
 

 
 

 

 
 

 

www.allitebooks.com

http://www.allitebooks.org


 

Programming Web Services with SOAP 

 

Doug Tidwell 
James Snell 

Pavel Kulchenko 
 

Publisher: O'Reilly 
 

First Edition December 2001 
ISBN: 0-596-00095-2, 216 pages 

 
 

Programming Web Services with SOAP introduces you to building distributed Wb-based 
applications using the SOAP, WSDL, and UDI protocols. You'll learn the XML underlying 
these standards, as well as how to use the popular toolkits for Java and Perl. The book also 
addresses security and other enterprise issues.  

www.allitebooks.com

http://www.allitebooks.org


 

Table of Contents 
Preface ........................................................... 
   Audience for This Book ............................................... 
   Structure of This Book ............................................... 
   Conventions ...................................................... 
   Comments and Questions .............................................. 
   Acknowledgments .................................................. 
 

1
1
2
3
3
4

1. Introducing Web Services ............................................ 
   1.1 What Is a Web Service? ............................................ 
   1.2 Web Service Fundamentals .......................................... 
   1.3 The Web Service Technology Stack ................................... 
   1.4 Application ................................................... 
   1.5 The Peer Services Model .......................................... 
 

6
6
6

10
13
13

2. Introducing SOAP ................................................ 
   2.1 SOAP and XML ................................................ 
   2.2 SOAP Messages ................................................ 
   2.3 SOAP Faults .................................................. 
   2.4 The SOAP Message Exchange Model .................................. 
   2.5 Using SOAP for RPC-Style Web Services ............................... 
   2.6 SOAP's Data Encoding ............................................ 
   2.7 SOAP Data Types ............................................... 
   2.8 SOAP Transports ............................................... 
 

21
21
17
22
25
27
29
32
36

3. Writing SOAP Web Services ......................................... 
   3.1 Web Services Anatomy 101 ........................................ 
   3.2 Creating Web Services in Perl with SOAP::Lite ........................... 
   3.3 Creating Web Services in Java with Apache SOAP ......................... 
   3.4 Creating Web Services In .NET ...................................... 
   3.5 Interoperability Issues ............................................ 
 

39
39
41
46
52
58

4. The Publisher Web Service .......................................... 
   4.1 Overview ..................................................... 
   4.2 The Publisher Operations .......................................... 
   4.3 The Publisher Server ............................................. 
   4.4 The Java Shell Client ............................................. 
 

62
62
63
64
71

5. Describing a SOAP Service .......................................... 
   5.1 Describing Web Services .......................................... 
   5.2 Anatomy of a Service Description .................................... 
   5.3 Defining Data Types and Structures with XML Schemas ..................... 
   5.4 Describing the Web Service Interface .................................. 
   5.5 Describing the Web Service Implementation .............................. 
   5.6 Understanding Messaging Patterns .................................... 
 

79
79
83
83
85
86
90

6. Discovering SOAP Services .......................................... 
   6.1 The UDDI Registry .............................................. 
   6.2 The UDDI Interfaces ............................................. 
   6.3 Using UDDI to Publish Services .................................... 
   6.4 Using UDDI to Locate Services ..................................... 
   6.5 Generating UDDI from WSDL ..................................... 
   6.6 Using UDDI and WSDL Together ................................... 
   6.7 The Web Service Inspection Language (WS-Inspection) ..................... 
 

93
93
96

101
105
106
109
111

www.allitebooks.com

http://www.allitebooks.org


 

7. Web Services in Action ............................................ 
   7.1 The CodeShare Service Network .................................... 
   7.2 The Code Share Index ........................................... 
   7.3 Web Services Security ........................................... 
   7.4 Definitions and Descriptions ....................................... 
   7.5 Implementing the CodeShare Server .................................. 
   7.6 Implementing the CodeShare Owner .................................. 
   7.7 Implementing the CodeShare Client .................................. 
   7.8 Seeing It in Action .............................................. 
   7.9 What's Missing from This Picture? ................................... 
   7.10 Developing CodeShare .......................................... 
 

114
114
118
120
123
128
137
141
143
143
144

8. Web Services Security ............................................ 
   8.1 What Is a "Secure" Web Service? .................................... 
   8.2 Microsoft Passport, Version 1.x and 2.x ................................ 
   8.3 Microsoft Passport, Version 3.x ..................................... 
   8.4 Give Me Liberty or Give Me ... ..................................... 
   8.5 A Magic Carpet ............................................... 
   8.6 The Need for Standards .......................................... 
   8.7 XML Digital Signatures and Encryption ............................... 
 

145
145
147
148
149
149
149
149

9. The Future of Web Services ........................................ 
   9.1 The Future of Web Development .................................... 
   9.2 The Future of SOAP ............................................ 
   9.3 The Future of WSDL ............................................ 
   9.4 The Future of UDDI ............................................ 
   9.5 Web Services Battlegrounds ....................................... 
   9.6 Technologies ................................................. 
   9.7 Web Services Rollout ............................................ 
 

151
151
152
152
155
156
158
163

A. Web Service Standardization ....................................... 
   A.1 Packaging Protocols ............................................ 
   A.2 Description Protocols ........................................... 
   A.3 Discovery Protocols ............................................ 
   A.4 Security Protocols .............................................. 
   A.5 Transport Protocols ............................................. 
   A.6 Routing and Workflow .......................................... 
   A.7 Programming Languages/Platforms .................................. 
 

165
165
165
166
167
168
168
168

B. XML Schema Basics ............................................. 
   B.1 Simple and Complex Types ....................................... 
   B.2 Some Examples ............................................... 
   B.3 XML Spy ................................................... 
 

170
170
172
175

C. Code Listings .................................................. 
   C.1 Hello World in Perl ............................................. 
   C.2 Hello World Client in Visual Basic .................................. 
   C.3 Hello World over Jabber ......................................... 
   C.4 Hello World in Java ............................................ 
   C.5 Hello, World in C# on .NET ....................................... 
   C.6 Publisher Service .............................................. 
   C.7 SAML Generation .............................................. 
   C.8 Codeshare ................................................... 
 

177
177
177
178
178
179
181
194
207

Colophon ....................................................... 
 

221

 

www.allitebooks.com

http://www.allitebooks.org


Programming Web Services with SOAP 

page 1 

Preface 
You'd be hard-pressed to find a buzzword hotter than web services. Breathless articles 
promise that web services will revolutionize business, open new markets, and change the way 
the world works. Proponents call web services "The Third-Generation Internet," putting them 
on a par with email and the browseable web. And no protocol for implementing web services 
has received more attention than SOAP, the Simple Object Access Protocol.  

This book will give you perspective to make sense of all the hype. When you finish this book, 
you will come away understanding three things: what web services are, how they are written 
with SOAP, and how to use other technologies with SOAP to build web services for the 
enterprise.  

While this book is primarily a technical resource for software developers, its overview of the 
relevant technologies, development models, standardization efforts, and architectural 
fundamentals can be easily grasped by a nontechnical audience wishing to gain a better 
understanding of this emerging set of new technologies.  

For the technical audience, this book has several things to offer: 

• A detailed walk-through of the SOAP, WSDL, UDDI, and related specifications  
• Source code and commentary for sample web services 
• Insights on how to address issues such as security and reliability in enterprise 

environments  

Web services represent a powerful new way to build software systems from distributed 
components. But because many of the technologies are immature or only address parts of the 
problem, it's not a simple matter to build a robust and secure web service. A web service 
solution today will either dodge tricky issues like security, or will be developed using many 
different technologies. We have endeavored to lay a roadmap to guide you through the many 
possible technologies and give you sound advice for developing web services.  

Will web services revolutionize everything? Quite possibly, but it's not likely to be as 
glamorous or lucrative, or happen as quickly as the hype implies. At the most basic level, web 
services are plumbing, and plumbing is never glamorous. The applications they make possible 
may be significant in the future, and we discuss Microsoft Passport and Peer-to-Peer (P2P) 
systems built with web services, but the plumbing that enables these systems will never be 
sexy.  

Part of the fundamental utility of web services is their language independence—we come 
back to this again and again in the book. We show how Java, Perl, C#, and Visual Basic code 
can be easily integrated using the web services architecture, and we describe the underlying 
principles of the web service technologies that transcend the particular programming language 
and toolkit you choose to use.  

Audience for This Book 

There's a shortage of good information on web services at all levels. Managers are being 
bombarded with marketing hyperbole and wild promises of efficiency, riches, and new 

www.allitebooks.com

http://www.allitebooks.org


Programming Web Services with SOAP 

page 2 

markets. Programmers have a bewildering array of acronyms thrust into their lives and are 
expected to somehow choose the correct system to use. On top of this confusion, there's 
pressure to do something with web service immediately.  

If you're a programmer, we show you the big picture of web services, and then zoom in to 
give you low-level knowledge of the underlying XML. This knowledge informs the detailed 
material on developing SOAP web services. We also provide detailed information on the 
additional technologies needed to implement enterprise-quality web services.  

Managers can benefit from this book, too. We strip away the hype and present a realistic view 
of what is, what isn't, and what might be. Chapter 1 puts SOAP in the wider context of the 
web services architecture, and Chapter 9 looks ahead to the future to see what is coming and 
what is needed (these aren't always the same).  

Structure of This Book 

We've arranged the material in this book so that you can read it from start to finish, or jump 
around to hit just the topics you're interested in.  

Chapter 1, places SOAP in the wider picture of web services, discussing Just-in-Time 
integration and the Web Service Technology Stack.  

Chapter 2, explains what SOAP does and how it does it, with constant reference to the XML 
messages being shipped around. It covers the SOAP envelope, headers, body, faults, 
encodings, and transports.  

Chapter 3, shows how to use SOAP toolkits in Perl, Visual Basic, Java, and C# to create an 
elementary web service.  

Chapter 4, presents our first real-world web service. Registered users may add, delete, or 
browse articles in a database.  

Chapter 5, introduces the Web Services Description Language (WSDL) at an XML and 
programmatic level, shows how WSDL makes it easier to write a web service client, and 
discusses complex message patterns.  

Chapter 6, shows how to use the Universal Description, Discovery, and Integration (UDDI) 
project and the WS-Inspection standard to publish, discover, and call web services, and 
features best practices for using WSDL and UDDI together.  

Chapter 7, builds a peer-to-peer (P2P) web services application for sharing source code in Perl 
and Java using SOAP, WSDL, and related technologies.  

Chapter 8, describes the issues and approaches to security in web services, focusing on 
Microsoft Passport, XML Encryption, and Digital Signatures.  

Chapter 9, explains the present shortcomings in web services technologies, describes some 
developing standardization efforts, and identifies the future battlegrounds for web services 
mindshare.  

www.allitebooks.com

http://www.allitebooks.org


Programming Web Services with SOAP 

page 3 

Appendix A, is a summary of the many varied standards for aspects of web services such as 
packaging, security, transactions, routing, and workflow, with pointers to online sources for 
more information on each standard.  

Appendix B, is a gentle introduction to the bits of the XML Schema specification you'll need 
to know to make sense of WSDL and UDDI.  

Appendix C, contains full source for the programs developed in this book.  

Conventions 

The following typographic conventions are used in this book: 

Italic  

Used for filenames, directories, email addresses, and URLs. 

Constant Width  

Used for XML and code examples. Also used for constants, variables, data structures, 
and XML elements.  

Constant Width Bold 

Used to indicate user input in examples and to highlight portions of examples that are 
commented upon in the text.  

Constant Width Italic  

Used to indicate replaceables in examples. 

Comments and Questions  

We have tested and verified all of the information in this book to the best of our ability, but 
you may find that features have changed, that typos have crept in, or that we have made a 
mistake. Please let us know about what you find, as well as your suggestions for future 
editions, by contacting:  

O'Reilly & Associates, Inc.  
1005 Gravenstein Highway North  
Sebastopol, CA 95472  
(800) 998-9938 (in the U.S. or Canada)  
(707) 829-0515 (international/local)  
(707) 829-0104 (fax)  

You can also send us messages electronically. To be put on the mailing list or request a 
catalog, send email to:  

info@oreilly.com  

www.allitebooks.com

http://www.allitebooks.org


Programming Web Services with SOAP 

page 4 

To ask technical questions or comment on the book, send email to: 

bookquestions@oreilly.com  

We have a web site for the book, where we'll list examples, errata, and any plans for future 
editions. You can access this page at:  

http://www.oreilly.com/catalog/progwebsoap/  

For more information about this book and others, see the O'Reilly web site:  

http://www.oreilly.com/  

Acknowledgments 

The authors and editor would like to thank the technical reviewers, whose excellent and 
timely feedback greatly improved the book you read: Ethan Cerami, Tony Hong, Matt Long, 
Simon Fell, and Aron Roberts.  

James 

Thank you, 

To Pavel and Doug, for their help.  
To my editor, Nathan, for his persistent badgering.  
To my wife, Jennifer, for her patience.  
To my son, Joshua, for his joy.  
And to my God, for his grace.  

This book wouldn't exist without them. 

Doug 

I would like to thank my wonderful wife, Sheri Castle, and our amazing daughter, Lily, for 
their love and support. Nothing I do would be possible or meaningful without them.  

Pavel 

I wouldn't have been able to participate in this project without my family's patience and love. 
My son, Daniil, was the source of inspiration for my work, and my wife, Alena, provided 
constant support and encouragement. Thank you!  

Many thanks to Tony Hong for his sound technical advice, productive discussions, and our 
collaboration on projects that gave me the required knowledge and experience.  

I'd like to thank James Snell for inviting me to participate in writing this book, and for the 
help he gave me throughout the process.  

Thanks to our wonderful technical editor, Nathan Torkington, who was a delight to work with 
and wonderfully persistent in his efforts to get this book done and make it great.  

www.allitebooks.com

http://www.allitebooks.org


Programming Web Services with SOAP 

page 5 

Finally, I am fortunate to be part of two communities, Perl and SOAP. I want to thank the 
many people that make up those communities for the enthusiastic support, feedback, and the 
fresh ideas that they've provided to me—they've helped to make SOAP::Lite and the other 
projects I've worked on what they are now.  

 

www.allitebooks.com

http://www.allitebooks.org


Programming Web Services with SOAP 

page 6 

Chapter 1. Introducing Web Services 
To make best use of web services and SOAP, you must have a firm understanding of the 
principles and technologies upon which they stand. This chapter is an introduction to a variety 
of new technologies, approaches, and ideas for writing web-based applications to take 
advantage of the web services architecture. SOAP is one part of the bigger picture described 
in this chapter, and you'll learn how it relates to the other technologies described in this book: 
the Web Service Description Language (WSDL), the Web Service Inspection Language (WS-
IL), and the Universal Description, Discovery, and Integration (UDDI) services.  

1.1 What Is a Web Service? 

Before we go any further, let's define the basic concept of a "web service." A web service is a 
network accessible interface to application functionality, built using standard Internet 
technologies. This is illustrated in Figure 1-1.  

Figure 1-1. A web service allows access to application code using standard Internet 
technologies 

 

In other words, if an application can be accessed over a network using a combination of 
protocols like HTTP, XML, SMTP, or Jabber, then it is a web service. Despite all the media 
hype around web services, it really is that simple.  

Web services are nothing new. Rather, they represent the evolution of principles that have 
guided the Internet for years.  

1.2 Web Service Fundamentals 

As Figure 1-1 and Figure 1-2 illustrate, a web service is an interface positioned between the 
application code and the user of that code. It acts as an abstraction layer, separating the 
platform and programming-language-specific details of how the application code is actually 
invoked. This standardized layer means that any language that supports the web service can 
access the application's functionality.  

 

 

 

 

www.allitebooks.com

http://www.allitebooks.org


Programming Web Services with SOAP 

page 7 

Figure 1-2. Web services provide an abstraction layer between the application client and the 
application code 

 

The web services that we see deployed on the Internet today are HTML web sites. In these, 
the application services—the mechanisms for publishing, managing, searching, and retrieving 
content—are accessed through the use of standard protocols and data formats: HTTP and 
HTML. Client applications (web browsers) that understand these standards can interact with 
the application services to perform tasks like ordering books, sending greeting cards, or 
reading news.  

Because of the abstraction provided by the standards-based interfaces, it does not matter 
whether the application services are written in Java and the browser written in C++, or the 
application services deployed on a Unix box while the browser is deployed on Windows. Web 
services allow for cross-platform interoperability in a way that makes the platform irrelevant.  

Interoperability is one of the key benefits gained from implementing web services. Java and 
Microsoft Windows-based solutions have typically been difficult to integrate, but a web 
services layer between application and client can greatly remove friction.  

There is currently an ongoing effort within the Java community to define an exact architecture 
for implementing web services within the framework of the Java 2 Enterprise Edition 
specification. Each of the major Java technology providers (Sun, IBM, BEA, etc.) are all 
working to enable their platforms for web services support.  

Many significant application vendors such as IBM and Microsoft have completely embraced 
web services. IBM for example, is integrating web services support throughout their 
WebSphere, Tivoli, Lotus, and DB2 products. And Microsoft's new .NET development 
platform is built around web services.  

1.2.1 What Web Services Look Like 

Web services are a messaging framework. The only requirement placed on a web service is 
that it must be capable of sending and receiving messages using some combination of 
standard Internet protocols. The most common form of web services is to call procedures 
running on a server, in which case the messages encode "Call this subroutine with these 
arguments," and "Here are the results of the subroutine call."  

Figure 1-3 shows the pieces of a web service. The application code holds all the business 
logic and code for actually doing things (listing books, adding a book to a shopping cart, 
paying for books, etc.). The Service Listener speaks the transport protocol (HTTP, SOAP, 
Jabber, etc.) and receives incoming requests. The Service Proxy decodes those requests into 
calls into the application code. The Service Proxy may then encode a response for the Service 
Listener to reply with, but it is possible to omit this step.  



Programming Web Services with SOAP 

page 8 

Figure 1-3. A web service consists of several key components 

 

The Service Proxy and Service Listener components may either be standalone applications (a 
TCP-server or HTTP-server daemon, for instance) or may run within the context of some 
other type of application server. As an example, IBM's WebSphere Application Server 
includes built-in support for receiving a SOAP message over HTTP and using that to invoke 
Java applications deployed within WebSphere. In comparison, the popular open source 
Apache web server has a module that implements SOAP. In fact, there are implementations of 
SOAP for both the Palm and PocketPL Portable Digital Assistant (PDA) operating systems.  

Keep in mind, however, that web services do not require a server environment to run. Web 
services may be deployed anywhere that the standard Internet technologies can be used. This 
means that web services may be hosted or used by anything from an Application Service 
Provider's vast server farm to a PDA.  

Web services do not require that applications conform to a traditional client-server (where the 
server holds the data and does the processing) or n-tier development model (where data 
storage is separated from business logic that is separated from the user interface), although 
they are certainly being heavily deployed within those environments. Web services may take 
any form, may be used anywhere, and may serve any purpose. For instance, there are strong 
crossovers between peer-to-peer systems (with decentralized data or processing) and web 
services where peers use standard Internet protocols to provide services to one another.  

1.2.2 Intersection of Business and Programming 

Because a web service exposes an application's functionality to any client in any 
programming language, they raise interesting questions in both the programming and the 
business world.  

Programmers tend to raise questions like, "How do we do two-phase commit transactions?" or 
"How do I do object inheritance?" or "How do I make this damn thing run faster?"—questions 
typically associated with going through the steps of writing code.  

Business folks, on the other hand, tend to ask questions like, "How do I ensure that the person 
using the service is really who they say they are?" or "How can we tie together multiple web 
services into a workflow?" or "How can I ensure the reliability of web service transactions?" 
Their questions typically address business concerns.  

These two perspectives go hand-in-hand with one another. Every business issue will have a 
software-based solution. But the two perspectives are also at odds with each other: the 
business processes demand completeness, trust, security, and reliability, which may be 
incompatible with the programmers' goals of simplicity, performance, and robustness.  



Programming Web Services with SOAP 

page 9 

The outcome is that tools for implementing web services will do so from one of these two 
angles, but rarely will they do so from both. For example, SOAP::Lite, the Perl-based SOAP 
implementation written by the coauthor of this book, Pavel Kulchenko, is essentially written 
for programmers. It provides a very simple set of tools for invoking Perl modules using 
SOAP, XML-RPC, Jabber, or any number of other protocols.  

In contrast, Apache's Axis project (the next generation of Apache's SOAP implementation) is 
a more complex web services implementation designed to make it easier to implement 
processes, or to tie together multiple web services. Axis can perform the stripped down bare 
essentials, but that is not its primary focus.  

The important thing to keep in mind is that both tools implement many of the same set of 
technologies (SOAP, WSDL, UDDI, and others, many of which we discuss later on), and so 
they are capable of interoperating with each other. The differences are in the way they 
interface with applications. This gives programmers a choice of how their web service is 
implemented, without restricting the users of that service.  

1.2.3 Just-In-Time Integration 

Once you understand the basic web services outlined earlier, the next step is to add Just-In-
Time Integration. That is, the dynamic integration of application services based not on the 
technology platform the services are implemented in, but upon the business requirements of 
what needs to get done.  

Just-In-Time Integration recasts the Internet application development model around a new 
framework called the web services architecture (Figure 1-4).  

Figure 1-4. The web services architecture 

 

In the web services architecture, the service provider publishes a description of the service(s) 
it offers via the service registry. The service consumer searches the service registry to find a 
service that meets their needs. The service consumer could be a person or a program.  

Binding refers to a service consumer actually using the service offered by a service provider. 
The key to Just-in-Time integration is that this can happen at any time, particularly at runtime. 
That is, a client might not know which procedures it will be calling until it is running, 
searches the registry, and identifies a suitable candidate. This is analogous to late binding in 
object-oriented programming.  

Imagine a purchasing web service, where consumers requisition products from a service 
provider. If the client program has hard-coded the server it talks to, then the service is bound 
at compile-time. If the client program searches for a suitable server and binds to that, then the 



Programming Web Services with SOAP 

page 10 

service is bound at runtime. The latter is an example of Just-In-Time integration between 
services.  

1.3 The Web Service Technology Stack 

The web services architecture is implemented through the layering of five types of 
technologies, organized into layers that build upon one another (Figure 1-5).  

Figure 1-5. The web service technology stack 

 

It should come as no surprise that this stack is very similar to the TCP/IP network model used 
to describe the architecture of Internet-based applications (Figure 1-6).  

Figure 1-6. The TCP/IP network model 

 

The additional packaging, description, and discovery layers in the web services stack are the 
layers essential to providing Just-In-Time Integration capability and the necessary platform-
neutral programming model.  

Because each part of the web services stack addresses a separate business problem, you only 
have to implement those pieces that make the most sense at any given time. When a new layer 
of the stack is needed, you do not have to rewrite significant chunks of your infrastructure just 
to support a new form of exchanging information or a new way of authenticating users.  

The goal is total modularization of the distributed computing environment as opposed to 
recreating the large monolithic solutions of more traditional distributed platforms like Java, 
CORBA, and COM. Modularity is particularly necessary in web services because of the 
rapidly evolving nature of the standards. This is shown in the sample CodeShare application 
of Chapter 7, where we don't use the discovery layer, but we do draw in another XML 
standard to handle security.  

1.3.1 Beyond the Stack 

The layers of the web services stack do not provide a complete solution to many business 
problems. For instance, they don't address security, trust, workflow, identity, or many other 
business concerns. Here are some of the most important standardization initiatives currently 
being pursued in these areas:  



Programming Web Services with SOAP 

page 11 

XML Protocol  

The W3C XML Protocol working group is chartered with standardizing the SOAP 
protocol. Its work will eventually replace the SOAP protocol completely as the de 
facto standard for implementing web services.  

XKMS  

The XML Key Management Services are a set of security and trust related services 
that add Private Key Infrastructure (PKI) capabilities to web services.  

SAML  

The Security Assertions Markup Language is an XML grammar for expressing the 
occurrence of security events, such as an authentication event. Used within the web 
services architecture, it provides a standard flexible authentication system.  

XML-Dsig  

XML Digital Signatures allow any XML document to be digitally signed.  

XML-Enc  

The XML Encryption specification allows XML data to be encrypted and for the 
expression of encrypted data as XML.  

XSD  

XML Schemas are an application of XML used to express the structure of XML 
documents.  

P3P  

The W3C's Platform for Privacy Preferences is an XML grammar for the expression 
of data privacy policies.  

WSFL  

The Web Services Flow Language is an extension to WSDL that allows for the 
expression of work flows within the web services architecture.  

Jabber  

Jabber is a new lightweight, asynchronous transport protocol used in peer-to-peer 
applications.  

 
 
 
 



Programming Web Services with SOAP 

page 12 

ebXML  

ebXML is a suite of XML-based specifications for conducting electronic business. 
Built to use SOAP, ebXML offers one approach to implementing business-to-business 
integration services.  

1.3.2 Discovery 

The discovery layer provides the mechanism for consumers to fetch the descriptions of 
providers. One of the more widely recognized discovery mechanisms available is the 
Universal Description, Discovery, and Integration (UDDI) project. IBM and Microsoft have 
jointly proposed an alternative to UDDI, the Web Services Inspection Language (WS-
Inspection). We will discuss both UDDI and WS-Inspection in depth (including arguments for 
and against their use) in Chapter 6.  

1.3.3 Description 

When a web service is implemented, it must make decisions on every level as to which 
network, transport, and packaging protocols it will support. A description of that service 
represents those decisions in such a way that the Service Consumer can contact and use the 
service.  

The Web Service Description Language (WSDL) is the de facto standard for providing those 
descriptions. Other, less popular, approaches include the use of the W3C's Resource 
Description Framework (RDF) and the DARPA Agent Markup Language (DAML), both of 
which provide a much richer (but far more complex) capability of describing web services 
than WSDL.  

We cover WSDL in Chapter 5. You can find out more information about DAML and RDF 
from:  

http://daml.semanticweb.org/  
http://www.w3.org/rdf  

1.3.4 Packaging 

For application data to be moved around the network by the transport layer, it must be 
"packaged" in a format that all parties can understand (other terms for this process are 
"serialization" and "marshalling"). This encompasses the choice of data types understood, the 
encoding of values, and so on.  

HTML is a kind of packaging format, but it can be inconvenient to work with because HTML 
is strongly tied to the presentation of the information rather than its meaning. XML is the 
basis for most of the present web services packaging formats because it can be used to 
represent the meaning of the data being transferred, and because XML parsers are now 
ubiquitous.  

SOAP is a very common packaging format, built on XML. In Chapter 2, we'll see how SOAP 
encodes messages and data values, and in Chapter 3 we'll see how to write actual web 
services with SOAP. There are several XML-based packaging protocols available for 



Programming Web Services with SOAP 

page 13 

developers to use (XML-RPC for instance), but as you might have guessed from the title of 
this book, SOAP is the only format we cover.  

1.3.5 Transport 

The transport layer includes the various technologies that enable direct application-to-
application communication on top of the network layer. Such technologies include protocols 
like TCP, HTTP, SMTP, and Jabber. The transport layer's primary role is to move data 
between two or more locations on the network. Web services may be built on top of almost 
any transport protocol.  

The choice of transport protocol is based largely on the communication needs of the web 
service being implemented. HTTP, for example, provides the most ubiquitous firewall support 
but does not provide support for asynchronous communication. Jabber, on the other hand, 
while not a standard, does provide good a asynchronous communication channel.  

1.3.6 Network 

The network layer in the web services technology stack is exactly the same as the network 
layer in the TCP/IP Network Model. It provides the critical basic communication, addressing, 
and routing capabilities.  

1.4 Application 

The application layer is the code that implements the functionality of the web service, which 
is found and accessed through the lower layers in the stack.  

1.5 The Peer Services Model 

The peer services model is a complimentary but alternative view of the web services 
architecture. Based on the peer-to-peer (P2P) architecture, every member of a group of peers 
shares a common collection of services and resources. A peer can be a person, an application, 
a device, or another group of peers operating as a single entity.  

While it may not be readily apparent, the same fundamental web services components are 
present as in the peer services architecture. There are both service providers and service 
consumers, and there are service registries. The distinction between providers and consumers, 
however, is not as clear-cut as in the web services case. Depending on the type of service or 
resource that the peers are sharing, any individual peer can play the role of both a service 
provider and a service consumer. This makes the peer services model more dynamic and 
flexible.  

Instant Messaging is the most widely utilized implementation of the peer services model. 
Every person that uses instant messaging is a peer. When you receive an invitation to chat 
with somebody, you are playing the role of a service provider. When you send an invitation 
out to chat with somebody else, you are playing the role of a service consumer. When you log 
on to the Instant Messaging Server, the server is playing the role of the service registry—that 
is, the Instant Messaging Server keeps track of where you currently are and what your instant 
messaging capabilities are. Figure 1-7 illustrates this.  



Programming Web Services with SOAP 

page 14 

Figure 1-7. The peer web services model simply applies the concepts of the web services 
architecture in a peer-to-peer network 

 

Peer services and web services emerged and evolved separately from one another, and 
accordingly make use of different protocols and technologies to implement their respective 
models. Peer web services tie the two together by unifying the technologies, the protocols, 
and the models into a single comprehensive big picture. The implementation of a peer web 
service will be the central focus of Chapter 7.  

 



Programming Web Services with SOAP 

page 15 

Chapter 2. Introducing SOAP 
SOAP's place in the web services technology stack is as a standardized packaging protocol for 
the messages shared by applications. The specification defines nothing more than a simple 
XML-based envelope for the information being transferred, and a set of rules for translating 
application and platform-specific data types into XML representations. SOAP's design makes 
it suitable for a wide variety of application messaging and integration patterns. This, for the 
most part, contributes to its growing popularity.  

This chapter explains the parts of the SOAP standard. It covers the message format, the 
exception-reporting mechanism (faults), and the system for encoding values in XML. It 
discusses using SOAP over transports that aren't HTTP, and concludes with thoughts on the 
future of SOAP. You'll learn what SOAP does and how it does it, and get a firm 
understanding of the flexibility of SOAP. Later chapters build on this to show how to program 
with SOAP using toolkits that abstract details of the XML.  

2.1 SOAP and XML 

SOAP is XML. That is, SOAP is an application of the XML specification. It relies heavily on 
XML standards like XML Schema and XML Namespaces for its definition and function. If 
you are not familiar with any of these, you'll probably want to get up to speed before 
continuing with the information in this chapter (you can find information about each of these 
specifications at the World Wide Web Consortium's web site at http://www.w3c.org/). This 
book assumes you are familiar with these specifications, at least on a cursory level, and will 
not spend time discussing them. The only exception is a quick introduction to the XML 
Schema data types in Appendix B.  

2.1.1 XML Messaging 

XML messaging is where applications exchange information using XML documents (see 
Figure 2-1). It provides a flexible way for applications to communicate, and forms the basis of 
SOAP.  

A message can be anything: a purchase order, a request for a current stock price, a query for a 
search engine, a listing of available flights to Los Angeles, or any number of other pieces of 
information that may be relevant to a particular application.  

Figure 2-1. XML messaging 

 

Because XML is not tied to a particular application, operating system, or programming 
language, XML messages can be used in all environments. A Windows Perl program can 
create an XML document representing a message, send it to a Unix-based Java program, and 
affect the behavior of that Java program.  



Programming Web Services with SOAP 

page 16 

The fundamental idea is that two applications, regardless of operating system, programming 
language, or any other technical implementation detail, may openly share information using 
nothing more than a simple message encoded in a way that both applications understand. 
SOAP provides a standard way to structure XML messages.  

2.1.2 RPC and EDI 

XML messaging, and therefore SOAP, has two related applications: RPC and EDI. Remote 
Procedure Call (RPC) is the basis of distributed computing, the way for one program to make 
a procedure (or function, or method, call it what you will) call on another, passing arguments 
and receiving return values. Electronic Document Interchange (EDI) is basis of automated 
business transactions, defining a standard format and interpretation of financial and 
commercial documents and messages.  

If you use SOAP for EDI (known as "document-style" SOAP), then the XML will be a 
purchase order, tax refund, or similar document. If you use SOAP for RPC (known, 
unsurprisingly, as "RPC-style" SOAP) then the XML will be a representation of parameter or 
return values.  

2.1.3 The Need for a Standard Encoding 

If you're exchanging data between heterogeneous systems, you need to agree on a common 
representation. As you can see in Example 2-1, a single piece of data like a telephone number 
may be represented in many different, and equally valid ways in XML.  

Example 2-1. Many XML representations of a phone number  

<phoneNumber>(123) 456-7890</phoneNumber> 
<phoneNumber> 
    <areaCode>123</areaCode> 
    <exchange>456</exchange> 
    <number>7890</number>  
</phoneNumber> 
<phoneNumber area="123"  exchange="456"  number="7890" /> 
<phone area="123"> 
    <exchange>456</exchange> 
    <number>7890</number> 
</phone> 

Which is the correct encoding? Who knows! The correct one is whatever the application is 
expecting. In other words, simply saying that server and client are using XML to exchange 
information is not enough. We need to define:  

• The types of information we are exchanging 
• How that information is to be expressed as XML 
• How to actually go about sending that information 

Without these agreed conventions, programs cannot know how to decode the information 
they're given, even if it's encoded in XML. SOAP provides these conventions.  

 

www.allitebooks.com

http://www.allitebooks.org


Programming Web Services with SOAP 

page 17 

2.2 SOAP Messages 

A SOAP message consists of an envelope containing an optional header and a required body, 
as shown in Figure 2-2. The header contains blocks of information relevant to how the 
message is to be processed. This includes routing and delivery settings, authentication or 
authorization assertions, and transaction contexts. The body contains the actual message to be 
delivered and processed. Anything that can be expressed in XML syntax can go in the body of 
a message.  

Figure 2-2. The SOAP message structure 

 

The XML syntax for expressing a SOAP message is based on the 
http://www.w3.org/2001/06/soap-envelope namespace. This XML namespace identifier 
points to an XML Schema that defines the structure of what a SOAP message looks like.  

If you were using document-style SOAP, you might transfer a purchase order with the XML 
in Example 2-2.  

Example 2-2. A purchase order in document-style SOAP  

<s:Envelope  
 xmlns:s="http://www.w3.org/2001/06/soap-envelope"> 
    <s:Header> 
       <m:transaction xmlns:m="soap-transaction" 
                      s:mustUnderstand="true"> 
           <transactionID>1234</transactionID> 
       </m:transaction> 
    </s:Header> 
    <s:Body> 
       <n:purchaseOrder xmlns:n="urn:OrderService"> 
          <from><person>Christopher Robin</person> 
                <dept>Accounting</dept></from> 
          <to><person>Pooh Bear</person> 
               <dept>Honey</dept></to> 
          <order><quantity>1</quantity> 
                 <item>Pooh Stick</item></order> 
       </n:purchaseOrder> 
    </s:Body> 
</s:Envelope> 



Programming Web Services with SOAP 

page 18 

This example illustrates all of the core components of the SOAP Envelope specification. 
There is the <s:Envelope>, the topmost container that comprises the SOAP message; the 
optional <s:Header>, which contains additional blocks of information about how the body 
payload is to be processed; and the mandatory <s:Body> element that contains the actual 
message to be processed.  

2.2.1 Envelopes 

Every Envelope element must contain exactly one Body element. The Body element may 
contain as many child nodes as are required. The contents of the Body element are the 
message. The Body element is defined in such a way that it can contain any valid, well-formed 
XML that has been namespace qualified and does not contain any processing instructions or 
Document Type Definition (DTD) references.  

If an Envelope contains a Header element, it must contain no more than one, and it must 
appear as the first child of the Envelope, beforethe Body. The header, like the body, may 
contain any valid, well-formed, and namespace-qualified XML that the creator of the SOAP 
message wishes to insert.  

Each element contained by the Header is called a header block. The purpose of a header 
block is to communicate contextual information relevant to the processing of a SOAP 
message. An example might be a header block that contains authentication credentials, or 
message routing information. Header blocks will be highlighted and explained in greater 
detail throughout the remainder of the book. In Example 2-2, the header block indicates that 
the document has a transaction ID of "1234".  

2.2.2 RPC Messages 

Now let's see an RPC-style message. Typically messages come in pairs, as shown in Figure 2-
3: the request (the client sends function call information to the server) and the response (the 
server sends return value(s) back to the client). SOAP doesn't require every request to have a 
response, or vice versa, but it is common to see the request-response pairing.  

Figure 2-3. Basic RPC messaging architecture 

 

Imagine the server offers this function, which returns a stock's price, as a SOAP service:  

public Float getQuote(String symbol); 

Example 2-3 illustrates a simple RPC-style SOAP message that represents a request for IBM's 
current stock price. Again, we show a header block that indicates a transaction ID of "1234".  

 

 



Programming Web Services with SOAP 

page 19 

Example 2-3. RPC-style SOAP message  

<s:Envelope  
 xmlns:s="http://www.w3.org/2001/06/soap-envelope"> 
    <s:Header> 
       <m:transaction xmlns:m="soap-transaction" 
                      s:mustUnderstand="true"> 
           <transactionID>1234</transactionID> 
       </m:transaction> 
    </s:Header> 
    <s:Body> 
       <n:getQuote xmlns:n="urn:QuoteService"> 
          <symbol xsi:type="xsd:string"> 
             IBM 
          </symbol> 
       </n:getQuote> 
    </s:Body> 
</s:Envelope> 

Example 2-4 is a possible response that indicates the operation being responded to and the 
requested stock quote value.  

Example 2-4. SOAP response to request in Example 2-3 

<s:Envelope  
 xmlns:s="http://www.w3.org/2001/06/soap-envelope"> 
    <s:Body> 
       <n:getQuoteRespone  
               xmlns:n="urn:QuoteService"> 
          <value xsi:type="xsd:float"> 
             98.06 
          </value> 
       </n:getQuoteResponse> 
    </s:Body> 
</s:Envelope> 

2.2.3 The mustUnderstand Attribute 

When a SOAP message is sent from one application to another, there is an implicit 
requirement that the recipient must understand how to process that message. If the recipient 
does not understand the message, the recipient must reject the message and explain the 
problem to the sender. This makes sense: if Amazon.com sent O'Reilly a purchase order for 
150 electric drills, someone from O'Reilly would call someone from Amazon.com and explain 
that O'Reilly and Associates sells books, not electric drills.  

Header blocks are different. A recipient may or may not understand how to deal with a 
particular header block but still be able to process the primary message properly. If the sender 
of the message wants to require that the recipient understand a particular block, it may add a 
mustUnderstand="true" attribute to the header block. If this flag is present, and the 
recipient does not understand the block to which it is attached, the recipient must reject the 
entire message.  

In the getQuote envelope we saw earlier, the transaction header contains the 
mustUnderstand="true" flag. Because this flag is set, regardless of whether or not the 
recipient understands and is capable of processing the message body (the getQuote message), 



Programming Web Services with SOAP 

page 20 

if it does not understand how to deal with the transaction header block, the entire message 
must be rejected. This guarantees that the recipient understands transactions.  

2.2.4 Encoding Styles 

As part of the overall specification, Section 5 of the SOAP standard introduces a concept 
known as encoding styles. An encoding style is a set of rules that define exactly how native 
application and platform data types are to be encoded into a common XML syntax. These are, 
obviously, for use with RPC-style SOAP.  

The encoding style for a particular set of XML elements is defined through the use of the 
encodingStyle attribute, which can be placed anywhere in the document and applies to all 
subordinate children of the element on which it is located.  

For example, the encodingStyle attribute on the getQuote element in the body of Example 
2-5 indicates that all children of the getQuote element conform to the encoding style rules 
defined in Section 5.  

Example 2-5. The encodingStyle attribute  

<s:Envelope  
 xmlns:s="http://www.w3.org/2001/06/soap-envelope"> 
 <s:Body> 
  <n:getQuote xmlns:n="urn:QuoteService" 
   s:encodingStyle="http://www.w3.org/2001/06/soap-encoding"> 
    <symbol xsi:type="xsd:string">IBM</symbol> 
  </n:getQuote> 
 </s:Body> 
</s:Envelope> 

Even though the SOAP specification defines an encoding style in Section 5, it has been 
explicitly declared that no single style is the default serialization scheme. Why is this 
important?  

Encoding styles are how applications on different platforms share information, even though 
they may not have common data types or representations. The approach that the SOAP 
Section 5 encoding style takes is just one possible mechanism for providing this, but it is not 
suitable in every situation.  

For example, in the case where a SOAP message is used to exchange a purchase order that 
already has a defined XML syntax, there is no need for the Section 5 encoding rules to be 
applied. The purchase order would simply be dropped into the Body section of the SOAP 
envelope as is.  

The SOAP Section 5 encoding style will be discussed in much greater detail later in this 
chapter, as most SOAP applications and libraries use it.  

2.2.5 Versioning 

There have been several versions of the SOAP specification put into production. The most 
recent working draft, SOAP Version 1.2, represents the first fruits of the World Wide Web 



Programming Web Services with SOAP 

page 21 

Consortium's (W3C) effort to standardize an XML-based packaging protocol for web 
services. The W3C chose SOAP as the basis for that effort.  

The previous version of SOAP, Version 1.1, is still widely used. In fact, at the time we are 
writing this, there are only three implementations of the SOAP 1.2 specification available: 
SOAP::Lite for Perl, Apache SOAP Version 2.2, and Apache Axis (which is not even in beta 
status).  

While SOAP 1.1 and 1.2 are largely the same, the differences that do exist are significant 
enough to warrant mention. To prevent subtle incompatibility problems, SOAP 1.2 introduces 
a versioning model that deals with how SOAP Version 1.1 processors and SOAP Version 1.2 
processors may interact. The rules for this are fairly straightforward:  

1. If a SOAP Version 1.1 compliant application receives a SOAP Version 1.2 message, a 
"version mismatch" error will be triggered.  

2. If a SOAP Version 1.2 compliant application receives a SOAP Version 1.1 message, 
the application may choose to either process it according to the SOAP Version 1.1 
specification or trigger a "version mismatch" error.  

The version of a SOAP message can be determined by checking the namespace defined for 
the SOAP envelope. Version 1.1 uses the namespace 
http://schemas.xmlsoap.org/soap/envelope/, whereas Version 1.2 uses the namespace 
http://www.w3.org/2001/06/soap-envelope. Example 2-6 illustrates the difference.  

Example 2-6. Distinguishing between SOAP 1.1 and SOAP 1.2  

<!-- Version 1.1 SOAP Envelope --> 
<s:Envelope 
 xmlns:s=" 
http://schemas.xmlsoap.org/soap/envelope/"> 
  ... 
</s:Envelope> 
 
<!-- Version 1.2 SOAP Envelope --> 
<s:Envelope   
 xmlns:s=" 
http://www.w3.org/2001/06/soap-envelope"> 
  ... 
</s:Envelope> 

When applications report a version mismatch error back to the sender of the message, it may 
optionally include an Upgrade header block that tells the sender which version of SOAP it 
supports. Example 2-7 shows the Upgrade header in action.  

 

 

 

 

 



Programming Web Services with SOAP 

page 22 

Example 2-7. The Upgrade header  

<s:Envelope xmlns:s="http://schemas.xmlsoap.org/soap/envelope/"> 
  <s:Header> 
    <V:Upgrade xmlns:V="http://www.w3.org/2001/06/soap-upgrade"> 
      <envelope qname="ns1:Envelope" 
                xmlns:ns1="http://www.w3.org/2001/06/soap-envelope"/> 
    </V:Upgrade> 
  </s:Header> 
  <s:Body> 
    <s:Fault> 
      <faultcode>s:VersionMismatch</faultcode> 
      <faultstring>Version Mismatch</faultstring> 
    </s:Fault> 
  </s:Body> 
</s:Envelope> 

For backwards compatibility, version mismatch errors must conform to the SOAP Version 1.1 
specification, regardless of the version of SOAP being used.  

2.3 SOAP Faults 

A SOAP fault (shown in Example 2-8) is a special type of message specifically targeted at 
communicating information about errors that may have occurred during the processing of a 
SOAP message.  

Example 2-8. SOAP fault  

<s:Envelope xmlns:s="..."> 
   <s:Body> 
      <s:Fault> 
       <faultcode>Client.Authentication</faultcode> 
       <faultstring> 
          Invalid credentials 
       </faultstring> 
       <faultactor>http://acme.com</faultactor> 
       <details> 
          <!-- application specific details --> 
       </details> 
      </s:Fault> 
   </s:Body> 
</s:Envelope> 

The information communicated in the SOAP fault is as follows: 

The fault code  

An algorithmically generated value for identifying the type of error that occurred. The 
value must be an XML Qualified Name, meaning that the name of the code only has 
meaning within a defined XML namespace.  

The fault string  

A human-readable explanation of the error. 



Programming Web Services with SOAP 

page 23 

The fault actor  

The unique identifier of the message processing node at which the error occurred 
(actors will be discussed later).  

The fault details  

Used to express application-specific details about the error that occurred. This must be 
present if the error that occurred is directly related to some problem with the body of 
the message. It must not be used, however, to express information about errors that 
occur in relation to any other aspect of the message process.  

2.3.1 Standard SOAP Fault Codes 

SOAP defines four standard types of faults that belong to the 
http://www.w3.org/2001/06/soap-envelope namespace. These are described here:  

VersionMismatch  

The SOAP envelope is using an invalid namespace for the SOAP Envelope element.  

MustUnderstand  

A Header block contained a mustUnderstand="true" flag that was not understood 
by the message recipient.  

Server  

An error occurred that can't be directly linked to the processing of the message.  

Client  

There is a problem in the message. For example, the message contains invalid 
authentication credentials, or there is an improper application of the Section 5 
encoding style rules.  

These fault codes can be extended to allow for more expressive and granular types of faults, 
while still maintaining backwards compatibility with the core fault codes.  

The example SOAP fault demonstrates how this extensibility works. The 
Client.Authentication fault code is a more granular derivative of the Client fault type. 
The "." notation indicates that the piece to the left of the period is more generic than the piece 
that is to the right of the period.  

2.3.2 MustUnderstand Faults 

As mentioned earlier, a header block contained within a SOAP message may indicate through 
the mustUnderstand="true" flag that the recipient of the message must understand how to 
process the contents of the header block. If it cannot, then the recipient must return a 
MustUnderstand fault back to the sender of the message. In doing so, the fault should 



Programming Web Services with SOAP 

page 24 

communicate specific information about the header blocks that were not understood by the 
recipient.  

The SOAP fault structure is not allowed to express any information about which headers were 
not understood. The details element would be the only place to put this information and it is 
reserved solely for the purpose of expressing error information related to the processing of the 
body, not the header.  

To solve this problem, the SOAP Version 1.2 specification defines a standard Misunderstood 
header block that can be added to the SOAP fault message to indicate which header blocks in 
the received message were not understood. Example 2-9 shows this.  

Example 2-9. The Misunderstood header  

<s:Envelope xmlns:s="..."> 
   <s:Header> 
      <f:Misunderstood qname="abc:transaction" 
                       xmlns:="soap-transactions" /> 
   </s:Header> 
   <s:Body> 
      <s:Fault> 
       <faultcode>MustUnderstand</faultcode> 
       <faultstring> 
            Header(s) not understood 
       </faultstring> 
       <faultactor>http://acme.com</faultactor> 
      </s:Fault> 
   </s:Body> 
</s:Envelope> 

The Misunderstood header block is optional, which makes it unreliable to use as the primary 
method of determining which headers caused the message to be rejected.  

2.3.3 Custom Faults 

A web service may define its own custom fault codes that do not derive from the ones defined 
by SOAP. The only requirement is that these custom faults be namespace qualified. Example 
2-10 shows a custom fault code.  

Example 2-10. A custom fault  

<s:Envelope xmlns:s="..."> 
   <s:Body> 
      <s:Fault xmlns:xyz="urn:myCustomFaults"> 
         <faultcode>xyz:CustomFault</faultcode> 
         <faultstring> 
             My custom fault! 
         </faultstring> 
      </s:Fault> 
   </s:Body> 
</s:Envelope> 

Approach custom faults with caution: a SOAP processor that only understands the standard 
four fault codes will not be able to take intelligent action upon receipt of a custom fault. 



Programming Web Services with SOAP 

page 25 

However, custom faults can still be useful in situations where the standard fault codes are too 
generic or are otherwise inadequate for the expression of what error occurred.  

For the most part, the extensibility of the existing four fault codes makes custom fault codes 
largely unnecessary.  

2.4 The SOAP Message Exchange Model 

Processing a SOAP message involves pulling apart the envelope and doing something with 
the information that it carries. SOAP defines a general framework for such processing, but 
leaves the actual details of how that processing is implemented up to the application.  

What the SOAP specification does have to say about message processing deals primarily with 
how applications exchange SOAP messages. Section 2 of the specification outlines a very 
specific message exchange model.  

2.4.1 Message Paths and Actors 

At the core of this exchange model is the idea that while a SOAP message is fundamentally a 
one-way transmission of an envelope from a sender to a receiver, that message may pass 
through various intermediate processors that each in turn do something with the message. 
This is analogous to a Unix pipeline, where the output of one program becomes the input to 
another, and so on until you get the output you want.  

A SOAP intermediary is a web service specially designed to sit between a service consumer 
and a service provider and add value or functionality to the transaction between the two. The 
set of intermediaries that the message travels through is called the message path. Every 
intermediary along that path is known as an actor.  

The construction of a message path (the definition of which nodes a message passes through) 
is not covered by the SOAP specification. Various extensions to SOAP, such as Microsoft's 
SOAP Routing Protocol (WS-Routing) have emerged to fill that gap, but there is still no 
standard (de facto or otherwise) method of expressing the message path. We cover WS-
Routing later.  

What SOAP does specify, however, is a mechanism of identifying which parts of the SOAP 
message are intended for processing by specific actors in its message path. This mechanism is 
known as "targeting" and can only be used in relation to header blocks (the body of the SOAP 
envelope cannot be explicitly targeted at a particular node).  

A header block is targeted to a specific actor on its message path through the use of the 
special actor attribute. The value of the actor attribute is the unique identifier of the 
intermediary being targeted. This identifier may be the URL where the intermediary may be 
found, or something more generic. Intermediaries that do not match the actor attribute must 
ignore the header block.  

For example, imagine that I am a wholesaler of fine cardigan sweaters. I set up a web service 
that allows me to receive purchase orders from my customers in the form of SOAP messages. 
You, one of my best customers, want to submit an order for 100 sweaters. So you send me a 
SOAP message that contains the purchase order.  



Programming Web Services with SOAP 

page 26 

For our mutual protection, however, I have established a relationship with a trusted third-party 
web service that can help me validate that the purchase order you sent really did come from 
you. This service works by verifying that your digital signature header block embedded in the 
SOAP message is valid.  

When you send that message to me, it is going to be routed through this third-party signature 
verification service, which will, in turn, extract the digital signature, validate it, and add a new 
header block that tells me whether the signature is valid. The transaction is depicted in Figure 
2-4.  

Figure 2-4. The signature validation intermediary 

 

Now, the signature verification intermediary needs to have some way of knowing which 
header block contains the digital signature that it is expected to verify. This is accomplished 
by targeting the digital signature block to the verification service, as in Example 2-11.  

Example 2-11. The actor header  

<s:Envelope xmlns:s="..."> 
   <s:Header> 
      <x:signature actor="uri:SignatureVerifier"> 
         ... 
      </x:signature> 
   </s:Header> 
   <s:Body> 
      <abc:purchaseOrder>...</abc:purchaseOrder> 
   </s:Body> 
</s:Envelope> 

The actor attribute on the signature header block is how the signature verifier intermediary 
knows that it is responsible for processing that header block. If the message does not pass 
through the signature verifier, then the signature block is ignored.  

2.4.2 The SOAP Routing Protocol 

Remember, SOAP does not specify howthe message is to be routed to the signature 
verification service, only that it should be at some point during the processing of the SOAP 
message. This makes the implementation of SOAP message paths a fairly difficult proposition 
since there is no single standard way of representing that path. The SOAP Routing Protocol 
(WS-Routing) is Microsoft's proposal for solving this problem.  

www.allitebooks.com

http://www.allitebooks.org


Programming Web Services with SOAP 

page 27 

WS-Routing defines a standard SOAP header block (see Example 2-12) for expressing 
routing information. Its role is to define the exact sequence of intermediaries through which a 
message is to pass.  

Example 2-12. A WS-Routing message  

<s:Envelope xmlns:s="..."> 
 <s:Header> 
  <m:path xmlns:m="http://schemas.xmlsoap.org/rp/" 
          s:mustUnderstand="true"> 
   <m:action>http://www.im.org/chat</m:action> 
    <m:to>http://D.com/some/endpoint</m:to> 
    <m:fwd> 
     <m:via>http://B.com</m:via> 
     <m:via>http://C.com</m:via> 
    </m:fwd> 
    <m:rev> 
     <m:via/> 
    </m:rev> 
    <m:from>mailto:johndoe@acme.com</m:from> 
    <m:id> 
      uuid:84b9f5d0-33fb-4a81-b02b-5b760641c1d6 
    </m:id> 
  </m:path> 
 </S:Header> 
 <S:Body> 
  ... 
 </S:Body> 
</S:Envelope> 

In this example, we see the SOAP message is intended to be delivered to a recipient located at 
http://d.com/some/endpoint but that it must first go through both the http://b.com and 
http://c.com intermediaries.  

To ensure that the message path defined by the WS-Routing header block is properly 
followed, and because WS-Routing is a third-party extension to SOAP that not every SOAP 
processor will understand, the mustUnderstand="true" flag can be set on the path header 
block.  

2.5 Using SOAP for RPC-Style Web Services 

RPC is the most common application of SOAP at the moment. The following sections show 
how method calls and return values are encoded in SOAP message bodies.  

2.5.1 Invoking Methods 

The rules for packaging an RPC request in a SOAP envelope are simple:  

• The method call is represented as a single structure with each in or in-out parameter 
modeled as a field in that structure.  

• The names and physical order of the parameters must correspond to the names and 
physical order of the parameters in the method being invoked.  

 



Programming Web Services with SOAP 

page 28 

This means that a Java method with the following signature: 

String checkStatus(String orderCode,  
                   String customerID); 

can be invoked with these arguments: 

result = checkStatus("abc123", "Bob's Store") 

using the following SOAP envelope: 

<s:Envelope xmlns:s="..."> 
  <s:Body> 
    <checkStatus xmlns="..." 
                 s:encodingStyle="http://www.w3.org/2001/06/soap-encoding"> 
      <orderCode xsi:type="string">abc123</orderCode> 
      <customerID xsi:type="string"> 
        Bob's Store 
      </customerID> 
    </checkStatus> 
  </s:Body> 
</s:Envelope> 

The SOAP RPC conventions do not require the use of the SOAP Section 5 encoding style and 
xsi:type explicit data typing. They are, however, widely used and will be what we describe.  

2.5.2 Returning Responses 

Method responses are similar to method calls in that the structure of the response is modeled 
as a single structure with a field for each in-out or out parameter in the method signature. If 
the checkStatus method we called earlier returned the string new, the SOAP response might 
be something like Example 2-13.  

Example 2-13. Response to the method call  

<s:Envelope xmlns:s="..."> 
  <s:Body> 
    <checkStatusResponse  
     s:encodingStyle="http://www.w3.org/2001/06/soap-encoding"> 
      <return xsi:type="xsd:string">new</return> 
    </checkStatusResponse> 
  </SOAP:Body> 
</SOAP:Envelope> 

The name of the message response structure (checkStatusResponse) element is not 
important, but the convention is to name it after the method, with Response appended. 
Similarly, the name of the return element is arbitrary—the first field in the message response 
structure is assumed to be the return value.  

2.5.3 Reporting Errors 

The SOAP RPC conventions make use of the SOAP fault as the standard method of returning 
error responses to RPC clients. As with standard SOAP messages, the SOAP fault is used to 
convey the exact nature of the error that has occurred and can be extended to provide 



Programming Web Services with SOAP 

page 29 

additional information through the use of the detail element. There's little point in 
customizing error messages in SOAP faults when you're doing RPC, as most SOAP RPC 
implementations will not know how to deal with the custom error information.  

2.6 SOAP's Data Encoding 

The first part of the SOAP specification outlines a standard envelope format for packaging 
data. The second part of the specification (specifically, Section 5) outlines one possible 
method of serializing the data intended for packaging. These rules outline in specific detail 
how basic application data types are to be mapped and encoded into XML format when 
embedded into a SOAP Envelope.  

The SOAP specification introduces the SOAP encoding style as "a simple type system that is 
a generalization of the common features found in type systems in programming languages, 
databases, and semi-structured data." As such, these encoding rules can be applied in nearly 
any programming environment regardless of the minor differences that exist between those 
environments.  

Encoding styles are completely optional, and in many situations not useful (recall the 
purchase order example we gave earlier in this chapter, where it made sense to ship a 
document and not an encoded method call/response). SOAP envelopes are designed to carry 
any arbitrary XML documents no matter what the body of the message looks like, or whether 
it conforms to any specific set of data encoding rules. The Section 5 encoding rules are 
offered only as a convenience to allow applications to dynamically exchange information 
without a priori knowledge of the types of information to be exchanged.  

2.6.1 Understanding the Terminology 

Before continuing, it is important to gain a firm understanding of the vocabulary used to 
describe the encoding process. Of particular importance are the terms value and accessor.  

A value represents either a single data unit or combination of data units. This could be a 
person's name, the score of a football game, or the current temperature. An accessorrepresents 
an element that contains or allows access to a value. In the following, firstname is an 
accessor, and Joe is a value:  

<firstname> Joe </firstname> 

A compound value represents a combination of two or more accessors grouped as children of 
a single accessor, and is demonstrated in Example 2-14.  

Example 2-14. A compound value  

<name> 
    <firstname> Joe </firstname> 
    <lastname> Smith </lastname> 
</name> 

There are two types of compound values, structs (the structures we talked about earlier) and 
arrays. A struct is a compound value in which each accessor has a different name. An array is 



Programming Web Services with SOAP 

page 30 

a compound value in which the accessors have the same name (values are identified by their 
positions in the array). A struct and an array are shown in Example 2-15.  

Example 2-15. Structs and arrays  

<!--A struct --> 
<person> 
    <firstname>Joe</firstname> 
    <lastname>Smith</lastname> 
</person> 
 
<!--An array--> 
<people> 
    <person name='joe smith'/> 
    <person name='john doe'/> 
</people> 

Through the use of the special id and href attributes, SOAP defines that accessors may either 
be single-referenced or multireferenced. A single-referenced accessor doesn't have an identity 
except as a child of its parent element. In Example 2-16, the <address> element is a single-
referenced accessor.  

Example 2-16. A single-referenced accessor  

<people> 
   <person name='joe smith'> 
      <address> 
         <street>111 First Street</street> 
         <city>New York</city> 
         <state>New York</state> 
      </address> 
   </person> 
</people> 

A multireferenced accessor uses id to give an identity to its value. Other accessors can use the 
href attribute to refer to their values. In Example 2-17, each person has the same address, 
because they reference the same multireferenced address accessor.  

Example 2-17. A multireferenced accessor  

<people> 
   <person name='joe smith'> 
      <address href='#address-1' 
   </person> 
   <person name='john doe'> 
      <address href='#address-1' 
   </person> 
</people> 
<address id='address-1'> 
   <street>111 First Street</street> 
   <city>New York</city> 
   <state>New York</state> 
</address> 

This approach can also be used to allow an accessor to reference external information sources 
that are not a part of the SOAP Envelope (binary data, for example, or parts of a MIME 



Programming Web Services with SOAP 

page 31 

multipart envelope). Example 2-18 references information contained within an external XML 
document.  

Example 2-18. A reference to an external document  

<person name='joe smith'> 
  <address href='http://acme.com/data.xml#joe_smith' />  
</person> 

2.6.2 XML Schemas and xsi:type 

The SOAP encoding rule in Section 5.1 states how to express data types within the SOAP 
envelope, and has caused quite a bit of confusion and challenges for SOAP implementers. 
Read for yourself:  

Although it is possible to use the xsi:type attribute such that a graph of values is self-
describing both in its structure and that types of its values, the serialization rules permit that 
the types of values MAY be determinable only by reference to a schema. Such schemas MAY 
be in the notation described by `XML Schema Part 1: Structures' and `XML Schemas Part 2: 
Data types' or MAY be in any other notation.  

English translation: SOAP defines three different ways to express the data type of an accessor.  

1. Use the xsi:type attribute on each accessor, explicitly referencing the data type 
according to the XML Schema specification, as in this example:  

2. <person> 
3.   <name xsi:type="xsd:string">John Doe</name> 

</person> 

4. Reference an XML Schema document that defines the exact data type of a particular 
element within its definition, as in this example:  

5. <person xmlns="personschema.xsd"> 
6.    <name>John Doe</name> 
7. </person> 
8. <!-- where "personschema.xsd" defines the name  

     element as type=xsd:string --> 

9. Reference some other type of schema document that defines the data type of a 
particular element within its definition, as in this example:  

10. <person xmlns="urn:some_namespace"> 
11.   <name>John Doe</name> 
12. </person> 
13. <!-- where "urn:some_namespace" indicates some  
14.      namespace in which the value of name  

     elements are strings --> 

Early SOAP implementations varied in their interpretations of this part of the SOAP 
specification, causing some rather nasty and annoying integration problems (ironic because 
SOAP's main goal is to enable interoperability). In particular, the IBM (later Apache) SOAP 
implementation chose the route of requiring xsi:type based typing (forgoing the other two 
options completely) while the Microsoft SOAP implementation chose to completely ignore 
the xsi:type option in favor of using schemas based on an external service description 
document. Since neither tool was implemented as a complete implementation of the SOAP 



Programming Web Services with SOAP 

page 32 

Encoding rules, neither tool was capable of interpreting the data types encoded by the other, 
even though both were implemented as legal SOAP Encoding schemes. This has, fortunately, 
since been resolved.  

In fact, there has been a large ongoing effort to improve the interoperability between SOAP 
implementations. For more information about this effort, see the "SOAPBuilders" group at 
http://groups.yahoo.com/.  

2.7 SOAP Data Types 

The data types supported by the SOAP encoding style are the data types defined by the "XML 
Schema data types" specification. All data types used within a SOAP-encoded block of XML 
must either be taken directly from the XML Schema specification or derived from types 
therein.  

SOAP encoding provides two alternate syntaxes for expressing instances of these data types 
within the SOAP envelope. Example 2-19 shows two equivalent expressions of an integer 
equaling the value "36".  

Example 2-19. Alternate SOAP encoding syntaxes for typing values  

<SOAP-ENC:int>36</SOAP-ENC:int> 
<value xsi:type="xsd:int">36</value> 

The first method is what is known as an anonymous accessor , and is commonly found in 
SOAP encoded arrays (as we will see a little later in this chapter). It's "anonymous" because 
the accessor's name is its type, rather than a meaningful identification for the value. The 
second approach is the named accessor syntax that we've already seen. Either is valid since 
they both can be directly linked back to the XML Schema data types.  

2.7.1 Multiple References in XML-Encoded Data 

The values a program works with are stored in memory. Variables are how programming 
languages let you manipulate those values in memory. Two different variables might have the 
same value; for instance, two integer variables could both be set to the value 42. The SOAP 
XML encoding for this would use single-reference XML, as in Example 2-20.  

Example 2-20. Two integer variables set to 42  

<SOAP-ENC:int>42</SOAP-ENC:int> 
<SOAP-ENC:int>42</SOAP-ENC:int> 

Sometimes, though, you need to indicate that two separate variables are stored in the same 
piece of memory. For instance, if this subroutine call is going to be XML encoded for SOAP, 
you'll need to identify the first and second parameters as being the same:  

tweak(&i, &i); 

You do this with Section 5's encoding rules using multiple-reference types. That is, you use 
the id attribute to name the value in i, then use the href attribute to identify other 
occurrences of that value, as in Example 2-21.  



Programming Web Services with SOAP 

page 33 

Example 2-21. Multiple-reference to indicate two parameters are the same  

<value xsi:type="xsd:int" id="v1">42</value> 
<value href="#v1" /> 

It's important to understand that even though "SOAP" originally stood for "Simple Object 
Access Protocol," it actually has no concept of what an object is. To SOAP, everything is data 
encoded into XML. Therefore there is no such thing as an "object reference" in SOAP. 
Rather, SOAP Section 5 Encoding specifies a set of rules for transforming an object into 
XML representing that object. All references to that object that must also be encoded would 
be done through the use of the id and href attributes.  

Given Example 2-22, the SOAP encoded serialization of the Person object might look 
something like Example 2-23.  

Example 2-22. Java code to construct an object  

Address address = new Address(  ); 
Person person   = new Person(  ); 
person.setAddress(address); 

Example 2-23. SOAP serialization of the object  

<Person> 
   <Address href="#address1" /> 
</Person> 
<Address id="address1" /> 

2.7.2 Structs, Arrays, and Other Compound Types 

It was mentioned previously that the difference between an array and a struct in SOAP is that 
in an array, each accessor in the group is differentiated only by its ordinal position in the 
group, whereas in the struct, each accessor is differentiated by name. This was shown in 
Example 2-15.  

Even though many programming languages regard strings as an array of bytes, SOAP does 
not. A string is represented with the string data type, rather than as an array of bytes. If you do 
have a collection of bytes that you want to ship around, and those bytes do not represent a text 
string, SOAP Section 5 Encoding decrees that you should use a base64 string, as defined by 
the XML Schemas specification. The proper serialization of an array of arbitrary bytes, then, 
is shown in Example 2-24.  

Example 2-24. A SOAP-encoded array of bytes  

<some_binary_data xsi:type="SOAP-ENC:base64"> 
    aDF4JIK34KJjk3443kjlkj43SDF43== 
</some_binary_data> 

Regular arrays, however, are indicated as accessors of the type SOAP-ENC:Array, or a type 
derived from that. The type of elements that an array can contain is indicated through the use 
of the SOAP defined arrayType attribute, shown in Example 2-25.  

 



Programming Web Services with SOAP 

page 34 

Example 2-25. The arrayType attribute  

<some_array xsi:type="SOAP-ENC:Array" SOAP-ENC:arrayType="se:string[3]"> 
   <se:string>Joe</se:string> 
   <se:string>John</se:string> 
   <se:string>Marsha</se:string> 
</some_array> 

Note the [3] appended to the end of the data type value on the arrayType attribute. The 
square brackets ([] ) indicate the dimensions of the array, while the numbers internally 
represent the number of elements per dimension. In other words, [3] indicates a single 
dimension of 3 elements, while [3,2] indicates a two dimensional array of three elements 
each. SOAP Encoding supports an unlimited number of dimensions per array in addition to 
allowing arrays of arrays. For instance, an arrayType of xsd:string[2][] indicates an 
unbounded array of single dimensional string arrays, each of which contains two elements.  

In Example 2-26, the data accessor is an array that contains both of the names arrays.  

Example 2-26. A two-dimensional array  

<data xsi:type="SOAP-ENC:Array" SOAP-ENC:arrayType="xsd:string[2][]"> 
   <names href="#names-1"/> 
   <names href="#names-2"/> 
</data> 
<names id="names-1" xsi:type="SOAP-ENC:Array" 
       SOAP-ENC:arrayType="xsd:string[2]"> 
    <name>joe</name> 
    <name>john</name> 
</names> 
<names id="names-2" xsi:type="SOAP-ENC:Array" 
       SOAP-ENC:arrayType="xsd:string[2]"> 
    <name>mike</name> 
    <name>bill</name> 
</names> 

Multidimensional arrays, expressed as XML, are syntactically no different than a regular 
single-dimension array, with the exception of the value indicated by the arrayType attribute. 
For example, a two-dimensional array of two strings is nearly identical to a one-dimensional 
array of four strings (shown in Example 2-27).  

Example 2-27. Comparison of two-dimensional and one-dimensional arrays  

<names xsi:type="SOAP-ENC:Array" SOAP-ENC:arrayType="xsd:string[2,2]"> 
    <name xsi:type="xsd:string">a1d1</name> 
    <name xsi:type="xsd:string">a2d1</name> 
    <name xsi:type="xsd:string">a1d2</name> 
    <name xsi:type="xsd:string">a2d2</name> 
</names> 
 
<names xsi:type="SOAP-ENC:Array" SOAP-ENC:arrayType="xsd:string[4]"> 
    <name xsi:type="xsd:string">a1d1</name> 
    <name xsi:type="xsd:string">a2d1</name> 
    <name xsi:type="xsd:string">a3d1</name> 
    <name xsi:type="xsd:string">a4d1</name> 
</names> 



Programming Web Services with SOAP 

page 35 

The value of the arrayType attribute distinguishes the true nature of the serialized array.  

2.7.3 Partially Transmitted Arrays and Sparse Arrays 

SOAP Encoding also includes support for partially transmitted arrays and sparse arrays 
through a set of additional attribute definitions.  

A partially transmitted array is one in which only part of the array is serialized into the SOAP 
envelope. This is indicated through the use of the SOAP-ENC:offset attribute that provides 
the number or ordinals counting from zero to the first ordinal position transmitted. In other 
words, if you have a single-dimensional array of five elements, and you want to transmit only 
the last two, you would use the syntax in Example 2-28.  

Example 2-28. Using SOAP-ENC:offset for partially transmitted arrays  

<names xsi:type="SOAP-ENC:Array" SOAP-ENC:arrayType="xsd:string[5]" 
       SOAP-ENC:offset="[2]"> 
    <name>Item 4</name> 
    <name>Item 5</name> 
</names> 

Sparse arrays represent a grid of values with specified dimensions that may or may not 
contain any data. For example, if you have a two-dimensional array of ten items each, but 
only the elements at position [2,5] and [5,2] contain data, the serialization in Example 2-29 
would be appropriate.  

Example 2-29. SOAP serialization of sparse arrays  

<names xsi:type="SOAP-ENC:Array" SOAP-ENC:arrayType="xsd:string[10,10]"> 
    <name SOAP-ENC:position="[2,5]">data</name> 
    <name SOAP-ENC:position="[5,2]">data</name> 
</names> 

2.7.4 Null Accessors 

In the sparse array example, the absence of an accessor indicates that the value of the accessor 
is either null or some other default value. One problem with this is the fact that the receiver of 
the message has no real way of knowing whether the value of the accessor really was null, or 
if the sender just failed to serialize the message properly.  

If the receiver expects to find the accessor in the message, a better method of indicating 
whether an accessor contains a null value would be to use the XML Schema defined 
xsi:nil="true" attribute:  

<name xsi:type="xsd:string" xsi:nil="true" /> 

This allows you to be far more expressive in your encoding of application data and eliminates 
confusion over the significance of missing elements.  

 

 



Programming Web Services with SOAP 

page 36 

2.8 SOAP Transports 

As mentioned before, SOAP fits in on the web services technology stack as a standardized 
packaging protocol layered on top of the network and transport layers. As a packaging 
protocol, SOAP does not care what transport protocols are used to exchange the messages. 
This makes SOAP extremely flexible in how and where it is used.  

As an illustration of this flexibility, SOAP::Lite—the Perl-based SOAP web services 
implementation written by Pavel Kulchenko—supports the ability to exchange SOAP 
messages through HTTP, FTP, raw TCP, SMTP, POP3, MQSeries, and Jabber. We'll show 
SOAP over Jabber in Chapter 3.  

2.8.1 SOAP over HTTP 

Because of its pervasiveness on the Internet, HTTP is by far the most common transport used 
to exchange SOAP messages. The SOAP specification even goes so far as to give special 
treatment to HTTP within the specification itself—outlining in specific detail how the 
semantics of the SOAP message exchange model map onto HTTP.  

SOAP-over-HTTP is a natural match with SOAP's RPC (request-response) conventions 
because HTTP is a request-response-based protocol.The SOAP request message is posted to 
the HTTP server with the HTTP request, and the server returns the SOAP response message 
in the HTTP response (see Figure 2-5).  

Figure 2-5. SOAP request messages are posted to the HTTP server and response messages are 
returned over the same HTTP connection 

 

Example 2-30 and Example 2-31 illustrate an HTTP request and HTTP response messages 
that contain a SOAP message.  

Example 2-30. HTTP request containing a SOAP message  

POST /StockQuote HTTP/1.1 
Content-Type: text/xml 
Content-Length: nnnn 
SOAPAction: "urn:StockQuote#GetQuote" 
 
<s:Envelope xmlns:s="http://www.w3.org/2001/06/soap-envelope"> 
  ... 
</s:Envelope> 

 

 

www.allitebooks.com

http://www.allitebooks.org


Programming Web Services with SOAP 

page 37 

Example 2-31. HTTP response containing a SOAP message  

HTTP/1.1 200 OK 
Content-Type: text/xml 
Content-Length: nnnn 
 
<s:Envelope xmlns:s="http://www.w3.org/2001/06/soap-envelope"> 
  ... 
</s:Envelope> 

The SOAPAction HTTP header is defined by the SOAP specification, and indicates the intent 
of the SOAP HTTP request. Its value is completely arbitrary, but it's intended to tell the 
HTTP server what the SOAP message wants to do before the HTTP server decodes the XML.  

Servers can then use the SOAPAction header to filter unacceptable requests.  

2.8.2 Contentious Issues 

The conventions for sending SOAP over HTTP have always caused difficulty in the SOAP 
development community. There are a number of issues that seem to come up time and again. 
Among these are:  

Should SOAP really use HTTP port 80 or should a SOAP-specific port be used?  

Because SOAP messages masquerade as traditional web traffic on port 80, firewalls 
generally pass them straight through. Obviously, security administrators may have a 
problem with this. There are no requirements that SOAP over HTTP must use port 80, 
but many people use it specifically to avoid being filtered by firewalls.  

Is the SOAPAction header really useful?  

Because its value is arbitrary, there's no way for a server to always know the intent of 
a request without parsing the XML. This is an issue that has been debated ever since 
the SOAPAction header was first introduced in SOAP Version 1.1. The W3C working 
group that is standardizing SOAP is leaning towards deprecating the SOAPAction 
header in the next version of the protocol.  

When a client fault occurs while processing a SOAP message, should the server 
send a HTTP 500 "Server Error" back to the client or a HTTP 200 "OK" response with 
a SOAP fault included?  

This is an interesting question of semantics. A client fault in SOAP is obviously an 
application level error, and not the result of a server error. The HTTP 500 Server Error 
response however, is the default response required for all SOAP faults, regardless of 
the fault code. The general consensus on this question has been that consistency is 
most important. Despite the fact that client fault types are not Server Errors, the 500 
Server Error code is still the right response when HTTP is used for the transport.  

 

 



Programming Web Services with SOAP 

page 38 

Should a SOAP specific URL scheme be used rather than the traditional http:// 
scheme used for web pages?  

This question, like the one dealing with the use of port 80, directly addresses the 
question of whether or not SOAP web services should masquerade as more traditional 
HTTP-based services. Some have maintained that a new soap:// URL scheme is 
required. Microsoft's SOAP Routing Protocol even goes so far as to define such a 
scheme.  

While HTTP is the most popular transport for SOAP message, it is not without problems. 
HTTP was not designed as a transport for XML messages, and there are times when the two 
protocols don't mesh perfectly. That said, it remains the most popular transport for SOAP, 
although Microsoft's .NET makes heavy use of SOAP-over-Instant Messaging and this may 
challenge HTTP's supremacy.  

 



Programming Web Services with SOAP 

page 39 

Chapter 3. Writing SOAP Web Services 
In Chapter 2, we looked under the hood of SOAP at the XML underneath. In this chapter, we 
demonstrate how to create, deploy, and use SOAP web services using toolkits for Java, Perl, 
and Microsoft's new .NET platform. We cover the installation, configuration, and use of 
SOAP::Lite for Perl, Apache SOAP for Java, and Microsoft .NET for C#.  

The task of creating and deploying web services is really not all that difficult, nor is it all that 
different than what developers currently do in more traditional web applications. The 
tendency on all platforms is to automate more and more of the gory details and tedious work 
in creating web services. Most programmers don't need to know the exact details of encodings 
and envelopes; instead, they'll simply use a SOAP toolkit such as those described here.  

3.1 Web Services Anatomy 101 

In Chapter 1, we touched briefly on the fact that a web service consists of three components: a 
listener to receive the message, a proxy to take that message and translate it into an action to 
be carried out (such as invoking a method on a Java object), and the application code to 
implement that action.  

The listener and proxy components should be completely transparent to the application code, 
if properly implemented. The ideal situation in most cases is that the code doesn't even know 
it is being invoked through a web service interface, but that is not always possible, or 
desirable.  

A good example of a seamless, simple web services implementation is the SOAP::Lite for 
Perl written by Pavel Kulchenko. This package allows any installed Perl module to be 
automatically deployed as a web service without any work on the part of the module 
developer. The proxy can automatically load and invoke any subroutine in any module.  

3.1.1 SOAP Implementations and Toolkits 

There is a surprisingly long list of SOAP implementations available to developers. In this 
book, we have chosen to focus on three of the most popular tools: Apache SOAP for Java, 
SOAP::Lite for Perl, and Microsoft .NET. No matter which toolkit you use, the fundamental 
process of creating, deploying, and using SOAP web services is the same.  

A comprehensive and up-to-date listing of all known SOAP implementations and toolkits can 
be found by visiting either http://www.soaplite.com/ or http://www.soapware.org/. There are 
SOAP toolkits for all the popular programming languages and environments (Java, C#, C++, 
C, Perl, PHP, and Python, just to name a few).  

3.1.2 Handling SOAP Messages 

The integration of SOAP toolkits varies with the transport layer. Some implement their own 
HTTP servers. Some expect to be installed as part of a particular web server, so that rather 
than serving up a web page, the HTTP daemon hands the SOAP message to the toolkit's 



Programming Web Services with SOAP 

page 40 

proxy component, which does the work of invoking the code behind the web service (see 
Figure 3-1).  

Figure 3-1. The HTTP daemon passes the request to the SOAP proxy, which then invokes the 
code behind the web service 

 

Still other SOAP toolkits support a pluggable transport mechanism that allows you to select 
different transport protocols by doing hardly anything more than setting a property value. 
SOAP::Lite is a good example of this with its support for FTP, HTTP, IO, Jabber, SMTP, 
POP3, TCP, and MQSeries transports.  

Whether the transport is built-in or pluggable, all SOAP toolkits provide the proxy 
component, which parses and interprets the SOAP message to invoke application code. The 
proxy must understand how to deal with things like encoding styles, translation of native 
types of data in to XML (and vice versa), whether headers in the SOAP message that have the 
mustUnderstand="true" flag set are actually understood—basically, everything that is 
covered in Chapter 2.  

When the proxy component is handed a SOAP message by a listener, it must do three things:  

1. Deserialize the message, if necessary, from XML into some native format suitable for 
passing off to the code.  

2. Invoke the code. 
3. Serialize the response to the message (if one exists) back into XML and hand it back 

to the transport listener for delivery back to the requester.  

Despite differences in how various SOAP implementations accomplish these tasks, all SOAP 
web service tools follow this same simple pattern.  

3.1.3 Deploying Web Services 

Deploying a web service involves telling the proxy component which code to invoke when a 
particular type of message is received. In other words, the proxy component has to know that 
a getQuote message is going to be handled by the samples.QuoteServer Java class or the 
QuoteServer.pm Perl module. Once this has happened, clients can access the server, send the 
message, and trigger a call to application code.  

Web service tools have different deployment mechanisms. SOAP::Lite requires that the Perl 
module be in @INC, Perl's module search path. Apache's SOAP implementation requires a 
deployment descriptor file, which describes the Java class and rules for mapping Java objects 
used in the service to their XML equivalents. This file must be added to a deployed services 
registry used by Apache SOAP (see Figure 3-2).  



Programming Web Services with SOAP 

page 41 

Figure 3-2. Unlike SOAP::Lite, where the server program contains a description of which 
modules are to be deployed as services, Apache SOAP uses a separate deployment descriptor 
file 

 

3.2 Creating Web Services in Perl with SOAP::Lite 

Perl, like most languages, hides the programmer from the complexities of SOAP with a 
toolkit. The SOAP::Lite toolkit is one of the most complete implementations of SOAP 
available, supporting both Versions 1.1 and 1.2 of SOAP. It has strong support for alternate 
transports (FTP, HTTP, IO, Jabber, SMTP, POP3, TCP, and MQSeries), which we'll use later 
to demonstrate SOAP over Jabber.  

3.2.1 Installing SOAP::Lite 

SOAP::Lite, like many Perl modules, is available on the Comprehensive Perl Archive 
Network (CPAN). CPAN is a network of web and FTP sites with identical content—the 
source to thousands of Perl modules. You can access CPAN through a Perl command-line 
client or via the Web at http://www.cpan.org/. See http://www.cpan.org/misc/cpan-
faq.html#How_install_Perl_modules for information on installing Perl modules.  

Example 3-1 shows a sample installation of SOAP::Lite using the interactive CPAN 
command-line shell.  

Example 3-1. Installing SOAP::Lite with the CPAN shell  

C:\book>perl -MCPAN -e shell 
cpan shell—CPAN exploration and modules installation (v1.59_54) 
cpan> install SOAP::Lite 

(You may be walked through configuring the CPAN shell if this is the first time you have run 
it.) The CPAN shell will connect to a CPAN site and download the source for SOAP::Lite. 
Once downloaded, the shell will attempt to build the module. SOAP::Lite has a series of 
interactive steps to configure the module, shown in Example 3-2. You can either use a default 
configuration or manually select from a menu of options to build a custom configuration.  

 

 

 

 



Programming Web Services with SOAP 

page 42 

Example 3-2. SOAP::Lite's interactive configuration  

We are about to install SOAP::Lite and for your convenience will provide 
you with list  
of modules and prerequisites, so you'll be able to choose only modules you 
need for  
your configuration. 
 
XMLRPC::Lite, UDDI::Lite, and XML::Parser::Lite are included by default. 
Installed  
transports can be used for both SOAP::Lite and XMLRPC::Lite. 
 
Client (SOAP::Transport::HTTP::Client)                               [yes] 
Client HTTPS/SSL support  
   (SOAP::Transport::HTTP::Client, require OpenSSL)                   [no] 
Client SMTP/sendmail support (SOAP::Transport::MAILTO::Client)       [yes] 
Client FTP support (SOAP::Transport::FTP::Client)                    [yes] 
Standalone HTTP server (SOAP::Transport::HTTP::Daemon)               [yes] 
Apache/mod_perl server (SOAP::Transport::HTTP::Apache, require Apache)[no] 
FastCGI server (SOAP::Transport::HTTP::FCGI, require FastCGI)         [no] 
POP3 server (SOAP::Transport::POP3::Server)                          [yes] 
IO server (SOAP::Transport::IO::Server)                              [yes] 
MQ transport support (SOAP::Transport::MQ)                            [no] 
JABBER transport support (SOAP::Transport::JABBER)                    [no] 
MIME messages [required for POP3, optional for HTTP]  
    (SOAP::MIMEParser)                                                [no] 
SSL support for TCP transport (SOAP::Transport::TCP)                  [no] 
Compression support for HTTP transport (SOAP::Transport::HTTP)        [no] 
 
Do you want to proceed with this configuration? [yes] 

In most cases, the default configuration is adequate. We, however, are going to make a slight 
change to the configuration in order to demonstrate the use of Jabber as a transport protocol 
for SOAP. To indicate this, answer "no" to the question "Do you want to proceed with this 
configuration?" Press the Enter key to accept the default options for each of the configuration 
items until you get to the one that asks whether you plan to use the Jabber transport support 
module. Answer "yes" and press Enter. The CPAN shell will then make sure that all of the 
prerequisites and support modules for using Jabber are installed. You may select the default 
options for the remainder of the installation process.  

3.2.2 The Hello Server 

No book introducing a new programming system can get by without including a Hello World 
sample illustrating how easy the system is to use.  

Start by creating the Hello World Perl module shown in Example 3-3.  

Example 3-3. Hello.pm  

# Hello.pm - simple Hello module 
package Hello; 
sub sayHello { 
  shift;    # remove class name 
  return "Hello " . shift; 
} 
1; 



Programming Web Services with SOAP 

page 43 

This module will be the code that sits behind our web service interface. There are several 
approaches you can take with SOAP::Lite to deploy this module as a web service.  

If you already have a CGI-capable web server (and most people do) you can simply create the 
CGI script shown in Example 3-4.  

Example 3-4. hello.cgi  

#!/usr/bin/perl -w 
# hello.cgi - Hello SOAP handler 
use SOAP::Transport::HTTP; 
SOAP::Transport::HTTP::CGI 
 -> dispatch_to('Hello::(?:sayHello)')  
 -> handle 
; 

This CGI script is the glue that ties the listener (the HTTP server daemon) to the proxy (the 
SOAP::Lite module). With this glue, SOAP::Lite will dispatch any received request to the 
Hello World module's sayHello operation.  

Perl will need to find the Hello module, though. If you don't have permission to install Hello 
into one of Perl's default module directories (print @INC to see what they are), use the lib 
pragma to tell Perl to look in the directory containing the Hello module. If the module is in 
/home/pavel/lib then simply add this use line to hello.cgi:  

use lib '/home/pavel/lib'; 

Your SOAP web service is deployed and ready for action.  

3.2.3 The Hello Client 

To test your Hello web service, simply use the client script in Example 3-5.  

Example 3-5. hw_client.pl  

#!/usr/bin/perl -w 
# hw_client.pl - Hello client 
use SOAP::Lite; 
my $name = shift; 
print "\n\nCalling the SOAP Server to say hello\n\n"; 
print "The SOAP Server says: "; 
print SOAP::Lite 
  -> uri('urn:Example1') 
  -> proxy('http://localhost/cgi-bin/helloworld.cgi') 
  -> sayHello($name) 
  -> result . "\n\n"; 

Running this script should give you the following results: 

% perl hw_client.pl James 
 
Calling the SOAP Server to say hello 
The SOAP Server says: Hello James 
% 



Programming Web Services with SOAP 

page 44 

We see here a complete SOAP web service. Granted, it doesn't do much, but that wasn't the 
point. The point was that the process we followed (create the code, deploy the service, invoke 
the service) is the same regardless of the service we're implementing, the tools we're using, or 
the complexity of the service.  

3.2.4 A Visual Basic Client 

To prove that it really is SOAP that we're passing around here, the Visual Basic Script in 
Example 3-6 uses the Microsoft XML Parser's ability to send XML directly over HTTP to 
exchange SOAP messages back and forth with the Hello World service.  

Example 3-6. hw_client.vbs  

Dim x, h 
Set x = CreateObject("MSXML2.DOMDocument") 
x.loadXML "<s:Envelope xmlns:s='http://schemas.xmlsoap.org/soap/envelope/' 
xmlns 
:xsi='http://www.w3.org/1999/XMLSchema-instance' 
xmlns:xsd='http://www.w3.org/1999/ 
XMLSchema'><s:Body><m:sayHello xmlns:m='urn:Example1'><name 
xsi:type='xsd:string'>James</ 
name></m:sayHello></s:Body></s:Envelope>" 
msgbox x.xml, , "Input SOAP Message" 
Set h = CreateObject("Microsoft.XMLHTTP") 
h.open "POST", "http://localhost:8080" 
h.send (x) 
while h.readyState <> 4 
wend 
msgbox h.responseText,,"Output SOAP Message" 

Running the Visual Basic script should demonstrate two things to you: invoking SOAP web 
services is easy to do, and it doesn't matter which language you use. Perl and Visual Basic 
strings are being interchanged over HTTP.  

In the next example, there are two messages exchanged between the requester and the service 
provider. The request, encoding the service we're calling (sayHello) and the parameter 
(James), is shown in Example 3-7, and the response containing Hello James is shown in 
Example 3-8.  

Example 3-7. Hello request  

<s:Envelope  
  xmlns:s="http://schemas.xmlsoap.org/soap/envelope/"   
  xmlns:xsi="http://www.w3.org/1999/XMLSchema-instance" 
  xmlns:xsd="http://www.w3.org/1999/XMLSchema"> 
  <s:Body> 
    <m:sayHello xmlns:m='urn:Example1'> 
      <name xsi:type='xsd:string'>James</name> 
    </m:sayHello> 
  </s:Body> 
</s:Envelope> 

 

 



Programming Web Services with SOAP 

page 45 

Example 3-8. Hello response  

<s:Envelope  
  xmlns:s="http://www.w3.org/2001/06/soap-envelope" 
  xmlns:xsi="http://www.w3.org/1999/XMLSchema-instance" 
  xmlns:xsd="http://www.w3.org/1999/XMLSchema"> 
  <s:Body>  
    <n:sayHelloResponse xmlns:n="urn:Example1"> 
      <return xsi:type="xsd:string"> 
         Hello James 
      </return> 
    </n:sayHelloResponse> 
  </s:Body> 
</s:Envelope> 

3.2.5 Changing Transports 

SOAP::Lite supports many transport protocols. Let's modify the Hello World sample so that it 
can be invoked using Jabber. This demonstrates the modular nature of the web services stack, 
where the packaging can be independent of the transport. You might deploy a web service 
over Jabber to take advantage of the presence and identity features that Jabber provides.  

Create an instance of the SOAP-aware Jabber server built into SOAP::Lite using the script in 
Example 3-9.  

Example 3-9. sjs, the SOAP Jabber server  

#!/usr/bin/perl -w 
# sjs - soap jabber server 
 
use SOAP::Transport::JABBER; 
 
my $server = SOAP::Transport::JABBER::Server 
  -> new('jabber://soaplite_server:soapliteserver@jabber.org:5222') 
  -> dispatch_to('Hello') 
; 
 
print "SOAP Jabber Server Started\n"; 
do { $server->handle } while sleep 1; 

Then, modify the client script we used earlier to point to the Jabber address of the service, as 
shown in Example 3-10.  

Example 3-10. sjc, the SOAP Jabber client  

#!/usr/bin/perl -w 
# sjc - soap jabber client 
 
use SOAP::Lite; 
 
my $name = shift; 
print "\n\nCalling the SOAP Server to say hello\n\n"; 
print "The SOAP Server says: "; 
print SOAP::Lite 
  -> uri('urn:Example1') 
  -> proxy('jabber://soaplite_client:soapliteclient@jabber.org:5222/' . 
            'soaplite_server@jabber.org/') 



Programming Web Services with SOAP 

page 46 

  -> sayHello($name) 
  -> result . "\n\n"; 

The soaplite_server and soaplite_client accounts are registered with Jabber.org, so 
this example should work as typed. To avoid confusion when everyone reading this book tries 
the example at the same time, you should register your own Jabber IDs at 
http://www.jabber.org/.  

Now, in case you're curious as to how Jabber is capable of carrying SOAP messages, 
Example 3-11 is the text of the sayHello message sent by the previous script. As you can see, 
the SOAP message itself is embedded into the Jabber message element. This demonstrates the 
flexibility of both protocols.  

Example 3-11. Jabber message with SOAP payload  

<iq to="soapproxy@johndoe.ibm.com/soaprouter" id="6" type="get"> 
  <query xmlns="soap-message"> 
    <s:Envelope  
       xmlns:s="http://schemas.xmlsoap.org/soap/envelope/" 
       xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
       xmlns:xsd="http://www.w3.org/2001/XMLSchema"> 
      <s:Body> 
        <m:sayHello xmlns:m="urn:Example1"> 
           <name xsi:type="xsd:string">James</name> 
        </m:sayHello> 
      </s:Body> 
    </s:Envelope> 
  </query> 
</iq> 

3.3 Creating Web Services in Java with Apache SOAP 

Creating web services in Java is more work than in Perl with SOAP::Lite, but the process is 
essentially the same. To illustrate how it's done, let's create the same Hello World web service 
and deploy it using the Apache SOAP tools.  

Apache SOAP is the Apache Software Foundation's implementation of the SOAP protocol. It 
is designed to run as a servlet within any Java HTTP Server. As such, it implements only the 
proxy part of the message handling process. Like SOAP::Lite, Apache SOAP's list of features 
is impressive, sharing many of the same benefits as its Perl-based counterpart.  

3.3.1 Installing Apache SOAP 

Apache SOAP can be used as both a client and provider of SOAP web services. A server-side 
installation of Apache SOAP involves placing some .jar files in your classpath. You will need 
a separate web server that supports Servlets and Java Server Pages, such as Apache's Tomcat 
(http://jakarta.apache.org/tomcat/).  

The Apache SOAP homepage, http://xml.apache.org/soap/index.html, has links to both 
source-only and precompiled distributions of the toolkit. Installing the precompiled binary 
distribution is as simple as downloading a Zip archive and extracting it into a directory.  

www.allitebooks.com

http://www.allitebooks.org


Programming Web Services with SOAP 

page 47 

On the client, three .jar files from the distribution (soap.jar, mail.jar, and activation.jar) must 
be present in your classpath. Also present must be any Java API for XML Parsing (JAXP) 
aware XML parser, such as Xerces Version 1.4 (http://xml.apache.org/xerces-j/).  

Assuming that you installed Apache SOAP .jar files in the C:\book\soap directory, set your 
SOAP_LIB environment variable to C:\book\soap\lib. Adding the .jar files to your classpath 
then entails:  

set CLASSPATH = %CLASSPATH%;%SOAP_LIB%\soap.jar 
set CLASSPATH = %CLASSPATH%;%SOAP_LIB%\mail.jar 
set CLASSPATH = %CLASSPATH%;%SOAP_LIB%\activation.jar 

Or, in the Unix Bourne shell (/bin/sh): 

CLASSPATH = $CLASSPATH;$SOAP_LIB/soap.jar 
CLASSPATH = $CLASSPATH;$SOAP_LIB/mail.jar 
CLASSPATH = $CLASSPATH;$SOAP_LIB/activation.jar 

The exact steps for a server installation will depend on which web application server you are 
using, but the process is essentially the same. The first step is to ensure the same three .jar 
files are located in your application server's classpath.  

If your application server supports the use of web application archives (WAR files), simply 
use the soap.war file that ships with Apache SOAP. Apache Tomcat supports this. The 
Apache SOAP documentation includes detailed installation instructions for Tomcat and a 
number of other environments.  

If you intend to use the Bean Scripting Framework (BSF) to make script-based web services, 
you need to ensure that bsf.jar and js.jar (a BSF JavaScript implementation) are also in the 
web application server's classpath.  

The vast majority of problems encountered by new Apache SOAP users are related to 
incorrect classpaths. If you encounter problems writing web services with Apache SOAP, be 
sure to start your debugging by checking your classpath!  

3.3.2 The Hello Server 

We're going to do the same things we did in Perl: create the code, deploy the service, and use 
the service. Example 3-12 shows the Java code for the Hello class.  

Example 3-12. Hello.java  

package samples; 
public class Hello { 
   public String sayHello(String name) { 
       return "Hello " + name; 
   } 
} 

Compile the Java class and put it somewhere in your web server's classpath.  

 



Programming Web Services with SOAP 

page 48 

3.3.3 Deployment Descriptor 

Next we must create a deployment descriptor to tell the Apache SOAP implementation 
everything it needs to know to dispatch sayHello messages to the samples.Hello class. This 
is shown in Example 3-13.  

Example 3-13. Deployment descriptor for samples.Hello  

<dd:service xmlns:dd="http://xml.apache.org/xml-soap/deployment" 
id="urn:Example1"> 
 <dd:provider type="java"      
              scope="Application"                
              methods="sayHello"> 
    <dd:java class="samples.Hello"  
             static="false" /> 
 </dd:provider>   
 <dd:faultListener> 
  org.apache.soap.server.DOMFaultListener 
 </dd:faultListener> 
 <dd:mappings /> 
</dd:service> 

The information contained within a deployment descriptor is fairly basic. There is the class 
name of the Java code being invoked (<dd:java class="samples.Hello" static="false" 
/>), and an indication of the session scope of the service class (application or session scope, 
as defined by the Java Servlet specification), an indication of which faultListener to use 
(used to declare how faults are handled by the SOAP engine), and a listing of Java-to-XML 
type mappings. We will demonstrate later how the type mappings are defined.  

Apache SOAP supports the use of pluggable providers that allow web services to be 
implemented not only as Java classes, but as Enterprise Java Beans, COM Classes, and Bean 
Scripting Framework scripts. Full information about how to use pluggable providers is 
available in the documentation and not covered here.  

While simple in structure, deployment descriptor files must be created for every web service 
that you want to deploy. Thankfully, there are tools available that automate that process, but 
they still require the developer to walk through some type of wizard to select the Java class, 
the methods, and the type mappings. (A type mapping is an explicit link between a type of 
XML data and a Java class, and the Java classes that are used to serialize or deserialize 
between those types.)  

Once the file is created, you have to deploy it with the Apache SOAP service manager. There 
are two ways to do this: you can use the Service Manager Client or, if you're using the XML-
based Service Manager that ships with Apache SOAP, modify the deployment registry 
directly.  

The first method requires executing the following command: 

% java org.apache.soap.server.ServiceManagerClient 
http://hostname:port/soap/servlet/ 
rpcrouter deploy foo.xml 

Where hostname:port is the hostname and port that your web service is listening on.  



Programming Web Services with SOAP 

page 49 

One interesting fact you should notice here is that the Apache Service Manager is itself a web 
service, and that deployment of a new service takes place by sending a SOAP message to the 
server that includes the deployment descriptor. While this is handy, it's not necessarily all that 
secure (considering the fact that it would allow anybody to deploy and undeploy services on 
your web server). To disable this, set the SOAPInterfaceEnabled option in the soap.xml 
configuration file to false. This will prevent the ServiceManagerClient from working.  

The second approach will only work if you're using the XML Configuration Manager. This 
component allows you to store deployment information in an XML file. This file is located in 
the web-apps folder where your Apache SOAP servlet is located.  

The XML is nothing more than a root element that contains all of the deployment descriptors 
for all of the services deployed. To deploy the Hello World service, simply take the 
deployment descriptor we wrote earlier and append it to this list. The next time that the SOAP 
servlet is started, the service manager will be reinitialized and the new service will be ready 
for use. A sample configuration file is given in Example 3-14.  

Example 3-14. Apache SOAP configuration file  

<root> 
  <dd:service xmlns:dd="http://xml.apache.org/xml-soap/deployment"   
              id="urn:Example1"> 
    <dd:provider type="java"      
                 scope="Application"                
                 methods="sayHello"> 
       <dd:java class="samples.Hello"  
                static="false" /> 
    </dd:provider>   
    <dd:faultListener> 
     org.apache.soap.server.DOMFaultListener 
    </dd:faultListener> 
    <dd:mappings /> 
   </dd:service> 
</root> 

3.3.4 The Hello Client 

To invoke the Hello World service, use the Java class in Example 3-15.  

Example 3-15. Hello client in Java  

import java.io.*; 
import java.net.*; 
import java.util.*; 
import org.apache.soap.*; 
import org.apache.soap.rpc.*; 
 
public class Example1_client { 
 
  public static void main (String[] args)  
       throws Exception { 
 
    System.out.println("\n\nCalling the SOAP Server to say hello\n\n");        
    URL url = new URL (args[0]); 
    String name = args[1]; 
 



Programming Web Services with SOAP 

page 50 

    Call call = new Call (  ); 
    call.setTargetObjectURI("urn:Example1"); 
    call.setMethodName("sayHello"); 
    call.setEncodingStyleURI(Constants.NS_URI_SOAP_ENC;); 
    Vector params = new Vector (  ); 
    params.addElement (new Parameter("name", String.class, name, null)); 
    call.setParams (params); 
 
    System.out.print("The SOAP Server says: "); 
 
    Response resp = call.invoke(url, ""); 
 
    if (resp.generatedFault (  )) { 
      Fault fault = resp.getFault (  ); 
      System.out.println ("\nOuch, the call failed: "); 
      System.out.println ("  Fault Code   = " + fault.getFaultCode (  )); 
      System.out.println ("  Fault String = " + fault.getFaultString (  )); 
    } else { 
      Parameter result = resp.getReturnValue (  ); 
      System.out.print(result.getValue (  )); 
      System.out.println(  ); 
    } 
  } 
} 

The amount of code to accomplish this relatively simple operation may seem surprising (nine 
lines to actually initialize and invoke the web services call). Java will never be as terse as Perl 
and other scripting languages, but it has other strengths. Also, various Java-based SOAP 
toolkits such as The Mind Electric's GLUE and IBM's Web Services ToolKit support dynamic 
proxy interfaces that cut down the amount of code necessary to invoke web services. Those 
interfaces, however, generally require additional mechanisms, such as WSDL, to simplify the 
programming interface. We will take a look at these dynamic proxies later in Chapter 5. For 
now, if you compile and run this class, you'll end up with the same result that we saw in the 
Perl example:  

% java samples.Hello http://localhost/soap/servlet/rpcrouter James 
 
Calling the SOAP Server to say hello 
The SOAP Server says: Hello James 
 
% 

Your Java web service is finished. If you have both the Perl and Java versions installed, run 
the Perl client script again but point it at the Java version of the Hello World service (the 
modified script is shown in Example 3-16). You'll see that everything still works.  

 

 

 

 

 



Programming Web Services with SOAP 

page 51 

Example 3-16. hw_jclient.pl, the Perl client for the Java Hello World server  

#!/usr/bin/perl -w 
# hw_jclient.pl - java Hello client 
use SOAP::Lite; 
my $name = shift; 
print "\n\nCalling the SOAP Server to say hello\n\n"; 
print "The SOAP Server says: "; 
print SOAP::Lite 
  -> uri('urn:Example1') 
  -> proxy('http://localhost/soap/servlet/rpcrouter James') 
  -> sayHello($name) 
  -> result . "\n\n"; 

Which will produce the expected result: 

% perl hw_client.pl James 
 
Calling the SOAP Server to say hello 
The SOAP Server says: Hello James 
 
% 

3.3.5 The TCPTunnelGui Tool 

One very useful tool that comes bundled with Apache SOAP is TCPTunnelGui, a debugging 
tool that lets a developer view the SOAP messages that are being sent to and returned from a 
SOAP web service. The tool is a proxy—it listens on the local machine and forwards traffic to 
and from the real SOAP server. The contents of the messages passing through the local port 
will be displayed in the graphical interface.  

Launch the tool by typing: 

% java org.apache.soap.util.net.TcpTunnelGui listenport tunnelhost 
tunnelport 

Listenport is the local TCP/IP port number you want the tool to open and listen to requests. 
Tunnelhost is the address of the server (either DNS or IP address) where the traffic is to be 
redirected, and tunnelport is the port number at tunnelhost.  

For example, assume your Hello World service is deployed at 
http://www.example.com/soap/servlet/rpcrouter. To view the messages sent to and from that 
service by redirecting traffic through local TCP/IP port 8080, launch the TCPTunnelGui tool 
with the following parameters:  

% java org.apache.soap.util.net.TcpTunnelGui 8080 http://www.example.com 80 

And now direct the Hello World SOAP requests to 
http://localhost:8080/soap/servlet/rpcrouter.  

Figure 3-3 shows TCPTunnelGui displaying the SOAP messages for each request to the Hello 
World service.  

 



Programming Web Services with SOAP 

page 52 

Figure 3-3. The TCPTunnelGui Tool showing the SOAP messages sent to and from the Hello 
World service 

 

TCPTunnelGui is an extremely valuable tool for anybody wanting to learn how SOAP Web 
services work (or debugging why a service doesn't work!).  

3.4 Creating Web Services In .NET 

For web service developers working strictly on the Windows platform, Microsoft's .NET 
development platform offers built-in support for easily creating and deploying SOAP web 
services. Let's walk through how you create the Hello World service using C#, the new Java-
like programming language designed specifically for use with .NET.  

3.4.1 Installing .NET 

The first thing you need to do is download and install the Microsoft .NET SDK Beta 2 from 
http://msdn.microsoft.com/. This free distribution contains everything you need to create and 
run any .NET application, including .NET Web Services.  

There are, however, several prerequisites that you need:  

1. You must be running Windows 2000, Windows NT 4.0, Windows 98, or Windows 
Millennium Edition.  

2. You must have Microsoft Internet Explorer Version 5.01 or higher. 
3. You must have the Microsoft Data Access Components (Version 2.6 or higher) 

installed.  
4. And you must have Microsoft Internet Information Server (IIS) installed and running. 

.NET Web services can only be deployed within the IIS environment.  

The .NET Framework SDK installation is a fairly automatic process, with an easy-to-use 
installation wizard. Once installed, we can create the Hello World service.  

 

 



Programming Web Services with SOAP 

page 53 

3.4.2 Introducing .NET 

Before we get into exactly how web services are created in .NET, let's take a quick walk 
through the .NET architecture to help put things into perspective.  

First and foremost, .NET is a runtime environment similar to the Java Virtual Machine. Code 
packages, called assemblies, can be written in several .NET specific versions of popular 
programming languages like Visual Basic, C++, C#, Perl, Python, and so on. Assemblies run 
within a managed, hierarchically organized runtime called the "Common Language Runtime" 
that deals with all of the low-level memory and system management details (see Figure 3-4).  

Figure 3-4. The .NET managed runtime 

 

Currently, .NET runs basically as an extension to the existing COM environment upon which 
the current versions of Windows are built. As such, .NET can be utilized anywhere COM can 
be used, including within Microsoft's Internet Information Server (IIS) environment.  

.NET web services are specific types of .NET assemblies that are specially flagged for export 
as web services. These assemblies are either contained within or referenced from a new type 
of server-side script called an .asmx file. The .NET extensions to IIS recognize files ending in 
.asmx as web services and automatically export the functions of the referenced assemblies.  

The process is simple:  

1. Write the code. 
2. Save the code in an .asmx file. 
3. Move the .asmx file to your IIS web server. 
4. Invoke your web service. 

3.4.3 Saying Hello 

.NET introduces a programming language called C#. We'll develop our example web service 
in C#, but remember that .NET makes it just as easy to develop in Visual Basic, C++, and 
other languages.  

Example 3-17 defines the .NET Hello World service. You can use an ordinary text editor to 
create this file.  

 



Programming Web Services with SOAP 

page 54 

Example 3-17. HelloWorld.asmx, a C# Hello World Service  

<%@ WebService Language="C#" Class="Example1" %> 
 
using System.Web.Services; 
 
[WebService(Namespace="urn:Example1")] 
public class Example1 { 
 
    [ WebMethod ] 
    public string sayHello(string name) { 
        return "Hello " + name; 
    } 
 
} 

Notice how similar the code looks to the Java version we created earlier. At heart, a function 
that appends two strings isn't rocket science. The bracketed sections (<% %> and [ ] ) tell the 
.NET runtime that this code is intended to be exported as a SOAP web service.  

The <% WebService Language="C#" Class="Example1" %> line tells .NET that we are 
exporting one web service, written in C#, implemented by the Example1 class.  

The using line imports a module, in this case the standard web services classes.  

The [WebService(Namespace="urn:Example1")] line is optional, but allows us to declare 
various attributes of the web service being deployed. In this instance, we are setting an 
explicit namespace for the web service rather than allowing .NET to assign a default (which, 
by the way, will always be http://tempuri.org/). Other attributes you can set for the web 
service include the name and textual description of the service.  

The [ WebMethod ] line sets an attribute that flags the methods in the class to be exposed as 
part of the web service. As with the WebService attribute previously, we could use this line to 
define various custom properties about the web service operation. Options include whether to 
buffer the response of the operation; if buffered, how long to keep it buffered; whether to 
maintain a session state for the operation; whether transactions are supported on the method; 
what the exported name of the operation is; and a textual description of the operation. In the 
case of the Hello World example, we have no need to set any of these options, so we simply 
leave it alone.  

What will .NET do with all of this information? It's actually quite simple. Whenever a .asmx 
file is requested by a client through IIS, the .NET runtime will first compile the code for the 
service if it hasn't done so already. The compiled code is temporarily cached in memory and 
recompiled every time a change is made to the .asmx file or the IIS server is restarted.  

Next, the .NET runtime will determine what type of request is being made. There are several 
choices:  

1. The request may be for information about the web service. 
2. The request may be for information about one of the methods exported by the web 

service.  



Programming Web Services with SOAP 

page 55 

3. Or, the request may be to invoke an operation on the web service. .NET allows the 
operations to be invoked one of three different ways: through an HTTP-GET 
operation, through an HTTP-POST operation, or through the use of SOAP messages. 
.NET is one of the only web services platforms that allow web services to be invoked 
using multiple protocols.  

3.4.4 Deploying the Service 

Save the HelloWorld.asmx file to a location in your IIS web root. Take note of the .asmx file's 
URL. For example, if your Microsoft IIS server is installed at c:\inetpub (the default 
installation location), the web root is c:\inetpub\wwwroot. If you saved the .asmx file directly 
to this location, the URL of the .asmx file will be http://localhost/helloworld.asmx, where 
localhost is the DNS name or IP address of your IIS server. Once you've completed this step, 
your .NET web service is deployed.  

Ensure that your .NET environment and web service are fully operational by launching your 
favorite web browser and navigating to http://localhost/HelloWorld.asmx. If all goes well, 
you should be presented with an automatically generated HTML page that documents the 
Hello World service you just created (see Figure 3-5).  

Figure 3-5. Automatically generated documentation for the .NET web service 

 

These pages are generated dynamically whenever an HTTP-GET request is received for the 
deployed .asmx file. You do not have to do anything to create these pages.  

Clicking on the "sayHello" link will yield a detailed description of how to invoke the 
sayHello operation using SOAP, HTTP-GET, and HTTP-POST, as well as a simple HTML 
form for testing the operation (see Figure 3-6).  

 

 

 

 

 



Programming Web Services with SOAP 

page 56 

Figure 3-6. Auto-generated documentation for the sayHello operation 

 

To test the service, either type your name in the test form at the top of the automatically 
generated documentation page (see Figure 3-7), or navigate your browser to 
http://localhost/helloworld.asmx/sayHello?name=yourname.  

Figure 3-7. Ensure that the service works using the Test form 

 

Either method should generate the response shown in Figure 3-8.  

 

 

 

 

www.allitebooks.com

http://www.allitebooks.org


Programming Web Services with SOAP 

page 57 

Figure 3-8. A typical HTTP-GET web service response 

 

If you get the "Hello James" message, you're ready to move on.  

3.4.5 Invoking the Service Using SOAP 

Creating a SOAP client for the Hello World service using .NET is, surprisingly, harder than 
creating the service itself. There are tools to make it easier (we will explore them briefly in 
Chapter 5), but for now we'll go through the steps manually so you know what is going on.  

Again using your favorite text editor, create HelloWorld.cs (the .cs extension indicates C# 
source code) from Example 3-18.  

Example 3-18. HelloWorld.cs, a C# HelloWorld client  

// HelloWorld.cs 
 
using System.Diagnostics; 
using System.Xml.Serialization; 
using System; 
using System.Web.Services.Protocols; 
using System.Web.Services; 
 
[System.Web.Services.WebServiceBindingAttribute( 
     Name="Example1Soap",  
     Namespace="urn:Example1")] 
public class Example1 :  
             System.Web.Services.Protocols.SoapHttpClientProtocol { 
     
    public Example1(  ) { 
        this.Url = "http://localhost/helloworld.asmx "; 
    } 
 
    [System.Web.Services.Protocols.SoapDocumentMethodAttribute( 
         "urn:Example1/sayHello",  
         RequestNamespace="urn:Example1",  
         ResponseNamespace="urn:Example1",  
         Use=System.Web.Services.Description.SoapBindingUse.Literal,  
         
ParameterStyle=System.Web.Services.Protocols.SoapParameterStyle.Wrapped)] 
    public string sayHello(string name) { 
        object[] results = this.Invoke("sayHello",  
                                       new object[] {name}); 
        return ((string)(results[0])); 
    } 
 
 



Programming Web Services with SOAP 

page 58 

    public static void Main(string[] args) { 
       Console.WriteLine("Calling the SOAP Server to say hello"); 
       Example1 example1 = new Example1(  ); 
       Console.WriteLine("The SOAP Server says: " +  
                         example1.sayHello(args[0])); 
    } 
} 

The [System.Web.Services.WebserviceBindingAttribute] line tells the .NET managed 
runtime that this particular .NET assembly is going to be used to invoke a web service. When 
the assembly is compiled, .NET will automatically supply the infrastructure to make the 
SOAP request work.  

Subclassing System.Web.Services.Protocols.SOAPHttpClientProtocol tells the .NET 
runtime which protocol you want to use (SOAP over HTTP in this case). Within the 
constructor for this class, set the URL for the web service (the assignment to this.Url).  

The rest of the class declares a proxy for the sayHello operation, specifies various attributes 
of the web services invocation, calls the invoke method, and returns the result.  

Lastly, we create the main entry point for the C# application. The entry point does nothing 
more than create an instance of our client class and invoke the proxy sayHello operation, 
outputting the results to the console.  

Compile the client to a HelloWorld.exe application:  

C:\book>csc HelloWorld.cs 

To invoke the web service, simply type: 

C:\book>HelloWorld yourname 

You will be greeted with the same result we saw previously with the Java and Perl versions of 
the Hello World service:  

Calling the SOAP Server to say hello 
The SOAP Server says: Hello James 

3.5 Interoperability Issues 

At the time of this writing, .NET's SOAP implementation still has a few issues that need to be 
worked out, primarily in the area of interoperability.  

Slight variations between the way .NET implements SOAP and SOAP::Lite's implementation 
of SOAP, for example, cause some difficulty in allowing the two to work together out of the 
box. To illustrate the problem, follow the steps shown here. One would think that everything 
would work fine, but it doesn't. I'll point out why after we walk through it.  

First, launch the Java TcpTunnelGui tool that ships with Apache SOAP, specifying port 8080 
as the local listening port, and redirecting to whatever server you have your HelloWorld.asmx 
file deployed to:  



Programming Web Services with SOAP 

page 59 

C:\book>start java org.apache.soap.util.net.TcpTunnelGui 8080 
        localhost 80 

Then, modify the Perl Hello World client to point to the HelloWorld.asmx file, but replace the 
server part of the URL with localhost:8080.  

When you run the Perl script: 

C:\book>perl hello_client1.pl James 

The result is not what you would expect. The script ends without ever displaying the "Hello 
James" result. If you take a look at the TcpTunnelGui tool, you'll see that the SOAP message 
is sent, but the .NET runtime rejects the request and issues a SOAP fault in response. This is 
shown in Example 3-19.  

Example 3-19. SOAP fault from .NET  

<?xml version="1.0" encoding="utf-8"?> 
<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"> 
  <soap:Body> 
    <soap:Fault> 
      <faultcode>soap:Client</faultcode> 
      <faultstring> 
          System.Web.Services.Protocols.SoapException: Server did  
          not recognize the value of HTTP Header SOAPAction:  
          urn:Example#sayHello. 
          at System.Web.Services.Protocols.SoapServerProtocol.Initialize(  
) 
          at  System.Web.Services.Protocols.ServerProtocolFactory.Create( 
          Type type, HttpContext context, HttpRequest request,  
          HttpResponse response) 
      </faultstring> 
      <detail /> 
    </soap:Fault> 
  </soap:Body> 
</soap:Envelope> 

.NET requires that the HTTP SOAPAction header be used to exactly identify the operation on 
which service is being invoked. .NET requires the format of the SOAPAction header to be the 
service namespace, followed by a forward slash, followed by the name of the operation, or 
urn:Example/sayHello. Notice, though, that SOAP::Lite's default is to use a pound sign (#) 
to separate the service namespace from the name of the operation. This wasn't an issue when 
we were invoking Java services with SOAP::Lite because Apache SOAP simply ignores the 
SOAPAction header altogether.  

To fix this problem, we must explicitly tell SOAP::Lite how to format the SOAPAction 
header. To do so, make the change to the client script highlighted in Example 3-20.  

Example 3-20. Fragment showing change to Perl client script  

print SOAP::Lite 
  -> uri('urn:Example1') 
  -> on_action(sub{sprintf '%s/%s', @_ }) 
  -> proxy('http://localhost:8080/helloworld/example1.asmx') 
  -> sayHello($name) 



Programming Web Services with SOAP 

page 60 

  -> result . "\n\n"; 

The on_action method in SOAP::Lite allows the developer to override the default behavior 
and specify a new format for the SOAPAction header.  

However, even with this change there's still a problem. The script will appear to run, but 
rather than returning the expected Hello James string, all that will be returned is Hello. The 
name is missing from the response! This happens because .NET requires all parameters for a 
method call to be named and typed explicitly, whereas Perl does not do this by default.  

Again, take a look at the TcpTunnelGui tool and look at the SOAP message sent to the 
HelloWorld.asmx service from SOAP::Lite. This is shown in Example 3-21.  

Example 3-21. The Perl-generated SOAP request sent to the .NET service  

<SOAP-ENV:Envelope  
  xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"  
  SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"  
  xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"  
  xmlns:xsi="http://www.w3.org/1999/XMLSchema-instance"  
  xmlns:xsd="http://www.w3.org/1999/XMLSchema"> 
   
  <SOAP-ENV:Body> 
    <namesp1:sayHello xmlns:namesp1="urn:Hello"> 
       <c-gensym3 xsi:type="xsd:string"> 
          James 
       </c-gensym3> 
    </namesp1:sayHello> 
  </SOAP-ENV:Body> 
</SOAP-ENV:Envelope> 

Notice the oddly named c-gensym3 element that contains the input parameter. Because Perl is 
a scripting language that does not support strong typing or strict function signatures, method 
parameters do not have names, nor do they have types. When SOAP::Lite creates the SOAP 
message it automatically generates an element name and sets all parameters to the string 
data type. .NET doesn't like this behavior. If the C# method is written to take a String 
parameter called name it expects to find an element in the SOAP envelope called name with a 
type of xsi:type="xsd:string". In XML, that would be as shown in Example 3-22.  

Example 3-22. A SOAP request encoded by .NET  

<SOAP-ENV:Envelope  
  xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"  
  SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"  
  xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"  
  xmlns:xsi="http://www.w3.org/1999/XMLSchema-instance"  
  xmlns:xsd="http://www.w3.org/1999/XMLSchema"> 
   
  <SOAP-ENV:Body> 
    <namesp1:sayHello xmlns:namesp1="urn:Hello"> 
       <name xsi:type="xsd:string"> 
          James 
       </name> 
    </namesp1:sayHello> 
  </SOAP-ENV:Body> 
</SOAP-ENV:Envelope> 



Programming Web Services with SOAP 

page 61 

The .NET beta also did not properly recognize that the name element is declared as part of the 
same namespace as its parent sayHello element. This is a standard rule of XML namespaces. 
To get SOAP::Lite working with .NET, we must tell SOAP::Lite the name, type, and 
namespace of each of the parameters we are passing into the operation, as shown in Example 
3-23.  

Example 3-23. Perl client modified to work with .NET  

use SOAP::Lite; 
 
my $name = shift; 
 
print "\n\nCalling the SOAP Server to say hello\n\n"; 
print "The SOAP Server says: "; 
 
print SOAP::Lite 
  -> uri('urn:Example1') 
  ->on_action(sub{sprintf '%s/%s', @_ }) 
  ->proxy('http://localhost:8080/helloworld/example1.asmx') 
  ->sayHello(SOAP::Data->name(name => $name->type('string') 
                       ->uri('urn:Example1')) 
  ->result . "\n\n"; 

Now, run the script and you will see that everything works as expected.  

Developers who are writing and using web services that may be accessed by a wide variety of 
SOAP implementations need to be aware that inconsistencies like this will exist between the 
various toolkits and you need to be prepared to deal with them. As web services become more 
complex and more mission critical, it is important to have a clear understanding of how to 
manage these issues. Over time, the more popular SOAP implementations will be honed to a 
point where they will work together seamlessly, but with many of these implementations still 
being released as beta and sometimes alpha code status, you must be aware that issues will 
exist. Luckily, as we will see in Chapter 5, there are workarounds available for some of these 
problems.  



Programming Web Services with SOAP 

page 62 

Chapter 4. The Publisher Web Service 
The Publisher web service is a demonstration of a more complex web service modeled after 
the one used by the SOAP Web Services Resource Center (http://www.soap-wrc.com/). This 
service demonstrates techniques for implementing more complicated forms of web services. It 
builds on the Hello World example from Chapter 3.  

4.1 Overview 

The Publisher web service manages a database of important news items, articles, and 
resources that relate to SOAP and web services in general.  

A Perl-based service allows registered users to post, delete, or browse items, and to manage 
their registration information. We've also implemented an interactive Java shell client that 
uses the Apache SOAP client.  

The supported operations are: 

register  

Create a new user account. 

modify  

Modify a user account. 

login  

Start a user session. 

post  

Post a new item to the database. 

remove  

Remove an item from the database. 

browse  

Browse the database by item type. The data can be returned in either a publisher-
specific XML format or as a Rich Site Summary (RSS) channel.  

4.1.1 Publisher Service Security 

Security in the Publisher service is handled through a login operation that returns an 
authorization token to the user. This token consists of a user ID, email address, login time, 
and a MD5 digest that the user must include in all operations that require that the user be 
authenticated, namely the post and remove operations (see Figure 4-1).  



Programming Web Services with SOAP 

page 63 

Figure 4-1. When registered users log in, they will be given an authentication token that they 
must use whenever they post or remove an item in the database 

 

In the login operation, the user's ID and password are sent (in plain text) to the publisher 
service where they are validated. The service then creates an authentication token and returns 
it to the user. While not very secure, this illustrates one way that authentication can occur in 
SOAP-based web services. That is, rather than using transport-level security mechanisms, 
such as HTTP authentication, security can be built into the web services interface directly. In 
Chapter 5, we will discuss several much more secure and robust security mechanisms for web 
services.  

4.2 The Publisher Operations 

The operations exposed by the Publisher service are fairly straightforward. If we cast these 
operations in a Java interface, they would look like Example 4-1.  

Example 4-1. The Publisher interface in Java  

public Interface Publisher { 
 
  public boolean register (String email,  
                           String password,  
                           String firstName,  
                           String lastName,  
                           String title,  
                           String company,  
                           String url); 
 
  public boolean modify   (String email, 
                           String newemail, 
                           String password, 
                           String firstName, 
                           String lastName, 
                           String title, 
                           String company, 
                           String url); 
 
  public AuthInfo login   {String id,  
                           String password); 
 
  public int post         (AuthInfo authinfo, 
                           String type, 
                           String title, 
                           String description); 
 
  public boolean remove   (AuthInfo authinfo, 
                           int itemID); 
 
 



Programming Web Services with SOAP 

page 64 

  public org.w3c.dom.Document browse ( 
                           String type, 
                           String format, 
                           int maxRows); 
} 

4.3 The Publisher Server 

The Publisher Perl module uses the Perl DBI package and DBD::CSV package, both of which 
are available from CPAN and installed the same way SOAP::Lite is installed. The code 
discussed in the next section should be contained in a single Perl module called 
Publisher.pm, shown in full in Appendix C.  

The code is quite straightforward. We create a database to store the news, articles, and 
resource items, and the list of users who will use the service. After the database is created, we 
define the operations for manipulating that database. Those operations are not exported. The 
deployed code is in the last half of the script, managing user logins and exposing the various 
operations that the web service will support.  

4.3.1 The Preamble 

Example 4-2 defines the code's namespace, loads the database module, and defines a 
convenience function for accessing the database handle. Data is stored in a comma-separated 
text file, but you can change that to a relational database by changing the "DBI:CSV:..." 
string to the data source specifier for a MySQL or a similar database.  

Example 4-2. Publisher preamble  

package Publisher; 
 
use strict; 
 
package Publisher::DB; 
 
use DBI; 
use vars qw($CONNECT); 
 
$CONNECT = "DBI:CSV:f_dir=/home/book;csv_sep_char=\0"; 
my $dbh; 
 
sub dbh { 
  shift; 
  unless ($dbh) { 
    $dbh = DBI->connect(shift || $CONNECT); 
    $dbh->{'RaiseError'} = 1; 
  } 
  return $dbh; 
} 

4.3.2 Data Tables 

Example 4-3 creates the data tables for storing information about the members and items 
managed by the Publisher service.  

 



Programming Web Services with SOAP 

page 65 

Example 4-3. Create data tables  

sub create { 
  my $dbh = shift->dbh; 
 
  $dbh->do($_) foreach split /;/, ' 
 
  CREATE TABLE members ( 
    memberID   integer, 
    email      char(100), 
    password   char(25), 
    firstName  char(50), 
    lastName   char(50), 
    title      char(50), 
    company    char(50), 
    url        char(255), 
    subscribed integer 
  ); 
 
  CREATE TABLE items ( 
    itemID      integer, 
    memberID    integer, 
    type        integer, 
    title       char(255), 
    description char(512), 
    postStamp   integer 
  ) 
 
'; 
 
} 

Once the tables are created, we need to write the code for manipulating the data in those 
tables. These methods, shown in Example 4-4, are private and will not be exposed as part of 
our web service. Only the first few methods are shown in full. Consult Appendix C for the full 
source.  

Example 4-4. Methods to manipulate data in tables  

sub insert_member { 
  my $dbh = shift->dbh; 
  my $newMemberID = 1 + $dbh->selectrow_array( 
    "SELECT memberID FROM members ORDER BY memberID  
     DESC"); 
 
  my %parameters = (@_, memberID => $newMemberID, subscribed => 0); 
  my $names = join ', ', keys %parameters; 
  my $placeholders = join ', ', ('?') x keys %parameters; 
 
  $dbh->do("INSERT INTO members ($names) VALUES  
           ($placeholders)", {}, values %parameters); 
  return $newMemberID; 
} 
 
sub select_member { 
  my $dbh = shift->dbh; 
  my %parameters = @_; 
 
  my $where = join ' AND ', map {"$_ = ?"} keys %parameters; 



Programming Web Services with SOAP 

page 66 

  $where = "WHERE $where" if $where; 
 
  # returns row in array context and first element (memberID) in scalar 
  return $dbh->selectrow_array("SELECT * FROM members  
           $where", {}, values %parameters); 
} 
 
sub update_member {} 
 
sub insert_item {} 
 
sub select_item {} 
 
sub select_all_items {} 
 
sub delete_item {} 

4.3.3 Utility Functions 

Now we start defining the actual Publisher web service. Example 4-5 shows several private 
utility functions, primarily for dealing with the creation and validation of the authorization 
tokens used as part of the Publisher service's security model (discussed later).  

Example 4-5. Utility functions  

package Publisher; 
 
use POSIX qw(strftime); 
 
@Publisher::ISA = qw(SOAP::Server::Parameters); 
 
use Digest::MD5 qw(md5);  
 
my $calculateAuthInfo = sub { 
  return md5(join '', 'unique (yet persistent) string', @_); 
}; 
 
my $checkAuthInfo = sub { 
  my $authInfo = shift; 
  my $signature = $calculateAuthInfo->(@{$authInfo}{qw(memberID email 
time)}); 
  die "Authentication information is not valid\n" if $signature ne 
$authInfo->{signature}; 
  die "Authentication information is expired\n" if time(  ) > $authInfo-
>{time}; 
  return $authInfo->{memberID}; 
}; 
 
my $makeAuthInfo = sub { 
  my($memberID, $email) = @_; 
  my $time = time(  )+20*60; 
  my $signature = $calculateAuthInfo->($memberID, $email, $time); 
  return +{memberID => $memberID, time => $time, email => $email, signature 
=> $signature}; 
}; 

4.3.4 Register a New User 

Example 4-6 shows the code for the exported operation that registers new users.  

www.allitebooks.com

http://www.allitebooks.org


Programming Web Services with SOAP 

page 67 

Example 4-6. Exported method to register a new user  

sub register { 
  my $self = shift; 
  my $envelope = pop; 
  my %parameters = %{$envelope->method(  ) || {}}; 
 
  die "Wrong parameters: register(email, password, firstName, " . 
      "lastName [, title][, company][, url])\n" 
    unless 4 == map {defined} @parameters{qw(email password firstName 
lastName)}; 
 
  my $email = $parameters{email}; 
  die "Member with email ($email) already registered\n" 
    if Publisher::DB->select_member(email => $email); 
  return Publisher::DB->insert_member(%parameters); 
} 

4.3.5 Modify User Information 

Example 4-7 is the operation that allows users to modify their information.  

Example 4-7. Exported subroutine to modify a user's information  

sub modify { 
  my $self = shift; 
  my $envelope = pop; 
  my %parameters = %{$envelope->method(  ) || {}}; 
 
  my $memberID = $checkAuthInfo->($envelope->valueof('//authInfo')); 
  Publisher::DB->update_member($memberID, %parameters); 
  return; 
} 

4.3.6 User Login 

Example 4-8 is the operation that validates a user's ID and password and issues an 
authentication token.  

Example 4-8. Exported method to validate a user and issue a token  

sub login {  
  my $self = shift; 
  my %parameters = %{pop->method(  ) || {}}; 
 
  my $email = $parameters{email}; 
  my $memberID = Publisher::DB->select_member(email => $email, password => 
$parameters{password}); 
  die "Credentials are wrong\n" unless $memberID; 
  return bless $makeAuthInfo->($memberID, $email) => 'authInfo'; 
} 

4.3.7 Posting an Item 

Example 4-9 shows the method that posts a new item to the database.  

 



Programming Web Services with SOAP 

page 68 

Example 4-9. Exported method to post a new item  

my %type2code = (news => 1, article => 2, resource => 3); 
my %code2type = reverse %type2code; 
 
sub postItem { 
  my $self = shift; 
  my $envelope = pop; 
  my $memberID = $checkAuthInfo->($envelope->valueof('//authInfo')); 
  my %parameters = %{$envelope->method(  ) || {}}; 
 
  die "Wrong parameter(s): postItem(type, title, description)\n"  
    unless 3 == map {defined} @parameters{qw(type title description)}; 
 
  $parameters{type} = $type2code{lc $parameters{type}} 
                                     or die "Wrong type of item 
($parameters{type})\n"; 
  return Publisher::DB->insert_item(memberID => $memberID, %parameters); 
} 

4.3.8 Removing Items 

Example 4-10 shows the exported method for removing items from the database. Only the 
user who added an item can remove it.  

Example 4-10. Exported method to remove an item from the database  

sub removeItem { 
  my $self = shift; 
  my $memberID = $checkAuthInfo->(pop->valueof('//authInfo')); 
  die "Wrong parameter(s): removeItem(itemID)\n" unless @_ == 1; 
 
  my $itemID = shift; 
  die "Specified item ($itemID) can't be found or removed\n"  
    unless Publisher::DB->select_item(memberID => $memberID, itemID => 
$itemID); 
  Publisher::DB->delete_item($itemID); 
  return; 
} 

4.3.9 Browsing 

Users can browse the item database using either a Publisher service-specific XML format or 
the popular Rich Site Summary (RSS) format used extensively across the Internet.  

Example 4-11, while looking fairly complex, creates the appropriate XML structures 
depending on the format requested by the caller.  

Example 4-11. Code to support browsing in proprietary and RSS formats  

my $browse = sub { 
  my $envelope = pop; 
  my %parameters = %{$envelope->method(  ) || {}}; 
 
  my ($type, $format, $maxRows, $query) = @parameters{qw(type format 
maxRows query)}; 
  $type = {all => 'all', %type2code}->{lc($type) || 'all'} 



Programming Web Services with SOAP 

page 69 

           or die "Wrong type of item ($type)\n"; 
  # default values 
  $maxRows ||= 25; 
  $format ||= 'XML'; 
  my $items = Publisher::DB->select_all_items($type ne 'all' ? (type => 
$type) : (  )); 
  my %members; 
  my @items = map { 
    my ($type, $title, $description, $date, $memberID) = @$_; 
    my ($email, $firstName, $lastName) = @{ 
       $members{$memberID} ||= [Publisher::DB->select_member(memberID =>  
       $memberID)] 
    }[1,3,4]; 
    +{ 
      $format =~ /^XML/ ? ( 
        type        => $code2type{$type},  
        title       => $title,  
        description => $description, 
        date        => strftime("%Y-%m-%d", gmtime($date)), 
        creator     => "$firstName $lastName ($email)" 
      ) : ( 
        category    => $code2type{$type},  
        title       => "$title by $firstName $lastName ($email) on "  
                       . strftime("%Y-%m-%d", gmtime($date)),  
        description => $description, 
      ) 
    } 
  } @{$items}[0..(!$query && $maxRows <= $#$items ? $maxRows-1 : 
$#$items)]; 
   
  if ($query) { 
    my $regexp = join '', map { 
      /\s+and\s+/io ? '&&' : /\s+or\s+/io ? '||' : /[(  )]/ ? $_ : $_ ? '/'  
      . quotemeta($_) . '/o' : '' 
    } split /(\(|\)|\s+and\s+|\s+or\s+)/io, $query; 
    eval "*checkfor = sub { for (\@_) { return 1 if $regexp; } return }"  
         or die; 
    @items = grep {checkfor(values %$_)} @items; 
    splice(@items, $maxRows <= $#items ? $maxRows : $#items+1); 
  } 
 
  return $format =~ /^(XML|RSS)str$/  
    ? SOAP::Serializer 
        -> autotype(0) 
        -> readable(1) 
        -> serialize(SOAP::Data->name(($1 eq 'XML' ? 'itemList' : 
'channel') 
                     => \SOAP::Data->name(item => @items))) 
    : [@items]; 
}; 
 
sub browse { 
  my $self = shift; 
  return SOAP::Data->name(browse => $browse->(@_)); 
} 

 

 



Programming Web Services with SOAP 

page 70 

4.3.10 Search 

The search operation is similar to the browse operation with the exception that users are 
allowed to specify a keyword filter to limit the number of items returned. It is shown in 
Example 4-12.  

Example 4-12. Exported method to search the database  

sub search { 
  my $self = shift; 
  return SOAP::Data->name(search => $browse->(@_)); 
} 

4.3.11 Deploying the Publisher Service 

To deploy the Publisher service, you need to do two things. First, create the database that is 
going to store the information. Do so by running the script in Example 4-13.  

Example 4-13. Program to create the database  

#!/usr/bin/perl -w 
use Publisher; 
Publisher::DB->create; 

This will create two files in the current directory, called members and items.  

Next, create the CGI script that will listen for SOAP messages and dispatch them to 
SOAP::Lite and the Publisher module. This is given in Example 4-14.  

Example 4-14. Publisher.cgi, SOAP proxy for the Publisher module  

#!/bin/perl -w 
 
use SOAP::Transport::HTTP; 
use Publisher; 
 
$Publisher::DB::CONNECT = 
  "DBI:CSV:f_dir=d:/book;csv_sep_char=\0"; 
$authinfo = 'http://www.soaplite.com/authInfo'; 
my $server = SOAP::Transport::HTTP::CGI 
  -> dispatch_to('Publisher'); 
$server->serializer->maptype({authInfo => $authinfo}); 
$server->handle; 

The dispatch_to method call instructs the SOAP::Lite package which methods to accept, 
and in which module those methods can be found.  

Copy the CGI script to your web server's cgi-bin directory and install the Publisher.pm, 
members, and items files in your Perl module directory. The Publisher web service is now 
ready for business.  

 

 



Programming Web Services with SOAP 

page 71 

4.4 The Java Shell Client 

The Java shell client is a simple interface for interacting with the Publisher web service. A 
typical session is shown in Example 4-15. Notice that once the shell is started, the user must 
log on prior to posting new items.  

Example 4-15. A sample session with the Java shell client  

C:\book>java Client http://localhost/cgi-bin/Publisher.cgi 
 
Welcome to Publisher! 
> help 
 
Actions: register | login | post | remove | browse 
> login 
 
What is your user id: james@soap-wrc.com 
 
What is your password: abc123xyz 
 
Attempting to login... 
james@soap-wrc.com is logged in 
 
> post 
 
What type of item [1 = News, 2 = Article, 3 = Resource]: 1 
 
What is the title: 
Programming Web Services with SOAP, WSDL and UDDI 
 
What is the description: 
A cool new book about Web services! 
 
Attempting to post item... 
Posted item 46 
 
> quit 
 
C:\book> 

To create the shell, you need to create two Java classes: one for the shell itself 
(Client.java), and the other to keep track of the authorization token issued by the Publisher 
service when you log in (AuthInfo.java).  

4.4.1 The Authentication Class 

The preamble to the authInfo class is shown in Example 4-16.  

Example 4-16. The authInfo class  

// authInfo.java 
 
import org.w3c.dom.Document; 
import org.w3c.dom.Element; 
 
public class authInfo { 
  private int memberID; 



Programming Web Services with SOAP 

page 72 

  private long time; 
  private String email; 
  private byte [] signature; 
 
  public authInfo(  ) { } 
 
  public authInfo(int memberID, long time, String email, byte[] signature) 
{ 
    this.memberID = memberID; 
    this.time = time; 
    this.email = email; 
    this.signature = signature; 
  } 

The class has the usual get and set accessors. Example 4-17 shows the first four methods, and 
stubs the rest. For the full source, see Appendix C.  

Example 4-17. authInfo accessors  

  public void setMemberID(int memberID) { 
    this.memberID = memberID; 
  } 
 
  public int getMemberID(  ) { 
    return memberID; 
  } 
 
  public void setTime(long time) { 
    this.time = time; 
  } 
 
  public long getTime(  ) { 
    return time; 
  } 
 
  public void setEmail(String email) {} 
  public String getEmail(  ) {} 
  public void setSignature(byte [] signature) {} 
  public byte [] getSignature(  ) {} 
  public String toString(  ) {} 
 
  public void serialize(Document doc) { 
    Element authEl = doc.createElementNS(  
                     "http://www.soaplite.com/authInfo",  
                     "authInfo"); 
    authEl.setAttribute("xmlns:auth", "http://www.soaplite.com/authInfo"); 
    authEl.setPrefix("auth"); 
 
    Element emailEl = doc.createElement("email");     
    emailEl.appendChild(doc.createTextNode(auth.getEmail(  ))); 
 
    Element signatureEl = doc.createElement("signature"); 
    signatureEl.setAttribute("xmlns:enc", Constants.NS_URI_SOAP_ENC); 
    signatureEl.setAttribute("xsi:type", "enc:base64"); 
    signatureEl.appendChild(doc.createTextNode( 
                            Base64.encode(auth.getSignature(  )))); 
 
    Element memberIdEl = doc.createElement("memberID"); 
    memberIdEl.appendChild(doc.createTextNode( 
                           String.valueOf(auth.getMemberID(  )))); 



Programming Web Services with SOAP 

page 73 

 
    Element timeEl = doc.createElement("time"); 
    timeEl.appendChild(doc.createTextNode( 
                       String.valueOf(auth.getTime(  )))); 
 
    authEl.appendChild(emailEl); 
    authEl.appendChild(signatureEl); 
    authEl.appendChild(memberIdEl); 
    authEl.appendChild(timeEl); 
    doc.appendChild(authEl); 
  } 
} 

The serialize method creates an XML representation of the authInfo class instance that 
looks like Example 4-18.  

Example 4-18. Sample serialization from the authInfo class  

<auth:authInfo xmlns:auth="http://www.soaplite.com/authInfo"> 
   <email>johndoe@acme.com</email> 
   <signature> <!-- Base64 encoded string --> </signature> 
   <memberID>123</memberID> 
   <time>2001-08-10 12:04:00 PDT (GMT + 8:00)</time> 
</auth:authInfo> 

4.4.2 The Client Class 

The Client class is straightforward. There are utility routines for working with the SOAP 
client object, some code to handle authentication and login, methods to make a SOAP call for 
each of the operations the user might wish to perform, and then a main routine to handle the 
interface with the user.  

4.4.2.1 Preamble 

The preamble to the Client class is shown Example 4-19.  

Example 4-19. The Client class  

// Client.java 
import java.io.*; 
import java.net.*; 
import java.util.*; 
import javax.xml.parsers.DocumentBuilderFactory; 
import javax.xml.parsers.DocumentBuilder; 
import org.w3c.dom.*; 
 
import org.apache.soap.util.xml.*; 
import org.apache.soap.*; 
import org.apache.soap.encoding.*; 
import org.apache.soap.encoding.soapenc.*; 
import org.apache.soap.rpc.*; 
 
public class Client { 
 
  private URL url; 
  private String uri; 
  private authInfo authInfo; 



Programming Web Services with SOAP 

page 74 

 
  public Client (String url, String uri) throws Exception { 
    try { 
      this.uri = uri; 
      this.url = new URL(url); 
    } catch (Exception e) { 
      throw new Exception(e.getMessage(  )); 
    } 
  } 

The initCall method in Example 4-20 initializes the Apache SOAP client.  

Example 4-20. The initCall method  

  private Call initCall (  ) { 
    Call call = new Call(  );        
    call.setEncodingStyleURI(Constants.NS_URI_SOAP_ENC); 
    call.setTargetObjectURI(uri); 
    return call; 
  } 

The invokeCall method shown in Example 4-21 makes the calls to the Publisher service. 
This is similar to the Hello World service example that we provided earlier.  

Example 4-21. The invokeCall method  

  private Object invokeCall (Call call)  
      throws Exception { 
    try { 
      Response response = call.invoke(url, ""); 
      if (!response.generatedFault(  )) {  
        return response.getReturnValue(  ) == null  
          ? null :  
          response.getReturnValue().getValue(  ); 
      } else {  
        Fault f = response.getFault(  ); 
        throw new Exception("Fault = " +  
                            f.getFaultCode(  ) + ", " +  
                            f.getFaultString(  ));  
      }  
    } catch (SOAPException e) {  
      throw new Exception("SOAPException = " +  
                          e.getFaultCode(  ) + ", " +  
                          e.getMessage(  ));  
    } 
  } 

4.4.2.2 Authentication 

The makeAuthHeader operation in Example 4-22 creates a SOAP header block that contains 
an authentication token. This operation must be called every time that somebody wishes to 
post or remove items in the Publisher service.  

It works by simply creating a DOM document, instructing the authInfo class to serialize 
itself to that document (see the serialize operation on the authInfo class in Example 4-18), 
and adding the authentication information to the headers.  



Programming Web Services with SOAP 

page 75 

Example 4-22. The makeAuthHeader method  

  public Header makeAuthHeader (authInfo auth)  
     throws Exception { 
    if (auth == null) { throw new Exception("Oops,  
      you are not logged in. Please login first"); } 
    DocumentBuilderFactory dbf = DocumentBuilderFactory.newInstance(  ); 
    dbf.setNamespaceAware(true); 
    dbf.setValidating(false); 
    DocumentBuilder db = dbf.newDocumentBuilder(  ); 
    Document doc = db.newDocument(  ); 
    auth.serialize(doc); 
    Vector headerEntries = new Vector(  ); 
    headerEntries.add(doc.getDocumentElement(  )); 
    Header header = new Header(  ); 
    header.setHeaderEntries(headerEntries); 
    return header; 
  } 

4.4.2.3 User login 

Example 4-23 shows the login operation. Notice that before we invoke the request, we must 
tell Apache SOAP which deserializer to use for the authentication token that will be returned 
if the operation is a success. The BeanSerializer is a utility class that comes with Apache 
SOAP for translating XML into instances of Java classes that conform to the Java Bean 
standard. We must explicitly inform Apache SOAP that we want all authInfo XML elements 
found in a SOAP message within the http://www.soaplite.com/Publisher namespace to 
be deserialized using the BeanSerializer class. If we don't, an error occurs whenever an 
authInfo element is found in the SOAP envelope.  

We earlier brought up the topic of type mappings in Apache SOAP but never really explained 
what they are or how they work. A type mapping is a link between some type of native data 
type (such as a Java class) and the way that data type appears as XML. Serializers and 
deserializers are special pieces of code capable of translating between the two. The 
SOAPMappingRegistry is a collection of all type mappings and their corresponding 
serializers and deserializers.  

In Apache SOAP, we have to declare a type mapping whenever we want to use any data type 
other than primitive built-in data types (e.g., strings, integers, floats, etc.).  

Example 4-23. The login method  

public void login (String email, String password) throws Exception { 
  Call call = initCall(  ); 
 
  SOAPMappingRegistry smr =  
         new SOAPMappingRegistry(  ); 
  BeanSerializer beanSer = new BeanSerializer(  ); 
  smr.mapTypes(Constants.NS_URI_SOAP_ENC, 
               new QName("http://www.soaplite.com/Publisher",  
                         "authInfo"), 
               authInfo.class, beanSer, beanSer); 
 
  Vector params = new Vector (  ); 
  params.add(new Parameter("email", String.class,  
             email, null)); 



Programming Web Services with SOAP 

page 76 

  params.add(new Parameter("password",  
             String.class, password, null)); 
  call.setParams(params); 
  call.setMethodName("login"); 
  call.setSOAPMappingRegistry(smr); 
  authInfo = (authInfo) invokeCall(call); 
  System.out.println(authInfo.getEmail(  ) + " logged in."); 
} 

4.4.2.4 Wrappers to call the remote operations 

Although the shell client has methods for each of the operations of the Publisher web service, 
it doesn't necessarily have to. We've done it in this example to ensure you get a clear picture 
of the way the SOAP envelope gets built and used. This would be easier, though, if we had a 
mechanism for creating a more dynamic proxy similar to the one provided by SOAP::Lite. In 
Chapter 5 we will demonstrate a Java proxy built on top of Apache SOAP that does just that.  

The operations in Example 4-24 all follow a very simple pattern: initialize the SOAP call, set 
the parameters, and invoke the SOAP call.  

Example 4-24. Wrappers for the remote operations  

public void register (String email,  
                      String password,  
                      String firstName,  
                      String lastName,  
                      String title,  
                      String company,  
                      String url) throws Exception { 
  Call call = initCall(  ); 
 
  Vector params = new Vector (  ); 
  params.add(new Parameter("email", String.class, email, null)); 
  params.add(new Parameter("password", String.class, password, null)); 
  params.add(new Parameter("firstName", String.class, firstName, null)); 
  params.add(new Parameter("lastName", String.class, lastName, null)); 
  if (url != null)      
             params.add(new Parameter("url", String.class, url, null)); 
  if (title != null)    
             params.add(new Parameter("title", String.class, title, null)); 
  if (company != null)  
            params.add(new Parameter("company", String.class, company, 
null)); 
  call.setParams(params); 
  call.setMethodName("register"); 
  invokeCall(call); 
  System.out.println("Registered."); 
} 
 
public void postItem (String type,  
                      String title,  
                      String description)  
                      throws Exception { 
  Call call = initCall(  ); 
  Vector params = new Vector (  ); 
  params.add(new Parameter("type", String.class, type, null)); 
  params.add(new Parameter("title", String.class, title, null)); 
  params.add(new Parameter("description", String.class, description, 
null)); 



Programming Web Services with SOAP 

page 77 

  call.setParams(params); 
  call.setMethodName("postItem"); 
  call.setHeader(makeAuthHeader(authInfo)); 
  Integer itemID = (Integer)invokeCall(call); 
  System.out.println("Posted item " + itemID + "."); 
} 
 
public void removeItem (Integer itemID); 
public void browse (String type,  
                    String format,  
                    Integer maxRows); 

4.4.2.5 The main routine 

Now that the basic operations for interacting with the web service have been defined, we need 
to create the code for the Publisher shell (Example 4-25). This code does nothing more than 
provide users with a menu of things that can be done with the Publisher service. In a loop we 
get input from the user, decide what they want to do, and do it.  

Because none of this code deals directly with the invocation and use of the Publisher web 
service, significant pieces were removed for the sake of brevity. The entire code sample can 
be found in Appendix C.  

Example 4-25. The main method  

  public static void main(String[] args) { 
    String myname = Client.class.getName(  ); 
 
    if (args.length < 1) { 
      System.err.println("Usage:\n  java " + myname + " SOAP-router-URL"); 
      System.exit (1); 
    } 
 
    try { 
      Client client = new Client(args[0], 
"http://www.soaplite.com/Publisher"); 
 
      InputStream in = System.in; 
      InputStreamReader isr = new  
            InputStreamReader(in); 
      BufferedReader br = new BufferedReader(isr); 
      String action = null; 
      while (!("quit".equals(action))) { 
         System.out.print("> "); 
         action = br.readLine(  ); 
 
         if ("register".equals(action)) { 
             // code hidden for brevity 
             client.register(email, password, firstName, lastName,  
                             title, company, url); 
         } 
 
         if ("login".equals(action)) { 
             // code hidden for brevity 
             client.login(id,pwd); 
         } 
 
 
 



Programming Web Services with SOAP 

page 78 

         if ("post".equals(action)) { 
             // code hidden for brevity 
             client.postItem(type, title, desc); 
         } 
 
         if ("remove".equals(action)) { 
  // code hidden for brevity 
             client.removeItem(Integer.valueOf(id)); 
             } catch (Exception ex) { 
                System.out.println("\nCould not remove item!"); 
             } 
             System.out.println(  ); 
         } 
 
         if ("browse".equals(action)) { 
  // code hidden for brevity 
            client.browse(type, format, ival); 
             } catch (Exception ex) {  
                System.out.println(ex); 
                System.out.println("\nCould not browse!");  
             } 
         } 
          
         if ("help".equals(action)) { 
             System.out.println("\nActions: register | login | post | 
remove | browse"); 
         } 
      } 
    } catch (Exception e) { 
      System.err.println("Caught Exception: " + e.getMessage(  )); 
    } 
  } 
} 

4.4.3 Deploying the Client 

Once the code is written, compile it and launch it with the following command:  

C:\book>java Client http://localhost/cgi-bin/Publisher.cgi 

Replace localhost with the name of the web server where the Publisher CGI script is 
deployed. Figure 4-2 shows the shell in action.  

Figure 4-2. The Publisher shell at runtime 

 
 



Programming Web Services with SOAP 

page 79 

Chapter 5. Describing a SOAP Service 
Having seen the basic steps in implementing web services, you're now ready to explore 
technologies that make it easier to use web services that have already been deployed. 
Specifically, this chapter focuses on the Web Service Description Language (WSDL), which 
makes possible automated code-generation tools to simplify building clients for existing web 
services. WSDL also forms an integral component of the discovery process we'll see in 
Chapter 6.  

5.1 Describing Web Services 

The introduction of web services in Chapter 1 mentioned that one of the key things that sets 
web services apart from other types of applications is that they can be made self-describing. 
Here, we describe what that means.  

Every application exposes some type of functionality; you invoke that functionality through 
various types of operations. Those operations require you to provide specific pieces of 
information. Once the operation is complete, the application may return information back to 
you. This entire exchange must be conducted using some agreed upon protocol for packaging 
the information and sending it back and forth. However, most applications typically require 
you, the developer, to describe how all of this is supposed to happen. The specific details of 
how a service is implemented become entrenched in the application. If any changes need to be 
made, the application must be changed and recompiled. These applications are not very 
flexible.  

With web services, though, it is possible to allow applications to discover all of this 
information dynamically while the application is being run. This ability makes changes easier 
to accommodate and much less disruptive.  

The SOAP specification does not address description. The de facto standard specification 
used to make web services self-describing is the Web Services Description Language 
(WSDL). Using WSDL, a web service can describe everything about what it does, how it 
does it, and how consumers of that web service can go about using it.  

There are several advantages to using WSDL: 

1. WSDL makes it easier to write and maintain services by providing a more structured 
approach to defining web service interfaces.  

2. WSDL makes it easier to consume web services by reducing the amount of code (and 
potential errors) that a client application must implement.  

3. WSDL makes it easier to implement changes that will be less likely to "break" SOAP 
client applications. Dynamic discovery of WSDL descriptions allows such changes to 
be pushed down automatically to clients using WSDL so that potentially expensive 
modifications to the client code don't have to be made every time a change occurs.  

WSDL is not perfect, however. Currently, there is no support for versioning of WSDL 
descriptions, so web services providers and consumers need to be aware that when significant 
changes to a WSDL description occur, there may very well be problems propagated down to 



Programming Web Services with SOAP 

page 80 

the client. For the most part, however, WSDL descriptions should be treated in a similar 
manner to traditional object interfaces—where the definition of the service, once put into 
production, is immutable and cannot be changed.  

Another key point is that, for the most part, web service developers will not be required to 
manually create WSDL descriptions of their services. Many toolkits include tools for 
generating WSDL automatically from existing application components.  

Microsoft's .NET platform, for example, will automatically generate a WSDL description of 
deployed .asmx services simply by appending ?WSDL to the URL of the .asmx file. If you 
have .NET and the HelloWorld.asmx service from Chapter 3, open your web browser and 
append the ?WSDL to the end of the service's URL. You will see a dynamically generated 
WSDL description of the Hello World service, shown in Figure 5-1.  

Figure 5-1. Automatically generated WSDL description for the .NET Hello World service 

 

Keep in mind that not every web services toolkit includes WSDL support; third party add-ons 
may be required. IBM supplies an extension to Apache SOAP called the Web Services 
ToolKit that provides comprehensive WSDL support on top of Apache SOAP. WSIF, another 
IBM tool that we will take a look at in just a minute, is another example of a WSDL-enabling 
add-on for Apache SOAP. Apache Axis, when complete, will include built-in support for the 
use and creation of WSDL documents.  

Although you can, and many do, use SOAP without WSDL, WSDL descriptions of your 
services make life easier for consumers of those services.  



Programming Web Services with SOAP 

page 81 

5.1.1 A Quick Example 

To demonstrate quickly the difference that using a WSDL description of a web service can 
make in terms of the amount of code necessary to access a web service from Java, let's create 
a WSDL description for the Hello World web service and use the IBM Web Service 
Invocation Framework (WSIF) tools to invoke it. WSIF is a Java package that provides a 
WSDL-aware layer on top of Apache SOAP, allowing us to call SOAP services easily given 
only a WSDL description. It can be downloaded from http://alphaworks.ibm.com/tech/wsif. 
Within this service description, we will point to the Perl-based Hello World service created in 
Chapter 3.  

The WSDL file begins with a preamble, then defines some messages that will be exchanged. 
This preamble is shown in Example 5-1.  

Example 5-1. WSDL preamble  

<?xml version="1.0" encoding="UTF-8"?> 
<wsdl:definitions name="HelloWorldDescription" 
   targetNamespace="urn:HelloWorld" 
   xmlns:tns="urn:HelloWorld" 
   xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/" 
   xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"> 
  <wsdl:message name="sayHello_IN"> 
    <part name="name" type="xsd:string" /> 
  </wsdl:message> 
  <wsdl:message name="sayHello_Out"> 
    <part name="greeting" type="xsd:string" /> 
  </wsdl:message> 

Next, the WSDL defines how a method translates into messages. This is shown in Example 5-
2.  

Example 5-2. WSDL showing how a method corresponds to messages  

  <wsdl:portType name="HelloWorldInterface"> 
    <wsdl:operation name="sayHello"> 
      <wsdl:input message="tns:sayHello_IN" /> 
      <wsdl:output message="tns:sayHello_OUT" /> 
    </wsdl:operation> 
  </wsdl:portType> 

Then the WSDL defines how the method is implemented (see Example 5-3). 

Example 5-3. WSDL showing the implementation of the method  

  <wsdl:binding name="HelloWorldBinding"  
                type="tns:HelloWorldInterface"> 
    <soap:binding style="rpc"  
     transport="http://schemas.xmlsoap.org/soap/http"  
     /> 
    <wsdl:operation name="sayHello"> 
      <soap:operation soapAction="urn:Hello" /> 
 
 
 
 



Programming Web Services with SOAP 

page 82 

      <wsdl:input> 
        <soap:body use="encoded" 
                   namespace="urn:Hello" 
                   encodingStyle=http://schemas.xmlsoap.org/soap/encoding/ 
        /> 
      </wsdl:input> 
      <wsdl:output> 
        <soap:body use="encoded" 
                   namespace="urn:Hello" 
                   encodingStyle=http://schemas.xmlsoap.org/soap/encoding/ 
        /> 
      </wsdl:output> 
    </wsdl:operation> 
  </wsdl:binding> 

And finally the WSDL says where the service is hosted (Example 5-4).  

Example 5-4. WSDL showing the location of the service  

  <wsdl:service name="HelloWorldService"> 
    <wsdl:port name="HelloWorldPort"  
               binding="tns:HelloWorldBinding"> 
      <!-- location of the Perl Hello World Service --> 
      <soap:address  
        location="http://localhost:8080" /> 
    </wsdl:port> 
  </wsdl:service>  
</wsdl:definitions> 

The values of the name attributes in WSDL (e.g., HelloWorldInterface and 
HelloWorldBinding) are completely arbitrary. There are no defined naming conventions you 
should follow.  

The complete WSDL document, shown in full in Appendix C, would be placed either in a 
well-known or, as we will explain Chapter 6, a discoverable location on your web server so 
that it may be retrieved using a simple HTTP-GET request. Once that is done, we can invoke 
the WSIF DynamicInvoker class to invoke the web service. This can be done using a single 
command-line operation:  

C:\book>java clients.DynamicInvoker http://localhost/sayhello.wsdl sayHello 
James 

Which will produce the output: 

Hello James 

This is a big difference compared to the code we used in Chapter 3 to invoke the exact same 
service. The WSDL description allowed the WSIF tools to automatically figure out what 
needed to be done with the Apache SOAP tools in order to send the message and process the 
results, and you didn't have to write a single line of code. While this is a fairly simple example 
(you won't be able to use a single command line for every web service that uses WSDL and 
WSIF, as we will demonstrate later), it does stress the point: we use WSDL because it makes 
it easier to write web services.  

 



Programming Web Services with SOAP 

page 83 

5.2 Anatomy of a Service Description 

A web service description describes the abstract interface through which a service consumer 
communicates with a service provider, as well as the specific details of how a given web 
service has implemented that interface. It does so by defining four types of things: data, 
messages, interfaces, and services.  

A service (HelloWorldService in our example) is a collection of ports (addresses 
implementing the service; see HelloWorldPort in the example). A port has both an abstract 
definition (the port type) and a concrete definition (the binding). Port types function as the 
specification of the software interface (HelloWorldInterface in this example), and are 
composed of collections of operations (the individual method signatures) that define the 
ordered exchanges of messages (sayHello_IN and sayHello_OUT in the example). Bindings 
say which protocols are used by the port, including the packaging protocol (SOAP in this 
case). A message is a logical collection of named parts (data values) of a particular type. The 
type of part is defined using some standard data typing mechanism such as the XML Schema 
specification.  

The structure of a web service description is illustrated in Figure 5-2.  

Figure 5-2. A service description describes four basic things about a web service: the data 
types, the messages, the interfaces, and the services 

 

5.3 Defining Data Types and Structures with XML Schemas 

Interoperability between applications on various operating system platforms and 
programming languages is most often hindered because one system's "integer" may not be 
exactly the same as another system's "integer." Because different operating systems and 
programming languages have different definitions of what particular base (or primitive) data 
types are not only called, but also how they are expressed when sent out over the wire, those 
operating systems and programming languages cannot communicate with each other.  

To allow seamless cross-platform interoperability, there must be a mechanism by which the 
service consumer and the service provider agree to a common set of types and the textual 
representation of the data stored in them. The web services description provides the 
framework through which the common data types may be defined.  

In WSDL, the primary method of defining these shared data types is the W3C's XML Schema 
specification. WSDL is, however, capable of using any mechanism to define data types, and 
may actually leverage the type definition mechanisms of existing programming languages or 



Programming Web Services with SOAP 

page 84 

data interchange standards. No matter what type definition mechanism is used, both the 
service consumer and the service provider must agree to it or the service description is 
useless. That is why the authors of the WSDL specification chose to use XML Schemas—
they are completely platform neutral.  

If you're unfamiliar with the XML Schema data representation system, now would be a good 
time to read the quick introduction in Appendix B.  

Interestingly, while XML Schemas are used to define the data types, the message that is 
actually sent does not have to be serialized as XML. For example, if we decide to use a 
standard HTML form to invoke a web service, the input message will not be in XML syntax. 
The XML Schema specification itself recognizes that a schema may be used to describe data 
that is not serialized as an XML document instance, as evidenced by Section 2 of the XML 
Schema specification primer (http://www.w3.org/TR/xmlschema-0/):  

The purpose of a schema is to define a class of XML documents, and so the term "instance 
document" is often used to describe an XML document that conforms to a particular schema. 
In fact, neither instances nor schemas need to exist as documents per se—they may exist as 
streams of bytes sent between applications, as fields in a database record, or as collections of 
XML Infoset "Information Items." —XML Schema Part 0: Primer, Section 2  

So, if the data can be expressed as XML, regardless of whether it actually is expressed as 
XML, then XML Schemas can be used to describe the rules that define the data.  

5.3.1 Using XML Schemas in WSDL 

Once the data types are defined, they must be referenced within a WSDL description. Do so 
either by embedding the schema directly within the <wsdl:types /> element, or by 
importing the schema using the <wsdl:import /> element. While both approaches are valid, 
many WSDL-enabled tools do not yet properly support <wsdl:import />. The <wsdl:types 
/> method is by far the most common. Examples of both approaches are shown here.  

With import, you must declare the namespace that the XML Schema defines, then import the 
XML Schema document. This is shown in Example 5-5.  

Example 5-5. Using import to reference a type definition  

<?xml version="1.0" encoding="UTF-8"?> 
<wsdl:definitions name="HelloWorldDescription" 
   targetNamespace="urn:HelloWorld" 
   xmlns:tns="urn:HelloWorld" 
   xmlns:types="urn:MyDataTypes" 
   xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/" 
   xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"> 
 
   <wsdl:import namespace="urn:MyDataTypes" 
                location="telephonenumber.xsd" /> 
 
</wsdl:definitions> 

Example 5-6 is the same definition but with the XML Schema embedded directly into the 
WSDL description.  



Programming Web Services with SOAP 

page 85 

Example 5-6. Embedding XML Schema directly to define types  

<?xml version="1.0" encoding="UTF-8"?> 
<wsdl:definitions name="HelloWorldDescription" 
   targetNamespace="urn:HelloWorld" 
   xmlns:tns="urn:HelloWorld" 
   xmlns:types="urn:MyDataTypes" 
   xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/" 
   xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"> 
 
   <wsdl:types> 
     <xsd:schema xmlns:xsd="http://www.w3.org/2000/10/XMLSchema"  
                 targetNamespace="urn:MyDataTypes" 
                 elementFormDefault="qualified"> 
       <xsd:complexType name="telephoneNumberEx"> 
        <xsd:complexContent> 
         <xsd:restriction base="telephoneNumber"> 
          <xsd:sequence> 
            <xsd:element name="countryCode"> 
              <xsd:simpleType> 
                <xsd:restriction base="xsd:string"> 
                  <xsd:pattern value="\d{2}"/> 
                </xsd:restriction> 
              </xsd:simpleType> 
            </xsd:element> 
            <xsd:element name="area"> 
              <xsd:simpleType> 
                <xsd:restriction base="xsd:string"> 
                  <xsd:pattern value="\d{3}"/> 
                </xsd:restriction> 
              </xsd:simpleType> 
            </xsd:element> 
            <xsd:element name="exchange"> 
              <xsd:simpleType> 
                <xsd:restriction base="xsd:string"> 
                  <xsd:pattern value="\d{3}"/> 
                </xsd:restriction> 
              </xsd:simpleType> 
            </xsd:element> 
            <xsd:element name="number"> 
              <xsd:simpleType> 
                <xsd:restriction base="xsd:string"> 
                  <xsd:pattern value="\d{4}"/> 
                </xsd:restriction> 
              </xsd:simpleType> 
            </xsd:element> 
          </xsd:sequence> 
        </xsd:restriction> 
      </xsd:complexContent> 
     </xsd:complexType> 
    </xsd:schema> 
   </wsdl:types>    
 
</wsdl:definitions> 

5.4 Describing the Web Service Interface 

Web service interfaces are generally no different from interfaces defined in object-oriented 
languages. There are input messages (the set of parameters passed into the operation), output 
messages (the set of values returned from the operation), and fault messages (the set of error 



Programming Web Services with SOAP 

page 86 

conditions that may arise while the operation is being invoked). In WSDL, a web service 
interface is known as a port type.  

With this in mind, let's look again at the WSDL that we used earlier to describe the Hello 
World service. The relevant parts are shown in Example 5-7.  

Example 5-7. Describing the Hello World service  

<definitions ...> 
  <wsdl:message name="sayHello_IN"> 
    <part name="name" type="xsd:string" /> 
  </wsdl:message> 
 
  <wsdl:message name="sayHello_Out"> 
    <part name="greeting" type="xsd:string" /> 
  </wsdl:message> 
  
  <wsdl:portType name="HelloWorldInterface"> 
    <wsdl:operation name="sayHello"> 
      <wsdl:input message="tns:sayHello_IN" /> 
      <wsdl:output message="tns:sayHello_OUT" /> 
    </wsdl:operation> 
  </wsdl:portType> 
  ... 
</definitions> 

The portType element defines the interface to the Hello World service. This interface 
consists of a single operation that has both an input and an expected output. The input is a 
message of type sayHello_IN, consisting of a single part called name of type string.  

WSDL portTypes do not support inheritance. It would be nice to be able to do something 
along the lines of Example 5-8, but it's not supported yet.  

Example 5-8. Attempting inheritance with WSDL  

<wsdl:definitions> 
   <wsdl:portType name="HelloWorldInterface"> 
      <wsdl:operation name="sayHello" /> 
   </wsdl:portType> 
   <wsdl:portType name="HelloWorldInterfaceEx" 
          extends="HelloWorldInterface"> 
      <wsdl:operation name="sayGoodbye" /> 
   </wsdl:portType> 
</wsdl:definitions> 

The goal would be to have SayHelloInterfaceEx inherit the sayHello operation defined in 
HelloWorldInterface. You can't do that in WSDL right now, but support for some form of 
inheritance is being considered for future versions of the specification.  

5.5 Describing the Web Service Implementation 

WSDL can also describe the implementation of a given port type. This description is 
generally divided into two parts: the binding, which describes how an interface is bound to 
specific transport and messaging protocols (such as SOAP and HTTP), and the service, which 



Programming Web Services with SOAP 

page 87 

describes the specific network location (or locations) where an interface has been 
implemented.  

5.5.1 Binding Web Service Interfaces 

Just as in Java, COM, or any object-oriented language, interfaces must be implemented in 
order to be useful. In WSDL, the word for implementation is binding : the interfaces are 
bound to specific network and messaging protocols. In WSDL, this is represented by the 
binding element, shown in Example 5-9.  

Example 5-9. Binding an interface to specific protocols  

<wsdl:binding name="HelloWorldBinding"  
              type="tns:HelloWorldInterface"> 
 
 <soap:binding style="rpc"  
   transport="http://schemas.xmlsoap.org/soap/http"/> 
  
 <wsdl:operation name="sayHello"> 
   <soap:operation soapAction="urn:Hello" /> 
       
    <wsdl:input> 
      <soap:body use="encoded" 
                 namespace="..."      
                 encodingStyle="..." /> 
    </wsdl:input> 
    <wsdl:output> 
      <soap:body use="encoded" 
                 namespace="..."   
                 encodingStyle="..." /> 
    </wsdl:output> 
 </wsdl:operation> 
</wsdl:binding> 

This creates a new binding definition, representing a SOAP-over-HTTP implementation of 
the HelloWorldInterface port type. A SOAP-aware web services platform would use this 
information and the information contained in the port type and data type definitions to 
construct the appropriate SOAP envelopes for each operation.  

The only difference between the binding element and the portType element is the addition 
of the <soap:binding />, <soap:operation />, and <soap:body /> elements. These are 
the pieces that tell us how the messages are to be packaged. An instance of the input message 
for the sayHello operation bound to SOAP, using the earlier definition, would look 
something like Example 5-10.  

Example 5-10. Instance of the message  

<s:Envelope xmlns:s="..."> 
  <s:Body> 
    <m:sayHello xmlns:m="urn:Hello"> 
      <name>John</name> 
    </m:sayHello> 
  </s:Body> 
</s:Envelope> 



Programming Web Services with SOAP 

page 88 

The various soap: prefixed elements indicate exactly how the SOAP protocol is to be applied 
to the Hello World interface:  

<soap:binding />  

Defines the transport protocol and the style of the SOAP message. There are two 
styles: RPC and document. RPC indicates a SOAP message conforming to the SOAP 
RPC convention. Document indicates a SOAP messaging carrying some arbitrary 
package of XML data.  

<soap:operation />  

Defines the value of the SOAPAction header when the HTTP transport protocol is 
used.  

<soap:body />  

Specifies how the parts of the abstract WSDL message definition will appear in the 
body of the SOAP message by defining whether the parts are encoded (following the 
rules of some encoding style) or literal (arbitrary XML not necessarily following any 
defined set of encoding rules).  

<soap:fault />  

While not shown in the previous example, this element specifies the contents of the 
SOAP fault detail element. It works exactly like the <soap:body /> element, 
defining how the detail part of the message will appear in the SOAP envelope.  

<soap:header />  

Specifies how parts of the message will appear in the header of the SOAP message.  

<soap:headerfault />  

Specifies how fault information pertaining to specific headers will appear in the 
header of the SOAP fault message returned to the sender.  

<soap:address />  

Specifies the network location where the SOAP web service has been deployed.  

Alternatively, the binding could have specified a different packaging protocol for the 
messages—HTTP-GET, for instance. In this case, the binding element will include elements 
that describe how the message will appear within an HTTP URL. This is shown in Example 
5-11.  

 

 



Programming Web Services with SOAP 

page 89 

Example 5-11. WSDL binding to HTTP-GET  

<wsdl:binding name="HelloWorldBinding"  
              type="tns:HelloWorldInterface"> 
 <http:binding verb="GET"/> 
 <wsdl:operation name="sayHello"> 
    <http:operation location="sayHello" />       
    <wsdl:input> 
       <http:urlEncoded /> 
    </wsdl:input> 
    <wsdl:output> 
       <mime:content type="text/plain" /> 
    </wsdl:output> 
 </wsdl:operation> 
</wsdl:binding> 

Each of the http: and mime: prefixed elements specify exactly how the port type is to be 
implemented. For example, the <http:urlEncoded /> element indicates that all of the parts 
of the input message will appear as query string extensions to the service URL. An instance of 
this binding would appear as:  

http://www.acme.com/sayHello?name=John 

With the response message represented as nothing more than a stream of data with a MIME 
content type of text/plain.  

HTTP/1.1 200 OK 
Server: Microsoft-IIS/5.0 
Content-Type: text/plain; 
Content-Length: 11 
 
Hello James 

5.5.2 Describing the Location of a Web Service 

The final piece of information that a WSDL service implementation description must provide 
is the network location where the web service is implemented. This is done by linking a 
specific protocol binding to a specific network address in the WSDL service and port 
elements, as shown in Example 5-12.  

Example 5-12. Linking a binding to a network address  

<wsdl:service name="HelloWorldService"> 
  <wsdl:port name="HelloWorldPort"  
             binding="tns:HelloWorldBinding"> 
    <soap:address location="http://localhost:8080" /> 
  </wsdl:port> 
</wsdl:service>  

In this example, we see that the Hello World service can be invoked through the use of SOAP 
messages, as defined by the HelloWorldBinding implemented at http://localhost:8080.  

One interesting aspect of WSDL is that a service may define multiple ports, each of which 
may implement a different binding at a different network location. It is possible, for example, 



Programming Web Services with SOAP 

page 90 

to create a single WSDL service description for our three Hello World services written in 
Perl, Java, and .NET, as shown in Example 5-13.  

Example 5-13. Multiple instances of the same server  

<wsdl:service name="HelloWorldService"> 
  <wsdl:port name="HelloWorldPort_Perl" 
             binding="tns:HelloWorldBinding"> 
     <soap:address location="http://localhost:8080" /> 
  </wsdl:port> 
  <wsdl:port name="HelloWorldPort_Java"  
             binding="tns:HelloWorldBinding"> 
     <soap:address location="http://localhost/soap/servlet/rpcrouter" /> 
  </wsdl:port> 
  <wsdl:port name="HelloWorldPort_NET"  
             binding="tns:HelloWorldBinding"> 
     <soap:address location="http://localhost/helloworld.asmx" /> 
  </wsdl:port> 
</wsdl:service> 

At this point the WSDL has described everything that a service consumer needs to know in 
order to invoke the Hello World web service we created in Chapter 3.  

5.6 Understanding Messaging Patterns 

A messaging pattern describes the sequence of messages exchanged between the service 
consumer and the service provider. The web services architecture supports two fundamental 
types of message patterns: single-message exchange and multiple-message exchange.  

The definition of each pattern is based on whether the service provider or the service 
consumer is the first to initiate the exchange of messages, and whether there is an expected 
response to that initial message. Figure 5-3 illustrates two common message patterns.  

Figure 5-3. Two patterns of message exchange between the service provider (P) and the 
service consumer (C) 

 

Understanding these messaging patterns is an essential part of understanding how to build 
effective and useful web services.  

5.6.1 Single-Message Exchange 

A single-message exchange involves just that—a single message exchanged between the 
service consumer and the service provider. They are analogous to functions that do not have 



Programming Web Services with SOAP 

page 91 

return values. The message may originate with either the service provider or the service 
consumer.  

To express a single-message exchange pattern in WSDL, define the abstract operation within 
the portType where the exchange will take place, as shown in Example 5-14.  

Example 5-14. Single-message pattern in WSDL  

<portType name="..."> 
  <operation name="Consumer_to_Provider"> 
    <input message="..." /> 
  </operation> 
  <operation name="Provider_to_Consumer"> 
    <output message="..." /> 
  </operation> 
</portType> 

In WSDL, the <input /> element is used to express the exchange of a message from the 
service consumer to the service provider. The <output /> element is used to express the 
exchange of a message in the opposite direction, from the provider to the consumer.  

5.6.2 Multiple-Message Exchange 

And, obviously, multiple-message exchanges involve two or more messages between the 
service consumer and the service provider. These types of transactions range in complexity 
from simple function-style exchanges (calling a method on an object and returning a single 
result value), to a complex choreography of messages passed back and forth. The current 
version of WSDL, however, is only capable of expressing the simple function-style 
exchanges, as in Example 5-15.  

Example 5-15. Function-style exchanges in WSDL  

<portType name="..."> 
  <operation name="Consumer_to_Provider_to_Consumer"> 
    <input message="..." /> 
    <output message="..." /> 
  </operation> 
  <operation name="Provider_to_Consumer_to_Provider"> 
    <output message="..." /> 
    <input message="..." /> 
  </operation> 
</portType> 

Again, all <input /> messages originate with the service consumer and all <output /> 
messages originate with the service provider.  

5.6.3 Complex Multiple-Message Exchanges 

By itself, WSDL is only capable of describing very rudimentary message exchange patterns. 
WSDL lacks the added ability to specify not only what messages to exchange in any given 
operation, but also the sequencing of operations themselves. Quite often, for example, it may 
be useful to specify that a service consumer must login before attempting to 
deleteAllRecords. WSDL has no way to describe such sequencing rules. A future version 



Programming Web Services with SOAP 

page 92 

of WSDL may allow such sequencing to be defined, either natively or through various 
extensibility mechanisms. Specifications such as IBM's Web Services Flow Language 
(WSFL) and Microsoft's XLANG (pronounced "slang") have also been designed to deal with 
such sequencing issues from the point of view of a workflow process. These specifications 
will not be covered in this book.  

5.6.4 Intermediaries 

In Chapter 2 we discussed actors and message paths. A message path is the path a SOAP 
message takes on its way from the service consumer to the service requester. This path may 
be through several intermediary web services called actors, each of which may do something 
when it receives the message.  

Intermediaries do not change the exchange pattern for a given operation. For example, a 
request-response operation between the service consumer and the service requester is still a 
request-response style operation. The only difference is that the request and the response 
messages may make a few additional stops on their way to their final destination. WSDL does 
not yet provide any facilitities for communicating the path that a message is to take.  

 



Programming Web Services with SOAP 

page 93 

Chapter 6. Discovering SOAP Services 
Once a WSDL description of a web service has been created, a service consumer must be able 
to locate it in order to be able to use it. This is known as discovery, the topic of this chapter. In 
particular, we look at the Universal Description, Discovery, and Integration (UDDI) project 
and the new Web Services Inspection Language.  

WSDL provides a service consumer with all the information they need to interact with a 
service provider. But how can a consumer learn of services to use? The UDDI project is an 
industry effort to define a searchable registry of services and their descriptions so that 
consumers can automatically discover the services they need.  

UDDI has two parts: a registry of all a web service's metadata (including a pointer to the 
WSDL description of a service), and a set of WSDL port type definitions for manipulating 
and searching that registry.  

The latest UDDI specification is Version 2.0. In this book, however, we focus completely on 
Version 1.0. Version 2.0 has not yet been widely implemented and there is very little support 
available for it.  

UDDI is not the only option for service discovery. IBM and Microsoft have recently 
announced the Web Services Inspection Language (WS-Inspection), an XML-based language 
that provides an index of all the web services at a given web location.  

The first part of this chapter will focus primarily on UDDI. The last half will briefly introduce 
WS-Inspection and demonstrate its role inService Discovery.  

6.1 The UDDI Registry 

The UDDI registry allows a business to publicly list a description of itself and the services it 
provides. Potential consumers of those services can locate them based on taxonomical 
information, such as what the service does or what industry the service targets.  

The registry itself is defined as a hierarchy of business, service, and binding descriptions 
expressed in XML.  

6.1.1 Business Entity 

The business entity structure represents the provider of web services. Within the UDDI 
registry, this structure contains information about the company itself, including contact 
information, industry categories, business identifiers, and a list of services provided. Example 
6-1 shows a fictitious business's UDDI registry entry.  

 

 

 



Programming Web Services with SOAP 

page 94 

Example 6-1. A UDDI business entry  

<businessEntity businessKey="uuid:C0E6D5A8-C446-4f01-99DA-70E212685A40" 
                operator="http://www.ibm.com" 
                authorizedName="John Doe"> 
   <name>Acme Company</name> 
   <description> 
     We create cool Web services 
   </description> 
   <contacts> 
     <contact useType="general info"> 
       <description>General Information</description> 
       <personName>John Doe</personName> 
       <phone>(123) 123-1234</phone> 
       <email>jdoe@acme.com</email> 
     </contact> 
   </contacts> 
   <businessServices> 
      ... 
   </businessServices> 
   <identifierBag> 
      <keyedReference  
           TModelKey="UUID:8609C81E-EE1F-4D5A-B202-3EB13AD01823"  
           name="D-U-N-S"  
           value="123456789" /> 
   </identifierBag> 
   <categoryBag> 
      <keyedReference  
           TModelKey="UUID:C0B9FE13-179F-413D-8A5B-5004DB8E5BB2"  
           name="NAICS"  
           value="111336" /> 
   </categoryBag> 
</businessEntity> 

6.1.2 Business Services 

The business service structure represents an individual web service provided by the business 
entity. Its description includes information on how to bind to the web service, what type of 
web service it is, and what taxonomical categories it belongs to. Example 6-2 show a possible 
business service structure for the Hello World web service.  

Example 6-2. Hello World business structure in UDDI  

<businessService serviceKey="uuid:D6F1B765-BDB3-4837-828D-8284301E5A2A"  
                 businessKey="uuid:C0E6D5A8-C446-4f01-99DA-70E212685A40"> 
   <name>Hello World Web Service</name> 
   <description>A friendly Web service</description> 
   <bindingTemplates> 
      ... 
   </bindingTemplates> 
   <categoryBag /> 
</businessService> 

Notice the use of the Universally Unique Identifiers (UUIDs) in the businessKey and 
serviceKey attributes. Every business entity and business service is uniquely identified in all 
UDDI registries through the UUID assigned by the registry when the information is first 
entered.  



Programming Web Services with SOAP 

page 95 

6.1.3 Binding Templates 

Binding templates are the technical descriptions of the web services represented by the 
business service structure. A single business service may have multiple binding templates. 
The binding template represents the actual implementation of the web service (it is roughly 
equivalent to the service element we saw in WSDL). Example 6-3 shows a binding template 
for Hello World.  

Example 6-3. A binding template for Hello World  

<bindingTemplate serviceKey="uuid:D6F1B765-BDB3-4837-828D-8284301E5A2A" 
                 bindingKey="uuid:C0E6D5A8-C446-4f01-99DA-70E212685A40"> 
  <description>Hello World SOAP Binding</description> 
  <accessPoint URLType="http"> 
    http://localhost:8080 
  </accessPoint> 
  <TModelInstanceDetails> 
    <TModelInstanceInfo  
           TModelKey="uuid:EB1B645F-CF2F-491f-811A-4868705F5904"> 
      <instanceDetails> 
        <overviewDoc> 
          <description> 
            references the description of the  
            WSDL service definition 
          </description> 
          <overviewURL> 
            http://localhost/helloworld.wsdl 
          </overviewURL> 
        </overviewDoc> 
      </instanceDetails> 
    </TModelInstanceInfo> 
  </TModelInstanceDetails> 
</bindingTemplate> 

Because a business service may have multiple binding templates, the service may specify 
different implementations of the same service, each bound to a different set of protocols or a 
different network address.  

6.1.4 TModels 

A TModel is a way of describing the various business, service, and template structures stored 
within the UDDI registry. Any abstract concept can be registered within UDDI as a TModel. 
For instance, if you define a new WSDL port type, you can define a TModel that represents 
that port type within UDDI. Then, you can specify that a given business service implements 
that port type by associating the TModel with one of that business service's binding templates.  

A TModel representing the HelloWorldInterface port type looks like Example 6-4.  

 

 

 

 



Programming Web Services with SOAP 

page 96 

Example 6-4. A TModel for Hello World  

<TModel TModelKey="uuid:xyz987..." 
        operator="http://www.ibm.com" 
        authorizedName="John Doe"> 
  <name>HelloWorldInterface Port Type</name> 
  <description> 
    An interface for a friendly Web service 
  </description> 
  <overviewDoc> 
    <overviewURL> 
      http://localhost/helloworld.wsdl 
    </overviewURL> 
  </overviewDoc> 
</TModel> 

6.1.5 Federated UDDI Registries 

At its core, UDDI is comprised of a global network of linked (federated) registries that all 
implement the same SOAP-based web service interface for publishing and locating web 
services. Figure 6-1 illustrates this.  

Figure 6-1. UDDI registries can be linked to provide a rudimentary distributed search capability 

 

6.1.6 Private UDDI Registries 

As an alternative to using the public federated network of UDDI registries available on the 
Internet, companies or industry groups may choose to implement their own private UDDI 
registries. These exclusive services would be designed for the sole purpose of allowing 
members of the company or of the industry group to share and advertise services amongst 
themselves.  

The key to this, however, is that whether the UDDI registry is part of the global federated 
network or a privately owned and operated registry, the one thing that ties it all together is a 
common web services API for publishing and locating businesses and services advertised 
within the UDDI registry.  

6.2 The UDDI Interfaces 

A registry is no use without some way to access it. The UDDI standard specifies two SOAP 
interfaces for service consumers and service providers to interact with the registry. Service 
consumers use InquireSOAP to find a service, and service providers use PublishSOAP to list 
a service. These services are described with WSDL. The following explanation of the SOAP 



Programming Web Services with SOAP 

page 97 

APIs refers to the WSDL, but abbreviates some of the repetitive parts. The full WSDL 
specification of the UDDI API is given in Appendix B.  

The core of the UDDI interfaces is the UDDI XML Schema definitions. These define the 
fundamental UDDI data types, for instance, the businessDetail, which communicates 
detailed information about registered business entities. The UDDI XML Schema must be 
imported into the WSDL description from its network location at 
http://www.uddi.org/schema/2001/uddi_v1.xsd, as shown in Example 6-5.  

Example 6-5. Importing the WSDL description  

  
 <import namespace="urn:uddi-org:api"            
 location="http://www.uddi.org/schema/2001/uddi_v1.xsd" 
 /> 

6.2.1 The Publisher Interface 

The Publisher interface defines sixteen operations for a service provider managing its entries 
in the UDDI registry:  

get_authToken  

Retrieves an authorization token. It works exactly like the authorization token we used 
in the Publisher example in Chapter 3. All of the Publisher interface operations require 
that a valid authorization token be submitted with the request.  

discard_authToken  

Tells the UDDI registry to no longer accept a given authorization token. This step is 
equivalent to logging out of the system.  

save_business  

Creates or updates a business entity's information contained in the UDDI registry.  

save_service  

Creates or updates information about the web services that a business entity provides.  

save_binding  

Creates or updates the technical information about a web service's implementation.  

save_TModel  

Creates or updates the registration of abstract concepts managed by the UDDI registry.  

delete_business  

Removes the given business entities from the UDDI registry completely. 



Programming Web Services with SOAP 

page 98 

delete_service  

Removes the given web services from the UDDI registry completely. 

delete_binding  

Removes the given web service technical details from the UDDI registry.  

delete_TModel  

Removes the specified TModels from the UDDI registry.  

get_registeredInfo  

Returns a summary of everything the UDDI registry is currently keeping track of for 
the user, including all businesses, all services, and all TModels.  

In the WSDL, these methods correspond to messages based on the underlying UDDI data 
types, as in Example 6-6.  

Example 6-6. UDDI method definition  

  <message name="bindingDetail"> 
   <part name="body"  
         element="uddi:bindingDetail" /> 
  </message> 
 
  <message name="businessDetail"> 
   <part name="body"  
         element="uddi:businessDetail" /> 
  </message> 

The other standard messages are similarly defined. 

Finally, we define the port type itself, creating the interface through which modifications can 
be made to the UDDI registry. Again, only a few definitions have been shown in full detail in 
Example 6-7, as they all follow the same pattern.  

Example 6-7. Representative Publisher operation definitions  

  <portType name="PublishSoap"> 
    <operation name="delete_binding"> 
      <input  message="tns:delete_binding" /> 
      <output message="tns:dispositionReport" /> 
      <fault  name="error"  
              message="tns:dispositionReport" /> 
    </operation> 
 
    <operation name="delete_business"> 
      <input  message="tns:delete_business" /> 
      <output message="tns:dispositionReport" /> 
      <fault  name="error"  
              message="tns:dispositionReport" /> 
    </operation> 
 



Programming Web Services with SOAP 

page 99 

    <operation name="delete_service"> 
      <input  message="tns:delete_service" /> 
      <output message="tns:dispositionReport" /> 
      <fault  name="error"  
              message="tns:dispositionReport" /> 
    </operation> 
 
    <operation name="delete_TModel"> ... 
    <operation name="discard_authToken"> ... 
    <operation name="get_authToken"> ... 
    <operation name="get_registeredInfo"> ... 
    <operation name="save_binding"> ... 
    <operation name="save_business"> ... 
    <operation name="save_service"> ... 
    <operation name="save_TModel"> ... 
    <operation name="validate_categorization"> ... 
  </portType> 
</definitions> 

6.2.2 The Inquiry Interface 

The inquiry interface defines ten operations for searching the UDDI registry and retrieving 
details about specific registrations:  

find_binding  

Returns a list of web services that match a particular set of criteria based on the 
technical binding information.  

find_business  

Returns a list of business entities that match a particular set of criteria.  

find_ltservice  

Returns a list of web services that match a particular set of criteria.  

find_TModel  

Returns a list of TModels that match a particular set of criteria.  

get_bindingDetail  

Returns the complete registration information for a particular web service binding 
template.  

get_businessDetail  

Returns the registration information for a business entity, including all services that 
entity provides.  

 
 



Programming Web Services with SOAP 

page 100 

get_businessDetailExt  

Returns the complete registration information for a business entity. 

get_serviceDetail  

Returns the complete registration information for a web service. 

get_TModelDetail  

Returns the complete registration information for a TModel.  

InquireSOAP defines the web service interface for searching the UDDI registry. Example 6-8 
shows the method definitions for find_binding, find_business, and find_service.  

Example 6-8. InquireSOAP  

  <portType name="InquireSoap"> 
    <operation name="find_binding"> 
      <input  message="tns:find_binding" /> 
      <output message="tns:bindingDetail" /> 
      <fault  name="error"  
              message="tns:dispositionReport" /> 
    </operation> 
 
    <operation name="find_business"> 
      <input  message="tns:find_business" /> 
      <output message="tns:businessList" /> 
      <fault  name="error"  
              message="tns:dispositionReport" /> 
    </operation> 
 
    <operation name="find_service"> 
      <input  message="tns:find_service" /> 
      <output message="tns:serviceList" /> 
      <fault  name="error"  
              message="tns:dispositionReport" /> 
    </operation>     

The message definitions are as straightforward as in the Publisher interface. Example 6-9 
shows the first three. Consult Appendix C for the full list.  

Example 6-9. Inquiry message definitions  

  <message name="authToken"> 
    <part name="body"  
          element="uddi:authToken" /> 
  </message> 
 
  <message name="bindingDetail"> 
    <part name="body"  
          element="uddi:bindingDetail" /> 
  </message> 
 
 
 



Programming Web Services with SOAP 

page 101 

  <message name="businessDetail"> 
    <part name="body"  
          element="uddi:businessDetail" /> 
  </message> 

6.3 Using UDDI to Publish Services 

There are several toolkits, both open and closed source, that provide an implementation of the 
UDDI Publish and Inquiry interfaces. We'll walk you through using an open source package 
from IBM called UDDI4J (UDDI for Java). You can download this package from 
http://oss.software.ibm.com/developerworks/projects/uddi4j.  

The steps for using UDDI4J to publish web services are:  

1. Register the service provider as a UDDI business entity. 
2. Specify the categories and identifiers that apply to your business entity entry.  
3. Register the web service as a UDDI business service. 
4. Specify the categories that apply to your business service entry. 
5. Register the implementation details of your web service, including the network 

location where the service is deployed.  

The UDDI data model lets us do all these steps in a single operation. 

6.3.1 Registration Program 

A Java program to publish the Hello World service is given in Appendix C. We'll step you 
through the highlights, which demonstrate how to use the UDDI4J toolkit.  

You use UDDI4J through a proxy object, which handles the underlying SOAP encoding and 
decoding. You should initialize the proxy to the UDDI registry as shown in Example 6-10.  

Example 6-10. Initializing the UDDI Proxy  

UDDIProxy proxy = new UDDIProxy(  ); 
proxy.setPublishURL("https://www-
3.ibm.com/services/uddi/testregistry/protect/ 
    publishapi"); 

UDDI4J defines classes for the UDDI data types. They have straightforward accessors, so you 
prepare the business entity record as in Example 6-11.  

Example 6-11. Specifying the business entity  

BusinessEntity business = new BusinessEntity(  ); 
business.setName("O'Reilly and Associates"); 

Similarly you can specify the categories and identifiers for this business entity. In Example 6-
12, we use a North American Industry Classification System (NAICS) category code of 
11194.  

 



Programming Web Services with SOAP 

page 102 

Example 6-12. Specifying categories and identifiers for the business entity  

CategoryBag cbag = new CategoryBag(  ); 
KeyedReference cat = new KeyedReference(  ); 
cat.setTModelKey("UUID:C0B9FE13-179F-413D-8A5B-5004DB8E5BB2"); 
cat.setKeyName("NAICS"); 
cat.setKeyValue("11194"); 
cbag.getKeyedReferenceVector(  ).add(cat); 
business.setCategoryBag(cbag); 

In Example 6-13, we prepare the identifiers for the business entity. We specify a Dun and 
Bradstreet number that may be used to identify the business entity (it's fictitious, but you get 
the idea). Because you can have more than one identifier for a business, UDDI4J defines an 
IdentifierBag class that holds the individual identifiers.  

Example 6-13. Business entity identifiers  

IdentifierBag ibag = new IdentifierBag(  ); 
KeyedReference id = new KeyedReference(  ); 
id.setTModelKey("UUID:8609C81E-EE1F-4D5A-B202-3EB13AD01823"); 
id.setKeyName("D-U-N-S"); 
id.setKeyValue("1234567890"); 
ibag.getKeyedReferenceVector(  ).add(id); 
business.setIdentifierBag(ibag); 

Prepare the business service record as in Example 6-14.  

Example 6-14. Initializing the business service record  

BusinessServices services = new BusinessServices(  ); 
BusinessService service = new BusinessService(  ); 
service.setName("Hello World Service"); 
services.getBusinessServiceVector(  ).add(service); 
business.setBusinessServices(services); 

Example 6-15 shows the initialization of the binding templates. The binding template 
specifies the protocols implemented by a service and the network location. It is the UDDI 
equivalent to the WSDL binding and service port definition.  

Example 6-15. Initializing the binding templates  

BindingTemplates bindings = new BindingTemplates(  ); 
BindingTemplate binding = new BindingTemplate(  ); 
AccessPoint accessPoint = new AccessPoint(  ); 
accessPoint.setText("http://localhost:8080"); 
accessPoint.setURLType("HTTP"); 
binding.setAccessPoint(accessPoint); 
bindings.getBindingTemplateVector(  ).add(binding); 
service.setBindingTemplates(bindings);         

Example 6-16 logs onto the UDDI registry and registers the business entity.  

 

 



Programming Web Services with SOAP 

page 103 

Example 6-16. Registering the business entity  

AuthToken token = proxy.get_authToken("james", "semaj"); 
Vector businesses = new Vector(  ); 
businesses.add(business); 
proxy.save_business(token.getAuthInfo().getText(  ), businesses); 

6.3.2 How to Register 

You'll need two things before you can use the registration program:  

1. You must have a valid user account with the UDDI registry you choose. You acquire 
one by registering through the HTML-form interface provided by the specific UDDI 
registry provider.  

2. You must have Apache SOAP Version 2.1 or higher in your Java classpath (UDDI4J 
uses Apache SOAP). To meet this requirement, make sure that soap.jar, mail.jar, and 
activation.jar are all in your classpath.  

There are three common situations that cause an error registering a service:  

1. A company may already exist with the specified name. 
2. There may be some problem with the information defined. 
3. You might not have proper permissions to perform the requested action. 

6.3.3 The SOAP Envelope for the Registration 

The SOAP envelope sent to the UDDI registry includes all of the registration information for 
the business entity, as seen in Example 6-17.  

Example 6-17. SOAP envelope for the registration  

<SOAP-ENV:Envelope  
    xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"  
    xmlns:xsi="http://www.w3.org/1999/XMLSchema-instance"  
    xmlns:xsd="http://www.w3.org/1999/XMLSchema"> 
  <SOAP-ENV:Body> 
 
    <save_business generic="1.0" xmlns="urn:uddi-org:api"> 
      <authInfo>test</authInfo> 
      <businessEntity> 
        <name>O'Reilly and Associates</name> 
        <businessServices> 
         <businessService> 
          <name>Hello World Service</name> 
          <bindingTemplates> 
           <bindingTemplate> 
             <accessPoint  
                  urlType="HTTP">http://localhost:8080</accessPoint> 
           </bindingTemplate> 
          </bindingTemplates> 
         </businessService> 
        </businessServices> 
 
 
 
 



Programming Web Services with SOAP 

page 104 

        <identifierBag> 
         <keyedReference keyName="D-U-N-S"  
                keyValue="1234567890"  
                TModelKey="UUID:8609C81E-EE1F-4D5A-B202-3EB13AD01823"/> 
        </identifierBag> 
        <categoryBag> 
         <keyedReference keyName="NAICS"  
                keyValue="11194"  
                TModelKey="UUID:C0B9FE13-179F-413D-8A5B-5004DB8E5BB2"/> 
        </categoryBag> 
     </businessEntity> 
   </save_business> 
</SOAP-ENV:Body> 
 
</SOAP-ENV:Envelope> 

6.3.4 Other Issues 

Operations like save_business are destructive. In other words, when you tell the UDDI 
registry to save a business entity, the registry will use the information you provide to replace 
all other information on that business entity that exists in the registry. There are two ways 
around this:  

1. Retrieve the complete business entity record from the UDDI registry prior to making 
any changes to the information (e.g., publishing a new service). Make all changes 
directly to the record received from the registry. Saving stores your modified record.  

2. Save only the specific parts you are changing. For example, if you already have a 
business entity registration at a UDDI registry, and all you want to do is register a new 
service, then you should use the save_service operation rather than save_business. 
This cuts down on the amount of data being moved around and compartmentalizes the 
changes being made.  

Example 6-18 uses save_service to localize changes.  

Example 6-18. Changing only some fields in the registry  

// Initialize the proxy to the UDDI registry 
UDDIProxy proxy = new UDDIProxy(  ); 
proxy.setPublishURL("https://www-
3.ibm.com/services/uddi/testregistry/protect/publishapi"); 
 
// Prepare the business service record 
BusinessServices services = new BusinessServices(  ); 
BusinessService service = new BusinessService(  ); 
service.setBusinessKey("uuid:C0E6D5A8-C446-4f01-99DA-70E212685A40"); 
service.setName("Hello World Service"); 
services.getBusinessServiceVector(  ).add(service); 
 
// Prepare the binding templates 
BindingTemplates bindings = new BindingTemplates(  ); 
BindingTemplate binding = new BindingTemplate(  ); 
AccessPoint accessPoint = new AccessPoint(  ); 
accessPoint.setText("http://localhost:8080"); 
accessPoint.setURLType("HTTP"); 
binding.setAccessPoint(accessPoint); 
bindings.getBindingTemplateVector(  ).add(binding); 
service.setBindingTemplates(bindings); 



Programming Web Services with SOAP 

page 105 

 
// Logon to UDDI registry and register 
AuthToken token = proxy.get_authToken("username", "password"); 
Vector services = new Vector(  ); 
services.add(service); 
proxy.save_service(token.getAuthInfo().getText(  ), services); 

The only real difference is the absence of the business entity and the addition of the 
service.setBusinessKey line. This tells the UDDI registry which business entity to update. 
This ID is generated automatically by the UDDI registry and returned to the client when the 
business entity registration is created.  

6.4 Using UDDI to Locate Services 

UDDI4J can also be used to locate services that have been published within a UDDI registry. 
The process involves the use of several find operations such as find_business, 
find_service, and find_binding.  

Appendix C has a program to search for a business entity and navigate the results of that 
operation to find out information about the services provided by that entity. We'll discuss the 
highlights.  

FindQualifiers modifies the search operations by indicating whether case-sensitive 
searching is required, whether the results should be sorted ascending or descending, and 
whether exact name matching is required. The last argument in all of the find operations is the 
maximum number of results to return. Passing in the number zero indicates that all matching 
results should be returned. Example 6-19 sets up FindQualifiers to look for the O'Reilly 
business.  

Example 6-19. FindQualifiers to look for O'Reilly  

FindQualifiers fqs = new FindQualifiers(  ); 
FindQualifier fq = new FindQualifier(  ); 
fq.setText(FindQualifier.sortByNameAsc); 
BusinessList list = proxy.find_business("O'Reilly", fqs, 0); 

Matching business entities are returned along with a listing of the services offered. The listing 
includes the name and unique identifier of the service. Use the UUID to drill down and get 
more information about the service, as in Example 6-20.  

Example 6-20. Fetching more information about the service  

BusinessInfos infos = list.getBusinessInfos(  ); 
for (Iterator i = infos.getBusinessInfoVector().iterator(  ); i.hasNext(  
);) {  
    BusinessInfo info = (BusinessInfo)i.next(  ); 
    System.out.println("Business name: " + info.getName(  )); 
  for (Iterator j = 
info.getServiceInfos().getServiceInfoVector().iterator(); 
       j.hasNext();) { 
        ServiceInfo sinfo = (ServiceInfo)j.next(  ); 
        System.out.println("\tService name: " + sinfo.getName(  )); 
    } 
} 



Programming Web Services with SOAP 

page 106 

To retrieve more specific information about a given service, use the get_serviceDetail 
operation and pass in the unique identifier of the service you are requesting:  

ServiceDetail detail = proxy.get_serviceDetail(serviceKey); 

Using the information contained in the service detail, a client can connect to and invoke the 
web service.  

6.5 Generating UDDI from WSDL 

Because there are some variances and overlapping in how WSDL and UDDI support the 
description of web services, the industry coalition that is driving UDDI has released a 
document describing the best practices to follow when using UDDI and WSDL together to 
enable dynamic discovery of web service descriptions. It basically defines how to use a 
WSDL description to generate the UDDI registration for a service.  

First, divide the WSDL description into two parts (two separate WSDL files). The first file 
becomes the interface description. It includes the data types, messages, port types, and 
bindings. The second file is known as the implementation description. It includes only the 
service definition. The implementation description imports the interface description using the 
<wsdl:import /> mechanism.  

6.5.1 Interface Description 

Example 6-21 is the interface description for our Hello World example.  

Example 6-21. HelloWorldInterfaceDescription.wsdl  

<?xml version="1.0" encoding="UTF-8"?> 
<wsdl:definitions name="HelloWorldInterfaceDescription" 
   targetNamespace="urn:HelloWorldInterface" 
   xmlns:tns="urn:HelloWorldInterface" 
   xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/" 
   xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"> 
  <wsdl:message name="sayHello_IN"> 
    <part name="name" type="xsd:string" /> 
  </wsdl:message> 
  <wsdl:message name="sayHello_Out"> 
    <part name="greeting" type="xsd:string" /> 
  </wsdl:message> 
 
  <wsdl:portType name="HelloWorldInterface"> 
    <wsdl:operation name="sayHello"> 
      <wsdl:input message="tns:sayHello_IN" /> 
      <wsdl:output message="tns:sayHello_OUT" /> 
    </wsdl:operation> 
  </wsdl:portType> 
 
  <wsdl:binding name="HelloWorldBinding"  
                type="tns:HelloWorldInterface"> 
    <soap:binding style="rpc"  
     transport="http://schemas.xmlsoap.org/soap/http"  
    /> 
    <wsdl:operation name="sayHello"> 
      <soap:operation soapAction="urn:Hello" /> 



Programming Web Services with SOAP 

page 107 

      <wsdl:input> 
        <soap:body use="encoded" 
 
        namespace="urn:Hello"  
        encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" /> 
      </wsdl:input> 
      <wsdl:output> 
        <soap:body use="encoded" 
                   namespace="urn:Hello"   
                   
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" /> 
      </wsdl:output> 
    </wsdl:operation> 
  </wsdl:binding> 
</wsdl:definitions> 

6.5.2 Implementation Description 

Example 6-22 is the WSDL implementation description for our Hello World example.  

Example 6-22. HelloWorldImplementationDescription.wsdl  

<?xml version="1.0" encoding="UTF-8"?> 
<wsdl:definitions name="HelloWorldImplementationDescription" 
   targetNamespace="urn:HelloWorldImplementation" 
   xmlns:tns="urn:HelloWorldImplementation" 
   xmlns:hwi="urn:HelloWorldInterface" 
   xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/" 
   xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">   
 
  <wsdl:import namespace="urn:HelloWorldInterface" 
               location="HelloWorldInterfaceDescription.wsdl" /> 
   
  <wsdl:service name="HelloWorldService"> 
    <wsdl:port name="HelloWorldPort"  
               binding="hwi:HelloWorldBinding"> 
      <!-- location of the Perl Hello World Service --> 
      <soap:address  
        location="http://localhost:8080" /> 
    </wsdl:port> 
  </wsdl:service>  
 
</wsdl:definitions> 

6.5.3 Registering 

Register the interface description as a UDDI TModel. You've seen NAICS categories and D-
U-N-S identifiers as TModels. Another type of TModel is a WSDL description of a service 
interface.  

To register the interface as a TModel, create a TModel structure and use the save_TModel 
operation as in Example 6-23.  

Example 6-23. Registering the interface description as a TModel  

TModel TModel = new TModel(  ); 
TModel.setName("Hello World Interface"); 



Programming Web Services with SOAP 

page 108 

The OverviewDoc is a pointer to the interface WSDL description, held on a publicly available 
web server. Example 6-24 shows how to set this.  

Example 6-24. Setting the OverviewDoc  

OverviewDoc odoc = new OverviewDoc(  ); 
// localhost == the name of the server where  
// the WSDL can be accessed 
odoc.setOverviewURL("http://localhost/HelloWorldInterface.wsdl"); 
TModel.setOverviewDoc(odoc); 

Indicate that this TModel represents a WSDL interface description by creating a category 
reference with a TModelKey of uuid:C1ACF26D-9672-4404-9D70-39B756E62AB4, a key 
name of uddi-org:types, and a key value of wsdlSpec, as shown in Example 6-25.  

Example 6-25. Marking the TModel as WSDL  

CategoryBag cbag = new CategoryBag(  ); 
KeyedReference kr = new KeyedReference(  ); 
kr.setTModelKey("uuid:C1ACF26D-9672-4404-9D70-39B756E62AB4"); 
kr.setKeyName("uddi-org:types"); 
kr.setKeyValue("wsdlSpec"); 

Example 6-26 shows how to call the save_TModel operation to register the TModel.  

Example 6-26. Calling the save_TModel operation 

UDDIProxy proxy = new UDDIProxy(  ); 
proxy.setPublishURL( 
"https://www-3.ibm.com/services/uddi/ 
                        testregistry/protect/publishapi"); 
AuthToken token = proxy.get_authToken("james", "semaj"); 
Vector TModels = new Vector(  ); 
TModels.add(TModel); 
TModelDetail detail = proxy.save_TModel(token.getAuthInfo().getText(  ), 
TModels); 

The save_TModel operation returns a copy of the TModel record just registered, including the 
automatically generated unique identifier. We keep that unique key for the next step, as 
shown in Example 6-27.  

Example 6-27. Retaining unique key  

TModel = (TModel)detail.getTModelVector(  ).elementAt(0); 
String TModelKey = TModel.getTModelKey(  ); 

Now say what the service is and where it lives, as in Example 6-28.  

Example 6-28. Defining a service, binding template, and access point for the service  

BusinessService service = new BusinessService(  ); 
service.setBusinessKey(businessKey); 
service.setName("HelloWorldService"); 
 
BindingTemplates templates = new BindingTemplates(  ); 
BindingTemplate template = new BindingTemplate(  ); 



Programming Web Services with SOAP 

page 109 

templates.getBindingTemplateVector(  ).add(template); 
service.setBindingTemplates(templates); 
 
AccessPoint accessPoint = new AccessPoint(  ); 
accessPoint.setURLType("HTTP"); 
accessPoint.setText("http://localhost:8080"); 
template.setAccessPoint(accessPoint); 

Example 6-29 specifies that this service is an instance of the HelloWorld-
InterfaceDescription TModel just registered. The variable TModelKey is the unique 
identifier fetched in Example 6-27.  

Example 6-29. Associate service with TModel  

TModelInstanceDetails details = new TModelInstanceDetails(  ); 
TModelInstanceInfo instance = new TModelInstanceInfo(  ); 
instance.setTModelKey(TModelKey); 

Provide a link to the WSDL implementation description as in Example 6-30. This, like the 
interface description, needs to be located at some publicly available web address.  

Example 6-30. Linking to WSDL implementation description  

InstanceDetails instanceDetails = new InstanceDetails(  ); 
OverviewDoc odoc = new OverviewDoc(  ); 
odoc.setOverviewURL("http://localhost/HelloWorldImplementationDescription.w
sdl"); 
instanceDetails.setOverviewDoc(odoc); 
instance.setInstanceDetails(instanceDetails); 
details.getTModelInstanceInfoVector(  ).add(instance); 
template.setTModelInstanceDetails(details); 

Once the registration is prepared, initialize the proxy and call the save_service operation to 
register the business service. Example 6-31 shows this, in abbreviated form. See Appendix C 
for the full source.  

Example 6-31. Saving the service information  

UDDIProxy proxy = new UDDIProxy(  ); 
// ...abbreviated 
proxy.save_service(authInfo, services); 

By following these guidelines, WSDL and UDDI can be made to work very well together.  

6.6 Using UDDI and WSDL Together 

Once the WSDL-defined web service is published into a UDDI registry, it is possible to build 
highly dynamic service proxies. The IBM Web Services ToolKit, for example, provides built-
in support for locating services in UDDI and invoking those services through a dynamically 
configured WSDL-based proxy.  

To show you more of what is going on behind the scenes, however, we're going to use 
UDDI4J and WSIF together to implement the same type of functionality.  



Programming Web Services with SOAP 

page 110 

The steps are simple: 

1. Locate the Hello World service in the UDDI registry. 
2. Access the WSDL description for the Hello World service. 
3. Invoke the Hello World service. 

All this is done on the client side. Nothing has to be done on the server for this to work.  

First, write the code to locate the Hello World service in UDDI. Example 6-32 searches with 
FindQualifiers and takes the first result offered by the UDDI server.  

Example 6-32. Locating a Hello World service  

UDDIProxy proxy = new UDDIProxy(  ); 
FindQualifiers fq = new FindQualifiers(  ); 
 
ServiceList list = proxy.find_service(businessKey, "HelloWorldService", fq, 
0); 
ServiceInfos infos = list.getServiceInfos(  ); 
 
ServiceInfo info = (ServiceInfo)infos.getServiceInfoVector(  
).elementAt(0); 
String serviceKey = info.getServiceKey(  ); 

With the unique identifier of the matching service, Example 6-33 goes to the UDDI registry to 
retrieve the business service. The binding template for that service then identifies the 
implementation to use.  

Example 6-33. Locating an implementation  

ServiceDetail detail = proxy.get_serviceDetail(serviceKey); 
BusinessService service = (BusinessService)detail. 
    getBusinessServiceVector(  ).elementAt(0); 
 
BindingTemplate template = (BindingTemplate)service. 
    getBindingTemplates().getBindingTemplateVector(  ).elementAt(0); 
TModelInstanceDetails details = template.getTModelInstanceDetails(  ); 
TModelInstanceInfo instance = details.getTModelInstanceInfoVector(  
).elementAt(0); 
InstanceDetails instanceDetails  = instance.getInstanceDetails(  ); 
 
OverviewDoc odoc = instanceDetails.getOverviewDoc(  ); 
String wsdlpath = odoc.getOverviewURLString(  ); 

WSDL in hand, Example 6-34 uses WSIF to invoke the web service.  

Example 6-34. Invoking the web service with WSIF  

Definition def = WSIFUtils.readWSDL(null, wsdlPath); 
Service service = WSIFUtils.selectService(def, null, "HelloWorldService"); 
PortType portType = WSIFUtils.selectPortType(def, null, 
"HelloWorldInterface"); 
 
WSIFDynamicPortFactory dpf = new WSIFDynamicPortFactory(def, service, 
portType); 
WSIFPort port = dpf.getPort(  ); 



Programming Web Services with SOAP 

page 111 

Typically, message creation is done behind the scenes, out of the sight of the programmer. 
Example 6-35 shows this.  

Example 6-35. Creating messages with WSIF  

WSIFMessage input = port.createInputMessage(  ); 
WSIFMessage output = port.createOutputMessage(  ); 
WSIFMessage fault = port.createFaultMessage(  ); 

Example 6-36 calls the Hello World service. 

Example 6-36. Invoking Hello World  

WSIFPart namePart = new WSIFJavaPart(String.class, args[0]); 
input.setPart("name", namePart); 
 
System.out.println("Calling the SOAP Server to say hello!\n"); 
System.out.print("The SOAP Server says: "); 
port.executeRequestResponseOperation("sayHello", input, output, fault); 
 
WSIFPart greetingPart = output.getPart("greeting"); 
String greeting = (String)greetingPart.getJavaValue(  ); 
System.out.print(greeting + "\n"); 

Running this produces the same output we saw in the other Hello World services examples 
(shown in Example 6-37).  

Example 6-37. Output from the WSDL, UDDI, and WSIF Hello World client  

C:\book>java wsdluddiExample James 
Calling the SOAP Server to say hello! 
 
The SOAP Server says: Hello James 

The program dynamically discovered, inspected, and bound to the Hello World web services. 
We didn't program the client knowing which implementation we'd use. While the client was 
in Java, there's no reason we couldn't have written it in any language. C#, Visual Basic, and 
Perl all have UDDI and WSDL extensions.  

6.7 The Web Service Inspection Language (WS-Inspection) 

While UDDI is the best-known mechanism for service discovery, it is neither the only 
mechanism nor always the best tool for the job. In many cases, the complexity and scope of 
UDDI is overkill if all that is needed is a simple pointer to a WSDL document or a services 
URL endpoint. Recognizing this, IBM and Microsoft got together and worked out a proposal 
for a new Web Service Inspection Language that can be used to create a simple index of 
service descriptions at a given network location.  

An example WS-Inspection document is illustrated in Example 6-38. It contains a reference to 
a single service (Hello World) with two descriptions—one WSDL-based description and one 
UDDI-based description.  

 



Programming Web Services with SOAP 

page 112 

Example 6-38. A simple WS-Inspection document 

<?xml version="1.0"?> 
<inspection 
   xmlns="http://schemas.xmlsoap.org/ws/2001/10/inspection/" 
   xmlns:uddi="http://schemas.xmlsoap.org/ws/2001/10/inspection/uddi/"> 
 
<service> 
 <abstract>The Hello World Service</abstract> 
 
 <description 
   referencedNamespace="http://schemas.xmlsoap.org/wsdl/" 
   location="http://example.com/helloworld.wsdl"/> 
 
 <description referencedNamespace="urn:uddi-org:api"> 
   <uddi:serviceDescription 
      location="http://www.example.com/uddi/inquiryapi"> 
   <uddi:serviceKey> 
      4FA28580-5C39-11D5-9FCF-BB3200333F79 
    </uddi:serviceKey> 
   </uddi:serviceDescription> 
  </description> 
 </service> 
 
<link 
   referencedNamespace="http://schemas.xmlsoap.org/ws/2001/10/inspection/" 
   location="http://example.com/moreservices.wsil"/> 
 
</inspection> 

Once created, WS-Inspection documents should be placed in a well-known or 
easilydiscoverable location on your web server. In fact, the WS-Inspection specification 
defines that, at a minimum, an inspection document called Inspection.wsil should be available 
at the root the server: for instance, http://www.ibm.com/inspection.wsil. This allows potential 
clients of those services to locate inspection documents easily and thereby discover the 
services being advertised.  

The relationship between UDDI and WS-Inspection is simple. UDDI is a phone book. If you 
need a plumber to fix the pipes under your kitchen sink but do not know of a good one to call, 
you open the phone book and find one. If you need a web service that implements a particular 
WSDL defined port type for processing purchase orders for ball bearings, you can submit a 
request to a UDDI registry to find an appropriate service. WS-Inspection, however, is useful if 
you already know the service provider you want to use (e.g., you already know which 
plumber who want to call so you dont have to look in the phonebook). You'd simply refer to 
the WS-Inspection document published by the service provider to find the location of the 
services they are offering.  

6.7.1 WS-Inspection Syntax 

The syntax of a WS-Inspection document is simple. The root inspection element contains a 
collection of abstract, link, and service elements. The abstract element provides for 
simple documentation throughout the WS-Inspection document. The link element allows the 
inspection document to link to other external inspection documents or even other discovery 
mechanisms (such as a UDDI registry) where additional information can be found. The 



Programming Web Services with SOAP 

page 113 

service element represents a web service being offered by the publisher of the inspection 
document.  

The service element itself is a collection of abstract and description elements. You can 
describe a service in several ways. WS-Inspection allows all a service's descriptions to be 
listed. You can provide extended information about each service description using XML 
extensibility. Example 6-38, for instance, contains both a WSDL and UDDI-based 
description.  

WS-Inspection will be submitted for standardization at some point. For now, both IBM and 
Microsoft have implemented support for it in their web services offerings and other web 
service toolkit vendors are considering doing the same. Because of its usefulness and simple 
syntax, WS-Inspection is likely to develop favorable support.  

 



Programming Web Services with SOAP 

page 114 

Chapter 7. Web Services in Action 
In the previous chapters, we've been building a picture of the technologies and methodologies 
around SOAP web services. In this chapter, we apply the discussion to the real-world 
implementation of a SOAP web service. You'll see how SOAP and WSDL are deployed, and 
also how to draw in other XML technologies to solve problems that SOAP and WSDL do not 
address.  

The service we'll develop is the CodeShare Service Network, a simple set of peer-to-peer web 
services for sharing application source code. While we develop that code, we'll stop to take a 
look at security, and how to implement it when SOAP and WSDL don't cover it.  

The CodeShare implementation we show here provides a way for people to share source code. 
We use digital signatures to verify the identity of clients, and keep a central registry of the 
files people are offering. Rather than a single web service, the CodeShare application 
comprises a number of different small interfaces, a common web services design. Each 
interface can be implemented in any language that supports SOAP, and we used a mixture of 
Perl and Java to demonstrate this. CodeShare is an example of a peer web service. In the peer-
to-peer (P2P) model, the Internet isn't viewed as a network of clients accessing the resources 
of a server. Rather, it's a cooperative network of peers sharing resources equally and evenly. 
The lines are blurred between the service provider and the service consumer, with no 
application required to have just a single role.  

Peer web services uses already-deployed web services technologies to provide P2P services.  

7.1 The CodeShare Service Network 

The CodeShare Service Network is a very simple example of peer web services. It provides 
an environment where developers may easily share source code with the rest of the world.  

7.1.1 Overview 

There are three important CodeShare components: the owner of the code being shared, the 
requester of the code, and the CodeShare server that serves as clearinghouse for the code and 
as an authentication authority that code owners can use to control access to the code that they 
are sharing. The relationships between the components are shown in Figure 7-1.  

Figure 7-1. The CodeShare architecture 

 

 



Programming Web Services with SOAP 

page 115 

Here is the typical use scenario: 

1. The developers of some code decide to share that code publicly. They do so by 
updating their local project index.xml file, indicating the files they wish to share.  

2. The developers log onto the CodeShare server to update their entry in the master index 
maintained at the server.  

3. The developers then start their CodeShare owner service (a local SOAP HTTP 
daemon).  

4. Whenever users wish to find code being shared, they have two options: they can 
connect to the developer's CodeShare owner service directly and execute four basic 
operations: search, list, info, and get; or they can connect to the CodeShare server 
and search the master index. Doing so will result in a list of all CodeShare owner 
services sharing code that matches the search request. All get operations point directly 
to the owner service to retrieve the source code being shared.  

5. At times, developers may wish to restrict who is allowed to access the code they are 
sharing. To do so, they simply add the names of all authorized users to their index.xml 
(all users are registered with the CodeShare server). Whenever a user tries to retrieve 
the restricted code, the owner service will check first to see if the user has logged into 
the CodeShare server and if so, whether they are allowed access.  

7.1.2 Prerequisites 

There are a few things that you need to have set up on your system before you can run this 
example:  

SOAP::Lite Version 5.1 and all prerequisites  

Instructions on how to install this are given in Chapter 3.  

DBI and DBD:CSV  

These are Perl SQL database modules used by the CodeShare owner server. Install 
them by typing install DBI and install DBD::CSV in the CPAN shell.  

A Servlet-enabled web server  

We recommend Apache's Jakarta Tomcat Version 3.22. Tomcat can be downloaded 
from http://jakarta.apache.org/.  

Apache Xerces 1.4 or any other JAXP-enabled XML parser  

JAXP is the Java API for XML Processing (http://xml.apache.org/xerces-j).  

Apache SOAP  

At the time of writing, the latest version was 2.2, which has a bug you will need to fix. 
Download the source distribution of Apache SOAP. The changes and the build process 
are described in the next section of this chapter.  

 



Programming Web Services with SOAP 

page 116 

The latest version of the IBM XML Security Suite  

This is available from IBM's alphaWorks web site 
(http://alphaworks.ibm.com/tech/xmlsecuritysuite). Once downloaded, unzip the 
distribution and put the XSS4J.jar file into your application server's classpath.  

7.1.2.1 Fixing the bug in Apache SOAP 2.2 

The problem in Version 2.2 of Apache SOAP causes invalid XML to be produced in some 
situations. CodeShare happens to cause one of those situations. The bug fix detailed here has 
been submitted and it should not be necessary to make this fix in versions of Apache SOAP 
after 2.2.  

Assuming that you have already downloaded the source distribution of the Apache SOAP 
source code, locate a file called DOM2Writer.java, in the 
%SOAP_HOME%\java\src\org\apache\soap\util\xml folder. ($SOAP_HOME will be in the 
directory where the unzipped contents of the distribution were downloaded.)  

At line 172, replace the lines in Example 7-1 with those in Example 7-2.  

Example 7-1. Code in DOM2Writer.java to replace  

out.print(' ' + attr.getNodeName(  ) +"=\"" + normalize(attr.getValue(  )) 
+ '\"'); 

Example 7-2. New code for DOM2Writer.java  

if (attr.getNodeName(  ).startsWith("xmlns:") &&  
    !(NS_URI_XMLNS.equals(attr.getNamespaceURI(  )))) { 
    String attrName = attr.getNodeName(  ); 
    String prefix= attrName.substring(attrName.indexOf(":")+1); 
    try  
        { 
            String namespaceURI =  
                (String)namespaceStack.lookup(prefix); 
            if (!attr.getNodeValue(  ).equals(namespaceURI)) { 
                printNamespaceDecl(prefix, namespaceURI,  
                                   namespaceStack, out); 
            } 
        } 
    catch (IllegalArgumentException e)  
        { 
            printNamespaceDecl(prefix,  
                               attr.getNodeValue(  ),  
                               namespaceStack, out); 
        } 
    } 
else 
    { 
        out.print(' ' + attr.getNodeName(  ) +"=\"" + 
normalize(attr.getValue(  )) + '\"'); 
    } 

Now add the new method in Example 7-3 to the DOM2Writer class.  

 



Programming Web Services with SOAP 

page 117 

Example 7-3. New method for the DOM2Writer class  

private static void printNamespaceDecl(String prefix,  
        String namespaceURI, ObjectRegistry namespaceStack,  
        PrintWriter out) 
{ 
    if (!(namespaceURI.equals(NS_URI_XMLNS) && prefix.equals("xmlns"))) 
    { 
        out.print(" xmlns:" + prefix + "=\"" + namespaceURI + '\"'); 
    } 
    namespaceStack.register(prefix, namespaceURI); 
} 

Next, compile the Apache SOAP package. 

7.1.2.2 Compiling Apache SOAP 

To build Apache SOAP, you need to use Ant, a Java build-management tool released by 
Apache. Ant is available from http://jakarta.apache.org/ and is officially a part of the Jakarta 
Tomcat project. Once downloaded, please follow the detailed instructions included with the 
package on how to install it.  

Ant uses an XML-based script (build.xml) for defining how to compile the code. Apache 
SOAP's build.xml file is located in the %SOAP_HOME%\java directory.  

Before you can build, you need to make sure that all of the prerequisites are in place. These 
are listed at the start of the build.xml file:  

• Any JAXP-enabled XML Parser (Xerces is preferred) 
• The JavaMail package, available from http://java.sun.com/products/javamail/  
• The Java Activation Framework package, available from 

http://java.sun.com/products/beans/glasgow/jaf.html  

These packages must all be in your classpath prior to attempting the build. Once there, start 
the build using the following command:  

java org.apache.tools.ant.Main <target> 

Where target is one of four options: 

compile  

Creates the soap.jar package 

javadocs  

Creates the soap.jar JavaDocs 

dist  

Creates the complete binary distribution 



Programming Web Services with SOAP 

page 118 

srcdist  

Creates the complete source code distribution 

For our purposes, use the compile target option. This will create a new soap.jar file with the 
modified DOM2Writer.java class included. Once built, replace all other soap.jar files that 
may be in your application servers classpath with the newly built soap.jar.  

7.2 The Code Share Index 

The source code shared through the CodeShare network is organized around a simple index 
structure that preserves the original directory-file hierarchy. Everybody wanting to share 
source code through the CodeShare must create an index. As an example, let's assume that we 
are sharing the following Java project:  

HelloWorld 
+---build.xml 
+---lib 
|   +---HelloWorld.jar 
+---src 
    +---oreilly 
        +---samples 
            +---HelloWorld 
                +---HelloWorld.java 

There are a total of six directories and three files being shared. Within the CodeShare index, 
we represent this project as Example 7-4.  

Example 7-4. CodeShare index for sample project  

<codeShare xmlns:dc="http://purl.org/dc/elements/1.1/"> 
  <project location="HelloWorld"> 
    <dc:Title>HelloWorld</dc:Title> 
    <dc:Creator>James Snell, et al</dc:Creator> 
    <dc:Date>2001-08-20</dc:Date> 
    <dc:Subject>Hello World Web service example</dc:Subject> 
    <dc:Description> 
        Example Hello World Web service 
    </dc:Description> 
    <file location="build.xml"> 
      <dc:Title>Ant Build Script</dc:Title> 
    </file> 
    <directory location="lib"> 
      <dc:Title>Compiled libraries</dc:Title> 
      <file location="HelloWorld.jar"> 
        <dc:Title>Compiled Hello World JAR</dc:Title> 
      </file> 
    </directory> 
    <directory location="src"> 
      <dc:Title>Source Code</dc:Title> 
      <directory location="oreilly"> 
        <dc:Title>oreilly</dc:title> 
        <directory location="samples"> 
          <dc:Title>samples</dc:Title> 
          <directory location="HelloWorld"> 
            <dc:Title>HelloWorld</dc:Title> 
 



Programming Web Services with SOAP 

page 119 

            <file location="HelloWorld.java"> 
              <dc:Title>HelloWorld.java</dc:Title> 
            </file> 
          </directory> 
        </directory> 
      </directory> 
    </directory> 
  </project> 
</codeShare> 

As you can see, the structure of the index is very basic. The codeShare element is the root for 
the entire index. The project element defines a shared project. The directory element 
defines a directory being shared within a project. The file element defines a file being 
shared.  

The most interesting feature of the index is the use of Dublin Core metadata elements 
(dc:Title, for example) to add descriptive properties to each of the shared items.  

The Dublin Core metadata project is an initiative to define standard types of metadata (data 
about data) capable of describing Internet content. We use it here to provide more flexible 
searching options when people are looking for particular types of code. Without these 
descriptive elements, the CodeShare searching capability would be limited to searches based 
only on the name of the file or directory being searched. Later, we'll see exactly how this 
additional data is used.  

The Dublin Core specification (http://www.dublincore.org/documents/dces/) defines a set of 
15 metadata elements, all of which may be used within the CodeShare index. The elements 
are described in Table 7-1.  

Table 7-1. Dublin Core element set 
Element name Element description 
Title The name given to the resource 
Creator The entity responsible for creating the resource 
Subject A short topic that describes the resource 
Description A detailed, textual description of the resource 
Publisher The entity responsible for making the resource available 
Contributor An entity responsible for making contributions to the resource 
Date Typically, the date the resource was created 
Type The generic type of resource (not the MIME Content Type) 
Format The MIME Content Type or other physical format of the resource 
Identifier An unambiguous reference to the resource 
Source A reference to the resource from which this resource is derived 
Language The language (not programming language) in which the resource is presented  
Relation A reference to a related resource 
Coverage The extent or scope of the resource 
Rights Information about rights held in or over the resource 

 

 



Programming Web Services with SOAP 

page 120 

7.3 Web Services Security 

What does it mean to add security to web services? In the case of the CodeShare example, our 
goal is to let the owners of the code specify access rights for particular individuals. If a user is 
not on the list of approved users, she will not be able to download the code.  

Security in web services means adding basic security capabilities to the technologies that 
make web services happen. This means having the ability to encrypt SOAP messages, 
digitally sign WSDL service descriptions, add reliability to the protocol transports we use to 
carry this information around, assert a user's identity, define policies that govern how 
information is to be used, by whom it can be used, and for what purposes it can be used, and 
any number of a laundry list of other items. It could take almost an entire book by itself to 
describe how to implement all of these requirements. Unfortunately, while efforts are 
currently being made in each of these areas, we are still a long way from having defined 
standards (de facto or otherwise) on how all of this will happen in the web services 
environment. For the CodeShare example, we focus on only one: user authentication.  

Authentication in SOAP-based web services can occur in a wide variety of ways. The service 
may choose to use traditional transport-layer authentication methods, such as HTTP Basic or 
Digest Authentication. Alternatively, the service may choose to implement a service-layer 
authentication mechanism that makes the service itself responsible for validating a user's 
identity.  

The second approach is what we see emerging in the form of Microsoft's Passport 
authentication service, which provides Kerberos-based authentication over web service 
protocols. Kerberos is a popular Internet-standard authentication mechanism based on the 
exchange of tickets. These tickets are used in much the same way as a ticket to a movie. The 
bearer of the ticket presents it as a pass to get in to see the movie, or in our case, to access a 
service.  

Chapter 8 discusses the Passport authentication scheme and several other alternative 
approaches in greater detail.  

7.3.1 The Security Assertions Markup Language (SAML) 

One of the many emerging web service technologies is specifically designed to be used as a 
method of implementing service-layer global sign-on for web services. The specification, 
called the Security Assertions Markup Language, or SAML, defines an XML syntax for 
expressing security-related facts. For example, SAML may be used to express the fact that 
Pavel Kulchenko authenticated at 10:00 a.m. and that the authentication expires at 2:00 p.m.  

SAML assertions, as they are called, are created and digitally signed by the authentication 
authority who handles the actual authentication process. For example, when a user invokes the 
login operation on the CodeShare client interface, the CodeShare server (which validates the 
user ID and password) issues the SAML assertion stating that the login was successful. By 
digitally signing that assertion, anybody who receives it may validate that it was, in fact, 
created and issued by the CodeShare server.  

Example 7-5 is a digitally signed SAML assertion returned by the login operation. The 
assertion itself is highlighted in bold type. The first part of this structure is the XML Digital 



Programming Web Services with SOAP 

page 121 

Signature, which validates that the SAML assertion is authentic. XML Digital Signatures are 
being standardized through a joint effort by the W3C and the IETF. The structure of these 
signatures is too complex to explain here, so we've provided links to some supplemental 
information in Chapter 8. Luckily, we do not have to create these signatures manually. This 
particular example was created using IBM's XML Security suite.  

Example 7-5. SAML assertion  

<Signature xmlns="http://www.w3.org/2000/09/xmldsig#"> 
  <SignedInfo> 
    <CanonicalizationMethod  
           Algorithm="http://www.w3.org/TR/2000/WD-xml-c14n-20000119"/> 
    <SignatureMethod  
           Algorithm="http://www.w3.org/2000/09/xmldsig#dsa-sha1"/> 
    <Reference URI="#999852828470"> 
      <DigestMethod  
           Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/> 
      <DigestValue>pCvvhLY/UdR7D8Jzja7kG2+finQ=</DigestValue> 
    </Reference> 
  </SignedInfo> 
 <SignatureValue> 
    T110Nd9tt4f1m9Ahoe82HoPXWrZ0se/9ON9qU01TRkZ4FrOg8DBg9g==      
 </SignatureValue> 
 <KeyInfo> 
   <KeyValue> 
     <DSAKeyValue> 
       <P> 
        /X9TgR11EilS30qcLuzk5/YRt1I870QAwx4/gLZRJmlFXUAiUftZPY1Y+r/F9bow9s 
        ubVWzXgTuAHTRv8mZgt2uZUKWkn5/oBHsQIsJPu6nX/rfGG/g7V+fGqKYVDwT7g/bT 
        xR7DAjVUE1oWkTL2dfOuK2HXKu/yIgMZndFIAcc=         </P> 
       <Q>l2BQjxUjC8yykrmCouuEC/BYHPU=</Q> 
       <G> 
        9+GghdabPd7LvKtcNrhXuXmUr7v6OuqC+VdMCz0HgmdRWVeOutRZT+ZxBxCBgLRJFn 
        Ej6EwoFhO3zwkyjMim4TwWeotUfI0o4KOuHiuzpnWRbqN/C/ohNWLx+2J6ASQ7zKTx 
        vqhRkImog9/hWuWfBpKLZl6Ae1UlZAFMO/7PSSo=         </G> 
       <Y> 
        xbzyPw8CzjbnzxmoB9WDLnR0Enw2/5CxHLsozIXNT+n/EtZpi3okfytFxjAcQVUuiZ 
        Jwkf2/Eke7peA/R5dd9krb1j0EdlTVXd+eOcyWJOWplKEJuNYclrC4f+zy6FTcxGlq 
        d/GqVEwud1kUiQ+5RPoAYsxpzaRDAVIeaarxXN0=         </Y> 
     </DSAKeyValue> 
   </KeyValue> 
   <X509Data> 
     <X509IssuerSerial> 
       <X509IssuerName>CN=Codeshare</X509IssuerName> 
       <X509SerialNumber>999849441</X509SerialNumber> 
     </X509IssuerSerial> 
     <X509SubjectName>CN=Codeshare</X509SubjectName> 
     <X509Certificate> 
     
MIICXjCCAhsCBDuYfeEwCwYHKoZIzjgEAwUAMBQxEjAQBgNVBAMTCUNvZGVzaGFyZTAeFw0wMTA
5MDcwNzU3MjFaF 
w0wMTEyMDYwNzU3MjFaMBQxEjAQBgNVBAMTCUNvZGVzaGFyZTCCAbgwggEsBgcqhkjOOAQBMIIB
HwKBgQD9f1OBHX 
USKVLfSpwu7OTn9hG3UjzvRADDHj+AtlEmaUVdQCJR+1k9jVj6v8X1ujD2y5tVbNeBO4AdNG/ 
yZmC3a5lQpaSfn+gEexAiwk+7qdf+t8Yb+DtX58aophUPBPuD9tPFHsMCNVQTWhaRMvZ1864rYd
cq7/ 
IiAxmd0UgBxwIVAJdgUI8VIwvMspK5gqLrhAvwWBz1AoGBAPfhoIXWmz3ey7yrXDa4V7l5lK+7+
jrqgvlXTAs9B4J 
nUVlXjrrUWU/ 



Programming Web Services with SOAP 

page 122 

mcQcQgYC0SRZxI+hMKBYTt88JMozIpuE8FnqLVHyNKOCjrh4rs6Z1kW6jfwv6ITVi8ftiegEkO8
yk8b6oUZCJqIPf 
4VrlnwaSi2ZegHtVJWQBTDv+z0kqA4GFAAKBgQDFvPI/DwLONufPGagH1YMudHQSfDb/ 
kLEcuyjMhc1P6f8S1mmLeiR/K0XGMBxBVS6JknCR/ 
b8SR7ul4D9Hl132StvWPQR2VNVd3545zJYk5amUoQm41hyWsLh/ 
7PLoVNzEaWp38apUTC53WRSJD7lE+gBizGnNpEMBUh5pqvFc3TALBgcqhkjOOAQDBQADMAAwLQI
VAIyej/ 
xrPI4jpVCBUdHz/zz4nUY9AhRGb/VRBiqS2NKo+PO0KbURVg2g5A==   </X509Certificate> 
    </X509Data> 
   </KeyInfo> 
   <dsig:Object Id="999852828470" xmlns=""  
                xmlns:dsig="http://www.w3.org/2000/09/xmldsig#"> 
     <AuthenticationAssertion AssertionID="999852828470" 
                  IssueInstant="Fri Sep 07 01:53:48 PDT 2001" 
                  Issuer="CodeShare.org" Version="1.0"  
                  xmlns="http://www.oasis-
open.org/committees/security/docs/ 
                         draft-sstc-schema-assertion-15.xsd"> 
 
       <Subject> 
         <NameIdentifier> 
           <SecurityDomain>CodeShare.org</SecurityDomain> 
           <Name>james</Name> 
         </NameIdentifier> 
       </Subject> 
       <AuthenticationMethod>http://codeshare.org</AuthenticationMethod> 
       <AuthenticationInstant> 
           Fri Sep 07 01:53:48 PDT 2001 
       </AuthenticationInstant> 
       <AuthenticationLocale> 
         <IP>123.123.123.123</IP> 
         <DNS_Domain>codeshare.org</DNS_Domain> 
       </AuthenticationLocale> 
     </AuthenticationAssertion> 
  </dsig:Object> 
</Signature> 

The purpose of this example SAML assertion is to state that the user james from the domain 
CodeShare.org authenticated on Friday, September 7, at 1:53 p.m. Pacific Daylight Time 
2001, using CodeShare's default authentication method (the login operation). The 
authentication itself was provided by a server located at the 123.123.123.123 IP address 
with the DNS domain name codeshare.org. This statement is digitally signed using the 
CodeShare Servers X509 digital certificate, guaranteeing its authenticity.  

When a user presents this token to a CodeShare owner, the owner can verify that it is 
authentic by asking the CodeShare server if it really did issue the statement. Figure 7-2 
illustrates the flow of messages.  

 

 

 

 

 



Programming Web Services with SOAP 

page 123 

Figure 7-2. A flow illustrating the typical conversation between the CodeShare owner and 
CodeShare server 

 

SAML assertions can be created and validated by anybody, making them a very good 
mechanism for implementing single sign-on functionality. Later in this chapter, we will 
demonstrate how this SAML assertion was created and signed.  

7.4 Definitions and Descriptions 

Because web services are all about the interfaces that tie applications together, the first thing 
we need to do is define what those interfaces look like.  

In this example there are four interfaces of interest: 

• The owner interface implemented by CodeShare owners and the CodeShare server for 
allowing users to search for and retrieve source code.  

• The client interface implemented by the CodeShare server for allowing users to 
register and login.  

• The login verification interface implemented by the CodeShare server to allow 
CodeShare owners to ensure that users have logged on.  

• The master index interface that allows CodeShare owners to update their entries in the 
master index maintained by the CodeShare server.  

Each of these interfaces is expressed using WSDL service interface descriptions.  

7.4.1 The Owner Interface 

The owner interface consists of four fundamental operations:  

search  

Searches the index.xml file for elements that match a given value. By default, this 
operation searches only the Dublin Core Title element, but other Dublin Core 
elements may be targeted instead.  

If this was a Java function, it would be something like: 

 



Programming Web Services with SOAP 

page 124 

public List search(String value,  
                   String dcElement); 

In this example, dcElement equals the name of the Dublin Core element that you want 
to search.  

list  

Lists all of the projects and items being shared by the owner. Only basic information 
about the items is returned, including the location and title of the items. Filters may be 
applied that return only items that match a given value of a specified Dublin Core 
element. Like the search operation, the title is the default element upon which filters 
are applied.  

Again looking at this from a Java perspective, the signature of this operation is:  

public List list(String value, 
                 String dcElement); 

Unlike the search operation, however, both the value and dcElement parameters are 
optional.  

info  

Returns detailed information about each of the projects and items being shared. Like 
the list operation, filters may be applied to limit the number of items that are 
returned. The signature of this operation is exactly the same as the list operation.  

get  

Returns all of the files being shared for a specified project or projects. The exact 
directory structures will be recreated. The signature of this operation is also the same 
as the list operation.  

All of these operations return a SOAP encoded array of item elements similar to Example 7-
6.  

Example 7-6. Sample array returned by owner operations  

<env:Envelope xmlns:env="http://schemas.xmlsoap.org/soap/envelope/" 
              xmlns:enc="http://schemas.xmlsoap.org/soap/encoding/"> 
  <env:Body> 
    <env:listResponse> 
      <Items enc:arrayType="csi:item[2]"  
             xsi:type="csi:ArrayOfItems"> 
        <item xsi:type="namesp1:SOAPStruct"> 
          <path xsi:type="xsd:string">HelloWorld</path> 
          <title xsi:type="xsd:string"> HelloWorld </title> 
          <fullpath xsi:type="xsd:string">HelloWorld/</fullpath> 
          <type xsi:type="xsd:string">project</type> 
        </item> 
        <item xsi:type="namesp1:SOAPStruct"> 
          <path xsi:type="xsd:string" /> 



Programming Web Services with SOAP 

page 125 

          <title xsi:type="xsd:string">build.xml</title> 
          <fullpath xsi:type="xsd:string">HelloWorld/</fullpath> 
          <type xsi:type="xsd:string">file</type> 
        </item> 
      </enc:Array> 
    </env:listResponse> 
  </env:Body> 
</env:Envelope> 

7.4.1.1 WSDL port type definition 

The full WSDL port type definition is given in Appendix C. We'll cover the highlights here: 
the data types, the messages, the port type, and the protocol binding.  

7.4.1.2 Data types 

The data types are defined with an embedded XML schema. This schema defines two data 
types: an item, which, as we saw in the previous SOAP envelope, represents a project item 
within the CodeShare index, and an array of items.  

The item definition, shown in Example 7-7, is straightforward. It is a complex type element 
with four children and a flag to include any Dublin Core elements that the CodeShare service 
may want to add.  

Example 7-7. The item definition  

<xsd:element name="item"> 
  <xsd:annotation> 
    <xsd:documentation> 
      CodeShare Indexed Item 
    </xsd:documentation> 
  </xsd:annotation> 
  <xsd:complexType> 
    <xsd:sequence> 
      <xsd:all> 
        <xsd:element name="path" type="xsd:string"  
                     nullable="true" minOccurs="0"/> 
        <xsd:element name="title" type="xsd:string"  
                     nullable="true" minOccurs="0"/> 
        <xsd:element name="fullpath" type="xsd:string"  
                     nullable="true" minOccurs="0"/> 
        <xsd:element name="type" type="xsd:string"  
                     nullable="true" minOccurs="0"/> 
      </xsd:all> 
      <xsd:any namespace='xmlns:dc="http://purl.org/dc/elements/1.1/"'  
               processContents="lax" minOccurs="0"  
               maxOccurs="unbounded"/> 
    </xsd:sequence> 
  </xsd:complexType> 
</xsd:element> 

The ArrayOfItems data type, given in Example 7-8, is a derivative of the Array data type 
defined by the SOAP Section 5 encoding style. With this definition, we state this is an array 
of item elements as specified by the Section 5 encoding rules.  

 



Programming Web Services with SOAP 

page 126 

Example 7-8. The ArrayOfItems definition  

<xsd:complexType name="ArrayOfItems"> 
  <xsd:annotation> 
    <xsd:documentation> 
      Array of CodeShare item elements 
    </xsd:documentation> 
  </xsd:annotation> 
  <xsd:complexContent> 
    <xsd:extension base="se:Array"> 
      <xsd:attribute ref="se:arrayType"  
                     wsdl:arrayType="types:item[]" /> 
    </xsd:extension> 
  </xsd:complexContent> 
</xsd:complexType> 

7.4.1.3 Messages 

There are exactly two messages defined for each operation. A sample operation's messages 
are defined in Example 7-9. See the complete listing in Appendix C.  

Example 7-9. Search message definitions  

<wsdl:message name="search"> 
    <part name="p1" type="xsd:string" /> 
    <part name="p2" type="xsd:string" /> 
</wsdl:message> 
<wsdl:message name="searchResponse"> 
    <part name="response" type="types:ArrayOfItems" /> 
</wsdl:message> 

7.4.1.4 Port type 

The owner interface port type is defined in terms of the messages we just created. Example 7-
10 shows the portType element with a representative operation defined. See Appendix C for 
the complete listing. The parameterOrder attribute is a WSDL mechanism for specifying the 
order in which the parts of a message must appear within the body of the SOAP message.  

Example 7-10. The portType definition  

<wsdl:portType name="CodeShareOwnerInterface"> 
    <wsdl:operation name="search" parameterOrder="p1 p2"> 
        <wsdl:input name="search" message="tns:search" /> 
        <wsdl:output name="searchResponse"  
                     message="tns:searchResponse" /> 
    </wsdl:operation> 
    <!-- and so on for the other operations --> 
</wsdl:portType> 

7.4.1.5 Protocol binding 

Example 7-11 specifies that the owner interface port type is accessed via SOAP messages 
transported over HTTP. Each of the SOAP messages will conform to the Section 5 encoding 
style (as indicated by the soap:body elements). As before, only one operation is shown here. 
For the full set, see the complete WSDL listing in Appendix C.  



Programming Web Services with SOAP 

page 127 

Example 7-11. Binding the interface to the portType  

<wsdl:binding name="CodeShareOwner_SOAP_HTTP"  
              type="tns:CodeShareOwnerInterface"> 
    <soap:binding style="rpc" 
     transport="http://schemas.xmlsoap.org/soap/http" /> 
    <wsdl:operation name="search"> 
        <soap:operation soapAction="urn:CodeShareOwner#search" /> 
        <wsdl:input> 
            <soap:body use="encoded" namespace="urn:CodeShareOwner" 
             encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" /> 
        </wsdl:input> 
        <wsdl:output name="Name"> 
            <soap:body use="encoded" namespace="urn:CodeShareOwner" 
             encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" /> 
        </wsdl:output> 
    </wsdl:operation> 
    <!-- and so on for the other operations --> 
/wsdl:binding> 

7.4.2 The Client Interface 

The client interface consists of two operations: register and login. Because the WSDL 
interface is similar in structure to the one defined for the owner interface, we will not show it 
here. It is printed in full in Appendix C.  

register  

Takes a simple user ID and password pair to create a new user account on the 
CodeShare server.  

login  

Receives a Base64 encoded string consisting of the user ID and password and returns 
a digitally signed SAML assertion indicating that the user logged in successfully. If 
login was not successful, a SOAP fault with the type "Client.Authentication" will be 
returned.  

7.4.2.1 CodeShare login operation 

The CodeShare login operation validates the user ID and password and generates a signed 
SAML assertion, as shown in Figure 7-3. It's not a perfect security solution—the SAML 
specification is missing some very significant pieces (for example, it is very easy for 
somebody to intercept a signed SAML assertion and pretend to be the person for whom it is 
issued). It will be some time before all of these issues get worked out. For our purposes, we 
need only something simple, just to demonstrate the basic idea.  

 

 

 

 



Programming Web Services with SOAP 

page 128 

Figure 7-3. A flow illustrating the typical conversation between the CodeShare client and 
CodeShare server 

 

7.4.3 The Login Verification Interface 

The user presents the CodeShare server's SAML assertions to retrieve the code being shared. 
The assertion is given to the code owner who must validate that it did in fact come from the 
CodeShare service. The CodeShare login verification interface provides this functionality.  

There is only a single verify operation defined by this interface. It takes the SAML assertion 
as an input and returns a simple true or false value indicating the validity of the assertion. See 
Appendix C for the full WSDL.  

7.4.4 The Master Index Interface  

Aside from providing the user management and authentication functions for the CodeShare 
network, the CodeShare service also provides a master index of all code being shared. Code 
owners update this master index through the master index interface.  

This interface defines two operations. New code owners participate in the CodeShare network 
through register, and the update operation lets owners update their entries in the master 
index. The update operation receives the owner's user ID, password, and up-to-date project 
index.  

7.5 Implementing the CodeShare Server 

The CodeShare server is implemented as a set of Java classes that maintain a master index of 
every CodeShare owner who is sharing code and all of the registered users who may have 
access to that code. The server is divided into four distinct web services, each an 
implementation of the four interfaces that we've already defined: the master index service, the 
owner service, the client service, and the verification service.  

7.5.1 The Master Index Service 

The master index service allows CodeShare owners to update their entries in the index 
maintained by the Code Share server. The codeshare.OwnerService class implements the 
index service.  



Programming Web Services with SOAP 

page 129 

7.5.1.1 Operations 

The list of registered owners is stored as an XML file. The register operation in Example 7-
12 simply adds a new element to that XML file.  

Example 7-12. The register operation  

public static boolean register(String ownerid, String password, String url) 
{ 
    Element e = doc.getDocumentElement(  ); 
    NodeList nl = e.getElementsByTagName("owner"); 
    for (int n = 0; n < nl.getLength(  ); n++) { 
        Element ex = (Element)nl.item(n); 
        if (ex.getAttribute("id").equals(ownerid)) { 
            throw new IllegalArgumentException( 
                "An owner with that ID already exists!"); 
        } 
    } 
    Element u = doc.createElement("owner"); 
    u.setAttribute("id", ownerid); 
    u.setAttribute("password", password); 
    u.setAttribute("url", url); 
    e.appendChild(u); 
    XMLUtil.put(owners, doc); 
    return true; 
} 

The master index itself (the list of all code being shared through the CodeShare network) is 
also maintained as an XML file. As with the register operation, the update operation 
shown in Example 7-13 does nothing more than update this XML file by either inserting the 
index passed in by the owner, or replacing an existing part of the index updated at a previous 
time.  

Example 7-13. The update operation  

public static boolean update(String ownerid, String password, Element 
index) { 
    Element el = doc.getDocumentElement(  ); 
    NodeList nl = el.getElementsByTagName("owner"); 
    for (int n = 0; n < nl.getLength(  ); n++) { 
        Element e = (Element)nl.item(n); 
        if (e.getAttribute("id").equals(ownerid) && 
            e.getAttribute("password").equals(password)) { 
            Element i = (Element)doc.importNode(index, true); 
            NodeList c = e.getElementsByTagName("index"); 
            if (c.getLength(  ) > 0) { 
                Node node = c.item(1); 
                e.replaceChild(node, i); 
            } else { 
                e.appendChild(i); 
            } 
            XMLUtil.put(owners, doc); 
            return true; 
        } 
    } 
    return false; 
} 



Programming Web Services with SOAP 

page 130 

7.5.1.2 Deployment 

This service is deployed to the Apache SOAP engine using the process we described in 
Chapter 3. The deployment descriptor we'll use is shown in Example 7-14.  

Example 7-14. The deployment descriptor for the master index service  

<isd:service xmlns:isd="http://xml.apache.org/xml-soap/deployment" 
             id="urn:CodeShareService-MasterIndex"> 
  <isd:provider type="java" 
                scope="Application" 
                methods="register update"> 
    <isd:java class="codeshare.IndexService"/> 
  </isd:provider> 
  <isd:faultListener>org.apache.soap.server.DOMFaultListener 
  </isd:faultListener> 
</isd:service> 

7.5.2 The Owner Service 

The owner service is a partial implementation of the CodeShare owner interface. This 
interface allows users to search the master index, but does not allow them to use the get or 
info operations—these must be performed directly against the CodeShare owner service that 
is providing the code. The CodeShare server will provide the information users need to find 
the owner services sharing the code they wish to access.  

The operations implemented by the owner service (search and list) basically do the same 
thing: return an array of shared items that match the specified criteria. The search operation is 
shown in Example 7-15. This operation loops through all of the items in the master index 
looking for matching items.  

Example 7-15. The owner service operations  

public org.w3c.dom.Element search(String p1) 
{ 
    return search(p1, "dc:Title"); 
} 
 
public Element search(String p1, String p2)  
{ 
  Element e = doc.getDocumentElement(  ); 
  NodeList nl = e.getElementsByTagName(p2); 
 
  Document d = SAMLUtil.newDocument(  ); 
  Element list = doc.createElement("list"); 
  d.appendChild(list); 
 
  for (int n = 0; n < nl.getLength(  ); n++)  
  { 
    Element next = (Element)nl.item(n); 
 
 
 
 
 
 
 



Programming Web Services with SOAP 

page 131 

    try 
      { 
        RE targetRE = new RE(p1); 
        if (targetRE.match(SAMLUtil.getInnerText(next.getText(  ))) 
        { 
          Element item = (Element)d.importNode(next); 
          list.appendChild(item); 
        } 
      } 
    catch (Exception exc) 
      { 
      } 
  } 
  return list; 
} 

The CodeShare server does not support the info and get operations, so we do not need to 
write any code to implement them at this point.  

This service is deployed to the Apache SOAP engine using the same process we described in 
Chapter 3. The deployment descriptor we'll use is shown in Example 7-16.  

Example 7-16. Deployment descriptor for the CodeShare server  

<isd:service xmlns:isd="http://xml.apache.org/xml-soap/deployment" 
             id="urn:CodeShareService-OwnerService"> 
  <isd:provider type="java" 
                scope="Application" 
                methods="list search"> 
    <isd:java class="codeshare.OwnerService"/> 
  </isd:provider> 
  <isd:faultListener>org.apache.soap.server.DOMFaultListener 
  </isd:faultListener> 
</isd:service> 

7.5.3 The Client Service 

The client service is a Java implementation of the client interface that allows users to register 
and log in to the CodeShare service. This service keeps track of all the various user accounts 
and issues the digitally signed SAML assertions that users present to the CodeShare owners. 
Owners use those assertions to ensure that only authorized users can access the code they are 
sharing.  

7.5.3.1 Creating SAML assertions 

Creating a SAML assertion involves nothing more than creating an XML document that 
conforms to the SAML schema. Because SAML is still being developed, this application 
implements just a small subset of the most recent working draft being discussed within the 
SAML working group.  

We create the SAML assertion by building an object model (which we created; there currently 
is no standard SAML API) that corresponds to each of the major parts of the SAML schema, 
then serializing that object model out to an XML document. The full code for this example is 
available in Appendix C. Here we just show the assertion being created.  



Programming Web Services with SOAP 

page 132 

We use the AssertionFactory class to create an instance of the object model. This class, 
given in full in Appendix C, is discussed next.  

The first step is to set the various required properties, such as the assertion ID, the name of the 
issuer, and the data and time at which the assertion was created. Example 7-17 shows this 
step.  

Example 7-17. Setting assertion properties  

AuthenticationAssertion aa =  
  new AuthenticationAssertion(  ); 
 
IDType aid = new IDType(id); 
aa.setAssertionID(aid); 
aa.setIssuer(issuerName); 
aa.setIssueInstant(issueInstant); 

Every SAML assertion has a subject that indicates what the assertion is about. In this case, the 
subject is a name identifier that states which user has been authenticated. Example 7-18 shows 
how to set the subject.  

Example 7-18. Setting the SAML subject  

Subject subject = new Subject(  ); 
{ 
    NameIdentifier ni = new NameIdentifier(  ); 
    ni.setName(name); 
    ni.setSecurityDomain(domain); 
    subject.setNameIdentifier(ni); 
    aa.setSubject(subject); 
} 

Finally, we fill in additional details about the type of authentication that was used, and an 
indication of where the authentication occurred (Example 7-19).  

Example 7-19. Completing the authentication assertion  

aa.setAuthenticationMethod( 
new AuthenticationMethod(method)); 
aa.setAuthenticationInstant(new AuthenticationInstant(authInstant)); 
AuthenticationLocale locale = new AuthenticationLocale(  ); 
locale.setIP(ip); 
locale.setDNSDomain(dns); 
aa.setAuthenticationLocale(locale); 

The AssertionFactory provides a convenient wrapper to this dogwork. To create an 
assertion, simply pass in the various relevant pieces of information, and the authentication 
assertion is created, filled out, and returned.  

Example 7-20 uses the AsssertionFactory class to generate a SAML assertion.  

 

 



Programming Web Services with SOAP 

page 133 

Example 7-20. Using the AssertionFactory class  

AuthenticationAssertion aa = AssertionFactory.newInstance( 
    new String( new Long(System.currentTimeMillis()).toString() ), 
    "CodeShare.org", 
    new java.util.Date(  ), 
    userid, 
    "CodeShare.org", 
    "http://codeshare.org", 
    java.net.InetAddress.getLocalHost().getHostAddress(), 
    java.net.InetAddress.getLocalHost().getHostName() 
  ); 

Example 7-21 shows the SAML assertion created by Example 7-20.  

Example 7-21. The SAML assertion  

<AuthenticationAssertion  
      AssertionID="999852828470" 
      IssueInstant="Fri Sep 07 01:53:48 PDT 2001" 
      Issuer="CodeShare.org" Version="1.0"  
      xmlns="http://www.oasis-open.org/committees/security/docs/draft- 
             sstc-schema-assertion-15.xsd"> 
 <Subject> 
   <NameIdentifier> 
     <SecurityDomain>CodeShare.org</SecurityDomain> 
     <Name>james</Name> 
   </NameIdentifier> 
 </Subject>   
 <AuthenticationMethod> 
    http://codeshare.org 
 </AuthenticationMethod> 
 <AuthenticationInstant> 
    Fri Sep 07 01:53:48 PDT 2001 
 </AuthenticationInstant> 
 <AuthenticationLocale> 
   <IP>127.0.0.1</IP> 
   <DNS_Domain>diamond</DNS_Domain> 
 </AuthenticationLocale> 
</AuthenticationAssertion> 

This is the assertion in Example 7-5. 

7.5.3.2 Java keystores 

Signing the assertion will use Java's support for public and private keys, which warrants a 
quick refresher. Somewhere on your computer is a Java keystore, a local database where all of 
your private keys are stored. You create a new key in this database by using the keytool 
utility that ships with Java. You can also use keytool to create new keystore databases.  

This command creates the private key for the CodeShare server, which is used to sign all 
SAML assertions.  

C:\book>keytool -genkey -dname "cn=CodeShare Server" -keypass CodeShare -
alias  
CodeShare -storepass CodeShare -keystore codeshare.db 



Programming Web Services with SOAP 

page 134 

This creates a new file called codeshare.db in the C:\book folder that contains the private key 
corresponding to the cn=CodeShare Server distinguished name.  

7.5.3.3 Signing the SAML assertion 

We use the IBM XML Security Suite's XML Digital Signature capability to sign the SAML 
assertion. The full source to the AssertionSigner class is given in Appendix C. The 
highlights are discussed in this section. At the time of writing, the programming interface of 
the IBM XML Security Suite was being redesigned. The code shown here was tested with 
Version XYZ of the XML Security Suite but may not work with other versions.  

We can't sign an assertion object directly. Instead we have to serialize it to a DOM 
document and sign that. The serialization is handled by the code in Example 7-22.  

Example 7-22. Serializing the assertion to a DOM document  

Document doc = SAMLUtil.newDocument(  ); 
Element root = doc.createElement("root"); 
assertion.serialize(root); 

A SignatureGenerator object will make the signature for us. In the constructor, we indicate 
the encryption and signing protocols we want to use. This is shown in Example 7-23.  

Example 7-23. Creating a SignatureGenerator  

SignatureGenerator siggen =  
  new SignatureGenerator(doc,  
    DigestMethod.SHA1, 
    Canonicalizer.W3C, 
    SignatureMethod.DSA,  
    null); 

The XML signature document can include the message being signed, or the message might be 
linked as an external resource or another XML document. The most common approach is to 
include the message being signed—so that's what we'll do, as shown in Example 7-24.  

Example 7-24. Embedding the message being signed  

siggen.addReference( 
  siggen.createReference( 
    siggen.wrapWithObject( 
      root.getFirstChild(  ),  
      assertion.getAssertionID(  ).getText(  )) 
    ) 
  ); 

The code in Example 7-25 accesses the keystore and extracts the information it needs to 
prepare the key needed for signing the SAML assertion. Also prepared is an X509 digital 
certificate that includes the public key for the cn=CodeShare Server. This certificate is 
embedded into the signature so that it can be used later to validate the signature.  

 

Example 7-25. Preparing the key  



Programming Web Services with SOAP 

page 135 

KeyStore keystore = KeyStore.getInstance("JKS"); 
keystore.load( 
  new FileInputStream(keystorepath),  
  storepass.toCharArray(  )); 
X509Certificate cert = (X509Certificate)keystore.getCertificate(alias); 
Key key = keystore.getKey(alias, keypass.toCharArray(  )); 
if (key == null) { 
  throw  
  new IllegalArgumentException("Invalid Key Info"); 
} 
KeyInfo keyInfo = new KeyInfo(  ); 
KeyInfo.X509Data x5data = new KeyInfo.X509Data(  ); 
x5data.setCertificate(cert); 
x5data.setParameters(cert, true, true, true); 
keyInfo.setX509Data(new KeyInfo.X509Data[] { x5data }); 
keyInfo.setKeyValue(cert.getPublicKey(  )); 
siggen.setKeyInfoGenerator(keyInfo); 

Finally, we can use the prepared key to sign the assertion. The sign operation on the 
SignatureContext object handles the complex cryptographic processes to create the 
signature (see Example 7-26). Once the assertion has been signed, we return the DOM 
element that contains the signature just created.  

Example 7-26. Signing the assertion  

Element sig = siggen.getSignatureElement(  ); 
SignatureContext context = new SignatureContext(  ); 
context.sign(sig, key); 
return sig;  

7.5.3.4 The login operation 

The encryption code is used in the login operation, shown in Example 7-27. It verifies the 
user's password, generates the SAML assertion, and signs it.  

Example 7-27. The login operation  

public static Element login(String userid,  
                            String password) throws Exception { 
 
    Element el = doc.getDocumentElement(  ); 
    NodeList nl = el.getElementsByTagName("user"); 
    for (int n = 0; n < nl.getLength(  ); n++) { 
        Element e = (Element)nl.item(n); 
        if (e.getAttribute("id").equals(userid) && 
            e.getAttribute("password").equals(password)) { 
             
            AuthenticationAssertion aa =  
                AssertionFactory.newInstance(new String(new   
                      Long(System.currentTimeMillis()).toString(  )), 
                      "CodeShare.org", 
                      new java.util.Date(  ), 
                      userid, 
                      "CodeShare.org", 
                      "http://codeshare.org", 
                      new java.util.Date(  ), 
                      java.net.InetAddress.getLocalHost(  ). 
                          getHostAddress(  ), 



Programming Web Services with SOAP 

page 136 

                      java.net.InetAddress.getLocalHost().getHostName(  )); 
         
            Element sa = AssertionSigner.sign(aa,  
                              "CodeShare.db", 
                              "CodeShare",  
                              "CodeShareKeyPass",  
                              "CodeShareStorePass"); 
            return sa; 
        } 
    } 
    return null; 
} 

The deployment descriptor we use to deploy the client service to Apache Axis is shown in 
Example 7-28.  

Example 7-28. Deployment descriptor  

<isd:service xmlns:isd="http://xml.apache.org/xml-soap/deployment" 
             id="urn:CodeShareService-ClientService"> 
  <isd:provider type="java" 
                scope="Application" 
                methods="register login"> 
    <isd:java class="codeshare.AuthenticationService"/> 
  </isd:provider> 
  <isd:faultListener>org.apache.soap.server.DOMFaultListener 
  </isd:faultListener> 
</isd:service> 

7.5.4 The Verification Service 

The task of the verification service is to validate the signed SAML assertion on behalf of the 
CodeShare owner. The CodeShare server handles this validation for the owner, so the owner 
doesn't have to worry about the complexities of implementing the full XML digital signature 
specification. Granted, it's not a very secure approach, but it works for our purposes here.  

The verification service exposes a single operation, verify, which receives the signature and 
returns a Boolean response indicating whether that signature is valid (see Example 7-29). A 
real verification of the SAML assertion would include a number of checks, such as ensuring 
that all of the fields contain valid data. We have omitted those checks in the interest of 
brevity.  

Example 7-29. The verify operation  

public static boolean verify(Element signature) throws Exception { 
         
    Key key = null; 
    Element keyInfoElement = KeyInfo.searchForKeyInfo(signature); 
    if (keyInfoElement != null) { 
        KeyInfo keyInfo = new KeyInfo(keyInfoElement); 
        key = keyInfo.getKeyValue(  ); 
    } 
    SignatureContext context = new SignatureContext(  ); 
    Validity validity = context.verify(signature, key); 
    return validity.getCoreValidity(  ); 
} 



Programming Web Services with SOAP 

page 137 

Deploy this service using the deployment descriptor in Example 7-30.  

Example 7-30. Deployment descriptor for the verification service  

<isd:service xmlns:isd="http://xml.apache.org/xml-soap/deployment" 
             id="urn:CodeShareService-Verification"> 
  <isd:provider type="java" 
                scope="Application" 
                methods="verify"> 
    <isd:java class="codeshare.VerificationService"/> 
  </isd:provider> 
  <isd:faultListener>org.apache.soap.server.DOMFaultListener 
  </isd:faultListener> 
</isd:service> 

7.6 Implementing the CodeShare Owner 

The CodeShare owner server is a lightweight Perl application that consists of two parts: the 
owner module and a SOAP-enabled HTTP daemon. The server builds on top of SOAP::Lite.  

7.6.1 The Owner Module 

The CodeShare::Owner module works with the owner's index.xml to allow users to search for 
and retrieve shared code. The owner service also interacts with the CodeShare service to 
update the master index and validate the identities of users who submit SAML assertions.  

This code, written in Perl, implements the same owner interface as the Java CodeShare owner 
service seen in the previous example. The same WSDL interface description applies to both. 
The operations have the same effect and return the same types of data.  

The init method shown in Example 7-31 turns the owner's index.xml into a data structure, 
stored in the variable $index.  

Example 7-31. The init method  

sub init { 
  my($class, $root) = @_; 
  open(F, $root) or die "$root: $!\n"; 
  $index = SOAP::Custom::XML::Deserializer 
            ->deserialize(join '', <F>)->root; 
  close(F) or die "$root: $!\n"; 
} 

To interact with the CodeShare server master index and validation services, we create a 
SOAP::Lite proxy to the CodeShare server (shown in Example 7-32).  

Example 7-32. Constructing a SOAP::Lite proxy to the server  

my $codeshare_server; 
sub codeshare_server { 
  return $codeshare_server ||=  
         SOAP::Lite 
           ->proxy($SERVER_ENDPOINT) 
           ->uri("urn:Services:CodeShareServer"); 
} 



Programming Web Services with SOAP 

page 138 

The update operation shown in Example 7-33 updates this owner's entry in the master index 
with the information given as arguments to the method.  

Example 7-33. The update operation  

sub update { 
  shift->codeshare_server->update(@_)->result; 
} 

When a user submits a SAML assertion, it must be validated by the owner service. The code 
in Example 7-34 uses the CodeShare service proxy created in Example 7-32 to do just that. 
Once the assertion is validated, it is cached so the owner doesn't have to validate it again.  

Example 7-34. Validating an assertion  

sub is_valid_signature { 
  my($self, $username, $signature) = @_; 
 
  my $key = join "\0", $username, $signature; 
 
  # already cached? 
  return $cache{$key} if exists $cache{$key}; 
 
  my $response = eval { $self->codeshare_server 
     ->isValid(SOAP::Data->type(xml => $signature)) }; 
  die "CodeShare server is unavailable. Can't validate credentials\n" if 
$@; 
  die "CodeShare server is unavailable. ",  
      $response->faultstring, "\n" if $response->fault; 
  die "Invalid credentials\n"  
      unless $cache{$key} = $response->result; 
 
  return $cache{$key}; 
} 

The traverse procedure shown in Example 7-35 navigates the index.xml, checking whether 
the items in the index match the criteria requested by the user in the search, info, list, or 
get operations.  

Example 7-35. The traverse method  

sub traverse { 
  my($self, %params) = @_; 
 
  my $start = $params{start}; 
 
  my $type = $start->SOAP::Data::name; # file|project|directory 
  my $location = ref $start->location ? $start->location->value : ''; 
 
  # path to current structure. Empty for projects 
  my $path = $type eq 'directory' ||  
             $type eq 'file' ? join('/', $params{path} || (  ), $location) 
              : ''; 
  my $prefix = $type eq 'project' ? $location : $params{prefix} || ''; 
  my $fullpath = join '/', $prefix, $path; # full path. Used to GET files 
 
  my $where = $params{where}; 



Programming Web Services with SOAP 

page 139 

  my $matched =  
    $params{get} && $params{matched} || 
    $params{what} &&  
    # check only subelements in Dublin Core namespace 
    $start->$where() =~ /$params{what}/ && $start->$where(  )->uri eq 
$DC_NS; 
 
  return  
    # current element 
    ($matched 
       ? +{ type => $type,  
            path => $path, 
            ($params{get} ? (fullpath => $fullpath) : (  )), 
            map { ref $start->$_() ? ($_ => $start->$_()->value) : (  )  
                } @ELEMENTS 
         }  
       : (  ) 
    ),  
 
    # and everything below 
    map { $self->traverse(start => $_, where => $where,  
          what    => $params{what},  
          path => $path, 
          prefix  => $prefix,  
      get => ($params{get} || 0), 
          matched => $matched) }  
         $start->project, $start->directory, 
         ($type eq 'file' ? (  ) : $start->file) 
  ; 
} 

The list operation provides a simple listing of all shared items, and is shown in Example 7-
36.  

Example 7-36. The list method  

sub list { 
  pop; 
  my($self, $what) = @_; 
  return [ map { my $e = $_; +{ map {$_ => $e->{$_}} 
                                qw(type path Title file fullpath) } } 
      $self->traverse(start => $index, where => 'Title', 
                      what  => $what,  get   => 1) 
  ]; 
} 

The get operation shown in Example 7-38 retrieves the requested set of items; before it can 
do so, however, it must check to see if the user is authorized to access those items. It does so 
by validating the SAML assertion of the user and checking to see if the owner has explicitly 
allowed the user to access.  

The owner specifies access permissions for a specific item in the index by adding a Dublin 
Core dc:Rights element to it. The value of this element is the list of users allowed to access 
it. If the element is missing, it is assumed that everyone is allowed to access it. Example 7-37 
shows a sample index file.  

 



Programming Web Services with SOAP 

page 140 

Example 7-37. Sample index file  

<codeshare> 
  <project location="HelloWorld"> 
    <dc:Title>Hello World</dc:Title> 
    <dc:Rights>james pavel doug</dc:Rights> 
  </project> 
</codeshare> 

The index in Example 7-37 indicates that the users james, pavel, and doug are allowed to get 
the HelloWorld project item. The get operation shown in Example 7-38 retrieves the 
requested set of items.  

Example 7-38. The get operation  

sub get { 
  my $self = shift; 
  my $envelope = $_[-1]; 
  my $username = 
  $envelope->valueof('//{http://www.oasis-open.org/committees/security/ 
docs/draft-sstc-schema-assertion-15.xsd}Name'); 
  my $results = $self->list(@_); 
  [ map { # return file 
      $_->{type} eq 'file' && open(F, delete $_->{fullpath})  
        ? ($_->{file} = join('', <F>), close F) : (  ); $_  
    } 
    grep { # check rights 
      ($_->{Rights} || '') =~ /^\s*$/ || # public access if empty 
       $username && $_->{Rights} =~ /\b$username\b/ &&  
         $self->is_valid_signature($username, get_signature($envelope)) 
    } 
      @$results 
  ]; 
} 

7.6.2 The Server Daemon 

To deploy this code as a web service, simply create and run the HTTP server daemon given in 
Example 7-39.  

Example 7-39. The HTTP server daemon  

use SOAP::Transport::HTTP; 
use CodeShare::Owner; 
 
print "\n\nWelcome to CodeShare! The Open source code sharing network!"; 
print "\nCopyright(c) 2001, James Snell, Pavel Kulchenko, Doug Tidwell\n"; 
 
CodeShare::Owner->init(shift or die "Usage: $0 <path/to/index.xml>\n"); 
 
my $daemon = SOAP::Transport::HTTP::Daemon 
  -> new (LocalPort => 8080)  
  -> dispatch_to('CodeShare::Owner::(?:get|search|info|list)') 
; 
print "CodeShare Owner Server started at ", $daemon->url, "\n"; 
print "Waiting for a request...\n"; 
$daemon->handle; 



Programming Web Services with SOAP 

page 141 

Launch the daemon with the following command line:  

C:\book>start perl cs_server.pl index.xml 

The running program is shown in Figure 7-4.  

Figure 7-4. Screenshot of the CodeShare owner server running 

 

7.7 Implementing the CodeShare Client 

The CodeShare client, like the owner server, is a Perl application that implements a simple 
shell for interacting with the CodeShare server and owner services. It also uses SOAP::Lite. 
The full source to the client is given in Appendix C. We discuss the highlights here.  

First we create a proxy, shown in Example 7-40, to the CodeShare server to authenticate the 
user.  

Example 7-40. Creating the proxy  

my($server, $uri) =  
  $ownerserver ? ($ownerserver     => 
'http://namespaces.soaplite.com/CodeShare/Owner') 
               : ($codeshareserver => 'urn:Services:CodeShareServer'); 
my $soap = SOAP::Lite 
  ->proxy($server) 
  ->uri($uri); 

If the user logs in (doing so is completely optional), the client invokes the login operation 
exposed by the CodeShare service client interface. This returns a SAML assertion, which the 
client caches. We can tell whether the user is logging in based on whether he provides a 
username and password. Example 7-41 demonstrates this.  

Example 7-41. Logging in  

my $signature; 
if ($username || $password) {  
  my $response = $soap->login( 
    SOAP::Data->name(credential => join ':', $username, $password)-
>type('base64') 
  ); 
  die $response->faultstring if $response->fault; 
  $signature = SOAP::Data->type(xml => get_signature($response)); 
} 



Programming Web Services with SOAP 

page 142 

The client is implemented as a simple shell interface, shown in Figure 7-5.  

Figure 7-5. The CodeShare client shell interface 

 

We create this shell using a while loop (shown in Example 7-42) to read input, work out what 
to do, and do it. The loop:  

1. Waits for the user to enter a command (search, info, get, list, quit, or help).  
2. Checks to see which command was entered. 
3. Invokes the SOAP operation. 
4. If the get command was issued, the resulting list of items is looped through and the 

items are returned using a simple HTTP-GET operation to the CodeShare owner 
server.  

Example 7-42. The loop at the heart of the client  

while (defined($_ = shift || <>)) { 
  next unless /\w/;    # must have a command 
  my($method, $modifier, $parameters) =  # split input 
     m!^\s*(\w+)(?:\s*/(\w*)\s)?\s*(.*)!; 
 
  last if $method =~ /^q(?:uit)?$/i;           # handle quit command 
  help(  ), next if $method =~ /^h(?:elp)?$/i; # handle help comma 
 
 
  # call the SOAP method 
 
  my $res = eval "\$soap->$method('$parameters', '$modifier', 
                  \$signature || (  ))"; 
 
  # check for errors 
  $@                            and print(STDERR join "\n", $@, ''), next; 
  defined($res) && $res->fault  and print(STDERR join "\n", 
                                    $res->faultstring, ''), next; 
  !$soap->transport->is_success and print(STDERR join "\n", 
                                    $soap->transport->status, ''), next; 
 
  # check for result 
  my @result = @{$res->result} or print(STDERR "No matches\n"), next; 
 
  foreach (@result) { 
    print STDERR "$_->{type}: ",  
          join(', ', $_->{Title} || (), $_->{path} || (  )), "\n"; 
    if ($method eq 'get') { 
      if ($_->{type} eq 'directory') { File::Path::mkpath($_->{path}) } 



Programming Web Services with SOAP 

page 143 

      if ($_->{type} eq 'file') {  
        open(F, '>'. $_->{path}) or warn "$_->{path}: $!\n"; 
        print F $_->{file}; 
        close(F) or warn "$_->{path}: $!\n"; 
      } 
    } elsif ($method eq 'info') { 
      foreach my $key (grep {$_ !~ /^(?:type|path)/} keys %$_) { 
        print "  $key: $_->{$key}\n"; 
      } 
    } 
  } 
} continue { 
  print STDERR "\n> "; 
} 

7.8 Seeing It in Action 

You can download an archive of the code from the O'Reilly web site 
(http://www.oreilly.com/catalog/progwebsoap/ ), and run the CodeShare service yourself. 
First make sure that you have properly installed Apache SOAP, Perl, and SOAP::Lite. Then 
run the codeshare.bat script for Windows or the codeshare.sh shell script for Unix. These 
scripts deploy the CodeShare services and launch the various components, allowing you to 
experiment with the shell client.  

7.9 What's Missing from This Picture? 

That was a lot of code, but even with all the programs we've written for the CodeShare server, 
we still haven't used all the web services components. There's no UDDI, and we haven't used 
the features of many P2P services, such as presence and asynchronous messaging.  

7.9.1 Where Is UDDI? 

One piece that is conspicuously missing is UDDI. Nowhere in the CodeShare example we've 
laid out so far is there any mention of how UDDI fits into the picture. This shows that none of 
these web services technologies are overly dependent upon one another. If UDDI is not useful 
in a given situation, leave it out. If SAML hadn't been useful, we would have left that out also.  

In COM, CORBA, J2EE, etc., there are parts that just aren't useful, but that you still have to 
deal with, or at least deploy along with your sample. In web services, you are not locked into 
a monolithic set of technologies, but instead have a loosely coupled conglomeration of 
standards that make writing code easier.  

UDDI could be used in this example. For instance, the CodeShare server could be listed in a 
public UDDI registry so that it can be more readily discovered. Additionally, since each 
CodeShare owner is itself a web service, owners themselves could be listed in a UDDI 
registry.  

7.9.2 Presence and Asynchronous Messaging 

Even though the CodeShare service implements a peer-to-peer architecture, there are two 
aspects of P2P that are missing: the concept of presence and the ability to have peers 
communicate with each other asynchronously.  



Programming Web Services with SOAP 

page 144 

Presence boils down to the ability of one peer to see if another peer (in this case an owner 
server) is currently online. The owner's HTTP daemon could very easily tell the CodeShare 
server when it is starting up and when it is shutting down, allowing the CodeShare server to 
pass that information on to users who are looking for code. This would work just like the 
buddy list in your Instant Messaging application.  

Even if your buddies are offline, you should still be able to send messages to be delivered 
when they do come online. If a CodeShare user wants to get some code, and the owner of that 
code is currently offline, it would be nice if the owner could still get that request and handle it 
later. CodeShare does not yet support asynchronous communication like this.  

7.10 Developing CodeShare 

CodeShare has been registered as an open source project at SourceForge, a leading open 
source development portal. If this example has inspired you to add features to the application, 
you can take an active role in developing the CodeShare Service Network into a real-life 
infrastructure for sharing code.  

To access the project at SourceForge, visit http://www.sourceforge.com/, create a user 
account, and search for the "CodeShare" project. To be an active contributor, you'll need to 
become familiar with the source code control system, called CVS. Details are available at the 
SourceForge web site.  

 



Programming Web Services with SOAP 

page 145 

Chapter 8. Web Services Security 
Security is one of the key issues that developers of web services face, particularly in the 
enterprise. Without a comprehensive security infrastructure, web services will simply not 
reach their highest potential. It is no surprise that we are starting to see new battles emerge in 
the marketplace as companies vie for the dominant security position.  

Authentication is one of the key components that has emerged. Currently, there are three 
widely known, competing (and unfortunately, incompatible) web service authentication 
infrastructures jockeying for position in the marketplace:  

Passport  

Microsoft's proprietary single sign-on service that provides authentication and digital 
wallet services for millions of users.  

Magic Carpet  

AOL's own single sign-on service and digital wallet for use by AOL members.  

Sun's Liberty Project  

A collaborative effort among Java and open source development communities to 
develop an alternative to Passport.  

Of the three, Passport is the best known and understood architecture. We discuss that 
architecture in this chapter, but first we will look more closely at web services security in 
general, including a look at the XML digital signature and XML encryption specifications.  

8.1 What Is a "Secure" Web Service? 

Web services are all about moving information; it doesn't really matter what type of 
information is being moved. A "secure" web service is one in which the information sender 
trusts that the recipient of that information is really who he claims to be and vice versa. Also, 
a "secure" web service is one in which the information can be received and accessed only by 
the intended recipient. This definition implies two things:  

1. There must be some type of authentication. 
2. There must be some type of privacy and integrity protection, such as encryption and 

authorization.  

8.1.1 Authentication 

Authentication asks questions like:  

• Who am I? 
• How do I prove who I am? 
• Why should you trust me when I tell you who I am? 



Programming Web Services with SOAP 

page 146 

• Who are you? 
• How can I prove that you are who you say you are? 
• Why should I trust you when you tell me who you are? 

In the web services world, answering these questions is vitally important. Of equal importance 
is coming up with a standard method to ask and answer these questions.  

That's where protocols like the Security Assertions Markup Language (SAML) come into 
play. In Chapter 5 we briefly discussed SAML and demonstrated in a very simple way how it 
can be used to provide single sign-on capabilities, but there is more to it than that.  

SAML assertions can provide a standard machine-readable expression of a person, 
application, or device's identity. This identity can be validated, passed around, and used as 
proof that you really are who you say you are. Because the assertion is digitally signed, we 
can establish some sort of trust based not on my word that I am who I say I am, but on the 
word of a trusted third party (the issuer of the assertion).  

Even though SAML still has hurdles to jump through on its way to completion, there is a huge 
amount of potential to provide a very comprehensive, standard framework for implementing 
global sign-on.  

Microsoft recently proposed an alternative approach to authentication based on embedding 
structures such as Kerberos tickets within the SOAP header. This approach, defined by two 
related specifications called WS-Security and WS-License, is used extensively by Microsoft's 
.NET My Services project (formerly known as Hailstorm).  

There are no standards (real or de facto) that define how to carry authentication information 
within a SOAP Envelope.  

8.1.2 Privacy 

There are two important issues involved in ensuring privacy; both address the protection of 
assets. The first issue is the protection of an individual's personal information. For example, if 
I give you my home address and credit card number, I expect that you will protect that 
information and not send it out over the Internet unguarded. The second issue deals with how 
you would actually go about protecting that data; this aspect of protection implies 
authorization policies that detail who is allowed access to the information and what they are 
allowed to do with it, and encryption methods that ensure unauthorized parties cannot access 
it.  

Currently, there is little Internet privacy infrastructure. While there are simple mechanisms in 
place to obscure information as it passes from one point to the next (SSL, for example), there 
is no way to ensure that your personal information is used only for the specific purpose you 
intended it for once it is sent out over the wire.  

The closest thing we have to a privacy infrastructure is the W3C Platform for Privacy 
Preferences (P3P), which specifies an XML-based language for creating privacy profiles. 
Service providers create these profiles to tell service consumers how they intend to use the 
personal information provided by the consumer. While it is a valuable first step, these profiles 
are not legally binding, can change at any time, and often do. So if a company decides to use 



Programming Web Services with SOAP 

page 147 

your information in a way that violates the original terms of the profile, there are no laws to 
stop them. This is changing, though, and hopefully laws will be passed in the very near future 
to make privacy policies legally binding.  

Another problem with privacy on the Internet is that people conflate authentication with 
authorization. This is seen in the version of Microsoft's Passport service currently being used 
at a wide range of e-commerce sites. When a user authenticates with Passport, almost all of 
the personal information contained in his Passport profile is shared automatically with the 
Passport-enabled web sites the user visits. The problem of authenticating users is solved, but 
the authorization of companies allowed to access your information is not.  

Authentication of a user's identity and management of a user's personal information need to be 
completely separated from one another. Services like Passport, Magic Carpet, and Liberty 
blur these lines.  

8.2 Microsoft Passport, Version 1.x and 2.x 

The current version of Microsoft Passport is designed around providing single sign-on and 
digital wallet services for web browser-based services. It is easy to understand:  

1. A user, Jane, visits a Passport-enabled web site (MSN.com, for instance).  
2. She is presented with a "Passport Sign-on" link that redirects her web browser to 

http://www.passport.com/, where she types her Passport user ID and password.  
3. Upon validating the username and password, Passport.com creates a cookie on Jane's 

computer that contains her encrypted user profile (all of her personal information).  
4. Passport then redirects her back to the original site, which checks for the existence of 

the cookie, accesses it, and extracts the information it needs about Jane to provide 
more personalized service.  

8.2.1 Drawbacks 

There are several problems with this architecture. First, it would be very simple for a 
malicious person to fool Jane into voluntarily compromising her user ID and password, by 
simply creating a fake Passport login page. The average user, redirected to the fake page 
rather than the authentic Passport.com page, would not be able to tell the difference. She 
would enter her login information, press Submit, and never know that she never actually 
logged in. Meanwhile, the bad guy now has Jane's password and can access all of her personal 
information and even pretend to be Jane at real Passport-enabled sites.  

A second problem is that there is nothing to stop a malicious person from setting up a real 
Passport-enabled site and taking advantage of Passport, freely dispersing Jane's personal 
information when she happens to visit the site.  

In either situation, it is likely that neither Jane nor Passport will ever know that her 
information has been compromised because Passport does not include any auditing 
capabilities that would let Jane go back and monitor the activity of her account.  

Another big problem is the natural insecurity of using cookies to store profile information—
even if it is encrypted. All it would take is a simple worm virus targeted at locating and 



Programming Web Services with SOAP 

page 148 

decrypting these encrypted Passport cookies to cause a very serious security issue for the 
millions of Passport users.  

In fact, Microsoft's Passport service has recently come under heavy criticism due to a very 
serious security flaw that allowed credit card numbers and other personal information stored 
by Passport to be read by a malicious hacker.  

8.3 Microsoft Passport, Version 3.x 

While the details are still sketchy, Microsoft is busy working to implement the next 
generation of their Passport service—this time basing it on the much more secure Kerberos 
authentication scheme and providing more robust privacy controls.  

8.3.1 Overview of Kerberos 

Kerberos is an authentication protocol that's been around for quite some time. Originally 
developed by a university, many large companies, such as Microsoft and IBM, have picked up 
Kerberos and incorporated support for it into their product lines. Microsoft is by far the 
largest proponent of Kerberos in the industry today.  

Kerberos is too complex to explain in detail. Here's a very abbreviated rundown of how it 
works:  

• First, the user (we'll use Jane again) asks the Kerberos authentication server to validate 
her credentials. Jane does this by encrypting a packet of information using her private 
key. The Kerberos server decrypts this packet using her public key. If the decryption 
was successful, the Kerberos service rules that Jane really is Jane, and sends her an 
authentication ticket.  

• Whenever Jane wants to use some network resource, she must go to the Kerberos 
Ticket Granting Service (TGS) and explicitly ask permission to use that specific 
service. The TGS will validate her authentication ticket and issue, as appropriate a 
one-time use ticket for the service she is requesting.  

• Jane presents that one-time use ticket to the service when she submits her request. 
Also included in the request is an authenticator that proves the one-time use ticket is 
authentic and really did come from Jane, not some malicious bad guy trying to 
impersonate her.  

That, while being a gross oversimplification, is all that Kerberos does. Passport 3.0 will 
implement this model, allowing (hopefully) a more robust and secure authentication model 
that will offer better protection to the services' 160 million plus users.This process protects the 
user from the impersonation and spoofing attacks that are possible in the current version of 
Passport. It is a huge advantage.  

The Passport privacy management is also improved. Passport users will be able to establish 
policies that dictate how their information is shared, and who is allowed to access it. The 
details have not been fleshed out yet, but it will use P3P privacy policies. This doesn't change 
the fact that P3P policies are not yet legally binding, but it is a huge leap forward for Passport.  

 



Programming Web Services with SOAP 

page 149 

8.4 Give Me Liberty or Give Me ... 

A new arrival in the web services security battle is a collaborative project called Liberty. 
Sponsored by Sun and a handful of significant industry players, this project seeks to achieve 
three main objectives:  

1. To allow individual consumers and businesses to maintain personal information 
securely by enabling a decentralized approach to garnering personal or proprietary 
information, and promoting interoperability or service delivery across networks.  

2. To provide a universal, open standard for "single sign-on," which users and service 
providers can rely upon, and leverage to interoperate.  

3. To provide an open standard for network identity spanning all network-connected 
devices, allowing the providers of network services and the infrastructure that enables 
those services to adopt a neutral, open standard, available wherever the Internet is 
available, securing reliable identity authentication across handsets, automobiles, credit 
cards—literally any device attached to the Internet.  

No technical details have been released on how these goals will be met. At the time of this 
writing, the Liberty project is essentially vaporware.  

8.5 A Magic Carpet 

There is as little information about AOL's Magic Carpet proposal as there is about Liberty. 
The little that is available points to Magic Carpet being an extension of AOL's Screen Name 
service. Screen Name attempts to provide a single sign-on that can give access to many 
different web sites across the Web. You can create a profile for the web sites you visit, and 
you can limit the web sites' access to various parts of your profile. At the time of this writing, 
AOL's Magic Carpet is still in stealth mode, and should be considered vaporware like Sun's 
Liberty.  

8.6 The Need for Standards 

Microsoft is not the only company working on this problem. Unfortunately, those who are 
working on it are not necessarily working together. To date, we have three incompatible 
solutions being proposed for web services. In a battle that is starting to resemble the Great 
Browser Wars of old, traditional enemies are drawing lines and duking it out over who is 
going to control web services security.  

A better approach (the approach that developers need to demand) is for standards to be 
developed and adopted by all the different players. While it will probably be a long time 
coming, what we don't need is to develop a great new open interoperability and integration-
focused architecture only to have interoperability break down once we actually try to do 
something really interesting, like global sign-on.  

8.7 XML Digital Signatures and Encryption 

Two positive examples of standardization efforts currently going on the XML and web 
services arena are the XML Digital Signature and XML Encryption activities being conducted 
primarily through the W3C (the IETF is also involved heavily in the XML Digital Signature 



Programming Web Services with SOAP 

page 150 

effort). Providing comprehensive digital signature and encryption support will be by far a 
more important issue than the choice of authentication services.  

The XML Digital Signature project is working to define a standard syntax for digitally 
signing data (including XML data) and for encoding that signature as XML. Digital 
Signatures are critical to protecting the integrity of business transactions on the Internet and 
will be a key piece of the overall web services infrastructure.  

The XML Encryption project is working to define how encrypted data (including XML data) 
and the metainformation necessary to decrypt that data can be encoded as XML. Encryption 
of XML data is critical to ensuring the confidentiality of information exchanged between web 
service participants.  

Currently, only IBM's Web Services ToolKit and Microsoft's .NET web services 
implementations include support for digitally signing and encrypting SOAP messages. While 
they both support the same XML Encryption and Digital Signature standards, they have 
different ideas as to how exactly signatures and encrypted data should be placed within a 
SOAP Envelope. So while each set of tools supports encryption and signing, they are not 
compatible with one another.  

Expect these interoperability differences to be worked out soon, leading to compatible 
implementations. A key issue will be getting other web service tool vendors to support these 
security standards within their products.  

 



Programming Web Services with SOAP 

page 151 

Chapter 9. The Future of Web Services 
Throughout this book, we've maintained a fairly narrow focus on what web services are and 
how to go about creating them. To finish up, we will spend some time discussing the future of 
web services from both the point of view of the technologies, and from the point of view of 
the architecture as a whole. Specifically, we'll discuss the futures of SOAP, WSDL, and 
UDDI, as well as the next generation of even more useful and powerful services.  

9.1 The Future of Web Development 

Before we get into where the technologies are going in the future, let's take a moment to 
highlight exactly how web services are most likely to impact web development.  

We've spent a great deal of time talking about interoperability. With web services, we're 
concerned about how to find information and move it across the Web. Issues that used to be 
important, such as the programming language in which the code was written, the operating 
system on which the code is running, the object model on which the code is based, or the 
vendor of the underlying database system, don't matter that much anymore.  

Now that's a strong statement. Some may even say that it is too strong. Here's the reasoning.  

First, prior to web services, the vast majority of enterprise-scale development platforms were 
rather inbred. Java applications worked best with Java applications; COM applications 
worked best with COM applications; CORBA applications worked best with CORBA 
applications, and so on. To make the most of each environment, you had to standardize and 
focus on the technology platform itself. You could get Java and COM to work together, but it 
was painful.  

Web services, however, opened an integration channel between Java and COM, and COM 
and CORBA, etc., that did not exist before. Because this channel is built with open standards 
that any platform can implement, for the first time we have a situation where one can easily 
invoke functionality written in one programming language on one platform from any other 
programming language on any other platform. This allows us to look beyond programming 
languages and focus on the applications themselves.  

This point was demonstrated in the Hello World example in Chapter 3. We created the same 
type of web service with three different programming languages. Barring minor 
interoperability bugs that exist in the web services tools, we could easily switch between the 
three service implementations without paying attention to how they were actually written. If 
we were to go looking for a Hello World service somewhere out on the Internet, it would be 
of no importance to me whether it is written in Java, Perl, .NET, or even COBOL or ADA. 
(There is an implementation of SOAP for ADA, by the way. And Microsoft's Visual 
Studio.NET will support writing assemblies with COBOL.)  

9.1.1 Web Services and Existing Technologies 

A critical insight is that web services do not replace existing technology infrastructures. 
Rather, they help to integrate existing technologies. In other words, if you need a J2EE 



Programming Web Services with SOAP 

page 152 

application to talk to a COM application, web services makes it easier. Web services won't 
completely replace that 30-year-old mainframe system in the back closet that nobody ever 
thinks about anymore. But web services might provide cross-platform automated access to the 
mainframe's applications, thus opening new channels of business.  

9.2 The Future of SOAP 

The SOAP protocol is already a couple of years old. One of the original versions became what 
is now called XML-RPC, a simple, popular alternative to SOAP championed by Userland 
Software. (Userland's CEO, Dave Winer, is one of the coauthors of the original SOAP 
specification.) To learn more about XML-RPC, read Programming Web Services with XML-
RPCby Simon St. Laurent, Joe Johnston, and Edd Dumbill (O'Reilly).  

XML-RPC split from SOAP in 1998. The first version of the SOAP protocol was announced 
in 1999, and since then there have been four revisions with a fifth now being worked on by 
the W3C. The two versions we've discussed in this book (Version 1.1 and Version 1.2) are 
those currently being used in production environments, even though they are not official W3C 
standards.  

In the not-too-distant future, the SOAP 1.2 working draft specification will evolve into the 
W3C XML Protocol Version 1.0 recommendation, which will be the first standardized 
version of the protocol.  

There should not be many changes between SOAP 1.2 and XML Protocol Version 1.0, 
because the W3C working group has committed to using SOAP as the basis for their work 
and to ensuring that backwards compatibility is maintained at least on a fundamental level. 
Unfortunately, it is still far too early in the process to know about any differences between the 
XML Protocol and SOAP 1.2. If you're curious, monitor the XML Protocol development 
discussion through the xml-dist-app mailing list (see the W3C XML Protocol home page at 
http://www.w3.org/2000/xp for subscription details).  

9.3 The Future of WSDL 

Like SOAP, the Web Service Description Language is not yet an official Internet standard, 
but it is well on the road to becoming one. It has been submitted to the W3C and a working 
group is being formed to manage it. Unlike SOAP, which has a fairly stable direction within 
the W3C, standardized WSDL may be different from the version being widely used in web 
services today. It's too early to know how different, or when the W3C-blessed standard will 
be released.  

9.3.1 Missing Pieces 

There are several important things missing from WSDL that will have to be addressed by the 
W3C working group. For example, there is no standardized mechanism for extending the 
WSDL description to include information about security requirements, quality of service 
attributes, sequencing of operations, and so on. While not a strict requirement when WSDL is 
used to describe simple, basic RPC-style services, such standard extensions become critical 
when applying web services technology to enterprise e-business scenarios.  

 



Programming Web Services with SOAP 

page 153 

9.3.2 An Alternative to WSDL 

Another key issue that the WSDL working group will need to address is the reconciliation of 
WSDL to other, alternative service description mechanisms, such as the DARPA Agent 
Markup Language (DAML) based DAML-S (S stands for "services"). DAML-S is focused on 
the task of building a formal semantic data model for web services. In other words, they're 
formalizing the language we use to describe web services. While DAML-S has no solid 
corporate backing, much of the work being done will have an impact on the future direction of 
WSDL standardization.  

The concepts involved in DAML-S are really not all that different from WSDL, but the syntax 
is much more complex. For instance, Example 9-1 shows a partial description of the Hello 
World service from Chapter 3, in DAML-S instead of WSDL.  

Example 9-1. Sample DAML-S description of the WSDL service  

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" 
         xmlns:daml="http://www.daml.org/2001/03/daml+oil#" 
         xmlns:service="http://www.daml.org/services/daml-
s/2001/05/Service#" 
         xmlns:process="http://www.daml.org/services/daml-
s/2001/05/Process#"  
              xmlns:profile="http://www.daml.org/services/daml-
s/2001/05/Profile#"> 
 
    <daml:Ontology about=""> 
 
        <daml:versionInfo>HelloWorld</daml:versionInfo> 
        <daml:imports  
              rdf:resource="http://www.w3.org/1999/02/22-rdf-syntax-ns" />  
        <daml:imports  
              rdf:resource="http://www.w3.org/2000/01/rdf-schema" />  
        <daml:imports  
              rdf:resource="http://www.w3.org/2000/10/XMLschema" />  
        <daml:imports  
              rdf:resource="http://www.daml.org/2001/03/daml+oil" />  
        <daml:imports  
              rdf:resource="http://www.daml.org/services/daml-
s/2001/05/Service" />  
        <daml:imports  
              rdf:resource="http://www.daml.org/services/daml-
s/2001/05/Process" />  
        <daml:imports  
              rdf:resource="http://www.daml.org/services/daml-
s/2001/05/Profile" /> 
    </daml:Ontology> 
 
    <rdf:Service rdf:ID="StockQuoteService"> 
       <service:presents> 
          <profile:Advertisement rdf:about="#StockQuote_Advertisement" /> 
       </service:presents> 
       <service:implements> 
          <process:ProcessModel rdf:about="#StockQuote_ProcessModel" /> 
       </service:implements> 
    </rdf:Service> 
 
 
 



Programming Web Services with SOAP 

page 154 

    <process:ProcessModel rdf:ID="StockQuote_ProcessModel"> 
       <service:topLevelEvent rdf:resource="#GetStockQuote" /> 
    </process> 
 
    <rdfs:Class rdf:ID="GetStockQuote"> 
       <rdfs:subClassOf 
        rdf:resource="http://www.daml.org/services/daml-
s/2001/05/Process#Process" /> 
    </rdfs:Class> 
 
    <rdf:Property rdf:id="symbol"> 
        <rdfs:domain rdf:resource="#GetStockQuote" /> 
        <rdfs:subPropertyOf  
         rdf:resource="http://www.daml.org/services/daml-
s/2001/05/Profile#input" /> 
        <rdfs:range  
            rdf:resource="http://www.w3.org/2000/10/XMLschema#string" /> 
    </rdf:Property> 
 
    <rdf:Property rdf:id="value"> 
        <rdfs:domain rdf:resource="#GetStockQuote" /> 
        <rdfs:subPropertyOf 
         rdf:resource="http://www.daml.org/services/daml-
s/2001/05/Profile#output" /> 
        <rdfs:range 
            rdf:resource="http://www.w3.org/2001/10/XMLSchema#float" /> 
    </rdf:Property> 
 
    <profile:Advertisement rdf:ID="StockQuote_Advertisement"> 
       <profile:serviceName>StockQuoteService</profile:serviceName> 
       <!-- elements removed for brevity --> 
    </profile:Advertisement> 
</rdf:RDF> 

DAML-S is based on the Resource Description Framework (RDF) standard. This tends to 
make it more complex, verbose, and difficult to use than WSDL.  

That said, there are several lessons WSDL can learn from DAML-S: 

1. DAML-S naturally supports the ability to extend service descriptions to include a wide 
variety of semantic and functional information such as security, quality of service, etc.  

2. DAML-S naturally supports inheritance throughout the entire description.  
3. DAML-S provides a rich mechanism for describing web service processes (logical 

sequences of operations). WSDL does not support sequencing operations at all.  
4. DAML-S allows a service to implement multiple processes (the DAML-S equivalent 

to a WSDL port type).  
5. DAML-S supports a rich service advertisement description that provides information 

about who is providing the service, what the provider's capabilities are, and so on. 
WSDL does not include any advertisement information at all.  

These features of DAML-S are likely to be a part of the next generation WSDL.  

 

 



Programming Web Services with SOAP 

page 155 

9.3.3 Standard Extensions 

One key component of the success of web services will be the ability to describe not only the 
service itself, but also all of the services' capabilities, requirements, assumptions, and 
processes in a standard, consistent way.  

For example, consider how to describe a web service that uses a SAML-based single sign-on 
like the one we discussed in Chapter 5. There is no way to declare the type of authentication a 
service supports in WSDL. For that matter, there is no way to declare that a service supports 
any type of authentication.  

How might the WSDL of the future let you express what type of authentication mechanism is 
used? One way would be to define a standard extension to the WSDL binding element, as in 
Example 9-2.  

Example 9-2. Hypothetical extension to WSDL bindings  

<binding name="HelloWorldBinding" type="HelloWorldPortType"> 
   <soap:binding transport="http://schemas.xmlsoap.org/soap/http" /> 
   <s:authentication method="http://schemas.xmlsoap.org/security/saml" /> 
</binding> 

WSDL-enabled web services tools that understand the authentication extension would then 
know that SAML could be used for authentication.  

Currently, though, there are no standard extensions to WSDL, nor is there a broad industry 
effort to define them. This also may become part of the W3C-standardized WSDL.  

9.4 The Future of UDDI 

Chapter 4 introduced UDDI as a web service for discovering other web services. Through the 
definition of a standardized registry format and port type interface, UDDI allows service 
providers and service consumers to dynamically discover and integrate with one another.  

UDDI was originally developed by Microsoft, IBM, and Ariba, and is now managed by a 
broad industry consortium of companies. The plan is to submit UDDI for standardization once 
Version 3.0 of the specification is finished (the current version is 2.0).  

One of the key requirements for future versions of UDDI is a security infrastructure that 
would allow service consumers to validate the identity of service providers publishing their 
services—allowing for a much more robust trust relationship to be established.  

9.4.1 Problems with UDDI 

There are some problems with UDDI that will need to be addressed in future versions of the 
specification. Weak security is one of the most significant issues. Currently, it is possible for 
anybody to create an entry in a UDDI registry, pretending to be somebody else. For example, 
I can easily create an entry in a UDDI registry pretending to be Microsoft. Needless to say, 
this is not good.  



Programming Web Services with SOAP 

page 156 

Another major problem is the proliferation of "bad links" in public UDDI registries. These 
links point to companies or services that don't exist or are no longer available.  

There is a lack of understanding in companies about what UDDI is for and how it may be 
useful. This might hamper its adoption in future. Even among companies who understand it, 
there have been some doubts raised about whether public UDDI registries will be useful in the 
long term.  

9.5 Web Services Battlegrounds 

Over the last few decades, we've seen companies go to war to establish their operating 
systems, component models, programming languages, browsers, and so on. One refreshing 
aspect of the web services world is that most of these battles become irrelevant. Consider the 
SOAP services and clients we've discussed in this book. When we deploy a SOAP service, we 
define the methods we want to expose across the network. In the past, we'd have defined those 
methods with CORBA IDL or something similar, generated language bindings for various 
programming languages and platforms, then hoped we could get enough of the marketplace to 
use our service. If your platform or your development tools weren't compatible with your 
infrastructure (maybe they didn't support the correct level of CORBA, for example), you 
would probably be out of luck.  

With SOAP, we can describe everything in terms of platform-independent XML Schema data 
types. If your development platform has XML parsing tools (and these days you're hard-
pressed to find a platform that doesn't, from mobile phones to mainframes), you can start 
developing applications that use the service.  

Don't think for a moment that the fierce competitors of today's marketplace will suddenly get 
along swimmingly, though. As companies discover that the old battles no longer matter, 
everyone will try to get an edge on their competitors in some other way. We'll take a look at a 
couple of the battlegrounds of the future.  

9.5.1 Development Tools 

One of the reasons for the dominance of the Windows platforms is Microsoft's success in 
courting developers. Whatever the benefits of your technology, if you can convince hundreds 
of thousands of clever people to start building products with them, you gain an overwhelming 
advantage in the market. You don't have to come up with the killer app yourself; third-party 
developers can do that for you.  

With that in mind, you'll see the major software vendors working very aggressively to 
differentiate their web services development tools. If I can convince you that my tools will 
make you infinitely more productive and successful, the task of locking you into my 
development tools becomes much easier. And once you're comfortable with my development 
tools, I can integrate my proprietary technology initiatives with those tools, slowly removing 
your ability to use other tools.  

Vendors must appear to be standards-compliant, yet also seem somehow superior. A lot of the 
differentiating features will be nonstandard add-ons, a form of "embracing and extending" 
that has the potential to weaken web services interoperability while locking in developers to 
one vendor's products.  



Programming Web Services with SOAP 

page 157 

9.5.2 Killer Services 

If millions of developers can access web services with free tools, one obvious business model 
is to provide web services so cool that developers will be willing to tie themselves to those 
services. This is similar to the Web, in which millions of customers can access web sites with 
a free browser.  

One early contestant in the race for killer services is the online wallet. A next-generation 
online wallet is a web service that allows customers to store passwords, credit card numbers, 
and other sensitive information. The online wallet provider becomes a clearinghouse for e-
commerce. If we want to set up an online store, we can use the service to process credit card 
transactions. A customer gives us some information (username and password, for example), 
and we access the online clearinghouse to get an approval code for the transaction.  

We might have to pay the clearinghouse a fee (a percentage of the total, perhaps) for each 
transaction, but if this service is easy to use and access, provides a high level of service, is 
secure, and is widely accepted by consumers, we could save ourselves a great deal of time and 
headache in operating and managing our online store. If development tools make it very easy 
to use a particular online wallet, the vendor behind the development tools and the online 
wallet is in a very good position. This is widely thought to be part of Microsoft's .NET and 
.Net My Services (formerly known as Hailstorm) strategies.  

As web services take hold in the marketplace, we'll see lots of providers try to come up with 
other killer services to bring the world to their online doorsteps.  

9.5.3 Lucrative Marketplaces 

The EDI industry has worked for decades to automate the exchange of purchase orders, 
invoices, and similar documents. Unfortunately, these systems have traditionally been very 
expensive to create and maintain. With the lower startup costs of web services (you can build, 
deploy, and access web services with the technologies you already have), many smaller firms 
can now participate in these online business communities, just as the advent of the Web 
introduced many new companies that gave established merchants a run for their money.  

As the web services revolution takes off, we'll see the industry try once again to establish 
business-to-business (B2B) marketplaces. In the past, these have failed for two reasons:  

• Buyers wanted more control over their buying decisions; they didn't want a machine to 
make a buy decision based on which company came up first on the alphabetized list of 
search results.  

• Providers wanted more control over pricing. A marketplace in which a seller's prices 
are shopped around online might be good for an agent trying to find the lowest online 
price, but it's not good for the providers, particularly when an agent might not take 
into account such things as a provider's ability to handle large orders, how other 
buyers have rated a particular provider, etc.  

As web services mature, these concerns will be addressed. Through SOAP method calls to a 
UDDI registry, an online buyer can find all of the providers that claim to meet the buyer's 
needs. New web services built on top of UDDI will allow agents to get more information 
about providers, including their credit ratings, how quickly they've delivered orders in the 



Programming Web Services with SOAP 

page 158 

past, etc. Other services can reassure providers that buyers will be able to compare different 
providers fairly. For example, my company may have slightly higher prices, but we don't 
claim to have products in stock when our warehouses are empty.  

Web services promise to create an environment in which agents can evaluate various factors 
the way a human would, allowing those human users to focus on things more important to 
their businesses.  

9.5.4 The Enterprise 

Perhaps one of the most significant battles yet to emerge will be the one for dominance in the 
market for enterprise web services. These are the infrastructure services that will provide the 
foundation for delivering on the promise of agents, and more dynamic forms of e-business. 
These services include such things as distributed trust management and negotiation; metering, 
accounting, and billing; content and information management; privacy enforcement and 
auditing; intelligent and dynamic sourcing and materials procurement; and any number of 
other services that provide the bedrock of enterprise business development. It is still unclear 
what effect basing such core pieces of the infrastructure on web services technology will have 
on the marketplace, and at this point, far too early to offer any real insight. Whatever the 
impact, expect to see much more activity in this area in the very near future, as Internet 
technology companies (both old and new) vie for position in a burgeoning new market.  

Web services are a young approach to writing distributed applications. As such, they are 
nowhere near as mature and feature-rich as mechanisms like J2EE, CORBA, and .NET. 
Particularly needed is functionality that enables web services to operate in the enterprise 
environment: security, transactions, database integration, etc. This is similar to the early days 
of Java—it took until Java 2 Enterprise Edition for programmers to have a set of standard 
extensions to Java for security, transactions, messaging, server support, databases, etc.  

With web services, we see a parallel evolution. Currently, we have the technologies (e.g., 
SOAP, WSDL, and UDDI) for allowing web services to function. By themselves, these 
technologies hold great promise, but they are not quite enough for the enterprise environment.  

9.6 Technologies 

Although many web services standards are already defined, there are also many technologies 
that aren't quite there yet. We'll discuss those missing pieces, and speculate about how and 
when those missing pieces will be filled in.  

9.6.1 Agents 

An agent is a program that can act on your behalf. For example, I'd like to have an agent make 
flight, rental car, and hotel reservations for an upcoming business trip. My ideal agent would 
know which airlines and hotels I prefer, possibly based on previous trips to the same region. If 
we assume that all of the relevant data our agent might use is in a richly structured XML 
document, an agent might be programmed to take advantage of all sorts of information when 
planning a trip. For example, when flying coast to coast, Chicago is more likely to have 
weather delays in the winter, while Dallas is more likely to have weather delays in the 
summer. An agent could find out that there is a frequent-flyer promotion that would give me 



Programming Web Services with SOAP 

page 159 

10,000 extra frequent-flyer miles if I fly through Toronto. Maybe an agent could 
automatically check my calendar to see what time I'm free to leave the day of my flight.  

Agents have been an AI pipedream for years. XML and web services have the potential to 
make them real, though. Here's what's needed:  

• All the data involved must be encoded in XML, using well-understood vocabularies. 
That means we need standard tag sets for calendars, flights, airports, weather 
forecasts, etc. A few of those vocabularies exist, but most of them will need to be 
created.  

• All of the various airlines, hotels, rental car companies, and other vendors must 
provide web services that make it easy for my agent to create, change, and cancel 
reservations.  

• Most importantly, the agent technology must be powerful, reliable, secure, and easy to 
use. That's not exactly the easiest task in the world of software development. People 
won't use agents if they are untrustworthy, can't do much, or are too complicated for 
anyone without a Ph.D. in Computer Science.  

9.6.2 Quality of Service 

Web services make it possible to build applications from multiple components spread out 
across the Web. That's a very powerful notion, but for some applications, developers need 
assurance that those components will be available constantly with acceptable speeds. That 
means Quality of Service contracts will become even more important, simply because the 
Web will become a vital part of more and more applications.  

9.6.3 Privacy 

If the devices and agents in my life have been entrusted with sensitive personal data, it's 
crucial that they understand my wishes about privacy. It's also crucial that those devices and 
agents understand how various entities around the network will handle that data.  

The Platform for Privacy Preferences (P3P) work done by the W3C will become increasingly 
important. P3P documents are machine readable, meaning that agents and other pieces of code 
can examine a site's privacy policy and determine whether it is acceptable.  

As the importance of privacy grows (as well as the public's awareness of how little the Web 
actually has), other privacy technologies may be needed. For example, an agent could get a 
digitally signed and encrypted P3P document from a provider, obtaining a legally binding 
agreement that data supplied to the provider by the agent will be protected and handled a 
particular way.  

The first step is relatively simple: create a P3P policy and associate it with your web service 
through links provided in the WSDL description of that service. However, this is only part of 
the solution. What is needed is a more comprehensive, standardized infrastructure for 
protecting information as it travels across the Web. Until such a framework is in place, the 
impact and usefulness of web services geared at handling personal information will be limited 
at best. Currently, there are no proposals on the table for doing this.  



Programming Web Services with SOAP 

page 160 

Example 9-3 shows what a P3P policy reference might look like from within a WSDL 
document. Here, we are stating that the Privacy.xml P3P policy applies to every operation 
defined by the HelloWorldBinding.  

Example 9-3. P3P within WSDL  

<definitions xmlns="http://schemas.xmlsoap.org/wsdl/"> 
   <binding name="HelloWorldBinding" type="HelloWorldPortType"> 
      <P3P:POLICY-REFERENCES> 
         <P3P:POLICY-REF about="Privacy.xml"> 
            <INCLUDE>*</INCLUDE> 
         </P3P:POLICY-REF> 
      </P3P:POLICY-REFERENCES> 
   </binding> 
</definitions> 

9.6.4 Security 

Beyond everything else, security is paramount. It doesn't matter what a given web service can 
do—if it's likely to give away my credit card number, I don't want to use it. Although the base 
SOAP specification itself was not designed with security in mind, that doesn't mean security 
is impossible.  

One of the examples we've discussed in this book uses IBM's XML Security Suite to encrypt 
the contents of SOAP envelopes as they move across a network. As web services take hold, 
we'll see more technologies like this, with the end result being that secure SOAP envelopes 
will become as common as HTML documents transmitted across the Secure Socket Layer.  

The question of security demands a complex answer—one that always comes back around to 
point not at the technology, but at how that technology is implemented, deployed, and used. 
Technology companies can only do so much in the way of providing methods of expressing 
trust or asserting facts. Security happens only when businesses take the time to make it a 
priority.  

9.6.5 Trust Management 

Trust is the paramount requirement for conducting business over the Internet and will be a key 
component to the success of the web services architecture. Already technologies are emerging 
that help companies express and establish trust relationships within the context of web 
services. One example of such a technology is the XML Key Management Service, a standard 
mechanism for managing public and private keys.  

9.6.6 Online Contracts 

We've talked about contracts and other legally binding documents throughout this section, 
emphasizing the point that if web services are commonplace, the impact of a particular service 
being unavailable or providing incorrect data could be catastrophic. How will those contracts 
be negotiated or enforced? Clearly, having the attorneys for the service provider meet with the 
attorneys for the service requestor won't work in a world of applications built from 
conglomerations of services.  



Programming Web Services with SOAP 

page 161 

Several attempts have been made to create XML-based languages capable of describing 
agreements and contracts. The Collaboration Profile Protocol and Collaboration Profile 
Agreement (CPP-CPA) from ebXML is one such technology. Unfortunately, none of these 
attempts have been widely adopted and the ultimate winner is yet to emerge.  

9.6.7 Reliable Messaging  

Reliable messaging involves ensuring that both the sender and recipient of a message know 
whether a message was actually sent and received, and ensuring that the message was sent 
once and only once to the intended recipient. It is a problem that has plagued Internet 
application development since its inception.  

The Internet is, by its very nature, unreliable. Servers that were up and running one moment 
may be down the next. The protocols used to connect senders and receivers have not been 
designed to support reliable messaging constructs, such as message identifiers and 
acknowledgments. Recipients of messages must be able to acknowledge that they did in fact 
receive a message. Senders of messages must be able to cache those messages in the event 
that an acknowledgment is not received and the message needs to be sent again. The 
fundamental technology that drives the Internet today does not support such mechanisms. 
Therefore, we are forced to implement new protocols and technologies that address these 
needs.  

The importance of reliable messaging within the enterprise cannot be understated, especially 
when we are discussing the implementation of web services that may span across firewalls to 
integrate with customers, suppliers, and partners.  

Within the enterprise, reliable messaging has typically been provided by proprietary solutions 
such as IBM's MQ Series or Microsoft Message Queue, neither of which are capable of 
integrating easily with each other (there are ways to make them work together, but they are 
painful at best).  

From the context of web services, there are two ways to approach the implementation of 
reliable messaging:  

1. You can implement reliable messaging on the application layer, meaning that the 
tenets of reliable messaging must be incorporated directly into the implementation of 
the web service.  

2. You can implement reliable messaging on the transport layer, meaning that web 
services don't have to do anything to support the use of reliable messaging.  

The first approach is implemented by products such as Microsoft's BizTalk, which uses web 
services technologies such as SOAP to exchange business documents (e.g., purchase orders 
and requests for quotes) in a reliable way.  

The second approach is implemented by protocols such as IBM's Reliable HTTP (HTTP-R). 
HTTP-R is an implementation of standard HTTP with the addition of "endpoint managers" 
that ensure the reliability of the connection between the HTTP requester and the HTTP server.  

A full discussion of HTTP-R and BizTalk are out of the scope of this discussion. For more 
information on them, see the online references in Appendix A.  



Programming Web Services with SOAP 

page 162 

9.6.8 Transactions 

One of the key requirements for applications deployed within an enterprise is the support of 
transactions. Multiple operations that need to be executed in a batch must either all succeed or 
all fail in order for any of the operations to be valid. Currently, there is no standard (or even 
proposed) method for implementing and managing transactions in the web service 
environment.  

There is a long-running debate as to whether web services require a method for doing two-
phase commit style transactions. A two-phase commit transaction is one in which all of the 
operations in a batch must be invoked, but not finalized. Once all operations report successful 
invocation, they may all go back and finalize their operations. The classic example of a two-
phase commit is when an application needs to write data to two different tables in a database. 
Both tables must be updated or neither of the tables can be updated. If the write operation on 
one table succeeds, but the write operation on the second table fails, the first write must be 
undone and an error reported back to the user.  

The primary problem with two-phase commit on the Web is that when each of the participants 
in the transaction (for example, the two database tables in the previous example), is waiting 
for the final confirmation that all of the operations have been completed successfully, they 
must hold a lock on the resource being modified within the transaction. This lock prevents 
anybody else from making changes to the resource that otherwise may have caused the 
transactions to fail. These locks are fine when all of the resources are being managed by the 
same computer, but cause performance, scalability, and reliability problems in a distributed 
computing environment.  

This problem goes back to the discussion of reliable messaging. With web services, by far the 
most amount of traffic will be over HTTP. Without the promise of absolute reliability, if the 
connection between two participants in a transaction is broken while the transaction is being 
carried out, neither participant can finalize their operations because neither can figure out if 
the other's operation completed successfully. The locks placed on the resources in question 
could be held indefinitely, and processing would grind to a halt.  

One promising IBM research project in the transaction area is something called a Dependency 
Sphere. A Dependency Sphere, or D-Sphere for short, is a new way of looking at transactions 
from a distributed computing, messaging-based viewpoint. In a two-phase commit, a 
transaction is successful if all of the operations executed within the context of that transaction 
perform without generating any errors. In the D-Sphere approach, the transaction is successful 
if all messages sent are reliably received and acknowledged by the intended recipient of those 
messages.  

D-Spheres applied to web services introduce a new type of web service for managing the D-
Sphere transaction context. It is the job of this management service to ensure that the 
transaction either succeeds or fails. If it fails, a notice will be sent to the participants of the 
transaction so that they can make the appropriate compensating actions. The advantage to this 
approach is that reliable messaging is assumed (so temporary disconnections between 
participants are no longer a factor) and resource locks are not necessary, stopping the types of 
deadlocks that could occur with a two-phase commit approach.  



Programming Web Services with SOAP 

page 163 

An example of how D-Spheres might come into play within an enterprise web services 
environment is when a service requester must perform multiple operations on multiple 
services—for instance, creating a new user in CRM and ERP services at the same time. The 
D-Sphere could ensure that both services successfully receive and acknowledge the request to 
add a new user. Appendix A has pointers to more information on D-Spheres.  

9.6.9 Licensing and Accounting Services 

Part of the web services vision is the idea that software can be sold as a service. That is, 
companies will pay to lease access to applications rather than take on the cost of purchasing 
and maintaining the applications themselves. This concept can ease maintenance costs, but 
requires standard web services for managing licenses and monitoring the use of services.  

Within the enterprise, these services will have to integrate with existing accounting and 
billing solutions, authentication and authorization solutions, and event and notification 
services in order to be meaningful and useful.  

9.7 Web Services Rollout 

How are web services likely to be rolled out in the marketplace? We think the most likely 
scenario is that customers will build web services internally, then move on to applications 
built with more broadly distributed web services.  

We've already discussed the technologies that must be built on top of SOAP and related 
technologies for web services to bear more of the weight of business. Given that issues like 
security, authentication, and nonrepudiation are difficult to address on the Web of today, we 
feel that many early adopters will start by implementing web services internally. As a network 
administrator, I can control access to internal servers much more easily than I can control 
access to a public web site.  

As an example, say I build a SOAP-based application for processing expense accounts. 
Whenever a user returns from a business trip, she uses the SOAP client application to fill out 
her expense report. The SOAP client sends a query to the local UDDI registry, which points 
the client to a WSDL document, which provides the information the client needs to access the 
expense account application. The head of the accounting department can move the location of 
the expense account application at any time, and the client will still be able to find it and 
access it.  

Because the application is built on SOAP, it's possible (it might even be easy) to write client 
applications that work on almost any platform I support. Because all the clients are internal to 
my network, I'm less concerned about security and privacy than I would be otherwise. 
Because the metadata about the application is described with WSDL and stored in a UDDI 
registry, I can change the location, host platform, host language, etc., of the application 
without affecting the clients. This gives system administrators a tremendous amount of 
flexibility.  

As more and more internal applications are built with web services, we'll see early adopters 
start to bring in their vendors and business partners. It's great that I can do an inter-company 
requisition for supplies; the obvious next step is to do requisitions from outside suppliers. 
That next step requires that my suppliers use SOAP (and WSDL and UDDI and . . . ) as well. 



Programming Web Services with SOAP 

page 164 

Applications based on web services will become commonplace, and a component architecture 
based on SOAP will become the dominant development paradigm.  

 



Programming Web Services with SOAP 

page 165 

Appendix A. Web Service Standardization 
This appendix contains a listing of many of the better known standardization efforts (by 
category) currently being pursued that relate to web services in some way. A brief description 
is offered, but complete information is available through the information links provided.  

A.1 Packaging Protocols 

SOAP/XML Protocol  

Originally an acronym for the "Simple Object Access Protocol," now the basis for the 
W3C XML Protocol effort.  

Version 1.1 of the specification is available at http://www.w3.org/tr/soap. The Version 1.2 
working draft is available at http://www.w3.org/tr/soap12.  

More information about SOAP and the W3C XML Protocol effort can be found by visiting 
the W3C XML Protocol working group home page at http://www.w3.org/2000/xp/.  

XML-RPC  

The original manifestation of SOAP invented by Dave Winer of Userland software. 
This simple, popular protocol—while not officially a standard—has a significant, 
vocal user base in the open source community. Information is available at 
http://www.xmlrpc.org/.  

Jabber  

Jabber is both a transport protocol and a simple packaging protocol that can be used in 
asynchronous peer-to-peer style web services. It too is not an official standard but is 
building a significant user and developer base. Information can be found by visiting 
the Jabber home page at http://www.jabber.org/.  

DIME  

The Direct Internet Message Encapsulation (DIME) protocol is "a lightweight, binary 
encapsulation format that can be used to encapsulate multiple application defined 
entities or payloads of arbitrary type as well as to provide efficient message 
delimiting." More information is available at 
http://www.gotdotnet.com/team/xml_wsspecs/default.aspx.  

A.2 Description Protocols 

WSDL  

The Web Service Description Language is the de facto standard language for 
describing web services. It has been submitted to the W3C for standardization and a 



Programming Web Services with SOAP 

page 166 

working group is being organized. WSDL replaces the previous description proposals 
put forth by IBM and Microsoft (NASSL and SDL respectively).  

Version 1.1 of the WSDL specification can be found at http://www.w3.org/tr/wsdl.  

DAML-S  

The DARPA Agent Markup Language Ontology for web services is an academic 
research project for semantically describing web services. Information can be found 
by visiting the DAML-S home page at http://daml.semanticweb.org/.  

RDF  

There has been some discussion around the fact that RDF could have "very easily" 
been used as a method of describing web services. Several examples have cropped up, 
including a demonstration of how WSDL could be modified to conform to RDF 
syntax. DAML-S is another example that is built completely on top of RDF. 
Information is available at http://www.w3.org/rdf.  

A.3 Discovery Protocols 

UDDI  

The Universal Description, Discovery, and Integration initiative promises to define a 
standard service registry. Information can be accessed at http://www.uddi.org/.  

WS-Inspection  

The Web Service Inspection Language provides an XML index for discovering the 
services available at a given network location. See http://www-
106.ibm.com/developerworks/webservices/library/ws-wsilspec.html.  

ebXML Registry  

Part of the ebXML effort (http://www.ebxml.org/) was to define a standard registry 
model for discovering business services. The approach is somewhat different, but not 
incompatible with UDDI, and includes many more types of information than UDDI 
does.  

JXTA Search  

The Sun-sponsored JXTA peer-to-peer services infrastructure defines a distributed 
search protocol for discovering content and services in a peer-to-peer architecture. 
Information is available by visiting 
http://www.jxta.org/project/www/white_papers.html.  

 

 



Programming Web Services with SOAP 

page 167 

A.4 Security Protocols 

XML Digital Signatures  

A joint W3C and IETF effort to define a standard method of representing digital 
signatures as XML content (http://www.w3.org/Signature/).  

XML Encryption  

A W3C effort to define a standard way of both encrypting XML content and 
representing encrypted data as XML content (http://www.w3.org/Encryption/2001/).  

SAML  

The Security Assertions Markup Language, being developed under the auspices of 
Oasis (http://www.oasis-open.org/committees/security/).  

XKMS  

The XML Key Management Service is a web service specification submitted to the 
W3C for implementing a service-based public key infrastructure. The XKMS 
specification is available at http://www.w3.org/tr/xkms, and additional information is 
at http://www.xkms.org/.  

XACML  

An effort to define a standard access control mechanism for XML documents 
(http://www.oasis-open.org/committees/xacml/).  

WS-Security and WS-License  

These are two proposals from Microsoft defining how to carry authentication, 
encryption, and digital signatures within a SOAP Envelope. These specifications are 
used primarily by in Microsoft .NET and the .NET My Services (Hailstorm). As they 
have not yet been submitted to a standards body, they should be considered 
proprietary to Microsoft.  

SOAP Security Extensions  

Initially worked on as a joint effort between IBM and Microsoft, these specifications 
define how to carry authentication, encryption, and digital signatures within a SOAP 
Envelope. The Digital Signatures portion of the specification has already been 
submitted to the W3C with the encryption and authentication parts soon to be released 
and submitted. Currently, IBM's Web Services ToolKit is the only known available 
implementation of the SOAP Security Extensions.  

 

 



Programming Web Services with SOAP 

page 168 

A.5 Transport Protocols 

HTTP  

The most common transport used for web services. 

Jabber  

A new, XML-based asynchronous transport protocol used most frequently in peer-to-
peer style applications (http://www.jabber.org/).  

BEEP  

A new XML-based transport protocol being worked on by the IETF that claims a 
duplexed connection and asynchronous transport (http://www.bxxp.org/).  

Reliable HTTP (HTTPr)  

A new version of HTTP proposed by IBM for adding reliable messaging support to 
the venerable HTTP protocol. An overview and link to the specification is available at 
http://www-106.ibm.com/developerworks/webservices/library/ws-phtt.  

A.6 Routing and Workflow 

WSFL  

The Web Services Flow Language provides a WSDL-based grammar for scripting 
business processes out of web services 
(http://www.ibm.com/developerWorks/webservices).  

XLANG  

Microsoft's own workflow scripting language for web services 
(http://msdn.microsoft.com/webservices).  

WS-Routing  

A Microsoft proposed mechanism for defining the route that a SOAP message must 
take through various intermediaries (http://msdn.microsoft.com/library/en-
us/dnsrvspec/html/ws-routing.asp).  

A.7 Programming Languages/Platforms 

JAXP  

Java API for XML Parsing is the Java Community Process (JCP) effort to 
standardized XML API's in Java (http://java.sun.com/xml/jaxp.html).  

 
 



Programming Web Services with SOAP 

page 169 

JAX-RPC  

Java API for XML RPC is the JCP effort to standardized Java API's for using web 
services (http://java.sun.com/xml/jaxrpc.html).  

JAXR  

Java API for XML Registries is the JCP effort to define Java API's for discovery 
registries such as UDDI (http://java.sun.com/xml/jaxr/index.html).  

JAXM  

Java API for XML Messaging is the JCP effort to define Java API's for XML 
messaging (http://java.sun.com/xml/jaxm/index.html).  

JSR-109  

JCP effort to define how web services are to be integrated into the Java 2 Enterprise 
Edition architecture.  

JSR-105  

JCP effort to create standard Java API's for XML digital signatures 
(http://www.jcp.org/jsr/detail/105.jsp).  

JSR-106  

JCP effort to create standard Java API's for XML encryption 
(http://www.jcp.org/jsr/detail/106.jsp).  

JSR-110  

JCP effort to define a standard Java API for WSDL 
(http://www.jcp.org/jsr/detail/110.jsp).  

Any relevant efforts that may be missing from this list are an oversight on the authors' part, 
and not a reflection on the merit or importance of the work.  

 



Programming Web Services with SOAP 

page 170 

Appendix B. XML Schema Basics 
The XML Schema specification is long and complex. To create SOAP and WSDL XML, you 
must know how XML Schema specify data types. This appendix is a quick introduction to the 
topic, with examples. You won't come away a Schema guru; you will be able to follow 
WSDL.  

B.1 Simple and Complex Types 

In an XML Schema, all data types are either primitive or derived. A primitive data type is one 
that cannot be expressed in terms of any other data type. The XML Schema specification 
gives the example of a float, "a well-defined mathematical concept that cannot be defined in 
terms of other data types," where an integer is a derivative of decimal data type. In this case, a 
float is primitive and an integer is derived.  

All primitive data types are atomic. That is, the value of the data type cannot be broken down 
any more than it already is. For example, the number 1 is an atomic value.Derived data types 
may or may not be atomic. For example, an integer as we have already seen is a derived data 
type that has an atomic value. A telephone number, however, is also a derived data type 
whose value is not atomic; it is actually a collection of three individual atomic values.  

Data types are mainly derived through restriction or extension (there are other ways, but these 
are the most common). In derivation through restriction, the value of the data type is restricted 
in some way. For example, an integer is a derivation of the decimal data type that allows for a 
narrower range of values than does a decimal; an integer, in other words, is allowed to contain 
a restricted subset of decimal values. Derivation through extension means that various 
restrictions on the base data type are being lifted to allow additional values that otherwise 
wouldn't be allowed. For example, a telephone number data type may be extended to include 
a country code field.  

This is somewhat analogous to Java classes and objects. All Java classes are types of Java 
objects. All Java objects are of type java.lang.Object. When I create a new Java class that 
derives from java.lang.Object, most of the time I am adding new functionality (a new 
operation, a new property, etc). This is derivation by extension. When I override an existing 
operation (such as the toString( ) operation), I am deriving by restriction. This analogy 
obviously doesn't bear close examination, but may be useful nonetheless.  

The authors of the XML Schema specification realized that while they had a simple and 
extensible data typing mechanism, they still needed to define a handful of built-in data types 
that reflect common use scenarios. That way, application developers wouldn't have to keep 
reinventing the same common data types time and time again, which would just end with the 
same confusion that interferes with interoperability between programming platforms. So the 
built-in XML Schema data types were born and we now have things like string, integer, 
float, boolean, URI, and time finally defined in a common way that all application 
platforms are capable of understanding.  



Programming Web Services with SOAP 

page 171 

These data types form a hierarchy that can be traced back to a single primitive atomic data 
type called anyType. All other data types used in XML Schemas derive from this single 
primitive type.  

There are two kinds of data types that can be derived from anyType: simple types and 
complex types. Simple types represent all derived, atomic data types built into XML Schema. 
This includes things like string, integer, and boolean. Complex types represent all 
derived, nonatomic data types—the telephone number, for instance.  

Figure B-1, adapted from the one used in the XML Schema data type specification, illustrates 
the hierarchy of built-in data types.  

Figure B-1. Hierarchy of built-in data types in XML Schemas 

 

Be sure to notice that every built-in "simple type" does not derive directly from anyType, but 
from the anySimpleType data type, which is itself a derivative of anyType. As a rule, the 
XML Schema specification dictates that any derivative of anySimpleType cannot be derived 
by extension. Basically, this means the element cannot contain any attributes or child 
elements, in terms of expressing the data type as XML. Again, if this isn't making much 
sense, it will soon as we look at a few simple examples.  



Programming Web Services with SOAP 

page 172 

A quick review: we introduced the fact that there are essentially two types of data defined by 
an XML Schema. These include simple types, which are atomic. Single value data types that 
may or may not be derived through restriction from other simple types. The other type of data 
defined by an XML Schema is complex types, which are composed of collections of simple 
types and must be derived either from other complex types or simple types.  

B.2 Some Examples 

While the XML Schema data typing mechanism is actually quite easy to use, we have found 
that it is often a difficult thing to explain. Let's walk through some simple examples to clear 
things up.  

B.2.1 Simple Types 

Let's practice defining a simple data type. Say we have a productCode data type. This 
product code must start with two numbers followed by a dash and five more numbers. 
Example B-1 illustrates how to express this data type within an XML Schema.  

Example B-1. productCode  

<xsd:simpleType name="productCode"> 
  <xsd:restriction base="xsd:string"> 
    <xsd:pattern value="\d{2}-\d{5}"/> 
  </xsd:restriction> 
</xsd:simpleType> 

Here, we see that productCode is a derivative of the XML Schema built-in data type string 
that has been restricted to only allow values that match the regular expression \d{2}-\d{5}. 
If we were to express an instance of this data type in XML, it would look something like 
Example B-2.  

Example B-2. Instance of productCode  

<pCode xsi:type="abc:productCode">12-12345</pCode> 

In this simple example, we demonstrate several things: the productCode is a derived simple 
type with an atomic value, and we derive the productCode by restricting the possible set of 
values that its base data type (in this case string) can contain.  

Now let's create an extended product code that may or may not have an additional -[a-z] (a 
dash followed by any lowercase letter). We could do this by deriving a new productCodeEx 
simpleType and changing the pattern to \d{2}-\d{5}(-[a-z]){0,1}, as in Example B-3.  

Example B-3. Extended productCode  

<xsd:simpleType name="productCodeEx"> 
  <xsd:restriction base="productCode"> 
    <xsd:pattern value="\d{2}-\d{5}(-[a-z]){0,1}"/> 
  </xsd:restriction> 
</xsd:simpleType> 

 



Programming Web Services with SOAP 

page 173 

B.2.2 Complex Types 

Now you've probably got the hang of simple types and are itching to look at complex types. A 
complex type is any data type that contains a collection of other primitive data types. A 
telephone number is an example. It contains three distinct pieces of information. A telephone 
number complex type in XML Schema looks like Example B-4.  

Example B-4. telephoneNumber type  

<xsd:complexType name="telephoneNumber"> 
  <xsd:sequence> 
    <xsd:element name="area"> 
      <xsd:simpleType> 
        <xsd:restriction base="xsd:string"> 
          <xsd:pattern value="\d{3}"/> 
        </xsd:restriction> 
      </xsd:simpleType> 
    </xsd:element> 
    <xsd:element name="exchange"> 
      <xsd:simpleType> 
        <xsd:restriction base="xsd:string"> 
          <xsd:pattern value="\d{3}"/> 
        </xsd:restriction> 
      </xsd:simpleType> 
    </xsd:element> 
    <xsd:element name="number"> 
      <xsd:simpleType> 
        <xsd:restriction base="xsd:string"> 
          <xsd:pattern value="\d{4}"/> 
        </xsd:restriction> 
      </xsd:simpleType> 
    </xsd:element> 
  </xsd:sequence> 
</xsd:complexType> 

The telephoneNumber data type consists of a sequence of three data elements, each of which 
are restricted derivatives of the XML Schema string data type. An instance of this data type 
would look something like Example B-5.  

Example B-5. Instance of telephoneNumber  

<telephone xsi:type="abc:telephoneNumber"> 
   <area>123</area> 
   <exchange>123</exchange> 
   <number>1234</number> 
</telephone> 

If I were to go back and create an extended version of this data type that includes a country 
code, I would do so by creating a new complexType derived by extension. This is shown in 
Example B-6.  

 

 

 



Programming Web Services with SOAP 

page 174 

Example B-6. Extending telephoneNumber to include a country code  

<xsd:complexType name="telephoneNumberEx"> 
  <xsd:complexContent> 
    <xsd:extension base="telephoneNumber"> 
      <xsd:sequence> 
        <xsd:element name="countryCode"> 
          <xsd:simpleType> 
            <xsd:restriction base="xsd:string"> 
              <xsd:pattern value="\d{2}"/> 
            </xsd:restriction> 
          </xsd:simpleType> 
        </xsd:element> 
      </xsd:sequence> 
    </xsd:extension> 
  </xsd:complexContent> 
</xsd:complexType> 

An instance of the extended telephone number would look like Example B-7.  

Example B-7. Instance of extended telephoneNumber  

<telephone xsi:type="abc:telephoneNumber"> 
   <area>123</area> 
   <exchange>123</exchange> 
   <number>1234</number> 
   <countryCode>01</countryCode> 
</telephone> 

Notice that the countryCode element is at the end of the sequence of data elements. This is 
due to the way that XML Schema enforces element ordering within data types. Because we 
are deriving by extension, all new elements defined in the telephoneNumberEx data type 
have to appear after the elements defined in its base telephoneNumber data type. If we 
wanted countryCode to appear first in the sequence, we would actually have to derive by 
restriction and redeclare each of the data elements, as in Example B-8.  

Example B-8. restricted telephoneNumber  

<xsd:complexType name="telephoneNumberEx"> 
    <xsd:complexContent> 
      <xsd:restriction base="telephoneNumber"> 
        <xsd:sequence> 
          <xsd:element name="countryCode"> 
            <xsd:simpleType> 
              <xsd:restriction base="xsd:string"> 
                <xsd:pattern value="\d{2}"/> 
              </xsd:restriction> 
            </xsd:simpleType> 
          </xsd:element> 
          <xsd:element name="area"> 
            <xsd:simpleType> 
              <xsd:restriction base="xsd:string"> 
                <xsd:pattern value="\d{3}"/> 
              </xsd:restriction> 
            </xsd:simpleType> 
          </xsd:element> 
 
 



Programming Web Services with SOAP 

page 175 

          <xsd:element name="exchange"> 
            <xsd:simpleType> 
              <xsd:restriction base="xsd:string"> 
                <xsd:pattern value="\d{3}"/> 
              </xsd:restriction> 
            </xsd:simpleType> 
          </xsd:element> 
          <xsd:element name="number"> 
            <xsd:simpleType> 
              <xsd:restriction base="xsd:string"> 
                <xsd:pattern value="\d{4}"/> 
              </xsd:restriction> 
            </xsd:simpleType> 
          </xsd:element> 
        </xsd:sequence> 
      </xsd:restriction> 
    </xsd:complexContent> 
  </xsd:complexType> 

And that's the basics of defining data types with XML Schemas. There are plenty of details 
that we are leaving out. It's worthwhile taking the time to learn more about XML Schemas.  

B.3 XML Spy 

XML Spy is perhaps the best product available for working with XML Schemas. Its XML 
development environment allows you to visually design XML Schemas quickly and easily, 
hiding away the syntactic complexity that normally trips people up. Figure B-2 shows a 
screenshot of XML Spy's visual schema editor.  

Figure B-2. A view of the XML Spy visual schema editor 

 



Programming Web Services with SOAP 

page 176 

XML Spy is a commercial product available from http://www.xmlspy.com/. Though it's not 
cheap (a few hundred U.S. dollars at the time of this writing), it is well worth the price for 
serious developers.  

 



Programming Web Services with SOAP 

page 177 

Appendix C. Code Listings 
This appendix contains the source code to the many example programs developed throughout 
the book. To explain the programs, we often presented them piece by piece, sometimes 
omitting repetitive sections. Example C-1 through Example C-54 are the full programs: intact, 
unabridged, in all their glory. You can also download them from the web at 
http://www.oreilly.com/catalog/progwebsoap/.  

C.1 Hello World in Perl 

Example C-1. HelloWorld.pm (server)  

package Hello; 
sub sayHello { 
  shift; 
  my $self = "Hello " . shift; 
} 
1; 

Example C-2. HelloWorld.cgi (server)  

use SOAP::Transport::HTTP; 
SOAP::Transport::HTTP::CGI 
 -> dispatch_to('Hello::(?:sayHello)')  
 -> handle 
; 

Example C-3. HelloWorldClient.pm (client)  

use SOAP::Lite; 
my $name = shift; 
print "\n\nCalling the SOAP Server to say hello\n\n"; 
print "The SOAP Server says: "; 
print SOAP::Lite 
  -> uri('urn:Example1') 
  -> proxy('http://localhost/cgi-bin/helloworld.cgi') 
  -> sayHello($name) 
  -> result . "\n\n"; 

C.2 Hello World Client in Visual Basic 

Example C-4. Helloworld.vbs (client)  

Dim x, h 
Set x = CreateObject("MSXML2.DOMDocument") 
 
x.loadXML "<s:Envelope  8 
  xmlns:s='http://schemas.xmlsoap.org/soap/envelope/'8  
  xmlns:xsi='http://www.w3.org/1999/XMLSchema-instance'   8 
  xmlns:xsd='http://www.w3.org/1999/XMLSchema'><s:Body><m:sayHello 8 
  xmlns:m='urn:Example1'><name xsi:type='xsd:string'>James</name> 8 
  </m:sayHello></s:Body></s:Envelope>"8 
 
msgbox x.xml, , "Input SOAP Message" 
Set h = CreateObject("Microsoft.XMLHTTP") 



Programming Web Services with SOAP 

page 178 

h.open "POST", "http://localhost/cgi-bin/helloworld.cgi" 
h.send (x) 
while h.readyState <> 4 
wend 
msgbox h.responseText,,"Output SOAP Message" 

C.3 Hello World over Jabber 

Example C-5. HelloWorldJabber.pm (server)  

use SOAP::Transport::JABBER; 
my $server = SOAP::Transport::JABBER::Server 
  -> new('jabber://soaplite_server:soapliteserver@jabber.org:5222') 
  -> dispatch_to('Hello') 
; 
print "SOAP Jabber Server Started\n"; 
do { $server->handle } while sleep 1; 

Example C-6. HelloWorldJabberClient.pm (client)  

use SOAP::Lite; 
my $name = shift; 
print "\n\nCalling the SOAP Server to say hello\n\n"; 
print "The SOAP Server says: "; 
print SOAP::Lite 
  -> uri('urn:Example1') 
  -> proxy('jabber://soaplite_client:soapliteclient@jabber.org:5222/' . 
           'soaplite_server@jabber.org/') 
  -> sayHello($name) 
  -> result . "\n\n"; 

C.4 Hello World in Java 

Example C-7. Hello.java (server)  

package samples; 
public class Hello { 
   public String sayHello(String name) { 
       return "Hello " + name; 
   } 
} 

Example C-8. Hello.java Deployment Descriptor (server)  

<dd:service xmlns:dd="http://xml.apache.org/xml-soap/deployment" 
id="urn:Example1"> 
 <dd:provider type="java"      
              scope="Application"                
              methods="sayHello"> 
    <dd:java class="samples.Hello"  
             static="false" /> 
 </dd:provider>   
 <dd:faultListener> 
  org.apache.soap.server.DOMFaultListener 
 </dd:faultListener> 
 <dd:mappings /> 
</dd:service> 



Programming Web Services with SOAP 

page 179 

Example C-9. Hello_Client.java (client)  

import java.io.*; 
import java.net.*; 
import java.util.*; 
import org.apache.soap.*; 
import org.apache.soap.rpc.*; 
 
public class Hello_client { 
 
  public static void main (String[] args)  
       throws Exception { 
 
    System.out.println("\n\nCalling the SOAP Server to say hello\n\n");        
    URL url = new URL (args[0]); 
    String name = args[1]; 
 
    Call call = new Call (); 
    call.setTargetObjectURI("urn:Example1"); 
    call.setMethodName("sayHello"); 
    call.setEncodingStyleURI(Constants.NS_URI_SOAP_ENC;); 
    Vector params = new Vector (); 
    params.addElement (new Parameter("name", String.class, name, null)); 
    call.setParams (params); 
 
    System.out.print("The SOAP Server says: "); 
 
    Response resp = call.invoke(url, ""); 
 
    if (resp.generatedFault ()) { 
      Fault fault = resp.getFault (); 
      System.out.println ("\nOuch, the call failed: "); 
      System.out.println ("  Fault Code   = " + fault.getFaultCode ()); 
      System.out.println ("  Fault String = " + fault.getFaultString ()); 
    } else { 
      Parameter result = resp.getReturnValue (); 
      System.out.print(result.getValue ()); 
      System.out.println(); 
    } 
  } 
} 

C.5 Hello, World in C# on .NET 

Example C-10. Helloworld.asmx (server)  

<%@ WebService Language="C#" Class="Example1" %> 
 
using System.Web.Services; 
 
[WebService(Namespace="urn:Example1")] 
public class Example1 { 
 
    [ WebMethod ] 
    public string sayHello(string name) { 
        return "Hello " + name; 
    } 
 
} 



Programming Web Services with SOAP 

page 180 

Example C-11. Helloworld.cs (client)  

// HelloWorld.cs 
 
using System.Diagnostics; 
using System.Xml.Serialization; 
using System; 
using System.Web.Services.Protocols; 
using System.Web.Services; 
 
[System.Web.Services.WebServiceBindingAttribute( 
     Name="Example1Soap",  
     Namespace="urn:Example1")] 
public class Example1 :  
             System.Web.Services.Protocols.SoapHttpClientProtocol { 
     
    public Example1() { 
        this.Url = "http://localhost/helloworld.asmx "; 
    } 
 
    [System.Web.Services.Protocols.SoapDocumentMethodAttribute( 
         "urn:Example1/sayHello",  
         RequestNamespace="urn:Example1",  
         ResponseNamespace="urn:Example1",  
         Use=System.Web.Services.Description.SoapBindingUse.Literal,  
         
ParameterStyle=System.Web.Services.Protocols.SoapParameterStyle.Wrapped)] 
    public string sayHello(string name) { 
        object[] results = this.Invoke("sayHello",  
                                       new object[] {name}); 
        return ((string)(results[0])); 
    } 
 
    public static void Main(string[] args) { 
       Console.WriteLine("Calling the SOAP Server to say hello"); 
       Example1 example1 = new Example1(); 
       Console.WriteLine("The SOAP Server says: " +  
                         example1.sayHello(args[0])); 
    } 
} 

Example C-12. Modified Perl HelloWorld_Client.pm for use with .NET (client)  

use SOAP::Lite; 
 
my $name = shift; 
 
print "\n\nCalling the SOAP Server to say hello\n\n"; 
 
print "The SOAP Server says: "; 
 
print SOAP::Lite 
  -> uri('urn:Example1') 
  -> on_action(sub{sprintf '%s/%s', @_ }) 
  -> proxy('http://localhost:8080/helloworld/example1.asmx') 
  -> sayHello(SOAP::Data->name(name => $name->type->('string')-
>uri('urn:Example1')) 
  -> result . "\n\n"; 

 



Programming Web Services with SOAP 

page 181 

C.6 Publisher Service 

Example C-13. Publisher.pm (server)  

package Publisher; 
 
use strict; 
 
package Publisher::DB; 
 
use DBI; 
use vars qw($CONNECT); 
 
$CONNECT = "DBI:CSV:f_dir=/home/soaplite/book;csv_sep_char=\0"; 
 
my $dbh; 
 
sub dbh { 
  shift; 
  unless ($dbh) { 
    $dbh = DBI->connect(shift || $CONNECT); 
    $dbh->{'RaiseError'} = 1; 
  } 
  return $dbh; 
} 
 
END { $dbh->disconnect if $dbh; } 
 
sub create { 
  my $dbh = shift->dbh; 
 
  $dbh->do($_) foreach split /;/, ' 
 
  CREATE TABLE members ( 
    memberID   integer, 
    email      char(100), 
    password   char(25), 
    firstName  char(50), 
    lastName   char(50), 
    title      char(50), 
    company    char(50), 
    url        char(255), 
    subscribed integer 
  ); 
 
  CREATE TABLE items ( 
    itemID integer, 
    memberID integer, 
    type        integer, 
    title   char(255), 
    description char(512), 
    postStamp integer 
  ) 
 
'; 
 
} 
 
 
 



Programming Web Services with SOAP 

page 182 

sub insert_member { 
  my $dbh = shift->dbh; 
  my $newMemberID = 1 + $dbh->selectrow_array( 
         "SELECT memberID FROM members ORDER BY memberID DESC"); 
 
  my %parameters = (@_, memberID => $newMemberID, subscribed => 0); 
  my $names = join ', ', keys %parameters; 
  my $placeholders = join ', ', ('?') x keys %parameters; 
 
  $dbh->do("INSERT INTO members ($names) VALUES ($placeholders)", {},  
           values %parameters); 
  return $newMemberID; 
} 
 
sub select_member { 
  my $dbh = shift->dbh; 
  my %parameters = @_; 
 
  my $where = join ' AND ', map {"$_ = ?"} keys %parameters; 
  $where = "WHERE $where" if $where; 
 
  # returns row in array context and first element (memberID) in scalar 
  return $dbh->selectrow_array("SELECT * FROM members $where", {},  
                               values %parameters); 
} 
 
sub update_member { 
  my $dbh = shift->dbh; 
  my($memberID, %parameters) = @_; 
 
  my $set = join ', ', map {"$_ = ?"} keys %parameters; 
 
  $dbh->do("UPDATE members SET $set WHERE memberID = ?", {},  
           values %parameters, $memberID); 
  return $memberID; 
} 
 
sub insert_item { 
  my $dbh = shift->dbh; 
  my $newItemID = 1 + $dbh->selectrow_array( 
            "SELECT itemID FROM items ORDER BY itemID DESC"); 
 
  my %parameters = (@_, itemID => $newItemID, postStamp => time()); 
  my $names = join ', ', keys %parameters; 
  my $placeholders = join ', ', ('?') x keys %parameters; 
 
  $dbh->do("INSERT INTO items ($names) VALUES ($placeholders)", {}, 
           values %parameters); 
 
  return $newItemID; 
} 
 
sub select_item { 
  my $dbh = shift->dbh; 
  my %parameters = @_; 
 
  my $where = join ' AND ', map {"$_ = ?"} keys %parameters; 
 
  return $dbh->selectrow_array("SELECT * FROM items WHERE $where", {},  
                               values %parameters); 
} 



Programming Web Services with SOAP 

page 183 

sub select_all_items { 
  my $dbh = shift->dbh; 
  my %parameters = @_; 
 
  my $where = join ' AND ', map {"$_ = ?"} keys %parameters; 
  $where = "WHERE $where" if $where; 
 
  return $dbh->selectall_arrayref("SELECT type, title, description,  
      postStamp, memberID FROM items $where", {}, values %parameters); 
} 
 
sub delete_item { 
  my $dbh = shift->dbh; 
  my $itemID = shift; 
 
  $dbh->do('DELETE FROM items WHERE itemID = ?', {}, $itemID); 
  return $itemID; 
} 
 
# ====================================================================== 
 
package Publisher; 
 
use POSIX qw(strftime); 
 
@Publisher::ISA = qw(SOAP::Server::Parameters); 
 
# ---------------------------------------------------------------------- 
# private functions 
# ---------------------------------------------------------------------- 
 
use Digest::MD5 qw(md5);  
 
my $calculateAuthInfo = sub { 
  return md5(join '', 'unique (yet persistent) string', @_); 
}; 
 
my $checkAuthInfo = sub { 
  my $authInfo = shift; 
  my $signature = $calculateAuthInfo->(@{$authInfo}{qw(memberID email  
                                       time)}); 
  die "Authentication information is not valid\n" if $signature ne  
         $authInfo->{signature}; 
  die "Authentication information is expired\n" 
  if time() > $authInfo->{time}; 
  return $authInfo->{memberID}; 
}; 
 
my $makeAuthInfo = sub { 
  my($memberID, $email) = @_; 
  my $time = time()+20*60; 
  my $signature = $calculateAuthInfo->($memberID, $email, $time); 
  return +{memberID => $memberID, time => $time, email => $email,  
         signature => $signature}; 
}; 
 
 
 
 
 
 



Programming Web Services with SOAP 

page 184 

# ---------------------------------------------------------------------- 
# public functions 
# ---------------------------------------------------------------------- 
 
sub register { 
  my $self = shift; 
  my $envelope = pop; 
  my %parameters = %{$envelope->method() || {}}; 
 
  die "Wrong parameters: register(email, password, firstName, lastName [,  
       title][, company][, url])\n" 
    unless 4 == map {defined} @parameters{qw(email password firstName  
                lastName)}; 
 
  my $email = $parameters{email}; 
  die "Member with email ($email) already registered\n"  
    if Publisher::DB->select_member(email => $email); 
  return Publisher::DB->insert_member(%parameters); 
} 
 
sub modify { 
  my $self = shift; 
  my $envelope = pop; 
  my %parameters = %{$envelope->method() || {}}; 
 
  my $memberID = $checkAuthInfo->($envelope->valueof('//authInfo')); 
  Publisher::DB->update_member($memberID, %parameters); 
  return; 
} 
 
sub login {  
  my $self = shift; 
  my %parameters = %{pop->method() || {}}; 
 
  my $email = $parameters{email}; 
  my $memberID = Publisher::DB->select_member(email => $email, 
                                              password => 
$parameters{password}); 
  die "Credentials are wrong\n" unless $memberID; 
  return bless $makeAuthInfo->($memberID, $email) => 'authInfo'; 
} 
 
sub subscribe {  
  my $self = shift; 
  my $memberID = $checkAuthInfo->(pop->valueof('//authInfo')); 
 
  Publisher::DB->update_member($memberID, subscribed => 1); 
  return; 
} 
 
sub unsubscribe {  
  my $self = shift; 
  my $memberID = $checkAuthInfo->(pop->valueof('//authInfo')); 
 
  Publisher::DB->update_member($memberID, subscribed => 0); 
  return; 
} 
 
my %type2code = (news => 1, article => 2, resource => 3); 
my %code2type = reverse %type2code; 
 



Programming Web Services with SOAP 

page 185 

sub postItem { 
  my $self = shift; 
  my $envelope = pop; 
  my $memberID = $checkAuthInfo->($envelope->valueof('//authInfo')); 
  my %parameters = %{$envelope->method() || {}}; 
 
  die "Wrong parameter(s): postItem(type, title, description)\n"  
    unless 3 == map {defined} @parameters{qw(type title description)}; 
 
  $parameters{type} = $type2code{lc $parameters{type}} 
                                    or die "Wrong type of item 
($parameters{type})\n"; 
  return Publisher::DB->insert_item(memberID => $memberID, %parameters); 
} 
 
sub removeItem { 
  my $self = shift; 
  my $memberID = $checkAuthInfo->(pop->valueof('//authInfo')); 
  die "Wrong parameter(s): removeItem(itemID)\n" unless @_ == 1; 
 
  my $itemID = shift; 
  die "Specified item ($itemID) can't be found or removed\n"  
    unless Publisher::DB->select_item(memberID => $memberID, itemID => 
$itemID); 
  Publisher::DB->delete_item($itemID); 
  return; 
} 
 
my $browse = sub { 
  my $envelope = pop; 
  my %parameters = %{$envelope->method() || {}}; 
 
  my($type, $format, $maxRows, $query) = @parameters{qw(type format maxRows 
query)}; 
  $type = {all => 'all', %type2code}->{lc($type) || 'all'} or 
    die "Wrong type of item ($type)\n"; 
 
  $maxRows ||= 25; 
  $format ||= 'XML'; 
  my $items = Publisher::DB->select_all_items($type ne 'all' ? (type => 
$type) : ()); 
  my %members; 
  my @items = map { 
    my($type, $title, $description, $date, $memberID) = @$_; 
    my($email, $firstName, $lastName) = @{ 
      $members{$memberID} ||= [Publisher::DB->select_member(memberID => 
$memberID)] 
    }[1,3,4]; 
    +{ 
      $format =~ /^XML/ ? ( 
        type        => $code2type{$type},  
        title       => $title,  
        description => $description, 
        date        => strftime("%Y-%m-%d", gmtime($date)), 
        creator     => "$firstName $lastName ($email)" 
      ) : ( 
        category    => $code2type{$type},  
        title       => "$title by $firstName $lastName ($email) on " 
                       . strftime("%Y-%m-%d", gmtime($date)), 
        description => $description, 
      ) 



Programming Web Services with SOAP 

page 186 

    } 
  } @{$items}[0..(!$query && $maxRows <= $#$items ? $maxRows-1 : 
$#$items)]; 
  if ($query) { 
    my $regexp = join '', map { 
      /\s+and\s+/io ? '&&' : /\s+or\s+/io ? '||' : /[()]/ ? $_ : $_ ? '/' . 
quotemeta($_) . '/o' : '' 
    } split /(\(|\)|\s+and\s+|\s+or\s+)/io, $query; 
    eval "*checkfor = sub { for (\@_) { return 1 if $regexp; } return }" or 
die; 
    @items = grep {checkfor(values %$_)} @items; 
    splice(@items, $maxRows <= $#items ? $maxRows : $#items+1); 
  } 
  return $format =~ /^(XML|RSS)str$/  
    ? SOAP::Serializer 
        -> autotype(0) 
        -> readable(1) 
        -> serialize(SOAP::Data->name(($1 eq 'XML' ? 'itemList' : 
'channel')  
                     => \SOAP::Data->name(item => @items))) 
    : [@items]; 
}; 
 
sub browse { 
  my $self = shift; 
  return SOAP::Data->name(browse => $browse->(@_)); 
} 
 
sub search { 
  my $self = shift; 
  return SOAP::Data->name(search => $browse->(@_)); 
} 
 
# ====================================================================== 
 
1; 

Example C-14. Publisher.daemon (server)  

#!/bin/perl  
 
use SOAP::Transport::HTTP; 
 
use Publisher; 
 
$Publisher::DB::CONNECT = 
   "DBI:CSV:f_dir=d:/book;csv_sep_char=\0"; 
$authinfo = 'http://www.soaplite.com/authInfo'; 
 
my $server = SOAP::Transport::HTTP::CGI 
  -> dispatch_to('Publisher'); 
 
$server->serializer->maptype({authInfo => $authinfo}); 
$server->handle; 

Example C-15. Client.java (client)  

import java.io.*; 
import java.net.*; 
import java.util.*; 



Programming Web Services with SOAP 

page 187 

 
import javax.xml.parsers.DocumentBuilderFactory; 
import javax.xml.parsers.DocumentBuilder; 
import org.w3c.dom.*; 
 
import org.apache.soap.util.xml.*; 
import org.apache.soap.*; 
import org.apache.soap.encoding.*; 
import org.apache.soap.encoding.soapenc.*; 
import org.apache.soap.rpc.*; 
 
public class Client { 
 
  private URL url; 
  private String uri; 
  private authInfo authInfo; 
 
  public Client (String url, String uri) throws Exception { 
    try { 
      this.uri = uri; 
      this.url = new URL(url); 
    } catch (Exception e) { 
      throw new Exception(e.getMessage()); 
    } 
  } 
 
  public Header makeAuthHeader (authInfo auth) throws Exception { 
    if (auth == null) {  
        throw new Exception( 
            "Oops, you are not logged in. Please login first"); } 
    DocumentBuilderFactory dbf = DocumentBuilderFactory.newInstance(); 
    dbf.setNamespaceAware(true); 
    dbf.setValidating(false); 
    DocumentBuilder db = dbf.newDocumentBuilder(); 
    Document doc = db.newDocument(); 
    Element authEl =   
         doc.createElementNS("http://www.soaplite.com/authInfo",  
                             "auth:authInfo"); 
    Element emailEl = doc.createElement("email"); 
    emailEl.appendChild(doc.createTextNode(auth.getEmail())); 
    Element signatureEl = doc.createElement("signature"); 
    signatureEl.setAttribute("xmlns:enc", Constants.NS_URI_SOAP_ENC); 
    signatureEl.setAttribute("xsi:type", "enc:base64"); 
    signatureEl.appendChild(doc.createTextNode( 
        Base64.encode(auth.getSignature()))); 
    Element memberIdEl = doc.createElement("memberID"); 
    memberIdEl.appendChild(doc.createTextNode(String.valueOf( 
        auth.getMemberID()))); 
    Element timeEl = doc.createElement("time"); 
    timeEl.appendChild(doc.createTextNode(String.valueOf( 
        auth.getTime()))); 
    authEl.appendChild(emailEl); 
    authEl.appendChild(signatureEl); 
    authEl.appendChild(memberIdEl); 
    authEl.appendChild(timeEl); 
    Vector headerEntries = new Vector(); 
    headerEntries.add(authEl); 
    Header header = new Header(); 
    header.setHeaderEntries(headerEntries); 
    return header; 
  } 



Programming Web Services with SOAP 

page 188 

 
  private Call initCall () { 
    Call call = new Call(); 
    call.setEncodingStyleURI(Constants.NS_URI_SOAP_ENC); 
    call.setTargetObjectURI(uri); 
    return call; 
  } 
 
  private Object invokeCall (Call call) throws Exception { 
    try { 
      Response response = call.invoke(url, ""); 
 
      if (!response.generatedFault()) {  
        return response.getReturnValue() == null  
          ? null : response.getReturnValue().getValue(); 
      } else {  
        Fault f = response.getFault(); 
        throw new Exception("Fault = " + f.getFaultCode() + ", " +  
                            f.getFaultString());  
      }  
    } catch (SOAPException e) {  
      throw new Exception("SOAPException = " + e.getFaultCode() + ", " +  
                          e.getMessage());  
    } 
  } 
 
  public void login (String email, String password) throws Exception { 
    Call call = initCall(); 
 
    SOAPMappingRegistry smr = new SOAPMappingRegistry(); 
    BeanSerializer beanSer = new BeanSerializer(); 
    smr.mapTypes(Constants.NS_URI_SOAP_ENC, 
                 new QName("http://www.soaplite.com/Publisher",  
                           "authInfo"), 
                 authInfo.class, beanSer, beanSer); 
 
    Vector params = new Vector (); 
    params.add(new Parameter("email", String.class, email, null)); 
    params.add(new Parameter("password", String.class, password, null)); 
    call.setParams(params); 
    call.setMethodName("login"); 
    call.setSOAPMappingRegistry(smr); 
 
    authInfo = (authInfo) invokeCall(call); 
 
    System.out.println(authInfo.getEmail() + " logged in."); 
  } 
 
  public void register (String email, String password,  
                        String firstName, String lastName,  
                        String title, String company, String url)  
                        throws Exception { 
    Call call = initCall(); 
 
    Vector params = new Vector (); 
    params.add(new Parameter("email", String.class, email, null)); 
    params.add(new Parameter("password", String.class, password, null)); 
    params.add(new Parameter("firstName", String.class, firstName, null)); 
    params.add(new Parameter("lastName", String.class, lastName, null)); 
    if (url != null)      
        params.add(new Parameter("url", String.class, url, null)); 



Programming Web Services with SOAP 

page 189 

    if (title != null)    
        params.add(new Parameter("title", String.class, title, null)); 
    if (company != null)  
        params.add(new Parameter("company", String.class, company, null)); 
    call.setParams(params); 
    call.setMethodName("register"); 
    invokeCall(call); 
    System.out.println("Registered."); 
  } 
 
  public void postItem (String type, String title,  
                        String description)  
                        throws Exception { 
    Call call = initCall(); 
    Vector params = new Vector (); 
    params.add(new Parameter("type", String.class, type, null)); 
    params.add(new Parameter("title", String.class, title, null)); 
    params.add(new Parameter("description", String.class, description,  
                             null)); 
    call.setParams(params); 
    call.setMethodName("postItem"); 
    call.setHeader(makeAuthHeader(authInfo)); 
    Integer itemID = (Integer)invokeCall(call); 
    System.out.println("Posted item " + itemID + "."); 
  } 
 
  public void removeItem (Integer itemID) throws Exception { 
    Call call = initCall(); 
    Vector params = new Vector (); 
    params.add(new Parameter("itemID", Integer.class, itemID, null)); 
    call.setParams(params); 
    call.setMethodName("removeItem"); 
    call.setHeader(makeAuthHeader(authInfo)); 
    invokeCall(call); 
    System.out.println("Removed item " + itemID + "."); 
  } 
 
  public void browse (String type, String format,  
                      Integer maxRows)  
                      throws Exception { 
    Call call = initCall(); 
    Vector params = new Vector (); 
    params.add(new Parameter("format", String.class, format != null ?  
               format : "XMLstr", null)); 
    if (type != null)    params.add(new Parameter("type", String.class,  
               type, null)); 
    if (maxRows != null) params.add(new Parameter("maxRows",  
               Integer.class, maxRows, null)); 
    call.setParams(params); 
    call.setMethodName("browse"); 
    System.out.println((String)invokeCall(call)); 
  } 
 
  public static void main(String[] args) { 
 
    String myname = Client.class.getName(); 
    if (args.length < 1) { 
      System.err.println("Usage:\n  java " + myname + 
        " SOAP-router-URL"); 
      System.exit (1); 
    } 



Programming Web Services with SOAP 

page 190 

    try { 
      Client client = new Client(args[0],  
                     "http://www.soaplite.com/Publisher"); 
 
      InputStream in = System.in; 
      InputStreamReader isr = new InputStreamReader(in); 
      BufferedReader br = new BufferedReader(isr); 
      String action = null; 
      while (!("quit".equals(action))) { 
         System.out.print("> "); 
         action = br.readLine(); 
 
 
         if ("register".equals(action)) { 
 
             String email = null; 
             String password = null; 
             String firstName = null; 
             String lastName = null; 
             String title = null; 
             String company = null; 
             String url = null; 
 
             System.out.print("\n\nIn order to register, you must answer 
the following questions."); 
             System.out.print("\n\nWhat is your email address: "); 
             email = br.readLine(); 
             System.out.print("\nWhat is your first name: "); 
             firstName = br.readLine(); 
             System.out.print("\nWhat is your last name: "); 
             lastName = br.readLine(); 
             System.out.print("\nWhat is your job title: "); 
             title = br.readLine(); 
             System.out.print("\nWhat company do you work for: "); 
             company = br.readLine(); 
             System.out.print("\nWhat is your company or personal URL: "); 
             url = br.readLine(); 
             System.out.print("\nFinally, what password do you want to use: 
"); 
             password = br.readLine(); 
 
             System.out.println("\nAttempting to register...."); 
             client.register(email, password, firstName,  
                             lastName, title, company, url); 
             System.out.println(); 
         } 
 
         if ("login".equals(action)) { 
             String id = null; 
             String pwd = null; 
              
             System.out.print("\n\nWhat is your user id: "); 
             id = br.readLine(); 
             System.out.print("\nWhat is your password: "); 
             pwd = br.readLine(); 
 
             System.out.println("\nAttempting to login...."); 
             client.login(id,pwd); 
             System.out.println(); 
         } 
 



Programming Web Services with SOAP 

page 191 

         if ("post".equals(action)) { 
 
             String type = null; 
             String title = null; 
             String desc = null; 
 
             System.out.print("\n\nWhat type of item [1 = News, 2 = 
Article,  
             3 = Resource]: "); 
             type = br.readLine(); 
             if (type.equals("1")) type = "news"; 
             if (type.equals("2")) type = "article"; 
             if (type.equals("3")) type = "resource"; 
             System.out.println("\nWhat is the title: "); 
             title = br.readLine(); 
             System.out.println("\nWhat is the description: "); 
             desc = br.readLine(); 
 
             System.out.println("\nAttempting to post item...."); 
             client.postItem(type, title, desc); 
             System.out.println(); 
         } 
 
         if ("remove".equals(action)) { 
             System.out.print("\n\nPlease enter the numeric ID of the item 
to remove: "); 
             String id = br.readLine(); 
             try { 
                System.out.println("\nAttempting to remove item...."); 
                client.removeItem(Integer.valueOf(id)); 
             } catch (Exception ex) { 
                System.out.println("\nCould not remove item!"); 
             } 
             System.out.println(); 
         } 
 
         if ("browse".equals(action)) { 
             System.out.print("\n\nWhat is the maximum number of rows 
             to return  
(blank to return all): "); 
             String mRows = br.readLine(); 
             System.out.print("\nType of resource to browse ([0] = All, [1] 
= News,  
             [2] = Article, [3] = Resource): "); 
             String type = br.readLine(); 
             if (type.equals("0")) type = "all"; 
             if (type.equals("1")) type = "news"; 
             if (type.equals("2")) type = "article"; 
             if (type.equals("3")) type = "resource"; 
             System.out.print("\nHow would you like to see the results ([1] 
= XML,  
             [2] = RSS): "); 
             String format = br.readLine(); 
             if (format.equals("1")) format = "XMLstr"; 
             if (format.equals("2")) format = "RSSstr"; 
 
             System.out.println("\nAttempting to browse...."); 
             try { 
                 Integer ival = null; 
                 if (!("".equals(mRows))) { 
                     ival = Integer.valueOf(mRows); 



Programming Web Services with SOAP 

page 192 

                 } 
                 client.browse(type, format, ival); 
             } catch (Exception ex) {  
                System.out.println(ex); 
                System.out.println("\nCould not browse!");  
             } 
         } 
          
         if ("help".equals(action)) { 
             System.out.println("\nActions: register | login | post | 
remove | browse"); 
         } 
      } 
    } catch (Exception e) { 
      System.err.println("Caught Exception: " + e.getMessage()); 
    } 
  } 
} 

This is WSDL for the Hello World service. 

Example C-16. WSDL for the Hello World service  

<?xml version="1.0" encoding="UTF-8"?> 
<wsdl:definitions   name="HelloWorld" 
          targetNamespace="urn:HelloWorld" 
          xmlns:tns="urn:HelloWorld" 
          xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/" 
          xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"> 
  <wsdl:message name="sayHello_IN"> 
    <part name="name" type="xsd:string" /> 
  </wsdl:message> 
  <wsdl:message name="sayHello_OUT"> 
    <part name="greeting" type="xsd:string" /> 
  </wsdl:message> 
  <wsdl:portType name="HelloWorldInterface"> 
    <wsdl:operation name="sayHello" > 
      <wsdl:input message="tns:sayHello_IN" /> 
      <wsdl:output message="tns:sayHello_OUT" /> 
    </wsdl:operation> 
  </wsdl:portType> 
  <wsdl:binding name="HelloWorldBinding"  
    type="tns:HelloWorldInterface"> 
    <soap:binding style="rpc"  
      transport="http://schemas.xmlsoap.org/soap/http" /> 
    <wsdl:operation name="sayHello"> 
     <soap:operation soapAction="urn:Hello" /> 
     <wsdl:input> 
      <soap:body use="encoded"  
        namespace="urn:Hello"  
        encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" /> 
     </wsdl:input> 
     <wsdl:output> 
      <soap:body use="encoded"  
        namespace="urn:Hello" 
        encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" /> 
     </wsdl:output> 
    </wsdl:operation> 
  </wsdl:binding> 
  <wsdl:service name="HelloWorldService"> 



Programming Web Services with SOAP 

page 193 

    <wsdl:port name="Perl_HelloWorld" binding="tns:Binding_Name"> 
      <soap:address  
        location="http://localhost/cgi-bin/hello.cgi" /> 
    </wsdl:port> 
    <wsdl:port name="Java_HelloWorld" binding="tns:Binding_Name"> 
      <soap:address  
        location="http://localhost:8080/soap/servlet/rpcrouter" /> 
    </wsdl:port> 
    <wsdl:port name="NET_HelloWorld" binding="tns:Binding_Name"> 
      <soap:address  
        location="http://localhost/helloworld.asmx" /> 
    </wsdl:port> 
  </wsdl:service> 
</wsdl:definitions> 

Example C-17. Authinfo.java (client)  

public class authInfo { 
  private int memberID; 
  private long time; 
  private String email; 
  private byte [] signature; 
 
  public authInfo() { } 
 
  public authInfo(int memberID, long time, String email, byte[] signature) 
{ 
    this.memberID = memberID; 
    this.time = time; 
    this.email = email; 
    this.signature = signature; 
  } 
 
  public void setMemberID(int memberID) { 
    this.memberID = memberID; 
  } 
 
  public int getMemberID() { 
    return memberID; 
  } 
 
  public void setTime(long time) { 
    this.time = time; 
  } 
  public long getTime() { 
    return time; 
  } 
 
  public void setEmail(String email) { 
    this.email = email; 
  } 
 
  public String getEmail() { 
    return email; 
  } 
 
  public void setSignature(byte [] signature) { 
    this.signature = signature; 
  } 
 
  public byte [] getSignature() { 



Programming Web Services with SOAP 

page 194 

    return signature; 
  } 
 
  public String toString() { 
    return "[" + memberID + "] " + email; 
  } 
} 

C.7 SAML Generation 

Example C-18. Assertion.java  

package saml; 
 
import java.util.Date; 
import org.w3c.dom.Element; 
import org.w3c.dom.Document; 
 
public abstract class Assertion implements AssertionAbstractType { 
 
    private IDType assertionID; 
    private String issuer; 
    private Date issueInstant; 
     
    public String getVersion() { 
        return "1.0"; 
    } 
 
    public IDType getAssertionID() { 
        return this.assertionID; 
    } 
 
    public void setAssertionID(IDType assertionID) { 
        this.assertionID = assertionID; 
    } 
 
    public String getIssuer() { 
        return this.issuer; 
    } 
 
    public void setIssuer(String issuer) { 
        this.issuer = issuer; 
    } 
 
    public Date getIssueInstant() { 
        return this.issueInstant; 
    } 
 
    public void setIssueInstant(Date issueInstant) { 
        this.issueInstant = issueInstant; 
    } 
     
    protected void serializeAttributes(Element e) { 
        e.setAttribute("Version", getVersion()); 
        if (assertionID != null)  
            e.setAttribute("AssertionID", assertionID.getText()); 
        if (issuer != null) 
            e.setAttribute("Issuer", issuer); 
        if (issueInstant != null) 
            e.setAttribute("IssueInstant", issueInstant.toString()); 



Programming Web Services with SOAP 

page 195 

    } 
     
    protected void deserializeAttributes(Element source) { 
        String s1 = source.getAttribute("AssertionID"); 
        String s2 = source.getAttribute("Issuer"); 
        String s3 = source.getAttribute("IssueInstant"); 
        if (s1 != null) setAssertionID(new IDType(s1)); 
        if (s2 != null) setIssuer(s2); 
        if (s3 != null) setIssueInstant(new Date(s3)); 
    } 
     
    public abstract void serialize(Element parent); 
} 

Example C-19. AssertionAbstractType.java  

package saml; 
 
import java.util.Date; 
 
public interface AssertionAbstractType { 
 
    public String getVersion(); 
    public IDType getAssertionID(); 
    public void setAssertionID(IDType assertionID); 
    public String getIssuer(); 
    public void setIssuer(String issuer); 
    public Date getIssueInstant(); 
    public void setIssueInstant(Date issueInstant); 
} 

Example C-20. AssertionFactory.java  

package saml; 
 
import java.util.Date; 
 
public class AssertionFactory { 
 
    public static AuthenticationAssertion newInstance(String id, 
                                               String issuerName, 
                                               Date issueInstant, 
                                               String name, 
                                               String domain, 
                                               String method, 
                                               Date authInstant, 
                                               String ip, 
                                               String dns) { 
         
        AuthenticationAssertion aa = new AuthenticationAssertion(); 
        IDType aid = new IDType(id); 
        aa.setAssertionID(aid); 
        aa.setIssuer(issuerName); 
        aa.setIssueInstant(issueInstant); 
        Subject subject = new Subject(); 
        { 
            NameIdentifier ni = new NameIdentifier(); 
            ni.setName(name); 
            ni.setSecurityDomain(domain); 
            subject.setNameIdentifier(ni); 



Programming Web Services with SOAP 

page 196 

            aa.setSubject(subject); 
        } 
        aa.setAuthenticationMethod(new AuthenticationMethod(method)); 
        aa.setAuthenticationInstant( 
            new AuthenticationInstant(authInstant));         
        AuthenticationLocale locale = new AuthenticationLocale(); 
        locale.setIP(ip); 
        locale.setDNSDomain(dns); 
        aa.setAuthenticationLocale(locale); 
        return aa; 
    } 
     
} 

Example C-21. AssertionID.java  

package saml; 
 
import org.w3c.dom.Element; 
import org.w3c.dom.Document; 
 
public class AssertionID extends IDType { 
 
    public AssertionID() {} 
     
    public AssertionID(String value) { super(value); } 
         
    public void serialize(Element parent) { 
        Document doc = parent.getOwnerDocument(); 
        Element e = doc.createElementNS(SAMLUtil.NS, "AssertionID"); 
        e.appendChild(doc.createTextNode(getText())); 
        parent.appendChild(e); 
    } 
     
    public void deserialize(Element source) { 
        String id = SAMLUtil.getInnerText(source); 
        setText(id); 
    } 
} 

Example C-22. AssertionSigner.java  

package saml; 
 
import java.io.FileInputStream; 
import java.security.InvalidKeyException; 
import java.security.Key; 
import java.security.KeyStore; 
import java.security.KeyStoreException; 
import java.security.NoSuchAlgorithmException; 
import java.security.NoSuchProviderException; 
import java.security.SignatureException; 
import java.security.UnrecoverableKeyException; 
import java.security.cert.CertificateException; 
import java.security.cert.X509Certificate; 
import com.ibm.xml.dsig.*; 
import org.w3c.dom.*; 
 
 
 



Programming Web Services with SOAP 

page 197 

public class AssertionSigner { 
 
    public static Element sign(AuthenticationAssertion assertion,  
                               String keystorepath,  
                               String alias,  
                               String storepass,  
                               String keypass)  
                               throws Exception { 
         
        Document doc = SAMLUtil.newDocument(); 
        Element root = doc.createElement("root"); 
        assertion.serialize(root); 
         
        //** Prepare the signature **//  
        SignatureGenerator siggen = new SignatureGenerator(doc,  
                                    DigestMethod.SHA1, 
                                    Canonicalizer.W3C, 
                                    SignatureMethod.DSA, null); 
        siggen.addReference( 
            siggen.createReference( 
                siggen.wrapWithObject(root.getFirstChild(),   
                    assertion.getAssertionID().getText()) 
                ) 
            ); 
         
         
        //** Prepare the key **// 
        KeyStore keystore = KeyStore.getInstance("JKS"); 
        keystore.load(new FileInputStream(keystorepath),  
                      storepass.toCharArray()); 
        X509Certificate cert =  
            (X509Certificate)keystore.getCertificate(alias); 
        Key key = keystore.getKey(alias, keypass.toCharArray()); 
        if (key == null) { 
            throw new IllegalArgumentException("Invalid Key Info"); 
        } 
        KeyInfo keyInfo = new KeyInfo(); 
        KeyInfo.X509Data x5data = new KeyInfo.X509Data(); 
        x5data.setCertificate(cert); 
        x5data.setParameters(cert, true, true, true); 
        keyInfo.setX509Data(new KeyInfo.X509Data[] { x5data }); 
        keyInfo.setKeyValue(cert.getPublicKey()); 
        siggen.setKeyInfoGenerator(keyInfo);     
     
        //** Sign it **// 
        Element sig = siggen.getSignatureElement(); 
        SignatureContext context = new SignatureContext(); 
        context.sign(sig, key); 
        return sig; 
    } 
     
} 

Example C-23. AssertionSpecifier.java  

package saml; 
 
import org.w3c.dom.Element; 
import org.w3c.dom.Document; 
import org.w3c.dom.NodeList; 
import org.w3c.dom.Node; 



Programming Web Services with SOAP 

page 198 

 
public class AssertionSpecifier implements AssertionSpecifierType { 
 
    private AssertionID assertionID; 
    private Assertion assertion; 
     
    public AssertionID getAssertionID() { 
        return this.assertionID; 
    } 
 
    public void setAssertionID(AssertionID assertionID) { 
        this.assertionID = assertionID; 
    } 
 
    public Assertion getAssertion() { 
        return this.assertion; 
    } 
 
    public void setAssertion(Assertion assertion) { 
        this.assertion = assertion; 
    } 
     
    public void serialize(Element parent) { 
        Document doc = parent.getOwnerDocument(); 
        Element e = doc.createElementNS(SAMLUtil.NS, "AssertionSpecifier"); 
        if (assertionID != null) assertionID.serialize(e); 
        if (assertion != null) assertion.serialize(e); 
        parent.appendChild(e); 
    } 
     
    public void deserialize(Element source) { 
        NodeList nl = source.getChildNodes(); 
        for (int n = 0; n < nl.getLength(); n++) { 
            Node node = nl.item(n); 
            if (node.getNodeType() == Node.ELEMENT_NODE) { 
                Element e = (Element)node; 
                if ("AssertionID".equals(e.getLocalName())) { 
                    AssertionID aid = new AssertionID(); 
                    aid.deserialize(e); 
                    setAssertionID(aid); 
                } 
                if ("AuthenticationAssertion".equals(e.getLocalName())) { 
                    AuthenticationAssertion aa = new 
AuthenticationAssertion(); 
                    aa.deserialize(e); 
                    setAssertion(aa); 
                } 
            } 

..........Example C-24. AssertionSpecifierType.java  

package saml; 
 
public interface AssertionSpecifierType { 
 
    public AssertionID getAssertionID(); 
    public void setAssertionID(AssertionID assertionID); 
    public Assertion getAssertion(); 
    public void setAssertion(Assertion assertion); 
     
} 



Programming Web Services with SOAP 

page 199 

Example C-25. AuthenticationAssertion.java  

package saml; 
 
import java.util.Date; 
import org.w3c.dom.Element; 
import org.w3c.dom.Document; 
import org.w3c.dom.NodeList; 
import org.w3c.dom.Node; 
 
public class AuthenticationAssertion  
    extends SubjectAssertion implements AuthenticationAssertionType { 
 
    private AuthenticationMethod method; 
    private AuthenticationInstant instant; 
    private AuthenticationLocale locale; 
     
    public AuthenticationMethod getAuthenticationMethod() { 
        return this.method; 
    } 
 
    public void setAuthenticationMethod(AuthenticationMethod method) { 
        this.method = method; 
    } 
 
    public AuthenticationInstant getAuthenticationInstant() { 
        return this.instant; 
    } 
 
    public void setAuthenticationInstant(AuthenticationInstant instant) { 
        this.instant = instant; 
    } 
 
    public AuthenticationLocale getAuthenticationLocale() { 
        return this.locale; 
    } 
 
    public void setAuthenticationLocale(AuthenticationLocale locale) { 
        this.locale = locale; 
    } 
 
    public void serialize(Element parent) { 
        Document doc = parent.getOwnerDocument(); 
        Element e = doc.createElementNS(SAMLUtil.NS, 
"AuthenticationAssertion"); 
        e.setAttribute("xmlns", SAMLUtil.NS); 
        serializeAttributes(e); 
        serializeSubject(e); 
        if (method != null) method.serialize(e); 
        if (instant != null) instant.serialize(e); 
        if (locale != null) locale.serialize(e); 
        parent.appendChild(e); 
    } 
     
    public void deserialize(Element source) { 
        deserializeAttributes(source); 
        NodeList nl = source.getChildNodes(); 
        for (int n = 0; n < nl.getLength(); n++) { 
            Node node = nl.item(n); 
            if (node.getNodeType() == Node.ELEMENT_NODE) { 
                Element e = (Element)node; 



Programming Web Services with SOAP 

page 200 

                if ("Subject".equals(e.getLocalName())) { 
                    Subject subject = new Subject(); 
                    subject.deserialize(e); 
                    setSubject(subject); 
                } 
                if ("AuthenticationMethod".equals(e.getLocalName())) { 
                    AuthenticationMethod method = new 
AuthenticationMethod(); 
                    method.deserialize(e); 
                    setAuthenticationMethod(method); 
                } 
                if ("AuthenticationInstant".equals(e.getLocalName())) { 
                    AuthenticationInstant instant = new 
AuthenticationInstant(); 
                    instant.deserialize(e); 
                    setAuthenticationInstant(instant); 
                } 
                if ("AuthenticationLocale".equals(e.getLocalName())) { 
                    AuthenticationLocale locale = new 
AuthenticationLocale(); 
                    locale.deserialize(e); 
                    setAuthenticationLocale(locale); 
                } 
            } 
        } 
    } 
} 

Example C-26. AuthenticationAssertionType.java  

package saml; 
 
import java.util.Date; 
 
public interface AuthenticationAssertionType extends 
SubjectAssertionAbstractType { 
     
    public AuthenticationMethod getAuthenticationMethod(); 
    public void setAuthenticationMethod(AuthenticationMethod method); 
    public AuthenticationInstant getAuthenticationInstant(); 
    public void setAuthenticationInstant(AuthenticationInstant instant); 
    public AuthenticationLocale getAuthenticationLocale(); 
    public void setAuthenticationLocale(AuthenticationLocale locale); 
 
} 

Example C-27. AuthenticationInstant.java  

package saml; 
 
import java.util.Date; 
import org.w3c.dom.Element; 
import org.w3c.dom.Document; 
 
 
 
public class AuthenticationInstant { 
 
    private Date instant; 
     



Programming Web Services with SOAP 

page 201 

    public AuthenticationInstant() {} 
     
    public AuthenticationInstant(Date instant) { 
        setValue(instant); 
    } 
     
    public Date getValue() { 
        return this.instant; 
    } 
     
    public void setValue(Date value) { 
        this.instant = value; 
    } 
     
    public void serialize(Element parent) { 
        Document doc = parent.getOwnerDocument(); 
        Element e = doc.createElement("AuthenticationInstant"); 
        e.appendChild(doc.createTextNode(instant.toString())); 
        parent.appendChild(e); 
    } 
     
    public void deserialize(Element source) { 
        String value = SAMLUtil.getInnerText(source); 
        instant = new Date(value); 
    } 
} 

Example C-28. AuthenticationLocale.java  

package saml; 
 
import org.w3c.dom.Element; 
import org.w3c.dom.Document; 
import org.w3c.dom.NodeList; 
import org.w3c.dom.Node; 
 
public class AuthenticationLocale implements AuthenticationLocaleType { 
 
    private String ip; 
    private String domain; 
     
 
    public String getIP() { 
        return this.ip; 
    } 
 
    public void setIP(String ip) { 
        this.ip = ip; 
    } 
 
    public String getDNSDomain() { 
        return this.domain; 
    } 
 
    public void setDNSDomain(String domain) { 
        this.domain = domain; 
    } 
     
    public void serialize(Element parent) { 
        Document doc = parent.getOwnerDocument(); 



Programming Web Services with SOAP 

page 202 

        Element e = doc.createElementNS(SAMLUtil.NS, 
"AuthenticationLocale"); 
        if (ip != null) { 
            Element e1 = doc.createElement("IP"); 
            e1.appendChild(doc.createTextNode(ip)); 
            e.appendChild(e1); 
        } 
        if (domain != null) { 
            Element e2 = doc.createElement("DNS_Domain"); 
            e2.appendChild(doc.createTextNode(domain)); 
            e.appendChild(e2); 
        } 
        parent.appendChild(e); 
    } 
     
    public void deserialize(Element source) { 
        NodeList nl = source.getChildNodes(); 
        for (int n = 0; n < nl.getLength(); n++) { 
            Node node = nl.item(n); 
            if (node.getNodeType() == Node.ELEMENT_NODE) { 
                Element e = (Element)node; 
                if ("IP".equals(e.getLocalName())) { 
                    String ip = SAMLUtil.getInnerText(e); 
                    setIP(ip); 
                } 
                if ("DNS_Domain".equals(e.getLocalName())) { 
                    String dns = SAMLUtil.getInnerText(e); 
                    setDNSDomain(dns); 
                } 
            } 
        } 
    } 
} 

Example C-29. AuthenticationLocaleType.java  

package saml; 
 
public interface AuthenticationLocaleType { 
 
    public String getIP(); 
    public void setIP(String ip); 
    public String getDNSDomain(); 
    public void setDNSDomain(String domain); 
     
} 

Example C-30. AuthenticationMethod.java  

package saml; 
 
import org.w3c.dom.Element; 
import org.w3c.dom.Document; 
 
public class AuthenticationMethod { 
 
    private String value; 
 
    public AuthenticationMethod() {} 
     



Programming Web Services with SOAP 

page 203 

    public AuthenticationMethod(String value) { 
        setText(value); 
    } 
     
    public String getText() { 
        return this.value; 
    } 
 
    public void setText(String value) { 
        this.value = value; 
    } 
     
    public void serialize(Element parent) { 
        Document doc = parent.getOwnerDocument(); 
        Element e = doc.createElementNS(SAMLUtil.NS, 
"AuthenticationMethod"); 
        e.appendChild(doc.createTextNode(value)); 
        parent.appendChild(e); 
    } 
     
    public void deserialize(Element source) { 
        String s = SAMLUtil.getInnerText(source); 
        setText(s); 
    } 
} 

Example C-31. IDType.java  

package saml; 
 
public class IDType { 
     
    private String value; 
 
    public IDType() {} 
     
    public IDType(String value) { 
        setText(value); 
    } 
     
    public String getText() { 
        return this.value; 
    } 
 
    public void setText(String value) { 
        this.value = value; 
    } 
 
} 

Example C-32. NameIdentifier.java  

package saml; 
 
import org.w3c.dom.Element; 
import org.w3c.dom.Document; 
import org.w3c.dom.NodeList; 
import org.w3c.dom.Node; 
 
public class NameIdentifier implements NameIdentifierType { 



Programming Web Services with SOAP 

page 204 

 
    private String domain; 
    private String name; 
     
    public String getSecurityDomain() { 
        return this.domain; 
    } 
 
    public void setSecurityDomain(String securityDomain) { 
        this.domain = securityDomain; 
    } 
 
    public String getName() { 
        return this.name; 
    } 
 
    public void setName(String name) { 
        this.name = name; 
    } 
     
    public void serialize(Element parent) { 
        Document doc = parent.getOwnerDocument(); 
        Element e = doc.createElementNS(SAMLUtil.NS, "NameIdentifier"); 
        Element e1 = doc.createElement("SecurityDomain"); 
        e1.appendChild(doc.createTextNode(domain)); 
        e.appendChild(e1); 
        Element e2 = doc.createElement("Name"); 
        e2.appendChild(doc.createTextNode(name)); 
        e.appendChild(e2); 
        parent.appendChild(e); 
    } 
     
    public void deserialize(Element source) { 
        NodeList nl = source.getChildNodes(); 
        for (int n = 0; n < nl.getLength(); n++) { 
            Node node = nl.item(n); 
            if (node.getNodeType() == Node.ELEMENT_NODE) { 
                Element e = (Element)node; 
                if ("SecurityDomain".equals(e.getLocalName())) { 
                    String sd = SAMLUtil.getInnerText(e); 
                    setSecurityDomain(sd); 
                } 
                if ("Name".equals(e.getLocalName())) { 
                    String name = SAMLUtil.getInnerText(e); 
                    setName(name); 
                } 
            } 
        } 
    } 
} 

Example C-33. NameIdentifierType.java  

package saml; 
 
public interface NameIdentifierType { 
 
    public String getSecurityDomain(); 
    public void setSecurityDomain(String securityDomain); 
    public String getName(); 
    public void setName(String name); 



Programming Web Services with SOAP 

page 205 

     
} 

Example C-34. SAMLUtil.java  

package saml; 
 
import javax.xml.parsers.DocumentBuilder; 
import javax.xml.parsers.DocumentBuilderFactory; 
import org.w3c.dom.Element; 
import org.w3c.dom.NodeList; 
import org.w3c.dom.Document; 
import org.w3c.dom.Node; 
 
public class SAMLUtil { 
 
    public static final String NS =  
      "http://www.oasis-open.org/committees/security/docs/draft-sstc-
schema-assertion-15.xsd"; 
 
    public static String getInnerText(Node e) { 
        NodeList nl = e.getChildNodes(); 
        StringBuffer strbuf = new StringBuffer(); 
        for (int n = 0; n < nl.getLength(); n++) { 
            Node node = nl.item(n); 
            if (node.getNodeType() == Node.TEXT_NODE) { 
                strbuf.append(node.getNodeValue()); 
            } else { 
                strbuf.append(getInnerText(node)); 
            } 
        } 
        return strbuf.toString(); 
    } 
     
    public static Document newDocument() { 
        try { 
            DocumentBuilderFactory dbf = 
DocumentBuilderFactory.newInstance(); 
            dbf.setValidating(false); 
            dbf.setNamespaceAware(true); 
            DocumentBuilder db = dbf.newDocumentBuilder(); 
            return db.newDocument(); 
        } catch (Exception e) { 
            return null; 
        } 
    } 
     
} 

Example C-35. Subject.java  

package saml; 
 
import java.util.List; 
import java.util.Vector; 
import java.util.Iterator; 
import org.w3c.dom.Element; 
import org.w3c.dom.Document; 
import org.w3c.dom.NodeList; 
import org.w3c.dom.Node; 



Programming Web Services with SOAP 

page 206 

 
public class Subject implements SubjectType { 
 
    private List nameid = new Vector(); 
     
    public NameIdentifier getNameIdentifier(int index) { 
        return (NameIdentifier)this.nameid.get(index); 
    } 
 
    public void setNameIdentifier(NameIdentifier nameIdentifier) { 
        this.nameid.add(nameIdentifier); 
    } 
 
    public void serialize(Element parent) { 
        Document doc = parent.getOwnerDocument(); 
        Element e = doc.createElementNS(SAMLUtil.NS, "Subject"); 
        for (Iterator i = nameid.iterator(); i.hasNext();) { 
            NameIdentifier ni = (NameIdentifier)i.next(); 
            ni.serialize(e); 
        } 
        parent.appendChild(e); 
    } 
     
    public void deserialize(Element source) { 
        NodeList nl = source.getElementsByTagName("NameIdentifier"); 
        for (int n = 0; n < nl.getLength(); n++) { 
            Element e = (Element)nl.item(n); 
            NameIdentifier ni = new NameIdentifier(); 
            ni.deserialize(e); 
            setNameIdentifier(ni); 
        } 
    } 
} 

Example C-36. SubjectAssertion.java  

package saml; 
 
import org.w3c.dom.Element; 
 
public abstract class SubjectAssertion  
    extends Assertion implements SubjectAssertionAbstractType { 
 
    private Subject subject; 
     
    public Subject getSubject() { 
        return this.subject; 
    } 
 
    public void setSubject(Subject subject) { 
        this.subject = subject; 
    } 
 
    protected void serializeSubject(Element e) { 
        subject.serialize(e); 
    } 
} 

Example C-37. SubjectAssertionAbstractType.java  



Programming Web Services with SOAP 

page 207 

package saml; 
 
public interface SubjectAssertionAbstractType extends AssertionAbstractType 
{ 
 
    public Subject getSubject(); 
    public void setSubject(Subject subject); 
     
} 

Example C-38. SubjectType.java  

package saml; 
 
public interface SubjectType { 
 
    public NameIdentifier getNameIdentifier(int index); 
    public void setNameIdentifier(NameIdentifier nameIdentifier); 
     
} 

C.8 Codeshare 

Example C-39. CodeShareOwner.wsdl  

<?xml version="1.0" encoding="UTF-8"?> 
<wsdl:definitions name="CodeShare_Interfaces" 
                            targetNamespace="urn:CodeShare_Interfaces" 
                            xmlns:tns="urn:CodeShare_Interfaces" 
                            
xmlns:types="urn:CodeShare_Interfaces:DataTypes" 
                            xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"> 
 
    <wsdl:types> 
     <xsd:schema version="1.0"                
               targetNamespace="urn:CodeShare_Interfaces:DataTypes"  
               elementFormDefault="qualified"  
               attributeFormDefault="unqualified" 
               xmlns:se="http://schemas.xmlsoap.org/soap/encoding/" 
               xmlns:xsd="http://www.w3.org/2000/10/XMLSchema" > 
       <xsd:import  namespace="http://schemas.xmlsoap.org/soap/encoding/"  
             schemaLocation="http://schemas.xmlsoap.org/soap/encoding/"/> 
       <xsd:element name="item"> 
        <xsd:complexType> 
         <xsd:sequence> 
          <xsd:all> 
           <xsd:element name="path" type="xsd:string"  
                  nullable="true" minOccurs="0"/> 
           <xsd:element name="title" type="xsd:string"  
                  nullable="true" minOccurs="0"/> 
           <xsd:element name="fullpath" type="xsd:string"  
                  nullable="true" minOccurs="0"/> 
           <xsd:element name="type" type="xsd:string"  
                  nullable="true" minOccurs="0"/> 
          </xsd:all> 
          <xsd:any namespace='xmlns:dc="http://purl.org/dc/elements/1.1/"'  
                  processContents="lax" minOccurs="0"  
                  maxOccurs="unbounded"/> 
         </xsd:sequence> 
        </xsd:complexType> 



Programming Web Services with SOAP 

page 208 

       </xsd:element> 
       <xsd:complexType name="ArrayOfItems"> 
        <xsd:annotation> 
         <xsd:documentation> 
           Array of CodeShare item elements 
         </xsd:documentation> 
        </xsd:annotation> 
        <xsd:complexContent> 
         <xsd:extension base="se:Array"> 
          <xsd:attribute ref="se:arrayType"  
                         wsdl:arrayType="types:item[]" /> 
         </xsd:extension> 
        </xsd:complexContent> 
       </xsd:complexType> 
      </xsd:schema> 
    </wsdl:types> 
 
    <wsdl:message name="search"> 
        <part name="p1" type="xsd:string" /> 
        <part name="p2" type="xsd:string" /> 
    </wsdl:message> 
    <wsdl:message name="searchResponse"> 
        <part name="response" type="types:ArrayOfItems" /> 
    </wsdl:message> 
 
    <wsdl:message name="get"> 
        <part name="p1" type="xsd:string" /> 
        <part name="p2" type="xsd:string" /> 
    </wsdl:message> 
    <wsdl:message name="getResponse"> 
        <part name="response" type="types:ArrayOfItems" /> 
    </wsdl:message> 
 
    <wsdl:message name="info"> 
        <part name="p1" type="xsd:string" /> 
        <part name="p2" type="xsd:string" /> 
    </wsdl:message> 
    <wsdl:message name="infoResponse"> 
        <part name="response" type="types:ArrayOfItems" /> 
    </wsdl:message> 
 
    <wsdl:message name="list"> 
        <part name="p1" type="xsd:string" /> 
        <part name="p2" type="xsd:string" /> 
    </wsdl:message> 
    <wsdl:message name="listResponse"> 
        <part name="response" type="types:ArrayOfItems" /> 
    </wsdl:message> 
 
    <wsdl:portType name="CodeShareOwnerInterface"> 
        <wsdl:operation name="search" parameterOrder="p1 p2"> 
            <wsdl:input name="search" message="tns:search" /> 
            <wsdl:output name="searchResponse"  
                         message="tns:searchResponse" /> 
        </wsdl:operation> 
        <wsdl:operation name="get" parameterOrder="p1 p2"> 
            <wsdl:input name="search" message="tns:search" /> 
            <wsdl:output name="searchResponse"  
                         message="tns:searchResponse" /> 
        </wsdl:operation> 
        <wsdl:operation name="info" parameterOrder="p1 p2"> 



Programming Web Services with SOAP 

page 209 

            <wsdl:input name="search" message="tns:search" /> 
            <wsdl:output name="searchResponse"  
                         message="tns:searchResponse" /> 
        </wsdl:operation> 
        <wsdl:operation name="list" parameterOrder="p1 p2"> 
            <wsdl:input name="search" message="tns:search" /> 
            <wsdl:output name="searchResponse"  
                         message="tns:searchResponse" /> 
        </wsdl:operation> 
    </wsdl:portType> 
 
    <wsdl:binding name="CodeShareOwner_SOAP_HTTP"  
                  type="tns:CodeShareOwnerInterface"> 
 
      <soap:binding style="rpc" 
                    transport="http://schemas.xmlsoap.org/soap/http" /> 
 
      <wsdl:operation name="search"> 
       <soap:operation soapAction="urn:CodeShareOwner#search" /> 
       <wsdl:input> 
        <soap:body use="encoded" namespace="urn:CodeShareOwner" 
                   
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" /> 
       </wsdl:input> 
      <wsdl:output name="Name"> 
        <soap:body use="encoded" namespace="urn:CodeShareOwner" 
             encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" /> 
      </wsdl:output> 
     </wsdl:operation> 
 
     <wsdl:operation name="get"> 
      <soap:operation soapAction="urn:CodeShareOwner#get" /> 
      <wsdl:input> 
        <soap:body use="encoded" namespace="urn:CodeShareOwner" 
                   
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" /> 
      </wsdl:input> 
      <wsdl:output> 
       <soap:body use="encoded" namespace="urn:CodeShareOwner"  
                  encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" 
/> 
      </wsdl:output> 
     </wsdl:operation> 
     <wsdl:operation name="info"> 
      <soap:operation soapAction="urn:CodeShareOwner#info" /> 
      <wsdl:input> 
        <soap:body use="encoded" namespace="urn:CodeShareOwner" 
                   
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" /> 
      </wsdl:input> 
      <wsdl:output> 
       <soap:body use="encoded" namespace="urn:CodeShareOwner"  
                  encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" 
/> 
      </wsdl:output> 
    </wsdl:operation> 
    <wsdl:operation name="list"> 
     <soap:operation soapAction="urn:CodeShareOwner#list"/> 
     <wsdl:input> 
      <soap:body use="encoded" namespace="urn:CodeShareOwner" 



Programming Web Services with SOAP 

page 210 

                 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" 
/> 
     </wsdl:input> 
     <wsdl:output> 
      <soap:body use="encoded" namespace="urn:CodeShareOwner"          
                 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" 
/> 
     </wsdl:output> 
   </wsdl:operation> 
 </wsdl:binding> 
</wsdl:definitions> 
 
  
</wsdl:definitions> 

Example C-40. AuthenticationService.java  

package codeshare; 
 
import org.w3c.dom.Element; 
import org.w3c.dom.Document; 
import org.w3c.dom.NodeList; 
import saml.*; 
 
public class AuthenticationService { 
 
    private static String users = "users.xml"; 
    private static Document doc; 
    static { 
        doc = XMLUtil.get(users); 
        if (doc == null) { 
            doc = SAMLUtil.newDocument(); 
            Element u = doc.createElement("users"); 
            doc.appendChild(u); 
            XMLUtil.put(users, doc); 
        } 
    } 
     
    public static boolean register(String userid, String password) { 
        Element e = doc.getDocumentElement(); 
        NodeList nl = e.getElementsByTagName("user"); 
        for (int n = 0; n < nl.getLength(); n++) { 
            Element ex = (Element)nl.item(n); 
            if (ex.getAttribute("id").equals(userid)) { 
                throw new IllegalArgumentException("A user with that ID 
already exists!"); 
            } 
        } 
        Element u = doc.createElement("user"); 
        u.setAttribute("id", userid); 
        u.setAttribute("password", password); 
        e.appendChild(u); 
        XMLUtil.put(users, doc); 
        return true; 
    } 
     
    public static Element login(String userid, String password)  
        throws Exception { 
        Element el = doc.getDocumentElement(); 
        NodeList nl = el.getElementsByTagName("user"); 
        for (int n = 0; n < nl.getLength(); n++) { 



Programming Web Services with SOAP 

page 211 

            Element e = (Element)nl.item(n); 
            if (e.getAttribute("id").equals(userid) && 
                e.getAttribute("password").equals(password)) { 
                 
                AuthenticationAssertion aa = AssertionFactory.newInstance( 
                    new String(new Long( 
                        System.currentTimeMillis()).toString()), 
                        "CodeShare.org", 
                        new java.util.Date(), 
                        userid, 
                        "CodeShare.org", 
                        "http://codeshare.org", 
                        new java.util.Date(), 
                        java.net.InetAddress. 
                            getLocalHost().getHostAddress(),                         
                            java.net.InetAddress. 
                                getLocalHost().getHostName()); 
         
                Element sa = AssertionSigner.sign(aa, "CodeShare.db",  
                             "CodeShare", "CodeShare", "CodeShare"); 
                return sa; 
            } 
        } 
        return null; 
    } 
     
} 

Example C-41. Authentication Service Deployment Descriptor  

<isd:service xmlns:isd="http://xml.apache.org/xml-soap/deployment" 
             id="urn:CodeShareService-ClientService"> 
  <isd:provider type="java" 
                scope="Application" 
                methods="register login"> 
    <isd:java class="codeshare.AuthenticationService"/> 
  </isd:provider> 
  <isd:faultListener>org.apache.soap.server.DOMFaultListener 
  </isd:faultListener> 
</isd:service> 

Example C-42. VerificationService.java  

package codeshare; 
 
import org.w3c.dom.Element; 
import com.ibm.xml.dsig.*; 
import java.security.Key; 
 
public class VerificationService { 
 
    public static boolean isValid(Element signature) throws Exception { 
         
        Key key = null; 
        Element keyInfoElement = KeyInfo.searchForKeyInfo(signature); 
        if (keyInfoElement != null) { 
            KeyInfo keyInfo = new KeyInfo(keyInfoElement); 
            key = keyInfo.getKeyValue(); 
        } 
        SignatureContext context = new SignatureContext(); 



Programming Web Services with SOAP 

page 212 

        Validity validity = context.verify(signature, key); 
        return validity.getCoreValidity(); 
    } 
     
} 

Example C-43. Verification Service Deployment Descriptor  

<isd:service xmlns:isd="http://xml.apache.org/xml-soap/deployment" 
             id="urn:CodeShareService-Verification"> 
  <isd:provider type="java" 
                scope="Application" 
                methods="verify"> 
    <isd:java class="codeshare.VerificationService"/> 
  </isd:provider> 
  <isd:faultListener>org.apache.soap.server.DOMFaultListener 
  </isd:faultListener> 
</isd:service> 

Example C-44. MasterIndexService.java  

package codeshare; 
 
import org.w3c.dom.Element; 
import org.w3c.dom.Document; 
import org.w3c.dom.NodeList; 
import org.w3c.dom.Node; 
import saml.*; 
 
/** 
 * Master Index Service 
 */ 
 
public class MasterIndexService { 
 
    private static String owners = "owners.xml"; 
    private static Document doc; 
    static { 
        doc = XMLUtil.get(owners); 
        if (doc == null) { 
            doc = SAMLUtil.newDocument(); 
            Element u = doc.createElement("owners"); 
            doc.appendChild(u); 
            XMLUtil.put(owners, doc); 
        } 
    } 
     
    public static boolean register(String ownerid, String password, String 
url) { 
        Element e = doc.getDocumentElement(); 
        NodeList nl = e.getElementsByTagName("owner"); 
        for (int n = 0; n < nl.getLength(); n++) { 
            Element ex = (Element)nl.item(n); 
            if (ex.getAttribute("id").equals(ownerid)) { 
                throw new IllegalArgumentException("An owner with that ID 
already exists!"); 
            } 
        } 
        Element u = doc.createElement("owner"); 
        u.setAttribute("id", ownerid); 



Programming Web Services with SOAP 

page 213 

        u.setAttribute("password", password); 
        u.setAttribute("url", url); 
        e.appendChild(u); 
        XMLUtil.put(owners, doc); 
        return true; 
    } 
     
    public static boolean login(String ownerid, String password, Element 
index) { 
        Element el = doc.getDocumentElement(); 
        NodeList nl = el.getElementsByTagName("owner"); 
        for (int n = 0; n < nl.getLength(); n++) { 
            Element e = (Element)nl.item(n); 
            if (e.getAttribute("id").equals(ownerid) && 
                e.getAttribute("password").equals(password)) { 
                Element i = (Element)doc.importNode(index, true); 
                NodeList c = e.getElementsByTagName("index"); 
                if (c.getLength() > 0) { 
                    Node node = c.item(1); 
                    e.replaceChild(node, i); 
                } else { 
                    e.appendChild(i); 
                } 
                XMLUtil.put(owners, doc); 
                return true; 
            } 
        } 
        return false; 
    } 
     
    public static boolean update(String ownerid, String password,  
                                 Element index) { 
        Element el = doc.getDocumentElement(); 
        NodeList nl = el.getElementsByTagName("owner"); 
        for (int n = 0; n < nl.getLength(); n++) { 
            Element e = (Element)nl.item(n); 
            if (e.getAttribute("id").equals(ownerid) && 
                e.getAttribute("password").equals(password)) { 
                Element i = (Element)doc.importNode(index, true); 
                NodeList c = e.getElementsByTagName("index"); 
                if (c.getLength() > 0) { 
                    Node node = c.item(1); 
                    e.replaceChild(node, i); 
                } else { 
                    e.appendChild(i); 
                } 
                XMLUtil.put(owners, doc); 
                return true; 
            } 
        } 
        return false; 
    } 
 
} 

 

 

Example C-45. Master Index Service Deployment Descriptor  



Programming Web Services with SOAP 

page 214 

<isd:service xmlns:isd="http://xml.apache.org/xml-soap/deployment" 
             id="urn:CodeShareService-MasterIndex"> 
  <isd:provider type="java" 
                scope="Application" 
                methods="register update"> 
    <isd:java class="codeshare.IndexService"/> 
  </isd:provider> 
  <isd:faultListener>org.apache.soap.server.DOMFaultListener 
  </isd:faultListener> 
</isd:service> 

Example C-46. OwnerService.java  

package codeshare; 
 
import org.apache.regexp.RE; 
import org.w3c.dom.Document; 
import org.w3c.dom.Element; 
import org.w3c.dom.NodeList; 
import saml.SAMLUtil; 
 
public class OwnerService { 
  private static String index = "index.xml"; 
  private static org.w3c.dom.Document doc; 
  static {  
    doc = XMLUtil.get(index); 
    if (doc == null)  
    { 
      doc = SAMLUtil.newDocument(); 
      Element e = doc.createElement("index"); 
      doc.appendChild(e); 
      XMLUtil.put(index, doc); 
    } 
  } 
 
  public org.w3c.dom.Element search(String p1) {  
    return search(p1, "dc:Title"); 
  } 
 
  public Element search(String p1, String p2)  
  { 
    Element e = doc.getDocumentElement(); 
    NodeList nl = e.getElementsByTagName(p2); 
 
    Document d = SAMLUtil.newDocument(); 
    Element list = doc.createElement("list"); 
    d.appendChild(list); 
 
    for (int n = 0; n < nl.getLength(); n++)  
    { 
      Element next = (Element)nl.item(n); 
      try 
      { 
        RE targetRE = new RE(p1); 
        if (targetRE.match(SAMLUtil.getInnerText(next.getText()))) 
        { 
          Element item = (Element)d.importNode(next); 
          list.appendChild(item); 
        } 
      } 
      catch (Exception exc) {} 



Programming Web Services with SOAP 

page 215 

    } 
    return list; 
  } 
 
 
  public Element list(String p1) 
  { 
    return search(p1, "dc:Title"); 
  } 
 
  public Element list(String p1, String p2)  
  { 
    Element e = doc.getDocumentElement(); 
    NodeList nl = e.getElementsByTagName(p2); 
 
    Document d = SAMLUtil.newDocument(); 
    Element list = doc.createElement("list"); 
    d.appendChild(list); 
 
    for (int n = 0; n < nl.getLength(); n++)  
    { 
      Element next = (Element)nl.item(n); 
      try 
      { 
        RE targetRE = new RE(p1); 
        if (targetRE.match(SAMLUtil.getInnerText(next.getText()))) 
        { 
          Element item = (Element)d.importNode(next); 
          list.appendChild(item); 
        } 
      } 
      catch (Exception exc) {} 
    } 
    return list; 
  } 
 
  public Element info(String p1) {  
    throw new IllegalArgumentException("Not Implemented"); 
  } 
 
  public Element get(String p1) {  
    throw new IllegalArgumentException("Not Implemented"); 
  } 
} 

Example C-47. Owner Service Deployment Descriptor  

<isd:service xmlns:isd="http://xml.apache.org/xml-soap/deployment" 
             id="urn:CodeShareService-OwnerService"> 
  <isd:provider type="java" 
                scope="Application" 
                methods="list search"> 
    <isd:java class="codeshare.OwnerService"/> 
  </isd:provider> 
  <isd:faultListener>org.apache.soap.server.DOMFaultListener 
  </isd:faultListener> 
</isd:service> 

 



Programming Web Services with SOAP 

page 216 

Example C-48. XMLUtil.java  

package codeshare; 
 
import java.io.FileWriter; 
import javax.xml.parsers.*; 
import org.w3c.dom.*; 
import org.apache.xml.serialize.*; 
 
public class XMLUtil { 
 
    public static Document get(String path) { 
        try { 
            DocumentBuilderFactory dbf = 
DocumentBuilderFactory.newInstance(); 
            dbf.setValidating(false); 
            dbf.setNamespaceAware(true); 
            DocumentBuilder db = dbf.newDocumentBuilder(); 
            return db.parse(path); 
        } catch (Exception e) { 
            return null; 
        } 
    } 
     
    public synchronized static boolean put(String path, Document doc) { 
        try { 
            FileWriter fw = new FileWriter(path); 
            OutputFormat of = new OutputFormat(); 
            of.setIndenting(true); 
            XMLSerializer x = new XMLSerializer(fw, of); 
            x.serialize(doc); 
            fw.close(); 
            return true; 
        } catch (Exception e) { 
            return false; 
        } 
    } 
     
} 

Example C-49. Codeshare/Owner.pm  

package CodeShare::Owner; 
 
use strict; 
 
my $index;                                      # parsed index file 
my $DC_NS = "http://purl.org/dc/elements/1.1/"; # Dublin Code namespace 
my @ELEMENTS = qw(Title Creator Date Subject Description); 
 
sub init { 
  my($class, $root) = @_; 
  open(F, $root) or die "$root: $!\n"; 
  $index = SOAP::Custom::XML::Deserializer->deserialize(join '', <F>)-
>root; 
  close(F) or die "$root: $!\n"; 
} 
 
sub traverse { 
  my($self, %params) = @_; 
 



Programming Web Services with SOAP 

page 217 

  my $start = $params{start}; 
 
  my $type = $start->SOAP::Data::name; # file|project|directory 
  my $location = ref $start->location ? $start->location->value : ''; 
 
  # path to current structure. Empty for projects 
  my $path = $type eq 'directory' ||  
             $type eq 'file' ? join('/', $params{path} || (), $location) : 
''; 
  my $prefix = $type eq 'project' ? $location : $params{prefix} || ''; 
  my $fullpath = join '/', $prefix, $path; # full path. Used to GET files 
 
  my $where = $params{where}; 
  my $matched =  
    $params{get} && $params{matched} || 
    $params{what} &&  
    # check only subelements in Dublin Core namespace 
    $start->$where() =~ /$params{what}/ && $start->$where()->uri eq $DC_NS; 
 
  return  
    # current element 
    ($matched 
       ? +{ type => $type,  
            path => $path, 
            ($params{get} ? (fullpath => $fullpath) : ()), 
            map { ref $start->$_() ? ($_ => $start->$_()->value) : ()  
                } @ELEMENTS 
         }  
       : () 
    ),  
 
    # and everything below 
    map { $self->traverse(start => $_, where => $where, what => 
$params{what},  
                          path => $path, prefix => $prefix,  
                          get => ($params{get} || 0), matched => $matched) 
}  
      $start->project, $start->directory, ($type eq 'file' ? () : $start-
>file) 
  ; 
} 
 
sub list { 
 
  print("\nHandling a list request..."); 
 
  my($self, $what) = @_; 
 
  [ map { my $e = $_; +{ map {$_ => $e->{$_}} qw(type path Title file 
fullpath) } } 
      $self->traverse(start => $index, where => 'Title', what => $what, get 
=> 1) 
  ]; 
} 
 
sub get { 
 
  print("\nHandling a get request..."); 
 
  my $results = shift->list(@_); 
 



Programming Web Services with SOAP 

page 218 

  [ map { $_->{type} eq 'file' && open(F, delete $_->{fullpath})  
            ? ($_->{file} = join('', <F>), close F) : (); $_ } 
      @$results 
  ]; 
} 
 
sub search { # same as info(), but returns only 'type', 'path' and 'Title' 
 
  print("\nHandling a search request..."); 
 
  my $results = shift->info(@_); 
 
  [ map { my $e = $_; +{ map {$_ => $e->{$_}} qw(type path Title) } }  
      @$results  
  ]; 
} 
 
sub info { 
 
  print("\nHandling an info request..."); 
 
  my($self, $what, $where) = @_; 
 
  [ $self->traverse(start => $index,  
                    where => $where || 'Title', what => $what || '.') 
  ]; 
} 
 
1; 

Example C-50. Codeshare.pl (standalone HTTP Daemon)  

#!perl -w 
#!d:\perl\bin\perl.exe  
 
use SOAP::Transport::HTTP; 
use CodeShare::Owner; 
 
 
print "\n\nWelcome to CodeShare! The Open source code sharing network!"; 
print "\nCopyright(c) 2001, James Snell, Pavel Kulchenko, Doug 
Tidwell\n\n"; 
 
 
CodeShare::Owner->init(shift or die "Usage: $0 <path/to/index.xml>\n"); 
 
my $daemon = SOAP::Transport::HTTP::Daemon 
  -> new (LocalPort => 8080)  
  -> dispatch_to('CodeShare::Owner::(?:get|search|info|list)') 
; 
print "CodeShare Owner Server started at ", $daemon->url, "\n"; 
print "Waiting for a request...\n"; 
$daemon->handle; 

Example C-51. Codeshare.cgi (alternative to standalone HTTP daemon)  

#!/usr/bin/env perl 
# -- Copyright (C) 2001 Pavel Kulchenko -- 
 
use strict; 



Programming Web Services with SOAP 

page 219 

use SOAP::Transport::HTTP; 
use CodeShare::Owner; 
 
CodeShare::Owner->init('../Projects/index.xml'); 
 
my $daemon = SOAP::Transport::HTTP::CGI 
  -> dispatch_to('CodeShare::Owner::(?:get|search|info|list)') 
  -> handle; 
; 

Example C-52. Startserver.bat  

@echo off 
 
start "CodeShare Owner Server" perl cs_server.pl ..\Projects\index.xml 

Example C-53. Startserver.sh  

perl cs_server.pl ../Projects/index.xml 

Example C-54. Codeshare_client.pl  

#!/bin/env perl  
#!d:\perl\bin\perl.exe  
 
use strict; 
use SOAP::Lite; 
use File::Path; 
 
print "\n\nWelcome to CodeShare! The Open source code sharing network!"; 
print "\nCopyright(c) 2001, James Snell, Pavel Kulchenko, Doug 
Tidwell\n\n"; 
 
@ARGV or die "Usage: $0 CodeShareServer [commands...] [-dump [filename]] 
\n"; 
my $proxy = shift; 
my $uri = 'http://namespaces.soaplite.com/CodeShare/Owner'; 
my $soap = SOAP::Lite->proxy($proxy)->uri($uri)->on_fault(sub{}); 
 
my($dump, $file) = @ARGV > 0 && @ARGV[-1] eq '-dump' ? splice(@ARGV, -1, 1) 
: 
                   @ARGV > 1 && @ARGV[-2] eq '-dump' ? splice(@ARGV, -2, 2) 
: 
                   (undef, undef); 
if ($dump) { 
  print STDERR "Wiredumps are logged in '$file'\n" if $file; 
  $file ||= '&STDOUT';                     # STDOUT by default 
  open(F, ">>$file") or die "$file: $!\n"; # open in append mode 
  select((select(F), $|=1)[0]);            # select non-buffered output 
  $soap->on_debug(sub{print F @_});        # debug goes there 
  eval "END { close F }";                  # close handle when we are done 
} 
 
print STDERR "Usage: { search | info | get | list | quit | help } 
[parameters...]\n> "; 
 
while (defined($_ = shift || <>)) { 
  next unless /\w/; 
  my($method, $modifier, $parameters) = 
m!^\s*(\w+)(?:\s*/(\w*)\s)?\s*(.*)!; 



Programming Web Services with SOAP 

page 220 

 
  last if $method =~ /^q(?:uit)?$/i; 
  help(), next if $method =~ /^h(?:elp)?$/i; 
 
  my $res = eval "\$soap->$method('$parameters', '$modifier')"; 
 
  # check for errors 
  $@                            and print(STDERR join "\n", $@, ''), next; 
  defined($res) && $res->fault  and print(STDERR join "\n", $res-
>faultstring, ''), next; 
  !$soap->transport->is_success and print(STDERR join "\n", $soap-
>transport->status, ''), next; 
 
  # check for result 
  my @result = @{$res->result} or print(STDERR "No matches\n"), next; 
 
  foreach (@result) { 
    print(STDERR "$_->{type}: @{[join ', ', $_->{Title} || (), $_->{path} 
|| ()]}\n"); 
    if ($method eq 'get') { 
      if ($_->{type} eq 'directory') { File::Path::mkpath($_->{path}) } 
      if ($_->{type} eq 'file') {  
        open(F, '>'. $_->{path}) or warn "$_->{path}: $!\n"; 
        print F $_->{file}; 
        close(F) or warn "$_->{path}: $!\n"; 
      } 
    } elsif ($method eq 'info') { 
      foreach my $key (grep {$_ !~ /^(?:type|path)/} keys %$_) { 
        print "  $key: $_->{$key}\n"; 
      } 
    } 
  } 
} continue { 
  print STDERR "\n> "; 
} 
 
sub help { 
  print "Short help about search, info, get and list commands is here\n"; 
} 
 



Programming Web Services with SOAP 

page 221 

Colophon 
Our look is the result of reader comments, our own experimentation, and feedback from 
distribution channels. Distinctive covers complement our distinctive approach to technical 
topics, breathing personality and life into potentially dry subjects. 

The animal on the cover of Programming Web Services with SOAP is a sea sponge. There are 
thousands of species of sponge (Phylum Porifera). Sponges are simple, multicellular animals 
that feed and breathe by filtering water. They are covered with tiny pores called ostia, which 
lead to an internal system of canals coated with sticky cells called choanocytes, or collar cells. 
These cells facilitate water through the canals with constantly moving flagella, picking up 
oxygen and pieces of food, and carrying out carbon dioxide and waste. The water passes out 
of the sponge through larger pores called oscula. 

Free-standing and encrusting sea sponges live at the bottom of the ocean, in deep and shallow 
waters. Free-standing sponges can grow to gigantic sizes, and crab, shrimp, sea slugs, and 
starfish are often found living inside. Encrusting sponges attach themselves to rocks, shells, 
wood, and kelp. Some sponges produce toxic chemicals, possibly to give them a bad taste to 
predators. Other sponges have sharp, prickly spines as their only defense. 

Colleen Gorman was the production editor and copyeditor for Programming Web Services 
with SOAP. Linley Dolby and Matt Hutchinson provided quality control. Phil Dangler and 
Camilla Ammirati provided production support. John Bickelhaupt wrote the index. 

Ellie Volckhausen designed the cover of this book, based on a series design by Edie 
Freedman. The cover image is an original illustration created by Susan Hart. Emma Colby 
produced the cover layout with Quark XPress 4.1 using Adobe's ITC Garamond font. 

Melanie Wang designed the interior layout, based on a series design by David Futato. Neil 
Walls converted the files from Microsoft Word to FrameMaker 5.5.6 using tools created by 
Mike Sierra. The text font is Linotype Birka; the heading font is Adobe Myriad Condensed; 
and the code font is LucasFont's TheSans Mono Condensed. The illustrations that appear in 
the book were produced by Robert Romano and Jessamyn Read using Macromedia FreeHand 
9 and Adobe Photoshop 6. This colophon was written by Colleen Gorman. 

 

 


	Cover
	Table of Contents
	Preface
	Audience for This Book
	Structure of This Book
	Conventions
	Comments and Questions
	Acknowledgments

	1. Introducing Web Services
	1.1 What Is a Web Service?
	1.2 Web Service Fundamentals
	1.3 The Web Service Technology Stack
	1.4 Application
	1.5 The Peer Services Model

	2. Introducing SOAP
	2.1 SOAP and XML
	2.2 SOAP Messages
	2.3 SOAP Faults
	2.4 The SOAP Message Exchange Model
	2.5 Using SOAP for RPC-Style Web Services
	2.6 SOAP's Data Encoding
	2.7 SOAP Data Types
	2.8 SOAP Transports

	3. Writing SOAP Web Services
	3.1 Web Services Anatomy 101
	3.2 Creating Web Services in Perl with SOAP::Lite
	3.3 Creating Web Services in Java with Apache SOAP
	3.4 Creating Web Services In .NET
	3.5 Interoperability Issues

	4. The Publisher Web Service
	4.1 Overview
	4.2 The Publisher Operations
	4.3 The Publisher Server
	4.4 The Java Shell Client

	5. Describing a SOAP Service
	5.1 Describing Web Services
	5.2 Anatomy of a Service Description
	5.3 Defining Data Types and Structures with XML Schemas
	5.4 Describing the Web Service Interface
	5.5 Describing the Web Service Implementation
	5.6 Understanding Messaging Patterns

	6. Discovering SOAP Services
	6.1 The UDDI Registry
	6.2 The UDDI Interfaces
	6.3 Using UDDI to Publish Services
	6.4 Using UDDI to Locate Services
	6.5 Generating UDDI from WSDL
	6.6 Using UDDI and WSDL Together
	6.7 The Web Service Inspection Language (WS-Inspection)

	7. Web Services in Action
	7.1 The CodeShare Service Network
	7.2 The Code Share Index
	7.3 Web Services Security
	7.4 Definitions and Descriptions
	7.5 Implementing the CodeShare Server
	7.6 Implementing the CodeShare Owner
	7.7 Implementing the CodeShare Client
	7.8 Seeing It in Action
	7.9 What's Missing from This Picture?
	7.10 Developing CodeShare

	8. Web Services Security
	8.1 What Is a "Secure" Web Service?
	8.2 Microsoft Passport, Version 1.x and 2.x
	8.3 Microsoft Passport, Version 3.x
	8.4 Give Me Liberty or Give Me ...
	8.5 A Magic Carpet
	8.6 The Need for Standards
	8.7 XML Digital Signatures and Encryption

	9. The Future of Web Services
	9. The Future of Web Services
	9.2 The Future of SOAP
	9.3 The Future of WSDL
	9.4 The Future of UDDI
	9.5 Web Services Battlegrounds
	9.6 Technologies
	9.7 Web Services Rollout

	A. Web Service Standardization
	A.1 Packaging Protocols
	A.2 Description Protocols
	A.3 Discovery Protocols
	A.4 Security Protocols
	A.5 Transport Protocols
	A.6 Routing and Workflow
	A.7 Programming Languages/Platforms

	B. XML Schema Basics
	B.1 Simple and Complex Types
	B.2 Some Examples
	B.3 XML Spy

	C. Code Listings
	C.1 Hello World in Perl
	C.2 Hello World Client in Visual Basic
	C.3 Hello World over Jabber
	C.4 Hello World in Java
	C.5 Hello, World in C# on .NET
	C.6 Publisher Service
	C.7 SAML Generation
	C.8 Codeshare

	Colophon

