
Prepared exclusively for sam kaplan

www.allitebooks.com

http://www.allitebooks.org

What Readers Are Saying About Programming Scala

This books speaks directly to developers faced with the real and hard

problems of concurrency. It offers clear solutions for building actors

on the JVM.

John Heintz

Principal, Gist Labs

Venkat introduces (Java) developers to programming Scala in an easy-

to-follow, pragmatic style. This book covers Scala from basics to con-

currency, one of the most critical and most difficult topics in program-

ming today. Venkat gets to the meat without any fluff, and I highly

recommend this book to get you up to speed on Scala quickly.

Scott Leberknight

Chief architect, Near Infinity Corporation

Once again Venkat has made learning easy and fun. With his conver-

sational style, this book allows developers to quickly learn the Scala

language, its uniqueness, and how it can be best utilized in a multi-

language environment.

Ian Roughley

Consultant, Down & Around, Inc.

Multicore processors demand that developers have a solid grounding

in the functional programming concepts found at the core of Scala.

Venkat provides a great guide to get you started with this exciting new

language.

Nathaniel T. Schutta

Author, speaker, teacher

A pleasure to read! A great introduction to Scala for the experienced

Java developer! This book teaches the “Scala way” of programming

from a Java, object-oriented perspective. Very thorough yet concise.

Albert Scherer

Software architect, Follett Higher Education Group, I

Prepared exclusively for sam kaplan

www.allitebooks.com

http://www.allitebooks.org

Concurrency is the next giant challenge we must face as develop-

ers, and traditional imperative languages make it too hard. Scala is a

functional language on the JVM that offers easy multithreading, con-

cise syntax, and seamless Java interop. This book guides Java devel-

opers through the important capabilities and nuances of Scala, show-

ing why so much interest is bubbling around this new language.

Neal Ford

Software architect/meme wrangler, ThoughtWorks, Inc.

Programming Scala is concise, easy to read, and thorough...one of the

best introductions to Scala currently available. It’s a must-read for the

programmer who wants to stay relevant as we enter the era of ubiqui-

tous multicore processing. This is one of the books that I will go back

to, time and again, in the coming years.

Arild Shirazi

Senior software developer, CodeSherpas, Inc.

Prepared exclusively for sam kaplan

www.allitebooks.com

http://www.allitebooks.org

Prepared exclusively for sam kaplan

www.allitebooks.com

http://www.allitebooks.org

Programming Scala
Tackle Multicore Complexity on the JVM

Venkat Subramaniam

The Pragmatic Bookshelf
Raleigh, North Carolina Dallas, Texas

Prepared exclusively for sam kaplan

www.allitebooks.com

http://www.allitebooks.org

Many of the designations used by manufacturers and sellers to distinguish their prod-

ucts are claimed as trademarks. Where those designations appear in this book, and The

Pragmatic Programmers, LLC was aware of a trademark claim, the designations have

been printed in initial capital letters or in all capitals. The Pragmatic Starter Kit, The

Pragmatic Programmer, Pragmatic Programming, Pragmatic Bookshelf and the linking g

device are trademarks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher

assumes no responsibility for errors or omissions, or for damages that may result from

the use of information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team

create better software and have more fun. For more information, as well as the latest

Pragmatic titles, please visit us at

http://www.pragprog.com

Copyright © 2008 Venkat Subramaniam.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmit-

ted, in any form, or by any means, electronic, mechanical, photocopying, recording, or

otherwise, without the prior consent of the publisher.

Printed in the United States of America.

ISBN-10: 1-934356-31-X

ISBN-13: 978-1-934356-31-9

Printed on acid-free paper.

P1.0 printing, June 2009

Version: 2009-7-7

Prepared exclusively for sam kaplan

www.allitebooks.com

http://www.pragprog.com
http://www.allitebooks.org

Contents
1 Introduction 11

1.1 Why Scala? . 11

1.2 What’s Scala? . 14

1.3 Functional Programming 19

1.4 What’s in This Book? . 22

1.5 Who Is This Book For? 24

1.6 Acknowledgments . 24

2 Getting Started 26

2.1 Downloading Scala . 26

2.2 Installing Scala . 27

2.3 Take Scala for a Ride . 28

2.4 Scala on the Command Line 30

2.5 Running Scala Code as a Script 31

2.6 Scala from an IDE . 32

2.7 Compiling Scala . 32

3 Getting Up to Speed in Scala 34

3.1 Scala as Concise Java 34

3.2 Scala Classes for Java Primitives 37

3.3 Tuples and Multiple Assignments 38

3.4 Strings and Multiline Raw Strings 40

3.5 Sensible Defaults . 41

3.6 Operator Overloading . 43

3.7 Scala Surprises for the Java Eyes 45

4 Classes in Scala 53

4.1 Creating Classes . 53

4.2 Defining Fields, Methods, and Constructors 54

4.3 Extending a Class . 57

4.4 Singleton Object . 58

4.5 Stand-Alone and Companion Objects 60

4.6 static in Scala . 61

Prepared exclusively for sam kaplan

www.allitebooks.com

http://www.allitebooks.org

CONTENTS 8

5 Sensible Typing 63

5.1 Collections and Type Inference 64

5.2 The Any Type . 66

5.3 More About Nothing . 67

5.4 Option Type . 68

5.5 Method Return Type Inference 69

5.6 Passing Variable Arguments (Varargs) 70

5.7 Variance of Parameterized Type 71

6 Function Values and Closures 75

6.1 Moving from Normal to Higher-Order Functions 75

6.2 Function Values . 76

6.3 Function Values with Multiple Parameters 78

6.4 Currying . 80

6.5 Reusing Function Values 81

6.6 Positional Notation for Parameters 83

6.7 Execute Around Method Pattern 84

6.8 Partially Applied Functions 87

6.9 Closures . 88

7 Traits and Type Conversions 91

7.1 Traits . 91

7.2 Selective Mixins . 94

7.3 Decorating with Traits 95

7.4 Method Late Binding in Traits 97

7.5 Implicit Type Conversions 99

8 Using Collections 103

8.1 Common Scala Collections 103

8.2 Using a Set . 104

8.3 Using a Map . 106

8.4 Using a List . 108

8.5 The for Expression . 113

9 Pattern Matching and Regular Expressions 116

9.1 Matching Literals and Constants 116

9.2 Matching a Wildcard . 117

9.3 Matching Tuples and Lists 118

9.4 Matching with Types and Guards 119

9.5 Pattern Variables and Constants in case Expressions . 120

9.6 Pattern Matching XML Fragments 121

9.7 Matching Using case Classes 121

Report erratum

this copy is (P1.0 printing, June 2009)
Prepared exclusively for sam kaplan

www.allitebooks.com

http://books.pragprog.com/titles/vsscala/errata/add?pdf_page=8
http://www.allitebooks.org

CONTENTS 9

9.8 Matching Using Extractors 124

9.9 Regular Expressions . 128

9.10 Regular Expressions as Extractors 129

10 Concurrent Programming 131

10.1 Promote Immutability . 131

10.2 Concurrency Using Actor 133

10.3 Message Passing . 137

10.4 The Actor Class . 139

10.5 The actor Method . 141

10.6 receive and receiveWithin Methods 144

10.7 react and reactWithin Methods 146

10.8 loop and loopWhile . 151

10.9 Controlling Thread of Execution 153

10.10 Choosing Among the Receive Methods 154

11 Intermixing with Java 156

11.1 Using Scala Classes in Scala 156

11.2 Using Java Classes in Scala 159

11.3 Using Scala Classes in Java 161

11.4 Extending Classes . 165

12 Unit Testing with Scala 167

12.1 Using JUnit . 167

12.2 Using ScalaTest . 169

12.3 Start with a Canary Test 169

12.4 Using Runner . 170

12.5 Asserts . 172

12.6 Exception Tests . 174

12.7 Sharing Code Between Tests 176

12.8 Functional Style with FunSuite 178

12.9 Running ScalaTests Using JUnit 179

13 Exception Handling 183

13.1 Exception Handling . 183

13.2 Mind the Catch Order 186

14 Using Scala 187

14.1 The Net Asset Application 187

14.2 Getting Users’ Input . 187

14.3 Reading and Writing Files 188

14.4 XML as a First-Class Citizen 190

Report erratum

this copy is (P1.0 printing, June 2009)
Prepared exclusively for sam kaplan

www.allitebooks.com

http://books.pragprog.com/titles/vsscala/errata/add?pdf_page=9
http://www.allitebooks.org

CONTENTS 10

14.5 Reading and Writing XML 193

14.6 Getting Stock Prices from the Web 196

14.7 Making the Net Asset Application Concurrent 199

14.8 Putting a GUI on the Net Asset Application 201

A Web Resources 211

B Bibliography 213

Index 215

Report erratum

this copy is (P1.0 printing, June 2009)
Prepared exclusively for sam kaplan

www.allitebooks.com

http://books.pragprog.com/titles/vsscala/errata/add?pdf_page=10
http://www.allitebooks.org

Chapter 1

Introduction
There are so many languages that you could use to program the JVM.

In this book I hope to convince you to take the time to learn Scala.

The Scala language has been designed for concurrency, expressiveness,

and scalability. The language and its libraries let you focus on your

problem domain without being bogged down by low-level infrastructure

details like threads and synchronization.

We live in a world where hardware is getting cheaper and more power-

ful. Users now have devices with multiple processors, each with multi-

ple cores. Although Java has served us well so far, it was not designed

to take advantage of the power we have on hand today. Scala lets you

put all that power to use to create highly responsive, scalable, perform-

ing applications.

In this introduction, we’ll take a quick tour of the benefits of functional

programming and Scala to show you what makes Scala attractive. In

the rest of this book, you’ll learn how to use Scala to realize those

benefits.

1.1 Why Scala?

Is Scala the right language for you?

Scala is a hybrid functional and object-oriented language. When creat-

ing a multithreaded application in Scala, you’ll lean toward a functional

style of programming where you write lock-free code with immutable

Prepared exclusively for sam kaplan

WHY SCALA? 12

state.1 Scala provides an actor-based message-passing model that re-

moves the pain associated with concurrency. Using this model, you can

write concise multithreaded code without the worries of data contention

between threads and the resulting nightmare of dealing with locks and

releases. You can retire the synchronized keyword from your vocabular-

ies and enjoy the productivity gains of Scala.

The benefits of Scala, however, are not limited to multithreaded appli-

cations. You can also use it to build powerful, concise, single-threaded

applications and single-threaded modules of multithreaded applica-

tions. You can quickly put to use the powerful capabilities of Scala,

including sensible static typing, closures, immutable collections, and

elegant pattern matching.

Scala’s support for functional programming helps you to write concise

and expressive code. Thanks to the higher level of abstraction, you can

get more things done with fewer lines of code. The functional style will

benefit both your single-threaded applications and your multithreaded

applications.

A number of functional programming languages exist. Erlang, for one,

is a nice functional programming language. In fact, Scala’s concurrency

model is very similar to that of Erlang. However, Scala has two signifi-

cant advantages over Erlang. First, Scala is strongly typed, while Erlang

is not. Second, unlike Erlang, Scala runs on the JVM and interoperates

very well with Java.

These two features of Scala make it a prime candidate for use in dif-

ferent layers of enterprise applications. You can certainly use Scala to

build an entire enterprise application if you desire. Alternately, you

can use it in different layers along with other languages. You can take

advantage of the strong typing, superb concurrency model, and pow-

erful pattern matching capabilities in layers where they would mat-

ter the most in your applications. The following figure, inspired by Ola

Bini’s Language Pyramid (see “Fractal Programming” in Appendix A, on

page 211), shows where Scala may fit in with other languages in an

enterprise application.

1. An object is said to be immutable if you can’t change its contents once you create it.

This eliminates the concerns of managing contention when multiple threads access the

object. Java’s String is a great example of an immutable object.

Report erratum

this copy is (P1.0 printing, June 2009)
Prepared exclusively for sam kaplan

http://books.pragprog.com/titles/vsscala/errata/add?pdf_page=12

WHY SCALA? 13

JVM

Manage

Concurrency

with Scala

Java, Scala, Other Strongly Typed Languages for Infrastructure

Intensive

Pattern Matching/

Parsing Using Scala

Domain-Specific Languages Implemented Using Scala, Groovy, JRuby, ...

Metaprogramming

Dynamic Langs like

Groovy/JRuby/Clojure

What about other languages on the JVM...Groovy, JRuby, Clojure?

Scala is by far the only prominent strongly typed language that provides

functional style and great concurrency support. JRuby and Groovy are

dynamic languages. They are not functional and do not provide any

more solutions for concurrency than Java does. Clojure, on the other

hand, is a hybrid functional language. It is dynamic in nature and so is

not statically typed. Furthermore, its syntax is similar to Lisp, which is

not the easiest syntax to work with unless you are familiar with it.

If you are an experienced Java programmer and are battling with Java

to implement multithreaded applications, you will find Scala to be very

useful. You can quite easily wrap your Java code into Scala’s actors to

provide thread isolation. To communicate between the threads, you can

use Scala’s lightweight API to easily pass messages. Instead of launch-

ing threads and immediately limiting concurrency by synchronization,

you can use lock-free message passing to enjoy true concurrency.

If you value static typing and like to benefit from the support offered by

the compiler, you will find that the static typing provided in Scala works

for you without standing in your way. You will enjoy typing without

having to type as much code.

If you are looking for a higher level of abstraction and highly expressive

code, you’ll be attracted to Scala’s conciseness. You can get a lot more

done with less code in Scala. You will also find the flexibility of Scala

when it comes to operators and notations useful for creating domain-

specific languages.

Report erratum

this copy is (P1.0 printing, June 2009)
Prepared exclusively for sam kaplan

http://books.pragprog.com/titles/vsscala/errata/add?pdf_page=13

WHAT’S SCALA? 14

There is a caveat, however. Scala’s conciseness at times leans toward

terseness, which can make it hard to understand the code. The oper-

ators and constructs of Scala can be quite intimidating2 to a beginner.

The syntax is not going to be easy for the faint of heart certainly. As

you get proficient with Scala, though, you will begin to appreciate the

conciseness and learn to avoid the terseness so the code is easier to

maintain and understandable at the same time.

Scala is not an all-or-nothing proposition. You don’t have to throw

away the time, money, and effort you’ve invested writing Java code.

You can intermix Scala with Java libraries. You can build full appli-

cations entirely in Scala or intermix it to the extent you desire with

Java and other languages on the JVM. So, your Scala code could be

as small as a script or as large as a full-fledged enterprise application.

Scala has been used to build applications in various domains includ-

ing telecommunications, social networking, semantic web, and digital

asset management. Apache Camel uses Scala for its DSL to create rout-

ing rules. Lift WebFramework is a powerful web development framework

built using Scala. It takes full advantage of Scala features such as con-

ciseness, expressiveness, pattern matching, and concurrency.

1.2 What’s Scala?

Scala, short for Scalable Language, is a hybrid functional programming

language. It was created by Martin Odersky3 and was first released in

2003. Here are some of the key features of Scala:4

• It has an event-based concurrency model.

• It supports both an imperative style and a functional style.

• It is purely object-oriented.

• It intermixes well with Java.

• It enforces sensible static typing.

• It is concise and expressive.

• It is built on a small kernel.

• It is highly scalable, and it takes less code to create high-

performing applications.

2. I’ve never learned a language whose syntax did not hurt my head when I started out

with it—Ruby included. Practice, and the syntax becomes natural fairly soon.

3. For more information, see “A Brief History of Scala” in Appendix A, on page 211.

4. Refer to “Scala Language Specification” in Appendix A, on page 211, for the definitive

language specification.

Report erratum

this copy is (P1.0 printing, June 2009)
Prepared exclusively for sam kaplan

http://books.pragprog.com/titles/vsscala/errata/add?pdf_page=14

WHAT’S SCALA? 15

Here is a quick example that highlights many of these features:

Download Introduction/TopStock.scala

import scala.actors._

import Actor._

val symbols = List("AAPL", "GOOG", "IBM", "JAVA", "MSFT")

val receiver = self

val year = 2008

symbols.foreach { symbol =>

actor { receiver ! getYearEndClosing(symbol, year) }

}

val (topStock, highestPrice) = getTopStock(symbols.length)

printf("Top stock of %d is %s closing at price %f\n", year, topStock, highestPrice)

Don’t be distracted by the syntax. Focus on the big picture for now. sym-

bols refers to an immutable list that holds stock ticker symbols. We loop

through each of the symbols and invoke an actor. Scala actors execute

in separate threads. So, the code block ({}) associated with the actor

runs on its own thread. It invokes the (not yet implemented) function

getYearEndClosing(). The result of this call is then sent back to the actor

that initiated this request. This is done using the special bang symbol

(!). Back in the main thread, we call the (not yet implemented) function

getTopStock(). So, once the previous code is fully implemented, we can

use it to look up stock closing prices concurrently.

Let’s now take a look at the function getYearEndClosing():

Download Introduction/TopStock.scala

def getYearEndClosing(symbol : String, year : Int) = {

val url = "http://ichart.finance.yahoo.com/table.csv?s=" +

symbol + "&a=11&b=01&c=" + year + "&d=11&e=31&f=" + year + "&g=m"

val data = io.Source.fromURL(url).mkString

val price = data.split("\n")(1).split(",")(4).toDouble

(symbol, price)

}

In this short and sweet function, we send a request to http://ichart.

finance.yahoo.com and receive the stock data in CSV format. We then

parse the data and extract the year-end closing price. Don’t worry about

the format of the data received right now. That is not important for

what we’re focusing on here. In Chapter 14, Using Scala, on page 187, I

will revisit this example and provide all the details about talking to the

Yahoo service.

Report erratum

this copy is (P1.0 printing, June 2009)
Prepared exclusively for sam kaplan

http://media.pragprog.com/titles/vsscala/code/Introduction/TopStock.scala
http://media.pragprog.com/titles/vsscala/code/Introduction/TopStock.scala
http://ichart.finance.yahoo.com
http://ichart.finance.yahoo.com
http://books.pragprog.com/titles/vsscala/errata/add?pdf_page=15

WHAT’S SCALA? 16

We are left with implementing the getTopStock() method, which is the

method in which we will receive the closing prices and determine the

highest-priced stock. Let’s see how we can do that in a functional style:

Download Introduction/TopStock.scala

def getTopStock(count : Int) : (String, Double) = {

(1 to count).foldLeft("", 0.0) { (previousHigh, index) =>

receiveWithin(10000) {

case (symbol : String, price : Double) =>

if (price > previousHigh._2) (symbol, price) else previousHigh

}

}

}

We wrote the getTopStock() method without a single explicit assignment

operation to any variable. We took the number of symbols as a param-

eter to this method. Our goal is to find the symbol with the highest

closing price. So, we start with the initial symbol and a high price of ("",

0.0) as a parameter to the foldLeft() method. We use the foldLeft() method

to help compare the prices for each symbol and determine the highest.

Using the receiveWithin() method, we receive the symbol and price values

from the actors we started with. The receiveWithin() method will time out

after the said interval if it did not receive any messages. As soon as we

receive a message, we determine whether the price received is higher

than the high price we currently have. If it is, we use the new sym-

bol and its price as the high for comparison with the next price we will

receive. Otherwise, we use the previously determined (previousHigh) sym-

bol and high price. Whatever we return from the code block attached to

foldLeft() is used as a parameter to the call into the block in the context

of the next element. Finally, the symbol and the high price are returned

from foldLeft(). Again, focus on the big picture, and do not worry about

the details of each of the methods mentioned. I will discuss these in

detail as we move through the book.

That was about twenty-five lines of code to concurrently access the Web

in order to analyze the closing price of select ticker symbols. Spend a

few minutes tracing through the code to make sure you understand

how this is working. While at it, see how the method computed the

highest price without ever changing any variable or object. The entire

code is totally dealing with only immutable state; no variable or object

was changed after it was created. As a result, you should not be con-

cerned with any synchronization and data contention. There is also

no need for explicit notify and wait sequences. The message send and

receive took care of that implicitly.

Report erratum

this copy is (P1.0 printing, June 2009)
Prepared exclusively for sam kaplan

http://media.pragprog.com/titles/vsscala/code/Introduction/TopStock.scala
http://books.pragprog.com/titles/vsscala/errata/add?pdf_page=16

WHAT’S SCALA? 17

If you put all the previous code together and execute, you will get the

following output:

Top stock of 2008 is GOOG closing at price 307.650000

Assume the network delay is d seconds and you are interested in ana-

lyzing n symbols. If you wrote the code to run sequentially, that would

take about n * d seconds. Since we executed the requests for data con-

currently, the previous code takes only about d seconds. The biggest

delay in the code will be network access, and we executed that concur-

rently, but without writing a lot of code and putting in a lot of effort.

Imagine how you would have implemented the previous example in

Java.

The previous code is distinctive from how you’d implement it in Java in

three significant ways:

• First, the code is concise. We took advantage of a number of pow-

erful Scala features: actors, closures, collections, pattern match-

ing, and tuples, to mention a few. Of course, I have not introduced

any of these yet; you’re only in the introduction! So, don’t try to

understand all of that at this moment, because you have the rest

of the book for that.

• We communicated between threads using message passing. So,

there was no need for wait() and notify(). If you were using the

traditional thread API in Java, the code would be quite complex

by a few orders of magnitude. The newer Java concurrency API

relieves us of that burden by using the executor services. However,

in comparison, you will find Scala’s actor-based message model to

be a lot simpler and easier to use.

• Since we handled only immutable state, we did not have to spend

any time or effort (and sleepless nights) with data contention and

synchronization.

These benefits have removed a huge burden from your shoulders. For

an exhaustive treatise about how painful threads can be, refer to Brian

Goetz’s Java Concurrency in Practice [Goe06]. With Scala, you can focus

on your application logic instead of worrying about the low-level thread-

ing concerns.

You saw the concurrency benefit of Scala. Scala concurrently (pun

intended) provides benefits for single-threaded applications as well.

Scala provides you with the freedom to choose and mix two styles of

Report erratum

this copy is (P1.0 printing, June 2009)
Prepared exclusively for sam kaplan

http://books.pragprog.com/titles/vsscala/errata/add?pdf_page=17

WHAT’S SCALA? 18

programming: the imperative style promoted in Java and the assign-

mentless pure functional style. By allowing you to mix these two styles,

Scala lets you use the style you’re most comfortable with within the

scope of a single thread. This also enables you to call into and intermix

with existing Java code.

In Scala, everything is an object. For example, 2.toString() will generate a

compilation error in Java. However, that is valid in Scala—we’re calling

the toString() method on an instance of Int. At the same time, in order to

provide good performance and interoperability with Java, Scala maps

the instances of Int to the 32-bit primitive int representation at the byte-

code level.

Scala compiles down to bytecode. You can run it the same way you run

programs written using the Java language.5 You can also intermix it

well with Java. You can extend Java classes from Scala classes, and

vice versa. You can also use Java classes in Scala and Scala classes in

Java. You can program applications using multiple languages and be

a true Polyglot Programmer6—you can take advantage of Scala in Java

applications where you need concurrency or conciseness (like creating

domain-specific languages).

Scala is a statically typed language, but, unlike Java, it has sensible

static typing. Scala applies type inference in places it can. So, instead

of specifying the type repeatedly and redundantly, you can rely on the

language to learn the type and enforce it through the rest of the code.

You don’t work for the compiler; instead, you let the compiler work for

you. For example, when we define var i = 1, Scala immediately figures

that the variable i is of type Int. Now, if we try to assign a String to that

variable as in i = "haha", we will get a compilation error with the following

message:

error: type mismatch;

found : java.lang.String("haha")

required: Int

i = "haha"

Later in this book you will see how type inference works beyond such

simple definitions and transcends further to function parameters and

return values.

5. You can also run it as a script.

6. See “Polyglot Programming” in Appendix A, on page 211, as well as Neal Ford’s The

Productive Programmer [For08].

Report erratum

this copy is (P1.0 printing, June 2009)
Prepared exclusively for sam kaplan

http://books.pragprog.com/titles/vsscala/errata/add?pdf_page=18

FUNCTIONAL PROGRAMMING 19

Scala favors conciseness. Placing a semicolon at the end of statements

is second-nature to Java programmers. Scala provides a break for your

right pinky finger from the years of abuse it has taken—semicolons are

optional in Scala. But, that is only the beginning. In Scala, depending

on the context, the dot operator (.) is optional as well, and so are the

parentheses. So, instead of writing s1.equals(s2);, we can write s1 equals

s2. By losing the semicolon, the parentheses, and the dot, your code

gains a high signal-to-noise ratio. It becomes easier to write domain-

specific languages.

One of the most interesting aspects of Scala is scalability. You can enjoy

a nice interplay of functional programming constructs along with the

powerful Java libraries, and you can create highly scalable, concurrent

Java applications to take full advantage of multithreading on multicore

processors using the facilities provided in Scala.

The real beauty of Scala is in what it does not have. Compared to Java,

C#, and C++, the Scala language has a very small kernel of rules built

into it. The rest, including operators, are part of the Scala library. This

distinction has a far-reaching consequence. Because the language does

not do more, you are able to do a lot more with it. It is truly extensible,

and its library serves as a case study for that.

1.3 Functional Programming

I’ve mentioned that Scala can be used as a functional programming

language a couple of times already. I want to take a few pages to give

you a little of the flavor of functional programming. Let’s start by con-

trasting it with the imperative style of Java programming. If we want

to find the maximum temperature for a given day, we could write Java

code like this:

//Java code

public static int findMax(List<Integer> temperatures) {

int highTemperature = Integer.MIN_VALUE;

for(int temperature : temperatures) {

highTemperature = Math.max(highTemperature, temperature);

}

return highTemperature;

}

We created the mutable variable highTemperature and continually modi-

fied it in the loop. When you have mutable variables, you have to ensure

Report erratum

this copy is (P1.0 printing, June 2009)
Prepared exclusively for sam kaplan

http://books.pragprog.com/titles/vsscala/errata/add?pdf_page=19

FUNCTIONAL PROGRAMMING 20

you initialize them properly and are changing them in the right place to

the right values.

Functional programming is a declarative style in which you say what

to do instead of how something should be done. You’ve used functional

style if you’ve used XSLT, a rules engine, or ANTLR. We can rewrite the

previous code in functional style with no mutable variables as follows:

Download Introduction/FindMaxFunctional.scala

def findMax(temperatures : List[Int]) = {

temperatures.foldLeft(Integer.MIN_VALUE) { Math.max }

}

You are seeing an interplay of Scala conciseness and functional pro-

gramming style in the previous code. That’s some dense code. Take a

few minutes to let that sink in.

We created the function findMax() that accepts, as a parameter, an

immutable collection of temperature values (temperatures). The = sym-

bol between the parentheses and the curly brace told Scala to infer the

return type of this function (in this case an Int).

Within the function, we asked the foldLeft() method of the collection

to exercise the function Math.max() for each element of the collection.

As you know, the max() method of the java.lang.Math class takes two

parameters, which are the values we want to determine the maximum

of. Those two parameters are being sent implicitly in the previous code.

The first implicit parameter to max() is the previous high value, and

the second parameter is the current element in the collection that

foldLeft() is navigating or iterating over. foldLeft() takes the result of the

call to max, which is the current high value, and sends it to the subse-

quent call to max() to compare with the next element. The parameter to

foldLeft() is the initial value for the high temperature.

The foldLeft() method takes effort to grasp. Assume for a minute that

the elements in the collection are people who form a line and that we

want to find the age of the oldest person. We write 0 on a note and

give it to the first person in the line. The first person discards the note

(because he’s older than age 0); creates a new note with his age, 20;

and hands the slip to the next person in line. The second person, who

is younger than 20, simply passes the note to the person next to him.

The third person, who is 32, discards the note and creates a new one

to pass along. The note we get from the last person will contain the age

Report erratum

this copy is (P1.0 printing, June 2009)
Prepared exclusively for sam kaplan

www.allitebooks.com

http://media.pragprog.com/titles/vsscala/code/Introduction/FindMaxFunctional.scala
http://books.pragprog.com/titles/vsscala/errata/add?pdf_page=20
http://www.allitebooks.org

FUNCTIONAL PROGRAMMING 21

of the oldest person in the line. Visualize this sequence, and you know

what foldLeft() does under the covers.

Did the previous code feel like taking a shot of Red Bull? Scala code

is highly concise and can be intense. You have to put in some effort to

learn the language. But once you do, you will be able to take advantage

of its power and expressiveness.

Let’s take a look at another example of functional style. Suppose we

want a list whose elements are double the values in an original list.

Rather than loop through each element to realize that, we simply say we

want elements doubled and let the language do the looping, as shown

here:

Download Introduction/DoubleValues.scala

val values = List(1, 2, 3, 4, 5)

val doubleValues = values.map(_ * 2)

Read the keyword val as immutable. We are telling Scala that the vari-

ables values and doubleValues can’t be changed once created.

Although it may not look like it, _ * 2 is a function. It is an anonymous

function, which means it’s a function with only a body but no name.

The underscore (_) represents the argument passed to this function.

The function itself is passed as an argument to the map function. The

map() function iterates over the collection and, for each element in the

collection, invokes the anonymous function given as a parameter. The

overall result is a new list consisting of elements that are double those

in the original list.

See how can you treat functions (in this case the one that doubles

a number) just like regular parameters and variables? Functions are

first-class citizens in Scala.

So, although we obtained a list with double the values of elements in

the original list, we did so without modifying any variable or object.

This immutable approach is a key concept that makes functional pro-

gramming a desirable style for concurrent programming. In functional

programming, functions are pure. The output they produce is based

solely on the input they receive, and they are not affected by or affect

any state, global or local.

Report erratum

this copy is (P1.0 printing, June 2009)
Prepared exclusively for sam kaplan

http://media.pragprog.com/titles/vsscala/code/Introduction/DoubleValues.scala
http://books.pragprog.com/titles/vsscala/errata/add?pdf_page=21

WHAT’S IN THIS BOOK? 22

1.4 What’s in This Book?

My objective in writing this book is to get you up to speed on Scala

so you can use it to write concurrent, scalable, expressive programs.

There is a lot you need to learn to do that, but there is a lot more you

don’t need to know as well. If your objective is to learn everything that

there is to learn about Scala, you will not find that in this book. There is

already a book called Programming in Scala [OSV08] by Martin Odersky,

Lex Spoon, and Bill Venners that does a great job of introducing the

language in great depth. What you will see in this book are essential

concepts that you need to know to start using Scala.

I assume you are quite familiar with Java. So, you will not learn basic

concepts of programming from this book. However, I do not assume

you have knowledge of functional programming or the Scala language

itself—you will learn that in this book.

I have written this book for a busy Java developer, so my objective is

to make you comfortable with Scala quickly so you can start building

parts of your application with it really soon. You will see that the con-

cepts are introduced fairly quickly but with lots of examples.

The rest of the book is organized as follows.

In each chapter, you’ll learn essential facts that will get you closer to

writing concurrent code in Scala.

I will walk you through installing Scala and getting your first Scala code

executed in Chapter 2, Getting Started, on page 26. I’ll show you how to

run Scala as a script, how to compile it like traditional Java code, and

how to run it using the java tool.

In Chapter 3, Getting Up to Speed in Scala, on page 34, you’ll get a

quick tour of Scala, its conciseness, how it deals with Java classes and

primitives, and how it adds flavor to what you already have in Java.

Scala also has some surprises for the unsuspecting Java programmer,

as you’ll see in this chapter.

Scala, being a pure object-oriented language, handles classes quite dif-

ferently than Java. For instance, it has no static keyword, yet you can

create class members using companion objects. You’ll learn Scala’s way

of OO programming in Chapter 4, Classes in Scala, on page 53.

Report erratum

this copy is (P1.0 printing, June 2009)
Prepared exclusively for sam kaplan

http://books.pragprog.com/titles/vsscala/errata/add?pdf_page=22

WHAT’S IN THIS BOOK? 23

Scala is a statically typed language. It provides compile-time checking

without the heavyweight ceremonial7 syntax of other statically typed

languages. In Chapter 5, Sensible Typing, on page 63, you’ll learn about

Scala’s lightweight sensible typing.

Function values and closures are central concepts in functional pro-

gramming and one of the most common features in Scala. In Chap-

ter 6, Function Values and Closures, on page 75, I will walk you through

examples of how you can put this to good use.

In Chapter 7, Traits and Type Conversions, on page 91, you will learn

how to abstract behavior that can be mixed into arbitrary classes and

about Scala’s implicit type conversion.

Scala provides both mutable and immutable collections. You can create

them concisely and iterate through them using closures, as you’ll see

in Chapter 8, Using Collections, on page 103.

In Chapter 9, Pattern Matching and Regular Expressions, on page 116,

you will explore facilities for pattern matching, one of the most powerful

features of Scala and the one you’ll rely on in concurrent programming.

When you get to Chapter 10, Concurrent Programming, on page 131,

you have arrived at the feature you’ve been waiting for in this book.

You will learn about the powerful event-based concurrency model and

the actor API to support it.

Once you figure out how to use concurrency, you’ll want to put it to

use in your Java applications. Chapter 11, Intermixing with Java, on

page 156 will show you how to do that.

You want to make sure the code you type does what you want. Scala has

good support for unit testing. You’ll learn how to use JUnit, TestNG, or

a Scala-based testing tool for testing Scala and Java code in Chapter 12,

Unit Testing with Scala, on page 167.

I know you write superb code. However, you will still have to deal with

exceptions that arise from the code you call. Scala takes a different

approach to exception handling than Java does, as you’ll see in Chap-

ter 13, Exception Handling, on page 183.

In Chapter 14, Using Scala, on page 187, I will bring together the con-

cepts in this book and show how you can put Scala to good use for

building real-world applications.

7. See “Essence vs. Ceremony” in Appendix A, on page 211.

Report erratum

this copy is (P1.0 printing, June 2009)
Prepared exclusively for sam kaplan

http://books.pragprog.com/titles/vsscala/errata/add?pdf_page=23

WHO IS THIS BOOK FOR? 24

Finally, in Appendix A, on page 211, you’ll find references to articles

and blogs on the Web referenced in this book.

1.5 Who Is This Book For?

This book is for experienced Java programmers. I assume you are quite

familiar with the Java language syntax and the Java API. I also assume

you have strong object-oriented programming knowledge. These as-

sumptions will allow you to quickly get into the essence of Scala and

make use of it on real applications.

Developers who are familiar with other languages can use this book as

well but will have to supplement it with good Java books.

Programmers who are somewhat familiar with Scala can use this book

to learn some language features that they may not otherwise have had

the opportunity to explore. Those already familiar with Scala can use

this book for training fellow programmers in their organizations.

1.6 Acknowledgments

I had the privilege of getting help from some really smart minds when

writing this book. These highly passionate people with very busy sched-

ules volunteered their time to critique this book, tell me where I fell

short, tell me where I did well, and encourage me along the way. This is

a better book thanks to Al Scherer, Andres Almiray, Arild Shirazi, Bill

Venners, Brian Goetz, Brian Sam-bodden, Brian Sletten, Daniel Hino-

josa, Ian Roughley, John D. Heintz, Mark Richards, Michael Feathers,

Mike Mangino, Nathaniel Schutta, Neal Ford, Raju Gandhi, Scott Davis,

and Stuart Halloway. They have influenced this book in a number of

good ways. Any errors you find in this book are entirely mine.

Special thanks to Scott Leberknight; he is one of the most thorough

reviewers I’ve ever met. His comments were detailed and insightful,

and he took the time to run every single piece of code in the book. He

was kind enough to take a second pass at some of the areas I needed

another pair of eyes on.

What can an author of a book on a programming language ask for that’s

better than having the author of the language review the book? I sin-

cerely thank Martin Odersky for his invaluable comments, corrections,

and suggestions.

Report erratum

this copy is (P1.0 printing, June 2009)
Prepared exclusively for sam kaplan

http://books.pragprog.com/titles/vsscala/errata/add?pdf_page=24

ACKNOWLEDGMENTS 25

The book you’re reading is well-polished, copyedited, refined, and refac-

tored. There is one person who braved to read and edit the words as

they flowed through my fingers. And that he did, with only the latency

that the Internet imposed between us. He showed me how someone

could be hard on you and at the same time be motivating. I promised

to write another book if he promised to edit it, and here we are. I thank

Daniel Steinberg from the bottom of my heart.

My special thanks to the Pragmatic Programmers, Andy Hunt and Dave

Thomas, for taking on this book project and supporting it to comple-

tion. Thank you for providing such an agile environment and the high

standards you’ve set. It is a pleasure to write again for you. Thanks

to Janet Furlow, Kim Wimpsett, Steve Peter, and the entire Pragmatic

Bookshelf team for their assistance in creating this book.

I’d like to thank Dustin Whitney, Jonathan Smith, Josh McDonald,

Fred Jason, Vladimir Kelman, and Jeff Sack for their encouragement

on the discussion form for this book (see Appendix A, on page 211) and

email communications. I also thank the readers of this book in the beta

form and for their valuable comments and feedback. Thanks to Daniel

Glauser, David Bailey, Kai Virkki, Leif Jantzen, Ludovic Kuty, Morris

Jones, Peter Olsen, and Renaud Florquin for reporting errors in the

beta book.

Thanks to Jay Zimmerman, director of NFJS Conference series (http://

www.nofluffjuststuff.com), for providing me with an opportunity to present

ideas and topics that have helped shape my books. Thanks to the

geeks—speakers and attendees at conferences—I have had the oppor-

tunity to interact with. You guys are a source of inspiration, and I learn

a great deal from you all.

I concurrently thank Martin Odersky and the Scala community for their

effort in developing this wonderful language.

Writing this book would’ve been impossible without the enormous sup-

port, patience, and encouragement from my wife, Kavitha, and my sons,

Karthik and Krupakar. This book started with Krupa asking “Daddy,

what is Scala?” and finished with Karthik saying “I’m going to learn

Scala this summer,” with my wife keeping a steady flow of junk food,

caffeinated beverages, and inquisitive questions in between. The fol-

lowing fully functional Scala code is for them: ("thank you! " * 3) foreach

print.

Report erratum

this copy is (P1.0 printing, June 2009)
Prepared exclusively for sam kaplan

http://www.nofluffjuststuff.com
http://www.nofluffjuststuff.com
http://books.pragprog.com/titles/vsscala/errata/add?pdf_page=25

Chapter 2

Getting Started
Let’s get started writing Scala code. In this chapter, you’ll install Scala

and ensure everything is working well on your system.

2.1 Downloading Scala

Getting started with Scala is really easy. First, download the most

recent stable version of Scala—just visit http://www.scala-lang.org, and

click the “Download Scala” link. Download the appropriate version for

the platform you’re on. You will find the current release on the top.1 For

example, for Mac OS X, I downloaded scala-2.7.4.final.tar.gz. For Windows

Vista, I downloaded scala-2.7.4.final.zip. If you’re interested in the Scala

API or the source code, you’ll need to download additional files.

The examples in this book were tested against version 2.7.4 of Scala.

If you are a bleeding-edge type, a stable version will not satisfy you.

You will need the latest drop of the evolving language implementation.

Scroll down the download page to the “Release Candidate” section, and

download the latest release candidate version suitable for your plat-

form. Alternately, if you need the absolutely latest and are willing to

risk running into issues, you may instead pick the nightly build.

No matter which version you choose, you’ll also need the JDK 1.4 or

newer.2 I recommend at least Java 5 so you can enjoy the latest Java

language features in Scala. Take a moment to check which version of

Java is installed and active on your system.

1. If for some reason you are looking for an older release, you can find it in the “Previous

Releases” section.

2. See http://java.sun.com/javase/downloads/index.jsp.

Prepared exclusively for sam kaplan

http://www.scala-lang.org
http://java.sun.com/javase/downloads/index.jsp

INSTALLING SCALA 27

2.2 Installing Scala

Let’s get Scala installed. I’ll assume you have downloaded the Scala

2.7.4 binary distribution and have verified your Java installation (Sec-

tion 2.1, Downloading Scala, on the previous page).

Installing Scala on Windows

Unzip the distribution file—I right-clicked scala-2.7.4.final.zip in Windows

Explorer and selected “Extract Here.” Move the extracted directory to

the appropriate location. For example, on my system, I moved scala-

2.7.4.final to the C:\programs\scala directory.3

There is one more step. You’ll need to set up the path to the Scala bin

directory. To do this, go to the Control Panel, and open the “System”

application. Navigate to “Advanced system settings,” select “Advanced,”

and then select “Environment Variables.”4 Modify the path variable to

include the Scala bin directory. For example, on my machine I added

C:\programs\scala\scala-2.7.4.final\bin to the path. Remember to separate

the directories in your path using a semicolon (;).

Let’s make sure the setup went as expected. Close any open command-

line windows because changes to the environment variables won’t take

effect until you reopen the windows. In a new command-line window,

type scala -version, and make sure it reports the right version of Scala

you just installed. You’re all set to use Scala!

Installing Scala on Unix-like Systems

You have a couple of options if you want to install Scala on your Unix-

like system. On Mac OS X, you can use MacPorts to install it using the

command sudo port install scala.

Alternately, unzip the distribution file: gunzip scala-2.7.4.final.tar.gz. Then

untar the file using tar -xf scala-2.7.4.final.tar. Move the unbundled direc-

tory to an appropriate location. For example, on my system, I copied

scala-2.7.4.final to the /opt/scala directory.

There is one more step: setting up the path to the Scala bin directory.

3. I recommend you choose a path name with no whitespace in it, since path names

with whitespace often cause trouble.

4. For Windows versions other than Vista, follow the appropriate steps to change envi-

ronment variables.

Report erratum

this copy is (P1.0 printing, June 2009)
Prepared exclusively for sam kaplan

http://books.pragprog.com/titles/vsscala/errata/add?pdf_page=27

TAKE SCALA FOR A RIDE 28

Depending on the shell you use, edit the appropriate profile files. You

most likely know what to edit—if you need help figuring out what to

edit, refer to appropriate documentation for your shell, or consult some-

one who knows. I use bash, so I edited the ~/.bash_profile file. In that file,

I added /opt/scala/scala-2.7.4.final/bin to the path environment variable.

Let’s make sure the setup went as expected. Close any open termi-

nal windows because changes to the environment variables won’t take

effect until you reopen the windows.5 In a new terminal window, type

scala -version, and make sure it reports the right version of Scala you

just installed. You’re all set to use Scala!

2.3 Take Scala for a Ride

The quickest way to try Scala is to use the command-line shell scala. It

allows you to play with little Scala code snippets. This is a very useful

tool to quickly try some new code while you are writing applications.

On the command line (in a terminal window or command prompt), type

scala. You should see an introductory message followed by a prompt:

>scala

Welcome to Scala version 2.7.4.final (Java HotSpot(TM) Client VM, Java 1.5.0_16).

Type in expressions to have them evaluated.

Type :help for more information.

scala>

At the prompt, type val number = 6, and hit Return. The Scala shell

responds like this to indicate that it inferred the variable number to be

an Int based on what we assigned to it (6):

scala> val number = 6

number: Int = 6

scala>

Now try entering number = 7, and Scala will respond with this error:

scala> number = 7

<console>:5: error: reassignment to val

number = 7

^

scala>

5. Technically, we can source our profile file, but opening a new window is less trouble.

Report erratum

this copy is (P1.0 printing, June 2009)
Prepared exclusively for sam kaplan

http://books.pragprog.com/titles/vsscala/errata/add?pdf_page=28

TAKE SCALA FOR A RIDE 29

Scala tells us that we can’t reassign the constant number. In the con-

sole, however, we can redefine constants and variables. So, we can now

type val number = 7, and Scala will quietly accept it:

scala> val number = 7

number: Int = 7

scala>

Redefining constants and variables within the same scope is possible

only in the interactive shell, and not in real Scala code or script—this

flexibility makes it easier to experiment within the shell.

Try typing val list = List(1, 2, 3), and notice how Scala infers the type of list

and reports list: List[Int] = List(1, 2, 3). At any time, if you’re not sure what

an expression will be inferred as, you can quickly try it in the shell.

You can use the up arrow to bring back commands you typed previ-

ously. It even can bring back commands from a previous invocation of

the shell. While typing a line of command, you can press Ctrl+A to go

to the beginning of the line or Ctrl+E to go to the end of the line.

The shell tries to execute what you type as soon as you hit the Return

key. If you type something incomplete and press Return, for example

in the middle of writing a method definition, the shell will allow you to

complete the definition by prompting with a vertical bar (|). For example,

here I define a method isPalindrome() on two lines, then call the method

twice, and finally view the results:

scala> def isPalindrome(str: String) =

| str == str.reverse.toString()

isPalindrome: (String)Boolean

scala> isPalindrome("mom")

res1: Boolean = true

scala> isPalindrome("dude")

res2: Boolean = false

scala>

When you are done with the shell, simply type :quit or exit to exit the

shell. In addition to using the shell, we can send short statements or

expressions to Scala on the command line using the -e (execute argu-

ment) option:

Download GettingStarted/RunScalaOnCommandLine.cmd

scala -e "println(\"Hello \"+args(0)+\", \"+args(1))" Buddy "Welcome to Scala"

Report erratum

this copy is (P1.0 printing, June 2009)
Prepared exclusively for sam kaplan

http://media.pragprog.com/titles/vsscala/code/GettingStarted/RunScalaOnCommandLine.cmd
http://books.pragprog.com/titles/vsscala/errata/add?pdf_page=29

SCALA ON THE COMMAND LINE 30

Scala will respond with the following message:

Hello Buddy, Welcome to Scala

We used () instead of [] to index the args variable—this is a Scala idiom

we will talk about later.

If you have Scala code in a file, you can load that into the shell using

the :load option. For example, to load a filename script.scala, type within

the shell :load script.scala. This option is useful to load and experiment

with prewritten functions and classes.

2.4 Scala on the Command Line

Although the shell and the -e option are convenient ways to experiment

with small pieces of code, you will soon want to upgrade to executing

Scala code saved in files. The scala command can do that for you. It

works in interactive mode if you don’t provide any arguments, and it

runs in batch mode if you provide a filename. The file may be a script

file or an object file (an object file is a compiler-generated .class). By

default, you can let the tool guess which type of file you’re providing.

Alternately, you can tell it to treat the file as a script file or as an object

file using a -howtorun option. Finally, to send Java properties, you can

use the -Dproperty=value format.

Suppose we have a file named HelloWorld.scala:

Download GettingStarted/HelloWorld.scala

println("Hello World, Welcome to Scala")

We can execute the script with the command scala HelloWorld.scala like

this:

> scala HelloWorld.scala

Hello World, Welcome to Scala

>

We can follow the filename with any arguments we want to send to the

program.

The ability to write Scala code into a file and run it as a script is quite

convenient. You can use this to write code related to system mainte-

nance or administrative tasks, for example, and run them from the

command line or your favorite IDE without taking the extra step to

compile.

Report erratum

this copy is (P1.0 printing, June 2009)
Prepared exclusively for sam kaplan

www.allitebooks.com

http://media.pragprog.com/titles/vsscala/code/GettingStarted/HelloWorld.scala
http://books.pragprog.com/titles/vsscala/errata/add?pdf_page=30
http://www.allitebooks.org

RUNNING SCALA CODE AS A SCRIPT 31

The scala tool compiles your script into bytecode in memory and exe-

cutes it. It rolls the code into the traditional main() method of a Main

class. So, when you run the script, you’re running the main() method

of this Main class. If you want to view the bytecode generated, use the

-savecompiled option before the filename, and the tool will save it to a

JAR file.

2.5 Running Scala Code as a Script

As you begin to use Scala for writing scripts, you will find it easier to

simply run the Scala file like you run a shell script.

Running as a Script on Unix-like Systems

On Unix-like systems, you can do that by setting a shell preamble. Here

is an example:

Download GettingStarted/Script.scala

#!/usr/bin/env scala

!#

println("Hello " + args(0))

Make sure the file Script.scala has executable permission by typing

chmod +x Script.scala. Then to run it, simply type ./Script.scala Buddy on

the command line—Buddy is the argument that is passed to the script.

Here’s the output from the previous call:

Hello Buddy

Running as a Script on Windows

You can configure Windows to invoke Scala when you run a .scala file.

To do that, within Windows Explorer, simply double-click a Scala script

file with the .scala extension. Windows will complain that it can’t open

the file and will ask you to select a program from a list of installed

programs. Browse to the location where Scala is installed, and select

scala.bat. Now you can run the program by simply double-clicking it

in Windows Explorer, or you can run it from the command prompt

without prefixing with the command .scala. When you double-click the

program within Windows Explorer, you will notice that a window pops

up, displays the result of execution, and quickly shuts down. If you

want to keep that window open, you can point the file to a .bat file that

will run Scala and pause. To do this, right-click the Scala program,

select “Open With...,” and browse to and select the .bat file.

Report erratum

this copy is (P1.0 printing, June 2009)
Prepared exclusively for sam kaplan

http://media.pragprog.com/titles/vsscala/code/GettingStarted/Script.scala
http://books.pragprog.com/titles/vsscala/errata/add?pdf_page=31

SCALA FROM AN IDE 32

Here is an example:

Download GettingStarted/RunScala.bat

echo off

cls

call scala %1

pause

If you double-click HelloWorld.scala and automatically run the previous

.bat file, you should see this:

2.6 Scala from an IDE

As Java developers, you most likely use an IDE to develop applications.

If you’re using Eclipse, IntelliJ IDEA, or NetBeans, you can use the

Scala plug-ins for those IDEs (covered in Appendix A, on page 211).

These IDEs allow you to enjoy with Scala the same facilities you’re

used to when editing and working with Java. You can use syntax high-

lighting, code completion, debugging, proper indentation, and so on, to

name a few. Furthermore, you can mix and reference Scala and Java

code in the same project.

To install the Scala plug-in for Eclipse, follow the instructions at http://

www.scala-lang.org/node/94.

2.7 Compiling Scala

Here’s how to write a class and compile it using the scalac compiler.

In the following example, we define an object named Sample. (As you’ll

learn soon, Scala does not support static methods, so in order to write

the static main() method, you need to define an object—a Singleton

class.)

Download GettingStarted/Sample.scala

object Sample {

def main(args: Array[String]) = println("Hello Scala")

}

We can compile it using the command scalac Sample.scala. We can run it

either using the scala tool or using the java command. To use the scala

Report erratum

this copy is (P1.0 printing, June 2009)
Prepared exclusively for sam kaplan

http://media.pragprog.com/titles/vsscala/code/GettingStarted/RunScala.bat
http://www.scala-lang.org/node/94
http://www.scala-lang.org/node/94
http://media.pragprog.com/titles/vsscala/code/GettingStarted/Sample.scala
http://books.pragprog.com/titles/vsscala/errata/add?pdf_page=32

COMPILING SCALA 33

tool, simply type scala Sample. To use the java tool, we need to specify

the classpath for scala-library.jar. Here’s an example of compiling with the

scalac tool and running the program first with the scala tool and then

with the java tool on my Mac:

> scalac Sample.scala

> scala Sample

Hello Scala

> java -classpath /opt/scala/scala-2.7.4.final/lib/scala-library.jar:. Sample

Hello Scala

>

On Windows, you’d set the classpath to the location of the scala-library.jar

file. As an example, on my Vista machine, I set it to C:\programs\scala\

scala-2.7.4.final\lib\scala-library.jar;.

In this chapter, we installed Scala and took it for a short drive. You are

now all set to get into the nuts and bolts of Scala programming.

Report erratum

this copy is (P1.0 printing, June 2009)
Prepared exclusively for sam kaplan

http://books.pragprog.com/titles/vsscala/errata/add?pdf_page=33

Chapter 3

Getting Up to Speed in Scala
Scala lets you build on your Java skills. In this chapter, we’ll start on

familiar ground—with Java code—and then move toward Scala. Scala is

similar to Java in several ways and yet different in so many other ways.

Scala favors pure object orientation, but it maps types to Java types

where possible. Scala supports Java-like imperative coding style and

at the same time supports a functional style. Crank up your favorite

editor; we are ready to start on a tour through Scala.

3.1 Scala as Concise Java

Scala has very high code density—you type less to achieve more. Let’s

start with an example of Java code:

Download ScalaForTheJavaEyes/Greetings.java

//Java code

public class Greetings {

public static void main(String[] args) {

for(int i = 1; i < 4; i++) {

System.out.print(i + ",");

}

System.out.println("Scala Rocks!!!");

}

}

Here’s the output:

1,2,3,Scala Rocks!!!

Scala makes quite a few things in the previous code optional. First,

it does not care whether we use semicolons. Second, there is no real

Prepared exclusively for sam kaplan

http://media.pragprog.com/titles/vsscala/code/ScalaForTheJavaEyes/Greetings.java

SCALA AS CONCISE JAVA 35

val vs. var

You can define a variable using either a val or a var. The vari-
ables defined using val are immutable and can’t be changed
after initialization. Those defined using var, however, are muta-
ble and can be changed any number of times.

The immutability applies to the variable and not the instance
to which the variable refers. For example, if we write val buffer

= new StringBuffer(), we can’t change what buffer refers to. How-
ever, we can modify the instance of StringBuffer using methods
like append().

On the other hand, if we define an instance of String using
val str = "hello", we can’t modify the instance as well because
String itself is immutable. You can make an instance of a class
immutable by defining all of its fields using val and providing
only the methods that let you read, and not modify, the state
of the instance.

In Scala, you should prefer using val over var as much as possible
since that promotes immutability and functional style.

benefit for the code to live within the class Greetings in a simple example

like this, so we can get rid of that. Third, there’s no need to specify the

type of the variable i. Scala is smart enough to infer that i is an integer.

Finally, Scala lets us use println without typing System.out.println. Here is

the previous code simplified to Scala:

Download ScalaForTheJavaEyes/Greetings.scala

for (i <- 1 to 3) {

print(i + ",")

}

println("Scala Rocks!!!")

To run the previous Scala script, type scala Greetings.scala, or run it

from within your IDE.

You should see this output:

1,2,3,Scala Rocks!!!

The Scala loop structure is pretty lightweight. You simply mention that

the values of the index i goes from 1 to 3. The left of the arrow (<-) defines

a val, not a var (see the sidebar on the current page), and its right side

Report erratum

this copy is (P1.0 printing, June 2009)
Prepared exclusively for sam kaplan

http://media.pragprog.com/titles/vsscala/code/ScalaForTheJavaEyes/Greetings.scala
http://books.pragprog.com/titles/vsscala/errata/add?pdf_page=35

SCALA AS CONCISE JAVA 36

is a generator expression. On each iteration, a new val is created and

initialized with a consecutive element from the generated values.

The range that was generated in the previous code included both the

lower bound (1) and the upper bound (3). You can exclude the upper

bound from the range via the until() method instead of the to() method:

Download ScalaForTheJavaEyes/GreetingsExclusiveUpper.scala

for (i <- 1 until 3) {

print(i + ",")

}

println("Scala Rocks!!!")

You’ll see this output:

1,2,Scala Rocks!!!

Yes, you heard right. I did refer to to() as a method. to() and until() are

actually methods on RichInt,1 the type to which Int, which is the inferred

type of variable i, is implicitly converted to. They return an instance of

Range. So, calling 1 to 3 is equivalent to 1.to(3), but the former is more

elegant. We’ll discuss more about this charming feature in the sidebar

on the next page.

In the previous example, it appears that we’ve reassigned i as we iter-

ated through the loop. However, i is not a var; it is a val. Each time

through the loop we’re creating a different val named i. Note that we

can’t inadvertently change the value of i within the loop because i is

immutable. Quietly, we’ve already taken a step toward functional style

here.

We can also perform the loop in a more functional style using foreach():

Download ScalaForTheJavaEyes/GreetingsForEach.scala

(1 to 3).foreach(i => print(i + ","))

println("Scala Rocks!!!")

Here’s the output:

1,2,3,Scala Rocks!!!

1. We’ll discuss rich wrappers in Section 3.2, Scala Classes for Java Primitives, on the

following page.

Report erratum

this copy is (P1.0 printing, June 2009)
Prepared exclusively for sam kaplan

http://media.pragprog.com/titles/vsscala/code/ScalaForTheJavaEyes/GreetingsExclusiveUpper.scala
http://media.pragprog.com/titles/vsscala/code/ScalaForTheJavaEyes/GreetingsForEach.scala
http://books.pragprog.com/titles/vsscala/errata/add?pdf_page=36

SCALA CLASSES FOR JAVA PRIMITIVES 37

The Dot and Parentheses Are Optional

Scala allows you to drop both the dot and the parentheses if a
method takes either zero or one parameter. If a method takes
more than one parameter, you must use the parentheses, but
the dot is still optional. You already saw benefits of this: a + b is
really a.+(b), and 1 to 3 is really 1.to(3).

You can take advantage of this lightweight syntax to create
code that reads naturally. For example, assume we have a
turn() method defined on a class Car:

def turn(direction: String) //...

We can call the previous method in a lightweight syntax as fol-
lows:

car turn "right"

Enjoy the optional dot and parentheses to reduce code clutter.

The previous example is concise, and there are no assignments. We

used the foreach() method of the Range class. This method accepts a

function value as a parameter. So, within the parentheses, we’re pro-

viding a body of code that takes one argument, named in this example

as i. The => separates the parameter list on the left from the implemen-

tation on the right.

3.2 Scala Classes for Java Primitives

Java presents a split view of the world—there are objects, and then

there are primitives such as int, double, and so on. Scala treats every-

thing as objects.

Java treats primitives differently from objects. Since Java 5, autoboxing

allows you to send primitives to methods that expect objects. However,

Java doesn’t let you call a method on a primitive like this: 2.toString().

On the other hand, Scala treats everything as objects. This means you

can call methods on literals, just like you can call methods on objects.

In the following code, we create an instance of Scala’s Int and send it

to the ensureCapacity() method of java.util.ArrayList, which expects a Java

primitive int.

Report erratum

this copy is (P1.0 printing, June 2009)
Prepared exclusively for sam kaplan

http://books.pragprog.com/titles/vsscala/errata/add?pdf_page=37

TUPLES AND MULTIPLE ASSIGNMENTS 38

Download ScalaForTheJavaEyes/ScalaInt.scala

class ScalaInt {

def playWithInt() {

val capacity : Int = 10

val list = new java.util.ArrayList[String]

list.ensureCapacity(capacity)

}

}

In the previous code,2 Scala quietly treated Scala.Int as the primitive

Java int. The result is no performance loss at runtime for type conver-

sions.

There is similar magic that allows you to call methods like to() on Int,

as in 1.to(3) or 1 to 3. When Scala determines that Int can’t handle your

request, Scala quietly applies the intWrapper() method to convert3 the

Int to scala.runtime.RichInt and then invokes the to() method on it.

Classes like RichInt, RichDouble, RichBoolean, and so on, are called rich

wrapper classes. They provide convenience methods that can be used

for classes in Scala that represent the Java primitive types and String.

3.3 Tuples and Multiple Assignments

Suppose we have a function that returns multiple values. For example,

let’s return a person’s first name, last name, and email address. One

way to write it in Java is to return an instance of a PersonInfo class that

holds the appropriate fields for data we’d like to return. Alternately, we

can return a String[] or ArrayList containing these values and iterate over

the result to fetch the values. There is a simpler way to do this in Scala.

Scala supports tuples and multiple assignments.

A tuple is an immutable object sequence created as comma-separated

values. For example, the following represents a tuple with three objects:

("Venkat", "Subramaniam", "venkats@agiledeveloper.com").

2. We could have defined val capacity = 10 and let Scala infer the type, but we specified it

explicitly to illustrate the compatibility with Java int.

3. We will discuss implicit type conversions in Section 7.5, Implicit Type Conversions, on

page 99.

Report erratum

this copy is (P1.0 printing, June 2009)
Prepared exclusively for sam kaplan

http://media.pragprog.com/titles/vsscala/code/ScalaForTheJavaEyes/ScalaInt.scala
http://books.pragprog.com/titles/vsscala/errata/add?pdf_page=38

TUPLES AND MULTIPLE ASSIGNMENTS 39

We can assign the elements of a tuple into multiple vars or vals in par-

allel, as shown in this example:

Download ScalaForTheJavaEyes/MultipleAssignment.scala

def getPersonInfo(primaryKey : Int) = {

// Assume primaryKey is used to fetch a person's info...

// Here response is hard-coded

("Venkat", "Subramaniam", "venkats@agiledeveloper.com")

}

val (firstName, lastName, emailAddress) = getPersonInfo(1)

println("First Name is " + firstName)

println("Last Name is " + lastName)

println("Email Address is " + emailAddress)

Here’s the output from executing this code:

First Name is Venkat

Last Name is Subramaniam

Email Address is venkats@agiledeveloper.com

What if you try to assign the result of the method to fewer variables or to

more variables? Scala will keep an eye out for you and report an error if

that happens. This error reporting is at compile time, assuming you’re

compiling your Scala code and not running it as a script. For example,

in the following example, we’re assigning the result of the method call

to fewer variables than in the tuple:

Download ScalaForTheJavaEyes/MultipleAssignment2.scala

def getPersonInfo(primaryKey : Int) = {

("Venkat", "Subramaniam", "venkats@agiledeveloper.com")

}

val (firstName, lastName) = getPersonInfo(1)

Scala will report this error:

(fragment of MultipleAssignment2.scala):5: error:

constructor cannot be instantiated to expected type;

found : (T1, T2)

required: (java.lang.String, java.lang.String, java.lang.String)

val (firstName, lastName) = getPersonInfo(1)

^

...

Instead of assigning the values, you can also access individual elements

of a tuple. For example, if we execute val info = getPersonInfo(1), then we

can access the first element using the syntax info._1, the second element

using info._2, and so on.

Report erratum

this copy is (P1.0 printing, June 2009)
Prepared exclusively for sam kaplan

http://media.pragprog.com/titles/vsscala/code/ScalaForTheJavaEyes/MultipleAssignment.scala
http://media.pragprog.com/titles/vsscala/code/ScalaForTheJavaEyes/MultipleAssignment2.scala
http://books.pragprog.com/titles/vsscala/errata/add?pdf_page=39

STRINGS AND MULTILINE RAW STRINGS 40

Tuples are useful not only for multiple assignments. They’re useful to

pass a list of data values as messages between actors in concurrent

programming (and their immutable nature comes in handy here). Their

concise syntax helps keep the code on the message sender side very

concise. On the receiving side, you can use pattern matching to con-

cisely receive and process the message, as you’ll see in Section 9.3,

Matching Tuples and Lists, on page 118.

3.4 Strings and Multiline Raw Strings

String in Scala is nothing but java.lang.String. You can use String just like

the ways you do in Java. However, Scala does provide a few additional

conveniences when working with String.

Scala can automatically convert a String to scala.runtime.RichString—this

allows you to seamlessly apply some convenience methods like capital-

ize(), lines(), and reverse.4

If you need to create a string that runs multiple lines, it is really simple

in Scala. Simply place the multiple lines of strings within three double

quotes ("""..."""). That’s Scala’s support for here documents, or heredocs.

Here, we create a string that runs three lines long:

Download ScalaForTheJavaEyes/MultiLine.scala

val str = """In his famous inaugural speech, John F. Kennedy said

"And so, my fellow Americans: ask not what your country can do

for you-ask what you can do for your country." He then proceeded

to speak to the citizens of the World..."""

println(str)

The output is as follows:

In his famous inaugural speech, John F. Kennedy said

"And so, my fellow Americans: ask not what your country can do

for you-ask what you can do for your country." He then proceeded

to speak to the citizens of the World...

Scala lets you embed double quotes within your strings. Scala took the

content within triple double quotes as is, so this is called a raw string

in Scala. In fact, Scala took the string too literally; we wouldn’t want

4. This seamless conversion, however, sometimes may catch you by surprise. For exam-

ple, "mom".reverse == "mom" evaluates false, since we end up comparing an instance of

RichString with an instance of String. "mom".reverse.toString == "mom", however, results in the

desired result of true.

Report erratum

this copy is (P1.0 printing, June 2009)
Prepared exclusively for sam kaplan

www.allitebooks.com

http://media.pragprog.com/titles/vsscala/code/ScalaForTheJavaEyes/MultiLine.scala
http://books.pragprog.com/titles/vsscala/errata/add?pdf_page=40
http://www.allitebooks.org

SENSIBLE DEFAULTS 41

those indentations in the code to be carried into the string. We can use

the convenience method stripMargin() of RichString like this:

Download ScalaForTheJavaEyes/MultiLine2.scala

val str = """In his famous inaugural speech, John F. Kennedy said

|"And so, my fellow Americans: ask not what your country can do

|for you-ask what you can do for your country." He then proceeded

|to speak to the citizens of the World...""".stripMargin

println(str)

stripMargin() removes all blanks or control characters before the leading

pipe (|). If the pipe symbol appears anywhere else other than the leading

position on each line, it’s retained. If for some reason that symbol is

sacred to you, you can use a variation of the stripMargin() method that

accepts another margin character of your choice. You’ll see this output

for the previous code:

In his famous inaugural speech, John F. Kennedy said

"And so, my fellow Americans: ask not what your country can do

for you-ask what you can do for your country." He then proceeded

to speak to the citizens of the World...

You will find raw strings very useful when creating regular expressions.

It’s easier to type and to read """\d2:\d2""" than "\\d2:\\d2".

3.5 Sensible Defaults

Scala has some defaults that make the code concise and easier to read

and write. Here are a few of these features:

• It has support for scripts. Not all code needs to be within a class.

If a script is sufficient for your needs, you can put the executable

code directly in a file without the clutter of an unnecessary class.

• return is optional. The last expression evaluated is automatically

returned from method calls, assuming it matches with the return

type declared for the method. Not having to put that explicit return

makes your code concise, especially when passing closures as

method parameters.

• Semicolons (;) are optional. You don’t have to end each statement

with a semicolon,5 and this reduces noise in the code. If you want

to place multiple statements in the same line, you can use semi-

colons to separate them. Scala also smartly figures out whether

5. See Section 3.7, Semicolon Is Semi-optional, on page 47.

Report erratum

this copy is (P1.0 printing, June 2009)
Prepared exclusively for sam kaplan

http://media.pragprog.com/titles/vsscala/code/ScalaForTheJavaEyes/MultiLine2.scala
http://books.pragprog.com/titles/vsscala/errata/add?pdf_page=41

SENSIBLE DEFAULTS 42

a statement is not complete and allows you to continue on the

following line.

• Classes and methods are public by default, so you don’t explicitly

use the keyword public.

• Scala provides lightweight syntax to create JavaBeans—it takes

less code to create variables and final properties (see Section 4.1,

Creating Classes, on page 53).

• You are not forced to catch exceptions you don’t care about (see

Section 13.1, Exception Handling, on page 183), which reduces the

code size and also avoids improper exception handling.

In addition, by default Scala imports two packages, the scala.Predef

object, and their respective classes and members. You can refer to

classes from these preimported packages simply by using their class

names. Scala imports, in the following order, everything:

• java.lang

• scala

• scala.Predef

The inclusion of java.lang allows you to use common Java types in

scripts without any imports. So, you can use String, for example, without

prefixing with the package name java.lang or importing it.

You can also use Scala types easily since everything in package scala is

imported.

The Predef object contains types, implicit conversions, and methods

that are commonly used in Scala. So, since it is imported by default,

you are able to use those methods and conversions without any prefix

or import. They become so convenient that you will begin to believe that

they are part of the language, when they are actually part of the Scala

library.

The object Predef also provides aliases to things like scala.collection.

immutable.Set and scala.collection.immutable.Map. So, when you refer to

Set or Map, for instance, you are referring to their definitions in Predef,

which in turn refers to their definitions in the scala.collection.immutable

package.

Report erratum

this copy is (P1.0 printing, June 2009)
Prepared exclusively for sam kaplan

http://books.pragprog.com/titles/vsscala/errata/add?pdf_page=42

OPERATOR OVERLOADING 43

3.6 Operator Overloading

Technically, Scala has no operators, but when I say “operator overload-

ing,” I mean overloading symbols like +, +-, and so on. In Scala, these

are actually method names. Operators take advantage of Scala’s lenient

method invocation syntax—Scala does not require a dot (.) between the

object reference and method name.

These two features give the illusion of operator overloading. So, when

you call ref1 + ref2, you’re actually writing ref1.+(ref2), and you’re invok-

ing the +() method on ref1. Let’s look at an example of providing the +

operator on a Complex class, a class that represents complex numbers:6

Download ScalaForTheJavaEyes/Complex.scala

class Complex(val real: Int, val imaginary: Int) {

def +(operand: Complex) : Complex = {

new Complex(real + operand.real, imaginary + operand.imaginary)

}

override def toString() : String = {

real + (if (imaginary < 0) "" else "+") + imaginary + "i"

}

}

val c1 = new Complex(1, 2)

val c2 = new Complex(2, -3)

val sum = c1 + c2

println("(" + c1 + ") + (" + c2 + ") = " + sum)

If you execute the previous code, you’ll see this:

(1+2i) + (2-3i) = 3-1i

In the first statement, we created a class named Complex and defined

a constructor that takes two parameters. We’ve used Scala’s expressive

syntax to create a class, as we’ll see in Section 4.1, Creating Classes,

on page 53.

Within the + method, we created a new instance of the Complex class.

The real part and the imaginary part of the result is the sum of the real

and imaginary parts of the two operands, respectively. The statement

c1 + c2 resulted in a call to the +() method on c1 with c2 as an argument

to the method call, that is, c1.+(c2).

6. Complex numbers have a real part and an imaginary part, and they’re useful in

computing complex equations that involve the square root of negative numbers.

Report erratum

this copy is (P1.0 printing, June 2009)
Prepared exclusively for sam kaplan

http://media.pragprog.com/titles/vsscala/code/ScalaForTheJavaEyes/Complex.scala
http://books.pragprog.com/titles/vsscala/errata/add?pdf_page=43

OPERATOR OVERLOADING 44

We discussed Scala’s simple and elegant support for operator overload-

ing. However, the fact that Scala does not have operators is probably

hurting your head a little. You may be wondering about operator prece-

dence. Since Scala does not have operators, it can’t define precedence

on operators, right? Fear not, because 24 - 2 + 3 * 6 is 40 in both Java

and Scala. Scala does not define precedence on operators. It defines

precedence on methods.

The first character of methods is used to determine their priority.7 If

two characters with same priority appear in an expression, then the

operator on the left takes higher priority. Here is the priority of the first

letter listed from low to high:8

all letters

|

^

&

< >

= !

:

+ -

* / %

all other special characters

Let’s look at an example of operator/method precedence. In the follow-

ing code, we have defined both an add method and a multiply method

on Complex:

Download ScalaForTheJavaEyes/Complex2.scala

class Complex(val real: Int, val imaginary: Int) {

def +(operand: Complex) : Complex = {

println("Calling +")

new Complex(real + operand.real, imaginary + operand.imaginary)

}

def *(operand: Complex) : Complex = {

println("Calling *")

new Complex(real * operand.real - imaginary * operand.imaginary,

real * operand.imaginary + imaginary * operand.real)

}

override def toString() : String = {

real + (if (imaginary < 0) "" else "+") + imaginary + "i"

}

}

7. Scala transposes the parameters of a method call if the method name ends with a

colon (:); see Section 8.4, Method Name Convention, on page 111.

8. See “Scala Language Reference” in Appendix A, on page 211.

Report erratum

this copy is (P1.0 printing, June 2009)
Prepared exclusively for sam kaplan

http://media.pragprog.com/titles/vsscala/code/ScalaForTheJavaEyes/Complex2.scala
http://books.pragprog.com/titles/vsscala/errata/add?pdf_page=44

SCALA SURPRISES FOR THE JAVA EYES 45

val c1 = new Complex(1, 4)

val c2 = new Complex(2, -3)

val c3 = new Complex(2, 2)

println(c1 + c2 * c3)

We are calling +() first on the left before calling *(), but since *() takes

precedence, it is executed first, as you can see here:

Calling *
Calling +

11+2i

3.7 Scala Surprises for the Java Eyes

As you start to appreciate Scala’s design elegance and conciseness, you

should be aware of some Scala nuances—take the time to learn these

to avoid surprises.

Result of Assignment

The result of the assignment operation (a = b) in Scala is a Unit. In Java,

the result of the assignment is the value of a, so multiple assignments

like a = b = c; can appear in series in Java, but not so in Scala. Since the

result of assignment is a Unit, assigning that result to another variable

will result in a type mismatch. Take a look at the following example:

Download ScalaForTheJavaEyes/SerialAssignments.scala

var a, b, c = 1

a = b = c

When we attempt to execute the previous code, we’ll get this compila-

tion error:

(fragment of SerialAssignments.scala):3: error: type mismatch;

found : Unit

required: Int

a = b = c

^

one error found

!!!

discarding <script preamble>

As much as Scala provides operator overloading, this behavior is at the

least a minor annoyance.

Scala’s ==

Java handles == differently for primitive types vs. objects. For primi-

tive types, == means value-based comparison, whereas f

Report erratum

this copy is (P1.0 printing, June 2009)
Prepared exclusively for sam kaplan

http://media.pragprog.com/titles/vsscala/code/ScalaForTheJavaEyes/SerialAssignments.scala
http://books.pragprog.com/titles/vsscala/errata/add?pdf_page=45

SCALA SURPRISES FOR THE JAVA EYES 46

identity-based comparison. So, if a and b are int, then a == b results in

true if both the variables have equal values. However, if they’re refer-

ences to objects, the result is true only if both references are pointing

to the same instance, that is, the same identity. Java’s equals() method

provides value-based comparison for objects, provided it is overridden

correctly by the appropriate class.

Scala’s handling of == is different from Java; however, it is consistent

across all types. In Scala, == represents value-based comparison, no

matter what the type is. This is ensured by implementing ==() as a final

in the class Any (the class from which all types in Scala derive). This

implementation uses the good old equals() method.

So, if you want to provide your own implementation of equality for your

class, override the equals() method.9 You can use a concise == instead

of the equals() method for value-based comparison. If you want to per-

form the identity-based comparison on references, you can use the eq()

method. Here is an example:

Download ScalaForTheJavaEyes/Equality.scala

val str1 = "hello"

val str2 = "hello"

val str3 = new String("hello")

println(str1 == str2) // Equivalent to Java's str1.equals(str2)

println(str1 eq str2) // Equivalent to Java's str1 == str2

println(str1 == str3)

println(str1 eq str3)

str1 and str2 are referring to the same instance of String, because Java

interned the second "hello". However, str3 is referring to another newly

created instance of String. All three references are pointing to objects

that hold equal values (hello). str1 and str2 are equal in identity and so

are also equal in value. However, str1 and str3 are equal only in value,

but not in identity. The following output illustrates the semantics of the

== and eq methods/operators used in the previous code:

true

true

true

false

Scala’s handling of == is consistent for all types and avoids the common

confusion of using == in Java. However, you must be aware of this

departure from the Java semantics to avoid any surprises.

9. This is easier said than done. It is difficult to implement equals() in

hierarchy, as discussed in Joshua Bloch’s Effective Java [Blo08].

Report erratum

this copy is (P1.0 printing, June 2009)
Prepared exclusively for sam kaplan

http://media.pragprog.com/titles/vsscala/code/ScalaForTheJavaEyes/Equality.scala
http://books.pragprog.com/titles/vsscala/errata/add?pdf_page=46

SCALA SURPRISES FOR THE JAVA EYES 47

Semicolon Is Semi-optional

Scala is lenient when it comes to statement termination—semicolons

(;) are optional, and that reduces noise in code. You can place a semi-

colon at the end of a statement, particularly if you want to place mul-

tiple statements on the same line. Be careful, though. Placing multiple

statements on the same line may reduce readability, as in the following:

val sample = new Sample; println(sample).

Scala infers a semicolon if your statement does not end with an infix

notation (like +, *, or .) or is not within parentheses or square brackets.

It also infers a semicolon at the end of a statement if the next statement

starts with something that can start a statement.

Scala, however, demands a semicolon in front of a {. The effect of not

placing it may surprise you. Let’s look at an example:

Download ScalaForTheJavaEyes/OptionalSemicolon.scala

val list1 = new java.util.ArrayList[Int];

{

println("Created list1")

}

val list2 = new java.util.ArrayList[Int]

{

println("Created list2")

}

println(list1.getClass())

println(list2.getClass())

That gives this output:

Created list1

Created list2

class java.util.ArrayList

class Main$$anon$2$$anon$1

We placed a semicolon when we defined list1. So, the { that followed

it started a new code block. However, since we did not place a semi-

colon when we defined list2, Scala assumes we are creating an anony-

mous inner class that derives from ArrayList[Int]. So, list2 is referring to

an instance of this anonymous inner class and not a direct instance of

ArrayList[Int]. So, if your intent is to start a new code block after creating

an instance, place a semicolon.

Java programmers are used to placing semicolons. Should you con-

tinue to use semicolons in Scala? In Java you had no choice. Scala

gives you the freedom, and I recommend that you make

Report erratum

this copy is (P1.0 printing, June 2009)
Prepared exclusively for sam kaplan

http://media.pragprog.com/titles/vsscala/code/ScalaForTheJavaEyes/OptionalSemicolon.scala
http://books.pragprog.com/titles/vsscala/errata/add?pdf_page=47

SCALA SURPRISES FOR THE JAVA EYES 48

code is concise and less noisy without those semicolons. By dropping

them, you can begin to enjoy an elegant lightweight syntax. Reserve the

use of semicolon for cases like the previous when you have to resolve

potential ambiguity.

Default Access Modifier

Scala’s access modifier is different from Java:

• Java defaults to package internal visibility if you don’t specify any

access modifier. Scala, on the other hand, defaults to public.

• Java provides an all-or-nothing proposition. Either it’s visible to

all classes in the current package or it’s not visible to any. Scala

gives you a fine-grained control over visibility.

• Java’s protected is generous. It includes derived classes in any

package plus any class in the current package. Scala’s protected is

akin to C++ and C#—only derived classes can access it. However,

you can also ask Scala for quite a liberal and flexible interpretation

of protected.

• Finally, Java encapsulation is at the class level. You can access

the private fields and methods of any object of your class from

within an instance method. This is the default in Scala as well;

however, you can restrict it to the current instance, like what Ruby

provides.

Let’s explore these variations from Java using some examples.

Default Access Modifier and How to Change It

By default, Scala treats classes, fields, and methods as public if you

don’t use an access modifier (Section 4.2, Defining Fields, Methods, and

Constructors, on page 54). Also, you can quite easily make the primary

constructor private (Section 4.5, Stand-Alone and Companion Objects,

on page 60). If you want to make a member private or protected, simply

mark it with the respective keyword like this:

Download ScalaForTheJavaEyes/Access.scala

class Microwave {

def start() = println("started")

def stop() = println("stopped")

private def turnTable() = println("turning table")

}

val microwave = new Microwave

microwave.start()

microwave.turnTable() //ERROR

Report erratum

this copy is (P1.0 printing, June 2009)
Prepared exclusively for sam kaplan

http://media.pragprog.com/titles/vsscala/code/ScalaForTheJavaEyes/Access.scala
http://books.pragprog.com/titles/vsscala/errata/add?pdf_page=48

SCALA SURPRISES FOR THE JAVA EYES 49

In the previous code, we have defined the methods start() and stop() as

public. We can access those two methods on any instance of Microwave.

On the other hand, we’ve defined turnTable() explicitly as private. We can’t

access that method from outside the class. If we try, as in the previous

example, we will get this error:

(fragment of Access.scala):9: error:

method turnTable cannot be accessed in this.Microwave

microwave.turnTable() //ERROR

^

one error found

!!!

discarding <script preamble>

Leave out any access modifier for public fields and methods. For other

members, make the access as restrictive as you want by explicitly plac-

ing the access modifier.

Scala’s Protected

In Scala, protected makes the decorated members visible to the class

and its derived classes only. Other classes that belong to the package

can’t access these members. Furthermore, the derived class can access

the protected members only on its own type. Let’s examine these with

an example:

Download ScalaForTheJavaEyes/Protected.scala

Line 1 package automobiles
-

- class Vehicle {
- protected def checkEngine() {}
5 }
-

- class Car extends Vehicle {
- def start() { checkEngine() /*OK*/ }
- def tow(car: Car) {

10 car.checkEngine() //OK
- }
- def tow(vehicle: Vehicle) {
- vehicle.checkEngine() //ERROR
- }

15 }
-

- class GasStation {
- def fillGas(vehicle: Vehicle) {
- vehicle.checkEngine() //ERROR

20 }
- }

Report erratum

this copy is (P1.0 printing, June 2009)
Prepared exclusively for sam kaplan

http://media.pragprog.com/titles/vsscala/code/ScalaForTheJavaEyes/Protected.scala
http://books.pragprog.com/titles/vsscala/errata/add?pdf_page=49

SCALA SURPRISES FOR THE JAVA EYES 50

When we compile the previous code, we will get the following errors:

Protected.scala:13: error: method checkEngine cannot be accessed in

automobiles.Vehicle

vehicle.checkEngine() //ERROR

^

Protected.scala:19: error: method checkEngine cannot be accessed in

automobiles.Vehicle

vehicle.checkEngine() //ERROR

^

two errors found

In the previous code, checkEngine() of Vehicle is decorated as a protected

method. Scala allows us to access that method from within an instance

method (start()) of the derived class Car. We were also allowed to access

it on an instance of Car from within an instance method (tow()) of Car.

However, Scala does not allow us to access that method on an instance

of Vehicle from within Car and also from within another arbitrary class

(GasStation), which belongs to the same package as Vehicle. This behav-

ior is different from how Java treats protected access. Scala is a lot

more stringent about protecting the access to protected members.

Fine-Grained Access Control

On one hand, Scala is more restrictive than Java in how it treats the

protected modifier. On the other hand, it gives you a far greater flexibil-

ity and also fine-grained control over setting access visibility. You can

specify additional parameters for private and protected modifiers. So,

instead of simply decorating a member with private, you can decorate

it as private[AccessQualifier], where AccessQualifier may be this (meaning

instance-only visibility) or any enclosing class name or package name.

Read it as, “Treat this member as private for all classes, except for the

current class, its companion object,10 plus the class and companion

object of the enclosing class whose name is given as the AccessQualifier,

if the AccessQualifier is a class name.” If the AccessQualifier is instead

an enclosing package name, then the member is accessible within any

class nested under the mentioned package. If the AccessQualifier is this,

then the access to the member is restricted to the instance.

10. We will discuss companion objects in Chapter 4, Classes in Scala, on page 53.

Report erratum

this copy is (P1.0 printing, June 2009)
Prepared exclusively for sam kaplan

www.allitebooks.com

http://books.pragprog.com/titles/vsscala/errata/add?pdf_page=50
http://www.allitebooks.org

SCALA SURPRISES FOR THE JAVA EYES 51

Let’s look at an example of the fine-grained access control:

Download ScalaForTheJavaEyes/FineGrainedAccessControl.scala

Line 1 package society {
-

- package professional {
- class Executive {
5 private[professional] var workDetails = null

- private[society] var friends = null

- private[this] var secrets = null

-

- def help(another : Executive) {
10 println(another.workDetails)

- println(another.secrets) //ERROR
- }
- }
- }

15

- package social {
- class Acquaintance {
- def socialize(person: professional.Executive) {
- println(person.friends) // OK

20 println(person.workDetails) // ERROR
- }
- }
- }
- }

When we compile the previous code, we will get the following error:

FineGrainedAccessControl.scala:11: error: value secrets is not a member of

society.professional.Executive

println(another.secrets) //ERROR

^

FineGrainedAccessControl.scala:20: error: variable workDetails cannot be

accessed in society.professional.Executive

println(person.workDetails) // ERROR

^

two errors found

First observe how Scala allows you to define nested packages. Just like

C++ and C# namespaces, Scala allows you to nest a package within

another. So, you can follow the Java style to define packages (using

dots, as in package society.professional;) or the nested C++ or C# names-

pace style. If you decide to place multiple small classes belonging to a

hierarchy of packages in one file (again a departure from Java), you will

find the latter style convenient.

Report erratum

this copy is (P1.0 printing, June 2009)
Prepared exclusively for sam kaplan

http://media.pragprog.com/titles/vsscala/code/ScalaForTheJavaEyes/FineGrainedAccessControl.scala
http://books.pragprog.com/titles/vsscala/errata/add?pdf_page=51

SCALA SURPRISES FOR THE JAVA EYES 52

In the previous code, we gave visibility for the private field workDetails

of Executive to any class within the enclosing package professional. How-

ever, we gave visibility for the private field friends to any class within the

enclosing package society. Scala thus allows the class Acquaintance,

which is located in the package society, to access the field friends but

not the field workDetails.

The default visibility of private is class level—from an instance method

of a class you can access the members decorated as private on any

instance of the same class. However, Scala also allows you to deco-

rate private and protected with this. For instance, in the previous exam-

ple, since secret is decorated private[this], it is accessible only on the

implicit object within instance methods (this)—you can’t access it on

other instances. Similarly, a field annotated with protected[this] is acces-

sible from within an instance method of a derived class but only on the

current instance.

Avoid Explicit return

In Java you use return to return results from methods. That’s not a good

practice in Scala. When Scala sees a return, it bails out of that method.

At the least, it affects Scala’s ability to infer the return type.

Download ScalaForTheJavaEyes/AvoidExplitReturn.scala

def check1() = true

def check2() : Boolean = return true

println(check1)

println(check2)

In the previous code, we had to explicitly provide the return type for the

method that used the return; we’ll get a compilation error if we don’t. It

is better to avoid using an explicit return statement. I prefer to let the

compiler infer the return type, as in the method check1().

In this chapter, you took a quick drive through Scala from the perspec-

tive of Java programmers. You saw ways in which Scala is similar to

Java and how, at the same time, it sets itself apart. While you are being

drawn toward the strength of Scala, this chapter should prepare you

to embark with full force. In the next chapter, you will see how Scala

supports the OO paradigm.

Report erratum

this copy is (P1.0 printing, June 2009)
Prepared exclusively for sam kaplan

http://media.pragprog.com/titles/vsscala/code/ScalaForTheJavaEyes/AvoidExplitReturn.scala
http://books.pragprog.com/titles/vsscala/errata/add?pdf_page=52

Chapter 4

Classes in Scala
In this chapter, you’ll create classes in Scala. You’ll start by converting

a simple Java class to a Scala class, and then you’ll take a deeper dive

into the differences. Constructors may look a little funny to you because

Scala code tends to be more concise than Java code.

Also, even though Scala is a pure object-oriented language, it still has to

support Java’s not-so-pure OO concepts like static methods. Scala han-

dles these concepts in a fairly interesting way using companion objects.

Companion objects are singletons that accompany a class. These are

very common in Scala. For instance, Actor is a companion object for the

Actor class that you will use quite frequently when doing concurrent

programming.

4.1 Creating Classes

Let’s start with a Java example for creating a class that follows the bean

convention of exposing its properties:

Download ScalaForTheJavaEyes/Car.java

//Java example

public class Car {

private final int year;

private int miles;

public Car(int yearOfMake) { year = yearOfMake; }

public int getYear() { return year; }

public int getMiles() { return miles; }

public void drive(int distance) {

miles += Math.abs(distance);

}

}

Prepared exclusively for sam kaplan

http://media.pragprog.com/titles/vsscala/code/ScalaForTheJavaEyes/Car.java

DEFINING FIELDS, METHODS, AND CONSTRUCTORS 54

In the previous code, the class Car has two properties, called year and

miles, and the corresponding getter methods, called getYear() and get-

Miles(). The drive() method allows us to manipulate the miles property,

while the constructor initializes the final field year. So, we have a couple

of properties, as well as methods to initialize and manipulate them.

Here’s Scala’s way of accomplishing the same thing:

Download ScalaForTheJavaEyes/Car.scala

class Car(val year: Int) {

private var milesDriven: Int = 0

def miles() = milesDriven

def drive(distance: Int) {

milesDriven += Math.abs(distance)

}

}

In the Java version, we explicitly defined the field and method for the

property year and wrote an explicit constructor. In Scala, the parameter

to the class took care of defining that field and writing the accessor

method. Here is how we would use the previous Scala class:

Download ScalaForTheJavaEyes/Car.scala

val car = new Car(2009)

println("Car made in year " + car.year)

println("Miles driven " + car.miles)

println("Drive for 10 miles")

car.drive(10)

println("Miles driven " + car.miles)

And here’s the result:

Car made in year 2009

Miles driven 0

Drive for 10 miles

Miles driven 10

4.2 Defining Fields, Methods, and Constructors

Scala rolls the primary constructor into the class definition and pro-

vides a concise way to define fields and corresponding methods. Let’s

understand this with a few examples.

Report erratum

this copy is (P1.0 printing, June 2009)
Prepared exclusively for sam kaplan

http://media.pragprog.com/titles/vsscala/code/ScalaForTheJavaEyes/Car.scala
http://media.pragprog.com/titles/vsscala/code/ScalaForTheJavaEyes/Car.scala
http://books.pragprog.com/titles/vsscala/errata/add?pdf_page=54

DEFINING FIELDS, METHODS, AND CONSTRUCTORS 55

Let’s start with the following Scala class definition:

Download ScalaForTheJavaEyes/CreditCard.scala

class CreditCard(val number: Int, var creditLimit: Int)

That’s it. That’s a full definition of a class. If you don’t have anything

to add to the class definition, you don’t need the curly braces ({}). The

previous code gave us quite a few things. Compile the previous code

using scalac, and run javap -private CreditCard to see what the compiler

generated for us:

Compiled from "CreditCard.scala"

public class CreditCard extends java.lang.Object implements scala.ScalaObject{

private int creditLimit;

private final int number;

public CreditCard(int, int);

public void creditLimit_$eq(int);

public int creditLimit();

public int number();

public int $tag() throws java.rmi.RemoteException;

}

First, Scala automatically made the class public—everything in Scala

that you don’t mark private or protected defaults to public.

We declared number as a val, so Scala defined number as a private final

field and created a public method number() to help us fetch that value.

Since we declared creditLimit as a var, Scala defined a private field named

creditLimit and gave us a public getter and setter for it.1

If we don’t declare a parameter as a val or var, then Scala creates a pri-

vate field and a private getter and setter for it. However, that parameter

is not accessible from outside the class.

Any expression or executable statement you put into the class defini-

tion is actually executed as part of the primary constructor. Let’s take

a look at an example:

Download ScalaForTheJavaEyes/Sample.scala

class Sample {

println("You are constructing an instance of Sample")

}

new Sample

1. The default generated getters and setters do not follow the JavaBean conventions.

Later in this section we’ll see how to control that.

Report erratum

this copy is (P1.0 printing, June 2009)
Prepared exclusively for sam kaplan

http://media.pragprog.com/titles/vsscala/code/ScalaForTheJavaEyes/CreditCard.scala
http://media.pragprog.com/titles/vsscala/code/ScalaForTheJavaEyes/Sample.scala
http://books.pragprog.com/titles/vsscala/errata/add?pdf_page=55

DEFINING FIELDS, METHODS, AND CONSTRUCTORS 56

The output shows that when we create an instance of the class Sample,

as part of the constructor execution our print statement is executed:

You are constructing an instance of Sample

In addition to the parameters we have provided in the primary construc-

tor, we can define other fields, methods, and zero or more auxiliary

constructors. In the following code, the this() method is our auxiliary

constructor. We are also defining the variable position and overriding

the toString():

Download ScalaForTheJavaEyes/Person.scala

class Person(val firstName: String, val lastName: String) {

private var position: String = _

println("Creating " + toString())

def this (firstName: String, lastName: String, positionHeld: String) {

this (firstName, lastName)

position = positionHeld

}

override def toString() : String = {

firstName + " " + lastName + " holds " + position + " position "

}

}

val john = new Person("John", "Smith", "Analyst")

println(john)

val bill = new Person("Bill", "Walker")

println(bill)

Here’s the output from the previous code:

Creating John Smith holds null position

John Smith holds Analyst position

Creating Bill Walker holds null position

Bill Walker holds null position

Our primary constructor2 takes the two parameters firstName and last-

Name. The auxiliary constructor takes three parameters—the first two

are the same as the primary constructor, and the third is positionHeld.

From within the auxiliary constructor, we’re calling the primary con-

structor to initialize the name-related fields. The first statement within

an auxiliary constructor is required to be a call to either the primary

constructor or another auxiliary constructor.

2. You can easily make the primary constructor private if you want; see Section 4.5,

Stand-Alone and Companion Objects, on page 60.

Report erratum

this copy is (P1.0 printing, June 2009)
Prepared exclusively for sam kaplan

http://media.pragprog.com/titles/vsscala/code/ScalaForTheJavaEyes/Person.scala
http://books.pragprog.com/titles/vsscala/errata/add?pdf_page=56

EXTENDING A CLASS 57

Scala treats fields specially. Any var defined within a class is mapped

to a private field declaration followed by the definition of corresponding

accessor methods—getter and setter. The access privilege you mark on

the field is used for accessor methods. So, in the previous example,

when we declared the field private var position: String = _, Scala created the

following:

private java.lang.String position;

private void position_$eq(java.lang.String);

private java.lang.String position();

So, Scala creates a special method position() for the getter and posi-

tion_=() for the setter.

In the previous definition of position, you could have set the initial value

to null. Instead, we used an underscore (_). In this context, the _ stands

for the default value for the type—so, for Int, it is 0. For Double, it is

0.0. For a reference type, it is null, and so on. Scala provides the conve-

nience of initializing var to its default value using the underscore. This

convenience is not available for val, however, since it can’t be modi-

fied; therefore, we’re required to give it the appropriate value when we

initialize.

If you prefer the traditional JavaBean-like getter and setter, you sim-

ply can mark your field with the scala.reflect.BeanProperty annotation.

For this you use the Scala syntax for annotation, which is similar

to the Java annotation syntax. For example, the following annotation

instructs Scala to create the accessor methods getAge() and setAge():

@scala.reflect.BeanProperty var age: Int = _

4.3 Extending a Class

Extending from a base class in Scala is similar to extending in Java

except for two restrictions: method overriding requires the override key-

word, and only the primary constructor can pass parameters to the

base constructor.

Scala insists that you use the keyword override when you override a

method. The override annotation was introduced in Java 5 but is still

optional in Java. By requiring that keyword, Scala will help minimize

the problems because of typos in method names. You can either avoid

accidentally overriding a method you did not intend to or avoid writing

a new method when your intent was to override a base method.

Report erratum

this copy is (P1.0 printing, June 2009)
Prepared exclusively for sam kaplan

http://books.pragprog.com/titles/vsscala/errata/add?pdf_page=57

SINGLETON OBJECT 58

In Scala, auxiliary constructors have to call either the primary con-

structor or another auxiliary constructor. You can pass parameters to

a base constructor only from the primary constructor. In Scala, the

primary constructor is the gateway to initialize an instance of a class,

and the interaction with the base class for initialization is controlled

through this.

Here’s an example of extending from a base class:

Download ScalaForTheJavaEyes/Vehicle.scala

class Vehicle(val id: Int, val year: Int) {

override def toString() : String = "ID: " + id + " Year: " + year

}

class Car(override val id: Int, override val year: Int,

var fuelLevel: Int) extends Vehicle(id, year) {

override def toString() : String = super.toString() + " Fuel Level: " + fuelLevel

}

val car = new Car(1, 2009, 100)

println(car)

Take a look at the output:

ID: 1 Year: 2009 Fuel Level: 100

When we extend the class Vehicle, we pass the parameters to the base

class. The parameters we send should match one of the constructors

of the base class. Since the properties id and year in Car are derived

from Vehicle, we indicate that by using the keyword override in the pri-

mary constructor parameter of Car. Finally, since we’re overriding the

toString() method of java.lang.Object, in Vehicle and Car we prefix the def-

initions of toString() with override as well.

4.4 Singleton Object

A singleton (see Design Patterns: Elements of Reusable Object-Oriented

Software [GHJV95] by Gamma et al.) is a class that has only one

instance. We use singletons to represent objects that act as a central

point of contact for certain operations such as database access, object

factories, and so on. Creating singleton objects in Scala is very simple.

You create them using the keyword object instead of class. Since you

can’t instantiate a singleton object, you can’t pass parameters to the

primary constructor.

Report erratum

this copy is (P1.0 printing, June 2009)
Prepared exclusively for sam kaplan

http://media.pragprog.com/titles/vsscala/code/ScalaForTheJavaEyes/Vehicle.scala
http://books.pragprog.com/titles/vsscala/errata/add?pdf_page=58

SINGLETON OBJECT 59

Here is an example of a singleton—MarkerFactory:

Download ScalaForTheJavaEyes/Singleton.scala

class Marker(val color: String) {

println("Creating " + this)

override def toString() : String = "marker color " + color

}

object MarkerFactory {

private val markers = Map(

"red" -> new Marker("red"),

"blue" -> new Marker("blue"),

"green" -> new Marker("green")

)

def getMarker(color: String) =

if (markers.contains(color)) markers(color) else null

}

println(MarkerFactory getMarker "blue")

println(MarkerFactory getMarker "blue")

println(MarkerFactory getMarker "red")

println(MarkerFactory getMarker "red")

println(MarkerFactory getMarker "yellow")

Here’s the result:

Creating marker color red

Creating marker color blue

Creating marker color green

marker color blue

marker color blue

marker color red

marker color red

null

Assume we have a class Marker that represents color markers for pri-

mary colors. The MarkerFactory is a singleton that allows us to reuse

precreated instances of Marker for the three primary colors. A call to

getMarker() will return the appropriate Marker instance for the given pri-

mary color. If the argument is not a primary color, it returns a null. We

can access the singleton (the only instance) of MarkerFactory by its name.

Once you define a singleton, its name represents the single instance of

the singleton object. You can pass around the singleton to functions

like you pass around instances in general.

There is one problem in the previous code, however. We can directly

create an instance of Marker without going through the MarkerFactory.

We will solve this problem in the next section.

Report erratum

this copy is (P1.0 printing, June 2009)
Prepared exclusively for sam kaplan

http://media.pragprog.com/titles/vsscala/code/ScalaForTheJavaEyes/Singleton.scala
http://books.pragprog.com/titles/vsscala/errata/add?pdf_page=59

STAND-ALONE AND COMPANION OBJECTS 60

4.5 Stand-Alone and Companion Objects

The MarkerFactory we just saw is an example of a stand-alone object. It

is not automatically connected to any class, even though we have used

it to manage instances of Marker.

Scala also allows you to create a singleton that is connected to a class.

Such a singleton will share the same name as a class name and is

called a companion object. The corresponding class is called a compan-

ion class. In the previous example, we want to regulate the creation of

Marker instances. In Scala, classes and their companion objects have

no boundaries—they can access the private fields and methods of each

other. Also, in Scala, you can mark a constructor private. Here is a

rewrite of the Marker example using a companion object:

Download ScalaForTheJavaEyes/Marker.scala

class Marker private (val color: String) {

println("Creating " + this)

override def toString() : String = "marker color " + color

}

object Marker {

private val markers = Map(

"red" -> new Marker("red"),

"blue" -> new Marker("blue"),

"green" -> new Marker("green")

)

def getMarker(color: String) =

if (markers.contains(color)) markers(color) else null

}

Here is some example code that uses the modified class:

Download ScalaForTheJavaEyes/UseMarker.scala

println(Marker getMarker "blue")

println(Marker getMarker "blue")

println(Marker getMarker "red")

println(Marker getMarker "red")

Here’s the output:

Creating marker color red

Creating marker color blue

Creating marker color green

marker color blue

marker color blue

marker color red

marker color red

Report erratum

this copy is (P1.0 printing, June 2009)
Prepared exclusively for sam kaplan

www.allitebooks.com

http://media.pragprog.com/titles/vsscala/code/ScalaForTheJavaEyes/Marker.scala
http://media.pragprog.com/titles/vsscala/code/ScalaForTheJavaEyes/UseMarker.scala
http://books.pragprog.com/titles/vsscala/errata/add?pdf_page=60
http://www.allitebooks.org

STATIC IN SCALA 61

The constructor of Marker is marked private; however, the companion

object can access it. So, we’re able to instantiate instances of Marker

from within the companion object. If we try to create an instance of

Marker outside the class or the companion object, we’ll get an error.

Each class may have an optional companion object that you write in the

same file as their companion classes. Companion objects are common

in Scala and provide class-level convenience methods. They also serve

as a nice workaround for the lack of static members in Scala, as you

will see next.

4.6 static in Scala

Scala does not have static fields and methods. Allowing static fields and

methods would break the fully object-oriented model that Scala sup-

ports. However, Scala fully supports class-level operations and proper-

ties. This is where companion objects come in.

Let’s revisit the previous Marker example. It would be nice to get the

primary colors from the Marker. However, that is not a valid operation

on a specific instance; it’s a class-level operation. In other words, you

would have written it as a static method in Java. In Scala, that method

will reside in the companion object:

Download ScalaForTheJavaEyes/Static.scala

class Marker private (val color: String) {

override def toString() : String = "marker color " + color

}

object Marker {

private val markers = Map(

"red" -> new Marker("red"),

"blue" -> new Marker("blue"),

"green" -> new Marker("green")

)

def primaryColors = "red, green, blue"

def apply(color: String) = if (markers.contains(color)) markers(color) else null

}

println("Primary colors are : " + Marker.primaryColors)

println(Marker("blue"))

println(Marker("red"))

Report erratum

this copy is (P1.0 printing, June 2009)
Prepared exclusively for sam kaplan

http://media.pragprog.com/titles/vsscala/code/ScalaForTheJavaEyes/Static.scala
http://books.pragprog.com/titles/vsscala/errata/add?pdf_page=61

STATIC IN SCALA 62

This is the output:

Primary colors are : red, green, blue

marker color blue

marker color red

We wrote the method primaryColors() in the companion object (the paren-

theses in the method definition are optional if the method takes no

parameters). We can call it on the Marker companion object like we’d

call static methods on classes in Java.

The companion object also provides another benefit, the ability to create

instances of the companion class without the need for the new keyword.

The special apply() method, for which Scala provides syntax sugar, does

this trick. In the previous example, when we invoke Marker("blue"), we’re

actually calling Marker.apply("blue"). This is a lightweight syntax to create

or get instances.3

You were introduced to Scala’s support of the OO paradigm in this

chapter. You’re now ready to enjoy Scala’s conciseness and pure object

orientation. In the next chapter, we will discuss one of the key features

of Scala—static typing.

3. Also, Scala does not require () when using new if your constructor takes no

parameters—so you can use new Sample instead of new Sample().

Report erratum

this copy is (P1.0 printing, June 2009)
Prepared exclusively for sam kaplan

http://books.pragprog.com/titles/vsscala/errata/add?pdf_page=62

Chapter 5

Sensible Typing
Static typing, or compile-time type checking, helps you define and verify

interface contracts at compile time. Scala, unlike some of the other

statically typed languages, does not expect you to provide redundant

type information. You don’t have to specify a type in most cases, and

you certainly don’t have to repeat it. At the same time, Scala will infer

the type and verify proper usage of references at compile time. Let’s

explore this with an example:

Download SensibleTyping/Typing.scala

var year: Int = 2009

var anotherYear = 2009

var greet = "Hello there"

var builder = new StringBuilder("hello")

println(builder.getClass())

Here we defined a variable year explicitly as type Int. We also defined

anotherYear as a variable but let Scala infer the type as Int based on

what we assigned to that variable. Similarly, we let Scala infer the type

of greet as String and builder as StringBuilder. We can query the reference

builder to find what type it’s referring to. If you attempt to assign some

other type of value or instance to any of these variables, you’ll get a

compilation error. Scala’s type inference is low ceremony1 and has no

learning curve; you simply have to undo some Java practices.

Scala’s static typing helps you in two ways. First, the compile-time type

checking can give you confidence that the compiled code meets certain

1. See “Essence vs. Ceremony” in Appendix A, on page 211.

Prepared exclusively for sam kaplan

http://media.pragprog.com/titles/vsscala/code/SensibleTyping/Typing.scala

COLLECTIONS AND TYPE INFERENCE 64

expectations.2 Second, it helps you to express the expectations on your

API in a compiler-verifiable format.

In this chapter, you’ll learn about Scala’s sensible static typing and type

inference. You’ll also look at three special types in Scala: Any, Nothing,

and Option.

5.1 Collections and Type Inference

Scala will provide type inference and type safety for the Java Generics

collections as well. The following is an example that uses an ArrayList.

The first declaration uses explicit, but redundant, typing. The second

declaration takes advantage of type inference.

As an aside, note that the underscore in the import statement is equiva-

lent to the asterisks in Java. So when we type java.util._, we are import-

ing all classes in the java.util package. If the underscore follows a class

name instead of a package name, we are importing all members of the

class—the equivalent of Java static import:

Download SensibleTyping/Generics.scala

import java.util._

var list1 : List[Int] = new ArrayList[Int]

var list2 = new ArrayList[Int]

list2 add 1

list2 add 2

var total = 0

for (val index <- 0 until list2.size()) {

total += list2.get(index)

}

println("Total is " + total)

Here’s the output:

Total is 3

2. As you’ll see, this is not a substitute for good unit testing, but you can use the good

compiler support as a first level of defense.

Report erratum

this copy is (P1.0 printing, June 2009)
Prepared exclusively for sam kaplan

http://media.pragprog.com/titles/vsscala/code/SensibleTyping/Generics.scala
http://books.pragprog.com/titles/vsscala/errata/add?pdf_page=64

COLLECTIONS AND TYPE INFERENCE 65

Scala is vigilant about the type of the object you instantiate. It prohibits

conversions that may cause typing issues.3 Here’s an example of how

Scala differs from Java when it comes to handling Generics:

Download SensibleTyping/Generics2.scala

import java.util._

var list1 = new ArrayList[Int]

var list2 = new ArrayList

list2 = list1 // Compilation Error

We created a reference, list1, that points to an instance of ArrayList[Int].

Then we created another reference, list2, that points to an instance of

ArrayList with an unspecified parametric type. Behind the scenes, Scala

actually created an instance of ArrayList[Nothing]. When we try to assign

the first reference to the second, Scala gives us this compilation error.4

(fragment of Generics2.scala):6: error: type mismatch;

found : java.util.ArrayList[Int]

required: java.util.ArrayList[Nothing]

list2 = list1 // Compilation Error

^

one error found

!!!

discarding <script preamble>

Nothing is a subclass of all classes in Scala. By treating the new ArrayList

as an instance of ArrayList[Nothing], Scala rules out any possibility of

adding an instance of any meaningful type to this collection. This is

because you can’t treat an instance of base as an instance of derived

and Nothing is the bottom-most subclass.

So, how can you create a new ArrayList without specifying the type? One

way is to use the type Any. You saw how Scala deals with an assign-

ment when one collection holds objects of type Nothing, while the other

does not. Scala, by default, insists the collection types on either side

of assignment are the same (you’ll see later in Section 5.7, Variance of

Parameterized Type, on page 71 how you can alter this default behavior

in Scala).

3. Of course, Scala has no control over conversions that happen in compiled Java or

other language code that you call.

4. Equivalent Java code will compile with no errors but result in a runtime ClassCastEx-

ception.

Report erratum

this copy is (P1.0 printing, June 2009)
Prepared exclusively for sam kaplan

http://media.pragprog.com/titles/vsscala/code/SensibleTyping/Generics2.scala
http://books.pragprog.com/titles/vsscala/errata/add?pdf_page=65

THE ANY TYPE 66

Here is an example using a collection of objects of type Any—Any is the

base type of all types in Scala:

Download SensibleTyping/Generics3.scala

import java.util._

var list1 = new ArrayList[Int]

var list2 = new ArrayList[Any]

var ref1 : Int = 1

var ref2 : Any = null

ref2 = ref1 //OK

list2 = list1 // Compilation Error

This time list1 refers to an ArrayList[Int], while list2 refers to an ArrayList[Any].

We also created two other references, ref1 of type Int and ref2 of type

Any. Scala has no qualms about letting us assign ref1 to ref2. So, it

is equivalent to assigning an Integer reference to a reference of type

Object. However, Scala doesn’t allow, by default, assigning a collection

of arbitrary type instances to a reference of a collection of Any instances

(later we’ll discuss covariance, which provides exceptions to this rule).

You saw how Java Generics enjoy enhanced type safety in Scala.

You don’t have to specify the type in order to benefit from Scala type

checking. You can just rely on the type inference where it makes sense.

The inference happens at compile time. So, you can be certain that the

type checking takes effect right then when you compile the code.

Scala insists that a nonparameterized collection be a collection of Noth-

ing and restricts assignment between types. These combine to enhance

type safety at compile time—providing for a sensible, low-ceremony

static typing.

In the previous examples, we used the Java collections. Scala also pro-

vides a wealth of collections, as you’ll see in Chapter 8, Using Collec-

tions, on page 103.

5.2 The Any Type

Scala’s Any type is a superclass of all types in Scala, graphically illus-

trated in the following diagram.

Report erratum

this copy is (P1.0 printing, June 2009)
Prepared exclusively for sam kaplan

http://media.pragprog.com/titles/vsscala/code/SensibleTyping/Generics3.scala
http://books.pragprog.com/titles/vsscala/errata/add?pdf_page=66

MORE ABOUT NOTHING 67

Any

AnyRef AnyVal

...

Nothing

Any allows you to hold a common reference to objects of any type in

Scala. Any is an abstract class with the following methods: !=(), ==(),

asInstanceOf(), equals(), hashCode(), isInstanceOf(), and toString().

The direct descendants of Any are AnyVal and AnyRef. AnyVal serves as

a base for all types in Scala that map over to the primitive types in

Java—for example, Int, Double, and so on. On the other hand, AnyRef

is the base for all reference types. Although AnyVal does not have any

additional methods, AnyRef contains the methods of Java’s Object such

as notify(), wait(), and finalize().

AnyRef directly maps to the Java Object, so you can pretty much use

it in Scala like you’d use Object in Java. On the other hand, you can’t

call all the methods of Object on a reference of Any or AnyVal, even

though internally Scala treats them as Object references when compiled

to bytecode. In other words, while AnyRef directly maps to Object, Any

and AnyVal are type erased to Object much like type erasure of Generics

parameterized types in Java.

5.3 More About Nothing

You can see why you’d need Any, but what is the purpose of Nothing?

Scala’s type inference works hard to determine the type of expressions

and functions. If the type inferred is too broad, it will not help type

verification. At the same time, how do you infer the type of an expres-

sion or function if one branch returns, say, an Int and another branch

throws an exception? In this case, it is more useful to infer the type as

Int rather than a general Any. This means that the branch that throws

Report erratum

this copy is (P1.0 printing, June 2009)
Prepared exclusively for sam kaplan

http://books.pragprog.com/titles/vsscala/errata/add?pdf_page=67

OPTION TYPE 68

the exception must be inferred to return an Int or a subtype of Int for it

to be compatible. However, an exception may occur at any place, so not

all those expressions can be inferred as Int. Scala helps type inference

work smoothly with the type Nothing, which is a subtype of all types.

Since it is a subtype of all types, it is substitutable for anything. Noth-

ing is abstract, so you would not have a real instance of it anywhere at

runtime. It is purely a helper for type inference purposes.

Let’s explore this further with an example. Let’s take a look at a method

that throws an exception and see how Scala infers the type:

def madMethod() = { throw new IllegalArgumentException() }

println(getClass().getDeclaredMethod("madMethod", null).

getReturnType().getName())

The method madMethod() simply throws an exception. Using reflection,

we’re querying the return type of this method with this result:5

scala.runtime.Nothing$

Scala infers the return type of an expression that throws an exception

as Nothing. Scala’s Nothing is actually quite something—it is a subtype

of every other type. So, Nothing is substitutable for anything in Scala.

5.4 Option Type

Scala goes a step further in specifying nonexistence. When you per-

form pattern matching, for example, the result of the match may be

an object, a list, a tuple, and so on, or it may be nonexistent. Return-

ing a null quietly is problematic in two ways. First, the intent that you

actually expect nonexistence of a result is not expressed explicitly. Sec-

ond, there is no way to force the caller of your function to check for

nonexistence (null). Scala wants you to clearly specify your intent that

sometimes you do actually expect to give no result. Scala achieves this

in a type-safe manner using the Option[T] type. Let’s look at an example:

Download SensibleTyping/OptionExample.scala

def commentOnPractice(input: String) = {

//rather than returning null

if (input == "test") Some("good") else None

}

5. The $ symbol indicates an internal representation in Scala.

Report erratum

this copy is (P1.0 printing, June 2009)
Prepared exclusively for sam kaplan

http://media.pragprog.com/titles/vsscala/code/SensibleTyping/OptionExample.scala
http://books.pragprog.com/titles/vsscala/errata/add?pdf_page=68

METHOD RETURN TYPE INFERENCE 69

for (input <- Set("test", "hack")) {

val comment = commentOnPractice(input)

println("input " + input + " comment " +

comment.getOrElse("Found no comments"))

}

Here, commentOnPractice() may return a comment (String) or may not

have any comments at all. This is represented as instances of Some[T]

and None, respectively. These two classes extend from the Option[T]

class. The output from the previous code is as follows:

input test comment good

input hack comment Found no comments

By making the type explicit as Option[String], Scala forces us to check

for the nonexistence of an instance. You’re less likely to get NullPointerEx-

ception because of unchecked null references. By calling the getOrElse()

method on the returned Option[T], you can proactively indicate what to

do in case the result is nonexistent (None).

5.5 Method Return Type Inference

In addition to inferring the types of variables, Scala also tries to infer

the return type of methods. However, there is a catch. It depends on

how you define your method. If you define your method with an equals

sign (=), then Scala infers the return type. Otherwise, it assumes the

method is a void method. Let’s look at an example:

Download SensibleTyping/Methods.scala

def printMethodInfo(methodName: String) {

println("The return type of " + methodName + " is " +

getClass().getDeclaredMethod(methodName, null).getReturnType().getName())

}

def method1() { 6 }

def method2() = { 6 }

def method3() = 6

def method4 : Double = 6

printMethodInfo("method1")

printMethodInfo("method2")

printMethodInfo("method3")

printMethodInfo("method4")

We’ve defined method1() like we normally define methods, by providing

a method name, a parameter list within parentheses, and the method

body within curly braces. Unfortunately, the way we’re used to is not

Report erratum

this copy is (P1.0 printing, June 2009)
Prepared exclusively for sam kaplan

http://media.pragprog.com/titles/vsscala/code/SensibleTyping/Methods.scala
http://books.pragprog.com/titles/vsscala/errata/add?pdf_page=69

PASSING VARIABLE ARGUMENTS (VARARGS) 70

a idiomatic way to define methods in Scala. We have used equals (=)

to define the method method2(). The equal sign is the only difference

between the two methods; however, that is significant in Scala. Scala

infers method1() as a void method and method2() as returning an Int

(Java’s int). This is shown here:

The return type of method1 is void

The return type of method2 is int

The return type of method3 is int

The return type of method4 is double

If the method definition or body is small and can be condensed into a

single expression, you can leave out the {}, as in the previous method3().

This can be useful for simple getters and setters that perform minimal

checks.

You can also override the default type inference of Scala by providing

the desired type, as in method4(). We have declared the return type of

method4() as Double. We may also declare it as Unit, Short, Long, Float, and

so on. We can choose any type that the result of the method execution is

compatible with. If it is not—for example, if we declare the return type of

method4() as String—Scala will give a type-mismatch compile-time error.

In general, it is better to use the = and let Scala infer the type of meth-

ods. You have one less thing to worry about, and you can let the well-

built type inference do the job for you.

5.6 Passing Variable Arguments (Varargs)

If your method takes parameters, you need to specify the parameter

names and their types:

def divide(op1: Double, op2: Double) = op1/op2

You can write a method that takes a variable number of arguments

(varargs). However, only the trailing parameter can take variable num-

ber of arguments. Use the special symbol (*) after the type information,

as in this max() method:

def max(values: Int*) = values.foldLeft(values(0)) { Math.max }

Scala treats the varargs parameter (values in the previous example) as

an array, so we can iterate over it. We can invoke the method with a

variable number of arguments by simply sending an arbitrary number

of arguments:

println(max(2, 5, 3, 7, 1, 6))

Report erratum

this copy is (P1.0 printing, June 2009)
Prepared exclusively for sam kaplan

www.allitebooks.com

http://books.pragprog.com/titles/vsscala/errata/add?pdf_page=70
http://www.allitebooks.org

VARIANCE OF PARAMETERIZED TYPE 71

Although we can send discrete arguments, we can’t, however, send an

array. Suppose we have defined an array like this:

val numbers = Array(2, 5, 3, 7, 1, 6)

The following code will result in an error:

println(max(numbers)) // type mismatch error

If we want to use the values in an array as variable arguments, we can

explode the array into discrete values—use the series of symbols : _* for

this purpose:

println(max(numbers: _*))

5.7 Variance of Parameterized Type

You have seen a lot of Scala idioms, but there is one final thing I want

to introduce in this chapter. You may find this section a bit intense, but

I am confident you can handle it. So, let’s tighten our seat belts!

You saw how Scala prevents you from making assignments that may

potentially lead to runtime failures. Specifically, it prevents the follow-

ing code from compiling:

var arr1 = new Array[Int](3)

var arr2: Array[Any] = null

arr2 = arr1 // Compilation ERROR

The previous restriction is a good thing. Imagine if Scala—like Java—

did not restrict that. Here is Java code that can get us into trouble:

Download ScalaIdioms/Trouble.java

Line 1 //Java code
- class Fruit {}
- class Banana extends Fruit {}
- class Apple extends Fruit {}
5

- public class Trouble {
- public static void main(String[] args) {
- Banana[] basketOfBanana = new Banana[2];
- basketOfBanana[0] = new Banana();

10

- Object[] basketOfFruits = basketOfBanana; // Trouble
- basketOfFruits[1] = new Apple();
-

- for(Banana banana : basketOfBanana) {
15 System.out.println(banana);

- }
- }
- }

Report erratum

this copy is (P1.0 printing, June 2009)
Prepared exclusively for sam kaplan

http://media.pragprog.com/titles/vsscala/code/ScalaIdioms/Trouble.java
http://books.pragprog.com/titles/vsscala/errata/add?pdf_page=71

VARIANCE OF PARAMETERIZED TYPE 72

The previous code will compile with no errors. However, when we run

it, it will give us the following runtime error:

Exception in thread "main" java.lang.ArrayStoreException: Apple

at Trouble.main(Trouble.java:12)

To be fair, Java does not allow the following:

//Java code

ArrayList<Integer> list = new ArrayList<Integer>();

ArrayList<Object> list2 = list; // Compilation error

However, it is easy to bypass this in Java like this:

ArrayList list3 = list;

The ability to send a collection of subclass instances to a collection of

base class is called covariance. And the ability to send a collection of

superclass instances to a collection of subclass is called contravariance.

By default Scala does not allow either one of them.

Although the default behavior of Scala is good in general, there are

genuine cases where you’d want to cautiously treat a collection of a

derived type (say a collection of Dogs) as a collection of its base type

(say a collection of pets). Consider the following example:

Download ScalaIdioms/PlayWithPets.scala

class Pet(val name: String) {

override def toString() = name

}

class Dog(override val name: String) extends Pet(name)

def workWithPets(pets: Array[Pet]) {}

We’ve defined two classes—a Dog that extends a class Pet. We have

a method workWithPets() that accepts an array of Pets but really does

nothing. Now, let’s create an array of Dogs:

Download ScalaIdioms/PlayWithPets.scala

val dogs = Array(new Dog("Rover"), new Dog("Comet"))

If we send the dogs to the previous method, we will get a compilation

error:

workWithPets(dogs) // Compilation ERROR

Scala will complain when we call workWithPets()—we can’t send an array

of Dogs to a method that accepts an array of Pets. But, the method

is benign, right? However, Scala does not know that, and it’s trying to

Report erratum

this copy is (P1.0 printing, June 2009)
Prepared exclusively for sam kaplan

http://media.pragprog.com/titles/vsscala/code/ScalaIdioms/PlayWithPets.scala
http://media.pragprog.com/titles/vsscala/code/ScalaIdioms/PlayWithPets.scala
http://books.pragprog.com/titles/vsscala/errata/add?pdf_page=72

VARIANCE OF PARAMETERIZED TYPE 73

protect us. We have to tell Scala that it is OK to let this happen. Here’s

an example of how we can do that:

Download ScalaIdioms/PlayWithPets.scala

def playWithPets[T <: Pet](pets: Array[T]) =

println("Playing with pets: " + pets.mkString(", "))

We’ve defined the method playWithPets() with a special syntax. T <: Pet

indicates that the class represented by T is derived from Pet. By using

this syntax for the upper bound,6 we’re telling Scala that the parame-

terized type T of the parameter array must be at least an array of Pet but

can be an array of any class derived from Pet. So, now we are allowed

to make the following call:

Download ScalaIdioms/PlayWithPets.scala

playWithPets(dogs)

Here’s the corresponding output:

Playing with pets: Rover, Comet

If we try to send an array of Objects or an array of objects of some type

that does not derive from Pets, we’ll get a compilation error.

Now let’s say we want to copy pets. We can write a method named

copy() that accepts two parameters of type Array[Pet]. However, that will

not help us send an array of Dogs. Furthermore, we can copy from an

array of Dogs into an array of Pets. In other words, the receiving array

can be a collection of supertypes of the class of the source array. What

we need is a lower bound:

Download ScalaIdioms/PlayWithPets.scala

def copyPets[S, D >: S](fromPets: Array[S], toPets: Array[D]) = { //...

}

val pets = new Array[Pet](10)

copyPets(dogs, pets)

We’ve constrained the destination array’s parameterized type (D) to be a

supertype of the source array’s parameterized type (S). In other words,

S (for a source type like Dog) sets the lower bounds for the type D (for a

destination type like Dog or Pet)—it can be any type that is type S or its

supertype.

6. If you visualize the object hierarchy, Pet defines the upper bound of type T, and T can

be any type Pet or lower in the hierarchy.

Report erratum

this copy is (P1.0 printing, June 2009)
Prepared exclusively for sam kaplan

http://media.pragprog.com/titles/vsscala/code/ScalaIdioms/PlayWithPets.scala
http://media.pragprog.com/titles/vsscala/code/ScalaIdioms/PlayWithPets.scala
http://media.pragprog.com/titles/vsscala/code/ScalaIdioms/PlayWithPets.scala
http://books.pragprog.com/titles/vsscala/errata/add?pdf_page=73

VARIANCE OF PARAMETERIZED TYPE 74

In the previous two examples, we controlled the parameters of methods

in the method definition. You can also control this behavior if you’re

the author of a collection—that is, if you assume that it is OK for a

collection of derived to be treated as a collection of base. You can do

this by marking your parameterized type as +T instead of T, as in the

following example:

Download ScalaIdioms/MyList.scala

class MyList[+T] //...

var list1 = new MyList[int]

var list2 : MyList[Any] = null

list2 = list1 // OK

Here, +T tells Scala to allow covariance; in other words, during type

checking, it asks Scala to accept a type or its base type. So, we’re able

to assign a MyList[Int] to MyList[Any]. Remember, this was not possible for

Array[Int]. However, this is possible for the functional list List implemented

in the Scala library—we’ll discuss these in Chapter 8, Using Collections,

on page 103.

Similarly, you can ask Scala to support contravariance on your types

using -T instead of T for parameterized types.

By default, the Scala compiler strictly enforces the variance. You saw

how you can request lenience for covariance or contravariance. In any

case, the Scala compiler will check for type soundness of variance

annotation.

In this chapter, we discussed the static typing in Scala and its type

inference. You saw how this makes the code concise. With the under-

standing of typing, type inference, and how to write methods, you’re all

set to learn and enjoy concepts that lead to more conciseness in the

next chapter.

Report erratum

this copy is (P1.0 printing, June 2009)
Prepared exclusively for sam kaplan

http://media.pragprog.com/titles/vsscala/code/ScalaIdioms/MyList.scala
http://books.pragprog.com/titles/vsscala/errata/add?pdf_page=74

Chapter 6

Function Values and Closures
As the name implies, functions are first-class citizens in functional pro-

gramming. You can pass functions to functions as parameters, return

them from functions, and even nest functions within functions. These

higher-order functions are called function values. Once you get the

hang of them, you’ll begin to structure your application around these

function values as building blocks. You’ll quickly realize that they lead

to concise, reusable code. Closures are special forms of function val-

ues that close over or bound to variables defined in another scope or

context. In this chapter, you’ll learn how to use function values and

closures in Scala.

6.1 Moving from Normal to Higher-Order Functions

How would we find the sum of values in a given range 1 to number in

Java? We’d probably write a method like this:

// Java code

public int sum(int number) {

int result = 0;

for(int i = 1; i <= number; i++) {

result += i;

}

return result;

}

What if in addition we now need to count the number of even numbers

and the number of odd numbers in that range? We could copy the

previous method and change the body to do the new tasks. That’s the

best we can do with normal functions, but that’s code duplication with

poor reusability.

Prepared exclusively for sam kaplan

FUNCTION VALUES 76

In Scala, we’ll pass an anonymous function to the function that iterates

over the range. So, we can pass different logic to achieve different tasks.

Such functions that can take other functions as parameters are called

higher-order functions. They reduce code duplication, increase reusabil-

ity, and make your code concise as well. Let’s see how to create them

in Scala.

6.2 Function Values

In Scala, you can create functions within functions, assign them to

references, and pass them around to other functions. Scala internally

deals with these so-called function values by creating them as instances

of special classes. So, in Scala, function values are really objects.

Let’s rewrite our previous example in Scala using function values. Sup-

pose we want to perform different operations (such as summing num-

bers or counting the number of even numbers) on a range of values.

We’ll start by first extracting the common code, which is that code for

looping over the range of values, into a method named totalResultOver-

Range():

def totalResultOverRange(number: Int, codeBlock: Int => Int) : Int = {

var result = 0

for (i <- 1 to number) {

result += codeBlock(i)

}

result

}

We’ve defined two parameters for the method totalResultOverRange(). The

first one is an Int for the range of values to iterate over. The second one

is special; it’s a function value. The name of the parameter is codeBlock,

and its type is a function that accepts an Int and returns an Int.1 The

result of the method totalResultOverRange() is itself an Int.

In the body of the totalResultOverRange() method we iterate over the

range of values, and for each element we invoke the given function

(codeBlock). The given function is expected to receive an Int, represent-

ing an element in the range, and return an Int as a partial result of

computation on that element. The computation or operation itself is

1. You can think of a function as transforming input to output without having any side

effects.

Report erratum

this copy is (P1.0 printing, June 2009)
Prepared exclusively for sam kaplan

http://books.pragprog.com/titles/vsscala/errata/add?pdf_page=76

FUNCTION VALUES 77

left to be defined by the caller of the method totalResultOverRange(). We

total the partial results of calls to the given function value and return

that total.

The previous code removed the duplication from the example in Sec-

tion 6.1, Moving from Normal to Higher-Order Functions, on page 75.

Here is how we’d call the method totalResultOverRange() to get the sum

of values in the range:

println(totalResultOverRange(11, i => i))

We passed two arguments to the method. The first argument is the

upper limit (11) of the range we want to iterate over. The second argu-

ment is actually an anonymous just-in-time function, that is, a func-

tion with no name but only an implementation. The implementation,

in this example, simply returns the given parameter. The => separates

the parameter list on the left from the implementation on the right.

Scala was able to infer that the type of the parameter (i) is an Int from

the parameter list of totalResultOverRange(). Scala will give us an error

if the parameter’s type or the result type does not match with what’s

expected.

Instead of finding the sum, if we’d like to count the even numbers in

the range, we’d call the method like this:

println(totalResultOverRange(11, i => if (i % 2 == 0) 1 else 0))

If we’d like to count the odd numbers, we can call the method as follows:

println(totalResultOverRange(11, i => if (i % 2 != 0) 1 else 0))

Scala allows you to accept any number of parameters as function val-

ues, and they can be any parameter, not just the trailing parameter.

It was quite easy to make the code DRY2 using function values. We

gathered up the common code into a function, and the differences were

rolled into arguments of method calls. Methods that accept function

values are commonplace in the Scala library, as you’ll see in Chapter 8,

Using Collections, on page 103. Scala makes it easy to pass multiple

parameters and define the types of arguments as well, if you desire, as

you’ll see soon.

2. See The Pragmatic Programmer [HT00] by Andy Hunt and David Thomas for details

about the Don’t Repeat Yourself (DRY) principle.

Report erratum

this copy is (P1.0 printing, June 2009)
Prepared exclusively for sam kaplan

http://books.pragprog.com/titles/vsscala/errata/add?pdf_page=77

FUNCTION VALUES WITH MULTIPLE PARAMETERS 78

6.3 Function Values with Multiple Parameters

You can define and use function values with multiple parameters. Here

is an example of a method inject() that passes the result of the operation

on one element in an array of Int to the operation on the next element.

It allows us to cascade or accumulate results from operations on each

element.

def inject(arr: Array[Int], initial: Int, operation: (Int, Int) => Int) : Int = {

var carryOver = initial

arr.foreach(element => carryOver = operation(carryOver, element))

carryOver

}

The inject() method takes three parameters: an array of Int, an initial Int

value to inject into the operation, and the operation itself as a function

value. In the method we set a variable carryOver to the initial value. We

loop through the elements of the given array using the foreach() method.

This method accepts a function value as a parameter, which it invokes

with each element in the array as an argument. In the function that we

send as an argument to foreach(), we’re invoking the given operation

with two arguments: the carryOver value and the context element. We

assign the result of the operation call to the variable carryOver so it

can be passed as an argument in the subsequent call to the operation.

When we’re done calling the operation for each element in the array, we

return the final value of carryOver.

Let’s look at a couple of examples of using the previous inject() method.

Here’s how we would total the elements in the array:

val array = Array(2, 3, 5, 1, 6, 4)

val sum = inject(array, 0, (carryOver, elem) => carryOver + elem)

println("Sum of elements in array " + array.toString() + " is " + sum)

The first argument to the method inject() is an array whose elements

we’d like to sum. The second argument is an initial value 0 for the sum.

The third argument is the function that carries out the operation of

totaling the elements, one at a time.

If instead of totaling the elements we’d like to find the maximum value,

we can use the same inject() method:

val max = inject(array, Integer.MIN_VALUE,

(carryOver, elem) => Math.max(carryOver, elem)

)

println("Max of elements in array " + array.toString() + " is " + max)

Report erratum

this copy is (P1.0 printing, June 2009)
Prepared exclusively for sam kaplan

http://books.pragprog.com/titles/vsscala/errata/add?pdf_page=78

FUNCTION VALUES WITH MULTIPLE PARAMETERS 79

Here’s the output of executing the previous two calls to the inject()

method:

Sum of elements in array Array(2, 3, 5, 1, 6, 4) is 21

Max of elements in array Array(2, 3, 5, 1, 6, 4) is 6

If you’d like to navigate over elements in a collection and perform oper-

ations, you don’t have to really roll out your own inject() method—I

wrote it only for illustrative purpose. The Scala library already has this

method built in. It is the foldLeft() method. It is also the method /:.3

Here is an example of using it to get the sum and max of elements in

an array:

val array = Array(2, 3, 5, 1, 6, 4)

val sum = (0 /: array) { (sum, elem) => sum + elem }

val max = (Integer.MIN_VALUE /: array) {

(large, elem) => Math.max(large, elem) }

println("Sum of elements in array " + array.toString() + " is " + sum)

println("Max of elements in array " + array.toString() + " is " + max)

As an observant reader, you probably noticed the function value was

placed inside curly braces instead of being sent as an argument to the

function. That looks a lot better than sending those functions as argu-

ments within parentheses. However, if we attempt the following on the

inject() method, we will get an error:

Download FunctionValuesAndClosures/Inject3.scala

val sum = inject(array, 0) {(carryOver, elem) => carryOver + elem}

The previous code will result in the following error:

(fragment of Inject3.scala):11: error: wrong number of arguments for

method inject: (Array[Int],Int,(Int, Int) => Int)Int

val sum = inject(array, 0) {(carryOver, elem) => carryOver + elem}

^

one error found

!!!

discarding <script preamble>

That was not quite what we’d like to see. Before you can get the same

benefit of using the curly braces that the library method enjoyed, you

have to learn one more concept—currying.

3. See Section 8.4, Method Name Convention, on page 111 to learn about methods with

names that end of a colon (:).

Report erratum

this copy is (P1.0 printing, June 2009)
Prepared exclusively for sam kaplan

http://media.pragprog.com/titles/vsscala/code/FunctionValuesAndClosures/Inject3.scala
http://books.pragprog.com/titles/vsscala/errata/add?pdf_page=79

CURRYING 80

6.4 Currying

Currying in Scala transforms a function that takes more than one

parameter into a function that takes multiple parameter lists. If you’re

calling a function multiple times with the same set of arguments, you

can reduce the noise and spice up your code by using currying.

Let’s see how Scala provides support for currying. Instead of writing a

method that takes one parameter list with multiple parameters, write it

with multiple parameter lists with one parameter each (you may have

more than one parameter in each list as well). That is, instead of def

foo(a: Int, b: Int, c: Int) {}, write it as def foo(a: Int)(b: Int)(c: Int) {}. We can

then call it as, for example, foo(1)(2)(3), foo(1){2}{3}, or even foo{1}{2}{3}.

Let’s examine what goes on when you define a method with multiple

parameter lists. Take a look at the following interactive Scala shell ses-

sion:

scala> def foo(a: Int)(b: Int)(c:Int) {}

foo: (Int)(Int)(Int)Unit

scala> foo _

res1: (Int) => (Int) => (Int) => Unit = <function>

scala>

We first defined the function foo() we discussed previously. Then we

called foo _ to create a partially applied function (see Section 6.8, Par-

tially Applied Functions, on page 87), that is, a function with one or

more parameters unbound. We could’ve assigned the created partially

applied function to a variable but did not care to in this example. We’re

focused on the message from the interactive shell. It shows a series

of three transformations. Each function in the chain takes one Int and

returns a partially applied function. The last one, however, results in a

Unit.

The creation of partially applied functions when you curry is Scala’s

internal business. From a practical point of view, they help you to pass

function values with syntactic sugar. So, let’s rewrite the inject() method

from the previous section in the curried form:

Download FunctionValuesAndClosures/Inject4.scala

def inject(arr: Array[Int], initial: Int)(operation: (Int, Int) => Int) : Int = {

var carryOver = initial

arr.foreach(element => carryOver = operation(carryOver, element))

carryOver

}

Report erratum

this copy is (P1.0 printing, June 2009)
Prepared exclusively for sam kaplan

http://media.pragprog.com/titles/vsscala/code/FunctionValuesAndClosures/Inject4.scala
http://books.pragprog.com/titles/vsscala/errata/add?pdf_page=80

REUSING FUNCTION VALUES 81

The multiple parameter lists are the only difference between the pre-

vious version and the earlier version of the inject() method. The first

parameter list takes two parameters, and the second one takes one,

the function value.

So, we don’t have to send the function values as comma-separated

parameters within parentheses anymore. We can use the much nicer

curly bracket to call this method:

Download FunctionValuesAndClosures/Inject4.scala

val array = Array(2, 3, 5, 1, 6, 4)

val sum = inject(array, 0) { (carryOver, elem) => carryOver + elem }

println("Sum of elements in array " + array.toString() + " is " + sum)

6.5 Reusing Function Values

You saw how function values help create more reusable code and elim-

inate code duplication. But, embedding a method as an argument to

another method doesn’t encourage reuse of that code. You can, how-

ever, create references to function values and therefore reuse them as

well. Let’s look at an example.

Assume we have a class Equipment that expects us to provide a calcu-

lation routine for its simulation. We can send in the calculation as a

function value to the constructor like this:

Download FunctionValuesAndClosures/Equipment.scala

class Equipment(val routine : Int => Int) {

def simulate(input: Int) = {

print("Running simulation...")

routine(input)

}

}

When we create instances of Equipment, we can pass in a function value

as a parameter to the constructor.

Download FunctionValuesAndClosures/EquipmentUseNotDry.scala

val equipment1 = new Equipment({input => println("calc with " + input); input })

val equipment2 = new Equipment({input => println("calc with " + input); input })

equipment1.simulate(4)

equipment2.simulate(6)

Here’s the output:

Running simulation...calc with 4

Running simulation...calc with 6

Report erratum

this copy is (P1.0 printing, June 2009)
Prepared exclusively for sam kaplan

http://media.pragprog.com/titles/vsscala/code/FunctionValuesAndClosures/Inject4.scala
http://media.pragprog.com/titles/vsscala/code/FunctionValuesAndClosures/Equipment.scala
http://media.pragprog.com/titles/vsscala/code/FunctionValuesAndClosures/EquipmentUseNotDry.scala
http://books.pragprog.com/titles/vsscala/errata/add?pdf_page=81

REUSING FUNCTION VALUES 82

In the previous code, we want to use the same calculation code for both

the Equipment instances. Unfortunately, that code is duplicated. The

code is not DRY, and if we decide to change the calculation, we’d have

to change both. It would be good to create that once and reuse it. We

can assign the function value to a val and reuse it like this:

Download FunctionValuesAndClosures/EquipmentUseDry.scala

val calculator = { input : Int => println("calc with " + input); input }

val equipment1 = new Equipment(calculator)

val equipment2 = new Equipment(calculator)

equipment1.simulate(4)

equipment2.simulate(6)

The output from the previous code is shown here:

Running simulation...calc with 4

Running simulation...calc with 6

We stored the function value into a reference named calculator. Scala

needed a little help with the type information when we defined this

function value. In the earlier example, Scala inferred the input as Int

based on the context of the call. However, since we’re defining this func-

tion value as stand-alone, we had to tell Scala the type of the parameter.

We then passed the name of the reference as an argument to the con-

structor in the two instances we created.

In the previous example, we created a reference calculator to a function

value. This may feel more natural to you since you’re used to defining

references/variables within functions or methods. However, in Scala,

you can define full functions within other functions. So, there is a more

idiomatic way of achieving the previous goal of reuse. Scala makes it

really easy to do the right thing. It allows you to pass in a normal

function where a function value is expected.

Download FunctionValuesAndClosures/EquipmentUseDry2.scala

def calculator(input: Int) = { println("calc with " + input); input }

val equipment1 = new Equipment(calculator)

val equipment2 = new Equipment(calculator)

equipment1.simulate(4)

equipment2.simulate(6)

We created our calculation as a function and passed in the name of the

function as an argument to the constructor when we created those two

Report erratum

this copy is (P1.0 printing, June 2009)
Prepared exclusively for sam kaplan

http://media.pragprog.com/titles/vsscala/code/FunctionValuesAndClosures/EquipmentUseDry.scala
http://media.pragprog.com/titles/vsscala/code/FunctionValuesAndClosures/EquipmentUseDry2.scala
http://books.pragprog.com/titles/vsscala/errata/add?pdf_page=82

POSITIONAL NOTATION FOR PARAMETERS 83

instances. Scala comfortably treated that as a reference to a function

value within the Equipment.

You don’t have to compromise on good design principles and code qual-

ity when programming in Scala. On the contrary, it promotes good prac-

tices, and you should strive to make use of that when coding in Scala.

6.6 Positional Notation for Parameters

Scala provides the notation _, the underscore, to represent parameters

of a function value. You can use this if you plan to use that parameter

only once in the function. Each time you use the underscore within a

function, it represents a subsequent parameter. Let’s look at an exam-

ple now:

Download FunctionValuesAndClosures/Underscore.scala

val arr = Array(1, 2, 3, 4, 5)

println("Sum of all values in array is " +

(0 /: arr) { (sum, elem) => sum + elem }

)

In the previous code, we’re using the /: method to compute the sum of

elements in the array. Since we’re using sum and elem only once each,

we can eliminate those names and write the code as follows:

Download FunctionValuesAndClosures/Underscore.scala

println("Sum of all values in array is " +

(0 /: arr) { _ + _ }

)

The first occurrence of _ represents the value carried over in the invoca-

tion of the function, and the second represents elements in the array.4

You may argue that code is terse and you lost readability—the names

sum and elem were helpful to have. That is a valid point. So, you may

want to use the _ in places where the code is concise without any loss

of readability, like in the following example:

Download FunctionValuesAndClosures/Underscore.scala

val negativeNumberExists = arr.exists { _ < 0 }

println("Array has negative number? " + negativeNumberExists)

4. If Scala can’t determine the type, it will complain. If that happens, we can either

provide the type for _ or step back to using parameter names with type.

Report erratum

this copy is (P1.0 printing, June 2009)
Prepared exclusively for sam kaplan

http://media.pragprog.com/titles/vsscala/code/FunctionValuesAndClosures/Underscore.scala
http://media.pragprog.com/titles/vsscala/code/FunctionValuesAndClosures/Underscore.scala
http://media.pragprog.com/titles/vsscala/code/FunctionValuesAndClosures/Underscore.scala
http://books.pragprog.com/titles/vsscala/errata/add?pdf_page=83

EXECUTE AROUND METHOD PATTERN 84

Where it makes sense, you can take this conciseness further. Assume

we have a function that determines the maximum of two numbers.

We want to use that function to determine the maximum among ele-

ments of an array. Let’s start with how we’d simply use that with the

/:() method:

def max2(a: Int, b: Int) : Int = if (a > b) a else b

var max = (Integer.MIN_VALUE /: arr) { (large, elem) => max2(large, elem) }

We are sending the pair of values (large and elem) to the max2() method

to determine which of those two is larger. We use the result of that

computation to eventually determine the largest element in the array.

Use the _ to simplify this:

max = (Integer.MIN_VALUE /: arr) { max2(_, _) }

The _ represents not only a single parameter; it can represent the entire

parameter list as well. So, we can modify the call to max2() as follows:

max = (Integer.MIN_VALUE /: arr) { max2 _ }

In the previous code, the _ represents the entire parameter list, that is,

(parameter1, parameter2). If you are merely passing what you receive to

an underlying method, you don’t even need the ceremony of the _. We

can further simplify the previous code:

max = (Integer.MIN_VALUE /: arr) { max2 }

As you can see, you can adjust the conciseness dial of Scala to the

extent you’re comfortable with. While you enjoy the benefit of con-

ciseness, however, you need to make sure your code does not become

cryptic—you have to strike that gentle balance.

6.7 Execute Around Method Pattern

As a Java programmer, you’re familiar with the synchronized block. When

you enter it, it obtains a monitor (lock) on the given object. That moni-

tor is automatically released when you leave the synchronized block. The

release happens even if the code within the block throws an unhandled

exception. That kind of deterministic behavior is nice to have. Unfortu-

nately, while Java provided that mechanism for synchronized, it did not

provide a good way to implement that kind of behavior for your own

code. You may try to achieve that using anonymous inner classes, but

the code you end up with will scare the daylights out of you.

Fortunately, you can implement those constructs in Scala quite easily.

Let’s look at an example.

Report erratum

this copy is (P1.0 printing, June 2009)
Prepared exclusively for sam kaplan

http://books.pragprog.com/titles/vsscala/errata/add?pdf_page=84

EXECUTE AROUND METHOD PATTERN 85

Assume we have a class named Resource that needs to start some trans-

action automatically and end the transaction deterministically as soon

as we’re done using the object. We can rely on the constructor to cor-

rectly start the transaction. It’s the ending part that poses the chal-

lenge. This falls into the Execute Around Method pattern (see Kent

Beck’s Smalltalk Best Practice Patterns [Bec96]). We want to execute

a pair of operations in tandem around an arbitrary set of operations on

an object.

We can use function values to implement this pattern in Scala. Here

is the code for the Resource class along with its companion object (see

Section 4.5, Stand-Alone and Companion Objects, on page 60 for details

on companion objects):

Download FunctionValuesAndClosures/Resource.scala

class Resource private() {

println("Starting transaction...")

private def cleanUp() { println("Ending transaction...") }

def op1 = println("Operation 1")

def op2 = println("Operation 2")

def op3 = println("Operation 3")

}

object Resource {

def use(codeBlock: Resource => Unit) {

val resource = new Resource

try {

codeBlock(resource)

}

finally {

resource.cleanUp()

}

}

}

We’ve marked the constructor of the Resource class private. So, we can’t

create an instance of this class outside the class and its companion

object. This forces us to use the object in a certain way, thus guaran-

teeing automatic and deterministic behavior. The cleanUp() method is

declared private as well. The print statements are placeholders for real

transaction operations. The transaction starts when the constructor is

called and ends when cleanUp() is implicitly called. The usable instance

methods of the Resource class are methods like op1(), op2(), and so on.

Report erratum

this copy is (P1.0 printing, June 2009)
Prepared exclusively for sam kaplan

http://media.pragprog.com/titles/vsscala/code/FunctionValuesAndClosures/Resource.scala
http://books.pragprog.com/titles/vsscala/errata/add?pdf_page=85

EXECUTE AROUND METHOD PATTERN 86

In the companion object, we have a method named use() that accepts a

function value as a parameter. The use() method creates an instance of

Resource, and within the safeguard of the try and finally blocks, we send

the instance to the given function value. In the finally block, we call the

private instance method cleanUp() of the Resource. Pretty simple, eh?

That’s all it took to provide a deterministic call to necessary operations.

Now let’s take a look at how we can use the Resource class. Here’s some

example code:

Download FunctionValuesAndClosures/UseResource.scala

Resource.use { resource =>

resource.op1

resource.op2

resource.op3

resource.op1

}

The output from the previous code is shown here:

Starting transaction...

Operation 1

Operation 2

Operation 3

Operation 1

Ending transaction...

We invoke the use() method of the Resource companion object and pro-

vide it with a code block. It sends to us an instance of Resource. By

the time we get access to resource, the transaction has been started.

We invoke the methods we desire (like op1(), op2(), ...) on the instance

of Resource. When we’re done, at the time we leave the code block, the

cleanUp() method of the Resource is automatically called by the use()

method.

A variation of the previous pattern is described as the Loan pattern (see

Appendix A, on page 211). Use it if your intent is to deterministically

dispose of nonmemory resources. The resource-intensive object is con-

sidered to be on loan to you, and you’re expected to return it promptly.

Here is an example of how to use this pattern:

Download FunctionValuesAndClosures/WriteToFile.scala

import java.io._

def writeToFile(fileName: String)(codeBlock : PrintWriter => Unit) = {

val writer = new PrintWriter(new File(fileName))

try { codeBlock(writer) } finally { writer.close() }

}

Report erratum

this copy is (P1.0 printing, June 2009)
Prepared exclusively for sam kaplan

http://media.pragprog.com/titles/vsscala/code/FunctionValuesAndClosures/UseResource.scala
http://media.pragprog.com/titles/vsscala/code/FunctionValuesAndClosures/WriteToFile.scala
http://books.pragprog.com/titles/vsscala/errata/add?pdf_page=86

PARTIALLY APPLIED FUNCTIONS 87

Now we can use the function writeToFile() to write some content to a file:

Download FunctionValuesAndClosures/WriteToFile.scala

writeToFile("output.txt") { writer =>

writer write "hello from Scala"

}

When we run the code, the contents of the file output.txt are as follows:

hello from Scala

As a user of the method writeToFile(), we don’t have to worry about clos-

ing the file. The file is on loan to us to use within the code block. We

can write to the PrintWriter instance given to us, and upon return from

the block, the file is automatically closed by the method.

6.8 Partially Applied Functions

When you invoke a function, you’re said to be applying the function

to the arguments. If you pass all the expected arguments, you have

fully applied it. If you send only a few arguments, then you get back

a partially applied function. This gives you the convenience of binding

some arguments and leaving the rest to be filled in later. Let’s take a

look at an example:

Download FunctionValuesAndClosures/Log.scala

import java.util.Date

def log(date: Date, message: String) {

//...

println(date + "----" + message)

}

val date = new Date

log(date, "message1")

log(date, "message2")

log(date, "message3")

In the previous code, the log() method takes two parameters: date and

message. We want to invoke the method multiple times, with the same

value for date but different values for message. We can eliminate the

noise of passing the date to each call by partially applying that argu-

ment to the log() method.

In the next code sample, we first bind a value to the date parameter.

We use the _ to leave the second parameter unbound. The result is

Report erratum

this copy is (P1.0 printing, June 2009)
Prepared exclusively for sam kaplan

http://media.pragprog.com/titles/vsscala/code/FunctionValuesAndClosures/WriteToFile.scala
http://media.pragprog.com/titles/vsscala/code/FunctionValuesAndClosures/Log.scala
http://books.pragprog.com/titles/vsscala/errata/add?pdf_page=87

CLOSURES 88

a partially applied function that we’ve stored in the reference logWith-

DateBound. We can now invoke this new method with only the unbound

argument message:

Download FunctionValuesAndClosures/Log.scala

val logWithDateBound = log(new Date, _ : String)

logWithDateBound("message1")

logWithDateBound("message2")

logWithDateBound("message3")

When you create a partially applied function, Scala internally creates a

new class with a special apply() method. When you invoke the partially

applied function, you are actually invoking that apply method—see Sec-

tion 8.1, Common Scala Collections, on page 103 for more details on the

apply method. Scala makes extensive use of partially applied functions

when pattern matching messages received from an actor, as you’ll see

in Chapter 10, Concurrent Programming, on page 131.

6.9 Closures

In the examples you’ve seen so far in this chapter, the variables and

values used in the function values or code blocks were bound. You

clearly knew what they were bound to, local variables or parameters. In

addition, you can create code blocks with variables that are not bound.

You will have to bind them before you can invoke the function; however,

they could bind to, or close over, variables outside of their local scope

and parameter list. That’s why they’re called closures.

Let’s look at a variation of the totalResultOverRange() method you saw

earlier in this chapter. The method loopThrough() in this example iterates

over the elements from 1 to a given number:

Download FunctionValuesAndClosures/Closure.scala

def loopThrough(number: Int)(closure: Int => Unit) {

for (i <- 1 to number) { closure(i) }

}

The loopThrough() method takes a code block as the second parameter,

and for each element in the range of 1 through its first parameter, it

calls the given code block. Let’s define a code block to pass to this

method:

Download FunctionValuesAndClosures/Closure.scala

var result = 0

val addIt = { value:Int => result += value }

Report erratum

this copy is (P1.0 printing, June 2009)
Prepared exclusively for sam kaplan

http://media.pragprog.com/titles/vsscala/code/FunctionValuesAndClosures/Log.scala
http://media.pragprog.com/titles/vsscala/code/FunctionValuesAndClosures/Closure.scala
http://media.pragprog.com/titles/vsscala/code/FunctionValuesAndClosures/Closure.scala
http://books.pragprog.com/titles/vsscala/errata/add?pdf_page=88

CLOSURES 89

In the previous code, we have defined a code block and assigned it to the

variable named addIt. Within the code block, the variable value is bound

to the parameter. However, the variable result is not defined within the

block or its parameter list. This is actually bound to the variable result

outside the code block. The code block stretches its hands and binds

to a variable outside. Here’s how we can use the code block in calls to

the method loopThrough():

Download FunctionValuesAndClosures/Closure.scala

loopThrough(10) { addIt }

println("Total of values from 1 to 10 is " + result)

result = 0

loopThrough(5) { addIt }

println("Total of values from 1 to 5 is " + result)

When we pass the closure to the method loopThrough(), the value is

bound to the parameter passed by loopThrough(), while result is bound to

the variable in the context of the caller of loopThrough().

The binding did not get a copy of the variable’s current value; it’s actu-

ally bound to the variable itself. So, when we reset the value of result

to 0, the closure sees this change as well. Furthermore, when the clo-

sure sets result, we see it in the main code. Here’s another example of a

closure bound to yet another variable product:

Download FunctionValuesAndClosures/Closure.scala

var product = 1

loopThrough(5) { product *= _ }

println("Product of values from 1 to 5 is " + product)

In this case, the _ refers to the parameter passed in by loopThrough(),

and product is bound to the variable with that name in the caller of

loopThrough().

Here’s the output from the three calls to loopThrough():

Total of values from 1 to 10 is 55

Total of values from 1 to 5 is 15

Product of values from 1 to 5 is 120

In this chapter, you explored the concepts related to function values

and saw how functions are first-class citizens in Scala. You can prob-

ably see the benefit of using these code blocks where you want to

enhance the functionality of another function. You can use them in

places where you want to specify a predicate, a query, or a constraint

to the logic being implemented in a method. You can use them to alter

Report erratum

this copy is (P1.0 printing, June 2009)
Prepared exclusively for sam kaplan

http://media.pragprog.com/titles/vsscala/code/FunctionValuesAndClosures/Closure.scala
http://media.pragprog.com/titles/vsscala/code/FunctionValuesAndClosures/Closure.scala
http://books.pragprog.com/titles/vsscala/errata/add?pdf_page=89

CLOSURES 90

the control flow of a method, for example, in iterating over a collection

of values. You have learned in this chapter a valuable tool that you will

use quite frequently in Scala, both in your own code and most com-

monly when using the Scala library. In the next chapter, you will walk

through another interesting Scala idiom, traits.

Report erratum

this copy is (P1.0 printing, June 2009)
Prepared exclusively for sam kaplan

http://books.pragprog.com/titles/vsscala/errata/add?pdf_page=90

Chapter 7

Traits and Type Conversions
Traits are like interfaces with a partial implementation. Traits provide

a middle ground between single and multiple inheritance because you

can mix them in or include them in other classes. This allows you to

enhance a class with a set of features.

Single implementation inheritance forces you to model everything into a

linear hierarchy. However, the real world is full of crosscutting concerns

—concepts that cut across and affect abstractions that do not fall under

the same class hierarchy. Security, logging, validation, transactions,

resource allocation, and management are all examples of such cross-

cutting concerns in a typical enterprise application. Scala’s traits allow

you to apply those concerns to arbitrary classes without the pain that

arises from multiple implementation inheritance.

In this chapter, you’ll learn Scala’s support for abstraction and object

models. Much of this will feel like magic. Scala’s implicit conversion

allows you to treat an instance of one class as an instance of another.

This allows you to attach methods to an object without modifying the

original class, by implicitly wrapping the instance in a façade. You’ll

use that trick to see how to create a DSL.

7.1 Traits

A trait is a behavior that can be mixed into or assimilated into a class

hierarchy. Say we want to model a Friend. We can mix that into any

class, Man, Woman, Dog, and so on, without having to inherit them all

from a common base class.

Prepared exclusively for sam kaplan

TRAITS 92

Assume we’ve modeled a class Human and want to make it friendly. A

friend is someone who listens. So, here is the listen method that we’d

add to the Human class:

class Human(val name: String) {

def listen() = println("Your friend " + name + " is listening")

}

class Man(override val name: String) extends Human(name)

class Woman(override val name: String) extends Human(name)

One disadvantage of the previous code is the friendly quality does not

quite stand out and is merged into the Human class. Furthermore, a

few weeks into development, we realize we forgot man’s best friend.

Dogs are great friends—they listen to us quietly when we have a lot

to unload. But, how can we make a Dog a friend? We can’t inherit a

Dog from a Human for that purpose. The Java approach to solving this

problem would be to create an interface Friend and have Human and Dog

implement it. We’re forced to provide different implementations in these

two classes irrespective of whether the implementations are different.

This is where Scala’s traits come in. A trait is like an interface with a

partial implementation. The vals and vars you define and initialize in a

trait get internally implemented in the classes that mix the trait in. Any

vals and vars defined but not initialized are considered abstract, and

the classes that mix in these traits are required to implement them. We

can reimplement the Friend concept as a trait:

Download TraitsAndTypeConversions/Friend.scala

trait Friend {

val name: String

def listen() = println("Your friend " + name + " is listening")

}

Here we have defined Friend as a trait. It has a val named name that

is treated as abstract. We also have the implementation of a listen()

method. The actual definition or the implementation of name will be

provided by the class that mixes in this trait. Let’s look at ways to mix

in the previous trait:

Download TraitsAndTypeConversions/Human.scala

class Human(val name: String) extends Friend

Download TraitsAndTypeConversions/Man.scala

class Man(override val name: String) extends Human(name)

Report erratum

this copy is (P1.0 printing, June 2009)
Prepared exclusively for sam kaplan

http://media.pragprog.com/titles/vsscala/code/TraitsAndTypeConversions/Friend.scala
http://media.pragprog.com/titles/vsscala/code/TraitsAndTypeConversions/Human.scala
http://media.pragprog.com/titles/vsscala/code/TraitsAndTypeConversions/Man.scala
http://books.pragprog.com/titles/vsscala/errata/add?pdf_page=92

TRAITS 93

Download TraitsAndTypeConversions/Woman.scala

class Woman(override val name: String) extends Human(name)

The class Human mixes in the Friend trait. If a class does not extend

from any other class, then use the extends keyword to mix in the trait.

The class Human and its derived classes Man and Woman simply use

the implementation of the listen() method provided in the trait. We can

override this implementation if we like, as we’ll see soon.

You can mix in any number of traits. To mix in additional traits, use

the keyword with. You will also use the keyword with to mix in your first

trait if your class already extends from another class like the Dog in this

next example. In addition to mixing in the trait, we have overridden its

listen() method in Dog.

Download TraitsAndTypeConversions/Animal.scala

class Animal

Download TraitsAndTypeConversions/Dog.scala

class Dog(val name: String) extends Animal with Friend {

//optionally override method here.

override def listen = println(name + "'s listening quietly")

}

You can call the methods of a trait on the instances of classes that mix

it in. You can also treat a reference to such classes as a reference of the

trait:

Download TraitsAndTypeConversions/UseFriend.scala

val john = new Man("John")

val sara = new Woman("Sara")

val comet = new Dog("Comet")

john.listen

sara.listen

comet.listen

val mansBestFriend : Friend = comet

mansBestFriend.listen

def helpAsFriend(friend: Friend) = friend listen

helpAsFriend(sara)

helpAsFriend(comet)

The output from the previous code is shown here:

Your friend John is listening

Your friend Sara is listening

Report erratum

this copy is (P1.0 printing, June 2009)
Prepared exclusively for sam kaplan

http://media.pragprog.com/titles/vsscala/code/TraitsAndTypeConversions/Woman.scala
http://media.pragprog.com/titles/vsscala/code/TraitsAndTypeConversions/Animal.scala
http://media.pragprog.com/titles/vsscala/code/TraitsAndTypeConversions/Dog.scala
http://media.pragprog.com/titles/vsscala/code/TraitsAndTypeConversions/UseFriend.scala
http://books.pragprog.com/titles/vsscala/errata/add?pdf_page=93

SELECTIVE MIXINS 94

Comet's listening quietly

Comet's listening quietly

Your friend Sara is listening

Comet's listening quietly

Traits look similar to classes but have some significant differences.

First, they require the mixed-in class to implement the uninitialized

(abstract) variables and values declared in them. Second, their con-

structors cannot take any parameters. Traits are compiled into Java

interfaces with corresponding implementation classes that hold any

methods implemented in the traits.

Traits do not suffer from the method collision problem that generally

arise from multiple inheritance. They avoid it by late binding with the

method of the class that mixes them in. So, a call to super within a trait

resolves to a method on another trait or the class that mixes it in, as

you’ll see soon.

7.2 Selective Mixins

In the previous example, we mixed the trait Friend into the Dog class.

This allows us to treat any instance of the Dog class as a Friend; that is,

all Dogs are Friends.

You can also mix in traits selectively at an instance level. This will allow

you to treat a specific instance of a class as a trait. Let’s look at an

example:

Download TraitsAndTypeConversions/Cat.scala

class Cat(val name: String) extends Animal

Cat does not mix in the Friend trait, so we can’t treat an instance of Cat

as a Friend. Any attempts to do so, as you can see here, will result in

compilation errors:

Download TraitsAndTypeConversions/UseCat.scala

def useFriend(friend: Friend) = friend listen

val alf = new Cat("Alf")

val friend : Friend = alf // ERROR

useFriend(alf) // ERROR

Report erratum

this copy is (P1.0 printing, June 2009)
Prepared exclusively for sam kaplan

http://media.pragprog.com/titles/vsscala/code/TraitsAndTypeConversions/Cat.scala
http://media.pragprog.com/titles/vsscala/code/TraitsAndTypeConversions/UseCat.scala
http://books.pragprog.com/titles/vsscala/errata/add?pdf_page=94

DECORATING WITH TRAITS 95

Here you can see the errors:

(fragment of UseCat.scala):4: error: type mismatch;

found : Cat

required: Friend

val friend : Friend = alf // ERROR

^

(fragment of UseCat.scala):6: error: type mismatch;

found : Cat

required: Friend

useFriend(alf) // ERROR

^

two errors found

!!!

discarding <script preamble>

!!!

discarding <script preamble>

Scala, however, does offer help for cat lovers, and we can exclusively

treat our special pet as a Friend if we want. When creating an instance,

simply mark it using the with keyword:

Download TraitsAndTypeConversions/TreatCatAsFriend.scala

def useFriend(friend: Friend) = friend listen

val snowy = new Cat("Snowy") with Friend

val friend : Friend = snowy

friend.listen

useFriend(snowy)

Here’s the output:

Your friend Snowy is listening

Your friend Snowy is listening

Scala gives you the flexibility to treat all the instances of a class as a

trait or to select only the instances you want. The latter is especially

useful if you want to apply traits to preexisting classes.

7.3 Decorating with Traits

You can use traits to decorate1 objects with capabilities. Assume we

want to run different checks on an applicant—credit, criminal records,

1. See the Decorator pattern in Gamma et al.’s Design Patterns: Elements of Reusable

Object-Oriented Software [GHJV95].

Report erratum

this copy is (P1.0 printing, June 2009)
Prepared exclusively for sam kaplan

http://media.pragprog.com/titles/vsscala/code/TraitsAndTypeConversions/TreatCatAsFriend.scala
http://books.pragprog.com/titles/vsscala/errata/add?pdf_page=95

DECORATING WITH TRAITS 96

employment, and so on. We’re not interested in all the checks all the

time. An applicant for an apartment may need to be checked for credit

and criminal records. On the other hand, an applicant for employment

may need to be checked for criminal records and previous employ-

ment. If we resort to creating specific classes for these groups of checks,

we’ll end up creating several classes for each permutation of checks we

needed. Furthermore, if we decide to run additional checks, the class

handling that group of checks would have to change. No, we want to

avoid such class proliferation. We can be productive and mix in only

specific checks required for each situation.

Next we’ll introduce an abstract class Check that runs a general check

on the application details:

Download TraitsAndTypeConversions/Decorator.scala

abstract class Check {

def check() : String = "Checked Application Details..."

}

For different types of checks like credit, criminal record, and employ-

ment, we create traits like these:

Download TraitsAndTypeConversions/Decorator.scala

trait CreditCheck extends Check {

override def check() : String = "Checked Credit..." + super.check()

}

trait EmploymentCheck extends Check {

override def check() : String = "Checked Employment..." + super.check()

}

trait CriminalRecordCheck extends Check {

override def check() : String = "Check Criminal Records..." + super.check()

}

We’ve extended these traits from the class Check since we intend to

mix them into only those classes that extend from Check. Extending

the class gives us two capabilities. One, these traits can be mixed in

only with classes that extend Check. Second, we can use the methods

of Check within these traits.

We are interested in enhancing or decorating the implementation of the

method check(), so we have to mark it as override. In our implementa-

tion of check(), we invoke super.check(). Within a trait, calls to method

using super go through late binding. This is not a call on the base class

but instead on the trait mixed in to the left—if this is the leftmost trait

Report erratum

this copy is (P1.0 printing, June 2009)
Prepared exclusively for sam kaplan

http://media.pragprog.com/titles/vsscala/code/TraitsAndTypeConversions/Decorator.scala
http://media.pragprog.com/titles/vsscala/code/TraitsAndTypeConversions/Decorator.scala
http://books.pragprog.com/titles/vsscala/errata/add?pdf_page=96

METHOD LATE BINDING IN TRAITS 97

mixed in, the call resolves to the method on the class into which we

mixed in the trait(s). We’ll see this behavior when we complete this

example.

So, we have one abstract class and three traits in the example so far. We

don’t have any concrete classes—we don’t need any. If we want to run

checks for an apartment application, we can put together an instance

from the previous traits and class:

Download TraitsAndTypeConversions/Decorator.scala

val apartmentApplication = new Check with CreditCheck with CriminalRecordCheck

println(apartmentApplication check)

On the other hand, we could run checks for employment like this:

Download TraitsAndTypeConversions/Decorator.scala

val emplomentApplication = new Check with CriminalRecordCheck with EmploymentCheck

println(emplomentApplication check)

If you’d rather run a different combination of checks, simply mix in

the traits the way you like. The effect of previous two pieces of code is

shown here:

Check Criminal Records...Checked Credit...Checked Application Details...

Checked Employment...Check Criminal Records...Checked Application Details...

The rightmost trait picked up the call to check(). It then, upon the call

to super.check(), passed the call over to the trait on its left. The leftmost

traits invoked the check() on the actual instance.

Traits are a powerful tool in Scala that allow you to mix in crosscut-

ting concerns, and you can use them to create highly extensible code

with low ceremony. Rather than creating a hierarchy of classes and

interfaces, you can put your essential code to quick use.

7.4 Method Late Binding in Traits

In the previous example, the method check() of the Check class was

concrete. Our traits extended from this class. We saw how the call to

super.check() within the traits were bound to either the trait on the left

or the class that mixes in. Things get a bit more complicated if the

method(s) in the base class are abstract. Let’s explore this further here.

Report erratum

this copy is (P1.0 printing, June 2009)
Prepared exclusively for sam kaplan

http://media.pragprog.com/titles/vsscala/code/TraitsAndTypeConversions/Decorator.scala
http://media.pragprog.com/titles/vsscala/code/TraitsAndTypeConversions/Decorator.scala
http://books.pragprog.com/titles/vsscala/errata/add?pdf_page=97

METHOD LATE BINDING IN TRAITS 98

Let us now write an abstract class Writer with one abstract method,

writeMessage():

Download TraitsAndTypeConversions/MethodBinding.scala

abstract class Writer {

def writeMessage(message: String)

}

Any class extending from this class is required to implement the write-

Message() method. If we extend a trait from this abstract class and call

the abstract method using super, Scala will demand that we declare the

method as abstract override. The combination of these two keywords may

seem odd to you. By using the keyword override, we are telling Scala that

we are providing an implementation of a known method from the base

class. At the same time, we are saying that the actual final “terminal”

implementation for this method will be provided by the class that mixes

in the trait. So, here is an example of traits that extend the previous

class:

Download TraitsAndTypeConversions/MethodBinding.scala

trait UpperCaseWriter extends Writer {

abstract override def writeMessage(message: String) =

super.writeMessage(message.toUpperCase)

}

trait ProfanityFilteredWriter extends Writer {

abstract override def writeMessage(message: String) =

super.writeMessage(message.replace("stupid", "s-----"))

}

Scala does two things on the call to super.writeMessage in this code. First,

it performs late binding of that call. Second, it will insist that the class

that mixes these traits provide an implementation of the method. The

ProfanityFilteredWriter took care of a mild rude word only—and only if it

appeared in lowercase. This is with the intent to illustrate the ordering

of the mixin.

Now, let’s make use of these traits. First, let’s write a class StringWri-

terDelegate that extends from the abstract class Writer and delegates

writing the message to an instance of StringWriter:

Download TraitsAndTypeConversions/MethodBinding.scala

class StringWriterDelegate extends Writer {

val writer = new java.io.StringWriter

def writeMessage(message: String) = writer.write(message)

override def toString() : String = writer.toString

}

Report erratum

this copy is (P1.0 printing, June 2009)
Prepared exclusively for sam kaplan

http://media.pragprog.com/titles/vsscala/code/TraitsAndTypeConversions/MethodBinding.scala
http://media.pragprog.com/titles/vsscala/code/TraitsAndTypeConversions/MethodBinding.scala
http://media.pragprog.com/titles/vsscala/code/TraitsAndTypeConversions/MethodBinding.scala
http://books.pragprog.com/titles/vsscala/errata/add?pdf_page=98

IMPLICIT TYPE CONVERSIONS 99

We could have mixed in one or more traits in the previous definition of

StringWriterDelegate. Instead, let’s mix in the traits at the time of creating

an instance of this class.

Download TraitsAndTypeConversions/MethodBinding.scala

val myWriterProfanityFirst =

new StringWriterDelegate with UpperCaseWriter with ProfanityFilteredWriter

val myWriterProfanityLast =

new StringWriterDelegate with ProfanityFilteredWriter with UpperCaseWriter

myWriterProfanityFirst writeMessage "There is no sin except stupidity"

myWriterProfanityLast writeMessage "There is no sin except stupidity"

println(myWriterProfanityFirst)

println(myWriterProfanityLast)

Since the ProfanityFilteredWriter is the rightmost trait in the first state-

ment, it takes effect first. However, it takes effect second in the example

in the second statement. Take the time to study the code. The method

execution sequence for the two instances is shown here:

UpperCaseWriter ProfanityFilterWriter

StringWriterDelegate

myWriterProfanityFirst

writeMessage()

super.writeMessage() calls

UpperCaseWriterProfanityFilterWriter

StringWriterDelegate

myWriterProfanityLast

writeMessage()

Here’s our output:

THERE IS NO SIN EXCEPT S-----ITY

THERE IS NO SIN EXCEPT STUPIDITY

7.5 Implicit Type Conversions

Assume we’re creating an application that involves several date and

time operations. It’d be quite convenient and more readable to write

code like the following:

2 days ago

5 days from_now

Report erratum

this copy is (P1.0 printing, June 2009)
Prepared exclusively for sam kaplan

http://media.pragprog.com/titles/vsscala/code/TraitsAndTypeConversions/MethodBinding.scala
http://books.pragprog.com/titles/vsscala/errata/add?pdf_page=99

IMPLICIT TYPE CONVERSIONS 100

The previous looks more like data input rather than code—one of the

characteristics of DSLs. An optional dot and parentheses help here. We

are calling a method days() on 2 and sending in a variable ago in the

first statement. In the second statement, we are calling the method on

5 and sending in a variable from_now.

If we try to compile the previous code, Scala will complain that days()

is not a method on Int. Yes, Int does not provide us with that method,

but that should not stop us from writing such code. We can ask Scala

to quietly convert the Int to something that will help us accomplish the

previous operation—enter implicit type conversion.

Implicit type conversion can help you extend the language to create

your own vocabulary or syntax that’s specific to your application and

its domain or to create your own domain-specific languages.

Let’s start with some crufty code to first understand the concept and

then refactor that into a nice class.

We need to define the variables ago and from_now and ask Scala to

accept the days() method. Defining variables is simple, but for it to

accept the method, let’s create a class DateHelper that takes an Int as a

constructor parameter:

import java.util._

class DateHelper(number: Int) {

def days(when: String) : Date = {

var date = Calendar.getInstance()

when match {

case "ago" => date.add(Calendar.DAY_OF_MONTH, -number)

case "from_now" => date.add(Calendar.DAY_OF_MONTH, number)

case _ => date

}

date.getTime()

}

}

The DateHelper class provides the days() method we want.2 Now, all

we have to do is convert an Int to a DateHelper. We can do this using

a method that accepts an Int and returns an instance of DateHelper.

Simply mark the method as implicit, and Scala will automatically pick it

up if it is present in the current scope (visible through current imports

or present in the current file).

2. The match() method used in the days() method is part of Scala’s pattern matching

facility discussed in Chapter 9, Pattern Matching and Regular Expressions, on page 116.

Report erratum

this copy is (P1.0 printing, June 2009)
Prepared exclusively for sam kaplan

http://books.pragprog.com/titles/vsscala/errata/add?pdf_page=100

IMPLICIT TYPE CONVERSIONS 101

Here’s the code for that:

implicit def convertInt2DateHelper(number: Int) = new DateHelper(number)

val ago = "ago"

val from_now = "from_now"

val past = 2 days ago

val appointment = 5 days from_now

println(past)

println(appointment)

If you run the previous code along with the definition of DateHelper,

you’ll see that Scala automatically converts the given numbers into an

instance of DateHelper and invokes the days() method.

Now that the code works, it’s time to clean it up a bit. We don’t want to

write the implicit converter each time we need the conversion. By tuck-

ing away the converter into a separate singleton object, we get better

reusability and ease of use. Let’s move the converter to the companion

object of DateHelper:

Download TraitsAndTypeConversions/DateHelper.scala

import java.util._

class DateHelper(number: Int) {

def days(when: String) : Date = {

var date = Calendar.getInstance()

when match {

case DateHelper.ago => date.add(Calendar.DAY_OF_MONTH, -number)

case DateHelper.from_now => date.add(Calendar.DAY_OF_MONTH, number)

case _ => date

}

date.getTime()

}

}

object DateHelper {

val ago = "ago"

val from_now = "from_now"

implicit def convertInt2DateHelper(number: Int) = new DateHelper(number)

}

When we import DateHelper, Scala will automatically find the converter

for us. This is because Scala applies conversions in the current scope

and in the scope of what we import.

Report erratum

this copy is (P1.0 printing, June 2009)
Prepared exclusively for sam kaplan

http://media.pragprog.com/titles/vsscala/code/TraitsAndTypeConversions/DateHelper.scala
http://books.pragprog.com/titles/vsscala/errata/add?pdf_page=101

IMPLICIT TYPE CONVERSIONS 102

Here’s an example of using the implicit conversion we wrote in the Date-

Helper:

Download TraitsAndTypeConversions/DaysDSL.scala

import DateHelper._

val past = 2 days ago

val appointment = 5 days from_now

println(past)

println(appointment)

Here’s the result:

Sun Dec 07 13:11:06 MST 2008

Sun Dec 14 13:11:06 MST 2008

Scala has a number of implicit conversions already defined in the Predef

object, which is imported by default. So, for example, when we write 1

to 3, Scala implicitly converts 1 from Int to the rich wrapper RichInt and

invokes its to() method.

Scala applies at most one implicit conversion at a time. The conversion,

in the current scope, is applied when it finds that by converting a type

it can help an operation, method call, or type conversion succeed.

In this chapter, you learned about two interesting scala features, traits

and implicit conversion. These two concepts can help you create exten-

sible code with dynamic behavior beyond what’s provided by one single

class. In the next chapter, you’ll take a look at Scala’s support for col-

lections of objects.

Report erratum

this copy is (P1.0 printing, June 2009)
Prepared exclusively for sam kaplan

http://media.pragprog.com/titles/vsscala/code/TraitsAndTypeConversions/DaysDSL.scala
http://books.pragprog.com/titles/vsscala/errata/add?pdf_page=102

Chapter 8

Using Collections
In this chapter, you’ll learn how to create instances of common Scala

collections and how to iterate through them. You can still use the col-

lections from the JDK such as ArrayList, Vector, and simple arrays, but

in this chapter you’ll focus on the Scala-specific collections List, Set, and

Map and how to work with them.

8.1 Common Scala Collections

Scala’s main collections are List, Set, and Map. As you would expect, a

list is an ordered collection of objects, a set is an unordered collection,

and a map is a dictionary of key-value pairs. Scala favors immutable

collections, even though mutable versions are also provided. If you want

to modify a collection and your operations on the collection are all

within a single thread, you can choose a mutable collection. However, if

you plan to use the collection across threads or actors, the immutable

collections are better. Immutable collections are not only thread safe,

but they are free from side effects and help with program correctness.

You can choose between these versions by selecting a class in one of

these two packages: scala.collection.mutable or scala.collection.immutable.

Download UsingCollections/UsingSet.scala

val colors1 = Set("Blue", "Green", "Red")

var colors = colors1

println("colors1 (colors): " + colors)

colors += "Black"

println("colors: " + colors)

println("colors1: " + colors1)

Prepared exclusively for sam kaplan

http://media.pragprog.com/titles/vsscala/code/UsingCollections/UsingSet.scala

USING A SET 104

In the previous example, we started with a Set of three colors. When we

added the color black, we did not modify the original set. We got a new

set with four elements, as shown here:

colors1 (colors): Set(Blue, Green, Red)

colors: Set(Blue, Green, Red, Black)

colors1: Set(Blue, Green, Red)

By default we used the immutable set. This is because the default

included object Predef provides aliases for Set and Map to point to the

immutable implementations. Set and Map are traits in the Scala pack-

age scala.collection that are refined by corresponding mutable versions

in the package scala.collection.mutable and by immutable versions in

scala.collection.immutable.

In the previous example, we created an instance of Set without using a

new. So, instead of writing the following:

val colors1 = new scala.collection.immutable.Set3[String]("Blue", "Green", "Red")

we can use a concise val colors1 = Set("Blue", "Green", "Red").1 It was able

to figure out that we need a Set[String]. Similarly, if we write Set(1, 2, 3),

we’ll get a Set[Int]. This magic is possible because of a special apply()

method, also called a factory method. A statement like X(...), where X

is a class name or an instance reference, is treated as X.apply(...). So,

Scala automatically calls an apply() method on the companion object of

the class, if present. The apply() method is available on Map and List as

well.

8.2 Using a Set

Suppose we’re writing an RSS feed reader and we want to frequently

update the feeds, but we don’t care about the order. We can store the

feed URLs in a Set. Assume we have the following feeds stored in two

Sets:

val feeds1 = Set("blog.toolshed.com", "pragdave.pragprog.com",

"pragmactic-osxer.blogspot.com", "vita-contemplativa.blogspot.com")

val feeds2 = Set("blog.toolshed.com", "martinfowler.com/bliki")

If we want to update only select feeds from feeds1, say the ones that are

on Blogspot, we can get those feeds using the filter() methods:

val blogSpotFeeds = feeds1 filter (_ contains "blogspot")

println("blogspot feeds: " + blogSpotFeeds.mkString(", "))

1. Set3 is a class that represents an implementation of a set with three elements.

Report erratum

this copy is (P1.0 printing, June 2009)
Prepared exclusively for sam kaplan

http://books.pragprog.com/titles/vsscala/errata/add?pdf_page=104

USING A SET 105

We’ll get this output:

blogspot feeds: pragmactic-osxer.blogspot.com, vita-contemplativa.blogspot.com

The mkString() method helps create a string representation of each ele-

ment of a Set and concatenates the results with the argument string (a

comma in this example).

If we need to merge two Sets of feeds to create a new Set, we can use the

++():

val mergedFeeds = feeds1 ++ feeds2

println("# of merged feeds: " + mergedFeeds.size)

Set will hold an element at most once, so, as you can see in the output,

the common feeds in the two sets will be stored only once in the merged

set:

of merged feeds: 5

If we need to compare notes and find what common feeds we have with

a friend’s, we can import our friend’s feeds and perform the intersect

operation (**()):

val commonFeeds = feeds1 ** feeds2

println("common feeds: " + commonFeeds.mkString(", "))

Here’s the effect of the intersect operation on the two previous feeds:

common feeds: blog.toolshed.com

If we want to prefix each feed with the string “http://,” we can use the

map() method. This method applies the given function value to each

element, collects the result into a Set, and finally returns the resulting

set. If we’d like to access the elements of a Set using an index, we can

copy the elements into an array using the toArray() method:

val urls = feeds1 map ("http://" + _)

println("One url: " + urls.toArray(0))

We should see this:

One url: http://blog.toolshed.com

Finally, when we’re ready to iterate over the feeds and refresh them one

at a time, we can use the built-in iterator foreach() like this:

println("Refresh Feeds:")

feeds1 foreach { feed => println(" Refreshing " + feed) }

Here’s the result:

Refresh Feeds:

Refreshing blog.toolshed.com

Report erratum

this copy is (P1.0 printing, June 2009)
Prepared exclusively for sam kaplan

http://books.pragprog.com/titles/vsscala/errata/add?pdf_page=105

USING A MAP 106

Refreshing pragdave.pragprog.com

Refreshing pragmactic-osxer.blogspot.com

Refreshing vita-contemplativa.blogspot.com

8.3 Using a Map

We just used a Set to store feeds. Suppose we want to attach the feed

author’s name to feeds; we can store it as a key-value pair in a Map:

val feeds = Map("Andy Hunt" -> "blog.toolshed.com",

"Dave Thomas" -> "pragdave.pragprog.com",

"Dan Steinberg" -> "dimsumthinking.com/blog")

If we want to get a Map of feeds for folks whose name starts with “D,”

we can use the filterKeys() method:

val filterNameStartWithD = feeds filterKeys(_ startsWith "D")

println("# of Filtered: " + filterNameStartWithD.size)

Here’s the result:

of Filtered: 2

On the other hand, if we want to filter on the values, in addition to or

instead of the keys, we can use the filter() method. The function value

we provide to filter() receives a (key, value) tuple, and we can use it as

in this example:

val filterNameStartWithDAndBlogInFeed = feeds filter { element =>

val (key, value) = element

(key startsWith "D") && (value contains "blog")

}

println("# of feeds with auth name D* and blog in URL: " +

filterNameStartWithDAndBlogInFeed.size)

Here’s our output:

of feeds with auth name D* and blog in URL: 1

If we want to get a feed for a person, simply use the get() method. Since

there may not be a value for the given key, the return type of get() is

Option[T], and the result may be either a Some[T] or a None, where T is

the type of values in the Map:

println("Get Andy's Feed: " + feeds.get("Andy Hunt"))

println("Get Bill's Feed: " + feeds.get("Bill Who"))

The output from the previous code is shown here:

Get Andy's Feed: Some(blog.toolshed.com)

Get Bill's Feed: None

Report erratum

this copy is (P1.0 printing, June 2009)
Prepared exclusively for sam kaplan

http://books.pragprog.com/titles/vsscala/errata/add?pdf_page=106

USING A MAP 107

Alternately, we can use the apply() method to get the values for a key—

remember, this is the method Scala calls when we use parentheses on a

class or an instance. The apply() method, however, instead of returning

Option[T], returns the value. Unlike get(), if there’s no value for a given

key, it throws an exception. So, make sure to place the code within a

try-catch block:

try {

println("Get Andy's Feed Using apply(): " + feeds("Andy Hunt"))

print("Get Bill's Feed: ")

println(feeds("Bill Who"))

}

catch {

case ex : java.util.NoSuchElementException => println("Not found")

}

Here’s the output from the use of apply():

Get Andy's Feed Using apply(): blog.toolshed.com

Get Bill's Feed: Not found

If we’d like to add a feed, use the update() method. Since we’re working

with an immutable collection, the update() does not affect the original

Map. Instead, it returns a new Map with the added element:

val newFeeds1 = feeds.update("Venkat Subramaniam", "agiledeveloper.com/blog")

println("Venkat's blog in original feeds: " + feeds.get("Venkat Subramaniam"))

println("Venkat's blog in new feed: " + newFeeds1("Venkat Subramaniam"))

We can see the effect of update():

Venkat's blog in original feeds: None

Venkat's blog in new feed: agiledeveloper.com/blog

Instead of calling update() explicitly, you can take advantage of another

Scala trick. If you use the parentheses on a class or instance on the left

side of an assignment, Scala automatically calls the update() method.

So, X() = b is equivalent to X.update(b). If update() takes more than

one parameter, you can place all but the trailing parameter within the

parentheses. So, X(a) = b is equivalent to X.update(a, b).

We can use the implicit call on immutable collections, like this: val

newFeed = feeds("author") = "blog". However, it loses the syntactic elegance

because of multiple assignments, one for the update() and the other to

save the newly created Map. If we were returning the newly created map

from a method, the implicit update() is elegant to use. However, if our

intent is to update the map in place, it makes more sense to use the

implicit call on mutable collections.

Report erratum

this copy is (P1.0 printing, June 2009)
Prepared exclusively for sam kaplan

http://books.pragprog.com/titles/vsscala/errata/add?pdf_page=107

USING A LIST 108

val mutableFeeds = scala.collection.mutable.Map(

"Scala Book Forum" -> "forums.pragprog.com/forums/87")

mutableFeeds("Groovy Book Forum") = "forums.pragprog.com/forums/55"

println("Number of forums: " + mutableFeeds.size)

We get the following result:

Number of forums: 2

8.4 Using a List

Unlike Set and Map, which have mutable and immutable implementa-

tions, List comes only in the immutable flavor. Scala makes it easier and

faster to access the first element of a list using the head method. Every-

thing except the first element can be accessed using the tail method.

Accessing the last element of the list requires traversing the list and so

is more expensive than accessing the head and the tail. So, most opera-

tions on the list are structured around operations on the head and tail.

Let’s continue with the feeds example. We can maintain an ordered

collection of the feeds using a List:

val feeds = List("blog.toolshed.com", "pragdave.pragprog.com",

"dimsumthinking.com/blog")

This creates an instance of List[String]. We can access the elements of the

List using an index from 0 to list.length - 1.2 To access the first element,

we can use either feeds(0) or the head() method:

println("First feed: " + feeds.head)

println("Second feed: " + feeds(1))

The output from the previous code is shown here:

First feed: blog.toolshed.com

Second feed: pragdave.pragprog.com

If we want to prefix an element, that is, place it in the front of the list,

we can use the special method ::(). Read a :: list as “prefix a to the list.”

This method is an operation on the list, even though the list follows the

operator; see Section 8.4, Method Name Convention, on page 111 for

details on how this works.

val prefixedList = "forums.pragprog.com/forums/87" :: feeds

println("First Feed In Prefixed: " + prefixedList.head)

2. When we invoke feeds(1), we’re using List’s apply() method.

Report erratum

this copy is (P1.0 printing, June 2009)
Prepared exclusively for sam kaplan

http://books.pragprog.com/titles/vsscala/errata/add?pdf_page=108

USING A LIST 109

The output from the previous code is shown here:

First Feed In Prefixed: forums.pragprog.com/forums/87

Suppose we want to append a list, say listA, to another, say list. We would

achieve that by actually prefixing list to the listA using the :::() method.

So, the code would be list ::: listA and would read “prefix list to listA.” Since

lists are immutable, we did not affect either one of the previous lists. We

simply created a new one with elements from both. Here’s an example

of appending:

val feedsWithForums =

feeds ::: List("forums.pragprog.com/forums/87", "forums.pragprog.com/forums/55")

println("First feed in feeds with forum: " + feedsWithForums.head)

println("Last feed in feeds with forum: " + feedsWithForums.last)

And here’s the output:

First feed in feeds with forum: blog.toolshed.com

Last feed in feeds with forum: forums.pragprog.com/forums/55

Again, the method :::() is called on the list that follows the operator.

To append an element to our list, we can use the same :::() method.

First we place the element we’d like to append into a list and prefix the

original list to it:

val appendedList = feeds ::: List("agiledeveloper.com/blog")

println("Last Feed In Appended: " + appendedList.last)

We should see this output:

Last Feed In Appended: agiledeveloper.com/blog

Notice that to append an element or a list to another list, we actually

used the prefix operator on the latter. The reason for this is that it’s

much faster to access the head element of a list than to traverse to its

last element. So, the same result is achieved but with better perfor-

mance.

To select only feeds that satisfy some condition, use the filter() method.

If we want to check whether all feeds meet a certain condition, we can

use the forall(). If, on the other hand, we want to know whether any feed

meets a certain condition, exists() will help us.

println("Feeds with blog: " + feeds.filter(_ contains "blog").mkString(", "))

println("All feeds have com: " + feeds.forall(_ contains "com"))

println("All feeds have dave: " + feeds.forall(_ contains "dave"))

println("Any feed has dave: " + feeds.exists(_ contains "dave"))

println("Any feed has bill: " + feeds.exists(_ contains "bill"))

Report erratum

this copy is (P1.0 printing, June 2009)
Prepared exclusively for sam kaplan

http://books.pragprog.com/titles/vsscala/errata/add?pdf_page=109

USING A LIST 110

We’ll get this:

Feeds with blog: blog.toolshed.com, dimsumthinking.com/blog

All feeds have com: true

All feeds have dave: false

Any feed has dave: true

Any feed has bill: false

Suppose we need to know the number of characters we need to display

each feed name. We can use the map() method to work on each element

to get a list of the result, as shown here:

println("Feed url lengths: " + feeds.map(_.length).mkString(", "))

Here’s our output:

Feed url lengths: 17, 21, 23

If we’re interested in the total number of characters of all feeds put

together, we can use the foldLeft() method like this:

val total = feeds.foldLeft(0) { (total, feed) => total + feed.length }

println("Total length of feed urls: " + total)

The output from the previous code is shown here:

Total length of feed urls: 61

Notice that although the previous method is performing the summa-

tion, it did not deal with any mutable state. It is pure functional style. A

new updated value was accumulated as the method progressed through

the elements in the list without changing anything, however.

The foldLeft() method will invoke the given function value (code block) for

each element in the list, starting from the left. It passes two parameters

to the function value. The first parameter is a partial result from the

execution of the function value for the previous element (which is why

it’s called folding—it’s as if the list is folded into the result of these

computations). The second parameter is an element in the list. The

initial value for the partial result is provided as the parameter to the

method (Zero in this example). The foldLeft() method forms a chain of

elements and carries the partial result of computation in the function

value from one element to the next, starting from the left. Similarly,

foldRight() will do the same, starting at the right.

Report erratum

this copy is (P1.0 printing, June 2009)
Prepared exclusively for sam kaplan

http://books.pragprog.com/titles/vsscala/errata/add?pdf_page=110

USING A LIST 111

Scala provides alternate methods to make the previous methods con-

cise.3 The method /:() is equivalent to foldLeft() and \:() to foldRight().

Here is the previous example written using /::

val total2 = (0 /: feeds) { (total, feed) => total + feed.length }

println("Total length of feed urls: " + total2)

The output from the previous code is shown here:

Total length of feed urls: 61

We can reach out to Scala conventions here and make the code even

more concise as follows:

val total3 = (0 /: feeds) { _ + _.length }

println("Total length of feed urls: " + total3)

Here’s our output:

Total length of feed urls: 61

I have shown here some interesting methods of List. There are several

other methods in List that provide additional capabilities. For a complete

documentation, refer to “The Scala Language API” in Appendix A, on

page 211.

Method Name Convention

In Section 3.6, Operator Overloading, on page 43, you saw how Scala

supports operator overloading even though it does not have operators.

Operators are methods with crafty method naming convention. You saw

that the first character of a method decides the precedence (see Sec-

tion 3.6, Operator Overloading, on page 43). Here you see that the last

character of their names also has an effect—it determines the target of

the method call.

The convention of : may surprise you at first, but as you get used to it

(or as you “develop a Scala eye” as I like to put it), you’ll see it improves

fluency. For example, if we want to prefix a value to a list, we can write

it as value :: list. Although it reads “value is prefixed to the list,” the target

of the method is actually the list with the value as the argument, that is,

list.::(value).

3. You will either love this conciseness, like I do, or hate it. I don’t think there will be

anything in between.

Report erratum

this copy is (P1.0 printing, June 2009)
Prepared exclusively for sam kaplan

http://books.pragprog.com/titles/vsscala/errata/add?pdf_page=111

USING A LIST 112

If a method name ends with a colon (:), then the target of the call is

the instance that follows the operator.4 In this next example, ^() is a

method defined on the class Cow, while ^:() is a method defined on the

class Moon:

Download ScalaIdioms/Colon.scala

class Cow {

def ^(moon: Moon) = println("Cow jumped over the moon")

}

class Moon {

def ^:(cow: Cow) = println("This cow jumped over the moon too")

}

Here is an example of using these two methods:

Download ScalaIdioms/Colon.scala

val cow = new Cow

val moon = new Moon

cow ^ moon

cow ^: moon

In the previous code, our calls to the two methods look almost identical,

the cow to the left and the moon to the right of the operators. However,

the first call is on cow, while the second call is on moon; the difference

is so subtle. It can be quite frustrating for someone new to Scala, but

this convention is quite common in list operations, so you’d better get

used to it. The output from the previous code looks like this:

Cow jumped over the moon

This cow jumped over the moon too

The last call in the previous example is equivalent to this code as well:

moon.^:(cow)

In addition to operators that end with :, there are a set of operators that

also are targeted at the instance that follow them. These are the unary

operators +, -, !, and ~. The unary + maps over to a call to unary_+(), the

unary - to unary_-(), and so on.

4. Scala does not permit an operator to succeed a method name with alphanumeric

characters, unless we prefix that operator with an underscore. So, a method named

jumpOver:() is rejected, but jumpOver_:() is accepted.

Report erratum

this copy is (P1.0 printing, June 2009)
Prepared exclusively for sam kaplan

http://media.pragprog.com/titles/vsscala/code/ScalaIdioms/Colon.scala
http://media.pragprog.com/titles/vsscala/code/ScalaIdioms/Colon.scala
http://books.pragprog.com/titles/vsscala/errata/add?pdf_page=112

THE FOR EXPRESSION 113

Here’s an example of defining unary operators on a Sample class:

Download ScalaIdioms/Unary.scala

class Sample {

def unary_+ = println("Called unary +")

def unary_- = println("called unary -")

def unary_! = println("called unary !")

def unary_~ = println("called unary ~")

}

val sample = new Sample

+sample

-sample

!sample

~sample

The output from the previous code is shown here:

Called unary +

called unary -

called unary !

called unary ~

As you get comfortable with Scala, you’ll develop a Scala eye—soon

the mental processing of these notations and conventions will become

subliminal.

8.5 The for Expression

The foreach() method provides internal iterators on collections—you

don’t control the looping. You simply provide code to execute in the

context of each iteration. However, if you’d like to control the looping

or work with multiple collections at the same time, you can use an

external iterator, the for() expression. Let’s look at a simple loop:

Download ScalaIdioms/PowerOfFor.scala

for (i <- 1 to 3) { print("ho ") }

The previous code prints “ho ho ho.” It’s a short form of the general

syntax of the following expression:

for([pattern <- generator; definition*]+; filter*)

[yield] expression

The for expression takes as a parameter one or more generators, with

zero or more definitions and zero or more filters. These are separated

from each other by semicolons. The yield keyword is optional and, if

Report erratum

this copy is (P1.0 printing, June 2009)
Prepared exclusively for sam kaplan

http://media.pragprog.com/titles/vsscala/code/ScalaIdioms/Unary.scala
http://media.pragprog.com/titles/vsscala/code/ScalaIdioms/PowerOfFor.scala
http://books.pragprog.com/titles/vsscala/errata/add?pdf_page=113

THE FOR EXPRESSION 114

present, tells the expression to return a list of values instead of a Unit.

That was a boatload of details, but don’t worry, because we’ll take a

look at it with examples, so you will get quite comfortable with it in no

time.

Let’s start with the yield first. Suppose we want to take values in a range

and multiply each value by 2. Here’s a code example to do that:

Download ScalaIdioms/PowerOfFor.scala

val result = for (i <- 1 to 10)

yield i * 2

The previous code returns a collection of values where each value is a

double of the values in the given range 1 to 10.

We could’ve also performed the previous logic using the map() method

like this:

Download ScalaIdioms/PowerOfFor.scala

val result2 = (1 to 10).map(_ * 2)

Behind the scenes, Scala translates the for expression into an expres-

sion that uses a combination of methods like map() and filter() depend-

ing on the complexity of the expression.

Now suppose we want to double only even numbers in the range. We

can use a filter:

Download ScalaIdioms/PowerOfFor.scala

val doubleEven = for (i <- 1 to 10; if i % 2 == 0)

yield i * 2

Read the previous for expression as “Return a collection of i * 2 where i is

a member of the given range and i is even.” So, the previous expression

is really like a SQL query on a collection of values—this is called list

comprehension in functional programming.

If you find the semicolons in the previous code too noisy, you can drop

them by using curly braces instead of parentheses like this:

for {

i <- 1 to 10

if i % 2 == 0

}

yield i * 2

Report erratum

this copy is (P1.0 printing, June 2009)
Prepared exclusively for sam kaplan

http://media.pragprog.com/titles/vsscala/code/ScalaIdioms/PowerOfFor.scala
http://media.pragprog.com/titles/vsscala/code/ScalaIdioms/PowerOfFor.scala
http://media.pragprog.com/titles/vsscala/code/ScalaIdioms/PowerOfFor.scala
http://books.pragprog.com/titles/vsscala/errata/add?pdf_page=114

THE FOR EXPRESSION 115

We can place a definition along with a generator. Scala defines a new

val with that name through each iteration.

Here is an example of iterating over a collection of Person and printing

their last names:

Download ScalaIdioms/Friends.scala

class Person(val firstName: String, val lastName: String)

object Person {

def apply(firstName: String, lastName: String) : Person =

new Person(firstName, lastName)

}

val friends = List(Person("Brian", "Sletten"), Person("Neal", "Ford"),

Person("Scott", "Davis"), Person("Stuart", "Halloway"))

val lastNames = for (friend <- friends; lastName = friend.lastName) yield lastName

println(lastNames.mkString(", "))

The output from the previous code is shown here:

Sletten, Ford, Davis, Halloway

The previous code is also an example of the Scala syntax sugar where

the apply() method is working under the covers—the code is concise

and readable, but we’ve created a new list of Persons.

If you provide more than one generator in the for expression, each gen-

erator forms an inner loop, with the rightmost generator controlling the

innermost loop. Here is an example of using two generators:

Download ScalaIdioms/MultipleLoop.scala

for (i <- 1 to 3; j <- 4 to 6) {

print("[" + i + "," + j + "] ")

}

The output from the previous code is shown here:

[1,4] [1,5] [1,6] [2,4] [2,5] [2,6] [3,4] [3,5] [3,6]

In this chapter, you learned how to use the three major collections

provided in Scala. You also saw the power of the for() expression and

list comprehension. Next you’ll learn about pattern matching, one of

the most powerful features in Scala.

Report erratum

this copy is (P1.0 printing, June 2009)
Prepared exclusively for sam kaplan

http://media.pragprog.com/titles/vsscala/code/ScalaIdioms/Friends.scala
http://media.pragprog.com/titles/vsscala/code/ScalaIdioms/MultipleLoop.scala
http://books.pragprog.com/titles/vsscala/errata/add?pdf_page=115

Chapter 9

Pattern Matching and
Regular Expressions

Pattern matching is the second most widely used feature of Scala, after

function values and closures. You will use it quite extensively when

you receive messages from actors in concurrent programming. Scala

has superb support for pattern matching for processing the messages

you receive in different formats and types. In this chapter, you’ll learn

about Scala’s mechanism for pattern matching, the case classes, and

the extractors, as well as how to create and use regular expressions.

9.1 Matching Literals and Constants

You’ll usually pass messages between actors as a String literal, a num-

ber, or a tuple. If your message is a literal, you don’t have to do much to

match it. Simply type the literal you’d like to match, and you’re done.

Suppose we need to determine activities for different days of the week.

Assume we get the day as a String and we respond with our activity for

that day. Here is an example of how we can pattern match the days:

Download PatternMatching/MatchLiterals.scala

def activity(day: String) {

day match {

case "Sunday" => print("Eat, sleep, repeat... ")

case "Saturday" => print("Hangout with friends... ")

case "Monday" => print("...code for fun...")

case "Friday" => print("...read a good book...")

}

}

List("Monday", "Sunday", "Saturday").foreach { activity }

Prepared exclusively for sam kaplan

http://media.pragprog.com/titles/vsscala/code/PatternMatching/MatchLiterals.scala

MATCHING A WILDCARD 117

The match is an expression that acts on Any. In this example, we’re

using it on a String. It performs pattern matching on the target and

invokes the appropriate case expression with the matching pattern

value. The output from the previous code is shown here:

...code for fun...Eat, sleep, repeat... Hangout with friends...

You can directly match against literals and constants. The literals can

be different types; the match does not care. However, the type of the

target object to the left of match may restrict the type. In the previous

example, since this was of type String, the match could be any string.

The case expression is not limited to use within the match statement.

Here, the block of code containing the case expression(s) is simply a

function value.

9.2 Matching a Wildcard

In the previous example, we did not handle all possible values of day.

If there is a value that is not matched by one of the case expressions,

we’ll get a MatchError exception. We can control the values day can take

by making the parameter an enum instead of a String. Even then we may

not want to handle each day of the week. We can avoid the exception

by using a wildcard:

Download PatternMatching/Wildcard.scala

object DayOfWeek extends Enumeration {

val SUNDAY = Value("Sunday")

val MONDAY = Value("Monday")

val TUESDAY = Value("Tuesday")

val WEDNESDAY = Value("Wednesday")

val THURSDAY = Value("Thursday")

val FRIDAY = Value("Friday")

val SATURDAY = Value("Saturday")

}

def activity(day: DayOfWeek.Value) {

day match {

case DayOfWeek.SUNDAY => println("Eat, sleep, repeat...")

case DayOfWeek.SATURDAY => println("Hangout with friends")

case _ => println("...code for fun...")

}

}

activity(DayOfWeek.SATURDAY)

activity(DayOfWeek.MONDAY)

Report erratum

this copy is (P1.0 printing, June 2009)
Prepared exclusively for sam kaplan

http://media.pragprog.com/titles/vsscala/code/PatternMatching/Wildcard.scala
http://books.pragprog.com/titles/vsscala/errata/add?pdf_page=117

MATCHING TUPLES AND LISTS 118

In the previous code, we’ve defined an enumeration for the days of the

week. We can use Java enums in Scala. However, if we want to cre-

ate them in Scala, extend a singleton object from scala.Enumeration as

shown. In our activity() method, we matched SUNDAY and SATURDAY and

let the wildcard, represented by an underscore (_), handle the rest of

the days.

If we run the code, we’ll get this match of SATURDAY followed by MONDAY

being matched by the wildcard:

Hangout with friends

...code for fun...

9.3 Matching Tuples and Lists

Matching literals and enumerations is simple. But, soon you’ll realize

your messages are not single literals but a sequence of values in the

form of either tuples or lists. You can use the case expression to match

against tuples and lists. Suppose we are writing a service that needs

to receive and process geographic coordinates. The coordinates can be

represented as a tuple that we can match like this:

Download PatternMatching/MatchTuples.scala

def processCoordinates(input: Any) {

input match {

case (a, b) => printf("Processing (%d, %d)... ", a, b)

case "done" => println("done")

case _ => null

}

}

processCoordinates((39, -104))

processCoordinates("done")

This matches any tuple with two values in it, plus the literal “done.”

We’ll get something like this:

Processing (39, -104)... done

If the argument we send is not a tuple with two elements or does not

match “done,” then the wildcard will handle it. The printf() statement

has a hidden assumption that the values in the tuple are integers. If

they’re not, our code will fail at runtime—that’s not good. We can avoid

that by providing type information for matches, as you’ll see in Sec-

tion 9.4, Matching with Types and Guards, on the next page.

Report erratum

this copy is (P1.0 printing, June 2009)
Prepared exclusively for sam kaplan

http://media.pragprog.com/titles/vsscala/code/PatternMatching/MatchTuples.scala
http://books.pragprog.com/titles/vsscala/errata/add?pdf_page=118

MATCHING WITH TYPES AND GUARDS 119

You can match Lists the same way you matched tuples. Simply provide

the elements you care about, and you can leave out the rest using the

array explosion symbol (_*):

Download PatternMatching/MatchList.scala

def processItems(items: List[String]) {

items match {

case List("apple", "ibm") => println("Apples and IBMs")

case List("red", "blue", "white") => println("Stars and Stripes...")

case List("red", "blue", _*) => println("colors red, blue, ... ")

case List("apple", "orange", otherFruits @ _*) =>

println("apples, oranges, and " + otherFruits)

}

}

processItems(List("apple", "ibm"))

processItems(List("red", "blue", "green"))

processItems(List("red", "blue", "white"))

processItems(List("apple", "orange", "grapes", "dates"))

In the first and second case, we expected two and three specific items

in the List, respectively. In the remaining two cases, we expect two or

more items, but the first two items must be as specified. If we need

to reference the remaining matching elements, we can place a variable

name (like otherFruits) before a special @ symbol as in the previous code.

The output from the previous code is shown here:

Apples and IBMs

colors red, blue, ...

Stars and Stripes...

apples, oranges, and List(grapes, dates)

9.4 Matching with Types and Guards

You will often want to handle a sequence of values that are not all of the

same type. You may want to handle a sequence of, say, Ints differently

from how you handle a sequence of Doubles. Scala lets you ask the case

statement to match against types.

Download PatternMatching/MatchTypes.scala

Line 1 def process(input: Any) {
- input match {
- case (a: Int, b: Int) => print("Processing (int, int)... ")
- case (a: Double, b: Double) => print("Processing (double, double)... ")
5 case msg : Int if (msg > 1000000) => println("Processing int > 1000000")
- case msg : Int => print("Processing int... ")
- case msg: String => println("Processing string... ")
- case _ => printf("Can't handle %s... ", input)
- }

10 }
-

Report erratum

this copy is (P1.0 printing, June 2009)
Prepared exclusively for sam kaplan

http://media.pragprog.com/titles/vsscala/code/PatternMatching/MatchList.scala
http://media.pragprog.com/titles/vsscala/code/PatternMatching/MatchTypes.scala
http://books.pragprog.com/titles/vsscala/errata/add?pdf_page=119

PATTERN VARIABLES AND CONSTANTS IN CASE EXPRESSIONS 120

- process((34.2, -159.3))
- process(0)
- process(1000001)

15 process(2.2)

You can see how to specify types for single values and elements of a

tuple in the case. In addition to types, you can also use guards. In

addition to matching the pattern, the guard provided using the if clause

must also be satisfied for the expression to evaluate.

The order of the case is important. Scala will evaluate from the top

down. So, for example, we can’t swap line numbers 5 and 6 in the

previous code. The output from the previous code is shown here:

Processing (double, double)... Processing int... Processing int > 1000000

Can't handle 2.2...

9.5 Pattern Variables and Constants in case Expressions

You already saw how to define placeholder vals for what you’re match-

ing (like a and b when matching tuples). These are pattern variables.

However, you have to use caution when defining them. By convention,

Scala expects the pattern variables to start with a lowercase letter and

expects constants to start with an uppercase letter. So, the following

code will not compile. Scala will assume the max is a pattern variable

even though we have a field with that name in the current scope. Scala,

however, will match the MIN without trouble because it starts with an

uppercase letter.

Download PatternMatching/MatchWithValsError.scala

class Sample {

val max = 100

val MIN = 0

def process(input: Int) {

input match {

case max => println("Don't try this at home") // Compiler error

case MIN => println("You matched min")

case _ => println("Unreachable!!")

}

}

}

You can refer to the offending fields in the case expression with explicit

scoping (like ObjectName.fieldName if ObjectName is a singleton or com-

panion object or obj.fieldName if obj is a reference).

Report erratum

this copy is (P1.0 printing, June 2009)
Prepared exclusively for sam kaplan

http://media.pragprog.com/titles/vsscala/code/PatternMatching/MatchWithValsError.scala
http://books.pragprog.com/titles/vsscala/errata/add?pdf_page=120

PATTERN MATCHING XML FRAGMENTS 121

The previous code can be fixed like this:

Download PatternMatching/MatchWithValsOK.scala

class Sample {

val max = 100

val MIN = 0

def process(input: Int) {

input match {

case this.max => println("You matched max")

case MIN => println("You matched min")

case _ => println("Unmatched")

}

}

}

new Sample().process(100)

new Sample().process(0)

new Sample().process(10)

Now we’ll get this output:

You matched max

You matched min

Unmatched

In a realistic application, you will soon outgrow matching simple liter-

als, lists, tuples, and objects. You’ll want to match against more compli-

cated patterns. Two options are available for you in Scala: case classes

and extractors. Let’s take a look at each of these in turn.

9.6 Pattern Matching XML Fragments

Scala allows you to easily pattern match XML fragments. You don’t have

to embed XML into strings. You can directly place the XML fragments

as parameters to the case statement. The capability is quite powerful;

however, because we need to first discuss XML handling in Scala, I’ll

defer this topic to Chapter 14, Using Scala, on page 187.

9.7 Matching Using case Classes

case classes are special classes that are used in pattern matching

with case expressions. Suppose we want to receive and process stock-

trading transactions. The messages for selling and buying might be

accompanied with information such as the name of a stock and a quan-

tity. It is convenient to store this information in objects, but how would

Report erratum

this copy is (P1.0 printing, June 2009)
Prepared exclusively for sam kaplan

http://media.pragprog.com/titles/vsscala/code/PatternMatching/MatchWithValsOK.scala
http://books.pragprog.com/titles/vsscala/errata/add?pdf_page=121

MATCHING USING CASE CLASSES 122

we pattern match them? This is the purpose of case classes. These are

classes that the pattern matcher readily recognizes and matches. Here

is an example of a few case classes:

Download PatternMatching/TradeProcessor.scala

abstract case class Trade()

case class Sell(stockSymbol: String, quantity: Int) extends Trade

case class Buy(stockSymbol: String, quantity: Int) extends Trade

case class Hedge(stockSymbol: String, quantity: Int) extends Trade

We’ve defined Trade as abstract since we don’t expect instances of it. We

have extended Sell, Buy, and Hedge from it. These three take a stock

symbol and quantity as parameters.

Now we can use these in case statements, as shown here:

Download PatternMatching/TradeProcessor.scala

class TradeProcessor {

def processTransaction(request : Trade) {

request match {

case Sell(stock, 1000) => println("Selling 1000-units of " + stock)

case Sell(stock, quantity) =>

printf("Selling %d units of %s\n", quantity, stock)

case Buy(stock, quantity) if (quantity > 2000) =>

printf("Buying %d (large) units of %s\n", quantity, stock)

case Buy(stock, quantity) =>

printf("Buying %d units of %s\n", quantity, stock)

}

}

}

We match the request against Sell and Buy. The stock symbol and quan-

tity we receive are matched and stored in the pattern variables stock

and quantity, respectively. We can specify constant values (like 1000 for

quantity) or even use a guarded match (like checking if quantity > 2000).

Here is an example of using the TradeProcessor class:

Download PatternMatching/TradeStock.scala

val tradeProcessor = new TradeProcessor

tradeProcessor.processTransaction(Sell("GOOG", 500))

tradeProcessor.processTransaction(Buy("GOOG", 700))

tradeProcessor.processTransaction(Sell("GOOG", 1000))

tradeProcessor.processTransaction(Buy("GOOG", 3000))

The output from the previous code is shown here:

Selling 500 units of GOOG

Buying 700 units of GOOG

Selling 1000-units of GOOG

Buying 3000 (large) units of GOOG

Report erratum

this copy is (P1.0 printing, June 2009)
Prepared exclusively for sam kaplan

http://media.pragprog.com/titles/vsscala/code/PatternMatching/TradeProcessor.scala
http://media.pragprog.com/titles/vsscala/code/PatternMatching/TradeProcessor.scala
http://media.pragprog.com/titles/vsscala/code/PatternMatching/TradeStock.scala
http://books.pragprog.com/titles/vsscala/errata/add?pdf_page=122

MATCHING USING CASE CLASSES 123

In processTransaction(), we did not match all possible types of Trades;

we skipped Hedge. This will be a problem at runtime if a Hedge is

received. However, Scala does not know how many case classes inherit

from Trade. After all, we may have extended other case classes in other

files. Scala can, however, help if we tell Scala that we have no more

classes than presented in this file. We can do this by using an unusual

combination of sealed abstract, as shown here:

sealed abstract case class Trade()

case class Sell(stockSymbol: String, quantity: Int) extends Trade

case class Buy(stockSymbol: String, quantity: Int) extends Trade

case class Hedge(stockSymbol: String, quantity: Int) extends Trade

Now, if we compile the TradeProcessor class, the Scala compiler will yell

out “warning: match is not exhaustive!” Add a case for Hedge to fix

this warning. In the previous example, all the concrete case classes

took parameters. If you have a case class that takes no parameter,

remember to place parentheses when you use it (see “Hittin’ the Edge

Cases” in Appendix A, on page 211). In the following example, we have

case classes that don’t take any parameters:

Download PatternMatching/ThingsAcceptor.scala

import scala.actors._

import Actor._

case class Apple()

case class Orange()

case class Book ()

class ThingsAcceptor {

def acceptStuff(thing: Any) {

thing match {

case Apple() => println("Thanks for the Apple")

case Orange() => println("Thanks for the Orange")

case Book() => println("Thanks for the Book")

case _ => println("Excuse me, why did you send me a " + thing)

}

}

}

In the following code, we forgot to place parentheses next to Apple in

one of the calls:

Download PatternMatching/UseThingsAcceptor.scala

val acceptor = new ThingsAcceptor

acceptor.acceptStuff(Apple())

acceptor.acceptStuff(Book())

acceptor.acceptStuff(Apple)

Report erratum

this copy is (P1.0 printing, June 2009)
Prepared exclusively for sam kaplan

http://media.pragprog.com/titles/vsscala/code/PatternMatching/ThingsAcceptor.scala
http://media.pragprog.com/titles/vsscala/code/PatternMatching/UseThingsAcceptor.scala
http://books.pragprog.com/titles/vsscala/errata/add?pdf_page=123

MATCHING USING EXTRACTORS 124

The result of the previous calls is shown here:

Thanks for the Apple

Thanks for the Book

Excuse me, why did you send me a <function>

When we forgot the parentheses, instead of sending an instance of the

case class, we are sending its companion object. The companion object

mixes in the scala.Function0 trait, meaning it can be treated as a func-

tion. So, we end up sending in a function instead of an instance of the

case class. If the acceptStuff() method received an instance of a case

class named Thing, this would not be a problem. However, when you

pass messages between actors, you can’t control what is sent to your

actors in such a type-safe manner at compile time. So, use caution

when passing case classes.

Although the Scala compiler may evolve to fix the previous problem,

these kinds of edge cases can still arise. This emphasizes the need for

good testing even in a statically typed language (see Chapter 12, Unit

Testing with Scala, on page 167).

9.8 Matching Using Extractors

You can take pattern matching to the next level of matching arbitrary

patterns using Scala extractors. As the name indicates, an extractor

will extract matching parts from the input. Suppose we are writing a

service that will process stock-related input. The first task on hand is

for us to receive a stock symbol and return the price for that stock (we’ll

print out the result for illustrative purposes here). Here is an example

of calls we can expect:

StockService process "GOOG"

StockService process "IBM"

StockService process "ERR"

The process() method needs to validate if the given symbol is valid and,

if it is, return the price for it. Here is the code for that:

object StockService {

def process(input : String) {

input match {

case Symbol() => println("Look up price for valid symbol " + input)

case _ => println("Invalid input " + input)

}

}

}

Report erratum

this copy is (P1.0 printing, June 2009)
Prepared exclusively for sam kaplan

http://books.pragprog.com/titles/vsscala/errata/add?pdf_page=124

MATCHING USING EXTRACTORS 125

The process() method performs pattern matching using the yet-to-be-

defined extractor Symbol. If the extractor determines the symbol is valid,

it returns true; otherwise, it returns false. If it returns true, the expres-

sion associated with the case is executed. Otherwise, the pattern match

continues to the next case. Let’s take a look at the extractor:

object Symbol {

def unapply(symbol : String) : Boolean = symbol == "GOOG" || symbol == "IBM"

// you'd look up database above... here only GOOG and IBM are recognized

}

The extractor has one method named unapply() that accepts the value

we’d like to match. The match expression automatically sends the input

as a parameter to the unapply() method when case Symbol() => ... is exe-

cuted. When we execute the previous three pieces of code (remember to

put the sample calls to the service toward the bottom of your file), we

will get the following output:

Look up price for valid symbol GOOG

Look up price for valid symbol IBM

Invalid input ERR

The unapply() may strike you as an odd name for a method. You may

expect a method like evaluate() for the extractor. The reason for this

method name is that the extractor can take an optional apply() method.

These two methods, apply() and unapply(), perform the opposite actions.

The unapply() breaks down the object into pieces that match a pattern,

while the apply() is intended to optionally put it back together.

Now that we are able to ask for a stock quote, the next task given to

us, for our service, is to set the price of a stock. Assume that the mes-

sage for this arrives in the format “SYMBOL:PRICE.” We need to pat-

tern match this format and take action. Here is the modified process()

method to handle this additional task:

Download PatternMatching/Extractor.scala

object StockService {

def process(input : String) {

input match {

case Symbol() => println("Look up price for valid symbol " + input)

case ReceiveStockPrice(symbol, price) =>

printf("Received price %f for symbol %s\n", price, symbol)

case _ => println("Invalid input " + input)

}

}

}

Report erratum

this copy is (P1.0 printing, June 2009)
Prepared exclusively for sam kaplan

http://media.pragprog.com/titles/vsscala/code/PatternMatching/Extractor.scala
http://books.pragprog.com/titles/vsscala/errata/add?pdf_page=125

MATCHING USING EXTRACTORS 126

We’ve added a new case with a yet-to-be-written extractor ReceiveStock-

Price. This extractor will be different from the Symbol extractor we wrote

earlier. The latter simply returned a boolean result. ReceiveStockPrice,

however, needs to parse the input and return to us two values, symbol

and price. These are specified as arguments to ReceiveStockPrice in the

case statement; however, these are not passed in arguments. These are

arguments that are passed out from the extractor. So, we’re not sending

the values for symbol and price. Instead, we are receiving them.

Let’s take a look at the ReceiveStockPrice extractor. As you’d expect,

it should have an unapply() that will split input over the : charac-

ter and return a tuple of symbol and price. However, there is one

catch; the input may not conform to the format “SYMBOL:PRICE.”

To handle this possibility, the return type of this method should be

Option[(String, Double)], and at runtime we’ll receive either Some(String,

Double) or None.1 Here’s the code for the extractor ReceiveStockPrice:

Download PatternMatching/Extractor.scala

object ReceiveStockPrice {

def unapply(input: String) : Option[(String, Double)] = {

try {

if (input contains ":") {

val splitQuote = input split ":"

Some(splitQuote(0), splitQuote(1).toDouble)

}

else {

None

}

}

catch {

case _ : NumberFormatException => None

}

}

}

Here’s how we might use the updated service:

Download PatternMatching/Extractor.scala

StockService process "GOOG"

StockService process "GOOG:310.84"

StockService process "GOOG:BUY"

StockService process "ERR:12.21"

1. See Section 5.4, Option Type, on page 68 for a discussion on Option[T], Some[T], and

None.

Report erratum

this copy is (P1.0 printing, June 2009)
Prepared exclusively for sam kaplan

http://media.pragprog.com/titles/vsscala/code/PatternMatching/Extractor.scala
http://media.pragprog.com/titles/vsscala/code/PatternMatching/Extractor.scala
http://books.pragprog.com/titles/vsscala/errata/add?pdf_page=126

MATCHING USING EXTRACTORS 127

The output from the previous code is shown here:

Look up price for valid symbol GOOG

Received price 310.840000 for symbol GOOG

Invalid input GOOG:BUY

Received price 12.210000 for symbol ERR

The code handled the first three requests well. It accepted what’s valid

and rejected what was not. The last request, however, did not go well.

It should reject the request for invalid symbol ERR, even though the

input was in a valid format. There are two ways we can handle that.

One is to check whether the symbol is valid within ReceiveStockPrice.

However, this will result in a duplication of effort. Alternately, we can

apply multiple pattern matches in one case statement. Let’s modify the

process() method to do this:

case ReceiveStockPrice(symbol @ Symbol(), price) =>

printf("Received price %f for symbol %s\n", price, symbol)

We first apply the ReceiveStockPrice extractor, which returns a pair of

results if successful. On the first result (symbol), we further apply the

Symbol extractor to validate the symbol. We can intercept this symbol on

its way from one extractor to another using a pattern variable followed

by the @ symbol, as shown in the previous code.

Now if we rerun the sample calls on this modified service, we’ll get the

following output:

Look up price for valid symbol GOOG

Received price 310.840000 for symbol GOOG

Invalid input GOOG:BUY

Invalid input ERR:12.21

You see how powerful extractors are. They allow you to match arbi-

trary patterns. You can pretty much take control of the matching in the

unapply() method and return as many matching parts as you desire.

Although this absolute power is very useful, if you can tailor your pat-

tern into a regular expression, you don’t have to go to those lengths

to create a separate singleton extractor object. You’ll see how to use

regular expressions next.

Report erratum

this copy is (P1.0 printing, June 2009)
Prepared exclusively for sam kaplan

http://books.pragprog.com/titles/vsscala/errata/add?pdf_page=127

REGULAR EXPRESSIONS 128

9.9 Regular Expressions

Scala supports regular expressions2 through classes in the scala.util.

matching package. When you create a regular expression, you’re work-

ing with an instance of the Regex class in that package. Suppose we

want to check whether a given String contains either the word Scala or

the word scala:

Download PatternMatching/RegularExpr.scala

val pattern = "(S|s)cala".r

val str = "Scala is scalable and cool"

println(pattern findFirstIn str)

We create a String and call the r() method on it. Scala implicitly converts

the String to a RichString and invokes that method to get an instance of

Regex. Of course, if our regular expression needs escape characters,

we’re better off using raw strings instead of strings. It’s much easier to

write and read """\d2:\d2:\d4""" than "\\d2:\\d2:\\d4".

To find a first match of the regular expression, simply call the findFirstIn()

method. In the previous example, this will find the word Scala from the

given text.

If instead of finding only the first occurrence we’d like to find all occur-

rences of the matching word, we can use the findAllIn() method, as

shown here. This will return a collection of all matching words. In this

example, that would be (Scala, scala).

Download PatternMatching/RegularExpr.scala

println((pattern findAllIn str).mkString(", "))

In the previous code, we’ve concatenated the resulting list of elements

using the mkString() method.

If we’d like to replace matching text, we can use replaceFirstIn() to replace

the first match (as in the following example) or replaceAllIn() to replace

all occurrences:

Download PatternMatching/RegularExpr.scala

println("cool".r replaceFirstIn(str, "awesome"))

2. For a detailed discussion on regular expressions, refer to Jeffrey E. F. Friedl’s Mas-

tering Regular Expressions [Fri97].

Report erratum

this copy is (P1.0 printing, June 2009)
Prepared exclusively for sam kaplan

http://media.pragprog.com/titles/vsscala/code/PatternMatching/RegularExpr.scala
http://media.pragprog.com/titles/vsscala/code/PatternMatching/RegularExpr.scala
http://media.pragprog.com/titles/vsscala/code/PatternMatching/RegularExpr.scala
http://books.pragprog.com/titles/vsscala/errata/add?pdf_page=128

REGULAR EXPRESSIONS AS EXTRACTORS 129

The output from executing all three of the previous regular expression

methods is shown here:

Some(Scala)

Scala, scala

Scala is scalable and awesome

If you’re already familiar with regular expressions, using them in Scala

is straightforward.

9.10 Regular Expressions as Extractors

Scala regular expressions offer a buy-one-get-one-free option. You cre-

ate a regular expression, and you get an extractor for free. Scala regular

expressions are extractors, so you can readily use them in case expres-

sions. Scala rolls each match you place within parentheses into a pat-

tern variable. So, for example, "(S|s)cala".r will hold an unapply() method

that returns an Option[String]. On the other hand, "(S|s)(cala)".r’s unapply()

will return Option[String, String]. Let’s explore this with an example. Sup-

pose we want to pattern match “GOOG” stocks and get the price. Here

is a way to do that using regular expressions:

Download PatternMatching/MatchUsingRegex.scala

def process(input : String) {

val GoogStock = """^GOOG:(\d*\.\d+)""".r

input match {

case GoogStock(price) => println("Price of GOOG is " + price)

case _ => println("not processing " + input)

}

}

process("GOOG:310.84")

process("GOOG:310")

process("IBM:84.01")

We created a regular expression to match a string that starts with the

“GOOG:” followed by a positive decimal number. We stored that in a

val named GoogStock. Behind the scenes, Scala created an unapply()

method for this extractor. It will return the value that matches the pat-

tern within the parentheses—price:

Price of GOOG is 310.84

not processing GOOG:310

not processing IBM:84.01

Report erratum

this copy is (P1.0 printing, June 2009)
Prepared exclusively for sam kaplan

http://media.pragprog.com/titles/vsscala/code/PatternMatching/MatchUsingRegex.scala
http://books.pragprog.com/titles/vsscala/errata/add?pdf_page=129

REGULAR EXPRESSIONS AS EXTRACTORS 130

The extractor we just created is not really reusable. It looks for the

symbol “GOOG,” but if we want to look for other symbols, that’s not

very useful. With hardly any effort, we can make it reusable:

def process(input : String) {

val MatchStock = """^(.+):(\d*\.\d+)""".r

input match {

case MatchStock("GOOG", price) => println("Price of GOOG is " + price)

case MatchStock("IBM", price) => println("IBM's trading at " + price)

case MatchStock(symbol, price) => printf("Price of %s is %s\n", symbol, price)

case _ => println("not processing " + input)

}

}

process("GOOG:310.84")

process("IBM:84.01")

process("GE:15.96")

In the previous example, our regular expression matches a string that

starts with any character or digit, followed by a colon and then a pos-

itive decimal number. The part before the : and the part after it are

returned as two separate pattern variables by the generated unapply()

method. We can match for specific stocks like GOOG and IBM, or we

can simply receive whatever symbol that’s given to us, as shown in the

previous case expressions. The output from the previous code is shown

here:

Price of GOOG is 310.84

IBM's trading at 84.01

Price of GE is 15.96

As you can see, Scala takes a no-sweat approach to using regular

expressions in pattern matching.

In this chapter, you saw one of the most powerful features of Scala.

Right off the shelf, you can match simple literals, types, tuples, lists,

and so on. If you want a bit more control on the matching, you can

use the case class or the all-too-charming extractors. You also saw how

regular expressions manifest as extractors. If you want to match simple

literals, the match is quite adequate. If you want to match arbitrary pat-

terns, Scala extractors are your friend. Next you’ll see how concurrent

programming in Scala puts this feature to good use.

Report erratum

this copy is (P1.0 printing, June 2009)
Prepared exclusively for sam kaplan

http://books.pragprog.com/titles/vsscala/errata/add?pdf_page=130

Chapter 10

Concurrent Programming
Scala makes it easy to implement multithreaded applications. In Java,

you create a thread and then struggle to control it to avoid data con-

tention using synchronization primitives, notifies, and waits.1 Even

then you question whether the code is right. Is there data contention or

a possibility of deadlock lurking?

In Scala, you communicate between threads using an event-based

model2 to send immutable objects as messages. In this chapter, I’ll

introduce the concept of Scala’s actor model. We’ll use that together

with all the concepts you have learned in this book to develop concur-

rent applications in Scala.

10.1 Promote Immutability

In the functional style of programming, you lean toward immutable

objects. You can’t modify the state of an immutable object once you

create it. Although Java has immutable classes such as String, Class,

and Integer, it’s more common to use mutable objects and command

query separation (see “Command Query Separation” in Appendix A, on

page 211). You create an instance and invoke mutators or modifiers to

change the state of the object. Let’s spend a minute on why mutable

objects are not desirable.

1. Full books, such as Doug Lea’s Concurrent Programming in Java [Lea00] and Brian

Goetz’s Java Concurrency in Practice [Goe06], have been written on how to conquer

threading in Java.

2. Scala’s actor model is similar to Erlang’s model. See Joe Armstrong’s Programming

Erlang: Software for a Concurrent World [Arm07] or Robert Virding et al.’s Concurrent

Programming in Erlang [VWWA96].

Prepared exclusively for sam kaplan

PROMOTE IMMUTABILITY 132

In the following Java class, the Counter class has a field named count.

That field can be accessed and modified using a getter and setter.

//Java code

public class Counter {

private int count;

synchronized public int getCount() { return count; }

synchronized public void setCount(int value) { count = value; }

}

In order to protect against multiple threads accessing the count, we

have promptly synchronized the two methods. Unfortunately, this is

not adequate. The following code is very problematic:

//Java code

int currentValue = counter.getCount();

counter.setCount(currentValue + 100);

Suppose an instance of the Counter is used by multiple threads and

each thread is performing an operation like in the previous example.

The value of count is totally unpredictable. Even though both the meth-

ods of the Counter are synchronized, between the call to getCount() and

the call to setCount() another thread may gain the monitor or lock and

modify the value. This is an easy trap to fall into. We have to place the

two calls within a proper synchronized block for the previous code to be

thread safe. Furthermore, we have to check to make sure this is being

done correctly at every place where the Counter is used. That is a tall

order, and for any nontrivial application, it is extremely difficult, if not

impossible, to write thread-safe code with mutable objects. This simple

example is only the tip of the iceberg.

Immutable objects strike this problem at the root. Since there’s no

state to change, there’s no contention to worry about. If you want to

make a change, you simply create another instance of the immutable

object. This may seem a bit strange if you’re not used to functional pro-

gramming. However, as you get comfortable with the style, you’ll real-

ize you’re not facing the threading-related issues you currently fight.

Immutable objects offer quite a few advantages:

• They are inherently thread safe. Since you can’t modify their state,

you can freely pass them between threads without fear of con-

tention. There is no need to synchronize them.

• They are simple and easy to work with since they don’t have a

complicated state transition.

Report erratum

this copy is (P1.0 printing, June 2009)
Prepared exclusively for sam kaplan

http://books.pragprog.com/titles/vsscala/errata/add?pdf_page=132

CONCURRENCY USING ACTOR 133

• They can be shared and reused across the application. This can

help ease the burden on resources in your application. For exam-

ple, in the Flyweight pattern,3 immutable objects are used to share

data that is common to several objects.

• They are less error prone. Since you do not arbitrarily modify the

state of objects, you will have fewer errors to deal with. It is easier

to verify the correctness of your code with immutable objects than

with mutable objects.

Even in pure Java code, Joshua Bloch in Effective Java [Blo01] rec-

ommends that we “minimize mutability” and advocates making classes

immutable as much as possible.

Scala’s concurrency model depends on honoring immutability. Scala

expects you to pass immutable objects as messages between actors. In

the rest of this chapter, you will learn how Scala’s support for concur-

rency is lightweight and quite easy to use compared to the concurrency

API provided in Java.

10.2 Concurrency Using Actor

An actor in Scala provides an event-based lightweight thread. To create

an actor, simply use the method named actor() in the scala.actors.Actor

companion object. It accepts a function value/closure as a parame-

ter and starts running as soon as you create it. If you want to send

a message to an actor, use the !() method. To receive a message from

an actor, use the receive() method. The receive() method accepts a clo-

sure as well, and typically you’d use pattern matching to process the

received message.

Let’s look at an example. Assume we need to determine whether a given

number is a perfect number.4

Download ConcurrentProgramming/PerfectNumberFinder.scala

def sumOfFactors(number: Int) = {

(0 /: (1 to number)) { (sum, i) => if (number % i == 0) sum + i else sum }

}

def isPerfect(candidate: Int) = 2 * candidate == sumOfFactors(candidate)

3. See the Flyweight pattern in Gamma et al.’s Design Patterns: Elements of Reusable

Object-Oriented Software [GHJV95].

4. A perfect number is a positive integer whose factors add up to twice the number. For

example, the first known perfect number is 6—its factors 1, 2, 3, 6 add up to 12.

Report erratum

this copy is (P1.0 printing, June 2009)
Prepared exclusively for sam kaplan

http://media.pragprog.com/titles/vsscala/code/ConcurrentProgramming/PerfectNumberFinder.scala
http://books.pragprog.com/titles/vsscala/errata/add?pdf_page=133

CONCURRENCY USING ACTOR 134

This code computes the sum of factors for a given candidate number

sequentially. This code has a problem. For large numbers, the sequen-

tial execution will be slow. Furthermore, if we were running this on a

multicore processor, we would not be taking advantage of the additional

cores. We let a single core do all the hard work, at any given instance,

and have underutilized the other cores.

Let’s exercise the previous code with a few sample numbers,5 as shown

here:

Download ConcurrentProgramming/PerfectNumberFinder.scala

println("6 is perfect? " + isPerfect(6))

println("33550336 is perfect? " + isPerfect(33550336))

println("33550337 is perfect? " + isPerfect(33550337))

The output from the previous code is shown here:

6 is perfect? true

33550336 is perfect? true

33550337 is perfect? false

On my machine, a MacBook Pro with a dual-core processor running

Mac OS X, the two cores combined were utilized between 60 to 95

percent according to the Activity Monitor. The Activity Monitor reports

maximum utilization capacity as 200 percent with two cores. So, a 95

percent utilization indicates only one core was being used effectively

at any given instance for this computation-intensive operation. Or we

could view it as the two cores being used at half their capacity.

By splitting the computation of the sum of factors to multiple threads,

we can gain better throughput. Even on a single-processor machine,

your application may receive more execution opportunity and be more

responsive.

So, we can split the range of numbers from 1 to candidate into multiple

partitions6 and allocate the task of finding the sum for each partition

to separate threads.

5. One of the technical reviewers tried to pass a very large number, close to

scala.Math.MAX_INT, and ran into difficulties. Scala, just like Java, overflows when we

exceed the limit. So, use caution, and check for overflows in your Scala code.

6. Choosing a partition granularity size, however, is tricky. It depends on at what point

the increase in concurrency will offset any coordination overhead.

Report erratum

this copy is (P1.0 printing, June 2009)
Prepared exclusively for sam kaplan

http://media.pragprog.com/titles/vsscala/code/ConcurrentProgramming/PerfectNumberFinder.scala
http://books.pragprog.com/titles/vsscala/errata/add?pdf_page=134

CONCURRENCY USING ACTOR 135

Download ConcurrentProgramming/FasterPerfectNumberFinder.scala

Line 1 import scala.actors.Actor._
-

- def sumOfFactorsInRange(lower: Int, upper: Int, number: Int) = {
- (0 /: (lower to upper)) { (sum, i) => if (number % i == 0) sum + i else sum }
5 }
-

- def isPerfectConcurrent(candidate: Int) = {
- val RANGE = 1000000
- val numberOfPartitions = (candidate.toDouble / RANGE).ceil.toInt

10 val caller = self
-

- for (i <- 0 until numberOfPartitions) {
- val lower = i * RANGE + 1;
- val upper = candidate min (i + 1) * RANGE

15

- actor {
- caller ! sumOfFactorsInRange(lower, upper, candidate)
- }
- }

20

- val sum = (0 /: (0 until numberOfPartitions)) { (partialSum, i) =>
- receive {
- case sumInRange : Int => partialSum + sumInRange
- }

25 }
-

- 2 * candidate == sum
- }
-

30 println("6 is perfect? " + isPerfectConcurrent(6))
- println("33550336 is perfect? " + isPerfectConcurrent(33550336))
- println("33550337 is perfect? " + isPerfectConcurrent(33550337))

There is no synchronize or wait in the previous code. In the isPerfectCon-

current() method, we first partitioned the range of values. For each par-

tition, we delegated the computation of the partial sum of factors to a

separate actor in line number 16. When an actor completes its allo-

cated task, it messages the partial sum to the caller on line number 17.

The caller variable in this closure is bound to the variable in the isPer-

fectConcurrent() method—this variable holds a reference to the actor,

obtained using a call to the self() method, that represents the main

thread. Finally, we receive the messages from the delegated actors, one

at a time, on line number 22. The foldLeft() method (shown here as

method /:()) helps us receive all the partial sums and compute the total

of those partial sums in functional style.

Report erratum

this copy is (P1.0 printing, June 2009)
Prepared exclusively for sam kaplan

http://media.pragprog.com/titles/vsscala/code/ConcurrentProgramming/FasterPerfectNumberFinder.scala
http://books.pragprog.com/titles/vsscala/errata/add?pdf_page=135

CONCURRENCY USING ACTOR 136

There wasn’t much of a time difference between the two approaches.

On my machine, the sequential program took about seven seconds,

while the concurrent program took about five seconds. Since that is

somewhat close, depending on other activities on the system, we may

not be able to observe the difference. The Activity Monitor reported a

120 to 180 percent utilization in the second approach, which indicates

more than one core being utilized at the same time. So, in order to make

it a lot more obvious, let’s find perfect numbers over a range of values:

Download ConcurrentProgramming/FindPerfectNumberOverRange.scala

def countPerfectNumbersInRange(start : Int, end : Int,

isPerfectFinder : Int => Boolean) = {

val startTime = System.nanoTime()

val numberOfPerfectNumbers = (0 /: (start to end)) { (count, candidate) =>

if (isPerfectFinder(candidate)) count + 1 else count

}

val endTime = System.nanoTime()

println("Found " + numberOfPerfectNumbers +

" perfect numbers in given range, took " +

(endTime - startTime)/1000000000.0 + " secs")

}

val startNumber = 33550300

val endNumber = 33550400

countPerfectNumbersInRange(startNumber, endNumber, isPerfect)

countPerfectNumbersInRange(startNumber, endNumber, isPerfectConcurrent)

In countPerfectNumbersInRange(), we count the number of perfect num-

bers in the given range from start to end. The actual method to find out

whether a candidate number is a perfect number is delegated to the

closure, isPerfectFinder, received as a parameter. The time it takes to find

the number of perfect numbers in the given range is computed using

the JDK System.nanoTime() method. We then invoke the countPerfectNum-

bersInRange() twice, first using the sequential implementation isPerfect()

and second using the concurrent implementation isPerfectConcurrent().

The output from the previous code is shown here:

Found 1 perfect numbers in given range, took 322.681763 secs

Found 1 perfect numbers in given range, took 219.511014 secs

This time the sequential computation took nearly two minutes more

than the concurrent implementation to determine the number of per-

fect numbers in a range of 100 values starting from 33,550,300.

Report erratum

this copy is (P1.0 printing, June 2009)
Prepared exclusively for sam kaplan

http://media.pragprog.com/titles/vsscala/code/ConcurrentProgramming/FindPerfectNumberOverRange.scala
http://books.pragprog.com/titles/vsscala/errata/add?pdf_page=136

MESSAGE PASSING 137

10.3 Message Passing

Next let’s look at how messages get from one actor to another. Each

actor has its own message queue—it receives input from an InputChan-

nel[Any] and sends output through an OutputChannel[Any].

Imagine that each actor is using a phone-answering service. There are

calls coming in while the actor is away or unable to answer the phone.

The missed calls may be friends inviting our actor to parties as well as

reminder messages the actor sends to himself. These are all stored in

his voice mail sequentially, and he can retrieve them one at a time at

his convenience. Similarly, the actors leave messages for one another.

An actor is not blocked when it sends a message. An actor is, however,

blocked if it calls the receive() method. On the other hand, an actor

that is busy is not interrupted by a message. Let’s understand these

concepts with an example:

Download ConcurrentProgramming/MessagePassing.scala

import scala.actors.Actor._

var startTime : Long = 0

val caller = self

val engrossedActor = actor {

println("Number of messages received so far? " + mailboxSize)

caller ! "send"

Thread.sleep(3000)

println("Number of messages received while I was busy? " + mailboxSize)

receive {

case msg =>

val receivedTime = System.currentTimeMillis() - startTime

println("Received message " + msg + " after " + receivedTime + " ms")

}

caller ! "received"

}

receive { case _ => }

println("Sending Message ")

startTime = System.currentTimeMillis()

engrossedActor ! "hello buddy"

val endTime = System.currentTimeMillis() - startTime

printf("Took less than %dms to send message\n", endTime)

receive {

case _ =>

}

Report erratum

this copy is (P1.0 printing, June 2009)
Prepared exclusively for sam kaplan

http://media.pragprog.com/titles/vsscala/code/ConcurrentProgramming/MessagePassing.scala
http://books.pragprog.com/titles/vsscala/errata/add?pdf_page=137

MESSAGE PASSING 138

The output from the previous code is shown here:

Number of messages received so far? 0

Sending Message

Took less than 1ms to send message

Number of messages received while I was busy? 1

Received message hello buddy after 3002 ms

From the output you see that the send did not block and the receive

did not interrupt. The message was waiting for the receiving actor until

it called the receive() method.

Sending and receiving messages asynchronously is a good practice—

you can make the most use of concurrency. However, if you are inter-

ested in sending a message and receiving a response synchronously,

you can use the !?() method. This will block until it receives a response

from the actor to which you sent the message. This may lead to a poten-

tial deadlock. A failed actor may lead to failure of other actors and in

turn your application. So if you need to use this method, you may want

to at least use the variation that takes a timeout as a parameter like

this:

Download ConcurrentProgramming/AskFortune.scala

import scala.actors._

import Actor._

val fortuneTeller = actor {

for (i <- 1 to 4) {

Thread.sleep(1000)

receive {

case _ => sender ! "your day will rock! " + i

//case _ => reply("your day will rock! " + i) // same as above

}

}

}

println(fortuneTeller !? (2000, "what's ahead"))

println(fortuneTeller !? (500, "what's ahead"))

val aPrinter = actor {

receive { case msg => println("Ah, fortune message for you-" + msg) }

}

fortuneTeller.send("What's up", aPrinter)

fortuneTeller ! "How's my future?"

Thread.sleep(3000)

Report erratum

this copy is (P1.0 printing, June 2009)
Prepared exclusively for sam kaplan

http://media.pragprog.com/titles/vsscala/code/ConcurrentProgramming/AskFortune.scala
http://books.pragprog.com/titles/vsscala/errata/add?pdf_page=138

THE ACTOR CLASS 139

receive { case msg : String => println("Received " + msg) }

println("Let's get that lost message")

receive { case !(channel, msg) => println("Received belated message " + msg) }

The !?() method will return the result if the actor sends it a message

before the timeout. Otherwise, it has to return None, so this method’s

return type is Option[Any].7 In the previous code we used sender to ref-

erence the actor that sent us the last message. Alternately, we may use

the reply() method to implicitly send the message to the last sender. We

can alter the sender, if we desire. Suppose we want to send a message

to an actor, but we want it to forward the result to some other actor

(like aPrinter in the previous example). We can use the send() method. In

this case, the reply is sent to the delegate we assign instead of the real

caller. You may wonder what happened to the message that we did not

receive when we bailed out of the call to !?() because of a timeout. That

message was eventually received by your actor, and it sent a message

to itself to help process that message later. We can retrieve that mes-

sage using a special case class:8 ![a](val ch : Channel[a], val msg : a). This

case class represents messages sent by an actor to itself. So, while we

continue to process other messages, if we are interested in processing

missed messages, we can use this case class to fetch it, as shown in

the last line of the previous code.

The output from the previous code is shown here:

Some(your day will rock! 1)

None

Ah, fortune message for you-your day will rock! 3

Received your day will rock! 4

Let's get that lost message

Received belated message your day will rock! 2

Now that you have a basic understanding of how actors interact, let’s

dig a little deeper.

10.4 The Actor Class

In the previous example we used the actor() method of the Actor single-

ton object. That is all you need most of the time. However, if you want

7. See Section 5.4, Option Type, on page 68 for details on the Option type.

8. For a discussion of case classes, see Section 9.7, Matching Using case Classes, on

page 121.

Report erratum

this copy is (P1.0 printing, June 2009)
Prepared exclusively for sam kaplan

http://books.pragprog.com/titles/vsscala/errata/add?pdf_page=139

THE ACTOR CLASS 140

to have explicit control over when an actor is started and want to store

more information within an actor, you can create an object that has the

Actor trait. That’s right—Scala’s Actor is simply a trait, and you can mix

it in wherever you like. Here’s an example:

Download ConcurrentProgramming/AnsweringService.scala

import scala.actors._

import Actor._

class AnsweringService(val folks: String*) extends Actor {

def act() {

while(true) {

receive {

case (caller : Actor, name : String, msg : String) =>

caller ! (

if(folks.contains(name))

String.format("Hey it's %s got message %s", name, msg)

else

String.format("Hey there's no one with the name %s here", name)

)

case "ping" => println("ping!")

case "quit" => println("exiting actor")

exit

}

}

}

}

We create a class AnsweringService that mixes in the trait Actor; remem-

ber, if you don’t extend any class, you use the keyword extends to mix

in a trait (see Section 7.1, Traits, on page 91). Our AnsweringService

receives an array of recognized names as the constructor parameter.

We implement the required act() method in our class (this method is

abstract in the Actor trait). Within this method, we process three types

of messages: a tuple and two literals, “ping” and “quit”:

Download ConcurrentProgramming/AnsweringService.scala

val answeringService1 = new AnsweringService("Sara", "Kara", "John")

answeringService1 ! (self, "Sara", "In town")

answeringService1 ! (self, "Kara", "Go shopping?")

answeringService1.start()

answeringService1 ! (self, "John", "Bug fixed?")

answeringService1 ! (self, "Bill", "What's up")

for(i <- 1 to 4) { receive { case msg => println(msg) } }

Report erratum

this copy is (P1.0 printing, June 2009)
Prepared exclusively for sam kaplan

http://media.pragprog.com/titles/vsscala/code/ConcurrentProgramming/AnsweringService.scala
http://media.pragprog.com/titles/vsscala/code/ConcurrentProgramming/AnsweringService.scala
http://books.pragprog.com/titles/vsscala/errata/add?pdf_page=140

THE ACTOR METHOD 141

answeringService1 ! "ping"

answeringService1 ! "quit"

answeringService1 ! "ping"

Thread.sleep(2000)

println("The last ping was not processed")

The output from the previous code is shown here:

Hey it's Sara got message In town

Hey it's Kara got message Go shopping?

Hey it's John got message Bug fixed?

Hey there's no one with the name Bill here

ping!

exiting actor

The last ping was not processed

We send a couple of tuple messages to the actor to begin with. These

messages will not be processed right away because we did not start the

actor yet. They’re queued for later processing. We then call the start()

method and send a couple of more messages. As soon as we called the

start() method, the act() method of the actor was called in a separate

thread. The messages we have sent so far are now processed. We then

loop through and receive the response to the four messages we’ve sent

so far.

You can stop the actor by calling the exit() method. However, this meth-

od simply throws an exception in an attempt to terminate the current

thread of execution, so a good place to call it is within the act() method.

A variation of this method takes a reason for exiting as a parameter;

use it if you care to send a reason. In the previous code, upon receiving

the “quit” message, we call the exit() method to terminate the execution

of this actor. The “ping” message we sent before sending the “quit” mes-

sage was processed. However, the one we sent after was not. You can

see this from the output shown. Any message sent to the actor after

the call to exit() is simply queued. You can restart the actor, if you like,

by calling the start() method. It will then start processing any queued

messages and then process messages received.

10.5 The actor Method

In the previous example, we controlled when the actor was started. If

you don’t really care about explicitly staring an actor, then the actor()

method is the way to go. You can pass data between the actors using

Report erratum

this copy is (P1.0 printing, June 2009)
Prepared exclusively for sam kaplan

http://books.pragprog.com/titles/vsscala/errata/add?pdf_page=141

THE ACTOR METHOD 142

the !() and receive() methods. Let’s start with an example of using the

actor() method and then refactor it to make it concurrent.

Here is a method (isPrime()) that tells us whether a given number is

prime. For illustrative purposes, I have some added print statements in

this method:

Download ConcurrentProgramming/PrimeTeller.scala

import scala.actors._

import Actor._

def isPrime(number: Int) = {

println("Going to find if " + number + " is prime")

var result = true

if (number == 2 || number == 3) result = true

for (i <- 2 to Math.sqrt(number.toDouble).floor.toInt; if result) {

if (number % i == 0) result = false

}

println("done finding if " + number + " is prime")

result

}

If we call the previous method, we will be blocked until we receive a

response. Let’s delegate the responsibility of calling this method to an

actor, as shown here. This actor will determine whether a number is

prime and send an asynchronous response back to the caller.

Download ConcurrentProgramming/PrimeTeller.scala

Line 1 val primeTeller = actor {
2 var continue = true

3

4 while (continue) {
5 receive {
6 case (caller : Actor, number: Int) => caller ! (number, isPrime(number))
7 case "quit" => continue = false

8 }
9 }

10 }

primeTeller is a reference to an anonymous actor created using the actor()

method. It loops through until it receives a “quit” message. Other than

the message to quit, it can also receive a tuple of caller and a number.

Upon receiving this message, it finds out whether the given number is

prime and sends back a message to the caller.

Report erratum

this copy is (P1.0 printing, June 2009)
Prepared exclusively for sam kaplan

http://media.pragprog.com/titles/vsscala/code/ConcurrentProgramming/PrimeTeller.scala
http://media.pragprog.com/titles/vsscala/code/ConcurrentProgramming/PrimeTeller.scala
http://books.pragprog.com/titles/vsscala/errata/add?pdf_page=142

THE ACTOR METHOD 143

Let’s ask this actor to find out whether three arbitrary numbers (2, 131,

132) are prime:

Download ConcurrentProgramming/PrimeTeller.scala

primeTeller ! (self, 2)

primeTeller ! (self, 131)

primeTeller ! (self, 132)

for (i <- 1 to 3) {

receive {

case (number, result) => println(number + " is prime? " + result)

}

}

primeTeller ! "quit"

The previous example processes each number as it is received; you can

see that from the following output. The multiple requests received while

the actor is busy finding out whether a number is prime are queued.

So, the execution is sequential even though we delegated it to an actor.

Going to find if 2 is prime

done finding if 2 is prime

2 is prime? true

Going to find if 131 is prime

done finding if 131 is prime

Going to find if 132 is prime

131 is prime? true

done finding if 132 is prime

132 is prime? false

Fear not, we can quite easily make this example concurrent so it can

process multiple requests for prime numbers at the same time. On line

number 6 in the primeTeller actor, instead of calling the isPrime() method,

delegate that responsibility to another actor and have him forward the

response to your caller:

//case (caller : Actor, number: Int) => caller ! (number, isPrime(number))

case (caller : Actor, number: Int) => actor { caller ! (number, isPrime(number)) }

If we run the code again with the previous change, you’ll notice that

multiple calls to isPrime() are executed concurrently, as shown here:

Going to find if 131 is prime

Going to find if 2 is prime

Going to find if 132 is prime

done finding if 2 is prime

done finding if 131 is prime

2 is prime? true

131 is prime? true

done finding if 132 is prime

132 is prime? false

Report erratum

this copy is (P1.0 printing, June 2009)
Prepared exclusively for sam kaplan

http://media.pragprog.com/titles/vsscala/code/ConcurrentProgramming/PrimeTeller.scala
http://books.pragprog.com/titles/vsscala/errata/add?pdf_page=143

RECEIVE AND RECEIVEWITHIN METHODS 144

You can write concurrent code effortlessly and in a thread-safe manner.

Remember, the key to success here is immutable objects. Nowhere did

we share a common state in objects between threads—I mean actors.

One other observation from the previous output—there is no guarantee

of the ordering of interaction with the actors. Actors will process mes-

sages as they are received and respond as soon as they’re ready. There

is no pre-imposed order on which messages are received and processed

by an actor.

10.6 receive and receiveWithin Methods

The receive() method accepts a function value/closure and returns a

response of the processed message. Here’s an example of receiving

results from the receive() method:

Download ConcurrentProgramming/Receive.scala

import scala.actors.Actor._

val caller = self

val accumulator = actor {

var sum = 0

var continue = true

while (continue) {

sum += receive {

case number : Int => number

case "quit" =>

continue = false

0

}

}

caller ! sum

}

accumulator ! 1

accumulator ! 7

accumulator ! 8

accumulator ! "quit"

receive { case result => println("Total is " + result) }

The accumulator receives and totals the numbers sent to it. When done,

it sends back a message with the sum. The output from the previous

code is shown here:

Total is 16

Report erratum

this copy is (P1.0 printing, June 2009)
Prepared exclusively for sam kaplan

http://media.pragprog.com/titles/vsscala/code/ConcurrentProgramming/Receive.scala
http://books.pragprog.com/titles/vsscala/errata/add?pdf_page=144

RECEIVE AND RECEIVEWITHIN METHODS 145

This code shows that even though receive() has special significance,

it’s just another method. However, the code is blocked when we call

receive() until a response is actually received. This is not good news if

the actor from which we’re expecting a response is not going to send

us one. This would leave us waiting forever—a liveness failure—and

make us quite unpopular among colleagues. We can fix that by using

the receiveWithin() method, which takes a timeout, as shown here:

Download ConcurrentProgramming/ReceiveWithin.scala

import scala.actors._

import scala.actors.Actor._

val caller = self

val accumulator = actor {

var sum = 0

var continue = true

while (continue) {

sum += receiveWithin(1000) {

case number : Int => number

case TIMEOUT =>

println("Timed out! Will return result now")

continue = false

0

}

}

caller ! sum

}

accumulator ! 1

accumulator ! 7

accumulator ! 8

receiveWithin(10000) { case result => println("Total is " + result) }

If nothing is received within the given timeout period, the receiveWithin()

method receives a TIMEOUT message. If we don’t pattern match it, an

exception is thrown. In the previous code, we took the receipt of the

TIMEOUT message as a signal that we’re done with accumulating values.

The output from the previous code is shown here:

Timed out! Will return result now

Total is 16

You should prefer using the receiveWithin() method to the receive() meth-

od to avoid the liveness problem.

Report erratum

this copy is (P1.0 printing, June 2009)
Prepared exclusively for sam kaplan

http://media.pragprog.com/titles/vsscala/code/ConcurrentProgramming/ReceiveWithin.scala
http://books.pragprog.com/titles/vsscala/errata/add?pdf_page=145

REACT AND REACTWITHIN METHODS 146

Oh, one last thing about receive() and receiveWithin()—they’re quite dili-

gent, and they don’t waste any time on messages they don’t care about.

This is because these methods treat the function value as partially

applied functions and check whether it handles the message before

calling the code block. So, if a message received is not what you expect,

it’s quietly ignored. Of course, if you want to complain about it, you can

always provide a case _ => Here’s an example that shows that invalid

messages are ignored:

Download ConcurrentProgramming/MessageIgnore.scala

import scala.actors._

import Actor._

val expectStringOrInteger = actor {

for(i <- 1 to 4) {

receiveWithin(1000) {

case str : String => println("You said " + str)

case num : Int => println("You gave " + num)

case TIMEOUT => println("Timed out!")

}

}

}

expectStringOrInteger ! "only constant is change"

expectStringOrInteger ! 1024

expectStringOrInteger ! 22.22

expectStringOrInteger ! (self, 1024)

receiveWithin(3000) { case _ => }

At the end of the previous code, we placed a call to receiveWithin(). Since

the program quits when the main thread quits, this statement will keep

the program alive, giving the actor a chance to respond. You can see

from the output that the actor processed the first two messages sent to

it and ignored the remaining two since they did not match the pattern of

the message it expected. It eventually timed out since it did not receive

any more messages that it matched with.

You said only constant is change

You gave 1024

Timed out!

Timed out!

10.7 react and reactWithin Methods

You saw how to avoid the problem of contention by passing immutable

objects between actors. There is one problem that still needs to be

solved. In each actor, when you called receive(), you ac
Report erratum

this copy is (P1.0 printing, June 2009)
Prepared exclusively for sam kaplan

http://media.pragprog.com/titles/vsscala/code/ConcurrentProgramming/MessageIgnore.scala
http://books.pragprog.com/titles/vsscala/errata/add?pdf_page=146

REACT AND REACTWITHIN METHODS 147

for a separate thread. You will hold on to that thread until you’re done

with that actor completely. That means, even though you are waiting

for messages to arrive, you will be holding on to those threads, one per

actor, and that’s a waste of resources.

The reason Scala has to hold on to those threads is that there is state

that is specific to the control flow of execution. If there were no state to

be retained and returned in that call sequence, then Scala could pretty

much get any thread from the thread pool to execute your message

handling—that’s exactly what happens when you use react().

Unlike its cousin receive(), the react() method does not return any

results. In fact, it never returns from the call you make to it. When you

complete a call to receive(), the code that follows the call is executed

(as with any typical function call). However, when you call react(), any

code you place after the call is unreachable. This may be a bit confus-

ing, but it gets easier if you look at this a bit differently. When you call

react(), imagine that the thread that called it is released immediately

(the underlying implementation is quite complex, but Scala achieves

this behavior by the react() method throwing an exception internally

and the calling thread handling it). When you receive a message that

matches one of the case statements within the react() method, a thread

from a thread pool is assigned to execute the body of that case. It

continues to run until it hits another call to react() or has no more

code to execute within the case statement. At which point, the thread

returns to processing other messages or to doing whatever other tasks

are assigned to it by the virtual machine.

If you want to continue processing more messages after you process

the current message within react(), you’d have to call other methods at

the end of your message processing. Scala can pretty much hand over

the execution of that call to any thread from the thread pool. Let’s take

a look at this behavior with an example:

Download ConcurrentProgramming/React.scala

import scala.actors.Actor._

def info(msg: String) = println(msg + " received by " + Thread.currentThread())

def receiveMessage(id : Int) {

for(i <- 1 to 2) {

receiveWithin(20000) {

case msg : String => info("receive: " + id + msg) }

}

}

Report erratum

this copy is (P1.0 printing, June 2009)
Prepared exclusively for sam kaplan

http://media.pragprog.com/titles/vsscala/code/ConcurrentProgramming/React.scala
http://books.pragprog.com/titles/vsscala/errata/add?pdf_page=147

REACT AND REACTWITHIN METHODS 148

def reactMessage(id : Int) {

react {

case msg : String => info("react: " + id + msg)

reactMessage(id)

}

}

val actors = Array(

actor { info("react: 1 actor created"); reactMessage(1) },

actor { info("react: 2 actor created"); reactMessage(2) },

actor { info("receive: 3 actor created"); receiveMessage(3) },

actor { info("receive: 4 actor created"); receiveMessage(4) }

)

Thread.sleep(1000)

for(i <- 0 to 3) { actors(i) ! " hello"; Thread.sleep(2000) }

Thread.sleep(2000)

for(i <- 0 to 3) { actors(i) ! " hello"; Thread.sleep(2000) }

Here, receiveMessage() uses the receiveWithin() method to process the

messages that arrive. In this case we’re in an active loop and will get

more messages. On the other hand, reactMessage() uses the react()

methods and is not in a while or a for loop—instead, it calls itself recur-

sively at the end.

We’ve created four actors, two that use react() and two that use receive-

Within(). Finally, we send a series of messages to these four actors at

rather a slow pace. Each actor will report the message it receives along

with the thread that executes it.

The output from the previous code is shown here:

react: 2 actor created received by Thread[Thread-4,5,main]

receive: 3 actor created received by Thread[Thread-6,5,main]

react: 1 actor created received by Thread[Thread-3,5,main]

receive: 4 actor created received by Thread[Thread-5,5,main]

react: 1 hello received by Thread[Thread-3,5,main]

react: 2 hello received by Thread[Thread-3,5,main]

receive: 3 hello received by Thread[Thread-6,5,main]

receive: 4 hello received by Thread[Thread-5,5,main]

react: 1 hello received by Thread[Thread-4,5,main]

react: 2 hello received by Thread[Thread-3,5,main]

receive: 3 hello received by Thread[Thread-6,5,main]

receive: 4 hello received by Thread[Thread-5,5,main]

The actors that use the receiveWithin() method have thread affinity; they

continue to use the same thread they’re assigned. In the previous out-

put, receive: 3 is always handled by Thread-6 and receive: 4 by Thread-5.

Report erratum

this copy is (P1.0 printing, June 2009)
Prepared exclusively for sam kaplan

http://books.pragprog.com/titles/vsscala/errata/add?pdf_page=148

REACT AND REACTWITHIN METHODS 149

On the other hand, the actors using react() are freely swapping their

threads, being picked up by any available thread. In the previous out-

put, the actor using react: 1 was originally executed by Thread-3. This

same thread happens to execute the first message processing for this

actor. However, the second message this actor received was handled by

a different thread, Thread-4. This latter thread is the one that handled

the creation of the actor using react: 2. However, the two subsequent

messages for this actor are handled by Thread-3.

In other words, the actors using react() don’t have any thread affinity;

they let go of their thread, and a new one (or the same one) can pick up

subsequent message processing. This will be kinder on your resources,

especially when the message handling is fairly quick. So, there is a good

incentive to use react() over receive(). Because of the nondeterministic

nature of threads, when you run the previous code, you may observe a

different output sequence than I have. Play with it by running it several

times.

There is one smell in the previous code. We have to remember to call

an appropriate method at the end of processing messages in the react()

method call. If we forget, no more messages will be processed by this

actor. However, writing that call is not elegant, and we could easily

forget to write it. It gets only more complicated if we have multiple case

statements within the react() call. We may have to call the method in

each of the case branches. Fortunately, there is a better way to handle

this, as you’ll see in Section 10.8, loop and loopWhile, on page 151.

Similar to receiveWithin(), reactWithin() will time out if any message is not

received within the timeout period—in this case, if you handle case TIME-

OUT, you can take whatever action you want or exit from the method. As

an example of using reactWithin(), let’s take a stab at the accumulator

examples we implemented earlier using receiveWithin(), this time using

the reactWithin() method:

Download ConcurrentProgramming/ReactWithin.scala

import scala.actors._

import Actor._

val caller = self

def accumulate() {

var sum = 0

reactWithin(500) {

case number: Int => sum += number

accumulate()

Report erratum

this copy is (P1.0 printing, June 2009)
Prepared exclusively for sam kaplan

http://media.pragprog.com/titles/vsscala/code/ConcurrentProgramming/ReactWithin.scala
http://books.pragprog.com/titles/vsscala/errata/add?pdf_page=149

REACT AND REACTWITHIN METHODS 150

case TIMEOUT =>

println("Timed out! Will send result now")

caller ! sum

}

println("This will not be called...")

}

val accumulator = actor { accumulate() }

accumulator ! 1

accumulator ! 7

accumulator ! 8

receiveWithin(10000) { case result => println("Total is " + result) }

The output from the previous code is shown here:

Timed out! Will send result now

Total is 0

The output is not quite what we’d like to see. Let’s analyze this and

then fix the problem. Since reactWithin() will not return any value, we

can’t do any processing in the accumulate() method outside of the call

to reactWithin(). So, we decided to add to the local variable sum from

within the closure attached to the call to reactWithin(). Unfortunately,

when we call accumulate() within the case statement, the value of sum

is different within the new call because it is local to each method call.

So, the value of sum in each call to accumulate() starts with a zero. But

don’t worry, there is an easy fix for this. While fixing the problem on

hand, we will make the code more functional as well, so we don’t have

to modify the variable sum.

Let’s modify our example to fix the problem:

Download ConcurrentProgramming/ReactWithin2.scala

import scala.actors._

import Actor._

val caller = self

def accumulate(sum : Int) {

reactWithin(500) {

case number: Int => accumulate(sum + number)

case TIMEOUT =>

println("Timed out! Will send result now")

caller ! sum

}

println("This will not be called...")

}

Report erratum

this copy is (P1.0 printing, June 2009)
Prepared exclusively for sam kaplan

http://media.pragprog.com/titles/vsscala/code/ConcurrentProgramming/ReactWithin2.scala
http://books.pragprog.com/titles/vsscala/errata/add?pdf_page=150

LOOP AND LOOPWHILE 151

val accumulator = actor { accumulate(0) }

accumulator ! 1

accumulator ! 7

accumulator ! 8

receiveWithin(10000) { case result => println("Total is " + result) }

We turned the sum, which was a local variable, into a function param-

eter. Now we don’t have to modify an existing variable. Each call to

accumulate() gets a good value of sum. A new value of sum is computed

without changing any variables and passed on to the next call to accu-

mulate() until timeout. Finally, on timeout, the current value of sum is

sent to the caller.

The output from the previous code is shown here:

Timed out! Will send result now

Total is 16

This solution is more elegant than the solution using receiveWithin(),

and it also does not hold any threads while waiting to receive a message.

One final point to remember about react() and reactWithin() is that since

these two methods do not really return from the call (remember that

internally Scala handles this by having these methods throw an excep-

tion), any code you place after the call to these methods will never

get executed9 (like the print statement at the end of the accumulate()

method). So, don’t bother writing anything after a call to either of these

two methods.

10.8 loop and loopWhile

There are two things that stand in your way to fully use react() and

reactWithin(). (In rest of this section, when I speak about reactWithin(),

the discussion applies to react() also.) The first is the recursive call.

If you have multiple case statements, and typically you would, you’d

have to duplicate the call in each case. Second, there seems to be no

good way to bail out of the method. The answer to the first concern is

the loop() method of the singleton Actor class, and the answer to the

second is the loopWhile() method.

Instead of calling methods recursively within reactWithin(), place the

call to reactWithin() inside a loop() call. The thread executing the loop()

9. It would be nice if Scala gave an unreachable error for this.

Report erratum

this copy is (P1.0 printing, June 2009)
Prepared exclusively for sam kaplan

http://books.pragprog.com/titles/vsscala/errata/add?pdf_page=151

LOOP AND LOOPWHILE 152

method will relinquish control when it hits the call to reactWithin().

When the message arrives, an arbitrary thread will pick up the exe-

cution of an appropriate case statement. When the case statement is

completed, the thread will continue back at the top of the loop() block.

This continues forever. The loopWhile() method is similar, except the

looping continues only as long as the condition you present as a param-

eter is valid. Since the loopWhile() is taking care of the looping, you can

put local state outside the loop and access it within the reactWithin()

method. So, this gives the best of both worlds, dealing with state as pro-

vided by receiveWithin() and utilizing threads from a pool as reactWithin().

Let’s take a look at an example of using reactWithin() within a loopWhile():

Download ConcurrentProgramming/Loop.scala

import scala.actors._

import Actor._

val caller = self

val accumulator = actor {

var continue = true

var sum = 0

loopWhile(continue) {

reactWithin(500) {

case number : Int => sum += number

case TIMEOUT =>

continue = false

caller ! sum

}

}

}

accumulator ! 1

accumulator ! 7

accumulator ! 8

receiveWithin(1000) { case result => println("Total is " + result) }

In the previous code, we’re not making any recursive calls—that’s taken

care of by the loopWhile(). Also, when we want to quit processing mes-

sages, simply set the flag, and it takes care of quitting from the loop

and hence the actor execution. The output from the previous code is

shown here:

Total is 16

Report erratum

this copy is (P1.0 printing, June 2009)
Prepared exclusively for sam kaplan

http://media.pragprog.com/titles/vsscala/code/ConcurrentProgramming/Loop.scala
http://books.pragprog.com/titles/vsscala/errata/add?pdf_page=152

CONTROLLING THREAD OF EXECUTION 153

10.9 Controlling Thread of Execution

You saw how each actor runs in its own thread when you use receive

and how react lets the actors share threads from the thread pool. There

are times, however, when you want more control. For instance, if you

want to update a UI after a long-running task, you’d want to run the

task in a separate thread but then update the UI from the main thread

(because UI components are often not thread safe). You can tell Scala to

run an actor in the main thread by using SingleThreadedScheduler. Let’s

see how with an example:

Download ConcurrentProgramming/InMainThread.scala

import scala.actors._

import Actor._

if (args.length > 0 && args(0) == "Single") {

println("Command-line argument Single found")

Scheduler.impl = new SingleThreadedScheduler

}

println("Main running in " + Thread.currentThread)

actor { println("Actor1 running in " + Thread.currentThread) }

actor { println("Actor2 running in " + Thread.currentThread) }

receiveWithin(3000) { case _ => }

In the previous code, we create two actors. If we do not send any com-

mand-line arguments, the code in the two actors and the code in the

main script run in their own threads, as shown in the following output:

Main running in Thread[main,5,main]

Actor2 running in Thread[Thread-5,5,main]

Actor1 running in Thread[Thread-3,5,main]

On the other hand, if we run the previous code as scala InMainThread.

scala Single, we get a different result:

Command-line argument Single found

Main running in Thread[main,5,main]

Actor1 running in Thread[main,5,main]

Actor2 running in Thread[main,5,main]

Whenever an actor is started, Scala lets the singleton Scheduler run it.

By setting the Scheduler’s impl, you can control the actors’ scheduling

strategy for your entire application.

Report erratum

this copy is (P1.0 printing, June 2009)
Prepared exclusively for sam kaplan

http://media.pragprog.com/titles/vsscala/code/ConcurrentProgramming/InMainThread.scala
http://books.pragprog.com/titles/vsscala/errata/add?pdf_page=153

CHOOSING AMONG THE RECEIVE METHODS 154

The previous approach is far-reaching; it allowed us to control the

scheduling of all actors. However, you may want to let some actors run

in the main thread and let other actors run in their own threads. You

can do that by extending the Actor trait and overriding the scheduler()

method. By default, this method returns the singleton Scheduler for an

actor to be scheduled. By overriding this method, you can control how

individual actors are scheduled, as shown here:

Download ConcurrentProgramming/InMainThreadSelective.scala

import scala.actors._

import Actor._

trait SingleThreadedActor extends Actor {

override protected def scheduler() = new SingleThreadedScheduler

}

class MyActor1 extends Actor {

def act() = println("Actor1 running in " + Thread.currentThread)

}

class MyActor2 extends SingleThreadedActor {

def act() = println("Actor2 running in " + Thread.currentThread)

}

println("Main running in " + Thread.currentThread)

new MyActor1().start()

new MyActor2().start()

actor { println("Actor 3 running in " + Thread.currentThread) }

receiveWithin(5000) { case _ => }

In the previous code, we’ve created three actors, two by extending the

Actor trait and one using the more convenient actor() method. We con-

trol the thread of MyActor2 by overriding the protected method sched-

uler(). When we run the previous code, the actors created using the

actor() method and MyActor1 run in their own threads. However, the

actor created using MyActor2 runs in the main thread, as shown here:

Main running in Thread[main,5,main]

Actor1 running in Thread[Thread-2,5,main]

Actor2 running in Thread[main,5,main]

Actor 3 running in Thread[Thread-4,5,main]

10.10 Choosing Among the Receive Methods

It can get overwhelming when you’re presented with several options,

so in this section I will help you decide which method to use among

receive(), receiveWithin(), react(), and reactWithin().

Report erratum

this copy is (P1.0 printing, June 2009)
Prepared exclusively for sam kaplan

http://media.pragprog.com/titles/vsscala/code/ConcurrentProgramming/InMainThreadSelective.scala
http://books.pragprog.com/titles/vsscala/errata/add?pdf_page=154

CHOOSING AMONG THE RECEIVE METHODS 155

You should prefer the methods ending with Within over the other meth-

ods. Calling receive() or react() can lead to a failure. Your actor may

end up waiting forever for a response that it may never receive because

the actor that was supposed to send the message has quit, has run

into problems and will no longer send a message, or has performed an

invalid operation resulting in a fatal exception. So, certainly you should

prefer using either receiveWithin() or reactWithin() so you can gracefully

recover from getting no response within a reasonable amount of time

and take an appropriate action.

So, when should you use receiveWithin(), and when should you use

reactWithin()? If in the middle of an execution of a workflow you want

to receive a message from another actor, then receiveWithin() is quite

suitable. Your actor will be blocked until you receive the message and

can continue upon receipt. You don’t want to have too many of these

actors since each one of them holds a separate thread until comple-

tion. On the other hand, if you are implementing a service that receives

a message, does some operation, and quickly responds to the caller

(or another receiver), then you are better off using reactWithin(). While

waiting for a message to arrive, you’re not holding a thread. This allows

several quick-running tasks or services to share the threads. If you’re

in doubt, try using reactWithin() and escalate to using receiveWithin()

only if reactWithin() will not serve your needs. You need to remember to

call reactWithin() from within loopWhile() so your actor can continue to

process more messages. This will also help you deal with state within

your actor if you desire. If you prefer a more functional style, you can

recursively call your method from within reactWithin() as well. The lat-

ter approach is OK if you have one or two case statements in your

reactWithin().

I hope you’ve ended this chapter as impressed with Scala’s facility

for concurrent programming as I. You have an amazing amount of

power and don’t have to endure synchronization and exceptions. As

long as you’re a good citizen—that is, you pass around only immutable

objects—you don’t have to worry about contention. Scala’s higher level

of abstraction helps you focus on the problem at hand and leave it to the

language to deal with those mundane details. The result is concise code

with fewer bugs to deal with in this highly critical and complex area.

You can build your entire application in Scala or build parts of the

application with Scala—Scala gives you the flexibility to choose. If you

have a legacy Java application and decide to take advantage of Scala

for its expressiveness, conciseness, power, or concurrency support, you

can easily intermix Scala with Java, as you’ll see in the n

Report erratum

this copy is (P1.0 printing, June 2009)
Prepared exclusively for sam kaplan

http://books.pragprog.com/titles/vsscala/errata/add?pdf_page=155

Chapter 11

Intermixing with Java
In this chapter, you’ll learn how to use Java classes in Scala and use

Scala classes in Java. You can easily intermix Scala code with code

written in Java and other languages on the JVM. Scala compiles into

bytecode just like Java. This allows you to use that bytecode in your

application like you use the bytecode compiled with Java. You simply

make sure that scala-library.jar is in your classpath, and you’re all set.

We’ll discuss how Scala idioms manifest on the Java side. So, you can

readily put the Scala strengths like concurrency, pattern matching,

functional style, and conciseness in your current Java applications.

At the end of this chapter, you’ll be equipped with what you need to

take full advantage of Scala in your Java applications.

11.1 Using Scala Classes in Scala

Before we talk about mixing Java and Scala, let’s look at using Scala

classes from Scala. If you’ve created Scala classes in separate files, you

can readily use those classes as is (without explicitly compiling) from

within Scala scripts.1 However, if you want to use a Scala class from

within compiled Scala or Java code, you have to compile it.

1. See Section 2.4, Scala on the Command Line, on page 30 for details on how to run

Scala code as a script.

Prepared exclusively for sam kaplan

USING SCALA CLASSES IN SCALA 157

Suppose we have Scala classes named Person and Dog. In general, it is

a good practice to place each class in its own file. I’ve combined them

both in the Person.scala file to make a point:

Download WorkingWithScriptsAndClasses/Person.scala

class Person(val firstName: String, val lastName: String) {

override def toString() : String = firstName + " " + lastName

}

class Dog(name: String) {

override def toString() :String = name

}

Here’s a script that uses both of the previous classes:

Download WorkingWithScriptsAndClasses/usePerson.scala

val george = new Person("George", "Washington")

val georgesDogs = List(new Dog("Captain"), new Dog("Clode"),

new Dog("Forester"), new Dog("Searcher"))

printf("%s had several dogs %s...", george, georgesDogs mkString ", ")

The script will generate this:

George Washington had several dogs Captain, Clode, Forester, Searcher...

We did not have to compile any of the previous code. When we referred

to the class Person, Scala looked for a file named Person.scala and loaded

it. Since that file also contains Dog, that class got resolved as well.

Instead, if we had the Dog class in its own separate file Dog.scala or we

had a compiled bytecode file named Dog.class, Scala would have picked

up the Dog class from there. However, if the Dog class were in some

other arbitrary file, Scala would have trouble finding it.

In the previous example, both the files Person.scala and usePerson.scala

were in the same directory. Suppose the file Person.scala is in a different

directory, such as entities. We can specify that directory in the sourcepath

option to the scala tool as follows:

scala -sourcepath entities:. usePerson.scala

If the class is in a compiled form in a different directory, use the class-

path option instead or in addition to the sourcepath option.

You saw how to use Scala classes in scripts. However, to use them in

other Scala classes, we’ll have to first compile them.

Report erratum

this copy is (P1.0 printing, June 2009)
Prepared exclusively for sam kaplan

http://media.pragprog.com/titles/vsscala/code/WorkingWithScriptsAndClasses/Person.scala
http://media.pragprog.com/titles/vsscala/code/WorkingWithScriptsAndClasses/usePerson.scala
http://books.pragprog.com/titles/vsscala/errata/add?pdf_page=157

USING SCALA CLASSES IN SCALA 158

Suppose we want to use the previous Person class in the following Scala

code:

Download WorkingWithScriptsAndClasses/UsePersonClass.scala

object UsePersonClass {

def main(args: Array[String]) {

val ben = new Person("Ben", "Franklin")

println(ben + " was a great inventor.")

}

}

If the Person class has already been compiled, we can simply compile

the UsePersonClass.scala file alone. If the Person.class is not located in the

current directory, use the classpath option—the -d option tells where to

put the bytecode:

scalac -d . -classpath LocationOfPersonClassFile UsePersonClass.scala

On the other hand, if the Person class is not already compiled, we can

compile it alongside UsePersonClass. Specify the sourcepath so the com-

piler can find the files it needs to compile alongside. So, use the follow-

ing:

scalac -sourcepath LocationOfPersonScalaFile:. UsePersonClass.scala

where LocationOfPersonScalaFile is the location of the Person.scala file.

Alternately, use scalac -sourcepath . UsePersonClass.scala if all the related

files are in the current directory. Of course, you can use both the sour-

cepath and the classpath options—this will allow you to pick up Scala

source files and compiled bytecode from any language on the JVM

(Java, Groovy, JRuby, Scala, and so on).

You can run the compiled bytecode either using the scala tool or using

the traditional java tool. Here’s an example of using the scala tool2 to

run the UsePersonClass.class file:

scalac -sourcepath . UsePersonClass.scala

scala UsePersonClass

On the other hand, if you want to run it using java tool, simply specify

the scala-library.jar file in the classpath (make sure to use the correct

path to scala-library.jar on your machine):

scalac -sourcepath . UsePersonClass.scala

java -classpath /opt/scala/scala-2.7.4.final/lib/scala-library.jar:. UsePersonClass

2. You can use the scala tool to run both Scala compiled code and code compiled using

javac.

Report erratum

this copy is (P1.0 printing, June 2009)
Prepared exclusively for sam kaplan

http://media.pragprog.com/titles/vsscala/code/WorkingWithScriptsAndClasses/UsePersonClass.scala
http://books.pragprog.com/titles/vsscala/errata/add?pdf_page=158

USING JAVA CLASSES IN SCALA 159

You can see here that both of the previous approaches will yield the

same result:

Ben Franklin was a great inventor.

11.2 Using Java Classes in Scala

Using Java classes from Scala is pretty straightforward. If the Java

class you’d like to use is part of the standard JDK, then simply use

it. You’ll have to import the class’s package if it’s not part of java.lang.

Here, we use classes from the java.util and java.lang.reflect packages:

Download WorkingWithScriptsAndClasses/UseJDKClasses.scala

import java.util.Date

import java.lang.reflect._

println("Today is " + new Date())

val methods = getClass.getMethods()

methods.foreach { method: Method => println(method.getName()) }

If the Java class you’d like to use is your own or from a third party,

make sure to specify to scalac the classpath to where the bytecode is

located. Suppose we have the following Java files:

Download WorkingWithScriptsAndClasses/InvestmentType.java

//Java code

package investments;

public enum InvestmentType {

SHORT_TERM,

BOND,

STOCK,

REAL_ESTATE,

COMMODITIES,

COLLECTIBLES,

MUTUAL_FUNDS

}

Download WorkingWithScriptsAndClasses/Investment.java

//Java code

package investments;

public class Investment {

private String investmentName;

private InvestmentType investmentType;

public Investment(String name, InvestmentType type) {

investmentName = name;

Report erratum

this copy is (P1.0 printing, June 2009)
Prepared exclusively for sam kaplan

http://media.pragprog.com/titles/vsscala/code/WorkingWithScriptsAndClasses/UseJDKClasses.scala
http://media.pragprog.com/titles/vsscala/code/WorkingWithScriptsAndClasses/InvestmentType.java
http://media.pragprog.com/titles/vsscala/code/WorkingWithScriptsAndClasses/Investment.java
http://books.pragprog.com/titles/vsscala/errata/add?pdf_page=159

USING JAVA CLASSES IN SCALA 160

investmentType = type;

}

public int yield() { return 0; }

}

We can use these classes in our Scala code just like we use any Scala

class. Here’s an example of creating an instance of Investment in Scala:

Download WorkingWithScriptsAndClasses/UseInvestment.scala

import investments._

object UseInvestment {

def main(args: Array[String]) {

val investment = new Investment("XYZ Corporation", InvestmentType.STOCK)

println(investment.getClass())

}

}

If the bytecode compiled from the previous Java files is located in a

directory named classes/investments, we can use it to compile our Scala

file as follows:

scalac -classpath classes UseInvestment.scala

Once we compile, we can run our code like this:

scala -classpath classes:. UseInvestment

Alternately, we can also run it using the java tool:

java -classpath \

/opt/scala/scala-2.7.4.final/lib/scala-library.jar:classes:. UseInvestment

The output looks like this:

class investments.Investment

You have to use caution with the yield() method of the Investment class.

If your Java code has methods or field names (like trait, yield, and so

on) that conflict with Scala keywords, the Scala compiler will choke up

when you call them. For example, the following code will not work:

val theYield1 = investment.yield //ERROR

val theYield2 = investment.yield() //ERROR

Fortunately, Scala offers a solution. You can place the offending vari-

ables/methods in a backtick to get around the problem. So, we can get

the previous two calls to work by modifying the code as follows:

val theYield1 = investment.`yield`

val theYield2 = investment.`yield`()

Report erratum

this copy is (P1.0 printing, June 2009)
Prepared exclusively for sam kaplan

http://media.pragprog.com/titles/vsscala/code/WorkingWithScriptsAndClasses/UseInvestment.scala
http://books.pragprog.com/titles/vsscala/errata/add?pdf_page=160

USING SCALA CLASSES IN JAVA 161

11.3 Using Scala Classes in Java

Scala provides full round-trip interoperability with Java. Since Scala

compiles to bytecode, you can use Scala classes in Java quite easily.

Remember, Scala does not by default follow the JavaBean convention,

and you’ll have to use the @scala.reflect.BeanProperty annotation to gen-

erate JavaBean convention getters and setters (Section 4.2, Defining

Fields, Methods, and Constructors, on page 54). You can also inherit

your Java classes from Scala classes. However, to run your Java code

that uses Scala classes, you’ll need scala-library.jar in your classpath. In

this section, let’s look at how different constructs in Scala manifest on

the Java side.

Scala Classes with Normal and Higher-Order Functions

Scala classes that follow standard Java constructs are pretty straight-

forward, and you can use them readily on the Java side. Let’s write a

Scala class:

Download WorkingWithScriptsAndClasses/Car.scala

package automobiles

class Car(val year: Int) {

private[this] var miles : Int = 0

def drive(distance: Int) { miles += distance }

override def toString() : String = "year: " + year + " miles: " + miles

}

Here’s a sample Java class that uses this Scala class:

Download WorkingWithScriptsAndClasses/UseCar.java

//Java code

package automobiles.users;

import automobiles.Car;

public class UseCar {

public static void main(String[] args) {

Car car = new Car(2009);

System.out.println(car);

car.drive(10);

System.out.println(car);

}

}

Report erratum

this copy is (P1.0 printing, June 2009)
Prepared exclusively for sam kaplan

http://media.pragprog.com/titles/vsscala/code/WorkingWithScriptsAndClasses/Car.scala
http://media.pragprog.com/titles/vsscala/code/WorkingWithScriptsAndClasses/UseCar.java
http://books.pragprog.com/titles/vsscala/errata/add?pdf_page=161

USING SCALA CLASSES IN JAVA 162

We’ll have to compile the Scala code using scalac and the Java code

using javac:

scalac -d classes Car.scala

javac -d classes -classpath classes UseCar.java

java -classpath \

/opt/scala/scala-2.7.4.final/lib/scala-library.jar:classes automobiles.users.UseCar

In the previous example, we have placed the generated bytecode in the

classes directory. That was pretty simple to use the Scala class in Java.

However, not all Scala classes will be that kind to you. For instance, if

your Scala classes have methods that accept closures, those methods

are not usable in Java since Java does not currently support closures.

The simulate() method in the Equipment class shown here is not usable

from Java; however, we can use the run() method:

Download WorkingWithScriptsAndClasses/Equipment.scala

class Equipment {

// Not usable from Java

def simulate(input: Int)(calculator: Int => Int) : Int = {

//...

calculator(input)

}

def run(duration: Int) {

println("running")

//...

}

}

So, when designing your API, if your class will primarily be used from

Java, provide normal methods in addition to higher-order methods for

your class to be fully usable from Java.

Working with Traits

Let’s understand the restrictions for using traits with Java. Traits with

no method implementation are simple interfaces at the bytecode level.

Scala does not support the interface keyword. So, if you want to create

interfaces in Scala, create traits with no implementation in them. Here

is an example of a Scala trait, which is also an interface:

Download WorkingWithScriptsAndClasses/Writable.scala

trait Writable {

def write(message: String) : Unit

}

Report erratum

this copy is (P1.0 printing, June 2009)
Prepared exclusively for sam kaplan

http://media.pragprog.com/titles/vsscala/code/WorkingWithScriptsAndClasses/Equipment.scala
http://media.pragprog.com/titles/vsscala/code/WorkingWithScriptsAndClasses/Writable.scala
http://books.pragprog.com/titles/vsscala/errata/add?pdf_page=162

USING SCALA CLASSES IN JAVA 163

The previous trait has one abstract method that should be implemented

by any class that mixes in this trait. On the Java side, Writable is seen

like any other interface; it has no dependency on Scala at all. So, we

can implement it like this:

Download WorkingWithScriptsAndClasses/AWritableJavaClass.java

//Java code

public class AWritableJavaClass implements Writable {

public void write(String message) {}

}

However, if a trait has method implementations, then Java classes can’t

implement that trait/interface, though they can use it. So, while we

can’t implement Printable in Java, we can hold a reference to a Printable

on the Java side:

Download WorkingWithScriptsAndClasses/Printable.scala

trait Printable {

def print() {} // default print nothing

}

If you intend for your Java classes to implement a trait, then make it

pure; in other words, have no implementation in it. Any common imple-

mentation in this case should go into an abstract base class instead of

a trait. However, if you intend for Java classes to use a trait only, then

you have no restrictions.

Singleton Objects and Companion Objects

Scala compiles the objects (singleton or companion) into a “singleton

class”—a class with a special $ symbol at the end of its name. So, object

Single, shown next, will result in a class named Single$. Scala, however,

treats a singleton and a companion object differently, as you’ll soon see.

Scala compiles a singleton object into a singleton class (using Java static

methods). In addition, it also creates a regular class with methods that

forward calls to the singleton class. So, for example, this code defines

a singleton object Single, and Scala creates two classes, Single$ and the

forward class Single:

Download WorkingWithScriptsAndClasses/Single.scala

object Single {

def greet() { println("Hello from Single") }

}

Report erratum

this copy is (P1.0 printing, June 2009)
Prepared exclusively for sam kaplan

http://media.pragprog.com/titles/vsscala/code/WorkingWithScriptsAndClasses/AWritableJavaClass.java
http://media.pragprog.com/titles/vsscala/code/WorkingWithScriptsAndClasses/Printable.scala
http://media.pragprog.com/titles/vsscala/code/WorkingWithScriptsAndClasses/Single.scala
http://books.pragprog.com/titles/vsscala/errata/add?pdf_page=163

USING SCALA CLASSES IN JAVA 164

We can use the previous singleton object in Java as we’d use a Java

class with static methods, as shown here:

Download WorkingWithScriptsAndClasses/SingleUser.java

//Java code

public class SingleUser {

public static void main(String[] args) {

Single.greet();

}

}

The output from the previous code is shown here:

Hello from Single

If your object is a companion object to a class with the same name,

Scala creates two classes, one for the class (Buddy in the following exam-

ple) that represents the Scala class and the other for the companion

object (Buddy$ in the following example):

Download WorkingWithScriptsAndClasses/Buddy.scala

class Buddy {

def greet() { println("Hello from Buddy class") }

}

object Buddy {

def greet() { println("Hello from Buddy object") }

}

To access the companion class, use the name of the class directly. To

use its companion object, however, you need to use a special symbol

MODULE$, as in this example:

Download WorkingWithScriptsAndClasses/BuddyUser.java

//Java code

public class BuddyUser {

public static void main(String[] args) {

new Buddy().greet();

Buddy$.MODULE$.greet();

}

}

Here’s the output:

Hello from Buddy class

Hello from Buddy object

Report erratum

this copy is (P1.0 printing, June 2009)
Prepared exclusively for sam kaplan

http://media.pragprog.com/titles/vsscala/code/WorkingWithScriptsAndClasses/SingleUser.java
http://media.pragprog.com/titles/vsscala/code/WorkingWithScriptsAndClasses/Buddy.scala
http://media.pragprog.com/titles/vsscala/code/WorkingWithScriptsAndClasses/BuddyUser.java
http://books.pragprog.com/titles/vsscala/errata/add?pdf_page=164

EXTENDING CLASSES 165

11.4 Extending Classes

You can extend a Java class from a Scala class, and vice versa. For the

most part, this should just work. As discussed earlier, if your methods

accept closures as parameters, you will have trouble overriding them.

Exceptions are also a problem.

Scala does not have the throws clause. In Scala you can throw any

exception from any method without having to explicitly declare that as

part of the method signature. However, if you override such a method in

Java, you’ll run into trouble when you try to throw an exception. Let’s

look at an example. Suppose we have a Bird defined in Scala:

abstract class Bird {

def fly();

//...

}

We also have another class Ostrich:

Download WorkingWithScriptsAndClasses/Ostrich.scala

class Ostrich extends Bird {

def fly() {

throw new NoFlyException

}

//...

}

where NoFlyException is defined like this:

Download WorkingWithScriptsAndClasses/NoFlyException.scala

class NoFlyException extends Exception {}

In the previous code, Ostrich’s fly() method was able to throw the excep-

tion without any problem. However, if we implement a nonflying bird in

Java, we’ll run into trouble, as shown here:

Download WorkingWithScriptsAndClasses/Penguin.java

//Java code

class Penguin extends Bird {

public void fly() throws NoFlyException {

throw new NoFlyException();

}

//...

}

First, if we simply throw the exception, Java will complain “unreported

exception NoFlyException; must be caught or declared to be thrown.”

Report erratum

this copy is (P1.0 printing, June 2009)
Prepared exclusively for sam kaplan

http://media.pragprog.com/titles/vsscala/code/WorkingWithScriptsAndClasses/Ostrich.scala
http://media.pragprog.com/titles/vsscala/code/WorkingWithScriptsAndClasses/NoFlyException.scala
http://media.pragprog.com/titles/vsscala/code/WorkingWithScriptsAndClasses/Penguin.java
http://books.pragprog.com/titles/vsscala/errata/add?pdf_page=165

EXTENDING CLASSES 166

Once we add the throws clause, Java will complain “fly() in Penguin can-

not override fly() in Bird; overridden method does not throw NoFlyEx-

ception.”

Even though Scala is flexible and does not insist that you specify what

exceptions you throw, if you intend to extend from those methods in

Java, you’ll have to ask the Scala compiler to emit those details in the

method signature. Scala provides a backdoor for that by defining the

@throws annotation.

Even though Scala supports annotations, it does not provide any syn-

tax to create an annotation. If you’d like to create your own annotations,

you’ll have to do that using Java. @throws is an annotation already pro-

vided for you to express the checked exceptions your methods throw.

So, for us to implement the Penguin in Java, we have to modify Bird like

this:

Download WorkingWithScriptsAndClasses/Bird.scala

abstract class Bird {

@throws(classOf[NoFlyException]) def fly();

//...

}

Now when we compile the previous class, the Scala compiler will place

the necessary signature for the fly() method in the bytecode. Your Pen-

guin Java class will compile with no errors after this change.

You saw how easy it is to intermix Java and Scala. For constructs that

are identical, it feels like you’re simply using other Java classes. You

learned how to work with constructs that are supported in one lan-

guage, but not in the other. One of the key strengths of Scala is that

it supports the Java semantics and extends it further with functional

style. When working with enterprise applications and legacy code, you

don’t have to throw away your investments. You can easily intermix

Scala with your existing Java code in your applications.

Report erratum

this copy is (P1.0 printing, June 2009)
Prepared exclusively for sam kaplan

http://media.pragprog.com/titles/vsscala/code/WorkingWithScriptsAndClasses/Bird.scala
http://books.pragprog.com/titles/vsscala/errata/add?pdf_page=166

Chapter 12

Unit Testing with Scala
Your code always does what you type—unit testing helps you to assert

that your code does what you meant. As you evolve your application,

unit testing further helps ensure your code continues to meet those

expectations.

Learning to write unit tests in Scala will benefit you in a number of

ways:

• It is a nice way to introduce Scala on your current projects. Even

though your production code is in Java, you can write the test

code in Scala.

• It is a good way to learn Scala itself. As you learn the language,

you can experiment with the language and its API by writing test

cases.

• It improves your design. It is very hard to unit test code that is

large and complex. In order to test it, you’d end up making the

code smaller. This will lead to a better design by making the code

more cohesive, loosely coupled, easier to understand, and easier

to maintain.

Unit testing is a low-hanging fruit in Scala. You have three options—

you can use JUnit, TestNG, or ScalaTest. We will start with JUnit in

this chapter and then see how to use ScalaTest, which is a tool written

in Scala.

12.1 Using JUnit

Using JUnit to run tests written in Scala is really simple. Since Scala

compiles to Java bytecode, you can write your tests in Scala, use scalac

Prepared exclusively for sam kaplan

USING JUNIT 168

to compile your code into bytecode, and then run your tests like you

normally run JUnit test cases. You simply need to remember to include

the Scala library in your classpath. Let’s look at an example of writing a

JUnit test in Scala:

Download UnitTestingWithScala/SampleTest.scala

import java.util.ArrayList

import org.junit.Test

import org.junit.Assert._

class SampleTest {

@Test def listAdd() {

val list = new ArrayList[String]

list.add("Milk")

list add "Sugar"

assertEquals(2, list.size())

}

}

In the previous code we imported java.util.AraryList and then org.junit.Test.

We also included all the methods of org.junit.Assert. This serves as a static

import popularized in Java 5. Our test class, SampleTest, has one test

method, listAdd(), decorated by the JUnit 4.0 Test annotation. Within

the test method, we created an instance of ArrayList and first added the

String “Milk” to it. That is pure Java syntax without the semicolon at the

end. On the other hand, the next addition of “Sugar” illustrates some

syntax sugar in Scala—it allowed us to drop the . and the parentheses.

You can enjoy such lightweight syntax when writing your unit tests in

Scala. Finally, we assert that the ArrayList instance has two elements in

it.

We can compile this code using scalac and run this code like we’d typi-

cally run any JUnit test. Here are the commands to do that:

scalac -classpath $JUNITJAR:. SampleTest.scala

java -classpath $SCALALIBRARY:$JUNITJAR:. org.junit.runner.JUnitCore SampleTest

I have set $JUNITJAR and $SCALALIBRARY environmental variables on my

machine to the location of the JUnit JAR and Scala library JAR, respec-

tively. Here’s the result of the command to execute the test:

JUnit version 4.5

.

Time: 0.02

OK (1 test)

Report erratum

this copy is (P1.0 printing, June 2009)
Prepared exclusively for sam kaplan

http://media.pragprog.com/titles/vsscala/code/UnitTestingWithScala/SampleTest.scala
http://books.pragprog.com/titles/vsscala/errata/add?pdf_page=168

USING SCALATEST 169

See how simple it is to write a JUnit test in Scala? You benefit further

by taking advantage of familiar Scala idioms to clarify your code. So, it

is pretty straightforward to use JUnit or TestNG in Scala to test Java

code, Scala code, or any code written for the Java platform, for that

matter. Next we’ll see what advantage ScalaTest provides over using

JUnit.

12.2 Using ScalaTest

JUnit and TestNG are both good starting points for unit testing Scala

code. However, as you get more familiar with Scala, you’ll want to take

advantage of Scala’s conciseness and idioms for unit testing as well.

When you’re ready for that, you may want to graduate to using ScalaT-

est. ScalaTest is a testing framework written in Scala by Bill Venners

et al. It provides concise syntax for assertions and functional style for

testing both Scala and Java code.

ScalaTest does not ship with Scala, so first you need to download it from

http://www.artima.com/scalatest. Once you download scalatest-0.9.5.zip,

unzip it near the location where you installed Scala. On my Mac OS X

machine, I have it in the /opt/scala directory. On my Windows machine,

it is under the C:\programs\scala directory.

12.3 Start with a Canary Test

Let’s start with a canary test,1 which is a very simple test to make sure

the framework is installed on your system and you are able to use it

properly:

Download UnitTestingWithScala/CanaryTest.scala

class CanaryTest extends org.scalatest.Suite {

def testOK() {

assert(true)

}

}

(new CanaryTest).execute()

We extended CanaryTest from the class Suite that’s part of ScalaTest. We

wrote a test method testOK() that asserted true is actually true—very

basic to make sure things work. To run this test, we instantiate an

1. http://memeagora.blogspot.com/2007/06/coalmine-canary-tests.html

Report erratum

this copy is (P1.0 printing, June 2009)
Prepared exclusively for sam kaplan

http://www.artima.com/scalatest
http://media.pragprog.com/titles/vsscala/code/UnitTestingWithScala/CanaryTest.scala
http://memeagora.blogspot.com/2007/06/coalmine-canary-tests.html
http://books.pragprog.com/titles/vsscala/errata/add?pdf_page=169

USING RUNNER 170

instance of our suite and call the execute() method on it. To run this

test, type the following:

scala -classpath $SCALATEST:. CanaryTest.scala

Set the classpath accordingly based on the system you are on. Here’s

the output:

Test Starting - Main$$anon1CanaryTest.testOK

Test Succeeded - Main$$anon1CanaryTest.testOK

It reported the names of the test(s) it ran. It did not complain—the

test ran successfully. If the test had failed, we would’ve gotten a long

message. The previous test suite contained only one test. However, you

certainly may have more than one test per test suite.

12.4 Using Runner

If you want to execute more than one test suite, you can use the Run-

ner class provided in ScalaTest.2 It allows you to selectively include and

exclude test suites, as well as to attach different kind of reporters to dis-

play the result of running tests. For a full description of various options,

refer to the documentation provided for ScalaTest (see Appendix A, on

page 211).

Let’s look at an example of using Runner. Suppose we have a test suite

named ListTest:

Download UnitTestingWithScala/ListTest.scala

class ListTest extends org.scalatest.Suite {

def testListEmpty() {

val list = new java.util.ArrayList[Integer]

assert(0 == list.size)

}

def testListAdd() {

val list = new java.util.ArrayList[Integer]

list.add(1)

list add 4

assert(2 == list.size)

}

}

2. ScalaTest also provides a SuperSuite that you can extend and use to nest other suites.

However, Runner requires no coding and provides autodiscovery of suites.

Report erratum

this copy is (P1.0 printing, June 2009)
Prepared exclusively for sam kaplan

http://media.pragprog.com/titles/vsscala/code/UnitTestingWithScala/ListTest.scala
http://books.pragprog.com/titles/vsscala/errata/add?pdf_page=170

USING RUNNER 171

Figure 12.1: Using Runner to execute ScalaTest

We can compile and run it using the following commands:

scalac -classpath $SCALATEST ListTest.scala

scala -classpath $SCALATEST:. org.scalatest.tools.Runner -p .

The -p option specifies the directories where Runner will look for test

suites. Since we did not specify any particular test suite, it will pick up

all compiled test suites in the given path. The output from the previous

code is shown in Figure 12.1. If you don’t see all the details about each

of the tests, you can play with the items in the View menu.

If you are a command-line type (like your humble author), you can use

the -o option to direct the test execution results to standard output

instead of a GUI. Here is how to achieve that:

scalac -classpath $SCALATEST ListTest.scala

scala -classpath $SCALATEST:. org.scalatest.tools.Runner -p . -o

Report erratum

this copy is (P1.0 printing, June 2009)
Prepared exclusively for sam kaplan

http://books.pragprog.com/titles/vsscala/errata/add?pdf_page=171

ASSERTS 172

Here’s the result:

Run starting. Expected test count is: 2

Suite Starting - DiscoverySuite: The execute method of a nested suite is

about to be invoked.

Suite Starting - ListTest: The execute method of a nested suite is about

to be invoked.

Test Starting - ListTest.testListAdd

Test Succeeded - ListTest.testListAdd

Test Starting - ListTest.testListEmpty

Test Succeeded - ListTest.testListEmpty

Suite Completed - ListTest: The execute method of a nested suite returned

normally.

Suite Completed - DiscoverySuite: The execute method of a nested suite

returned normally.

Run completed. Total number of tests run was: 2

All tests passed.

Alternately, you can also use an -f option to redirect to a file. This can be

very useful for logging results and processing them during continuous

integration.3

12.5 Asserts

ScalaTest provides a simple assert() method.4 It checks whether the

expression in the parameter evaluates to true.5 If the expression eval-

uates to true, the assert() method returns silently. Otherwise, it throws

an AssertionError. Here is an example of assertion failure:

Download UnitTestingWithScala/AssertionFailureExample.scala

class AssertionFailureExample extends org.scalatest.Suite {

def testAssertFailure() {

assert(2 == List().size)

}

}

(new AssertionFailureExample).execute()

3. See “Continuous Integration” in Appendix A, on page 211, and Mike Clark’s Pragmatic

Project Automation [Cla04] and Continuous Integration [DMG07] by Duvall et al.

4. You can also import and use JUnit, TestNG, or Hamcrest matchers methods like

assertEquals() and assertThat(). Be sure to include the appropriate JAR files.

5. A variation of assert() checks whether the parameter evaluates to None.

Report erratum

this copy is (P1.0 printing, June 2009)
Prepared exclusively for sam kaplan

http://media.pragprog.com/titles/vsscala/code/UnitTestingWithScala/AssertionFailureExample.scala
http://books.pragprog.com/titles/vsscala/errata/add?pdf_page=172

ASSERTS 173

When we run the previous test, we get an error message that includes

the following information:

Test Starting - Main$$anon1AssertionFailureExample.testAssertFailure

TEST FAILED - Main$$anon1AssertionFailureExample.testAssertFailure

((virtual file):7)

org.scalatest.TestFailedException:

...

The test indicated a failure, but the message is not very helpful. If you

have a number of tests, you’d like to get more information than mere

“something failed.” ScalaTest provides the convenient operator === that

prints some more details than the assert() method. Here is an example

using this feature:

Download UnitTestingWithScala/AssertionFailureExample2.scala

class AssertionFailureExample2 extends org.scalatest.Suite {

def testAssertFailure() {

assert(2 === List().size)

}

}

(new AssertionFailureExample2).execute()

When we run the previous test, we will get an error message that

includes the following information:

Test Starting - Main$$anon1AssertionFailureExample2.testAssertFailure

TEST FAILED - Main$$anon1AssertionFailureExample2.testAssertFailure:

2 did not equal 0 ((virtual file):7)

org.scalatest.TestFailedException: 2 did not equal 0

...

From the output you can gather that 2 is not equal to 0. That certainly

is more helpful than what assert() told us previously. However, the mes-

sage lacks context, and it would be nice to have some more details on

what these numbers actually mean. Thankfully, assert() allows you to

send an additional parameter with a meaningful message:

Download UnitTestingWithScala/AssertionFailureWithMessage.scala

class AssertionFailureWithMessage extends org.scalatest.Suite {

def testAssertFailure() {

assert(2 === List().size, "Unexpected size of List")

}

}

(new AssertionFailureWithMessage).execute()

Report erratum

this copy is (P1.0 printing, June 2009)
Prepared exclusively for sam kaplan

http://media.pragprog.com/titles/vsscala/code/UnitTestingWithScala/AssertionFailureExample2.scala
http://media.pragprog.com/titles/vsscala/code/UnitTestingWithScala/AssertionFailureWithMessage.scala
http://books.pragprog.com/titles/vsscala/errata/add?pdf_page=173

EXCEPTION TESTS 174

When we run the previous test, we get more meaningful information:

Test Starting - Main$$anon1AssertionFailureWithMessage.testAssertFailure

TEST FAILED - Main$$anon1AssertionFailureWithMessage.testAssertFailure:

Unexpected size of List

2 did not equal 0 ((virtual file):7)

org.scalatest.TestFailedException: Unexpected size of List

2 did not equal 0

...

If you’re checking for the equality of values (like the JUnit assertEquals()

method), you will like the expect() method of ScalaTest:

Download UnitTestingWithScala/ExpectExample.scala

class ExpectExample extends org.scalatest.Suite {

def testAssertFailure() {

expect(2, "Unexpected List size") { List().size }

// The above exception is wrong

}

}

(new ExpectExample).execute()

Here’s the output:

Test Starting - Main$$anon1ExpectExample.testAssertFailure

TEST FAILED - Main$$anon1ExpectExample.testAssertFailure:

Unexpected List size

Expected 2, but got 0 ((virtual file):7)

org.scalatest.TestFailedException: Unexpected List size

Expected 2, but got 0

...

The expect() method accepts the expected value, an optional message,

and a closure. The closure holds the expression to be evaluated, and

the expect() method ensures that the expression evaluated to the given

expected value. Otherwise, it throws an AssertionError.

The expect() method is fairly concise, is readable, and provides the right

level of message on failure. So, I prefer this method over assert() for

comparing values.

12.6 Exception Tests

Exception tests are useful to ensure that the unit of code under test is

throwing the expected exceptions.

Report erratum

this copy is (P1.0 printing, June 2009)
Prepared exclusively for sam kaplan

http://media.pragprog.com/titles/vsscala/code/UnitTestingWithScala/ExpectExample.scala
http://books.pragprog.com/titles/vsscala/errata/add?pdf_page=174

EXCEPTION TESTS 175

Here is an example of an exception test:

def testGetOnEmptyList() {

try {

val list = new java.util.ArrayList[Integer]

list.get(0)

fail("Expected exception for getting element from empty list")

}

catch {

case ex: IndexOutOfBoundsException => // :) Success

}

}

When we create an instance of java.util.ArrayList, the list is empty. Now,

in the test, we try to get hold of the missing first element and expect an

IndexOutOfBoundsException exception to be thrown. If the get() method

throws that exception or its subclass, the catch6 will handle it, indi-

cating the code behaved as expected. If the method throws some other

exception, it will go unhandled, and the test will fail. Also, if the method

did not throw any exception, the test will fail executing the fail() method.

I call this the land-mine method, because it blows up if we step on it.

The previous exception test does its job, but it’s verbose. Furthermore,

it will not tell you if you forgot to call the fail() method. You’d expect this

to be concise,7 and ScalaTest’s intercept() method will stand up to that

expectation. The previous verbose test can be written concisely using

intercept():

def testGetOnEmptyList_Concise() {

val list = new java.util.ArrayList[Integer]

intercept(classOf[IndexOutOfBoundsException],

"Expected exception for getting element from empty list") {

list.get(0)

}

//You'll get a deprecation warning from the statement above.

//ScalaTest is evolving to use a newer style for intercept.

//Currently the new style does not take an error message argument.

//When it does, you should use

//intercept[IndexOutOfBoundsException] ("Expected ...") {...}

}

The intercept() method takes the expected exception class as a parame-

ter, an optional error message, and a closure containing the expression

6. Scala’s try-catch-finally semantics are the same as Java’s. However, its catch syntax is

different—it uses pattern matching syntax (see Chapter 9, Pattern Matching and Regular

Expressions, on page 116).

7. See my blog “Prefer Conciseness over Terseness” at http://tinyurl.com/5bawat.

Report erratum

this copy is (P1.0 printing, June 2009)
Prepared exclusively for sam kaplan

http://books.pragprog.com/titles/vsscala/errata/add?pdf_page=175

SHARING CODE BETWEEN TESTS 176

that is expected to throw the given exception. If the expected excep-

tion or its subclass is thrown by the expression, the intercept() method

catches that exception and returns it to us—we can use this result,

if we desire, to check further for a specific exception message. If the

expression did not throw any exception or threw another unexpected

exception, the intercept() method will fail.

12.7 Sharing Code Between Tests

If you have common code you’d like to share between tests, there are

two options available in ScalaTest. Assume we want to write multiple

tests for the java.util.ArrayList class. Instead of creating an instance in

each method, it would be good to create it in a common method—that

will make the code DRY.8 Let’s explore the two options—the first one

is similar to what JUnit offers, and the second one takes advantage of

closures.

Sharing Code Using BeforeAndAfter

You can mix in ScalaTest’s BeforeAndAfter trait into your test suite—this

provides a beforeEach() method and an afterEach() method. These two

are similar to setUp() and tearDown() of JUnit, respectively, and sand-

wich each of the test methods—beforeEach() automatically runs before

each test, and afterEach() runs automatically after. BeforeAndAfter also

provides a beforeAll() that executes once before any test in that suite is

executed and provides an afterAll() that runs once, at the end, after all

tests have executed. Let’s look at an example of using beforeEach() and

afterEach():

Download UnitTestingWithScala/ShareCodeImperative.scala

class ShareCodeImperative extends org.scalatest.Suite

with org.scalatest.BeforeAndAfter {

var list : java.util.ArrayList[Integer] = _

override def beforeEach() { list = new java.util.ArrayList[Integer] }

override def afterEach() { list = null }

def testListEmptyOnCreate() {

expect(0, "Expected size to be 0") { list.size() }

}

8. See “Don’t Repeat Yourself” in The Pragmatic Programmer [HT00].

Report erratum

this copy is (P1.0 printing, June 2009)
Prepared exclusively for sam kaplan

http://media.pragprog.com/titles/vsscala/code/UnitTestingWithScala/ShareCodeImperative.scala
http://books.pragprog.com/titles/vsscala/errata/add?pdf_page=176

SHARING CODE BETWEEN TESTS 177

def testGetOnEmptyList() {

intercept[IndexOutOfBoundsException] { list.get(0) }

}

}

(new ShareCodeImperative).execute()

Our ShareCodeImperative mixes in BeforeAndAfter and overrides the

beforeEach() and afterEach() methods. Within the beforeEach() method,

we instantiate an instance of java.util.ArrayList and store it in the field list

of ShareCodeImperative. Each test now uses instances of ArrayList freshly

created right before they’re executed. Once the tests complete, the

afterEach() method sets the reference to null—this operation is redun-

dant, but in general, if you have any meaningful cleanup to do, this is

the place.

Sharing Code Using Closures

In the previous example, we had to create a field list in the test suite,

and we assigned to it repeatedly in each invocation of the beforeEach()

method. That is imperative style—we risk having some fields in our

class that may be passed between tests. One of the tenets of unit test-

ing is that the tests must be isolated from each other. You can ensure

isolation by properly writing the beforeEach() and afterEach() methods.

Alternately, you can completely avoid the fields, and the associated

problems, using more of a functional style using closures, as we’ll see

next. Here is an example:

Download UnitTestingWithScala/ShareCodeFunctional.scala

class ShareCodeFunctional extends org.scalatest.Suite {

def withList(testFunction : (java.util.ArrayList[Integer]) => Unit) {

val list = new java.util.ArrayList[Integer]

try {

testFunction(list)

}

finally {

// perform any necessary cleanup here after return

}

}

def testListEmptyOnCreate() {

withList { list => expect(0, "Expected size to be 0") { list.size() } }

}

Report erratum

this copy is (P1.0 printing, June 2009)
Prepared exclusively for sam kaplan

http://media.pragprog.com/titles/vsscala/code/UnitTestingWithScala/ShareCodeFunctional.scala
http://books.pragprog.com/titles/vsscala/errata/add?pdf_page=177

FUNCTIONAL STYLE WITH FUNSUITE 178

def testGetOnEmptyList() {

withList {

list => intercept[IndexOutOfBoundsException] { list.get(0) }

}

}

}

(new ShareCodeFunctional).execute()

Our class ShareCodeFunctional extends the now familiar Suite. The meth-

od withList() accepts a closure as a parameter—that stuff within the

parentheses of the method declaration defines the signature of a clo-

sure it expects. The signature declares a closure that takes an ArrayList

and returns Unit (the void type in Scala). testFunction is the name we’ve

given to the closure parameter of withList().

Within the withList() method, we create an instance of ArrayList and assign

it to a local constant named list—this was declared as a var in the Before-

AndAfter example. We then invoke the given closure, testFunction, with

the list as an argument. Upon return from the test method, we can

perform any necessary cleanup. That’s another example of the use of

the Execute Around Method pattern (see Section 6.7, Execute Around

Method Pattern, on page 84).

Within each of the test methods, we call withList() and present it with a

closure that performs the actual test using the list created by withList().

We can create more of these initialization methods like withList() and use

them in other tests. So, we can pick and choose between different ini-

tialization and cleanup pairs. This makes the initialization and cleanup

we use much more visible and clearer to the reader of the test. In turn,

that will make it easier to follow what’s going on in each test.

12.8 Functional Style with FunSuite

ScalaTest provides a FunSuite that allows you to write your tests in a

functional style with more flexibility to name your tests. Instead of

writing test methods, you invoke a method named test() and pass it

a descriptive name for the test and a closure that contains the body

of the test. Let’s rewrite the code in Section 12.7, Sharing Code Using

Closures, on the preceding page using FunSuite.

Report erratum

this copy is (P1.0 printing, June 2009)
Prepared exclusively for sam kaplan

http://books.pragprog.com/titles/vsscala/errata/add?pdf_page=178

RUNNING SCALATESTS USING JUNIT 179

Download UnitTestingWithScala/UsingFunSuite.scala

class UsingFunSuite extends org.scalatest.FunSuite {

def withList(testFunction : (java.util.ArrayList[Integer]) => Unit) {

val list = new java.util.ArrayList[Integer]

try {

testFunction(list)

}

finally {

// perform any necessary cleanup here after return

}

}

test("Check if the list is Empty On Creation") {

withList { list => expect(0, "Expected size to be 0") { list.size() } }

}

test("Get must throw exception when called on an empty list") {

withList {

list => intercept[IndexOutOfBoundsException] { list.get(0) }

}

}

}

(new UsingFunSuite).execute()

Here are the results:

Test Starting - Main$$anon1UsingFunSuite: Check if the list is Empty

On Creation

Test Succeeded - Main$$anon1UsingFunSuite: Check if the list is Empty

On Creation

Test Starting - Main$$anon1UsingFunSuite: Get must throw exception

when called on an empty list

Test Succeeded - Main$$anon1UsingFunSuite: Get must throw exception

when called on an empty list

Instead of the traditional test methods, we invoked FunSuite’s test() meth-

od and provided descriptive messages. The actual test code is nicely

nested in the closures attached to each call to the test() method. You

will find this form of test is fairly lightweight compared to the traditional

tests you write, and it may soon become your favorite way to express

tests in Scala.

12.9 Running ScalaTests Using JUnit

OK, you have now fallen in love with ScalaTest but quickly realize that

most of your current tests in your projects are in JUnit (or TestNG).

Report erratum

this copy is (P1.0 printing, June 2009)
Prepared exclusively for sam kaplan

http://media.pragprog.com/titles/vsscala/code/UnitTestingWithScala/UsingFunSuite.scala
http://books.pragprog.com/titles/vsscala/errata/add?pdf_page=179

RUNNING SCALATESTS USING JUNIT 180

You wonder whether you can take advantage of the concise syntax and

features of ScalaTest and still run your tests using JUnit (or TestNG).

JUnit3Suite for JUnit (or TestNGSuite for TestNG) allows you to do just

that. You simply extend your test suite from JUnit3Suite and write your

test methods like you would for JUnit to recognize. Within the test

methods, you can make use of ScalaTest’s assert(), expect(), and inter-

cept() and of the functional style of sharing code we discussed earlier.

You can run your tests now using either ScalaTest or JUnit. This sup-

ports only JUnit 3.x style (tested with JUnit 3.8.1) and not the JUnit

4.0 style. Here is an example using JUnit3Suite:

Download UnitTestingWithScala/UsingJUnit3Suite.scala

class UsingJUnit3Suite extends org.scalatest.junit.JUnit3Suite {

def withList(testFunction : (java.util.ArrayList[Integer]) => Unit) {

val list = new java.util.ArrayList[Integer]

try {

testFunction(list)

}

finally {

// perform any necessary cleanup here after return

}

}

def testListEmptyOnCreate() {

withList { list => expect(0, "Expected size to be 0") { list.size() } }

}

def testGetOnEmptyList() {

withList {

list => intercept[IndexOutOfBoundsException] { list.get(0) }

}

}

}

Here is some sample Scala code to run the previous test using JUnit:

Download UnitTestingWithScala/RunJUnitTest.scala

object RunJUnitTest {

def main(args: Array[String]) =

junit.textui.TestRunner.run(classOf[UsingJUnit3Suite])

}

We can compile and run the previous code using ScalaTest or JUnit.

Report erratum

this copy is (P1.0 printing, June 2009)
Prepared exclusively for sam kaplan

http://media.pragprog.com/titles/vsscala/code/UnitTestingWithScala/UsingJUnit3Suite.scala
http://media.pragprog.com/titles/vsscala/code/UnitTestingWithScala/RunJUnitTest.scala
http://books.pragprog.com/titles/vsscala/errata/add?pdf_page=180

RUNNING SCALATESTS USING JUNIT 181

The following example shows you how to compile and run it using both

tools:

scalac -classpath $SCALATEST:$JUNITJAR:. \

UsingJUnit3Suite.scala RunJUnitTest.scala

echo "Running ScalaTest"

scala -classpath $SCALATEST:$JUNITJAR:. \

org.scalatest.tools.Runner -o -p . -s UsingJUnit3Suite

echo "Running JUNIT test"

java -classpath $SCALALIBRARY:$SCALATEST:$JUNITJAR:. RunJUnitTest

The output from the previous example is shown here:

Running ScalaTest

Run starting. Expected test count is: 2

Suite Starting - UsingJUnit3Suite: The execute method of a nested suite

is about to be invoked.

Suite Starting - UsingJUnit3Suite: UsingJUnit3Suite

Test Starting - testGetOnEmptyList: UsingJUnit3Suite

Test Succeeded - testGetOnEmptyList: UsingJUnit3Suite

Test Starting - testListEmptyOnCreate: UsingJUnit3Suite

Test Succeeded - testListEmptyOnCreate: UsingJUnit3Suite

Suite Completed - UsingJUnit3Suite: UsingJUnit3Suite

Suite Completed - UsingJUnit3Suite: The execute method of a nested

suite returned normally.

Run completed. Total number of tests run was: 2

All tests passed.

Running JUNIT test

..

Time: 0.02

OK (2 tests)

In the previous example, you saw how to run the test we wrote with

ScalaTest using both Scala and JUnit. This features lowers the barrier

of entry to introduce Scala for unit testing on current projects. You now

don’t have to chose between JUnit (or TestNG) and ScalaTest. You can

mix them and take advantage of the conciseness offered by Scala and

at the same time continue with the well-established frameworks on our

projects.

When writing unit tests, you’ll often rely on using mock objects to

stub or mock the code that the code under test depends on. If you

use frameworks like EasyMock or JMock to create mock objects, you

can use them readily in Scala as well. While putting those frameworks

for mocking to use, you can take advantage of Scala features such as

traits, functional style, and conciseness.

Report erratum

this copy is (P1.0 printing, June 2009)
Prepared exclusively for sam kaplan

http://books.pragprog.com/titles/vsscala/errata/add?pdf_page=181

RUNNING SCALATESTS USING JUNIT 182

You’re now equipped with very important tools and practices in this

chapter. However, you probably know that unit testing requires more

than these tools—it requires personal discipline and commitment. I

hope the elegance of writing tests in Scala along with the facilities pro-

vided by ScalaTest serve as a catalyst in motivating you to write or

continue to write your unit tests. In the next chapter, we will explore

how exception handling is similar and different from Java.

Report erratum

this copy is (P1.0 printing, June 2009)
Prepared exclusively for sam kaplan

http://books.pragprog.com/titles/vsscala/errata/add?pdf_page=182

Chapter 13

Exception Handling
Java’s checked exceptions force you to catch exceptions you don’t care

to handle. That often leads to programmers placing empty catch blocks,

thus suppressing exceptions instead of naturally propagating them to

be handled at the right place. Scala does not do that. It lets you handle

exceptions you care about and leave out the rest. What you don’t han-

dle is propagated up automatically. In this chapter, you’ll learn how to

handle exceptions in Scala.

13.1 Exception Handling

Scala supports the Java semantics for exception handling, but it does

so with a different syntax. In Scala you throw exceptions just like you

do in Java:1

throw new WhatEverException

Also, you place a try just like in Java. Scala, however, does not force

you to catch exceptions that you don’t care about—not even checked

exceptions. This prevents you from adding unnecessary catch blocks

in your code—you simply let the exceptions you don’t care to catch

propagate up the chain. So, if we want to call the Thread’s sleep(), for

example, instead of this:

// Java code

try {

Thread.sleep(1000);

}

catch(InterruptedException ex) {

// Losing sleep over what to do here?

}

1. You can leave out the empty parentheses when you instantiate.

Prepared exclusively for sam kaplan

EXCEPTION HANDLING 184

we can simply write this:

Thread.sleep(1000)

So, Scala did not insist that we write an unnecessary try-catch block.

Of course, you certainly should handle exceptions you can do some-

thing about—that’s what catch is for. The syntax of catch is quite dif-

ferent in Scala; you use pattern matching for handling the exceptions.

Let’s look at an example:

Download ScalaForTheJavaEyes/ExceptionHandling.scala

def taxFor(amount: Double) : String = {

if (amount < 0)

throw new IllegalArgumentException("Amount must be greater than zero")

if (amount < 0.1) throw new RuntimeException("Amount too small to be taxed")

if (amount > 1000000) throw new Exception("Amount too large...")

"Tax for $" + amount + " is $"+ amount * 0.08

}

for (amount <- List(100.0, 0.09, -2.0, 1000001.0)) {

try {

println(taxFor(amount))

}

catch {

case ex: IllegalArgumentException => println(ex.getMessage())

case ex: RuntimeException => {

// if you need a block of code to handle exception

println("Don't bother reporting..." + ex.getMessage())

}

}

}

The output from the previous code (with a partial stack trace) is shown

here:

Tax for $100.0 is $8.0

Don't bother reporting...Amount too small to be taxed

Amount must be greater than zero

java.lang.Exception: Amount too large...

at Main$$anon$1.taxFor((virtual file):9)

at Main$$anon$1$$anonfun$1.apply((virtual file):15)

at Main$$anon$1$$anonfun$1.apply((virtual file):13)

at scala.List.foreach(List.scala:841)

at Main$$anon$1.<init>((virtual file):13)

at Main$.main((virtual file):4)

...

The taxFor() method throws three different exceptions depending on the

input. The catch block has case statements for handling two of these

exceptions. The previous output shows how these blocks handled these

Report erratum

this copy is (P1.0 printing, June 2009)
Prepared exclusively for sam kaplan

http://media.pragprog.com/titles/vsscala/code/ScalaForTheJavaEyes/ExceptionHandling.scala
http://books.pragprog.com/titles/vsscala/errata/add?pdf_page=184

EXCEPTION HANDLING 185

two exceptions. The third unhandled exception results in termination

of the program with details of the stack trace being printed. The order of

the case statements is important, as we discuss in Section 13.2, Mind

the Catch Order, on the next page.

Scala also supports the finally block—just as in Java, it’s executed irre-

spective of whether the code in the try block threw an exception.

In the previous example, we saw how to catch specific exceptions. If we

want to catch all exceptions, we can use the _ (underscore) for the case

condition, as shown in the following example:

Download ScalaForTheJavaEyes/CatchAll.scala

def taxFor(amount: Double) : String = {

if (amount < 0)

throw new IllegalArgumentException("Amount must be greater than zero")

if (amount < 0.1) throw new RuntimeException("Amount too small to be taxed")

if (amount > 1000000) throw new Exception("Amount too large...")

"Tax for $" + amount + " is $"+ amount * 0.08

}

for (amount <- List(100.0, 0.09, -2.0, 1000001.0)) {

try {

println(taxFor(amount))

}

catch {

case ex : IllegalArgumentException => println(ex.getMessage())

case _ => println("Something went wrong")

}

}

The output from the previous code is shown here. The catchall case

caught all but the IllegalArgumentException, which had its own special

catch block:

Tax for $100.0 is $8.0

Something went wrong

Amount must be greater than zero

Something went wrong

Just as catching checked exceptions is optional in Scala, so too is

declaring checked exceptions optional. Scala doesn’t require you to

declare what exceptions you intend to throw. See Section 11.4, Extend-

ing Classes, on page 165 for issues related to intermixing the code with

Java.

Report erratum

this copy is (P1.0 printing, June 2009)
Prepared exclusively for sam kaplan

http://media.pragprog.com/titles/vsscala/code/ScalaForTheJavaEyes/CatchAll.scala
http://books.pragprog.com/titles/vsscala/errata/add?pdf_page=185

MIND THE CATCH ORDER 186

13.2 Mind the Catch Order

When attempting to handle exceptions, Java watches over the order in

which you place multiple catch blocks. The following example will give

us a compilation error:

Download ScalaForTheJavaEyes/CatchOrder.java

//Java code---will not compile due to incorrect catch order

public class CatchOrder {

public void catchOrderExample() {

try {

String str = "hello";

System.out.println(str.charAt(31));

}

catch(Exception ex) { System.out.println("Exception caught"); }

catch(StringIndexOutOfBoundsException ex) {

System.out.println("Invalid Index"); }

}

}

If we compile this code, we’ll get the error message “exception java.lang.

StringIndexOutOfBoundsException has already been caught.” Scala

uses pattern matching for its catch blocks (see Section 13.1, Excep-

tion Handling, on page 183), and that takes effect in the order in which

you present. So, Scala does not warn you if a former statement handles

exceptions that you intend to handle in later statements. Consider the

following example:

Download ScalaForTheJavaEyes/CatchOrder.scala

try {

val str = "hello"

println(str(31))

}

catch {

case ex : Exception => println("Exception caught")

case ex : StringIndexOutOfBoundsException => println("Invalid Index")

}

The output from the previous code is shown here:

Exception caught

The first case matches Exception and all of its subclasses. When using

multiple catch blocks, you must ensure that exceptions are being han-

dled by the catch blocks you intend.

In this chapter, you saw how Scala provides a concise and elegant way

to handle exceptions. Scala also does not require you to catch excep-

tions that you don’t care to handle. This allows for the exception to be

safely propagated to higher levels in code for proper hand

Report erratum

this copy is (P1.0 printing, June 2009)
Prepared exclusively for sam kaplan

http://media.pragprog.com/titles/vsscala/code/ScalaForTheJavaEyes/CatchOrder.java
http://media.pragprog.com/titles/vsscala/code/ScalaForTheJavaEyes/CatchOrder.scala
http://books.pragprog.com/titles/vsscala/errata/add?pdf_page=186

Chapter 14

Using Scala
In this chapter, we’ll bring together a lot of things you’ve learned so far

in this book, and then some. We will progressively build an applica-

tion that will allow us to find the net worth of our investments in the

stock market. You’ll see the benefit of Scala’s conciseness and expres-

siveness, you’ll learn the power of pattern matching along with function

values/closures, and you will apply concurrency. In addition, you will

also learn Scala’s support for XML processing and how to build Swing

applications.

14.1 The Net Asset Application

We’ll build an application that takes a list of stock ticker symbols along

with the units of stock users hold and tells them the total value of their

investments as of the current date. This involves several things: getting

users’ input, reading files, parsing data, writing to files, fetching data

from the Web, and displaying information to users.

We will first develop the application as a console application. Then we

will convert it to a Swing application. Let’s take one step at a time and

refactor the application along the way. So, let’s get started.

14.2 Getting Users’ Input

As a first step, we want to know the ticker symbols and units of stock

for which the application should find the values. Scala’s Console class

can help us get user input from the command line.

Prepared exclusively for sam kaplan

READING AND WRITING FILES 188

The following code helps us read this information into memory:

Download UsingScala/ConsoleInput.scala

print("Please enter a ticker symbol:")

val symbol = Console.readLine

//val symbol = readLine // This will work too

println("OK, got it, you own " + symbol)

A sample execution of the previous code is shown here:

scala ConsoleInput.scala

Please enter a ticker symbol:AAPL

OK, got it, you own AAPL

In the previous code, we invoked the readLine() method of the Scala

Console singleton object. This object allows us to print to the terminal

and also to read from the console. We can access the in property, which

is an instance of java.io.BufferedReader, or call one of the many read

convenience methods.

The println() method also belongs to this object. We have not prefixed the

println() with Console so far in the examples we’ve seen. This is because

the Predef object provides wrapper methods on select methods of Con-

sole. That is, Predef’s printf() routes the call to Console’s printf(). We could

have dropped the Console. prefix to readLine() in the previous code if we

wanted and could have used the method of Predef instead.

14.3 Reading and Writing Files

Now that we’ve figured how to get user input in Scala, it’s time to see

how to write data to a file. We can use the java.io.File object to achieve

this. Here is an example of writing to a file:

Download UsingScala/WriteToFile.scala

import java.io._

val writer = new PrintWriter(new File("symbols.txt"))

writer write "AAPL"

writer.close()

The previous simple code writes the symbol “AAPL” to the file named

symbols.txt. The content of the file is shown here:

Download UsingScala/symbols.txt

AAPL

Report erratum

this copy is (P1.0 printing, June 2009)
Prepared exclusively for sam kaplan

http://media.pragprog.com/titles/vsscala/code/UsingScala/ConsoleInput.scala
http://media.pragprog.com/titles/vsscala/code/UsingScala/WriteToFile.scala
http://media.pragprog.com/titles/vsscala/code/UsingScala/symbols.txt
http://books.pragprog.com/titles/vsscala/errata/add?pdf_page=188

READING AND WRITING FILES 189

Reading files is really simple. Scala’s Source class and its companion

object come in handy for this purpose. For illustration purposes, let’s

write a Scala script that reads itself:

Download UsingScala/ReadingFile.scala

import scala.io.Source

println("*** The content of the file you read is:")

Source.fromFile("ReadingFile.scala").foreach { print }

//to get each line call getLines() on Source instance

In the previous code, we read the file that contains this code and printed

out its contents. (As you know, reading a file is not such a simple task

in Java.) The output from the previous code is shown here:

*** The content of the file you read is:

import scala.io.Source

println("*** The content of the file you read is:")

Source.fromFile("ReadingFile.scala").foreach { print }

//to get each line call getLines() on Source instance

The Source class is an Iterator over the input stream. The Source com-

panion object has several convenience methods to read from a file, an

input stream, a string, or even a URL, as you’ll see soon. The foreach()

method helps you get one character at a time (the input is buffered, so

no worries about performance). If you’re interested in reading a line at

a time, you’d use the getLines() method instead.

Very soon we will need to read information off the Web. So, while dis-

cussing Source, let’s take a look at its fromURL() method. This method

allows us to read the content of a website, a web service, or just about

anything that we can point at using a URL. Here is an example that

reads the Scala documentation site and determines the version num-

ber of Scala the document relates to:

Download UsingScala/ReadingURL.scala

import scala.io.Source

import java.net.URL

val source = Source.fromURL(

new URL("http://www.scala-lang.org/docu/files/api/index.html"))

println(source.getLine(3))

val content = source.mkString

val VersionRegEx = """[\D\S]+scaladoc\s+\(version\s+(.+)\)[\D\S]+""".r

Report erratum

this copy is (P1.0 printing, June 2009)
Prepared exclusively for sam kaplan

http://media.pragprog.com/titles/vsscala/code/UsingScala/ReadingFile.scala
http://media.pragprog.com/titles/vsscala/code/UsingScala/ReadingURL.scala
http://books.pragprog.com/titles/vsscala/errata/add?pdf_page=189

XML AS A FIRST -CLASS CITIZEN 190

content match {

case VersionRegEx(version) => println("Scala doc for version: " + version)

}

The output from the previous code is shown here:

<head><title>Scala Library</title>

Scala doc for version: 2.7.4.final

In the previous code we called fromURL() to obtain a Source instance that

will allow us to iterate over the content read from that URL. We then

passed in 3 to the getLine() method to read the third line. You must use

caution with this method. The index value starts with a 1 and not a 0,

so the first line is actually referred to using the index 1.

We want to extract the version number from the content we received.

We first called mkString() on the source instance. This gives us a string

form of the entire content; that is, this method concatenated all the

lines in the content. We then defined a regular expression to match

and extract1 the version details from the content. Finally, we used the

match() method to extract the version details using pattern matching.

Although the previous example may quench your thirst to read and

write files and access a URL, we need to get back to the net asset appli-

cation. One approach is to store the ticker symbols and units as plain

text. Reading the file is easy, but then parsing through the contents of

the file to get various ticker symbols and units is not going to be that

easy. As much as we all hate XML for its verbosity, it does come in

handy to organize this kind of information and parse it. So, let’s make

use of it for the net asset application.

14.4 XML as a First-Class Citizen

Scala treats XML as a first-class citizen. So, instead of embedding

XML documents into strings, you can place them inline in your code

like you’d place an int or Double value. Let’s take a look at an example:

Download UsingScala/UseXML.scala

val xmlFragment =

<symbols>

<symbol ticker="AAPL"><units>200</units></symbol>

<symbol ticker="IBM"><units>215</units></symbol>

</symbols>

1. See Chapter 9, Pattern Matching and Regular Expressions, on page 116 for details

about extractors and regular expressions.

Report erratum

this copy is (P1.0 printing, June 2009)
Prepared exclusively for sam kaplan

http://media.pragprog.com/titles/vsscala/code/UsingScala/UseXML.scala
http://books.pragprog.com/titles/vsscala/errata/add?pdf_page=190

XML AS A FIRST -CLASS CITIZEN 191

println(xmlFragment)

println(xmlFragment.getClass())

We created a val named xmlFragment and directly assigned it to some

sample XML content. Scala parsed the XML content and happily cre-

ated an instance of scala.xml.Elem for us, as shown in the following out-

put:

<symbols>

<symbol ticker="AAPL"><units>200</units></symbol>

<symbol ticker="IBM"><units>215</units></symbol>

</symbols>

class scala.xml.Elem

The Scala package scala.xml provides classes to help us read XML doc-

uments, parse them, create them, and store them. One of the main

reasons I wanted you to look at XML is it’s easier to parse. So, let’s take

a look how easy it is.

You probably have played with XPath, which provides a very power-

ful way to query into an XML document. Scala provides an XPath-

like query ability with one minor difference. Instead of using forward

slashes (/ and //) to query, Scala uses backward slashes (\ and \\)

for methods that help parse and extract. This difference was necessary

since Scala follows the Java tradition of using the two forward slashes

for comments. So, let’s see how we can parse this XML fragment on

hand.

We first want to get the symbol elements. We can use the XPath-like

query for this, as shown here:

Download UsingScala/UseXML.scala

var symbolNodes = xmlFragment \ "symbol"

println(symbolNodes.mkString("\n"))

println(symbolNodes.getClass())

The output from the previous code is shown here:

<symbol ticker="AAPL"><units>200</units></symbol>

<symbol ticker="IBM"><units>215</units></symbol>

class scala.xml.NodeSeq$$anon$2

We called the \() method on the XML element and asked it to look for

all symbol elements. It retuned an instance of scala.xml.NodeSeq, which

represents a collection of XML nodes.

The \() method looks only for elements that are direct descendants of

the target element (the symbols element in this example). If we want

Report erratum

this copy is (P1.0 printing, June 2009)
Prepared exclusively for sam kaplan

http://media.pragprog.com/titles/vsscala/code/UsingScala/UseXML.scala
http://books.pragprog.com/titles/vsscala/errata/add?pdf_page=191

XML AS A FIRST -CLASS CITIZEN 192

to search through all the elements in the hierarchy starting from the

target element, use the \\() method, as shown here. Also, we can use

the text() method to get the text node within an element.

Download UsingScala/UseXML.scala

var unitsNodes = xmlFragment \\ "units"

println(unitsNodes.mkString("\n"))

println(unitsNodes.getClass())

println(unitsNodes(0).text)

The output from the previous code is shown here:

<units>200</units>

<units>215</units>

class scala.xml.NodeSeq$$anon$2

200

In the previous example, we use the text() method to get the text node.

We can also use pattern matching to get the text value and other con-

tents. If we want to navigate the structure of an XML document, the

methods \() and \\() are useful. However, if we want to find matching

content anywhere in the XML document at arbitrary locations, pattern

matching will be more useful.

We saw the power of pattern matching in Chapter 9, Pattern Matching

and Regular Expressions, on page 116. Scala extends that power to

matching XML fragments as well, as shown here:

Download UsingScala/UseXML.scala

unitsNodes(0) match {

case <units>{numberOfUnits}</units> => println("Units: " + numberOfUnits)

}

The output from the previous code is shown here:

Units: 200

We took the first units element and asked Scala to extract the text value

200. In the case statement we provided the match for the fragment we’re

interested in and a variable, numberOfUnits, as a placeholder for the text

content of that element.

That helped us get the units for one symbol. There are two problems,

however. The previous approach works only if the content matches

exactly with the expression in the case; that is, the units element con-

tains only one content item or one child element. If it contains a mixture

of child elements and text contents, the previous match will fail. Fur-

thermore, we want to get the units for all symbols, not just the first

Report erratum

this copy is (P1.0 printing, June 2009)
Prepared exclusively for sam kaplan

http://media.pragprog.com/titles/vsscala/code/UsingScala/UseXML.scala
http://media.pragprog.com/titles/vsscala/code/UsingScala/UseXML.scala
http://books.pragprog.com/titles/vsscala/errata/add?pdf_page=192

READING AND WRITING XML 193

one. We can ask Scala to grab all contents (elements and text) using

the _* symbol, as shown here:

Download UsingScala/UseXML.scala

println("Ticker\tUnits")

xmlFragment match {

case <symbols>{symbolNodes @ _* }</symbols> =>

for(symbolNode @ <symbol>{_*}</symbol> <- symbolNodes) {

println("%-7s %s".format(

symbolNode \ "@ticker", (symbolNode \ "units").text))

}

}

The output from the previous code is shown here:

Ticker Units

AAPL 200

IBM 215

That was quite some dense code. Let’s take the time to understand it.

By using the symbol _*, we asked to read everything between the <sym-

bols> and </symbols> into the placeholder variable symbolNodes. We saw

an example using the @ symbol to place a variable name in Section 9.3,

Matching Tuples and Lists, on page 118. The good news is it reads every-

thing. The bad news is it reads everything including the text nodes

that represent the blank spaces in the XML fragment (you’re quite used

to this problem if you’ve used XML DOM parsers). So, when looping

through the symbolNodes, we iterate over only the symbol elements by

pattern matching once more, this time in the parameter to the for()

method. Remember, the first parameter you provide for the for() method

is a pattern (see Section 8.5, The for Expression, on page 113). Finally,

we perform an XPath query to get to the attribute ticker (recollect from

XPath that you use an @ prefix to indicate the attribute query) and the

text value in the units elements.

14.5 Reading and Writing XML

Once we get an XML document in memory, we know how to parse it. The

next step is to figure out how to get an XML document loaded into our

program and how to save a document in memory to a file. As an exam-

ple, let’s load an XML file that contains symbols and units, increase the

units by 1, and store the updated content back into another XML file.

Let’s first tackle the step of loading the file.

Report erratum

this copy is (P1.0 printing, June 2009)
Prepared exclusively for sam kaplan

http://media.pragprog.com/titles/vsscala/code/UsingScala/UseXML.scala
http://books.pragprog.com/titles/vsscala/errata/add?pdf_page=193

READING AND WRITING XML 194

Here is a sample file stocks.xml that we will load:

Download UsingScala/stocks.xml

<symbols>

<symbol ticker="AAPL"><units>200</units></symbol>

<symbol ticker="ADBE"><units>125</units></symbol>

<symbol ticker="ALU"><units>150</units></symbol>

<symbol ticker="AMD"><units>150</units></symbol>

<symbol ticker="CSCO"><units>250</units></symbol>

<symbol ticker="HPQ"><units>225</units></symbol>

<symbol ticker="IBM"><units>215</units></symbol>

<symbol ticker="INTC"><units>160</units></symbol>

<symbol ticker="MSFT"><units>190</units></symbol>

<symbol ticker="NSM"><units>200</units></symbol>

<symbol ticker="ORCL"><units>200</units></symbol>

<symbol ticker="SYMC"><units>230</units></symbol>

<symbol ticker="TXN"><units>190</units></symbol>

<symbol ticker="VRSN"><units>200</units></symbol>

<symbol ticker="XRX"><units>240</units></symbol>

</symbols>

The load() method of the XML singleton object in the scala.xml package

will help load the file, as shown here:

Download UsingScala/ReadWriteXML.scala

import scala.xml._

val stocksAndUnits = XML.load("stocks.xml")

println(stocksAndUnits.getClass())

println("Loaded file has " + (stocksAndUnits \\ "symbol").size +

" symbol elements")

You can see from the output shown next that the load() returned to

us an scala.xml.Elem instance. You can also see that the loaded file

(stocks.xml) contains fifteen symbol elements.

class scala.xml.Elem

Loaded file has 15 symbol elements

You already know how to parse the content of this document and store

the symbols and the corresponding units in a Map. Here’s the code that

does just that:

Download UsingScala/ReadWriteXML.scala

val stocksAndUnitsMap =

(Map[String, Int]() /: (stocksAndUnits \ "symbol")) { (map, symbolNode) =>

val ticker = (symbolNode \ "@ticker").toString

val units = (symbolNode \ "units").text.toInt

map(ticker) = units //Creates and returns a new Map

}

println("Number of symbol elements found is " + stocksAndUnitsMap.size)

Report erratum

this copy is (P1.0 printing, June 2009)
Prepared exclusively for sam kaplan

http://media.pragprog.com/titles/vsscala/code/UsingScala/stocks.xml
http://media.pragprog.com/titles/vsscala/code/UsingScala/ReadWriteXML.scala
http://media.pragprog.com/titles/vsscala/code/UsingScala/ReadWriteXML.scala
http://books.pragprog.com/titles/vsscala/errata/add?pdf_page=194

READING AND WRITING XML 195

In the previous code, as we processed each symbol element, we accumu-

lated the symbol and the corresponding units into a new Map. In the

following output, you can see the number of symbols we loaded from

the document:

Number of symbol elements found is 15

The last step is to increase the units value, create an XML representa-

tion of the data, and store it into a file.

You know that Scala does not require you to stuff XML elements into a

string. But, you may wonder, how do you generate dynamic content into

an XML document? This is where the smarts of the Scala XML library

goes beyond what you’ve seen so far. You can embed Scala expressions

within any XML fragment. So, if we write <symbol ticker={tickerSymbol}/>,

then Scala will replace {tickerSymbol} with the value of the variable tick-

erSymbol and result in an element like <symbol ticker=“AAPL”/>. You can

place any Scala code in between the {},2 and that block can result in

a value, an element, or a sequence of elements. Let’s put this feature

to use to create an XML representation from the Map we created pre-

viously. When done, we’ll save the content into a file using the save()

method of the XML object. Let’s look at the code for this:

Download UsingScala/ReadWriteXML.scala

val updatedStocksAndUnitsXML =

<symbols>

{ stocksAndUnitsMap.map { updateUnitsAndCreateXML } }

</symbols>

def updateUnitsAndCreateXML(element : (String, Int)) = {

val (ticker, units) = element

<symbol ticker={ticker}>

<units>{units + 1}</units>

</symbol>

}

XML save ("stocks2.xml", updatedStocksAndUnitsXML)

println("The saved file contains " +

(XML.load("stocks2.xml") \\ "symbol").size + " symbol elements")

The output from the previous code is shown here:

The saved file contains 15 symbol elements

2. If you want to place a { in the content, escape it with an additional {. That is, {{ will

result in one { in the content.

Report erratum

this copy is (P1.0 printing, June 2009)
Prepared exclusively for sam kaplan

http://media.pragprog.com/titles/vsscala/code/UsingScala/ReadWriteXML.scala
http://books.pragprog.com/titles/vsscala/errata/add?pdf_page=195

GETTING STOCK PRICES FROM THE WEB 196

Let’s examine the code that produced the previous output. We first cre-

ated an XML document with symbols as the root element. The data for

the child elements (symbol) we want to embed within this root element

resides in stocksAndUnitsMap, which is a Map we created earlier. So,

we iterate over each element of this map and create an XML repre-

sentation using the yet-to-be-implemented method updateUnitsAndCre-

ateXML(). The result of this operation is a collection of elements (since

we used the map() method). Remember that in the closure attached to

the map() method, Scala is implicitly sending the parameters we receive

within the closure (an element of the Map) to the updateUnitsAndCrea-

teXML() method.

Now, let’s look at the updateUnitsAndCreateXML() method. It accepts an

element of the Map as a parameter and creates an XML fragment of the

format <symbol ticker=“sym”><units>value</units></symbol>. While process-

ing each symbol, we took care of the objective to increase units by 1.

The last step is to save the generated document, and we use the save()

method to achieve that task. We read back the saved document from

the file stocks2.xml to take a look at the content we generated.

The save() method simply saved the XML document without any bells

and whistles. If you’d like to add an XML version, add doctypes, and

specify encoding, use one of the variations of the save() method on the

XML singleton object.

14.6 Getting Stock Prices from the Web

The final step to complete our net asset application is to get the stock

price from the Web. We have the list of ticker symbols and the units in

the file stocks.xml we saw earlier. For each of these symbols, we need to

fetch the closing price. Thankfully, Yahoo provides a web service that

we can use to get stock data. To find the latest closing price for Google

stocks, for example, we can visit the following URL:

http://ichart.finance.yahoo.com/table.csv?s=GOOG&a=00&b=01&c=2009

The parameters s, a, b, and c represent the ticker symbol, start month

(January is 0), start day, and start year, respectively. If you don’t specify

the end dates using the parameters d, e, and f, the service returns all

prices from the given start date until the most recent available date.

When you visit the previous URL, you’ll get a comma-separated value

(CSV) file to download.

Report erratum

this copy is (P1.0 printing, June 2009)
Prepared exclusively for sam kaplan

http://books.pragprog.com/titles/vsscala/errata/add?pdf_page=196

GETTING STOCK PRICES FROM THE WEB 197

A sample of the file is shown here:

Date,Open,High,Low,Close,Volume,Adj Close

2009-04-02,363.31,369.76,360.32,362.50,4488000,362.50

2009-04-01,343.78,355.24,340.61,354.09,3301200,354.09

2009-03-31,348.93,353.51,346.18,348.06,3655300,348.06

...

To get the latest closing price, we have to skip the first header line and

step to the second line, containing the data for the most recent date.

From among the comma-separated values, simply grab the fifth ele-

ment3 (the element at index 4 starting the count with the traditional 0).

Let’s put the Yahoo service to work. We’ll open our stocks.xml file,4 grab

each symbol, and fetch the latest closing price for that ticker. We mul-

tiply the closing price we fetched by the number of units we have, and

we get the total value for that stock. Total all those values, and we get

to know the total worth of our investments.

Let’s capture the code that populates a map with the ticker symbols

and units present in the XML file and the code to fetch data from the

Yahoo service into a singleton object named StockPriceFinder:

Download UsingScala/StockPriceFinder.scala

object StockPriceFinder {

def getLatestClosingPrice(symbol: String) = {

val url = "http://ichart.finance.yahoo.com/table.csv?s=" +

symbol + "&a=00&b=01&c=" + new java.util.Date().getYear

val data = scala.io.Source.fromURL(url).mkString

val mostRecentData = data.split("\n")(1)

val closingPrice = mostRecentData.split(",")(4).toDouble

closingPrice

}

def getTickersAndUnits() = {

val stocksAndUnitsXML = scala.xml.XML.load("stocks.xml")

(Map[String, Int]() /: (stocksAndUnitsXML \ "symbol")) { (map, symbolNode) =>

val ticker = (symbolNode \ "@ticker").toString

val units = (symbolNode \ "units").text.toInt

map(ticker) = units //Creates and returns a new Map

}

}

}

3. Grab the 5th element if you want the closing price or grab the 7th element if you want

the adjusted closing price.

4. I’m not presenting a full example that reads from the console and updates units in

the file stocks.xml. As a experienced programmer, you know already how

the examples given so far in this chapter.

Report erratum

this copy is (P1.0 printing, June 2009)
Prepared exclusively for sam kaplan

http://media.pragprog.com/titles/vsscala/code/UsingScala/StockPriceFinder.scala
http://books.pragprog.com/titles/vsscala/errata/add?pdf_page=197

GETTING STOCK PRICES FROM THE WEB 198

In the getLatestClosingPrice() method, given a symbol, we go out to the

Yahoo service and get the price data. Since the data is in CSV format,

we split the data to extract the closing price. The closing price is finally

returned from this method.

Since our ticker symbols and units are in stocks.xml, the getTickersAn-

dUnits() method reads this file and creates a map of ticker symbols and

units. We saw in earlier sections how to accomplish this. It is the same

code moved into the previous singleton object.

Now we’re all set to fetch the data and compute the results. The code

for that is shown here:

Download UsingScala/FindTotalWorthSequential.scala

val symbolsAndUnits = StockPriceFinder.getTickersAndUnits

println("Today is " + new java.util.Date())

println("Ticker Units Closing Price($) Total Value($)")

val startTime = System.nanoTime()

val netWorth = (0.0 /: symbolsAndUnits) { (worth, symbolAndUnits) =>

val (symbol, units) = symbolAndUnits

val latestClosingPrice = StockPriceFinder getLatestClosingPrice symbol

val value = units * latestClosingPrice

println("%-7s %-5d %-16f %f".format(symbol, units, latestClosingPrice, value))

worth + value

}

val endTime = System.nanoTime()

println("The total value of your investments is $" + netWorth)

println("Took %f seconds".format((endTime-startTime)/1000000000.0))

The output from the previous code is shown here:

Today is Fri Apr 03 11:14:21 MDT 2009

Ticker Units Closing Price($) Total Value($)

XRX 240 4.980000 1195.200000

NSM 200 11.250000 2250.000000

SYMC 230 16.020000 3684.600000

ADBE 125 23.280000 2910.000000

VRSN 200 20.070000 4014.000000

CSCO 250 18.140000 4535.000000

TXN 190 16.470000 3129.300000

ALU 150 2.010000 301.500000

IBM 215 100.820000 21676.300000

Report erratum

this copy is (P1.0 printing, June 2009)
Prepared exclusively for sam kaplan

http://media.pragprog.com/titles/vsscala/code/UsingScala/FindTotalWorthSequential.scala
http://books.pragprog.com/titles/vsscala/errata/add?pdf_page=198

MAKING THE NET ASSET APPLICATION CONCURRENT 199

INTC 160 15.700000 2512.000000

ORCL 200 18.820000 3764.000000

HPQ 225 33.690000 7580.250000

AMD 150 3.160000 474.000000

AAPL 200 112.710000 22542.000000

MSFT 190 19.290000 3665.100000

The total value of your investments is $84233.25

Took 18.146055 seconds

In the previous code, we first get the map of ticker symbols and units

from the StockPriceFinder. Then, for each symbol, we request that the

StockPriceFinder get the latest price using the getLatestClosingPrice() meth-

od. Once we receive the latest closing price, we multiply it with the units

to find the total value for that stock. We use the /:()—foldLeft()—method

to help iterate and find the net worth at the same time.

We didn’t need much code to accomplish the task. The previous exam-

ple took about eighteen seconds to run. In the next section, we’ll make

it respond faster.

14.7 Making the Net Asset Application Concurrent

The sequential implementation of the net asset application looked up

the latest price for each symbol one at a time. The major delay is the

time spent waiting for the responses from the Web—the network delay.

Let’s refactor the previous code so we can make the requests for the

latest prices for all the symbols concurrently. When done, we should

see a faster response from our net asset application.

To make this application concurrent, we will place the calls to getLatest-

ClosingPrice() in separate actors. Once they receive the response, they

can send a message to the main actor. The main actor can then receive

all the responses and total the net worth. This part will be sequential.

Here is the code to achieve this goal:

Download UsingScala/FindTotalWorthConcurrent.scala

import scala.actors._

import Actor._

val symbolsAndUnits = StockPriceFinder.getTickersAndUnits

val caller = self

println("Today is " + new java.util.Date())

println("Ticker Units Closing Price($) Total Value($)")

val startTime = System.nanoTime()

Report erratum

this copy is (P1.0 printing, June 2009)
Prepared exclusively for sam kaplan

http://media.pragprog.com/titles/vsscala/code/UsingScala/FindTotalWorthConcurrent.scala
http://books.pragprog.com/titles/vsscala/errata/add?pdf_page=199

MAKING THE NET ASSET APPLICATION CONCURRENT 200

symbolsAndUnits.keys.foreach { symbol =>

actor { caller ! (symbol, StockPriceFinder.getLatestClosingPrice(symbol)) }

}

val netWorth = (0.0 /: (1 to symbolsAndUnits.size)) { (worth, index) =>

receiveWithin(10000) {

case (symbol : String, latestClosingPrice: Double) =>

val units = symbolsAndUnits(symbol)

val value = units * latestClosingPrice

println("%-7s %-5d %-16f %f".format(

symbol, units, latestClosingPrice, value))

worth + value

}

}

val endTime = System.nanoTime()

println("The total value of your investments is $" + netWorth)

println("Took %f seconds".format((endTime-startTime)/1000000000.0))

The output from the previous code is shown here:

Today is Fri Apr 03 11:18:35 MDT 2009

Ticker Units Closing Price($) Total Value($)

ADBE 125 23.280000 2910.000000

XRX 240 4.980000 1195.200000

SYMC 230 16.020000 3684.600000

VRSN 200 20.070000 4014.000000

CSCO 250 18.140000 4535.000000

ALU 150 2.010000 301.500000

NSM 200 11.250000 2250.000000

TXN 190 16.470000 3129.300000

IBM 215 100.820000 21676.300000

INTC 160 15.700000 2512.000000

ORCL 200 18.820000 3764.000000

HPQ 225 33.690000 7580.250000

AAPL 200 112.710000 22542.000000

MSFT 190 19.290000 3665.100000

AMD 150 3.160000 474.000000

The total value of your investments is $84233.25

Took 7.683939 seconds

Review the previous code to make sure you understand what’s going

on. We have put to use the concepts you have learned so far in this

book in order to get the previous code working.

As you can see from the previous output, the net asset value is the

same5 as in the sequential execution. However, the concurrent version

took only about seven seconds vs. the eighteen seconds the sequential

5. Sorry, Scala code does not increase our net asset, but I contend

professional worth!

Report erratum

this copy is (P1.0 printing, June 2009)
Prepared exclusively for sam kaplan

http://books.pragprog.com/titles/vsscala/errata/add?pdf_page=200

PUTTING A GUI ON THE NET ASSET APPLICATION 201

version took. Go ahead and try these two versions on your machine,

and observe the results. Each day you run it, the result will be different

because of fluctuating stock prices and network traffic.

14.8 Putting a GUI on the Net Asset Application

You’re eager to show off your net asset application to friends, but you

know that a GUI will make it more appealing. The good news is that

Scala comes with the scala.swing library that makes it easy to write

Swing applications in Scala. Let’s understand some basics and then

quickly put a GUI on our application.

The scala.swing library has a singleton object named SimpleGUIApplica-

tion. This object already has a main() method. It expects you to imple-

ment a top() method in which you’d return an instance of the all-too-

familiar Frame. So, implementing a Swing application is as simple as

extending SimpleGUIApplication and implementing the top() method. How

do you handle events? You handle them with style—rather than the

mundane listener methods, you will use the idiomatic pattern match-

ing to handle events. An example will help put all this in perspective.

So, here is the code:

Download UsingScala/SampleGUI.scala

import scala.swing._

import event._

object SampleGUI extends SimpleGUIApplication {

def top = new MainFrame {

title = "A Sample Scala Swing GUI"

val label = new Label { text = "------------"}

val button = new Button { text = "Click me" }

contents = new FlowPanel {

contents += label

contents += button

}

listenTo(button)

reactions += {

case ButtonClicked(button) =>

label.text = "You clicked!"

}

}

}

Report erratum

this copy is (P1.0 printing, June 2009)
Prepared exclusively for sam kaplan

http://media.pragprog.com/titles/vsscala/code/UsingScala/SampleGUI.scala
http://books.pragprog.com/titles/vsscala/errata/add?pdf_page=201

PUTTING A GUI ON THE NET ASSET APPLICATION 202

Go ahead, compile the previous code using scalac SampleGUI.scala, and

then run it using the command scala SampleGUI. The initial window that

pops up is shown here on the left. The effect of clicking the button is

shown on the right.

We extended our singleton object SampleGUI from SimpleGUIApplication

and provided the implementation for the top() method. Within this

method we create an instance of an anonymous class that extends Main-

Frame. The MainFrame class is part of the Scala swing library and takes

care of shutting down the framework and quitting the application in

addition to serving as a main application window. So, unlike the Swing

JFrame, when using MainFrame, you don’t have to deal with the default-

CloseOperation property to close the windows.

We then set a title property and created an instance of a Label and a

Button. The contents property of MainFrame represents the content that

the main window will hold. It can contain only one component and in

this example holds the instance of FlowPanel. We then add (using the

append method +=()) the label and button we created to the contents

property of the FlowPanel instance. As you can imagine, the FlowPanel,

like its AWT/Swing counterpart java.awt.Flowlayout, arranges its compo-

nents horizontally, one after the other.

The last order of business is to handle the events, in this example, the

events on the button. We register the button as a source of an event

by calling the listenTo() method; that is, we’re asking the main window

to listen to the button events. We then register the event handler by

providing a partial function to the reactions property. Within the han-

dler, we match the events we’re interested in using the appropriate case

classes for events. In this example, that would be the click event on the

button, and we use the ButtonClicked case class to match it.

Now let’s focus our attention on putting a GUI on top of the net asset

application. There is one complication you should pay attention to.

When we create multiple actors to query for the prices, remember to

update the GUI components only from the main UI owning thread.

That’s because the UI components in Swing are not thread safe. So,

let’s get down to writing the code.

Report erratum

this copy is (P1.0 printing, June 2009)
Prepared exclusively for sam kaplan

http://books.pragprog.com/titles/vsscala/errata/add?pdf_page=202

PUTTING A GUI ON THE NET ASSET APPLICATION 203

When we finish this example, the GUI will look like the following:

The table displays the ticker symbols, units, price, and total value for

each stock a user holds. At the bottom, you will eventually see the

net asset value, and at the top you’ll see the last time the price was

updated. The Update button will start the action to get the data from

the Web.

Part of the code we will write will deal with the GUI components. The

rest of the code will deal with sending requests to the Yahoo service and

receiving the responses using the StockPriceFinder we wrote earlier. Once

we get those responses, we will have to compute the value of each stock

and the net assets—that’s our business logic. I’m sure you’d like to

keep the code cohesive by separating the business logic from the code

that manipulates the GUI components. So, let’s first take a look at the

singleton object NetAssetStockPriceHelper that will handle the business

logic and act as a liaison between the GUI and StockPriceFinder:

Download UsingScala/NetAssetStockPriceHelper.scala

import scala.actors._

import Actor._

object NetAssetStockPriceHelper {

val symbolsAndUnits = StockPriceFinder.getTickersAndUnits

def getInitialTableValues : Array[Array[Any]] = {

val emptyArrayOfArrayOfAny = new Array[Array[Any]](0,0)

Report erratum

this copy is (P1.0 printing, June 2009)
Prepared exclusively for sam kaplan

http://media.pragprog.com/titles/vsscala/code/UsingScala/NetAssetStockPriceHelper.scala
http://books.pragprog.com/titles/vsscala/errata/add?pdf_page=203

PUTTING A GUI ON THE NET ASSET APPLICATION 204

(emptyArrayOfArrayOfAny /: symbolsAndUnits) { (data, element) =>

val (symbol, units) = element

data ++ Array(List(symbol, units, "?", "?").toArray)

}

}

def fetchPrice(updater: Actor) = actor {

val caller = self

symbolsAndUnits.keys.foreach { symbol =>

actor { caller ! (symbol, StockPriceFinder.getLatestClosingPrice(symbol)) }

}

val netWorth = (0.0 /: (1 to symbolsAndUnits.size)) { (worth, index) =>

receiveWithin(10000) {

case (symbol : String, latestClosingPrice: Double) =>

val units = symbolsAndUnits(symbol)

val value = units * latestClosingPrice

updater ! (symbol, units, latestClosingPrice, value)

worth + value

}

}

updater ! netWorth

}

}

The getInitialTableValues() method returns a two-dimensional array to fill

in the table with initial values. It includes the ticker symbol and the

units. Since the price and value is not known initially, this method

returns ? for those places.

The fetchPrice() method accepts a UI updating actor as a parameter, and

the return value from this method is an actor as well. The parameter

actor will be responsible on the UI side for updating the UI components

in the UI thread. The actor this method returns does two things. First,

it sends concurrent request to the StockPriceFinder to go out and get

the price for various symbols. Second, as it receives the response, it

computes the stock value and immediately sends it to the UI updating

actor so it can update the UI right away. Furthermore, it continues to

receive the remaining prices and determines the net asset. When all

the prices are received, it sends the net asset to the UI updating actor

so it can display that amount. As you read through this method, you’ll

notice it is like the code you saw earlier in Section 14.7, Making the Net

Asset Application Concurrent, on page 199. The main difference is while

the latter printed out the result, fetchPrice() sends the details to the UI

updating actor so it can display on the GUI.

Report erratum

this copy is (P1.0 printing, June 2009)
Prepared exclusively for sam kaplan

http://books.pragprog.com/titles/vsscala/errata/add?pdf_page=204

PUTTING A GUI ON THE NET ASSET APPLICATION 205

Now the only task left is to write the GUI code to talk to NetAssetStock-

PriceHelper. Let’s first start with the class definition:

Download UsingScala/NetAssetAppGUI.scala

import scala.swing._

import event._

import scala.actors._

import Actor._

import java.awt.Color

object NetAssetAppGUI extends SimpleGUIApplication {

def top = mainFrame

We’ve created a singleton object named NetAssetAPPGUI that extends the

SimpleGUIApplication. We’ve defined the required top() method. It returns

a value mainFrame that we’ll define soon. Let’s now take a look at creat-

ing an instance of MainFrame:

Download UsingScala/NetAssetAppGUI.scala

val mainFrame = new MainFrame {

title = "Net Asset"

val dateLabel = new Label { text = "Last updated: ----- " }

val valuesTable = new Table(

NetAssetStockPriceHelper.getInitialTableValues,

Array("Ticker", "Units", "Price", "Value")) {

showGrid = true

gridColor = Color.BLACK

}

val updateButton = new Button { text = "Update" }

val netAssetLabel = new Label { text = "Net Asset: ????" }

We set the desired title value and created the four components we need:

two labels, one table, and one button. Creating the labels and buttons

is quite straightforward. Let’s focus on the table here. We created an

instance of scala.swing.Table and sent two arguments to its constructor.

The first argument is the initial data for the table that we obtain from

the NetAssetStockPriceHelper’s getInitialTableValues() method. The second

argument consists of the names for the column headers.

Remember, we can’t place multiple components on the main window.

Report erratum

this copy is (P1.0 printing, June 2009)
Prepared exclusively for sam kaplan

http://media.pragprog.com/titles/vsscala/code/UsingScala/NetAssetAppGUI.scala
http://media.pragprog.com/titles/vsscala/code/UsingScala/NetAssetAppGUI.scala
http://books.pragprog.com/titles/vsscala/errata/add?pdf_page=205

PUTTING A GUI ON THE NET ASSET APPLICATION 206

So, we will place these components within a BoxPanel and in turn place

the BoxPanel into the contents of the main frame, as shown here:

Download UsingScala/NetAssetAppGUI.scala

contents = new BoxPanel(Orientation.Vertical) {

contents += dateLabel

contents += valuesTable

contents += new ScrollPane(valuesTable)

contents += new FlowPanel {

contents += updateButton

contents += netAssetLabel

}

}

The BoxPanel boxes up or stacks up the components given to it (espe-

cially since the orientation is vertical). We put the dateLabel on the top,

followed by the table. At the bottom we place a FlowPanel that holds the

other label and the button.

We’re almost done. The only thing left is to handle the events and

update the UI:

Download UsingScala/NetAssetAppGUI.scala

listenTo(updateButton)

reactions += {

case ButtonClicked(button) =>

button.enabled = false

NetAssetStockPriceHelper fetchPrice uiUpdater

}

In the previous code we subscribed to events on the button and added

a handler. In the handler we first disable the Update button and then

send a request to the NetAssetStockPriceHelper to go get the prices and

compute the value. We provide to it a uiUpdater, which is an actor we

will create soon. Remember that since the method fetchPrice() returns

an actor, the request is processed in a separate thread, and the previ-

ous call is nonblocking. At this point, the NetAssetStockPriceHelper will

concurrently request stock prices and compute the value. As soon as

the first price arrives, it will start sending messages to the uiUpdater.

So, we better create that one quickly so we can start updating the UI.

Report erratum

this copy is (P1.0 printing, June 2009)
Prepared exclusively for sam kaplan

http://media.pragprog.com/titles/vsscala/code/UsingScala/NetAssetAppGUI.scala
http://media.pragprog.com/titles/vsscala/code/UsingScala/NetAssetAppGUI.scala
http://books.pragprog.com/titles/vsscala/errata/add?pdf_page=206

PUTTING A GUI ON THE NET ASSET APPLICATION 207

Download UsingScala/NetAssetAppGUI.scala

val uiUpdater = new Actor {

def act = {

loop {

react {

case (symbol : String, units : Int, price : Double, value : Double) =>

updateTable(symbol, units, price, value)

case netAsset =>

netAssetLabel.text = "Net Asset: " + netAsset

dateLabel.text = "Last updated: " + new java.util.Date()

updateButton.enabled = true

}

}

}

override protected def scheduler() = new SingleThreadedScheduler

}

uiUpdater.start()

The value uiUpdater refers to an anonymous instance of an Actor. Once

we call start() on it, it will run in the main event dispatch thread since

we have overridden the scheduler() method to return an instance of Sin-

gleThreadedScheduler. In the act() method, we receive the messages sent

by the NetAssetStockPriceHelper and update the UI components appro-

priately. That last missing piece is the updateTable() method, which will

update the table with data as it arrives. Here’s that method along with

the braces at the end to complete the code we’ve been developing:

Download UsingScala/NetAssetAppGUI.scala

def updateTable(symbol: String, units : Int, price : Double, value : Double) {

for(i <- 0 until valuesTable.rowCount) {

if (valuesTable(i, 0) == symbol) {

valuesTable(i, 2) = price

valuesTable(i, 3) = value

}

}

}

}

}

The previous method simply loops through the table, locates the symbol

of interest, and updates the row. We can devise other means to look up

the table if we desire to improve this. For instance, we may store the

row number in a map as we initially populate a table. Then we can

quickly locate the row by performing a lookup on that map.

Report erratum

this copy is (P1.0 printing, June 2009)
Prepared exclusively for sam kaplan

http://media.pragprog.com/titles/vsscala/code/UsingScala/NetAssetAppGUI.scala
http://media.pragprog.com/titles/vsscala/code/UsingScala/NetAssetAppGUI.scala
http://books.pragprog.com/titles/vsscala/errata/add?pdf_page=207

PUTTING A GUI ON THE NET ASSET APPLICATION 208

Now as you run the application, you will notice the stock prices and

values are updated as they arrive, as shown in the following figure:

Once all the prices are received, the net asset and the time are updated,

as shown here:

The code we’ve created so far follows a happy path. If you have a net-

work connection and if the service responded on time, everything goes

well. In reality that is not always the case. You will have to handle

exceptions within the actors and propagate the failure back to the uiUp-

dater actor so it can display the message on the UI. For this, you could

Report erratum

this copy is (P1.0 printing, June 2009)
Prepared exclusively for sam kaplan

http://books.pragprog.com/titles/vsscala/errata/add?pdf_page=208

PUTTING A GUI ON THE NET ASSET APPLICATION 209

add another case statement that accepts an exception message, and of

course the actors will have to send those messages when they hit the

failure situations.

For your benefit, I’ve listed the entire code for the UI here again—you

may be surprised how succinct the code is:

Download UsingScala/NetAssetAppGUI.scala

import scala.swing._

import event._

import scala.actors._

import Actor._

import java.awt.Color

object NetAssetAppGUI extends SimpleGUIApplication {

def top = mainFrame

val mainFrame = new MainFrame {

title = "Net Asset"

val dateLabel = new Label { text = "Last updated: ----- " }

val valuesTable = new Table(

NetAssetStockPriceHelper.getInitialTableValues,

Array("Ticker", "Units", "Price", "Value")) {

showGrid = true

gridColor = Color.BLACK

}

val updateButton = new Button { text = "Update" }

val netAssetLabel = new Label { text = "Net Asset: ????" }

contents = new BoxPanel(Orientation.Vertical) {

contents += dateLabel

contents += valuesTable

contents += new ScrollPane(valuesTable)

contents += new FlowPanel {

contents += updateButton

contents += netAssetLabel

}

}

listenTo(updateButton)

reactions += {

case ButtonClicked(button) =>

button.enabled = false

NetAssetStockPriceHelper fetchPrice uiUpdater

}

Report erratum

this copy is (P1.0 printing, June 2009)
Prepared exclusively for sam kaplan

http://media.pragprog.com/titles/vsscala/code/UsingScala/NetAssetAppGUI.scala
http://books.pragprog.com/titles/vsscala/errata/add?pdf_page=209

PUTTING A GUI ON THE NET ASSET APPLICATION 210

val uiUpdater = new Actor {

def act = {

loop {

react {

case (symbol : String, units : Int, price : Double, value : Double) =>

updateTable(symbol, units, price, value)

case netAsset =>

netAssetLabel.text = "Net Asset: " + netAsset

dateLabel.text = "Last updated: " + new java.util.Date()

updateButton.enabled = true

}

}

}

override protected def scheduler() = new SingleThreadedScheduler

}

uiUpdater.start()

def updateTable(symbol: String, units : Int, price : Double, value : Double) {

for(i <- 0 until valuesTable.rowCount) {

if (valuesTable(i, 0) == symbol) {

valuesTable(i, 2) = price

valuesTable(i, 3) = value

}

}

}

}

}

In this chapter, you saw firsthand the conciseness and expressiveness

of Scala. You enjoyed the benefits of pattern matching, XML process-

ing, and functional style. You also saw the benefit and ease of the con-

currency API. You’re all set to take these benefits to your real-word

projects. Thank you for reading.

Report erratum

this copy is (P1.0 printing, June 2009)
Prepared exclusively for sam kaplan

http://books.pragprog.com/titles/vsscala/errata/add?pdf_page=210

Appendix A

Web Resources
A Brief History of Scala. . .

. . . http://www.artima.com/weblogs/viewpost.jsp?thread=163733

Martin Odersky talks about creating Scala.

Canary Test. . .

. . . http://memeagora.blogspot.com/2007/06/coalmine-canary-tests.html

In this blog, Neal Ford discusses canary tests and the advantage of starting out

small and simple.

Command Query Separation. . .

. . . http://www.martinfowler.com/bliki/CommandQuerySeparation.html

In this blog, Martin Fowler discusses the term command query separation.

Continuous Integration. . .

. . . http://martinfowler.com/articles/continuousIntegration.html

In this article, Martin Fowler discusses the practice of continuous integration.

Discussion Forum for This Bookhttp://forums.pragprog.com/forums/87

This is the discussion forum for this book where readers share their opinions,

ask questions, respond to questions, and interact with each other.

Essence vs. Ceremony. . .

. . . http://blog.thinkrelevance.com/2008/4/1/ending-legacy-code-in-our-lifetime

In this blog titled “Ending Legacy Code in Our Lifetime,” Stuart Halloway dis-

cusses essence vs. ceremony.

Fractal Programming. . .

. . . http://ola-bini.blogspot.com/2008/06/fractal-programming.html

Ola Bini makes a case for mixing different languages to build large-scale appli-

cations with multiple layers including the domain layer, the dynamic layer, and

the stable layer.

Prepared exclusively for sam kaplan

http://www.artima.com/weblogs/viewpost.jsp?thread=163733
http://memeagora.blogspot.com/2007/06/coalmine-canary-tests.html
http://www.martinfowler.com/bliki/CommandQuerySeparation.html
http://martinfowler.com/articles/continuousIntegration.html
http://forums.pragprog.com/forums/87
http://blog.thinkrelevance.com/2008/4/1/ending-legacy-code-in-our-lifetime
http://ola-bini.blogspot.com/2008/06/fractal-programming.html

APPENDIX A. WEB RESOURCES 212

Hittin’ the Edge Caseshttp://blogs.sun.com/navi/entry/scala_puzzlers_part_1

Ivan Tarasov discusses some Scala puzzlers, including a problem with param-

eterless case classes.

Java SE . http://java.sun.com/javase/downloads/index.jsp

This is the download page for Java SE versions.

Lift Webframework . http://liftweb.net

This is David Pollak’s Lift Webframework built using Scala.

Loan Pattern .http://scala.sygneca.com/patterns/loan

This is the Scala wiki page describing the Loan pattern—a pattern to dispose

of nonmemory resources automatically.

Polyglot Programming. . .

. . . http://memeagora.blogspot.com/2006/12/polyglot-programming.html

Neal Ford talks about Polyglot Programming.

Prefer Conciseness over Terseness.http://tinyurl.com/5bawat

In this blog, I discuss conciseness vs. terseness with testing as an example.

ScalaTest . http://www.artima.com/scalatest

This is a testing framework written in Scala to test Scala and Java code.

Scala IDE Plug-ins http://www.scala-lang.org/node/91#ide_plugins

This page presents details of IDE plug-ins available for working with Scala.

Scala Language Specification. . .

. . . http://www.scala-lang.org/docu/files/ScalaReference.pdf

The Scala Language Specification was written by Martin Odersky of Program-

ming Methods Laboratory, EPFL, Switzerland.

Scala Language Website . http://www.scala-lang.org

This is the official website for the Scala programming language.

The Scala Language API. . . .http://www.scala-lang.org/docu/files/api/index.html

This is the online version of the Scala Language API.

Report erratum

this copy is (P1.0 printing, June 2009)
Prepared exclusively for sam kaplan

http://blogs.sun.com/navi/entry/scala_puzzlers_part_1
http://java.sun.com/javase/downloads/index.jsp
http://liftweb.net
http://scala.sygneca.com/patterns/loan
http://memeagora.blogspot.com/2006/12/polyglot-programming.html
http://tinyurl.com/5bawat
http://www.artima.com/scalatest
http://www.scala-lang.org/node/91#ide_plugins
http://www.scala-lang.org/docu/files/ScalaReference.pdf
http://www.scala-lang.org
http://www.scala-lang.org/docu/files/api/index.html
http://books.pragprog.com/titles/vsscala/errata/add?pdf_page=212

Appendix B

Bibliography

[Arm07] Joe Armstrong. Programming Erlang: Software for a Concur-

rent World. The Pragmatic Programmers, LLC, Raleigh, NC,

and Dallas, TX, 2007.

[Bec96] Kent Beck. Smalltalk Best Practice Patterns. Prentice Hall,

Englewood Cliffs, NJ, 1996.

[Blo01] Joshua Bloch. Effective Java Programming Language Guide.

Addison Wesley Longman, Reading, MA, 2001.

[Blo08] Joshua Bloch. Effective Java. Addison Wesley Longman,

Reading, MA, second edition, 2008.

[Cla04] Mike Clark. Pragmatic Project Automation. How to Build,

Deploy, and Monitor Java Applications. The Pragmatic Pro-

grammers, LLC, Raleigh, NC, and Dallas, TX, 2004.

[DMG07] Paul Duvall, Steve Matyas, and Andrew Glover. Continuous

Integration: Improving Software Quality and Reducing Risk.

Addison-Wesley, Reading, MA, 2007.

[For08] Neal Ford. The Productive Programmer. O’Reilly & Asso-

ciates, Inc, 2008.

[Fri97] Jeffrey E. F. Friedl. Mastering Regular Expressions. O’Reilly

& Associates, Inc, Sebastopol, CA, 1997.

[GHJV95] Erich Gamma, Richard Helm, Ralph Johnson, and John

Vlissides. Design Patterns: Elements of Reusable Object-

Oriented Software. Addison-Wesley, Reading, MA, 1995.

Prepared exclusively for sam kaplan

APPENDIX B. BIBLIOGRAPHY 214

[Goe06] Brian Goetz. Java Concurrency in Practice. Addison-Wesley,

Reading, MA, 2006.

[HT00] Andrew Hunt and David Thomas. The Pragmatic Program-

mer: From Journeyman to Master. Addison-Wesley, Reading,

MA, 2000.

[Lea00] Doug Lea. Concurrent Programming in Java, Second Edition:

Design Principles and Patterns. Addison-Wesley, Reading,

MA, 2000.

[OSV08] Martin Odersky, Lex Spoon, and Bill Venners. Programming

in Scala. 2008.

[VWWA96] Robert Virding, Claes Wikstrom, Mike Williams, and Joe

Armstrong. Concurrent Programming in Erlang. Prentice

Hall, Englewood Cliffs, NJ, second edition, 1996.

Report erratum

this copy is (P1.0 printing, June 2009)
Prepared exclusively for sam kaplan

http://books.pragprog.com/titles/vsscala/errata/add?pdf_page=214

Index
Symbols
* (asterisk) for passing variable

arguments, 70

**() method, 105

@ (at sign), in list matching, 119

\() and \\() for parsing and extraction,

191

\:() method (or foldRight()), 111

! unary operator, 112

!() method, 133, 142

{ } (braces)

function values inside, 79, 81

semicolon before open brace, 47

^() method, 112

^:() method, 112

: (colon), ending method names, 112

::() method (List collection), 108

:::() method (List collection), 109

$ (dollar sign), for singleton classes, 163

. (dot), as optional, 37

= (equals sign)

==() method (Any), 46

assignment (=) operator, 45

defining methods with, 69

- unary operator, 112

() (parentheses) as optional, 37

+ (plus sign)

+ unary operator, 112

++() method, 105

overloading, 43

; (semicolon) as optional, 19, 41, 47

/:() method (or foldLeft()), 79, 83, 110,

135

~ unary operator, 112

_ (underscore)

_* for using array values as method

arguments, 71, 193

for default value of type, 57

as function argument, 21

for function value parameters, 83–84

| (vertical bar) prompt (scala), 29

A
abstract classes, for object decoration,

96

abstract methods, 98

access modifiers, 42, 48

changing default for, 48

fine-grained visibility control, 50–52

act() method, 140

Actor class, 139–141

concurrency with, 133–136

message passing, 137–139

invalid messages, ignoring, 146

actor() method, 133, 141–144

afterEach() method, 176

annotations, 166

anonymous functions, 21

Any class, 46, 65–67

AnyRef class, 67

AnyVal class, 67

appending lists to other lists, 109

apply() method (Map collection), 107,

115

array values as method arguments, 71,

193

assert() method, 172–174

assertEquals() method, 172n

assertThat() method, 172n

assignment (=) operator, 45

asterisk (*) for passing variable

arguments, 70

**() method, 105

asynchronous message passing, 138

at sign (@), in list matching, 119

auxiliary constructors, 56, 58

Prepared exclusively for sam kaplan

\:() METHOD (OR FOLDRIGHT()) 216 CONTENTS PROPERTY (MAINFRAME)

B
\:() method (or foldRight()), 111

\() and \\() for parsing and extraction,

191

bang (!), for unary operator, 112

!() method, 133, 142

base classes, extending, 57–58

batch mode, scala in, 30

BeforeAndAfter trait, 176

beforeEach() method, 176

braces { }

function values inside, 79, 81

semicolon before open brace, 47

Button class, 202

C
canary tests, 169

case classes, for pattern matching,

121–124

case statements, 116

for catching exceptions, 184

pattern matching in expressions of,

120, 129–130

catch() method, 175

catching exceptions, 42, 183

using multiple catch blocks, 186

checked exceptions, 183, 185

classes, 53–62

case classes, for pattern matching,

121–124

compiling, 157

creating, 53–54

defining fields, methods, and

constructors, 54–57

extending, 57–58, 165–166

for Java primitives, 37–38

public by default, 42, 48

changing, 48

rich wrapper classes, 38

singleton objects, 58–59

stand-alone and companion objects,

60–61, 163

static fields and methods, 61–62

traits vs., 94

see also Any class; Nothing class

classes, extending partially (mixed in),

see traits

classpath option (scalac), 157

classpath, specifying, 33

closures, 88–89

sharing code between tests, 177

collections, 64–66, 103–115

common collections, 103–104

for expressions with, 113–115

List class, 108–111

Map class, 106–108, 194

Set class, 104–105

collision of methods, 94

colon (:)

::() method (List collection), 108

:::() method (List collection), 109

ending method names with, 112

comma-separated value sets, see tuples

commands, bringing back using scala,

29

companion and stand-alone objects,

60–61

in Java, 163

companion classes, defined, 60

compile-time type checking, see static

typing

compiling classes, 157

compiling Scala, 32

complex numbers, 43n

concatenating lists, 109

concise, Scala as, 14, 17, 19

concurrency of Scala, 17

concurrent programming, 131–155

Actor class, about, 139–141

actor() method, using, 141–144

controlling thread of execution,

153–154

immutability, advantages of,

131–133

loop() and loopWhile() methods,

151–152

message passing, 137–139

invalid messages, ignoring, 146

react() and reactWithin() methods,

146–151, 154

receive() and receiveWithin() methods,

144–146, 154

stock ticker application (example),

199–201

using actors, 133–136

Console class, 187

constants

matching, 116

matching in case expressions, 120

redefining, 29

constructors, defining, 54–57

contents property (MainFrame), 202

Prepared exclusively for sam kaplan

CONTRAVARIANCE 217 FUNCTION VALUES

contravariance, 72, 74

converting types implicitly, 99–102

covariance, 72, 74

crosscutting concerns, 91

currying, 80–81

D
-d option (scalac), 158

deadlocks, 138

declarative style of functional

programming, 20

declaring checked exceptions, 185

decorating with capabilities (with

traits), 95–97

default behaviors in Scala, 41

defining

fields, methods, and constructors,

54–57

nested packages, 51

stand-alone function values, 82

variables, 35

tuples and multiple assignments,

39

deleting whitespace from strings, 41

deterministically disposing of

nonmemory resources, 86

deterministically ending transactions,

85

disposing of nonmemory resources, 86

distribution files, see installing Scala

dollar sign ($), for singleton classes, 163

dot (.) as optional, 37

double quotes, embedded in strings, 40

downloading Scala, 26

-Dproperty option (scala), 30

E
-e option (scala), 29

EasyMock framework, 181

Eclipse, Scala plug-in for, 32

Elem class, 191

encapsulation, 48

enterprise applications, Scala for, 12

enumerations, 118

eq() method, 46

equals() method, 46

equals sign (=)

==() method (Any), 46

assignment (=) operator, 45

comparison (==) operator, 45, 173

defining methods with, 69

Erlang language, 12

event handling (GUI), 202

exception handling, 42, 165, 183–186

throwing Nothing objects, 68

exception tests, 174–176

Execute Around Method pattern, 84–87

exists() method (List collection), 109

:exit command (scala), 29

exit() method (with actors), 141

expect() method (ScalaTest), 174

extending classes, 57–58, 165–166

extending classes partially, see traits

extends keyword, 93

extractors, for pattern matching,

124–127

regular expressions as, 129–130

F
-f option (Runner class), 172

factory methods, 104

feeds, using sets for (example), 104

fields

defining, 54–57

static, 61–62

File object, 188

filter() method (List collection), 109, 114

filter() method (Map collection), 106

filtering through List elements, 109

filtering through Map elements, 106

filterKeys() method (Map collection), 106

finally blocks, 185

findAllIn() method, 128

findFirstIn() method, 128

FlowPanel class, 202

foldLeft() method (or /:()), 79, 83, 110,

135

foldRight() method (or \:()), 111

for expressions, 113–115

for() method, 193

forall() method (List collection), 109

foreach() method, 36, 105, 113, 189

fromUrl() method, 189

function values, 76–77

closures, 88–89

sharing code between tests, 177

Execute Around Method pattern,

84–87

with multiple parameters, 78–79

parameters of, positional notation

for, 83–84

reusing, 81–83

Prepared exclusively for sam kaplan

FUNCTIONAL PROGRAMMING 218 MAC OS X

functional programming, 12, 19–21,

132

functions, 75–90

currying, 80–81

Execute Around Method pattern,

84–87

normal vs. higher-order, 75

partially applied, 80, 87–88

positional notation for parameters,

83–84

reusing function values, 81–83

FunSuite class, 178

G
get() method (Map collection), 106, 175

getLines() method, 189

granularity, partition, 134n

Groovy language, 13

guards, for pattern matching, 119

GUI, building (example), 201–210

H
head() method (List collection), 108

heredocs, 40

higher-order functions, see function

values; functions

-howtorun option (scala), 30

hyphen (-), for unary operator, 112

I
IDEs, using Scala from, 32

immutable collections, 103

immutable objects, 12, 21, 131–133

defining with val, 35

implicit keyword, 100

implicit methods, 100

implicit type conversions, 99–102

importing Java classes, 159

inheritance, 91

see also traits

installing Scala, 27

instance-level trait mixins, 94

interactive mode, scala in, 30

intercept() method (ScalaTest), 175

intersection operation, on sets, 105

invoking methods, 37

iterating through List elements, 110

J
Java, Scala versus, 17, 19

Java, Scala vs., 34–37

access modifiers, 48

Java and Scala code together, 156–166

extending Java and Scala classes,

165–166

Java classes in Scala, 159–160

Scala classes in Java, 161–164

java command, compiling Scala with,

32, 158

Java enumerations, using, 118

Java primitives, Scala classes for,

37–38

Java properties, sending, 30

java.lang package, 42

JavaBean conventions, 161

JavaBeans, 42

JMock framework, 181

JRuby language, 13

JUnit tests, 167–169

running ScalaTests using, 179

JUNITJAR environmental variable, 168

L
Label class, 202

late binding of methods, 94

late method binding in traits, 97–99

List class, 108–111

matching lists, 119

list comprehension, 114

listenTo() method, 202

lists, 108–111

accessing elements of, 108

appending to another list, 109

iterating through elements of, 110

pattern matching, 118

placing elements in front (prefixing),

108

lists of objects, ordered, see collections

literals, matching, 116

:load command (scala), 30

load() method, 194

Loan pattern, 86

loop() method, 151–152

loops, 35

for expressions, 113–115

foreach() method, 105, 113

loopWhile() method, 151–152

M
Mac OS X

installing Scala on, 27

Prepared exclusively for sam kaplan

MAIN() METHOD 219 OBJECTS

running Scala files like scripts, 31

main() method, Main class, 31

MainFrame class, 202

Map class, 42, 106–108, 194

map() method (List collection), 110, 114,

196

map() method (Set collection), 105

match function, 116

MatchError exception, 117

matching, see pattern matching

merging sets, 105

message passing, 137–139

invalid messages, ignoring, 146

method parameters, functions as, see

function values

methods

avoiding return command with, 52

collision of, 94

defining, 54–57

dot and parentheses as optional, 37

Execute Around Method pattern,

84–87

factory methods, 104

implicit, 100

invoking, 37

late binding in traits, 97–99

name conventions, 111–113

operators as, 43

overloading, 43–45

precedence, 44

public by default, 42, 48

changing, 48

return type inference, 69–70

static, 61–62

synchronized, 132

variable number of arguments

(varargs), passing, 70–71

see also function values; functions

mixing in traits, see traits

mkString() method, 128, 190

mock objects, 181

MODULE$ symbol, 164

multiline raw strings, 40

multiple assignments, 38

multiple implementation inheritance,

91, 94

multithreaded programming, 131–155

Actor class, about, 139–141

actor() method, using, 141–144

concurrency using actors, 133–136

controlling thread of execution,

153–154

immutability, advantages of,

131–133

loop() and loopWhile() methods,

151–152

message passing, 137–139

invalid messages, ignoring, 146

react() and reactWithin() methods,

146–151, 154

receive() and receiveWithin() methods,

144–146, 154

stock ticker application (example),

199–201

mutability, why undesirable, 131

mutable collections, 103

mutable variables, defining, 35

N
name conventions for methods,

111–113

nanoTime method, 136

nested packages, defining, 51

net asset application (example),

187–210

building GUI for, 201–210

getting data from Web, 196–199

getting users’ input, 187–188

managing concurrency, 199–201

reading and writing files, 188–190

XML, reading and writing, 193–196

XML data in, 190–193

NodeSeq class, 191

nonexistence, specifying, 68

nonmemory resources, disposing, 86

Nothing class, 65, 67–68

null, expecting with Option[T] type, 68

O
-o option (Runner class), 171

objects, 18

comparing with ==, 46

decorating with traits, 95–97

encapsulation, 48

function values as, 76

instance-level trait mixing, 94

mock objects, 181

primitives vs. (in Java), 37

singleton objects, 58–59

stand-alone and companion, 60–61

objects, ordered lists of, see collections

Prepared exclusively for sam kaplan

ODERSKY 220 .SCALA FILES

Odersky, Martin, 14

operations, class-level, 61–62

operator overloading, 43–45

operators, unary, 112

Option[T] class, 68

ordered lists of objects, see collections

overflows, 134n

overloading operators, 43–45

override keyword, 57, 96, 98

P
-p option (Runner class), 171

packages, nested, 51

parameterized type, variance of, 71–74

parentheses () as optional, 37

parsing XML, 193–196

partial implementation inheritance, see

traits

partially applied functions, 80, 87–88

partition granularity, 134n

pattern matching, 116–130

case classes for, 121–124

in case expressions, 120, 129–130

with catch blocks, 186

regular expressions

as extractors, 129–130

extractors for, 124–127

literals and constants, 116

regular expressions, 128–129

tuples and lists, 118

types and guards, 119

wildcards, 117

XML fragments, 121

plus sign (+)

+ unary operator, 112

++() method, 105

overloading, 43

positional notation for function value

parameters, 83–84

precedence, 44

Predef objects, 42

aliases for Set and Map, 104

implicit conversions of, 102

prefixing list elements, 108

primary constructors, 55, 58

primitives, Scala classes for, 37–38

printf() method, 118

println() method, 118, 188

priority, method, 44

private access modifier, 48

qualifying, 50

properties, class-level, 61–62

protected access modifier, 48, 49

qualifying, 50

public classes and methods, 42, 48

Q
:quit command (scala), 29

quotation marks, embedded in strings,

40

R
r() method, 128

raw strings, 40

react() method, 146–151, 154

reactions property (MainFrame), 202

reactWithin() method, 146–151, 154

reading from files, 188–190

reading XML, 193–196

readLine() method (Console), 188

receive() method, 133, 137, 142,

144–146, 154

react() and reactWithin() with, 146–151

receiveWithin() method, 144–146, 154

react() and reactWithin() with, 146–151

redefining constants and variables, 29

referencing function values, 81–83

referencing traits, 93

RegEx class, 128

regular expressions, 128–129

as extractors, 129–130

replaceAllIn() method, 128

replaceFirstIn() method, 128

reply() method, 139

resources (nonmemory), disposing of,

86

return command, 41, 52

rich wrapper classes, 38

RichString class, 40

RSS feeds, using sets for (example), 104

Runner class, 170–172

S
save() method, 196

-savecompiled option (scala), 31

Scala, compiling, 32

Scala, defined, 14–19

Scala, downloading, 26

Scala, installing, 27

Scala, reasons to use, 11–14

Scala classes, using, 156–159

.scala files, working with, 30–32

Prepared exclusively for sam kaplan

SCALA PACKAGE 221 UNBOUND FUNCTION PARAMETERS

scala package, 42

scala tool, 28

command manipulation with, 29

compiling Scala with, 32, 158

scala.collection package, 104

Scala.Predef package, 42

scala.util.matching package, 128

scala.xml package, 191

scalability of Scala, 19

SCALALIBRARY environmental variable,

168

ScalaTest tool, 169

Runner class, 170–172

using with JUnit, 179

Scheduler class, 153

scripts, working with, 30–32, 41

sealed keyword, 123

selective trait mixins, 94–95

self() method, 135

semicolon (;) as optional, 19, 41, 47

send() method, 139

Set class, 42, 104–105

sets, 104–105

intersection operation on, 105

merging, 105

sharing code between tests, 176–178

SimpleGUIApplication class, 201

single implementation inheritance, 91

SingleThreadedScheduler class, 153–154

singleton objects, 58–59

in Java, 163

Source class, 189

sourcepath option (scalac), 157

stand-alone and companion objects,

60–61

in Java, 163

start() method, 141

static fields and methods, 61–62

static typing, 13, 18, 63–74

Any class, 46, 65–67

Nothing class, 65, 67–68

type inference, 64–66

method return type, 69–70

variable arguments (varargs), 70–71

variance of parameterized type,

71–74

stock ticker application (example),

187–210

building GUI for, 201–210

getting data from Web, 196–199

getting users’ input, 187–188

managing concurrency, 199–201

reading and writing files, 188–190

XML, reading and writing, 193–196

XML data in, 190–193

String literals, matching, 116

strings, 40

stripMargin() method (RichString), 41

SuperSuite class, 170n

Swing library, 201–210

synchronized block (Java), 84

synchronized methods, 132

synchronous message passing, 138

T
test() method (FunSuite), 178

testing, see unit testing

TestNG tool, 169

text() method, 192

thread affinity, 148

thread of execution, controlling,

153–154

throwing exceptions, 183

throwing exceptions as Nothing, 68

throws clause, 165

tilde (~), for unary operator, 112

timeouts, in concurrent programming,

138, 145, 149, 155

to() method, 35, 38

top() method, 201

traits, 91–99

decorating with, 95–97

with Java, 162

method late binding in, 97–99

selective mixins, 94–95

transactions, ending deterministically,

85

try statements, 183

tuples, 38–40

matching against type, 119

pattern matching, 118

type inference, 64–66

method return type, 69–70

types

function values, 82

implicit type conversions, 99–102

matching against, 119

typing, see static typing

U
unary operators, 112

unbound function parameters, 80, 87

Prepared exclusively for sam kaplan

UNDERSCORE (_) 222 YIELD KEYWORD

underscore (_)

_* for using array values as method

arguments, 71, 193

for default value of type, 57

as function argument, 21

for function value parameters, 83–84

Unit class, 45

unit testing, 167–182

canary tests, 169

exception tests, 174–176

FunSuite class, 178

sharing code between tests, 176–178

using assert() methods, 172–174

using JUnit, 167–169, 179

using ScalaTest, 169

using with JUnit, 179

using ScalaTest tool

Runner class, 170–172

Unix-like systems

installing Scala on, 27

running Scala files like scripts, 31

until() method, 36

update() method (Map collection), 107

user interface, building (example),

201–210

V
val statement, 35

tuples and multiple assignments, 39

var statement, 35

tuples and multiple assignments, 39

variable arguments (varargs) , 70–71

variables

closures, 88–89

sharing code between tests, 177

defining, 35

pattern matching in case

expressions, 120

redefining, 29

tuples and multiple assignments, 39

variance of parameterized type, 71–74

versions of Scala, 26

vertical bar (|) prompt (scala), 29

visibility, 48

fine-grained control over, 50–52

W
Web data, getting, 196–199

whitespace, deleting from strings, 41

wildcards, pattern matching with, 117

Windows systems

installing Scala on, 27

running Scala files like scripts, 31

with keyword, 93

withList() method, 178

writing to files, 188–190

writing XML, 193–196

X
XML, inline in code, 190–193

XML, reading and writing, 193–196

XML fragments, matching, 121

Y
yield keyword, 114

Prepared exclusively for sam kaplan

The Pragmatic Bookshelf
Available in paperback and DRM-free PDF, our titles are here to help you stay on top of

your game. The following are in print as of June 2009; be sure to check our website at

pragprog.com for newer titles.

Title Year ISBN Pages

Advanced Rails Recipes: 84 New Ways to Build

Stunning Rails Apps

2008 9780978739225 464

Agile Retrospectives: Making Good Teams Great 2006 9780977616640 200

Agile Web Development with Rails, Third Edition 2009 9781934356166 784

Augmented Reality: A Practical Guide 2008 9781934356036 328

Behind Closed Doors: Secrets of Great

Management

2005 9780976694021 192

Best of Ruby Quiz 2006 9780976694076 304

Core Animation for Mac OS X and the iPhone:

Creating Compelling Dynamic User Interfaces

2008 9781934356104 200

Data Crunching: Solve Everyday Problems

using Java, Python, and More

2005 9780974514079 208

Deploying Rails Applications: A Step-by-Step

Guide

2008 9780978739201 280

Design Accessible Web Sites: 36 Keys to

Creating Content for All Audiences and

Platforms

2007 9781934356029 336

Desktop GIS: Mapping the Planet with Open

Source Tools

2008 9781934356067 368

Developing Facebook Platform Applications with

Rails

2008 9781934356128 200

Enterprise Integration with Ruby 2006 9780976694069 360

Enterprise Recipes with Ruby and Rails 2008 9781934356234 416

Everyday Scripting with Ruby: for Teams,

Testers, and You

2007 9780977616619 320

FXRuby: Create Lean and Mean GUIs with Ruby 2008 9781934356074 240

From Java To Ruby: Things Every Manager

Should Know

2006 9780976694090 160

GIS for Web Developers: Adding Where to Your

Web Applications

2007 9780974514093 275

Google Maps API, V2: Adding Where to Your

Applications

2006 PDF-Only 83

Groovy Recipes: Greasing the Wheels of Java 2008 9780978739294 264

Hello, Android: Introducing Google’s Mobile

Development Platform

2008 9781934356173 200

Interface Oriented Design 2006 9780976694052 240

Land the Tech Job You Love 2009 9781934356265 280

Learn to Program, 2nd Edition 2009 9781934356364 230

Continued on next

Prepared exclusively for sam kaplan

pragprog.com

Title Year ISBN Pages

Manage It! Your Guide to Modern Pragmatic

Project Management

2007 9780978739249 360

Mastering Dojo: JavaScript and Ajax Tools for

Great Web Experiences

2008 9781934356111 568

No Fluff Just Stuff 2006 Anthology 2006 9780977616664 240

No Fluff Just Stuff 2007 Anthology 2007 9780978739287 320

Practical Programming: An Introduction to

Computer Science Using Python

2009 9781934356272 350

Practices of an Agile Developer 2006 9780974514086 208

Pragmatic Project Automation: How to Build,

Deploy, and Monitor Java Applications

2004 9780974514031 176

Pragmatic Thinking and Learning: Refactor Your

Wetware

2008 9781934356050 288

Pragmatic Unit Testing in C# with NUnit 2007 9780977616671 176

Pragmatic Unit Testing in Java with JUnit 2003 9780974514017 160

Pragmatic Version Control Using Git 2008 9781934356159 200

Pragmatic Version Control using CVS 2003 9780974514000 176

Pragmatic Version Control using Subversion 2006 9780977616657 248

Programming Clojure 2009 9781934356333 304

Programming Erlang: Software for a Concurrent

World

2007 9781934356005 536

Programming Groovy: Dynamic Productivity for

the Java Developer

2008 9781934356098 320

Programming Ruby: The Pragmatic

Programmers’ Guide, Second Edition

2004 9780974514055 864

Programming Ruby 1.9: The Pragmatic

Programmers’ Guide

2009 9781934356081 960

Prototype and script.aculo.us: You Never Knew

JavaScript Could Do This!

2007 9781934356012 448

Rails Recipes 2006 9780977616602 350

Rails for .NET Developers 2008 9781934356203 300

Rails for Java Developers 2007 9780977616695 336

Rails for PHP Developers 2008 9781934356043 432

Rapid GUI Development with QtRuby 2005 PDF-Only 83

Release It! Design and Deploy Production-Ready

Software

2007 9780978739218 368

Scripted GUI Testing with Ruby 2008 9781934356180 192

Ship it! A Practical Guide to Successful Software

Projects

2005 9780974514048 224

Stripes ...and Java Web Development Is Fun

Again

2008 9781934356210 375

TextMate: Power Editing for the Mac 2007 9780978739232 208

The Definitive ANTLR Reference: Building

Domain-Specific Languages

2007 9780978739256 384

Continued on next

Prepared exclusively for sam kaplan

YIELD KEYWORD 225 YIELD KEYWORD

Title Year ISBN Pages

The Passionate Programmer: Creating a

Remarkable Career in Software Development

2009 9781934356340 200

ThoughtWorks Anthology 2008 9781934356142 240

Ubuntu Kung Fu: Tips, Tricks, Hints, and Hacks 2008 9781934356227 400

Prepared exclusively for sam kaplan

The Pragmatic Bookshelf
The Pragmatic Bookshelf features books written by developers for developers. The titles

continue the well-known Pragmatic Programmer style and continue to garner awards and

rave reviews. As development gets more and more difficult, the Pragmatic Programmers

will be there with more titles and products to help you stay on top of your game.

Visit Us Online
Programming Scala’s Home Page

http://pragprog.com/titles/vsscala

Source code from this book, errata, and other resources. Come give us feedback, too!

Register for Updates

http://pragprog.com/updates

Be notified when updates and new books become available.

Join the Community

http://pragprog.com/community

Read our weblogs, join our online discussions, participate in our mailing list, interact

with our wiki, and benefit from the experience of other Pragmatic Programmers.

New and Noteworthy

http://pragprog.com/news

Check out the latest pragmatic developments, new titles and other offerings.

Buy the Book
If you liked this eBook, perhaps you’d like to have a paper copy of the book. It’s available

for purchase at our store: pragprog.com/titles/vsscala.

Contact Us
Online Orders: www.pragprog.com/catalog

Customer Service: support@pragprog.com

Non-English Versions: translations@pragprog.com

Pragmatic Teaching: academic@pragprog.com

Author Proposals: proposals@pragprog.com

Contact us: 1-800-699-PROG (+1 919 847 3884)

Prepared exclusively for sam kaplan

http://pragprog.com/titles/vsscala
http://pragprog.com/updates
http://pragprog.com/community
http://pragprog.com/news
pragprog.com/titles/vsscala
www.pragprog.com/catalog

	Contents
	Introduction
	Why Scala?
	What's Scala?
	Functional Programming
	What's in This Book?
	Who Is This Book For?
	Acknowledgments

	Getting Started
	Downloading Scala
	Installing Scala
	Take Scala for a Ride
	Scala on the Command Line
	Running Scala Code as a Script
	Scala from an IDE
	Compiling Scala

	Getting Up to Speed in Scala
	Scala as Concise Java
	Scala Classes for Java Primitives
	Tuples and Multiple Assignments
	Strings and Multiline Raw Strings
	Sensible Defaults
	Operator Overloading
	Scala Surprises for the Java Eyes

	Classes in Scala
	Creating Classes
	Defining Fields, Methods, and Constructors
	Extending a Class
	Singleton Object
	Stand-Alone and Companion Objects
	static in Scala

	Sensible Typing
	Collections and Type Inference
	The Any Type
	More About Nothing
	Option Type
	Method Return Type Inference
	Passing Variable Arguments (Varargs)
	Variance of Parameterized Type

	Function Values and Closures
	Moving from Normal to Higher-Order Functions
	Function Values
	Function Values with Multiple Parameters
	Currying
	Reusing Function Values
	Positional Notation for Parameters
	Execute Around Method Pattern
	Partially Applied Functions
	Closures

	Traits and Type Conversions
	Traits
	Selective Mixins
	Decorating with Traits
	Method Late Binding in Traits
	Implicit Type Conversions

	Using Collections
	Common Scala Collections
	Using a Set
	Using a Map
	Using a List
	The for Expression

	Pattern Matching and Regular Expressions
	Matching Literals and Constants
	Matching a Wildcard
	Matching Tuples and Lists
	Matching with Types and Guards
	Pattern Variables and Constants in case Expressions
	Pattern Matching XML Fragments
	Matching Using case Classes
	Matching Using Extractors
	Regular Expressions
	Regular Expressions as Extractors

	Concurrent Programming
	Promote Immutability
	Concurrency Using Actor
	Message Passing
	The Actor Class
	The actor Method
	receive and receiveWithin Methods
	react and reactWithin Methods
	loop and loopWhile
	Controlling Thread of Execution
	Choosing Among the Receive Methods

	Intermixing with Java
	Using Scala Classes in Scala
	Using Java Classes in Scala
	Using Scala Classes in Java
	Extending Classes

	Unit Testing with Scala
	Using JUnit
	Using ScalaTest
	Start with a Canary Test
	Using Runner
	Asserts
	Exception Tests
	Sharing Code Between Tests
	Functional Style with FunSuite
	Running ScalaTests Using JUnit

	Exception Handling
	Exception Handling
	Mind the Catch Order

	Using Scala
	The Net Asset Application
	Getting Users' Input
	Reading and Writing Files
	XML as a First-Class Citizen
	Reading and Writing XML
	Getting Stock Prices from the Web
	Making the Net Asset Application Concurrent
	Putting a GUI on the Net Asset Application

	Web Resources
	Bibliography
	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y

