 let ix = self.photos.indexOfObject(asset)
 return ix
}

Writing the UIPageViewControllerDataSource methods is now trivial (and is left as an
exercise for the reader). For a more elaborate example displaying photos in a
UICollectionView, look at Apple’s SamplePhotosApp sample code.

The info parameter in an image request’s result handler is a dictionary whose elements
may be useful in a variety of circumstances; for example:
PHImageResultRequestIDKey

Uniquely identifies a single image request for which this result handler is being
called multiple times. You can also use this identifier to call cancelImageRequest:
if it turns out that you don’t need this image after all.

PHImageResultIsInCloudKey

Warns that the image is in the cloud and that your request must be resubmitted
with explicit permission to use the network.

PHImageCancelledKey

Reports that an attempt to cancel an image request with cancelImageRequest:
succeeded.

758 | Chapter 17: Photo Library and Image Capture

If you imagine that your interface is a table view or collection view, you can see why the
asynchronous, time-consuming nature of image fetching can be of importance. As the
user scrolls, a cell comes into view and you request the corresponding image. But as the
user keeps scrolling, that cell goes out of view, and now the requested image, if it hasn’t
arrived, is no longer needed, so you cancel the request. (I’ll tackle the same sort of
problem with regard to Internet-based images in a table view in Chapter 24.)

Editing Images
Astonishingly, Photo Kit allows you to change an image in the user’s photo library. Why
is this even legal? There are two reasons:

• The user will have to give permission every time your app proposes to modify a
photo in the library.

• Changes to library photos are undoable, because the original image remains in the
database along with the changed image that the user sees.

To change a photo is a three-step process:

1. You send a PHAsset the requestContentEditingInputWithOptions:completion-
Handler: message. Your completionHandler: is called, and is handed a PHContent‐
EditingInput object. This object wraps some image data which you can display to
the user (displaySizeImage), along with a pointer to the real image data on disk
(fullSizeImageURL).

2. You create a PHContentEditingOutput object by calling init(contentEditing-
Input:), handing it the PHContentEditingInput object. This PHContentEditing‐
Output object has a renderedContentURL property, which is an NSURL represent‐
ing a URL on disk. Your mission is to write the edited photo image data to that
URL. Typically what you’ll do is to fetch the image data from the PHContentEditing‐
Input’s fullSizeImageURL, process it, and write it to the PHContentEditing‐
Output object’s renderedContentURL.

3. You notify the photo library that it should pick up the edited version of the photo.
To do so, you call performChanges:completionHandler: and, inside the perform-
Changes: block, create a PHAssetChangeRequest and set its contentEditing-
Output property to the PHContentEditingOutput object. This is when the user will
be shown the alert requesting permission to modify this photo; your completion-
Handler: is then called, with a first parameter of false if the user refuses.

However, if you do only what I have just described, your attempt to modify the photo
will fail silently. The reason is that I have omitted something: before the third step, you
must set the PHContentEditingOutput object’s adjustmentData property to a newly
instantiated PHAdjustmentData object. The initializer is init(format-

Photos Framework | 759

Identifier:formatVersion:data:). What goes into these parameters is completely
up to you, and it is perfectly legal for the data: to be nil. The idea, however, is to send
a message to your future self in case you are called upon to edit the same photo again
later.

Here’s how the adjustmentData works. It, too, works in three steps, interwoven with
the three steps I already outlined:

1. When you call requestContentEditingInputWithOptions:completion-

Handler:, the options: argument should be a PHContentEditingInputRequest‐
Options object. You are to create this object and set its canHandleAdjustment-
Data property to a closure that takes a PHAdjustmentData and returns a Bool. This
Bool should be based simply on whether you recognize this PHAdjustmentData as
yours — typically because you recognize its formatIdentifier. That determines
what image you’ll get when you receive your PHContentEditingInput object:
Your closure returns false

The image you’ll be editing is the edited image displayed in the Photos app.
Your closure returns true

The image you’ll be editing is the original image, stripped of your edits. This is
because, by returning true, you are asserting that you can recreate the content
of your edits based on what’s in the PHAdjustmentData’s data.

2. When your completionHandler: is called and you receive your PHContentEditing‐
Input object, it has (you guessed it) an adjustmentData property! If this is not nil,
it is a PHAdjustmentData object; in that case, you know that the PHContentEditing‐
Input object’s image is the original unedited image, and that the PHAdjustmentData
object’s data is the data you put in the last time you edited this image. You are
expected to extract this data and use it to recreate the edited state of the image.

3. When you prepare the PHContentEditingOutput, you give it a new PHAdjust‐
mentData object, as I already explained. If you are performing edits, the data of
this new PHAdjustmentData object can be a summary of the edited state of the
photo from your point of view — and so the whole cycle can start again if the same
photo is to be edited again later.

This may sound confusing or complicated, but in fact an actual implementation is quite
straightforward and almost pure boilerplate. The details will vary only in regard to the
actual editing of the photo and the actual data by which you’ll summarize that editing
— so, in constructing an example, I’ll keep that part very simple. Recall, from Chapter 2
(“CIFilter and CIImage” on page 85), my example of a custom “vignette” CIFilter called
MyVignetteFilter. I’ll provide an interface whereby the user can apply that filter to a
photo. My interface will include a slider that allows the user to set the degree of vignetting
that should be applied (MyVignetteFilter’s inputPercentage). Moreover, my interface

760 | Chapter 17: Photo Library and Image Capture

will include a button that lets the user remove all vignetting from the photo — even if
that vignetting was applied in a previous editing session — thanks to the PHAdjust‐
mentData.

First, I’ll plan the structure of the PHAdjustmentData. The formatIdentifier can be
any unique string; I’ll use "com.neuburg.matt.PhotoKitImages.vignette", a constant
that I’ll store in a property (self.myidentifier). The formatVersion is likewise arbi‐
trary; I’ll use "1.0". Finally, the data will express the only thing about my editing that
is adjustable — the inputPercentage. The data will wrap an NSNumber which itself
wraps a Double whose value is the inputPercentage.

As editing begins, I construct the PHContentEditingInputRequestOptions object that
expresses whether a photo’s most recent editing belongs to me. I then obtain the photo
that is to be edited (a PHAsset) and ask for the PHContentEditingInput object:

let options = PHContentEditingInputRequestOptions()
options.canHandleAdjustmentData = {
 (adjustmentData : PHAdjustmentData!) in
 return adjustmentData.formatIdentifier == self.myidentifier
}
let asset = self.dataObject
asset.requestContentEditingInputWithOptions(options, completionHandler: {
 // ...
})

Inside the completionHandler:, I receive my PHContentEditingInput object. I’m going
to need this object later when editing ends, so I immediately store it in a property. I then
unwrap its adjustmentData and construct the editing interface; in this case, that hap‐
pens to be a presented view controller, but the details are irrelevant and omitted here:

(input:PHContentEditingInput!, info:[NSObject : AnyObject]!) in
self.input = input
let im = input.displaySizeImage // show this to the user during editing
if let adj = input.adjustmentData {
 if adj.formatIdentifier == self.myidentifier && adj.data != nil {
 if let vigAmount =
 NSKeyedUnarchiver.unarchiveObjectWithData(
 adj.data) as? Double {
 // ... store vigAmount ...
 }
 }
}
// ... present editing interface ...

The idea is that if we were able to extract a vigAmount from the adjustmentData, then
the displaySizeImage is the original, unvignetted image and the editing interface itself
initially applies the vigAmount of vignetting to it — thus reconstructing the vignetted
state of the photo as shown in the Photos app, while allowing the user to change the
amount of vignetting, or even to remove all vignetting entirely.

Photos Framework | 761

(If we weren’t able to extract a vigAmount from the adjustmentData, then there is noth‐
ing to reconstruct; the displaySizeImage is just the photo image from the Photos app,
and we will apply vignetting to it directly.)

Editing now ends. If the user cancelled, that’s all; the user doesn’t want to modify the
photo after all. Otherwise, the user either asked to apply a certain amount of vignetting
or asked to remove all vignetting from the original image. In the latter case, I use an
arbitrary vignetting value of -1 as a signal. If that’s the case, the output image consists
of the input image — because the input image is the original, unvignetted image! So I
simply copy the input image to the output image URL, and the PHAdjustmentData’s
data is nil:

let vignetteAmount = // -1, or a positive NSNumber between 0 and 1
let input = self.input
let inurl = input.fullSizeImageURL
let output = PHContentEditingOutput(contentEditingInput: input)
let outurl = output.renderedContentURL
if vignette < 0 {
 output.adjustmentData = PHAdjustmentData(
 formatIdentifier: myidentifier, formatVersion: "1.0", data: nil)
 let fm = NSFileManager.defaultManager()
 fm.copyItemAtURL(inurl, toURL: outurl, error: nil)
} else {
 // ... something goes here ... *
}

If the desired vignetting value is a positive number, then it represents the amount of
vignetting to be applied to the photo. We have been working all this time, in the editing
interface, with the PHContentEditingInput’s displaySizeImage. Now, however, we
must apply this amount of vignetting to the real photo image, which has been sitting
waiting for us all this time, untouched, at the PHContentEditingInput’s fullSizeImage-
URL. This is a much bigger image, which will take significant time to load, to alter, and
to save — which is why we haven’t been working with it live in the editing interface.
Now, however, is the moment! This is the code that replaces the starred comment line
in the previous code. We read the image from the fullSizeImageURL, apply the vignet‐
ting, and save to the PHContentEditingOutput’s renderedContentURL — and we set the
PHAdjustmentData’s data to the vignetting amount:

let outcgimage = {
 () -> CGImage in
 let ci = CIImage(contentsOfURL: inurl)
 let vig = MyVignetteFilter()
 vig.setValue(ci, forKey: "inputImage")
 vig.setValue(vignetteAmount, forKey: "inputPercentage")
 let outim = vig.outputImage
 // this next line is time-consuming!
 let outimcg =
 CIContext(options: nil).createCGImage(

762 | Chapter 17: Photo Library and Image Capture

 outim, fromRect: outim.extent())
 return outimcg
 }()
let data = NSKeyedArchiver.archivedDataWithRootObject(vignetteAmount)
output.adjustmentData = PHAdjustmentData(
 formatIdentifier: self.myidentifier, formatVersion: "1.0", data: data)
let dest = CGImageDestinationCreateWithURL(outurl, kUTTypeJPEG, 1, nil)
CGImageDestinationAddImage(
 dest, outcgimage,
 [kCGImageDestinationLossyCompressionQuality as String:1])
CGImageDestinationFinalize(dest)

(The image that we save at the renderedContentURL must be a maximum-quality JPEG.
I achieve that by using the ImageIO framework, discussed in Chapter 23.)

One way or another, the finished image is now sitting at the renderedContentURL, and
we tell the photo library to retrieve it:

PHPhotoLibrary.sharedPhotoLibrary().performChanges({
 let asset = self.dataObject
 let req = PHAssetChangeRequest(forAsset: asset)
 req.contentEditingOutput = output
 }, completionHandler: {
 (ok:Bool, err:NSError!) in
 if ok {
 // image changed! adjust interface
 } else {
 println(err)
 }
})

Photo Editing Extension
In the preceding section I described how you can modify a photo in the user’s photo
library from within your app. A photo editing extension is photo-modifying code sup‐
plied by your app that is effectively injected into the Photos app. When the user edits a
photo from within the Photos app, your extension appears as an option and can modify
the photo being edited.

To make a photo editing extension, create a new target in your app, specifying iOS →
Application Extension → Photo Editing Extension. The template supplies a storyboard
containing one scene, along with the code file for a corresponding UIViewController
subclass. This file imports not only the Photos framework but also the PhotosUI frame‐
work, which supplies the PHContentEditingController protocol, to which the view
controller conforms. This protocol specifies the methods through which the runtime
will communicate with your extension’s code.

A photo editing extension works almost exactly the same way as modifying photo library
assets in general, as I described in the preceding section. The chief differences are:

Photos Framework | 763

• You don’t put a Done or a Cancel button into your editing interface. The Photos
app will wrap your editing interface in its own interface, which supplies them when
it presents your view.

• You must situate the pieces of your code in such a way that those pieces respond to
the calls that will come through the PHContentEditingController methods.

The PHContentEditingController methods are as follows:
canHandleAdjustmentData:

You will not be instantiating PHContentEditingInput; the runtime will do it for
you. Therefore, instead of configuring a PHContentEditingInputRequestOptions
object and setting its canHandleAdjustmentData, you implement this method to
return a Bool.

startContentEditingWithInput:placeholderImage:

The runtime has obtained the PHContentEditingInput object for you. Now it sup‐
plies that object to you, along with a very temporary initial version of the image to
be displayed in your interface; you are expected to replace this with the PHContent‐
EditingInput object’s displaySizeImage. Just as in the previous section’s code, you
should retain the PHContentEditingInput object in a property, as you will need it
again later.

cancelContentEditing

The user tapped Cancel. You may well have nothing to do here.

finishContentEditingWithCompletionHandler:

The user tapped Done. In your implementation, you get onto a background thread
(the template configures this for you) and do exactly the same thing you would do
if this were not a photo editing extension — get the PHContentEditingOutput ob‐
ject and set its adjustmentData; get the photo from the PHContentEditingInput
object’s fullSizeImageURL, modify it, and save the modified image as a full-quality
JPEG at the PHContentEditingOutput object’s renderedContentURL. When you’re
done, don’t notify the PHPhotoLibrary; instead, call the completionHandler that
arrived as a parameter, handing it the PHContentEditingOutput object.

So, for example, here’s the structure of my implementation of a photo editing extension
based on the vignetting example from the preceding section:

func canHandleAdjustmentData(adjustmentData: PHAdjustmentData?) -> Bool {
 return adjustmentData?.formatIdentifier == myidentifier
}
func startContentEditingWithInput(
 contentEditingInput: PHContentEditingInput?,
 placeholderImage: UIImage) {
 self.input = contentEditingInput!
 self.displayImage = self.input.displaySizeImage

764 | Chapter 17: Photo Library and Image Capture

 if let adj = input.adjustmentData {
 if adj.formatIdentifier == myidentifier && adj.data != nil {
 if let vigAmount =
 NSKeyedUnarchiver.unarchiveObjectWithData(
 adj.data) as? Double {
 // ...
 }
 }
 }
 // ... finish configuring initial interface ...
}
func cancelContentEditing() {} // nothing to do
func finishContentEditingWithCompletionHandler(
 completionHandler: ((PHContentEditingOutput!) -> Void)!) {
 dispatch_async(
 dispatch_get_global_queue(
 DISPATCH_QUEUE_PRIORITY_DEFAULT, 0)) {
 let output = PHContentEditingOutput(
 contentEditingInput: self.input)
 // ... the rest exactly as before! Then:
 completionHandler?(output)
 }
}

Using the Camera
The simplest way to prompt the user to take a photo or video is to use our old friend
UIImagePickerController, which provides an interface similar to the Camera app. I’ll
describe this approach first, and then proceed to talk about controlling the camera
directly through the AV Foundation framework.

Camera Authorization
New in iOS 8, use of the camera requires explicit authorization from the user. (In iOS
7, this was true only for devices destined for certain regional markets. In iOS 8, it is true
universally.) The system will present the access request dialog; you should modify the
body of this dialog by setting the “Privacy — Camera Usage Description” key (NSCamera-
UsageDescription) in your app’s Info.plist.

Using the UIImagePickerController to control the camera for the first time will cause
the system to present the authorization dialog on your behalf, but if you’d like to ascer‐
tain the authorization status beforehand and summon the authorization dialog, you can.
The relevant calls are completely parallel to the photo library authorization code I pre‐
sented at the start of this chapter; the difference is that you’ll be talking to the
AVCaptureDevice class (you’ll need to import AVFoundation). Here’s how to learn the
current authorization status for use of the camera:

Using the Camera | 765

let status =
 AVCaptureDevice.authorizationStatusForMediaType(AVMediaTypeVideo)

If the status is .NotDetermined and you’d like to summon the authorization dialog
explicitly:

AVCaptureDevice.requestAccessForMediaType(
 AVMediaTypeVideo, completionHandler: nil)

If your app will let the user capture video, you will also need to obtain permission from
the user to access the microphone. You should modify the body of the authorization
alert by setting the “Privacy — Microphone Usage Description” key (NSMicrophone-
UsageDescription) in your app’s Info.plist. The relevant authorization methods are
AVAudioSession’s recordPermission and requestRecordPermission: (Chapter 14).

Using the Camera with UIImagePickerController
To use UIImagePickerController to control the camera, first check isSourceType-
Available: for .Camera; it will be false if the user’s device has no camera or the camera
is unavailable. If it is true, call availableMediaTypesForSourceType: to learn whether
the user can take a still photo (kUTTypeImage), a video (kUTTypeMovie), or both. Now
instantiate UIImagePickerController, set its source type to .Camera, and set its media-
Types in accordance with which types you just learned are available; if your setting is
an array of both kUTTypeImage and kUTTypeMovie, the user will see a Camera-like in‐
terface allowing a choice of either one. Finally, set a delegate (adopting UINavigation‐
ControllerDelegate and UIImagePickerControllerDelegate), and present the UIImage‐
PickerController.

So, for example:

let ok = UIImagePickerController.isSourceTypeAvailable(.Camera)
if (!ok) {
 println("no camera")
 return
}
let arr = UIImagePickerController
 .availableMediaTypesForSourceType(.Camera) as [String]
if find(arr, kUTTypeImage) == nil {
 println("no stills")
 return
}
let picker = UIImagePickerController()
picker.sourceType = .Camera
picker.mediaTypes = [kUTTypeImage]
picker.delegate = self
self.presentViewController(picker, animated: true, completion: nil)

766 | Chapter 17: Photo Library and Image Capture

For video, you can also specify the videoQuality and videoMaximumDuration. More‐
over, these additional properties and class methods allow you to discover the camera
capabilities:
isCameraDeviceAvailable:

Checks to see whether the front or rear camera is available, using one of these values
as argument (UIImagePickerControllerCameraDevice):

• .Front

• .Rear

cameraDevice

Lets you learn and set which camera is being used.

availableCaptureModesForCameraDevice:

Checks whether the given camera can capture still images, video, or both. You
specify the front or rear camera; returns an array of integers. Possible modes are
(UIImagePickerControllerCameraCaptureMode):

• .Photo

• .Video

cameraCaptureMode

Lets you learn and set the capture mode (still or video).

isFlashAvailableForCameraDevice:

Checks whether flash is available.

cameraFlashMode

Lets you learn and set the flash mode (or, for a movie, toggles the LED “torch”).
Your choices are (UIImagePickerControllerCameraFlashMode):

• .Off

• .Auto

• .On

Setting camera-related properties such as cameraDevice when there is no camera
or when the UIImagePickerController is not set to .Camera mode can crash your
app.

When the view controller’s view appears, the user will see the interface for taking a
picture, familiar from the Camera app, possibly including flash options, camera selec‐
tion button, digital zoom (if the hardware supports it), photo/video option (if your

Using the Camera | 767

mediaTypes setting allows both), and Cancel and shutter buttons. If the user takes a
picture, the presented view offers an opportunity to use the picture or to retake it.

Allowing the user to edit the captured image or movie (allowsEditing), and handling
the outcome with the delegate messages, is the same as I described earlier for dealing
with an image or movie selected from the photo library. There won’t be any UIImage-
PickerControllerReferenceURL key in the dictionary delivered to the delegate, be‐
cause the image isn’t in the photo library. A still image might report a UIImagePicker-
ControllerMediaMetadata key containing the metadata for the photo. The photo li‐
brary was not involved in the process of media capture, so no user permission to access
the photo library is needed; of course, if you now propose to save the media into the
photo library, you will need permission.

Customizing the Image Capture Interface
You can customize the UIImagePickerController interface. If you need to do that, you
should probably consider dispensing with UIImagePickerController altogether and
designing your own image capture interface from scratch, based around AV Foundation
and AVCaptureSession, which I’ll introduce in the next section. Still, it may be that a
modified UIImagePickerController is all you need.

In the image capture interface, you can hide the standard controls by setting shows-
CameraControls to false, replacing them with your own overlay view, which you sup‐
ply as the value of the cameraOverlayView. In this case, you’re probably going to want
some means in your overlay view to allow the user to take a picture! You can do that
through these methods:

• takePicture

• startVideoCapture

• stopVideoCapture

In this example, I’ll remove all the default controls and use a gesture recognizer on the
cameraOverlayView to permit the user to double-tap the image in order to take a picture:

picker.showsCameraControls = false
let f = self.view.window!.bounds
let v = UIView(frame:f)
let t = UITapGestureRecognizer(target:self, action:"tap:")
t.numberOfTapsRequired = 2
v.addGestureRecognizer(t)
picker.cameraOverlayView = v
self.picker = picker // we'll need this later

Our tap: gesture recognizer action handler simply calls takePicture:

768 | Chapter 17: Photo Library and Image Capture

func tap (g:UIGestureRecognizer) {
 self.picker?.takePicture()
}

It would be nice, however, to tell the user to double-tap to take a picture; we also need
to give the user a way to dismiss the image capture interface. We could put a button and
a label into the cameraOverlayView, but here, I’ll take advantage of the fact that the
UIImagePickerController is a UINavigationController. Thus, it has a toolbar that we
can bend to our own purposes. Moreover, we are the UIImagePickerController’s dele‐
gate, meaning that we are not only its UIImagePickerControllerDelegate but also its
UINavigationControllerDelegate; I’ll use a delegate method to populate the toolbar:

func navigationController(nc: UINavigationController!,
 didShowViewController vc: UIViewController!, animated: Bool) {
 nc.toolbarHidden = false
 let sz = CGSizeMake(10,10)
 let im = imageOfSize(sz) {
 UIColor.blackColor().colorWithAlphaComponent(0.1).setFill()
 CGContextFillRect(
 UIGraphicsGetCurrentContext(),
 CGRect(origin: CGPoint(), size: sz))
 }
 nc.toolbar.setBackgroundImage(
 im, forToolbarPosition: .Any, barMetrics: .Default)
 nc.toolbar.translucent = true
 let b = UIBarButtonItem(
 title: "Cancel", style: .Plain,
 target: self, action: "doCancel:")
 let lab = UILabel()
 lab.text = "Double tap to take a picture"
 lab.textColor = UIColor.whiteColor()
 lab.backgroundColor = UIColor.clearColor()
 lab.sizeToFit()
 let b2 = UIBarButtonItem(customView: lab)
 nc.topViewController.toolbarItems = [b,b2]
}

When the user double-taps to take a picture, our imagePickerController:didFinish-
PickingMediaWithInfo: delegate method is called, just as before. We don’t automati‐
cally get the secondary interface where the user is shown the resulting image and offered
an opportunity to use it or retake the image. But we can provide such an interface
ourselves, by pushing another view controller onto the navigation controller:

func imagePickerController(picker: UIImagePickerController!,
 didFinishPickingMediaWithInfo info: [NSObject : AnyObject]!) {
 var im = info[UIImagePickerControllerOriginalImage] as UIImage?
 if im == nil {
 return

Using the Camera | 769

 }
 let svc = SecondViewController(image:im)
 picker.pushViewController(svc, animated: true)
}

(Designing the SecondViewController class is left as an exercise for the reader.)

Image Capture With AV Foundation
Instead of using UIImagePickerController, you can control the camera and capture
images directly using the AV Foundation framework (Chapter 15). You get no help with
interface (except for displaying in your interface what the camera “sees”), but you get
vastly more detailed control than UIImagePickerController can give you; for example,
for stills, you can control focus and exposure directly and independently, and for video,
you can determine the quality, size, and frame rate of the resulting movie.

The heart of all AV Foundation capture operations is an AVCaptureSession object. You
configure this and provide it as desired with inputs (such as a camera) and outputs (such
as a file); then you call startRunning to begin the actual capture. You can reconfigure
an AVCaptureSession, possibly adding or removing an input or output, while it is run‐
ning — indeed, doing so is far more efficient than stopping the session and starting it
again — but you should wrap your configuration changes in beginConfiguration and
commitConfiguration.

As a rock-bottom example, let’s start by displaying in our interface, in real time, what
the camera sees. This requires an AVCaptureVideoPreviewLayer, a CALayer subclass.
This layer is not an AVCaptureSession output; rather, the layer receives its imagery by
owning the AVCaptureSession. Our AVCaptureSession’s input is the default video cam‐
era. We have no intention, as yet, of doing anything with the captured video other than
displaying it in the interface, so our AVCaptureSession doesn’t need an output:

self.sess = AVCaptureSession()
let cam = AVCaptureDevice.defaultDeviceWithMediaType(AVMediaTypeVideo)
let input = AVCaptureDeviceInput(device:cam, error:nil)
self.sess.addInput(input)
let lay = AVCaptureVideoPreviewLayer(session:self.sess)
lay.frame = self.previewRect
self.view.layer.addSublayer(lay)
self.previewLayer = lay // keep a ref
self.sess.startRunning()

Presto! Our interface now contains a window on the world, so to speak.

Expanding on that example, let’s permit the user to snap a still photo, which our interface
will then display. Now we do need an output for our AVCaptureSession; since all we
want is a still image, this will be an AVCaptureStillImageOutput, and we’ll set its output-
Settings to specify the quality of the JPEG image we’re after. We also need to configure
the quality of image that the camera is to capture; the simplest and most common way

770 | Chapter 17: Photo Library and Image Capture

is to apply a sessionPreset to the AVCaptureSession. In this case, since this image is
to go directly into our interface, we won’t need the vast multimegapixel image size of
which the camera is capable; so we’ll configure our AVCaptureSession’s session-
Preset to ask for a much smaller image:

self.sess = AVCaptureSession()
self.sess.sessionPreset = AVCaptureSessionPreset640x480
self.snapper = AVCaptureStillImageOutput()
self.snapper.outputSettings = [
 AVVideoCodecKey: AVVideoCodecJPEG,
 AVVideoQualityKey: 0.6
]
self.sess.addOutput(self.snapper)
// ... and the rest is as before ...

When the user asks to snap a picture, we send captureStillImageAsynchronouslyFrom-
Connection:completionHandler: to our AVCaptureStillImageOutput object. The first
argument is an AVCaptureConnection; to obtain it, we ask the output for its connection
that is currently inputting video. The second argument is the block that will be called,
possibly on a background thread, when the image data is ready; in the block, we capture
the data into a UIImage and, stepping out to the main thread (Chapter 25), we remove
the AVCaptureVideoPreviewLayer and stop the AVCaptureSession (and at that point
we can do something with the UIImage, such as displaying it in the interface):

if self.sess == nil || !self.sess.running {
 return
}
let vc = self.snapper.connectionWithMediaType(AVMediaTypeVideo)
self.snapper.captureStillImageAsynchronouslyFromConnection(vc) {
 (buf:CMSampleBuffer!, err:NSError!) in
 let data = AVCaptureStillImageOutput
 .jpegStillImageNSDataRepresentation(buf)
 let im = UIImage(data:data)
 dispatch_async(dispatch_get_main_queue()) {
 self.previewLayer.removeFromSuperlayer()
 self.previewLayer = nil
 self.sess.stopRunning()
 // ... do something with im here ...
 }
}

My favorite part of that example is that capturing the image emits, automatically, the
built-in “shutter” sound!

Our code has not illustrated setting the focus, changing the flash settings, and so forth;
doing so is not difficult (see the class documentation on AVCaptureDevice), but note
that you should wrap such changes in calls to lockForConfiguration: and unlockFor-
Configuration. Also, always call the corresponding is...Supported: method before
setting any feature of an AVCaptureDevice; for example, before setting the flashMode,

Using the Camera | 771

call isFlashModeSupported: for that mode. New in iOS 8, you get direct hardware-level
control over the camera focus, manual exposure, and white balance; for a good intro‐
duction, watch the WWDC 2014 video on camera capture, and look at the AVCam‐
Manual sample code. Also, the new BracketStripes example shows how to capture mul‐
tiple bracketed images.

You can stop the flow of video data by setting the AVCaptureConnection’s enabled to
false, and there are some other interesting AVCaptureConnection features, mostly
involving stabilization of the video image (not relevant to the example, because a preview
layer’s video isn’t stabilized). Plus, AVCaptureVideoPreviewLayer provides methods for
converting between layer coordinates and capture device coordinates; without such
methods, this can be a very difficult problem to solve. You can also scan bar codes, shoot
video at 60 frames per second (on some devices), and more. You can turn on the LED
“torch” by setting the back camera’s torchMode to AVCaptureTorchModeOn, even if no
AVCaptureSession is running.

AV Foundation’s control over the camera, and its ability to process incoming data —
especially video data — goes far deeper than there is room to discuss here, so consult
the documentation; in particular, see the “Media Capture” chapter of the AV Foundation
Programming Guide. There are also excellent WWDC videos on AV Foundation, and
some fine sample code; I found Apple’s AVCam example very helpful while preparing
this discussion.

772 | Chapter 17: Photo Library and Image Capture

CHAPTER 18

Address Book

The user’s address book, which the user sees through the Contacts app, is effectively a
database that your code can access programmatically through the Address Book frame‐
work. You’ll need to import AddressBook. This is, unfortunately, an archaic C API
without memory management information, so you’re going to be intervening constantly
to help manage memory.

A user interface for interacting with the address book is provided by the Address Book
UI framework. You’ll need to import AddressBookUI.

Address Book Database
The address book is an ABAddressBook object obtained by calling ABAddressBook-
CreateWithOptions. There are in fact no options to pass. You’re probably going to need
a single persistent reference to the address book, so it is tempting to assign this reference
to a property as its default value:

var adbk : ABAddressBook =
 ABAddressBookCreateWithOptions(nil, nil).takeRetainedValue()

However, there’s a serious problem with that approach. Access to the address book
database requires user authorization. If the authorization status is .NotDetermined, the
preceding code does a very bad thing: it fails silently, yielding a non-nil result and not
reporting an error. You thus end up with an ABAddressBook reference that is completely
invalid and useless — and you have no way of finding out that this has happened. It is
crucial, therefore, to verify authorization status independently, as I shall now describe.

Address Book Authorization
Address book authorization is parallel to the authorization verification that I described
at the start of Chapter 17. To learn the authorization status, call ABAddressBookGet-

773

AuthorizationStatus. To request authorization if the status is .NotDetermined, call
ABAddressBookRequestAccessWithCompletion. Your Info.plist should contain some
text that the system authorization request alert can use to explain why your app wants
access. For the address book library, the relevant key is “Privacy — Contacts Usage
Description” (NSContactsUsageDescription).

The problem is to combine authorization with the need to maintain a single global
persistent reference to the ABAddressBook. Here’s my suggested strategy. I maintain an
ABAddressBook property typed as an implicitly unwrapped Optional ABAddressBook:

var adbk : ABAddressBook!

The assumption is that self.adbk will be non-nil only if it also valid. Now we need to
enforce that assumption. I have a utility method, createAddressBook, that attempts to
create a valid self.adbk — but only if it hasn’t been created already:

func createAddressBook() -> Bool {
 if self.adbk != nil {
 return true
 }
 var err : Unmanaged<CFError>? = nil
 let adbk : ABAddressBook? =
 ABAddressBookCreateWithOptions(nil, &err).takeRetainedValue()
 if adbk == nil {
 println(err)
 self.adbk = nil
 return false
 }
 self.adbk = adbk
 return true
}

My createAddressBook method is called only by my determineStatus method. The
latter is very similar to determineStatus in Chapter 17, but with this difference: if we
learn that we have no authorization, we set self.adbk to nil:

func determineStatus() -> Bool {
 let status = ABAddressBookGetAuthorizationStatus()
 switch status {
 case .Authorized:
 return self.createAddressBook()
 case .NotDetermined:
 var ok = false
 ABAddressBookRequestAccessWithCompletion(nil) {
 (granted:Bool, err:CFError!) in
 dispatch_async(dispatch_get_main_queue()) {
 if granted {
 ok = self.createAddressBook()
 }
 }
 }

774 | Chapter 18: Address Book

 if ok == true {
 return true
 }
 self.adbk = nil
 return false
 case .Restricted:
 self.adbk = nil
 return false
 case .Denied:
 // ... could put up alert begging for authorization here ...
 self.adbk = nil
 return false
 }
}

Finally, as in Chapter 17, I call determineStatus when my root view appears, when the
app comes to the foreground, and just before doing anything that depends upon access
to the address book:

override func viewDidAppear(animated: Bool) {
 super.viewDidAppear(animated)
 self.determineStatus()
 NSNotificationCenter.defaultCenter().addObserver(
 self, selector: "determineStatus",
 name: UIApplicationWillEnterForegroundNotification,
 object: nil)
}

The outcome is that our self.adbk property is kept up to date. If we had authorization
and we discover that we have lost it, we set self.adbk to nil. If we did not have author‐
ization and we discover that we have obtained it, we call ABAddressBookCreateWith-
Options to set self.adbk to a valid ABAddressBook. If we already have authorization,
it does no harm to check for authorization, because the existing self.adbk will be non-
nil and valid and we won’t needlessly call ABAddressBookCreateWithOptions again.

To retest the system authorization request alert and other access-related behaviors,
go to the Settings app and choose General → Reset → Reset Location & Privacy.
This, unfortunately, causes the system to revert to its default settings for everything
in the Privacy section of Settings: Location Services and all System Services will be
On, and all permissions lists will be empty.

Address Book Changes
The address book’s data starts out exactly the same as the user’s Contacts data. If you
make any changes to the data, they are not written through to the user’s real address
book until you call ABAddressBookSave.

Address Book Database | 775

The user’s real address book can change behind your back while your app is running
(the user might edit with the Calendar app, or changes might percolate in from the
network), which can put your information out of date. To learn of such changes, you
need to register, early in the life of your app, for a notification. Call ABAddressBook-
RegisterExternalChangeCallback, passing it the address of a function to be called
when there’s a change; this function must take three parameters: an ABAddressBook, a
CFDictionary, and a pointer-to-void. Unfortunately, you can’t get the address of a C
function in Swift, so both the callback function and the taking of its address must be
performed in an Objective-C helper class (as I described in Chapter 14 for the system
sound completion handler).

When your change callback function is called, what should you do? Apple recommends
that, if you don’t have (or can afford to lose) any unsaved changes, you should simply
call ABAddressBookRevert, causing your reference to the address book information to
be updated.

Persons and Addresses
The primary constituent record of the address book database is the ABPerson. You’ll
typically extract persons from the address book by using these functions:

• ABAddressBookGetPersonCount

• ABAddressBookGetPersonWithRecordID

• ABAddressBookCopyPeopleWithName

• ABAddressBookCopyArrayOfAllPeople

An ABPerson doesn’t formally exist as a type; it is actually an ABRecord, and by virtue
of this has an ID, a type, and properties with values. To fetch the value of a property,
you’ll call ABRecordCopyValue, supplying a property identifier to specify the property
that interests you. ABPerson properties, as you might expect, include things like first
name, last name, and email.

Working with a property value is a little tricky, because the way you treat it depends on
what type of value it is. You can learn a property value’s type dynamically by calling
ABPersonGetTypeOfProperty, but usually you’ll know in advance. Some values are
simple, but some are not. For example, a last name is a string, which is straightforward.
But a person can have more than one email, so an email value is a “multistring.” To work
with it, you’ll treat it as an ABMultiValue. This is like an array of values where each value
also has a label and an identifier. The label categorizes — for example, a Home email as
opposed to a Work email — but is not a unique specifier (because a person might have,
say, two or more Work emails); the identifier is the unique specifier.

776 | Chapter 18: Address Book

A person’s address is even more involved because not only is it an ABMultiValue (a
person can have more than one address), but also a particular address is itself a dictio‐
nary (a CFDictionary). Each dictionary may have a key for street, city, state, country,
and so on.

There is more to parsing address book information, but that’s enough to get started
with; we are now ready for an example! I’ll fetch my own record out of the address book
database on my device and detect that I’ve got two email addresses:

if !self.determineStatus() {
 println("not authorized")
 return
}
var moi : ABRecord! = nil
let matts = ABAddressBookCopyPeopleWithName(
 self.adbk, "Matt").takeRetainedValue() as NSArray
for matt in matts {
 if let last = ABRecordCopyValue(
 matt, kABPersonLastNameProperty).takeRetainedValue() as? String {
 if last == "Neuburg" {
 moi = matt
 break
 }
 }
}
if moi == nil {
 println("couldn't find myself")
 return
}
// parse my emails
let emails:ABMultiValue = ABRecordCopyValue(
 moi, kABPersonEmailProperty).takeRetainedValue() as ABMultiValue
for ix in 0 ..< ABMultiValueGetCount(emails) {
 let label = ABMultiValueCopyLabelAtIndex(
 emails,ix).takeRetainedValue() as String
 let value = ABMultiValueCopyValueAtIndex(
 emails,ix).takeRetainedValue() as String
 println("I have a \(label) address: \(value)")
}
/*
output:
I have a _$!<Home>!$_ address: matt@tidbits.com
I have a _$!<Work>!$_ address: matt@tidbits.com
*/

You can also modify an existing record, add a new record (ABAddressBookAddRecord),
and delete a record (ABAddressBookRemoveRecord). In this example, I’ll create a person
called Snidely Whiplash with a Home email snidely@villains.com, add him to the
database, and save the database:

Address Book Database | 777

Figure 18-1. A contact created programmatically

if !self.determineStatus() {
 println("not authorized")
 return
}
let snidely:ABRecord = ABPersonCreate().takeRetainedValue()
ABRecordSetValue(snidely, kABPersonFirstNameProperty, "Snidely", nil)
ABRecordSetValue(snidely, kABPersonLastNameProperty, "Whiplash", nil)
let addr:ABMutableMultiValue = ABMultiValueCreateMutable(
 ABPropertyType(kABStringPropertyType)).takeRetainedValue()
ABMultiValueAddValueAndLabel(
 addr, "snidely@villains.com", kABHomeLabel, nil)
ABRecordSetValue(snidely, kABPersonEmailProperty, addr, nil)
ABAddressBookAddRecord(self.adbk, snidely, nil)
ABAddressBookSave(self.adbk, nil)

Sure enough, if we then check the state of the database through the Contacts app, the
new person exists (Figure 18-1).

There are also groups (ABGroup); a group, like a person, is a record (ABRecord), so
you can add a new group, delete an existing group, add a person to a group, and remove
a person from a group (which is more than the Contacts app allows the user to do!). A
group doesn’t own a person, nor a person a group; they are independent, and a person
can be associated with multiple groups just as a group is associated with multiple per‐
sons. At an even higher level, there are sources (yet another kind of ABRecord): a person
or group might be on the device or might come from an Exchange server or a CardDAV
server. The source really does, in a sense, own the group or person; a person can’t belong
to two sources. A complicating factor, however, is that the same real person might appear
in two different sources as two different ABPersons; to deal with this, it is possible for
multiple persons to be linked, indicating that they are the same person. For a practical
introduction to groups and sources, see Apple’s ABUIGroups sample code.

778 | Chapter 18: Address Book

Address Book Interface
The Address Book UI framework puts a user interface, similar to the Contacts app, in
front of common tasks involving the address book database. This is a great help, because
designing your own interface to do the same thing would be tedious and involved. The
framework provides four UIViewController subclasses:
ABPeoplePickerNavigationController

Presents a navigation interface, effectively the same as the Contacts app but without
an Edit button: it lists the people in the database and allows the user to pick one
and view the details.

ABPersonViewController
Presents an interface showing the properties of a specific person in the database,
possibly editable.

ABNewPersonViewController
Presents an interface showing the editable properties of a new person.

ABUnknownPersonViewController
Presents an interface showing a proposed person with a partial set of noneditable
properties.

These view controllers operate coherently with respect to the question of whether your
app has access to the address book. ABPeoplePickerNavigationController can operate
without access (new in iOS 8). ABNewPersonViewController will lack interface for
saving into the database if your app has been denied access, and the user’s only option
will be to back out of the view controller. On the other hand, you can’t even get started
usefully with ABPersonViewController if you don’t already have access, so if you lack
access, you’ll discover that fact beforehand.

ABPeoplePickerNavigationController
An ABPeoplePickerNavigationController is a UINavigationController. With it, the user
can survey all contacts, and can also see a list of groups, along with the names of all
persons in each group. Presenting it can be as simple as instantiating it, assigning it a
delegate, and showing it as a presented view controller; on the iPad, you might elect to
use a popover, but you don’t have to:

let picker = ABPeoplePickerNavigationController()
picker.peoplePickerDelegate = self
self.presentViewController(picker, animated:true, completion:nil)

Note that I didn’t check whether we have address book authorization. New in iOS 8,
ABPeoplePickerNavigationController operates even if there is no authorization — even
if authorization has been denied! This is possible because, in the absence of authoriza‐

Address Book Interface | 779

tion, it fetches a copy of the data; the user can view the address book information, but
can’t modify it.

New in iOS 8, three NSPredicate properties determine whether a given person is enabled
or selectable and whether a given property is selectable. Persons can be picked out by
their properties; properties are picked out using constants such as ABPersonFamilyName-
Property and ABPersonEmailAddressesProperty:
predicateForEnablingPerson

If the predicate returns false, that person’s name is visible in the list but is dimmed
(and tapping it does nothing). In this example, only people named Neuburg are
enabled:

picker.predicateForEnablingPerson = NSPredicate(
 format: "%K like %@", ABPersonFamilyNameProperty, "Neuburg")

predicateForSelectionOfPerson

If the predicate returns true, tapping a person’s name is the end of the story: the
person has been selected, the delegate method peoplePickerNavigation-

Controller:didSelectPerson: reports this fact, and the presented view controller
is dismissed. If it returns false, tapping a person’s name pushes a new view con‐
troller onto the navigation stack, displaying details about that person.

predicateForSelectionOfProperty

Relevant only if the details view controller was pushed onto the navigation stack.
If the predicate returns true, tapping a property is the end of the story: the property
has been selected, the delegate method peoplePickerNavigationController:did-
SelectPerson:property:identifier: reports this fact, and the presented view
controller is dismissed. If it returns false, tapping a property may cause that prop‐
erty to be handled by some other app; for example, tapping an email address will
switch to the Mail app and create a new outgoing message with that address (and
the presented view controller is not dismissed and no delegate methods are called).

If the details view controller is to be pushed onto the navigation stack, you can limit
what properties appear by setting the ABPeoplePickerNavigationController’s
displayedProperties to an array of ABPropertyID values, such as kABPersonEmail-
Property. These are not the same as the property name constants used in NSPredicates
(such as ABPersonEmailAddressesProperty)! You’ll have to coerce each ABPropertyID
to an Int, because Swift won’t convert an array of ABPropertyID to an Objective-C array
for you:

picker.displayedProperties = [Int(kABPersonEmailProperty)]

The delegate is not the controller’s delegate property! It is the controller’s peoplePicker-
Delegate property. You should implement both delegate methods:

780 | Chapter 18: Address Book

peoplePickerNavigationController:didSelectPerson:

A person was selected; the selected person arrives as the second parameter. The
presented view controller will be dismissed automatically if you don’t dismiss it
explicitly.

peoplePickerNavigationController:didSelectPerson:property:identifier:

A person’s property was selected; the person arrives as the second parameter, and
the property is identified by the third and possibly (for an ABMultiValue) by the
fourth parameter, but the value of the property is not supplied! Fetching it is up to
you. In this example, the displayedProperties has enabled emails only:

func peoplePickerNavigationController(
 peoplePicker: ABPeoplePickerNavigationController!,
 didSelectPerson person: ABRecordRef!,
 property: ABPropertyID,
 identifier: ABMultiValueIdentifier) {
 if property != kABPersonEmailProperty {
 return // shouldn't happen
 }
 let emails : ABMultiValue = ABRecordCopyValue(
 person, property).takeRetainedValue()
 let ix = ABMultiValueGetIndexForIdentifier(
 emails, identifier)
 let email = ABMultiValueCopyValueAtIndex(
 emails, ix).takeRetainedValue() as String
 // ... do something with the email here ...
}

These delegate methods are new in iOS 8, superseding the three older delegate
methods which are now deprecated. Unfortunately, the other Address Book UI view
controllers have not been updated to match.

ABPersonViewController
An ABPersonViewController is a UIViewController. To use it, instantiate it, set its
displayedPerson and personViewDelegate (not delegate); you must also explicitly
pass a reference to the address book into the ABPersonViewController’s addressBook
property. Then push the ABPersonViewController onto an existing navigation con‐
troller’s stack. The user’s only way out of the resulting interface will be through the back
button. For example:

if !self.determineStatus() {
 println("not authorized")
 return
}
let snides = ABAddressBookCopyPeopleWithName(
 self.adbk, "Snidely Whiplash").takeRetainedValue() as Array<ABRecord>
if snides.count == 0 {

Address Book Interface | 781

 println("no Snidely")
 return
}
let snidely : ABRecord = snides[0]
let pvc = ABPersonViewController()
pvc.addressBook = self.adbk
pvc.displayedPerson = snidely
pvc.personViewDelegate = self
self.showViewController(pvc, sender:self) // push onto nav controller

You can limit the properties to be displayed, as with ABPeoplePickerNavigation‐
Controller, by setting the displayedProperties. You can highlight a property with set-
HighlightedItemForProperty:withIdentifier:.

The delegate is notified when the user taps a property, by calling this method:

• personViewController:shouldPerformDefaultActionFor-

Person:property:identifier:

Return true to allow some other app, such as Maps or Mail, to open the tapped property
value; return false to prevent this.

If ABPersonViewController’s allowsActions is true (the default), then buttons such
as Send Message, FaceTime, Share Contact, and Add to Favorites appear in the interface.
(Exactly what buttons appear depends on what categories of information are displayed.)

If ABPersonViewController’s allowsEditing is true (the default), the right bar button
is an Edit button. If the user taps this, the interface is transformed into the same sort of
editing interface as ABNewPersonViewController. The user can tap Done or Cancel; if
Done, the edits are automatically saved into the database. Either way, the user returns
to the original display of the person’s properties. Your code is not notified that the user
has edited the person.

ABNewPersonViewController
An ABNewPersonController is a UIViewController. To use it, instantiate it, set its new-
PersonViewDelegate (not delegate), instantiate a UINavigationController with the
ABNewPersonController as its root view controller, and present the navigation con‐
troller:

let npvc = ABNewPersonViewController()
npvc.newPersonViewDelegate = self
let nc = UINavigationController(rootViewController:npvc)
self.presentViewController(nc, animated:true, completion:nil)

The interface allows the user to fill in all properties of a new contact. You cannot limit
the properties displayed. You can provide properties with default values by creating a

782 | Chapter 18: Address Book

fresh ABRecord representing an ABPerson with ABPersonCreate, giving it any property
values you like, and assigning it to the displayedPerson property.

The delegate has one method, newPersonViewController:didCompleteWithNew-
Person:, which is responsible for dismissing the presented view controller. If the new
person is nil, the user tapped Cancel. Otherwise, the user tapped Done; the new person
is an ABRecord and has already been saved into the database.

But what if you don’t want the new person saved into the database? What if you were
presenting this interface merely because it’s such a convenient way of letting the user fill
in the property values of an ABPerson? Then simply remove the newly created person
from the database, like this:

func newPersonViewController(
 newPersonView: ABNewPersonViewController!,
 didCompleteWithNewPerson person: ABRecord!) {
 if person != nil {
 ABAddressBookRemoveRecord(self.adbk, person, nil)
 ABAddressBookSave(self.adbk, nil)
 // ... do something with new person ...
 }
 self.dismissViewControllerAnimated(true, completion:nil)
}

ABUnknownPersonViewController
An ABUnknownPersonViewController is a UIViewController. It presents, as it were, a
proposed partial person. You can set the name displayed as the controller’s alternate-
Name property, and the text below this as the controller’s message property. You can add
actual person property values just as for an ABNewPersonViewController, namely, by
creating a fresh ABRecord representing an ABPerson with ABPersonCreate, giving it
some property values, and assigning it to the displayedPerson property.

To use ABUnknownPersonViewController, instantiate it, set the properties listed in the
foregoing paragraph, set its unknownPersonViewDelegate (not delegate), and push it
onto the stack of an existing navigation controller. The user’s only way out of the re‐
sulting interface will be through the back button. For example:

let unk = ABUnknownPersonViewController()
unk.message = "Person who really knows trees"
unk.allowsAddingToAddressBook = true
unk.allowsActions = true
let person:ABRecord = ABPersonCreate().takeRetainedValue()
ABRecordSetValue(person, kABPersonFirstNameProperty, "Johnny", nil)
ABRecordSetValue(person, kABPersonLastNameProperty, "Appleseed", nil)
let addr:ABMutableMultiValue = ABMultiValueCreateMutable(
 ABPropertyType(kABStringPropertyType)).takeRetainedValue()
ABMultiValueAddValueAndLabel(addr, "johnny@seeds.com", kABHomeLabel, nil)

Address Book Interface | 783

ABRecordSetValue(person, kABPersonEmailProperty, addr, nil)
unk.displayedPerson = person
unk.unknownPersonViewDelegate = self
self.showViewController(unk, sender:self) // push onto nav controller

What the user can do here depends on two other properties:
allowsAddingToAddressBook

If true (the default), and if your app has access to the address book, a Create New
Contact button and an Add to Existing Contact button appear:
The user taps Create New Contact

The editing interface appears (as in ABNewPersonViewController and an ed‐
itable ABPersonViewController). It is filled in with the property values of the
displayedPerson. If the user taps Done, the person is saved into the database.

The user taps Add to Existing Contact
A list of all contacts appears (as in the first screen of ABPersonViewController).
The user can Cancel or tap a person. If the user taps a person, the properties
from the displayedPerson are merged into that person’s record.

allowsActions

If true (the default), buttons such as Send Message, FaceTime, and Share Contact
appear. (Exactly what buttons appear depends on what categories of information
are displayed.)

The delegate has two methods, the first of which is required:
unknownPersonViewController:didResolveToPerson:

Called if allowsAddingToAddressBook is true and the user finishes working in a
presented editing view. The editing view has already been dismissed and the user
has either cancelled (the second parameter is nil) or has tapped Done (the second
parameter is the ABPerson already saved into the database).

unknownPersonViewController:shouldPerformDefaultActionForPerson:property:

identifier:

Return false to prevent a tap on a property value from navigating to another app,
such as Maps or Mail.

784 | Chapter 18: Address Book

CHAPTER 19

Calendar

The user’s calendar information, which the user sees through the Calendar app, is ef‐
fectively a database of calendar events. The calendar database also includes reminders,
which the user sees through the Reminders app. This database can be accessed directly
through the Event Kit framework. You’ll need to import EventKit.

Type names in the Event Kit framework have not been abbreviated for Swift. For
example the EKEntityType names are EKEntityTypeEvent and EKEntityType-
Reminder, not .Event and .Reminder.

A user interface for interacting with the calendar is also provided, through the Event
Kit UI framework. You’ll need to import EventKitUI.

Calendar Database
The calendar database is accessed as an instance of the EKEventStore class. This instance
is expensive to obtain but lightweight to maintain, so your usual strategy will be to
instantiate and retain one EKEventStore instance. Fortunately, a calendar database in‐
stance, unlike an address book database instance (see Chapter 18), cannot be faulty;
thus there is no harm whatever in initializing a property as an EKEventStore instance
and keeping that reference for the rest of the app’s lifetime:

var database = EKEventStore()

In the examples in this chapter, my EKEventStore instance is called self.database
throughout.

785

Calendar Database Authorization
Calendar database authorization is parallel to the authorization verification that I de‐
scribed at the start of Chapter 18. The chief difference is that, although there is one
database, access to calendar events and access to reminders are considered two separate
forms of access and require separate authorizations. To learn authorization status, call
the EKEventStore class method authorizationStatusForEntityType: with either
EKEntityTypeEvent (for access to calendar events) or EKEntityTypeReminder (for ac‐
cess to reminders). To request authorization if the status is .NotDetermined, call the
EKEventStore instance method requestAccessToEntityType:completion:. You
should supply the body of the authorization request alert by setting the “Privacy —
Calendars Usage Description” key (NSCalendarsUsageDescription) or the “Privacy —
Reminders Usage Description” key (NSRemindersUsageDescription) in your app’s
Info.plist.

A possible strategy is thus completely parallel to the code at the start of Chapter 17 for
access to the photo library:

func determineStatus() -> Bool {
 let type = EKEntityTypeEvent
 let stat = EKEventStore.authorizationStatusForEntityType(type)
 switch stat {
 case .Authorized:
 return true
 case .NotDetermined:
 self.database.requestAccessToEntityType(type, completion:{_,_ in})
 return false
 case .Restricted:
 return false
 case .Denied:
 // ... possible alert offering to go to Settings app ...
 return false
 }
}

In that code, the completion handler is empty (if it is nil, your app will crash). If you
supply a real completion handler, it may be run on a background thread; you’ll want to
step out to the main thread before doing anything further (Chapter 25).

To retest the system authorization request alert and other access-related behaviors,
go to the Settings app and choose General → Reset → Reset Location & Privacy.
This, unfortunately, causes the system to revert to its default settings for everything
in the Privacy section of Settings: Location Services and all System Services will be
On, and all permissions lists will be empty.

786 | Chapter 19: Calendar

Calendar Database Contents
Starting with an EKEventStore instance, you can obtain two kinds of object — a calendar
or a calendar item.

Calendars

A calendar represents a named (title) collection of calendar items, meaning events or
reminders. It is an instance of EKCalendar. Curiously, however, an EKCalendar instance
doesn’t contain or link to its calendar items; to obtain and create calendar items, you
work directly with the EKEventStore itself. A calendar’s allowedEntityTypes, despite
the plural, will probably return just one entity type; you can’t create a calendar that allows
both.

Calendars have various types (type), reflecting the nature of their origin: a calendar can
be created and maintained by the user locally (EKCalendarTypeLocal), but it might also
live remotely on the network (EKCalendarTypeCalDAV, EKCalendarTypeExchange),
possibly being updated by subscription (EKCalendarTypeSubscription); the Birthday
calendar (EKCalendarTypeBirthday) is generated automatically from information in
the address book.

The type is supplemented and embraced by the calendar’s source, an EKSource whose
sourceType can be EKSourceTypeLocal, EKSourceTypeExchange, EKSourceTypeCal-
DAV (which includes iCloud), and so forth; a source can also have a title, and it has a
unique identifier (sourceIdentifier). You can get an array of all sources known to
the EKEventStore, or specify a source by its identifier. You’ll probably use the source
exclusively and ignore the calendar’s type property.

There are three ways of requesting a calendar:
All calendars

Fetch all calendars permitting a particular calendar item type (EKEntityType-
Event or EKEntityTypeReminder) by calling calendarsForEntityType:. You can
send this message either to the EKEventStore or to an EKSource.

Particular calendar
Fetch an individual calendar by means of a previously obtained calendar-
Identifier by calling calendarWithIdentifier:.

Default calendar
Fetch the default calendar for a particular calendar item type through the default-
CalendarForNewEvents property or the defaultCalendarForNewReminders prop‐
erty; this is appropriate particularly if your intention is to create a new calendar
item.

Calendar Database | 787

You can also create a calendar, by calling calendarForEntityType:eventStore:. At
that point, you can specify the source to which the calendar belongs.

Depending on the source, a calendar will be modifiable in various ways. The calendar
might be subscribed. If the calendar is immutable, you can’t delete the calendar or
change its attributes; but its allowsContentModifications might still be true, in which
case you can add, remove, and alter its events. You can update your copy of the calendar
from any remote sources by calling refreshSourcesIfNecessary.

Calendar items
A calendar item (EKCalendarItem) is either a calendar event (EKEvent) or a reminder
(EKReminder). Think of it as a memorandum describing when something happens. As
I mentioned a moment ago, you don’t get calendar items from a calendar; rather, a
calendar item has a calendar, but you get it from the EKEventStore as a whole. There
are two chief ways of doing so:
By predicate

Fetch all events or reminders according to a predicate:

• eventsMatchingPredicate:

• enumerateEventsMatchingPredicate:

• fetchRemindersMatchingPredicate:completion:

Methods starting with predicate... allow you to form the predicate. The predicate
specifies things like the calendar(s) the item is to come from and the item’s date
range.

By identifier
Fetch an individual calendar item by means of a previously obtained calendarItem-
Identifier by calling calendarItemWithIdentifier:.

Calendar Database Changes
Changes to the database can be atomic. There are two prongs to the implementation of
this feature:

• The methods for saving and removing calendar items and calendars have a commit:
parameter. If you pass false as the argument, the changes that you’re ordering are
batched; later, you can call commit: (or reset if you change your mind). If you pass
false and fail to call commit: later, your changes will never happen.

• An abstract class, EKObject, functions as the superclass for all the other persistent
object types, such as EKCalendar, EKCalendarItem, EKSource, and so on. It endows

788 | Chapter 19: Calendar

those classes with methods isNew and hasChanges, along with refresh,
rollback, and reset.

The calendar database is an odd sort of database, because calendars can be maintained
in so many ways and places. A calendar can change while your app is running (the user
might sync, or the user might edit with the Calendar app), which can put your
information out of date. You can register for a single EKEventStore notification, EKEvent-
StoreChangedNotification; if you receive it, you should assume that any calendar-
related instances you’re holding are invalid. This situation is made relatively painless,
though, by the fact that every calendar-related instance can be refreshed with
refresh. Keep in mind that refresh returns a Boolean; if it returns false, this object
is really invalid and you should stop working with it entirely (it may have been deleted
from the database).

Creating Calendars and Events
Let’s start by creating an events calendar. We need to assign a source; we’ll choose
EKSourceTypeLocal, meaning that the calendar will be created on the device itself. We
can’t ask the database for the local source directly, so we have to cycle through all sources
looking for it. When we find it, we make a new calendar called “CoolCal”:

if !self.determineStatus() { // not authorized
 return
}
var src : EKSource! = nil
for source in self.database.sources() as [EKSource] {
 if source.sourceType.value == EKSourceTypeLocal.value {
 src = source
 break
 }
}
if src == nil { // failed to find local source
 return
}
let cal = EKCalendar(forEntityType:EKEntityTypeEvent,
 eventStore:self.database)
cal.source = src
cal.title = "CoolCal"
var err : NSError?
let ok = self.database.saveCalendar(cal, commit:true, error:&err)
if !ok {
 println("save calendar error: \(err!.localizedDescription)")
 return
}

Calendar Database | 789

If a device’s calendar is subscribed to a remote source (such as iCloud), EKCalendar-
TypeLocal calendars are inaccessible. The examples in this chapter use a local cal‐
endar (because I don’t want to risk damaging your online calendars); to test them,
you’ll have to unsubscribe from iCloud.

Now let’s create an event. EKEvent is a subclass of EKCalendarItem, from which it in‐
herits some of its important properties. If you’ve ever used the Calendar app in iOS or
OS X, you already have a sense for how an EKEvent can be configured. It has a title
and optional notes. It is associated with a calendar, as I’ve already said. It can have one
or more alarms and one or more recurrence rules; I’ll talk about both of those in a
moment. All of that is inherited from EKCalendarItem. EKEvent itself adds the all-
important startDate and endDate properties; these are NSDates and involve both date
and time. If the event’s allDay property is true, the time aspect of its dates is ignored;
the event is associated with a day or a stretch of days as a whole. If the event’s allDay
property is false, the time aspect of its dates matters; a typical event will then usually
be bounded by two times on the same day.

Making an event is simple, if tedious. You must provide a startDate and an endDate!
The simplest way to construct dates is with NSDateComponents. I’ll create an event and
add it to our new calendar. First, I need a way to locate the new calendar. I’ll locate it by
its title. I really should be using the calendarIdentifier; the title isn’t reliable, since
the user might change it, and since multiple calendars can have the same title. However,
it’s only an example:

func calendarWithName(name:String) -> EKCalendar? {
 let calendars =
 self.database.calendarsForEntityType(
 EKEntityTypeEvent) as [EKCalendar]
 for cal in calendars {
 if cal.title == name {
 return cal
 }
 }
 return nil
}

Now I’ll create an event, configure it, and add it to our CoolCal calendar:

if !self.determineStatus() { // not authorized
 return
}
let cal : EKCalendar! = self.calendarWithName("CoolCal")
if cal == nil { // no calendar
 return
}
let greg = NSCalendar(calendarIdentifier:NSCalendarIdentifierGregorian)!
let comp = NSDateComponents()

790 | Chapter 19: Calendar

comp.year = 2015
comp.month = 8
comp.day = 10
comp.hour = 15
let d1 = greg.dateFromComponents(comp)
comp.hour = comp.hour + 1
let d2 = greg.dateFromComponents(comp)
let ev = EKEvent(eventStore:self.database)
ev.title = "Take a nap"
ev.notes = "You deserve it!"
ev.calendar = cal
ev.startDate = d1
ev.endDate = d2
var err : NSError?
let ok = self.database.saveEvent(
 ev, span:EKSpanThisEvent, commit:true, error:&err)
if !ok {
 println("save simple event \(err!.localizedDescription)")
 return
}

An alarm is an EKAlarm, a very simple class; it can be set to fire either at an absolute
date or at a relative offset from the event time. On an iOS device, an alarm fires through
a local notification (Chapter 13). We could easily have added an alarm to our event as
we were configuring it:

let alarm = EKAlarm(relativeOffset:-3600) // one hour before
ev.addAlarm(alarm)

Recurrence
Recurrence is embodied in a recurrence rule (EKRecurrenceRule); a calendar item can
have multiple recurrence rules, which you manipulate through its recurrenceRules
property, along with methods addRecurrenceRule: and removeRecurrenceRule:. A
simple EKRecurrenceRule is described by three properties:
Frequency

By day, by week, by month, or by year.

Interval
Fine-tunes the notion “by” in the frequency. A value of 1 means “every.” A value of
2 means “every other.” And so on.

End
Optional, because the event might recur forever. It is an EKRecurrenceEnd instance,
describing the limit of the event’s recurrence either as an end date or as a maximum
number of occurrences.

The options for describing a more complex EKRecurrenceRule are best summarized by
its initializer:

Calendar Database | 791

init!(recurrenceWithFrequency type: EKRecurrenceFrequency,
 interval interval: Int,
 daysOfTheWeek days: [AnyObject]!,
 daysOfTheMonth monthDays: [AnyObject]!,
 monthsOfTheYear months: [AnyObject]!,
 weeksOfTheYear weeksOfTheYear: [AnyObject]!,
 daysOfTheYear daysOfTheYear: [AnyObject]!,
 setPositions setPositions: [AnyObject]!,
 end end: EKRecurrenceEnd!)

The meanings of all these parameters are mostly obvious from their names. The arrays
are of Int, except for daysOfTheWeek, which is an array of EKRecurrenceDayOfWeek, a
class that allows specification of a week number as well as a day number so that you can
say things like “the fourth Thursday of the month.” Many of these values can be negative
to indicate counting backward from the last one. Numbers are all 1-based, not 0-based.
The setPositions parameter is an array of Int filtering the occurrences defined by the
rest of the specification against the interval; for example, if daysOfTheWeek is Sunday,
-1 means the final Sunday. You can use any valid combination of parameters; the penalty
for an invalid combination is a return value of nil.

An EKRecurrenceRule is intended to embody the RRULE event component in the
iCalendar standard specification (originally published as RFC 2445 and recently su‐
perseded by RFC 5545, http://datatracker.ietf.org/doc/rfc5545); in fact, the documen‐
tation tells you how each EKRecurrenceRule property corresponds to an RRULE
attribute, and if you log an EKRecurrenceRule, what you’re shown is the underlying
RRULE. RRULE can describe some amazingly sophisticated recurrence rules, such as this
one:

RRULE:FREQ=YEARLY;INTERVAL=2;BYMONTH=1;BYDAY=SU

That means “every Sunday in January, every other year.” Let’s form this rule. Observe
that we should attach it to an event whose startDate and endDate make sense as an
example of the rule — that is, on a Sunday in January. Fortunately, NSDateComponents
makes that easy:

// ... make sure we have authorization ...
// ... obtain our calendar (cal) ...
// form the rule
let everySunday = EKRecurrenceDayOfWeek(1)
let january = 1
let recur = EKRecurrenceRule(
 recurrenceWithFrequency:EKRecurrenceFrequencyYearly, // every year
 interval:2, // no, every *two* years
 daysOfTheWeek:[everySunday],
 daysOfTheMonth:nil,
 monthsOfTheYear:[january],
 weeksOfTheYear:nil,
 daysOfTheYear:nil,
 setPositions: nil,

792 | Chapter 19: Calendar

http://datatracker.ietf.org/doc/rfc5545

Figure 19-1. The user specifies a span

 end:nil)
let ev = EKEvent(eventStore:self.database)
ev.title = "Mysterious biennial Sunday-in-January morning ritual"
ev.addRecurrenceRule(recur)
ev.calendar = cal
// need a start date and end date
let greg = NSCalendar(calendarIdentifier:NSCalendarIdentifierGregorian)!
let comp = NSDateComponents()
comp.year = 2015
comp.month = 1
comp.weekday = 1 // Sunday
comp.weekdayOrdinal = 1 // *first* Sunday
comp.hour = 10
ev.startDate = greg.dateFromComponents(comp)
comp.hour = 11
ev.endDate = greg.dateFromComponents(comp)
var err : NSError?
let ok = self.database.saveEvent(
 ev, span:EKSpanFutureEvents, commit:true, error:&err)
if !ok {
 println("save recurring event \(err!.localizedDescription)")
 return
}

In that code, the event we save into the database is a recurring event. When we save or
delete a recurring event, we must specify a span: argument. This is either EKSpanThis-
Event or EKSpanFutureEvents, and corresponds exactly to the two buttons the user
sees in the Calendar interface when saving or deleting a recurring event (Figure 19-1).
The buttons and the span types reflect their meaning exactly: the change affects either
this event alone, or this event plus all future (not past) recurrences. This choice deter‐
mines not only how this and future recurrences of the event are affected now, but also
how they relate to one another from now on.

Calendar Database | 793

Fetching Events
Now let’s talk about how to extract an event from the database. One way, as I mentioned
earlier, is by its unique identifier (calendarItemIdentifier). Not only is this identifier
a fast and unique way to obtain an event, but also it’s just a string, which means that it
persists even if the EKEventStore subsequently goes out of existence. Remember to
obtain it, though, while the EKEventStore is still in existence; an EKEvent drawn from
the database loses its meaning and its usability if the EKEventStore instance is destroyed.
(Even this unique identifier might not survive changes in a calendar between launches
of your app.)

You can also extract events from the database by matching a predicate (NSPredicate).
To form this predicate, you specify a start and end date and an array of eligible calendars,
and call the EKEventStore method predicateForEventsWithStartDate:end-

Date:calendars:. That’s the only kind of predicate you can use, so any further filtering
of events is then up to you. In this example, I’ll gather all events from our “CoolCal”
calendar; because I have to specify a date range, I ask for events occurring over the next
year. Because enumerateEventsMatchingPredicate: can be time-consuming, it’s best
to run it on a background thread (Chapter 25):

// ... make sure we have authorization ...
// ... obtain our calendar (cal) ...
let d1 = NSDate() // today
let greg = NSCalendar(calendarIdentifier:NSCalendarIdentifierGregorian)!
let comp = NSDateComponents()
comp.year = 1 // we're going to add 1 to the year
let d2 = greg.dateByAddingComponents(comp, toDate:d1, options:nil)
let pred = self.database.predicateForEventsWithStartDate(
 d1, endDate:d2, calendars:[cal])
var events = [EKEvent]()
dispatch_async(dispatch_get_global_queue(0, 0)) {
 self.database.enumerateEventsMatchingPredicate(pred) {
 (event:EKEvent!, stop:UnsafeMutablePointer<ObjCBool>) in
 events += [event]
 if (event.title as NSString)
 .rangeOfString("nap").location != NSNotFound {
 self.napid = event.calendarItemIdentifier
 }
 }
 sort(&events) {
 return $0.compareStartDateWithEvent($1) == .OrderedAscending}
 // ... do something with results here ...
}

That example shows you what I mean about further filtering of events. I obtain the “nap”
event and the “mysterious biennial Sunday-in-January morning ritual” events, but the
“nap” event is the one I really want, so I filter further to find it in the block. (In real life,
if I weren’t also testing this call by collecting all returned events into an array, I would

794 | Chapter 19: Calendar

then set stop.memory to true to end the enumeration.) The events are enumerated in
no particular order; the convenience method compareStartDateWithEvent: is pro‐
vided as a sort selector to put them in order by start date.

When you extract events from the database, event recurrences are treated as separate
events (as happened in the preceding example). Recurrences of the same event will have
different start and end dates but the same identifier. When you fetch an event by iden‐
tifier, you get the earliest event with that identifier. This makes sense, because if you’re
going to make a change affecting this and future recurrences of the event, you need the
option to start with the earliest possible recurrence (so that “future” means “all”).

Reminders
A reminder (EKReminder) is very parallel to an event (EKEvent); they both inherit from
EKCalendarItem, so a reminder has a calendar (which the Reminders app refers to as a
“list”), a title, notes, alarms, recurrence rules, and attendees. Instead of a start date and
an end date, it has a start date, a due date, a completion date, and a completed property.
The start date and due date are expressed directly as NSDateComponents, so you can
supply as much detail as you wish: if you don’t include any time components, it’s an all-
day reminder.

To illustrate, I’ll make an all-day reminder for today:

if !self.determineStatus() { // no authorization
 return
}
let cal = self.database.defaultCalendarForNewReminders()
if cal == nil { // no default calendar
 return
}
let rem = EKReminder(eventStore:self.database)
rem.title = "Get bread"
rem.calendar = cal
let today = NSDate()
let greg = NSCalendar(calendarIdentifier:NSCalendarIdentifierGregorian)!
let comps : NSCalendarUnit =
 .YearCalendarUnit | .MonthCalendarUnit | .DayCalendarUnit
rem.dueDateComponents = greg.components(comps, fromDate:today)
var err : NSError?
let ok = self.database.saveReminder(rem, commit:true, error:&err)
if !ok {
 println("save calendar \(err!.localizedDescription)")
 return
}

When you call fetchRemindersMatchingPredicate:completion:, the possible pred‐
icates let you fetch all reminders in given calendars, incomplete reminders, or completed
reminders.

Calendar Database | 795

Proximity Alarms
A proximity alarm is triggered by the user’s approaching or leaving a certain location
(also known as geofencing). This is appropriate particularly for reminders: one might
wish to be reminded of something when approaching the place where that thing can be
accomplished. To form the location, you’ll need to use the CLLocation class (see Chap‐
ter 22). Here, I’ll attach a proximity alarm to a reminder (rem); the alarm will fire when
I’m near my local Trader Joe’s:

let alarm = EKAlarm()
let loc = EKStructuredLocation(title:"Trader Joe's")
loc.geoLocation = CLLocation(latitude:34.271848, longitude:-119.247714)
loc.radius = 10*1000 // metres
alarm.structuredLocation = loc
alarm.proximity = EKAlarmProximityEnter // alarm when *arriving*
rem.addAlarm(alarm)

Use of a proximity alarm requires authorization, but that’s of no concern here, because
the app that needs this authorization is not our app but the Reminders app! Now that
we’ve placed a reminder with a proximity alarm into the database, the Reminders app
will request authorization, if needed, the next time the user brings it frontmost. If you
add a proximity alarm to the event database and the Reminders app can’t perform
background geofencing, the alarm will not fire (unless the Reminders app is frontmost).

New in iOS 8, you can fire a local notification based on geofencing without involving
reminders or the Reminders app. See Chapter 22.

Calendar Interface
The Event Kit UI framework provides three view controller classes that manage views
for letting the user work with events and calendars:
EKEventViewController

Shows the description of a single event, possibly editable.

EKEventEditViewController
Allows the user to create or edit an event.

EKCalendarChooser
Allows the user to pick a calendar.

These view controllers automatically listen for changes in the database and, if needed,
will automatically call refresh on the information being edited, updating their display
to match. If a view controller is displaying an event in the database and the event is

796 | Chapter 19: Calendar

Figure 19-2. The event interface

deleted while the user is viewing it, the delegate will get the same notification as if the
user had deleted it.

EKEventViewController
EKEventViewController shows the event display listing the event’s title, date and time,
calendar, alert, and notes, familiar from the Calendar app (Figure 19-2). To use
EKEventViewController, instantiate it, give it an event in the database, assign it a dele‐
gate (EKEventViewDelegate), make it the root view controller of a UINavigation‐
Controller, and present the navigation controller. It looks best on the iPad as a popover.
This code gives a good result on both iPhone and iPad:

let evc = EKEventViewController()
evc.event = ev
evc.delegate = self
let nav = UINavigationController(rootViewController: evc)
nav.modalPresentationStyle = .Popover
self.presentViewController(nav, animated: true, completion: nil)
if let pop = nav.popoverPresentationController {
 if let v = sender as? UIView {
 pop.sourceView = v
 pop.sourceRect = v.bounds
 }
}

The delegate method, eventViewController:didCompleteWithAction:, is called
when the user taps Done; dismissing the presented view controller is up to you. This
method is called also if the user deletes an event or accepts an invitation.

Calendar Interface | 797

Do not use EKEventViewController for an event that isn’t in the database, or at a
time when the database isn’t open! It won’t function correctly if you do.

If allowsEditing is true (the default), an Edit button appears in the navigation bar,
and by tapping this, the user can edit the various aspects of an event in the same interface
as the Calendar app, including the Delete button at the bottom. If the user ultimately
deletes the event, or edits it and taps Done, the change is saved into the database.

Even if allowsEditing is false, the user can change what calendar this event be‐
longs to, can change an alert’s firing time if there is one, and can delete the event.
I regard this as a bug.

EKEventEditViewController
EKEventEditViewController (a UINavigationController) presents the interface for ed‐
iting an event. To use it, set its eventStore and editViewDelegate (EKEventEditView‐
Delegate, not delegate), and optionally its event, and present it as a presented view
controller (which looks best on the iPad as a popover). The event can be nil for a com‐
pletely empty new event; it can be an event you’ve just created (and possibly partially
configured) and not stored in the database, or it can be an existing event from the
database. If access to the database has been denied, the interface will be empty and the
user will simply cancel.

The delegate method eventEditViewControllerDefaultCalendarForNewEvents:

may be implemented to specify what calendar a completely new event should be assigned
to. If you’re partially constructing a new event, you can assign it a calendar then, and of
course an event from the database already has a calendar.

You must implement the delegate method eventEditViewController:didComplete-
WithAction: so that you can dismiss the presented view controller. Possible actions are
that the user cancelled, saved the edited event into the database, or deleted an already
existing event from the database. You can get a reference to the edited event as the
EKEventEditViewController’s event.

EKCalendarChooser
EKCalendarChooser displays a list of calendars, choosable by tapping; a chosen calendar
displays a checkmark. To use it, instantiate it with init(selectionStyle:display-
Style:entityType:eventStore:), set a delegate (EKCalendarChooserDelegate),
make it the root view controller of a UINavigationController, and show the navigation
controller as a presented view controller (which looks best as a popover on the iPad).
The selectionStyle dictates whether the user can pick one or multiple calendars; the

798 | Chapter 19: Calendar

displayStyle states whether all calendars or only writable calendars will be displayed.
If access to the database has been denied, the interface will be empty and the user will
simply cancel.

Two properties, showsCancelButton and showsDoneButton, determine whether these
buttons will appear in the navigation bar. In a fullscreen presented view controller, you’ll
certainly show at least one and probably both, because otherwise the user has no way
to dismiss the presented view controller!

There are three delegate methods, all of them required:

• calendarChooserSelectionDidChange:

• calendarChooserDidFinish: (the user tapped Done)
• calendarChooserDidCancel:

In the Finish and Cancel methods, you should dismiss the presented view controller.

In this example, we implement a potentially destructive action: we offer to delete the
selected calendar. Because this is potentially destructive, we pass through an action sheet
for confirmation:

@IBAction func deleteCalendar (sender:AnyObject!) {
 let choo = EKCalendarChooser(
 selectionStyle:EKCalendarChooserSelectionStyleSingle,
 displayStyle:EKCalendarChooserDisplayAllCalendars,
 entityType:EKEntityTypeEvent,
 eventStore:self.database)
 choo.showsDoneButton = true
 choo.showsCancelButton = true
 choo.delegate = self
 let nav = UINavigationController(rootViewController: choo)
 nav.modalPresentationStyle = .Popover
 self.presentViewController(nav, animated: true, completion: nil)
 if let pop = nav.popoverPresentationController {
 if let v = sender as? UIView {
 pop.sourceView = v
 pop.sourceRect = v.bounds
 }
 }
}
func calendarChooserDidCancel(calendarChooser: EKCalendarChooser!) {
 self.dismissViewControllerAnimated(true, completion: nil)
}
func calendarChooserDidFinish(calendarChooser: EKCalendarChooser!) {
 let cals = calendarChooser.selectedCalendars
 if cals != nil && cals.count > 0 {
 let calsToDelete =
 cals.valueForKey("calendarIdentifier") as NSSet
 let alert = UIAlertController(

Calendar Interface | 799

 title: "Delete selected calendar?", message: nil,
 preferredStyle: .ActionSheet)
 alert.addAction(UIAlertAction(
 title: "Cancel", style: .Cancel, handler: nil))
 alert.addAction(UIAlertAction(
 title: "Delete", style: .Destructive, handler: {
 _ in
 for ident in calsToDelete {
 if let cal = self.database.calendarWithIdentifier(
 ident as String) {
 self.database.removeCalendar(
 cal, commit: true, error: nil)
 }
 }
 // dismiss *everything*
 self.dismissViewControllerAnimated(true, completion: nil)
 }))
 // alert sheet inside presented-or-popover
 calendarChooser.presentViewController(
 alert, animated: true, completion: nil)
 return
 }
 self.dismissViewControllerAnimated(true, completion:nil)
}

That code, by the way, is vastly simpler than the corresponding code in previous editions
of this book, because in iOS 8 a popover is a presented view controller and an action
sheet’s button handlers are closures.

800 | Chapter 19: Calendar

CHAPTER 20

Mail and Messages

Your app can present an interface allowing the user to edit and send a mail message or
an SMS message. Two view controller classes are provided by the Message UI frame‐
work; you’ll need to import MessageUI. In addition, the Social framework lets you post
to Twitter or Facebook on the user’s behalf. You’ll need to import Social. The classes
are:
MFMailComposeViewController

Allows composition and sending of a mail message.

MFMessageComposeViewController
Allows composition and sending of an SMS message.

SLComposeViewController
Allows composition and sending of a Twitter or Facebook post. Alternatively, you
can prepare and post a message directly using SLRequest.

UIActivityViewController (Chapter 13) also provides a unified interface for permitting
the user to choose any of the built-in messaging milieus and to send a message through
it. However, the Message UI framework and the Social framework remain important,
because the user can be presented with a message form without having to pass through
an activity view, and because you can fill in fields, such as the To field in a mail com‐
position form, that UIActivityViewController doesn’t let you fill in.

New in iOS 8, you write your own share extension to appear in the top row of a
UIActivityViewController in any app. This book doesn’t discuss how to write a share
extension.

801

Mail Message
The MFMailComposeViewController class, a UINavigationController, allows the user
to edit a mail message. The user can attempt to send the message there and then, or can
cancel but save a draft, or can cancel completely. Before using this class to present a
view, call canSendMail; if the result is false, go no further, as a negative result means
that the device is not configured for sending mail. A positive result does not mean that
the device is connected to the network and can send mail right now, only that sending
mail is generally possible with this device; actually sending the mail (or storing it as a
draft) will be up to the device’s internal processes.

To use MFMailComposeViewController, instantiate it, provide a mailCompose-
Delegate (not delegate), and configure the message to any desired extent. Configu‐
ration methods are:

• setSubject:

• setToRecipients:

• setCcRecipients:

• setBccRecipients:

• setMessageBody:isHTML:

• addAttachmentData:mimeType:fileName:

Typically, you’ll show the MFMailComposeViewController as a presented view con‐
troller. (On the iPad, a .FormSheet presentation feels less overwhelming.) The user can
later alter your preset configurations, at which time the message details will be out of
your hands.

The delegate (MFMailComposeViewControllerDelegate) will receive the message mail-
ComposeController:didFinishWithResult:error: describing the user’s final action,
which might be any of these:

• MFMailComposeResultCancelled

• MFMailComposeResultSaved

• MFMailComposeResultSent

• MFMailComposeResultFailed

Dismissing the presented view controller is up to you, in the delegate method. Here’s a
minimal example:

802 | Chapter 20: Mail and Messages

@IBAction func doMail (sender:AnyObject!) {
 let ok = MFMailComposeViewController.canSendMail()
 if !ok {
 return
 }
 let vc = MFMailComposeViewController()
 vc.mailComposeDelegate = self
 self.presentViewController(vc, animated:true, completion:nil)
}
func mailComposeController(
 controller: MFMailComposeViewController!,
 didFinishWithResult result: MFMailComposeResult,
 error: NSError!) {
 // can do something with result here
 self.dismissViewControllerAnimated(true, completion: nil)
}

Text Message
The MFMessageComposeViewController class is a UINavigationController subclass.
Before using this class to present a view, call canSendText; if the result is false, go no
further. The user has no option to save an SMS message as a draft, so even if this device
sometimes can send text, there’s no point proceeding if the device can’t send text now.
However, you can register for the MFMessageComposeViewControllerTextMessage-
AvailabilityDidChangeNotification in the hope that the device might later be able
to send text; if the notification arrives, examine its MFMessageComposeViewController-
TextMessageAvailabilityKey.

To use MFMessageComposeViewController, instantiate the class, give it a message-
ComposeDelegate (not delegate), and configure it as desired through the recipients
(phone number strings) and body properties. You can also configure the message subject
and provide attachments. For the subject, call the class method canSendSubject, and
if it returns true, you can set the subject. For attachments, call the class method can-
SendAttachments, and if it returns true, you may want to call isSupportedAttachment-
UTI: to see if a particular file type can be sent as an attachment; finally, call add-
AttachmentURL:withAlternateFilename: (if you have a file URL) or addAttachment-
Data:typeIdentifier:filename:.

When you’ve finished configuring the MFMessageComposeViewController, show it as
a presented view controller. The user can later alter your preset configurations, at which
time the message details will be out of your hands.

The delegate (MFMessageComposeViewControllerDelegate) will receive the message
messageComposeViewController:didFinishWithResult: with a description of the
user’s final action, which might be any of these:

Text Message | 803

• MessageComposeResultCancelled

• MessageComposeResultSent

• MessageComposeResultFailed

Dismissing the presented view controller is up to you, in the delegate method. Here’s a
minimal example:

@IBAction func doMessage (sender:AnyObject!) {
 let ok = MFMessageComposeViewController.canSendText()
 if !ok {
 return
 }
 let vc = MFMessageComposeViewController()
 vc.messageComposeDelegate = self
 self.presentViewController(vc, animated:true, completion:nil)
}
func messageComposeViewController(
 controller: MFMessageComposeViewController!,
 didFinishWithResult result: MessageComposeResult) {
 // can do something with result here
 self.dismissViewControllerAnimated(true, completion: nil)
}

Twitter Post
The interface for letting the user construct a Twitter post is SLComposeViewController,
part of the Social framework. Twitter, together with Facebook (and Weibo), are repre‐
sented by constant strings. You’ll use the class method isAvailableForServiceType:
to learn whether the desired service is available; if it is, you can instantiate SLCompose‐
ViewController for that service and present it as a presented view controller. Instead of
a delegate, SLComposeViewController has a completionHandler. Set it to a closure
taking one parameter, an SLComposeViewControllerResult. In the closure, dismiss the
view controller. The result will be one of these:

• SLComposeViewControllerResultCancelled

• SLComposeViewControllerResultDone

Here’s a minimal example:

@IBAction func doTwitter (sender:AnyObject!) {
 let ok = SLComposeViewController
 .isAvailableForServiceType(SLServiceTypeTwitter)
 if !ok {
 return
 }
 let vc : SLComposeViewController! =
 SLComposeViewController(forServiceType:SLServiceTypeTwitter)

804 | Chapter 20: Mail and Messages

 if vc == nil {
 return
 }
 vc.completionHandler = {
 (result:SLComposeViewControllerResult) in
 // can do something with result here
 self.dismissViewControllerAnimated(true, completion:nil)
 };
 self.presentViewController(vc, animated:true, completion:nil)
}

You can also, with the user’s permission, gain secure access to the user’s account infor‐
mation through the ACAccountStore class (part of the Accounts framework). Using
this, along with the SLRequest class, your app can construct and post a message direct‐
ly, without passing through the message composition interface. The ACAccountStore
class can manipulate accounts in other ways as well.

Twitter Post | 805

CHAPTER 21

Maps

Your app can imitate the Maps app, displaying a map interface and placing annotations
and overlays on the map. The relevant classes are provided by the Map Kit framework.
You’ll need to import MapKit. The classes used to describe locations in terms of latitude
and longitude, whose names start with “CL,” come from the Core Location framework,
but you won’t need to import it explicitly.

Displaying a Map
A map is displayed through a UIView subclass, an MKMapView.

You can instantiate an MKMapView from a nib. However, you will then need to
link your target manually to the MapKit framework: edit the target and add Map‐
Kit.framework under Linked Frameworks and Libraries in the General tab.

A map has a type, which is one of the following (MKMapType):

• .Standard

• .Satellite

• .Hybrid

The area displayed on the map is its region, an MKCoordinateRegion. This is a struct
comprising a location (a CLLocationCoordinate2D), describing the latitude and lon‐
gitude of the point at the center of the region (the map’s centerCoordinate), along with
a span (an MKCoordinateSpan), describing the quantity of latitude and longitude
embraced by the region and hence the scale of the map. Convenience functions help
you construct an MKCoordinateRegion.

807

Figure 21-1. A map view showing a happy place

In this example, I’ll initialize the display of an MKMapView (self.map) to show a place
where I like to go dirt biking (Figure 21-1):

let loc = CLLocationCoordinate2DMake(34.927752,-120.217608)
let span = MKCoordinateSpanMake(0.015, 0.015)
let reg = MKCoordinateRegionMake(loc, span)
self.map.region = reg

An MKCoordinateSpan is described in degrees of latitude and longitude. It may be,
however, that what you know is the region’s proposed dimensions in meters. To convert,
call MKCoordinateRegionMakeWithDistance. The ability to perform this conversion is
important, because an MKMapView shows the world through a Mercator projection,
where longitude lines are parallel and equidistant, and scale increases at higher latitudes.

I happen to know that the area I want to display is about 1200 meters on a side. Hence,
this is another way of displaying roughly the same region:

let loc = CLLocationCoordinate2DMake(34.927752,-120.217608)
let reg = MKCoordinateRegionMakeWithDistance(loc, 1200, 1200)
self.map.region = reg

Yet another way of describing a map region is with an MKMapRect, a struct built up
from MKMapPoint and MKMapSize. The earth has already been projected onto the
map for us, and now we are describing a rectangle of that map, in terms of the units in
which the map is drawn. The exact relationship between an MKMapPoint and the cor‐
responding latitude/longitude coordinates is arbitrary and of no interest; what matters
is that you can ask for the conversion, along with the ratio of points to meters (which
will vary with latitude):

• MKMapPointForCoordinate

808 | Chapter 21: Maps

• MKCoordinateForMapPoint

• MKMetersPerMapPointAtLatitude

• MKMapPointsPerMeterAtLatitude

• MKMetersBetweenMapPoints

To determine what the map view is showing in MKMapRect terms, use its visibleMap-
Rect property. Thus, this is another way of displaying approximately the same region:

let loc = CLLocationCoordinate2DMake(34.927752,-120.217608)
let pt = MKMapPointForCoordinate(loc)
let w = MKMapPointsPerMeterAtLatitude(loc.latitude) * 1200
self.map.visibleMapRect = MKMapRectMake(pt.x - w/2.0, pt.y - w/2.0, w, w)

In none of those examples did I bother with the question of the actual dimensions of
the map view itself. I simply threw a proposed region at the map view, and it decided
how best to portray the corresponding area. Values you assign to the map’s region and
visibleMapRect are unlikely to be the exact values the map adopts in any case; that’s
because the map view will optimize for display without distorting the map’s scale. You
can perform this same optimization in code by calling these methods:

• regionThatFits:

• mapRectThatFits:

• mapRectThatFits:edgePadding:

By default, the user can zoom and scroll the map with the usual gestures; you can turn
this off by setting the map view’s zoomEnabled and scrollEnabled to false. Usually
you will set them both to true or both to false. For further customization of an
MKMapView’s response to touches, use a UIGestureRecognizer (Chapter 5).

You can change programmatically the region displayed, optionally with animation, by
calling these methods:

• setRegion:animated:

• setCenterCoordinate:animated:

• setVisibleMapRect:animated:

• setVisibleMapRect:edgePadding:animated:

The map view’s delegate (MKMapViewDelegate) is notified as the map loads and as the
region changes (including changes triggered programmatically):

• mapViewWillStartLoadingMap:

• mapViewDidFinishLoadingMap:

Displaying a Map | 809

• mapViewDidFailLoadingMap:withError:

• mapView:regionWillChangeAnimated:

• mapView:regionDidChangeAnimated:

You can also enable 3D viewing of the map (pitchEnabled), and there’s a large and
powerful API putting control of 3D viewing in your hands. Discussion of 3D map
viewing is beyond the scope of this chapter; an excellent WWDC 2013 video surveys
the topic.

Data types such as MKCoordinateSpan are documented in the Map Kit Data Types
Reference, but convenience functions such as MKCoordinateSpanMake are document‐
ed in the Map Kit Functions Reference — and there are some useful constants in the
Map Kit Constants Reference. For a better overview, refer to the MKGeometry.h
header.

Annotations
An annotation is a marker associated with a location on a map. To make an annotation
appear on a map, two objects are needed:
The object attached to the MKMapView

The annotation itself is attached to the MKMapView. It consists of any instance
whose class adopts the MKAnnotation protocol, which specifies a coordinate, a
title, and a subtitle for the annotation. You might have reason to define your
own class to handle this task, or you can use the simple built-in MKPointAnnotation
class. The annotation’s coordinate is crucial; it says where on earth the annotation
should be drawn. The title and subtitle are optional, to be displayed in a callout.

The object that draws the annotation
An annotation is drawn by an MKAnnotationView, a UIView subclass. This can be
extremely simple. In fact, even a nil MKAnnotationView might be perfectly satis‐
factory: it draws a red pin. If red is not your favorite color, a built-in MKAnnotation‐
View subclass, MKPinAnnotationView, displays a pin in red, green, or purple; by
convention you are supposed to use these colors for different specific purposes —
destination points, starting points, and user-specified points, respectively. For more
flexibility, you can provide your own UIImage as the MKAnnotationView’s image
property. And for even more flexibility, you can take over the drawing of an
MKAnnotationView by overriding drawRect: in a subclass.

Not only does an annotation require two separate objects, but in fact those objects do
not initially exist together. An annotation object has no pointer to the annotation view
object that will draw it. Rather, it is up to you to supply the annotation view object in

810 | Chapter 21: Maps

Figure 21-2. A simple annotation

real time, on demand, in the MKMapView’s delegate. This architecture may sound
confusing, but in fact it’s a very clever way of reducing the amount of resources needed
at any given moment. An annotation itself is merely a lightweight object that a map can
always possess; the corresponding annotation view is a heavyweight object that is needed
only so long as that annotation’s coordinates are within the visible portion of the map.

Let’s add the simplest possible annotation to our map. The point where the annotation
is to go has been stored in an instance variable:

self.annloc = CLLocationCoordinate2DMake(34.923964,-120.219558)

We create the annotation, configure its properties, and add it to the MKMapView:

let ann = MKPointAnnotation()
ann.coordinate = self.annloc
ann.title = "Park here"
ann.subtitle = "Fun awaits down the road!"
self.map.addAnnotation(ann)

That code is sufficient to produce Figure 21-2. I didn’t implement any MKMapView
delegate methods, so the MKAnnotationView is nil. But a nil MKAnnotationView, as
I’ve already said, produces a red pin. I’ve also tapped the annotation, to display its callout,
containing the annotation’s title and subtitle.

Custom Annotation View
The location marked by our annotation is the starting point of a suggested dirt bike ride,
so by convention the pin should be green. We can easily create a green pin using
MKPinAnnotationView, which has a pinColor property. To supply the annotation view,
we must give the map view a delegate (MKMapViewDelegate) and implement map-
View:viewForAnnotation:.

The structure of mapView:viewForAnnotation: is rather similar to the structure of
tableView:cellForRowAtIndexPath: (Chapter 8), which is not surprising, considering

Annotations | 811

that they both do the same sort of thing. Recall that the goal of tableView:cellForRow-
AtIndexPath: is to allow the table view to reuse cells, so that at any given moment only
as many cells are needed as are visible in the table view, regardless of how many rows
the table as a whole may consist of. The same thing holds for a map and its annotation
views. The map may have a huge number of annotations, but it needs to display anno‐
tation views for only those annotations that are within its current region. Any extra
annotation views that have been scrolled out of view can thus be reused and are held
for us by the map view in a cache for exactly this purpose.

So, in mapView:viewForAnnotation:, we start by calling dequeueReusableAnnotation-
ViewWithIdentifier: to see whether there’s an already existing annotation view that’s
not currently being displayed and that we might be able to reuse. If there isn’t, we create
one, attaching to it an appropriate reuse identifier.

Here’s our implementation of mapView:viewForAnnotation:. Observe that in creating
our green pin, we explicitly set its canShowCallout to true, as this is not the default:

func mapView(mapView: MKMapView!,
 viewForAnnotation annotation: MKAnnotation!) -> MKAnnotationView! {
 var v : MKAnnotationView! = nil
 if annotation.title == "Park here" {
 let ident = "greenPin"
 v = mapView.dequeueReusableAnnotationViewWithIdentifier(ident)
 if v == nil {
 v = MKPinAnnotationView(
 annotation:annotation, reuseIdentifier:ident)
 (v as MKPinAnnotationView).pinColor = .Green
 v.canShowCallout = true
 }
 v.annotation = annotation
 }
 return v
}

The structure of this implementation of mapView:viewForAnnotation: is typical
(though it seems pointlessly elaborate when we have only one annotation in our map):

We might have more than one reusable type of annotation view, so we must
somehow distinguish the possible cases, based on something about the incoming
annotation. Here, I use the annotation’s title as a distinguishing mark; later in
this chapter, I’ll suggest a much better approach.
For each reusable type, we proceed much as with table view cells. We have an
identifier that categorizes this sort of reusable view. We try to dequeue an unused
annotation view of the appropriate type, and if we can’t, we create one and
configure it.

812 | Chapter 21: Maps

Even if we can dequeue an unused annotation view, and even if we have no other
configuration to perform, we must associate the annotation view with the
incoming annotation by assigning the annotation to this annotation view’s
annotation property.

MKAnnotationView has one more option of which we might avail ourselves: when it
draws the annotation view (the pin), it can animate it into place, dropping it in the
manner familiar from the Maps app. All we have to do is add one line of code:

(v as MKPinAnnotationView).animatesDrop = true

Now let’s go further. Instead of a green pin, we’ll substitute our own artwork. I’ll revise
the code at the heart of my mapView:viewForAnnotation: implementation, such that
instead of creating an MKPinAnnotationView, I create an instance of its superclass,
MKAnnotationView, and give it a custom image showing a dirt bike. The image is too
large, so I shrink the view’s bounds before returning it; I also move the view up a bit, so
that the bottom of the image is at the coordinates on the map (Figure 21-3):

func mapView(mapView: MKMapView!,
 viewForAnnotation annotation: MKAnnotation!) -> MKAnnotationView! {
 var v : MKAnnotationView! = nil
 if annotation.title == "Park here" {
 let ident = "bike"
 v = mapView.dequeueReusableAnnotationViewWithIdentifier(ident)
 if v == nil {
 v = MKAnnotationView(
 annotation:annotation, reuseIdentifier:ident)
 v.image = UIImage(named:"clipartdirtbike.gif")
 v.bounds.size.height /= 3.0
 v.bounds.size.width /= 3.0
 v.centerOffset = CGPointMake(0,-20)
 v.canShowCallout = true
 }
 v.annotation = annotation
 }
 return v
}

For more flexibility, we can create our own MKAnnotationView subclass and endow it
with the ability to draw itself. At a minimum, such a subclass should override the ini‐
tializer and assign itself a frame, and should implement drawRect:. Here’s the imple‐
mentation for a class MyAnnotationView that draws a dirt bike:

class MyAnnotationView : MKAnnotationView {
 override init(annotation:MKAnnotation, reuseIdentifier:String) {
 super.init(
 annotation: annotation, reuseIdentifier: reuseIdentifier)
 let im = UIImage(named:"clipartdirtbike.gif")!
 self.frame = CGRectMake(
 0, 0, im.size.width / 3.0 + 5, im.size.height / 3.0 + 5)

Annotations | 813

Figure 21-3. A custom annotation image

 self.centerOffset = CGPointMake(0,-20)
 self.opaque = false
 }
 override init(frame: CGRect) {
 super.init(frame:frame)
 }
 required init(coder: NSCoder) {
 fatalError("NSCoding not supported")
 }
 override func drawRect(rect: CGRect) {
 let im = UIImage(named:"clipartdirtbike.gif")!
 im.drawInRect(self.bounds.rectByInsetting(dx: 5, dy: 5))
 }
}

The corresponding implementation of mapView:viewForAnnotation: now has much
less work to do:

func mapView(mapView: MKMapView!,
 viewForAnnotation annotation: MKAnnotation!) -> MKAnnotationView! {
 var v : MKAnnotationView! = nil
 if annotation.title == "Park here" {
 let ident = "bike"
 v = mapView.dequeueReusableAnnotationViewWithIdentifier(ident)
 if v == nil {
 v = MyAnnotationView(
 annotation:annotation, reuseIdentifier:ident)
 v.canShowCallout = true
 }
 v.annotation = annotation
 }
 return v
}

814 | Chapter 21: Maps

Custom Annotation Class
For ultimate flexibility, we can provide our own annotation class as well! For technical
reasons that I don’t want to go into here (because I don’t understand them), this works
best if written in Objective-C. A minimal annotation class will look like this:

// MyAnnotation.h:
@interface MyAnnotation : NSObject <MKAnnotation>
@property (nonatomic, readwrite) CLLocationCoordinate2D coordinate;
@property (nonatomic, copy) NSString *title, *subtitle;
- (id)initWithLocation:(CLLocationCoordinate2D)coord;
@end
// MyAnnotation.m:
@implementation MyAnnotation
- (id)initWithLocation: (CLLocationCoordinate2D) coord {
 self = [super init];
 if (self) {
 self->_coordinate = coord;
 }
 return self;
}
@end

Now when we create our annotation and add it to our map, our code looks like this:

let ann = MyAnnotation(location:self.annloc)
ann.title = "Park here"
ann.subtitle = "Fun awaits down the road!"
self.map.addAnnotation(ann)

A major advantage of this change appears in our implementation of mapView:viewFor-
Annotation:, where we test for the annotation type. Formerly, it wasn’t easy to distin‐
guish those annotations that needed to be drawn as a dirt bike; we were rather artificially
examining the title:

if annotation.title == "Park here" {

Now, however, we can just look at the class:

if annotation is MyAnnotation {

A further advantage of supplying our own annotation class is that this approach gives
our implementation room to grow. For example, at the moment, every MyAnnotation
is drawn as a bike, but we could now add another property to MyAnnotation that tells
us what drawing to use. We could also give MyAnnotation further properties saying
such things as which way the bike should face, what angle it should be drawn at, and so
on. Each instance of MyAnnotationView will end up with a reference to the corre‐
sponding MyAnnotation instance (as its annotation property), so it would be able to
read those MyAnnotation properties and draw itself appropriately.

Annotations | 815

Other Annotation Features
To add our own animation to an annotation view as it appears on the map, analogous
to the built-in MKPinAnnotationView pin-drop animation, we implement the map
view delegate method mapView:didAddAnnotationViews:. The key fact here is that at
the moment this method is called, the annotation view has been added but the redraw
moment has not yet arrived (Chapter 4). So if we animate the view, that animation will
be performed at the moment the view appears onscreen. Here, I’ll animate the opacity
of the view so that it fades in, while growing the view from a point to its full size; I
identify the view type through its reuseIdentifier:

func mapView(mapView: MKMapView!,
 didAddAnnotationViews views: [AnyObject]!) {
 for aView in views as [MKAnnotationView] {
 if aView.reuseIdentifier == "bike" {
 aView.transform = CGAffineTransformMakeScale(0, 0)
 aView.alpha = 0
 UIView.animateWithDuration(0.8) {
 aView.alpha = 1
 aView.transform = CGAffineTransformIdentity
 }
 }
 }
}

The callout is visible in Figures 21-2 and 21-3 because before taking the screenshot, I
tapped on the annotation, thus selecting it. MKMapView has methods allowing anno‐
tations to be selected or deselected programmatically, thus (by default) causing their
callouts to appear or disappear. The delegate has methods notifying you when the user
selects or deselects an annotation, and you are free to override your custom
MKAnnotationView’s setSelected:animated: if you want to change what happens
when the user taps an annotation. For example, you could show and hide a custom view
instead of, or in addition to, the built-in callout.

A callout can contain left and right accessory views; these are the MKAnnotationView’s
leftCalloutAccessoryView and rightCalloutAccessoryView. They are UIViews,
and should be small (less than 32 pixels in height). The map view’s tintColor (see
Chapter 12) affects such accessory view elements as template images and button titles.
You can respond to taps on these views as you would any view or control; as a conve‐
nience, a delegate method mapView:annotationView:calloutAccessoryControl-
Tapped: is called when the user taps an accessory view, provided it is a UIControl.

An MKAnnotationView can optionally be draggable by the user; set its draggable
property to true and implement the map view delegate’s mapView:annotationView:did-
ChangeDragState:fromOldState:. You can also customize changes to the appearance
of the view as it is dragged, by implementing your annotation view class’s setDrag-
State:animated: method. If you’re using a custom annotation class, its coordinate

816 | Chapter 21: Maps

property must also be settable; for example, in our custom annotation class, My‐
Annotation, the coordinate property is explicitly redeclared as a read-write property,
as opposed to the coordinate property in the MKAnnotation protocol which is read-
only.

Certain annotation properties and annotation view properties are automatically ani‐
matable through view animation, provided you’ve implemented them in a KVO com‐
pliant way. For example, in MyAnnotation, the coordinate property is KVO compliant;
therefore, we are able to animate shifting the annotation’s position:

UIView.animateWithDuration(0.25) {
 var loc = ann.coordinate
 loc.latitude = loc.latitude + 0.0005
 loc.longitude = loc.longitude + 0.001
 ann.coordinate = loc
}

MKMapView has extensive support for adding and removing annotations. Also, given
a bunch of annotations, you can ask your MKMapView to zoom in such a way that all
of them are showing (showAnnotations:animated:).

Annotation views don’t change size as the map is zoomed in and out, so if there are
several annotations and they are brought close together by the user zooming out, the
display can become crowded. Moreover, if too many annotations are being drawn si‐
multaneously in a map view, scroll and zoom performance can degrade. The only way
to prevent this is to respond to changes in the map’s visible region (for example, in the
delegate method mapView:regionDidChangeAnimated:) by removing and adding an‐
notations dynamically. This is a tricky problem; MKMapView’s annotationsInMap-
Rect: efficiently lists the annotations within a given MKMapRect, but deciding which
ones to eliminate or restore, and when, is still up to you.

Overlays
An overlay differs from an annotation in being drawn entirely with respect to points on
the surface of the earth. Thus, whereas an annotation’s size is always the same, an over‐
lay’s size is tied to the zoom of the map view.

Overlays are implemented much like annotations. You provide an object that adopts
the MKOverlay protocol (which itself conforms to the MKAnnotation protocol) and
add it to the map view. When the map view delegate method mapView:viewForOverlay:
is called, you provide an MKOverlayRenderer and hand it the overlay object; the overlay
renderer then draws the overlay on demand. As with annotations, this architecture
means that the overlay itself is a lightweight object, and the overlay is drawn only if the
part of the earth that the overlay covers is actually being displayed in the map view. An
MKOverlayRenderer has no reuse identifier.

Overlays | 817

Figure 21-4. An overlay

Some built-in MKShape subclasses adopt the MKOverlay protocol: MKCircle,
MKPolygon, and MKPolyline. In parallel to those, MKOverlayRenderer has built-in
subclasses MKCircleRenderer, MKPolygonRenderer, and MKPolylineRenderer, ready
to draw the corresponding shapes. Thus, as with annotations, you can base your overlay
entirely on the power of existing classes.

In this example, I’ll use MKPolygonRenderer to draw an overlay triangle pointing up
the road from the parking place annotated in our earlier examples (Figure 21-4). We
add the MKPolygon as an overlay to our map view, and derive the MKPolygonRenderer
from it in our implementation of mapView:viewForOverlay:. First, the MKPolygon
overlay:

let lat = self.annloc.latitude
let metersPerPoint = MKMetersPerMapPointAtLatitude(lat)
var c = MKMapPointForCoordinate(self.annloc)
c.x += 150/metersPerPoint
c.y -= 50/metersPerPoint
var p1 = MKMapPointMake(c.x, c.y)
p1.y -= 100/metersPerPoint
var p2 = MKMapPointMake(c.x, c.y)
p2.x += 100/metersPerPoint
var p3 = MKMapPointMake(c.x, c.y)
p3.x += 300/metersPerPoint
p3.y -= 400/metersPerPoint
var pts = [
 p1, p2, p3
]
let tri = MKPolygon(points:&pts, count:3)
self.map.addOverlay(tri)

Second, the delegate method, where we provide the MKPolygonRenderer:

func mapView(mapView: MKMapView!,
 rendererForOverlay overlay: MKOverlay!) -> MKOverlayRenderer! {
 var v : MKPolygonRenderer! = nil
 if let overlay = overlay as? MKPolygon {
 v = MKPolygonRenderer(polygon:overlay)
 v.fillColor = UIColor.redColor().colorWithAlphaComponent(0.1)

818 | Chapter 21: Maps

 v.strokeColor = UIColor.redColor().colorWithAlphaComponent(0.8)
 v.lineWidth = 2
 }
 return v
}

Custom Overlay Class
The triangle in Figure 21-4 is rather crude; I could draw a better arrow shape using a
CGPath (Chapter 2). The built-in MKOverlayRenderer subclass that lets me do that is
MKOverlayPathRenderer. To structure my use of MKOverlayRenderer similarly to the
preceding example, I’ll supply the CGPath when I add the overlay instance to the map
view. No built-in class lets me do that, so I’ll use a custom class, MyOverlay, that im‐
plements the MKOverlay protocol.

A minimal overlay class looks like this:

class MyOverlay : NSObject, MKOverlay {
 var coordinate : CLLocationCoordinate2D {
 get {
 let pt = MKMapPointMake(
 MKMapRectGetMidX(self.boundingMapRect),
 MKMapRectGetMidY(self.boundingMapRect))
 return MKCoordinateForMapPoint(pt)
 }
 }
 private let realBoundingMapRect : MKMapRect
 var boundingMapRect : MKMapRect {
 get {
 return realBoundingMapRect
 }
 }
 init(rect:MKMapRect) {
 self.realBoundingMapRect = rect
 super.init()
 }
}

Our actual MyOverlay class will also have a path property; this will be a UIBezierPath
that holds our CGPath and supplies it to the MKOverlayRenderer.

Just as the coordinate property of an annotation tells the map view where on earth the
annotation is to be drawn, the boundingMapRect property of an overlay tells the map
view where on earth the overlay is to be drawn. Whenever any part of the boundingMap-
Rect is displayed within the map view’s bounds, the map view will have to concern itself
with drawing the overlay. With MKPolygon, we supplied the points of the polygon in
earth coordinates and the boundingMapRect was calculated for us. With our custom
overlay class, we must supply or calculate it ourselves.

Overlays | 819

At first it may appear that there is a typological impedance mismatch: the boundingMap-
Rect is an MKMapRect, whereas a CGPath is defined by CGPoints. However, it turns
out that these units are interchangeable: the CGPoints of our CGPath will be translated
for us directly into MKMapPoints on the same scale — that is, the distance between any
two CGPoints will be the distance between the two corresponding MKMapPoints.
However, the origins are different: the CGPath must be described relative to the top-left
corner of the boundingMapRect — to put it another way, the boundingMapRect is de‐
scribed in earth coordinates, but the top-left corner of the boundingMapRect is {0,0}
as far as the CGPath is concerned. (You might think of this difference as analogous to
the difference between a UIView’s frame and its bounds.)

To make life simple, I’ll think in meters; actually, I’ll think in chunks of 75 meters,
because this turns out to be a good unit for positioning and laying out the arrow. Thus,
a line one unit long would in fact be 75 meters long if I were to arrive at this actual spot
on the earth and discover the overlay literally drawn on the ground. Having derived this
chunk (unit), I use it to lay out the boundingMapRect, four units on a side and positioned
slightly east and north of the annotation point (because that’s where the road is). Then
I simply construct the arrow shape within the 4×4-unit square, rotating it so that it
points in roughly the same direction as the road:

// start with our position and derive a nice unit for drawing
let lat = self.annloc.latitude
let metersPerPoint = MKMetersPerMapPointAtLatitude(lat)
let c = MKMapPointForCoordinate(self.annloc)
let unit = CGFloat(75.0/metersPerPoint)
// size and position the overlay bounds on the earth
let sz = CGSizeMake(4*unit, 4*unit)
let mr = MKMapRectMake(
 c.x + 2*Double(unit), c.y - 4.5*Double(unit),
 Double(sz.width), Double(sz.height))
// describe the arrow as a CGPath
let p = CGPathCreateMutable()
let start = CGPointMake(0, unit*1.5)
let p1 = CGPointMake(start.x+2*unit, start.y)
let p2 = CGPointMake(p1.x, p1.y-unit)
let p3 = CGPointMake(p2.x+unit*2, p2.y+unit*1.5)
let p4 = CGPointMake(p2.x, p2.y+unit*3)
let p5 = CGPointMake(p4.x, p4.y-unit)
let p6 = CGPointMake(p5.x-2*unit, p5.y)
var points = [
 start, p1, p2, p3, p4, p5, p6
]
// rotate the arrow around its center
let t1 = CGAffineTransformMakeTranslation(unit*2, unit*2)
let t2 = CGAffineTransformRotate(t1, CGFloat(-M_PI)/3.5)
var t3 = CGAffineTransformTranslate(t2, -unit*2, -unit*2)
CGPathAddLines(p, &t3, &points, 7)
CGPathCloseSubpath(p)
// create the overlay and give it the path

820 | Chapter 21: Maps

Figure 21-5. A nicer overlay

let over = MyOverlay(rect:mr)
over.path = UIBezierPath(CGPath:p)
// add the overlay to the map
self.map.addOverlay(over)

The delegate method, where we provide the MKOverlayPathRenderer, is simple. We
pull the CGPath out of the MyOverlay instance and hand it to the MKOverlayPathRen‐
derer, also telling the MKOverlayPathRenderer how to stroke and fill that path:

func mapView(mapView: MKMapView!,
 rendererForOverlay overlay: MKOverlay!) -> MKOverlayRenderer! {
 var v : MKOverlayPathRenderer! = nil
 if let overlay = overlay as? MyOverlay {
 v = MKOverlayPathRenderer(overlay:overlay)
 v.path = overlay.path.CGPath
 v.fillColor = UIColor.redColor().colorWithAlphaComponent(0.2)
 v.strokeColor = UIColor.blackColor()
 v.lineWidth = 2
 }
 return v
}

The result is a much nicer arrow (Figure 21-5), and of course this technique can be
generalized to draw an overlay from any CGPath we like.

Custom Overlay Renderer
For full generality, you could define your own MKOverlayRenderer subclass; your sub‐
class must override and implement drawMapRect:zoomScale:inContext:. The incom‐
ing mapRect: parameter describes a tile of the visible map (not the size and position of
the overlay). The overlay itself is available through the inherited overlay property, and
conversion methods such as rectForMapRect: are provided for converting between the
map’s mapRect: coordinates and the overlay renderer’s graphics context coordinates.

In our example, we can move the entire functionality for drawing the arrow into an
MKOverlayRenderer subclass, which I’ll call MyOverlayRenderer. Its initializer takes
an angle: parameter, with which I’ll set its angle property; now our arrow can point

Overlays | 821

in any direction. Another nice benefit of this architectural change is that we can use the
zoomScale: parameter to determine the stroke width. For simplicity, our implementa‐
tion of drawMapRect:zoomScale:inContext: ignores the incoming mapRect value and
just draws the entire arrow every time it is called:

var angle : CGFloat
init(overlay:MKOverlay!, angle:CGFloat) {
 self.angle = angle
 super.init(overlay:overlay)
}
override func drawMapRect(
 mapRect: MKMapRect, zoomScale: MKZoomScale,
 inContext context: CGContext!) {
 CGContextSetStrokeColorWithColor(
 context, UIColor.blackColor().CGColor)
 CGContextSetFillColorWithColor(context,
 UIColor.redColor().colorWithAlphaComponent(0.2).CGColor)
 CGContextSetLineWidth(context, 1.2/zoomScale)
 let unit =
 CGFloat(MKMapRectGetWidth(self.overlay.boundingMapRect)/4.0)
 let p = CGPathCreateMutable()
 let start = CGPointMake(0, unit*1.5)
 let p1 = CGPointMake(start.x+2*unit, start.y)
 let p2 = CGPointMake(p1.x, p1.y-unit)
 let p3 = CGPointMake(p2.x+unit*2, p2.y+unit*1.5)
 let p4 = CGPointMake(p2.x, p2.y+unit*3)
 let p5 = CGPointMake(p4.x, p4.y-unit)
 let p6 = CGPointMake(p5.x-2*unit, p5.y)
 let points = [
 start, p1, p2, p3, p4, p5, p6
]
 // rotate the arrow around its center
 let t1 = CGAffineTransformMakeTranslation(unit*2, unit*2)
 let t2 = CGAffineTransformRotate(t1, self.angle)
 var t3 = CGAffineTransformTranslate(t2, -unit*2, -unit*2)
 CGPathAddLines(p, &t3, points, 7)
 CGPathCloseSubpath(p)
 CGContextAddPath(context, p)
 CGContextDrawPath(context, kCGPathFillStroke)
}

To add the overlay to our map, we still must determine its MKMapRect:

let lat = self.annloc.latitude
let metersPerPoint = MKMetersPerMapPointAtLatitude(lat)
let c = MKMapPointForCoordinate(self.annloc)
let unit = 75.0/metersPerPoint
// size and position the overlay bounds on the earth
let sz = CGSizeMake(4*CGFloat(unit), 4*CGFloat(unit))
let mr = MKMapRectMake(

822 | Chapter 21: Maps

 c.x + 2*unit, c.y - 4.5*unit,
 Double(sz.width), Double(sz.height))
let over = MyOverlay(rect:mr)
self.map.addOverlay(over)

The delegate, providing the overlay renderer, now has very little work to do; in our
implementation, it must supply an angle for the arrow:

func mapView(mapView: MKMapView!,
 rendererForOverlay overlay: MKOverlay!) -> MKOverlayRenderer! {
 var v : MKOverlayRenderer! = nil
 if overlay is MyOverlay {
 v = MyOverlayRenderer(
 overlay:overlay, angle: -CGFloat(M_PI)/3.5)
 }
 return v
}

Other Overlay Features
Our MyOverlay class, adopting the MKOverlay protocol, also implements the
coordinate getter method to return the center of the boundingMapRect. This is crude,
but it’s a good minimal implementation. The purpose of the MKOverlay coordinate
property is to specify the position where you would add an annotation describing the
overlay. For example:

// ... create overlay and assign it a path as before ...
self.map.addOverlay(over)
let annot = MKPointAnnotation()
annot.coordinate = over.coordinate
annot.title = "This way!"
self.map.addAnnotation(annot)

The MKOverlay protocol also lets you provide an implementation of intersectsMap-
Rect: to refine your overlay’s definition of what constitutes an intersection with itself;
the default is to use the boundingMapRect, but if your overlay is drawn in some non‐
rectangular shape, you might want to use its actual shape as the basis for determining
intersection.

Overlays are maintained by the map view as an array and are drawn from back to front
starting at the beginning of the array. MKMapView has extensive support for adding
and removing overlays, and for managing their layering order. When you add the over‐
lay to the map, you can say where you want it drawn among the map view’s sublayers;
methods for adding and inserting overlays have a level: parameter (for example, add-
Overlay:level:). The levels are (MKOverlayLevel):

Overlays | 823

• .AboveRoads (and below labels)
• .AboveLabels

The MKOverlayTile class, adopting the MKOverlay protocol, lets you superimpose, or
even substitute (canReplaceMapContent), a map view’s drawing of the map itself. It
works much like CATiledLayer (Chapter 7): you provide a set of tiles at multiple sizes
to match multiple zoom levels, and the map view fetches and draws the tiles needed for
the current region and degree of zoom. In this way, for example, you could integrate
your own topo map into an MKMapView’s display. It takes a lot of tiles to draw an area
of any size, so MKOverlayTile starts with a URL, which can be a remote URL for tiles
to be fetched across the Internet.

Map Kit and Current Location
A device may have sensors that can determine its current location (Chapter 22). Map
Kit provides simple integration with these facilities. Keep in mind that the user can turn
off these sensors or can refuse your app access to them (in the Settings app, under Privacy
→ Location Services), so trying to use these features may fail. Also, determining the
device’s location can take time.

You can ask an MKMapView in your app to display the device’s location just by setting
its showsUserLocation property to true; the map will then automatically put an an‐
notation at that location. New in iOS 8, however, you must obtain authorization first.
You’ll need a CLLocationManager instance — the usual thing is to retain it in a property
— and you’ll request authorization through the instance method requestWhenInUse-
Authorization. Also, you must have an NSLocationWhenInUseUsageDescription en‐
try in your app’s Info.plist. (I’ll talk more about location authorization in Chapter 22.)

The userLocation property of the map view is an MKUserLocation, adopting the
MKAnnotation protocol. It has a location property, a CLLocation, whose coordinate
is a CLLocationCoordinate2D; if the map view’s showsUserLocation is true and the
map view has actually worked out the user’s location, the coordinate describes that
location. It also has title and subtitle properties, plus you can check whether it is
currently updating. The default annotation appearance comes from the map view’s
tintColor. You are free to supply your own annotation view to be displayed for this
annotation, just as for any annotation.

Displaying the appropriate region of the map — that is, actually showing the part of the
world where the user is located — is a separate task. The simplest way is to take advantage
of the MKMapView’s userTrackingMode property, which determines how the user’s
real-world location should be tracked automatically by the map display; your options
are (MKUserTrackingMode):

824 | Chapter 21: Maps

.None

If showsUserLocation is true, the map gets an annotation at the user’s location,
but that’s all; the map’s region is unchanged. You could set it manually by respond‐
ing to the delegate method mapView:didUpdateUserLocation:.

.Follow

Setting this mode sets showsUserLocation to true. The map automatically centers
the user’s location and scales appropriately. When the map is in this mode, you
should not set the map’s region manually, as you’ll be struggling against the tracking
mode’s attempts to do the same thing.

.FollowWithHeading

Like .Follow, but the map is also rotated so that the direction the user is facing is
up. In this case, the userLocation annotation also has a heading property, a
CLHeading; I’ll talk more about headings in Chapter 22.

So, presume we have CLLocationManager property:

let locman = CLLocationManager()

Then this code is sufficient to start displaying the user’s location:

self.locman.requestWhenInUseAuthorization()
self.map.userTrackingMode = .Follow // sets showsUserLocation to true

When the userTrackingMode is one of the Follow modes, if the user is left free to zoom
and scroll the map, and if the user scrolls in such a way that the user location annotation
is no longer visible, the userTrackingMode may be automatically changed back
to .None (and the user location annotation may be removed). You’ll probably want to
provide a way to let the user turn tracking back on again, or to toggle among the three
tracking modes.

One way to do that is with an MKUserTrackingBarButtonItem, a UIBarButtonItem
subclass. You initialize MKUserTrackingBarButtonItem with a map view, and its be‐
havior is automatic from then on: when the user taps it, it switches the map view to the
next tracking mode, and its icon reflects the current tracking mode. This is the same
bar button item that appears at the far left in the toolbar of the Maps app.

You can ask the map view whether the user’s location, if known, is in the visible region
of the map (isUserLocationVisible).

It is also possible to ask the Maps app to display the device’s current location, as I’ll
describe in the next section.

Map Kit and Current Location | 825

Figure 21-6. The Maps app displays our point of interest

Communicating With the Maps App
Your app can communicate with the Maps app. For example, instead of displaying a
point of interest in a map view in our own app, we can ask the Maps app to display it.
The user could then bookmark or share the location. The channel of communication
between your app and the Maps app is the MKMapItem class.

Here, I’ll ask the Maps app to display the same point marked by the annotation in our
earlier examples, on a hybrid map portraying the same region of the earth (Figure 21-6):

let p = MKPlacemark(coordinate:self.annloc, addressDictionary:nil)
let mi = MKMapItem(placemark: p)
mi.name = "A Great Place to Dirt Bike" // label to appear in Maps app
let span = NSValue(MKCoordinateSpan:self.map.region.span)
let opts = [
 MKLaunchOptionsMapTypeKey: MKMapType.Hybrid.rawValue,
 MKLaunchOptionsMapSpanKey: span
]
mi.openInMapsWithLaunchOptions(opts)

If you start with an MKMapItem returned by the class method mapItemForCurrent-
Location, you’re asking the Maps app to display the device’s current location. This call
doesn’t attempt to determine the device’s location, nor does it contain any location in‐

826 | Chapter 21: Maps

formation; it merely generates an MKMapItem which, when sent to the Maps app, will
cause it to attempt to determine (and display) the device’s location:

let mi = MKMapItem.mapItemForCurrentLocation()
mi.openInMapsWithLaunchOptions(
 [MKLaunchOptionsMapTypeKey: MKMapType.Standard.rawValue])

Geocoding, Searching, and Directions
Map Kit provides your app with three services that involve performing queries over the
network. These services take time and might not succeed at all, as they depend upon
network and server availability; moreover, results may be more or less uncertain. There‐
fore, they involve a completion handler that is called back asynchronously on the main
thread. The three services are:
Geocoding

Translation of a street address to a coordinate and vice versa. For example, what
address am I at right now? Or conversely, what are the coordinates of my home
address?

Searching
Lookup of possible matches for a natural language search. For example, what are
some Thai restaurants near me?

Directions
Lookup of turn-by-turn instructions and route mapping from a source location to
a destination location.

The completion handler is called, in every case, with a single response object plus an
NSError. If the response object is nil, the NSError tells you what the problem was.

Geocoding
Geocoding functionality is encapsulated in the CLGeocoder class. The response, if
things went well, is an array of CLPlacemark objects, a series of guesses from best to
worst; if things went really well, the array will contain exactly one CLPlacemark.

A CLPlacemark can be used to initialize an MKPlacemark, a CLPlacemark subclass that
adopts the MKAnnotation protocol, and is therefore suitable to be handed directly over
to an MKMapView for display.

Here is an (unbelievably simpleminded) example that allows the user to enter an address
in a UISearchBar (Chapter 12) to be displayed in an MKMapView:

let s = searchBar.text
let geo = CLGeocoder()
geo.geocodeAddressString(s) {
 (placemarks : [AnyObject]!, error : NSError!) in

Geocoding, Searching, and Directions | 827

 if nil == placemarks {
 println(error.localizedDescription)
 return
 }
 let p = placemarks[0] as CLPlacemark
 let mp = MKPlacemark(placemark:p)
 self.map.removeAnnotations(self.map.annotations)
 self.map.addAnnotation(mp)
 self.map.setRegion(
 MKCoordinateRegionMakeWithDistance(mp.coordinate, 1000, 1000),
 animated: true)
}

By default, the resulting annotation’s callout title contains a nicely formatted string
describing the address.

That example illustrates forward geocoding, the conversion of an address to a coordinate.
Instead of a string, you can provide a dictionary. By an amazing coincidence, the keys
of this dictionary are exactly the keys you would get by extracting an address from the
user’s address book (Chapter 18); thus, you can go quite directly from an address book
contact to a coordinate.

The converse operation is reverse geocoding: you start with a coordinate — actually a
CLLocation, which you’ll obtain from elsewhere, or construct from a coordinate using
init(latitude:longitude:) — and call reverseGeocodeLocation:completion-
Handler: in order to obtain an address. The address is expressed through the
CLPlacemark addressDictionary property, which is an address in address book for‐
mat; you can translate it to a string with ABCreateStringWithAddressDictionary
(you’ll need to import AddressBookUI). Alternatively, you can consult directly various
CLPlacemark properties, such as subthoroughfare (a house number), thoroughfare
(a street name), locality (a town), and administrativeArea (a state).

Those properties are present in a placemark resulting from forward geocoding as
well; thus, one nice byproduct of forward geocoding is that it can format and com‐
plete an address, including adding a zip code (postalCode) to the address.

In this example of reverse geocoding, we have an MKMapView that is already tracking
the user, and so we have the user’s location as the map’s userLocation; we ask for the
corresponding address:

let loc = self.map.userLocation.location
let geo = CLGeocoder()
geo.reverseGeocodeLocation(loc) {
 (placemarks : [AnyObject]!, error : NSError!) in
 if placemarks != nil {
 let p = placemarks[0] as CLPlacemark
 let s = ABCreateStringWithAddressDictionary(

828 | Chapter 21: Maps

 p.addressDictionary, false)
 println("you are at:\n\(s)")
 }
}

Searching
The MKLocalSearch class, along with MKLocalSearchRequest and MKLocalSearch‐
Response, lets you ask the server to perform a natural language search for you. This is
less formal than forward geocoding, described in the previous section; instead of
searching for an address, you can search for a point of interest by name or description.
It can be useful, for some types of search, to constrain the area of interest by setting the
MKLocalSearchRequest’s region. In this example, I’ll do a natural language search for
a Thai restaurant near the user location currently displayed in the map, and I’ll display
it with an annotation in our map view:

let userLoc = self.map.userLocation
let loc = userLoc.location
let req = MKLocalSearchRequest()
req.naturalLanguageQuery = "Thai restaurant"
req.region = self.map.region
let search = MKLocalSearch(request:req)
search.startWithCompletionHandler() {
 (response : MKLocalSearchResponse!, error : NSError!) in
 if response == nil {
 println(error)
 return
 }
 self.map.showsUserLocation = false
 let mi = response.mapItems[0] as MKMapItem // I'm feeling lucky
 let place = mi.placemark
 let loc = place.location.coordinate
 let reg = MKCoordinateRegionMakeWithDistance(loc, 1200, 1200)
 self.map.setRegion(reg, animated:true)
 let ann = MKPointAnnotation()
 ann.title = mi.name
 ann.subtitle = mi.phoneNumber
 ann.coordinate = loc
 self.map.addAnnotation(ann)
}

Directions
The MKDirections class, along with MKDirectionsRequest and MKDirections‐
Response, looks up walking or driving directions between two locations expressed as
MKMapItem objects. The resulting MKDirectionsResponse includes an array of
MKRoute objects; each MKRoute includes an MKPolyline suitable for display as an
overlay in your map, as well as an array of MKRouteStep objects, each of which provides
its own MKPolyline plus instructions and distances. The MKDirectionsResponse also

Geocoding, Searching, and Directions | 829

has its own source and destination MKMapItems, which may be different from what
we started with.

To illustrate, I’ll continue from the Thai food example in the previous section, starting
at the point where we obtained the Thai restaurant’s MKMapItem:

// ... same as before up to this point ...
let mi = response.mapItems[0] as MKMapItem // I'm still feeling lucky
let req = MKDirectionsRequest()
req.setSource(MKMapItem.mapItemForCurrentLocation())
req.setDestination(mi)
let dir = MKDirections(request:req)
dir.calculateDirectionsWithCompletionHandler() {
 (response:MKDirectionsResponse!, error:NSError!) in
 if response == nil {
 println(error)
 return
 }
 println("got directions")
 let route = response.routes[0] as MKRoute // I'm feeling really lucky
 let poly = route.polyline
 self.map.addOverlay(poly)
 for step in route.steps {
 println("After \(step.distance) metres: \(step.instructions)")
 }
}

The step-by-step instructions appear in the console; in real life, of course, we would
presumably display these in our app’s interface. The route is drawn in our map view,
provided we have an appropriate implementation of mapView:rendererForOverlay:,
such as this:

func mapView(mapView: MKMapView!,
 rendererForOverlay overlay: MKOverlay!) -> MKOverlayRenderer! {
 var v : MKPolylineRenderer! = nil
 if let overlay = overlay as? MKPolyline {
 v = MKPolylineRenderer(polyline:overlay)
 v.strokeColor =
 UIColor.blueColor().colorWithAlphaComponent(0.8)
 v.lineWidth = 2
 }
 return v
}

830 | Chapter 21: Maps

CHAPTER 22

Sensors

A device may contain hardware for sensing the world around itself — where it is located,
how it is oriented, how it is moving.

Information about the device’s current location and how that location is changing over
time, using its Wi-Fi, cellular networking, and GPS capabilities, along with information
about the device’s orientation relative to north, using its magnetometer, is provided
through the Core Location framework. You’ll need to import CoreLocation.

Information about the device’s change in speed and attitude using its accelerometer is
provided through the UIEvent class (for device shake) and the Core Motion framework,
which provides increased accuracy by incorporating the device’s gyroscope, if it has one,
as well as the magnetometer; you’ll need to import CoreMotion.

One of the major challenges associated with writing code that takes advantage of the
sensors is that different devices have different hardware. If you don’t want to impose
stringent restrictions on what devices your app will run on in the first place (UIRequired-
DeviceCapabilities in the Info.plist), your code must be prepared to fail gracefully
and possibly provide a subset of its full capabilities when it discovers that the current
device lacks certain features.

Moreover, certain sensors may experience momentary inadequacy; for example, Core
Location might not be able to get a fix on the device’s position because it can’t see cell
towers, GPS satellites, or both. And some sensors take time to “warm up,” so that the
values you’ll get from them initially will be invalid. You’ll want to respond to such
changes in the external circumstances, in order to give the user a decent experience of
your application regardless.

In addition, all sensor usage means battery usage, to a lesser or greater degree — some‐
times to a considerably greater degree. There’s a compromise to be made here: you want
to please the user with your app’s convenience and usefulness without disagreeably

831

surprising and annoying the user through the device’s rapid depletion of its battery
charge.

These are all topics to which I’ll be returning often throughout the course of this chapter.

Core Location
The Core Location framework provides facilities for the device to determine and report
its location (location services). It takes advantage of three sensors:
Wi-Fi

The device, if Wi-Fi is turned on, may scan for nearby Wi-Fi devices and compare
these against an online database.

Cell
The device, if it has cell capabilities and they are not turned off, may compare nearby
telephone cell towers against an online database.

GPS
The device’s GPS, if it has one, may be able to obtain a position fix from GPS
satellites. The GPS is obviously the most accurate location sensor, but it takes the
longest to get a fix, and in some situations it will fail — indoors, for example, or in
a city of tall buildings, where the device can’t “see” enough of the sky.

Core Location will automatically use whatever facilities the device has available; all you
have to do is ask for the device’s location. Core Location allows you to specify how
accurate a position fix you want; more accurate fixes may require more time.

Use of Core Location requires a location manager object, an instance of CLLocation‐
Manager. There is no reason not to create this object early and maintain it as a property:

var locman = CLLocationManager()

The notion of a location is encapsulated by the CLLocation class and its properties,
which include:
coordinate

A CLLocationCoordinate2D, a struct consisting of two doubles representing lati‐
tude and longitude.

altitude

A CLLocationDistance, which is a double representing a number of meters.

speed

A CLLocationSpeed, which is a double representing meters per second.

course

A CLLocationDirection, which is a double representing degrees (not radians)
clockwise from north.

832 | Chapter 22: Sensors

horizontalAccuracy

A CLLocationAccuracy, which is a double representing meters.

timestamp

An NSDate.

Behavior of your app may depend on the device’s physical location. To help you test,
Xcode lets you pretend that the device is at a particular location on earth. The Simulator’s
Debug → Location menu lets you enter a location; the Scheme editor lets you set a default
location (under Options); and the Debug → Simulate Location menu lets you switch
among locations. You can set a built-in location or supply a standard GPX file containing
a waypoint. You can also set the location to None; it’s important to test for what happens
when no location information is available.

Core Location Authorization
New in iOS 8, use of Core Location requires that you explicitly request authorization
from the user. Moreover, there are now two types of authorization:
When in use

When In Use authorization allows your app to perform basic location determina‐
tion and no more. Background modes, and in particular modes where the system
tracks the device’s location on your behalf and notifies your app even if your app
isn’t running, are unavailable. Your app, tracking location in the foreground, can
continue tracking location if the user backgrounds it, but the device will make the
user aware that this is happening through a double-height status bar (similar to the
in-call status bar).

Always
Always authorization gives your app use of all Core Location modes and features.
Even after you are granted authorization, if your app does in fact track location in
the background, the system will periodically present the authorization dialog again,
every few days, to remind the user of the situation.

An app from iOS 7 and before that hasn’t been recompiled against iOS 8 will need
Always authorization in order to use Core Location at all.

The purpose of this authorization policy is evidently to make the user as mindful as
possible of how apps are using Core Location. Core Location usage, as I’ve already said,
can constitute a major battery drain; moreover, users are particularly sensitive to the
notion that their location may be tracked without their knowledge. The two levels of
authorization, along with their concomitant notifications to the user, provide a measure
of reassurance that secret or inadvertent location tracking is unlikely to take place.

Core Location | 833

Authorization methods are follows. At the broadest level, the CLLocationManager class
method locationServicesEnabled reports whether location services as a whole are
switched off; if you now proceed to try to use Core Location, the system may put up an
alert on your behalf offering to switch to the Settings app so that the user can switch
location services on. The class method authorizationStatus reports the authorization
status; two possible results correspond to the two types of authorization, .Authorized-
WhenInUse and .Authorized (the latter meaning authorized always). To request au‐
thorization if the status is .NotDetermined, call one of two instance methods, either
requestWhenInUseAuthorization or requestAlwaysAuthorization; you must also
have a corresponding entry in your app’s Info.plist, either NSLocationWhenInUseUsage-
Description or NSLocationAlwaysUsageDescription, providing the body of the au‐
thorization request alert.

In theory, the status .Authorized is deprecated and is replaced by .Authorized-
Always. But in fact, Swift didn’t get the memo, and .AuthorizedAlways doesn’t exist.

The two request methods have no completion handler. They are not run synchronously
— your code continues even after the request dialog appears — but there is no penalty
for trying to obtain the device’s location while the request dialog is present: the location
manager itself will pause and wait for the user to deal with the dialog. Therefore, my
approach to requesting authorization is a just-in-time strategy; I don’t call my determine-
Status method until I’m ready to start actively using location services:

@IBAction func doFindMe (sender:AnyObject!) {
 if !self.determineStatus() {
 println("not authorized")
 return
 }
 // ...
}

Here’s my determineStatus method; the starred lines call attention to differences from
the approach used in previous chapters:

func determineStatus() -> Bool {
 let ok = CLLocationManager.locationServicesEnabled() // *
 if !ok {
 return true // *
 }
 let status = CLLocationManager.authorizationStatus()
 switch status {
 case .Authorized, .AuthorizedWhenInUse:
 return true
 case .NotDetermined:
 self.locman.requestWhenInUseAuthorization()
 return true // *

834 | Chapter 22: Sensors

 case .Restricted:
 return false
 case .Denied:
 // ... can offer to switch to Settings here ...
 return false
 }
}

We return true under two circumstances where we don’t have authorization but we
might get it. That way, if the caller proceeds to attempt to use location services anyway,
either the system dialog will appear and we might even obtain authorization and use of
location services will succeed, or we can fail gracefully at that time (as I’ll demonstrate
in the next section).

To retest the system authorization request alert and other access-related behaviors,
go to the Settings app and choose General → Reset → Reset Location & Privacy.
This, unfortunately, causes the system to revert to its default settings for everything
in the Privacy section of Settings: Location Services and all System Services will be
On, and all permissions lists will be empty.

Basic Location Determination
To ask where the device is:

1. Set yourself as the location manager’s delegate (CLLocationManagerDelegate).
2. Configure the location manager. I’ll talk more about this in a moment.
3. Tell the location manager to begin generating information. For basic location in‐

formation, that means calling startUpdatingLocation. The location manager, in
turn, will begin calling the appropriate delegate method repeatedly; in the case of
startUpdatingLocation, it’s locationManager:didUpdateLocations:. Your del‐
egate will also always implement locationManager:didFailWithError: to receive
error messages. You’ll deal with each delegate method call in turn. Remember to
call the corresponding stop... method when you no longer need location services.

Here are some location manager configuration properties that are useful to set:
desiredAccuracy

Your choices are:

• kCLLocationAccuracyBestForNavigation

• kCLLocationAccuracyBest

• kCLLocationAccuracyNearestTenMeters

• kCLLocationAccuracyHundredMeters

Core Location | 835

• kCLLocationAccuracyKilometer

• kCLLocationAccuracyThreeKilometers

It might be sufficient for your purposes to know very quickly but very roughly the
device’s location. Highest accuracy may also cause the highest battery drain; indeed,
kCLLocationAccuracyBestForNavigation is supposed to be used only when the
device is connected to external power. The accuracy setting is not a filter: the lo‐
cation manager will send you whatever location information it has, even if it isn’t
as accurate as you asked for, and checking a location’s horizontalAccuracy is then
up to you.

distanceFilter

Perhaps you don’t need a location report unless the device has moved a certain
distance since the previous report. This property can help keep you from being
bombarded with events you don’t need.

activityType

Your choices are (CLActivityType):

• .Fitness

• .AutomotiveNavigation

• .OtherNavigation

• .Other

This affects how persistently and frequently updates will be sent, based on the
movement of the device. With .AutomotiveNavigation, updates can cease tem‐
porarily if the device is not moving significantly. With .Fitness, on the other hand,
the user is assumed to be on foot, so updates may arrive even if the device is sta‐
tionary.

As a simple example, we’ll use location services just long enough to see if we can de‐
termine our position; a Bool property, self.trying, acts as a flag stating whether we
are in the middle of this attempt, and an Optional NSDate property, self.startTime,
tracks how long this attempt has been going on:

if !self.determineStatus() {
 println("not authorized")
 return
}
if self.trying { return }
self.trying = true
self.locman.delegate = self
self.locman.desiredAccuracy = kCLLocationAccuracyBest
self.locman.activityType = .Fitness
self.startTime = nil
self.locman.startUpdatingLocation()

836 | Chapter 22: Sensors

We have a utility method for turning off updates and resetting our properties:

func stopTrying () {
 self.locman.stopUpdatingLocation()
 self.startTime = nil
 self.trying = false
}

If something goes wrong, we’ll just turn updates back off. This handles the situation
where we don’t have authorization and determineStatus returns true; we might obtain
authorization at this point, but if we don’t, we now fail gracefully:

func locationManager(manager: CLLocationManager!,
 didFailWithError error: NSError!) {
 println("failed: \(error)")
 self.stopTrying()
}

If things go well, we’ll be handed our location as soon as it is determined, in location-
Manager:didUpdateLocations:. For purposes of this example, I’m going to insist on a
fairly high level of accuracy; if I don’t get it, I wait for the next update. But I don’t want
to wait too long, either, so on the very first pass I record the current time, so that I can
compare the location’s timestamp on subsequent calls. (Observe that I also return im‐
mediately from the first update, as I find that it contains spurious information.) If I get
the desired accuracy within the desired time, I turn off updates and am ready to use the
location information:

let REQ_ACC : CLLocationAccuracy = 10
let REQ_TIME : NSTimeInterval = 10
func locationManager(manager: CLLocationManager!,
 didUpdateLocations locations: [AnyObject]!) {
 print("did update location ")
 let loc = locations.last as CLLocation
 let acc = loc.horizontalAccuracy
 let time = loc.timestamp
 let coord = loc.coordinate
 if self.startTime == nil {
 self.startTime = NSDate()
 return // ignore first attempt
 }
 println(acc)
 let elapsed = time.timeIntervalSinceDate(self.startTime)
 if elapsed > REQ_TIME {
 println("This is taking too long")
 self.stopTrying()
 return
 }
 if acc < 0 || acc > REQ_ACC {
 return // wait for the next one
 }

Core Location | 837

 // got it
 println("You are at \(coord.latitude) \(coord.longitude)")
 self.stopTrying()
}

Feel free to experiment with different values for the required accuracy and the required
time. On my device, it was clearly worth waiting a few cycles to get better accuracy; you
can see the accuracy improving as the sensors warm up:

did update location 1285.19869645162
did update location 1285.19869645172
did update location 1285.19869645173
did update location 65.0
did update location 65.0
did update location 30.0
did update location 30.0
did update location 30.0
did update location 10.0
You are at ...

Heading
For appropriately equipped devices, Core Location supports use of the magnetometer
to determine which way the device is facing (its heading). Although this information is
accessed through a location manager, you do not need location services to be turned on
merely to use the magnetometer to report the device’s orientation with respect to mag‐
netic north; but you do need location services to be turned on in order to report true
north, as this depends on the device’s location.

As with location, you’ll first check that the desired feature is available (heading-
Available); then you’ll instantiate and configure the location manager, and call start-
UpdatingHeading. The delegate will be sent locationManager:didUpdateHeading: (or
locationManager:didFailWithError:). A heading object is a CLHeading instance; its
magneticHeading and trueHeading properties are CLLocationDirection values, which
report degrees (not radians) clockwise from the reference direction (magnetic or true
north, respectively). If the trueHeading is not available, it will be reported as -1. The
trueHeading will not be available unless both of the following are true in the Settings
app:

• Location services are turned on (Privacy → Location Services).
• Compass calibration is turned on (Privacy → Location Services → System Services).

Beyond that, explicit user authorization is not needed in order to get the device’s heading
with respect to true north.

In this example, I’ll use the device as a compass. The headingFilter setting is to prevent
us from being bombarded constantly with readings. For best results, the device should

838 | Chapter 22: Sensors

probably be held level (like a tabletop, or a compass); we are setting the heading-
Orientation so that the reported heading will be the direction in which the top of the
device (the end away from the Home button) is pointing:

if !CLLocationManager.headingAvailable() {return}
if self.updating {return}
self.locman.delegate = self
self.locman.headingFilter = 5
self.locman.headingOrientation = .Portrait
self.updating = true
self.locman.startUpdatingHeading()

In the delegate, I’ll display our heading as a rough cardinal direction in a label in the
interface (self.lab). If we have a trueHeading, I’ll use it; otherwise I’ll use the magnetic-
Heading:

func locationManager(manager: CLLocationManager!,
 didUpdateHeading newHeading: CLHeading!) {
 var h = newHeading.magneticHeading
 let h2 = newHeading.trueHeading
 if h2 >= 0 {
 h = h2
 }
 let cards = ["N", "NE", "E", "SE", "S", "SW", "W", "NW"]
 var dir = "N"
 for (ix, card) in enumerate(cards) {
 if h < 45.0/2.0 + 45.0*Double(ix) {
 dir = card
 break
 }
 }
 if self.lab.text != dir {
 self.lab.text = dir
 }
}

Background Location
You can use Core Location when your app is not in the foreground. There are two quite
different ways to do this:
Continuous background location

This is an extension of what we did earlier. You tell the location manager to start-
UpdatingLocation, and updates are permitted to continue even if the app goes into
the background. Your app runs in the background in order to receive these updates
(except during periods when you elect to receive deferred updates, if the hardware
supports it).

Core Location | 839

Location monitoring
Your app does not run in the background! Rather, the system monitors location for
you. If a significant location event occurs, your app may be awakened in the back‐
ground (or launched in the background, if it is not running) and notified.

The General → Background App Refresh setting, introduced in iOS 7, does not
affect background use of location services in iOS 8. (The two things should never
have been intertwined in the first place.) Use of background location services is now
based on location authorization.

Continuous background location
Use of Core Location to perform continuous background updates is very similar to
production of sound in the background (Chapter 14). In your app’s Info.plist, the “Re‐
quired background modes” key (UIBackgroundModes) should include location; you
can set this up easily by checking “Location updates” under Background Modes in the
Capabilities tab when editing the target. The result is that if you have a location manager
to which you have sent startUpdatingLocation and the user sends your app into the
background, your app is not suspended: the use of location services continues, and your
delegate keeps receiving Core Location events. If your app has When In Use authori‐
zation, the blue double-height status bar will be present as long as your app is in the
background and is actively updating the device’s location (and the user can tap it to
summon your app to the front).

Background use of location services can cause a power drain, but if you want your app
to function as a positional data logger, for instance, it may be the only way; you can also
help conserve power by making judicious choices, such as setting a coarse distance-
Filter value, by not requiring overly high accuracy, and by being correct about the
activityType.

Core Location may be able to operate in deferred mode (allowDeferredLocation-
UpdatesUntilTraveled:timeout:) so that your background app doesn’t receive up‐
dates until the user has moved a specified amount or until a fixed time interval has
elapsed; this, too, can help conserve power, especially if the user locks the screen, as the
device may be able to power down some of its sensors temporarily, and your app can
be allowed to stop running in the background. This feature is dependent on hardware
capabilities; use it only if the class method deferredLocationUpdatesAvailable re‐
turns true. For this feature to work, the location manager’s desiredAccuracy must be
kCLLocationAccuracyBest or kCLLocationAccuracyBestForNavigation, and its
distanceFilter must be kCLDistanceFilterNone (the default).

840 | Chapter 22: Sensors

Deferred mode doesn’t mean that location updates are fewer or filtered; it affects only
the delivery of those updates. Updates are accumulated and then delivered all at once
after the specified distance or time: the delegate is sent these messages:

• locationManager:didFinishDeferredUpdatesWithError:

• locationManager:didUpdateLocations:

The locations: parameter of locationManager:didUpdateLocations: in this situa‐
tion is an array of all the accumulated updates. At this point, deferred updating has
ceased; asking for the next set of updates to be deferred is up to you, by calling allow-
Deferred... again. If the user brings your app to the foreground, any undelivered
accumulated updates are delivered then and there, so that your interface can present
the most recent information.

Location monitoring
Using Core Location to perform location monitoring without being in the foreground
doesn’t require your app to run in the background, and you do not have to set the
UIBackgroundModes of your Info.plist. That’s because the system is going to do all the
work on your behalf. Your app still needs the appropriate authorization, however (be‐
cause the system is doing this work on your behalf).

Some forms of location monitoring involve use of a CLRegion, which basically expresses
a geofence, an area that triggers a notification when the user enters or leaves it (or both).
 This class was broken up in iOS 7 into two classes, CLBeaconRegion and CLCircular‐
Region. CLBeaconRegion is used in connection with iBeacon monitoring; I’m not going
to discuss iBeacon in this book, so that leaves us with CLCircularRegion. The initializer
is init(center:radius:identifier:), where the center: is a CLLocation‐
Coordinate2D; the identifier serves as a unique key. You should also set the region’s
notifyOnEntry or notifyOnExit to false if you’re interested in just one type of event.

There are four distinct forms of location monitoring:
Geofenced local notifications (new in iOS 8)

This is a local notification (UILocalNotification, Chapter 13) that is triggered, not
by the arrival of a certain time, but by the user’s crossing a geofence. You will need
a location manager and When In Use authorization. Create the local notification
and set its region to a CLRegion. The notification’s regionTriggersOnce is true
by default; if false, the notification will be triggered every time the region is entered
or exited (in accordance with the notifyOnEntry and notifyOnExit settings).
Apart from this, the local notification is a standard local notification.

Core Location | 841

Significant location monitoring
If the class method significantLocationChangeMonitoringAvailable returns
true, you can call startMonitoringSignificantLocationChanges. You will need
a location manager and Always authorization. The delegate’s locationManager:did-
UpdateLocations: will be called when the device’s location has changed signifi‐
cantly.

Visit monitoring (new in iOS 8)
By tracking significant changes in your location along with the pauses between those
changes, the system decides that the user is visiting a spot. You will need a location
manager and Always authorization. Call startMonitoringVisits. The delegate’s
locationManager:didVisit: will be called when the user’s location pauses in a way
that suggests a visit is beginning, and again when a visit ends. The second parameter
is a CLVisit, a simple value class wrapping visit data; in addition to coordinate and
horizontalAccuracy, you get an arrivalDate and departureDate. If this is an
arrival, the departureDate will be NSDate.distantFuture(). If this is a departure
and we were not monitoring visits when the user arrived, the arrivalDate will be
NSDate.distantPast().

Visit monitoring is basically a form of significant location monitoring, but requires
even less power and notifies you less often, because locations that don’t involve
pauses are filtered out. (I presume, although the documentation does not say this,
that you should check significantLocationChangeMonitoringAvailable before
monitoring visits.)

Region monitoring
If the class method isMonitoringAvailableForClass: with an argument of
CLCircularRegion.Type returns true, then you can call startMonitoringFor-
Region: for each region in which you are interested. You will need a location man‐
ager and Always authorization. Regions are collected as an NSSet, which is the
location manager’s monitoredRegions. A region’s identifier serves as a unique
key, so that if you start monitoring for a region whose identifier matches that of a
region already in the monitoredRegions set, the latter will be ejected from the set.
The following delegate methods may be called:

• locationManager:didEnterRegion:

• locationManager:didExitRegion:

• locationManager:monitoringDidFailForRegion:withError:

Location monitoring is much less battery-intensive than full-fledged constant location
updating. That’s because it relies on cell tower position to estimate the device’s location.
Since the cell is probably working anyway — for example, the device is a phone, so the

842 | Chapter 22: Sensors

cell is always on and is always concerned with what cell towers are available — little or
no additional power is required. Apple says that the system will also take advantage of
other clues (requiring no extra battery drain) to decide that there may have been a
change in location: for example, the device may observe a change in the available Wi-
Fi networks, strongly suggesting that the device has moved.

Notifications for location monitoring can arrive even if your app isn’t in the foreground.
In that case, there are two possible states in which your app might find itself when an
event arrives:
Your app is suspended in the background

Your app is woken up (remaining in the background) long enough to receive the
normal delegate event and do something with it.

Your app is not running at all
Your app is relaunched (remaining in the background), and your app delegate will
be sent application:didFinishLaunchingWithOptions: with an NSDictionary
containing UIApplicationLaunchOptionsLocationKey, thus allowing it to discern
the special nature of the situation. At this point you probably have no location
manager — your app has just launched from scratch. So you should get yourself a
location manager and start up location services for long enough to receive the nor‐
mal delegate event.

Acceleration and Attitude
Acceleration results from the application of a force to the device, and is detected through
the device’s accelerometer, supplemented by the gyroscope if it has one. Gravity is a
force, so the accelerometer always has something to measure, even if the user isn’t con‐
sciously applying a force to the device; thus the device can report its attitude relative to
the vertical.

Acceleration information can arrive in two ways:
As a prepackaged UIEvent

You can receive a UIEvent notifying you of a predefined gesture performed by
accelerating the device. At present, the only such gesture is the user shaking the
device.

With the Core Motion framework
You instantiate CMMotionManager and then obtain information of a desired type.
You can ask for accelerometer information, gyroscope information, or device
motion information (and you can also use Core Motion to get magnetometer
information); device motion combines the gyroscope data with data from the other
sensors to give you the best possible description of the device’s attitude in space.

Acceleration and Attitude | 843

Shake Events
A shake event is a UIEvent (Chapter 5). Receiving shake events is rather like receiving
remote events (Chapter 14), involving the notion of the first responder. To receive shake
events, your app must contain a UIResponder which:

• Returns true from canBecomeFirstResponder
• Is in fact first responder

This responder, or a UIResponder further up the responder chain, should implement
some or all of these methods:
motionBegan:withEvent:

Something has started to happen that might or might not turn out to be a shake.

motionEnded:withEvent:

The motion reported in motionBegan:withEvent: is over and has turned out to be
a shake.

motionCancelled:withEvent:

The motion reported in motionBegan:withEvent: wasn’t a shake after all.

It might be sufficient to implement motionEnded:withEvent:, because this arrives if
and only if the user performs a shake gesture. The first parameter will be the event
subtype, but at present this is guaranteed to be .MotionShake, so testing it is pointless.

The view controller in charge of the current view is a good candidate to receive shake
events. Thus, a minimal implementation might look like this:

override func canBecomeFirstResponder() -> Bool {
 return true
}
override func viewDidAppear(animated: Bool) {
 super.viewDidAppear(animated)
 self.becomeFirstResponder()
}
override func motionEnded(
 motion: UIEventSubtype, withEvent event: UIEvent) {
 println("hey, you shook me!")
}

By default, if some other object is first responder, and is of a type that supports undo
(such as a UITextField), and if motionBegan:withEvent: is sent up the responder chain,
and if you have not set the shared UIApplication’s applicationSupportsShakeToEdit
property to false, a shake will be handled through an Undo or Redo alert. Your view
controller might not want to rob any responders in its view of this capability. A simple
way to prevent this is to test whether the view controller is itself the first responder; if
it isn’t, we call super to pass the event on up the responder chain:

844 | Chapter 22: Sensors

override func motionEnded(
 motion: UIEventSubtype, withEvent event: UIEvent) {
 if self.isFirstResponder() {
 println("hey, you shook me!")
 } else {
 super.motionEnded(motion, withEvent: event)
 }
}

Raw Acceleration
If the device has an accelerometer but no gyroscope, you can learn about the forces
being applied to it, but some compromises will be necessary. The chief problem is that,
even if the device is completely motionless, its acceleration values will constitute a nor‐
malized vector pointing toward the center of the earth, popularly known as gravity. The
accelerometer is thus constantly reporting a combination of gravity and user-induced
acceleration. This is good and bad. It’s good because it means that, with certain restric‐
tions, you can use the accelerometer to detect the device’s attitude in space. It’s bad
because gravity values and user-induced acceleration values are mixed together. Fortu‐
nately, there are ways to separate these values mathematically:
With a low-pass filter

A low-pass filter will damp out user acceleration so as to report gravity only.

With a high-pass filter
A high-pass filter will damp out the effect of gravity so as to detect user acceleration
only, reporting a motionless device as having zero acceleration.

In some situations, it is desirable to apply both a low-pass filter and a high-pass filter,
so as to learn both the gravity values and the user acceleration values. A common ad‐
ditional technique is to run the output of the high-pass filter itself through a low-pass
filter to reduce noise and small twitches. Apple provides some nice sample code for
implementing a low-pass or a high-pass filter; see especially the AccelerometerGraph
example, which is also very helpful for exploring how the accelerometer behaves.

The technique of applying filters to the accelerometer output has some serious down‐
sides, which are inevitable in a device that lacks a gyroscope:

• It’s up to you to apply the filters; you have to implement boilerplate code and hope
that you don’t make a mistake.

• Filters mean latency. Your response to the accelerometer values will lag behind what
the device is actually doing; this lag may be noticeable.

Reading raw accelerometer values with Core Motion is really a subset of how you read
any values with Core Motion; in some ways it is similar to how you use Core Location:

Acceleration and Attitude | 845

1. You start by instantiating CMMotionManager; retain the instance somewhere, typ‐
ically as a property. There is no reason not to initialize the property directly:

let motman = CMMotionManager()

2. Confirm that the desired hardware is available.
3. Set the interval at which you wish the motion manager to update itself with new

sensor readings.
4. Call the appropriate start... method.
5. Poll the motion manager whenever you want data, asking for the appropriate data

property. This step is surprising; you probably expected that the motion manager
would call into a delegate, but in fact a motion manager has no delegate. The polling
interval doesn’t have to be the same as the motion manager’s update interval; when
you poll, you’ll obtain the motion manager’s current data — that is, the data gen‐
erated by its most recent update, whenever that was.
Alternatively, if your app’s purpose is to collect all the data, then instead of calling
a start... method, you can call a start...UpdatesToQueue:withHandler: meth‐
od and receive callbacks in a block, possibly on a background thread, managed by
an NSOperationQueue (Chapter 25).

6. Don’t forget to call the corresponding stop... method when you no longer need
data.

In this example, I will simply report whether the device is lying flat on its back. I start
by configuring my motion manager; then I launch a repeating timer to trigger polling:

if !self.motman.accelerometerAvailable {
 println("Oh, well")
 return
}
self.motman.accelerometerUpdateInterval = 1.0 / 30.0
self.motman.startAccelerometerUpdates()
self.timer = NSTimer.scheduledTimerWithTimeInterval(
 self.motman.accelerometerUpdateInterval,
 target: self, selector: "pollAccel:",
 userInfo: nil, repeats: true)

My pollAccel: method is now being called repeatedly. In pollAccel:, I ask the motion
manager for its accelerometer data. This arrives as a CMAccelerometerData object,
which is a timestamp plus a CMAcceleration; a CMAcceleration is simply a struct of
three values, one for each axis of the device, measured in Gs. The positive x-axis points
to the right of the device. The positive y-axis points toward the top of the device, away
from the Home button. The positive z-axis points out the front of the screen.

The two axes orthogonal to gravity, which are the x- and y-axes when the device is lying
more or less on its back, are much more accurate and sensitive to small variation than

846 | Chapter 22: Sensors

the axis pointing toward or away from gravity. So our approach is to ask first whether
the x and y values are close to zero; only then do we use the z value to learn whether the
device is on its back or on its face. To keep from updating our interface constantly, we
implement a crude state machine; the state property (self.state) starts out at -1, and
then switches between 0 (device on its back) and 1 (device not on its back), and we
update the interface only when there is a state change:

let dat = self.motman.accelerometerData
let acc = dat.acceleration
let x = acc.x
let y = acc.y
let z = acc.z
let accu = 0.08
if abs(x) < accu && abs(y) < accu && z < -0.5 {
 if self.state == -1 || self.state == 1 {
 self.state = 0
 self.label.text = "I'm lying on my back... ahhh..."
 }
} else {
 if self.state == -1 || self.state == 0 {
 self.state = 1
 self.label.text = "Hey, put me back down on the table!"
 }
}

This works, but it’s sensitive to small motions of the device on the table. To damp this
sensitivity, we can run our input through a low-pass filter. The low-pass filter code comes
straight from Apple’s own examples, and involves maintaining the previously filtered
reading as a set of properties:

func addAcceleration(accel:CMAcceleration) {
 let alpha = 0.1
 self.oldX = accel.x * alpha + self.oldX * (1.0 - alpha)
 self.oldY = accel.y * alpha + self.oldY * (1.0 - alpha)
 self.oldZ = accel.z * alpha + self.oldZ * (1.0 - alpha)
}

Our polling code now starts out by passing the data through the filter:

let dat = self.motman.accelerometerData
self.addAcceleration(dat.acceleration)
let x = self.oldX
let y = self.oldY
let z = self.oldZ
// ... and the rest is as before ...

As I mentioned earlier, instead of polling, you can receive callbacks in a block. This
approach is useful particularly if your goal is to receive every update or to receive updates
on a background thread (or both). To illustrate, I’ll rewrite the previous example to use
this technique; to keep things simple, I’ll ask for my callbacks on the main thread (the

Acceleration and Attitude | 847

documentation advises against this, but Apple’s own sample code does it). We now start
our accelerometer updates like this:

self.motman.startAccelerometerUpdatesToQueue(
 NSOperationQueue.mainQueue(), withHandler: {
 (accelerometerData:CMAccelerometerData!, error:NSError!) in
 if error != nil {
 println(error)
 self.stopAccelerometer()
 return
 }
 self.receiveAccel(accelerometerData)
})

receiveAccel: is just like our earlier pollAccel:, except that we already have the ac‐
celerometer data:

func receiveAccel (dat:CMAccelerometerData) {
 self.addAcceleration(dat.acceleration)
 // ... and the rest is as before ...
}

In this next example, the user is allowed to slap the side of the device into an open hand
— perhaps as a way of telling it to go to the next or previous image or whatever it is
we’re displaying. We pass the acceleration input through a high-pass filter to eliminate
gravity (again, the filter code comes straight from Apple’s examples):

func addAcceleration(accel:CMAcceleration) {
 let alpha = 0.1
 self.oldX = accel.x - ((accel.x * alpha) + (self.oldX * (1.0 - alpha)))
 self.oldY = accel.y - ((accel.y * alpha) + (self.oldY * (1.0 - alpha)))
 self.oldZ = accel.z - ((accel.z * alpha) + (self.oldZ * (1.0 - alpha)))
}

What we’re looking for, in our polling routine, is a high positive or negative x value. A
single slap is likely to consist of several consecutive readings above our threshold, but
we want to report each slap only once, sο we take advantage of the timestamp attached
to a CMAccelerometerData, maintaining the timestamp of our previous high reading
as a property and ignoring readings that are too close to one another in time. Another
problem is that a sudden jerk involves both an acceleration (as the user starts the device
moving) and a deceleration (as the device stops moving); thus a left slap might be pre‐
ceded by a high value in the opposite direction, which we might interpret wrongly as a
right slap. We can compensate crudely, at the expense of some latency, with delayed
performance; for the CancelableTimer object stored at self.canceltimer, see Appen‐
dix B:

func pollAccel(_:AnyObject!) {
 let dat = self.motman.accelerometerData
 if dat == nil { return }
 self.addAcceleration(dat.acceleration)
 let x = self.oldX

848 | Chapter 22: Sensors

 let thresh = 1.0
 if x < -thresh {
 if dat.timestamp - self.oldTime > 0.5 || self.lastSlap == 1 {
 self.oldTime = dat.timestamp
 self.lastSlap = -1
 self.canceltimer?.cancel()
 self.canceltimer = CancelableTimer(once: true) {
 println("left")
 }
 self.canceltimer.startWithInterval(0.5)
 }
 } else if x > thresh {
 if dat.timestamp - self.oldTime > 0.5 || self.lastSlap == -1 {
 self.oldTime = dat.timestamp
 self.lastSlap = 1
 self.canceltimer?.cancel()
 self.canceltimer = CancelableTimer(once: true) {
 println("right")
 }
 self.canceltimer.startWithInterval(0.5)
 }
 }
}

The gesture we’re detecting is a little tricky to make: the user must slap the device into
an open hand and hold it there; if the device jumps out of the open hand, that movement
may be detected as the last in the series, resulting in the wrong report (left instead of
right, or vice versa). And the latency of our gesture detection is very high.

Of course we might try tweaking some of the magic numbers in this code to improve
accuracy and performance, but a more sophisticated analysis would probably involve
storing a stream of all the most recent CMAccelerometerData objects and studying the
entire stream to work out the overall trend.

Gyroscope
The inclusion of an electronic gyroscope in the panoply of onboard hardware in some
devices has made a huge difference in the accuracy and speed of gravity and attitude
reporting. A gyroscope has the property that its attitude in space remains constant; thus
it can detect any change in the attitude of the containing device. This has two important
consequences for accelerometer measurements:

• The accelerometer can be supplemented by the gyroscope to detect quickly the
difference between gravity and user-induced acceleration.

• The gyroscope can observe pure rotation, where little or no acceleration is involved
and so the accelerometer would not have been helpful. The extreme case is constant
attitudinal rotation around the gravity axis, which the accelerometer alone would

Acceleration and Attitude | 849

be completely unable to detect (because there is no user-induced force, and gravity
remains constant).

It is possible to track the raw gyroscope data: make sure the device has a gyroscope
(gyroAvailable), and then call startGyroUpdates. What we get from the motion
manager is a CMGyroData object, which combines a timestamp with a CMRotationRate
that reports the rate of rotation around each axis, measured in radians per second, where
a positive value is counterclockwise as seen by someone whose eye is pointed to by the
positive axis. (This is the opposite of the direction graphed in Figure 3-9.) The problem,
however, is that the gyroscope values are scaled and biased. This means that the values
are based on an arbitrary scale and are increasing (or decreasing) at a roughly constant
rate. Thus there is very little merit in the exercise of dealing with the raw gyroscope
data.

What you are likely to be interested in is a combination of at least the gyroscope and
the accelerometer. The mathematics required to combine the data from these sensors
can be daunting. Fortunately, there’s no need to know anything about that. Core Motion
will happily package up the calculated combination of data as a CMDeviceMotion in‐
stance, with the effects of the sensors’ internal bias and scaling already factored out.
CMDeviceMotion consists of the following properties, all of which provide a triple of
values corresponding to the device’s natural 3D frame (x increasing to the right, y
increasing to the top, z increasing out the front):
gravity

A CMAcceleration expressing a vector with value 1 pointing to the center of the
earth, measured in Gs.

userAcceleration

A CMAcceleration describing user-induced acceleration, with no gravity compo‐
nent, measured in Gs.

rotationRate

A CMRotationRate describing how the device is rotating around its own center.
This is essentially the CMGyroData rotationRate with scale and bias accounted
for.

magneticField

A CMCalibratedMagneticField describing (in its field, a CMMagneticField) the
magnetic forces acting on the device, measured in microteslas. The sensor’s internal
bias has already been factored out. The accuracy is one of the following:

• CMMagneticFieldCalibrationAccuracyUncalibrated

• CMMagneticFieldCalibrationAccuracyLow

• CMMagneticFieldCalibrationAccuracyMedium

850 | Chapter 22: Sensors

• CMMagneticFieldCalibrationAccuracyHigh

attitude

A CMAttitude, descriptive of the device’s instantaneous attitude in space. When
you ask the motion manager to start generating updates, you can specify a reference
frame for the attitude (having first called the class method availableAttitude-
ReferenceFrames to ascertain that the desired reference frame is available on this
device). In every case, the negative z-axis points at the center of the earth:
CMAttitudeReferenceFrameXArbitraryZVertical

The x-axis and y-axis, though orthogonal to the other axes, could be pointing
anywhere.

CMAttitudeReferenceFrameXArbitraryCorrectedZVertical

The same as in the previous option, but the magnetometer is used to maintain
accuracy (preventing drift of the reference frame over time).

CMAttitudeReferenceFrameXMagneticNorthZVertical

The x-axis points toward magnetic north.

CMAttitudeReferenceFrameXTrueNorthZVertical

The x-axis points toward true north. This value will be inaccurate unless you
are also using Core Location to obtain the device’s location.

The attitude value’s numbers can be accessed through various CMAttitude prop‐
erties corresponding to three different systems, each being convenient for a differ‐
ent purpose:
pitch, roll, yaw

The device’s angle of offset from the reference frame, in radians, around the
device’s natural x-axis, y-axis, and z-axis respectively.

rotationMatrix

A CMRotationMatrix struct embodying a 3×3 matrix expressing a rotation in
the reference frame.

quaternion

A CMQuaternion describing an attitude. (Quaternions are commonly used in
OpenGL.)

In this example, we turn the device into a simple compass/clinometer, merely by asking
for its attitude with reference to magnetic north and taking its pitch, roll, and yaw.
We begin by making the usual preparations; notice the use of the showsDeviceMovement-
Display property, intended to allow the runtime to prompt the user if the magnetometer
needs calibration:

Acceleration and Attitude | 851

if !self.motman.deviceMotionAvailable {
 println("Oh, well")
 return
}
let ref = CMAttitudeReferenceFrameXMagneticNorthZVertical
let f = ref.value
let avail = UInt32(CMMotionManager.availableAttitudeReferenceFrames())
if avail & f == 0 {
 println("darn")
 return
}
self.motman.showsDeviceMovementDisplay = true
self.motman.deviceMotionUpdateInterval = 1.0 / 30.0
self.motman.startDeviceMotionUpdatesUsingReferenceFrame(ref)
let t = self.motman.deviceMotionUpdateInterval * 10
self.timer = NSTimer.scheduledTimerWithTimeInterval(t, target:self,
 selector:"pollAttitude:",userInfo:nil, repeats:true)

In pollAttitude:, we wait until the magnetometer is ready, and then we start taking
attitude readings (converted to degrees):

let mot = self.motman.deviceMotion
if mot == nil {return}
let acc = mot.magneticField.accuracy.value
if acc <= CMMagneticFieldCalibrationAccuracyLow.value {
 return // not ready yet
}
let att = mot.attitude
let to_deg = 180.0 / M_PI
println("\(att.pitch * to_deg), \(att.roll * to_deg), \(att.yaw * to_deg)")

The values are all close to zero when the device is level with its x-axis pointing to mag‐
netic north, and each value increases as the device is rotated counterclockwise with re‐
spect to an eye that has the corresponding positive axis pointing at it. So, for example,
a device held upright (top pointing at the sky) has a pitch approaching 90; a device
lying on its right edge has a roll approaching 90; and a device lying on its back with its
top pointing north has a yaw approaching -90.

There are some quirks in the way Euler angles operate mathematically:

• roll and yaw increase with counterclockwise rotation from 0 to π (180 degrees)
and then jump to -π (-180 degrees) and continue to increase to 0 as the rotation
completes a circle; but pitch increases to π/2 (90 degrees) and then decreases to 0,
then decreases to -π/2 (-90 degrees) and increases to 0. This means that attitude
alone, if we are exploring it through pitch, roll, and yaw, is insufficient to describe
the device’s attitude, since a pitch value of, say, π/4 (45 degrees) could mean two
different things. To distinguish those two things, we can supplement attitude with
the z-component of gravity:

852 | Chapter 22: Sensors

let g = mot.gravity
let whichway = g.z > 0 ? "forward" : "back"
println("pitch is tilted \(whichway)")

• Values become inaccurate in certain orientations. In particular, when pitch is ±90
degrees (the device is upright or inverted), roll and yaw become erratic. (You may
see this effect referred to as “the singularity” or as “gimbal lock.”) I believe that,
depending on what you are trying to accomplish, you can solve this by using a
different expression of the attitude, such as the rotationMatrix, which does not
suffer from this limitation.

This next (simple and very silly) example illustrates a use of CMAttitude’s rotation-
Matrix property. Our goal is to make a CALayer rotate in response to the current attitude
of the device. We start as before, except that our reference frame is CMAttitude-
ReferenceFrameXArbitraryZVertical; we are interested in how the device moves
from its initial attitude, without reference to any particular fixed external direction such
as magnetic north. In pollAttitude, our first step is to store the device’s current attitude
in a CMAttitude property, self.ref:

let mot = self.motman.deviceMotion
if mot == nil {return}
let att = mot.attitude
if self.ref == nil {
 self.ref = att
 return
}

That code works correctly because on the first few polls, as the attitude-detection hard‐
ware warms up, att is nil, so we don’t get past the return call until we have a valid initial
attitude. Our next step is highly characteristic of how CMAttitude is used: we call the
CMAttitude instance method multiplyByInverseOfAttitude:, which transforms our
attitude so that it is relative to the stored initial attitude:

att.multiplyByInverseOfAttitude(self.ref)

Finally, we apply the attitude’s rotation matrix directly to a layer in our interface as a
transform. Well, not quite directly: a rotation matrix is a 3×3 matrix, whereas a CA‐
Transform3D, which is what we need in order to set a layer’s transform, is a 4×4 matrix.
However, it happens that the top left nine entries in a CATransform3D’s 4×4 matrix
constitute its rotation component, so we start with an identity matrix and set those
entries directly:

let r = att.rotationMatrix
var t = CATransform3DIdentity
t.m11 = CGFloat(r.m11)
t.m12 = CGFloat(r.m12)
t.m13 = CGFloat(r.m13)
t.m21 = CGFloat(r.m21)

Acceleration and Attitude | 853

t.m22 = CGFloat(r.m22)
t.m23 = CGFloat(r.m23)
t.m31 = CGFloat(r.m31)
t.m32 = CGFloat(r.m32)
t.m33 = CGFloat(r.m33)
let lay = // whatever
CATransaction.setAnimationDuration(1.0/10.0)
lay.transform = t

The result is that the layer apparently tries to hold itself still as the device rotates. The
example is rather crude because we aren’t using OpenGL to draw a three-dimensional
object, but it illustrates the principle well enough.

There is a quirk to be aware of in this case as well: over time, the transform has a tendency
to drift. Thus, even if we leave the device stationary, the layer will gradually rotate. That
is the sort of effect that CMAttitudeReferenceFrameXArbitraryCorrectedZVertical
is designed to help mitigate, by bringing the magnetometer into play.

Here are some additional considerations to be aware of when using Core Motion:

• The documentation warns that your app should create only one CMMotion‐
Manager instance. This is not a terribly onerous restriction, but it’s rather odd that,
if this is important, the API doesn’t provide a shared singleton instance accessed
through a class method.

• Use of Core Motion is legal while your app is running in the background. To take
advantage of this, your app would need to be running in the background for some
other reason; there is no Core Motion UIBackgroundModes setting in an Info.plist.
For example, you might run in the background because you’re using Core Location,
and take advantage of this to employ Core Motion as well.

• Core Motion requires that various sensors be turned on, such as the magnetometer
and the gyroscope. This can result in some increased battery drain, so try not to
use any sensors you don’t have to, and remember to stop generating updates as soon
as you no longer need them.

The iPhone 6 and iPhone 6 Plus have a barometer! You can get altitude information
using the CMAltimeter and CMAltitudeData classes.

Motion Activity
Some devices have a motion coprocessor chip with the ability to detect, analyze, and
keep a record of device motion even while the device is asleep and with very little drain
on power. This is not a form of location determination; it is an analysis of the device’s
physical motion and attitude in order to draw conclusions about what the user has been

854 | Chapter 22: Sensors

doing while carrying or wearing the device. You can learn that the user is walking, or
walked for an hour, but not where the user was walking.motion activity

Interaction with the motion coprocessor is through a CMMotionActivityManager in‐
stance. There is no reason not to initialize a property with this instance:

let actman = CMMotionActivityManager()

The device must actually have a motion coprocessor; call the class method isActivity-
Available. The user must also grant authorization, and, having granted it, can later
deny it (in the Settings app, under Privacy → Motion Activity). There are no authori‐
zation methods; the technique is to “tickle” the activity manager by trying to query it
and seeing if you get an error. In this example, I have a Bool property,
self.authorized, which I set based on the outcome of trying to query the activity
manager:

let now = NSDate()
self.actman.queryActivityStartingFromDate(now,
 toDate:now, toQueue:NSOperationQueue.mainQueue()) {
 (arr:[AnyObject]!, err:NSError!) in
 let notauth = Int(CMErrorMotionActivityNotAuthorized.value)
 if err != nil && err.code == notauth {
 self.authorized = false
 } else {
 self.authorized = true
 }
}

On the first run of that code, the system puts up the authorization request alert. The
completion handler is not called until the user deals with the alert, so the outcome tells
you what the user decided. On subsequent runs, that code reports the current author‐
ization status.

There are two approaches to querying the activity manager:
Real-time updates

This is similar to getting motion manager updates with a handler. You call start-
ActivityUpdatesToQueue:withHandler:, and the handler is called periodically.
When you no longer need updates, call stopActivityUpdates.

Historical data
The motion coprocessor records about a week’s-worth of data. You ask for a chunk
of that recorded data by calling queryActivityStartingFromDate:toDate:to-
Queue:withHandler:.

I’ll illustrate querying for historical data. In this example, I fetch the data for the past
24 hours. I have prepared an NSOperationQueue property, self.queue:

Acceleration and Attitude | 855

let now = NSDate()
let yester = now.dateByAddingTimeInterval(-60*60*24)
self.actman.queryActivityStartingFromDate(yester, toDate: now,
 toQueue: NSOperationQueue.mainQueue()) {
 (arr:[AnyObject]!, err:NSError!) -> Void in
 var acts = arr as [CMMotionActivity]
 // ...
}

We now have an array of CMMotionActivity objects representing every change in the
device’s activity status. This is a value class. It has a startDate, a confidence (a
CMMotionActivityConfidence, .Low, .Medium, or .High) describing how sure the ac‐
tivity manager is in its analysis of what the user was doing, and a bunch of Bool properties
categorizing the activity:

• stationary

• walking

• running

• automotive

• cycling (new in iOS 8)
• unknown

A common first response to the flood of data is to pare it down. To help with this, I’ve
extended CMMotionActivity with a utility method that summarizes its Bool properties
as a string:

extension CMMotionActivity {
 private func tf(b:Bool) -> String {
 return b ? "t" : "f"
 }
 func overallAct() -> String {
 let s = tf(self.stationary)
 let w = tf(self.walking)
 let r = tf(self.running)
 let a = tf(self.automotive)
 let u = tf(self.unknown)
 return "\(s) \(w) \(r) \(a) \(u)"
 }
}

So, as a straightforward way of paring down the data, I walk backwards through the
data, removing every CMMotionActivity with no definite activity, with a low degree of
confidence, or whose activity is the same as its predecessor. Then I set a property, and
my data are ready for use:

856 | Chapter 22: Sensors

for i in stride(from: acts.count-1, through: 0, by: -1) {
 if acts[i].overallAct() == "f f f f f" {
 acts.removeAtIndex(i)
 }
}
for i in stride(from: acts.count-1, through: 0, by: -1) {
 if acts[i].confidence.rawValue < 2 {
 acts.removeAtIndex(i)
 }
}
for i in stride(from: acts.count-1, through: 1, by: -1) {
 if acts[i].overallAct() == acts[i-1].overallAct() {
 acts.removeAtIndex(i)
 }
}
dispatch_async(dispatch_get_main_queue()) {
 self.data = acts
}

New in iOS 8, there is also a CMPedometer class; before using it, check the isStep-
CountingAvailable class method. Some devices can deduce the size of the user’s stride
and compute distance (isDistanceAvailable); some devices can use barometric data
to estimate what floor of a building the user is on (isFloorCountingAvailable). Ped‐
ometer data is queried just like motion activity data; data arrives as a CMPedometerData
object. (I believe that CMPedometer supersedes CMStepCounter from iOS 7.)

Acceleration and Attitude | 857

PART IV

Final Topics

This part of the book is a miscellany of topics.

• Chapter 23 is about files. It explains how your app can store data on disk to be
retrieved the next time the app runs (including both standalone files and user de‐
faults). It also discusses sharing files with the user through iTunes and with other
apps, plus the document architecture and iCloud, and concludes with a survey of
how iOS can work with some common file formats (XML, SQLite, Core Data, and
image files).

• Chapter 24 introduces networking, with an emphasis on HTTP downloading of
data. It also introduces in-app purchasing (a specialized form of networking) and
Bonjour.

• Chapter 25 is about threads. Making your code multithreaded can introduce great
complexity and is not a beginner topic, but you still might need to understand the
basic concepts of multithreading, either in order to prevent a lengthy task from
blocking user interaction with your app, or because some framework explicitly relies
on it. Particular attention is paid to the advantages of NSOperation and (especially)
Grand Central Dispatch.

• Chapter 26 describes how iOS supports Undo in your app.

CHAPTER 23

Persistent Storage

The device on which your app runs contains flash memory that functions as the equiv‐
alent of a hard disk, holding files that survive between runs of your app, even if the
device is powered down. This chapter is about how and where files are saved and re‐
trieved, and about some of the additional ways in which files can be manipulated: for
example, apps can define document types in which they specialize and can hand such
documents to one another, and can share documents into the cloud (iCloud), so that
multiple copies of the same app can retrieve them on different devices. The chapter also
explains how user preferences are maintained in NSUserDefaults, and describes some
specialized file formats and ways of working with their data, such as XML, SQLite, Core
Data, and images.

The Sandbox
The hard disk as a whole is not open to your app’s view. A limited portion of the hard
disk is dedicated to your app alone: this is your app’s sandbox. The idea is that every app,
seeing only its own sandbox, is hindered from spying or impinging on the files belonging
to other apps, and in turn is protected from having its own files spied or impinged on
by other apps. Your app’s sandbox is thus a safe place for you to store your data. Your
sandbox, and hence your data, will be deleted if the user deletes your app; otherwise, it
should reliably persist.

Standard Directories
The sandbox contains some standard directories, and there are built-in methods for
referring to them. For example, suppose you want a reference to the Documents direc‐
tory. Here’s one way to access it:

let docs = NSSearchPathForDirectoriesInDomains(
 .DocumentDirectory, .UserDomainMask, true).last as String

861

That code returns a path string for the Documents directory. The preferred way to refer
to a file or directory, however, is with a URL. You can obtain this from an NSFileManager
instance:

let fm = NSFileManager()
var err : NSError?
if let docsurl = fm.URLForDirectory(
 .DocumentDirectory, inDomain: .UserDomainMask,
 appropriateForURL: nil, create: true, error: &err) {
 // use docsurl here
 } else {
 // error, examine err here
 }

A question that will immediately occur to you is: where should I put files and folders
that I want to save now and read later? The Documents directory can be a good place.
But if your app supports file sharing (discussed later in this chapter), the user can see
and modify your app’s Documents directory through iTunes, so you might not want to
put things there that the user isn’t supposed to see and change.

Personally, I favor the Application Support directory for most purposes. In OS X, this
directory is shared by multiple applications, each of which must confine itself to an
individual subfolder, but on iOS each app has its own private Application Support di‐
rectory in its own sandbox, so you can safely put files anywhere within it. This directory
may not exist initially, so you can obtain it and create it at the same time:

let fm = NSFileManager()
var err : NSError?
if let suppurl = fm.URLForDirectory(
 .ApplicationSupportDirectory, inDomain: .UserDomainMask,
 appropriateForURL: nil, create: true, error: &err) {
 // use suppurl here
 } else {
 // error, examine err here
 }

Temporary files, whose loss you are willing to accept (because their contents can be
recreated), can be written into the Caches directory (NSCachesDirectory) or the Tem‐
porary directory (NSTemporaryDirectory). You can write temporary files into the Ap‐
plication Support folder, but by default this means they can be backed up by the user
through iTunes or iCloud; to prevent that, exclude such a file from backup by way of its
file URL:

myDocumentURL.setResourceValue(
 true, forKey: NSURLIsExcludedFromBackupKey, error: &err)

Although URLs are the favored way of referring to files and folders, they are a more
recent innovation than path strings, and you may encounter file operations that still
require a string. To derive a path string from an NSURL, send it the path message.

862 | Chapter 23: Persistent Storage

Figure 23-1. An app’s sandbox in the Simulator

Visually Inspecting the Sandbox
The Simulator’s sandbox is a folder on your Mac that you can inspect visually. This is
more difficult with Xcode 6 than in previous versions, because the sandbox folder layout
has changed in iOS 8. In your user ~/Library/Developer/CoreSimulator/Devices folder,
you’ll find mysteriously named folders representing the different simulators. The de‐
vice.plist file inside each folder can help you identify which simulator a folder represents;
so can xcrun simctl list at the command line. Inside a simulator’s data/Containers/
Data/Application folder are more mysteriously named folders representing apps on that
simulator. I don’t know how to identify the different apps, but one of them is the app
you’re interested in, and inside it is that app’s sandox.

In Figure 23-1, I’ve drilled down from my user Library to an app that I’ve run in the
Simulator. My app’s Documents folder is visible, and I’ve opened it to show a folder and
a couple of files that I’ve created programmatically (the code that created that folder and
files will appear later in this chapter). Also visible is the app’s Library folder; the app’s
Application Support folder is inside it.

You can also view the file structure of the sandbox on the device; indeed, you may find
this simpler than identifying the Simulator sandbox. When the device is connected and
no app is being run from Xcode, choose Window → Devices. Select your device on the
left; on the right, under Installed Apps, select your app. Click the Gear icon and choose
Show Container to view your app’s sandbox hierarchy in a modal sheet. Alternatively,
choose Download Container to copy your app’s sandbox to your computer; the sandbox
arrives on your computer as an .xcappdata package, and you can open it in the Finder
with Show Package Contents.

The Sandbox | 863

Basic File Operations
Let’s say we intend to create a folder MyFolder inside the Documents directory. Assume
that we have an NSFileManager instance fm and an NSURL docsurl pointing at the
Documents directory. We can then generate a reference to MyFolder, from which we
can ask our NSFileManager instance to create the folder if it doesn’t exist already:

var err : NSError?
let myfolder = docsurl.URLByAppendingPathComponent("MyFolder")
var ok = fm.createDirectoryAtURL(
 myfolder, withIntermediateDirectories: true,
 attributes: nil, error: &err)
// ... error-checking omitted

To learn what files and folders exist within a directory, you can ask for an array of the
directory’s contents:

var err : NSError?
let arr = fm.contentsOfDirectoryAtURL(docsurl,
 includingPropertiesForKeys: nil, options: nil, error: &err)
// ... error-checking omitted
(arr! as [NSURL]).map{$0.lastPathComponent}.map(println)
/*
MyFolder
*/

The array resulting from contentsOfDirectoryAtURL:... lists full URLs of the direc‐
tory’s immediate contents; it is shallow. For a deep array, which might be very big, you
can enumerate the directory, so that you are handed only one file reference at a time:

let dir = fm.enumeratorAtURL(docsurl, includingPropertiesForKeys: nil,
 options: nil, errorHandler: nil)!
while let f = dir.nextObject() as? NSURL {
 if f.pathExtension == "txt" {
 println(f.lastPathComponent)
 }
}
/*
file1.txt
file2.txt
*/

A directory enumerator also permits you to decline to dive into a particular subdirectory
(skipDescendants), so you can make your traversal even more efficient.

Consult the NSFileManager class documentation for more about what you can do with
files, and see also Apple’s File System Programming Guide.

864 | Chapter 23: Persistent Storage

Saving and Reading Files
To save or read a simple file, you are likely to use one of the convenience methods for
the class appropriate to the file’s contents. NSString, NSData, NSArray, and NSDiction‐
ary provide methods writeToURL:... (for writing) and init(contentsOfURL:...)
(for reading).

NSString and NSData objects map directly between their own contents and the contents
of the file. Here, I’ll generate a text file directly from a string:

var err : NSError?
ok = "howdy".writeToURL(myfolder.URLByAppendingPathComponent("file1.txt"),
 atomically: true, encoding: NSUTF8StringEncoding, error: &err)
// ... error-checking omitted

You can also read and write an attributed string using a file in a standard format,
as I mentioned in Chapter 10.

NSArray and NSDictionary files are actually property lists, and will work only if all the
contents of the array or dictionary are property list types (NSString, NSData, NSDate,
NSNumber, NSArray, and NSDictionary).

So how do you save to a file an object of some other class? Well, if an object’s class adopts
the NSCoding protocol, you can convert it to an NSData and back again using NSKeyed‐
Archiver and NSKeyedUnarchiver; the problem is then solved, because an NSData can
be saved as a file or in a property list.

You can make your own class adopt the NSCoding protocol. This can become somewhat
complicated because an object can refer (through a property) to another object, which
may also adopt the NSCoding protocol, and thus you can end up saving an entire graph
of interconnected objects if you wish. However, I’ll confine myself to illustrating a simple
case (and you can read Apple’s Archives and Serializations Programming Guide for more
information).

Let’s say, then, that we have a simple Person class with a firstName property and a last-
Name property. We’ll declare that it adopts the NSCoding protocol:

class Person: NSObject, NSCoding {
 @NSCopying var firstName : NSString
 @NSCopying var lastName : NSString
 override var description : String {
 return self.firstName + " " + self.lastName
 }
 init(firstName:String, lastName:String) {
 self.firstName = firstName

The Sandbox | 865

 self.lastName = lastName
 super.init()
 }
}

To make this class actually conform to NSCoding, we must implement encodeWith-
Coder: to archive the object, and init(coder:) to unarchive the object. In encodeWith-
Coder:, we must first call super if the superclass adopts NSCoding — in this case, it
doesn’t — and then call the appropriate encode... method for each property we want
preserved:

func encodeWithCoder(coder: NSCoder) {
 // do not call super in this case
 coder.encodeObject(self.lastName, forKey: "last")
 coder.encodeObject(self.firstName, forKey: "first")
}

In init(coder:), we call the appropriate decode... method for each property stored
earlier, thus restoring the state of our object. We must also call super, using either
init(coder:) if the superclass adopts the NSCoding protocol or the designated ini‐
tializer if not:

required init(coder: NSCoder) {
 self.lastName = coder.decodeObjectForKey("last")! as String
 self.firstName = coder.decodeObjectForKey("first")! as String
 // do not call super init(coder:) in this case
 super.init()
}

We can test our code by creating, configuring, and saving a Person instance as a file:

let moi = Person(firstName: "Matt", lastName: "Neuburg")
let moidata = NSKeyedArchiver.archivedDataWithRootObject(moi)
let moifile = docsurl.URLByAppendingPathComponent("moi.txt")
moidata.writeToURL(moifile, atomically: true)

We can retrieve the saved Person at a later time:

let persondata = NSData(contentsOfURL: moifile)!
let person =
 NSKeyedUnarchiver.unarchiveObjectWithData(persondata) as Person
println(person) // Matt Neuburg

If the NSData object is itself the entire content of the file, as here, then instead of using
archivedDataWithRootObject: and unarchiveObjectWithData:, you can skip the in‐
termediate NSData object and use archiveRootObject:toFile: and unarchiveObject-
WithFile:.

Saving a single Person as an archive may seem like overkill; why didn’t we just make a
text file consisting of the first and last names? But imagine that a Person has a lot more
properties, or that we have an array of hundreds of Persons, or an array of hundreds of

866 | Chapter 23: Persistent Storage

dictionaries where one value in each dictionary is a Person; now the power of an ar‐
chivable Person is evident. Even though Person now adopts the NSCoding protocol, an
NSArray containing a Person object still cannot be written to disk using NSArray’s
writeToFile... or writeToURL..., because Person is still not a property list type. But
the array can be archived and written to disk with NSKeyedArchiver.

File Coordinators
New in iOS 8, you can expose a file owned by your app to reading and writing by other
apps. In this situation, there needs to be a coherent way for your app to read and write
to that file without interference from other apps. The solution is to use an NSFile‐
Coordinator.

To read or write through an NSFileCoordinator, instantiate NSFileCoordinator along
with an NSFileAccessIntent appropriate for reading or writing, to which you have
handed the URL of your target file. Then call a coordinate... method. I’ll demonstrate
the use of coordinateAccessWithIntents(intents:queue:byAccessor:). The
accessor: is a closure where you do your actual reading or writing in the normal way,
except that the URL for reading or writing now comes from the NSFileAccessIntent
object.

So, to write a Person out to a file under the auspices of an NSFileCoordinator:

let fc = NSFileCoordinator()
let intent = NSFileAccessIntent.writingIntentWithURL(moifile, options: nil)
fc.coordinateAccessWithIntents(
 [intent], queue: NSOperationQueue.mainQueue()) {
 (err:NSError!) in
 let ok = moidata.writeToURL(intent.URL, atomically: true)
}

And to read a Person from a file using an NSFileCoordinator:

let fc = NSFileCoordinator()
let intent = NSFileAccessIntent.readingIntentWithURL(moifile, options: nil)
fc.coordinateAccessWithIntents(
 [intent], queue: NSOperationQueue.mainQueue()) {
 (err:NSError!) in
 let persondata = NSData(contentsOfURL: intent.URL)!
 let person =
 NSKeyedUnarchiver.unarchiveObjectWithData(persondata) as Person
}

User Defaults
User defaults (NSUserDefaults) are intended as the persistent storage of the user’s pref‐
erences. They are little more, really, than a special case of an NSDictionary property list
file. You talk to the NSUserDefaults standardUserDefaults object much as if it were a

User Defaults | 867

dictionary; it has keys and values. And the only legal values are property list values;
thus, for example, to store a Person in user defaults, you’d have to archive it first to an
NSData object. Unlike NSDictionary, NSUserDefaults provides convenience methods
for converting between a simple data type such as a Float or a Bool and the object that
is stored in the defaults (setFloat:forKey:, floatForKey:, and so forth). But the de‐
faults themselves are still a dictionary.

Meanwhile, somewhere on disk, this dictionary is being saved for you automatically as
a property list file — though you don’t concern yourself with that. You simply set or
retrieve values from the dictionary by way of their keys, secure in the knowledge that
the file is being read into memory or written to disk as needed. Your chief concern is to
make sure that you’ve written everything needful into user defaults before your app
terminates; in the multitasking world (Appendix A), this will usually mean when the
app delegate receives applicationDidEnterBackground: at the latest. If you’re worried
that your app might crash, you can tell the standardUserDefaults object to
synchronize as a way of forcing it to save right now, but this is rarely necessary.

To provide the value for a key before the user has had a chance to do so — the default
default, as it were — use registerDefaults:. What you’re supplying here is a dictionary
whose key–value pairs will each be written into the user defaults, but only if there is no
such key already. For example:

NSUserDefaults.standardUserDefaults().registerDefaults([
 "cardMatrixRows" : 4,
 "cardMatrixColumns" : 3
])

The idea is that we call registerDefaults: extremely early as the app launches. Either
the app has run at some time previously and the user has set these preferences, in which
case this call has no effect and does no harm, or not, in which case we now have initial
values for these preferences with which to get started. So, in the game app from which
that code comes, we start out with a 4×3 game layout, but the user can change this at
any time.

This leaves only the question of how the user is to interact with the defaults. One way
is that your app provides some kind of interface. For example, the game app from which
the previous code comes has a tab bar interface; the second tab is where the user sets
preferences (Figure 23-2).

Alternatively, you can provide a settings bundle, consisting mostly of one or more prop‐
erty list files describing an interface and the corresponding user default keys and their
initial values; the Settings app is then responsible for translating your instructions into
an actual interface, and for presenting it to the user.

Using a settings bundle has some obvious disadvantages: the user has to leave your app
to access preferences, and you don’t get the kind of control over the interface that you

868 | Chapter 23: Persistent Storage

Figure 23-2. An app’s preferences interface

have within your own app. Also, the user can set your preferences while your app is
backgrounded or not running; you’ll need to register for NSUserDefaultsDidChange-
Notification in order to hear about this.

In some situations, though, a settings bundle has some clear advantages. Keeping the
preferences interface out of your app can make your app’s own interface cleaner and
simpler. You don’t have to write any of the “glue” code that coordinates the preferences
interface with the user default values. And it may be appropriate for the user to be able
to set at least certain preferences for your app when your app isn’t running.

In iOS 7 and before, another objection to a settings bundle was that the user might not
think to look in the Settings app for your preferences. New in iOS 8, however, this is
less of an issue, because you can transport your user directly from your app to your app’s
preferences in the Settings app:

let url = NSURL(string:UIApplicationOpenSettingsURLString)!
UIApplication.sharedApplication().openURL(url)

Writing a settings bundle is described in Apple’s Preferences and Settings Programming
Guide.

It is common practice to misuse NSUserDefaults ever so slightly for various purposes.
For example, every method in your app can access the standardUserDefaults object,

User Defaults | 869

so it often serves as a global “drop” where one instance can deposit a piece of information
for another instance to pick up later, when those two instances might not have ready
communication with one another or might not even exist simultaneously.

NSUserDefaults is also a lightweight alternative to the built-in view controller–based
state saving and restoration mechanism discussed in Chapter 6. My Zotz! app
(Figure 23-2) is a case in point. In addition to using the user defaults to store the user’s
actual preferences, it also misuses them to store state information: it records the state
of the game board and the card deck into user defaults every time these change, so that
if the app is terminated and then launched again later, we can restore the game as it was
when the user left off. One might argue that, while the current card layout may be state,
the card deck itself is data — and so I am misusing the user defaults to store data.
However, while purists may grumble, it’s a very small amount of data and I don’t think
the distinction is terribly significant in this case.

Yet another use of NSUserDefaults, new in iOS 8, is as a way to communicate data
between your app and an extension provided by your app. For example, let’s say you’ve
written a today extension (Chapter 13) whose interface details depend upon some data
belonging to your app. After configuring your extension and your app to constitute an
app group, both the extension and the app can access the NSUserDefaults associated
with the app group (call init(suiteName:) instead of standardUserDefaults). For
more information, see the “Handling Common Scenarios” chapter of Apple’s App Ex‐
tension Programming Guide.

Simple Sharing and Previewing of Files
iOS provides some simple and safe passageways by which a file can pass in and out of
your sandbox. File sharing lets the user manipulate the contents of your app’s Docu‐
ments directory. UIDocumentInteractionController allows the user to tell another app
to hand your app a copy of a document, or to tell your app to hand a copy of a document
to another app. UIDocumentInteractionController also permits previewing a docu‐
ment, provided it is compatible with Quick Look.

New in iOS 8 is an elaborate mechanism for allowing one app to share an area of
its sandbox directly with other apps — document provider extensions, along with
related classes such as UIDocumentMenuViewController and UIDocumentPick‐
erViewController. This edition does not discuss this topic; see the “Document Pro‐
vider” chapter of Apple’s App Extension Programming Guide.

File Sharing
If your app supports file sharing, its Documents directory becomes available to the user
through iTunes (Figure 23-3). The user can add files to your app’s Documents directory,

870 | Chapter 23: Persistent Storage

Figure 23-3. The iTunes file sharing interface

and can save files and folders from your app’s Documents directory to the computer, as
well as renaming and deleting files and folders. This could be appropriate, for example,
if your app works with common types of file that the user might obtain elsewhere, such
as PDFs or JPEGs.

To support file sharing, set the Info.plist key “Application supports iTunes file sharing”
(UIFileSharingEnabled).

Once your entire Documents directory is exposed to the user this way, you are unlikely
to use the Documents directory to store private files. As I mentioned earlier, I like to
use the Application Support directory instead.

Your app doesn’t get any automatic notification when the user has altered the contents
of the Documents directory. Noticing that the situation has changed and responding
appropriately is entirely up to you; Apple’s DocInteraction sample code demonstrates
one approaching using the kernel-level kqueue mechanism.

Document Types and Receiving a Document
Your app can declare itself willing to open documents of a certain type. In this way, if
another app obtains a document of this type, it can propose to hand a copy of the
document over to your app. For example, the user might download the document with
Mobile Safari, or receive it in a mail message with the Mail app; now we need a way to
get it from Safari or Mail to you.

To let the system know that your app is a candidate for receiving a certain kind of
document, you will configure the “Document types” (CFBundleDocumentTypes) key in
your Info.plist. This is an array, where each entry will be a dictionary specifying a docu‐
ment type by using keys such as “Document Content Type UTIs” (LSItemContent-
Types), “Document Type Name” (CFBundleTypeName), CFBundleTypeIconFiles, and

Simple Sharing and Previewing of Files | 871

Figure 23-4. Creating a document type

LSHandlerRank. Far and away the simplest method for configuring the Info.plist is
through the interface available in the Info tab when you edit the target.

For example, suppose I want to declare that my app opens PDFs and text files. In my
target’s Info tab in Xcode, I would edit the Document Types section to look like
Figure 23-4.

The result is that my Info.plist contains this entry:

<key>CFBundleDocumentTypes</key>
<array>
 <dict>
 <key>CFBundleTypeIconFiles</key>
 <array/>
 <key>CFBundleTypeName</key>
 <string>PDF</string>
 <key>LSItemContentTypes</key>
 <array>
 <string>com.adobe.pdf</string>
 </array>
 </dict>
 <dict>
 <key>CFBundleTypeIconFiles</key>
 <array/>
 <key>CFBundleTypeName</key>
 <string>TEXT</string>
 <key>LSItemContentTypes</key>

872 | Chapter 23: Persistent Storage

Figure 23-5. The Mail app offers to hand off a PDF

 <array>
 <string>public.plain-text</string>
 </array>
 </dict>
</array>

Now suppose the user receives a PDF in an email message. The Mail app can display
this PDF, but the user can also bring up an activity view offering, among other things,
to open the file in some other app. The interface will resemble Figure 23-5; various apps
that can deal with a PDF are listed here, and my app is among them.

So far, so good. But what if the user actually taps the button that sends the PDF over to
my app? For this to work, my app delegate must implement application:open-
URL:sourceApplication:annotation:. When that method is called, my app has been
brought to the front, either by launching it from scratch or by reviving it from back‐
ground suspension; its job is now to handle the opening of the document whose URL
has arrived as the second parameter. The system has already copied the document into
my app’s Inbox directory, which it has created in my Documents folder for exactly this
purpose.

The Inbox directory is created in your Documents folder. Thus, if your app im‐
plements file sharing, the user can see the Inbox folder; you may wish to delete the
Inbox folder, therefore, as soon as you’re done retrieving files from it.

In this simple example, my app has just one view controller, which has an outlet to a
UIWebView where we will display any PDFs that arrive in this fashion. So my app
delegate contains this code:

Simple Sharing and Previewing of Files | 873

func application(application: UIApplication, openURL url: NSURL,
 sourceApplication: String?, annotation: AnyObject?) -> Bool {
 let vc = self.window!.rootViewController as ViewController
 vc.displayDoc(url)
 return true
}

And my view controller contains this code:

func displayDoc (url:NSURL) {
 let req = NSURLRequest(URL: url)
 self.wv.loadRequest(req)
}

In real life, things might be more complicated. Our implementation of
application:openURL:... might check to see whether this really is a PDF, and return
false if it isn’t. Also, our app might be in the middle of something else, possibly dis‐
playing a completely different view controller’s view; because application:open-
URL:... can arrive at any time, we may have to be prepared to drop whatever we were
doing and display the incoming document instead.

If our app is launched from scratch by the arrival of this URL, application:didFinish-
LaunchingWithOptions: will be sent to our app delegate as usual. The options dictio‐
nary (the second parameter) will contain the UIApplicationLaunchOptionsURLKey,
and we can take into account, if we like, the fact that we are being launched specifically
to open a document. We can also return false to refuse to open the document. If we
return true as usual, application:openURL:... will arrive in good order after our
interface has been set up.

The example I’ve been discussing assumes that the UTI for the document type is stan‐
dard and well-known. It is also possible that your app will operate on a new document
type, that is, a type of document that the app itself defines. In that case, you’ll also want
to add this UTI to your app’s list of Exported UTIs in the Info.plist. I’ll give an example
later in this chapter.

Handing Over a Document
The converse of the situation discussed in the previous section is this: your app has
somehow acquired a document and wants to let the user hand over a copy of it to some
other app to deal with it. This is done through the UIDocumentInteractionController
class. This class operates asynchronously, so retaining an instance of it is up to you;
typically, you’ll store it in a property, and there is no reason not to initialize this property
directly:

let dic = UIDocumentInteractionController()

874 | Chapter 23: Persistent Storage

Figure 23-6. The document Open In activity view

For example, assuming we have a file URL url pointing to a document on disk, pre‐
senting the interface for handing the document over to some other application
(Figure 23-6) could be as simple as this (sender is a button that the user has just tapped):

self.dic.URL = url
let v = sender as UIView
let ok = self.dic.presentOpenInMenuFromRect(
 v.bounds, inView: v, animated: true)

This interface is an activity view (Chapter 13). There are actually two activity views
available:
presentOpenInMenuFromRect:inView:animated:
presentOpenInMenuFromBarButtonItem:animated:

Presents an activity view listing apps in which the document can be opened (like
Figure 23-6).

presentOptionsMenuFromRect:inView:animated:
presentOptionsMenuFromBarButtonItem:animated:

Presents an activity view listing apps in which the document can be opened, along
with other possible actions, such as Print, Copy, and Mail (like Figure 23-5).

Your app can’t learn which other applications are capable of accepting the docu‐
ment! Indeed, it can’t even learn in advance whether any other applications are
capable of accepting the document; your only clue is that the returned Bool value
afterward will be false if the UIDocumentInteractionController couldn’t present
the requested interface.

Previewing a Document
A UIDocumentInteractionController can be used for an entirely different purpose: it
can present a preview of the document, if the document is of a type for which preview
is enabled, by calling presentPreviewAnimated:. You must give the UIDocument‐

Simple Sharing and Previewing of Files | 875

InteractionController a delegate (UIDocumentInteractionControllerDelegate), and the
delegate must implement documentInteractionControllerViewControllerFor-

Preview:, returning an existing view controller that will contain the preview’s view
controller. So, here we ask for the preview:

self.dic.URL = url
self.dic.delegate = self
self.dic.presentPreviewAnimated(true)

In the delegate, we supply the view controller; it happens that, in my code, this delegate
is a view controller, so it simply returns self:

func documentInteractionControllerViewControllerForPreview(
 controller: UIDocumentInteractionController) -> UIViewController {
 return self
}

If the view controller returned were a UINavigationController, the preview’s view con‐
troller would be pushed onto it. In this case it isn’t, so the preview’s view controller is a
presented view controller with a Done button. The preview interface also contains an
Action button that lets the user summon the Options activity view. In fact, this preview
interface is exactly the same interface already familiar from the Mail app.

New in iOS 8, you cannot preview a document in your app’s Inbox folder. Copy
the document to a different location in your sandbox, such as the Documents folder,
before trying to preview it.

Delegate methods allow you to track what’s happening in the interface presented by the
UIDocumentInteractionController. Probably most important are those that inform you
that key stages of the interaction are ending:

• documentInteractionControllerDidDismissOptionsMenu:

• documentInteractionControllerDidDismissOpenInMenu:

• documentInteractionControllerDidEndPreview:

• documentInteractionController:didEndSendingToApplication:

Previews are actually provided through the Quick Look framework, and you can skip
the UIDocumentInteractionController and present the preview yourself through a
QLPreviewController; you’ll need to import QuickLook. It’s a view controller, so to
display the preview you show it as a presented view controller or push it onto a navi‐
gation controller’s stack, just as UIDocumentInteractionController would have done.
A nice feature of QLPreviewController is that you can give it more than one document
to preview; the user can move between these, within the preview, by paging sideways
or using a table of contents summoned by a button at the bottom of the interface. Apart

876 | Chapter 23: Persistent Storage

from this, the interface looks like the interface presented by the UIDocument‐
InteractionController.

In this example, I may have in my Documents directory one or more PDF or text docu‐
ments. I acquire a list of their URLs and present a preview for them (self.exts has
been initialized to ["pdf", "txt"]):

self.docs = [NSURL]()
let fm = NSFileManager()
var err : NSError?
let docsurl = fm.URLForDirectory(.DocumentDirectory,
 inDomain: .UserDomainMask, appropriateForURL: nil,
 create: true, error: &err)
let dir = fm.enumeratorAtURL(
 docsurl!, includingPropertiesForKeys: nil,
 options: nil, errorHandler: nil)
while let f = dir?.nextObject() as? NSURL {
 if find(self.exts, f.pathExtension) != nil {
 if QLPreviewController.canPreviewItem(f) {
 self.docs.append(f)
 }
 }
}
if self.docs.count == 0 {return}
let preview = QLPreviewController()
preview.dataSource = self
preview.currentPreviewItemIndex = 0
self.presentViewController(preview, animated: true, completion: nil)

You’ll notice that I haven’t told the QLPreviewController what documents to preview.
That is the job of QLPreviewController’s data source. In my code, I (self) am also the
data source. I simply fetch the requested information from the list of URLs, which I
previously saved into self.docs:

func numberOfPreviewItemsInPreviewController(
 controller: QLPreviewController!) -> Int {
 return self.docs.count
}
func previewController(controller: QLPreviewController!,
 previewItemAtIndex index: Int) -> QLPreviewItem! {
 return self.docs[index]
}

The second data source method requires us to return an object that adopts the
QLPreviewItem protocol. By a wildly improbable coincidence, NSURL does adopt this
protocol, so the example works.

Simple Sharing and Previewing of Files | 877

Document Architecture
If your app opens and saves documents of a type peculiar to itself, you may want to take
advantage of the document architecture. This architecture revolves around a class, UI‐
Document, that takes care of a number of pesky issues, such as the fact that loading or
writing your data might take some time. Plus, UIDocument provides autosaving be‐
havior, so that your data is written out automatically whenever it changes. Moreover,
UIDocument is your gateway to allowing your documents to participate in iCloud; with
iCloud, your app’s documents on one of the user’s devices can automatically be mirrored
onto another of the user’s devices.

Getting started with UIDocument is not difficult. You’ll start with a UIDocument sub‐
class, and you’ll override two methods:
loadFromContents:ofType:error:

Called when it’s time to open a document from disk. You are expected to convert
the contents value into a model object that your app can use, store that model
object, and return true. (If there was a problem, you’ll set the error: by indirection
and return false.)

contentsForType:error:

Called when it’s time to save a document to disk. You are expected to convert the
app’s model object into an NSData instance (or, if your document is a package, an
NSFileWrapper) and return it. (If there was a problem, you’ll set the error: by
indirection and return nil.)

Your UIDocument subclass will need a place to store and retrieve the data model object.
Obviously, this can be a property of the UIDocument subclass itself. At the same time,
keep in mind that your UIDocument instance will probably be partnered in some way
with a view controller instance, which will also need access to the same data.

To instantiate a UIDocument, call its designated initializer, init(fileURL:). This sets
the UIDocument’s fileURL property, and associates the UIDocument with this file on
disk, typically for the remainder of its lifetime.

In my description of the two key UIDocument methods that your subclass will override,
I used the phrase, “when it’s time” (to open or save the document). This raises the
question of how your UIDocument instance will know when to open and save a docu‐
ment. There are three circumstances to distinguish:
Make a new document

The fileURL: points to a nonexistent file. Immediately after instantiating the UI‐
Document, you send it saveToURL:forSaveOperation:completionHandler:,
where the second argument (a UIDocumentSaveOperation) is .ForCreating. (The
first argument will be the UIDocument’s own fileURL.) This in turn causes
contentsForType:error: to be called, and the contents of an empty document are

878 | Chapter 23: Persistent Storage

saved out to disk. This implies that your UIDocument subclass should know of
some default value that represents the model data when there is no data.

Open an existing document
Send the UIDocument instance openWithCompletionHandler:. This in turn causes
loadFromContents:ofType:error: to be called.

Save an existing document
There are two approaches to saving an existing document:
Autosave

Usually, you’ll mark the document as “dirty” by calling updateChangeCount:.
From time to time, the UIDocument will notice this situation and will save the
document to disk, calling contentsForType:error: in the process.

Manual save
On certain occasions, waiting for autosave won’t be appropriate. We’ve already
seen an example of such an occasion — when the file itself needs to be created
on the spot. Another is when the app is going into the background; we will want
to preserve our document there and then, in case the app is terminated. You’ll
call saveToURL:forSaveOperation:completionHandler:; if the file is not be‐
ing created for the first time, the second argument will be .ForOverwriting.
Alternatively, if you know you’re finished with the document (perhaps the in‐
terface displaying the document is about to be torn down) you can call close-
WithCompletionHandler:.

The open..., close..., and saveTo... methods have a completionHandler: argu‐
ment. This is UIDocument’s solution to the fact that reading and saving may take time.
The file operations themselves take place on a background thread; the completion-
Handler: block is then called on the main thread.

We now know enough for an example! I’ll reuse my Person class from earlier in this
chapter. Imagine a document effectively consisting of multiple Person instances; I’ll call
each such document a people group. Our app, People Groups, will list all people groups
in the user’s Documents folder; it will also open any people group from disk and display
its contents, allowing the user to edit any Person’s firstName or lastName (Figure 23-7).

My first step is to define a custom UTI in my app’s Info.plist, associating a file type
com.neuburg.pplgrp with a file extension "pplgrp". I then also define a document type
that uses this UTI, as shown earlier in this chapter (Figure 23-8).

A document consists of multiple Persons, so a natural model implementation is an array
of Persons. Moreover, as I mentioned earlier, since Person implements NSCoding, an
NSArray of Persons can be archived directly into an NSData. Thus, our UIDocument
subclass (which I’ll call PeopleDocument) has a public array people property, and can
be implemented very simply: we initialize our people property to an empty Person array,

Document Architecture | 879

Figure 23-7. The People Groups interface

Figure 23-8. Defining a custom UTI

880 | Chapter 23: Persistent Storage

so that we have something to save into a new empty document, and to mediate between
our model and the data on disk, we use NSKeyedUnarchiver and NSKeyedArchiver
exactly as in our earlier examples:

class PeopleDocument: UIDocument {
 var people = [Person]()
 override func loadFromContents(contents: AnyObject,
 ofType typeName: String,
 error outError: NSErrorPointer) -> Bool {
 if let contents = contents as? NSData {
 let arr =
 NSKeyedUnarchiver.unarchiveObjectWithData(
 contents) as [Person]
 self.people = arr
 return true
 }
 return false
 }
 override func contentsForType(typeName: String,
 error outError: NSErrorPointer) -> AnyObject? {
 let data =
 NSKeyedArchiver.archivedDataWithRootObject(self.people)
 return data
 }

}

The remaining questions are architectural: when should a PeopleDocument be initial‐
ized, where should it be stored, and what should be the nature of communications with
it?

The first view controller, DocumentLister, merely lists documents by name, and pro‐
vides an interface for letting the user create a new group; only the second view controller,
PeopleLister, the one that displays the first and last names of the people in the group,
actually needs to work with PeopleDocument.

PeopleLister’s designated initializer therefore requires that it be given a fileURL: ar‐
gument, with which it sets its own fileURL property. In its viewDidLoad implementa‐
tion, PeopleLister instantiates a PeopleDocument with that same fileURL, and retains
it through a PeopleDocument property (self.doc); PeopleLister’s own people property
will be nothing but a front for this PeopleDocument’s people property. If fileURL points
to a nonexistent file, PeopleLister requests that it be created by calling saveToURL:for-
SaveOperation:completionHandler:; otherwise, it requests that the document be
read, by calling openWithCompletionHandler:. Either way, the completion handler re‐
freshes the interface:

Document Architecture | 881

let fileURL : NSURL
var doc : PeopleDocument!
var people : [Person] { // front end for the document's model object
 get {
 return self.doc.people
 }
 set (val) {
 self.doc.people = val
 }
}
init(fileURL:NSURL) {
 self.fileURL = fileURL
 super.init(nibName: "PeopleLister", bundle: nil)
}
required init(coder: NSCoder) {
 fatalError("NSCoding not supported")
}
override func viewDidLoad() {
 super.viewDidLoad()
 self.title =
 self.fileURL.lastPathComponent.stringByDeletingPathExtension
 // ...
 let fm = NSFileManager()
 self.doc = PeopleDocument(fileURL:self.fileURL)
 func listPeople(success:Bool) {
 if success {
 self.tableView.reloadData()
 }
 }
 if !fm.fileExistsAtPath(self.fileURL.path!) {
 self.doc.saveToURL(self.doc.fileURL,
 forSaveOperation: .ForCreating,
 completionHandler: listPeople)
 } else {
 self.doc.openWithCompletionHandler(listPeople)
 }
}

When the user performs a significant editing maneuver, such as creating or deleting a
person or editing a person’s first or last name, PeopleLister tells its PeopleDocument
that the document is dirty, and allows autosaving to take it from there:

self.doc.updateChangeCount(.Done)

When the app is about to go into the background, or when PeopleLister’s own view is
disappearing, PeopleLister forces PeopleDocument to save immediately:

func forceSave(_:AnyObject?) {
 self.tableView.endEditing(true)
 self.doc.saveToURL(self.doc.fileURL,
 forSaveOperation:.ForOverwriting, completionHandler:nil)
}

882 | Chapter 23: Persistent Storage

That’s all it takes; adding UIDocument support to your app is easy, because UIDocument
is merely acting as a supplier and preserver of your app’s data model object. UIDocument
presents itself in the documentation as a large and complex class, but that’s chiefly be‐
cause it is so heavily customizable both at high and low levels; for the most part, you
won’t need any of that heavy customization, and use of UIDocument really will be as
simple as what I’ve shown here. You might go further in order to give your UIDocument
a more sophisticated understanding of what constitutes a significant change in your
data by working with its undo manager; I’ll talk about undo managers in Chapter 26.
For further details, see Apple’s Document-based App Programming Guide for iOS.

iCloud
Once your app is operating through UIDocument, basic iCloud compatibility effectively
falls right into your lap. You have just two steps to perform:
Obtain iCloud entitlements

Edit the target and, in the Capabilities tab, set the iCloud switch to On. This causes
a transaction to take place between Xcode and the Member Center; automatically,
your app gets a Ubiquity Container, and an appropriately configured entitlements
file is added to the project.

Obtain an iCloud-compatible directory
Early in your app’s lifetime, call NSFileManager’s URLForUbiquityContainer-
Identifier: (typically passing nil as the argument), on a background thread, to
obtain the URL of the cloud-shared directory. Any documents your app puts here
by way of a UIDocument subclass will be automatically shared into the cloud.

Thus, having switched on iCloud support, I can make my People Groups example app
iCloud-compatible with just two code changes. In the app delegate, as my app launches,
I step out to a background thread (Chapter 25), obtain the cloud-shared directory’s
URL, and then step back to the main thread and retain the URL through a property,
self.ubiq:

dispatch_async(dispatch_get_global_queue(0, 0)) {
 let fm = NSFileManager()
 let ubiq = fm.URLForUbiquityContainerIdentifier(nil)
 dispatch_async(dispatch_get_main_queue()) {
 self.ubiq = ubiq
 }
}

When I specify where to seek and save people groups, I continue using the user’s Docu‐
ments folder if ubiq is nil, but otherwise I use ubiq itself:

iCloud | 883

var docsurl : NSURL {
 get {
 let del = UIApplication.sharedApplication().delegate
 if let ubiq = (del as AppDelegate).ubiq {
 return ubiq
 } else {
 let fm = NSFileManager()
 return fm.URLForDirectory(
 .DocumentDirectory, inDomain: .UserDomainMask,
 appropriateForURL: nil, create: true, error: nil)!
 }
 }
}

To test, I run the app on a device (with iCloud → Documents & Data switched to On in
the Settings app) and create a people group with some people in it. I then switch to a
different device (also with iCloud → Documents & Data switched to On) and run the
app there, and tap the Refresh button, which looks through the docsurl directory for
pplgrp files:

let fm = NSFileManager()
self.files = fm.contentsOfDirectoryAtURL(
 self.docsurl,
 includingPropertiesForKeys: nil, options: nil, error: nil)!
 .filter
 { ($0 as NSURL).pathExtension == "pplgrp" }
 .map
 { $0 as NSURL }
self.tableView.reloadData()

Presto, the app now displays my people group containing my people! It’s quite thrilling.

There are a few further refinements that my app probably needs in order to be a good
iCloud citizen. For example, my app is not automatically aware that a new document
has appeared in the cloud (that’s why I had to tap Refresh to discover an existing people
group). To be notified of that, I’d want to run an NSMetadataQuery. The usual strategy
is: instantiate NSMetadataQuery, configure the search, register for notifications such as
NSMetadataQueryDidFinishGatheringNotification and NSMetadataQueryDid-

UpdateNotification, start the search, and retain the NSMetadataQuery instance with
the search continuing to run for the entire lifetime of the app.

Another concern is that my app should be notified when the currently open document
changes on disk because a new version of it was downloaded from the cloud (that is,
someone edited the document while I had it open). For that, register for UIDocument-
StateChangedNotification. To learn the document’s state, consult its document-
State property (UIDocumentState). A big issue is likely to be what should happen if
the document state is .InConflict. You’ll want to resolve the conflict in coordination
with the NSFileVersion class; for details and example code, see the “Resolving Document
Version Conflicts” chapter of Apple’s Document-based App Programming Guide for iOS.

884 | Chapter 23: Persistent Storage

Yet another issue is the question of what should happen if the availability of iCloud
changes in the course of our app’s career. The problem here is that the data is stored in
two different places — the Documents directory or the cloud-shared directory. Suppose,
for example, that our app starts life without iCloud — because the user hasn’t registered
for it, or has it turned off for our app — and then suddenly iCloud is available. We could
then call NSFileManager’s setUbiquitous:itemAtURL:destinationURL:error: to
transfer the document to our ubiquity container directory. However, it is not so obvious
what to do if iCloud is switched from On to Off, as it is now too late to access the ubiquity
container directory to rescue the document; in effect, the cloud-based data is lost (until
the user logs back into that iCloud account).

Along the same lines, as my app launches, before I even ask for the ubiquity container,
I should probably call NSFileManager’s ubiquityIdentityToken. If the result is nil,
iCloud isn’t available, or this user hasn’t registered for iCloud, and we might as well omit
any subsequent attempt to work with iCloud. If it isn’t nil, it identifies the user’s iCloud
account; this can be useful, for example, to detect when the user has logged into a dif‐
ferent account.

Instead of, or in addition to, storing full-fledged documents in the cloud, your app might
like to store some key–value pairs, similar to a sort of online NSUserDefaults. To do so,
check the “Use key–value store” checkbox when you configure your entitlements in the
Capabilities tab, and then use the NSUbiquitousKeyValueStore class; get the default-
Store shared object and talk to it much as you would talk to NSUserDefaults. The
NSUbiquitousKeyValueStoreDidChangeExternallyNotification tells you when data
is changed in the cloud. Material that you store in the cloud through NSUbiquitous‐
KeyValueStore does not count against the user’s iCloud storage limit, but it needs to be
kept short and simple.

New in iOS 8, a UIDocument-based app that supports iCloud can also support Handoff,
allowing the user who switches to a different device to see the same data in the same
state as on the previous device. Handoff is outside the scope of this edition; see the
“Supporting User Activities” section of the UIDocument class reference.

Further iCloud details are outside the scope of this discussion; see Apple’s iCloud Design
Guide. Getting started is easy; making your app a good iCloud citizen, capable of dealing
with the complexities that iCloud may entail, is not.

iOS 8 introduces iCloud Drive, a Dropbox-like cloud-based storage mechanism that
can share documents from any app; iCloud Drive is not covered in this edition.

iCloud | 885

XML
XML is a highly flexible and widely used general-purpose text file format for storage
and retrieval of structured data. You might use it yourself to store data that you’ll need
to retrieve later, or you could encounter it when obtaining information from elsewhere,
such as the Internet.

OS X Cocoa provides a set of classes (NSXMLDocument and so forth) for reading,
parsing, maintaining, searching, and modifying XML data in a completely general way,
but iOS does not include these. I think the reason must be that their tree-based approach
is too memory-intensive. Instead, iOS provides NSXMLParser, a much simpler class
that walks through an XML document, sending delegate messages as it encounters el‐
ements. With this, you can parse an XML document once, but what you do with the
pieces as you encounter them is up to you. The general assumption here is that you
know in advance the structure of the particular XML data you intend to read and that
you have provided classes for storage of the same data in object form and for trans‐
forming the XML pieces into that storage.

To illustrate, let’s return once more to our Person class with a firstName and a last-
Name property. Imagine that as our app starts up, we would like to populate it with Person
objects, and that we’ve stored the data describing these objects as an XML file in our
app bundle, like this:

<?xml version="1.0" encoding="utf-8"?>
<people>
 <person>
 <firstName>Matt</firstName>
 <lastName>Neuburg</lastName>
 </person>
 <person>
 <firstName>Snidely</firstName>
 <lastName>Whiplash</lastName>
 </person>
 <person>
 <firstName>Dudley</firstName>
 <lastName>Doright</lastName>
 </person>
</people>

This data could be mapped to an array of Person objects, each with its firstName and
lastName properties appropriately set. (This is a deliberately easy example, of course;
not all XML is so readily expressed as objects.) Let’s consider how we might do that.

Using NSXMLParser is not difficult in theory. You create the NSXMLParser, handing
it the URL of a local XML file (or an NSData, perhaps downloaded from the Internet),
set its delegate, and tell it to parse. The delegate starts receiving delegate messages. For
simple XML like ours, there are only three delegate messages of interest:

886 | Chapter 23: Persistent Storage

parser:didStartElement:namespaceURI:qualifiedName:attributes:

The parser has encountered an opening element tag. In our document, this would
be <people>, <person>, <firstName>, or <lastName>.

parser:didEndElement:namespaceURI:qualifiedName:

The parser has encountered the corresponding closing element tag. In our docu‐
ment this would be </people>, </person>, </firstName>, or </lastName>.

parser:foundCharacters:

The parser has encountered some text between the starting and closing tags for the
current element. In our document this would be, for example, Matt or Neuburg and
so on.

In practice, responding to these delegate messages poses challenges of maintaining state.
If there is just one delegate, it will have to bear in mind at every moment what element
it is currently encountering; this could make for a lot of properties and a lot of if-
statements in the implementation of the delegate methods. To aggravate the issue,
parser:foundCharacters: can arrive multiple times for a single stretch of text; that is,
the text may arrive in pieces, so we have to accumulate it into a property.

An elegant way to meet these challenges is by resetting the NSXMLParser’s delegate to
different objects at different stages of the parsing process. We make each delegate re‐
sponsible for parsing one element; when a child of that element is encountered, we make
a new object and make it the delegate. The child element delegate is then responsible
for making the parent the delegate once again when it finishes parsing its own element.
This is slightly counterintuitive because it means parser:didStartElement... and
parser:didEndElement... for the same element are arriving at two different objects.
Imagine, for example, what the job of our <people> parser will be:

• When parser:didStartElement... arrives, the <people> parser looks to see if this
is a <person>. If so, it creates an object that knows how to deal with a <person> (a
<person> parser), handing that object a reference to itself (the <people> parser),
and makes it the delegate.

• Delegate messages now arrive at this newly created <person> parser. If any text is
encountered, parser:foundCharacters: will be called, and the text must be accu‐
mulated into a property.

• Eventually, parser:didEndElement... arrives. The <person> parser now uses its
reference to make the <people> parser the delegate once again. Thus, the <people>
parser is in charge once again, ready if another <person> element is encountered
(and the old <person> parser might now go quietly out of existence).

With this in mind, we can design a simple all-purpose base class for parsing an element
(simple especially because we are taking no account of namespaces, attributes, and other

XML | 887

complications). I’ll show you the design and explain its architecture before I fill in the
blanks with actual code:

class MyXMLParserDelegate : NSObject {
 var name : String!
 var text = ""
 weak var parent : MyXMLParserDelegate?
 var child : MyXMLParserDelegate!
 required init(name:String, parent:MyXMLParserDelegate?) {}
 func makeChild(klass:MyXMLParserDelegate.Type,
 elementName:String,
 parser:NSXMLParser) {}
 func finishedChild(s:String) {}
}

Here’s how these properties and methods are intended to work:
name

The name of the element we are parsing now.

text

A place for any characters to accumulate as we parse our element.

parent

A reference to the MyXMLParserDelegate who created us and whose child we are.

child

If we encounter a child element, we’ll create a MyXMLParserDelegate and retain it
here, making it the delegate and making ourselves its parent.

makeChild:elementName:parser:

If we encounter a child element, there’s a standard dance to do: instantiate some
subclass of MyXMLParserDelegate, make ourself its parent, make it our child, and
make it the parser’s delegate. This is a utility method that embodies that dance.

finishedChild:

When a child receives parser:didEndElement..., it should send this message to
its parent before making its parent the delegate. The parameter is the text, but the
parent can use this signal to obtain any information it expects from the child before
the child goes out of existence.

Now we can sketch in the default implementations for the methods I just described:

required init(name:String, parent:MyXMLParserDelegate?) {
 self.name = name
 self.parent = parent
 super.init()
}
func makeChild(klass:MyXMLParserDelegate.Type,
 elementName:String,
 parser:NSXMLParser) {

888 | Chapter 23: Persistent Storage

 let del = klass(name:elementName, parent:self)
 self.child = del
 parser.delegate = del
}
func finishedChild(s:String) { // subclasses must override!
 fatalError("Subclass must implement finishedChild:!")
}

But that’s only half the story. MyXMLParserDelegate is also an NSXMLParserDelegate
— that’s the point! Thus, I now extend MyXMLParserDelegate to adopt NSXMLParser‐
Delegate:

extension MyXMLParserDelegate : NSXMLParserDelegate {
 func parser(parser: NSXMLParser, foundCharacters string: String!) {
 self.text = self.text + string
 }
 func parser(parser: NSXMLParser, didEndElement elementName: String!,
 namespaceURI: String!, qualifiedName qName: String!) {
 if self.parent != nil {
 self.parent!.finishedChild(self.text)
 parser.delegate = self.parent
 }
 }
}

That completes the picture, and we can now proceed to create specialized subclasses of
MyXMLParserDelegate, one for each kind of element we expect to parse. Each subclass
has very little work to do:

• In parser:didStartElement..., if a child element is encountered, it should call
the utility method makeChild:elementName:parser: to create the appropriate
child parser.

• The reverse process is already built into the default implementation of parser:did-
EndElement...: we call the parent’s finishedChild: and make the parent the del‐
egate. Each subclass should implement finishedChild: in order to receive what‐
ever data the child hands back.

We can now parse our sample XML into an array of Person objects very easily. We start
by obtaining the URL of the XML file, handing it to an NSXMLParser, creating our first
delegate parser and making it the delegate, and telling the NSXMLParser to start parsing:

if let url = NSBundle.mainBundle().URLForResource(
 "folks", withExtension: "xml") {
 if let parser = NSXMLParser(contentsOfURL: url) {
 let people = MyPeopleParser(name:"", parent:nil)
 parser.delegate = people
 parser.parse()
 // all done! do something with people.people here
 }
}

XML | 889

MyPeopleParser is the top-level parser. It has a people property that starts out as an
empty Person array; as it encounters a <person> element, its creates a <person> parser
(MyPersonParser), and its finishedChild: implementation expects that MyPerson‐
Parser’s person to supply a Person object, which it will put into its own people property:

var people = [Person]()
func parser(parser: NSXMLParser, didStartElement elementName: String!,
 namespaceURI: String!, qualifiedName qName: String!,
 attributes attributeDict: [NSObject : AnyObject]!) {
 if elementName == "person" {
 self.makeChild(
 MyPersonParser.self, elementName: elementName,
 parser: parser)
 }
}
override func finishedChild(s: String) {
 self.people.append((self.child as MyPersonParser).person)
}

MyPersonParser does the same child-making dance when it encounters a <firstName>
or a <lastName> element; it uses a plain vanilla MyXMLParserDelegate to parse these
children, because the built-in ability to accumulate text and hand it back is all that’s
needed. In finishedChild:, key–value coding is elegantly used to match the name of
the element with the name of the Person property to be set:

var person = Person(firstName: "", lastName: "")
func parser(parser: NSXMLParser, didStartElement elementName: String!,
 namespaceURI: String!, qualifiedName qName: String!,
 attributes attributeDict: [NSObject : AnyObject]!) {
 self.makeChild(MyXMLParserDelegate.self,
 elementName: elementName, parser: parser)
}
override func finishedChild(s: String) {
 self.person.setValue(s, forKey:self.child.name)
}

This may seem like a lot of work to parse such a simple bit of XML, but it is neatly object-
oriented and requires very little new code once we’ve established the MyXMLParser‐
Delegate superclass, which is of course reusable in many other situations.

A foundation class for constructing and parsing JSON strings is also provided —
NSJSONSerialization. It’s a very simple class: all its methods are class methods, and
eligible structures are required to be an array or dictionary (corresponding to what
JSON calls an object) whose elements must be a string, number, array, dictionary, or
null. NSData is used as the medium of exchange; you’ll archive or unarchive as appro‐
priate. JSON arises often as a lightweight way of communicating structured data across
the network; for more information, see http://www.json.org/.

890 | Chapter 23: Persistent Storage

http://www.json.org/

SQLite
SQLite (http://www.sqlite.org/docs.html) is a lightweight, full-featured relational data‐
base that you can talk to using SQL, the universal language of databases. This can be an
appropriate storage format when your data comes in rows and columns (records and
fields) and needs to be rapidly searchable. Also, the database as a whole is never loaded
into memory; the data is accessed only as needed. This is valuable in an environment
like an iOS device, where memory is at a premium.

To use SQLite, link to libsqlite3.dylib (and import <sqlite3.h>). Talking to sqlite3
involves an elaborate C interface which may prove annoying; there are, however, a
number of lightweight Objective-C front ends. In this example, I use fmdb (https://
github.com/ccgus/fmdb) to read the names of people out of a previously created database:

let docsdir = NSSearchPathForDirectoriesInDomains(
 .DocumentDirectory, .UserDomainMask, true).last as String
let dbpath = docsdir.stringByAppendingPathComponent("people.db")
let db = FMDatabase(path:self.dbpath)
if !db.open() {
 return
}
let rs = db.executeQuery("select * from people", withArgumentsInArray:nil)
while rs.next() {
 print(rs["firstname"]); print(" "); println(rs["lastname"])
}
db.close()
/*
Matt Neuburg
Snidely Whiplash
Dudley Doright
*/

You can include a previously constructed SQLite file in your app bundle, but you can’t
write to it there; the solution is to copy it from your app bundle into another location,
such as the Documents directory, before you start working with it.

Core Data
The Core Data framework provides a generalized way of expressing objects and prop‐
erties that form a relational graph; moreover, it has built-in facilities for persisting those
objects to disk — typically using SQLite as a storage format — and reading them from
disk only when they are needed, thus making efficient use of memory. For example, a
person might have not only multiple addresses but also multiple friends who are also
persons; expressing persons and addresses as explicit object types, working out how to
link them and how to translate between objects in memory and data in storage, and
tracking the effects of changes, such as when a person is deleted from the data, can be
tedious. Core Data can help.

SQLite | 891

http://www.sqlite.org/docs.html
https://github.com/ccgus/fmdb
https://github.com/ccgus/fmdb

It is important to stress, however, that Core Data is not a beginner-level technology. It
is difficult to use and extremely difficult to debug. It expresses itself in a highly verbose,
rigid, arcane way. It has its own elaborate way of doing things — everything you already
know about how to create, access, alter, or delete an object within an object collection
becomes completely irrelevant! — and trying to bend it to your particular needs can be
tricky and can have unintended side effects. Nor should Core Data be seen as a substitute
for a true relational database.

Therefore, I have no intention of explaining Core Data; that would require an entire
book. Indeed, such books exist, and if Core Data interests you, you should read some
of them. See also Apple’s Core Data Programming Guide and the other resources referred
to there. I will, however, illustrate what it’s like to work with Core Data.

I will rewrite the People Groups example from earlier in this chapter as a Core Data app.
We will no longer have multiple documents, each representing a single group of people;
instead, we will now have a single document, maintained for us by Core Data, containing
all of our groups and all of their people.

A Core Data project must import CoreData. To construct a Core Data project from
scratch, it is simplest to specify the Master–Detail Application template (or the Single
View Application template) and check Use Core Data in the second screen. This gives
you the necessary linkage to the Core Data framework, along with template code in the
app delegate implementation file for constructing the Core Data persistence stack, a set
of objects that work together to fetch and save your data; in most cases there will no
reason to alter this template code, and I have not done so for this example.

The app delegate template code gives the app delegate three properties representing the
important singleton objects constituting the persistence stack: managedObject-
Context, managedObjectModel, and persistentStoreCoordinator. It also supplies
lazy initializers to give these properties their values when first needed. Of these, the
managedObjectContext is the most important for other classes to have access to. The
managed object context is the world in which your data objects live and move and have
their being: to obtain an object, you fetch it from the managed object context; to create
an object, you insert it into the managed object context; to save your data, you save the
managed object context.

The Master–Detail Application template also gives the Master view controller a managed-
ObjectContext property, and the app delegate sets its value. My Master view controller
is called GroupLister, so the app delegate’s application:didFinishLaunchingWith-
Options: contains these lines:

let navigationController =
 self.window!.rootViewController as UINavigationController
let controller = navigationController.topViewController as GroupLister
controller.managedObjectContext = self.managedObjectContext

892 | Chapter 23: Persistent Storage

Figure 23-9. The Core Data model for the People Groups app

To describe the structure and relationships of the objects constituting your data model,
you design an object graph in a data model document. Our object graph is very simple:
a Group can have multiple Persons (Figure 23-9). The attributes, analogous to object
properties, are all strings, except for the timestamps which are dates; the timestamps
will be used for determining the sort order in which groups and people will be displayed
in the interface — the display order is the order of creation.

Core Data attributes are not quite object properties. Group and Person are not classes;
they are entity names. All Core Data model objects are instances of NSManagedObject,
and therefore they do not, of themselves, have a name property, a firstName property,
a lastName property, and so on. Instead, Core Data model objects make themselves
dynamically KVC compliant for attribute names. For example, Core Data knows, thanks
to our object graph, that a Person entity is to have a firstName attribute, so you can set
a Person’s firstName attribute using KVC (setValue:forKey:). I find this maddening,
so, at the very least, I like to give NSManagedObject the necessary properties through
a category (in Objective-C, because you can’t define a stored property in a Swift exten‐
sion):

// NSManagedObject+GroupAndPerson.h:
#import <CoreData/CoreData.h>
@interface NSManagedObject (GroupAndPerson)
@property (nonatomic) NSString *firstName, *lastName;
@property (nonatomic) NSString *name, *uuid;
@property (nonatomic) NSDate* timestamp;
@property (nonatomic) NSManagedObject* group;
@end
// NSManagedObject+GroupAndPerson.m:

Core Data | 893

#import "NSManagedObject+GroupAndPerson.h"
@implementation NSManagedObject (GroupAndPerson)
@dynamic firstName, lastName, name, uuid, timestamp, group;
@end

Now we’ll be able to use name and firstName and the rest as properties, and CoreData
will generate the corresponding accessors for us.

Now let’s talk about the first view controller, GroupLister. Its job is to list groups and to
allow the user to create a new group (Figure 23-7). The way you ask Core Data for a
model object is with a fetch request. In iOS, where Core Data model objects are often
the data source for a UITableView, fetch requests are conveniently managed through
an NSFetchedResultsController. The template code gives us an NSFetchedResults‐
Controller private property with a corresponding public computed property that gen‐
erates an NSFetchedResultsController if the private property is nil; this seems over‐
blown, and in my implementation I’ve replaced it with a single lazy NSFetchedResults
property, which I’ve called frc. My entity name is Group and my cache name is Groups;
apart from that, and some shortened variable names, this is pure template code:

lazy var frc : NSFetchedResultsController = {
 let req = NSFetchRequest()
 let entity = NSEntityDescription.entityForName(
 "Group", inManagedObjectContext:self.managedObjectContext)
 req.entity = entity
 req.fetchBatchSize = 20
 let sortDescriptor = NSSortDescriptor(key:"timestamp", ascending:true)
 req.sortDescriptors = [sortDescriptor]
 let afrc = NSFetchedResultsController(fetchRequest:req,
 managedObjectContext:self.managedObjectContext,
 sectionNameKeyPath:nil,
 cacheName:"Groups")
 afrc.delegate = self
 var error : NSError? = nil
 if !afrc.performFetch(&error) {
 println("Unresolved error \(error!) \(error!.userInfo)")
 fatalError("Aborting with unresolved error")
 }
 return afrc
}()

The result is that self.frc is the data model, analogous to an array of Group objects.
The implementation of the table view’s Three Big Questions to the data source, all pretty
much straight from the template code, looks like this:

override func numberOfSectionsInTableView(tableView: UITableView) -> Int {
 return self.frc.sections!.count
}
override func tableView(tableView: UITableView,
 numberOfRowsInSection section: Int) -> Int {
 let sectionInfo =
 self.frc.sections![section] as NSFetchedResultsSectionInfo

894 | Chapter 23: Persistent Storage

 return sectionInfo.numberOfObjects
}
override func tableView(tableView: UITableView,
 cellForRowAtIndexPath indexPath: NSIndexPath) -> UITableViewCell {
 let cell = tableView.dequeueReusableCellWithIdentifier(
 "Cell", forIndexPath:indexPath) as UITableViewCell
 cell.accessoryType = .DisclosureIndicator
 let object = self.frc.objectAtIndexPath(indexPath) as NSManagedObject
 cell.textLabel.text = object.name
 return cell
}

Now let’s talk about object creation. GroupLister’s table is initially empty because our
app starts life with no data. When the user asks to create a group, I put up an alert asking
for the name of the new group. In the handler for its OK button, if the user provides a
valid name, I create a new Group entity and save the managed object context. Again,
this is almost boilerplate code, copied from the template’s insertNewObject: method:

av.addAction(UIAlertAction(title: "OK", style: .Default) {
 _ in
 let name = (av.textFields![0] as UITextField).text
 if name == nil || name == "" {return}
 let context = self.frc.managedObjectContext
 let entity = self.frc.fetchRequest.entity!
 let mo = NSEntityDescription.insertNewObjectForEntityForName(
 entity.name!, inManagedObjectContext: context) as NSManagedObject
 mo.name = name
 mo.uuid = NSUUID().UUIDString
 mo.timestamp = NSDate()
 var error : NSError? = nil
 let ok = context.save(&error)
 if !ok {
 println(error!)
 return
 }
 let pl = PeopleLister(groupManagedObject: mo)
 self.navigationController!.pushViewController(pl, animated: true)
})

The second view controller class is PeopleLister (Figure 23-7). It lists all the people in a
particular Group, so I don’t want PeopleLister to be instantiated without a Group;
therefore, its designated initializer is init(groupManagedObject:). To navigate from
the GroupLister view to the PeopleLister view, I instantiate PeopleLister and push it
onto the navigation controller’s stack, as the preceding code shows; I do the same sort
of thing when the user taps an existing Group name in the GroupLister table view:

Core Data | 895

override func tableView(tableView: UITableView,
 didSelectRowAtIndexPath indexPath: NSIndexPath) {
 let pl = PeopleLister(
 groupManagedObject:
 self.frc.objectAtIndexPath(indexPath) as NSManagedObject)
 self.navigationController!.pushViewController(pl, animated: true)
}

PeopleLister, too, has an frc property, along with a lazy initializer that is almost iden‐
tical to the template code for generating an NSFetchedResultsController — almost, but
not quite. In the case of GroupLister, we wanted every group; but a PeopleLister instance
should list only the People belonging to one particular group, which has been stored as
the groupObject property. So PeopleLister’s implementation of the frc initializer con‐
tains these lines:

let pred = NSPredicate(format:"group = %@", self.groupObject)
req.predicate = pred // req is the fetch request we're configuring

As you can see from Figure 23-7, the PeopleLister interface consists of a table of text
fields. Populating the table is easy enough:

override func tableView(tableView: UITableView,
 cellForRowAtIndexPath indexPath: NSIndexPath) -> UITableViewCell {
 let cell = tableView.dequeueReusableCellWithIdentifier(
 "Person", forIndexPath:indexPath) as UITableViewCell
 let object =
 self.frc.objectAtIndexPath(indexPath) as NSManagedObject
 let first = cell.viewWithTag(1) as UITextField
 let last = cell.viewWithTag(2) as UITextField
 first.text = object.firstName
 last.text = object.lastName
 first.delegate = self; last.delegate = self
 return cell
}

When the user edits a text field (the first or last name of a Person), I update the data
model and save the managed object context; the first part of this code should be familiar
from Chapter 8:

func textFieldDidEndEditing(textField: UITextField!) {
 println("did end editing")
 var v = textField.superview!
 while !(v is UITableViewCell) {v = v.superview!}
 let cell = v as UITableViewCell
 let ip = self.tableView.indexPathForCell(cell)!
 let object = self.frc.objectAtIndexPath(ip) as NSManagedObject
 object.setValue(textField.text,
 forKey: ((textField.tag == 1) ? "firstName" : "lastName"))
 var error : NSError? = nil
 let ok = object.managedObjectContext!.save(&error)
 if !ok {

896 | Chapter 23: Persistent Storage

 println(error!)
 return
 }
}

The trickiest part is what happens when the user asks to make a new Person. It starts
out analogously to making a new Group: I make a new Person entity, configure its
attributes with an empty first name and last name, and save the context. But we must
also make this empty Person appear in the table! To do so, we act as the NSFetched‐
ResultsController’s delegate (NSFetchedResultsControllerDelegate); the delegate meth‐
ods are triggered by the change in the managed object context:

func doAdd(_:AnyObject) {
 self.tableView.endEditing(true)
 let context = self.frc.managedObjectContext
 let entity = self.frc.fetchRequest.entity!
 let mo = NSEntityDescription.insertNewObjectForEntityForName(
 entity.name!, inManagedObjectContext:context) as NSManagedObject
 mo.group = self.groupObject
 mo.lastName = ""
 mo.firstName = ""
 mo.timestamp = NSDate()
 var error : NSError? = nil
 let ok = context.save(&error)
 if !ok {
 println(error!)
 return
 }
}
// ================= delegate methods ======================
func controllerWillChangeContent(controller: NSFetchedResultsController) {
 self.tableView.beginUpdates()
}
func controllerDidChangeContent(controller: NSFetchedResultsController) {
 self.tableView.endUpdates()
}
func controller(controller: NSFetchedResultsController,
 didChangeObject anObject: AnyObject,
 atIndexPath indexPath: NSIndexPath?,
 forChangeType type: NSFetchedResultsChangeType,
 newIndexPath: NSIndexPath?) {
 if type == .Insert {
 self.tableView.insertRowsAtIndexPaths(
 [newIndexPath!], withRowAnimation: .Automatic)
 dispatch_async(dispatch_get_main_queue()) {
 let cell =
 self.tableView.cellForRowAtIndexPath(newIndexPath!)!
 let tf = cell.viewWithTag(1) as UITextField
 tf.becomeFirstResponder()
 }
 }
}

Core Data | 897

Image File Formats
The Image I/O framework provides a simple, unified way to open image files (from disk
or downloaded from the network, as described in Chapter 24), to save image files, to
convert between image file formats, and to read metadata from standard image file
formats, including EXIF and GPS information from a digital camera. You’ll need to
import ImageIO.

Obviously, such features were not entirely missing from iOS before the Image I/O
framework was introduced (starting in iOS 4). UIImage can read the data from most
standard image formats, and you can convert formats with functions such as UIImage-
JPEGRepresentation and UIImagePNGRepresentation. But you could not, for example,
save an image as a TIFF without the Image I/O framework.

The Image I/O framework introduces the notion of an image source (CGImageSource).
This can be created from the URL of a file on disk or from an NSData object (actually
CFData, to which NSData is toll-free bridged). You can use this to obtain a CGImage
of the source’s image (or, if the source format contains multiple images, a particular
image). But you can also obtain metadata from the source without transforming the
source into a CGImage, thus conserving memory. For example:

let url = NSBundle.mainBundle().URLForResource(
 "colson", withExtension: "jpg")
let src = CGImageSourceCreateWithURL(url, nil)
let result =
 CGImageSourceCopyPropertiesAtIndex(src, 0, nil) as NSDictionary
// ... do something with result ...

Without having opened the image file as an image, we now have a dictionary full of
information about it, including its pixel dimensions (kCGImagePropertyPixelWidth
and kCGImagePropertyPixelHeight), its resolution, its color model, its color depth,
and its orientation — plus, because this picture originally comes from a digital camera,
the EXIF data such as the aperture and exposure at which it was taken, plus the make
and model of the camera.

We can obtain the image as a CGImage, with CGImageSourceCreateImageAtIndex. Al‐
ternatively, we can request a thumbnail version of the image. This is a very useful thing
to do, and the name “thumbnail” doesn’t really do justice to its importance and power.
If your purpose in opening this image is to display it in your interface, you don’t care
about the original image data; a thumbnail is precisely what you want, especially because
you can specify any size for this “thumbnail” all the way up to the original size of the
image! This is tremendously convenient, because to assign a small UIImageView a large
image wastes all the memory reflected by the size difference.

To generate a thumbnail at a given size, you start with a dictionary specifying the size
along with other instructions, and pass that, together with the image source, to CGImage-

898 | Chapter 23: Persistent Storage

SourceCreateThumbnailAtIndex. The only pitfall is that, because we are working with
a CGImage and specifying actual pixels, we must remember to take account of the scale
of our device’s screen. So, for example, let’s say we want to scale our image so that its
largest dimension is no larger than the width of the UIImageView (self.iv) into which
we intend to place it:

let url = NSBundle.mainBundle().URLForResource(
 "colson", withExtension: "jpg")
let src = CGImageSourceCreateWithURL(url, nil)
let scale = UIScreen.mainScreen().scale
let w = self.iv.bounds.width * scale
let d = [
 kCGImageSourceShouldAllowFloat as String : true,
 kCGImageSourceCreateThumbnailWithTransform as String : true,
 kCGImageSourceCreateThumbnailFromImageAlways as String : true,
 kCGImageSourceThumbnailMaxPixelSize as String : w
]
let imref = CGImageSourceCreateThumbnailAtIndex(src, 0, d)
let im = UIImage(CGImage: imref, scale: scale, orientation: .Up)!
self.iv.image = im

The Image I/O framework also introduces the notion of an image destination, used for
saving an image into a specified file format. As a final example, I’ll show how to save
our image as a TIFF. We never open the image as an image! We save directly from the
image source to the image destination:

let url = NSBundle.mainBundle().URLForResource(
 "colson", withExtension: "jpg")
let src = CGImageSourceCreateWithURL(url, nil)
let fm = NSFileManager()
let suppurl = fm.URLForDirectory(.ApplicationSupportDirectory,
 inDomain: .UserDomainMask, appropriateForURL: nil,
 create: true, error: nil)!
let tiff = suppurl.URLByAppendingPathComponent("mytiff.tiff")
let dest = CGImageDestinationCreateWithURL(tiff, kUTTypeTIFF, 1, nil)
CGImageDestinationAddImageFromSource(dest, src, 0, nil)
let ok = CGImageDestinationFinalize(dest)

Image File Formats | 899

CHAPTER 24

Basic Networking

Networking is difficult and complicated, chiefly because it’s ultimately out of your con‐
trol. My motto with regard to the network is, “There’s many a slip ’twixt the cup and
the lip.” You can ask for a resource from across the network, but at that point anything
can happen: the resource might not be found (the server is down, perhaps), it might
take a while to arrive, it might never arrive, the network itself might vanish after the
resource has partially arrived. iOS, however, makes at least the basics of networking very
easy, so that’s what this chapter will deal with.

To go further into networking than this chapter takes you, start with Apple’s URL Load‐
ing System Programming Guide. To go even deeper under the hood, see the CFNetwork
Programming Guide. Apple also provides a generous amount of sample code. See in
particular SimpleURLConnections, AdvancedURLConnections, SimpleNetwork‐
Streams, SimpleFTPSample, and MVCNetworking.

Many earlier chapters have described interface and frameworks that network for you
automatically. Put a web view in your interface (Chapter 11) and poof, you’re network‐
ing; the web view does all the grunt work, and it does it a lot better than you’d be likely
to do it from scratch. The same is true of AVPlayer (Chapter 15), MFMailCompose‐
ViewController (Chapter 20), and MKMapView (Chapter 24).

HTTP Requests
An HTTP request is made through an NSURLSession object. An NSURLSession is a
kind of grand overarching environment in which network-related tasks are to take place.
You will often need only one NSURLSession object:

901

• For very simple, occasional use, this object might be the singleton shared-
Session object.

• More generally, you’ll create your own NSURLSession by calling
init(configuration:) or init(configuration:delegate:delegateQueue:),
handing it an NSURLSessionConfiguration object describing the desired environ‐
ment.

To use the NSURLSession object to perform a request across the network, you ask it for
a new NSURLSessionTask object. This is the object that actually performs (and repre‐
sents) one upload or download process. NSURLSessionTask is an abstract superclass,
embodying various properties, such as:

• A taskDescription and taskIdentifier; the former is up to you, while the latter
is a unique identifier within the NSURLSession

• The originalRequest and currentRequest (the request can change because there
might be a redirect)

• An initial response from the server
• Various countOfBytes... properties allowing you to track progress
• A state, which might be (NSURLSessionTaskState):

■ .Running
■ .Suspended
■ .Canceling
■ .Completed

• An error if the task failed

In addition, you can tell a task to resume, suspend, or cancel. A task is born suspended,
and does not start until it is told to resume for the first time.

New in iOS 8, you can also set an NSURLSessionTask’s priority to a Float between 0
and 1; this is just a hint to the system, and may be used to rank the relative importance
of your tasks. For convenience, three constant values are also provided:

• NSURLSessionTaskPriorityLow (0.25)
• NSURLSessionTaskPriorityDefault (0.5)
• NSURLSessionTaskPriorityHigh (0.75)

There are three kinds of actual session task:

902 | Chapter 24: Basic Networking

NSURLSessionDataTask
An NSURLSessionTask subclass. With a data task, the data is provided incremen‐
tally to your app as it arrives across the network.

NSURLSessionDownloadTask
An NSURLSessionTask subclass. With a download task, the data is stored as a file,
and the saved file URL is handed to you at the end of the process. The file is outside
your sandbox and will be destroyed, so preserving it (or its contents) is up to you.

NSURLSessionUploadTask
An NSURLSessionDataTask subclass. With an upload task, you can provide a file
to be uploaded and stand back, though you can also hear about the upload progress
if you wish.

Once you’ve obtained a new session task from the NSURLSession, you can keep a ref‐
erence to it if you wish, but you don’t have to; the NSURLSession retains it. The NSURL‐
Session will provide you with a list of its tasks in progress; call getTasksWithCompletion-
Handler:. The completion handler is handed three arrays, one for each type of task.
The NSURLSession releases a task after it is cancelled or completed. Thus, if an NSURL‐
Session has no running or suspended tasks, the three arrays are empty.

There are two ways to ask your NSURLSession for a new NSURLSessionTask:
Call a convenience method

The convenience methods all take a completionHandler: parameter. This com‐
pletion handler is called when the task process ends.

Call a delegate-based method
You give the NSURLSession a delegate when you create it, and the delegate is called
back at various stages of a task’s progress.

The two ways of asking for an NSURLSessionTask entail two different ways of working
with it. I’ll demonstrate both.

Simple HTTP Request
I’ll start by illustrating the utmost in simplicity:

• We use the shared NSURLSession.
• We obtain a download task, handing it a URL and a completion handler.
• We call resume to start the task.

Our code then finishes. Meanwhile, the download proceeds asynchronously on a back‐
ground thread; thus, the interface is not blocked, and the user can tap buttons and so
forth. When the download finishes, the completion handler is called. We must make no
assumptions about when the completion handler will be called or what thread it will be

HTTP Requests | 903

called on; indeed, unless we take steps to the contrary, it will be a background thread.
In this particular example, the URL is that of an image that I intend to display in my
interface; therefore, I step out to the main thread (Chapter 25) in order to talk to the
interface:

let s = "http://www.someserver.com/somefolder/someimage.jpg"
let url = NSURL(string:s)!
let session = NSURLSession.sharedSession()
let task = session.downloadTaskWithURL(url) {
 (loc:NSURL!, response:NSURLResponse!, error:NSError!) in
 let d = NSData(contentsOfURL:loc)!
 let im = UIImage(data:d)
 dispatch_async(dispatch_get_main_queue()) {
 self.iv.image = im
 }
}
task.resume()

There’s many a slip, as I’ve already mentioned, so in real life I would probably hedge my
bets a little more by checking for errors along the way; but the skeleton of the structure
remains exactly the same:

let s = "http://www.someserver.com/somefolder/someimage.jpg"
let url = NSURL(string:s)!
let session = NSURLSession.sharedSession()
let task = session.downloadTaskWithURL(url) {
 (loc:NSURL!, response:NSURLResponse!, error:NSError!) in
 if error != nil {
 println(error)
 return
 }
 let status = (response as NSHTTPURLResponse).statusCode
 if status != 200 {
 println("response status: \(status)")
 return
 }
 let d = NSData(contentsOfURL:loc)!
 let im = UIImage(data:d)
 dispatch_async(dispatch_get_main_queue()) {
 self.iv.image = im
 }
}
task.resume()

Formal HTTP Request
Now let’s go to the other extreme and be very formal:

• We’ll create and retain our own NSURLSession.
• We’ll configure the NSURLSession with an NSURLSessionConfiguration object.

904 | Chapter 24: Basic Networking

• We’ll give the session a delegate.
• Instead of a mere URL, we’ll start with an NSURLRequest.

The NSURLSession initializers permit us to supply an NSURLSessionConfiguration
object dictating various options to be applied to the session. Possible options include:

• Whether to permit cell data use, or to require Wi-Fi
• The maximum number of simultaneous connections to the remote server
• Timeout values:
timeoutIntervalForRequest

The maximum time you’re willing to wait between pieces of data.
timeoutIntervalForResource

The maximum time for the entire download to arrive.

• Cookie, caching, and credential policies

We’re going to call init(configuration:delegate:delegateQueue:), so we’ll also
specify a delegate, as well as stating the queue (roughly, the thread — see Chapter 25)
on which the delegate methods are to be called. For each type of task, there’s a delegate
protocol, which is itself often a composite of multiple protocols.

For example, for a data task, we would want a data delegate — an object conforming to
the NSURLSessionDataDelegate protocol, which itself conforms to the NSURLSession‐
TaskDelegate protocol, which in turn conforms to the NSURLSessionDelegate protocol,
resulting in about a dozen delegate methods we could implement, though only a few
are crucial:
URLSession:dataTask:didReceiveData:

Some data has arrived, as an NSData object. The data will arrive piecemeal, so this
method may be called many times during the download process, supplying new
data each time. Our job is to accumulate all those chunks of data; this involves
maintaining state between calls.

URLSession:task:didCompleteWithError:

If there is an error, we’ll find out about it here. If there’s no error, this is our signal
that the download is over; we can now do something with the accumulated data.

Similarly, for a download task, we need a download delegate, conforming to NSURL‐
SessionDownloadDelegate, which conforms to NSURLSessionTaskDelegate, which
conforms to NSURLSessionDelegate. Here are some useful delegate methods:
URLSession:downloadTask:didResumeAtOffset:expectedTotalBytes:

This method is of interest only in the case of a resumable download that has in fact
been paused and resumed.

HTTP Requests | 905

URLSession:downloadTask:didWriteData:totalBytesWritten:totalBytes-

ExpectedToWrite:

Called periodically, to keep us apprised of the download’s progress.

URLSession:downloadTask:didFinishDownloadingToURL:

Called at the end of the process; we must grab the downloaded file immediately, as
it will be destroyed. This is the only required delegate method.

It’s also a good idea to implement URLSession:task:didCompleteWithError:; if there
was a communication problem, the error: parameter will tell you about it.

Here, then, is my recasting of the same image file download as in the previous example.
I’m going to keep a reference both to the NSURLSession (self.session) and to the
current download task (self.task). In this particular example, I’ll perform just one
task at a time, so I can use the task instance variable as a flag to indicate that the task is
in progress. Since one NSURLSession can perform multiple tasks, there will typically
be just one NSURLSession; so I’ll make a lazy initializer that creates and configures it:

var task : NSURLSessionTask!
lazy var session : NSURLSession = {
 let config = NSURLSessionConfiguration.ephemeralSessionConfiguration()
 config.allowsCellularAccess = false
 let session = NSURLSession(configuration: config,
 delegate: self, delegateQueue: NSOperationQueue.mainQueue())
 return session
}()

I’ve specified, for purposes of the example, that no caching is to take place and that data
downloading via cell is forbidden; you could configure the NSURLSession much more
heavily and meaningfully, of course. I have specified self as the delegate, and I have
requested delegate callbacks on the main thread.

Here we go. I blank out the image view, to make the progress of the task more obvious
for test purposes, and I create, retain, and start the download task:

let s = "http://www.someserver.com/somefolder/someimage.jpg"
let url = NSURL(string:s)!
let req = NSMutableURLRequest(URL:url)
let task = self.session.downloadTaskWithRequest(req)
self.task = task
self.iv.image = nil
task.resume()

In this particular example, there is very little merit in using an NSURLRequest instead
of an NSURL to form our task. Still, an NSURLRequest can come in handy (as I’ll
demonstrate later in this chapter), and an upload task requires one.

906 | Chapter 24: Basic Networking

Do not use the NSURLRequest to configure properties of the request that are
configurable through the NSURLSession. (Those properties are left over from the
era before NSURLSession existed.) For example, there is no point setting the
NSURLRequest’s timeoutInterval, as it is the NSURLSession’s timeout properties
that are significant.

Here are some delegate methods for responding to the download:

func URLSession(session: NSURLSession,
 downloadTask: NSURLSessionDownloadTask,
 didWriteData bytesWritten: Int64,
 totalBytesWritten writ: Int64,
 totalBytesExpectedToWrite exp: Int64) {
 println("downloaded \(100*writ/exp)%")
}
func URLSession(session: NSURLSession,
 task: NSURLSessionTask,
 didCompleteWithError error: NSError?) {
 println("completed: error: \(error)")
}
func URLSession(session: NSURLSession,
 downloadTask: NSURLSessionDownloadTask,
 didFinishDownloadingToURL location: NSURL) {
 self.task = nil
 let response = downloadTask.response as NSHTTPURLResponse
 let stat = response.statusCode
 println("status \(stat)")
 if stat != 200 {
 return
 }
 let d = NSData(contentsOfURL:location)!
 let im = UIImage(data:d)
 dispatch_async(dispatch_get_main_queue()) {
 self.iv.image = im
 }
}

That was a download task; now I’ll describe a data task. A data task is a little more
elaborate than a download task, but not much; the chief difference is that it’s up to you
to accumulate the data as it arrives in chunks. For this purpose, you’ll want to keep an
NSMutableData object on hand; I’ll use a property:

var data = NSMutableData()

When I create the data task, I am careful to prepare self.data (by setting its length to
0):

let s = "http://www.someserver.com/somefolder/someimage.jpg"
let url = NSURL(string:s)!
let req = NSMutableURLRequest(URL:url)
let task = self.session.dataTaskWithRequest(req) // *

HTTP Requests | 907

self.task = task
self.iv.image = nil
self.data.length = 0 // *
task.resume()

As the chunks of data arrive, I keep appending them to self.data. When all the data
has arrived, it is ready for use:

func URLSession(session: NSURLSession,
 dataTask: NSURLSessionDataTask,
 didReceiveData data: NSData) {
 self.data.appendData(data)
}
func URLSession(session: NSURLSession,
 task: NSURLSessionTask,
 didCompleteWithError error: NSError?) {
 self.task = nil
 if error == nil {
 self.iv.image = UIImage(data:self.data)
 }
}

Some delegate methods provide a completionHandler: parameter. These are delegate
methods that require a response from you. For example, in the case of a data task,
URLSession:dataTask:didReceiveResponse:completionHandler: arrives when we
first connect to the server. Here, we could check the status code of the initial
NSHTTPURLResponse. We must also return a response saying whether or not to pro‐
ceed (or whether to convert the data task to a download task, which could certainly
come in handy). But because of the multithreaded nature of networking, we do this, not
by returning a value directly, but by calling the completionHandler: that we’re handed
as a parameter and passing our response into it. Several of the delegate methods are
constructed in this way.

There is one final and extremely important consideration when using NSURLSession
with a delegate — memory management. The NSURLSession retains its delegate. This
is understandable, as it would be disastrous if the delegate could simply vanish out from
the middle of an asynchronous time-consuming process; but it is also unusual, and
requires special measures on our part. In the examples I’ve been describing in this sec‐
tion, we have a retain cycle! We have an NSURLSession instance variable
self.session, but that NSURLSession is retaining self as its delegate.

As with an NSTimer, the solution is to invalidate the NSURLSession at some appropriate
moment. There are two ways to do this:
finishTasksAndInvalidate

Allows any existing tasks to run to completion. Afterward, the NSURLSession re‐
leases the delegate and cannot be used for anything further.

908 | Chapter 24: Basic Networking

invalidateAndCancel

Interrupts any existing tasks immediately. The NSURLSession releases the delegate
and cannot be used for anything further.

Let’s suppose that self is a view controller. Then viewWillDisappear: could be a good
place to invalidate the NSURLSession. (We cannot use deinit, because deinit won’t
be called until after we have invalidated the NSURLSession; that’s what it means to have
a retain cycle.) So, for example:

override func viewWillDisappear(animated: Bool) {
 super.viewWillDisappear(animated)
 self.session.finishTasksAndInvalidate()
}

Encapsulating the Session, Task, and Delegate
The little memory-management dance at the end of the preceding section reveals a
weakness in our architecture. I’ve been implementing all this code directly in a view
controller subclass: the NSURLSession is a property of the view controller, and the view
controller is the NSURLSession’s delegate. This is a misuse of a view controller. Things
would be better if we had an instance of some separate class whose job is to hold the
NSURLSession in a property and to serve as its delegate. There would still be a retain
cycle until the NSURLSession was invalidated, but at least the management of this ob‐
ject’s memory would not be entangled with that of a view controller.

To illustrate, I’ll design a class MyDownloader, which holds an NSURLSession and
serves as its delegate, and which has a public method cancelAllTasks. I imagine that
our view controller will then create and maintain an instance of MyDownloader early
in its lifetime, and can invalidate it in deinit:

lazy var downloader : MyDownloader = {
 let d : MyDownloader = // ??
 return d
}()
deinit {
 self.downloader.cancelAllTasks()
}

In that code, I omitted the initialization of MyDownloader. How should this work? The
MyDownloader object will create its own NSURLSession, but I think the client should
be allowed to configure the session; fortunately, that’s extremely convenient, because
the NSURLSessionConfiguration is a separate object! So the missing initialization
should look like this:

let config : NSURLSessionConfiguration = // ...
let d : MyDownloader = MyDownloader(configuration:config)

HTTP Requests | 909

Now let’s decide how a client will communicate with a MyDownloader object. The client
will presumably hand a MyDownloader a URL string; the MyDownloader will generate
the NSURLSessionDownloadTask and tell it to resume. Acting as the NSURLSession’s
delegate, the MyDownloader will be told when the download is over. At that point, the
MyDownloader has a file URL for the downloaded object, which it needs to hand back
to the client immediately. How should this work?

One solution might be for MyDownloader to define a delegate protocol; the client would
then be the delegate, and the MyDownloader could call the client back using a method
defined by the protocol. But that’s far too rigid and restrictive. One NSURLSession can
have many simultaneous tasks; I want a MyDownloader to be able to serve as a central
locus for lots of downloading activity. I’m imagining, for example, that a MyDownloader
might have multiple clients, or that a single client might initiate multiple downloads
from various different contexts. All that downloading takes place asynchronously, and
perhaps simultaneously. When the MyDownloader hands a downloaded file’s URL to a
client, how is that client to know which download request this file URL corresponds to?

My solution, which I think is rather elegant, is that the client, when it hands the My‐
Downloader object a URL string to initiate a download, should also hand the My‐
Downloader a completion handler. To return the file URL at the end of a download, the
MyDownloader calls that handler, handing it the URL as a parameter. I can even define
a typealias naming my completion handler type:

typealias MyDownloaderCompletion = (NSURL!) -> ()

From the client’s point of view, then, the process will look something like this:

let s = "http://www.someserver.com/somefolder/someimage.jpg"
self.downloader.download(s) {
 url in
 if url == nil {
 return
 }
 if let d = NSData(contentsOfURL: url) {
 let im = UIImage(data:d)
 dispatch_async(dispatch_get_main_queue()) {
 self.iv.image = im
 }
 }
}

That looks excellent, so now let’s implement this architecture within MyDownloader.
We have posited a method download:completionHandler:. When that method is
called, MyDownloader stores the completion handler; it then asks for a new download
task and sets it going:

910 | Chapter 24: Basic Networking

func download(s:String,
 completionHandler ch : MyDownloaderCompletion)
 -> NSURLSessionTask {
 let url = NSURL(string:s)!
 let req = NSMutableURLRequest(URL:url)
 // ... store the completion handler somehow ...
 let task = self.session.downloadTaskWithRequest(req)
 task.resume()
 return task
}

(I return to the client a reference to the task, so that the client can cancel the task later
if need be. I’ll give an example later.)

When the download finishes, the MyDownloader hears about it (as session delegate)
and calls the completion handler:

func URLSession(session: NSURLSession,
 downloadTask: NSURLSessionDownloadTask,
 didFinishDownloadingToURL location: NSURL) {
 let response = downloadTask.response as NSHTTPURLResponse
 let stat = response.statusCode
 var url : NSURL! = nil
 if stat == 200 {
 url = location
 }
 let ch = // ... retrieve the completion handler somehow ...
 ch(url)
}

In my carefree speculative coding design, I have repeatedly postponed grappling with
the heart of the matter. It is now time to face the problem (signified by the word “some‐
how” in the preceding two code snippets). Actually, there are two related problems:

• The completion handler arrives in one method (download:completionHandler:)
but is called in another (URLSession:downloadTask:didFinishDownloadingTo-
URL:). The completion handler clearly needs to be stored, in the first method, in
such a way that it can be retrieved, in the second method.

• You might respond: So put it in a property. But a simple property won’t do here. In
my design, there can be multiple download tasks — and each one has a different
completion handler associated with it. Thus we need a way to implement this as‐
sociation.

Clearly, we want to store each completion handler together with its download task. But
wait! We are guaranteed that the same download task instance makes its appearance in
both methods, because the download task we create in the first method is handed back
to the delegate in the second method. Thus, it would be truly ideal if we could store the
completion handler in its download task!

HTTP Requests | 911

At first glance, it appears that this is impossible, because we can’t subclass NSURLSession‐
DownloadTask (and even if we could, we can’t ask NSURLSession to generate an in‐
stance of our subclass). But there is, in fact, a way to do this. It turns out that we are
allowed to attach an arbitrary property to an NSURLRequest, as long as we start with
its mutable subclass, NSMutableURLRequest. The mechanism for doing this is a little
weird — we actually call an NSURLProtocol class method — but that doesn’t matter.
The NSURLRequest is attached to the download task as its originalRequest, and we
can retrieve it, and hence the arbitrary property, at the end of the download.

Doing this in Swift is a bit tricky. The methods for attaching a property to an NSMutable‐
URLRequest and retrieving it again later are:

• setProperty:forKey:inRequest:

• propertyForKey:inRequest:

The property: in the first method, and the result returned by the second method, is an
AnyObject. But a Swift closure is not an AnyObject. One simple solution (see also
Appendix B) is a generic wrapper class:

class Wrapper<T> {
 let p:T
 init(_ p:T){self.p = p}
}

We can hand anything to a Wrapper, which will store it in its p property; and a Wrapper
is an AnyObject, so it can travel anywhere.

At long last we are ready to write MyDownloader for real. Here it is:

let config : NSURLSessionConfiguration
lazy var session : NSURLSession = {
 let queue = NSOperationQueue.mainQueue()
 return NSURLSession(configuration:self.config,
 delegate:self, delegateQueue:queue)
}()
init(configuration config:NSURLSessionConfiguration) {
 self.config = config
 super.init()
}
func download(s:String, completionHandler ch : MyDownloaderCompletion)
 -> NSURLSessionTask {
 let url = NSURL(string:s)!
 let req = NSMutableURLRequest(URL:url)
 NSURLProtocol.setProperty(Wrapper(ch), forKey:"ch", inRequest:req)
 let task = self.session.downloadTaskWithRequest(req)
 task.resume()
 return task
}
func URLSession(session: NSURLSession,

912 | Chapter 24: Basic Networking

 downloadTask: NSURLSessionDownloadTask,
 didFinishDownloadingToURL location: NSURL) {
 let req = downloadTask.originalRequest
 let ch : AnyObject =
 NSURLProtocol.propertyForKey("ch", inRequest:req)!
 let response = downloadTask.response as NSHTTPURLResponse
 let stat = response.statusCode
 var url : NSURL! = nil
 if stat == 200 {
 url = location
 }
 let ch2 = (ch as Wrapper).p as MyDownloaderCompletion
 ch2(url)
}
func cancelAllTasks() {
 self.session.invalidateAndCancel()
}

(As written, MyDownloader’s delegate methods are being called on the main thread. It
may be preferable to run that code on a background thread. I’ll describe in Chapter 25
how to do that.)

Multiple Tasks
To exercise MyDownloader, I’ll show how to solve a pesky problem that arises quite
often in real life: we have a UITableView where each cell displays text and a picture, and
the picture needs to be downloaded in real time. The idea is to supply each picture lazily,
on demand, downloading a picture only when its cell becomes visible.

The model could be an array of dictionaries, but it is better to design a dedicated model
object, even if it is nothing but a value class (a bundle of properties):

class Model {
 var text : String!
 var im : UIImage!
 var picurl : String!
}

Our model is now an array of Model:

array
 Model
 text: @"Manny"
 im: initially nil
 picurl: String URL for a downloadable image of Manny
 Model
 text: @"Moe"
 im: initially nil
 picurl: String URL for a downloadable image of Moe
 Model

HTTP Requests | 913

 text: @"Jack"
 im: initially nil
 picurl: String URL for a downloadable image of Jack

When the table turns to the data source for a cell (tableView:cellForRowAtIndex-
Path:), the data source will turn to the model and consult the Model object corre‐
sponding to the requested row, asking for its im property, which is supposed to be its
image. Initially, this will be nil. In that case, the data source will display no image in this
cell — and will turn to the downloader and ask for the image to be downloaded from
this Model object’s picurl.

When the downloader succeeds in downloading an image, it calls the table’s data source
back through the completion block. Here we come to the Insanely Cool Part (pat. pend.).
This completion block has captured the contextual environment from inside table-
View:cellForRowAtIndexPath:, where it was defined. In effect, therefore, we are back
in the very same call to tableView:cellForRowAtIndexPath:, accessing the very same
Model object as before! We can thus set that Model object’s im property, and tell the table
to reload this row. The table thus calls tableView:cellForRowAtIndexPath: again, for
the very same row, and the data source turns to the same Model object and asks for its
im property again — and finds it, and displays the image in the cell:

override func tableView(tableView: UITableView,
 cellForRowAtIndexPath indexPath: NSIndexPath) -> UITableViewCell {
 let cell = tableView.dequeueReusableCellWithIdentifier(
 "Cell", forIndexPath:indexPath) as UITableViewCell
 let m = self.model[indexPath.row]
 cell.textLabel.text = m.text
 // have we got a picture?
 if let im = m.im {
 cell.imageView.image = im
 } else {
 cell.imageView.image = nil
 self.downloader.download(m.picurl) {
 url in
 if url == nil {
 return
 }
 let data = NSData(contentsOfURL: url)!
 let im = UIImage(data:data)
 m.im = im
 dispatch_async(dispatch_get_main_queue()) {
 self.tableView.reloadRowsAtIndexPaths(
 [indexPath], withRowAnimation: .None)
 }
 }
 }
 return cell
}

914 | Chapter 24: Basic Networking

A further refinement is to make it possible to cancel a download. Recall that My‐
Downloader’s download:completionHandler: returns a reference to the download task
exactly so that this will be possible. Why would we want to do this? Well, consider what
happens when the user scrolls quickly through the entire table, possibly passing through
hundreds of rows. The downloads for all of those rows, if they do not already have their
pictures, will be initiated. If a row is scrolled out of sight before it has its picture, it doesn’t
need its picture after all. So to continue to download the picture is wasteful.

To prevent such waste, we can implement tableView:didEndDisplayingCell:forRow-
AtIndexPath: to send cancel to the NSURLSessionTask. To make that possible, we need
to capture the task when calling the downloader’s download:completionHandler: and
store it somewhere. Obviously, the place to store it is in the Model object for this row,
which now looks like this:

class Model {
 var text : String!
 var im : UIImage!
 var picurl : String!
 var task : NSURLSessionTask!
}

Our tableView:cellForRowAtIndexPath: is now a little more complicated. We store
in our Model object’s task property the value returned from download:completion-
Handler:, but we should also set that task property to nil as soon as we no longer need
it. Moreover, each task is retaining a closure that refers to self; that’s a potential retain
cycle, which we break through a weak reference to self:

override func tableView(tableView: UITableView,
 cellForRowAtIndexPath indexPath: NSIndexPath) -> UITableViewCell {
 let cell = tableView.dequeueReusableCellWithIdentifier(
 "Cell", forIndexPath:indexPath) as UITableViewCell
 let m = self.model[indexPath.row]
 cell.textLabel.text = m.text
 // have we got a picture?
 if let im = m.im {
 cell.imageView.image = im
 } else {
 if m.task == nil { // no task? start one!
 cell.imageView.image = nil
 m.task = self.downloader.download(m.picurl) { // *
 [weak self] url in // *
 m.task == nil // *
 if url == nil {
 return
 }
 let data = NSData(contentsOfURL: url)!
 let im = UIImage(data:data)
 m.im = im
 dispatch_async(dispatch_get_main_queue()) {

HTTP Requests | 915

 self!.tableView.reloadRowsAtIndexPaths(
 [indexPath], withRowAnimation: .None)
 }
 }
 }
 }
 return cell
}

Now when a row scrolls out of view its download task can be cancelled:

override func tableView(tableView: UITableView,
 didEndDisplayingCell cell: UITableViewCell,
 forRowAtIndexPath indexPath: NSIndexPath) {
 let m = self.model[indexPath.row]
 if let task = m.task {
 if task.state == .Running {
 task.cancel()
 m.task = nil
 }
 }
}

Another question is what should happen when a picture download fails. If you believe
that the download might succeed later, you will want to try again later, rather than letting
the row sit there devoid of an image forever. If the user scrolls the failed cell out of view
and later scrolls it back into view, the table will ask the data source for that cell and the
downloader will try again to download its image. But that won’t happen for a failed cell
that’s never scrolled out of view. How you deal with this is up to you; it’s a matter of
providing the best user experience without having an undue impact upon performance,
battery, and so forth. In this instance, because these images are fairly unimportant, I
might arrange that when an NSTimer with a fairly large interval fires (every 60 seconds,
say), we reload the visible rows; this will cause any visible row without an image to try
again to download its image.

Finally, I have avoided a rather tricky problem by implementing MyDownloader to
perform an NSURLSessionDownloadTask. If there are multiple downloads, the runtime
keeps their data separate and gives each completed download its own file URL. But
suppose we were to perform an NSURLSessionDataTask instead. Now we must main‐
tain the accumulated data ourselves — and in a world where multiple downloads can
happen simultaneously, that’s not going to be simple. A single NSMutableData property
won’t do: different data tasks must not share the same NSMutableData! One possible
solution is to make our property a dictionary of NSMutableData buffers, keyed by the
data task’s unique identifier (taskIdentifier).

916 | Chapter 24: Basic Networking

Background Downloads
If your app goes into the background while in the middle of a download, the download
might be completed coherently, or it might not. To ensure that an NSURLSession‐
DownloadTask (or an NSURLSessionUploadTask) is carried out regardless, even if your
app isn’t frontmost — indeed, even if your app isn’t running! — make your NSURL‐
SessionConfiguration a background configuration (call backgroundSession-

ConfigurationWithIdentifier: to create it).

A background configuration hands the work of downloading over to the system. Your
app is not actually involved. You still need an NSURLSession, but this serves primarily
as a gateway for putting your app in touch with the download process; in particular, you
need to operate as the NSURLSession’s delegate.

The argument that you pass to backgroundSessionConfigurationWithIdentifier: is
a string identifier. It is arbitrary, but it will distinguish your background session from
all the other background sessions that other apps have requested from the system.
Therefore, it should be unique to your app; a good approach is to use your app’s bundle
ID as its basis.

You may also want to set your configuration’s discretionary to true. This will permit
the system to postpone network communications to some moment that will conserve
bandwidth and battery — for example, when Wi-Fi is available, and the device is plugged
into a power socket. Of course, that might be days from now! But this is part of the
beauty of background downloads.

There are three possibilities for how a background download will conclude, depending
on the state of your app at that moment:
Your app is frontmost

If your app is frontmost during any part of a background download, the download
is treated normally: your session delegate will get URLSession:downloadTask:did-
WriteData... and URLSession:downloadTask:didFinishDownloadingToURL:

messages, just as you expect.

Your app is suspended in the background
Your app is awakened, still in the background, long enough to receive
URLSession:downloadTask:didFinishDownloadingToURL: and deal with it.

Your app is not running
Your app is launched in the background. You have no NSURLSession, because your
app has just launched from scratch. You will need to create one, calling background-
SessionConfigurationWithIdentifier: with the same identifier as before; you
will then be able to receive delegate messages, including URLSession:download-
Task:didFinishDownloadingToURL:.

HTTP Requests | 917

As with location monitoring (Chapter 22), your app does not formally run in the back‐
ground, so you do not have to set the UIBackgroundModes of your Info.plist.

You do have to implement two extra methods, to be called if your app is not frontmost
at the time the download is completed:
application:handleEventsForBackgroundURLSession:completionHandler:

This message is sent to the app delegate. The session: parameter is the string iden‐
tifier you handed earlier to the configuration object; you might use this to identify
the session, or even as a prompt to create and configure the session if you haven’t
done so already. The app delegate must store the completionHandler: parameter
as a property, because it will be needed later.

URLSessionDidFinishEventsForBackgroundURLSession:

This message is sent to the session delegate. The session delegate must call the pre‐
viously stored completion handler. This is how the system knows that your app has
finished updating its interface. The system will thereupon take a new snapshot of
your app’s interface, still in the background, to serve as your app’s thumbnail in the
app switcher interface — and your app will then be suspended.

All of this is much easier if the app delegate and the session delegate are one and the
same object. In this example, the app delegate holds the NSURLSession property, as well
as the completion handler property that will be needed if the download completes when
we are not frontmost:

lazy var session : NSURLSession = {
 let config =
 NSURLSessionConfiguration
 .backgroundSessionConfigurationWithIdentifier(
 "com.neuburg.matt.ch37backgroundDownload")
 config.allowsCellularAccess = false
 // could set config.discretionary here
 let sess = NSURLSession(
 configuration: config, delegate: self,
 delegateQueue: NSOperationQueue.mainQueue())
 return sess
}()
var ch : (() -> ())!

The NSURLSessionDownloadDelegate methods are exactly as before. Finally, we have
the two extra methods that come into play only if the download completes when we are
not frontmost:

func application(application: UIApplication,
 handleEventsForBackgroundURLSession identifier: String,
 completionHandler: () -> Void) {
 self.ch = completionHandler
}
func URLSessionDidFinishEventsForBackgroundURLSession(
 session: NSURLSession) {

918 | Chapter 24: Basic Networking

 if self.ch != nil {
 self.ch()
 }
}

If the user kills your app in the background by way of the app switcher interface,
pending background downloads will not be completed. The system assumes that
the user doesn’t want your app coming magically back to life in the background.

Background App Refresh
The idea of background app refresh is that if your app has a periodic network download
to perform — because, for example, it is a news app — you can ask the system to wake
or launch your app in the background from time to time so that it can perform that
download in the background. That way, the next time the user brings your app to the
front, it has already been refreshed with recent downloaded content.

The user can disable your app’s ability to use background app refresh, in the Settings
app, under General → Background App Refresh.

This feature is a background mode; in the Capabilities tab for your app target, switch
on Background Modes and check “Background fetch.” Your code must also set the
shared application’s minimumBackgroundFetchInterval property; you can supply an
actual number here, but in most cases you’ll want to use UIApplicationBackground-
FetchIntervalMinimum, which lets the system work out the best moments for your app
to refresh its content, based on the user’s behavior.

When it’s time to perform a background fetch, the app delegate will be sent
application:performFetchWithCompletionHandler:. At that moment, a clock starts
counting down; your job is to do whatever needs doing, just as fast as possible, and then
call the completionHandler: parameter to stop the clock, passing in one of these values
(UIBackgroundFetchResult):

• .NewData

• .NoData

• .Failed

If you don’t do that fast enough, the clock will time out and your app will be suspended;
and the longer you take, the less willing the system will be to send you
application:performFetchWithCompletionHandler: in the first place. If the value

Background App Refresh | 919

Figure 24-1. Interface for an in-app purchase

you return is .NewData, a new snapshot will be taken, still with your app in the back‐
ground, so that the thumbnail in the app switcher matches your updated app.

In-App Purchases
An in-app purchase is a specialized form of network communication: your app com‐
municates with the App Store to permit the user to buy something there, or to confirm
that something has already been bought there. For example, your app might be free, but
the user could then be offered the opportunity to pay to unlock additional functionality.
In-app purchases are made possible through the Store Kit framework; you’ll need to
import StoreKit.

There are various kinds of in-app purchase; you’ll want to read the relevant chapter in
Apple’s iTunes Connect Developer Guide and the In-App Purchase Programming
Guide, along with the PDF Getting Started guide available at https://developer.apple.com/
in-app-purchase/In-App-Purchase-Guidelines.pdf.

I’ll describe the simplest possible in-app purchase: my app offers a single one-time
purchase, which unlocks additional functionality, allowing the user to choose a photo
from the photo library (Chapter 17). (This is what Apple calls a non-consumable pur‐
chase.) When the user taps the Choose button, if the in-app purchase has not been made,
a pair of dialogs appear, offering and describing the purchase (Figure 24-1); if the in-
app purchase has been made, a UIImagePickerController’s view appears instead.

To configure an in-app purchase, you need first to use iTunes Connect to create, in
connection with your app, something that the user can purchase; this is easiest to do if
your app is already available through the App Store. For a simple non-consumable
purchase like mine, you are associating your app’s bundle ID with a name and arbitrary
product ID representing your in-app purchase, along with a price. You’ll also want to
create a special Apple ID for testing purposes; you can’t test your in-app purchase in‐
terface without such a test Apple ID. (If you accidentally perform the in-app purchase

920 | Chapter 24: Basic Networking

https://developer.apple.com/in-app-purchase/In-App-Purchase-Guidelines.pdf
https://developer.apple.com/in-app-purchase/In-App-Purchase-Guidelines.pdf

later when logged into the App Store with your real Apple ID, you’ll be charged for the
purchase and you won’t be able to get your money back. Can you guess how I know
that?)

Let’s skip merrily past all that and proceed to your app’s interface and inner workings.
For a non-consumable in-app purchase, your app must provide the following interface
(all of which is visible in Figure 24-1):

• A place where the in-app purchase is described. I say “a place” rather than “a de‐
scription” because you do not hard-code the description into your app; rather, it is
downloaded in real time from the App Store, using the Display Name and De‐
scription (and price) that you entered at iTunes Connect.

• A button that launches the purchase process.
• A button that restores an existing purchase. The idea here is that the user has per‐

formed the purchase, but is now on a different device or has deleted and reinstalled
your app, so that the NSUserDefaults entry stating that the purchase has been per‐
formed is missing. The user needs to be able to contact the App Store to get your
app to recognize that the purchase has been performed and turn on the purchased
functionality.

Both the purchase process and the restore process are performed through dialogs pre‐
sented by the system; the purpose of the interface shown in Figure 24-1 is to give the
user a way to initiate those processes.

In my app, the purchase process proceeds in two stages. When the user taps the Learn
More button (StoreViewController), I first confirm that the user has not been restricted
from making purchases, and I then create an SKProductsRequest, which will attempt
to download an SKProductsResponse object embodying the in-app purchase corre‐
sponding to my single product ID:

if !SKPaymentQueue.canMakePayments() {
 // ... put up alert saying we can't do it ...
 return
}
let req = SKProductsRequest(
 productIdentifiers: NSSet(object: "DiabelliChoose"))
req.delegate = self
req.start()

This kicks off some network activity, and eventually the delegate of this SKProducts‐
Request, namely self (conforming to SKProductsRequestDelegate), is called back with
one of two delegate messages. If we get request:didFailWithError:, I put up an apol‐
ogetic alert, and that’s the end. But if we get productsRequest:didReceiveResponse:,
the request has succeeded, and we can proceed to the second stage.

In-App Purchases | 921

The response from the App Store arrives as an SKProductsResponse object containing
an SKProduct representing the proposed purchase. I create the second view controller,
give it a reference to the SKProduct, and present it:

func productsRequest(request: SKProductsRequest!,
 didReceiveResponse response: SKProductsResponse!) {
 let p = response.products[0] as SKProduct
 let s = StoreViewController2(product:p)
 // and on to the next view controller
 if let presenter = self.presentingViewController {
 self.dismissViewControllerAnimated(true, completion: {
 presenter.presentViewController(
 s, animated: true, completion: nil)
 })
 }
}

We are now in my second view controller (StoreViewController2). It has a product
property, and in its viewDidLoad it populates its interface based on the information that
the product contains:

self.titleLabel.text = self.product.localizedTitle
self.descriptionLabel.text = self.product.localizedDescription
let numberFormatter = NSNumberFormatter()
numberFormatter.formatterBehavior = .Behavior10_4
numberFormatter.numberStyle = .CurrencyStyle
numberFormatter.locale = self.product.priceLocale
self.priceLabel.text =
 numberFormatter.stringFromNumber(self.product.price)

If the user taps the Purchase button, I dismiss the presented view controller, load the
SKProduct into the default SKPaymentQueue, and stand back:

self.dismissViewControllerAnimated(true, completion: {
 let p = SKPayment(product:self.product)
 let q = SKPaymentQueue.defaultQueue()
 q.addPayment(p)
})

The system is now in charge of presenting a sequence of dialogs, confirming the pur‐
chase, asking for the user’s App Store password, and so forth. My app knows nothing
about that. If the user performs the purchase, however, my transaction observer will be
sent paymentQueue:updatedTransactions:. I’ll return in a moment to the implemen‐
tation of this method.

Now let’s talk about what happens when the user taps the Restore button (back in the
first view controller, StoreViewController). It’s very simple; I just tell the default
SKPaymentQueue to restore any existing purchases:

922 | Chapter 24: Basic Networking

self.dismissViewControllerAnimated(true, completion: {
 _ in
 SKPaymentQueue.defaultQueue().restoreCompletedTransactions()
})

Again, what happens now in the interface is out of my hands; the system will present
the necessary dialogs. If the purchase is restored, however, my transaction observer will
be sent paymentQueue:updatedTransactions:.

All the rest of the action, then, takes place in my transaction observer. But how does the
runtime know who that is? When my app launches, it must register a transaction ob‐
server, that is, some object whose job it will be to receive transactions from the payment
queue:

func application(application: UIApplication,
 didFinishLaunchingWithOptions launchOptions: [NSObject : AnyObject]?)
 -> Bool {
 // ...
 SKPaymentQueue.defaultQueue().addTransactionObserver(
 self.window!.rootViewController! as ViewController)
 return true
}

As you can see, I’ve made my root view controller the transaction observer. It adopts
the SKPaymentTransactionObserver protocol. There is only one required method —
paymentQueue:updatedTransactions:. This arrives with a reference to the payment
queue and an array of SKPaymentTransaction objects. My job is to cycle through these
transactions and, for each one, do whatever it requires, and then (this is crucial) send
finishTransaction: to the payment queue.

My implementation is extremely simple, because I have only one purchasable product,
and because I’m not maintaining any separate record of receipts. For each transaction,
I check its transactionState (SKPaymentTransactionState). If this is .Purchased
or .Restored, I pull out its payment, confirm that the payment’s productIdentifier is
my product identifier (it had darned well better be, since I have only the one product),
and, if so, I throw the NSUserDefaults switch that indicates to my app that the user has
performed the purchase. Otherwise, I do nothing, but I always call finish-
Transaction:, no matter what:

func paymentQueue(queue: SKPaymentQueue!,
 updatedTransactions transactions: [AnyObject]!) {
 for t in transactions as [SKPaymentTransaction] {
 switch t.transactionState {
 case .Purchased, .Restored:
 let p = t.payment
 if p.productIdentifier == "DiabelliChoose" {
 NSUserDefaults.standardUserDefaults().setBool(
 true, forKey: "choose")
 queue.finishTransaction(t)

In-App Purchases | 923

 }
 default:
 queue.finishTransaction(t)
 }
 }
}

Bonjour
Bonjour is the ingenious technology, originated at Apple and now becoming a universal
standard, for allowing network devices to advertise services they provide and to discover
dynamically other devices offering such services. Once an appropriate service is detec‐
ted, a client device can resolve it to get a network address and can then begin commu‐
nicating with the server device. Communicating itself is outside the scope of this book,
but device discovery via Bonjour is easy.

In this example, we’ll look to see whether any device, such as a Mac, is running iTunes
with library sharing turned on. (This is not Home Sharing in the iTunes File menu; it’s
the “Share my library on my local network” checkbox in the iTunes Sharing preferences.)
We can search for domains or for a particular service; here, we’ll pass the empty string
as the domain to signify “any domain,” and concentrate on the service, which is
"_daap._tcp". We maintain two properties, the NSNetServiceBrowser that will look
for devices, and an NSNetService array in which to store any services it discovers:

self.services.removeAll()
self.nsb = NSNetServiceBrowser()
self.nsb.delegate = self
self.nsb.searchForServicesOfType("_daap._tcp", inDomain: "")

The NSNetServiceBrowser is now searching for devices advertising iTunes sharing and
will keep doing so until we destroy it or tell it to stop. It is common to leave the service
browser running, because devices can come and go very readily. As they do, the service
browser’s delegate (NSNetServiceBrowserDelegate) will be informed. For purposes of
this example, I’ll simply maintain a list of services, and update the app’s interface when
the situation changes:

func netServiceBrowser(aNetServiceBrowser: NSNetServiceBrowser,
 didFindService aNetService: NSNetService!, moreComing: Bool) {
 self.services.append(aNetService)
 if !moreComing {
 self.updateInterface()
 }
}
func netServiceBrowser(aNetServiceBrowser: NSNetServiceBrowser,
 didRemoveService aNetService: NSNetService!, moreComing: Bool) {
 if let ix = find(self.services, aNetService) {
 self.services.removeAtIndex(ix)
 if !moreComing {

924 | Chapter 24: Basic Networking

 self.updateInterface()
 }
 }
}

The delegate messages very kindly tell me whether they have finished listing a series of
changes, so I can wait to update the interface until after a full batch of changes has ended.
In this example, I don’t really have any interface to update; I’ll just log the list of services,
each of which is an NSNetService instance:

func updateInterface () {
 for service in self.services {
 if service.port == -1 {
 println("service \(service.name) of type \(service.type)" +
 " not yet resolved")
 }
 }
}

To connect to a service, we would first need to resolve it, thus obtaining an address and
other useful information. An unresolved service has port -1, as shown in the previous
code. To resolve a service, you tell it to resolve (resolveWithTimeout:); you will prob‐
ably also set a delegate on the service (NSNetServiceDelegate), so as to be notified when
the resolution succeeds (or fails). Here, I’ll have the delegate call my update-
Interface method again if a resolution succeeds, and I’ll extend updateInterface to
show the port number for any resolved services:

func updateInterface () {
 for service in self.services {
 if service.port == -1 {
 println("service \(service.name) of type \(service.type)" +
 " not yet resolved")
 service.delegate = self
 service.resolveWithTimeout(10)
 } else {
 println("service \(service.name) of type \(service.type)," +
 "port \(service.port), addresses \(service.addresses)")
 }
 }
}
func netServiceDidResolveAddress(sender: NSNetService) {
 self.updateInterface()
}

The addresses of a resolved service constitute an array of NSData. Logging an address
like this is largely pointless, as it is not human-readable, but it’s useful for handing to a
CFSocket. In general you’ll call the service’s getInputStream:outputStream: to start
talking over the connection; that’s outside the scope of this discussion. See Apple’s WiTap
example for more.

Bonjour | 925

CHAPTER 25

Threads

A thread is, simply put, a subprocess of your app that can execute even while other
subprocesses are also executing. Such simultaneous execution is called concurrency. The
iOS frameworks use threads all the time; if they didn’t, your app would be less responsive
to the user — perhaps even completely unresponsive. The genius of the frameworks,
though, is that, for the most part, they use threads precisely so that you don’t have to.

For example, suppose your app is downloading something from the network (Chap‐
ter 24). This download doesn’t happen all by itself; somewhere, someone is running
code that interacts with the network and obtains data. Similarly, how does Core Motion
work (Chapter 22)? The data from the sensors is being gathered and processed con‐
stantly, with extra calculations to separate gravity from user-induced acceleration and
to account for bias and scaling in the gyroscope. Yet none of that interferes with your
code, or prevents the user from tapping and swiping things in your interface. That’s
concurrency in action.

This chapter discusses concurrency that involves your code in deliberate use of thread‐
ing. It would have been nice to dispense with this topic altogether. Threads can be
difficult and are always potentially dangerous, and should be avoided if possible. But
sometimes that isn’t possible. So this chapter introduces threads, along with a warning:
threads entail complications and subtle pitfalls, and can make your code hard to debug.
There is much more to threading, and especially to making your threaded code safe,
than this chapter can possibly touch on. For detailed information about the topics in‐
troduced in this chapter, read Apple’s Concurrency Programming Guide and Threading
Programming Guide.

Main Thread
You are always using some thread. All your code must run somewhere; “somewhere”
means a thread. When code calls a method, that method normally runs on the same

927

thread as the code that called it. Your code is called through events; those events normally
call your code on the main thread. The main thread has certain special properties:
The main thread automatically has a run loop.

A run loop is a recipient of events. It is how your code is notified that something is
happening; without a run loop, a thread can’t receive events. Cocoa events normally
arrive on the main thread’s run loop; that’s why your code, called by those events,
executes on the main thread.

The main thread is the interface thread.
When the user interacts with the interface, those interactions are reported as events
— on the main thread. When your code interacts with the interface, it too must do
so on the main thread. Of course that will normally happen automatically, because
your code normally runs on the main thread.

The main thread thus has a very great deal of work to do. Here’s how life goes in your
app:

1. An event arrives on the main thread; the user has tapped a button, for example, and
this is reported to your app as a UIEvent and to the button through the touch
delivery mechanism (Chapter 5) — on the main thread.

2. The control event causes your code (the action handler) to be called — on the main
thread. Your code now runs — on the main thread. While your code runs, nothing
else can happen on the main thread. Your code might command some changes in
the interface; this is safe, because your code is running on the main thread.

3. Your code finishes. The main thread’s run loop is now free to report more events,
and the user is free to interact with the interface once again.

The bottleneck here is obviously step 2, the running of your code. Your code runs on
the main thread. That means the main thread can’t do anything else while your code is
running. No events can arrive while your code is running. The user can’t interact with
the interface while your code is running. But this is usually no problem, because:

• Your code executes really fast. It’s true that the user can’t interact with the interface
while your code runs, but this is such a tiny interval of time that the user will
probably never even notice.

• Your code, as it runs, blocks the user from interacting with the interface. But that’s
not bad: it’s good! Your code, in response to what the user does, might update the
interface; it would be insane if the user could do something else in the interface
while you’re in the middle of updating it.

On the other hand, as I’ve already mentioned, the frameworks operate in secondary
threads all the time. The reason this doesn’t affect you is that they usually talk to your
code on the main thread. You have seen many examples of this in the preceding chapters:

928 | Chapter 25: Threads

• During an animation (Chapter 4), the interface remains responsive to the user, and
it is possible for your code to run. The Core Animation framework is running the
animation and updating the presentation layer on a background thread. But your
delegate methods or completion blocks are called on the main thread.

• A web view’s fetching and loading of its content is asynchronous (Chapter 11); that
means the work is done in a background thread. But your delegate methods are
called on the main thread.

• Sounds are played asynchronously (Chapters 14 and 16). But your delegate methods
are called on the main thread. Similarly, loading, preparation, and playing of movies
happens asynchronously (Chapter 15). But your delegate methods are called on the
main thread.

• Saving a movie file takes time (Chapters 15 and 17). So the saving takes place on a
background thread. Similarly, UIDocument saves and reads on a background
thread (Chapter 23). But your delegate methods or completion blocks are called on
the main thread.

Thus, you can (and should) usually ignore threads and just keep plugging away on the
main thread. However, there are two kinds of situation in which your code will need to
be explicitly aware of threading issues:
Your code is called back, but not on the main thread.

Some frameworks explicitly inform you in their documentation that callbacks are
not guaranteed to take place on the main thread. For example, the documentation
on CATiledLayer (Chapter 7) warns that drawLayer:inContext: is called in a
background thread. By implication, our drawRect: code, triggered by CATiled‐
Layer to update tiles, is running in a background thread. (Fortunately, drawing into
the current context is thread-safe.)

Similarly, the documentation on AV Foundation (Chapters 15 and 17) warns that
its blocks and notifications can arrive on a background thread. So if you intend to
update the user interface, or use a value that might also be used by your main-thread
code, you’ll need to be thread-conscious.

Your code takes significant time.
If your code takes significant time to run, you might need to run that code on a
background thread, rather than letting it block the main thread and prevent any‐
thing else from happening there. For example:
During startup

You want your app to launch as quickly as possible. In Chapter 23, I called
URLForUbiquityContainerIdentifier: during app launch. The documenta‐
tion told me to call this method on a background thread, because it can take
some time to return; we don’t want to block the main thread waiting for it,

Main Thread | 929

because the app is trying to launch on the main thread, and the user won’t see
our interface until the launch process is over.

When the user can see or interact with the app
In Chapter 19, I called enumerateEventsMatchingPredicate: on a back‐
ground thread in order to prevent the user interface from freezing up in case
the enumeration took a long time. If I hadn’t done this, then when the user taps
the button that triggers this call, the button will stay highlighted for a significant
amount of time, during which the interface will be completely frozen.

Similarly, when your app is in the process of being suspended into the background,
or resumed from the background, your app should not block the main thread for
too long; it must act quickly and get out of the way.

Moving time-consuming code off the main thread, so that the main thread is not
blocked, isn’t just a matter of aesthetics or politeness: the system “watchdog” will
summarily kill your app if it discovers that the main thread is blocked for too long.

Why Threading Is Hard
The one certain thing about computer code is that it just clunks along the path of exe‐
cution, one statement at a time. Lines of code, in effect, are performed in the order in
which they appear. With threading, that certainty goes right out the window. If you have
code that can be performed on a background thread, then you don’t know when it will
be performed in relation to the code being performed on any other thread. Any line of
your background-thread code could be interleaved between any two lines of your main-
thread code.

You also might not know how many times a piece of your background-thread code might
be running simultaneously. Unless you take steps to prevent it, the same code could be
spawned off as a thread even while it’s already running in a thread. So any line of your
background-thread code could be interleaved between any two lines of itself. (I’ll discuss
later in this chapter a situation in which this very thing does happen.)

This situation is particularly threatening with regard to shared data. Suppose two
threads were to get hold of the same object and change it. Who knows what horrors
might result? Objects in general have state, adding up to the state of your app as a whole.
If multiple threads are permitted to access your objects, they and your entire app can
be put into an indeterminate or nonsensical state.

This problem cannot be solved by simple logic. For example, suppose you try to make
data access safe with a condition, as in this pseudocode:

if no other thread is touching this data {
 ... do something to the data ...
}

930 | Chapter 25: Threads

Such logic is utterly specious. Suppose the condition succeeds: no other thread is touch‐
ing this data. But between the time when that condition is evaluated and the time when
the next line executes and you start to do something to the data, another thread can still
come along and start touching the data!

It is possible to request assistance at a deeper level to ensure that a section of code is not
run by two threads simultaneously. For example, you can implement a lock around a
section of code. But locks generate an entirely new level of potential pitfalls. In general,
a lock is an invitation to forget to use the lock, or to forget to remove the lock after you’ve
set it. And threads can end up contending for a lock in a way that permits neither thread
to proceed.

Another problem is that the lifetime of a thread is independent of the lifetimes of other
objects in your app. When an object is about to go out of existence and its deinit has
been called and executed, you are guaranteed that none of your code in that object will
ever run again. But a thread might still be running, and might try to talk to your object,
even after your object has gone out of existence.

Not only is threaded code hard to get right; it’s also hard to test and hard to debug. It
introduces indeterminacy, so you can easily make a mistake that never appears in your
testing, but that does appear for some user. The real danger is that the user’s experience
will consist only of distant consequences of your mistake, long after the point where
you made it, making the true cause of the problem extraordinarily difficult to track
down.

Perhaps you think I’m trying to scare you away from using threads. You’re right! For an
excellent (and suitably frightening) account of some of the dangers and considerations
that threading involves, see Apple’s Technical Note TN2109. If terms like race condition
and deadlock don’t strike fear into your veins, look them up on Wikipedia.

Xcode’s Debug navigator distinguishes threads; new in Xcode 6, you can even see
pending blocks and learn when a block was enqueued. Also, when you call NSLog
in your multithreaded code, the output in the console displays a number (in square
brackets, after the colon) identifying the thread on which it was called — a simple
but unbelievably helpful way of distinguishing threads.

Blocking the Main Thread
To illustrate making your code multithreaded, I need some code that is worth making
multithreaded. I’ll use as my example an app that draws the Mandelbrot set. (This code
is adapted from a small open source project I downloaded from the Internet.) All it does
is draw the basic Mandelbrot set in black and white, but that’s a sufficiently elaborate
calculation to introduce a significant delay, especially on an older, slower device. The
idea is then to see how we can safely get that delay off the main thread.

Blocking the Main Thread | 931

The app contains a UIView subclass, MyMandelbrotView, which has one property, a
CGContext called bitmapContext. Here’s the structure of MyMandelbrotView’s imple‐
mentation:

let MANDELBROT_STEPS = 200 // determines how long the calculation takes
var bitmapContext: CGContext!
// jumping-off point: draw the Mandelbrot set
func drawThatPuppy () {
 self.makeBitmapContext(self.bounds.size)
 let center = CGPointMake(self.bounds.midX, self.bounds.midY)
 self.drawAtCenter(center, zoom:1)
 self.setNeedsDisplay()
}
// create bitmap context
func makeBitmapContext(size:CGSize) {
 var bitmapBytesPerRow : UInt = UInt(size.width * 4)
 bitmapBytesPerRow += (16 - (bitmapBytesPerRow % 16)) % 16
 let colorSpace = CGColorSpaceCreateDeviceRGB()
 let prem = CGBitmapInfo(CGImageAlphaInfo.PremultipliedLast.rawValue)
 let context = CGBitmapContextCreate(
 nil, UInt(size.width), UInt(size.height), 8,
 bitmapBytesPerRow, colorSpace, prem)
 self.bitmapContext = context
}
// draw pixels of bitmap context
func drawAtCenter(center:CGPoint, zoom:CGFloat) {
 func isInMandelbrotSet(re:Float, im:Float) -> Bool {
 var fl = true
 var (x:Float, y:Float, nx:Float, ny:Float) = (0,0,0,0)
 for _ in 0 ..< MANDELBROT_STEPS {
 nx = x*x - y*y + re
 ny = 2*x*y + im
 if nx*nx + ny*ny > 4 {
 fl = false
 break
 }
 x = nx
 y = ny
 }
 return fl
 }
 CGContextSetAllowsAntialiasing(self.bitmapContext, false)
 CGContextSetRGBFillColor(self.bitmapContext, 0, 0, 0, 1)
 var re : CGFloat
 var im : CGFloat
 let maxi = Int(self.bounds.size.width)
 let maxj = Int(self.bounds.size.height)
 for i in 0 ..< maxi {
 for j in 0 ..< maxj {
 re = (CGFloat(i) - 1.33 * center.x) / 160
 im = (CGFloat(j) - 1.0 * center.y) / 160
 re /= zoom

932 | Chapter 25: Threads

 im /= zoom
 if (isInMandelbrotSet(Float(re), Float(im))) {
 CGContextFillRect (
 self.bitmapContext, CGRectMake(CGFloat(i),
 CGFloat(j), 1.0, 1.0))
 }
 }
 }
}
// turn pixels of bitmap context into CGImage, draw into ourselves
override func drawRect(rect: CGRect) {
 if self.bitmapContext != nil {
 let context = UIGraphicsGetCurrentContext()
 let im = CGBitmapContextCreateImage(self.bitmapContext)
 CGContextDrawImage(context, self.bounds, im)
 }
}

The drawAtCenter:zoom: method, which calculates the pixels of self.bitmap-
Context, is time-consuming, and we can see this by running the app on a device. If the
entire process is kicked off by tapping a button whose action handler calls drawThat-
Puppy, there is a significant delay before the Mandelbrot graphic appears in the interface,
during which time the button remains highlighted. That is a sure sign that we are blocking
the main thread.

We need to move the calculation-intensive part of this code onto a background thread,
so that the main thread is not blocked by the calculation. In doing so, we have two chief
concerns:
Synchronization of threads

The button is tapped, and drawThatPuppy is called, on the main thread. Thus, set-
NeedsDisplay is called on the main thread — and rightly so, since this affects the
interface. Therefore, drawRect: is called on the main thread. In between, however,
the calculation-intensive drawAtCenter:zoom: is to be called on a background
thread. Yet these three methods must still be called in order: drawThatPuppy, then
drawAtCenter:zoom:, then drawRect:. How is this going to work? Clearly it can’t
work as we have things structured now; if drawThatPuppy calls drawAt-
Center:zoom: and immediately calls setNeedsDisplay, the former on a back‐
ground thread and the latter on the main thread, the view will be redrawn too soon,
before drawAtCenter:zoom: has had a chance to update the bitmap.

Shared data
The property self.bitmapContext is referred to in three different methods — in
makeBitmapContext:, which is called by drawThatPuppy; in drawAtCenter:zoom:;
and in drawRect:. But we have just said that those three methods involve two dif‐
ferent threads; they must not be permitted to touch the same property in a way that
might conflict or clash. A further danger is that drawAtCenter:zoom: is run on a

Blocking the Main Thread | 933

background thread, and we have no way of knowing how many such background
threads there may be; the user might tap the button several times in quick succes‐
sion, kicking off several simultaneous calculations. The access to self.bitmap-
Context by drawAtCenter:zoom: must thus not be permitted to conflict or clash
with itself. (This problem, mercifully, does not arise in connection with the main
thread; there is only one main thread, so it can’t conflict with itself.)

NSOperation
The essence of NSOperation is that it encapsulates a task, not a thread. The operation
described by an NSOperation object may be performed on a background thread, but
you don’t have to concern yourself with that directly. You describe the operation and
add the NSOperation to an NSOperationQueue to set it going. You arrange to be notified
when the operation ends, typically by the NSOperation posting a notification. You can
query both the queue and its operations from outside with regard to their state.

We’ll rewrite MyMandelbrotView to use NSOperation. We need a property, an
NSOperationQueue; we’ll call it queue, and we’ll create and configure it in its initializer:

let queue : NSOperationQueue = {
 let q = NSOperationQueue()
 // ... further configurations can go here ...
 return q
}()

We also have a new class, MyMandelbrotOperation, an NSOperation subclass. (It is
possible to take advantage of a built-in NSOperation subclass such as NSBlock‐
Operation, but I’m deliberately illustrating the more general case by subclassing NSOp‐
eration itself.) Our implementation of drawThatPuppy thus creates an instance of My‐
MandelbrotOperation, configures it, registers for its notification, and adds it to the
queue:

func drawThatPuppy () {
 let center = CGPointMake(self.bounds.midX, self.bounds.midY)
 let op = MyMandelbrotOperation(
 size: self.bounds.size, center: center, zoom: 1)
 NSNotificationCenter.defaultCenter().addObserver(
 self, selector: "operationFinished:",
 name: "MyMandelbrotOperationFinished", object: op)
 self.queue.addOperation(op)
}

Our time-consuming calculations are performed by MyMandelbrotOperation. An
NSOperation subclass, such as MyMandelbrotOperation, will typically have at least two
methods:

934 | Chapter 25: Threads

A designated initializer
The NSOperation may need some configuration data. Once the NSOperation is
added to a queue, it’s too late to talk to it, so you’ll usually hand it this configuration
data as you create it, in its designated initializer.

A main method
This method will be called (with no parameters) automatically by the NSOperation‐
Queue when it’s time for the NSOperation to start.

MyMandelbrotOperation has three private properties for configuration (size,
center, and zoom), to be set in its initializer; it must be told MyMandelbrotView’s ge‐
ometry explicitly because it is completely separate from MyMandelbrotView. My‐
MandelbrotOperation also has its own CGContext property, bitmapContext; it must
be publicly gettable so that MyMandelbrotView can retrieve a reference to this graphics
context when the operation has finished. Note that this is different from MyMandelbrot‐
View’s bitmapContext, thus helping to solve the problem of sharing data promiscuously
between threads:

private let size : CGSize
private let center : CGPoint
private let zoom : CGFloat
private(set) var bitmapContext : CGContext!
init(size sz:CGSize, center c:CGPoint, zoom z:CGFloat) {
 self.size = sz
 self.center = c
 self.zoom = z
 super.init()
}

All the calculation work has been transferred from MyMandelbrotView to My‐
MandelbrotOperation without change; the only difference is that self.bitmap-
Context now means MyMandelbrotOperation’s property. The only method of real in‐
terest is main. First, we call the NSOperation method isCancelled to make sure we
haven’t been cancelled while sitting in the queue; this is good practice. Then, we do
exactly what drawThatPuppy used to do, initializing our graphics context and drawing
into its pixels:

let MANDELBROT_STEPS = 200
// create instance variable
func makeBitmapContext(size:CGSize) {
 // ... same as before
}
func drawAtCenter(center:CGPoint, zoom:CGFloat) {
 // ... same as before
}
override func main() {
 if self.cancelled {
 return
 }

NSOperation | 935

 self.makeBitmapContext(self.size)
 self.drawAtCenter(self.center, zoom: self.zoom)
 if !self.cancelled {
 NSNotificationCenter.defaultCenter().postNotificationName(
 "MyMandelbrotOperationFinished", object: self)
 }
}

The last line of main is our signal to MyMandelbrotView that the calculation is over and
it’s time to come and fetch our data. There are two ways to do this; either main can post
a notification through the NSNotificationCenter, or MyMandelbrotView can use key–
value observing to be notified when our isFinished property changes. We’ve chosen
the former approach; observe that we check one more time to make sure we haven’t
been cancelled.

Now we are back in MyMandelbrotView, hearing through the notification that My‐
MandelbrotOperation has finished. We must immediately pick up any required data,
because the NSOperationQueue is about to release this NSOperation. However, we must
be careful; the notification may have been posted on a background thread, in which case
our method for responding to it will also be called on a background thread. We are about
to set our own graphics context and tell ourselves to redraw; those are things we want
to do on the main thread. So we immediately step out to the main thread (using Grand
Central Dispatch, described more fully in the next section). We remove ourselves as
notification observer for this operation instance, copy the operation’s bitmapContext
into our own bitmapContext, and now we’re ready for the last step, drawing ourselves:

// warning! called on background thread
func operationFinished(n:NSNotification) {
 if let op = n.object as? MyMandelbrotOperation {
 dispatch_async(dispatch_get_main_queue()) {
 NSNotificationCenter.defaultCenter().removeObserver(
 self, name: "MyMandelbrotOperationFinished", object: op)
 self.bitmapContext = op.bitmapContext
 self.setNeedsDisplay()
 }
 }
}

Adapting our code to use NSOperation involves some work, but the result has many
advantages that help to ensure that our use of multiple threads is coherent and safe:
The operation is encapsulated.

Because MyMandelbrotOperation is an object, we’ve been able to move all the code
having to do with drawing the pixels of the Mandelbrot set into it. The only My‐
MandelbrotView method that can be called in the background is operation-
Finished:, and that’s a method we’d never call explicitly ourselves, so we won’t
misuse it accidentally — and it immediately steps out to the main thread in any
case.

936 | Chapter 25: Threads

The data sharing is rationalized.
Because MyMandelbrotOperation is an object, it has its own bitmapContext prop‐
erty. The only moment of data sharing comes in operationFinished:, when we
must set MyMandelbrotView’s bitmapContext to MyMandelbrotOperation’s
bitmapContext. Even if multiple MyMandelbrotOperation objects are added to the
queue, the moments when we set MyMandelbrotView’s bitmapContext and then
redraw ourselves using that bitmap context all occur on the main thread, so they
cannot conflict with one another.

The threads are synchronized.
The calculation-intensive operation doesn’t start until MyMandelbrotView tells it
to start (self.queue.addOperation(op)). MyMandelbrotView then takes its
hands off the steering wheel and makes no attempt to draw itself. If drawRect: is
called by the runtime, self.bitmapContext will be nil (or will contain the results
of an earlier calculation operation) and no harm done. Nothing else happens until
the operation ends and the notification arrives (operationFinished:); then and
only then does MyMandelbrotView update the interface — on the main thread.

If we are concerned with the possibility that more than one instance of MyMandelbrot‐
Operation might be added to the queue and executed concurrently, we have a further
line of defense — we can set the NSOperationQueue’s maximum concurrency level to 1:

let q = NSOperationQueue()
q.maxConcurrentOperationCount = 1
return q

This turns the NSOperationQueue into a true serial queue; every operation on the queue
must be completely executed before the next can begin. This might cause an operation
added to the queue to take longer to execute, if it must wait for another operation to
finish before it can even get started; however, this delay might not be important. What
is important is that by executing the operations on this queue separately from one an‐
other, we guarantee that only one operation at a time can do any data sharing. A serial
queue is thus a form of data locking.

Because MyMandelbrotView can be destroyed (if, for example, its view controller is
destroyed), there is still a risk that it will create an operation that will outlive it and will
try to access it after it has been destroyed. We can reduce that risk by canceling all
operations in our queue before releasing it:

deinit {
 self.queue.cancelAllOperations()
}

Operation queues are good to know about for other reasons as well. A number of useful
methods mentioned earlier in this book expect an NSOperationQueue argument; see,
for example, Chapter 22 (startDeviceMotionUpdatesToQueue:withHandler:, and

NSOperation | 937

similarly for the other sensors) and Chapter 24 (sessionWithConfiguration:
delegate:delegateQueue:).

Grand Central Dispatch
Grand Central Dispatch, or GCD, is a sort of low-level analogue to NSOperation and
NSOperationQueue (in fact, NSOperationQueue uses GCD under the hood). When I
say GCD is low-level, I’m not kidding; it is effectively baked into the operating system
kernel. Thus it can be used by any code whatsoever and is tremendously efficient.

GCD is like NSOperationQueue in that it uses queues: you express a task and add it to
a queue, and the task is executed on a thread as needed. Moreover, by default these
queues are serial queues, with each task on a queue finishing before the next is started,
which, as I’ve already said, is a form of data locking. However, it has the advantage over
NSOperationQueue that there is no need to create any extra objects; GCD uses closures
(blocks), so all your code to be executed on different threads can appear in the same
place. Also, GCD is about much more than threading, as I’ll discuss at the end of this
section.

We’ll rewrite MyMandelbrotView to use GCD. The structure of its interface is very
slightly changed from the original, nonthreaded version. We have a new property to
hold our queue, which is a dispatch queue; a dispatch queue is a lightweight opaque
pseudo-object consisting essentially of a list of blocks to be executed. I want my dispatch
queue to have a name (its label); this must be a C string, so I do a little dance in some
top-level variables to create it:

let qvalString = "com.neuburg.mandeldraw" as NSString
var QVAL = qvalString.UTF8String
class MyMandelbrotView : UIView {
 let MANDELBROT_STEPS = 200
 var bitmapContext: CGContext!
 let draw_queue : dispatch_queue_t = {
 let q = dispatch_queue_create(QVAL, nil)
 return q
 }()
 // ...
}

(A call to dispatch_queue_create must be balanced by a call to dispatch_release.
However, Swift memory management understands GCD pseudo-objects and will take
care of this for us — in fact, calling dispatch_release explicitly is forbidden.)

Our makeBitmapContext: method now returns a graphics context rather than setting
a property directly:

938 | Chapter 25: Threads

func makeBitmapContext(size:CGSize) -> CGContext {
 // ... as before ...
 let context = CGBitmapContextCreate(
 nil, UInt(size.width), UInt(size.height), 8,
 bitmapBytesPerRow, colorSpace, prem)
 return context
}

Also, our drawAtCenter:zoom: method now takes an additional parameter, the graphics
context to draw into:

func drawAtCenter(center:CGPoint, zoom:CGFloat, context:CGContext) {
 // ... as before, but we refer to local context, not self.context
}

Now for the implementation of drawThatPuppy. This is where all the action is! Here it
is:

func drawThatPuppy () {
 let center = CGPointMake(self.bounds.midX, self.bounds.midY)
 dispatch_async(self.draw_queue) {
 let bitmap = self.makeBitmapContext(self.bounds.size)
 self.drawAtCenter(center, zoom:1, context:bitmap)
 dispatch_async(dispatch_get_main_queue()) {
 self.bitmapContext = bitmap
 self.setNeedsDisplay()
 UIApplication.sharedApplication().endBackgroundTask(bti)
 }
 }
}

That’s all there is to it: all our app’s multithreading is contained in those few lines. There
are no notifications, no sharing of data between threads; and the entire sequential syn‐
chronization of our threads is completely handled and expressed with startling clarity.
Here’s how drawThatPuppy works:

We begin by calculating our center, as before. This value will be visible within
the blocks, because blocks can see their surrounding context.
Now comes our task to be performed in a background thread on our queue,
self.draw_queue. We specify this task with the dispatch_async function. GCD
has a lot of functions, but this is the one you’ll use 99 percent of the time; it’s the
most important thing you need to know about GCD. We specify a queue and
we provide a block saying what we’d like to do. In the block, we begin by declaring
bitmap as a variable local to the block. We then call makeBitmapContext: to create
the graphics context bitmap, and drawAtCenter:zoom:context: to set its pixels.
Bear in mind that those calls are made on a background thread, because
self.draw_queue is a background queue.

Grand Central Dispatch | 939

Now we need to step back out to the main thread. How do we do that? With
dispatch_async again! We specify the main queue (which is effectively the main
thread) with a function provided for this purpose and describe what we want to
do in another block. This second block is nested inside the first, so it isn’t
performed until the preceding commands in the first block have finished;
moreover, because the first block is part of the second block’s surrounding
context, the second block can see our block-local bitmap variable! We set our
bitmapContext property and call setNeedsDisplay — on the main thread! —
and we’re done.

The benefits and elegance of GCD as a form of concurrency management are simply
stunning. There is no data sharing, because the bitmap variable is not shared; it is local
to each specific call to drawThatPuppy. The threads are synchronized, because the nested
blocks are executed in succession, so any instance of bitmap must be completely filled
with pixels before being used to set the bitmapContext property. Moreover, the entire
operation is performed on a serial queue, and bitmapContext is touched only from code
running on the main thread; thus there is no possibility of conflict. Our code is also
highly maintainable, because the entire task on all threads is expressed within the single
drawThatPuppy method, thanks to the use of blocks; indeed, the code is only very slightly
modified from the original, nonthreaded version.

You might object that we still have methods makeBitmapContext: and drawAt-
Center:zoom:context: hanging around MyMandelbrotView, and that we must there‐
fore still be careful not to call them on the main thread, or indeed from anywhere except
from within drawThatPuppy. If that were true, we could at this point destroy makeBitmap-
Context: and drawAtCenter:zoom:context: and move their functionality completely
into drawThatPuppy. But it isn’t true, because these methods are now thread-safe: they
are self-contained utilities that touch no properties or persistent objects, so it doesn’t
matter what thread they are called on. Still, I’ll demonstrate in a moment how we can
intercept an accidental attempt to call a method on the wrong thread.

The two most important GCD functions are:
dispatch_async

Push a block onto the end of a queue for later execution, and proceed immediately
with our own code. Thus, we can finish our own execution without waiting for the
block to execute.

Examples of using dispatch_async to execute code in a background thread
(dispatch_get_global_queue(0,0)) appeared in Chapters 19 and 23. Examples
of using dispatch_async as a way of stepping back onto the main thread
(dispatch_get_main_queue) in order to talk to the interface from inside code that
might be executed on a background thread appeared in Chapters 10, 15, 16, 17, and
24 (and elsewhere).

940 | Chapter 25: Threads

Also, it can be useful to call dispatch_async to step out to the main thread even
though you’re already on the main thread, as a way of waiting for the run loop to
complete and for the interface to settle down — a minimal form of delayed per‐
formance. I used that technique in Chapters 12 and 23.

dispatch_sync

Push a block onto the end of a queue for later execution, and wait until the block
has executed before proceeding with our own code — because, for example, you
intend to use a result that the block is to provide. The purpose of the queue would
be, once again, as a lightweight, reliable version of a lock, mediating access to a
shared resource. Here’s a case in point, adapted from Apple’s own code:

func asset() -> AVAsset? {
 var theAsset : AVAsset!
 dispatch_sync(self.assetQueue) {
 theAsset = self.getAssetInternal().copy() as AVAsset
 }
 return theAsset
}

Any thread might call the asset method; to avoid problems with shared data, we
require that only blocks that are executed from a particular queue (self.asset-
Queue) may touch an AVAsset. But we need the result that this block returns; hence
the call to dispatch_sync.

In Chapter 7 I encountered a problem where I discovered that the runtime was calling
my CATiledLayer’s drawRect: simultaneously on multiple threads — a rare example of
Apple’s code involving me unawares and unwillingly in complications of threading. To
close the door to this sort of behavior, it suffices to wrap the interior of my drawRect:
implementation in a call to dispatch_sync. This is a safe and reliable mode of locking:
once any thread has started to run my drawRect:, no other thread can start to run it
until the first thread has finished with it. Thus my drawRect:, though it can be (and will
be) run on a background thread, is immune to being run on multiple background
threads. I have defined a property to hold a dedicated serial queue:

let drawQueue = dispatch_queue_create(nil, DISPATCH_QUEUE_SERIAL)

And here’s how drawRect: is structured:

override func drawRect(r: CGRect) {
 dispatch_sync(drawQueue, {
 // ... draw here ...
 })
}

An interesting and useful exercise is to revise the MyDownloader class from Chapter 24
so that the delegate methods are run on a background thread, thus taking some strain
off the main thread (and hence the user interface) while these messages are flying around

Grand Central Dispatch | 941

behind the scenes. This looks like a reasonable and safe thing to do, because the NSURL‐
Session and the delegate methods are all packaged inside the MyDownloader object,
isolated from our view controller.

To do so, the first step is to declare our completion handler typealias using the un‐
documented @objc_block attribute; otherwise, we won’t get proper memory manage‐
ment of our stored handler:

typealias MyDownloaderCompletion = @objc_block (NSURL!) -> ()

We’ll also need our own background NSOperationQueue, which we can maintain as a
property:

let q = NSOperationQueue()

Our session is now configured and created using this background queue:

lazy var session : NSURLSession = {
 let queue = self.q
 return NSURLSession(configuration:self.config,
 delegate:self, delegateQueue:queue)
}()

We must now give some thought to what will happen in URLSession:downloadTask:did-
FinishDownloadingToURL: when we call back into the client through the completion
handler that we received in download:completionHandler:. It would not be very nice
to involve the client in threading issues; our entire goal is to isolate such issues within
MyDownloader itself. Therefore we must step out to the main thread as we call the
completion handler. But we cannot do this by calling dispatch_async:

dispatch_async(dispatch_get_main_queue()) {
 ch2(url)
}

The reason is that the downloaded file is slated to be destroyed as soon as we return
from URLSession:downloadTask:didFinishDownloadingToURL: — and if we call
dispatch_async, we will return immediately. Thus the downloaded file will be de‐
stroyed, and url will end up pointing at nothing by the time the client receives it. The
solution is to use dispatch_sync instead:

dispatch_sync(dispatch_get_main_queue()) {
 ch2(url)
}

That code steps out to the main thread and also postpones returning from
URLSession:downloadTask:didFinishDownloadingToURL: until the client has had an
opportunity to do something with the file pointed to by url. We are blocking our back‐
ground NSOperationQueue, but only very briefly. Again, our real purpose in using
dispatch_sync is to lock down some shared data — in this case, the downloaded file.

942 | Chapter 25: Threads

It is also good to know about the GCD function dispatch_after; many examples in
this book have made use of it, by way of my utility method delay (see Appendix B) —
see, for instance, Chapters 2, 7, and 10.

Another useful GCD function is dispatch_once, a thread-safe way of ensuring that
code is run only once; I probably could have used this instead of the Bool property flags
scattered throughout my example code (such as self.viewInitializationDone in
Chapter 6). Your call to this function must be accompanied by a reference to an already
defined variable which serves as a token (a dispatch_once_t); the scope of the notion
“once” is determined by the scope and lifetime at which this token is declared. Thus, in
the following example, the code in question will run just once per instance of this class,
because the token is declared as a property, at the level of the instance:

class SomeClass {
 var once_token : dispatch_once_t = 0
 func test() {
 dispatch_once(&once_token) {
 // this code will run just once in the life of this object
 }
 }
}

In Objective-C, dispatch_once is often used to vend a singleton; in Swift, however, you
are more likely to use the built-in lazy initialization feature.

Besides serial dispatch queues, there are also concurrent dispatch queues. A concurrent
queue’s blocks are started in the order in which they were submitted to the queue, but
a block is allowed to start while another block is still executing. Obviously, you wouldn’t
want to submit to a concurrent queue a task that touches a shared resource — that would
be throwing away the entire point of serial queues. The advantage of concurrent queues
is a possible speed boost when you don’t care about the order in which multiple tasks
are finished — for example, when you want to do something with regard to every
element of an array.

The built-in global queues (available by calling dispatch_get_global_queue) are
concurrent; you can also create a concurrent queue by passing
DISPATCH_QUEUE_CONCURRENT as the second argument to dispatch_queue_create.

A frequent use of concurrent queues is with dispatch_apply. This function is like
dispatch_sync (the caller pauses until the block has finished executing), but the block
is called multiple times with an iterator argument. Thus, dispatch_apply on a con‐
current queue is like a for loop whose iterations are multithreaded; on a device with
multiple cores, this could result in a speed improvement. (Of course, this technique is
applicable only if the iterations do not depend on one another.)

Grand Central Dispatch | 943

Arbitrary context data can be attached to a queue in the form of key–value
pairs (dispatch_queue_set_specific) and retrieved by key. There are two ways to
retrieve the context data:
dispatch_queue_get_specific

Retrieves a key’s value for a queue to which we already have a valid reference.

dispatch_get_specific

Retrieves a key’s value for the current queue, the one in whose thread we are actually
running. In fact, dispatch_get_specific is the only valid way to identify the cur‐
rent queue. (dispatch_get_current_queue, a function formerly used for this pur‐
pose, has been shown to be potentially unsafe and is now deprecated.)

We can use this technique, for example, to make certain that a method is called only on
the correct queue. Recall that in our Mandelbrot-drawing example, we may be con‐
cerned that a method such as makeBitmapContext: might be called on some other queue
than the background queue that we created for this purpose. If this is really a worry, we
can attach an identifying key–value pair to that queue when we create it. The value
should be a pointer; that’s why I created a C string variable at the top level of the file,
and now I’ll add a second variable to act as the key:

let qkeyString = "label" as NSString
var QKEY = qkeyString.UTF8String
let qvalString = "com.neuburg.mandeldraw" as NSString
var QVAL = qvalString.UTF8String

We then create and configure the queue like this:

let q = dispatch_queue_create(QVAL, nil)
dispatch_queue_set_specific(q, QKEY, &QVAL, nil)

Later, we can examine that identifying key–value pair for the queue on which a particular
method is called:

func assertOnBackgroundThread() {
 let s = dispatch_get_specific(QKEY)
 assert(s == &QVAL)
}

Threads and App Backgrounding
When your app is backgrounded and suspended, a problem arises if your code is run‐
ning. The system doesn’t want to stop your code while it’s executing; on the other hand,
some other app may need to be given the bulk of the device’s resources now. So as your
app goes into the background, the system waits a very short time for your app to finish
doing whatever it may be doing, and it then suspends your app.

This shouldn’t be a problem from your main thread’s point of view, because your app
shouldn’t have any time-consuming code on the main thread in the first place; you now

944 | Chapter 25: Threads

know that you can avoid this by using a background thread. On the other hand, it could
be a problem for lengthy background operations, including asynchronous tasks per‐
formed by the frameworks. You can request extra time to complete a lengthy task (or
at to least abort it yourself, coherently) in case your app is backgrounded, by wrapping
it in calls to UIApplication’s beginBackgroundTaskWithExpirationHandler: and end-
BackgroundTask:. Here’s how you do it:

• You call beginBackgroundTaskWithExpirationHandler: to announce that a
lengthy task is beginning; it returns an identification number. This tells the system
that if your app is backgrounded, you’d like to be woken from suspension in the
background now and then in order to complete the task.

• At the end of your lengthy task, you call endBackgroundTask:, passing in the same
identification number that you got from your call to beginBackgroundTaskWith-
ExpirationHandler:. This tells the system that your lengthy task is over and that
there is no need to grant you any more background time.

The argument to beginBackgroundTaskWithExpirationHandler: is a block, but this
block does not express the lengthy task. It expresses what you will do if your extra time
expires before you finish your lengthy task. At the very least, your expiration handler
must call endBackgroundTask:! Otherwise, the runtime won’t know that you’ve run
your expiration handler, and your app may be killed, as a punishment for trying to use
too much background time. If your expiration handler block is called, you should make
no assumptions about what thread it is running on.

Let’s use MyMandelbrotView as an example. Let’s say that if drawThatPuppy is started,
we’d like it to be allowed to finish, even if the app is suspended in the middle of it, so
that our bitmapContext property is updated as requested. To try to ensure this, we call
beginBackgroundTaskWithExpirationHandler: beforehand and call endBackground-
Task: at the end of the innermost block:

func drawThatPuppy () {
 let center = CGPointMake(self.bounds.midX, self.bounds.midY)
 // === configure background task
 var bti : UIBackgroundTaskIdentifier = 0
 bti = UIApplication.sharedApplication()
 .beginBackgroundTaskWithExpirationHandler({
 UIApplication.sharedApplication().endBackgroundTask(bti)
 })
 if bti == UIBackgroundTaskInvalid {
 return
 }
 // ===
 dispatch_async(self.draw_queue) {
 let bitmap = self.makeBitmapContext(self.bounds.size)
 self.drawAtCenter(center, zoom:1, context:bitmap)
 dispatch_async(dispatch_get_main_queue()) {

Threads and App Backgrounding | 945

 self.bitmapContext = bitmap
 self.setNeedsDisplay()
 UIApplication.sharedApplication().endBackgroundTask(bti) // *
 }
 }
}

If our app is backgrounded while drawThatPuppy is in progress, it will (we hope) be
given enough background time to run that it can eventually proceed all the way to the
end. Thus, the property bitmapContext will be updated, and setNeedsDisplay will be
called, while we are still in the background. Our drawRect: will not be called until our
app is brought back to the front, but there’s nothing wrong with that.

Declaring bti in a separate line before calling beginBackgroundTaskWithExpiration-
Handler: to set bti to its real value allows us to access, inside the block, the value that
bti will have when the call to beginBackgroundTaskWithExpirationHandler: returns.
The check against UIBackgroundTaskInvalid can do no harm, and there may be sit‐
uations or devices where our request to complete this task in the background will be
denied.

It’s good policy to use a similar technique when you’re notified that your app is
being backgrounded. You might respond to the app delegate message applicationDid-
EnterBackground: (or the corresponding UIApplicationDidEnterBackground-

Notification) by saving data and reducing memory usage, but this can take time,
whereas you’d like to return from applicationDidEnterBackground: as quickly as
possible. A reasonable solution is to implement applicationDidEnterBackground:
very much like drawThatPuppy in the example I just gave: call beginBackgroundTask-
WithExpirationHandler: and then call dispatch_async to get off the main thread, and
do your saving and so forth in its block.

946 | Chapter 25: Threads

CHAPTER 26

Undo

The ability to undo the most recent action is familiar from OS X. The idea is that,
provided the user realizes soon enough that a mistake has been made, that mistake can
be reversed. Typically, a Mac application will maintain an internal stack of undoable
actions; choosing Edit → Undo or pressing Command-Z will reverse the action at the
top of the stack, and will also make that action available for Redo.

Some iOS apps, too, may benefit from at least a limited Undo facility, and this is not
difficult to implement. Some built-in views — in particular, those that involve text entry,
UITextField and UITextView (Chapter 10) — implement Undo already. And you can
add it in other areas of your app.

Undo is provided through an instance of NSUndoManager, which basically just main‐
tains a stack of undoable actions, along with a secondary stack of redoable actions. The
goal in general is to work with the NSUndoManager so as to handle both Undo and
Redo in the standard manner: when the user chooses to undo the most recent action,
the action at the top of the Undo stack is popped off and reversed and is pushed onto
the top of the Redo stack.

In this chapter, I’ll illustrate a simple NSUndoManager for a simple app that has just
one kind of undoable action. More complicated apps, obviously, will be more compli‐
cated! On the other hand, iOS apps, unlike OS X apps, do not generally need deep or
pervasive Undo functionality. For more about the NSUndoManager class and how to
use it, read Apple’s Undo Architecture as well as the documentation for the class itself.
Also, UIDocument (see Chapter 23) has an undo manager (its undoManager property),
which automatically and appropriately updates the document’s “dirty” state for you.

Undo Manager
In our artificially simple app, the user can drag a small square around the screen. We’ll
start with an instance of a UIView subclass, MyView, to which has been attached a

947

UIPanGestureRecognizer to make it draggable, as described in Chapter 5. The gesture
recognizer’s action target is the MyView instance itself:

func dragging (p : UIPanGestureRecognizer) {
 switch p.state {
 case .Began, .Changed:
 let delta = p.translationInView(self.superview!)
 var c = self.center
 c.x += delta.x; c.y += delta.y
 p.setTranslation(CGPointZero, inView: self.superview!)
 default:break
 }
}

To make dragging of this view undoable, we need an NSUndoManager instance. Let’s
store this in a property of MyView itself, self.undoer:

let undoer = NSUndoManager()

Target–Action Undo
There are two ways to register an action as undoable. I’ll start with the NSUndoManager
method registerUndoWithTarget:selector:object:. This method uses a
target–action architecture: you provide a target, a selector for a method that takes one
parameter, and the object value to be passed as argument when the method is called.
Then, later, if the NSUndoManager is sent the undo message, it simply sends that action
to that target with that argument. The job of the action method is to undo whatever it
is that needs undoing.

What we want to undo here is the setting of our center property. This can’t expressed
directly using a target–action architecture, because the parameter of setCenter: needs
to be a CGPoint; we can’t use a CGPoint as the object: in registerUndoWith-
Target:selector:object:, because it isn’t an Objective-C object (Swift will complain
that it doesn’t conform to AnyObject). Therefore we’re going to have to provide, as our
action method, a secondary method that does take an object parameter. This is neither
bad nor unusual; it is quite common for actions to have a special representation just for
the purpose of making them undoable.

So, in our dragging: method, instead of setting self.center to c directly, we now call
a secondary method (let’s call it setCenterUndoably:):

var c = self.center
c.x += delta.x; c.y += delta.y
self.setCenterUndoably(NSValue(CGPoint:c))

At a minimum, setCenterUndoably: should do the job that setting self.center used
to do:

948 | Chapter 26: Undo

func setCenterUndoably (newCenter:NSValue) {
 self.center = newCenter.CGPointValue()
}

This works in the sense that the view is draggable exactly as before, but we have not yet
made this action undoable. To do so, we must ask ourselves what message the NSUndo‐
Manager would need to send in order to undo the action we are about to perform. We
would want the NSUndoManager to set self.center back to the value it has now, before
we change it as we are about to do. And what method would NSUndoManager call in
order to do that? It would call setCenterUndoably:, the very method we are imple‐
menting now! So:

func setCenterUndoably (newCenter:NSValue) {
 self.undoer.registerUndoWithTarget(
 self, selector: "setCenterUndoably:",
 object: NSValue(CGPoint:self.center))
 self.center = newCenter.CGPointValue()
}

That code has a remarkable effect: it makes our action not only undoable but also re‐
doable. The reason is that NSUndoManager has an internal state, and responds differ‐
ently to registerUndoWithTarget:selector:object: depending on its state. If the
NSUndoManager is sent registerUndoWithTarget:selector:object: while it is un‐
doing, it puts the target–action information on the Redo stack instead of the Undo stack
(because Redo is the Undo of an Undo, if you see what I mean).

Here’s how our code works to Undo and then Redo an action:

1. We perform an action by way of setCenterUndoably:, which calls registerUndo-
WithTarget:selector:object: with the old value of self.center. The NSUndo‐
Manager adds this to its Undo stack.

2. Now suppose we want to undo that action. We send undo to the NSUndoManager.
3. The NSUndoManager calls setCenterUndoably: with the old value that we passed

in earlier when we called registerUndoWithTarget:selector:object:. Thus, we
are going to set the center back to that old value. But before we do that, we send
registerUndoWithTarget:selector:object: to the NSUndoManager with the
current value of self.center. The NSUndoManager knows that it is currently un‐
doing, so it understands this registration as something to be added to its Redo stack.

4. Now suppose we want to redo that Undo. We send redo to the NSUndoManager,
and sure enough, the NSUndoManager calls setCenterUndoably: with the value
that we previously undid. (And, once again, we call registerUndoWith-

Target:selector:object: with an action that goes onto the NSUndoManager’s
Undo stack.)

Undo Manager | 949

Undo Grouping
So far, so good. But our implementation of Undo is very annoying, because we are adding
a single object to the Undo stack every time dragging: is called — and it is called many
times during the course of a single drag. Thus, undoing merely undoes the tiny incre‐
ment corresponding to one individual dragging: call. What we’d like, surely, is for
undoing to undo an entire dragging gesture. We can implement this through undo
grouping. As the gesture begins, we start a group; when the gesture ends, we end the
group:

func dragging (p : UIPanGestureRecognizer) {
 switch p.state {
 case .Began:
 self.undoer.beginUndoGrouping()
 fallthrough
 case .Began, .Changed:
 let delta = p.translationInView(self.superview!)
 var c = self.center
 c.x += delta.x; c.y += delta.y
 self.setCenterUndoably(NSValue(CGPoint:c))
 p.setTranslation(CGPointZero, inView: self.superview!)
 case .Ended, .Cancelled:
 self.undoer.endUndoGrouping()
 default:break
 }
}

This works: each complete gesture of dragging MyView, from the time the user’s finger
contacts the view to the time it leaves, is now undoable (and then redoable) as a single
unit.

A further refinement would be to animate the “drag” that the NSUndoManager performs
when it undoes or redoes a user drag gesture. To do so, we take advantage of the fact
that we, too, can examine the NSUndoManager’s state by way of its isUndoing and
isRedoing properties; we animate the center change when the NSUndoManager is
“dragging,” but not when the user is dragging:

 func setCenterUndoably (newCenter:NSValue) {
 self.undoer.registerUndoWithTarget(
 self, selector: "setCenterUndoably:",
 object: NSValue(CGPoint:self.center))
 if self.undoer.undoing || self.undoer.redoing {
 UIView.animateWithDuration(
 0.4, delay: 0.1, options: nil, animations: {
 self.center = newCenter.CGPointValue()
 }, completion: nil)
 } else {

950 | Chapter 26: Undo

 // just do it
 self.center = newCenter.CGPointValue()
 }
 }

Invocation Undo
Earlier I said that registerUndoWithTarget:selector:object: was one of two ways
to register an action as undoable. The other is prepareWithInvocationTarget:. In
general, the advantage of prepareWithInvocationTarget: is that it lets you specify a
method with any number of parameters, and those parameters needn’t be objects. You
provide the target and, in the same line of code, send to the object returned from this
call the message and arguments you want sent when the NSUndoManager is sent undo
or redo. So, in our example, instead of this line:

self.undoer.registerUndoWithTarget(
 self, selector: "setCenterUndoably:",
 object: NSValue(CGPoint:self.center))

You’d say this:

self.undoer.prepareWithInvocationTarget(self)
 .setCenterUndoably(self.center)

That code seems impossible: how can we send setCenterUndoably: without calling set-
CenterUndoably:? Either we are sending it to self, in which case it should actually be
called at this moment, or we are sending it to some other object that doesn’t implement
setCenterUndoably:, in which case our app should crash. However, under the hood,
the NSUndoManager is cleverly using dynamism (similarly to the message-forwarding
example in Chapter 12) to capture this call as an NSInvocation object, which it can use
later to send the same message with the same arguments to the specified target.

If we’re going to use prepareWithInvocationTarget:, there’s no need to wrap the
CGPoint value representing the old and new center of our view as an NSValue. So our
complete implementation now looks like this:

func setCenterUndoably (newCenter:CGPoint) { // *
 self.undoer.prepareWithInvocationTarget(self)
 .setCenterUndoably(self.center) // *
 if self.undoer.undoing || self.undoer.redoing {
 UIView.animateWithDuration(
 0.4, delay: 0.1, options: nil, animations: {
 self.center = newCenter // *
 }, completion: nil)
 } else {
 // just do it
 self.center = newCenter // *
 }
}
func dragging (p : UIPanGestureRecognizer) {

Undo Manager | 951

 switch p.state {
 case .Began:
 self.undoer.beginUndoGrouping()
 fallthrough
 case .Began, .Changed:
 let delta = p.translationInView(self.superview!)
 var c = self.center
 c.x += delta.x; c.y += delta.y
 self.setCenterUndoably(c) // *
 p.setTranslation(CGPointZero, inView: self.superview!)
 case .Ended, .Cancelled:
 self.undoer.endUndoGrouping()
 default:break
 }
}

Undo Interface
We must also decide how to let the user request Undo and Redo. In developing the code
from the preceding section, I used two buttons: an Undo button that sent undo to the
NSUndoManager, and a Redo button that sent redo to the NSUndoManager. This can
be a perfectly reasonable interface, but let’s talk about some others.

Shake-To-Edit
By default, your app supports shake-to-edit. This means the user can shake the device
to bring up an undo/redo interface. We discussed this briefly in Chapter 22. If you don’t
turn off this feature by setting the shared UIApplication’s applicationSupportsShake-
ToEdit property to false, then when the user shakes the device, the runtime walks up
the responder chain, starting with the first responder, looking for a responder whose
inherited undoManager property returns an actual NSUndoManager instance. If it finds
one, it puts up an undo/redo interface, allowing the user to communicate with that
NSUndoManager.

You will recall what it takes for a UIResponder to be first responder in this sense: it must
return true from canBecomeFirstResponder, and it must actually be made first res‐
ponder through a call to becomeFirstResponder. Let’s make MyView satisfy these re‐
quirements. For example, we might call becomeFirstResponder at the end of
dragging:, like this:

override func canBecomeFirstResponder() -> Bool {
 return true
}
func dragging (p : UIPanGestureRecognizer) {
 switch p.state {
 // ... the rest as before ...
 case .Ended, .Cancelled:
 self.undoer.endUndoGrouping()

952 | Chapter 26: Undo

Figure 26-1. The shake-to-edit undo/redo interface

 self.becomeFirstResponder()
 default:break
 }
}

Then, to make shake-to-edit work, we have only to provide a getter for the undo-
Manager property that returns our undo manager, self.undoer:

let undoer = NSUndoManager()
override var undoManager : NSUndoManager {
 get {
 return self.undoer
 }
}

This works: shaking the device now brings up the undo/redo interface, and its buttons
work correctly. However, I don’t like the way the buttons are labeled; they just say Undo
and Redo. To make this interface more expressive, we should provide a string describing
each undoable action by calling setActionName:. We can appropriately and conven‐
iently do this in setCenterUndoably:, as follows:

self.undoer.prepareWithInvocationTarget(self)
 .setCenterUndoably(self.center)
self.undoer.setActionName("Move")
// ... and so on ...

Now the undo/redo interface has more informative labels, as shown in Figure 26-1.

Undo Menu
Another possible interface is through a menu (Figure 26-2). Personally, I prefer this
approach, as I am not fond of shake-to-edit (it seems both violent and unreliable). This
is the same menu used by a UITextField or UITextView for displaying the Copy and
Paste menu items (Chapter 10). The requirements for summoning this menu are ef‐
fectively the same as those for shake-to-edit: we need a responder chain with a first

Undo Interface | 953

Figure 26-2. The shared menu as an undo/redo interface

responder at the bottom of it. So the code we’ve just supplied for making MyView first
responder remains applicable.

We can make a menu appear, for example, in response to a long press on our MyView
instance. So let’s attach another gesture recognizer to MyView. This will be a UILong‐
PressGestureRecognizer, whose action handler is called longPress:. Recall from Chap‐
ter 10 how to implement the menu: we get the singleton global UIMenuController object
and specify an array of custom UIMenuItems as its menuItems property. We can make
the menu appear by sending the UIMenuController the setMenuVisible:animated:
message. But a particular menu item will appear in the menu only if we also return true
from canPerformAction:withSender: for that menu item’s action. Delightfully, the
NSUndoManager’s canUndo and canRedo methods tell us what value canPerform-
Action:withSender: should return. We can also get the titles for our custom menu
items from the NSUndoManager itself, by calling undoMenuItemTitle:

func longPress (g : UIGestureRecognizer) {
 if g.state == .Began {
 let m = UIMenuController.sharedMenuController()
 m.setTargetRect(self.bounds, inView: self)
 let mi1 = UIMenuItem(
 title: self.undoer.undoMenuItemTitle, action: "undo:")
 let mi2 = UIMenuItem(
 title: self.undoer.redoMenuItemTitle, action: "redo:")
 m.menuItems = [mi1, mi2]
 m.setMenuVisible(true, animated:true)
 }
}
override func canPerformAction(
 action: Selector, withSender sender: AnyObject!) -> Bool {
 if action == Selector("undo:") {
 return self.undoer.canUndo
 }
 if action == Selector("redo:") {
 return self.undoer.canRedo
 }
 return super.canPerformAction(action, withSender: sender)

954 | Chapter 26: Undo

}
func undo(_:AnyObject?) {
 self.undoer.undo()
}
func redo(_:AnyObject?) {
 self.undoer.redo()
}

Undo Interface | 955

APPENDIX A

Application Lifetime Events

Your app’s one and only application object (a UIApplication instance, or on rare occa‐
sions a UIApplication subclass instance) is created for you as the shared application
object by UIApplicationMain, along with its delegate; in the Xcode project templates,
this is an instance of the AppDelegate class. The application reports lifetime events
through method calls to its delegate; other instances can also register to receive most of
these events as notifications.

What application lifetime events you can receive depends on whether or not your app
participates in multitasking. It almost certainly will. In the old days, before iOS 4, there
was no multitasking. If the user pressed the Home button while running your app, your
app was terminated. The next time the user launched your app by tapping its icon, your
app launched from scratch. Even today, your app can opt out of multitasking and behave
like a pre–iOS 4 app, if you set the “Application does not run in background” key
(UIApplicationExitsOnSuspend) in your Info.plist. For some apps, such as certain
games, this might be a reasonable thing to do.

In the multitasking world, however, the Home button doesn’t terminate your app; it
backgrounds and suspends it. This means that your app is essentially freeze-dried in the
background; its process still exists, but it isn’t actively running, and it isn’t getting any
events — though notifications can be stored by the system for later delivery if your app
comes to the front once again. If your app is terminated, it’s not because the user switches
away from it, but because the system has killed it while it was suspended — for example,
because it needed to reclaim the memory your suspended app was using, or because the
user switched off the device.

(A backgrounded app can, however, continue to run certain specialized activities, such
as playing music, and a backgrounded app can be woken periodically in order to update
its data via the network. See Chapters 14, 22, and 24. So a backgrounded app isn’t always
necessarily completely suspended. But in general, most backgrounded apps are sus‐
pended most of the time.)

957

The suite of basic application lifetime events in the multitasking world is quite limited;
indeed, in my opinion, the information your app is given is unfortunately rather too
coarse-grained. The events are as follows:
application:didFinishLaunchingWithOptions:

The app has started up. You’ll typically perform initializations here. If an app doesn’t
have a main storyboard, this code must also create the app’s window and show it.

(Another event, application:willFinishLaunchingWithOptions:, arrives even
earlier. Its purpose is to allow your app to participate in the state saving and resto‐
ration mechanism discussed in Chapter 6.)

applicationDidBecomeActive:

Received after application:didFinishLaunchingWithOptions:. Also received
after the end of the situation that caused the app delegate to receive application-
WillResignActive:.

applicationWillResignActive:

One possibility is that something has blocked the app’s interface — for example, the
screen has been locked. A local notification alert or an incoming phone call could
also cause this event. When this situation ends, the app delegate will receive
applicationDidBecomeActive:.

Alternatively, the app may be about to go into the background (and will then be
suspended); in that case, the next event will be applicationDidEnterBackground:.

applicationDidEnterBackground:

The application has been backgrounded (and is probably about to be suspended).
Always preceded by applicationWillResignActive:.

applicationWillEnterForeground:

The application was backgrounded, and is now coming back to the front. Always
followed by applicationDidBecomeActive:. Note that this message is not sent on
launch, because the app wasn’t previously in the background.

An additional event, applicationWillTerminate:, was your last signal in the non‐
multitasking world to preserve state and perform other final cleanup tasks. In the
multitasking world, however, you’ll probably never get applicationWillTerminate:,
because by the time your app is terminated by the system, it was already suspended and
incapable of receiving events. (I’ll mention an exception, though, in a moment; and see
Chapter 14 for another.)

The application lifetime events are best understood through some typical scenarios:
The app launches freshly

Your app delegate receives these messages:

958 | Appendix A: Application Lifetime Events

• application:didFinishLaunchingWithOptions:

• applicationDidBecomeActive:

The user clicks the Home button
Your app delegate receives these messages:

• applicationWillResignActive:

• applicationDidEnterBackground:

Your app will then probably be suspended; before that happens, you have a little
time to finish up last-minute tasks, such as relinquishing unneeded memory (see
Chapter 6), and if you need more time for a lengthy task, you can ask for it (see
Chapter 25).

The user summons your backgrounded app to the front
Your app delegate receives these messages:

• applicationWillEnterForeground:

• applicationDidBecomeActive:

If the user summons your backgrounded app to the front indirectly, another dele‐
gate message may be sent between these two calls. For example, if the user asks
another app to hand a file over to your app (Chapter 23), your app receives
application:handleOpenURL: between applicationWillEnterForeground: and
applicationDidBecomeActive:.

The user double-clicks the Home button
The user can now work in the app switcher interface. If your app is frontmost, your
app delegate receives this message:

• applicationWillResignActive:

The user, in the app switcher, chooses another app
If your app was frontmost, your app delegate receives this message:

• applicationDidEnterBackground:

The user, in the app switcher, chooses your app
If your app was the most recently frontmost app, then it was never backgrounded,
so your app delegate receives this message:

• applicationDidBecomeActive:

The user summons the control center or notification center
If your app is frontmost, your app delegate receives this message:

Application Lifetime Events | 959

• applicationWillResignActive:

The user dismisses the control center or notification center
If your app is frontmost, your app delegate receives this message:

• applicationDidBecomeActive:

A local notification alert from another app appears
If your app is frontmost, your app delegate receives this message:

• applicationWillResignActive:

From a local notification alert, the user launches the other app
Your app delegate receives this message:

• applicationDidEnterBackground:

The screen is locked
If your app is frontmost, your app delegate receives these messages:

• applicationWillResignActive:

• applicationDidEnterBackground:

The screen is unlocked
If your app is frontmost, your app delegate receives these messages:

• applicationWillEnterForeground:

• applicationDidBecomeActive:

The user holds the screen-lock button down
The device offers to shut itself down. If your app is frontmost, your app delegate
receives this message:

• applicationWillResignActive:

The user, as the device offers to shut itself down, cancels
If your app is frontmost, your app delegate receives this message:

• applicationDidBecomeActive:

The user, as the device offers to shut itself down, accepts
If your app is frontmost, the app delegate receives these messages:

• applicationDidEnterBackground:

• applicationWillTerminate: (probably the only way a normal app will receive
this message in a multitasking world)

960 | Appendix A: Application Lifetime Events

Unfortunately, you can’t make any assumptions about the timing of the app delegate
messages with respect to lifetime events received by other objects. They may well be
interwoven in surprising ways. For example, the root view controller may receive its
initial lifetime events, such as viewDidLoad: and viewWillAppear:, before
application:didFinishLaunchingWithOptions: has even finished running.

New in iOS 8, the app delegate receives applicationDidBecomeActive: after the root
view controller’s interface has appeared and the root view controller has received view-
DidAppear:. This change has been a disaster for many of my apps. I very typically register
for UIApplicationDidBecomeActiveNotification in the view controller’s viewDid-
Appear: in order to be notified of subsequent activations of the app; in iOS 8, however,
that notification now arrives immediately.

Application Lifetime Events | 961

APPENDIX B

Some Useful Utility Functions

As you work with iOS and Swift, you’ll doubtless develop a personal library of frequently
used convenience functions. Here are some that have come in handy in my own life, to
which I’ve referred in the course of this book.

Delayed Performance
Delayed performance is of paramount importance in iOS programming, where it is
often the case that the interface must be given a moment to settle down before we
proceed to the next command in a sequence. Calling dispatch_after is particularly
tedious in Swift, because its strict numeric typing necessitates a lot of casting, so here’s
a utility function:

func delay(delay:Double, closure:()->()) {
 dispatch_after(
 dispatch_time(
 DISPATCH_TIME_NOW,
 Int64(delay * Double(NSEC_PER_SEC))
),
 dispatch_get_main_queue(), closure)
}

And call it like this:

delay(0.4) {
 // do something here
}

In my world, this is far and away the most important utility function; I use it in every
single app.

963

Center of a CGRect
One so frequently wants the center point of a CGRect that even the Swift shorthand
CGPointMake(rect.midX, rect.midY) becomes tedious. You can extend CGRect to do
the work for you:

extension CGRect {
 var center : CGPoint {
 return CGPointMake(self.midX, self.midY)
 }
}

Adjust a CGSize
There’s a CGRect inset (or rectByInsetting), but there’s no comparable method for
changing an existing CGSize by a width delta and a height delta. Let’s make one:

extension CGSize {
 func sizeByDelta(#dw:CGFloat, dh:CGFloat) -> CGSize {
 return CGSizeMake(self.width + dw, self.height + dh)
 }
}

Dictionary of Views
There are no Swift macros (because there’s no Swift preprocessor), so you can’t write
the equivalent of Objective-C’s NSDictionaryOfVariableBindings, which turns a lit‐
eral list of view names into a dictionary of string names and view references for use in
connection with NSLayoutConstraint’s constraintsWithVisualFormat. You can, how‐
ever, generate such a dictionary with fixed string names, like this:

func dictionaryOfNames(arr:UIView...) -> [String:UIView] {
 var d = [String:UIView]()
 for (ix,v) in enumerate(arr) {
 d["v\(ix+1)"] = v
 }
 return d
}

This utility function takes a list of views and simply makes up new string names for
them, of the form "v1", "v2", and so on, in order. Knowing the rule by which the string
names are generated, you then use those string names in your visual format strings. For
example, if you generate the dictionary by calling dictionaryOfNames(mainView, my-
Label), then in any visual format string that uses this dictionary, you will refer to main-
View by the name v1 and myLabel by the name v2.

964 | Appendix B: Some Useful Utility Functions

Constraint Issues
These are NSLayoutConstraint class methods, added in an extension, aimed at helping
to detect and analyze constraint issues (referred to in Chapter 1):

extension NSLayoutConstraint {
 class func reportAmbiguity (var v:UIView?) {
 if v == nil {
 v = UIApplication.sharedApplication().keyWindow
 }
 for vv in v!.subviews as [UIView] {
 println("\(vv) \(vv.hasAmbiguousLayout())")
 if vv.subviews.count > 0 {
 self.reportAmbiguity(vv)
 }
 }
 }
 class func listConstraints (var v:UIView?) {
 if v == nil {
 v = UIApplication.sharedApplication().keyWindow
 }
 for vv in v!.subviews as [UIView] {
 let arr1 = vv.constraintsAffectingLayoutForAxis(.Horizontal)
 let arr2 = vv.constraintsAffectingLayoutForAxis(.Vertical)
 NSLog("\n\n%@\nH: %@\nV:%@", vv, arr1, arr2);
 if vv.subviews.count > 0 {
 self.listConstraints(vv)
 }
 }
 }
}

Drawing Into an Image Context
Our goal here is to encapsulate the boring, repetitive, clunky, imperative-programming
dance of beginning a UIGraphics image context, drawing into it, extracting the image,
and ending the context. This utility function expresses everything but the drawing; you
hand the function a closure describing the drawing, and the function returns an image:

func imageOfSize(size:CGSize, closure:() -> ()) -> UIImage {
 UIGraphicsBeginImageContextWithOptions(size, false, 0)
 closure()
 let result = UIGraphicsGetImageFromCurrentImageContext()
 UIGraphicsEndImageContext()
 return result
}

You call it like this:

Constraint Issues | 965

let im = imageOfSize(CGSizeMake(100,100)) {
 let con = UIGraphicsGetCurrentContext()
 CGContextAddEllipseInRect(con, CGRectMake(0,0,100,100))
 CGContextSetFillColorWithColor(con, UIColor.blueColor().CGColor)
 CGContextFillPath(con)
}

You may object that imageOfSize assumes that we want a transparent context (the
second argument to UIGraphicsBeginImageContextWithOptions is false); that’s usu‐
ally a correct assumption, so I don’t want to add another parameter to imageOfSize
unless it’s an optional parameter with a default value of false. Unfortunately, Swift won’t
let us use an optional parameter followed by a closure parameter. The solution is to
curry the function, like this:

func drawnImage (opaque:Bool = false) -> (CGSize, () -> ()) -> UIImage {
 func imageOfSize(size:CGSize, closure:() -> ()) -> UIImage {
 UIGraphicsBeginImageContextWithOptions(size, opaque, 0)
 closure()
 let result = UIGraphicsGetImageFromCurrentImageContext()
 UIGraphicsEndImageContext()
 return result
 }
 return imageOfSize
}

You can call drawnImage in two ways. For a transparent context, call it like this:

let im = drawnImage()(CGSizeMake(100,100)) {
 // ... draw ...
}

For an opaque context, call it like this:

self.image = drawnImage(opaque:true)(CGSizeMake(100,100)) {
 // ... draw ...
}

Finite Repetition of an Animation
This is a generalized version of the tail-recursion example in Chapter 4 showing how
to repeat a view animation a small fixed number of times. Because of Swift’s limitations
against a local function recursing while capturing the environment, it is simplest to
implement this as two class functions, a wrapper function that provides the API to the
caller and a recursing helper function that does the actual work:

extension UIView {
 class func animateWithTimes(times:Int, duration: NSTimeInterval,
 delay: NSTimeInterval, options: UIViewAnimationOptions,
 animations: () -> Void, completion: ((Bool) -> Void)?) {
 self.animHelper(
 times-1, duration, delay, options, animations, completion)

966 | Appendix B: Some Useful Utility Functions

 }
 class func animHelper(t:Int, _ dur: NSTimeInterval, _ del: NSTimeInterval,
 _ opt: UIViewAnimationOptions,
 _ anim: () -> Void, _ com: ((Bool) -> Void)?) {
 UIView.animateWithDuration(dur, delay: del, options: opt,
 animations: anim, completion: {
 done in
 if com != nil {
 com!(done)
 }
 if t > 0 {
 self.animHelper(t-1, dur, del, opt, anim, com)
 }
 })
 }
}

The calling syntax is exactly like ordering a UIView animation in its full form, except
that there’s an initial times parameter:

let opts = UIViewAnimationOptions.Autoreverse
let xorig = self.v.center.x
UIView.animateWithTimes(3, duration:1, delay:0, options:opts, animations:{
 self.v.center.x += 100
 }, completion:{
 _ in
 self.v.center.x = xorig
})

Remove Multiple Indexes From Array
It is often convenient to collect the indexes of items to be deleted from an array, and
then to delete those items. An Array extension can be helpful here. We must be careful
to sort the indexes in decreasing numeric order first, because array indexes will be off
by one after an item at a lower index is removed:

extension Array {
 mutating func removeAtIndexes (ixs:[Int]) -> () {
 for i in ixs.sorted(>) {
 self.removeAtIndex(i)
 }
 }
}

Configure a Value Class At the Point of Use
A recurring pattern in Cocoa is that a value class is instantiated and that instance is
configured beforehand for a one-time use:

Remove Multiple Indexes From Array | 967

let para = NSMutableParagraphStyle()
para.headIndent = 10
para.firstLineHeadIndent = 10
para.tailIndent = -10
para.lineBreakMode = .ByWordWrapping
para.alignment = .Center
para.paragraphSpacing = 15
content.addAttribute(
 NSParagraphStyleAttributeName,
 value:para, range:NSMakeRange(0,1))

This has a clunky, procedural feel. It would clearer and more functional, as well as
reflecting the natural order of thought, if all of that could happen at the actual point of
use. Here’s a generic function that permits us to do that:

func lend<T where T:NSObject> (closure:(T)->()) -> T {
 let orig = T()
 closure(orig)
 return orig
}

Now we can express ourselves like this:

content.addAttribute(NSParagraphStyleAttributeName,
 value:lend(){
 (para:NSMutableParagraphStyle) in
 para.headIndent = 10
 para.firstLineHeadIndent = 10
 para.tailIndent = -10
 para.lineBreakMode = .ByWordWrapping
 para.alignment = .Center
 para.paragraphSpacing = 15
 }, range:NSMakeRange(0,1))

Cancelable Closure-Based Timer
The Objective-C methods performSelector:withObject:afterDelay: and cancel-
PreviousPerformRequestsWithTarget: are unavailable in Swift, so it would be nice to
have an alternative. My replacement is a class, CancelableTimer; it is basically a com‐
bination of a Swift closure and a GCD timer dispatch source. The initializer is
init(once:handler:). The handler: is called when the timer fires. If once: is false,
this will be a repeating timer. It obeys two methods, startWithInterval: and cancel:

class CancelableTimer: NSObject {
 private var q = dispatch_queue_create("timer",nil)
 private var timer : dispatch_source_t!
 private var firsttime = true
 private var once : Bool
 private var handler : () -> ()
 init(once:Bool, handler:()->()) {
 self.once = once

968 | Appendix B: Some Useful Utility Functions

 self.handler = handler
 super.init()
 }
 func startWithInterval(interval:Double) {
 self.firsttime = true
 self.cancel()
 self.timer = dispatch_source_create(
 DISPATCH_SOURCE_TYPE_TIMER,
 0, 0, self.q)
 dispatch_source_set_timer(self.timer,
 dispatch_walltime(nil, 0),
 UInt64(interval * Double(NSEC_PER_SEC)),
 UInt64(0.05 * Double(NSEC_PER_SEC)))
 dispatch_source_set_event_handler(self.timer, {
 if self.firsttime {
 self.firsttime = false
 return
 }
 self.handler()
 if self.once {
 self.cancel()
 }
 })
 dispatch_resume(self.timer)
 }
 func cancel() {
 if self.timer != nil {
 dispatch_source_cancel(timer)
 }
 }
}

Generic Wrapper
This is the generic wrapper class used in Chapter 24. I didn’t think of this; the idea comes
from a Stack Overflow post (http://stackoverflow.com/a/24760061/341994):

class Wrapper<T> {
 let p:T
 init(_ p:T){self.p = p}
}

This is useful because it is an AnyObject and can therefore be passed into an Objective-
C API wherever an AnyObject is expected. Making a Wrapper object is easy:

let w = Wrapper(anything)

Retrieving the anything when a Wrapper returns to you as an AnyObject requires that
you discover, or know in advance, the type of its p and that you cast to that type:

let thing : AnyObject = // some kind of Wrapper
let realthing = (thing as Wrapper).p as SomeType

Generic Wrapper | 969

http://stackoverflow.com/a/24760061/341994

We’d like to hear your suggestions for improving our indexes. Send email to index@oreilly.com.

Index

A
ABNewPersonController, 782
ABPeoplePickerNavigationController, 779
ABPerson, 776
ABPersonViewController, 781
ABRecord, 776
ABUnknownPersonViewController, 783
accelerometer, 843
accessory views, 422, 458
action extension, 680
action mechanism (implicit animation), 182
action message (control), 617
action search (implicit animation), 183
action selector signatures (control), 616
action sheet, 661
actions (animation), 182
actions (control), 616
activity indicator, 603
activity view, 675
activity view, custom activity, 678, 680
adaptive, 268
adaptive presentation, 295
adaptive presentation, popover, 509
adaptive split view controller, 516
address book, 773

change notifications, 775
persons and addresses, 776

Address Book framework, 773–784
Address Book UI framework, 773, 779–784

address, converting to a coordinate, 827
address, natural language search, 829
alert, 658
alert, custom, 663
alert, local notification, 664
animation, 141–208

action mechanism, 182
action search, 183
additive, 149
animation controller, 314
animation “movie”, 143
animations list, 180
annotation (on map), 816
autolayout vs. animation, 206
block, 147
canceling, 153, 180
constraints, 207, 283
delegate, 166
emitter layers, 191
freezing, 177
gravity, 204
grouped animations, 173
hit-testing during animation, 236
image animation, 146
image view animation, 145
keyframe animation, 156, 171
layer animation, explicit, 165
layer animation, implicit, 161
layer, adding an animation to, 180

971

motion effects, 205
physics, 198
presented view, 291
preventing, 148, 162, 185
properties, animatable, 161
properties, custom animatable, 155, 173, 188
redrawing with animation, 158, 178
repeating, 150
rotation of interface, 281
slowing animation, 142
spring animation, 156, 204
stuttering animation, 136
subviews, animating, 160, 189
synchronized with video, 722
transactions, 162
transitions, 158, 178
transitions, Core Image, 196
transitions, interactive, 318
transitions, view controller, 313
UIKit dynamics, 198, 497
view animation, 147
view controller, custom, 313
view controller, interactive, 318
when actually happens, 163

animation, repeating, 966
annotation (on map), 810
API, xviii
app bundle, resources inside, 66
app switcher, 365, 959
app switcher, snapshot, 382, 918, 920
appearance proxy, 653
application lifetime events, 957
Application Support folder, 862
archiving data, 865
asset catalog, 65, 73, 75
asynchronous, 587
asynchronous layer drawing, 137
attitude of device, 843
attributed strings, 537–550

creating, 541
creating in nib, 546
custom attributes, 548
drawing, 549
importing and exporting, 546
inline images, 545
measuring, 550
modifying, 546
tab stops, 544

audio, 689–710, 711
(see also video)
audio session, 691
audio session, activating, 692
audio session, declaring, 691
ducking, 693
effects, 706
interruption, 693
mixable, 692
mixing, 706
music library, 735
playing, 697
playing in background, 701
remote control, 699
routing, 696, 739
screen locking, 691
secondary, 695
volume, 738

Audio Toolbox framework, 689
AUSampler, 710
authorization, address book, 773
authorization, calendar database, 786
authorization, camera, 765
authorization, location services, 833
authorization, microphone, 766
authorization, motion activity, 855
authorization, photo library, 745
authorization, show user location, 824
autolayout, 30–63

(see also constraints)
animation vs. autolayout, 206
button, 633
image view, 70
label, 552
progress view, 605
scroll view, 387
segmented control, 628
slider, 626
transforms and autolayout, 61

autoresizing, 27
autoresizing constraints, 33
autoresizing, configuring in the nib, 48
autosaving, 879
AV Foundation framework, 691, 711–725

asynchronous property loading, 718
classes, 716
controlling the camera, 770
ducking audio, 722
editing video, 720

972 | Index

key–value observing, 718
mixing audio, 704
playing audio, 697
playing video, 712
queuing audio, 739
time measurement, 720

AVAudioEngine, 704–709
AVAudioPlayer, 697
AVCaptureSession, 770
AVKit framework, 711
AVPlayerViewController, 712
AVQueuePlayer, 739
AVSpeechSynthesizer, 709
AVSynchronizedLayer, 722

B
back button, 307, 644
back indicator, 644
back item, 302
background app refresh, 919
background audio, 701
background downloading, 917
background location, 839
background of view, black, 93, 108
background tasks, lengthy, 944
backgrounding of the app, 363, 957
banner, 664
bar button item, 305, 641, 646
bars, 638–650

appearance, 640
bar button item, 641
bar metrics, 639
color, 640
height, 638
image, 640
navigation bar, 643
navigation bar, back button, 307, 644
navigation bar, back indicator, 644
position, 638
shadow, 641
style, 640
tab bar, 646
tab bar item, 646
tab bar More item, 648
toolbar, 646
underlapping status bar, 639

beep, 689
black background, 123
block-based animation, 147

blurred views, 90
Bonjour, 924
borders, 135
bottom and top reversed, 124, 179
bottom layout guide, 40, 269
bounds, 14
browser, web, 587
button, 630
button in alert, 659
button in local notification, 667

C
CA prefix, 111
CAAction, 182
CAAnimationGroup, 173
CABasicAnimation, 165
caching a drawing, 113
CADisplayLink, 196
CAEmitterCell, 191
CAEmitterLayer, 191
CAGradientLayer, 127
CAKeyframeAnimation, 171
CALayer, 111

(see also layers)
Calendar app, 785
calendar database, 785

alarms, 791
alarms, proximity, 796
calendars, 787
change notifications, 789
changing atomically, 788
creating calendars, 789
creating events, 790
events, 788
fetching events, 794
recurrence rules, 791
reminders, 795

CAMediaTimingFunction, 163
camera, 766
Camera app, 768
cancelable timer, 968
CAPropertyAnimation, 166
CAScrollLayer, 119
CAShapeLayer, 126
CAShapeLayer, animating, 177
catalog, asset (see asset catalog)
CATextLayer, 126
CATextLayer and attributed strings, 555
CATiledLayer, scrolling, 399

Index | 973

CATiledLayer, zooming, 404
CATransaction, 162
CATransform3D, 129
CATransformLayer, 132
CATransition, 178
cells, 418–433

(see also table views)
accessory views, 422, 458
background, 423
built-in styles, 419, 426
collapsing, 479
collection views, 487
configuration, 422
custom action buttons, 473
custom content, 427–433
deleting, 471
editable content, 474
height, 424, 449
inserting, 476
labels in, 421
layout of, 428
menus, 480
nib-loaded, 430
prototype, 432
rearranging, 478
registration of class, 425
registration of nib, 430
reusing, 418, 436
selected, 454
slide to reveal buttons, 473
storyboard-loaded, 432

center of CGRect, 964
CGAffineTransform, 18, 105, 128
CGColor, 102
CGContext, 76
CGContextClearRect, 108, 123
CGGradient, 100
CGImage, 81
CGPath, 97
CGPattern, 103
CIFilter, 85
CIImage, 85
CIKernel, 89
CLGeocoder, 827
clipboard, 568
clipping, 10, 99
closure, Swift, as Objective-C object, 912, 942
cloud-based calendars, 787
cloud-based files, 883

cloud-based music, 733, 741
CLPlacemark, 827
CLRegion, 841
CMAttitude, 851
CMDeviceMotion, 850
CMMotionActivityManager, 855
CMMotionManager, 846
CMPedometer, 857
CMTime, 720
collection views, 483–498

animated with UIKit dynamics, 497
cells, 487
headers and footers, 488
layout, 488
layout, changing, 496
layout, custom, 493
supplementary views, 488

columns of text, 582
compass, digital, 838
completion handler, 910
component of a picker view, 607
compound paths, 96
concurrency, 927
constraints, 30, 31–54

(see also autolayout)
ambiguous, 43
animation of constraints, 207, 283
autoresizing constraints, 33
changing, 38
conditional, 55
conflicting, 42
creating in code, 34
creating in the nib, 48
debugging, 44, 56
editing in the nib, 50
implicit constraints, 33
intrinsic content size, 45
margins, 41, 49
problems in the nib, 52

constraints, debugging, 965
Contacts app, 773
container view, 314
content size (scroll view), 385
content view (scroll view), 389
context (see graphics context)
control center, 959
control center, controlling audio, 699
controls, 614–638

action message, 617

974 | Index

action selector signatures, 616
actions, 616
button, 630
control events, 614
custom, 635
date picker, 621
page control, 620
segmented control, 627
slider, 624
state, 617
stepper, 619
switch, 618
touches, 615, 635

coordinates
converting coordinates, 16, 117
converting to an address, 828
coordinate space, 17
layer coordinates, 117
main window coordinates, 17
polar coordinates, 636
screen coordinates, 17
systems, 13
view coordinates, 15

Core Animation, 165
Core Data, 891–897
Core Data framework, 891
Core Image framework, 85
Core Location framework, 796, 807, 832–843
Core Media framework, 720, 745
Core Motion framework, 845–857
Core Text, 531
Core Text framework, 534
creating a file, 865
creating a folder, 864
creating a view controller, 254–268
CTFont, 532
CTM, 105
current graphics context, 76
curry, 966

D
date picker, 621
date, calculation, 792
date, constructing, 790
date, converting to string, 623
Debug menu of Simulator, 137, 142, 414
deferred location updates, 840
delay, 963
delayed performance, 941, 943, 963

delegation, 289
device, attitude of, 843
device, heading of, 838
device, location of, 824, 835
device, shake to undo, 844, 952
device, user acceleration of, 848
dialogs, modal (see modal dialogs)
dictionaryOfNames, 964
dimming background views, 329
dimming tint color, 652
directions (on map), 830
directories (see folders)
dispatch table, 219, 616
document architecture, 878
document types, 871
document, previewing, 876
document, receiving from another app, 873
document, sending to another app, 874
Documents folder, 861
documents in the cloud, 883
double tap vs. single tap, 216, 224
downloading from the network, 903
downloading in background, 917
drawing a layer, 120
drawing a path, 95
drawing a view, 92
drawing an image, 75, 79
drawing efficiently, 12, 137, 413
drawing rotated, 105
drawing text, 549
drawing text with Text Kit, 581
drawing, caching of, 113
drawing, hit-testing of, 234
drawing, when actually happens, 142, 163
dynamic directive, 188
dynamic message handling, 650
Dynamic Type fonts, 533
dynamics, UIKit, 198, 497

E
EKAlarm, 791
EKCalendarChooser, 798
EKEventEditViewController, 798
EKEventViewController, 797
EKRecurrenceRule, 791
EKReminder, 795
ellipsis, 552, 555
email, 801
emitter layers, 191

Index | 975

errors (see warnings)
Event Kit framework, 785–800
Event Kit UI framework, 796–800
events, layout, 61
events, remote, 699
events, shake, 844
events, touch, 210
EXIF data, 898
extensions

action extension, 680
communicating with app, 674, 870
photo editing extension, 763
today extension, 673

F
Facebook, 801, 804
file sharing, 862
files, 861–899

cloud-based files, 883
creating a file, 865
document types, 871
document, receiving from another app, 873
document, sending to another app, 874
previewing a document, 876
reading a file, 865
sandbox, 861
sandbox, inspecting, 863
saving to a file, 865, 879
sharing files through iTunes, 871
temporary, 862
where to save, 862

first responder, 557, 700
first responder, learning, 558
flipping, 81, 106
floating views, 205
fmdb, 891
folders, creating, 864
folders, listing contents, 864
folders, standard, 861
fonts, 532–537

app bundle, 534
converting between, 535
downloadable, 534
Dynamic Type, 533
families, 532
font descriptors, 535
variants, 536

footer, 425, 439
forwarding of messages, 650

frame, 12, 118
function, Swift, as Objective-C object, 912

G
GCD, 938
geocoding, 827
geofencing, 796, 841
gesture recognizers, 219–242

(see also touches)
action message, 219
action target, 219
conflicting, 223
delegate, 227
exclusivity of touches, 238
nib object, 230
scroll view, 412
subclassing, 225
swarm, 223
touch delivery, 237

gestures, distinguishing, 216
glyph, 578
GPS, 831
gradients, 100, 127
Grand Central Dispatch, 938
graphics context, 75–109

clipping region, 99
opaque, 108
size, 100
state, 94

gravity, 845
groups, undo, 950
GUI (see interface)
guides, layout, 40, 269
gyroscope, 849

H
header, 425, 439
heading, 838
hierarchy, layer, 113
hierarchy, view, 8
hierarchy, view controller, 249

message percolation, 526
high resolution image files, 66
high resolution layers, 122
highlighted table view cells, 454
hit-testing drawings, 234
hit-testing during animation, 236
hit-testing layers, 233

976 | Index

hit-testing views, 231
Home button, 957
HTML files, 587
HTTP requests, 903

I
IBDesignable, 59
IBInspectable, 60
iCloud, 883
iCloud identity token, 885
identifier path, 370
image context, 75
image files, 65, 898
Image I/O framework, 898
imageOfSize, 965
images, animated, 145
images, drawing, 75, 79
images, inline, 545
images, resizable, 70
images, small, 898
images, template, 74
implicit constraints, 33
in-app purchase, 920
initial view controller, 268
initialization of nib-based instances, 266
Instruments, 136, 414
interaction controller, 318
interactive view controller transitions, 318
interface and threads, 928
interface for address book, 779
interface for calendar, 796
interface for mail, 801
interface for map, 807
interface for messages, 801
interface for music library, 741
interface for photo library, 747
interface for playing video or audio, 712
interface for posting, 801
interface for taking pictures, 766
interface for trimming video, 725
interface for undoing, 952
interface that differs on iPad, 263, 295, 509, 516
interface, rotating, 23, 272, 297
Internet, displaying resources from, 587
intrinsic content size, 45
iPad, interface that differs on, 263, 295, 509, 516
iPad, presented view controllers on, 293
iPad, resources that differ on, 67
iPod app (see Music app)

iPod library (see music library)
iTunes Match (see cloud-based music)
iTunes, sharing files through, 871

J
JavaScript, 594, 598
JSON, 890

K
keyboard, 557–564, 571–572

customizing, 563
dismissing, 559, 566, 572
language, 564
scrolling in response, 559
table views, 562

L
labels, 550–554

line breaking vs. attributed strings, 552
number of lines, 551
sizing to fit content, 552
wrapping and truncation, 551

labels in built-in cell styles, 421
landscape orientation at startup, 277
layers, 111–208

adding an animation to, 180
animating a layer, 161, 165
animations list, 180
black background, 123
borders, 135
contents, 120
contents, positioning, 123
coordinates, 117
depth, 117, 131
drawing a layer, 120
emitter layers, 191
gradient layers, 127
hierarchy, 113
hit-testing layers, 233
key–value coding, 137
layer animation, explicit, 165
layer animation, implicit, 161
layer animation, preventing, 162, 185
layout, 119
mask, 135
opaque, 123
position, 117

Index | 977

redisplaying, 121, 123
resolution, 122
shadows, 134
shape layers, 126
text layers, 126, 555
transform, 127
transparency, 107, 123
transparent background, 123
underlying layer, 112

layout bar, 49
layout events, 61
layout margins, 41
layout of cells, 428
layout of layers, 119
layout of views, 26
lend, 967
library, music, 729
library, photo, 745
libsqlite3, 891
line breaking (see wrapping)
line fragment, 578
listing a folder’s contents, 864
loading a view controller’s view, 256
local notification, 664–672

custom buttons, 667
registering, 667
scheduling, 669
user responses to, 670
ways of displaying, 664

location, 832
displaying on map, 824
heading, 838
location manager, 832
location monitoring in background, 841
location of device, 835
location services, 832
location updates, background, 840
location updates, deferred, 840

lock screen, 960
lock screen, controlling audio, 699
locking screen silences audio, 691

M
magnetometer, 838
mail, 801
main storyboard, 5, 267
main storyboard, app without, 5
main thread, 928

(see also threads)

main view of view controller, 246
main window, 4, 5

background color of, 5
coordinates, 17
referring to, 7
root view of, 4
subclassing, 6

Map Kit framework, 807–830
map view, 807

annotations, 810
annotations, animation, 816
annotations, custom, 811
annotations, custom callout, 816
displaying directions, 830
displaying user’s location, 824
overlays, 817
pin color, 811
region, 807

Maps app, 807
Maps app, displaying point of interest, 826
margins, 41
margins in the nib, 49
mask, 135
mask, orientation, 276
mask, transparency, 74
Master–Detail Application template, 312, 517
master–detail interface, 303, 415, 457, 516
Media Player framework, 701, 729
media timing functions, 163
memory, low, 361
menus, 953
menus in a table view, 480
message forwarding, 650
Message UI framework, 801
metadata, image file, 898
methods, name of, xviii
MFMailComposeViewController, 802
MFMessageComposeViewController, 803
misaligned views, 17
misplaced views, 53
MKAnnotation, 810
MKAnnotationView, 810
MKDirections, 829
MKLocalSearch, 829
MKMapRect, 808
MKMapView, 807
MKOverlay, 817
MKOverlayRenderer, 817
MKPlacemark, 827

978 | Index

MKUserTrackingBarButtonItem, 825
Mobile Core Services framework, 745
modal dialogs, 657

action sheet, 661
activity view, 675
activity view, custom activity, 678, 680
alert, 658
alternatives, 663

modal popovers, 506
modal presentation context, 293
modal presentation style, 292
modal transition style, 291
modal view in popover, 513
modal views, 284
model–view–controller, 247, 434
More item, 301, 648
motion activity, 855
motion coprocessor chip, 854
motion effects, 205
motion manager, 846
motion of device, 843
movies (see video)
MPMediaCollection, 730
MPMediaEntity, 729
MPMediaItem, 730
MPMediaLibrary, 734
MPMediaPickerController, 741
MPMediaQuery, 730
MPMusicPlayerController, 735
MPNowPlayingInfoCenter, 701
MPVolumeView, 738
multitasking, 957
multitouch sequence, 210
multivalue, 776
Music app, 729
Music app, controlling and querying, 735
Music app, remote control event target, 700
music library, 729

N
navigation bar, 302, 643
navigation bar contents, configuring, 306
navigation bar, back button, 307, 644
navigation bar, back indicator, 644
navigation bar, hiding automatically, 312
navigation bar, underlapped by view, 269
navigation controller, 303
navigation interface, 303, 457
navigation interface, configuring, 309

navigation item, 302, 306, 643
network activity in status bar, 604
nib-loaded cells, 430
notification center, 959
notification center, local notification, 664
notification center, today extension, 673
notification, local (see local notification)
NSAttributedString, 537

(see also attributed strings)
NSCoder, 374
NSCoding, 865
NSDateComponents, 623, 790, 792
NSDateComponentsFormatter, 623
NSDateFormatter, 623
NSFileCoordinator, 867
NSFileManager, 864
NSInvocation, 951
NSJSONSerialization, 890
NSKeyedArchiver, 865
NSKeyedUnarchiver, 865
NSLayoutConstraint, 31

(see also constraints)
NSLayoutManager, 573
NSLinguisticTagger, 579
NSNetServiceBrowser, 924
NSOperation, 934
NSOperationQueue, 934
NSParagraphStyle, 540
NSShadow, 539
NSStringDrawingContext, 550
NSTextAttachment, 545
NSTextContainer, 573
NSTextStorage, 573
NSTextTab, 544
NSUndoManager, 947
NSURLRequest, 596, 905
NSURLSession, 901
NSURLSessionTask, 902
NSURLSessionTaskDelegate, 905
NSUserDefaults, 867
NSXMLParser, 886

O
once, running code, 943
opaque graphics context, 108
opaque layers, 123
operation queues, 934
orientation mask, 276
orientation of device, 274

Index | 979

orientation of interface at startup, 277
orientation, resources that depend on, 67
overlay (on map), 817

P
page control, 620
page view controller, 332
parallax, 205
passthrough views (popovers), 506
password field, 563
pasteboard, 568
path, 95
path, compound, 96
patterns, 103
PDF files, 587
percent driver, 318
PHAdjustmentData, 759
phases of a touch, 210
PHFetchResult, 752
photo editing extension, 763
Photo Kit, 751

(see also Photos framework)
photo library, 745

change notifications, 756
images, editing, 759
images, fetching, 757
modifying, 754
photo entities, 751
querying, 752

photo, taking, 766
Photos app, 745
Photos framework, 745, 751–764
picker view, 607
pixels vs. points, 108
pixels, transparent, 235
points vs. pixels, 108
polar coordinates, 636
pop view controller, 310
popovers, 499–514

action sheet, 661
arrow source, 501
customizing appearance, 503
dismissing, 506
modal, 506
passthrough views, 506
presenting, 507
presenting a view controller, 513
search results, 513
size, 502

storyboard, 511
preferences, user (see NSUserDefaults)
preferred content size, 343
presentation context, 293
presentation controller, 295
presentation controller, customizing, 327
presentation layer, 143
presentation style, 292
presentation, adaptive, 295
presentation, adaptive, popover, 509
presentation, customizing, 327
presented view controllers and rotation, 297
presented view in popover, 513
presented view, animation of, 291
previewing a document, 876
progress view, 605
properties, animatable, 161
properties, custom animatable, 155, 173, 188
properties, inspectable, 60
prototype cells, 432
proximity alarms, 796
purchase, in-app, 920
push view controller, 310

Q
QLPreviewController, 876
questions, three big, 435
queues (see threads)
Quick Look framework, 876

R
reading a file, 865
rectangle, rounded, 98, 135
redraw moment, 142, 163
redrawing with animation, 158
region monitoring, 841
reminders (see calendar database)
Reminders app, 785
removeAtIndexes, 967
resizable image, 70
resolution, 66, 82, 122
resources in app bundle, 66
resources that depend on size class, 67
resources that differ on iPad, 67
resources, network-based, 587
responder chain, 241
restoration identifier, 366
restoration identifier path, 370

980 | Index

restoration of state, 364
Retina display (see screen, high resolution)
root view, 4
root view controller, 8, 246
rotating a drawing, 105
rotating interface, 273–284, 297
rotating interface, responding to, 272, 281
rotation, 19, 277

(see also orientation)
rotation 3D transform, 129
rotation and bar height, 639
rotation and presented view controllers, 297
rounded rectangle, 98, 135
route (on map), 830
RTF files, 546, 587
run loop, 928

S
sandbox, 861
sandbox, inspecting, 863
saving state, 364, 870
saving to a file, 865, 879
screen coordinates, 17
screen, high resolution, 66, 82, 122
screen, user locks or unlocks, 960
screens, multiple, 4
scroll indicators, 394
scroll views, 385–414

content size, 385
content view, 389
delegate, 406
floating subviews, 412
gesture recognizers, 412
keyboard dismissal, 562
nib-instantiated, 391
paging, 397
scrolling, 393
stuttering, 413
tiling, 399
touches, 409
underlapping bars, 396
zooming, 401

scrolling in response to keyboard, 559
search bar, 609
search bar in a top bar, 614
search bar in table view, 463
search bar, results shown in popover, 513
search bar, scope buttons, 465
searching, interface for, 461, 513

segmented control, 627
segue, 268, 346–355

custom, 347
embed segue, 349
manual segue, 346
popover segue, 511
relationship segue, 345
reversing a segue, 350
show detail segue, 530
triggering, 348
unwind segue, 351

session task, 902
Settings app, 868
settings bundle, 868
shadows, 107, 134, 641
shaking the device, 844, 952
shape layers, 126
shapes, animating, 177
shapes, hit-testing of, 234
sharing files through iTunes, 871
significant location monitoring, 842
Simulator, Debug menu, 137, 142, 414
Simulator, resizable, 59
single tap vs. double tap, 216, 224
size classes, 24
size classes and bar height, 639
size classes and conditional constraints, 55
size classes, overriding, 342, 525
size classes, resources that depend on, 67
sizeByDelta, 964
SLComposeViewController, 804
slicing in asset catalog, 73
slider, 624
small caps, 537
SMS messages, 801
snapshot of app, 382, 918, 920
snapshot of view, 84
Social framework, 801
sound (see audio)
speech, synthesized, 709
split views, 515–530

adaptive, 516
collapsed, 520
customizing, 523
expanded, 517
expanding, 522
forcing to collapse or expand, 525
storyboard, 530

Sprite Kit, 141

Index | 981

SQLite files, 891
stack, navigation bar, 302, 643
stack, navigation controller, 303
state of a button, 631
state of a control, 617
state saving and restoration, 364–383
state, saving into NSUserDefaults, 870
static tables, 458
status bar, color, 270
status bar, network activity in, 604
status bar, transparent, 269
status bar, underlapped by top bar, 639
status bar, underlapped by view, 269
status bar, visibility, 270
stepper, 619
Store Kit framework, 920
storyboards, 266–268, 344–355

(see also segue)
container view controllers, 349
deleting, 5
Exit proxy object, 351
main storyboard, 5, 267
popovers, 511
prototype cells, 432
relationships, 345
scene, 344
split views, 530
static tables, 458
view controllers, 254, 267, 345

stretching a resizable image, 71
stuttering animation, 136
stuttering scroll views, 413
style runs, 537
styled text, 537

(see also attributed strings)
subclassing NSLayoutManager, 580
subclassing NSTextContainer, 575
subclassing UICollectionViewFlowLayout, 493
subclassing UIGestureRecognizer, 225
subclassing UIWindow, 6
sublayer, 113
subview, 3
subviews, animating, 160, 189
subviews, removing all, 11
superlayer, 113
superview, 3
suspension of the app, 944, 957
Swift, xvii
switch, 618

System Sound Services, 689

T
tab bar, 298, 646
tab bar controller, 298
tab bar interface, 298
tab bar interface, configuring, 300
tab bar item, 298, 646
tab bar item, creating, 299
tab bar item, images, 299
tab bar More item, 301, 648
tab bar, underlapped by view, 269
tab stops, 544
Tabbed Application template, 302
table views, 415–483

(see also cells)
data, 434
data, downloading, 913
editing, 468–480
grouped, 417
height of row, 424, 449
keyboard, 562
menus, 480
navigation interface, 457
refreshing, 445
restoration of state, 460
searching, 461–468
sections, 438
sections, collapsing, 479
sections, header and footer, 439
sections, index, 444
selection, 454
selection, multiple, 454
separators, 424
storyboard, designed statically in, 458

tap, single vs. double, 216, 224
target–action, 219, 616, 948
template images, 74
text, 531–585
text fields, 555–568

control events, 565
delegate, 564
in alert, 659
keyboard, 557
menus, 566
table view cells, 474

Text Kit, 532, 572–585
layout manager, 578
layout manager, subclassing, 580

982 | Index

layout managers, multiple, 577
multicolumn text, 582
responding to tap, 584
text container, 574
text container, exclusion paths, 574
text container, subclassing, 575
text containers, multiple, 576

text layers, 126, 555
text views, 569–572

delegate, 569
keyboard, 571
responding to tap, 569
selection, 569
self-sizing, 571
text container, 574

text, alignment, 540
text, columns, 582
text, drawing, 549, 581
text, marking a range, 548
text, truncation, 540, 551
text, wrapping, 540, 551
texting, 801
threads, 927–946

deinit, 931
GCD, 938
interface, 928
locks, 931
locks, queues instead of, 937
main thread, 928
main thread, blocking, 931
multiple execution of same code, 930, 941
NSOperation, 934
queues, dispatch, 938
queues, operation, 934
queues, serial, 937
shared data, 930

thumbnail image, 898
TIFF, converting to, 899
tiling a resizable image, 71
tiling a scroll view, 399
time, converting to string, 623
timer, cancelable, 968
tint color, 74, 651
tint color, dimming, 652
today extension, 673
toolbar, 304, 646
toolbar items, 309, 646
toolbar, underlapped by view, 269
top and bottom reversed, 124, 179

top item, 302
top layout guide, 40, 269
touches, 209–242

(see also gesture recognizers)
control, 615, 635
delivery, 230
phases, 210
responder chain, 241
restricting, 213, 238
touches… methods, 211

trait collections, 23
trait collections, asset catalog, 67
trait collections, overriding, 342, 525
trait collections, rotation of interface, 272
transactions, 162
transform, 18, 104, 127
transform, depth, 131
transforms and autolayout, 61
transition animation, interactive, 318
transition animation, layer, 178
transition animation, view, 158
transition animation, view controller, 313
transition context, 314
transition coordinator, 330
transitions, Core Image, 196
transparency layer, 107
transparency mask, 74
transparent pixels, 235
transparent status bar, 269
Twitter, 801, 804
typecasting to quiet compiler, 188

U
UIActivity, 678
UIActivityIndicatorView, 603
UIActivityViewController, 675
UIAlertAction, 658
UIAlertController, 657
UIApplicationMain, 4, 267
UIBarButtonItem, 305, 641, 646
UIBarItem, 299, 305
UIBezierPath, 98
UIButton, 630
UICollectionView, 483

(see also collection views)
UICollectionViewCell, 487
UICollectionViewController, 486
UICollectionViewFlowLayout, 488, 493
UICollectionViewLayout, 484

Index | 983

UICollectionViewLayoutAttributes, 487
UIContentContainer, 272, 343
UIControl, 614

(see also controls)
UICoordinateSpace, 17
UIDatePicker, 621
UIDocument, 878
UIDocumentInteractionController, 874
UIDynamicAnimator, 199, 497
UIDynamicBehavior, 199
UIDynamicItem, 199, 497
UIEdgeInsets, 70, 395
UIEvent, 209
UIFont, 532
UIFontDescriptor, 535
UIGestureRecognizer, 219

(see also gesture recognizers)
UIImage, 65, 75

(see also images)
UIImageAsset, 67
UIImagePickerController, 747
UIImageView, 68
UIKit dynamics, 198, 497
UILabel, 421, 550–554

(see also labels)
UILocalizedIndexedCollation, 445
UILocalNotification, 669

(see also local notification)
UIMenuController, 567, 954
UIMenuItem, 954
UIMotionEffect, 205
UINavigationBar, 302, 643
UINavigationController, 303
UINavigationItem, 302, 306, 643
UIPageControl, 620
UIPageViewController, 332
UIPercentDrivenInteractiveTransition, 318
UIPickerView, 607
UIPopoverPresentationController, 501
UIPresentationController, 295
UIProgressView, 605
UIRectEdge, 221
UIRefreshControl, 447
UIScreen, 17
UIScrollView, 385

(see also scroll views)
UISearchBar, 461, 609

(see also search bar)
UISearchController, 461–468, 513

UISegmentedControl, 627
UISlider, 624
UISplitViewController, 515

(see also split views)
UIStepper, 619
UIStoryboardPopoverPresentationSegue, 512
UIStoryboardSegue, 346
UISwitch, 618
UITabBar, 298, 646
UITabBarController, 298
UITabBarItem, 298, 646
UITableView, 415

(see also table views)
UITableViewCell, 415

(see also cells)
UITableViewController, 417
UITableViewHeaderFooterView, 439
UITableViewRowAction, 473
UITextField, 555

(see also text fields)
UITextView, 569

(see also text views)
UIToolbar, 304, 646
UITouch, 209, 212

(see also touches)
UITraitCollection, 23

(see also trait collections)
UITraitEnvironment, 272, 342
UIVideoEditorController, 725
UIView, 3

(see also views)
UIViewController, 245

(see also view controllers)
UIViewControllerRestoration, 371
UIVisualEffectView, 90
UIWebView, 596

(see also web views)
UIWindow, 4

(see also window)
unarchiving data, 865
underlining, 547
underlying layer, 112
underlying layer, animating, 161, 165
undo, 947–955

alert, button titles in, 953
interface for, 952
invocation, 951
shake to, 844, 952
target–action, 948

984 | Index

undo groups, 950
undo manager, 948

unwind method, 351
user address book, 773
user calendar, 785
user defaults, 867
user interaction, preventing, 144, 213
user library, music, 729
user library, photo, 745
user reminders, 785

V
vibrancy views, 90
video, 711–727

recording, 766
trimming, 725

view controller for address book, 779
view controller for calendar, 796
view controller for mail, 801
view controller for messages, 801
view controller for music library, 741
view controller for photo library, 747
view controller for posting, 801
view controller for taking pictures, 766
view controller for trimming video, 725
view controllers, 245–364

adaptive presentation, 295
adaptive presentation, popover, 509
animation, custom, 313
animation, interactive, 318
appearing and disappearing, reason for, 356
child view controller, 247
communication between, 288, 348
contained view controllers, 247
container view controllers, 337
creating, 254–268
delegate, 355
hierarchy, 249
hierarchy, message percolation, 526
lifetime events, 355
main view, 246
memory management, 361
modal view controller, 248, 284
navigation bar, hiding and showing, 312
navigation item, 306
nib name matching, 261
nib-instantiated, 264
parent view controller, 247
parent view controller, custom, 337

pop from navigation stack, 310
popover, 499
preferred content size, 343
presentation controller, 295
presentation, custom, 327
presented view controller, 248, 284
presenting view controller, 248, 285
push onto navigation stack, 310
retaining, 255
rotating interface, 272, 281, 297
storyboard-instantiated, 254, 267, 345
subclassing, 246
toolbar items, 309
toolbar, hiding and showing, 309
view property, 246
view, created in code, 257
view, nib-loaded, 260
view, resized, 268
view, storyboard-loaded, 266

view controller’s view, appearing and disappear‐
ing, 356

view controller’s view, creating, 256–268
view controller’s view, in view hierarchy, 249,

338
view controller’s view, loading of, 256
view controller’s view, populating, 259
view controller’s view, preferred size, 343
view controller’s view, resizing of, 268
view for map, 807
view hierarchy, 8
viewport, 600
views, 3–242

animation, 147
appearance proxy, 653
autolayout, 30–63
autoresizing, 27
black background, 93, 108
blurred, 90
bounds, 14
constraints, 30

(see also autolayout)
content mode, 109
coordinates, 15
debugging, 56
designable, 59
distributing evenly, 52
dragging a view, 215
drawing a view, 92
floating, 205

Index | 985

frame, 12
hidden, 12
hit-testing views, 231
intrinsic content size, 45
layering order, 10
layout, 26
margins, 41
misalignment, 17
misplaced, 53
opaque, 12, 93
overlapping, 8
position of a subview, 12
previewing, 58
root view, 4
snapshot, 84
tint color, 74, 651
tint color, dimming, 652
touch delivery, 237
transform, 18
transparency, 12
transparent background, 93, 108
underlying layer, 112
vibrancy, 90

volume, audio, 738

W
warnings

application expected to have root view con‐
troller, 6

array element cannot be bridged to
Objective-C, 127

invalid nib registered for identifier, 431
restoration class does not conform, 371
supported orientations has no common ori‐

entation, 276
unable to install constraint on view, 32
unable to simultaneously satisfy constraints,

43
view hierarchy not prepared for constraint,

32

watchdog, 930
Web Inspector, 601
web views, 532, 587–602

debugging, 601
loading content, 588
UIWebView, 588

configuring, 596
delegate, 597, 597
JavaScript, 598
memory leakage, 597
navigation, 597
paginated, 599
providing content, 596
restoration of state, 599

viewport, 600
WKWebView, 588

configuring, 589
delegate, 593
JavaScript, 594
navigation, 592
observing changes, 591
providing content, 590
shortcomings, 588

WebKit, 587
WebKit framework, 588
window coordinates, 17
window, main, 4

(see also main window)
WKWebView, 589

(see also web views)
Wrapper, 969

X
XML files, 886

Z
zooming a scroll view, 401

986 | Index

About the Author
Matt Neuburg has a PhD in Classics and has taught at many universities and colleges.
He has been programming computers since 1968. He has written applications for OS X
and iOS, is a former editor of MacTech Magazine, and is a long-standing contributing
editor for TidBITS. His previous O’Reilly books are Frontier: The Definitive Guide,
REALbasic: The Definitive Guide, and AppleScript: The Definitive Guide. He makes a
living writing books, articles, and software documentation, as well as by programming,
consulting, and training.

Colophon
The animal on the cover of Programming iOS 8 is a kingbird, one of the 13 species of
North American songbirds making up the genus Tyrannus. A group of kingbirds is
called a “coronation,” a “court,” or a “tyranny.”

Kingbirds eat insects, which they often catch in flight, swooping from a perch to grab
the insect midair. They may also supplement their diets with berries and fruits. They
have long, pointed wings, and males perform elaborate aerial courtship displays.

Both the genus name (meaning “tyrant” or “despot”) and the common name (“king‐
bird”) refer to these birds’ aggressive defense of their territories, breeding areas, and
mates. They have been documented attacking red-tailed hawks (which are more than
twenty times their size), knocking bluejays out of trees, and driving away crows and
ravens. (For its habit of standing up to much larger birds, the gray kingbird has been
adopted as a Puerto Rican nationalist symbol.)

“Kingbird” most often refers to the Eastern kingbird (T. tyrannus), an average-size
kingbird (7.5–9 inches long, wingspan 13–15 inches) found all across North America.
This common and widespread bird has a dark head and back, with a white throat, chest,
and belly. Its red crown patch is rarely seen. Its high-pitched, buzzing, stuttering sounds
have been described as resembling “sparks jumping between wires” or an electric fence.

The cover image is from Cassell’s Natural History. The cover fonts are URW Typewriter
and Guardian Sans. The text font is Adobe Minion Pro; the heading font is Adobe
Myriad Condensed; and the code font is Dalton Maag’s Ubuntu Mono.

	Cover
	Copyright
	Table of Contents
	Preface
	Versions
	Acknowledgments
	From the Programming iOS 4 Preface
	Conventions Used in This Book
	Using Code Examples
	Safari® Books Online
	How to Contact Us

	Part I. Views
	Chapter 1. Views
	The Window
	Experimenting With Views
	Subview and Superview
	Visibility and Opacity
	Frame
	Bounds and Center
	Window Coordinates and Screen Coordinates
	Transform
	Trait Collections and Size Classes
	Layout
	Autoresizing
	Autolayout
	Configuring Layout in the Nib
	View Debugging, Previewing, and Designing
	Events Related to Layout

	Chapter 2. Drawing
	UIImage
	UIImageView
	Resizable Images
	Image Rendering Mode

	Graphics Contexts
	UIImage Drawing
	CGImage Drawing
	Snapshots
	CIFilter and CIImage
	Blur and Vibrancy Views
	Drawing a UIView
	Graphics Context Settings
	Paths and Shapes
	Clipping
	Gradients
	Colors and Patterns
	Graphics Context Transforms
	Shadows
	Erasing
	Points and Pixels
	Content Mode

	Chapter 3. Layers
	View and Layer
	Layers and Sublayers
	Manipulating the Layer Hierarchy
	Positioning a Sublayer
	CAScrollLayer
	Layout of Sublayers

	Drawing in a Layer
	Content Resizing and Positioning
	Layers that Draw Themselves

	Transforms
	Depth

	Shadows, Borders, and Masks
	Layer Efficiency
	Layers and Key–Value Coding

	Chapter 4. Animation
	Drawing, Animation, and Threading
	UIImageView and UIImage Animation
	View Animation
	View Animation Options
	Canceling a View Animation
	Custom Animatable View Properties
	Springing View Animation
	Keyframe View Animation
	Transitions

	Implicit Layer Animation
	Animation Transactions
	Media Timing Functions

	Core Animation
	CABasicAnimation and Its Inheritance
	Using a CABasicAnimation
	Keyframe Animation
	Making a Property Animatable
	Grouped Animations
	Freezing an Animation
	Transitions
	Animations List

	Actions
	What an Action Is
	Action Search
	Hooking Into the Action Search
	Making a Custom Property Implicitly Animatable
	Nonproperty Actions

	Emitter Layers
	CIFilter Transitions
	UIKit Dynamics
	Motion Effects
	Animation and Autolayout

	Chapter 5. Touches
	Touch Events and Views
	Receiving Touches
	Restricting Touches
	Interpreting Touches
	Gesture Recognizers
	Gesture Recognizer Classes
	Gesture Recognizer Conflicts
	Subclassing Gesture Recognizers
	Gesture Recognizer Delegate
	Gesture Recognizers in the Nib

	Touch Delivery
	Hit-Testing
	Initial Touch Event Delivery
	Gesture Recognizer and View
	Touch Exclusion Logic
	Gesture Recognition Logic
	Touches and the Responder Chain

	Part II. Interface
	Chapter 6. View Controllers
	View Controller Responsibilities
	View Controller Hierarchy
	View Controller Creation
	How a View Controller Gets Its View
	Manual View
	Generic Automatic View
	View in a Separate Nib
	Nib-Instantiated View Controller
	Storyboard-Instantiated View Controller

	View Resizing
	View Size in the Nib Editor
	Bars and Underlapping
	Resizing Events
	Rotation

	Presented View Controller
	Presenting a View
	Communication With a Presented View Controller
	Presented View Animation
	Presentation Styles
	Adaptive Presentation
	Rotation of a Presented View

	Tab Bar Controller
	Tab Bar Items
	Configuring a Tab Bar Controller

	Navigation Controller
	Bar Button Items
	Navigation Items and Toolbar Items
	Configuring a Navigation Controller

	Custom Transition
	Noninteractive Custom Transition Animation
	Interactive Custom Transition Animation
	Custom Presented View Controller Transition
	Transition Coordinator

	Page View Controller
	Preparing a Page View Controller
	Page View Controller Navigation
	Other Page View Controller Configurations

	Container View Controllers
	Adding and Removing Children
	Container View Controllers, Traits, and Resizing

	Storyboards
	Segues
	Container Views
	Unwind Segues

	View Controller Lifetime Events
	Incoherencies in View Controller Events
	Appear and Disappear Events
	Event Forwarding to a Child View Controller

	View Controller Memory Management
	State Restoration
	How to Test State Restoration
	Participating in State Restoration
	Restoration ID, Identifier Path, and Restoration Class
	Restoring View Controller State
	Restoration Order of Operations
	Restoration of Other Objects
	Snapshot Suppression

	Chapter 7. Scroll Views
	Creating a Scroll View in Code
	Manual Content Size
	Automatic Content Size With Autolayout
	Using a Content View

	Scroll View in a Nib
	Scrolling
	Paging
	Tiling

	Zooming
	Zooming Programmatically
	Zooming with Detail

	Scroll View Delegate
	Scroll View Touches
	Floating Scroll View Subviews
	Scroll View Performance

	Chapter 8. Table Views and Collection Views
	Table View Cells
	Built-In Cell Styles
	Registering a Cell Class
	Custom Cells

	Table View Data
	The Three Big Questions
	Reusing Cells
	Table View Sections
	Refreshing Table View Data
	Variable Row Heights

	Table View Cell Selection
	Managing Cell Selection
	Responding to Cell Selection
	Navigation From a Table View
	Cell Choice and Static Tables

	Table View Scrolling and Layout
	Table View State Restoration
	Table View Searching
	Configuring a Search Controller
	Using a Search Controller

	Table View Editing
	Deleting Cells
	Custom Action Buttons
	Editable Content in Cells
	Inserting Cells
	Rearranging Cells
	Dynamic Cells

	Table View Menus
	Collection Views
	Collection View Classes
	Using a Collection View
	Custom Collection View Layouts
	Switching Layouts
	Collection Views and UIKit Dynamics

	Chapter 9. Popovers and Split Views
	Popovers
	Preparing a Popover
	Popover Presentation, Dismissal, and Delegate
	Adaptive Popovers
	Popover Segues
	Popover Presenting a View Controller
	Popover Search Results

	Split Views
	Expanded Split View Controller (iPad)
	Collapsed Split View Controller (iPhone)
	Expanding Split View Controller (iPhone 6 Plus)
	Customizing a Split View Controller
	Setting the Collapsed State
	Replacing the Child View Controllers
	Split View Controller in a Storyboard

	Chapter 10. Text
	Fonts and Font Descriptors
	Fonts
	Font Descriptors

	Attributed Strings
	Attributed String Attributes
	Making an Attributed String
	Modifying and Querying an Attributed String
	Custom Attributes
	Drawing and Measuring an Attributed String

	Labels
	Number of Lines
	Wrapping and Truncation
	Label Resizing
	Customized Label Drawing

	Text Fields
	Summoning and Dismissing the Keyboard
	Keyboard Covers Text Field
	Configuring the Keyboard
	Text Field Delegate and Control Event Messages
	Text Field Menu

	Text Views
	Text View as Scroll View
	Text View and Keyboard

	Text Kit
	Text Container
	Alternative Text Kit Stack Architectures
	Layout Manager
	Text Kit Without a Text View

	Chapter 11. Web Views
	WKWebView
	WKWebView Content
	Tracking Changes in a WKWebView
	WKWebView Navigation
	Communicating With a WKWebView Web Page

	UIWebView
	UIWebView Content
	UIWebView Navigation
	Communicating with a UIWebView
	Paginated Web Views
	UIWebView State Restoration

	Developing Web View Content

	Chapter 12. Controls and Other Views
	UIActivityIndicatorView
	UIProgressView
	UIPickerView
	UISearchBar
	UIControl
	UISwitch
	UIStepper
	UIPageControl
	UIDatePicker
	UISlider
	UISegmentedControl
	UIButton
	Custom Controls

	Bars
	Bar Position and Bar Metrics
	Bar Appearance
	UIBarButtonItem
	UINavigationBar
	UIToolbar
	UITabBar

	Tint Color
	Appearance Proxy

	Chapter 13. Modal Dialogs
	Alerts and Action Sheets
	Alerts
	Action Sheets
	Dialog Alternatives

	Local Notifications
	Registering a Notification
	Scheduling a Notification
	Hearing About a Local Notification
	Today Extensions

	Activity Views
	Presenting an Activity View
	Custom Activities
	Action Extensions

	Part III. Some Frameworks
	Chapter 14. Audio
	System Sounds
	Audio Session
	Interruptions
	Secondary Audio
	Routing Changes

	Audio Player
	Remote Control of Your Sound
	Playing Sound in the Background
	AVAudioEngine
	Speech Synthesis
	Further Topics in Sound

	Chapter 15. Video
	AVPlayerViewController
	Fullscreen AVPlayerViewController
	Embedded AVPlayerViewController
	Other AVPlayerViewController Properties

	Introducing AV Foundation
	Some AV Foundation Classes
	Things Take Time
	Time is Measured Oddly
	Constructing Media
	Synchronizing Animation With Video
	AVPlayerLayer
	Further Exploration of AV Foundation

	UIVideoEditorController

	Chapter 16. Music Library
	Exploring the Music Library
	Querying the Music Library
	Persistence and Change in the Music Library

	Music Player
	MPVolumeView
	Playing Songs With AV Foundation
	Media Picker

	Chapter 17. Photo Library and Image Capture
	Photo Library Authorization
	Choosing From the Photo Library
	Photos Framework
	Querying the Photo Library
	Modifying the Library
	Displaying Images
	Editing Images
	Photo Editing Extension

	Using the Camera
	Camera Authorization
	Using the Camera with UIImagePickerController
	Customizing the Image Capture Interface
	Image Capture With AV Foundation

	Chapter 18. Address Book
	Address Book Database
	Address Book Authorization
	Address Book Changes
	Persons and Addresses

	Address Book Interface
	ABPeoplePickerNavigationController
	ABPersonViewController
	ABNewPersonViewController
	ABUnknownPersonViewController

	Chapter 19. Calendar
	Calendar Database
	Calendar Database Authorization
	Calendar Database Contents
	Calendar Database Changes
	Creating Calendars and Events
	Recurrence
	Fetching Events
	Reminders
	Proximity Alarms

	Calendar Interface
	EKEventViewController
	EKEventEditViewController
	EKCalendarChooser

	Chapter 20. Mail and Messages
	Mail Message
	Text Message
	Twitter Post

	Chapter 21. Maps
	Displaying a Map
	Annotations
	Custom Annotation View
	Custom Annotation Class
	Other Annotation Features

	Overlays
	Custom Overlay Class
	Custom Overlay Renderer
	Other Overlay Features

	Map Kit and Current Location
	Communicating With the Maps App
	Geocoding, Searching, and Directions
	Geocoding
	Searching
	Directions

	Chapter 22. Sensors
	Core Location
	Core Location Authorization
	Basic Location Determination
	Heading
	Background Location

	Acceleration and Attitude
	Shake Events
	Raw Acceleration
	Gyroscope
	Motion Activity

	Part IV. Final Topics
	Chapter 23. Persistent Storage
	The Sandbox
	Standard Directories
	Visually Inspecting the Sandbox
	Basic File Operations
	Saving and Reading Files
	File Coordinators

	User Defaults
	Simple Sharing and Previewing of Files
	File Sharing
	Document Types and Receiving a Document
	Handing Over a Document
	Previewing a Document

	Document Architecture
	iCloud
	XML
	SQLite
	Core Data
	Image File Formats

	Chapter 24. Basic Networking
	HTTP Requests
	Simple HTTP Request
	Formal HTTP Request
	Encapsulating the Session, Task, and Delegate
	Multiple Tasks
	Background Downloads

	Background App Refresh
	In-App Purchases
	Bonjour

	Chapter 25. Threads
	Main Thread
	Why Threading Is Hard
	Blocking the Main Thread
	NSOperation
	Grand Central Dispatch
	Threads and App Backgrounding

	Chapter 26. Undo
	Undo Manager
	Target–Action Undo
	Undo Grouping
	Invocation Undo

	Undo Interface
	Shake-To-Edit
	Undo Menu

	Appendix A. Application Lifetime Events
	Appendix B. Some Useful Utility Functions
	Delayed Performance
	Center of a CGRect
	Adjust a CGSize
	Dictionary of Views
	Constraint Issues
	Drawing Into an Image Context
	Finite Repetition of an Animation
	Remove Multiple Indexes From Array
	Configure a Value Class At the Point of Use
	Cancelable Closure-Based Timer
	Generic Wrapper

	Index
	About the Author

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

