
www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Burt Beckwith

Programming Grails

www.allitebooks.com

http://www.allitebooks.org

Programming Grails

by Burt Beckwith

Copyright © 2013 Burt Beckwith. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://my.safaribooksonline.com). For more information, contact our corporate/
institutional sales department: 800-998-9938 or corporate@oreilly.com.

Editors: Mike Loukides and Meghan Blanchette

Production Editor: Kristen Borg

Copyeditor: Absolute Services, Inc

Proofreader: Linley Dolby

Indexer: Judy McConville

Cover Designer: Karen Montgomery

Interior Designer: David Futato

Illustrator: Robert Romano

May 2013: First Edition

Revision History for the First Edition:

2013-04-22: First release

See http://oreilly.com/catalog/errata.csp?isbn=9781449323936 for release details.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of O’Reilly
Media, Inc. Programming Grails, the image of an Antarctic giant petrel, and related trade dress are trademarks
of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc., was aware of a trade‐
mark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and author assume no
responsibility for errors or omissions, or for damages resulting from the use of the information contained
herein.

ISBN: 978-1-449-32393-6

[LSI]

www.allitebooks.com

http://my.safaribooksonline.com/?portal=oreilly
mailto:corporate@oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781449323936
http://www.allitebooks.org

Table of Contents

Preface. xi

1. Introduction to Groovy. 1
Installing Groovy 1

Groovy Console 2
Optional Typing 3
Collections and Maps 4
Properties 5

Using the AST Browser 7
Decompiling with JD-GUI 8
Decompiling with javap 8

Closures 8
Interface Coercion 11
Programmatic Closures 11
Owner, Delegate, and this 12

Groovy’s Contributions in the War Against Verbosity 13
Constructors 14
Checked Exceptions 15
Groovy Truth 15
Semicolons 16
Optional Return 16
Scope 16
Parentheses 16
Default Imports 16

Differences Between Java and Groovy 17
Array Initialization 17
in and def Keywords 17
do/while Loops 17
for Loops 17

iii

www.allitebooks.com

http://www.allitebooks.org

Annotations 18
Groovy Equality 18
Multimethod Dispatch 18

Groovy Strings 19
Static this 20
The Groovy JDK (GDK) 21

DefaultGroovyMethods and InvokerHelper 21
Metaprogramming and the MOP 21
Adding Methods 22

Intercepting Method Calls 23
Operators 26

Null-Safe Dereference 26
Elvis 26
Spread 27
Spaceship 27
Field Access 28
as 28
in 28
Method Reference 29

Overload Your Operators 29
Being Too Groovy 31

def Considered Harmful 31
Closures Versus Methods 32
TypeChecked, CompileStatic, and invokedynamic 33

2. Grails Internals. 35
Installing Grails 38

Creating an Application 38
The Grails Command Line 39
IDE Support 41
Plugins 42

Optional Plugins 43
Core Plugins 45

Conventions 57
Controller and View Conventions 57
Service Conventions 60
Domain Class Conventions 61

More Information 65

3. Persistence. 67
Data Mapping 67

Nonpersistent Domain Classes 69

iv | Table of Contents

www.allitebooks.com

http://www.allitebooks.org

Data Validation 69
Custom Validation 72
Extreme Custom Validation 74
Validation Plugins 75
Friendly Error Messages 75
Blanks Versus Nulls 76

Transients 77
Mapping Collections 78
Querying 80
Saving, Updating, and Deleting 82
NoSQL Support 84

4. Spring. 85
Inversion of Control and Dependency Injection 85

Complex Dependency Configuration Using Spring SpEL 86
Manually Injecting Dependencies at Runtime 87

Bean Scopes 87
Transactional Services 88

@Transactional 89
Transaction Proxies 90
Transaction Utility Methods 93

Bean Life Cycles and Interfaces 94
Bean Postprocessors 95

A Groovier Way 96
Bean Aliases 97
Internationalization 98
Resources 98

Resource Dependency Injection 99
ResourceLocator 100

Data Binding and Validation 101
Data Binding 101
Validation 102

Database Persistence 102
Thread-Local Holders 103
JdbcTemplate 103
Other Database Support 104

Spring MVC 104
Filters 105
Using Spring MVC Controllers 106

Remoting 107
Client Access 108

JMS 110

Table of Contents | v

www.allitebooks.com

http://www.allitebooks.org

EJBs 110
JMX 110
Email 111
Cache Abstraction 111

5. Hibernate. 113
Mapping Domain Classes 113
Dialects 115

Dialect Autodetection 116
Dialect Customization 116

Hibernate Without GORM 118
hibernate.cfg.xml 118
HibernateUtil 119
Author 120
Book 120
Experimenting with the APIs 121

The Session 123
withSession 124
withNewSession 124

Open Session in View 124
Disabling OSIV 125

Custom User Types 126
Optimistic and Pessimistic Locking 129
Accessing the Session’s Connection 130
schema-export 130
SQL Logging 131
Proxies 133

equals, hashCode, and compareTo 134
Caching 135

Examples 136
Caching API 139
Query Caching Considered Harmful? 140

HQL 141
executeQuery 141
Query Syntax 142
Report Queries 143
Aggregate Functions 144
Expressions 145
Collections 145

Collections Performance 145
The Solution 146

Session.createFilter() 147

vi | Table of Contents

www.allitebooks.com

http://www.allitebooks.org

Custom Configurations 148
Mapping Views and Subselect Classes 150

Subselect Domain Classes 152
Selecting with a POGO 153

get(), load(), and read() 154
get() 154
load() 154
read() 156

Performance 156
Caching 156
Lazy Loading 157
Transactional Write-Behind 158

6. Integration. 159
JMS 159

XA Support with the Atomikos Plugin 163
Mail 167

Sending Email 168
Sending Email Asynchronously 171
Sending Email from Log4j 172
Testing 174

SOAP Web Services 174
The Server Application 175
The Client Application 176
TCPMon 179

REST 180
TCPMon 187

JMX 188

7. Configuration. 191
External config Files 191

Loading the Configuration 193
Partitioning Config Files 194

Splitting resources.groovy 195
Modularizing Within resources.groovy 196
Environment-Specific Spring Beans 198

Beans Closures in Config.groovy 201
Options for BuildConfig.groovy 201
Adding Additional Source Folders 202

Extra Folders Under grails-app 203

8. Plugins. 205

Table of Contents | vii

www.allitebooks.com

http://www.allitebooks.org

Creating a Plugin 205
Initial Steps 206

The Plugin Descriptor 209
Metadata 209
Life Cycle Callbacks 213

Splitting Applications into Plugins 218
Inline Plugins 218

Building and Releasing 219
Automated Testing 219

Running the Tests 224
Custom Plugin Repositories 224
Plugin Documentation 226
Custom Artifacts 227
Some Notes on Plugin Development Workflow 232

9. Security. 235
OWASP 235

A1: Injection 235
A2: Cross-Site Scripting (XSS) 238
A3: Broken Authentication and Session Management 241
A4: Insecure Direct Object References 242
A5: Cross-Site Request Forgery 244
A6: Security Misconfiguration 245
A7: Insecure Cryptographic Storage 246
A8: Failure to Restrict URL Access 248
A9: Insufficient Transport Layer Protection 248
A10: Unvalidated Redirects and Forwards 249

Security Plugins 250
spring-security-core 250

Other Plugins and Libraries 254
AntiSamy 254
ESAPI 254
HDIV 254

General Best Practices 255

10. The Cloud. 261
Cost Savings 262
What You Give Up 262
Cloud Foundry 263

Database Applications 263
Scaling 269
NoSQL, RabbitMQ, and Searchable 270

viii | Table of Contents

www.allitebooks.com

http://www.allitebooks.org

Monitoring and the Cloud Foundry UI Plugin 271
Heroku 275

Database Applications 275
Scaling 280
Build Packs 281

Other Providers 282
Other Uses for Cloud Services 282

11. AOP. 283
Grails Filters 284
HTTP Filters 286
Groovy AOP 287

Registering Metaclass Interceptors 290
Error Code URL Mappings 291

Spring AOP 291
Enabling Spring AOP 293
Defining AspectJ-Annotated Aspects 294
Compile-Time Weaving 297

12. Upgrading Applications and Plugins. 305
Why Doesn’t the Upgrade Script Do More? 308
A General Approach to Upgrading 310

Upgrading Petclinic: A Case Study 311
A Short History of Grails 320

Grails 1.2 320
Grails 1.2.2 321
Grails 1.2.4 321
Grails 1.3 322
Grails 1.3.1 323
Grails 1.3.2 323
Grails 1.3.4 323
Grails 1.3.6 324
Grails 1.3.7 324
Grails 1.3.8 324
Grails 1.3.9 324
Grails 2.0 325
Grails 2.0.2 331
Grails 2.1.x 331
Grails 2.2.x 331

Notes on Upgrading 331

Index. 333

Table of Contents | ix

Preface

I started using Grails in early 2008, about a month before the 1.0 release. Much has
changed since then, but many aspects are still very much the same. Grails continues to
be the fastest way to develop an application on the JVM and, as an added bonus, is a lot
of fun. Grails saves you a tremendous amount of time by handling the plumbing work
that you would ordinarily have to do yourself if you were using another framework, and
you can save even more time by using some of the hundreds of plugins that are available.
Plus, because you are targeting the JVM, the whole JVM ecosystem is available, and you
can use any library that isn’t already included by Grails or a plugin.

I have always had a need to know how things work. Open source software makes that
possible, because you can read the code, and it is particularly helpful when debugging
since you can step into library and framework code from your IDE. But Grails adds a
layer of opacity by providing so much dynamic behavior. All that magic is great when
everything works, but when you have problems, it can be hard to know where to even
start looking. When I started using Grails, I spent many hours exploring the internals,
not only to understand how what I was seeing was possible, but also to determine
whether the problems I was seeing were Grails issues or problems in my code. That
experience was a large part of the motivation behind writing this book; I hope that by
shining a light on some of the inner workings and motivations behind Grails features,
your path will be easier.

Who This Book Is For
This book is intended for experienced developers. This primarily includes Grails de‐
velopers who want to dig deeper into the architecture and understand more about how
Grails works its magic and how it integrates with Groovy, Spring, Hibernate, and other
technologies. Developers with experience in similar frameworks such as Spring MVC,
JEE, or Ruby on Rails should find this book useful in understanding how Grails imple‐
ments features to which they are accustomed.

xi

This should not be your first Grails book, since it presumes a good deal of previous
experience and understanding, so be sure to read a more comprehensive Grails book
first.

Other Resources
There are many resources available if you would like to find out more about Grails and
Groovy.

There is a significant amount of information at the Grails site, in particular the reference
documentation. Likewise, the Groovy site has years of collective information available.
For a more general overview of Grails, there are two books available that cover Grails
2: The Definitive Guide to Grails 2 by Jeff Brown and Graeme Rocher (Apress), and
Grails in Action, Second Edition by Glen Smith and Peter Ledbrook (Manning). Pro‐
gramming Groovy, Second Edition by Venkat Subramaniam (Pragmatic Programmers)
is an excellent resource for Groovy, and the second edition covers Groovy 2, and Groovy
in Action, Second Edition by Dierk König et al. (Manning), when finished, will be a
comprehensive reference for all things Groovy.

There are several conferences around the world that feature Grails and other Groovy-
based technologies:

Spring One 2GX
This is the largest and is held in the fall; it includes five tracks on Spring Framework
technologies and four Groovy and Grails tracks

Groovy and Grails Exchange
Held in London each year in December

GR8Conf US
Held in Minneapolis each spring

GR8Conf Europe
Held in Copenhagen each spring

Greach
Held in Madrid each winter

All of these conferences have a significant amount of content on a wide range of tech‐
nologies in the Groovy ecosystem, and they attract the top experts in the field as speakers.

Grails also has a strong user community. The User mailing list is quite active and is great
place to ask questions. There are dozens of user groups across the globe, and hopefully
one near you. See the group list page at grails.org for the active groups, and if there isn’t
one nearby, create one! Groovy Blogs is a blog aggregator that includes posts about
Groovy and Grails technologies. It’s a convenient way to stay aware of what’s going on,
and I recommend adding its Atom or RSS feed to your news reader. I write a regular

xii | Preface

http://grails.org
http://grails.org/doc/latest/
http://grails.org/doc/latest/
http://groovy.codehaus.org/
http://springone2gx.com/
http://skillsmatter.com/event/groovy-grails/groovy-grails-exchange-2013
http://gr8conf.us/
http://gr8conf.eu/
http://greach.es/
http://grails.org/Mailing+Lists
http://grails.org/User+Groups
http://www.groovyblogs.org/

“This Week in Grails” blog series that lists Grails- and Groovy-related blog posts, tweets,
job postings, and upcoming conferences and user group meetings each week.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program elements
such as variable or function names, databases, data types, environment variables,
statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

This icon signifies a tip, suggestion, or general note.

This icon indicates a warning or caution.

Using Code Examples
This book is here to help you get your job done. In general, if this book includes code
examples, you may use the code in this book in your programs and documentation. You
do not need to contact us for permission unless you’re reproducing a significant portion
of the code. For example, writing a program that uses several chunks of code from this
book does not require permission. Selling or distributing a CD-ROM of examples from
O’Reilly books does require permission. Answering a question by citing this book and
quoting example code does not require permission. Incorporating a significant amount
of example code from this book into your product’s documentation does require per‐
mission.

Preface | xiii

http://burtbeckwith.com/blog/?cat=32

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: "Programming Grails by Burt Beckwith
(O’Reilly). Copyright 2013 Burt Beckwith, 978-1-44932-393-6.”

If you feel your use of code examples falls outside fair use or the permission given above,
feel free to contact us at permissions@oreilly.com.

Safari® Books Online
Safari Books Online is an on-demand digital library that delivers ex‐
pert content in both book and video form from the world’s leading
authors in technology and business.

Technology professionals, software developers, web designers, and business and crea‐
tive professionals use Safari Books Online as their primary resource for research, prob‐
lem solving, learning, and certification training.

Safari Books Online offers a range of product mixes and pricing programs for organi‐
zations, government agencies, and individuals. Subscribers have access to thousands of
books, training videos, and prepublication manuscripts in one fully searchable database
from publishers like O’Reilly Media, Prentice Hall Professional, Addison-Wesley Pro‐
fessional, Microsoft Press, Sams, Que, Peachpit Press, Focal Press, Cisco Press, John
Wiley & Sons, Syngress, Morgan Kaufmann, IBM Redbooks, Packt, Adobe Press, FT
Press, Apress, Manning, New Riders, McGraw-Hill, Jones & Bartlett, Course Technol‐
ogy, and dozens more. For more information about Safari Books Online, please visit us
online.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://oreil.ly/programming-grails.

To comment or ask technical questions about this book, send email to bookques
tions@oreilly.com.

xiv | Preface

mailto:permissions@oreilly.com
http://my.safaribooksonline.com/?portal=oreilly
http://www.safaribooksonline.com/content
http://www.safaribooksonline.com/subscriptions
http://www.safaribooksonline.com/organizations-teams
http://www.safaribooksonline.com/organizations-teams
http://www.safaribooksonline.com/government
http://www.safaribooksonline.com/individuals
http://www.safaribooksonline.com/publishers
http://www.safaribooksonline.com/
http://oreil.ly/programming-grails
mailto:bookquestions@oreilly.com
mailto:bookquestions@oreilly.com

For more information about our books, courses, conferences, and news, see our website
at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments
Several people helped to make this book what it is today. Thank you to Peter Ledbrook
for suggesting the idea at SpringOne 2GX 2011. My initial response was no, that there
was no way that I would have the time to devote to a book. That was true, but I did it
anyway, and it seems to have worked out okay. I would also like to thank Mike Loukides
for supporting Grails at O’Reilly; I am hopeful this will be the first of many O’Reilly
Grails and Groovy books.

I was fortunate having Meghan Blanchette as the book’s editor. Thank you for your
patience, advice, and for keeping everything on schedule.

Graeme Rocher and Tomas Lin were the technical reviewers. They carefully read the
book and found numerous mistakes and omissions, and made extensive suggestions.
Andrew Eisenberg also provided valuable feedback on the AOP chapter. Thank you all
for making this a better book than I could have alone.

Many thanks to the Grails, Groovy, and tools teams at SpringSource for creating these
amazing technologies.

And, finally, thank you to my wife, Maria. I know it can be hard being married to
someone who spends as much time staring at a computer screen as I do. Thank you for
your patience and support.

Preface | xv

http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

CHAPTER 1

Introduction to Groovy

We can’t talk much about Grails without a solid understanding of Groovy, because it’s
so integral to how Grails works.

Groovy is a JVM language with a primary goal of extending Java. By adding a Meta
Object Protocol (MOP) to enable metaprogramming, Groovy adds powerful capabili‐
ties that enable dynamic programming (changing and adding behavior at runtime),
domain-specific languages (DSLs), and a huge number of convenience methods and
approaches that simplify your code and make it more powerful.

Groovy compiles to bytecode just like Java does (although it creates different bytecode).

As Java developers, we tend to think that only javac can compile source code to cre‐
ate .class files, but there are many JVM languages that do as well (including Groovy,
JRuby, Jython, and hundreds more). There are also libraries such as BCEL that you can
use to programmatically create bytecode. As a result, Groovy and Java interoperate well;
you can call Java methods from Groovy and vice versa, a Java class can extend a Groovy
class or implement a Groovy interface, and in general, you don’t need to even think
about interoperability because it “just works.”

The Groovy equivalent of javac is groovyc, and because it compiles both Groovy and
Java code, it’s simple to use for your project code. Of course in Grails applications, we
rarely even think about this process (except when it fails) because Grails scripts handle
that, but if you’re manually compiling code (e.g., in a Gradle build or with Gant), it’s
about as simple as working with Java code.

Installing Groovy
Ordinarily, Grails developers don’t install a Groovy distribution, because each version

of Grails ships with the groovy-all JAR with which it was developed. Groovy is a
fundamental part of Grails, so using it in a Grails application is trivial. But it’s easy to
install if you want to use Groovy outside of Grails, for example, for scripting or to run

1

https://commons.apache.org/bcel/
http://gradle.org/
http://gant.codehaus.org/

standalone utility applications. Just download the version you want, unpack the ZIP file

to your desired location, set the GROOVY_HOME environment variable point at the location

you chose, and add the $GROOVY_HOME/bin (or %GROOVY_HOME%\bin in Windows) di‐

rectory to the PATH environment variable. That’s all you need to do; run groovy -v from
a command prompt to verify that everything is working.

If you’re using Windows, the download page has installers that will install the distribu‐
tion and configure the environment.

There is also a new tool, GVM (Groovy enVironment Manager). It was inspired by the
Ruby RVM and rbenv tools, and it will install one or more versions of Groovy, as well
as Grails, Griffon, Gradle, and vert.x. It uses the bash shell, so it works in Linux, OS X,
and Windows, if you have Cygwin installed. It’s very simple to use, and if you have
projects that require different versions of Groovy, it’s easy to switch between them. See
the GVM site for usage information.

Groovy Console
The Groovy console is a great way to prototype code. It doesn’t have many text editor
or IDE features, but you can run arbitrary Groovy code and inspect the results. You can
run it in debug mode and attach to it from a debugger (e.g., your IDE) to dig deeper
and look at the call stack. It’s convenient to test an algorithm or a fix, or to do what-if

experiments. And you don’t need to create a class or a main() method—you can execute

any valid code snippet. If Groovy is installed and in your PATH, run the console by

executing groovyConsole from the command line. I encourage you to test out the code
examples as they’re shown to make sure you understand how everything works.

The Groovy console is also a part of Grails—you can run grails console from the
command line and start the Grails version of the console. It’s the same application, but

it also has Grails-specific hooks like easy access to the Spring ApplicationContext and

automatic application of the PersistenceContextInterceptors. You can use it to call
Grails object relational mapping (GORM) methods, services, and pretty much anything
in your application that isn’t related to an HTTP request. As a plugin author, I often
troubleshoot bean definition issues by running the following (as shown in Figure 1-1):

ctx.beanDefinitionNames.sort().each { println it }

true

This grabs all of the Spring bean names (a String[] array) from the ApplicationCon

text (the ctx binding variable), sorts them (into a new List), and prints each name.

The true statement at the end is a trick to avoid printing the entire list again in its

toString() form, because the console treats the last statement as the return value of
the script and renders it in the output window.

2 | Chapter 1: Introduction to Groovy

www.allitebooks.com

http://groovy.codehaus.org/Download
http://gvmtool.net/
http://www.allitebooks.org

Figure 1-1. Grails console

Optional Typing
One of Groovy’s strengths comes from its support of optional typing. You can define
the types of variables, method parameters, method return values, and so on, like you
do in Java, but you often don’t need to. Groovy determines the actual type at runtime
and invokes the methods on the objects if they exist (or if you’ve added support to the
metaclass; more on this later). The approach used is often called duck typing; i.e., if it
walks and talks like a duck, consider it a duck.

This isn’t the same as weak typing. The objects themselves have a concrete type (unlike
JavaScript, C, Perl, and so on), but you’re not restricted by the compiler to only invoke
methods defined in the specified type of the object. If the object supports the call, it will
work.

In fact, you’re not even restricted to hardcoding the method or property names. You
can dynamically invoke a method or access a property value by name:

def person = ...

String methodName = ...

def value = person."$methodName"(1, 2)

String propertyName = ...

def otherValue = person."$propertyName"

Optional Typing | 3

https://en.wikipedia.org/wiki/Duck_typing

Collections and Maps
Creating and populating Java collections might not seem that bad if you haven’t seen
how it’s done in Groovy, but once you have, you won’t want to go back. Here’s some

code to add a few elements to an ArrayList in Java:

List<String> things = new ArrayList<String>();

things.add("Hello");

things.add("Groovy");

things.add("World");

And here’s the equivalent code in Groovy:

List<String> things = ["Hello", "Groovy", "World"]

The difference is rather stark, and using more idiomatic Groovy (there’s not much need
for generics in Groovy), it’s even cleaner:

def things = ['Hello', 'Groovy', 'World']

Note that here I’m taking advantage of Groovy’s support for declaring strings using
single or double quotes; this is described in more detail later in the chapter.

There isn’t a separate syntax for a Set, but you can use type coercion for that. Either:

Set things = ['Hello', 'Groovy', 'World']

or:

def things = ['Hello', 'Groovy', 'World'] as Set

The syntax for a Map is similar, although a bit larger, because we need to be able to specify
keys and values delimited with colons:

def colors = ['red': 1, 'green': 2, 'blue': 3]

We can make that even more compact because, when using strings as keys that have no
spaces, we can omit the quotes:

def colors = [red: 1, green: 2, blue: 3]

You might be wondering what the type of these collections is—some funky Groovy-
specific interface implementations that handle all the details of the Groovy magic hap‐

pening under the hood? Nope, Lists and Sets are just regular java.util.ArrayList

and java.util.HashSet instances. Maps are java.util.LinkedHashMap instances in‐

stead of the more common java.util.HashMap; this is a convenience feature that
maintains the order in the map based on the declaration order. If you need the features

of other implementations such as LinkedList or TreeMap, just create them explicitly
like you do in Java.

4 | Chapter 1: Introduction to Groovy

Lists and Maps support array-like subscript notation:

def things = ['Hello', 'Groovy', 'World']

assert things[1] == 'Groovy'

assert things[-1] == 'World'

def colors = [red: 1, green: 2, blue: 3]

assert colors['red'] == 1

Maps go further and let you access a value using a key directly as long as there are no
spaces:

def colors = [red: 1, green: 2, blue: 3]

assert colors.green == 2

Properties
You’ve heard of POJOs—Plain Old Java Objects—and JavaBeans. These are simple
classes without a lot of extra functionality and, in the case of JavaBeans, they follow
conventions such as having a zero-argument constructor and having getters and setters
for their attributes. In Groovy, we create POGOs—Plain Old Groovy Objects—that are
analogous and work the same way, although they’re more compact.

Consider a POJO that represents a person in your application. People have names, so

this Person class should have firstName, initial, and lastName attributes to store the

person’s full name. In Java, we represent those as private String fields with getter meth‐
ods, and setter methods if we’re allowing the attributes to be mutable. But often we don’t
do any work when setting or getting these values—we just store them and retrieve them.
But dropping this encapsulation and replacing each private field, getter, and setter with
a public field would be limiting in the future because, at some point, there might be a
reason to manipulate the value before storing or retrieving it. So we end up with a lot
of repetetive boilerplate in these POJOs. Sure, our IDEs and other tools can autogenerate
the code and we can ignore it and pretend that it’s not there, but it is, and it unnecessarily
bulks up our codebase.

Groovy fixes this mess for us by automatically generating getters and setters for public
properties during compilation. But that’s only the case if they’re not already there; so
this gives you the flexibility of defining attributes as public fields while retaining the
ability to override the behavior when setting or getting the values. Groovy converts the
public field to a private field but pretends the public field is still there. When you read
the value, it calls the getter; and when you set the value, it calls the setter.

Consider this POGO:

class Thing {

 String name

 int count

}

Properties | 5

The default scope for classes, fields, and methods is public (more on this later), so this
is a public class and the two fields are public. The compiler, however, will convert these

to private fields and add getName(), setName(), getCount(), and setCount() methods.

This is most clear if you access this class from Java; if you try to access the name or count
fields, your code won’t compile.

Although Groovy generates getters and setters for you, you can define your own:

class Thing {

 String name

 int count

 void setName(String name) {

 // do some work before setting the value

 this.name = name

 // do some work after setting the value

 }

}

and in this case, only the setName(), getCount(), and setCount() methods will be
added.

You can also have read-only and write-only properties. You can create an immutable
read-only property by making the field final and setting it in a parameterized
constructor:

class Thing {

 final String name

 int count

 Thing(String name) {

 this.name = name

 }

}

Because it’s final, the compiler doesn’t even generate a setter method, so it cannot be
updated. If you want to retain the ability to update it internally, make the field private
and create a getter method. Because it’s private, the compiler won’t generate the setter:

class Thing {

 private String name

 int count

 String getName() { name }

}

You’ll need a parameterized constructor to set the value, or set it in another method.
Creating a write-only property is similar; use a private field and create only the setter:

class Thing {

 private String name

 int count

6 | Chapter 1: Introduction to Groovy

 void setName(String name) { this.name = name }

}

In general, it is safe to replace getter and setter method calls with prop‐

erty access; for example, person.firstName is a lot more compact than

person.getFirstName() and equivalent. One case where it’s not safe is

with the getClass() method and Maps. If you try to determine the class

of a Map instance using the .class property form of the getClass()

method, Groovy will look up the value stored under the "class" key

and probably return null. I always use getClass() even when I know
the object isn’t a Map just to be on the safe side.

Using the AST Browser
During compilation, Groovy represents your code in memory as an Abstract Syntax
Tree (AST). The Groovy console’s AST browser is one way to see what is going on under
the hood. There are several compilation phases (parsing, conversion, semantic analysis,
and so on), and the AST browser will show you graphically what the structure looks like
at each phase. This can help to diagnose issues, and is particularly helpful when you
write your own AST transformations, where you can hook into the bytecode generation
process and add your own programmatically. Figure 1-2 shows the state at the Class
Generation phase.

Figure 1-2. AST browser

Properties | 7

Decompiling with JD-GUI
I highly recommend decompiling Groovy .class files to get a sense of what is added
during the compilation process. It’s one thing to believe that getters and setters are added
for you, but it’s another to actually see them. And there can be a lot of generated code
in some of your classes; for example (jumping ahead a bit here), Grails uses several AST
transformations to add compile-time metaprogramming methods to controllers, do‐
main classes, and other artifacts. JD-GUI is an excellent free decompiler that I’ve had a
lot of success with. Figure 1-3 shows an example class.

Figure 1-3. JD-GUI

Decompiling with javap
Another option that doesn’t require third-party software is javap, which is part of the

JDK install. Running it with no switches will display the method signatures, e.g., javap

target/classes/com.foo.Bar, and passing the -c switch will decompile the code into

a readable form of the bytecode, not the Groovy or analogous Java source; e.g., javap

-c target/classes/com.foo.Bar. The output isn’t anywhere near as readable as what
you get with a decompiler like JD-GUI, but it can be more convenient for a quick look.

Closures
Closures are an important aspect of Groovy. As a Grails developer you’ll use them a lot;
they define controller actions (although in 2.0, methods are supported and are prefer‐

red) and taglib tags and are used to implement the constraints and mapping blocks in

domain classes, the init and destroy blocks in BootStrap.groovy, and in fact most of

the blocks in the configuration classes in grails-app/conf. They also provide the
functionality that makes builders and DSLs so powerful. But what are they?

8 | Chapter 1: Introduction to Groovy

http://java.decompiler.free.fr/?q=jdgui

A closure is a block of code enclosed in braces. Closures are similar to function pointers
in C and C++ in that you can assign them to a variable and pass them as method pa‐
rameters and invoke them inside the methods. They’re also similar to anonymous inner
classes, although they don’t implement an interface or (at least explicitly) extend a base
class (but they can be used to implement interfaces—more on that later).

A closure can be as simple as:

def hello = { println "hello" }

A closure can be invoked by calling its call method:

def hello = { println "hello" }

hello.call()

but Groovy lets you use a more natural method call syntax (it invokes the call method
for you):

def hello = { println "hello" }

hello()

Like methods, closures can have parameters, and there are three variants. In the hel

lo example, because there’s nothing declared, there is one parameter with the default

name it. So a modified closure that prints what it’s sent would be:

def printTheParam = { println it }

and you could call it like this:

printTheParam('hello')

You can omit parentheses like you can with method calls:

printTheParam 'hello'

Named arguments use -> to delimit the parameters from the code:

def printTheParam = { whatToPrint -> println whatToPrint }

and, like method arguments, they can be typed:

def add = { int x, int y -> x + y }

If the closure has no arguments, use the -> delimiter and the it parameter will not be
available:

def printCurrentDate = { -> println new Date() }

You can determine the number of parameters that a closure accepts with the getMaxi

mumNumberOfParameters() method and get the parameter types (a Class[] array) with

getParameterTypes().

A closure is a subclass of groovy.lang.Closure that is generated by the Groovy com‐
piler; you can see this by running:

Closures | 9

println hello.getClass().superclass.name

The class itself will have a name like ConsoleScript14$_run_closure1. Nested closures
extend this naming convention; for example, if you look in the classes directory of a
Grails application, you’ll see names like BuildConfig$_run_closure1_closure2.class,

which are the result of having repositories, dependencies, and plugins closures de‐

fined within the top-level grails.project.dependency.resolution closure.

The dollar sign in the class and filename will look familiar if you’ve used anonymous
inner classes before. In fact, that’s how they’re implemented. They’re different from
anonymous inner classes in that they can access nonfinal variables outside of their scope.
This is the “close” part of closure—they enclose their scope, making all of the variables
in the scope the closure is in available inside the closure. This can be emulated by an
inner class by using a final variable with mutable state, although it’s cumbersome. For

example, this Java code doesn’t compile, because i isn’t final, and making it final defeats

the purpose, because it needs to be changed inside the onClick method:

interface Clickable {

 void onClick()

}

int i = 0;

Clickable c = new Clickable() {

 public void onClick() {

 System.out.println("i: " + i);

 i++;

 }

};

We can fix it with a final 1-element array (because the array values are still mutable):

final int[] i = { 0 };

Clickable c = new Clickable() {

 public void onClick() {

 System.out.println("i: " + i[0]);

 i[0]++;

 }

};

but it’s an unnatural coding approach. The Groovy equivalent with a closure is a lot
cleaner:

int i = 0

def c = { ->

 println "i: $i"

 i++

} as Clickable

So how does Groovy break this JVM rule that anonymous inner classes can’t access
nonfinal variables? It doesn’t—it uses a trick like the one above. Instead of using arrays

like the above example, there’s a holder class, groovy.lang.Reference. Enclosed vari‐

10 | Chapter 1: Introduction to Groovy

able values are stored in final Reference instances, and Groovy transparently makes
the values available for you. The only time you’ll see this occurring is when you’re
stepping through code in debug mode in an IDE.

Interface Coercion
The previous example demonstrates interface coercion; because the Clickable interface
has only one method, the closure can implement that method if it has the same param‐

eter type(s). The as keyword tells the Groovy compiler to create a JDK dynamic proxy
implementing the interface. This is the simple version, but it also works for interfaces
with multiple methods.

To implement an interface with more than one method, create a Map with method names
as keys and closures with the corresponding parameter types as values:

import java.sql.Connection

def conn = [

 close: { -> println "closed" },

 setAutoCommit: { boolean autoCommit -> println "autocommit: $autoCommit" }

] as Connection

One useful aspect of this approach is that you aren’t required to implement every meth‐

od. Calling close or setAutoCommit will invoke the associated closures as if they were

methods, but calling an unimplemented method (e.g., createStatement()) will throw

an UnsupportedOperationException. This technique was more common before
anonymous inner class support was added to Groovy in version 1.7, but it’s still very
useful for creating mock objects when testing. You can implement just the methods that
will be called and configure them to work appropriately for the test environment (e.g.,
to avoid making a remote call or doing database access) and switch out the mock im‐
plementation in place of the real one.

Programmatic Closures
Although it’s rare to do so, you can create a closure programmatically (most likely from
Java). You might do this if you have some reason to implement some code in Java but

need to pass a closure as a parameter to a Groovy method. The Closure class is abstract

but doesn’t have any abstract methods. Instead, you declare one or more doCall meth‐
ods with the supported call signatures:

Closure<String> closure = new Closure<String>(this, this) {

 public String doCall(int x) {

 return String.valueOf(x);

 }

 public String doCall(int x, int y) {

 return String.valueOf(x * y);

Closures | 11

 }

};

This can be invoked from Groovy just like one created the typical way:

closure(6) // prints "6"

closure(6, 2) // prints "12"

closure(1, 2, 3) // throws a groovy.lang.MissingMethodException

 // since there's no 3-param doCall()

Owner, Delegate, and this
this inside a closure is probably not what you expect. Intuitively, it seems like it should
be the closure itself, but it turns out that it’s actually the class instance where the closure
is defined. As such, it’s probably not of much use—the owner and delegate are much
more useful.

The owner of a closure is the surrounding object that contains the closure. It functions
as the target of method invocations inside the closure, and if the method isn’t defined,

then a MissingMethodException will be thrown. In this example, if we create a new

class instance and call the callClosure method (new SomeClass().callClosure()),

it will print Woof!, because the dogAndCat closure calls the existing woof method, but

it will then fail on the meow call because it doesn’t exist:

class SomeClass {

 void callClosure() {

 def dogAndCat = {

 woof()

 meow()

 }

 dogAndCat()

 }

 void woof() {

 println "Woof!"

 }

}

You can assign a delegate for a closure to handle method calls. By default, the delegate

is the owner, but you can change it with the setDelegate method. This is frequently
used when parsing DSLs. The DSL can be implemented as a closure, and inner method
calls and property access can be routed to a helper (i.e., the DSL builder), which im‐
plements the logic required when a method or property is called that’s not locally defined
but is valid in the DSL.

One example is the mapping block in Grails domain classes. This is a static closure that,
if defined, will be used to customize how the class and fields map to the database:

12 | Chapter 1: Introduction to Groovy

www.allitebooks.com

http://www.allitebooks.org

class User {

 String username

 String password

 static mapping = {

 version false

 table 'users'

 password column: 'passwd'

 }

}

If you were to invoke the mapping closure (User.mapping()), you would get a Missing

MethodException for each of the three lines in the closure, because the owner of the

closure is the User class and there’s no version, table, or password methods (and none
added to the metaclass). It’s more clear that these are method calls if we add in the
optional parentheses that were omitted:

static mapping = {

 version(false)

 table('users')

 password(column: 'passwd')

}

Now we see that it’s expected that there’s a version method that takes a boolean pa‐

rameter, a table method that takes a String, and a password method that takes a Map.

Grails sets the delegate of the closure to an instance of org.codehaus.groo

vy.grails.orm.hibernate.cfg.HibernateMappingBuilder, if you’re using Hiber‐
nate; otherwise, it’ll be an analogous NoSQL implementation if you’re using a different

persistence provider, and that does have a version and a table method as expected.

There’s no password method though. But there’s missing-method handling that looks
for a field of the same name as the missing method, and when it finds a match and the
parameter is a map, it uses the map data to configure the corresponding column.

So this lets us use an intuitive syntax composed of regular method calls that are handled
by a delegate, usually doing a lot of work behind the scenes with a small amount of actual
code.

Groovy’s Contributions in the War Against Verbosity
One of Groovy’s most popular features is its reduced verbosity compared to Java. It’s
been said that Groovy is a “low ceremony” language. If you’re new to Groovy, you may
not yet appreciate how much less code it takes to get things done compared to Java,
especially if you use your IDE’s code-generation functions. But, once you get used to
Groovy, you might find that you don’t even need to use an IDE anymore, except perhaps
when you want to attach a debugger to work on a particularly gnarly bug.

Groovy’s Contributions in the War Against Verbosity | 13

You’ve already seen how property access and the compact syntax for collections and
maps can help condense your code, but there are a lot more ways.

Constructors
It’s rare to see constructors in Groovy classes. This is because the Groovy compiler adds

a constructor that takes a Map and sets field values to map values where the key corre‐
sponds to a field name. This gives you named parameters for this constructor syntax,
so it’s both more convenient and clearer which values are which. For example, a simple
POGO like this:

class Person {

 String firstName

 String initial

 String lastName

 Integer age

}

can be constructed by setting some or all of the field values:

def author = new Person(firstName: 'Hunter', initial: 's', lastName: 'Thompson')

def illustrator = new Person(firstName: 'Ralph', lastName: 'Steadman', age: 76)

def someoneElse = new Person()

In the examples, I’m taking advantage of Groovy letting me omit the [and] map
characters, because it makes the invocations cleaner.

This is especially useful for classes with many fields; in Java, you have to either define
multiple constructors with various signatures or pass lots of nulls where you don’t have
a value.

However, note that the Map constructor relies on the default constructor that’s added to
all classes that don’t define any explicit constructors. It calls that constructor, then sets

properties from the provided Map (this is defined in MetaClassImpl.invokeConstruc

tor(), if you’re curious). But if you declare one or more parameterized constructors,

the compiler doesn’t generate an empty one for you, and the Map constructor will fail.

Also, because it’s not a real constructor that’s added to the bytecode, you can use this
with Java classes that have a default constructor, too. So you could replace this code:

MutablePropertyValues propertyValues = ...

def beanDef = new GenericBeanDefinition()

beanDef.setBeanClassName('com.foo.bar.ClassName')

beanDef.setAutowireMode(AbstractBeanDefinition.AUTOWIRE_BY_TYPE)

beanDef.setPropertyValues(propertyValues)

with this:

MutablePropertyValues propertyValues = ...

def beanDef = new GenericBeanDefinition(

 beanClassName: 'com.foo.bar.ClassName',

14 | Chapter 1: Introduction to Groovy

 autowireMode: AbstractBeanDefinition.AUTOWIRE_BY_TYPE,

 propertyValues: propertyValues)

Checked Exceptions
Groovy also relaxes the requirement to catch and declare checked exceptions. Checked
exceptions are widely regarded as a failure in the Java language, and a lot of the time,
there isn’t much you can do once you catch one. So in Groovy, you don’t have to wrap

calls to methods that throw checked exceptions in try/catch blocks, and you don’t have
to declare checked exceptions in method signatures.

For example, consider java.sql.SQLException. A lot of the time, a SQLException will
be caused by one of two things: temporary connectivity issues with the database and
errors in your SQL. If you can’t connect to the database, you probably just have to punt
and show an error page, and bad SQL is usually a development-time problem that you’ll

fix. But you’re forced to wrap all JDBC code in try/catch blocks, thereby polluting your
code.

You can still catch checked (and unchecked) exceptions in Groovy, and when you can
handle an exception and retry or perform some action after catching it, you certainly
should. It’s a good idea to also declare thrown exceptions in your method signatures,
both for use by Java and also as a self-documenting code technique.

Groovy Truth
In Java, only boolean variables and expressions (including unboxed Boolean variables)

can evaluate to true or false, for example, with if checks or as the argument to

assert. But Groovy extends this in convenient ways. null object references evaluate to

false. Nonempty collections, arrays, and maps; iterators and enumerations with more

elements; matching regex patterns; Strings and GStrings (and other implementations

of CharSequence) with nonzero length; and nonzero numbers and Characters will all

evaluate to true.

This is especially helpful with strings as well as with collections and maps. So, for ex‐
ample, you can replace:

def someCollection = someMethod(...)

if (someCollection != null && !someCollection.isEmpty()) { ... }

with:

def someCollection = someMethod(...)

if (someCollection) { ... }

and:

String s = someMethod(...)

if (s != null && s.length() > 0) { ... }

Groovy’s Contributions in the War Against Verbosity | 15

with:

String s = someMethod(...)

if (s) { ... }

Semicolons
Semicolons are for the most part unnecessary in Groovy, the exception being the tra‐

ditional for loop (although you’ll most likely prefer the semicolon-free Groovy for/in
version). Also, if you want to have multiple statements on one line, you still need to
delimit them with semicolons.

Optional Return
You can omit the return keyword in a method or closure, because Groovy treats the

last expression value as the return value if you don’t use return.

Scope
Scope modifiers are often omitted in Groovy because the default scope is public. You

can still define private or protected fields and methods. Because package scope is the

default in Java and there’s no keyword for that, Groovy added the groovy.trans

form.PackageScope annotation in version 1.8 for classes, methods, and fields.

Parentheses
You can often omit parentheses in method calls. This is only true if the method has
arguments, because otherwise the call would look like property access. So, for example,
all but the last of these are valid:

println("Using parentheses because I can")

println "Omitting parentheses because I can"

println()

println // not valid; looks like property access

 // for a nonexistent getPrintln() method

You can’t omit parentheses from the right side of an assignment, however:

int sum = MathUtils.add(2, 2) // ok

int product = MathUtils.multiply 2, 2 // invalid, doesn't compile

Default Imports
Another space saver is the extended list of default imports. Java automatically imports

everything from the java.lang package, and Groovy extends this to include java.io.*,

java.net.*, java.util.*, groovy.lang.*, and groovy.util.*, as well as the

java.math.BigDecimal and java.math.BigInteger classes.

16 | Chapter 1: Introduction to Groovy

Differences Between Java and Groovy
In general, you can rename a .java source file to .groovy and it will still be valid, although
there are a few exceptions.

Array Initialization
Because Groovy uses braces to declare closures, you cannot initialize an array the stan‐
dard Java way:

int[] oddUnderTen = { 1, 3, 5, 7, 9 };

Instead, we create the array using List syntax and cast it to the correct array type:

int[] oddUnderTen = [1, 3, 5, 7, 9]

or:

def oddUnderTen = [1, 3, 5, 7, 9] as int[]

in and def Keywords
One other gotcha is that in is a keyword, used by the Groovy for loop, (e.g., for (bar

in bars) { ... }); def is also a keyword. So Java code that uses either of these as a
variable name will need to be updated.

do/while Loops
There is also no do/while loop in Groovy, so any code like this will need to be reworked:

do {

 // stuff

}

while (<truth expression>);

for Loops
Another small difference is that you can’t initialize more than one variable in the first

part of a for loop, so this is invalid:

for (int count = someCalculation(), i = 0; i < count; i++) {

 ...

}

and you’ll need to initialize the count variable outside the loop (a rare case where Groovy
is more verbose than Java!):

int count = someCalculation()

for (int i = 0; i < count; i++) {

 ...

}

Differences Between Java and Groovy | 17

or you could just skip the whole for loop and use times:

someCalculation().times {

 ...

}

or a range with a loop, if you need access to the loop variable:

for (i in 0..someCalculation()-1) {

 ...

}

Annotations
Annotation values that have array types use a different syntax in Groovy than Java. In

Java, you use { and } to define multivalued attributes:

@Secured({'ROLE_ADMIN', 'ROLE_FINANCE_ADMIN', 'ROLE_SUPERADMIN'})

but because these are used to define closures in Groovy, you must use [and] instead:

@Secured(['ROLE_ADMIN', 'ROLE_FINANCE_ADMIN', 'ROLE_SUPERADMIN'])

Groovy Equality
The previous examples will cause compilation errors if you rename a .java class

to .groovy and try to compile it, or copy/paste Java code into an existing Groovy class.
But checking for object equality actually works differently in Groovy.

In Java, == is mostly used for comparing numbers and other primitives, because com‐

paring objects with == just compares object references but not the data in the instances.

We use the equals method to test if two objects are equivalent and can be considered

equal even though they’re not the same instances. But it’s rare to need the == object

comparison, so Groovy overloads it to call equals (or compareTo, if the objects imple‐

ment Comparable). And, if you do need to check that two references are the same object,

use the is method—e.g., foo.is(bar).

Groovy’s == overload is convenient and avoids having to check for null values, but be‐
cause it works differently than the Java operator, you might want to consider not using

it. It’s simple enough to replace x == y with x?.equals(y), which isn’t that many more
characters and is still null-safe. Working with both Java and Groovy will keep you from
introducing subtle bugs in your Java code. (I’m speaking from experience here….)

Multimethod Dispatch
Overloaded method selection is another runtime difference between Java and Groovy.
Java’s type checking is stricter, so it uses the compilation type of a variable to choose

18 | Chapter 1: Introduction to Groovy

which method to call, whereas Groovy uses the runtime type, because it’s dynamically

checking all method invocations for metamethods, invokeMethod interception, etc.

So, for example, consider a few versions of a close utility method:

void close(Closeable c) {

 try { c.close() }

 catch (e) { println "Error closing Closeable" }

}

void close(Connection c) {

 try { c.close() }

 catch (e) { println "Error closing Connection" }

}

void close(Object o) {

 try { o.close() }

 catch (e) { println "Error closing Object" }

}

In Java, this code will invoke the close(Object) variant, because the compiler only

knows the compile-time type of the connection variable:

Object connection = createConnection(); // a method that returns a Connection

// work with the connection

close(connection);

But, if this were Groovy, the close(Connection) method would be chosen, because it’s
resolved at runtime and is based not on the compile type but the actual runtime type of

the connection. This is arguably a better approach, but because it’s different from the
Java behavior, it’s something that you should be aware of.

Groovy Strings
There are multiple ways to express string literals in Groovy. The approach used in Java
—double-quoted strings—is supported of course, but Groovy also lets you use single
quotes if you prefer. Multiline strings (sometimes called heredocs in other languages)

are also supported, using triple quotes (either single or double). GStrings make things
a lot more interesting, though.

The biggest benefit of GStrings is avoiding the clumsy string concatenation that’s re‐
quired in Java:

String fullName = person.getFirstName() + " ";

if (person.getInitial() != null) {

 fullName += person.getInitial() + " ";

}

fullName += person.getLastName();

Groovy Strings | 19

Using a StringBuilder (the preferred approach when concatenating in a loop) wouldn’t

be much better in this case. But using a GString (along with property syntax), we can
join the data in a single line of code:

def fullName = "$person.firstName ${person.initial ? person.initial + ' '

: ''}$person.lastName"

GStrings also work with multiline strings as long as you use three double quotes; this
is convenient for tasks such as filling in templates for emails:

def template = """\

Dear $name,

Thanks for signing up for the Ralph's Bait and Tackle online store!

We appreciate your business and look forward to blah blah blah …

Ralph

"""

Here, I’m using the backslash character at the beginning of the string to avoid having
an initial blank line. You can use three single quotes to create multiline strings, but they
behave like regular strings that use single quotes, in that they do not support expression
replacement.

Using the subscript operator lets you conveniently access substrings:

String str = 'Groovy Strings are groovy'

assert str[4] == 'v' // a String of length 1, not a char

assert str[0..5] == 'Groovy' // the first 6 chars

assert str[19..-1] == 'groovy' // the last 6 chars

assert str[15..17] == 'are' // a substring in the middle

assert str[17..15] == 'era' // a substring in the middle, reversed

Static this
Unlike Java where the this keyword only makes sense in instance scope, this resolves
to the class in static scope. One use of this feature is when defining static loggers. In
Log4j and SLF4J, you can define a logger with a class or the class name (or any string
you like), but in Java, there’s no way (no convenient one anyway) to get the class name
in static scope. This can lead to copy/paste problems. For example:

private static final Logger LOG = Logger.getLogger(Foo.class);

has the class hardcoded, so if you forget to change it and copy that to a different class,
you’ll be logging as the wrong category. Instead, in Groovy, you can use:

private static final Logger LOG = Logger.getLogger(this)

which is more portable (and similar to the analogous instance version private final

Logger log = Logger.getLogger(getClass())).

20 | Chapter 1: Introduction to Groovy

The Groovy JDK (GDK)
The Groovy JDK (GDK) is a Javadoc-style set of pages that describe methods added to
the metaclass of JDK classes to extend them with extra functionality and make them
easier to work with. There are currently over 1,000 methods listed. I strongly encourage
you to check out the information there and familiarize yourself with what’s available.
You may find that you’ve coded something that was already available and, in general,
will probably realize that you’re working harder than you need to by not taking advan‐
tage of these built-in methods and features.

DefaultGroovyMethods and InvokerHelper
Many of the methods added to JDK metaclasses are implemented in the org.code

haus.groovy.runtime.DefaultGroovyMethods class. At its largest, this was a gigantic
class (over 18,000 lines) with around 1,000 methods. In recent versions of Groovy, this

large class is being refactored into several more focused classes, including Resource

GroovyMethods, IOGroovyMethods, StringGroovyMethods, and others. Many of the
convenience methods that you use on a regular basis are implemented here, for example,

the sort method that’s added to the Collection interface (it sorts lists and creates sorted

lists from nonlist collections) is implemented by the public static <T> List<T>

sort(Collection<T> self) method. It’s interesting to browse this class to see how
things work under the covers, and you can use these methods yourself (although this is
an internal class, so there may be some risk using it directly, because it’s not a public
API class).

org.codehaus.groovy.runtime.InvokerHelper is another utility class with a lot of
interesting functionality that you should check out.

Metaprogramming and the MOP
Groovy’s Meta Object Protocol (MOP) is the key to Groovy’s power and it’s what enables
most of its coolest features. Every class gets a metaclass, which intercepts all method
calls and enables customization of how methods are invoked, and also enables adding
or removing methods. This is what makes Groovy a dynamic language; unlike Java,
which compiles methods into class bytecode and doesn’t allow changes at runtime. Be‐
cause Groovy’s MOP is intercepting all method calls, it can simulate adding a method
as if it had been compiled in at startup. This makes JVM classes open classes that can be
modified at any time.

And that’s just runtime metaprogramming; with compile-time metaprogramming using
Abstract Syntax Tree (AST) transformations, you can also add actual methods to the
class bytecode that are visible from Java.

The Groovy JDK (GDK) | 21

http://groovy.codehaus.org/groovy-jdk
http://bit.ly/115J5MB
http://bit.ly/115J5MB

Every Groovy class implements the groovy.lang.GroovyObject interface (it’s added
by the compiler) that includes these methods:

Object invokeMethod(String name, Object args)

Object getProperty(String property)

void setProperty(String property, Object newValue)

MetaClass getMetaClass()

void setMetaClass(MetaClass metaClass)

Java classes can also implement GroovyObject to add Groovy-like
behavior. The most convenient approach for this is to subclass the

groovy.lang.GroovyObjectSupport adapter class, which implements
the interface and provides sensible default implementations of the
methods that can be overridden as needed.

When you invoke a method in Groovy (including accessing a property, because that
calls the corresponding getter method), it’s actually dispatched to the object’s metaclass.
This provides an AOP-like interception layer. The calls are implemented with reflection,
which is slower than direct method invocation. But each new release of Java adds re‐
flection speed improvements, and Groovy has several optimizations to reduce the cost
of this overhead, the most significant being call site caching. Early versions of Groovy
were quite slow, but modern Groovy has seen huge performance boosts and is often
nearly as fast as Java. And because network latency and database access tend to con‐
tribute most to total web request time, the small increase in invocation time that Groovy
can add tends to be insignificant, because it’s such a small percentage of the total time.

Adding Methods
The syntax for adding a method at runtime is essentially just one that registers a closure
in the metaclass that’s associated with the specified method name and signature:

List.metaClass.removeRight = { int index ->

 delegate.remove(delegate.size() - 1 - index)

}

The List interface has a remove method, but this addition removes the item considering

the position from the right instead of the left like remove:

assert 3 == [1, 2, 3].removeRight(0)

assert 2 == [1, 2, 3].removeRight(1)

assert 1 == [1, 2, 3].removeRight(2)

Recall that closures have a delegate that handles method calls invoked inside the closure.
When adding methods to the metaclass, you can access the instance in which closure

is invoked with the delegate property; in this example, it’s the list instance that remove

Right is called on.

22 | Chapter 1: Introduction to Groovy

www.allitebooks.com

http://www.allitebooks.org

Intercepting Method Calls
Because all Groovy objects implement GroovyObject, you can override the invokeMe

thod method in your class to handle method invocations. There are a few variants of
behavior though. By default, it’s only called for methods that don’t exist (analogous to

methodMissing, which we’ll see in a bit), so for example:

class MathUtils {

 int add(int i, int j) { i + j }

 def invokeMethod(String name, args) {

 println "You called $name with args $args"

 }

}

def mu = new MathUtils()

println mu.add(2, 3)

println mu.multiply(2, 3)

will generate this output:

5

You called multiply with args [2, 3]

because there is an add method but no multiply. If we change the class to implement

the GroovyInterceptable marker interface (which extends GroovyObject):

class MathUtils implements GroovyInterceptable {

...

}

then the result is a java.lang.StackOverflowError. Hmmm. What’s up there? We tend

to think of println as just an alias for System.out.println, but it’s actually a

metamethod added to the Object class that calls System.out.println, so it will be

intercepted along with the calls to add and multiply. So the fix is to use Sys

tem.out.println directly:

class MathUtils implements GroovyInterceptable {

 int add(int i, int j) { i + j }

 def invokeMethod(String name, args) {

 System.out.println "You called $name with args $args"

 }

}

def mu = new MathUtils()

println mu.add(2, 3)

println mu.multiply(2, 3)

and then we’ll see this output:

Adding Methods | 23

You called add with args [2, 3]

null

You called multiply with args [2, 3]

null

getProperty and setProperty

Overriding getProperty and/or setProperty always intercepts the property gets and
sets, so the output of:

class Person {

 private String name

 def getProperty(String propName) {

 println "getProperty $propName"

 if ('name'.equals(propName)) {

 return this.name

 }

 }

 void setProperty(String propName, value) {

 println "setProperty $propName -> $value"

 if ('name'.equals(propName)) {

 this.name = value

 }

 }

}

def p = new Person(name: 'me')

println p.name

will be:

getProperty name

me

You might have expected to see output indicating that setProperty was called, since
the map constructor is used and it sets property values from the map, in this case the

name property to 'me'. But the implementation of this feature bypasses setProperty
(this seems like a bug). But if you explicitly set the property:

p.name = 'you'

it works as expected:

setProperty name -> you

methodMissing and propertyMissing

GroovyObject doesn’t have methodMissing or propertyMissing methods, but if you
implement one or both of them, they’ll be called for undefined method calls and prop‐

erty accesses. The signatures are similar to invokeMethod and getProperty:

24 | Chapter 1: Introduction to Groovy

class Person {

 String name

 def propertyMissing(String propName) {

 if ('eman'.equals(propName)) {

 return name.reverse()

 }

 throw new MissingPropertyException(propName, getClass())

 }

 def methodMissing(String methodName, args) {

 if ('knight'.equals(methodName)) {

 name = 'Sir ' + name

 return

 }

 throw new MissingMethodException(methodName, getClass(), args)

 }

}

def p = new Person(name: 'Ralph')

println p.name

println p.eman

p.knight()

println p.name

which results in the output:

Ralph

hplaR

Sir Ralph

and, if you try to access a property or method that doesn’t exist or have special handling

(e.g., println p.firstName or p.king()), then you’ll get the standard MissingProper

tyException or MissingMethodException.

There are also static versions of methodMissing and propertyMissing, $static_meth

odMissing and $static_propertyMissing.

class Person {

 String name

 static $static_propertyMissing(String propName) {

 println "static_propertyMissing $propName"

 }

 static $static_methodMissing(String methodName, args) {

 println "static_methodMissing $methodName"

 }

}

println Person.foo()

println Person.bar

Adding Methods | 25

The output from the above code is:

static_propertyMissing foo

static_methodMissing foo

null

static_propertyMissing bar

null

$static_methodMissing works slightly differently from methodMissing in that if there’s
no method with the specified name, it looks for a closure property with that name to

invoke as if it were a method. This results in a message about a missing foo property

and a missing foo method.

Operators
Groovy adds several operators to the standard set of Java operators.

Null-Safe Dereference
The most commonly used is the null-safe dereference operator, ?., which lets you avoid

a NullPointerException when calling a method or accessing a property on a null object.
It’s especially useful in a chain of such accesses where a null value could occur at some
point in the chain.

For example, you can safely call:

String name = person?.organization?.parent?.name

and if person, person.organization, or organization.parent are null, then null is
returned as the expression value. The Java alternative is a lot more verbose:

String name = null;

if (person != null) {

 if (person.getOrganization() != null) {

 if (person.getOrganization().getParent() != null) {

 name = person.getOrganization().getParent().getName();

 }

 }

}

Elvis
The Elvis operator, ?:, lets you condense ternary expressions; these two are equivalent:

String name = person.name ?: defaultName

and:

String name = person.name ? person.name : defaultName

26 | Chapter 1: Introduction to Groovy

They both assign the value of person.name to the name variable if it is “Groovy true” (in

this case, not null and has nonzero length, because it’s a string), but using the Elvis
operator is more DRY.

Spread
The spread operator, *., is convenient when accessing a property or calling a method
on a collection of items and collecting the results. It’s essentially a shortcut for the

collect GDK method, although it’s limited to accessing one property or calling one
method, for example:

def numbers = [1.41421356, 2.71828183, 3.14159265]

assert [1, 2, 3] == numbers*.intValue()

Spaceship
The spaceship operator <=> is useful when comparing values; for example, when im‐

plementing the compareTo method of the Comparable interface. For example, given a
POGO where you want to sort by two properties, the spaceship operator makes the
implementation very compact:

class Person implements Comparable<Person> {

 String firstName

 String lastName

 int compareTo(Person p) {

 lastName <=> p?.lastName ?: firstName <=> p?.firstName

 }

 String toString() { "$firstName $lastName" }

}

def zakJones = new Person(firstName: 'Zak', lastName: 'Jones')

def jedSmith = new Person(firstName: 'Jed', lastName: 'Smith')

def alJones = new Person(firstName: 'Al', lastName: 'Jones')

def persons = [zakJones, jedSmith, alJones]

assert [alJones, zakJones, jedSmith] == persons.sort(false)

because the operator returns –1 if the left is less than the right, 0 if they’re equal, and 1

if the right is more than the left. So when the first expression (lastName <=> p?.last

Name) is nonzero, its value is used as the return value and the sort is done by last

Name. If the last names match, then the Elvis operator kicks in and the second expression

(firstName <=> p?.firstName) is used to do a secondary sort by firstName.

You can also use the operator for one-off sorting regardless of whether the items are

Comparable, for example:

Operators | 27

assert [alJones, jedSmith, zakJones] == persons.sort(

 false, { a, b -> a?.firstName <=> b?.firstName })

which sorts just by firstName. Of course Groovy being Groovy, there’s a shorter way of
doing that:

assert [alJones, jedSmith, zakJones] == persons.sort(false, { it.firstName })

Field Access
If you have a need to bypass a getter method (or if there is none) and directly access a

field, you can use the .@ operator. For example, this class uses some simple logic to
return a default value if none is specified, but if you want to know if the value is un‐
specified, you still can:

class Thing {

 private static final String DEF_NAME = 'foo'

 String name

 String getName() { name == null ? DEF_NAME : name }

}

assert 'bar' == new Thing(name: 'bar').name

assert 'foo' == new Thing().name

assert null == new Thing().@name

Note, however, that this operator only works on the current class; if the field is in a
subclass, the operator cannot access it, and you have to use standard reflection.

as
The as operator is very useful, because it can perform many type coercions. For example,

there’s no native syntax for a Set like there is for a List, but you can use as with List

syntax to create a Set:

def things = ['a', 'b', 'b', 'c'] as Set

assert things.getClass().simpleName == 'HashSet'

assert things.size() == 3

in
The in operator is a convenient shortcut for the contains method in a collection:

assert 1 in [1, 2, 5]

assert !(3 in [1, 2, 5])

28 | Chapter 1: Introduction to Groovy

Method Reference
The .& operator lets you get a reference to a method and treat it like a closure. This
might be useful if you’re working with higher order methods where you pass a closure

as a parameter and want the option to pass a method; the .& operator creates an instance

of org.codehaus.groovy.runtime.MethodClosure that invokes your method when it’s
invoked.

class MathUtils {

 def add(x, y) { x + y }

}

def doMath(x, y, Closure c) {

 c(x, y)

}

def add = new MathUtils().&add

def multiply = { x, y -> x * y }

assert 8 == doMath(4, 2, multiply)

assert 6 == doMath(4, 2, add)

assert 2 == doMath(4, 2, { x, y -> x / y })

Overload Your Operators
Operator overloading is a powerful technique for compressing code, ideally in an in‐
tuitive way. It’s important that if you add an operator overload that it make sense—be
sure to think about how cryptic the code can get if you add an operator overload that
isn’t an appropriate choice.

The general approach for creating an operator overload is to implement the method

that corresponds to the operator. The method must return this (or another instance)

to work correctly. So, for example, if we have a Person class that has a collection of
children:

class Person {

 String name

 List children = []

}

Adding a child to a Person instance is simple enough:

def parent = new Person(...)

def child = new Person(...)

parent.children.add child // or parent.children << child

But we can use the left-shift operator here to add a child:

class Person {

 String name

 List children = []

Overload Your Operators | 29

 def leftShift(Person child) {

 children << child

 this

 }

}

and then the code becomes simply:

def parent = new Person(...)

def child = new Person(...)

parent << child

The plus method would be another possibility (or you might implement both).

class Person {

 String name

 List children = []

 def plus(Person child) {

 children << child

 this

 }

}

and then you would use it like this:

def parent = new Person(...)

def child = new Person(...)

parent += child

because parent += child is the equivalent of parent = parent + child. Note that

internally we’re still using << to add the child to the children list instead of switching

to +=, because += creates a new List and copies the old list into it and then adds the new
one. This is a lot more expensive than just adding to the current instance and should
be avoided in general unless you have a reason to create a new list instance.

Table 1-1 shows the available overloadable operators and their corresponding imple‐
mentation methods.

Table 1-1. Overloadable operators

Operator Implementation method

a + b a.plus(b)

a - b a.minus(b)

a * b a.multiply(b)

a ** b a.power(b)

a / b a.div(b)

a % b a.mod(b)

a | b a.or(b)

30 | Chapter 1: Introduction to Groovy

Operator Implementation method

a & b a.and(b)

a ^ b a.xor(b)

a++ or ++a a.next()

a-- or --a a.previous()

a[b] a.getAt(b)

a[b] = c a.putAt(b, c)

a << b a.leftShift(b)

a >> b a.rightShift(b)

switch(a) { case(b) : } b.isCase(a)

~a a.bitwiseNegate()

-a a.negative()

+a a.positive()

Being Too Groovy
There’s a natural tendency to embrace Groovy fully once it becomes apparent how much
it has to offer over Java. Writing highly idiomatic Groovy code can lead to the code being
hard to understand, though. I’ve written cryptic code with no comments that I’ve looked
at months later and had to relearn how it works as if someone else had written it, because
it was old enough that I didn’t remember working on it, and I had sabotaged myself by
writing the code in a way that made sense at the time but not when I came back to it.

The phrase I use for this is “be lazy but not sloppy.” By this, I mean save yourself time
(and typing) and take advantage of Groovy’s cool features—but don’t overdo it and make
your code hard to work with and understand.

def Considered Harmful
One example of being “too groovy” is overusing the def keyword. Optional typing is
very convenient, but specifying the type can help other readers of your code (and even
yourself). Naming variables and methods well makes code more self-documenting, and
the same goes for whether to type variables. For example, consider this relatively
information-free line of code:

def foo = bar(5, true)

It’s not at all clear what foo is or what you can do with it. If it’s a string, call it a String
(or whatever the type is).

I usually don’t type both sides of an assignment, so because it’s clear that strings is a

List from the right side of the assignment, I’m okay with:

def Considered Harmful | 31

def strings = []

but when the right side is a method invocation, I’ll type the left:

List<String> strings = someMethod('Hello', 'Groovy', 'World')

and I often add the generic type even though Groovy ignores it—again as a self-
documentation practice and not because it has any other runtime effect. The same goes

for the return type and parameter type(s) of methods; if it’s void, I specify void some

Method(...) instead of def someMethod(...), so the caller knows that there’s nothing
being returned.

each is a convenient way of looping, but I rarely use it, because it has almost no benefit

over the for/in loop. For example, I would use:

for (string in strings) { ... }

instead of:

strings.each { string -> ... }

because they’re equivalent, basically the same number of characters, and both are null-

safe. And the for loop has the benefit that you can break out of it if there’s a reason to

stop looping, whereas each cannot, because returning from the closure that you pass to

the each method returns from the closure, not each.

Of course, these are arguments about preferences—there’s no right or wrong here. And
I will certainly drop the type of a method parameter if it makes testing easier by letting
me substitute a more convenient value that uses duck typing.

Closures Versus Methods
Another example of being “too groovy” is using a closure as a method where you don’t
use any features of the closure. If you don’t set the delegate or use any other closure-
specific feature, then there’s no reason to use:

def foo = { <params> ->

 ...

}

instead of:

<return type> foo(<params>) {

 ...

}

and, in fact, using the method has the not-insignificant benefit of letting you specify the
return type. Plus, things like AOP and method proxying that aren’t Groovy-aware won’t
work at all with closures, because they’re only treated like methods by Groovy—they’re
just public fields and are ignored by Java.

32 | Chapter 1: Introduction to Groovy

www.allitebooks.com

http://www.allitebooks.org

One real example of this is Grails services. Unlike controllers and taglibs, services are
implemented with methods. A transactional service is implemented by Spring as a proxy
that subclasses your service class and intercepts all method calls to start or join a trans‐
action as needed and manage error handling, automatic rollbacks, and so on. If you
have a public closure in a service, it will be callable from Groovy just like a method, but
it will not be transactional. The proxy only works with methods and completely ignores
the closures, so you will introduce bugs that can be hard to track down by using closures
here.

TypeChecked, CompileStatic, and invokedynamic
Groovy 2.0 and 2.1 add new features that make your code faster and provide more
compiler checks. Groovy is a dynamic language and, as we’ve seen, this adds a tremen‐
dous amount of power and flexibility. But there are costs to this flexibility. One is that
it’s easier to introduce typos and mistakes into Groovy code than Java, because the
compiler is more forgiving. For example, a one-character mistake such as:

int hc = someObject.hashcode()

will compile but fail with a groovy.lang.MissingMethodException at runtime (unless

there is actually a hashcode method in the class). The compiler doesn’t catch the mistake,
because the code satisfies the Groovy grammar, but the compiler cannot know whether

a hashcode method will be added to the metaclass before its first use in application code.

And it can’t assume that you meant to call the hashCode method.

Good testing should find errors like this, but Groovy now provides an option to make

the compiler more aggressive: the @TypeChecked annotation. This can be applied at the
class level or on individual methods, and the code within the scope of the annotation
will be compiled more like Java than Groovy. You lose flexibility with this annotation
but add earlier error checking.

@CompileStatic is the other new interesting annotation in 2.0. This adds the same

checks as the @TypeChecked annotation and also compiles your Groovy code to nearly
the same bytecode as that from the equivalent Java code. This means that you lose
Groovy’s metaprogramming support and some other dynamic features (although you
retain many of the syntactic sugar features such as list and map comprehensions) but
will see Java-like performance for the annotated code. Code that you would previously
write in Java for maximum performance can now be written in Groovy.

Groovy 2.0 and 2.1 also have support for the new invokedynamic bytecode instruction
that was added to support dynamic languages like Groovy and improve performance

automatically. This differs from using @CompileStatic in that you don’t make any
changes to your code. Instead, you use a different compiler and runtime JAR. The “indy”

version of Groovy takes advantage of the existence of the invokedynamic instruction
in JDK 7 and later (with performance being much better in JDK 8).

TypeChecked, CompileStatic, and invokedynamic | 33

See the Groovy 2.0 release notes and Groovy 2.1 release notes for more information
about these and other new features.

34 | Chapter 1: Introduction to Groovy

http://groovy.codehaus.org/Groovy+2.0+release+notes
http://groovy.codehaus.org/Groovy+2.1+release+notes

CHAPTER 2

Grails Internals

The Grails Framework was initially discussed on the Groovy user mailing list in 2005.
Ruby on Rails was becoming popular (having been released in 2004) and the idea of a
JVM-based framework that used similar patterns and approaches seemed like a good
one—where the dynamic power of the Groovy language and existing frameworks like
Spring, Hibernate, Sitemesh, and several others could be combined into a powerful
framework. Version 1.0 was released February 4, 2008, and version 2.0 on December
15, 2011. As of this writing, version 2.2 is the latest released version. Version 2.3 is being
actively developed, and plans are being made for the 3.0 release.

Grails is a full-stack framework; meaning, it has support for all aspects of developing
web applications. In addition, the framework is plugin-based, so developers can add on
new functionality or replace the default implementation of a feature by installing one
or more plugins into an application. In fact, newer versions of Grails often see func‐
tionality removed from the core and made available as a plugin. This includes Quartz,
Web Flow, Jetty, Tomcat, and Hibernate.

A typical Grails application leverages over 30 frameworks and libraries, with Grails
wiring everything together and adding significant functionality of its own. Of course,
Groovy plays a huge role, providing dynamic language features, metaprogramming,
and DSL support to make code and configuration more concise and expressive. The
Spring Framework provides a lot of core functionality, including a robust bean con‐
tainer, dependency injection, and support for transactions, database access, AOP, and
proxies. In addition, the Grails web tier heavily uses Spring MVC. Hibernate is no longer
part of the core but it is a default plugin and is used in a large percentage of applications.

Some of the smaller libraries include cglib and Javassist for bytecode generation (for
creating Java proxies at runtime); several Apache Commons libraries including
commons-collections, commons-dbcp, and commons-lang; Ehcache for object and
data caching; log4j for logging support; SiteMesh in the web tier for page layout and

35

http://grails.org/plugin/quartz
http://grails.org/plugin/webflow
http://grails.org/plugin/jetty
http://grails.org/plugin/tomcat
http://grails.org/plugin/hibernate
http://groovy.codehaus.org/
http://www.springsource.org/spring-framework
http://hibernate.org/
http://cglib.sourceforge.net/
http://www.csg.ci.i.u-tokyo.ac.jp/~chiba/javassist/
https://commons.apache.org/
https://commons.apache.org/collections/
https://commons.apache.org/dbcp/
https://commons.apache.org/lang/
http://ehcache.org/
https://logging.apache.org/log4j/1.2/
http://wiki.sitemesh.org/display/sitemesh/Home

templating; and Tomcat and H2 to provide an embedded web server and database in
the development environment.

The idea of “convention over configuration” is a central philosophy. The idea is that, to
the extent possible (and practical), the framework should do as much as possible for the
developer, so you can be free to solve the real problems that the application was created
to address instead of wasting time on plumbing code (and making it more fun to write
your code). If you follow the convention patterns, which usually involve naming con‐
ventions and directory locations, along with simple instance and static variables in your
classes, “magic” happens. Code is generated for you (often bytecode, so your classes
aren’t cluttered with computer-generated cruft) and behavior is added. The extra be‐
haviors can come from methods added to your metaclasses, or by wrapping the Spring
beans that represent your artifacts with proxies, or other artifact-specific approaches.
But, in the end, a small amount of code results in a tremendous amount of functionality.

Note, however, that although it is often best to follow conventions, there are always ways
to “go rogue” and use a different approach. If a feature of an underlying framework isn’t
exposed by Grails, or in general, if there isn’t a “Grails way” to do something, then feel
free to go around the framework and configure things yourself. But be sure that you
know that there isn’t a convenient Grails-based approach before going this route. Your
application will be much easier to understand and maintain (especially important for
new developers) if it follows standards.

Many of the conventions are implemented through the use of artifacts. Most application
classes are of a particular artifact type, and most have a dedicated directory under the
grails-app directory. These include controllers, domain classes, services, taglibs, and
codecs (in the utils directory), and also BootStrap.groovy, UrlMappings.groovy, and fil‐
ters classes in the conf directory. The exceptions are I18N message bundles in the i18n

directory and GSPs in the views directory. Under the hood, Grails uses org.code

haus.groovy.grails.commons.ArtefactHandler classes to manage the various types

(e.g., ControllerArtefactHandler and ServiceArtefactHandler), and creates a

org.codehaus.groovy.grails.commons.GrailsClass wrapper instance for each ap‐
plication artifact class to extract class properties and metadata, such as domain class

constraints and the allowedMethods map in controllers (e.g., DefaultGrailsTagLib

Class and DefaultGrailsServiceClass). Plugins can contribute new artifact types;

one example is the Quartz plugin that adds a Job artifact type.

Grails applications are web applications, so there is significant support for the web tier.
This includes controllers to act as the server-side request handlers. JSPs are supported,
but Groovy Server Pages (GSPs) are the preferred way of generating responses, because
they support all of the same features but also Grails tags and even Groovy code. And,
you are not restricted to only using GSPs and JSPs; you can render a response directly

from a controller by writing to the response. One common idiom is the render as

XML and render as JSON support, which conveniently serializes an object graph to XML

36 | Chapter 2: Grails Internals

https://tomcat.apache.org/
http://h2database.com/
http://grails.org/plugin/quartz

or JSON. There is a DSL for routing application URLs to controller actions in UrlMap

pings.groovy. Tomcat (or optionally Jetty) is available as a plugin to run an embedded
web server in development mode, and creating a WAR file to deploy the application to

a test or production server is as simple as running grails war.

Most web applications require data persistence, and Grails uses the GORM Framework
for this. Originally tightly coupled to Hibernate, GORM was redesigned to be inde‐
pendent of its implementation (primarily to support NoSQL datastores) and now de‐
velopers have the freedom to choose where to store their data. The Hibernate support
was retrofitted to use the new approach, and there are now complete or partial imple‐
mentations of GORM for MongoDB, Redis, Neo4j, Amazon SimpleDB, Riak, Gemfire,
and JPA, and plans for supporting GORM for REST, Cassandra, as well as community-

driven implementations. There is also an in-memory implementation that uses a Con

currentHashMap store for use in unit testing.

Testing is critically important to the success of applications, and Grails has excellent
support for writing and running tests. Unit and integration tests are supported by de‐
fault, and plugins can add support for functional tests. JUnit version 3 and 4 and Spock
are supported. AST transformations mix in significant functionality into unit tests,
eliminating the need for base class hierarchies.

There is convenient support for “environments” in Grails—by default, development,

test, and production (and it is easy to add your own). This makes it easy to define
configuration settings across all environments, and environment-specific overrides, in

BootStrap.groovy, Config.groovy, and DataSource.groovy. In addition, environ‐
ments behave differently. In development mode, there is little or no caching and a re‐
loading agent detects changed classes and reloads them on the fly, significantly increas‐
ing the time between server restarts. In the production environment, there is significant
caching and no reloading by default (but GSP reloading can be enabled). The develop‐
ment environment is optimized for productivity, and the production environment is
optimized for performance.

In addition, Grails provides many other useful features, including:

• Using services for transactions and to encapsulate business logic

• Using filters and interceptors to add behavior before or after requests

• Supporting internationalization (i18n) in controllers and GSPs based on Spring’s

core MessageSource concept

• Dependency management with Ivy using Maven repositories

• Convenient logging with Log4j, with a log variable added to all artifact classes by
an AST transformation and a DSL to configure loggers and appenders

Grails Internals | 37

https://github.com/junit-team/junit
https://code.google.com/p/spock/
https://ant.apache.org/ivy/

Grails is 100% open source; the code is hosted at GitHub. The development process is
open, discussed on the mailing lists, and (at a high level) on the roadmap. Anyone can
contribute, from simply reporting an issue or requesting a feature in the bug tracker, to
contributing fixes and enhancements through pull requests and patches. Even the
grails.org website is open source, and it is also hosted at GitHub.

Installing Grails
Getting started using Grails is as simple as using Groovy. There are a few different ways
to do this. The most direct is to download the latest ZIP distribution, unpack the ZIP

file to the location, set the GRAILS_HOME environment variable to point to your desired
location, and add the $GRAILS_HOME/bin (or %GRAILS_HOME%\bin in Windows)

directory to the PATH environment variable. That’s all you need to do; run grails --

version from a command prompt to verify that everything is working.

The GVM (Groovy enVironment Manager) tool described in Chapter 1 also works with
Grails. It will install one or more versions of Grails and allows you to easily switch
between installed versions if you have multiple projects using different versions of
Grails. See the GVM site for usage information.

Creating an Application
Once Grails is installed, you can create an application and get it running and accepting

requests in about one minute. Open a command prompt and cd into the directory where
you want to project to exist and run:

$ grails create-app helloworld

If you’ve used earlier versions of Grails before 2.0, you’ll be surprised at how little output
there is from this command and others. A lot of the output isn’t very interesting or

useful, so it’s mostly not shown. You can add the --verbose flag to see everything if you
want.

A nte about the work directory

I encourage you to always edit grails-app/conf/BuildConfig.groovy when creating a new
application (or plugin) and replace these three lines:

grails.project.class.dir = "target/classes"

grails.project.test.class.dir = "target/test-classes"

grails.project.test.reports.dir = "target/test-reports"

with this one:

grails.project.work.dir = 'target'

By default, Grails puts installed plugins, compiled classes, and other generated files in
the project’s work directory under the .grails directory in your home folder. By changing

38 | Chapter 2: Grails Internals

https://github.com/grails/grails-core
http://grails.org/Mailing+Lists
http://grails.org/Roadmap
http://jira.grails.org/browse/GRAILS
https://github.com/grails-samples/grails-website
http://www.grails.org/download
http://gvmtool.net/

the work directory to be in the target folder in your application, I find that it keeps things
better organized. Be sure to exclude the target directory from source control, because

it’s all generated code; you can use grails integrate-with --git to create a de‐
fault .gitignore file if you haven’t already. The biggest benefit of this configuration is that,
if things start to seem strange and you see unexpected errors, you can just delete the
target directory to force a full project rebuild.

Running the application

Once the create-app script finishes, cd into the helloworld directory (or whatever
project name you used; Grails creates a new directory using the project name) and run
the application with:

$ grails run-app

And that’s it. You should see this message:

| Server running. Browse to http://localhost:8000/helloworld

and, if you view that address in a web browser, you can see the application’s start page.
Of course, there’s not much that we can do with this application yet, but there’s a sig‐
nificant amount of functionality available already.

The Grails Command Line
Grails uses Gant, a Groovy wrapper around Ant, as the technology behind its command-
line scripts (although there are plans for 3.0 to replace Gant with Gradle). Grails includes
over 50 scripts to perform various tasks, and these are documented in the reference
documentation in the Command Line group of the Quick Reference section in the right
sidebar. Also, be sure to read the section in the Grails reference documentation on the
command line for more general information, such as what switches are available and
how to specify them.

You will find that you tend to use a core subset of these scripts on a regular basis. As we

have seen, the create-app script is used to create a new application, and create-

plugin creates new plugin projects. You can create artifact classes (domain classes,
controllers, and so on) by hand, but it is far more convenient to use the scripts that do

the work for you; these include create-controller, create-domain-class, create-

filters, create-script, create-service, and create-tag-lib to create controllers,
domain classes, filters, Gant scripts, services, and taglibs, respectively.

The create scripts result in basic starter classes but, for a more complete approach, use

the generate scripts. generate-controller creates a full statically scaffolded CRUD
controller for a specified domain class (along with a nearly complete unit test class),

generate-views creates the GSPs that the generated controller uses to render responses,

and generate-all creates all of the files that generate-controller and generate-

The Grails Command Line | 39

http://gant.codehaus.org/
https://ant.apache.org/
http://www.gradle.org/
http://grails.org/doc/latest/
http://grails.org/doc/latest/
http://grails.org/doc/latest/guide/commandLine.html
http://grails.org/doc/latest/guide/commandLine.html

views create. generate-all is the most convenient script to use, because it creates ev‐
erything in one step. There is an “uber-generate” switch that will conveniently generate
controllers, GSPs, and tests for all domain classes. It will not overwrite any existing files,
but will prompt you about existing files in case you do want to regenerate them. Run

grails generate-all "*" to generate everything with one command.

Artifacts are generated from templates that are included in your Grails installation. But
these are just suggestions for the initial code and, if you want, you can customize them

to include whatever standard code you like in generated classes. Run the install-

templates script and edit the files in src/templates as needed. And you are not just
limited to using the Grails bootstrap files. Check out Rob Fletcher’s twitter-bootstrap-
scaffolding project, which uses Twitter Bootstrap for the scaffolded views.

Use the compile script to compile your Groovy and Java source to class files. This can
be called directly, but it is usually called by other scripts for you, because most of the
time, it is important to have up-to-date classes before performing another task.

Run your unit, integration, and functional tests with the test-app script. You can run
all types in order, or any individual types.

Start the local server with run-app, which uses the embedded server (Tomcat by default,
but Jetty if you prefer) to run your application as if it were an “exploded” WAR. You can

also use the run-war script to build a full WAR file and deploy it to the embedded servlet
container.

Once you are ready to deploy to a test server or even production, build a WAR file with

the war script. This includes all of your compiled classes, JAR files, and static resources,
and includes a generated web.xml file. Similarly, you can create an installable ZIP file

for a plugin project with the package-plugin script.

When things get weird, and you see unexpected behavior of any type, run the clean
script to delete generated class files and other resources. The next compile will be a full
compile instead of an incremental compile. The dynamic nature of Groovy can confuse
the compiler, and it is easy to get out of sync, so a full rebuild will often get you back on
track. If you have dependency-related issues, or just want to see what your application’s

dependencies are, run the dependency-report script and open the generated HTML
reports in a browser.

You can create missing test classes with the create-unit-test and create-

integration-test scripts. Note that if you use the functional-test plugin, do not run

the create-functional-tests script if you are using an older (pre-2.0) version of the
plugin. It will reset all of your grails-app/conf configuration files back to the default
versions, and you will lose any changes.

There are also a few utility scripts that are very useful. Use integrate-with with its
various flags to generate Eclipse/STS/GGTS project files, Intellij IDEA project files, a

40 | Chapter 2: Grails Internals

https://github.com/robfletcher/twitter-bootstrap-scaffolding
https://github.com/robfletcher/twitter-bootstrap-scaffolding
http://twitter.github.com/bootstrap/
http://grails.org/plugin/functional-test

Textmate project file, an Ant build script, or a Git .gitignore file. schema-export hooks
into the Hibernate DDL generation process to capture the SQL to create your tables,
constraints, and foreign keys and write it to a file. This is convenient to ensure that the
database will have the correct structure for your code, and is especially useful when

mapping to an existing database. Use the stats script to write information about your
application to the console, including how many artifacts of each type exist in your ap‐
plication and how many lines of code they have.

Finally, the script that I probably run more than any other is console. It launches a

Groovy console (the same Swing application that the Groovy groovyConsole script
launches) that is tightly integrated with your Grails application. Your application code
and dependencies are included in its classpath, so you can run nearly any part of your
application’s functionality. The exception is that, because there won’t be a web server
running, you cannot call a controller or other HTTP-related feature. But you can access
your database using GORM, your domain classes, or even SQL; you can call services or
any other Spring beans; and, in general, use the console to prototype code and manually
test features.

IDE Support
You are not required to use the command-line scripts when developing Grails applica‐
tions and plugins; there are several IDEs and text editors with excellent support for
Groovy and Grails.

The three best known IDEs for Grails development are Groovy/Grails Tool Suite
(GGTS), IntelliJ IDEA, and NetBeans IDE. Each one supports creating applications and
plugins, generating artifacts, and running Gant scripts all from the IDE. You can also
easily launch your application from the IDE, with the option of starting in debug mode
with breakpoints to diagnose issues. GGTS is an offshoot of the SpringSource Tool Suite
(STS) IDE that is based on Eclipse. It includes the Groovy-Eclipse plugin for syntax
highlighting and autocompletion of Groovy code, and robust support for Grails arti‐
facts. IntelliJ is a commercial IDE with free support for Java and Groovy, although you
must buy the Ultimate edition to get Grails support.

If you prefer a more lightweight development environment, there are several advanced
text editors with support for Groovy and Grails development. TextMate is a popular
one, although it is only available on the Mac. Sublime Text is a newer option and has
most of the same features as TextMate but has the benefit of being cross-platform. Use
the Grails package to add Grails and Groovy syntax highlighting and partial autocom‐
pletion. And, if you are a Vi/Vim user, there are also resources to add Grails and Groovy
support to this venerable text editor. See this two-part blog post (part 1 and part 2) for
tips to make Vim groovier.

IDE Support | 41

http://grails.org/products/ggts
http://grails.org/products/ggts
https://www.jetbrains.com/idea/
http://netbeans.org/
http://www.eclipse.org/
http://groovy.codehaus.org/Eclipse+Plugin
https://www.jetbrains.com/idea/features/groovy_grails.html
http://macromates.com/
http://www.sublimetext.com/
https://github.com/osoco/sublimetext-grails
http://www.vim.org/
http://www.objectpartners.com/2012/02/21/using-vim-as-your-grails-ide-part-1-navigating-your-project/
http://www.objectpartners.com/2012/02/28/using-vim-as-your-grails-ide-part-2/

Plugins
Notice that the start page lists the installed plugins; there are 23 by default. This includes
16 “core” plugins that form Grails itself:

• codecs

• controllers

• converters

• core

• dataSource

• domainClass

• filters

• groovyPages

• i18n

• logging

• mimeTypes

• scaffolding

• services

• servlets

• urlMappings

• validation

and seven that are optional and preinstalled for you.

• cache

• database-migration

• hibernate

• jquery

• resources

• tomcat

• webxml

42 | Chapter 2: Grails Internals

www.allitebooks.com

http://www.allitebooks.org

I usually refer to including a plugin in your application as “installing”

it, but this isn’t really what happens. There is an install-plugin script,
but it’s deprecated and will be removed. It doesn’t really make much
sense to install a Grails plugin; instead, we add a dependency on it as
we would for a JAR dependency, in BuildConfig.groovy.

Optional Plugins
Each of the seven optional plugins are configured in the initial BuildConfig.config file

that gets generated by the create-app script. They are included by default because many
applications need their functionality, but any or all can be removed. These are all con‐
figured by default as suggestions, but if you don’t need a plugin or aren’t sure if you will
need it in the future, remove it from BuildConfig.groovy. You can always add it back if
you do need it.

The cache plugin

The cache plugin leverages the Spring Framework cache abstraction added in Spring
3.1. It lets you easily annotate service methods to cache their return values, controller
actions to cache their generated responses, and GSP fragments and rendered templates
to cache their generated content. If you have any of these that are slow but are good
caching candidates (i.e., given the same inputs you get the same output), you can use
the plugin to store the data for future users rather than regenerating it each time. This
can give you large performance boosts and increase scalability. The “core” plugin has
an in-memory implementation but has extension plugins that add support for using
libraries such as Ehcache or Redis for a more robust and configurable solution.

The database-migration plugin

The database-migration plugin adds integration with the Liquibase database refac‐
toring tool. The plugin provides all of the features of Liquibase, and it is also tightly
integrated with Grails. When you initially start an application, especially with “green‐
field” projects where you design the database schema as you go, it’s often convenient to
let Grails and Hibernate drop and re-create the database tables every time you restart
the application. But, eventually, things will stabilize and you will need a more formal
change process, and Liquibase handles this very well. By generating scripts that are
mostly database-agnostic (written in XML or the plugin’s Groovy DSL) you can check
new and updated domain classes into source control along with the scripts that make
the necessary changes in the database. This lets you version the database like you do
your code.

Plugins | 43

http://bit.ly/Z5STH0
http://ehcache.org/
http://redis.io/
http://www.liquibase.org/
http://www.liquibase.org/

The hibernate plugin

The hibernate plugin adds support for using Hibernate to access relational databases,
usually with domain classes. Grails includes the H2 database, which is written in Java
and supports in-memory as well as file-based databases, in addition to a traditional
client-server configuration. This way, out of the box, your new application has support
for a JDBC database for development and testing, which can easily be switched for a
larger database like MySQL, PostgreSQL, or Oracle when needed. You’ll see in the
chapters on persistence that this plugin includes a Hibernate-backed implementation
of GORM API. But, because GORM has several implementations, you can remove the

hibernate plugin and replace it with one of those; use it alongside one or more of those;
or, in unusual cases, even remove it completely if you have no need for database storage.

The jquery plugin

The jquery plugin doesn’t do a lot really; it primarily makes the JQuery JavaScript
library available to your application. Like any plugin, it is only downloaded once and is

cached locally, so this makes it easier to use jquery in your applications by simply adding

a line to BuildConfig.groovy. The plugin is also resources-aware, so it can easily par‐
ticipate in the ‘resources` plugins’ processing chain.

The resources plugin

The resources plugin and its dependent plugins (e.g., zipped-resources and cached-

resources) add support for making static resources (e.g., CSS, JavaScript, and images)
load faster. Features such as bundling files together, setting expires headers, and gzipping
text files reduce the load on your servers, but, more important, make your pages load
and render faster. Users quickly get frustrated with slow websites and are very likely not
to return if performance is sluggish.

The tomcat plugin

The tomcat plugin adds an embedded version of the Tomcat servlet container. This
makes it easy to run your application in the development environment, because the

plugin registers itself as the server to use in the run-app script. Jetty was used as the
embedded servlet container in earlier versions of Grails and it was tightly coupled. But,
to make it easy to switch out, the interface between the container and Grails was made
more pluggable to support using Tomcat, and it is straightforward to create plugins that
add support for other containers such as Glassfish.

Note that the scope of the tomcat plugin in BuildConfig.groovy is build. This, along

with the def scopes = [excludes: 'war'] configuration in the plugin’s descriptor
class, ensures that the plugin is only used for development and functional testing, but
the jars are not included in the generated WAR files. This makes it possible to conven‐

44 | Chapter 2: Grails Internals

http://hibernate.org/
http://h2database.com/html/main.html
http://jquery.org/
https://tomcat.apache.org/
http://jetty.codehaus.org/jetty/
http://glassfish.java.net/

iently use Tomcat (or Jetty) while developing the application, but deploy to production
into any servlet container.

The webxml plugin

There is no explicit dependency on the webxml plugin in BuildConfig.groovy, but it gets

included because it is a dependency of the resources plugin. Grails transitively includes
dependencies of dependencies for you, which greatly simplifies the configuration. You

can’t directly remove this plugin, because the resources plugin needs it to properly
order its filters in the web.xml file, but, if you remove all plugins that depend on it (the

spring-security-core plug-in also uses it), then Grails will remove it for you.

Core Plugins
Technically, you can remove some of the “core” plugins, but this isn’t advised. They tend
to have interdependencies and there isn’t much benefit in removing them, even if the
features they provide aren’t needed by your application. But making Grails much more
modular is an item on the development roadmap; see the Application Profiles item. The
current plan is to have several variants of Grails, from very small, lean configurations
for specialized uses all the way to essentially what Grails is today.

The codecs plugin

The codecs plugin manages classes that can encode and decode between data types or
formats. Grails ships with several codecs:

• Base64Codec

• HexCodec

• HTMLCodec

• JavaScriptCodec

• MD5BytesCodec

• MD5Codec

• SHA1BytesCodec

• SHA1Codec

• SHA256BytesCodec

• SHA256Codec

• URLCodec

It is simple to create your own by adding a Groovy class in the grails-app/utils folder.

Additionally, the class name must end in Codec. The class can encode, decode, or both.

Plugins | 45

http://grails.org/Roadmap

To add support for encoding, add a static encode method or closure that takes a single

argument; to support decoding, add a static decode method or closure that takes a
single argument.

To use a codec, call the associated dynamic encodeAs and decode methods. For example,

to html-escape a String, use encodeAsHTML; for example:

String hackXssAttempt = '<script>alert("hello")</script>'

assert hackXssAttempt.encodeAsHTML() ==

 '<script>alert("hello")</script>'

Use the decode method to reverse the escaping:

assert '<script>alert("hello")</script>'.decodeHTML() ==

 '<script>alert("hello")</script>'

Note that some codecs don’t support decoding; for example, the digest-based codecs

such as MD5Codec, SHA1Codec, and SHA256Codec.

As a simple example of a custom codec, consider this class. It converts camel-case strings
to strings with underscores as separators, and also supports the reverse. Put this class
in grails-app/utils/com/yourcompany/UnderscoreCodec.groovy, and you will have

encodeAsUnderscore and decodeUnderscore methods:

package com.yourcompany

class UnderscoreCodec {

 static encode(o) {

 if (!o) return o

 def isLowerCase = { c -> Character.isLowerCase(c as char) }

 def isUpperCase = { c -> Character.isUpperCase(c as char) }

 def sb = new StringBuilder(o.toString())

 (1..sb.length()-2).each { int i ->

 if (isLowerCase(sb[i-1]) &&

 isUpperCase(sb[i]) &&

 isLowerCase(sb[i+1])) {

 sb.insert i++, '_'

 }

 }

 sb.toString()

 }

 static decode(o) {

 o?.toString()?.replaceAll '_', ''

 }

}

With that in place, you can use the codec like this:

46 | Chapter 2: Grails Internals

assert 'FooAndBar'.encodeAsUnderscore() == 'Foo_And_Bar'

assert 'Foo_And_Bar'.decodeUnderscore() == 'FooAndBar'

The utils folder is misunderstood by many developers. It is oddly
named, considering that it is where codec classes go. It originally was
expected that Grails would have multiple extension types like this, but
that never happened. Some developers put utility classes here, but they
should be in src/groovy or src/java along with the rest of your nonartifact
code.

The controllers plugin

The controllers plugin configures most of the HTTP-related functionality in appli‐
cations, and it is rare for an application to not have a web interface. Spring MVC backs
the Grails controllers, but controller instances are not explicitly created as Spring MVC

controllers. Instead, this plugin registers one controller as the mainSimpleController

Spring bean (an instance of org.codehaus.groovy.grails.web.servlet.mvc.Simple

GrailsController) and it handles all requests. It delegates to the org.codehaus.groo

vy.grails.web.servlet.mvc.MixedGrailsControllerHelper helper class to find the
controller class and method or closure that handles each request and calls it to handle
the request. In addition, the plugin performs other configuration and registers several
other Spring beans:

• Configures development mode reloading watch for controller classes in the grails-
app/controllers directory

• Registers all controllers as Spring beans (by default as prototype scope) to support
dependency injection

• Configures org.springframework.web.servlet.mvc.method.annotation.Re

questMappingHandlerMapping and org.springframework.web.serv

let.mvc.method.annotation.RequestMappingHandlerAdapter instances as
Spring beans to support Spring MVC controllers written in Java or Groovy and

annotated with @Controller

• Configures an exceptionHandler Spring bean to support error code URL map‐
pings and add other exception handling logic during controller requests

• Configures a multipartResolver Spring bean (unless multipart file uploading is
disabled)

• Configures a viewNameTranslator Spring bean

• Registers the grails servlet in web.xml to handle *.dispatch requests and forward
internally to the appropriate handler

Plugins | 47

• Registers the hiddenHttpMethod filter in web.xml to support REST verbs beyond

GET and POST

• Registers the grailsWebRequest filter in web.xml to create a new GrailsWebRe

quest instance for each controller request

• Configures the AST transformations that mix in methods into controllers

The converters plugin

If you’ve ever used the convenient Grails render data as XML or render data as

JSON, you’ve used this plugin. This is implemented by providing codecs and converters
for converting objects to XML or JSON format and rendering to the servlet output
writer. In addition, the plugin adds support for parsing requests in XML or JSON format
into an XML DOM or JSON object depending on the request format.

The core plugin

The core plugin is mainly responsible for managing aspects of the Spring Framework
integration with Grails.

One interesting thing that this plugin does is to override Groovy MetaClass resolution

to ensure that ExpandoMetaClass is used instead of the default MetaClassImpl. This is
needed to support convenient addition of methods and properties at runtime using

syntax such as Number.metaClass.bark = { -> "Woof!" } to add a bark() method

to all Number instances. In addition, it does the following:

• Watches grails-app/conf/spring/resources.groovy and grails-app/conf/spring/resour‐
ces.xml for changes in development mode and reloads the beans defined there if
you make changes

• Configures a Spring bean postprocessor that supports defining Spring bean prop‐

erties in the beans property in Config.groovy

• Configures a Spring bean postprocessor that supports setting Spring bean proper‐

ties from the Grails configuration, using Spring’s ${...} syntax; because this is also

GString syntax, be sure to use single quotes to avoid Groovy attempting to resolve
the expressions before Spring can

• Configures Spring bean postprocessors that look for beans that implement the

GrailsApplicationAware, GrailsConfigurationAware, and PluginManagerA

ware interfaces and calls the appropriate setter methods to inject those resources
into the beans

• Configures the Spring bean builder to support annotated beans, for example @Ser

vice and @Component

48 | Chapter 2: Grails Internals

http://grails.org/doc/latest/guide/spring.html#propertyOverrideConfiguration

• Configures a package scanner based on package names defined in Config.groovy to
search for annotated Spring beans

• Registers a shutdown hook in development mode to shut down the Spring Appli

cationContext when the application is stopped with Ctrl-C

The dataSource plugin

The dataSource plugin manages the creation and configuration of one or more jav

ax.sql.DataSource instances based on the configuration in grails-app/conf/Data‐

Source.groovy. Typically, an application will have just one DataSource, but you can
configure as many as you like and also partition domain classes between them. The

DataSources can be backed by a connection pool (the default) or retrieve connections
for each call, and can configured as read-only or reference JNDI connection pools. The
connection password can also be encrypted as long as the encryption codec is specified.

Each DataSource is registered with a suffix of Unproxied, and the actual Spring bean

that is registered is an org.springframework.jdbc.datasource.TransactionAware

DataSourceProxy instance that wraps the real bean. This intercepts calls to the getCon

nection method to return a new (or pooled) Connection only if there isn’t an active

one bound to the current transaction or Hibernate Session. This makes it easier to
perform direct SQL queries and updates while using the active connection that Hiber‐
nate configures to make uncommitted changes visible to your queries.

In addition, a TransactionManagerPostProcessor bean postprocessor is registered to

find Spring beans that implement the TransactionManagerAware interface and inject

the PlatformTransactionManager.

This plugin is also responsible for registering the browser-based database console. This
is a feature of the H2 database, but it works with any JDBC database for which you have
a driver. It is enabled by default only in development, but you can configure which
environments to include and also the URI from which the console is served. (by de‐

fault /dbconsole).

Finally, the plugin deregisters JDBC drivers during shutdown or redeployment when
the application is deployed as a WAR to avoid memory leaks.

The domainClass plugin

Grails domain classes are configured and managed by the domainClass plugin. It con‐
figures a watch for classes in the grails-app/domain directory in development mode to
reconfigure based on updated properties and configurations.

Four Spring beans are registered for each domain class:

Plugins | 49

• A prototype-scoped bean to create new domain class instances; the name is the full
class name

• A bean for the domain class artifact that wraps the actual class; the name is the full

class name plus the suffix DomainClass

• A bean for the domain class java.lang.Class; the name is the full class name plus

the suffix PersistentClass

• A GrailsDomainClassValidator bean that implements the Spring org.spring

framework.validation.Validator interface and is the bridge between the vali‐

dation rules specified in the domain class constraints block and the Spring

validation workflow; the name is the full class name plus the suffix Validator

The domain class metaclass default constructor is overridden to return prototype in‐
stances from Spring. This is how dependency injection works in domain classes; by

adding def userService as a field in a domain class, the bean is injected just like it
would be in a controller, service, or any other artifact. Ordinarily, only beans retrieved

from the ApplicationContext or dependency-injected get this behavior, but by using

Groovy, it also works when using new.

There are a few other methods added to the metaclass:

• An ident method returns the domain class instance ID, regardless of its name.

• A static create method creates a new domain class instance (using the overridden
metaclass constructor described above).

• The dynamic addTo and removeFrom collection methods add and remove instances

in collections configured with static hasMany = [...].

• The dynamic fooId property retrieves the ID of a one-to-one or one-to-many

property without loading the whole instance; for example, if a Person class has a

Manager manager field, the managerId property would return the Manager foreign
key value, without incurring the cost of lazy-loading the whole instance just to get
its ID.

The filters plugin

The filters plugin configures Grails filters, which are a rare Grails artifact type that
doesn’t have its own folder under grails-app. Instead, they live in the grails-app/conf
folder. Grails filters intercept controller requests, but not all requests. The name of the
type is somewhat misleading, because it can cause confusion with servlet filters, which

are classes that implement the javax.servlet.Filter interface and are registered in
web.xml. If you have a need to intercept requests for requests that are not served by a
controller, e.g., static resources or web service calls, use a servlet filter instead.

50 | Chapter 2: Grails Internals

Grails filters are a convenient way to add interception logic across multiple controllers.
There are three phases: before the controller action is called, after the controller is called,
and after the view is rendered (or an exception occurs). You can stop the processing by

returning false from the “before” handler, indicating that either the controller shouldn’t
be called because of some problem, or that the response has been handled directly by
the filter.

Filters are indirect implementations of the Spring org.springframework.web.serv

let.HandlerInterceptor interface. The plugin doesn’t register one HandlerIntercep

tor for each filters class but, instead, registers one composite interceptor (a org.code

haus.groovy.grails.plugins.web.filters.CompositeInterceptor instance) that
loops through each filters class at each phase.

A filters class can contain multiple filters, each potentially defining its own URIs or
controllers and actions to which it applies, and the filters are called in the order defined
in the class file. You can have multiple filters classes and they can optionally declare a

dependsOn attribute to specify the order in which the sets of filters are run. So, for

example, FooFilters can “depend on” BarFilters, which would result in each of the

BarFilters filters being run in order, and then each of the FooFilters filters.

The groovyPages plugin

The groovyPages plugin provides support for GSPs and JSPs, including support for tag
libraries (both traditional JSP tags and Grails taglibs).

Several taglibs are provided by default as part of Grails:

• ApplicationTagLib

• CountryTagLib

• FormatTagLib

• FormTagLib

• JavascriptTagLib

• PluginTagLib

• RenderTagLib

• SitemeshTagLib

• ValidationTagLib

Additionally, the plugin finds Groovy classes with names ending in TagLib in the grails-
app/taglib directory and registers those as taglibs. It also configures a development-

mode watch for changes in taglib classes and reloads them as needed.

The plugin creates several Spring beans:

Plugins | 51

• gspTagLibraryLookup finds all tags defined in Grails taglib classes.

• jspTagLibraryResolver resolves JSP taglibs by parsing web.xml and TLD files.

• groovyPageResourceLoader loads GSPs in development mode, and also when de‐
ployed as a WAR and either reloading or an external directory is configured.

• groovyPageLocator finds GSPs and caches precompiled GSPs when deployed as a
WAR.

• groovyPagesTemplateEngine creates org.codehaus.groovy.grails.web.pa

ges.GroovyPageTemplate instances for GSPs.

• groovyPageRenderer renders GSPs outside of the context of a web request; for
example, from a service.

• groovyPagesTemplateRenderer does the work of rendering templates for the

render tag defined in RenderTagLib; written in Java for performance.

• groovyPageLayoutFinder creates Sitemesh Decorator instances from Grails GSP
layouts.

• groovyPagesUriService resolves URIs for controller actions.

• jspViewResolver creates Spring MVC View instances; these will be Grails Groovy

PageView instances for GSPs and Spring JstlView instances for JSPs.

• errorsViewStackTracePrinter renders exception stack traces in the error page,
trimmed of excess stack frames and including line numbers and source code to help
identify the real problem.

The plugin adds support for viewing the source of a GSP in development mode. If you

add showSource to the query string for a request, the generated Groovy source for the
current GSP source will be rendered instead of the actual controller response.

The i18n plugin

The i18n plugin configures internationalization support in Grails. It looks for property

files in the application’s grails-app/i18n folder and configures the Spring message

Source bean to resolve localized strings for the appropriate Locale.

The plugin also registers the Spring localeChangeInterceptor bean, which imple‐

ments the HandlerInterceptor interface to intercept controller requests. It looks for

the lang parameter and sets the Locale based on its value at the beginning of the request.

This bean depends on the localeResolver bean that the plugin registers. This is a Spring

org.springframework.web.servlet.i18n.SessionLocaleResolver, so once the lo‐
cale is set, it will be remembered until the HTTP session times out or is invalidated.

52 | Chapter 2: Grails Internals

www.allitebooks.com

http://www.allitebooks.org

The logging plugin

The logging plugin manages Log4j logging. It registers a listener in web.xml to initialize

logging based on the Log4j DSL in Config.groovy, using org.codehaus.groo

vy.grails.plugins.log4j.Log4jConfig to parse the DSL and create loggers and ap‐
penders. In development mode, the plugin reconfigures logging if Config.groovy is edi‐
ted.

If the grails.logging.jul.usebridge property is set to true in Config.groovy, the

plugin will configure a org.slf4j.bridge.SLF4JBridgeHandler to route JDK logging
to Log4j. By default, this is enabled only in the development environment, because it is
fairly slow.

Before Grails 2.0, the plugin would add a Commons Logging log property to the meta-
class of every artifact. Grails 2 uses AST transformations extensively, so now this prop‐
erty is added directly to the class bytecode instead.

It is also possible to replace Log4j with its successor, Logback. If you install the log

back plugin and configure it as described in its documentation, your injected loggers
will use Logback. In addition, you will be able to take advantage of Logback’s increased
performance and flexibility, and new features such as automatic compression of logfiles.

The mimeTypes plugin

The mimeTypes plugin registers the mimeTypes Spring bean, which is an array of

org.codehaus.groovy.grails.web.mime.MimeType instances derived from the

grails.mime.types property in Config.groovy.

These are used to infer the appropriate content type based on extension or accept

request header. Checking the accept header is only enabled if the grails.mime.use.ac

cept.header property in Config.groovy is true.

The plugin also configures the grailsMimeUtility bean that has utility methods for
MIME types.

In addition, it adds mime type helper methods to the HttpServletRequest and

HttpServletResponse metaclasses:

• MimeType[] getMimeTypes()

• Object withFormat(Closure callable)

• String getFormat()

Plugins | 53

http://logback.qos.ch/
http://grails.org/plugin/logback
http://grails.org/plugin/logback

The scaffolding plugin

The scaffolding plugin handles dynamic scaffolding. If a controller specifies a static

scaffolding property, the plugin will use an instance of org.codehaus.groo

vy.grails.scaffolding.DefaultGrailsTemplateGenerator to generate controller

CRUD actions and GSPs in-memory at runtime. If the property value is true, the gen‐

erator will look for a domain class with the same name as the controller minus Con

troller (e.g., BookController would look for a Book domain class). Otherwise, the
property value must be an existing domain class.

The services plugin

Transaction support in Grails service classes is configured by the services plugin.
Services are transactional by default, so, without any configuration, the plugin will reg‐

ister the associated Spring bean using a Spring TransactionProxyFactoryBean to wrap
the service instance in a transactional proxy. The proxy intercepts transactional methods
and handles the logic for starting a transaction if one isn’t running and is needed, joining
an existing transaction, starting a new transaction, or throwing an exception if the
method doesn’t support running inside a transaction.

You can customize the proxy settings by using Spring’s org.springframework.trans

action.annotation.Transactional annotation. You can annotate at the class level
and/or at the method level. The annotation supports specifying the propagation (the

default being Propagation.REQUIRED; i.e., a transaction will be started if one isn’t active,
or the active transaction will be joined otherwise), the isolation level (which defaults to

Isolation.DEFAULT to use the database default setting, often “read committed”), a
timeout value (there is no default), and whether the transaction is read-only (the default

is false). By default, runtime exceptions and errors trigger automatic rollbacks, but
checked exceptions do not. You can specify which runtime exceptions and errors should
not trigger rollbacks and which checked exceptions that should.

To disable transaction support for a service, you can use the transactional property:

static transactional = false

By default, services are singleton-scoped. But you can change the scope of the bean by

setting the scope property to any value that Spring supports. One example would be to

use static scope = 'session' and create something similar to a stateful session EJB.
A new bean instance will be created on-demand the first time the bean is requested from

the ApplicationContext and stored in the session. Because it is specific to a particular
session, it can have state variables (which should be avoided with singletons because of
thread-safety issues). When the session ends, the bean will be discarded and, if it sup‐
ports a destroy method, it will be called to give you a chance to do whatever cleanup is
needed.

54 | Chapter 2: Grails Internals

You can also configure whether the service is lazily initialized. By default, this is set to

true, but you can disable this and make initialization eager with the lazyInit property:

static lazyInit = false

If the service is transactional, its proxy uses a Spring PlatformTransactionManager. If
you use multiple data sources, there will be a transaction manager configured for each
one. The service can only use one transaction manager, so you can configure which one

to use with the datasource property. This has no effect on which data source is used by
individual domain classes, because this is configured for each domain class. It simply
specifies which transaction manager will be active for the service method calls.

One implication of this is that, if you make changes to domain classes in multiple classes,
only the changes that are made in the data source used by the service’s transaction
manager will be made transactionally. The other changes will not be transactional at all.
You can configure an XA data source that will use two-phase commit across all data

sources; the most convenient way to do this is to use the atomikos plugin.

The servlets plugin

The servlets plugin adds helper methods to the ServletContext, HttpSession,

HttpServletRequest, and HttpServletResponse metaclasses.

ServletContext, HttpSession, and HttpServletRequest each get getProperty, set

Property, getAt, and putAt metaclass methods that allow getting and setting attributes
using property syntax and subscript syntax. For example, you can access session at‐

tributes with def foo = session.foo or def foo = session['foo'] instead of using

the more verbose def foo = session.getAttribute('foo'). Setting attributes is

similar: you can use request.foo = 'bar' or request['foo'] = 'bar' instead of

request.setAttribute('foo', 'bar').

The plugin adds an overload for the << operator to the HttpServletResponse metaclass

to write the value to the response writer. This lets you use syntax like response << 'some

content' instead of response.getWriter().write('some content').

A few additional methods are added to the HttpServletRequest metaclass:

• boolean isRedirected()

• String getForwardURI()

• boolean isXhr()

• boolean isGet()

• boolean isPost()

• def find(Closure c)

Plugins | 55

http://grails.org/plugin/atomikos

• def findAll(Closure c)

• def each(Closure c)

The accessor methods are more commonly used with property syntax—for example,

if (request.post) { ... } or if (request.xhr) { ... }.

The find method loops through the request attributes and returns the first one the

closure returns true, and the findAll method finds all matching attributes. The each
method loops through all attributes and evaluates the closure for each one.

The isXhr method is used to check if the request was made using Ajax. Most JavaScript

libraries add an X-Requested-With header with the value XMLHttpRequest, so that is
used to make the determination. In addition, as of version 2.1.2 and 2.2, you can define

a closure in Config.groovy under the grails.web.xhr.identifier key that can be used
to further refine the logic.

The urlMappings plugin

URL mapping support is configured by the urlMappings plugin. It looks for Groovy

classes in the grails-app/conf folder with names ending in UrlMappings.

The plugin registers the grailsUrlMappingsHolder Spring bean that contains UrlMap

ping instances that are constructed by parsing the mappings closure in the UrlMap

pings classes. It also creates the grailsLinkGenerator bean that builds links from con‐

troller and action names, URIs, or full URLs. And it creates the grailsUrlConverter
bean to convert controller and action names to the appropriate syntax for URLs. By

default, this uses a camel-case syntax (using CamelCaseUrlConverter) but you can

configure hyphenation syntax using HyphenatedUrlConverter with the

grails.web.url.converter attribute in Config.groovy:

grails.web.url.converter = 'hyphenated'

The plugin also registers elements in web.xml. All error code URL mappings are regis‐

tered as <error-page> elements that are configured to be routed through the registered

ErrorHandlingServlet for processing. Depending on the URL mappings, the error
page can be rendered directly as a GSP or JSP, or through a controller action. It also

registers UrlMappingsFilter as a filter to intercept requests and determine which con‐
troller and action to use to handle the request.

The validation plugin

The validation plugin adds validation-related metaclass methods to classes specified

in the grails.validateable.classes property in Config.groovy:

• boolean hasErrors()

56 | Chapter 2: Grails Internals

• Errors getErrors()

• setErrors(Errors)

• void clearErrors()

• boolean validate()

The plugin also uses a ConstrainedPropertyBuilder to parse the classes’ con

straints blocks.

Conventions
Grails is a convention-over-configuration framework, so let’s take a look at the standard
conventions used in the controller, service, and domain tiers.

Controller and View Conventions
The primary controller convention is that, by adding a Groovy class with a name ending

in Controller under the grails-app/controllers folder, it automatically becomes a con‐
troller class in your application. This means that all public methods (and public closure
fields, although methods are preferred) are controller actions that are called to handle

web requests. And you don’t even have to write any code; adding static scaffold =

true or static scaffold = SomeDomainClassName to an empty controller class trig‐
gers the creation of dynamically scaffolded controller and GSPs at runtime.

Over 30 methods are mixed into controller classes with AST transformations. The ma‐

jority are added from the org.codehaus.groovy.grails.plugins.web.api.Control

lersApi class:

• Object bindData(Object target, Object args) (plus five variants)

• Object chain(Map args)

• String forward(Map params)

• String getActionName()

• String getActionUri()

• ApplicationContext getApplicationContext()

• Map getChainModel()

• String getControllerName()

• String getControllerUri()

• Errors getErrors()

• FlashScope getFlash()

Conventions | 57

• GrailsApplication getGrailsApplication()

• GrailsApplicationAttributes getGrailsAttributes()

• ModelAndView getModelAndView()

• GrailsParameterMap getParams()

• HttpServletRequest getRequest()

• HttpServletResponse getResponse()

• ServletContext getServletContext()

• HttpSession getSession()

• String getTemplateUri(String name)

• String getViewUri(String name)

• GrailsWebRequest getWebRequest()

• boolean hasErrors()

• void header(String headerName, Object headerValue)

• Object redirect(Map args)

• Object render(Object o)

• Object render(String txt)

• Object render(Map args)

• Object render(Closure c)

• Object render(Map args, Closure c)

• Object withForm(Closure callable)

Additionally, the void render(Converter converter) and void jsonHeader(Object

value) methods are added from the org.codehaus.groovy.grails.plugins.convert

ers.api.ConvertersControllersApi class, and the Object withFormat(Closure

callable) method is added from the org.codehaus.groovy.grails.plu

gins.web.api.ControllersMimeTypesApi class.

This is how properties like request, response, and params are available inside your
controllers; they’re not fields but, instead, are getter methods that Groovy allows you to
access as if they were.

Another convention is that, if a controller action uses a GSP of the same name as the
action name, you can omit it. This also depends on having the GSP in the correct folder.
For example, given a controller such as:

class UserController {

58 | Chapter 2: Grails Internals

 ...

 def list() {

 ...

 [count: count, users: users]

 }

}

the return value of a model Map (or none if no data is required by the GSP) is all that’s
required. Grails will look for grails-app/views/user/list.gsp and use it to generate the
response. Because the folder name matches the logical controller name (i.e., class with

Controller removed and with the first letter lowercased) and the GSP name matches
the action name, it will be used. This is the equivalent of the more verbose:

def list() {

 ...

 render(view: 'list', model: [count: count, users: users])

}

Data binding conventions

You can manually get request parameter values from the params map, or call one of the

overloaded bindData methods.

Layout conventions

Ordinarily, the GSP will use a layout, and a common way to specify which one to use is

with a meta tag; for example:

<meta name='layout' content='main'>

This will look for grails-app/views/layouts/main.gsp and use that as the Sitemesh tem‐
plate. But, there are other options to determine which layout to use. One is with the

static layout property in the controller class:

static layout = 'main'

In addition, you can specify the default layout globally in Config.groovy:

grails.sitemesh.default.layout = 'main'

These all require setting a value somewhere, but there are a few conventions that you
can use that don’t involve specifying any values. If no other rule determines a layout to
use for a GSP, Grails will use grails-app/views/layouts/application.gsp, if it exists. In the
previous example, if there were a GSP template grails-app/views/layouts/user.gsp, it

would be used as the template for all GSPs used by the UserController actions unless
overridden. And, in this example, you can also use the more fine-grained approach of
creating a template for individual GSPs by creating grails-app/views/layouts/user/
list.gsp.

Conventions | 59

URI conventions

If you have used other frameworks, you’re probably used to configuring which URIs
are handled by your controllers. You can do this in Grails, but, by default, a quasi-restful
URI scheme is configured for you in UrlMappings.groovy:

class UrlMappings {

 static mappings = {

 "/$controller/$action?/$id?"{

 constraints {

 // apply constraints here

 }

 }

 ...

 }

}

This is a sensible default, and you can remove or reconfigure this default to use your
own patterns and/or add additional mappings for specific cases. But most of the time,
this default behavior plus some custom mappings is a good idea.

All of these conventions combined mean that, if you create a new controller class in the
correct place with the correct name, put the controller’s GSPs in the correct place with
the correct names, and reference the applicable layouts (either by convention or using

a meta tag), then serving your content “just works.” After a few cycles of being aware of
what you’re doing, it becomes automatic (even more so with helper scripts such as

create-controller and generate-all), and you can spend more time solving
real application problems and less time messing with framework settings and
configurations.

Service Conventions
Like controllers and most other artifact types, there is a naming convention for services.
A Groovy class in your application becomes a Grails service if it is in the grails-app/

services folder and the class name ends in Service. In older versions of Grails, the

create-service script generated a starter class with the property static transac

tional = true, but this was removed because it’s the default setting and, as such, is

redundant. You should only specify the transactional attribute if all of the methods
are nontransactional; for example, if the class has utility methods that don’t write to the
database.

In addition, services are automatically registered as Spring beans. By default, they’re

singletons, but it’s a simple matter to change the bean scope by adding a scope property

—for example, static scope = 'session'. The bean name is the class name with the
first character lowercased.

60 | Chapter 2: Grails Internals

The service becomes transactional if you have no transactional property (or if it’s set

to true) or if there is at least one Spring @Transactional annotation. Services get reg‐
istered as Spring beans whether they’re transactional or not, but if they are transactional,
the actual bean instance will be a proxy around the real class instance. This way, all
public method access can be intercepted, and a transaction can be started or joined, or
an exception can be thrown if one isn’t allowed, all based on metadata inferred from the

Grails defaults or the @Transactional annotation values. Other than the optional ad‐
dition of annotations, this is entirely automatic.

Domain Class Conventions
Domain classes are a rare artifact type where there is no naming convention—the class
names can be any valid name. Domain classes are Groovy classes in the grails-app/

domain folder. Fields without a scope modifier (public, private, etc.) are automatically
persistent. The class name maps to the backing database table name and field names
map to column names, with a configurable naming convention that, by default, converts
camel-case names to table and column names using underscores.

Like controllers, many methods are added to domain classes by AST transformations
during compilation. There are over 20 instance methods, including:

• Object attach()

• void clearErrors()

• void delete()

• void delete(Map)

• void discard()

• Errors getErrors()

• Map getProperties()

• Boolean hasErrors()

• Serializable ident()

• boolean instanceOf(Class)

• boolean isAttached()

• Object lock()

• Object merge()

• Object merge(Map)

• Object mutex(Closure)

• Object refresh()

Conventions | 61

• Object save()

• Object save(Map)

• Object save(boolean)

• BindingResult setProperties(Object)

• String toString()

• boolean validate()

• boolean validate(boolean)

• boolean validate(List)

• boolean validate(Map)

and over 70 static methods, including:

• static Integer count()

• static Criteria createCriteria()

• static void deleteAll(Object[])

• static void deleteAll(Iterable)

• static List executeQuery(String)

• static List executeQuery(String, Collection)

• static List executeQuery(String, Map)

• static List executeQuery(String, Collection, Map)

• static List executeQuery(String, Map, Map)

• static Integer executeUpdate(String)

• static Integer executeUpdate(String, Map)

• static Integer executeUpdate(String, Collection)

• static Integer executeUpdate(String, Collection, Map)

• static Integer executeUpdate(String, Map, Map)

• static boolean exists(Serializable)

• static Object find(Object)

• static Object find(String)

• static Object find(Closure)

• static Object find(Object, Map)

• static Object find(String, Map)

62 | Chapter 2: Grails Internals

• static Object find(String, Collection)

• static Object find(String, Collection, Map)

• static Object find(String, Map, Map)

• static List findAll()

• static List findAll(Object)

• static List findAll(String)

• static List findAll(Closure)

• static List findAll(Object, Map)

• static List findAll(String, Map)

• static List findAll(String, Collection)

• static List findAll(Map, Closure)

• static List findAll(String, Map, Map)

• static List findAll(String, Collection, Map)

• static List findAllWhere(Map)

• static List findAllWhere(Map, Map)

• static Object findOrCreateWhere(Map)

• static Object findOrSaveWhere(Map)

• static Object findWhere(Map)

• static Object findWhere(Map, Map)

• static Object first()

• static Object first(String)

• static Object first(Map)

• static Object get(Serializable)

• static List getAll()

• static Integer getCount()

• static PersistentEntity getGormPersistentEntity()

• static Map getValidationErrorsMap()

• static Map getValidationSkipMap()

• static Object last()

• static Object last(String)

• static Object last(Map)

Conventions | 63

• static List list()

• static List list(Map)

• static Object load(Serializable)

• static Object lock(Serializable)

• static Object merge(Object)

• static Object proxy(Serializable)

• static Object read(Serializable)

• static List saveAll(Iterable)

• static List saveAll(Object[])

• static DetachedCriteria where(Closure)

• static DetachedCriteria whereAny(Closure)

• static DetachedCriteria whereLazy(Closure)

• static Object withCriteria(Closure)

• static Object withCriteria(Map, Closure)

• static Object withDatastoreSession(Closure)

• static Object withNewSession(Closure)

• static Object withNewTransaction(Closure)

• static Object withSession(Closure)

• static Object withTransaction(Closure)

• static Object withTransaction(TransactionDefinition, Closure)

These methods are independent of the properties of the class. But, there are also dynamic
methods added to the metaclass that are usually based on properties. Any persistent

property can be included in a method starting with findAllBy or findAllWhere, for

example, findAllByFirstNameAndLastName. Persistent collections that are mapped in

the static hasMany block generate addTo and removeFrom methods; for example, static

hasMany = [children: Person] adds the addToChildren and removeFromChildren
methods.

Constraints can easily be added to domain classes by using the constraints DSL. Some
of these are only run in application code, but many affect the table DDL without re‐

quiring any SQL coding on your part. Some examples include the nullable and unique
constraints. These constraints come into play during validation, which is not separate

from the domain classes but is instead triggered by the validate method, or by the save
methods, which trigger validation and only attempt to save the instance if validation
succeeded.

64 | Chapter 2: Grails Internals

Further table DDL adjustments can be made with the mapping DSL, again without
requiring any SQL. This includes customization of the table and column names, caching,
field and collection laziness, and optimistic locking.

So, although a simple domain class such as:

class Person {

 String firstName

 String lastName

}

may seem like an anemic POGO, it’s far from that. There is a tremendous amount of
behavior added to the class by Grails.

More Information
This has been a rather detailed look at some of the internals of Grails. For a more
comprehensive overview and introduction to Grails, see the Grails reference documen‐
tation—in particular, the Getting Started section. There are also more general books
available. One that is somewhat dated but free is Getting Started with Grails, Second
Edition.

The most current book that covers Grails 2 is The Definitive Guide to Grails 2, and there
is also Grails in Action, Second Edition, which covers Grails 2 but is only (as of this
writing) available in an early access edition.

More Information | 65

http://grails.org/doc/latest/
http://grails.org/doc/latest/
http://grails.org/doc/latest/guide/gettingStarted.html
http://www.infoq.com/minibooks/grails-getting-started
http://www.infoq.com/minibooks/grails-getting-started
http://www.amazon.com/dp/1430243775/
http://www.manning.com/gsmith2/

CHAPTER 3

Persistence

The persistence strategy in Grails is called Grails object relational mapping, or GORM.
In earlier versions of Grails, this was a wrapper around Hibernate’s ORM implementa‐
tion, but has been abstracted to allow access to other data sources, including NoSQL
datastores like MongoDB, Redis, and Neo4j. GORM for Hibernate has been retrofitted
to follow the new GORM API, which provides a consistent developer experience re‐
gardless of the underlying storage implementation. See the grails-data-mapping project
on GitHub for more detailed information.

But it is not merely a least-common-denominator approach where only the features
that are common to all datastores are supported. Instead, there is a core set of func‐
tionality that all implementations must provide (mapping from domain classes to da‐
tastore storage, supporting dynamic finders and Criteria queries, and so on) but each
provider also supports access to the underlying implementation to access noncore fea‐
tures directly.

This means that, for data that fits the relational model well, you can use Hibernate to
manage persistence in a relational database; but, for less structured data or to support
more dynamic schemas, you can use a NoSQL datastore. The Grails NoSQL plug-ins
coexist well with Hibernate, so you are free to store all of your data in a relational
database, all in one or more NoSQL datastores, or use a mix.

See the extensive GORM documentation in the Grails reference for more information.

Data Mapping
The convention for mapping a Grails class to a datastore representation is to create a
class under the grails-app/domain directory. These can be as simple as a class with one

or more public fields; for example, this Person class:

package com.acme

67

https://github.com/SpringSource/grails-data-mapping
https://github.com/SpringSource/grails-data-mapping
http://grails.org/doc/latest/guide/GORM.html

class Person {

 String firstName

 String lastName

}

You can create domain classes by hand with your IDE or text editor, because they are
just Groovy classes in the grails-app/domain directory (in the subdirectory correspond‐
ing to their package). However, the preferred way to create them is with the create-
domain-class script, because it uses a standard template and automatically creates a
corresponding test class:

$ grails create-domain-class person

You can see from the output that it creates a test class as well as the domain class (take
this as a strong hint to remember to write tests!):

| Created file grails-app/domain/appname/Person.groovy

| Created file test/unit/appname/PersonTests.groovy

This example will create the class in the default artifact package because one is

not specified but instead determined by the grails.project.groupId property in
Config.groovy. You can specify the package to override this behavior:

$ grails create-domain-class com.mycompany.Book

The domain class is created from a template that you can customize. If you find yourself
copying and pasting previous domain classes to save yourself the typing for commonly
added features, or if you manually make these changes repeatedly, you can install the
templates into your project and edit them:

$ grails install-templates

The template for domain classes is in src/templates/artifacts/DomainClass.groovy:

@artifact.package@class @artifact.name@ {

 static constraints = {

 }

}

If you have common code that you repeatedly add to new domain classes, you should
update the template instead and save yourself the time. For example, you could make

all new domain classes implement Serializable and add an empty mapping block:

@artifact.package@class @artifact.name@ implements Serializable {

 static constraints = {

 }

 static mapping = {

 }

}

68 | Chapter 3: Persistence

http://bit.ly/15g7N18
http://bit.ly/15g7N18

Nonpersistent Domain Classes
You may ask how to have nonpersistent domain classes in your application, and the
short answer is that you can’t. Of course, everything is possible, but Grails assumes that,
if you are following the convention of putting a Groovy class in the grails-app/domain
folder, you want the class to be persistent; you don’t have to configure this, so there is
no direct way to make it nonpersistent. But it is possible to have classes that model
domain objects that do not map to a database table.

One way is to simply not invoke any GORM methods on domain classes that do not

use the database. If you use Hibernate and have dbCreate set to create-drop or up

date, you will end up with database tables for these, but you will be switching to using

database migrations [e.g., by using the database-migration plugin] soon enough and,
at that point, you can just choose to not create the tables.

The other way is to put them in src/groovy (or src/java). This has the benefit of being
ignored by GORM, but it does partition your domain model into two different sections
of your code.

The real issue here is a semantic one; the domain artifact type in Grails is for your
persistent domain classes, and Grails does not have a well-defined concept of a general
domain model, leaving that up to you.

Data Validation
GORM supports data validation with the constraints DSL. This is declared as a static
closure in your domain class containing the various rules that define what is and is not

valid data for each domain class. There are several built-in constraints (blank, nulla

ble, matches, creditCard, and so on) and, for more complex validation checks, there
is also support for custom validations. By default, all persistent properties are considered

to be not-null, so there is an implicit nullable: false constraint.

Table 3-1 shows the built-in constraints; see the Grails reference documentation on
internationalization for information on how to use the i18n codes.

Table 3-1. GORM constraints

Name Description i18n code Notes

blank Whether an empty
String is allowed

className.propertyName.blank

creditCard Checks that a String
is a valid credit card
number

className.propertyName.creditCard.invalid Uses the
Apache
Commons
Credit

CardVali

dator

Data Validation | 69

http://grails.org/plugin/database-migration
http://grails.org/doc/latest/guide/i18n.html
http://grails.org/doc/latest/ref/Constraints/blank.html
http://grails.org/doc/latest/ref/Constraints/creditCard.html

Name Description i18n code Notes

email Checks that a String
is a valid email address

className.propertyName.email.invalid Uses the
Apache
Commons
EmailVa

lidator

inList Checks that the value is
in the specified list

className.propertyName.not.inList Make sure
the type of
the list
values
matches the
property
type;
consider
using an
Enum if
possible

matches Checks that a String
matches a regular
expression

className.propertyName.matches.invalid

max Checks that a
Comparable

property does not
exceed the specified
value

className.propertyName.max.exceeded

maxSize Checks the maximum
size of a String,
Collection, or
array

className.propertyName.maxSize.exceeded

min Checks that a
Comparable

property does not
exceed the specified
value

className.propertyName.max.exceeded

minSize Checks the minimum
size of a String,
Collection, or
array

className.propertyName.maxSize.exceeded

notEqual Checks that the value is
not equal to the
specified value

className.propertyName.notEqual

nullable Checks that the value is
not null

className.propertyName.nullable Defaults to
false

70 | Chapter 3: Persistence

http://grails.org/doc/latest/ref/Constraints/email.html
http://grails.org/doc/latest/ref/Constraints/inList.html
http://grails.org/doc/latest/ref/Constraints/matches.html
http://grails.org/doc/latest/ref/Constraints/max.html
http://grails.org/doc/latest/ref/Constraints/maxSize.html
http://grails.org/doc/latest/ref/Constraints/min.html
http://grails.org/doc/latest/ref/Constraints/minSize.html
http://grails.org/doc/latest/ref/Constraints/notEqual.html
http://grails.org/doc/latest/ref/Constraints/nullable.html

Name Description i18n code Notes

range Checks that a
Comparable

property is within the
specified Groovy range

className.propertyName.range.toosmall or

className.propertyName.range.toobig

size Restricts the size of a
String,
Collection, or
array to the specified
Groovy range

className.propertyName.size.toosmall or

className.propertyName.size.toobig

unique Checks that the value is
unique

className.propertyName.unique Can check
one or
multiple
fields;
executes a
select

query during
validation

url Checks that the value is
a valid URL

className.propertyName.url.invalid Uses the
Apache
Commons
UrlVali

dator

In addition, there are two checks listed as constraints that are used to affect UI rendering

but do not register validation errors: attributes and widget.

The syntax for specifying constraints is fairly straightforward; add the static con

straints block, and inside it, list the various data validation rules:

class Thing {

 String cardNumber

 String color

 String email

 static constraints = {

 cardNumber creditCard: true, blank: false

 color inList: ['Red', 'Green', 'Blue']

 email unique: true, size: 5..100

 }

}

Let’s take a closer look at the DSL to see how this works. To a new user, this syntax can
seem a bit strange, but there is not really that much magic here. Each line is simply a

method call. But, looking at the domain class, there are obviously no cardNumber,

color, or email methods, just properties. It is more clear if we add in the optional
parentheses:

Data Validation | 71

http://grails.org/doc/latest/ref/Constraints/range.html
http://grails.org/doc/latest/ref/Constraints/size.html
http://grails.org/doc/latest/ref/Constraints/unique.html
http://grails.org/doc/latest/ref/Constraints/url.html
http://grails.org/doc/latest/ref/Constraints/attributes.html
http://grails.org/doc/latest/ref/Constraints/widget.html

static constraints = {

 cardNumber(creditCard: true, blank: false)

 color(inList: ['Red', 'Green', 'Blue'])

 email(unique: true, size: 5..100)

}

The first line is a call to a (nonexistent) cardNumber method, and the parameters are a

single Map ([creditCard: true, blank: false]). This works because the Grails code

that evaluates the constraints block registers an instance of org.codehaus.groo

vy.grails.validation.ConstrainedPropertyBuilder as the delegate of the closure,
and then invokes the closure. It runs because it is valid Groovy code, and missing meth‐
ods and properties get dispatched to the builder, which has the logic to convert the

method calls and the Map values to constraint rules for the associated property (as long
as there is a property corresponding to each method invocation). Each key/value pair

in the parameter Map defines a constraint and its data. The constraints are implemented

as classes implementing the Grails org.codehaus.groovy.grails.validation.Con

straint interface; for example, NullableConstraint, MaxConstraint, and InListCon

straint.

Custom Validation
Grails comes with many of the standard checks that you will need, but there will be cases
where these checks are not sufficient. If you need to check a value in relation to another
value, or do a more complicated check, you can create a custom validator. These are

defined as closures with the validator name:

class User {

 String username

 String password

 static constraints = {

 username blank: false, unique: true

 password blank: false, size: 8..100, validator: { pwd, user ->

 if (user.username == pwd) {

 return 'user.password.matchesUsername'

 }

 }

 }

}

A custom validator can have from zero to three parameters. If it declares one, its value
is the field value being validated (declaring none is the same, except that there is one

parameter with default closure name it):

static constraints = {

 ...

 fieldName validator: { fieldValue ->

 // validate the field's value

72 | Chapter 3: Persistence

 }

}

In all of these examples, the parameter names are just examples, and
you can name them however you like; only the number of parameters
is significant to GORM.

If a custom validator declares two parameters, then the first is the value and the second
is the domain class instance being validated. This variant is useful if you need to access
other persistent values in the instance, and also to access other class data such as
dependency-injected fields. For example, it is a common practice to delegate business
logic to services. By adding a dependency injection for a service, we can access it from
the current instance:

class User {

 def userService

 String username

 String password

 static constraints = {

 ...

 password blank: false, size: 8..100, validator: { pwd, user ->

 return user.userService.validatePassword(pwd, user)

 }

 }

}

If the validator has three parameters, then the first is the value, the second is the instance,

and the third is the Spring Errors instance. Use this approach when you need to directly

call rejectValue or other Errors methods:

static constraints = {

 ...

 fieldName validator: { fieldValue, instance, errors ->

 ...

 }

}

Grails ignores any return value when using the three-parameter variant, because it is

assumed that your validator works directly with the Errors instance.

Data Validation | 73

You can reuse custom validators by making them static properties of a utility class
and referring to them from your domain classes:

class Validators {

 static passwordCheck = { pwd, user -> ... }

 static otherValidator = { value, obj, errors -> ... }

}

static constraints = {

 ...

 password blank: false, size: 8..100, validator: Validators.passwordCheck

}

If you need to access the database in a custom validator, be sure to wrap the calls in a

withNewSession block. If you do not, you run the risk (only in Hibernate currently) of
the query triggering a flush and causing unexpected problems.

Extreme Custom Validation
To really take matters into your own hands, you can completely bypass the standard
validation approach and define your own validator class, or reuse an existing one (e.g.,

from a traditional Spring application). Each domain class artifact has an org.code

haus.groovy.grails.validation.GrailsDomainClassValidator. This is registered
as a Spring bean with a bean name that is the full class name with package and the suffix

Validator, so the com.myapp.User domain class would have a corresponding

com.myapp.UserValidator validator bean. Therefore, to define your own, register it in
grails-app/conf/spring/resources.groovy with the correct name and it will replace the one
that Grails registers by default:

import com.myapp.MyUserValidator

beans = {

 'com.myapp.UserValidator'(MyUserValidator)

}

Put this class in src/groovy or src/java and implement the Spring org.springframe

work.validation.Validator interface. Grails validators support cascading to validate

associated many-to-one fields; to participate in this, implement org.codehaus.groo

vy.grails.validation.CascadingValidator instead. You will probably find that it is

most convenient to subclass org.codehaus.groovy.grails.validation.GrailsDo

mainClassValidator and override one or more of validate(Object obj, Errors

errors), validate(Object obj, Errors errors, boolean cascade), and postVa

lidate(Object obj, Errors errors).

If you just implement one of the validator interfaces and do not subclass GrailsDomain

ClassValidator, you will also need to wire up the validator to the domain class in
BootStrap.groovy, because this will not be done automatically:

74 | Chapter 3: Persistence

class BootStrap {

 def grailsApplication

 def init = { servletContext ->

 grailsApplication.getDomainClass('com.myapp.User').validator =

 grailsApplication.mainContext.getBean('com.myapp.UserValidator')

 }

}

Validation Plugins
There are also plugins available that offer custom validation. The extra-validators
plugin has a validator for password confirmation, and one that checks postal codes for
the UK, the US, and Canada.

The constraints plugin does a great job of formalizing the process for creating custom
constraints. Each validator is defined as a closure in its own class and, by convention,

the name of the class is used as the constraint type in the constraints block. For ex‐

ample, if you have custom logic to validate a zip code, you can create a ZipCodeCon

straint class in grails-app/utils and the plugin will make it available as zipCode:

class Address {

 String line1

 String line2

 String state

 String zip

 static constraints = {

 ...

 zip zipCode: true

 }

}

See the plugin documentation for more examples of how to use the plugin.

Friendly Error Messages
When debugging, it is common to render the validation errors, but you have probably

found that the default toString representation of the Errors object is not very useful.

Here is a convenient way to add a getErrorStrings method to the MetaClass of all
domain classes in BootStrap.groovy:

class BootStrap {

 def grailsApplication

 def messageSource

 def init = { servletContext ->

Data Validation | 75

http://grails.org/plugin/extra-validators
http://grails.org/plugin/extra-validators
http://grails.org/plugin/constraints

 for (dc in grailsApplication.domainClasses) {

 dc.metaClass.getErrorStrings = { Locale locale = Locale.getDefault() ->

 def stringsByField = [:].withDefault { [] }

 for (fieldErrors in delegate.errors) {

 for (error in fieldErrors.allErrors) {

 String message = messageSource.getMessage(error, locale)

 stringsByField[error.field] << message

 }

 }

 stringsByField

 }

 }

 }

}

It uses the messageSource bean to resolve the validation message from the appropriate

messages.properties file for the specified Locale and returns a Map where the keys are

field names and the values are a List of resolved validation messages. You can print all
of the errors:

def person = new Person(...)

if (!person.save()) {

 log.debug "$person errors: $person.errorStrings"

}

or grab just the errors for a particular field:

def person = new Person(...)

if (!person.save()) {

 log.debug "$person username errors: $person.errorStrings.username"

}

Blanks Versus Nulls
In many cases, a blank string and null are equivalent—there is no value set. But HTTP
submissions from web browser POST requests send blank strings for inputs without a
value. This will not be the case with non-HTTP data, such as from other external clients
like web services or during testing, so converting blanks to nulls for the HTTP tier will
help simplify validation. While we’re at it, we can also trim extra whitespace from sub‐
mitted values.

To do this, create a filter in whatever package makes sense for your application, or add
this code to an existing filters class:

grails create-filters com.mycompany.myapplication.SiteFilters

The name of the filter is not important—it is just there so each one is distinct. In this
case, we want to filter all requests but ignore GET requests, because we are only

concerned with form submissions, so we check for GET or POST with the isPost()

metamethod added to HttpServletRequest:

76 | Chapter 3: Persistence

package com.mycompany.myapplication

class SiteFilters {

 def filters = {

 blankToNullAndTrim(controller: '*', action: '*') {

 before = {

 if (request.post) {

 convertBlanksToNullsAndTrim(params)

 }

 true

 }

 }

 }

 private static void convertBlanksToNullsAndTrim(Map map) {

 def keys = [] + map.keySet() // copy to avoid

 //ConcurrentModificationException

 for (name in keys) {

 def value = map[name]

 if (value instanceof String) {

 value = value.trim()

 if (value.length() == 0) {

 map[name] = null // don't remove - explicity set to null

 }

 else {

 map[name] = value // update if trimmed

 }

 }

 else if (value instanceof Map) {

 // recurse with empty nested param, e.g., "location":["id":""]

 convertBlanksToNullsAndTrim value

 }

 }

 }

}

If you use this approach, you can remove all of your blank:false constraints, because

you will never have a blank string, only a null or a String with a nonzero length.

Transients
All typed public fields in a domain class are considered persistent. Any untyped fields

(either typed as Object or declared with def) are ignored because GORM needs to know
how to represent the values in the datastore. To indicate that a typed field should not

be persisted, you can add it to the transients list:

class Video {

 String url

 Boolean viewed

Transients | 77

 static transients = ['viewed']

}

Here, url is persistent, but viewed is not—it might just be used to set a temporary value
during the request.

Typed getter and setter methods can be considered to represent persistent properties.
A getter without a corresponding setter or a setter without a corresponding getter are
fine; these utility methods will be ignored by GORM. But, if you create a matched pair
of a getter and setter, they create a JavaBean property and are considered to be persistent.
This is because Groovy fields without a scope modifier are converted by the Groovy
compiler to a private field and a public getter/setter pair. GORM has no way of knowing
that your getter/setter pair was created by you and not by the compiler. So, if you need

these, just add their corresponding property name to the transients list:

class Person {

 String name

 private int shares

 int getShareCount() { shares }

 void setShareCount(int sc) { shares = sc }

 static transients = ['shareCount']

}

Mapping Collections
GORM uses mapped collections as its standard approach to mapping many-to-one and

many-to-many relationships. For example, a Purchase has many OrderItems, so this
would be modeled as:

class Purchase {

 Date purchaseDate

 static hasMany = [orderItems: OrderItem]

 // other properties

}

and:

class OrderItem {

 String itemId

 Integer quantity

 static belongsTo = [purchase: Purchase]

 // other properties

}

and will generate database tables (if you are using Hibernate, or the equivalent location
in a NoSQL datastore) as described in the ER diagram in Figure 3-1.

78 | Chapter 3: Persistence

Figure 3-1. Purchase and OrderItem ER diagram

As modeled, this is a bidirectional relationship, and the belongsTo property ensures

that Purchase deletes cascade to the OrderItem instances. To associate an OrderItem

with a Purchase, call the method addToOrderItems, which is dynamically added to the
metaclass by GORM:

def purchase = ...

purchase.addToOrderItems(new OrderItem(...))

purchase.save()

You could also use the simpler form:

class OrderItem {

 String itemId

 Integer quantity

 static belongsTo = Purchase

 // other properties

}

which would use a join table instead of a foreign key from the order_item table to the

purchase table.

The underlying implementation of the persistent collections are dirty-aware Collec

tion classes. So, when you add one new instance to a collection, GORM is aware of that
change, and when the class is saved, the child object will be too.

Mapping a many-to-many relationship is similar. A common example is the User and

Role relationship when modeling security:

class User {

 String username

 String password

 static hasMany = [roles: Role]

}

class Role {

 String name

Mapping Collections | 79

 static hasMany = [users: User]

 static belongsTo = User

}

In this case, both classes end up with a mapped collection (the roles set in User and

the users set in Role), and relating a User and a Role simply involves using the dynamic

addTo method; in this case, user.addToRoles(role), because the User class is the
“owning” side.

Querying
There are many ways to retrieve stored data using GORM, and for the most part, the

same syntax is supported whether you use Hibernate or a NoSQL plugin. The get
method retrieves a single instance by its ID and either returns the domain class instance

for the specified table row or null if there isn’t one. The read method is similar, but it
also configures the instance to be partially read-only (currently only in Hibernate). It is
only partial because you can modify the instance and push the changes to the database,
but Hibernate will not automatically discover that the instance is modified using its

dirty-checking process during a flush. load does not query the database, but instead
returns a proxy for the requested instance. There is no data access until you access a
class property, which triggers a lazy load of the data. This will throw an exception if

there is not an associated row. The lock method is similar to get, but it also adds a
pessimistic lock for the row. This is only valid in the context of a transaction, so it only
makes sense in Hibernate or other datastores that support transactions and locking.

There are also methods that return multiple instances. The list method returns all

instances if it is called with no arguments, but it supports a Map argument that can limit

the number of instances to return and the offset, which is useful for pagination. find

Where takes a Map and finds the first instance that matches the map values, and the

findAllWhere method returns all matching instances.

Dynamic finders are a popular way to query. These are static methods that start with

findBy (for a single result) or findAllBy (for all matching results), and the method
name itself is parsed to build the actual query. These are dynamic methods, because it
would be impractical to add them to the domain class bytecode using AST transfor‐
mations along with the regular methods given the large number of combinations. As

such, these can only be invoked from Groovy. One example is Person.findAllByFirst

NameAndAgeGreaterThan("Ralph", 70). Under the hood, this is converted to a

Hibernate criteria query if you use Hibernate or a org.grails.datastore.map

ping.query.api.Criteria query when using a NoSQL datastore, where the parameter

names are extracted from the method name (firstName and age) along with other

information to build the query such as GreaterThan. In earlier versions of Grails, you

80 | Chapter 3: Persistence

were limited to two expressions (e.g., findByFirstNameAndLastName), but this limita‐
tion was removed in version 2.0. This was an artificial limitation to keep method names
from becoming very long.

Grails provides a wrapper for Hibernate criteria queries that has been generalized to
NoSQL datastores. Dynamic finders support an impressive range of querying options,
but by their nature (being a single method call), they cannot provide all of the necessary
options for querying. You can use the criteria DSL to retrieve instances using a large
number of filtering criteria. This example from the Grails reference documentation
shows a somewhat complex but still very readable and intuitive example that would be
impossible to represent with a dynamic finder:

def c = Account.createCriteria()

def results = c.list {

 like("holderFirstName", "Fred%")

 and {

 between("balance", 500, 1000)

 eq("branch", "London")

 }

 maxResults(10)

 order("holderLastName", "desc")

}

There is also a new querying option that was added in Grails 2.0: where queries. These
look like criteria queries and, like dynamic finders and criteria DSL queries, they are
converted to native criteria queries under the hood, but they take advantage of detached

criteria—either a org.hibernate.criterion.DetachedCriteria if you use Hibernate

or grails.gorm.DetachedCriteria if you use NoSQL. These have the benefit of having
a syntax that is more expressive than the criteria DSL, in that the filtering criteria don’t
map as directly to the underlying implementation but instead use Java and Groovy
syntax. As an example, consider this example from the Grails reference documentation:

def query = Person.where {

 (lastName != "Simpson" && firstName != "Fred") ||

 (firstName == "Bart" && age > 9)

}

def results = query.list(sort:"firstName")

The where method doesn’t immediately execute the query like a regular criteria query,

but instead just returns the DetachedCriteria instance. This lets you compose queries

to reuse logic and only execute the query when you call find, get, list, count, or

exists:

def query = Person.where {

 lastName == "Simpson"

}

def bartQuery = query.where {

 firstName == "Bart"

Querying | 81

}

Person p = bartQuery.find()

Saving, Updating, and Deleting
You can use the save method to persist a single domain class instance. This returns null
if there is a validation error, or the instance itself if it is successful. You can combine this
with “Groovy truth” to verify that the save succeeded; for example:

def person = new Person(...)

if (person.save()) {

 // handle the success case

}

else {

 // handle the error case

}

Ruby on Rails has a similar method, but with a variant that will throw an exception if

there is a validation error. save behaves like the Grails save method, whereas save! can
throw an exception. This was mentioned on the Grails user mailing list as a useful
addition, but unfortunately, Groovy cannot support that syntax yet. The solution that

was implemented was to add a failOnError flag; for example:

def person = new Person(...)

try {

 person.save(failOnError: true)

 // handle the success case

}

catch (grails.validation.ValidationException e) {

 // handle the error case

}

This looks similar, but it behaves rather differently. If the instance had been previously
retrieved from the database and updated instead of being created, it would become
detached from the Hibernate session (or analogous datastore session), and that would
require special handling if you update the data and try again. In addition, there is a
nontrivial cost to throwing and catching an exception. Each one is not that bad, but this
can add up and affect performance, especially in a Groovy-based application where
there are so many additional stack frames. And, finally, there is a philosophical argument
against this approach. Most of the time, you should expect validation problems, espe‐
cially with user-submitted data. It is not at all exceptional that someone attempts to
create an account with a username that is already taken, or users mistype their passwords
(or are trying to hack into your site) or submit any other data that doesn’t match your
validation rules. Because it is so easy to use the “Groovy truth” approach, it doesn’t make

much sense to use the failOnError flag except in cases when you expect that the data
is correct and want a failsafe (e.g., seed data for tests).

82 | Chapter 3: Persistence

Updating data is similar to saving new instances, except that you make changes to an

instance that you retrieve with a get call or a query. But you still call save, and the same
rules apply:

def person = Person.get(params.id)

person.firstName = params.firstName

...

if (person.save()) {

 // handle the success case

}

else {

 // handle the error case

}

Deleting a single instance is simple because there is a delete method added to all domain
classes:

def person = Person.get(params.id)

person.delete()

The where queries described previously are not limited to retrieving data; they can also
perform bulk updates and deletes. Often, developers using GORM will do this by re‐
trieving all of the needed instances with one of the supported query mechanisms, and
updating or deleting them in a loop. This is inefficient, because you are doing work that
can easily be done at the database, and you send a potentially large amount of data from

the database to the server unnecessarily. Using a where query to do bulk updates and
deletes is similar to what you would do in SQL or HQL. For example, to update one
property, you can use something like:

def query = Person.where {

 lastName == 'Simpson'

}

int total = query.updateAll(lastName:"Bloggs")

Performing a bulk delete is similar:

def query = Person.where {

 lastName == 'Simpson'

}

int total = query.deleteAll()

These can both be written more compactly; for example:

int total = Person.where { lastName == 'Simpson' }.deleteAll()

If you use Hibernate and turn on SQL logging, you will see that the queries are very

efficient. The updateAll method generates SQL similar to:

update person set last_name=? where last_name=?

and the deleteAll method generates:

delete from person where last_name=?

Saving, Updating, and Deleting | 83

This is exactly the SQL that you would probably write yourself if you were unlucky
enough not to have this available in GORM.

NoSQL Support
Because GORM is no longer coupled to Hibernate and is now an API, you can expect
a significant amount of commonality between the various implementations. This means
that, in general, you can use most of the same mappings and validations, persistence

methods (e.g., get, save, delete, count), and even dynamic finders, criteria queries,

and where queries. Some concepts aren’t compatible across NoSQL implementations,
such as transactions and locking, so you have to be somewhat aware of the underlying
datastore. But, in general, your NoSQL domain classes and the code that uses them will
look similar or identical to what you would have if you were using Hibernate.

There are several NoSQL plugins providing a GORM implementation currently avail‐

able, with varying levels of usability. The more complete ones include the mongodb

plugin, which adds support for the MongoDB document store; the redis-gorm plu‐

gin, which wraps the Redis key-value store; neo4j for the Neo4j graph database; sim

pledb for the Amazon SimpleDB datastore; and dynamodb for the Amazon DynamoDB
datastore. These are documented in more detail here.

NoSQL implementations typically implement a large subset of the full GORM API, but
they usually also add additional functionality, and they provide access to the underlying
datastore itself so you can work with the native API directly. One example is the dynamic

property support in the mongodb plugin. MongoDB documents do not have a fixed
schema, so domain classes can store and retrieve additional unmapped properties as
needed, as seen in this example from the plugin documentation:

def p = new Plant(name:"Pineapple")

p['color'] = 'Yellow'

p['hasLeaves'] = true

p.save()

p = Plant.findByName("Pineapple")

println p['color']

println p['hasLeaves']

There is also support for 2d geospatial indexes to query by location.

84 | Chapter 3: Persistence

http://grails.org/plugin/mongodb
http://grails.org/plugin/mongodb
http://www.mongodb.org/
http://grails.org/plugin/redis-gorm
http://grails.org/plugin/redis-gorm
http://redis.io/
http://grails.org/plugin/neo4j
http://www.neo4j.org/
http://grails.org/plugin/simpledb
http://grails.org/plugin/simpledb
https://aws.amazon.com/simpledb/
http://grails.org/plugin/dynamodb
https://aws.amazon.com/dynamodb/
https://aws.amazon.com/dynamodb/
http://springsource.github.com/grails-data-mapping/
http://docs.mongodb.org/manual/core/geospatial-indexes/

CHAPTER 4

Spring

Grails is a metaframework in that it ties together several other frameworks, and none
is more pervasive in Grails than the Spring Framework. Grails uses a significant amount
of Spring core functionality and optional modules including managing artifacts and
many classes as Spring beans (using Spring’s dependency injection to manage the graph
of dependencies), its datastore integration features (by default using its Hibernate in‐
tegration), support for proxies and AOP to enable transparent transactions (and caching
and security via plugins), internationalization, resource management, and a lot more.

In addition, there are many Spring extensions (both official and third party) that are
readily usable in a Grails application. Many are already exposed via plugins (e.g., Spring
Security), but if not, you can use an extension like you would in any Spring-based
application. You can use annotated bean classes or the newer Java configuration, or copy
bean definitions into grails-app/conf/spring/resources.xml (this isn’t created by default
so you need to create it yourself) or convert them to Groovy syntax in resources.groo‐
vy. Register any dependencies in BuildConfig.groovy, and you’re ready to go.

Inversion of Control and Dependency Injection
One of the central ideas of Spring that Grails uses heavily is Inversion of Control (IoC),
also known as Dependency Injection (DI). This reverses the direction of managing
object dependencies from the older style of creating them directly or pulling them in
from a repository (e.g., JNDI) to a style where beans don’t know how to retrieve their
dependencies, but have setter methods and constructors that are used to push depen‐
dencies in. This obviously changes everything and opens up many possibilities for much
more dynamic and loosely coupled code, and fits the Grails model very well.

In older versions of Spring dependency injection, you would use XML configuration

files, but now it’s as simple as using the @Autowired annotation. In Grails, it’s even
simpler; any Spring bean written in Groovy (this includes all of the standard artifacts

85

such as controllers, services, and taglibs) can inject the userService bean by adding
the line:

def userService

as a class-scope field. You can specify the type of the field if you want (this can help IDE
autocompletion), but it’s not necessary.

This seems quite magical but, like most things in Grails (and Groovy), it’s actually very
simple. It makes a lot more sense if you recall that fields in Groovy classes that don’t
have a scope modifier are, by default, public, and the Groovy compiler converts them
to a private field and a getter and setter (unless you have already created the getter or
setter—it won’t replace yours). This means that this field is actually implemented as if
you had this code:

private Object userService

void setUserService(Object userService) {

 this.userService = userService

}

Object getUserService() {

 return userService

}

For our purposes, the getter isn’t very useful, but the setter is. That’s because, by default,
Grails creates its beans with autowiring enabled, and is set to “by name” mode. So, as

Spring is building its ApplicationContext and wiring together the various dependen‐
cies, if it sees a setter whose property name matches a bean name, it will call the setter
to inject that bean. So, even though Spring doesn’t know anything about Groovy, because

it sees the public setter that the Groovy compiler created, it injects the userService
bean into your bean as if you had created the setter for that purpose.

Therefore, it should be clear why adding def beanName inside a method doesn’t work:
it’s just a local variable and not a candidate for dependency injection.

Complex Dependency Configuration Using Spring SpEL
In general, setting bean dependencies in resources.groovy is done with either other beans
or properties that are numbers, strings, Booleans, etc. But you can use Spring Expression
Language (SpEL) in property value strings to access other beans’ properties and even

call their methods. For example, if the Bar class has a name property (or getName meth‐

od), you can access it to configure the foo bean:

beans = {

 bar(Bar)

 foo(Foo) {

 name = '#{bar.name}'

86 | Chapter 4: Spring

 }

}

Or, if you want to leave the logic for how to resolve the property in the Foo class, you
can call a method instead:

beans = {

 bar(Bar)

 foo(Foo) {

 name = '#{bar.resourceName()}'

 }

}

For more information, see the relevant section in the Spring documentation, Expression
support for defining bean definitions.

Manually Injecting Dependencies at Runtime
If you manually instantiate classes that aren’t Spring beans, but would like to conven‐
iently inject Spring bean dependencies into them (e.g., classes in src/groovy and src/

java), you can do this if you have access to the Spring ApplicationContext. This is

simple if you dependency-inject the grailsApplication bean into the artifact class
(e.g., a controller or a service) that is creating the instance:

def grailsApplication

and then you can autowire properties by name with this:

import org.springframework.beans.factory.config.AutowireCapableBeanFactory

...

def instance = new XXX(...)

def ctx = grailsApplication.mainContext

ctx.beanFactory.autowireBeanProperties(instance,

 AutowireCapableBeanFactory.AUTOWIRE_BY_NAME, false)

Just as in Spring bean classes or Grails artifact classes, any public property or setter

method that corresponds to a bean name in the ApplicationContext will be set with
that bean.

Bean Scopes
By default, Spring beans are singletons: only one instance is created, and each time you

get the bean from the ApplicationContext (either directly or via dependency injec‐
tion), you’ll get the same instance. This is a sensible default, because beans often have
no mutable state, so they’re safe to share between collaborators and between threads.
They can have state, in particular injected dependencies, but as long as this state is

Bean Scopes | 87

http://bit.ly/17dRoqd
http://bit.ly/17dRoqd

initialized early and not changed, it’s not a thread-safety concern. Spring manages cre‐
ating the instances and wiring dependencies, but without the problems associated with
traditional singletons. Of course there are plenty of reasons why a particular bean cannot
be a singleton, so beans can have a “scope.”

To receive a new instance from the ApplicationContext each time, set the scope of the

bean to prototype. It will still have dependencies injected like singleton beans, but now
it can have mutable state, because each caller gets its own copy. Grails controllers are
an example of prototype beans; this is to support a rarely used feature inspired by Rails
controllers where the controller itself is used as the GSP model when none is specified.
Often, when a GSP is used to render a response, the last statement of a controller action

is a Map containing the model data to use in the GSP; if you don’t return anything (and

don’t call redirect, forward, or chain), then the controller’s fields are used as the model
data.

Another supported scope is session. You could use this for shopping carts and other
similar patterns, much like a stateful EJB session bean. The first time the bean is re‐

quested from the ApplicationContext, it is created and stored in the HTTP session,
and subsequent requests return this instance until the session times out or is explicitly

invalidated. Separate sessions each get their own instance. A similar scope is request;
these are created per request instead of per session, so they’re much shorter lived.

You can also define your own scope by implementing the org.springframe

work.beans.factory.config.Scope interface and registering it in the BeanFactory:

ctx.beanFactory.registerScope 'myScope', new MyScope()

You can use this in a controller or service class with the scope property; for example:

static scope = 'myScope' // or session/prototype/etc.

For Spring beans that you manually wire in resources.groovy, add the property in the
bean definition:

myBean(MyBeanClass) { bean ->

 bean.scope = 'myScope' // or session/prototype/etc.

}

Transactional Services
If you follow the convention for Grails services and create a Groovy class in the grails-

app/services folder whose name ends in Service, the class will automatically be regis‐
tered as a service for you. This means that, by default, it is registered as a Spring bean
(whose bean name is the class name with a lowercase first letter), the bean scope is

singleton, and all public methods will be transactional. That makes the class a great
place to put business logic, especially if it involves database persistence.

88 | Chapter 4: Spring

You can specify the bean scope of a service with the static scope property; this can be

any valid value supported by Spring and the most common are singleton and proto

type, and to a lesser extent request and session. The default scope (if none is specified)

is singleton.

By default, all public methods in a service are transactional. Older versions of Grails

included the line static transactional = true in generated services, but that has

been removed, because it’s redundant. You should only set the transactional attribute
if you’re disabling transactions—for cases where the service manages business logic but
doesn’t write to the database.

The transaction isolation is set to Isolation.DEFAULT; that is, the default settings for
your database are used instead of explicitly using read-commited, serializable, etc. The

propagation level is Propagation.REQUIRED, which means that, if a transaction was
already active before calling a service method, it will be joined and not committed after
successfully invoking the method, because it was already started; however, if one isn’t
active, it will create one and commit it after invoking the method. There is no timeout

configured, the transaction won’t be read-only, and the Exception types that trigger an
automatic rollback are the defaults; runtime exceptions and errors trigger rollback and
checked exceptions (even though Groovy doesn’t make you catch or rethrow checked
exceptions) do not cause a rollback. This last point can be confusing for developers
without much experience with Spring or JEE transactions. The logic is that in Java,

because you must either catch a checked exception or declare it in the throws clause,
you have the opportunity to handle the exception and will decide if the exception merits
an explicit rollback. But because you don’t have to catch runtime exceptions or errors,
it’s assumed that the transaction should be automatically rolled back for you, to keep
state from being inconsistent. Because Spring doesn’t know about Groovy’s exception
handling rules, the Java rules apply.

@Transactional
You’re not limited to the default transaction settings or forced to use complex config‐
urations to customize services’ transaction behaviors. Customizing is simple; use the

org.springframework.transaction.annotation.Transactional annotation. If you

have even one @Transactional annotation, Grails assumes that you’re taking the con‐
figuration into your own hands and doesn’t configure the default transaction settings
for the class. You can put the annotation at the class level, and/or on individual methods,
and you can combine class-scope and method-scope annotations to configure default
settings at the class level, but configure overrides for individual methods.

In this example, someMethod will be transactional, inheriting the settings from the class

annotation, but someOtherMethod requires that an existing transaction be active:

Transactional Services | 89

package com.mycompany

import org.springframework.transaction.annotation.Propagation

import org.springframework.transaction.annotation.Transactional

@Transactional

class SomeService {

 def someMethod() {

 ...

 }

 @Transactional(propagation=Propagation.MANDATORY)

 def someOtherMethod() {

 ...

 }

}

Another approach is to omit the annotation at the class level to support nontransactional

methods and to annotate methods directly. In this example, someMethod is not trans‐

actional (but won’t trigger an exception if it is called during a transaction), someOther

Method has the default settings, and yetAnotherMethod requires that a transaction be
active already:

package com.mycompany

import org.springframework.transaction.annotation.Propagation

import org.springframework.transaction.annotation.Transactional

class SomeOtherService {

 def someMethod() {

 ...

 }

 @Transactional

 def someOtherMethod() {

 ...

 }

 @Transactional(propagation=Propagation.MANDATORY)

 def yetAnotherMethod() {

 ...

 }

}

Transaction Proxies
Whether you use the default Grails configuration or annotations, the transaction man‐
agement is implemented by Spring with a proxy. Spring uses the CGLIB library to create
a subclass of your service, where each proxied method (all public methods when not

90 | Chapter 4: Spring

using annotations or if the class is annotated, annotated public methods otherwise) is
intercepted by the proxy to start or join a transaction (or throw an exception if one isn’t
allowed) and then call your implementation code. You can see that this is the case by

printing the class name of your injected service, (e.g., println userService.get

Class().name); it should look something like this:

com.foo.bar.UserService$$EnhancerByCGLIB$$32cb6433

We can see that the proxy is a runtime-generated subclass of the real bean class by
printing its superclass:

println userService.getClass().superclass.name

which should print:

com.foo.bar.UserService

Digging further, we can list all of the interfaces implemented by the proxy:

for (iface in ctx.mathService.getClass().interfaces) {

 println iface.name

}

which should print:

org.springframework.aop.SpringProxy

org.springframework.aop.framework.Advised

net.sf.cglib.proxy.Factory

Unintentionally bypassing the bean proxy

Be careful when calling annotated methods within a service when the annotation set‐
tings are different. Because you’re “underneath” the proxy, it’s a direct method call, and
any checks that the proxy would have done will be bypassed. For example, if you want
to store auditing data in the database, but don’t want a failure there to roll back the
transaction, you can do that work in a new transaction by setting the propagation to

Propagation.REQUIRES_NEW:

@Transactional

void someMethod(...) {

 // do some work ...

 storeAuditData(...)

}

@Transactional(propagation=Propagation.REQUIRES_NEW)

void storeAuditData(...) {

 //

}

Transactional Services | 91

Unfortunately, though, the call to storeAuditData won’t trigger the creation of a second
transaction, because it’s a direct call. You can fix this by calling the proxy’s method, and
that involves getting access to the Spring bean that represents this service. You can’t just

add a dependency injection (def fooService), because that would be circular; instead,

if you add a dependency injection for the grailsApplication bean, you can access the

ApplicationContext easily from there and get the service from it:

def grailsApplication

@Transactional

void someMethod(...) {

 // do some work ...

 def myProxy = grailsApplication.mainContext.fooService

 myProxy.storeAuditData(...)

}

@Transactional(propagation=Propagation.REQUIRES_NEW)

void storeAuditData(...) {

 //

}

Another more traditional option is to implement the org.springframework.con

text.ApplicationContextAware interface, but that involves more plumbing code.

An even more automatic fix would be to wire up a getMyProxy() method (and therefore

a myProxy property) into the metaclass of all services in BootStrap.groovy:

class BootStrap {

 def grailsApplication

 def init = { servletContext ->

 for (sc in grailsApplication.serviceClasses) {

 sc.clazz.metaClass.getMyProxy = { ->

 grailsApplication.mainContext.getBean(sc.propertyName)

 }

 }

 }

}

or in the doWithDynamicMethods callback in a plugin:

def doWithDynamicMethods = { ctx ->

 for (sc in application.serviceClasses) {

 sc.clazz.metaClass.getMyProxy = { ->

 application.mainContext.getBean(sc.propertyName)

 }

 }

}

92 | Chapter 4: Spring

and then this call would have the expected effect:

@Transactional

void someMethod(...) {

 // do some work ...

 myProxy.storeAuditData(...)

}

@Transactional(propagation=Propagation.REQUIRES_NEW)

void storeAuditData(...) {

 //

}

Transaction Utility Methods
For complex workflows, it can be helpful to have access to information about the current
transaction. Ironically, although services are the best place in Grails to do transactional

work, the static withTransaction method that’s available in all domain classes is more

useful in this regard, because the method signature has an org.springframework.trans

action.TransactionStatus variable. But there’s no direct way to access information
about the current transaction in a service. That’s easy to fix though—we can add some
transaction utility methods to service metaclasses; for example, in BootStrap.groovy:

import org.springframework.transaction.interceptor.TransactionAspectSupport

import org.springframework.transaction.support.TransactionSynchronizationManager

class BootStrap {

 def grailsApplication

 def init = { servletContext ->

 for (sc in grailsApplication.serviceClasses) {

 def metaClass = sc.clazz.metaClass

 // returns boolean

 metaClass.isTransactionActive = { ->

 TransactionSynchronizationManager.isSynchronizationActive()

 }

 // returns TransactionStatus

 metaClass.getCurrentTransactionStatus = { ->

 if (!delegate.isTransactionActive()) {

 return null

 }

 TransactionAspectSupport.currentTransactionStatus()

 }

 // void, throws NoTransactionException

 metaClass.setRollbackOnly = { ->

Transactional Services | 93

 TransactionAspectSupport.currentTransactionStatus().setRollbackOnly()

 }

 // returns boolean

 metaClass.isRollbackOnly = { ->

 if (!delegate.isTransactionActive()) {

 return false

 }

 delegate.getCurrentTransactionStatus().isRollbackOnly()

 }

 }

 }

}

Now you can force the transaction to roll back by calling setRollbackOnly() and, in a

workflow that has multiple steps, you can call isRollbackOnly() early in each method
before doing expensive work that will only be rolled back, to see if that work makes
sense to do.

Bean Life Cycles and Interfaces
In addition to wiring up dependencies between beans, the ApplicationContext is re‐
sponsible for managing the beans’ life cycles. Two important hooks are the initialization
and destruction phases. When you register your own Spring beans in resources.groovy,

you can use the org.codehaus.groovy.grails.commons.spring.BeanConfigura

tion instance (typically a org.codehaus.groovy.grails.commons.spring.Default

BeanConfiguration) that is the argument of the bean definition closure to set the

initMethod and/or the destroyMethod names; for example:

authenticationManager(com.mycompany.myapp.LdapAuthenticationManager) { bean ->

 serverUrl = '...'

 password = '...'

 bean.initMethod = 'init'

 bean.destroyMethod = 'destroy'

}

Most of the time, however, the beans that you create are automatically registered for

you by Grails. In that case, you can implement the org.springframework.beans.fac

tory.InitializingBean interface and its afterPropertiesSet method to do initiali‐
zation work after all dependencies and other properties have been set, and the

org.springframework.beans.factory.DisposableBean interface and its destroy
method to do work during a clean shutdown; for example:

package com.mycompany.myapp

import org.springframework.beans.factory.DisposableBean

import org.springframework.beans.factory.InitializingBean

class LdapAuthenticationManager implements InitializingBean, DisposableBean {

94 | Chapter 4: Spring

 ...

 void afterPropertiesSet() {

 // initialization work

 }

 void destroy() {

 // shutdown work

 }

}

Whether you use initMethod or InitializingBean.afterProperties

Set, because Spring is unaware of the various Grails life cycle phases,
you are somewhat limited in what you can do in the initialization pha‐
ses. In particular, because plugins won’t have initialized yet, you cannot
use GORM methods. If you find you cannot do some initialization work
because of this, you can inject your bean in BootStrap.groovy and do the
work there, because by the time bootstrap classes are called, everything
has been configured and is ready to use.

In earlier versions of Grails, the log field was added using runtime
metaprogramming, but in Grails 2.0 and higher, it’s injected with an
AST transformation (compile-time metaprogramming), so you can use
logging in either callback method.

Bean Postprocessors
Bean (and BeanFactory and BeanDefinitionRegistry) postprocessors provide a pow‐
erful approach to customizing Spring beans. They’re particularly useful to reconfigure
beans contributed by third-party JARs or plugins where you can’t (or shouldn’t) edit the
code. Instead, you can hook into the construction process and customize one or more
beans at runtime, changing or adding properties, the bean implementation class, and
other attributes and settings.

The most common interface to use is org.springframework.beans.factory.con

fig.BeanPostProcessor, which has two methods, postProcessBeforeInitializa

tion and postProcessAfterInitialization. You can do what you want with each, but

typically postProcessBeforeInitialization works with class metadata like annota‐
tions, because the instance has been created but it isn’t fully initialized yet. It’s common

to return a proxy for the real instance from postProcessAfterInitialization, al‐
though you can also just reconfigure the initialized instance with updated properties.

You can also create an org.springframework.beans.factory.config.BeanFactory

PostProcessor, which has one method, postProcessBeanFactory. This takes a single

Bean Postprocessors | 95

argument: a ConfigurableListableBeanFactory that you can use to customize a Bean

Definition from its getBeanDefinition method, or loop through all of the beans using

the names from the getBeanDefinitionNames method. Your postprocessor will be
called after the bean factory is partially initialized but before beans have been instanti‐

ated. This gives you a chance to modify the BeanDefinition instances that will be used
to define the actual beans. You can add, remove, or change bean properties and even
the class that will be instantiated.

The org.springframework.beans.factory.support.BeanDefinitionRegistryPost

Processor interface extends BeanFactoryPostProcessor and has one method, post

ProcessBeanDefinitionRegistry, where you can add or remove BeanDefinition in‐

stances in the BeanDefinitionRegistry.

To add a postprocessor, implement whichever interface(s) you want in a class in src/
groovy or src/java and register it as a bean (using any name you want, because it’s not
particularly relevant) in resources.groovy. Spring will see that it implements one of the
interfaces and will use it as a postprocessor, calling the methods at the appropriate points

in the construction of the ApplicationContext:

import com.mycompany.myapp.MyPostProcessor

beans = {

 myPostProcessor(MyPostProcessor)

}

The cloud-foundry and heroku plugins both provide runtime recon‐

figuration of the JDBC DataSource, NoSQL connection information,
and so on, using this approach. This keeps your application highly de‐
coupled from the hosting location, because a bean postprocessor detects
the environment variables that Cloud Foundry and Heroku make avail‐
able, and transparently reconfigures the appropriate Spring beans for
you. You can see the source of the shared base class that each plugin
extends to provide provider-specific settings discovery here.

A Groovier Way
You can also customize a BeanDefinition in the doWithSpring closure in a plugin. The

delegate of the closure is the active grails.spring.BeanBuilder that Grails uses to

register beans in the ApplicationContext that are defined by the builder’s DSL. You

can use the getBeanDefinition method to retrieve a previously defined bean definition

(typically an org.springframework.beans.factory.support.GenericBeanDefini

tion) and modify its attributes:

def doWithSpring = {

 def beanDef = getBeanDefinition('someBeanName')

 beanDef.beanClass = NewClass

96 | Chapter 4: Spring

http://grails.org/plugin/cloud-foundry
http://grails.org/plugin/heroku
http://bit.ly/136sBaT

 beanDef.propertyValues.add('order',

 application.config.plugin?.rendering?.order ?: [])

}

Note that because this runs during your plugin’s initialization, plugin loading order is
important; the only bean definitions that will be available are those configured by plu‐

gins that have already initialized. You can use the loadAfter plugin descriptor attribute
to configure this.

Bean Aliases
Spring allows bean aliases where an alternate name is registered in addition to the real
name of a bean. You can use this when you have multiple implementations of a bean
and choose one via configuration at startup—for example, per-environment or some
other rule. This is partially broken in Grails before 2.1 in that, before version 2.1, you
could register aliases but only to beans in the same plugin or resources.groovy. As of
version 2.1 though, all aliases work regardless of the location of the alias and bean
definitions.

This works the same way in a plugin’s doWithSpring as in resources.groovy, because in

both cases, the closure’s delegate is the BeanBuilder. You can access the RuntimeSpring

Configuration with the getSpringConfig method and call addAlias on that; for
example:

import grails.util.Environment

beans = {

 String realBeanName

 switch (Environment.current) {

 case Environment.TEST:

 realBeanName = 'testCardProcessingService'

 break

 case Environment.PRODUCTION:

 realBeanName = 'productionCardProcessingService'

 break

 default: // Environment.DEVELOPMENT, custom envs

 realBeanName = 'mockCardProcessingService'

 break

 }

 springConfig.addAlias 'cardProcessingService', realBeanName

}

Now, when a controller or other artifact that supports dependency injection injects the

cardProcessingService bean, it will get the correct one depending on the current

Bean Aliases | 97

running environment. This has the benefit of centralizing the logic and not polluting
the application code with logic to determine in each case which bean to use.

The cache plugin registers the alias cacheOperationSource for the bean

that Spring autoregisters as org.springframework.cache.annota

tion.AnnotationCacheOperationSource#0, which cannot be used

with Grails dependency injection using the standard def beanName
pattern.

Internationalization
Grails has first-class support for internationalization with the .properties files in the
grails-app/i18n folder. All generated controllers, GSPs, and layouts are fully interna‐
tionalized with no hardcoded strings; instead, strings are resolved from the message

bundles defined in the .properties files using the message tag and the current Locale.
In addition, domain class validation errors are internationalized the same way, using
the i18n message bundles. This can make the code harder to read (especially if the
message codes are cryptic or not intuitive), but it makes displaying your site in another
language much simpler, because you just need to ensure that all English messages have
corresponding translated messages for your supported languages.

This is all enabled under the hood by the use of the messageSource bean, an imple‐

mentation of the org.springframework.context.MessageSource interface. In a Grails

application, this will be a PluginAwareResourceBundleMessageSource that supports
loading messages from the application as well as from installed plugins and supports

reloading in the development environment. You can work directly with the message

Source bean using dependency injection like with any Spring bean: def message

Source. Often it’s easier to use the message tag because tags can conveniently be called
in controllers. But, in services or other classes, where it’s impractical to call a taglib, just

use the messageSource bean.

Resources
Spring has an abstraction for low-level resources with its org.springframe

work.core.io.Resource and org.springframework.core.io.ResourceLoader inter‐

faces. There are several concrete Resource implementations, including UrlResource,

ClassPathResource, FileSystemResource, ServletContextResource, InputStream

Resource, and ByteArrayResource. It rarely matters what the concrete class is though,

because you can use the methods exists(), getInputStream(), getURL(), and so on.

For example, consider a configuration file that you put in the web-app/WEB-INF folder,
data.xml. This is safe from public viewing, because the container blocks access to all

98 | Chapter 4: Spring

http://grails.org/doc/latest/ref/Tags/message.html

files in WEB-INF. So how do you read the contents of the file at runtime? A naive
approach that works in development mode is:

new File('web-app/WEB-INF/data.xml').text

This won’t work in a deployed WAR for two reasons. One is that there is no web-app
folder, and the other is that the WAR may not be expanded onto the filesystem depending

on which container you use, so there may be no File access at all even if you “fix” the
path. But you certainly wouldn’t want to have brittle logic that computes the file path
depending on how the application is running.

This method in ResourceLoader looks promising:

Resource getResource(String location);

So how do we access a ResourceLoader in Grails? The ApplicationContext implements
the interface and will usually be the most convenient way to manage resources. Getting

access to the ApplicationContext can be done a few different ways; the most convenient

is to add a dependency injection for the grailsApplication bean (def grailsAppli

cation) because grailsApplication.mainContext resolves to the ApplicationCon

text; you can also implement ApplicationContextAware.

Then it’s as simple as executing:

String xml = ctx.getResource('WEB-INF/data.xml').inputStream.text

and there’s no dependence on any particular environment or logic to compute various
paths to the file, depending on how the application is being run, because Spring abstracts
that away. If you run:

println ctx.getResource('WEB-INF/data.xml').getClass().name

you’ll see that the implementation class is org.springframework.web.context.sup

port.ServletContextResource, and running:

ctx.getResource('WEB-INF/data.xml').file.path

will print something like:

/path/to/appname/web-app/WEB-INF/data.xml

when running under run-app and:

/usr/local/apache-tomcat-7.0.29/webapps/appname/WEB-INF/data.xml

when running as a WAR deployed to Tomcat (assuming Tomcat is configured to explode
WARs).

Resource Dependency Injection
A more automatic approach would be to use dependency injection to let Spring inject
the resource into one of your beans, rather than explicitly pulling it like we have been.

Resources | 99

If you move the file from the WEB-INF folder to either grails-app/conf or src/java, it
will be copied into the classpath, so we can access it as a classpath resource. Consider
this simple class:

package com.mycompany.myapp

import org.springframework.core.io.Resource

class FooManager {

 Resource xmlFile

 // class methods

}

If we wire this class up as a bean in resources.groovy, for example:

import com.mycompany.myapp.FooManager

beans = {

 fooManager(FooManager) {

 xmlFile = 'classpath:data.xml'

 }

}

then the resource will be discovered and injected into the bean. Now it will be an instance

of org.springframework.core.io.ClassPathResource, and accessing the content of
the file is as simple as:

String xml = xmlFile.inputStream.text

inside any of the methods in FooManager. You can even go further and specify the type

as a File:

package com.mycompany.myapp

class FooManager {

 File xmlFile

 // class methods

}

and then the content will be available as:

String xml = xmlFile.text

ResourceLocator
As of Grails 2.0, there is also another option for finding resources: the org.code

haus.groovy.grails.core.io.ResourceLocator interface and its implementations.

100 | Chapter 4: Spring

This has two primary methods: Resource findResourceForURI(String uri) and

Resource findResourceForClassName(String className). The advantage of using

ResourceLocator over the Spring option is that ResourceLocator implementations are
Grails classes and are aware of the structure of application and plugin paths and can
also access contents of binary plugins.

To use this, get a reference to the grailsResourceLocator bean, typically using de‐

pendency injection (e.g., def grailsResourceLocator). Then you can conveniently

access files when running locally using run-app or when deployed as a WAR (e.g., getting
the content of a JavaScript file provided by the JQuery plugin, without having to know
anything about where the actual file is located):

def resource = grailsResourceLocator.findResourceForURI

 ('js/jquery/jquery-1.8.3.min.js')

String jqueryJs = resource.inputStream.text

or an application file you have placed in the WEB-INF folder:

def resource = grailsResourceLocator.findResourceForURI('WEB-INF/someDataFile.xml')

Data Binding and Validation
Data binding and validation help make integrating HTTP request data with domain
classes much easier in Grails. Much of the core implementation is handled by Spring,
with Grails adding a layer on top to make the integration more direct and add in special
handling.

Data Binding
Spring provides several implementations of JavaBean PropertyEditors to convert

Strings (typically from web requests) to numbers, dates, or anything that has a string

form that can be converted. These are used by the org.codehaus.groo

vy.grails.web.binding.GrailsDataBinder, which extends the underlying Spring
data binding implementation to add Grails-specific hooks, such as working with the

params map in controllers, being aware of the constraints property in domain classes,

and guarding against changing properties such as metaClass, id, and version.

Spring and Grails register several property editors, and you can register your own by

registering a CustomEditorConfigurer bean (a bean postprocessor), giving it a list of

PropertyEditorRegistrar instances referencing your editors. This is somewhat cum‐
bersome though, but in Grails 2.3 the data binding implementation will be heavily
refactored to retain the binding features, but add several new ones and significantly
simplify the process for adding custom binding approaches.

Data Binding and Validation | 101

Validation
In traditional Spring applications, it is common to create validators for the app’s DAOs,

and Spring has an org.springframework.validation.Validator interface to stand‐
ardize the behavior. But there are no concrete implementations of the interface, because
validation is very domain-specific. Although you’re probably unaware of it, Grails cre‐

ates an instance of Validator for each domain class; if you loop through the Applica

tionContext beans, you’ll see that for a com.foo.bar.Person domain class there will

be a com.foo.bar.PersonValidator bean (an instance of org.codehaus.groo

vy.grails.orm.hibernate.validation.HibernateDomainClassValidator, if you’re

using Hibernate) along with a com.foo.bar.Person bean (a “prototype” bean that is
used in the overridden constructor to create instances and support bean autowiring), a

com.foo.bar.PersonPersistentClass bean, and a com.foo.bar.PersonDomain

Class bean.

Validation problems are represented by the org.springframework.validation.Er

rors interface, typically a grails.validation.ValidationErrors instance, which ex‐

tends a Spring implementation that provides most of the functionality. An Errors

instance is wired into all domain classes as the errors property, making it very conve‐

nient to access after performing validation checks (either directly with the validate

method or indirectly with the save method). It will contain information about what
went wrong, including the original invalid values and error codes for displayable mes‐
sages. This gets coupled with the Spring and Grails support for i18n message bundles
(under the grails-app/i18n directory) to allow you to display human-readable validation
messages and also support localized versions as needed.

Database Persistence
Typically, we use GORM and Hibernate to manage database persistence in a Grails
application, although many apps now use NoSQL datastores in addition to or instead
of relational databases. Under the hood, the Hibernate integration is managed by Spring,

from the org.springframework.orm.hibernate3.LocalSessionFactoryBean factory

bean (in Grails, it’s the org.codehaus.groovy.grails.orm.hibernate.Configurable

LocalSessionFactoryBean subclass) that’s used to configure org.hibernate.Session

Factory instances to the org.springframework.orm.hibernate3.HibernateTransac

tionManager implementation of the org.springframework.transaction.Platform

TransactionManager interface that abstracts away the implementation details of trans‐

action management (this is also a Grails-specific subclass, org.codehaus.groo

vy.grails.orm.hibernate.GrailsHibernateTransactionManager).

102 | Chapter 4: Spring

Thread-Local Holders
One significant feature of the Spring/Hibernate integration is the seamless access of

active persistence objects. It would be cumbersome to explicitly open a Hibernate Ses

sion or start a transaction and have to pass one or more related objects from method
to method, so Spring stores various objects (the active transaction, the current Hibernate

session, and so on) in ThreadLocal scope, because web requests are handled per thread.
So it’s easy for code that’s aware of this pattern to access the current transaction or

Hibernate session (or just know if one is active) by using the org.springframe

work.transaction.support.TransactionSynchronizationManager and org.spring

framework.orm.hibernate3.SessionFactoryUtils helper classes.

This is further helped by the org.codehaus.groovy.grails.orm.hibernate.sup

port.GrailsOpenSessionInViewInterceptor instance, which implements the

org.springframework.web.context.request.WebRequestInterceptor interface
that Grails registers to intercept all controller requests. This interface has callbacks for
doing work before a controller action starts, after it does its work, and after the view is
rendered. This should sound familiar if you’ve used filters before, because they are also

managed by a WebRequestInterceptor. The GrailsOpenSessionInViewInterceptor

opens a Session at the start of all controller requests and registers it in thread-local

scope (in an org.springframework.orm.hibernate3.SessionHolder keyed by the

owning SessionFactory). Then, after the request, it flushes and closes the Session.

So, for the entire duration of the request, there is always an active Session available.
This is important for a few reasons. The Hibernate implementation of GORM uses an

org.springframework.orm.hibernate3.HibernateTemplate under the hood to exe‐
cute most queries. Criteria queries are relatively thin wrappers around the Hibernate

Criteria feature, and where queries, dynamic finders, and other GORM methods are

converted to Criteria queries or call an applicable Hibernate Session method. Hiber

nateTemplate uses SessionFactoryUtils.getSession() to find or create a Session.
If one is active, it uses it and doesn’t close it, because that’s the responsibility of whatever

code opened it (most likely, GrailsOpenSessionInViewInterceptor). If one isn’t, it
creates one and closes it when finished. This is why lazy-loaded collections and entities
fail to load when a query executes in a new thread; the instances retrieved become
disconnected when the session closes. But, when the query runs in the request’s thread,
the session is still active after the query, so lazy loading works. The plugins that enable
asynchronous processing (Quartz, GPars, and Executor) all implement patterns similar

to OpenSessionInView, because they support running in new threads.

JdbcTemplate
It is usually most convenient to use groovy.sql.Sql when executing SQL queries in

Groovy, but Spring has a utility class with many of the same features, JdbcTemplate.

Database Persistence | 103

You give it a reference to a DataSource (typically, in the constructor) and it handles

most of the gory details of getting a Connection, Statement, and ResultSet for you
(and closing them when it is finished), and has smart error handling which converts

checked SQLExceptions into a rich hierarchy of unchecked exceptions. The code ends

up being a bit more verbose than using groovy.sql.Sql but far more compact than the
equivalent direct JDBC code:

import misc.Person

import org.springframework.jdbc.core.RowMapper

import org.springframework.jdbc.core.JdbcTemplate

import java.sql.ResultSet

import java.sql.SQLException

def dataSource = ctx.dataSource

def template = new JdbcTemplate(dataSource)

long id = ...

Person person = template.queryForObject(

 "select first_name, initial, last_name from person where id = ?",

 [id] as Object[],

 new RowMapper<Person>() {

 Person mapRow(ResultSet rs, int rowNum) throws SQLException {

 def p = new Person(firstName: rs.getString('first_name'),

 initial: rs.getString('initial'),

 lastName: rs.getString('last_name'))

 p.id = id

 p

 }

 }

)

Other Database Support
Although they’re less often used (especially in Grails), Spring does have support for JDO

with the org.springframework.orm.jdo.JdoTemplate and org.springframe

work.orm.jdo.support.JdoDaoSupport classes, JPA with the org.springframe

work.orm.jpa.JpaTemplate and org.springframework.orm.jpa.support.JpaDao

Support classes, and iBATIS (2.x) SQL Maps.

Spring MVC
Nearly all Grails applications have a web frontend, and most of the time, this is imple‐
mented with controllers. These are core artifacts in the grails-app/controllers folder.
There are several convenient conventions associated with controllers; classes in the
controllers folder are automatically registered as controllers, public closures and

104 | Chapter 4: Spring

methods are automatically registered as actions, simply returning a Map from an action

renders the GSP corresponding to that controller and that action, using the Map as the

data model in the view, and the "/$controller/$action?/$id?" { ... } URL map‐
ping entry (added by default in the generated UrlMappings.groovy file) ensures that
actions are automatically available externally using a REST-like URL scheme.

Your classes in grails-app/controllers don’t implement the Spring Controller interface

(directly or via something funky like an AST transformation) and don’t extend a Con

troller base class; instead, Grails uses one facade Controller to handle all requests:

org.codehaus.groovy.grails.web.servlet.mvc.SimpleGrailsController. This is

registered as the mainSimpleController bean. This delegates most of the work to the

grailsControllerHelper bean, an instance of MixedGrailsControllerHelper which

finds the action method or closure and invokes it, returning an org.springframe

work.web.servlet.ModelAndView that you may be familiar with if you’ve worked with
Spring MVC in a traditional Spring application.

In addition, Grails invokes interceptors before and after controller actions. These come

from various sources, including explicitly created HandlerInterceptor classes such as

GrailsOpenSessionInViewInterceptor (via an org.springframework.web.serv

let.handler.WebRequestHandlerInterceptorAdapter adapter) and org.code

haus.groovy.grails.web.i18n.ParamsAwareLocaleChangeInterceptor (which ex‐

tends Spring’s org.springframework.web.servlet.i18n.LocaleChangeIntercep

tor), but also Grails filters and controller interceptors (beforeInterceptor and after

Interceptor closures defined in controller classes).

Filters
Filters in Grails are somewhat misleadingly named, because it seems like they’re Servlet

filters, but they’re implemented with a HandlerInterceptor (indirectly), so they only
work with controller requests. For each filter class, Grails creates an adapter instance of

org.codehaus.groovy.grails.plugins.web.filters.FilterToHandlerAdapter to

integrate it into the filters list. FilterToHandlerAdapter implements the HandlerIn

terceptor interface and extracts information from the DSL that developers use to define
the filtering rules in an XXXFilters.groovy file (the patterns for which URIs, controllers,

and actions apply; the before, after, and afterView closures; and so on) to use when
the various interface methods are called. This way, we can take advantage of the filter
conventions so there’s less plumbing work involved while still taking advantage of the
Spring integration.

Controller interceptors look a lot like filters (although there are only the before and

after phases, no “after view”) but they’re not implemented with a HandlerIntercep

tor. Because they only apply to the controller where they’re defined, the logic is applied

per request, in AbstractGrailsControllerHelper.

Spring MVC | 105

If you need to intercept more than just controller requests, you can

create a class that implements javax.servlet.Filter (or extend an

existing base class like org.springframework.web.filter.OncePerRe

questFilter) and add it to web.xml like in any application. This can be

done in plugins in the doWithWebDescriptor block, or in an application

by running the install-templates script and editing src/
templates/war/web.xml.

Using Spring MVC Controllers
It’s been possible to use Spring MVC controllers in Grails since version 1.2; before that,

it was possible with the springmvc plugin. The process is fairly straightforward; create

your controller classes in the src/java or src/groovy folder and add an org.springfra

mework.stereotype.Controller annotation. Grails doesn’t autodiscover the annota‐
ted classes though; you need to add the relevant packages to the

grails.spring.bean.packages list property in Config.groovy; for example:

grails.spring.bean.packages = ['com.mycompany.myapp.billing',

 'com.mycompany.myapp.card.api']

When you create the classes, use the same techniques that you would in a traditional

Spring application; for example, annotating an action method with org.springframe

work.web.bind.annotation.RequestMapping:

@RequestMapping("/mvc/hello.dispatch")

public ModelMap handleRequest() {

 return new ModelMap()

 .addAttribute("text", "some text")

 .addAttribute("cost", 42)

 .addAttribute("config",

 grailsApplication.getConfig().flatten()));

}

One unfortunate aspect of the integration is that all RequestMapping URI values must

end in .dispatch. You can make this more natural by adding entries in UrlMap‐
pings.groovy; for example:

class UrlMappings {

 static mappings = {

 ...

 "/mvc/hello"(uri:"/mvc/hello.dispatch")

 "/mvc/other"(uri:"/mvc/other.dispatch")

 }

}

106 | Chapter 4: Spring

http://grails.org/plugin/springmvc

These controller classes will become standard Spring beans, so they’re candidates

for dependency injection. Use the org.springframework.beans.factory.annota

tion.Autowired annotation on fields in Groovy classes:

@Autowired

def grailsApplication

and on setters in Java:

private GrailsApplication grailsApplication;

@Autowired

public void setGrailsApplication(GrailsApplication app) {

 grailsApplication = app;

}

You can also use the javax.inject.Inject annotation; for example, using constructor
injection:

private GrailsApplication grailsApplication;

@Inject

public FooController(GrailsApplication app) {

 grailsApplication = app;

}

Remoting
Spring has support for remoting using several protocols. The Grails remoting plugin
implements this support for remote method invocation (RMI), Hessian (Caucho’s light‐
weight binary HTTP-based protocol), Burlap (another protocol from Caucho, which
uses XML), and Spring’s HTTP invoker (implemented by Java serialization via HTTP).

The plugin makes it simple to provide remote access to a Grails service. The service
must implement an interface, because it will be used to create a proxy that clients use
to make the remote calls. For example, consider this simple interface (in this case, a
Groovy version in src/groovy, but it can also be written in Java or from a JAR file):

package test.remoting

interface Math {

 int add(int i1, int i2)

 int multiply(int i1, int i2)

}

Creating the remoted service only requires two things: you have to implement the in‐

terface, and you have to add a static expose property containing a list of one or more

protocol names to expose (any of burlap, hessian, httpinvoker, and rmi). This service
(in grails-app/services like any Grails service) exposes all four protocols:

Remoting | 107

http://grails.org/plugin/remoting

package test

import test.remoting.Math

class MathService implements Math {

 static expose = ['hessian', 'rmi', 'httpinvoker', 'burlap']

 int add(int i1, int i2) {

 i1 + i2

 }

 int multiply(int i1, int i2) {

 i1 * i2

 }

}

The plugin adds a servlet (an org.springframework.web.servlet.DispatcherServ

let) for each protocol and an org.springframework.web.servlet.HandlerMapping

to route to them, and registers a proxy (using an org.springframework.aop.frame

work.ProxyFactoryBean and an org.springframework.aop.target.HotSwappable

TargetSource) in the ApplicationContext for each remoted service (in this example,

MathServiceProxy and MathServiceTargetSource beans). In addition, for each ex‐

posed protocol, it registers an org.springframework.remoting.support.RemoteEx

porter subclass (e.g., an org.springframework.remoting.caucho.HessianServi

ceExporter for the Hessian protocol) bean (in this example, burlap.MathService,

hessian.MathService, httpinvoker.MathService, and rmi.MathService).

Client Access
The most convenient way for clients to connect to your exposed services is to use Spring’s
client support for the various protocols, and Grails applications using the remoting
plugin can create services that connect to remoted services just as easily as exporting
the remoted services in the server application. All that’s involved is creating a service
with the same name as the remoted service (the package can be different) and adding

a remote property defining connection information.

The service shouldn’t implement the interface that the remote service exposes, but it
must be available in the classpath; it would be a good idea to create a third Java/Groovy
project containing all of your remoted interfaces and any custom classes used in method
calls and adding the generated JAR file to the dependencies of the server and client

applications. This is because the plugin just uses the service as a container for the remote

property and replaces it in the ApplicationContext with a proxy (an org.springfra

mework.remoting.support.RemoteAccessor subclass such as an org.springframe

work.remoting.caucho.BurlapProxyFactoryBean for the Burlap protocol) bean that
does implement the interface and makes the remote calls for you.

108 | Chapter 4: Spring

The remote property is a Map and specifies the interface to implement (under the iface

key) and the remote protocol to use (under the protocol key); the protocol value can

be one of the four supported values that are valid in the expose list in the remoted service
class. In addition, you must specify the connection information. If you specify the full

URL string under the url key it will be used; otherwise, the host, port, and webcon

text values are used to build a URL. host defaults to localhost if not specified, “port”

defaults to 1199 when using RMI or 8080 otherwise, and webcontext defaults to the
root context.

For example, this service will create a proxy client using Hessian:

package client

class MathService {

 static remote = [

 protocol: 'hessian',

 iface: test.remoting.Math,

 host: 'my.server.com',

 port: 8888,

 webcontext: 'remote'

]

}

This service will create a proxy client using Burlap:

package client

class MathService {

 static remote = [

 protocol: 'burlap',

 iface: test.remoting.Math,

 host: 'my.server.com',

 port: 8888,

 webcontext: 'remote'

]

}

This service will create a proxy client using HttpInvoker:

package client

class MathService {

 static remote = [

 protocol: 'httpinvoker',

 iface: test.remoting.Math,

 host: 'my.server.com',

 port: 8888,

 webcontext: 'remote'

]

}

Finally, this service will create a proxy client using RMI:

Remoting | 109

package client

class MathService {

 static remote = [

 protocol: 'rmi',

 iface: test.remoting.Math,

 host: 'my.server.com',

 port: 10199,

 webcontext: 'remote'

]

}

JMS
Using the Java Message Service (JMS) is a common way to add synchronous and asyn‐
chronous messaging to an application, to make the application components more
loosely coupled and reliable. Spring adds support for sending and receiving messages

by using JMS topics and queues. It is common to use the org.springframe

work.jms.core.JmsTemplate helper class, which has features similar to the JdbcTem

plate JDBC helper. It manages connecting to the JMS ConnectionFactory, provides
helper methods to abstract away the rather cumbersome JMS API, and also converts

checked JMSExceptions to a hierarchy of runtime exceptions.

EJBs
Enterprise JavaBeans (EJBs) are rarely used in Grails applications, because Spring and
Grails provide lightweight replacements for most of the useful features of EJB; for ex‐
ample, Hibernate and GORM (and now NoSQL support) instead of Entity beans, Grails

services instead of stateless and stateful session beans, and the jms plugin to use JMS
instead of message-driven beans. But, if you have existing EJBs that provide useful
services, there’s no need to rewrite them unless you also need the benefits of deploying
on a lightweight container instead of a full application server, and Spring has several
integration hooks to make EJB access transparent to your code.

JMX
There are plenty of highend monitoring solutions for web applications, but JMX re‐
mains as a simple and straightforward solution for monitoring and configuring aspects
of an application using tools like JConsole (which is included with all JDK installs).

Spring offers integration with JMX through various helper classes such as org.spring

framework.jmx.export.MBeanExporter and others.

It shouldn’t be much of a surprise that there’s a Grails plugin to make using JMX even

easier: the jmx plugin significantly reduces the amount of configuration you need to do.

110 | Chapter 4: Spring

http://grails.org/plugin/jms
http://grails.org/plugin/jmx

It creates a javax.management.MBeanServer by using the Spring org.springframe

work.jmx.support.MBeanServerFactoryBean factory bean, and automatically regis‐

ters a Log4j and an org.hibernate.jmx.StatisticsService MBean (the latter only if
the Hibernate plugin is installed). In addition, it exposes any Grails service that declares

static expose = ['jmx'] and any Spring beans listed in the grails.jmx.export

Beans attribute in Config.groovy as MBeans. All public setters and getters are exposed
except for any that you exclude using the plugin’s configuration.

See the jmx plugin documentation for more details.

Email
Many applications need to send email, and the JavaMail API provides a robust imple‐
mentation of this. It’s not the easiest API to use, but luckily, the Spring support for

sending email using JavaMail makes it a lot more straightforward, and the Grails mail
plugin makes it painless to send plain-text and HTML emails, add attachments, and
even use GSP templates.

See the mail plugin documentation for more details.

Cache Abstraction
The cache abstraction feature was added to Spring in version 3.1, so applications using
Grails 2.0 or higher can use it. This is an API for caching method calls, typically those
that are slow or resource-intensive but that return the same result given the same pa‐
rameter values.

This has been implemented in Grails in plugins; there is a “core” cache plugin that

provides an in-memory implementation, and extension plugins including cache-

ehcache and cache-redis that use Ehcache and Redis, respectively, to implement the
caching logic.

Method call caching is supported in Spring beans (typically Grails services) by using

the Spring org.springframework.cache.annotation.Cacheable, org.springframe

work.cache.annotation.CachePut, and org.springframework.cache.annota

tion.CacheEvict annotations.

The core plugin also has annotations with the same names in the expectation that we
can add additional parameters above what Spring supports in the future. The plugins
also add web-tier caching for controller actions (for annotated controller methods, but

not closures) and GSPs, using the <cache:block> and <cache:render> tags.

See the documentation for the caching plugins for more details about how to use them
in your applications.

Email | 111

http://grails.org/plugin/jmx
http://grails.org/plugin/mail
http://grails.org/plugin/mail
http://bit.ly/YKmsig
http://grails.org/plugin/cache
http://grails.org/plugin/cache-ehcache
http://grails.org/plugin/cache-ehcache
http://grails.org/plugin/cache-redis
http://grails-plugins.github.com/grails-cache/

CHAPTER 5

Hibernate

Hibernate is a powerful and popular object-relational mapping (ORM) library and it
forms the basis of the standard persistence layer in Grails. Hibernate addresses the
“impedence mismatch” between object-oriented code and the relational database stor‐
age model. It also tries (and largely succeeds) in providing a mostly transparent persis‐
tent API where developers don’t need to consider the implementation details of storing
and retrieving data because that’s handled under the hood.

Mapping Domain Classes
In general, you map a domain class to each table, although it’s common to partition
tables into one or more classes (a domain class with components) and it’s also possible
to map a domain class to multiple tables with a database view. Class properties map to
database columns (which may be a foreign key to another table represented by its own
domain class in a one-to-one or many-to-one relationship) or collections representing
a one-to-many relationship with another domain class. Arrays of simple types are also
supported, as are maps.

Traditionally, Hibernate applications used XML files (typically with a .hbm.xml file ex‐
tension) to define the mapping between the code and the database. When annotations
were added to Java in version 1.5, Hibernate added a more intuitive annotation-based
mapping approach that keeps the metadata together with the code. Under the hood,

however, Hibernate creates a metamodel of the domain classes (using the org.hiber

nate.cfg.HbmBinder for HBM files and org.hibernate.cfg.annotations.Entity

Binder for annotations) that’s independent of its source.

You could create an entire Hibernate data model yourself programmatically using these
APIs directly, but that would defeat the purpose. But, that’s what GORM does for you

—it determines the data to be used to create the same metamodel objects (Persistent

Class, Table, PrimaryKey, and so on) that HbmBinder and EntityBinder do, but from

113

your application’s domain classes instead of POJOs. This is done by org.codehaus.groo

vy.grails.orm.hibernate.cfg.GrailsDomainBinder, if you’re interested in the im‐
plementation details.

The simplest domain class is just a POGO with zero or more public fields:

class Person {

 String firstName

 String lastName

}

By default, all properties are considered persistent and are mapped to the appropriate

column type in the table (e.g., String → VARCHAR, Long → BIGINT). If you have properties
that aren’t persistent (e.g., ones used for calculated or temporary values), you can exclude

them from processing by adding them to the transients list:

class Person {

 String firstName

 String lastName

 int clickCount

 private boolean clicked // private, so not considered persistent

 static transients = ['clickCount']

}

Nullability and primitive data types (int, long, boolean, etc.) do not
mix, so in most cases, be sure to use the nonprimitive versions of these

types (Boolean, Integer, Long, etc.). Primitive types are valid types for
persistent properties but are impractical for validation. Because they
get assigned a default value by the constructor (numbers default to zero

and boolean to false), it makes it impossible to know whether the
values were intentionally set to the default or they weren’t set at all. Use

nonprimitive types instead so that unset values are null and you can
report that as an error if the property is required.

In addition, if a database column is nullable but the associated domain

class field is primitive, you would see a NullPointerException when

loading instances from the database, due to autoboxing from null. It
wouldn’t be reasonable to simply assume null numbers are zero and null

booleans are false; null means that the value is not set and zero and

false are valid values. Fortunately, Hibernate won’t allow a primitive
field to have a nullable column, but this makes the metadata and the
database inconsistent.

You can create getter or setter methods, but if you create a matching pair, they’ll be
interpreted as a property and considered persistent, so you need to add the correspond‐

ing property name to the transients list:

114 | Chapter 5: Hibernate

class Person {

 String firstName

 String lastName

 int clickCount

 // ok, not considered a property

 void setSomething(boolean something) { ... }

 // ok, not considered a property

 int getSomethingElse() { ... }

 // considered a property

 String getFullName() { ... }

 void setFullName(String name) { ... }

 static transients = ['clickCount', 'fullName']

}

Like any Groovy class, you can create setter and/or getter methods for
public properties; however, be careful when doing this in domain
classes, because you can trick Hibernate into thinking your instances
have been modified when they haven’t. Hibernate caches persistent
property data to compare with the current state when flushing to de‐
termine if an instance is dirty. If you change the value when it’s set (e.g.,
converting to uppercase, or setting a default value when the persistent

value is null), then it will be seen as different from when it was retrieved
and persisted. Hibernate calls the getter methods (either yours or the
autogenerated ones that the Groovy compiler creates) to do the checks,
so returning a value that’s different from what was set will also indicate
a modification.

Dialects
Dialects are an important aspect of Hibernate and help to make your code database-
independent. SQL for querying, inserting, and updating (DML statements) tends to be
fairly standardized, but there are plenty of extensions. SQL for creating and altering
tables, columns, indexes, and other database structures often is not standardized well

at all. These differences are all managed by choosing an org.hibernate.dialect.Dia

lect for the database that you’re using. There are several standard implementations

provided with Hibernate (MySQL5InnoDBDialect, Oracle10gDialect, PostgreSQLDia

lect, H2Dialect, and so on), and there are also third-party implementations; you can

also create your own by subclassing Dialect or one of the concrete implementations.

Dialect implementations are responsible for generating the correct SQL for the active
database. This helps to keep the Hibernate API clean, because there is rarely a need to

Dialects | 115

do something differently based on which database is active. In particular, you usually
don’t need different code for accessing the database in integration tests, even if you use
the in-memory H2 database. You’re also more free to switch database implementations;
for example, if you outgrow MySQL or PostgreSQL (or find yourself with too much
cash), you can easily switch to Oracle.

Dialect Autodetection
You don’t have to specify the dialect to use, because Grails will attempt to infer it for

you. You can bypass autodetection by setting the dialect attribute in the dataSource
section of grails-app/conf/DataSource.groovy for each environment. If you don’t, Grails

registers a dialectDetector Spring bean that uses a connection from the datasource
to inspect the database metadata. This works well in general, but it’s still a good idea to
specify the dialect explicitly:

environments {

 development {

 dataSource {

 dbCreate = 'validate'

 url = 'jdbc:mysql://servername:port/dbname'

 driverClassName = 'com.mysql.jdbc.Driver'

 username = ...

 password = ...

 dialect = org.hibernate.dialect.MySQL5InnoDBDialect

 }

 }

...

}

In particular, you should specify the dialect if you’re using MySQL. The dialectDetec

tor bean will correctly detect that you’re using MySQL but it will choose MySQLDia

lect, which doesn’t specify the table engine in CREATE TABLE statements. This will result
in using nontransactional MyISAM tables if you haven’t changed the default engine type
in my.cnf (although MySQL has changed the default to InnoDB in 5.5). Because you
most likely want InnoDB tables to have support for transactions and foreign keys, you

should specify an InnoDB dialect; use MySQLInnoDBDialect for older versions and

MySQL5InnoDBDialect for version 5 and higher.

Dialect Customization
Because specifying the dialect to use is as simple as adding a property to Data‐
Source.groovy, it’s very easy to customize a dialect in Grails. For example, to always use

UTF-8 in your MySQL tables to properly support Unicode (the default is latin1), add

DEFAULT CHARSET=utf8 to your CREATE TABLE statements by overriding getTableTy

peString() in a class in src/groovy or src/java:

116 | Chapter 5: Hibernate

package com.mycompany

import org.hibernate.dialect.MySQL5InnoDBDialect

class MyDialect extends MySQL5InnoDBDialect {

 @Override

 String getTableTypeString() {

 super.getTableTypeString() + ' DEFAULT CHARSET=utf8'

 }

}

To use the boolean type instead of bit(1), which lets you use true and false literals
when you work directly with SQL and changes the values from values that don’t display

on a console to 0 and 1, add a call to registerColumnType in the constructor:

package com.mycompany

import java.sql.Types

import org.hibernate.dialect.MySQL5InnoDBDialect

class MyDialect extends MySQL5InnoDBDialect {

 MyDialect() {

 registerColumnType Types.BIT, 'boolean'

 }

}

When you use Oracle or PostgreSQL, Hibernate defaults to using a sequence for primary
key generation, because autoincrement columns aren’t supported. It only creates one
sequence for all tables though; you can customize this in a custom dialect that overrides

the getNativeIdentifierGeneratorClass method to return a SequenceGenerator
that creates a sequence for each table. In this example, the naming convention is simple:

it just prefixes the table name with seq_ to generate the sequence name, but you’re free
to use your own approach. Also, be sure to change the base class to whatever Oracle
dialect you’re using, and if you’re using PostgreSQL, the same approach will work, just

extend PostgreSQLDialect. MyDialect is based on code from http://communi
ty.jboss.org/wiki/CustomSequences:

package com.mycompany

import org.hibernate.dialect.Dialect

import org.hibernate.dialect.Oracle10gDialect

import org.hibernate.id.PersistentIdentifierGenerator

import org.hibernate.id.SequenceGenerator

import org.hibernate.type.Type

class MyDialect extends Oracle10gDialect {

 @Override

Dialects | 117

http://community.jboss.org/wiki/CustomSequences
http://community.jboss.org/wiki/CustomSequences

 Class<?> getNativeIdentifierGeneratorClass() {

 TableNameSequenceGenerator

 }

 static class TableNameSequenceGenerator extends SequenceGenerator {

 @Override

 void configure(Type type, Properties params, Dialect dialect) {

 if (!params.getProperty(SEQUENCE)) {

 String tableName = params.getProperty(

 PersistentIdentifierGenerator.TABLE)

 if (tableName) {

 params.setProperty SEQUENCE, "seq_" + tableName

 }

 }

 super.configure type, params, dialect

 }

 }

}

Hibernate Without GORM
If you haven’t used Hibernate outside of Grails before, it can be a helpful exercise to
create a basic Hibernate application to get an appreciation of how things work and what
Grails provides. We can cheat a bit and do this inside a Grails application so we don’t
need to configure all of the JAR dependencies. Create a Grails application from your
IDE or the command line:

$ grails create-app pure_hibernate

$ cd pure_hibernate

hibernate.cfg.xml
Use the create-hibernate-cfg-xml script to create a hibernate.cfg.xml file that we’ll
use to register persistent classes:

$ grails create-hibernate-cfg-xml

and rename it to hibernate_pure.cfg.xml so GORM doesn’t automatically load it (it will
be in grails-app/conf/hibernate).

Update the contents to look like this:

<?xml version='1.0' encoding='UTF-8'?>

<!DOCTYPE hibernate-configuration PUBLIC

 '-//Hibernate/Hibernate Configuration DTD 3.0//EN'

 'http://hibernate.sourceforge.net/hibernate-configuration-3.0.dtd'>

<hibernate-configuration>

 <session-factory>

118 | Chapter 5: Hibernate

 <property name='hibernate.connection.driver_class'>org.h2.Driver</property>

 <property name='hibernate.connection.url'>

 jdbc:h2:mem:hibernateDb;MVCC=TRUE

 </property>

 <property name='hibernate.connection.username'>sa</property>

 <property name='show_sql'>true</property>

 <property name='format_sql'>true</property>

 <property name='use_sql_comments'>true</property>

 <property name='hbm2ddl.auto'>create-drop</property>

 <property name='dialect'>org.hibernate.dialect.H2Dialect</property>

 <mapping resource='pure/Author.hbm.xml' />

 <mapping class='pure.Book' />

 </session-factory>

</hibernate-configuration>

Note that we have to configure database connectivity because we don’t have access to

the DataSource created from DataSource.groovy. The example is for an in-memory H2
database but feel free to change to a different supported database.

See the Hibernate documentation for more details about what properties are available.

HibernateUtil
You’ll need a utility class that configures Hibernate and makes the SessionFactory
available; create src/groovy/hibernate/HibernateUtil.groovy:

package hibernate

import org.hibernate.SessionFactory

import org.hibernate.cfg.Configuration

class HibernateUtil {

 static final SessionFactory sessionFactory

 static {

 sessionFactory = new Configuration()

 .configure('/hibernate_pure.cfg.xml')

 .buildSessionFactory()

 }

 static void shutdown() {

 sessionFactory.close()

 }

}

Hibernate Without GORM | 119

http://bit.ly/10XQT1w

Author
Create a simple POGO that will represent an author in src/groovy/pure/Author.groovy
(not in grails-app/domain):

package pure

class Author {

 Long id

 String name

}

Note that, unlike when using GORM, we have to define the id field (and version, if we
want to enable optimistic locking).

We’ll map this class using XML, so we need an Author.hbm.xml file in the pure package;
non-Java source in src/java, grails-app/conf, and grails-app/conf/hibernate are copied to
the classpath, so create grails-app/conf/hibernate/pure/Author.hbm.xml with this
content:

<?xml version='1.0'?>

<!DOCTYPE hibernate-mapping PUBLIC

 '-//Hibernate/Hibernate Mapping DTD//EN'

 'http://hibernate.sourceforge.net/hibernate-mapping-3.0.dtd'>

<hibernate-mapping>

 <class name='pure.Author' table='author'>

 <id name='id' column='id'>

 <generator class='native' />

 </id>

 <property name='name' column='name' />

 </class>

</hibernate-mapping>

Book
Create another POGO to represent a book in src/groovy/pure/Book.groovy:

package pure

import javax.persistence.CascadeType

import javax.persistence.Column

import javax.persistence.Entity

import javax.persistence.GeneratedValue

import javax.persistence.Id

import javax.persistence.JoinColumn

import javax.persistence.ManyToOne

120 | Chapter 5: Hibernate

import javax.persistence.Table

@Entity

@Table(name='book')

class Book {

 @Id @GeneratedValue

 @Column

 Long id

 @Column

 String title

 @ManyToOne(cascade=CascadeType.ALL)

 @JoinColumn(name='author_id')

 Author author

}

This class uses JPA annotations, so there’s no need for an XML mapping file. It is up to
you whether to use annotated classes or regular POGOs/POJOs that are mapped with
hbm.xml files. If you are integrating legacy code in a Grails applicaiton, you can continue
to use the files you have. If you create new classes, you can use whichever approach
works best for you.

Note that XML-mapped files are added to the Hibernate cfg.xml file using a mapping

element with the resource attribute set, and annotated classes use the class attribute.

Experimenting with the APIs
Now we can test the configuration and mappings. Start up a console with grails con

sole and execute this (using the Script → Run menu item) to create some authors:

import pure.Author

import hibernate.HibernateUtil

import org.hibernate.Session

import org.hibernate.Transaction

Session session = HibernateUtil.sessionFactory.openSession()

Transaction tx = session.beginTransaction()

Author author = new Author(name: 'Hunter S. Thompson')

session.save author

author = new Author(name: 'Douglas Adams')

session.save author

author = new Author(name: 'Tom Robbins')

session.save author

Hibernate Without GORM | 121

tx.commit()

session.close()

This should be successful, and you should see the generated SQL for the inserts into the

author table in the output.

Next, create some books referencing the authors you just created:

import pure.Author

import pure.Book

import hibernate.HibernateUtil

import org.hibernate.Session

import org.hibernate.Transaction

Session session = HibernateUtil.sessionFactory.openSession()

Transaction tx = session.beginTransaction()

Author author = session.get(Author, 1L)

Book book = new Book(title: 'Fear and Loathing in Las Vegas', author: author)

session.save book

author = session.get(Author, 2L)

book = new Book(title: "The Hitchhiker's Guide to the Galaxy", author: author)

session.save book

author = session.get(Author, 3L)

book = new Book(title: 'Still Life with Woodpecker', author: author)

session.save book

tx.commit()

session.close()

This should also be successful and generate the SQL to load the Author instances and

insert the records in the book table.

We can search with HQL to retrieve the instances:

import pure.Author

import pure.Book

import hibernate.HibernateUtil

import org.hibernate.Session

import org.hibernate.Transaction

Session session = HibernateUtil.sessionFactory.openSession()

Transaction tx = session.beginTransaction()

List authors = session.createQuery('from Author a order by a.name desc').list()

println "Author count: ${authors.size()}"

for (Author author in authors) {

 println " Author: $author.name"

}

122 | Chapter 5: Hibernate

List books = session.createQuery('from Book b order by b.title asc').list()

println "Book count: ${books.size()}"

for (Book book in books) {

 println " Book: $book.title"

}

tx.commit()

session.close()

Finally, close the SessionFactory:

import hibernate.HibernateUtil

HibernateUtil.shutdown()

This is a fairly simple example, but it does point out how much extra work you have to
do when you bypass GORM. Most of the configuration in the XML file and the anno‐
tations is done automatically by GORM for you. And the persistence code is polluted

with the calls to access a Session and start and commit a transaction. There are no

convenience methods defined on the classes (e.g., save, list, etc.) so we need to call

Session methods for those. This can be made easier with the Spring HibernateTem

plate, but it’s still a lot more work than just using GORM.

This also shows that, although it’s more work to bypass GORM and use Hibernate
directly, if you have existing Hibernate classes and code or if you need to access a feature
that isn’t exposed in GORM, you can do that easily.

The Session
The Hibernate session is the central access point for persistence with Hibernate. Grails

developers rarely interact with it directly, but GORM does to an extent and the Hiber

nateTemplate class that is used for querying uses it extensively. The session uses a JDBC

Connection that it opens on demand (so simply creating a Session doesn’t connect to
the database, only when it’s needed). It also maintains a first-level cache for instances

and mapped collections. A Session is retrieved from a SessionFactory, which also
manages the second-level caches.

All persistence is managed by the session. It has methods to retrieve individual instances

(get and load), create new or update existing instances (save, saveOrUpdate, update,

and persist), delete instances (delete), and update previously retrieved instances with

current data (merge and refresh). For more extensive queries, there are the query

methods createCriteria (for Criteria queries), createQuery (for HQL select and up‐

date queries), and createSQLQuery (for raw SQL queries).

The Session | 123

withSession
Accessing the current session in older version of Grails was somewhat convoluted; you

had to get access to the sessionFactory bean (typically with dependency injection) and

call its getCurrentSession() method. This is still valid, but it’s far more convenient

to use the static withSession method that is added to all domain classes via
metaprogramming:

Book.withSession { session ->

 session.flush()

 session.clear()

}

If you need access to a Session method that isn’t exposed by GORM, this is a convenient
way to access it.

withNewSession
withSession accesses the currently active session, but there are times when you need

a separate session to do work; you can use the withNewSession method for this:

Book.withNewSession { session ->

 // do work

}

GORM custom validators are one use case for withNewSession. Because Hibernate
flushes queued updates before executing queries, if you need to access the database to
validate one or more domain class properties, you can do the work in a new session
to avoid an untimely flush.

Open Session in View
The open session in view (OSIV) pattern is common when using Hibernate, and

Grails implements it with the org.codehaus.groovy.grails.orm.hibernate.sup

port.GrailsOpenSessionInViewInterceptor class (which extends the org.spring

framework.orm.hibernate3.support.OpenSessionInViewInterceptor Spring
class). This interceptor opens a Hibernate session at the beginning of each request, and
flushes and closes it after it’s finished.

This is primarily there for lazy-loaded one-to-many collections and many-to-one
relationships. If there wasn’t an open session, after loading the instance, it would

immediately become disconnected. This is because GORM uses an org.springframe

work.orm.hibernate3.HibernateTemplate to do the querying and it has logic to use

an existing session using SessionFactoryUtils.getSession() or create one if none is
active. When it gets an active session, it doesn’t close it because it didn’t open it, but if
it has to create one, then it will close it. This disconnects all loaded instances, so trying

124 | Chapter 5: Hibernate

to access a collection would throw an exception. Because the OpenSessionInViewIn

terceptor opens a session and registers it in a ThreadLocal (via SessionFactoryU

tils), this keeps the session active, and the collections and relationships can be resolved.

By default, Hibernate automatically pushes changes in persistent instances during a
flush. The OSIV interceptor flushes at the end of the HTTP request, so any “dirty”

instances have their changes pushed to the database even if you don’t call save(). This
surprises people who think they’re just temporarily updating values—for example, to
pass to the view to be rendered—but the changes end up being persisted (as long as
there are no validation errors).

To get around this, you can use the read() method to load an existing instance if you
only want to modify it temporarily, such as for rendering in the GSP, but don’t want

changes autopersisted because read() disables dirty checking. Another option is to call

discard() on modified instances; this disconnects the instance from the session and
no changes will be pushed to the database.

Disabling OSIV
Although it’s not recommended, if you need to you can disable the OSIV interceptor(s)

(one is created for each DataSource). Make sure you know what you’re doing though
if you decide to make this change.

The easiest way to do this is to create a no-op implementation of the WebRequestInter

ceptor interface:

package com.yourcompany.yourapp

import org.springframework.ui.ModelMap

import org.springframework.web.context.request.WebRequest

import org.springframework.web.context.request.WebRequestInterceptor

class NoopOpenSessionInViewInterceptor implements WebRequestInterceptor {

 void preHandle(WebRequest request) {}

 void postHandle(WebRequest request, ModelMap model) {}

 void afterCompletion(WebRequest request, Exception e) {}

}

and register an instance of your class as the openSessionInViewInterceptor Spring
bean in grails-app/conf/spring/resources.groovy:

import com.yourcompany.yourapp.NoopOpenSessionInViewInterceptor

beans = {

 openSessionInViewInterceptor(NoopOpenSessionInViewInterceptor)

}

Open Session in View | 125

If you use multiple datasources, you will need to create one bean for each datasource;
just add the datasource name as the bean name suffix. So, for example, if you had a

second dataSource_lookup datasource, you would register two bean overrides:

import com.yourcompany.yourapp.NoopOpenSessionInViewInterceptor

beans = {

 openSessionInViewInterceptor(NoopOpenSessionInViewInterceptor)

 openSessionInViewInterceptor_lookup(NoopOpenSessionInViewInterceptor)

}

Custom User Types
Hibernate has built-in support for many Java types:

• Numbers:

— Integer and int

— Long and long

— Short and short

— Float and float

— Double and double

• The date/time classes:

— java.util.Date

— java.sql.Date

— java.sql.Time

— java.sql.Timestamp

— java.util.Calendar

• String

• byte and Byte

• boolean and Boolean

• byte[]

• java.lang.Class

• java.util.Locale

• java.util.TimeZone

• java.util.Currency

• Any class that implements Serializable

126 | Chapter 5: Hibernate

These should suffice for most data that you store in a database, but there are times when
you need to be able to customize how a type is stored. For example, you may have a class
with multiple fields that should map to multiple columns in a table, but it’s not a can‐
didate to be a full domain class or even a component. Or, perhaps you need to store a
supported data type, but in a nonstandard way. The solution is to create a class that

implements org.hibernate.usertype.UserType (or one of the more advanced custom
type interfaces) and register it as the type handler in your domain class.

For example, if you have a need for storing an encrypted string, you could manage it
explicitly in the domain class, encrypting it when you set the value and decrypting it
when you access it. But this pollutes the class with storage implementation details that
aren’t relevant to the real function of the domain class. Delegating this responsibility to
a helper keeps things more modular.

The most important methods in the interface are nullSafeGet and nullSafeSet. These
manage the low-level details of using JDBC to convert the data type(s) from the database

into the Java data type(s) and vice versa. For example, consider this UserType imple‐

mentation that encrypts a String (e.g., to store a credit card number, but not a password,
because passwords should never be decryptable):

package com.yourcompany

import java.sql.PreparedStatement

import java.sql.ResultSet

import java.sql.Types

import org.hibernate.usertype.UserType

class EncryptedString implements UserType {

 Object nullSafeGet(ResultSet rs, String[] names, Object owner) {

 String value = rs.getString(names[0])

 value == null ? null : CryptoUtils.decrypt(value)

 }

 void nullSafeSet(PreparedStatement st, Object value, int index) {

 if (value) {

 st.setString index, CryptoUtils.encrypt(value.toString())

 }

 else {

 st.setNull index, Types.VARCHAR

 }

 }

 Class<String> returnedClass() { String }

 int[] sqlTypes() { [Types.VARCHAR] as int[] }

 Object assemble(Serializable cached, Object owner) { cached.toString() }

Custom User Types | 127

 Object deepCopy(Object value) { value.toString() }

 Serializable disassemble(Object value) { value.toString() }

 boolean equals(Object x, Object y) { x == y }

 int hashCode(Object x) { x.hashCode() }

 boolean isMutable() { true }

 Object replace(Object original, Object target, Object owner) { original }

}

nullSafeGet and nullSafeSet use the standard data marshalling approach as most

other implementations, and handling null values appropriately (note that, unlike most
other user type classes, there is no logging, because we do not want to risk exposing
information). But, instead of doing the encryption and decryption inline, they delegate
to a utility method that handles the implementation details.

You would use this in a domain class by specifying the type for the field in the mapping
block; for example:

package com.yourcompany

class CreditCard implements Serializable {

 String number

 Long userId

 String cardholderName

 Integer expirationMonth

 Integer expirationYear

 CreditCardType type

 static mapping = {

 number type: EncryptedString

 }

}

This is a somewhat contrived example, because you wouldn’t really want to handle the
logic for encrypting credit card data or other highly sensitive information. Instead of

defining your own custom data types for use cases like this, consider using the jasypt-

encryption plugin, which uses the Jasypt library. It has excellent support for strong
encryption, and many built-in custom types for persisting encrypted data in GORM
domain classes.

See the Hibernate documentation for additional information and examples. Also, you
can see examples of some fairly advanced user types in the Jasypt encryption project,
for example, in this package.

128 | Chapter 5: Hibernate

http://grails.org/plugin/jasypt-encryption
http://grails.org/plugin/jasypt-encryption
http://www.jasypt.org/
http://bit.ly/YpMgvy
http://www.jasypt.org/
http://bit.ly/XCl8vS

Optimistic and Pessimistic Locking
Hibernate supports pessimistic locking with Session.lock(). There several supported

variants, but LockMode.PESSIMISTIC_WRITE is commonly used (this is what the corre‐

sponding GORM methods use) and will execute a select ... for update query (as
long as the dialect and database support it) that will result in the row being exclusively
locked. This is a safe way of guarding access to data, but the lock must occur during a
transaction and will typically only be released when the transaction commits or rolls
back. This creates the potential for performance issues and risk of lock contention.

The alternative is optimistic locking, which doesn’t use database locking at all but instead
attempts to determine that concurrent edits have occurred. The approach Hibernate
uses for this is to add a column that maintains the current version of each row. This is

usually a sequential number but can also be a timestamp, although that will add the low
but nonzero chance of failing to detect a collision if two updates occur at the same
millisecond on a fast machine.

If two users retrieve a row with version N and both modify and save the row with
different edits, the second user’s changes will revert the first user’s changes. Like software
commits into a version control system, they need to merge their changes instead. To

detect that this has occurred, the generated update SQL will look like update <table

name> set <col1>=?, <col2>=?, ... where id=? and version=?. It’s sufficient to
only specify the primary key for the update, but by also including the version value from
when the record was retrieved, if the version has changed between the time the record
was retrieved and now, the update won’t occur (the row count for the update will be 0),
and this indicates that a concurrent modification happened. This will result in the drea‐

ded StaleObjectStateException, and the second edit should be done again after re‐
loading the record with the other user’s changes.

Grails defaults to enabling optimistic locking for all domain classes, and in general this
shouldn’t be changed. But, if you need to, for example, when mapping to a legacy
database or for tables that aren’t updated and therefore have no risk of concurrent edits,

you can disable it with version false:

class ZipCode {

 String value

 static mapping = {

 version false

 }

}

If you have a rare application that doesn’t use optimistic locking in any domain classes
(or where it’s more common to disable it than not), you can change the default and
disable it in Config.groovy:

Optimistic and Pessimistic Locking | 129

grails.gorm.default.mapping = {

 version false

}

Any domain classes that do use optimistic locking can reenable it in the mapping block:

static mapping = {

 version true

}

Accessing the Session’s Connection
The various object-oriented querying approaches provided by Hibernate are sufficient
in most cases, but when you need to execute a SQL query or update, it is possible. The

Session class has a connection() method that can be used to get the current JDBC

Connection associated with the session, but it’s now deprecated and scheduled for re‐

moval in Hibernate 4.0. The replacement approach is to use the doWork method with

an implementation of the Work interface. Using the groovy.sql.Sql class makes work‐
ing with JDBC significantly easier:

import groovy.sql.Sql

import java.sql.Connection

import org.hibernate.jdbc.Work

Author.withSession { s ->

 s.doWork new Work() {

 void execute(Connection c) {

 String sqlString = ...

 new Sql(c).eachRow sqlString, {

 ...

 }

 }

 }

}

schema-export
Whether you’re creating a new database as part of a greenfield application or mapping
to an existing legacy database, you must ensure that the database has the correct struc‐

ture and that Hibernate maps to it correctly. The schema-export script is very conve‐
nient for verifying your domain class mappings.

If you run the script without any arguments it will generate the DDL that Hibernate
would use to create a new database:

$ grails schema-export

By default, the output is written to a file in target/ddl.sql but you can specify a file path:

$ grails schema-export /path/to/file

130 | Chapter 5: Hibernate

http://bit.ly/15gaeRo

You can also execute the drop and create statements to create your database schema

with the export parameter:

$ grails schema-export export

and like any Gant script, you can run it in any environment to use the database settings
for the specified environment:

$ grails prod schema-export export

$ grails -Dgrails.env=staging schema-export export

The script is also multiple-datasource aware; specify the datasource to use with the

datasource parameter:

$ grails schema-export export -datasource=lookup

SQL Logging
There are two ways to see the generated SQL that Hibernate executes for your queries.

The simpler way is to add logSql=true to the dataSource section for any environment
(or the top-level section so it applies to all environments) in DataSource.groovy:

dataSource {

 dbCreate = ...

 url = ...

 logSql = true

}

This works but is limited, because it just writes to stdout. So, for example, if you deploy
to Tomcat, your catalina.out file will become huge fairly quickly.

The better option is to use Log4j logging. Hibernate logs SQL statements using the

org.hibernate.SQL logger at the debug level. PreparedStatement setters are logged by

the BasicBinder class at the trace level. So you can enable one or both of these in the

log4j section for each environment in Config.groovy:

log4j = {

 error 'org.codehaus.groovy.grails',

 'org.springframework',

 'org.hibernate',

 'net.sf.ehcache.hibernate'

 debug 'org.hibernate.SQL'

 trace 'org.hibernate.type.descriptor.sql.BasicBinder'

}

Note that the type logging can be verbose and should only be enabled when you’re having
issues.

This isn’t much better than dumping everything to stdout, because it actually does

exactly that. By default, Grails configures stdout appender, so all of the logging will go

SQL Logging | 131

there. But now that we’re using Log4j, we have more options. For example, we can
partition the log messages into multiple logfiles, such as one for SQL logging and one
for everything else (and both configured as rolling loggers with a maximum file size to
keep the logfile(s) from becoming gigantic):

log4j = {

 appenders {

 rollingFile name: 'logfile', maxFileSize: '512KB', maxBackupIndex: 10,

 file: (System.getProperty('catalina.base') ?: 'target') +

 '/logs/application.log',

 layout: pattern(conversionPattern:

 '%d{dd MMM yyyy HH:mm:ss} %p [%c] - <%m>%n')

 rollingFile name: 'fileSQL', maxFileSize: '512KB', maxBackupIndex: 10,

 file: (System.getProperty('catalina.base') ?: 'target') +

 '/logs/sql.log',

 layout: pattern(conversionPattern:

 '%-27d{dd/MMM/yyyy HH:mm:ss Z} %-10r [%t] - %m%n')

 }

 error 'org.codehaus.groovy.grails',

 'org.springframework',

 'org.hibernate',

 'net.sf.ehcache.hibernate'

 debug additivity: false, fileSQL: 'org.hibernate.SQL'

 trace additivity: false, fileSQL:

 'org.hibernate.type.descriptor.sql.BasicBinder'

 root {

 warn 'logfile'

 }

}

This configuration is also somewhat environment-aware for the file location. When

using run-app, the catalina.base system property isn’t set, so the files get written to

the target/logs/ directory. If you deploy to Tomcat, then catalina.base will be available,
and files will get written to Tomcat’s logs directory along with the other logfiles.

Using either approach, you can turn on SQL formatting and/or SQL comments with
Hibernate properties in DataSource.groovy. To enable SQL formatting (to pretty-print

the SQL on multiple lines with indentation), add format_sql=true, and to enable SQL

comments (so you can know what triggered a query), add use_sql_comments=true,

both in the hibernate section:

hibernate {

 cache.use_second_level_cache = ...

 cache.use_query_cache = ...

132 | Chapter 5: Hibernate

 cache.region.factory_class = ...

 format_sql = true

 use_sql_comments = true

}

Along these lines, there are a few plugins that can help with SQL query monitoring.

The grails-melody plugin integrates the JavaMelody library, the newrelic plugin in‐
tegrates New Relic, and the Mini Profiler plugin is a newer pure Grails plugin.

Proxies
Hibernate proxies are a convenient way to support lazy loading. For example, in this

simple domain class, the author property is lazy-loaded:

class Book {

 String title

 Author author

}

and, in this class, the books property (a Set of Book instances) is lazy-loaded:

class Author {

 String name

 static hasMany = [books: Book]

}

This means that when you retrieve a Book, it will load the regular properties (in this case

just title), but the author property will actually be an instance of a dynamically gen‐

erated (using Javassist) subclass of your Author class. This proxy instance will have the

id set, and any method call (or property access, which would call the corresponding

getter method) other than getId will trigger a database call to load the Author data.

The books collection in the Author class will behave similarly. It’s not loaded initially

along with the other data (name, in this case), but the collection (a lazy-aware instance

of PersistentSet, or PersistentList if you configured the property as a List) will
populate itself from the database as soon as you access its contents or call a method that

depends on the data in the collection (e.g., size()).

This can be a significant performance booster, because you don’t need to worry about
loading lots of data just to access a few properties of an instance. If everything were
eager, it would be possible to load the entire database into memory depending on the
mappings between domain classes.

The load() method (described in “load()” on page 154) is another Hibernate feature that
uses proxies.

Proxies | 133

http://grails.org/plugin/grails-melody
https://code.google.com/p/javamelody/
http://grails.org/plugin/newrelic
https://newrelic.com/
http://grails.org/plugin/miniprofiler
http://www.jboss.org/javassist

equals, hashCode, and compareTo
One thing to be aware of when using proxies is that you need to implement equals (or

compareTo, if you implement Comparable) and hashCode in domain classes that will be
stored in collections. If you don’t, nonproxy instances and proxy instances with the same

data will not be considered the same, because the default implementation of equals only

returns true if the instances are the same (==, in the Java sense).

This isn’t a severe problem, because nonproxied objects in the Hibernate session will be
used instead of creating proxy instances. For example, if an instance would be a proxy

in general (e.g., when using the load() method, or instances in a unidirectional col‐
lection), but it’s already in the cache as as an unproxied instance, then that unproxied
instance be returned.

Where it is problematic is when mixing detached or nonpersistent instances with per‐

sistent instances. For example, if you store a Book instance in the HTTP session (in
general, not a good idea), it will be detached from the Hibernate session that loaded it.

If you then were to add it to a books collection of an Author that already contains the

corresponding persistent instance, it will be added again if you have no hashCode and

equals methods:

def book = session[bookKeyName]

def author = Author.get(authorId)

author.addToBooks(book)

author.save()

This will fail at the save() call for various reasons, but would have been a no-op with

proper hashCode and equals methods.

Grails doesn’t implement any of these methods for you, because there’s no sensible
default implementation; you certainly don’t want to include every property. Because the
implementation depends on business rules, you need to implement the methods your‐
self just like you would in a non-Grails application.

The Commons Lang project has two convenience classes to help implementing hash

Code and equals methods, HashCodeBuilder and EqualsBuilder:

import org.apache.commons.lang.builder.EqualsBuilder

import org.apache.commons.lang.builder.HashCodeBuilder

...

@Override

boolean equals(other) {

 if (is(other)) {

 return true

 }

 if (!(other instanceof Book)) {

134 | Chapter 5: Hibernate

 return false

 }

 new EqualsBuilder()

 .append(title, other.title)

 .append(author, other.author)

 .isEquals()

}

@Override

int hashCode() {

 new HashCodeBuilder()

 .append(title)

 .append(author)

 .toHashCode()

}

You can also use the @EqualsAndHashCode annotation in Groovy classes, which uses an

AST transformation to add an implementation of the hashCode and equals methods
into the bytecode of the annotated class:

import groovy.transform.EqualsAndHashCode

@EqualsAndHashCode(includes='title,author')

class Book {

 String title

 String author

}

Caching
The default second level cache provider in Grails is Ehcache, and it’s a good default; it
should handle your needs in most applications. You can (and should) customize the
caching behavior per cache and set default values. You don’t have to do anything (other

than enabling caching in DataSource.groovy with the hibernate.cache.use_sec

ond_level_cache setting), but it’s a good idea to look at the caching requirements on a
case-by-case basis and tune as needed.

Customizing the behavior is simple—just create an ehcache.xml file in the root of your
classpath. Files in grails-app/conf and non-Java files in src/java are copied to the class‐
path, so either is a good choice. See http://ehcache.org/ehcache.xml for a well-
commented example file that has a lot of useful information to get you started. This is
the same file as the ehcache-failsafe.xml that’s in the Ehcache JAR, which provides the
default values if Ehcache doesn’t find an ehcache.xml file.

<defaultCache

 maxElementsInMemory="10000"

 eternal="false"

 timeToIdleSeconds="120"

Caching | 135

http://ehcache.org/ehcache.xml

 timeToLiveSeconds="120"

 overflowToDisk="true"

 maxElementsOnDisk="10000000"

 diskPersistent="false"

 diskExpiryThreadIntervalSeconds="120"

 memoryStoreEvictionPolicy="LRU"

/>

Examples
Create these domain classes:

package caching

class Book {

 String title

 static mapping = {

 cache true

 }

}

package caching

class Author {

 String name

 static hasMany = [books: Book]

 static mapping = {

 cache true

 books cache: true

 }

}

Make sure that these settings are configued in DataSource.groovy:

hibernate {

 cache.use_second_level_cache = true

 cache.use_query_cache = true

 format_sql = true

 use_sql_comments = true

}

The settings are fairly self-explanatory: cache.use_second_level_cache enables

second-level caching overall, cache.use_query_cache enables the query cache (but

doesn’t automatically cache any queries), format_sql pretty-prints the SQL on multiple

lines to make it easier to read, and use_sql_comments adds comments to the SQL so
you can see what triggered that query. There will also likely be other settings in this

block (e.g., cache.region.factory_class).

136 | Chapter 5: Hibernate

Run a Grails console (grails console from the command line or via your IDE).

Enable statistics gathering by running:

def statistics = ctx.sessionFactory.statistics

statistics.statisticsEnabled = true

For the rest of the examples, be sure to include the imports for the domain classes:

import caching.Book

import caching.Author

Create a new book:

new Book(title: 'book 1').save()

Retrieve the instance you created by its ID using get() and you’ll see the expected SQL

(essentially just select * from book where id=1 with the variables fully enumerated
and with random names for uniqueness):

println Book.get(1)

Rerun this, and it will print the instance out again, but this time note that there’s no SQL
in the output. This is because the instance was loaded from the second level cache,

because get() always uses the instance cache, and domain-level caching is enabled for

this class by the cache true mapping entry.

Retrieve the instance by using a dynamic finder:

println Book.findAllByTitle('book 1', [cache: true])

and you’ll see the expected SQL (essentially select * from book where title=?). If
you rerun that command, you won’t see any SQL this time. This is because the IDs of
instances in cached queries are stored in the query cache, and query caching is enabled

for the query by [cache: true]. The IDs aren’t enough to avoid the SQL query to get
the instance data, but the instances are cached in the instance cache, so there’s no
database access required at all for the second and subsequent queries.

You can peek into the query cache with this code snippet:

ctx.sessionFactory.queryCache.region.toMap().each { k, v ->

 println "Cache entry: key=$k\nvalue=$v"

}

The map keys are org.hibernate.cache.QueryKey instances (the significant data in

this case being the query SQL and the query parameters), and the values are Array

List instances where the first item is the timestamp of when the data was cached and
the remaining items are the IDs of the instances.

We can do similar queries for an Author. Create an instance:

new Author(name: 'author 1').save()

Caching | 137

and retrieve this one with a finder first instead of get:

println Author.findAllByName('author 1', [cache: true])

The SQL is as expected. Now, if we retrieve the instance using get(), there’s no SQL:

println Author.get(1)

because as with the book examples, the query cache stores the ID and puts the instance

in the instance cache. Rerun the finder or the get() call and neither will go to the
database.

We enabled collection caching of the books collection in the Author class (with the

books cache: true entry in the mapping block) and can see that by adding the book
to the author’s collection:

Author.get(1).addToBooks(Book.load(1)).save()

and reloading the instance and retrieving the books collection:

Author.withTransaction {

 println Author.get(1).books

}

We need to use withTransaction or something similar to keep the instance connected

to the Hibernate session that loaded it so the Book collection can load (it’s lazy-loaded
because we didn’t override the default).

Run that again, and you won’t see any SQL. The behavior is similar to the query cache;
the collection IDs are cached in the collection cache, and the instances are cached in

the Book instance cache.

The cache region name for a domain class is the full class name, so you can also peek
at the instance caches for domain classes using code like this:

ctx.sessionFactory.getSecondLevelCacheRegion(Book.name).toMap().each { k, v ->

 println "Cache entry: key=$k\nvalue=$v"

}

where Book.name is a shortcut for Book.class.getName(); replace it with the names of
other domain classes that use caching.

The cache region name for a cached collection is the containing class’s full name plus

the collection field name, so you would inspect the Author books collection cache with:

def region = ctx.sessionFactory.getSecondLevelCacheRegion(Author.name + '.books')

region.toMap().each { k, v ->

 println "Cache entry: key=$k\nvalue=$v"

}

Note that the caches may be empty or not have all of the data you expect depending on
when you triggered storing the data and the cache expiration duration (which defaults
to 120 seconds).

138 | Chapter 5: Hibernate

Caching API
You can use Hibernate’s caching API to inspect and manipulate the various caches. These

methods are available from the SessionFactory; call the getCache() method to get the

org.hibernate.Cache instance that manages the various caches.

evicting

Use the Cache.evictEntityRegion(Class) method to remove all cached instances for

the specified domain class, or Cache.evictEntity(Class, Serializable) to remove
a single instance by its ID.

Use the Cache.evictCollectionRegion(String) to remove all cached mapped col‐

lections for a domain class. For example, given an Author class with a books collection

(static hasMany = [books: Book]), you would call:

sessionFactory.cache.evictCollectionRegion(Author.name + '.books')

because the region name for a cached collection is the containing class’s full name plus
the collection field name.

evictCollectionRegion removes all cached collections in the class; to remove just one

instance’s collection, use evictCollection and the Author ID:

sessionFactory.cache.evictCollection(Author.name + '.books', 123L)

Be careful when calling API methods that take a domain class ID.

GORM does some type conversions for you (e.g., the get method will

accept a String or any numeric type and convert it to the actual ID type,

typically Long), but this isn’t the case elsewhere. If your domain class

ID type is Long (the default, if you haven’t overridden it), then be sure

to pass long values, such as Cache.evictEntity(Book, 123L) and not

Cache.evictEntity(Book, 123), where 123 is an int and won’t result
in an exception, but won’t evict anything either.

Accessing caches

You can access the various caches from the SessionFactory. To get the org.hiber

nate.cache.Region instance for a particular second-level cache, use SessionFacto

ry.getSecondLevelCacheRegion(String).

The parameter is the full domain class name: def region = sessionFactory.getSe

condLevelCacheRegion("com.foo.bar.Book") or def region = sessionFacto

ry.getSecondLevelCacheRegion(Book.name).

Caching | 139

You can get a Map of all of the second-level cache regions with SessionFactory.getAll

SecondLevelCacheRegions. The keys are Strings, and are the full domain class name
for class caches or the full class name plus the collection field name for collection caches,

and the values are Region instances.

The query cache (an org.hibernate.cache.QueryCache instance) is available from the

SessionFactory.getQueryCache() method, and the timestamps cache that maintains

the last updated time for various tables to coordinate query timeouts (an org.hiber

nate.cache.UpdateTimestampsCache instance) is available from the SessionFacto

ry.getUpdateTimestampsCache() method.

Query Caching Considered Harmful?
Query caching seems like a good idea, and it is in many cases, but it’s not guaranteed to
help performance and can actually hurt performance. Alex Miller’s blog post “Hibernate
query cache considered harmful?” points out some interesting issues of which you
should be aware.

The primary issue with the query cache is that Hibernate has to be fairly pessimistic
when managing it. It’s computationally complex to determine if a cached query result
would be affected by saving, updating, or deleting a domain class instance. And, even
if that were implemented, a database trigger could affect data in unexpected ways. So,
Hibernate just assumes that a change could affect cached results and purges them. This
means that read-only and read-mostly domain classes might be good candidates for
query caching, but others that write to the database often will constantly be clearing all
cached queries that have instances of that type. You can see that it wouldn’t take many
writes to completely defeat the savings from caching, and even make queries slower
than always going directly to the database.

In general, you can enable query caching by setting the hiber

nate.cache.use_query_cache property in grails-app/conf/DataSource.groovy to true,
but this doesn’t automatically enable the cache for individual queries. You need to ex‐
ecute each query with caching enabled, and it’s slightly different for each approach. For
example, to cache a dynamic finder, the syntax is:

Book.findAllByTitle(title, [cache: true])

The syntax for a criteria query is:

Book.withCriteria {

 eq 'title', title

 cache true

}

and for HQL queries with executeQuery, it’s:

Book.executeQuery('from Book b where b.title=:title',

 [title: title], [cache: true])

140 | Chapter 5: Hibernate

http://tech.puredanger.com/2009/07/10/hibernate-query-cache/
http://tech.puredanger.com/2009/07/10/hibernate-query-cache/

In the first few Grails 2.0.x releases, query caching was enabled by default for all queries;

this is configured by the grails.hibernate.cache.queries option in grails-app/conf/
Config.groovy. Given the performance risks of always using query caching, I recommend

you disable this property by setting it to false and explicitly cache individual queries
only for cases where you’re comfortable that there will be a performance benefit. The

default was changed to false in later versions.

Note that the query cache stores IDs, not whole instances. This means that you will save
the cost of executing the query in the database, but Hibernate will use the cached IDs
to load individual instances for the query result. If you’ve also enabled second-level
caching for your query-cached domain classes, you will further minimize database ac‐
cess. For example, with second-level caching disabled, the finder example above will

generate SQL similar to select * from book where title=? for the first call and SQL

similar to select * from book where id=? for the second. Caching instances in the
instance cache makes the second database call unnecessary.

HQL
Dynamic finders, criteria queries, and the new where queries in Grails 2.0 tend to be
the most popular approaches to querying in Grails, but I find HQL to be more readable
and intuitive, having done a lot of SQL work in the past. One argument for criteria
queries and against HQL is in the case where you dynamically build up the query, such
as when presenting a search screen for your users where most of the fields are optional.
But we’ll see that given how GORM integrates HQL querying, even that becomes nearly
as clean with HQL and criteria.

The find, findAll, and executeQuery static GORM methods all support HQL, but I

tend to use executeQuery (and executeUpdate for update and delete operations).

executeQuery always returns a List of results, even if you specify a limit of one result.

In fact, the List is a regular java.util.ArrayList; it’s not a Hibernate-specific List
implementation like the one used to model ordered collections in domain classes

(PersistentList) so you’re free to modify the contents.

Note that like withTransaction, withSession, and withNewSession, the execute

Query and executeUpdate methods can be called on any arbitrary domain class, because
the methods are independent of the class on which they’re defined.

executeQuery
There are five variants of executeQuery; if the query isn’t parameterized, then you can
just execute a query for the HQL string:

def roles = Role.executeQuery('select r from Role r order by r.name')

HQL | 141

http://bit.ly/XN719q
http://bit.ly/YKnx9M
http://bit.ly/11hmjkP
http://bit.ly/17BB8lV

If the query is parameterized, you can use ? characters like in SQL queries and provide

a List of parameter values:

String loginName = ...

def users = User.executeQuery(

 'from User u where u.username=? or u.email=?',

 [loginName, loginName])

or you can use named parameters (which are significantly more readable) and provide

a Map of parameter values keyed by the names specified in the query:

String loginName = ...

def users = User.executeQuery(

 'from User u where u.username=:login or u.email=:login',

 [login: loginName])

Note here that, because the named parameter is repeated, it only occurs once in the
parameter map.

Both parameter styles support a Map of parameters to customize the results or behavior
of the query:

max

Limits the maximum number of records to return (typically for pagination)

offset

Specifies the offset position into the results (typically for pagination)

readOnly

If true, will return results that are not dirty-checked and whose snapshots of per‐
sistent state are not maintained

fetchSize

Specifies the fetch size for the underlying JDBC query

timeout

Specifies the timeout for the underlying JDBC query

flushMode

Overrides the current session flush mode

cache

If true, will use the query cache

Query Syntax
The syntax of HQL queries is similar to that of SQL (select … from … where …). Most
of the same constructs from SQL are supported in HQL, with the significant difference
being that you work with class and property names, never table or column names. Also,
it’s rare to explicitly join in HQL (although there are reasons to in certain cases), because

142 | Chapter 5: Hibernate

Hibernate knows the relationships between your classes and uses those to create joins
in the generated SQL.

When selecting all elements from a query, the select keyword is often optional, so

select u from User u ... and from User u ... are equivalent. A case where it is
required is when you have a join but only want to return one of the joined types, such

as select u from User u, Role r where

These examples presume that there is a User domain class; it should be in a package,
but there’s rarely a need to include the full class name with package, because GORM
defaults to autoimporting all classes. If you have two domain classes with the same name

in different packages, this will fail, so you must disable autoimport in the mapping block:

static mapping = {

 autoImport false

}

and then use the full class name, such as from com.yourcompany.User u You can

shorten this to from $User.name u ... if the HQL string is a GString, because

User.name is the equivalent of User.class.getName().

Report Queries
Most queries return domain class instances, but it’s possible to return specified prop‐
erties. This type of query is commonly referred to as a “report query,” because it’s often
used when generating reports instead of the more common case where you’re updating
data or using it to render HTML responses.

Single properties

If you select a single property, the return type will be a List of that type; for example:

def firstNames = Author.executeQuery('select a.firstName from Author a')

will return a list of strings.

Multiple properties

If you select multiple properties, the return type will be a List of Object[] arrays; for
example:

def names = Author.executeQuery('select a.name, a.age from Author a')

will return a list of Object[] where the first array element is a string with the name, and

the second array element is the age (an integer or whatever numeric type the age prop‐
erty has).

HQL | 143

new list

You can return a List of List instances by using the new list construct:

def names = Author.executeQuery(

 'select new list(a.name, a.age) from Author a where ...')

You can also build object instances as long as the specified class has a constructor that
is compatible with the query (the class can be a POJO or a POGO, it doesn’t need to be

a domain class). These queries will return a List of instances of the specified class:

def names = Author.executeQuery(

 'select new Address(a.street, a.city, a.state, a.zip) from Author a where ...')

This example would require a constructor similar to:

Author(String street, String city, String state, String zip) {

 ...

}

and, if Author is a domain class, you must additionally add a default constructor:

Author() {}

because the compiler only adds a default constructor if there are no constructors in your
code, and the default constructor is required by Hibernate.

And, finally, you can return a List of Map instances by using the new map construct; the
map keys will be the alias names defined in the HQL:

def names = Author.executeQuery(

 'select new map(a.name as fullName, a.age as age) from Author a where ...')

Aggregate Functions
Several aggregate functions on class properties are supported:

• avg(...)

• sum(...)

• min(...)

• max(...)

• count(*)

• count(...)

• count(distinct ...)

• count(all ...)

144 | Chapter 5: Hibernate

Expressions
There are many expressions supported in HQL where clauses:

• Mathematical operators: +,-, *,/

• Binary comparison operators: =, >=, <=, <>, !=, like

• and, or, not

• in, not in, between, is null, is not null, is empty, is not empty, member

of, not member of

• Date and time functions: current_date(), current_time(), current_time

stamp(), second(...), minute(...), hour(...), day(...), month(...),

year(...)

• EJB-QL 3.0 functions: substring(), trim(), lower(), upper(), length(), lo

cate(), abs(), sqrt(), bit_length(), mod()

• Collection functions: size(), minelement(), maxelement(), minindex(), maxin

dex(), elements()

Collections
You can work with collections directly like you would in Groovy code, and also use joins

to include collections in the select or where clause; for example:

def newAuthors = Author.executeQuery(

 "select a from Author a where a.books is empty")

def prolificAuthors = Author.executeQuery(

 "select a from Author a where size(a.books) > 10")

def grailsAuthors = Author.executeQuery(

 "select a from Author a join a.books as book " +

 "where lower(book.title) like '%grails%'")

Book book = ...

def author = Author.executeQuery(

 "select a from Author a where :book in elements(a.books)", [book: book])

Collections Performance
As we saw in Chapter 3, GORM uses mapped collections to map many-to-one and
many-to-many relationships. Unfortunately, although this is convenient, it isn’t the best

approach for performance. This is because the hasMany declaration adds a Set property

containing the OrderItem instances. A Set guarantees uniqueness, and to enforce this,
Hibernate has to load all of the other instances from the database to check whether the

Collections Performance | 145

new instance is already there (or equivalent to one based on hashCode and equals
checks). The collection defaults to being lazy-loaded, but accessing its contents triggers
a full load from the database.

The problem is the same if you change the collection type to List:

class Purchase {

 Date purchaseDate

 List orderItems

 // other properties

 static hasMany = [orderItems: OrderItem]

}

because the List order must be maintained, so again all of the existing instances will be
loaded. If you enable SQL logging as described above, you will see all the unexpected
database activity.

The persistent collection instances are dirty-aware Hibernate classes so Hibernate can
detect when an instance is added to or removed from a collection and make the corre‐
sponding changes in the database. But by inverting the ownership (in traditional
Hibernate applications, collections are usually “inverse” collections that don’t drive per‐
sistence), we’ve added these extra collection maintentance costs.

In addition, even though we’re just attempting to store a new OrderItem instance, be‐

cause the collection is a property of the Purchase class, the version of the Purchase will
be incremented. This means that concurrent changes run a fairly high risk of an opti‐

mistic locking exception for the Purchase.

Mapping a many-to-many relationship is similar, because both sides have a hasMany
property representing the mapped collection.

Changing the type to a Hibernate Bag (which has no uniqueness or order guarantees)
would seem to be a solution:

class Purchase {

 Date purchaseDate

 Collection orderItems

 static hasMany = [orderItems: OrderItem]

 // other properties

}

but this still has issues; see my “Hibernate Bags in Grails 2.0” blog post for more details
about bags.

The Solution
I described this issue at SpringOne/2GX in 2010; you can watch the talk online, and you
can also see this discussed in my blog post that addresses these issues and has sample
code and a PDF of an earlier presentation.

146 | Chapter 5: Hibernate

http://burtbeckwith.com/blog/?p=1029
http://www.infoq.com/presentations/GORM-Performance
http://burtbeckwith.com/blog/?p=169

Once you have determined that the number of elements in a mapped collection will be
a performance concern (there is no standard number for this, it depends on your use
cases), you can address the issue by simply not using mapped collections. You will lose
some convenience, but it is relatively easy to regain a lot of it.

The solution for the OrderItem/Purchase many-to-one mapping is to remove the

hasMany in Purchase, replace the belongsTo in OrderItem with a reference to the own‐

ing Purchase—for example, Purchase purchase. This will result in the same database
structure (unless you were using a join table, which is rare in many-to-one), because

there is still a foreign key from the order_item table to the purchase table. Saving an

OrderItem instance changes, from adding it to the orderItems collection in Purchase

to setting the purchase reference in the OrderItem and saving it directly. This will be
more efficient and is arguably more intuitive.

One thing that is lost in this approach is a convenient way to get all of the OrderItem

instances associated with a Purchase, but that’s easy to get back: add a method in the

Purchase class that returns OrderItem.findAllByPurchase(this). You also lose

cascaded deletes if you had specified the dependsOn property, but it’s simple enough

to delete a Purchase in a transactional service method that deletes the associated Or

derItem instances first.

The fix for many-to-many is more involved, but not too bad. Ordinarily, Grails devel‐
opers don’t think much about the join table that links the two “many” tables, because
it’s transparent in the code. But you can map a domain class to that table, and it just
needs two properties: foreign keys for each of the other tables. If the primary key is

defined as composite and composed of these two foreign keys, the table structure will
be the same as what Grails was using; this makes data migration a no-op. There is a bit
more work involved, because Hibernate requires that the join table domain class im‐

plement Serializable and have well-defined equals and hashCode methods. You can
see an example of this in the previously referenced presentation, and if you’re using the

spring-security-core plugin, you already have an example in your application, be‐

cause the UserRole class uses exactly this approach.

Session.createFilter()
Session.createFilter() is a useful method for working with collections. Because
working with collections is a double-edged sword (they help performance by being lazily
loaded and not incurring database access until they’re explicitly accessed, but fully

initialize when loading), it is convenient to use createFilter to access a subset of a
collection. For example, you can use it to determine the number of elements in a col‐
lection without initializing the collection. This would make a convenient utility method:

class Branch {

 String name

Session.createFilter() | 147

 static hasMany = [visits: Visit]

 int getVisitCount() {

 visits == null ? 0 : withSession {

 it.createFilter(visits, 'select count(*)').uniqueResult()

 }

 }

}

You can also use it to retrieve some of the items in a mapped collection without loading
the whole collection. It’s easy to retrieve a page of the collection (this makes more sense

if the collection is a List) with Session.createFilter() (you can also use a query,
either criteria or HQL, but that’s more involved):

class Branch {

 String name

 List visits

 static hasMany = [visits: Visit]

 List<Visit> getVisitsByPage(int pageSize, int pageNumber) {

 Branch.withSession { session ->

 session.createFilter(visits, '')

 .setMaxResults(pageSize)

 .setFirstResult(pageSize * pageNumber)

 .list()

 }

 }

}

Custom Configurations
GORM exposes a lot of configuration options in the mapping block of domain classes,
but not everything that’s configurable in Hibernate is available as a GORM option. In

those cases, you can make the changes with a custom Configuration class. By default,

Grails uses an instance of GrailsAnnotationConfiguration, and your best bet is to
subclass that to retain its functionality.

One common approach is to override the secondPassCompile() method, because at
that point, the metadata will have been configured and you can customize it as needed.
It’s also possible to customize the generated DDL statements used to create or update

the database (depending on your dbCreate setting) by overriding generateSchema

CreationScript(), generateDropSchemaScript(), and generateSchemaUpdate

Script(). You can customize the Settings instance that’s used to configure much of

Hibernate by overriding the buildSettings(Properties) method. Any of the public
or protected methods in the class are candidates for overriding; it’s a good idea to browse
the source of the class to understand where the various hooks are.

148 | Chapter 5: Hibernate

http://bit.ly/138x2hE

To create your own version, subclass GrailsAnnotationConfiguration (either in src/

java or src/groovy) and register it in the dataSource block(s) for whichever environ‐
ments should use it (register it in the global section if all environments share one):

dataSource {

 pooled = true

 driverClassName = '...'

 username = '...'

 password = '...'

 configClass = 'com.yourcompany.yourapp.YourConfigurationClassName'

}

As an example, let’s look at how to specify the names of the foreign keys for many-to-
one relationships. Given a simple trio of classes to model a music collection:

package music

class Artist {

 String name

}

package music

class Album {

 Artist artist

 String name

}

package music

class Track {

 Album album

 String name

}

we’ll have two foreign keys; one for the album → artist relationship and one for the track

→ album. If you create these domain classes and run grails schema-export, you’ll see
that the generated DDL contains statements like these:

alter table album add constraint FK5897E6F2551B863

foreign key (artist_id) references artist;

alter table track add constraint FK697F14B63AA2231

foreign key (album_id) references album;

When debugging database issues, cryptic names like FK5897E6F2551B863 and

FK697F14B63AA2231 are next to useless. You can specify the names in hbm.xml files or
in the corresponding annotations, but it’s not an option with GORM. But that’s simple
to remedy:

package programming.grails

import org.apache.commons.collections.map.MultiKeyMap

Custom Configurations | 149

import org.codehaus.groovy.grails.orm.hibernate.cfg.GrailsAnnotationConfiguration

import org.hibernate.MappingException

import org.hibernate.cfg.Settings

import org.hibernate.dialect.Dialect

import org.hibernate.mapping.ForeignKey

import org.hibernate.mapping.PersistentClass

import org.hibernate.mapping.RootClass

class MyConfiguration extends GrailsAnnotationConfiguration {

 private boolean alreadyProcessed

 private MultiKeyMap fkNames = new MultiKeyMap()

 MyConfiguration() {

 fkNames.put 'music.Track', 'music.Album', 'FK_TRACK_ALBUM'

 fkNames.put 'music.Album', 'music.Artist', 'FK_ALBUM_ARTIST'

 }

 protected void secondPassCompile() throws MappingException {

 super.secondPassCompile()

 if (alreadyProcessed) return

 def rootClasses = classes.values().findAll { it instanceof RootClass }) {

 for (RootClass rc in rootClasses) {

 for (ForeignKey fk in rc.table.foreignKeyIterator) {

 String fkName = fkNames.get(rc.className, fk.referencedEntityName)

 if (fkName) fk.name = fkName

 }

 }

 alreadyProcessed = true

 }

}

Here we store the foreign key names in a MultiKeyMap using the two class names as a

key, and loop through the ForeignKey instances looking for matches. If we find one, we
update the name.

Mapping Views and Subselect Classes
It is typical to have a one-to-one mapping between tables and domain classes, especially
in greenfield projects where the developers are able to design the database. But you are
not restricted to getting all of the data for a domain class from a single table, and you
don’t need to map every column in a table.

Database views are a convenient way to aggregate data within a table or across multiple
tables, and treat it like a physical table. Mapping a domain class to a view isn’t directly
supported but it’s not much work to configure.

150 | Chapter 5: Hibernate

Consider this simple data model:

package programming.grails

class Organization {

 String name

 // other unrelated fields

}

package programming.grails

class AuthUser {

 String username

 String password

 Organization organization

 // other unrelated fields

}

where a user in the system has a username and a password to authenticate, and is as‐
sociated with an organziation. It would be convenient to map a domain class that rep‐
resents an active user in the system but doesn’t know about the password field because
it’s only needed when authenticating, and has access to the organization’s name but not
the other unrelated data:

package programming.grails

class UserInfo {

 String name

 String orgName

}

But, if you create this domain class as it stands, Hibernate will expect a user_info table;
there’s no mapping between the class and the tables that it needs to refer to. That map‐
ping can come from a view (this syntax is an example and won’t work for all databases):

CREATE OR REPLACE VIEW v_user_info AS

SELECT u.name, u.id, u.version, o.name org_name

FROM auth_user u, organization o

WHERE u.organization_id = o.id

Now we can add a mapping block to tell GORM that the “table” for the domain class is
this view:

package programming.grails

class UserInfo {

 String name

 String orgName

 static mapping = {

 table 'v_user_info'

 }

}

Mapping Views and Subselect Classes | 151

It wouldn’t make much sense to use this domain class to update data, but because the

view query includes the user ID, you can execute finders and get() calls if you have the
user’s ID.

Subselect Domain Classes
Ordinarily, you map all columns from a table in the corresponding domain class, but

this isn’t always desirable. If there are columns that aren’t needed (e.g., large VARCHAR
columns), or that are only needed for certain queries, you can map just the required
fields. Of course, if you don’t map every column, and one or more of the omitted columns

doesn’t allow null values, you won’t be able to insert or update rows, but there are
options for that.

Looking back at the AuthUser class above, if there were a requirement that the user data

be available but you need to ignore the password column (because it’s only needed for

authentication), we could create a second Person domain class that has all of the

AuthUser fields except password:

package programming.grails

class Person {

 String name

 Organization organization

}

A view is an option for restricting the available fields, but there’s an easier solution; map

the class onto the same table as for AuthUser:

package programming.grails

class Person {

 String name

 Organization organization

 static mapping = {

 table 'auth_user'

 }

}

This works, and will only select the mapped fields. You can’t create new rows in the table

(assuming password is not-null), but that’s not the function of this class. But you might

want to update instances, either changing the username or the Organization. That will
work, because the generated SQL for the update will include the mapped columns, and
the unmapped columns will retain their previous values.

152 | Chapter 5: Hibernate

Selecting with a POGO
If you don’t need all the features of a second domain class (i.e., GORM methods, finders,
etc.) then you can take advantage of a Hibernate feature with HQL queries. Instead of

creating Person as a domain class, create it as a POGO in src/groovy and use the HQL

select new syntax in a query:

long userId = ...

def person = AuthUser.executeQuery(

 'select new programming.grails.Person(a.name, a.organization) ' +

 'from AuthUser a where a.id=:id',

 [id: userId])[0]

Note that because executeQuery always returns a list, and we’re only expecting a single

instance, we use [0] to get the instance.

Because Hibernate isn’t aware of the Groovy map constructor, you will need a traditional
parameterized constructor for this POGO:

package programming.grails

class Person {

 String name

 Organization organization

 Person(String name, Organization organization) {

 this.name = name

 this.organization = organization

 }

}

You can relax the return type even further and skip the POGO, returning a map created
in the HQL query:

long userId = ...

def data = AuthUser.executeQuery(

 'select new map(a.name as name, a.organization as organization) ' +

 'from AuthUser a where a.id=:id',

 [id: userId])[0]

and this will return a Map where the keys are the names specified in the HQL as aliases.

And of course, you can always just select the fields to be returned as an Object[] array

(or List of arrays when you return multiple records) using standard report query
syntax:

long userId = ...

def data = AuthUser.executeQuery(

 'select a.name, a.organization from AuthUser a ' +

 'where a.id=:id', [id: userId])[0]

Mapping Views and Subselect Classes | 153

get(), load(), and read()
GORM offers multiple ways to access a single domain instance by ID.

get()
Retrieving a single domain class instance corresponding to a row in a table is a common

action, so it has its own dedicated method, get(). This is a static method defined on all

domain classes. It returns the corresponding instance, or null if no record is found.

get() should be used instead of the equivalent findById(), because get() uses the

cache (first and second level) by default, whereas dynamic finders like findById() are
only cached in the query cache. As we saw above, this is quite volatile and will be cleared
pessimistically by Hibernate when any other instance is saved, deleted, or updated. But

an instance cached by a get() call is only invalidated if that instance is affected by an
update.

One use for findById() is as part of an ownership checking query. If you have access
to the currently authenticated user and have an ownership relationship, for example a

CreditCard having a User field. Rather than submitting the user ID and the card ID to
load the card instance, a safer approach would be to just submit the card ID and use the
authenticated user as a redundant check. The query then becomes:

def cardId = params.id

def user = ... // implementation-specific way of getting the User domain instance

def card = CreditCard.findByIdAndUser(cardId, user)

By adding the second comparison to the SQL WHERE clause, we return the record only
if both match. A hacker attempting to load someone else’s data would be blocked.

But there are two alternative methods that also return single instances that are useful
in certain circumstances.

load()
load() appears to work the same way as get() but, in fact, doesn’t actually query the
database, at least not initially. It creates a proxy instance for the record and stores the
specified ID, and always returns an instance (because it can’t be known if the record
exists yet). It’s not until the first call to a method (or a property access that calls its getter
method) that the ID is used to actually retrieve the data. At this point, if no record is

found, Hibernate will throw an org.hibernate.ObjectNotFoundException.

Using this in general would lead to a rather chaotic application, because you don’t know
until you try to access object data that the record doesn’t exist, and it triggers an exception

that you need to catch. So in general, get() is preferable. Consider this domain model:

154 | Chapter 5: Hibernate

class Author {

 String name

}

class Book {

 String title

 Author author

}

and this typical code to persist a new Book:

long authorId = params.authorId as Long

Book book = new Book(title: params.title, author: Author.get(authorId))

if (book.save()) {

 ...

}

else {

 ...

}

We load the entire Author instance into memory just so we can use it to set the foreign
key in the book table. In this case, that’s not very expensive, but for real domain classes
with many fields and possibly eagerly loaded collections, it can be quite wasteful to

retrieve the whole instance. Instead, we can use load():

long authorId = params.authorId as Long

Book book = new Book(title: params.title, author: Author.load(authorId))

...

and, as long as the Author instance exists, which it should in this scenario because the
ID was submitted with the request, which presumably came from a persistent instance,
then the foreign key will resolve. If it doesn’t, there will be a foreign key violation, and
you can handle that error.

We have a similar situation when querying. Suppose we want to find all books by an
author and only have the author ID. We could create a criteria or HQL query, but dy‐
namic finders are a lot more convenient. However, this:

long authorId = ...

def author = Author.get(authorId)

def books = Book.findAllByAuthor(author)

incurs the same unnecessary cost as above; there’s no need to load and discard the Author

instance just to get the Book instances. If we instead use load(), then there will be just
the one query:

long authorId = ...

def author = Author.load(authorId)

def books = Book.findAllByAuthor(author)

because the SQL only needs the author ID for the foreign key reference in its WHERE
clause.

get(), load(), and read() | 155

read()
The read() method is similar to the get() method in that it returns a domain class

instance and not a proxy, or null if the corresponding record doesn’t exist. Where it’s
different is that it sets the object to “read-only” mode (which isn’t actually read-only).

When a persistent instance is loaded using get(), or by a query that doesn’t result in a
proxy, the data for the instance exists twice in memory: once for the instance itself, and

again in a copy in an Object[] array in the session. This copy of the data is used for
dirty detection. Hibernate uses this cached data to do a field-by-field check comparing
the current state in the domain class instance with the original data that was loaded
from the database to determine if any fields were modified. If you have configured a
domain class to do dynamic updates, then it can use this information to update just the
changed fields. Otherwise, any changed field triggers a full update.

Because you’ve indicated to Hibernate with a read() call that you don’t intend to update
the data, it doesn’t bother with the copy of the data. This will reduce memory usage,
which could be significant if you were loading a large number of instances that won’t
be modified.

The instance isn’t really read-only, however. If you change one or more fields and save()
the instance, it will update the record in the database. In fact, because there’s no cached

data to check, even if you don’t change anything and call save(), it will update the record
with the current values (ordinarily, dirty checking would render this a no-op). And you

could also delete() the instance. So the instance is fully mutable, it’s just not automat‐
ically updated for you during a flush.

Performance
Because Hibernate is a wrapper API around SQL, it does affect performance somewhat.
In general, using hand-tuned SQL queries will often be faster than those generated by
a tool. But Hibernate has several optimizations that help mitigate this and can actually
be faster than using direct SQL.

Caching
One optimization is the caching described above. If you retrieve an instance using the

get() method and call it again for the same ID in a session, Hibernate will only go to
the database for the first call, because it will have stored the instance in the instance
cache. And, if you have second level caching enabled for that domain class, it might not
have to hit the database at all if there’s a cached instance in the second level cache.

If you use the query cache, you will also save time by retrieving instances from the cache
instead of rerunning the query and hitting the database again only to return the same
instances as from a previous query with the same parameters.

156 | Chapter 5: Hibernate

Lazy Loading
By default, mapped collections (one-to-many) and many-to-one relationships are lazily
loaded. They can easily be configured to eagerly load [e.g., see this blog post], but because
they’re often secondary data that isn’t needed every time you retrieve a containing in‐
stance, it’s more common to leave the default lazy loading behavior enabled.

Keep in mind though that Grails collections can be “extra-lazy.” resulting in N+1 queries.

For example, given an Author class with a one-to-many relationship with a Book class

using a hasMany property:

class Author {

 String name

 static hasMany = [books: Book]

}

and a Book class that doesn’t specify a back-reference to the Author (making this a
unidirectional relationship):

class Book {

 String title

}

you’ll end up with a join table:

create table author_book (

 author_books_id bigint,

 book_id bigint

);

Accessing data from the books collection will initialize the collection by running a query

similar to select * from author_book where author_books_id=? to retrieve the Book

IDs. The collection will be populated with proxies, one for each Book ID. Then each

access to data for a Book instance will trigger a query to load the data (similar to select

* from book where id=?). If you loop through all of the instances, you’ll end up with

N + 1 queries; one for the IDs and one for each instance.

If you make the relationship bidirectional, either with an Author field in the Book class:

class Book {

 String title

 Author author

}

or with a “named” belongsTo (which creates a property named author in addition to
configuring cascading):

class Book {

 String title

 static belongsTo = [author: Author]

}

Performance | 157

http://blog.springsource.org/2010/07/28/gorm-gotchas-part-3/

then you’ll get different behavior. The book table will have a foreign key into the au

thor table and loading Book instances will be done in one query, similar to select *

from book where author_id=?. The instances will not be proxies; all of the data will
be loaded. The tradeoff is one big query that loads 100% of the data (the nonlazy prop‐

erties) versus N+1 queries that load data on demand.

Note that if you use the simpler belongsTo syntax, you will end up with a join table and
proxies like the case where the relationship isn’t bidirectional:

class Book {

 String title

 static belongsTo = Author

}

Transactional Write-Behind
Transactional write-behind is another feature that can help reduce the number of times

you go to the database. Hibernate will queue save() calls for updated instances and

delete() calls as long as possible, ideally until the flush() call that will be done before
closing the session. This means that if you have a complex workflow where you retrieve
an instance and modify it multiple times in various places in your code, you will often
only end up with a single update in the database.

You can explicitly flush the session early, either by accessing the current session and

calling flush() or by adding flush: true as a parameter to a save() or delete() call

(e.g., book.save(flush: true)). In addition, Hibernate will flush the session early if
necessary. This happens most often when you execute a query that might be affected by
queued updates or deletes. It’s rather pessimistic and flushes more often than it needs
to, but it would be computationally complex to determine that query results wouldn’t
be affected, and you might have database triggers that would affect the results. So to be

safe, Hibernate flushes for most queries. get() calls are an exception because they return
a specific instance and there’s no ambiguity.

158 | Chapter 5: Hibernate

CHAPTER 6

Integration

Working with Java Enterprise Edition (JEE) techologies in Grails is very similar to using
them in traditional Spring applications. For the most part, you can use them directly,
writing classes in Java or reusing existing shared code and JAR files. Often it can be
easier to take advantage of an existing Grails plugin that configures the necessary de‐
pendencies for you, and often adds convenience methods, services, or DSLs to hide
some of the complexity and boilerplate.

Of course, like in Spring applications, you often have easier ways to implement features
than using JEE techologies. GORM is a lot easier to use than JPA, Grails services behave
much like EJB stateless session beans, and you can use services like EJB stateful session
beans by setting their scope to “session” so each user gets a separate instance and the
life cycle is automatically tied to HTTP session creation and destruction. Integrate
whatever existing functionality you have, especially if it’s tested and working, because
it often doesn’t help to rewrite for the sake of doing everything the “Grails way,” but
when adding new functionality, be sure to see if there’s already a solution in Grails or
in a plugin.

JMS
Messaging with the Java Message Service (JMS) is very straightforward in Grails. As

with many technologies, “there’s a plugin for that”—in this case, the jms plugin. It doesn’t
provide an implementation, just the core functionality, leaving the actual JMS imple‐
mentation details to a provider. ActiveMQ is a popular choice.

The jms plugin adds a lot of useful features and Grails integration, but let’s start with a
more manual integration (using Spring’s support for JMS) for now, because it’s easy to
set up and will be more familiar if you’ve used JMS in a traditional Spring application.

The first step is to add the required dependencies in BuildConfig.groovy (make sure that

mavenCentral() is uncommented in the repositories block):

159

http://grails.org/plugin/jms
https://activemq.apache.org/

dependencies {

 compile('org.apache.activemq:activemq-core:5.7.0') {

 transitive = false

 }

 runtime('org.apache.activemq:kahadb:5.7.0') {

 transitive = false

 }

 runtime('org.apache.geronimo.specs:geronimo-j2ee-management_1.1_spec:1.0.1') {

 transitive = false

 }

 compile('org.apache.geronimo.specs:geronimo-jms_1.1_spec:1.1.1') {

 transitive = false

 }

}

Then, we need to add some bean definitions in grails-app/conf/spring/resources.groo‐

vy. First, we’ll need a javax.jms.ConnectionFactory:

import org.apache.activemq.ActiveMQConnectionFactory

...

jmsConnectionFactory(ActiveMQConnectionFactory) {

 brokerURL = 'vm://localhost'

}

This is configured to run in-memory, which is convenient for testing, or if you have a
small application that only needs a single server. Connecting to an external JMS server

or cluster is a simple matter of changing the brokerURL property—for example, bro

kerURL = 'tcp://your_jms_server:61616'.

We’ll need at least one queue or topic as our message destinations:

import org.apache.activemq.command.ActiveMQQueue

import org.apache.activemq.command.ActiveMQTopic

...

myQueue(ActiveMQQueue) {

 physicalName = 'myQueue'

}

myTopic(ActiveMQTopic) {

 physicalName = 'myTopic'

}

Sending JMS messages is fairly complicated, in the same way that executing an SQL
query using JDBC is—there is a lot of boilerplate plumbing code. Spring makes using

JDBC significantly easier with its org.springframework.jdbc.core.JdbcTemplate

160 | Chapter 6: Integration

helper class, and it does the same for Hibernate with the org.springframework.orm.hi

bernate3.HibernateTemplate class; when working with JMS, the org.springframe

work.jms.core.JmsTemplate helper class does a lot of the same repetitive work for you,
so you can focus on sending and receiving messages. All of the template classes are
stateless, so it’s common to configure one as a singleton Spring bean:

import org.springframework.jms.core.JmsTemplate

...

jmsTemplate(JmsTemplate, ref('jmsConnectionFactory'))

Everything is ready to go, but let’s create a couple of helper classes. The first will be a
listener, so we can be sure that things are working (put this in the src/groovy folder):

package book.jms

class MyQueueMessageListener {

 void handleMessage(String message) {

 println "Received text message '$message'"

 }

 void handleMessage(Map message) {

 println "Received Map message '$message'"

 }

 void handleMessage(byte[] message) {

 println "Received byte[] message with length $message.length"

 }

 void handleMessage(Serializable message) {

 println "Received Serializable message '$message'"

 }

}

Note that the class doesn’t implement any interfaces or extend a base class. This is the
standard pattern for Grails artifacts, but this isn’t a Grails class—it’s a regular POGO
(or a POJO if you prefer) that is being used by Spring. But we can use an adapter

class, org.springframework.jms.listener.adapter.MessageListenerAdapter,

which implements the javax.jms.MessageListener interface and uses reflection to
find the method in your class to call based on the type of each message. So we’ll register
the listener class as a standalone bean in resources.groovy (although it could be an inner
bean) and create an adapter bean that references it. We also need a third bean to access

the queue (or topic) and call our message listener; we’ll use Spring’s org.springframe

work.jms.listener.DefaultMessageListenerContainer for this:

import book.jms.MyQueueMessageListener

import org.springframework.jms.listener.DefaultMessageListenerContainer

import org.springframework.jms.listener.adapter.MessageListenerAdapter

JMS | 161

myQueueMessageListener(MyQueueMessageListener)

myQueueMessageListenerAdapter(MessageListenerAdapter,

 ref('myQueueMessageListener'))

myQueueMessageListenerContainer(DefaultMessageListenerContainer) {

 connectionFactory = ref('jmsConnectionFactory')

 destination = ref('myQueue')

 messageListener = ref('myQueueMessageListenerAdapter')

}

It’s pretty easy to use the JmsTemplate class directly, but let’s create a utility class that
sends various types of messages to a particular destination. In practice, you probably
wouldn’t have a general purpose class like this and would just send the message types
that you need, but this demonstrates how to send each of the common message types:

package book.jms

import javax.jms.BytesMessage

import javax.jms.MapMessage

import javax.jms.Message

import javax.jms.Queue

import javax.jms.Session

import org.springframework.jms.core.JmsTemplate

import org.springframework.jms.core.MessageCreator

class MyQueueMessageSender {

 JmsTemplate jmsTemplate

 Queue queue

 void sendText(String text) {

 jmsTemplate.send(queue, new MessageCreator() {

 Message createMessage(Session session) {

 session.createTextMessage text

 }

 })

 }

 void sendMap(Map<String, Object> map) {

 jmsTemplate.send(queue, new MessageCreator() {

 Message createMessage(Session session) {

 MapMessage message = session.createMapMessage()

 map.each { String key, value ->

 message.setObject key, value

 }

 message

 }

 })

 }

162 | Chapter 6: Integration

 void sendBytes(byte[] bytes) {

 jmsTemplate.send(queue, new MessageCreator() {

 Message createMessage(Session session) {

 BytesMessage message = session.createBytesMessage()

 message.writeBytes bytes

 message

 }

 })

 }

 void sendObject(Serializable object) {

 jmsTemplate.send(queue, new MessageCreator() {

 Message createMessage(Session session) {

 session.createObjectMessage object

 }

 })

 }

}

Register it in resources.groovy with a reference to the JmsTemplate and the queue:

import book.jms.MyQueueMessageSender

...

myQueueMessageSender(MyQueueMessageSender) {

 jmsTemplate = ref('jmsTemplate')

 destination = ref('myQueue')

}

Run grails console and execute this to check that everything is working:

def sender = ctx.myQueueMessageSender

sender.sendMap([foo: 'bar', baz: 5])

sender.sendObject([1, 2, 5])

sender.sendText('Grails JMS')

sender.sendBytes('Grails JMS'.bytes)

and you should see the println statements in the console as each message is received.

XA Support with the Atomikos Plugin
The previous examples are a rather simplistic use of JMS; in practice, it’s often the case
that messages are sent transactionally. One use case is to send a JMS message after
creating or modifying a domain class instance so some work can be done asynchro‐
nously. If the JDBC transaction that the update is being done in rolls back, it’s important
that the JMS message not be sent. Using a transactional JMS connection factory that is
configured to use XA transactions uses Two Phase Commit (2PC), which only commits
the global transaction if the underlying JDBC and JMS transactions commit. This can

JMS | 163

also be used with just JDBC if you have multiple datasources and have transactions that
update two or more databases at once.

The configuration of XA is more involved than the simpler cases, so it’s best to use the

atomikos plugin. It makes the process of converting each JDBC DataSource and JMS

ConnectionFactory to use XA much simpler, but this depends on having the jms plu‐
gin installed.

Add the jms and atomikos plugins to BuildConfig.groovy:

plugins {

 ...

 compile ':jms:1.2'

 compile ':atomikos:1.0'

}

and remove the geronimo-j2ee-management_1.1_spec and geronimo-jms_1.1_spec

dependencies, because they’re provided by the jms plugin:

dependencies {

 compile('org.apache.activemq:activemq-core:5.7.0') {

 transitive = false

 }

 runtime('org.apache.activemq:kahadb:5.7.0') {

 transitive = false

 }

}

The beans in resources.groovy need to change a bit; change ActiveMQConnectionFacto

ry to ActiveMQXAConnectionFactory, and there’s no need for a jmsTemplate bean,

because one is created by the jms plugin. Also, we don’t need a listener anymore, because
we’ll configure a service as a listener. So the complete resources.groovy file is just:

import org.apache.activemq.ActiveMQXAConnectionFactory

import org.apache.activemq.command.ActiveMQQueue

beans = {

 jmsConnectionFactory(ActiveMQXAConnectionFactory) {

 brokerURL = 'vm://localhost'

 }

 myQueue(ActiveMQQueue) {

 physicalName = 'myQueue'

 }

}

By default, the atomikos plugin converts all Spring JmsTemplate beans to use the XA

JMS ConnectionFactory (although this is configurable). It will also convert regular

DataSource beans to XA DataSource beans, but there is no standard API for configuring

164 | Chapter 6: Integration

http://grails.org/plugin/atomikos
http://grails.org/plugin/jms
http://grails.org/plugin/jms

properties, and usually the driver class is different. So for any DataSource that should

participate in XA transactions, add an xaConfig block in DataSource.groovy. Here, I’ll
show an example for the H2 database that is configured by default, but it’s easy to do
for MySQL or other databases:

environments {

 development {

 dataSource {

 dbCreate = 'create-drop'

 url = 'jdbc:h2:mem:devDb;MVCC=TRUE'

 xaConfig = [

 driverClassName: 'org.h2.jdbcx.JdbcDataSource',

 driverProperties: [

 URL: 'jdbc:h2:db/devDb;MVCC=TRUE',

 user: 'sa',

 password: ''],

 minPoolSize: 1,

 maxPoolSize: 50

]

 }

 }

 ...

}

Create a domain class that we can use to test JDBC rollbacks:

package book.jms.xa

class Person {

 String name

}

and a Grails service to test JMS:

package book.jms.xa

class MessageTestService {

 static exposes = ['jms']

 static destination = 'myQueue'

 static transactional = false

 // NOT THREAD SAFE - just for testing

 def mostRecentMessage

 void onMessage(Map message) {

 mostRecentMessage = message

 println "new message: $message"

 }

 void onMessage(String message) {

 mostRecentMessage = message

JMS | 165

 println "new message: $message"

 }

}

Here we’re taking advantage of the jms plugin’s ability to easily make a service act as a

JMS listener by setting the exposes and destination attributes. It has transactions
disabled, because it’s just a listener.

Finally, let’s create a transactional service that tests the three combinations. In the fail

AfterJms method, we save and flush a domain class instance and then send a message,

and force a rollback with a runtime exception. In failAfterJdbc the order is reversed,

and in succeedJmsAndJdbc, everything should work. If either the DataSource or the

JMS ConnectionFactory isn’t configured correctly, we’ll see extra messages and/or extra
database inserts:

package book.jms.xa

class XaTestService {

 def jmsService

 void failAfterJms() {

 def person = new Person(name: 'test JDBC').save(flush: true)

 assert person

 def message = [personId: person.id, personName: person.name]

 jmsService.send 'myQueue', message

 throw new RuntimeException('forcing an auto rollback in failAfterJms')

 }

 void failAfterJdbc() {

 jmsService.send 'myQueue', "you won't get this"

 def person = new Person(name: 'test JDBC').save(flush: true)

 throw new RuntimeException('forcing an auto rollback in failAfterJdbc')

 }

 void succeedJmsAndJdbc() {

 def person = new Person(name: 'test JDBC').save(flush: true)

 assert person

 def message = [personId: person.id, personName: person.name]

 jmsService.send 'myQueue', message

 }

}

Test this by running grails console and executing this:

166 | Chapter 6: Integration

import book.jms.xa.Person

def xaTestService = ctx.xaTestService

int startPersonCount = Person.count()

xaTestService.succeedJmsAndJdbc()

assert startPersonCount + 1 == Person.count()

int startPersonCount2 = Person.count()

try {

 xaTestService.failAfterJms()

 println "ERROR, should have thrown an exception"

}

catch (e) {

 println "OK"

}

assert startPersonCount2 == Person.count()

int startPersonCount3 = Person.count()

try {

 xaTestService.failAfterJdbc()

 println "ERROR, should have thrown an exception"

}

catch (e) {

 println "OK"

}

assert startPersonCount3 == Person.count()

The output should look like this:

new message: [personId:1, personName:test JDBC]

OK

OK

indicating that when there is no forced rollback, a message is received and the database
insert succeeds, and in both failure cases, there is no message and no database insert.

More information is available online for the atomikos plugin.

Mail
If you send a significant amount of email, you should probably look into a third-party
service such as SendGrid or Postmark. But it is straightforward to send email from

Grails using JavaMail. The easiest way to do this is with the mail plugin, because it
configures the dependencies for you and adds a DSL for sending emails.

Install the mail plugin by adding a plugin dependency in BuildConfig.groovy:

plugins {

 ...

Mail | 167

http://grails-plugins.github.com/grails-atomikos/
http://sendgrid.com/
https://postmarkapp.com/
http://www.oracle.com/technetwork/java/javamail/index.html
http://grails.org/plugin/mail

 compile ":mail:1.0.1"

}

The mail plugin provides a service that has convenient methods for sending email. It
wraps the Spring email support, which itself wraps the JavaMail APIs. The plugin adds

a sendMail method to all controllers and services, but I prefer to call the method directly

on the plugin’s mailService bean.

Unless you’re sending mail from a server on localhost and port 25, you’ll need to add
configuration options in Config.groovy; for example:

grails.mail.host = 'smtp.yourcompany.com'

grails.mail.port = 1025

If the server requires authentication, you can specify the username and password:

grails.mail.username = 'your_username'

grails.mail.password = 'your_password'

grails.mail.props = ['mail.smtp.auth': 'true']

and, if you are using SSL, you can configure that with properties in the

grails.mail.props map:

grails.mail.props = [

 'mail.smtps.auth': true,

 'mail.smtps.socketFactory.class': 'javax.net.ssl.SSLSocketFactory',

 'mail.smtps.socketFactory.fallback': false]

Note that these properties start with mail.smtps. because SSL is being used.

Some servers (e.g., Gmail) require that you send a STARTTLS command; configure this

by adding 'mail.smtp.starttls.enable': true to the grails.mail.props map. Be
aware that this is inconsistent with the rest of the properties; I found in testing that

I had to use the mail.smtp.starttls.enable property name instead of

mail.smtps.starttls.enable.

If things aren’t working, try enabling debug logging by adding 'mail.debug': true to

the grails.mail.props map. There are various JavaMail properties that are supported

in the grails.mail.props map.

Sending Email
Having configured the server, you can now send email. The plugin provides a DSL to

configure the messages; you call the sendMail method passing a closure containing DSL
method calls for the various attributes of the message. Table 6-1 shows the available
DSL methods.

168 | Chapter 6: Integration

http://javamail.kenai.com/nonav/javadocs/com/sun/mail/smtp/package-summary.html

Table 6-1. Mail sender DSL methods

Name Arguments Notes

to Object[] or List One or more recipient addresses

cc Object[] or List One or more “carbon copy” (CC) addresses

bcc Object[] or List One or more “blind carbon copy” (BCC) addresses

from CharSequence The sender’s address

replyTo CharSequence Optional reply-to address (if different from the sender’s address)

subject CharSequence The email subject

multipart boolean or int Either true or an int specifying the multipart mode (see the Spring documentation
for details)

headers Map Header values to set on the underlying javax.mail.internet.MimeMes
sage

text CharSequence or Map Specifies either the string to use as the text body or a map configuring a GSP to use

html CharSequence or Map Specifies either the string to use as the HTML body or a map configuring a GSP to use

attach Various Specifies a File, InputStreamSource, or byte[] array as the content of an
attachment

inline Various Specifies a File, InputStreamSource, or byte[] array as the content of an
inline resource

locale String or Locale The Locale (or name) to use when rendering GSPs

If a message has attachments, be sure to call multipart true before any attach method
calls. Note that email addresses can be of the form user@host.domain or Personal Name
<user@host.domain>.

Sending a simple text email is easy:

def mailService

...

mailService.sendMail {

 to "someone@someplace.com"

 from "me@myserver.com"

 subject "The Subject"

 text 'The body of the email'

}

You can also send an HTML email; typically it makes sense to send both an HTML body
and a text body to support various email clients and user preferences (be sure to call

multipart true, because having two bodies requires a multipart message):

mailService.sendMail {

 multipart true

 to "someone@someplace.com"

 from "me@myserver.com"

Mail | 169

 subject "The Subject"

 text 'The body of the email'

 html 'This is the HTML version of the email body'

}

It’s often not practical to have large blocks of text or HTML in your code, so the plugin
supports rendering GSPs to either text or HTML as the message body. To do this use a

Map argument for the text or html method calls:

mailService.sendMail {

 multipart true

 to "someone@someplace.com"

 from "me@myserver.com"

 subject "Welcome to the site"

 text view: "/mail-templates/register-text"

 html view: "/mail-templates/register-html"

}

This will look for grails-app/views/mail-templates/register-text.gsp containing text and
grails-app/views/mail-templates/register-html.gsp containing a mix of text and HTML
tags. The GSPs can use variables just like those used by controllers; to specify the data

to use when rendering the GSP use the model attribute:

def model = [foo: 'bar', answer: 42, ...]

mailService.sendMail {

 multipart true

 ...

 text view: "/mail-templates/register-text", model: model

 html view: "/mail-templates/register-html", model: model

}

You can also refer to a GSP from a plugin using the plugin argument:

def model = [foo: 'bar', answer: 42, ...]

mailService.sendMail {

 multipart true

 ...

 text view: "/mail-templates/register-text", model: model, plugin: 'myplugin'

 html view: "/mail-templates/register-html", model: model, plugin: 'myplugin'

}

Note that because there are separate methods for HTML and text, there’s no need to

specify the content type in the GSPs with a <%@ page contentType="..." %> directive.

If you use the message tag in your GSPs, be sure to call the locale method so the correct
translation is used for the message codes.

Don’t include section tags such as <html>, <head>, and <body>, but you can use other

tags like <div> and . Unlike regular GSPs used for rendering browser pages, you
can’t specify a layout, at least not directly. The GSP rendering used here is simpler than

the full-blown implementation used by controllers, so you can’t just add a <meta

name='layout' content='main'> tag. You do have a few options though. One is to use

170 | Chapter 6: Integration

inline styles on individual elements, such as This is

cumbersome, but you cannot reference a stylesheet using a <link rel="stylesheet"

href=...> tag, because the rendered HTML will be viewed in an email client, not a
browser.

Fortunately, there is a way to use a template to keep your GSPs DRY; use the applyLay

out tag in the GSPs:

<g:applyLayout name='email'>

<body>

...

</body>

</g:applyLayout>

This will look for the template grails-app/views/layouts/email.gsp and it might look
something like this:

<style>

...

</style>

<g:layoutBody/>

You can’t reference .css files, but you can inline the CSS for the template inside a

style tag.

Attachments and inline references are also supported; for details on how to use these
features and more general information about the plugin, refer to the plugin documen‐
tation. For information about the underlying Spring email support, refer to the Spring
documentation.

Sending Email Asynchronously
The mail plugin has most of the features that you would expect, but one limitation is

that all email sending is synchronous. The sendMessage call blocks until the message is
sent by the email server, so if it is busy, it can affect user-initiated email sending such as

a forgot-password workflow. The asynchronous-mail plugin helps with this by storing
the email information in your database using Grails domain classes, and providing

Quartz jobs [the plugin depends on the quartz2 plugin] that periodically retrieve the
cached messages from the database and send them. This can significantly improve the
user experience by returning quickly from controller requests and sending the email in
a background process. It takes basically the same overall time to send the email but the
site will appear to be much faster.

Using the plugin is very similar to using the mail plugin, except for the additional
configuration and some additional DSL methods; see the plugin documentation for
more information.

Mail | 171

http://gpc.github.com/grails-mail/docs/
http://gpc.github.com/grails-mail/docs/
http://static.springsource.org/spring/docs/3.1.x/spring-framework-reference/html/mail.html
http://static.springsource.org/spring/docs/3.1.x/spring-framework-reference/html/mail.html
http://grails.org/plugin/asynchronous-mail
http://grails.org/plugin/quartz2
http://grails.org/plugin/asynchronous-mail

Sending Email from Log4j
Ordinarily we use Log4j to log messages to the console or logfiles, but there are several
alternate appenders that ship with the JAR (and others contributed by the community),
including ones that will log to a database, a JMS destination, and even the Windows

event log. org.apache.log4j.net.SMTPAppender is useful for notifying you that some‐
thing bad happened during off hours. But be careful, because if you misconfigure it or
set the threshold too low, you can easily send yourself thousands of emails in a very
short time (I’m speaking from experience here).

Like the rest of the logging configuration in Grails, you add this appender in the log4j
block in Config.groovy:

log4j = {

 appenders {

 appender new org.apache.log4j.net.SMTPAppender(

 name: 'smtp',

 to: 'error_mailing_list@yourcompany.com',

 from: 'application_error@yourcompany.com',

 subject: 'Danger, Will Robinson',

 SMTPHost: 'smtp.yourcompany.com',

 SMTPPort: 1025,

 SMTPUsername: 'your_username',

 SMTPDebug: false,

 SMTPPassword: 'your_password',

 layout: pattern(conversionPattern:

 '%d{[dd.MM.yyyy HH:mm:ss.SSS]} [%t] %n%-5p %n%c %n%C %n %x %n %m%n'))

 }

 error 'org.codehaus.groovy.grails',

 'org.springframework',

 'org.hibernate',

 'net.sf.ehcache.hibernate'

 error 'smtp': ['com.yourcompany.yourapplication']

}

There’s no need to set the mail.smtp.auth property if your server requires authenti‐
cation, because the appender does it for you if you set the username and password.

If you’re using Gmail, use "smtp.gmail.com" for the host, 587 for the port, and be aware
that the from address will be ignored—the emails will show as having been sent from
the authenticating account holder. Also, note that there is a limit of 500 emails per day,
so only use Gmail if you expect a moderate volume of email. You will also need to send
a STARTTLS command, but this isn’t configurable in the appender, so set the appro‐

priate system property at the beginning of the log4j block so that it’s available to the
appender when it’s configured:

172 | Chapter 6: Integration

log4j = {

 System.setProperty 'mail.smtp.starttls.enable', 'true'

 appenders {

 ...

 }

 ...

}

You can enable SMTP debugging with SMTPDebug: true in the appender constructor
call. You can also set the highest log level that is logged to email by adding:

appender new org.apache.log4j.net.SMTPAppender(

 ...

 threshold: org.apache.log4j.Level.ERROR

 ...

)

Use whatever threshold level makes sense for you. It’s a good idea to do this for the

SMTPAppender to limit the message volume. Note that the appender queues messages
and only sends them when a “triggering event” occurs; this is defined by default as a

message at the ERROR level or higher. So, if several messages are logged at lower levels

(INFO, WARN, etc.) and one is logged at the ERROR level, one email is sent with all of the
messages. You can configure the triggering behavior by implementing the

org.apache.log4j.spi.TriggeringEventEvaluator interface (e.g., in src/groovy or
src/java) and specifying the class name in the appender constructor call:

appender new org.apache.log4j.net.SMTPAppender(

 ...

 evaluatorClass: 'book.email.log4j.FatalTriggeringEventEvaluator'

 ...

)

In this example, I’m just changing the triggering level to FATAL (it would probably make

sense to change the threshold attribute to org.apache.log4j.Level.FATAL), but you
can use whatever logic you want:

package book.email.log4j

import org.apache.log4j.Level

import org.apache.log4j.spi.LoggingEvent

import org.apache.log4j.spi.TriggeringEventEvaluator

class FatalTriggeringEventEvaluator implements TriggeringEventEvaluator {

 boolean isTriggeringEvent(LoggingEvent event) {

 event.level.isGreaterOrEqual(Level.FATAL)

 }

}

Mail | 173

Using imports can cause compilation problems depending on the dependency

resolution order, so I’ve inlined the full org.apache.log4j.Level and

org.apache.log4j.net.SMTPAppender class names.

In the configuration above, I’ve attached the appender to a single category (although

you can add more to the list), but you can also add it to the root appender so all applicable
messages across all loggers are sent:

root {

 error 'stdout', 'smtp'

 additivity = true

}

Note that if you don’t have the mail plugin installed and aren’t already sending email,
you’ll need to add this dependency in BuildConfig.groovy:

dependencies {

 compile 'javax.mail:mail:1.4.5'

}

and ensure that the mavenCentral() repository is uncommented.

You can read more about the configuration options for SMTPAppender in the Javadoc.

Testing
There are a few libraries available that start an in-memory SMTP server that you can

use to test your email workflows. The greenmail plugin integrates the GreenMail library

and registers a greenMail Spring bean that you can use to verify that emails were sent
correctly.

Similarly, the dumbster plugin integrates the Dumbster library to also start an in-
memory SMTP server.

SOAP Web Services
Creating SOAP-based web services can be a daunting task, given the number of APIs

and acronyms involved. The wslite plugin is, as its name implies, a simple one to use.
It doesn’t have a lot of features but is lightweight. There is a more robust alternative

though, based on the CXF framework. The cxf plugin configures the CXF dependencies

and adds features to create your own web services, and the cxf-client plugin adds

features to be a web service client. There is a third option, the springws plugin, but it
is dated and not actively maintained.

I’ll focus here on the CXF plugins because they provide a lot of features and are easy to
use. It will be helpful to create a server and a client application to test things out.

174 | Chapter 6: Integration

https://logging.apache.org/log4j/1.2/apidocs/org/apache/log4j/net/SMTPAppender.html
http://grails.org/plugin/greenmail
http://www.icegreen.com/greenmail/
http://grails.org/plugin/dumbster
http://quintanasoft.com/dumbster/
http://grails.org/plugin/wslite
https://cxf.apache.org/
http://grails.org/plugin/cxf
http://grails.org/plugin/cxf-client
http://grails.org/plugin/springws

The Server Application
First we’ll create an application to be the server for our web services:

$ grails create-app server

Installing the cxf plugin is easy, just add it to BuildConfig.groovy (be sure to use the
latest version):

plugins {

 ...

 compile ":cxf:1.1.0"

}

There are several different types of supported web services, but I’ll describe just two
here: the “simple” type and JAX-WS. The “simple” type is convenient, because no an‐
notations are required, and by default, all public methods are automatically exposed as
web service methods. JAX-WS services are preferred though, because they’re more
configurable and flexible.

In addition, you can put your service classes either in the grails-app/services folder or
in grails-app/endpoints. There is no difference between the two other than the option
of taking advantage of transaction support in services. If a web service writes to the
database, it makes sense to make it a service, but otherwise, it’s probably better to add
it in the endpoints folder to maintain a separation of concerns. Another option would
be to put all of the classes in the endpoints folder and dependency-inject transactional
services that aren’t exposed as web services. In any case, do what works for you.

The plugin comes with four scripts that generate web service classes for you. create-

endpoint and create-cxf-service create identical JAX-WS classes, the only difference

being that create-endpoint generates in the endpoints folder and create-cxf-

service in the services folder. create-endpoint-simple and create-cxf-service-

simple create identical “simple” web services in the endpoints and services folders,
respectively.

To get started, create a JAX-WS endpoint:

$ grails create-endpoint book.soap.hello

and edit the generated class so it looks like this:

package book.soap

import javax.jws.WebMethod

import org.grails.cxf.utils.EndpointType

class HelloEndpoint {

 static expose = EndpointType.JAX_WS

 @WebMethod

SOAP Web Services | 175

 String ping(String s) { s }

 @WebMethod

 String sayHello(String name) { "Hello, $name" }

}

Then create a “simple” service:

$ grails create-cxf-service-simple book.soap.math

and edit that generated class so it looks like this:

package book.soap

import org.grails.cxf.utils.EndpointType

class MathService {

 static expose = EndpointType.SIMPLE

 int add(int i1, int i2) { i1 + i2 }

 int multiply(int i1, int i2) { i1 * i2 }

}

There’s a lot of customization that you can do at this point, but you have everything you

need to get started. Start the server with grails run-app, and you can open http://
localhost:8080/server/services in a web browser to see a simple summary page that CXF
generates for you. There will be links to the WSDL URLs there: in this case, http://
localhost:8080/server/services/hello?wsdl and http://localhost:8080/server/services/
math?wsdl.

The Client Application
Create an application to be the client for the web services:

$ grails create-app client

Install the cxf-client plugin by adding it to BuildConfig.groovy:

plugins {

 ...

 compile ":cxf-client:1.5.0"

}

The plugin has a wsdl2java script to read a WSDL file and create Java classes from it.
The script has no command-line arguments; instead, everything is configured in

Config.groovy under the cxf.client key:

cxf {

 client {

 helloService {

 wsdl = 'http://localhost:8080/server/services/hello?wsdl'

176 | Chapter 6: Integration

 namespace = 'book.soap.hello'

 }

 mathService {

 wsdl = 'http://localhost:8080/server/services/math?wsdl'

 namespace = 'book.soap.math'

 }

 stockquoteService {

 wsdl = 'http://www.webservicex.net/stockquote.asmx?WSDL'

 }

 }

}

At this step, the only required attribute is wsdl, which can be a path to a local file or a

URL. The other attributes you can set are namespace, client, bindingFile, output

Dir, and wsdlArgs. By default, the files will be generated in src/java. In addition to the
two services from the server application, I’ve also configured a well-known stock quote
service often used for testing. Run the script to generate the client code:

$ grails wsdl2java

Now that the code is available, we need to configure the runtime attributes. The two

important ones are clientInterface and serviceEndpointAddress. serviceEndpoin

tAddress is the URL of the web service; in all three cases, it’s the same as the WSDL

URL without the querystring, but this won’t always be the case. The value for clien

tInterface is an interface with the @WebService annotation. The names will vary, even
for classes generated from our server application services, because one is a “simple”
service and the other uses JAX-WS. And the stock quote service has three annotated

interfaces; I found in testing that only net.webservicex.StockQuoteSoap worked.

Update Config.groovy with the new values:

cxf {

 client {

 helloService {

 wsdl = 'http://localhost:8080/server/services/hello?wsdl'

 namespace = 'book.soap.hello'

 clientInterface = book.soap.hello.HelloEndpoint

 serviceEndpointAddress = 'http://localhost:8080/server/services/hello'

 }

 mathService {

 wsdl = 'http://localhost:8080/server/services/math?wsdl'

 namespace = 'book.soap.math'

 clientInterface = book.soap.math.MathServicePortType

 serviceEndpointAddress = 'http://localhost:8080/server/services/math'

 }

SOAP Web Services | 177

 stockquoteService {

 wsdl = 'http://www.webservicex.net/stockquote.asmx?WSDL'

 clientInterface = net.webservicex.StockQuoteSoap

 serviceEndpointAddress = 'http://www.webservicex.net/stockquote.asmx'

 }

 }

}

The WSDL attributes aren’t needed at runtime because the generated classes will be
used. But it’s okay to leave them in, and will be needed if you change your services and
have to update the client.

The plugin will create a Spring bean for each configuration—in this case, helloSer

vice, mathService, and stockquoteService (use whatever you want for the names).

The bean will be an org.apache.cxf.jaxws.JaxWsClientProxy that implements your

@WebService interface. This largely abstracts away the SOAP and XML aspects of the
services, because you simply need to dependency-inject the bean and call the exposed

methods. You can try this out by running grails console and executing:

def helloService = ctx.helloService

println helloService.ping('testing, testing')

println helloService.sayHello('World')

def mathService = ctx.mathService

println mathService.add(123 as int, 234 as int)

println mathService.multiply(123 as int, 234 as int)

def stockquoteService = ctx.stockquoteService

String xml = stockquoteService.getQuote('VMW')

def parsed = new XmlSlurper().parseText(xml)

println "$parsed.Stock.Symbol \$$parsed.Stock.Last"

and the output should be similar to this:

testing, testing

Hello, World

357

28782

VMW $91.78

The stock quote service returns an XML string as its response, so I’m using an XmlSlurp

er to extract the useful information:

<StockQuotes>

 <Stock>

 <Symbol>VMW</Symbol>

 <Last>91.78</Last>

 <Date>12/3/2012</Date>

 <Time>4:02pm</Time>

 <Change>+0.83</Change>

 <Open>90.32</Open>

178 | Chapter 6: Integration

 <High>92.34</High>

 <Low>90.22</Low>

 <Volume>1760741</Volume>

 <MktCap>39.260B</MktCap>

 <PreviousClose>90.95</PreviousClose>

 <PercentageChange>+0.91%</PercentageChange>

 <AnnRange>74.69 - 118.79</AnnRange>

 <Earns>1.71</Earns>

 <P-E>53.19</P-E>

 <Name>Vmware</Name>

 </Stock>

</StockQuotes>

TCPMon
The TCPMon tool (Figure 6-1) is useful for inspecting the SOAP XML that is sent to
and from your web services. It can help debug issues when your web service calls are
failing, because in general, the process is a black box. The convenience of having excel‐
lent wrappers for complex technologies comes with the cost that, when things go wrong,

it can be very difficult to figure out what happened. The tcpmon plugin makes the library

available and adds a tcpmon script that launches the application.

Figure 6-1. TCPMon

TCPMon acts as a proxy for your requests, so you configure what port it runs on and
what server and port to intercept. While you’re using it, change whatever client you’re

using to connect to the tcpmon instance instead of the real server, and it will capture
your request, forward it to the server, and capture its response and forward that to your

SOAP Web Services | 179

https://ws.apache.org/commons/tcpmon/
http://grails.org/plugin/tcpmon

client. Afterward, you can inspect the XML, or manually submit requests with your own
XML. Figure 6-1 shows TCPMon after some service calls.

By default, the tcpmon script connects to a server on localhost port 8080, and listens
on port 8888. This is convenient if you have a local Grails application running as the
server. Install the plugin by adding it to BuildConfig.groovy:

plugins {

 ...

 compile ':tcpmon:0.1'

}

and launch the script (in a separate console from your run-app console) with no argu‐
ments to use the defaults:

$ grails tcpmon

In the example applications above, you would change the endpoint addresses for the
local services in Config.groovy to use port 8888 temporarily while you’re working with
TCPMon:

...

serviceEndpointAddress = 'http://localhost:8888/cxf-server/services/hello'

...

serviceEndpointAddress = 'http://localhost:8888/cxf-server/services/math'

...

It can proxy any server though; to proxy for the stock quote service, you would run the
script with parameters to override the defaults:

$ grails tcpmon --target=80 --host=www.webservicex.net

and change the endpoint address to:

serviceEndpointAddress = 'http://localhost:8888/stockquote.asmx'

REST
There are many options for producing and consuming REST in Grails, including the
support that is built into Grails that provides RESTful URL mappings, automatic object

graph conversion to XML with render ... as XML and to JSON with render ... as

JSON, data binding, and content negotiation.

For more formal integration, use one of the various Grails REST plugins. The jaxrs
plugin adds support for JSR 311 (JAX-RS), so I’ll focus on that. To try it out, create a
test application:

180 | Chapter 6: Integration

http://bit.ly/ZsPUF4
http://grails.org/doc/latest/guide/single.html#contentNegotiation
http://grails.org/plugins/search?q=rest
http://grails.org/plugin/jaxrs
http://grails.org/plugin/jaxrs

$ grails create-app resting

and install the plugin by adding a dependency in BuildConfig.groovy:

plugins {

 ...

 compile ':jaxrs:0.6'

}

Make sure that the mavenCentral() repository is uncommented and add http://

maven.restlet.org as a custom repository:

repositories {

 inherits true

 grailsPlugins()

 grailsHome()

 grailsCentral()

 mavenLocal()

 mavenCentral()

 mavenRepo 'http://maven.restlet.org'

}

Create a simple “resource” by running the plugin’s create-resource script:

$ grails create-resource book.rest.ping

and edit grails-app/resources/book/rest/PingResource.groovy so it looks like this:

package book.rest

import javax.ws.rs.GET

import javax.ws.rs.Path

import javax.ws.rs.Produces

import javax.ws.rs.QueryParam

@Path('/api/ping')

class PingResource {

 @GET

 @Produces('text/plain')

 String ping(@QueryParam('message') String message) { message }

}

This creates a simple action that accepts a GET request at /api/ping/ with a single

parameter that it echoes back. Start the server with the run-app script, and test the
resource by accessing http://localhost:8080/resting/api/ping?message=testing,testing in

a browser, and it should echo the value of the message parameter.

You can see that the resource is available by generating the WADL file for your services
by opening http://localhost:8080/resting/application.wadl in a browser. The relevant
section of the generated XML will look something like this:

<resource path="/api/ping">

 <method id="ping" name="GET">

REST | 181

 <request>

 <param xmlns:xs="http://www.w3.org/2001/XMLSchema"

 name="message" style="query" type="xs:string"/>

 </request>

 <response>

 <representation mediaType="text/plain"/>

 </response>

 </method>

</resource>

WADL can be used by tools to generate client code and know how to call your services
in the same way that WSDL makes information about SOAP services available.

The plugin has support for much more complicated resources and will generate REST-
based scaffolding. Create a simple domain class:

$ grails create-domain-class book.rest.Person

and edit the file so it looks like this:

package book.rest

class Person {

 String firstName

 String lastName

}

Use the generate-resources script to create the scaffolding:

$ grails generate-resources book.rest.Person

This code creates the book.rest.PersonCollectionResource class in grails-app/

resources:

package book.rest

...

@Path('/api/person')

@Consumes(['application/xml','application/json'])

@Produces(['application/xml','application/json'])

class PersonCollectionResource {

 def personResourceService

 @POST

 Response create(Person dto) {

 created personResourceService.create(dto)

 }

 @GET

 Response readAll() {

 ok personResourceService.readAll()

 }

182 | Chapter 6: Integration

 @Path('/{id}')

 PersonResource getResource(@PathParam('id') Long id) {

 new PersonResource(personResourceService: personResourceService, id:id)

 }

}

It has a method for GET requests that returns all Person instances, and a method for

POST requests that creates a new Person. In addition, the script creates the

book.rest.PersonResource class in grails-app/resources, which is mapped

to /api/person/{id} URLs and through the getResource method in PersonCollec

tionResource:

package book.rest

...

@Consumes(['application/xml','application/json'])

@Produces(['application/xml','application/json'])

class PersonResource {

 def personResourceService

 def id

 @GET

 Response read() {

 ok personResourceService.read(id)

 }

 @PUT

 Response update(Person dto) {

 dto.id = id

 ok personResourceService.update(dto)

 }

 @DELETE

 void delete() {

 personResourceService.delete(id)

 }

}

All database persistence is handled by the generated service book.rest.PersonResour

ceService.

This provides a solid starting point for CRUD actions mapped to the various REST
verbs. Regenerate the WADL file to ensure that things are correctly wired. Testing these
methods is more involved than just issuing requests from a browser like in the earlier
simple example. There are browser addons to generate POST, PUT, and DELETE re‐
quests, but to actually use the REST API in an application, we’ll need a proper client.

REST | 183

One great option is the Grails rest-client-builder plugin. It uses the Spring

org.springframework.web.client.RestTemplate with a convenient DSL.

Create a second application to be the test client and install the plugin by adding it to
BuildConfig.groovy:

plugins {

 ...

 compile ':rest-client-builder:1.0.3'

}

Run grails console, and to get things started, run this to do the same test as the earlier
browser-based test:

import grails.plugins.rest.client.RestBuilder

def rest = new RestBuilder()

def resp = rest.get(

'http://localhost:8080/resting/api/ping?message=testing,testing')

println resp.text

println resp.status

and the output should be:

testing,testing

200

We can also do more complex requests on the Person domain class. This will create a
new instance using XML:

import grails.plugins.rest.client.RestBuilder

def rest = new RestBuilder()

def resp = rest.post('http://localhost:8080/resting/api/person') {

 accept 'application/xml'

 contentType 'application/xml'

 xml {

 person {

 firstName 'Foghorn'

 lastName 'Leghorn'

 }

 }

}

println resp.text

println resp.status

and the output should look like this:

<?xml version="1.0" encoding="UTF-8"?>

<person id="1">

<firstName>Foghorn</firstName>

<lastName>Leghorn</lastName>

184 | Chapter 6: Integration

http://grails.org/plugin/rest-client-builder

</person>

201

I’m using the text property to view the result, but if you want to extract data from the

response, use the xml property.

This will create an instance using JSON:

import grails.plugins.rest.client.RestBuilder

def rest = new RestBuilder()

def resp = rest.post('http://localhost:8080/resting/api/person') {

 accept 'application/json'

 contentType 'application/json'

 json {

 person {

 firstName = 'Hunter'

 lastName = 'Thompson'

 }

 }

}

println resp.text

println resp.status

and the output should look like this:

{"class":"book.rest.Person","id":2,"firstName":"Hunter","lastName":"Thompson"}

201

Like the XML example above, to work with the returned data, use the resp.json
property.

We can retrieve all of the instances by making a GET call:

import grails.plugins.rest.client.RestBuilder

def rest = new RestBuilder()

def resp = rest.get('http://localhost:8888/rest/api/person')

println resp.text

println resp.status

resp.xml.person.each { person ->

 println "Person ${person.@id} '$person.firstName $person.lastName'"

}

and the output should look like this:

<?xml version="1.0" encoding="UTF-8"?>

<list>

<person id="1">

<firstName>Foghorn</firstName>

<lastName>Leghorn</lastName>

REST | 185

</person>

<person id="2">

<firstName>Hunter</firstName>

<lastName>Thompson</lastName>

</person>

</list>

200

Person 1 'Foghorn Leghorn'

Person 2 'Hunter Thompson'

We can edit an instance with a PUT using the ID of the instance to update:

import grails.plugins.rest.client.RestBuilder

def rest = new RestBuilder()

def resp = rest.put('http://localhost:8080/resting/api/person/1') {

 accept 'application/json'

 contentType 'application/json'

 json {

 person {

 firstName = 'Bugs'

 lastName = 'Bunny'

 }

 }

}

println resp.text

println resp.status

which should generate this output:

{"class":"book.rest.Person","id":1,"firstName":"Bugs","lastName":"Bunny"}

200

We can retrieve that instance again to verify the update:

import grails.plugins.rest.client.RestBuilder

def rest = new RestBuilder()

def resp = rest.get('http://localhost:8080/resting/api/person/1') {

 accept 'application/xml'

}

println resp.text

println resp.status

And, because we’re asking for XML, the response will have the same data as before,
except in XML format:

<?xml version="1.0" encoding="UTF-8"?>

<person id="1">

<firstName>Bugs</firstName>

<lastName>Bunny</lastName>

186 | Chapter 6: Integration

</person>

200

Finally, we can delete an instance using DELETE:

import grails.plugins.rest.client.RestBuilder

def rest = new RestBuilder()

def resp = rest.delete('http://localhost:8888/rest/api/person/1')

which doesn’t generate a response body, so the output will be:

No Content

204

TCPMon
Just as when working with SOAP, things can easily go wrong when making REST re‐
quests, so the TCPMon tool can be useful to intercept requests and help diagnose issues.

Install the plugin as described in the SOAP section and launch it with the default settings:

$ grails tcpmon

or configure the host and ports as needed. Change the RestBuilder method calls to use
port 8888 instead of 8080, and you will be able to view the requests and responses in
the TCPMon GUI:

import grails.plugins.rest.client.RestBuilder

def rest = new RestBuilder()

def resp = rest.get('http://localhost:8888/resting/api/person/3') {

 accept 'application/json'

}

Figure 6-2 shows TCPMon displaying the request and the 404 response that results from

requesting the nonexistent Person with ID 3.

REST | 187

Figure 6-2. TCPMon

JMX
Java Management Extensions (JMX) isn’t a JEE technology, but it is a convenient way
to view and modify application configuration information, and it’s already part of the

JDK. Wiring things up isn’t particularly complicated, but you should use the jmx plu‐
gin to do the work for you. It registers a few default MBeans but also has support for
exposing your services as MBeans with a simple configuration.

By default, the plugin registers Hibernate’s org.hibernate.jmx.StatisticsService
MBean if the Hibernate libraries are available. This makes several usage statistics such
as entity and collection load and update counts, cache hit, miss, and put counts, etc.,
available. Statistics gathering is disabled by default, but you can enable it with JMX, or
programmatically at startup in BootStrap.groovy:

class BootStrap {

 def sessionFactory

 def init = { servletContext ->

 sessionFactory.statistics.statisticsEnabled = true

 }

}

The plugin also registers the Log4j org.apache.log4j.jmx.HierarchyDynamicMBean
MBean to give you access to the Log4j configuration. You can view and update the root
logger, and add MBeans for individual loggers to view and update their logging level.
When a problem occurs, it can be convenient to temporarily change a logger’s level to
view debug information and restore it once the issue is resolved.

188 | Chapter 6: Integration

http://grails.org/plugin/jmx
http://grails.org/plugin/jmx

In addition, the plugin registers an MBean for each DataSource in your application.
This allows you to view and modify connection pool information.

There are two ways to expose services as MBeans. The easier way is to add static

expose = ['jmx'] as a static property in the service. By default, all properties except

expose, jmxexpose, metaClass, scope, and transactional are included, but you can

use the jmxexpose property to customize the behavior. The other way is to annotate the

class with org.springframework.jmx.export.annotation.ManagedResource. If you

use this approach, the jmxexpose property is ignored, and you can annotate individual

properties or getter methods with org.springframework.jmx.export.annota

tion.ManagedAttribute.

There are many JMX tools available, but the JDK comes with jconsole, a Swing appli‐

cation that is easy to use. Figure 6-3 shows the beans for an application with the jmx
plugin installed.

Figure 6-3. Viewing MBeans with JConsole

You can see the default MBeans dataSource, hibernate, and log4j nodes under the

configuration node, and the CreditCardService MBean corresponding to this
service:

package book.jmx

class CreditCardService {

 static expose = ['jmx']

 String processorUrl = 'https://card.processor.com/?company=123'

JMX | 189

http://docs.oracle.com/javase/6/docs/technotes/guides/management/jconsole.html

 ...

}

Exposing the processorUrl property makes it possible to change the URL at runtime
without having to redeploy the application.

In addition, the top-level log4j node contains a root MBean corresponding to the root

logger, a console MBean for the console appender, and an MBean for the

com.myapp.SomeClass logger. Individual loggers MBeans are added with the addLog

gerMBean operation of the log4j MBean. The plugin doesn’t automatically configure
individual loggers because a basic Grails application configures over 250 loggers.

190 | Chapter 6: Integration

CHAPTER 7

Configuration

Grails uses a “convention over configuration” approach, but of course that doesn’t mean
that everything follows a convention. You should use the conventions where they make
sense and override defaults as needed. And, beyond configuring core functionality,
Grails has several configuration files under the grails-app/conf folder where you con‐
figure application settings, Spring bean definitions, library and plugin dependencies,
and so on. Quite often, as an application grows, these configuration files can get large
and unwieldy, so in this chapter, we discuss various approaches for partitioning and
organizing various config files.

External config Files
The Config.groovy file that’s generated by the create-app script contains this
commented-out code at the top:

// locations to search for config files that get merged into the main config;

// config files can be ConfigSlurper scripts, Java properties files, or classes

// in the classpath in ConfigSlurper format

// grails.config.locations = [

// "classpath:${appName}-config.properties",

// "classpath:${appName}-config.groovy",

// "file:${userHome}/.grails/${appName}-config.properties",

// "file:${userHome}/.grails/${appName}-config.groovy"]

// if (System.properties["${appName}.config.location"]) {

// grails.config.locations << "file:" +

// System.properties["${appName}.config.location"]

// }

This provides a great way of defining one or more external config files that get merged
into the main config that’s defined in Config.groovy. You can define as many external

files as you want in the grails.config.locations list. One convenient aspect of this

191

feature is that the specified files don’t have to exist; you’ll just see a warning message in
the console for each missing file (depending on your logging threshold). Each item must

be a String or a GString with the location of a resource (typically file-based or classpath-
based) or a class. Classes can be in your project or supplied by a plugin, or in a JAR file.

I usually remove the property file variants because Groovy files are more convenient,
and change the file pattern to point to the project root directory:

grails.config.locations = [

 "classpath:${appName}-config.groovy",

 "file:./${appName}-config.groovy"]

This location list lets you define a per-developer local configuration override file in the

root directory (${appName}-config.groovy) and another in the root of the classpath

(classpath:${appName}-config.groovy). The local file lets you change database set‐
tings, the Log4j configuration, and any other setting defined in Config.groovy and gets
around the classic problem where developers change configuration files locally and have
to add them to their “never check these edited files into source control” list. This com‐
mon practice is brittle and it’s too easy to commit unintentional changes and also to
miss important changes that should be committed. Using the external config file ap‐
proach lets you edit Config.groovy for real changes and do whatever you want in your
local override file(s). Be sure to add the local override filename to the exclusion list for

your source control (i.e., .gitignore, svn:ignore).

The classpath location isn’t particularly useful for local development; this is best used
when deploying a WAR. One use case is to be able to create a generic WAR file that’s
deployable in any deployment environment. Any settings that are deployment-specific
can be specified in a Groovy config file that’s added to the classpath when deploying. A
convenient location for Tomcat is its lib directory; all files there get automatically added
to the classpath, and as long as each application’s config file has a unique name, there
won’t be any overlap. Database passwords and other sensitive information that shouldn’t
be available to developers or in source control can also be specified here. The person
responsible for deploying a WAR file can put the config file in a location that will put it
in the classpath when starting up, and this keeps developers out of the production da‐
tabase. JNDI is another option, but it’s less convenient because it requires server con‐
figuration. This approach just requires deploying a WAR file and a Groovy configuration
file.

Note that this is just a suggested naming and location pattern, but you can add whatever
you want to the filenames and paths; for example, making the files environment-specific:

grails.config.locations = [

 "classpath:${appName}-config-${Environment.current}.groovy"

]

The commented-out code also configures a way to specify an external file from the
command line:

192 | Chapter 7: Configuration

if (System.properties["${appName}.config.location"]) {

 grails.config.locations << "file:" +

 System.properties["${appName}.config.location"]

}

Add a -D flag when running the server startup script, or in a configuration file that the
server reads (e.g., setenv.sh for Tomcat):

-DmyApp.config.location=/path/to/myconfig.groovy

Loading the Configuration
The process for loading the configuration is handled primarily by org.codehaus.groo

vy.grails.compiler.GrailsProjectPackager and org.codehaus.groo

vy.grails.commons.cfg.ConfigurationHelper. GrailsProjectPackager uses a Con

figSlurper configured for the current Grails environment to load Config.groovy first

and then merge in DataSource.groovy. Then it calls ConfigurationHelper.initCon

fig() to finish the process.

ConfigurationHelper looks for the grails.config.defaults.locations setting,

which has the same format as grails.config.locations. Properties specified in these
files or classes are considered default values that can be overridden in Config.groovy or

in any of the locations specified in grails.config.locations. So they’re loaded first,
then the previously loaded Config.groovy contents are overlaid over that (potentially
overriding values), and this merged configuration becomes the current configuration.

Then locations specified in grails.config.locations are loaded, and they will set new
values and overwrite previously set values.

You can define environments blocks in the files to configure environment-specific val‐

ues; anything not inside an environments block applies to all environments, but values
within one are only set if the current environment matches.

So this defines the order of resolution as:

• Top-level attributes in each external “defaults” config file

• Environment-specific attributes in each external “defaults” config file

• Top-level attributes in Config.groovy

• Environment-specific attributes in Config.groovy

• Top-level attributes in each external config file

• Environment-specific attributes in each external config file

External config Files | 193

Partitioning Config Files
If you find that your Config.groovy is getting large, you can partition it into multiple
files using the external config file approach. There’s no best practice for how to split up
the file, but in general, it’s best to look for several related properties and put them in
their own file. For example, if you have a lot of configuration for a security plugin, you
might create a Config-security.groovy file:

grails.plugins.springsecurity.userLookup.userDomainClassName = 'com.foo.User'

grails.plugins.springsecurity.userLookup.authorityJoinClassName =

'com.foo.UserRole'

grails.plugins.springsecurity.authority.className = 'com.foo.Role'

grails.plugins.springsecurity.rememberMe.persistent = true

...

A complex logging configuration could go in Config-logging.groovy:

log4j = {

 error 'org.codehaus.groovy.grails',

 'org.springframework',

 'org.hibernate',

 'net.sf.ehcache.hibernate'

 ...

}

And you could put the Grails-specific configuration options in Config-core.groovy:

grails.project.groupId = appName

grails.mime.file.extensions = false

grails.mime.use.accept.header = false

...

and your application-specific configuration options in Config-app.groovy:

myapp.foo = 42

myapp.some.other.property = true

...

Remember that these config files also support environments, so you have that extra level
of flexibility available too.

You can put these in grails-app/conf along with Config.groovy and the other configura‐

tion files, and then Config.groovy will just be a container for the grails.config.loca

tions property, which now adds the partitioned files to the ${appName}-

config.groovy files:

grails.config.locations = [

 "file:./grails-app/conf/Config-core.groovy",

 "file:./grails-app/conf/Config-security.groovy",

 "file:./grails-app/conf/Config-logging.groovy",

 "file:./grails-app/conf/Config-app.groovy",

 "classpath:${appName}-config.groovy",

 "file:./${appName}-config.groovy"]

194 | Chapter 7: Configuration

The order here is important; you need the ${appName}-config.groovy files to be listed
last, because the files are parsed in the order specified, and these files must be last to
properly override previously set values. The Config-xxx.groovy files should be inde‐
pendent, so they’re unlikely to need a particular order.

Be careful though; this approach will work fine locally with run-app but will fail when

you deploy the application as a WAR, because the file: locations won’t be correct. So
it’s important that you sacrifice the convenience of keeping your configuration files
together and convert the locations to use the classpath:

grails.config.locations = [

 "classpath:Config-core.groovy",

 "classpath:Config-security.groovy",

 "classpath:Config-logging.groovy",

 "classpath:Config-app.groovy",

 "classpath:${appName}-config.groovy",

 "file:./${appName}-config.groovy"]

Because Groovy files in the conf folder aren’t copied to the classpath (only nonsource
files are, and no files in the conf/hibernate and conf/spring folders are), you’ll need to
put these four files in src/java for them to be available in the classpath.

Splitting resources.groovy
If you have many Spring bean declarations in your grails-app/conf/spring/resour‐
ces.groovy file, you should consider splitting it up into multiple files. There’s no practical
or performance benefit to this; it’s purely an organizational improvement. You can take

advantage of the loadBeans method and also conditional logic to partition your bean
definitions in whatever way makes sense for your applications.

You can call loadBeans with a file path but this won’t work in a deployed WAR. Loading

files from the classpath works both in run-app and in a deployed WAR, so this approach
is preferred. Non-Java files in the src/java directory get copied to the classpath, so
this is a good place to put files like these. This resources.groovy example demonstrates
loading three other files from the root of the classpath: /resources_security.groo‐
vy, /resources_foo.groovy, and /resources_bar.groovy. It also conditionally loads resour‐

ces_test.groovy only when running in the test environment, and defines a dataSource
bean inline. Finally, it loads an optional list of dynamically specified external files as

specified by the customBeanLocations config variable:

import grails.util.Environment

beans = {

 loadBeans('/resources_security.groovy')

 loadBeans('/resources_foo.groovy')

 loadBeans('/resources_bar.groovy')

Splitting resources.groovy | 195

 if (Environment.current == Environment.TEST) {

 loadBeans('/resources_test.groovy')

 }

 dataSource(MyCustomDataSource) {

 ...

 }

 if (application.config.customBeanLocations) {

 println '\nLoading bean definitions from' +

 application.config.customBeanLocations

 for (location in application.config.customBeanLocations) {

 loadBeans location

 }

 }

}

You can define customBeanLocations in any configuration file, but it makes most sense
in an external config file. In particular, this could be useful in the development envi‐

ronment; you could add the property to your local ${appName}-config.groovy file to
support local Spring bean overrides:

customBeanLocations = ['file:grails-app/conf/spring/resources_dev.groovy']

and resources_dev.groovy could contain any number of new beans and bean overrides;
for example:

beans {

 userDetailsService(MyMockUserDetailsService) {

 grailsApplication = ref('grailsApplication')

 }

}

It could also be set in the classpath:${appName}-config.groovy classpath file used
for deployment to allow per-deployment Spring bean overrides:

customBeanLocations = ['classpath:resources_staging.groovy']

Modularizing Within resources.groovy
If your resources.groovy file becomes large, you can split it into multiple files as described

above, but you can also reorganize it internally. You can break the large beans closure
up into smaller closures and add helper methods like you would with any other code
that is overly long. One issue you’ll hit with this approach is that the bean builder DSL
methods won’t be available in your closures and methods, but there’s a simple fix for
this. For example, consider this simple file:

beans = {

 securityBean(SomeBeanClass) {

196 | Chapter 7: Configuration

 prop1 = 'foo'

 }

 dataAccessBean(SomeOtherBeanClass) {

 prop2 = 'bar'

 }

}

We can split it into multiple methods easily:

beans = {

 createSecurityBeans()

 createDataAccessBeans()

}

private void createSecurityBeans() {

 securityBean(SomeBeanClass) {

 prop1 = 'foo'

 }

}

private void createDataAccessBeans() {

 dataAccessBean(SomeOtherBeanClass) {

 prop2 = 'bar'

 }

}

But this will fail with a MissingMethodException when calling the securityBean

method. That’s because the beans closure’s delegate is set as the bean builder, and it

interprets a MissingMethodException as a bean definition (assuming the signature is
one of the expected patterns). But we can convert the methods to closures, and set their

delegate as the bean builder:

beans = {

 createSecurityBeans.delegate = delegate

 createSecurityBeans()

 createDataAccessBeans.delegate = delegate

 createDataAccessBeans()

}

private createSecurityBeans = {

 securityBean(SomeBeanClass) {

 prop1 = 'foo'

 }

}

private createDataAccessBeans = {

 dataAccessBean(SomeOtherBeanClass) {

 prop2 = 'bar'

Modularizing Within resources.groovy | 197

 }

}

Using this approach you can organize the file however you like, and even move the
closures to helper classes:

import com.foo.SpringBeanConfigurationUtils

beans = {

 SpringBeanConfigurationUtils.createSecurityBeans.delegate = delegate

 SpringBeanConfigurationUtils.createSecurityBeans()

 SpringBeanConfigurationUtils.createDataAccessBeans.delegate = delegate

 SpringBeanConfigurationUtils.createDataAccessBeans()

}

with SpringBeanConfigurationUtils being a simple class in src/groovy with static
closures:

class SpringBeanConfigurationUtils {

 static createSecurityBeans = {

 securityBean(SomeBeanClass) {

 prop1 = 'foo'

 }

 }

 static createDataAccessBeans = {

 dataAccessBean(SomeOtherBeanClass) {

 prop2 = 'bar'

 }

 }

}

This also has the significant benefit of making the bean building more easily tested,
because you can conveniently call the helper classes in tests, but calling resources.groo‐
vy scripts requires more setup.

Environment-Specific Spring Beans
There’s no support for an environments block in resources.groovy like there is in Con‐
fig.groovy, DataSource.groovy, or BootStrap.groovy, but you can still fairly easily con‐

figure Spring beans differently for each environment. One way is to use a switch block;
for example:

import grails.util.Environment

beans = {

 switch(Environment.current) {

 case Environment.PRODUCTION:

198 | Chapter 7: Configuration

 userDetailsService(com.foo.RealUserDetailsService) {

 dataSource = ref('dataSource')

 someProperty = 24

 }

 break

 case Environment.DEVELOPMENT:

 userDetailsService(com.foo.MockUserDetailsService) {

 dataSource = ref('dataSource')

 someProperty = 42

 }

 break

 }

 }

}

This works, but it’s not very flexible or DRY. Another option is to specify properties and
even classes in the configuration (either Config.groovy or an external config file) and
use them in resources.groovy. For example, you could define these properties in Con‐
fig.groovy:

someBeanProperty = 42

environments {

 production {

 anotherBeanProperty = 'red'

 }

 development {

 anotherBeanProperty = 'blue'

 }

 staging {

 anotherBeanProperty = 'yellow'

 }

}

and use them in your bean definitions:

beans = {

 myBeanName(com.foo.Bar) {

 number = '${someBeanProperty}'

 color = '${anotherBeanProperty}'

 }

}

Here we’re setting number to 42 in all environments, but color depends on the current

environment. Note that even though we’re setting number as a string, it works, because
Spring’s bean property resolution process uses converters that can convert between
different formats.

Environment-Specific Spring Beans | 199

Specifying a different bean class between environments is a little more work. The Grails

bean builder doesn’t support classes specified as a String, and there’s no conversion

from a String to a class, so these Config.groovy settings:

someBeanProperty = 42

someBeanClass = com.foo.RealImpl

environments {

 production {

 anotherBeanProperty = 'red'

 someBeanClass = com.foo.RealImpl

 }

 development {

 anotherBeanProperty = 'blue'

 someBeanClass = com.foo.MockImpl

 }

 staging {

 anotherBeanProperty = 'yellow'

 someBeanClass = com.foo.StagingImpl

 }

}

wouldn’t work in this bean definition:

beans = {

 myBeanName('${someBeanClass}') {

 number = '${someBeanProperty}'

 color = '${anotherBeanProperty}'

 }

}

But there is a solution, it’s just a little more verbose. The GrailsApplication is available

as the grailsApplication binding variable, so we can access the config from there:

beans = {

 myBeanName(grailsApplication.config.someBeanClass) {

 number = '${someBeanProperty}'

 color = '${anotherBeanProperty}'

 }

}

You can also use this approach for more complicated property values or ones that Spring
won’t convert for you, and we could have used that approach the whole time:

def config = grailsApplication.config

beans = {

 myBeanName(config.someBeanClass) {

 number = config.someBeanProperty

 color = config.anotherBeanProperty

 }

}

200 | Chapter 7: Configuration

Beans Closures in Config.groovy
One last option for environment-specific bean definitions uses an approach similar to
the one above where we modularized within resources.groovy using closures. We can

create bean-defining closures in Config.groovy in an environments block and invoke
them in resources.groovy. For example:

environments {

 production {

 envBeans = {

 someBean(com.foo.BeanClass) {

 // prod-specific attributes

 }

 }

 }

 development {

 envBeans = {

 someBean(com.foo.MockBeanClass) {

 // dev-specific attributes

 }

 }

 }

 staging {

 envBeans = {

 someBean(com.foo.BeanClass) {

 // staging-specific attributes

 }

 }

 }

}

Then in resources.groovy we can configure the closure’s delegate and invoke it:

beans = {

 def envBeans = grailsApplication.config.envBeans

 envBeans.delegate = delegate

 envBeans()

}

Options for BuildConfig.groovy
There’s not a lot you can do to modularize BuildConfig.groovy. Because the settings that
are specified there are used to build the application, you can’t refer to other application
classes, because they won’t be available in the classpath yet. There’s also no mechanism

like grails.config.locations in Config.groovy to merge in external files. Fortunately
it would be somewhat unusual for a BuildConfig.groovy file to become very large, so
these limitations aren’t a significant problem.

We do have some options though. The file is a Groovy script containing a DSL, so you
can mix in logic in Groovy code along with repository, dependency, and plugin decla‐

Options for BuildConfig.groovy | 201

rations. And you can certainly have environment-specific configuration, either with a

switch block or using the executeForCurrentEnvironment in Environment; for
example:

inherits("global") {

 Environment.executeForCurrentEnvironment {

 development {

 // development env exclusions

 excludes 'dep1', 'dep2', ...

 }

 production {

 // production env exclusions

 excludes 'dep3', 'dep4', ...

 }

 }

}

dependencies {

 Environment.executeForCurrentEnvironment {

 production {

 // environment-specific jar dependencies

 compile '...'

 }

 }

}

plugins {

 Environment.executeForCurrentEnvironment {

 production {

 // environment-specific plugin dependencies

 runtime '...'

 }

 }

}

Adding Additional Source Folders
By default, artifact source classes are kept in a subfolder of grails-app; nonartifact Groovy
classes are in src/groovy and src/java. This should be sufficient in general, but if you
have a lot of classes in src/groovy and src/java, you can create additional source folders,
although there is some configuration required to get Grails to recognize and use them.

This first thing you need to do is to make the classes available to the project compiler.
It’s not enough to just compile the code though; you need to make sure the compiled
classes end up in the WEB-INF/classes directory of your WAR files. And, if you have
nonsource files, you should copy those to the classpath so they’re available as resources.
All of these tasks can be implemented using event handlers in events/_Events.groovy
(create a new empty file if you don’t already have one):

202 | Chapter 7: Configuration

extraSrcDirs = ["$basedir/src/extra1", "$basedir/src/extra2", ...]

eventCompileStart = {

 for (String path in extraSrcDirs) {

 projectCompiler.srcDirectories << path

 }

 copyResources buildSettings.resourcesDir

}

eventCreateWarStart = { warName, stagingDir ->

 copyResources "$stagingDir/WEB-INF/classes"

}

private copyResources(destination) {

 ant.copy(todir: destination,

 failonerror: false,

 preservelastmodified: true) {

 for (String path in extraSrcDirs) {

 fileset(dir: path) {

 exclude(name: '*.groovy')

 exclude(name: '*.java')

 }

 }

 }

}

In this example, the extraSrcDirs property defines a list of one or more extra source
paths to use; group your source however you want and in as many extra folders as you
need. Keep in mind that although the classes will be compiled, there’s no support for
development-mode class reloading like there is for the standard folders, so changes to
source in these folders will require a server restart.

Extra Folders Under grails-app
You can add additional source folders under the grails-app folder and get most of this
functionality without configuration. Grails will automatically compile all Groovy and
Java source for you; the only missing feature will be automatic copying of nonsource
files to the classpath and your WAR files as resources. So one option would be to just
keep source files under grails-app and resources in folders where they’re handled cor‐

rectly. And you can always add these extra grails-app subfolders to your extra

SrcDirs list in _Events.groovy; this will result in the folders being registered twice, but
this won’t have any adverse effects.

Adding Additional Source Folders | 203

CHAPTER 8

Plugins

Plugins are a great way to add functionality to a Grails application. They’re structurally
nearly identical to an application, so they can add any of the artifacts that an application
can (domain classes, services, etc.) and even create new artifact types. They can also
contribute static resources (e.g., JavaScript or CSS files) and Gant scripts. And there are
startup hooks that let plugins register Spring beans, add elements to the web.xml file,

add dynamic MetaClass methods and properties, and listen for and respond to file
modifications during development.

Plugins can also be used to modularize an application. Ordinarily, when thinking of
plugins, you probably think about the hundreds of plugins that have been released to
the central Grails plugin repository. These were created by community members and
Grails team members to be reused by anyone who is interested, but you can create private
plugins and even host your own plugin repository. If you find that you have common
code that you want to share between applications, you can extract it out into a plugin
and install it in all the applications that use it.

Creating a Plugin
Creating a new Grails plugin is very similar to creating a Grails application, but instead

of running grails create-app <appname>, you run grails create-plugin <plugin

name> (or use your IDE). The directory structure of an application and a plugin are very
similar (Figure 8-1). This is intentional, because a plugin can contribute any of the
standard artifacts that an application can have.

205

Figure 8-1. Application versus plugin directory structure

The most significant difference between a plugin project and an application project is

that a plugin has a plugin descriptor, <PluginName>GrailsPlugin.groovy, in the root

of the project. In addition, three scripts are created by default: _Install.groovy,

_Uninstall.groovy, and _Upgrade.groovy.

Initial Steps
The initial plugin code is great to get you started, but having written dozens of plugins,
I now have a routine when I first create a new plugin that includes cleaning up the
generated code and deleting unnecessary files.

By default, Grails keeps installed plugins and other generated code for both plugin and
application projects in the associated project folder in your $HOME/.grails folder. But

I prefer to keep things in one place, so after creating the project (using grails create-

plugin <pluginname>), I change these lines in BuildConfig.groovy:

grails.project.class.dir = "target/classes"

grails.project.test.class.dir = "target/test-classes"

grails.project.test.reports.dir = "target/test-reports"

to just:

grails.project.work.dir = 'target'

While I’m in BuildConfig.groovy, I remove this line:

//grails.project.war.file = "target/${appName}-${appVersion}.war"

because the WAR attribute isn’t applicable to a plugin project. This has been removed
from the template in more recent versions of Grails. I also delete the Tomcat plugin

from the plugins section, because it’s rarely needed when developing a plugin, only in
the containing application—you will certainly want to create test applications that use

206 | Chapter 8: Plugins

your plugin and need a web server, but it’s rare to run a plugin like an application with

run-app.

I also update the release plugin to the latest version, and add a dependency on the plugin’s

rest-client-builder plugin so both the release and rest-client-builder plugins

are properly excluded by the export = false attribute (depending on the version of
Grails you’re using, this may already be configured correctly):

build(':release:2.2.0', ':rest-client-builder:1.0.3') {

 export = false

}

Next, I remove most of the comments, so my final BuildConfig.groovy looks like this:

grails.project.work.dir = 'target'

grails.project.dependency.resolution = {

 inherits 'global'

 log 'warn'

 repositories {

 grailsCentral()

 }

 dependencies {

 // runtime 'mysql:mysql-connector-java:5.1.23'

 }

 plugins {

 build(':release:2.2.0', ':rest-client-builder:1.0.3') {

 export = false

 }

 }

}

I leave the commented-out dependency example in the dependencies block for a while
to remind me of the syntax. If I end up with a plugin with no dependencies, I remove

the block, and the same goes for the plugins block: if I don’t have any plugin depen‐
dencies, I delete the block, because it’s clutter and I can easily put it back if needed (old
versions will be in source control).

I also clean up the application.properties file, removing the app.name attribute because
it’s rarely used in a plugin project:

app.grails.version=2.0.4

Then I import the project into GGTS (unless I used GGTS to create it of course). GGTS
changes its compiled classes folder to the target-eclipse folder but, as I said, I like to have
everything that’s generated in the target folder, so I change that to target/eclipseclasses
(under Project→Properties→Java Build Path→Source→Default output folder).

Creating a Plugin | 207

Most of the time, I will have no use for grails-app/conf/UrlMappings.groovy, grails-app/
views/error.gsp, and the whole web-app directory, because they’re really more for ap‐
plication projects than plugins, so I delete those. I also delete scripts/_Uninstall.groovy
and scripts/_Upgrade.groovy because I rarely use either, and will also delete scripts/_In‐
stall.groovy if I don’t use it.

Because I typically won’t be using multiple environments when developing a plugin, I
collapse grails-app/conf/DataSource.groovy into a flat file, using an in-memory database,
because that will be useful for integration tests. While I’m there, I enable SQL logging

with logSql = true in the dataSource block and SQL formatting and comments with

format_sql = true and use_sql_comments = true in the hibernate block (I can easily
comment them out if the logging gets in the way):

dataSource {

 pooled = true

 driverClassName = 'org.h2.Driver'

 username = 'sa'

 password = ''

 dbCreate = 'update'

 url = 'jdbc:h2:mem:testDb;MVCC=TRUE'

 logSql = true

}

hibernate {

 cache.use_second_level_cache = true

 cache.use_query_cache = true

 cache.region.factory_class = 'net.sf.ehcache.hibernate.EhCacheRegionFactory'

 format_sql = true

 use_sql_comments = true

}

So, to summarize, here are the cleanup steps (the order isn’t particularly important) that
I perform when creating a new plugin:

• Move all files into the target folder by setting grails.project.class.dir='tar

get' in BuildConfig.groovy (or settings.groovy)

• Remove the grails.project.war.file property in BuildConfig.groovy

• Remove the dependency on the tomcat plugin, and update the release plugin
dependency

• Delete grails-app/conf/UrlMappings.groovy, grails-app/views/error.gsp, the web-
app directory, scripts/_Uninstall.groovy, scripts/_Upgrade.groovy, and scripts/_In‐
stall.groovy (if they’re not needed)

• Flatten grails-app/conf/DataSource and configure SQL logging, formatting, and
comments

208 | Chapter 8: Plugins

The Plugin Descriptor
Every plugin has a plugin descriptor class in the root of the plugin project. The name

of the class is the camel-case project name plus GrailsPlugin.groovy, such as Hiber

nateGrailsPlugin.groovy, SpringSecurityCoreGrailsPlugin.groovy, etc. The de‐
scriptor has two sections: one for metadata about the plugin (its version, which versions
of Grails it works with, etc.) and one with zero or more closures that are called during

startup to let the plugin integrate itself into your application (doWithWebDescriptor,

doWithSpring, etc.).

Metadata
When you initially create a plugin project, a starter descriptor class is created for you,
and it has several comments describing what each setting and closure is for. Be sure to
fill in all of the metadata attributes, because there’s no check for unchanged default
values, and you can easily publish a plugin to the central repository that looks like
Figure 8-2 (yes, this is a real plugin!).

Figure 8-2. An information-free plugin portal page

The top section for a “book” plugin will look like this:

class BookGrailsPlugin {

 // the plugin version

 def version = "0.1"

 // the version or versions of Grails the plugin is designed for

 def grailsVersion = "2.0 > *"

 // the other plugins this plugin depends on

 def dependsOn = [:]

 // resources that are excluded from plugin packaging

 def pluginExcludes = [

The Plugin Descriptor | 209

 "grails-app/views/error.gsp"

]

The initial version is 0.1. This value can be a number or a string, and can contain as
many subparts as you want. A common pattern is to include major, minor, and point

release values of the form major.minor.point, such as 1.2.5. I tend to take the approach

of leaving the version below 1.0 (or 1.0.0) while things are changing frequently, but

try to get to 1.0 as soon as possible to indicate that the plugin is stable and safe to use.
There are a few popular Grails plugins that are quite stable but aren’t yet at a version

beyond 1.0, but this should be the exception.

The grailsVersion attribute defaults to the major.minor version of Grails that was

used to create the plugin. So, for example, a plugin created with Grails 2.0.4 will default

to 2.0 > *. You should make this value as low as possible to make the plugin available
to as many users as you can. If you set it to a very recent version, users can’t even test
the plugin out without installing that version, if they’re currently on an older version.
If you do drop the minimum required version, be sure to test with at least one version

of Grails in that minor version range. So if you drop it to 1.3 > *, test it in 1.3.8 and

the most recent version of 2.0.x, 2.1.x, etc.

dependsOn is an older way of specifying plugin dependencies, but this is now deprecated
and will cause problems if you have it specified and install your plugin in a 2.0+ appli‐

cation. Instead, add a dependency in the plugins section of your BuildConfig.groovy
and remove the attribute from the descriptor. This means that your plugin won’t work
in Grails 1.2 or lower, but most users have upgraded to 1.3 and 2.x at this point, so that’s
not a major concern.

pluginExcludes is a convenient way of specifying individual files or name patterns for
files that shouldn’t be packaged in the plugin ZIP file. By default, these files and file
patterns are included:

• application.properties

• dependencies.groovy

• *GrailsPlugin.groovy

• LICENSE

• LICENSE.txt

• plugin.xml

• docs/api/**

• docs/gapi/**

• grails-app/**

• lib/**

210 | Chapter 8: Plugins

• scripts/**

• src/**

• web-app/**

and these default excludes are used:

• grails-app/conf/BootStrap.groovy

• grails-app/conf/BuildConfig.groovy

• grails-app/conf/Config.groovy

• grails-app/conf/*DataSource.groovy

• grails-app/conf/UrlMappings.groovy

• grails-app/conf/spring/resources.groovy

• test/**

• web-app/plugins/**

• web-app/WEB-INF/**

• **/.svn/**

• **/CVS/**

You can use pluginExcludes to extend the exclusion list; this is typically for domain
classes, services, and other artifacts to be used for local development and testing, but
not included in the released ZIP files. As I said before, I rarely need an error.gsp, so if I
delete it and have nothing else to exclude, I delete this property.

The next section of properties contain dummy values and should all be updated with
the appropriate information:

 // TODO Fill in these fields

 def title = "Book Plugin" // Headline display name of the plugin

 def author = "Your name"

 def authorEmail = ""

 def description = '''\

Brief summary/description of the plugin.

'''

 // URL to the plugin's documentation

 def documentation = "http://grails.org/plugin/book"

The initial title attribute is probably sufficient, but be sure to add your name and

email, and a brief synopsis of the plugin’s features and uses in the description attribute.
You should create proper documentation for your plugin (more on this later) so that

will usually mean that you can have a rather short description string. By default, the
string is a triple-quoted multiline string, so if you want, you can span multiple lines.

The Plugin Descriptor | 211

The documentation link will be correct if you put all of your documentation in the
plugin portal page that is created for your plugin when your release it. If you write more
extensive documentation somewhere [e.g., in your GitHub repository using their Git‐
Hub Pages feature], then be sure to update the URL.

The final section of metadata attributes has to do with plugin publishing and POM
generation:

 // Extra (optional) plugin metadata

 // License: one of 'APACHE', 'GPL2', 'GPL3'

// def license = "APACHE"

 // Details of company behind the plugin (if there is one)

// def organization = [name: "My Company", url: "http://www.my-company.com/"]

 // Any additional developers beyond the author specified above.

// def developers = [[name: "Joe Bloggs", email: "joe@bloggs.net"]]

 // Location of the plugin's issue tracker.

// def issueManagement = [system: "JIRA", url:

// "http://jira.grails.org/browse/GPMYPLUGIN"]

 // Online location of the plugin's browseable source code.

// def scm = [url: "http://svn.codehaus.org/grails-plugins/"]

You can specify the name of the license, your company or organization, additional de‐

velopers (don’t add yourself to the developers list, because you’re already in the list

having set the author and authorEmail attributes above), the type and URL of your bug
tracker, and the URL for your source control. These attributes are all optional, but it’s
a good idea to add the information, because it’s used to populate the links in your plugin
portal page and will make it easier for users to get access to the source of your plugin
and report issues and feature requests.

There are also several attributes that can be set but that aren’t included in the generated
plugin descriptor:

Table 8-1. Plugin descriptor attributes

Attribute name Description

loadBefore A List of plugin names (camelCase, e.g., springSecurityCore) that this plugin should load
before.

loadAfter A List of plugin names (camelCase, e.g., springSecurityCore) that this plugin should load
after.

scopes The execution scope(s) that the plugin can execute in; valid options are test, war, run,
functional_test, and all. Valid syntax includes a single String value, a List of one or
more String values, or a Map with includes and/or excludes keys and values that are a
single String or a List of String values that should be included or excluded.

212 | Chapter 8: Plugins

http://pages.github.com/
http://pages.github.com/

Attribute name Description

environments Environment name(s) that the plugin can execute in; valid options are dev, test, prod, and any
custom environments you have defined. Valid syntax is the same as for scopes.

watchedResources One or more file locations or Ant-style location patterns to watch for changes in the development
environment; changes will trigger an event and a call to your plugin’s onChange handler. If you want
to watch all artifacts of a particular type that are already watched by a plugin, use the observe
attribute instead.

observe A List of plugin names (camelCase, e.g., springSecurityCore) that this plugin should observe
for changes in the development environment; if a resource in the observed plugin’s watchedRe
sources is changed, your plugin will be notified of the change so you can react to it.

evict A List of plugin names (camelCase, e.g., springSecurityCore) that this plugin should evict;
use this with caution, because there may be unexpected coupling between the application or another
plugin and one that is evicted.

artefacts A List of ArtefactHandler classes or instantiated instances that provide custom artifacts.

providedArtefacts A List of artifact classes that are provided by the plugin that can be overriden by application classes
with the same name and package; this is a rarely used attribute, but is used by CodecsGrails
Plugin, ConvertersGrailsPlugin, and GroovyPagesGrailsPlugin.

packaging How to package the plugin, either source (the default) or binary. Can be overridden from the
package-plugin script command line.

Life Cycle Callbacks
In addition to metadata, the plugin descriptor contains closures that are called at various
phases of the plugin life cycle at startup and during runtime. None are required, so I
always delete any that aren’t used; implement whichever ones you need for your plugin.

The GrailsApplication instance is available in all of the life cycle clo‐

sures as the application variable.

doWithWebDescriptor

def doWithWebDescriptor = { xml ->

 // TODO Implement additions to web.xml (optional)

}

You can use doWithWebDescriptor to modify the web.xml file that is generated when

you build a WAR or start an embedded web server (e.g., when you execute the run-

app script or when you run functional tests). Your closure will be passed the root

org.w3c.dom.Element of the parsed XML template that is being used (either the one
from the Grails distribution corresponding to the current servlet API version, or one

you have customized after running grails install-templates) and you can use the
web.xml DSL that is active in the scope of this closure.

The Plugin Descriptor | 213

There are two main features of the DSL that are most commonly used: getting a reference
to all elements of a particular name, and adding one or more new elements. Typically,
you’ll want to position a new element in a particular location in the web.xml file. So, for

example, you can get a reference to all of the context-param elements with this:

def contextParams = xml.'context-param'

This GPath expression will return a org.w3c.dom.NodeList, and it’s most common to

use the length() method (or the size() method added by Groovy) to position a new

element after these elements. For example, you could add a new filter element after

the last context-param element using the + operator with an element-defining closure:

contextParams[contextParams.size() - 1] + {

 'filter' {

 'filter-name'('springSecurityFilterChain')

 'filter-class'(DelegatingFilterProxy.name)

 }

}

This will generate this XML in your web.xml file:

<filter>

 <filter-name>springSecurityFilterChain</filter-name>

 <filter-class>

 org.springframework.web.filter.DelegatingFilterProxy

 </filter-class>

</filter>

See the Grails reference documentation for more details and examples on the usage of

this DSL. Also note that, if you need to position a filter-mapping element in a par‐
ticular location (e.g., before or after another filter to ensure it is called in the correct

order), you should use the webxml plugin.

doWithSpring

def doWithSpring = {

 // TODO Implement runtime spring config (optional)

}

You use doWithSpring to register Spring beans in the ApplicationContext. This is
implemented by the Spring beans DSL that you will be familiar with if you’ve worked
with an application’s grails-app/conf/spring/resources.groovy file. One convenient fea‐

ture of the process that Grails uses to build the ApplicationContext is that the Bean

Builder and RuntimeSpringConfiguration instances that are used when parsing the
resources.groovy and the plugin descriptors store singleton bean definitions (the default

scope) in a Map keyed by the bean names. So you can override any previously defined
bean definition by just declaring a bean definition with the same name. You can order

plugin loading using the loadAfter and loadBefore metadata attributes, so this lets
plugin developers override beans registered by Grails or other plugins, and lets appli‐

214 | Chapter 8: Plugins

http://bit.ly/115MZVS
http://grails.org/plugin/webxml

cation developers override any bean in resources.groovy. You can even design your
plugin to be customized in this way.

One prominent example of this is the userDetailsService bean in the Spring Security
Core plugin. By default, domain classes and GORM are used to store and retrieve user
and role data for use in authentication and authorization, but the plugin was designed

to not care where the data comes from, so you’re free to create your own userDetails

Service bean to customize where the data is stored however you like. The spring-

security-openid plugin does this, overriding the core plugin definition with its own
that adds an additional search by OpenID identifier. But, in general, this is an imple‐
mentation detail, and users of the bean access it with dependency injection or as a bean
reference in the bean builder DSL, in both cases by name.

See the Grails reference documentation for more details and examples on the usage of
the bean builder DSL.

doWithDynamicMethods

def doWithDynamicMethods = { ctx ->

 // TODO Implement registering dynamic methods to classes (optional)

}

You can use the doWithDynamicMethods callback to add custom methods or properties

to one or more classes, working with MetaClass instances. The argument of the closure

is the Spring ApplicationContext in case you need to reference any Spring beans in a
metamethod.

It is common to add a method to all instances of a particular artifact type—for example,

all controllers or all services. You can use the GrailsApplication to find all artifact

instances using its get<Artifact Type>Classes dynamic method. This method re‐

turns GrailsClass instances, but you can access each wrapped Class with the get

Clazz() method. So for example, you could add an isPost method to all controllers,

which would be slightly more convenient than calling the isPost() method that’s added

to the HttpServletRequest MetaClass:

def doWithDynamicMethods = { ctx ->

 for (controllerClass in application.controllerClasses) {

 controllerClass.clazz.metaClass.isPost = { ->

 request.method.toUpperCase() == 'POST'

 }

 }

}

Note that this example uses the property-access form of getControllerClasses()

(controllerClasses) for compactness.

The Plugin Descriptor | 215

http://grails.org/plugin/spring-security-core
http://grails.org/plugin/spring-security-core
http://bit.ly/YKomiP
http://bit.ly/135YJeW
http://bit.ly/115MZVS

doWithApplicationContext

def doWithApplicationContext = { ctx ->

 // TODO Implement post initialization spring config (optional)

}

If you have any configuration needs that make use of the initialized Spring Applica

tionContext, you can do that work in doWithApplicationContext. One use for this is
to slightly change a bean: altering a simple property value or changing a referenced bean

to use a different instance. You can redefine the whole bean in doWithSpring but this
tends to be verbose, because you often must copy the entire bean definition and often
change only a few properties. If you want to retain the same bean class but just change

one or more properties, you can usually do that more compactly in doWithApplica

tionContext; for example:

def doWithApplicationContext = { ctx ->

 def myBean = ctx.myBean // or ctx.getBean('myBean')

 myBean.maxElements = 200

 myBean.errorHandler = new MockErrorHandler(true)

}

onChange

def onChange = { event ->

 // TODO Implement code that is executed when any artefact that this plugin is

 // watching is modified and reloaded. The event contains: event.source,

 // event.application, event.manager, event.ctx, and event.plugin.

}

If you have specified one or more files or file patterns to be monitored for changes with

the watchedResources or observe attributes, you will be notified of the changes in the

onChange callback. The event closure parameter is just a Map, and it contains the source

(typically the newly compiled Class when watching source files, or the File if it’s a

regular file), the GrailsApplication instance under the application key, the Grails

PluginManager instance under the manager key, the Spring ApplicationContext under

the ctx key, and the plug-in instance that was watching for changes (your plugin for

watchedResources, the observed plugin for observe) under the plugin key.

If you had updated a metaclass in doWithDynamicMethods at startup you need to redo

that work again, because the newly compiled class will have a new MetaClass. You can
keep things DRY by sharing code between the two callbacks; for example:

def doWithDynamicMethods = { ctx ->

 for (controllerClass in application.controllerClasses) {

 updateControllerMetaclass controllerClass.clazz

 }

}

def onChange = { event ->

 if (event.application.isControllerClass(event.source)) {

216 | Chapter 8: Plugins

 updateControllerMetaclass event.source

 }

}

private void updateControllerMetaclass(Class c) {

 c.metaClass.isPost = { ->

 request.method.toUpperCase() == 'POST'

 }

}

If you are only watching for controller changes, then the application.isController

Class check isn’t necessary. But, if you are watching for changes of multiple artifact

types, the is<Artifact Type>Class GrailsApplication dynamic method is conve‐
nient to determine what work must be done.

Note that if you need to monitor changes for a file pattern that is already watched by
another, you can “observe” that plugin to be notified of changes it watches for. For
example, you can simply add:

static observe = ['controllers']

to be notified of changes to any grails-app/controllers classes because the control

lers plugin is already watching those files.

onConfigChange

def onConfigChange = { event ->

 // TODO Implement code that is executed when the project configuration changes.

 // The event is the same as for 'onChange'.

}

If you use Grails configuration data for some of your startup configuration, you should

monitor changes of Config.groovy and handle the update in onConfigChange. For ex‐

ample, the core Grails LoggingGrailsPlugin watches for configuration changes, be‐

cause logging is configured by a log4j closure in Config.groovy.

onShutdown

def onShutdown = { event ->

 // TODO Implement code that is executed when the application shuts down

}

If you need to do any work during a clean shutdown, you can add that code in onShut

down. This is analogous to the destroy closure in grails-app/conf/BootStrap.groovy. Keep
in mind that this only fires during a clean shutdown; if the JVM is stopped with Ctrl-C

or another abrupt approach, such as the Unix kill command, the code won’t have a
chance to run.

The Plugin Descriptor | 217

You can add many features that are only available to plugins to an ap‐
plication (e.g., listening for changed files in development mode, editing

web.xml, and registering custom artifact handlers) with the plugina

tor plugin.

Splitting Applications into Plugins
There are many ways to split out part of an application into one or more plugins to
modularize development and make the code reusable, but there are a few patterns you
can use and things to consider.

One issue you may have is that a plugin has only limited visibility into its containing
application. If it had more, it would be an indication of a design flaw, because the ap‐
plication should use its plugins, not the other way around. Grails further complicates
this by compiling plugins first and then the application code. This has significant ben‐
efits including letting you override entire plugin classes with application classes, but it
means that your plugin compile will fail if it refers to application classes. This is a good
thing, because it points out a coupling that shouldn’t exist; if you need this sort of be‐
havior, you should consider moving the shared code into another plugin that both the
application and your plugin depend on.

Because a plugin is so similar to an application—it’s practically identical except for the
addition of the plugin descriptor—you can put any class or resource file that is in your
application into a plugin. This means you can have a plugin that only contains static

resources and possibly some helper classes, such as the famfamfam or JQuery plugins.
It could contain only domain classes, or no resources or artifacts at all, and just behavior

in the plugin descriptor, such as adding MetaClass methods in doWithDynamicMe

thods. Any time you find that you have code, files, or functionality that could be shared
between applications, or is shared in an overly manual way, consider extracting it into
a plugin.

Inline Plugins
Having created a plugin, whether it contains new features or was split off from an ap‐
plication, you’ll find it tedious to continuously repackage and reinstall it for each change
you make. You can do this, and using a custom plugin repository would make it a lot
easier, but you’ll probably find that using:

grails.plugin.location."<plugin-name>" = "<path to plugin dir>"

is a lot more convenient. The path to the inline plugin can be relative, which helps keep
things portable between developers on a team:

grails.plugin.location.foo = "../foo"

218 | Chapter 8: Plugins

http://grails.org/plugin/pluginator
http://grails.org/plugin/pluginator
http://grails.org/plugin/famfamfam
http://grails.org/plugin/jquery

Don’t do all of your testing with inline plugins, though, because there are a few bugs
and behavior differences between inline plugins and plugins installed the standard way.
One is that plugin exclusions aren’t respected, so test classes and files that wouldn’t be
packaged into the plugin ZIP file will be available when using an inline plugin. So be
sure to test your plugins in an application by installing from a plugin ZIP, or with a
snapshot release.

Building and Releasing
It’s a good idea to automate your build process to the extent possible. This can include
configuring Jenkins or another continuous-integration server to build your project, or
just one or more scripts that reduce the manual (and error-prone) steps. Whether you
use a continuous-integration server or a script, it’s a good idea to release from a clean
copy of the code from source control instead of your local working directory so you
don’t accidentally include uncommitted code. I often create a shell script that does this

for me; for example, here’s my release.sh script for the cloud-foundry plugin:

#!/bin/bash

rm -rf target/release

mkdir target/release

cd target/release

git clone git@github.com:grails-plugins/grails-cloud-foundry.git

cd grails-cloud-foundry

grails clean

grails compile

grails publish-plugin --noScm

One risk with this approach is forgetting to push local changes before doing the release,
but I prefer that risk to the one of accidentally including unfinished or untested local
changes in a plugin release.

Automated Testing
Testing plugins isn’t all that different from testing an application. There are usually many
testable classes in a plugin project, so traditional unit and integration tests should be
used to ensure that your code works correctly. I also like to do functional testing, because
testing the plugin in isolation only gets you so far. Manually installing the plugin into a
test application is tedious and error-prone, and hard to do with multiple versions of
Grails, so I usually automate this as much as possible.

I don’t have a fully fleshed-out process for automated test application creation, so I’ll
outline the general approach.

Building and Releasing | 219

A mini DSL to describe versions

Originally I started doing this for the spring-security-core plugin and its extension
plugins, because security testing is critical. I’ve tried to support as many versions of
Grails as possible, because often, users don’t have the freedom or time to upgrade, so
that means I need to test in 1.2.x, 1.3.x, 2.0.x, and now 2.1.x.

The script that creates the test applications is in source control: CreateS2TestApps.groo‐
vy. It requires a local file called testapps.config.groovy and the format is very simple—
each block defines the required property values for one version of a test application:

String version = '1.2.7.3'

String grailsHomeRoot = '/usr/local/javalib'

String dotGrailsCommon = '/home/burt/.grails'

String projectDirCommon = '/home/burt/workspace/testapps/spring-security-test'

v12 {

 grailsVersion = '1.2.3'

 pluginVersion = version

 dotGrails = dotGrailsCommon

 projectDir = projectDirCommon

 grailsHome = grailsHomeRoot + '/grails-' + grailsVersion

}

v13 {

 grailsVersion = '1.3.7'

 pluginVersion = version

 dotGrails = dotGrailsCommon

 projectDir = projectDirCommon

 grailsHome = grailsHomeRoot + '/grails-' + grailsVersion

}

v20 {

 grailsVersion = '2.0.4'

 pluginVersion = version

 dotGrails = dotGrailsCommon

 projectDir = projectDirCommon

 grailsHome = grailsHomeRoot + '/grails-' + grailsVersion

}

v21 {

 grailsVersion = '2.1.0'

 pluginVersion = version

 dotGrails = dotGrailsCommon

 projectDir = projectDirCommon

 grailsHome = grailsHomeRoot + '/grails-' + grailsVersion

}

Dropping support for an older version of Grails is a matter of deleting that block, and
adding support for a new version just involves adding a new section for it. The DSL and

220 | Chapter 8: Plugins

http://bit.ly/15gbUdJ
http://bit.ly/15gbUdJ

the script could be smarter (e.g., finding the plugin ZIP file instead of requiring that the
version be specified), but it works for me.

When I run the script (with grails create-s2-testApps), it parses the configuration

file and runs the grails create-app script for each version (using the specified version
of Grails, so it doesn’t depend on the version that I use to develop the plugin), building
that version’s test application in the specified location. Then, it edits some of the auto‐
generated files and copies other test files. Once it finishes, I then just need to go to each
test application directory and run the Ant build for the project to execute the functional
tests for that version. I use an Ant build.xml, because the various combinations of set‐
tings (e.g., the three different approaches to configuring guarded URLs) aren’t compat‐
ible, so the build script copies configuration-specific files for each run. In general, it

would only be necessary to run grails test-app to run the functional tests, however.
These are just regular Grails tests, so any failures will be in the generated JUnit reports.

One other significant benefit of creating these test applications with a script is that
they’re great for testing user-reported bugs and prototyping new features. They’re fully
initialized and ready to work with, so using them saves the time of creating an application
by hand to investigate an issue or new feature.

Continuous integration

Continuous integration (CI) is a good idea for both applications and plugins. You should
consider using CI for your plugins, especially because it is so easy to install Jenkins or
another CI server. This way, each time you push to your source control repository, the
CI server can start a build and notify you of any failures. And there are even free, cloud-
based options. CloudBees has a free product called BuildHive that you can use for your
Grails applications and plugins. See this blog post for information about using it.

Testing scripts

If your plugin (or application) includes Gant scripts, you should test along with all of
the other plugin classes. This isn’t very practical though, because to properly test them

in an automated fashion (i.e., hooking into the test-app script), you need to start an
instance of Grails and send commands to its command line, and verify its output, the
files that are generated, or whatever observable changes are made. Fortunately, this

process is much easier if you use grails.test.AbstractCliTestCase as the base class
for your tests.

AbstractCliTestCase has helpful methods to use in your tests:

• protected void execute(List<String> command)

• int waitForProcess()

• String getOutput()

Building and Releasing | 221

http://jenkins-ci.org/
https://buildhive.cloudbees.com/
http://bit.ly/10XUQ67

• void verifyHeader()

• void enterInput(String input)

You use the execute method to specify the command and arguments to use. This starts

a new Process to launch a separate JVM, so you need to call waitForProcess() to wait

for the process to finish. This returns the exit code, which typically will be 0 when it
successfully executes, so you should verify this. The process output is captured for you

and is available by calling the getOutput() method or as the associated output property.

verifyHeader() asserts that the output contains the expected “Loading Grails …” mes‐
sage, so that should probably also be one of the things you check.

So, if you have a script GenerateThing.groovy, you would run it in an application using
something like:

$ grails generate-thing foo --max=20

A test for this would look something like:

import grails.test.AbstractCliTestCase

class GenerateThing extends AbstractCliTestCase {

 void testGenerateThing() {

 execute(['generate-thing', 'foo', '--max=20'])

 assertEquals 0, waitForProcess()

 verifyHeader()

 // do other checks and assertions

 }

}

Note that you don’t include the grails command, because it is added for you. The
process won’t run indefinitely; there is a two-minute timeout check to guard against a

process that hangs. You can change the value in a test method or the setUp method to
make it a larger value if your scripts can take a long time to run:

timeout = 5 * 60 * 1000 // 5 minutes

or a smaller value if it is unlikely that a process will run long and you want it to fail faster
if it does:

timeout = 10 * 1000 // 10 seconds

If your scripts expect user input, you can specify values with one or more calls to the

enterInput method:

enterInput 'yes'

Add these after the execute and before the waitForProcess call.

222 | Chapter 8: Plugins

The Database Migration plugin includes over 30 scripts, and all have tests. You can view

these on GitHub. The tests extend the plugin’s AbstractScriptTests base class, which
contains code that is shared between the tests. You might want to borrow the two

executeAndCheck methods that combine the execute, waitForProcess, and verify

Header calls and also print the command output to the console if the test fails (this is
also available in the generated test reports, but printing it when the test fails is more
convenient). One takes a single string for the case where you just want to run the script
with no arguments:

protected void executeAndCheck(String command) {

 executeAndCheck([command])

}

and the other takes a list that includes the command and any arguments, plus a boolean
argument for whether the command is expected to fail:

protected void executeAndCheck(List<String> command,

 boolean shouldSucceed = true) {

 command << '--stacktrace'

 execute command

 int exitCode = waitForProcess()

 if (shouldSucceed) {

 if (exitCode != 0) {

 println output

 }

 assertEquals 0, exitCode

 }

 else {

 if (exitCode == 0) {

 println output

 }

 assertFalse 0 == exitCode

 }

 verifyHeader()

}

This would simplify the previous example to:

class GenerateThing extends MyCliTestCase {

 void testGenerateThing() {

 executeAndCheck(['generate-thing', 'foo', '--max=20'])

 // do other checks and assertions

 }

}

assuming you create a MyCliTestCase extending AbstractCliTestCase and including
these methods.

Building and Releasing | 223

https://github.com/grails-plugins/grails-database-migration/tree/master/test/cli/grails/plugin/databasemigration

In Grails 2.3, an initial test class will be generated for you when you run the create-

script command, and you will be able to customize the test template file. Until then
you will need to manually create the tests.

Running the Tests
The CLI tests will be included along with any unit, integration, and functional tests you

have if you run grails test-app. You can run the CLI tests separately by specifying
the “other” phase:

grails test-app --other

Note that these tests are slow. Really, really slow. Each test method starts a new JVM to
launch Grails and execute your script, so this adds up. It takes around 45 minutes on
my development machine to run all of the Database Migration plugin tests. So you
probably won’t want to run them each time you run your unit and integration tests. You
can skip them by specifying the unit and integration phases:

grails test-app --unit --integration

and run the whole set with grails test-app somewhat less often.

Custom Plugin Repositories
If you always release your plugins to the central Grails plugin repository, then publishing

is simple; you just need to be sure the release plugin is installed and run the publish-

plugin command. But, if you have private plugins that can’t be shared, or have needed
to create custom versions of public plugins, you can publish and install them from a
local plugin repository server. There are two excellent servers that have free versions:
JFrog Artifactory and Sonatype Nexus. I’ve used Artifactory, so that’s the one I’ll describe
here, but both are powerful, easy to install, and relatively simple to configure.

Once you have your Artifactory server installed and running (see the documentation
at the JFrog site for the required steps), you need to make some small changes in the
plugins that you will be publishing there, and in the applications and plugins that will

install plugins from there. First, add a new grails.project.dependency.distribu

tion section to your plugin’s BuildConfig.groovy containing the configuration(s) that
you will be using. It’s a good idea to have both a “snapshots” configuration and a “release”
configuration, so this would be configured as:

grails.project.dependency.distribution = {

 String serverRoot = 'http://pluginserver:8090/artifactory'

 remoteRepository(id: 'internalPluginSnapshots',

 url: serverRoot + '/plugins-snapshot-local/') {

 authentication username: 'admin', password: 'password'

224 | Chapter 8: Plugins

http://grails.org/plugin/release
http://www.jfrog.org/
http://www.sonatype.org/nexus/
http://wiki.jfrog.org/confluence/display/RTF/Installing+Artifactory
http://wiki.jfrog.org/confluence/display/RTF/Installing+Artifactory

 }

 remoteRepository(id: 'internalPluginReleases',

 url: serverRoot + '/plugins-release-local/') {

 authentication username: 'admin', password: 'password'

 }

}

Change the serverRoot as necessary for your setup, and change the repository id values

to whatever name you want to use. Now you can use publish-plugin with the reposi

tory argument to tell the script not to publish to the default repository, but yours instead:

grails publish-plugin --noScm --repository=internalPluginSnapshots --snapshot

or:

grails publish-plugin --noScm --repository=internalPluginReleases

depending on whether the plugin version setting is a -SNAPSHOT version or a regular
release version. If you go to the server’s web UI, your plugin should show up in the tree,
as shown in Figure 8-3.

Figure 8-3. Successful publication of plugin to local repo

You probably don’t want to leave the hardcoded usernames and passwords in source
control, and fortunately, it’s easy to store this information externally. Create a file in
your $HOME/.grails folder named settings.groovy and add these lines (or add them to
a preexisting file):

grails.project.repos.internalPluginReleases.username = 'admin'

grails.project.repos.internalPluginReleases.password = 'password'

Custom Plugin Repositories | 225

grails.project.repos.internalPluginSnapshots.username = 'admin'

grails.project.repos.internalPluginSnapshots.password = 'password'

Now that the plugin is released, you can install it into an application or plugin by adding
your local server as a custom repository in BuildConfig.groovy:

repositories {

 inherits true

 String serverRoot = 'http://pluginserver:8090/artifactory'

 mavenRepo serverRoot + '/plugins-snapshot-local/'

 mavenRepo serverRoot + '/plugins-release-local/'

 grailsPlugins()

 grailsHome()

 grailsCentral()

 mavenLocal()

 mavenCentral()

}

and adding it to BuildConfig.groovy in the plugins section:

plugins {

 runtime ":hibernate:$grailsVersion"

 runtime ':jquery:1.7.1'

 runtime ':resources:1.1.6'

 build ":tomcat:$grailsVersion"

 compile ":books:0.1-SNAPSHOT"

}

Once you have tested the plugin and released the non-snapshot version 0.1, be sure to
update your plugin declaration:

plugins {

 runtime ":hibernate:$grailsVersion"

 runtime ':jquery:1.7.1'

 runtime ':resources:1.1.6'

 build ":tomcat:$grailsVersion"

 compile ":books:0.1"

}

Plugin Documentation
Your plugin won’t be very usable if it has no documentation. Fortunately, the same
documentation engine that is used to create the Grails reference documentation is also
available to applications and plugins. Using it is a matter of creating *.gdoc files, which

use an intuitive wiki-type syntax (based on Textile syntax), and running grails doc to
generate HTML files.

To get started, run:

$ grails doc --init

226 | Chapter 8: Plugins

http://grails.org/doc/latest/
http://textile.sitemonks.com/

which will create the initial directory structure (under the src/docs directory) and some
starter files. One of these is toc.yml, which defines the file layout in YAML format.

Run grails doc to generate HTML output in the target/docs folder. You can change

the output location by setting the grails.project.docs.output.dir property in
BuildConfig.groovy; for example:

grails.project.docs.output.dir = 'docs/manual'

You can generate a single PDF version of the documentation in addition to the HTML

docs by adding the --pdf flag:

$ grails doc --pdf

This will create the file guide/single.pdf in the root documentation directory.

There are several properties that you can set to customize the generated output. These

start with grails.doc. and are set in grails-app/conf/Config.groovy. See the Grails doc‐
umentation for more information about these properties and the gdoc file syntax.

Custom Artifacts
Grails groups classes by type and uses the “artifact” concept to represent them. Typically,

artifacts have their own folder in the grails-app folder, such as controllers, domain,

and services. If your plugin adds functionality where a convention-based approach to
defining application classes and adding behavior makes sense, you should consider
adding a custom artifact type. A more traditional framework would more likely use
interfaces and base classes, but this tends to be more restrictive and goes against the
Grails “convention over configuration” approach.

The GrailsApplication instance has several methods to work with artifact classes:

Class<?>[] getAllArtefacts()

Returns a class for each artifact instance

boolean isArtefact(Class theClazz)

Returns true if the class is a known artifact class

boolean isArtefactOfType(String artefactType, Class theClazz)

Returns true if the class is an artifact and of the specified type

boolean isArtefactOfType(String artefactType, String className)

Returns true if the class name is an artifact and of the specified type

GrailsClass getArtefact(String artefactType, String name)

Returns the GrailsClass instance of the specified type for the specified class name

ArtefactHandler getArtefactType(Class theClass)

Returns the artifact handler for the artifact class

Custom Artifacts | 227

http://www.yaml.org/
http://grails.org/doc/latest/guide/single.html#docengine
http://grails.org/doc/latest/guide/single.html#docengine

GrailsClass[] getArtefacts(String artefactType)

Returns all GrailsClass instances for the artifact type

GrailsClass getArtefactForFeature(String artefactType, Object featureID)

Returns the GrailsClass of the specified type for the requested feature (e.g., the

GrailsTagLibClass for a tag name or the GrailsControllerClass for a URI)

GrailsClass addArtefact(String artefactType, Class artefactClass)

Programmatically registers an artifact class

GrailsClass addArtefact(String artefactType, GrailsClass artefactGrail

sClass)

Programmatically registers an artifact class by name

void registerArtefactHandler(ArtefactHandler handler)

Programmatically registers an artifact handler

boolean hasArtefactHandler(String type)

Returns true if there is an artifact handler of the specified type

ArtefactHandler[] getArtefactHandlers()

Returns all known artifact handlers

ArtefactHandler getArtefactHandler(String type)

Returns the artifact handler for the specified name

GrailsClass getArtefactByLogicalPropertyName(String type, String logical

Name)

Returns the GrailsClass of the specified type for the requested logical property

name [e.g., getArtefactByLogicalPropertyName('Service', 'person') or ge

tArtefactByLogicalPropertyName('Controller', 'orderItem')]

void addArtefact(Class artefact)

Programmatically registers an artifact class

void addArtefact(String artefactType, Class artefactClass)

Programmatically registers an artifact class

void addArtefact(String artefactType, GrailsClass artefactGrailsClass)

Programmatically registers an artifact class

In addition, there are three dynamic methods that can be used to work with artifacts by

type. The most commonly used is get<Artifact Type>Classes(); for example, get

ControllerClasses() or getDomainClasses(). This can be used to loop through all
known artifacts of a particular type. This method is more commonly used in its property

form: application.controllerClasses or application.domainClasses. This calls

the getArtefacts(String artefactType) method, using the artifact type from the

228 | Chapter 8: Plugins

method name as the artefactType argument value. In addition, there is an is<Arti

fact Type>Class(Class) method, such as isServiceClass(Class), which calls the

isArtefactOfType(String artefactType, Class theClazz) method. Finally, there

is get<Artifact Type>Class(String), such as getTaglibClass(String), which calls

getArtefact(String artefactType, String name).

Each artifact type must have an implementation of org.codehaus.groovy.grails.com

mons.ArtefactHandler, an interface that extends org.codehaus.groovy.grails.com

mons.GrailsClass to represent the artifact instances, and an implementation class for

the interface. Typically, the artifact handler class extends org.codehaus.groo

vy.grails.commons.ArtefactHandlerAdapter, which implements the interface and

provides a sensible default implementation. The interface usually extends org.code

haus.groovy.grails.commons.InjectableGrailsClass and the implementation

class usually extends org.codehaus.groovy.grails.commons.AbstractInjectable

GrailsClass.

As an example, consider a plugin that adds a MethodMixin class. It defines a destination
class or interface, and closures to wire into the destination’s metaclass. This can be done
manually—for example, in BootStrap.groovy—but this could provide a convenient way

of grouping the metaclass methods and also allow other plugins to provide mixin classes.

Once we’re done, applications that use this plugin could define a ListMethodMixin class,

which would automatically be discovered and would add methods to the List interface:

class ListMethodMixin {

 static destination = List

 static methods = [

 toStrings: { ->

 delegate.eachWithIndex { o, int i ->

 delegate.set(i, o?.toString())

 }

 },

 second: { -> delegate[1] }

]

}

To support this, we’ll need an interface to represent the GrailsClass and to provide

access to the destination and methods values:

package com.mycompany;

import groovy.lang.Closure;

import java.util.Map;

import org.codehaus.groovy.grails.commons.InjectableGrailsClass;

public interface MethodMixinGrailsClass extends InjectableGrailsClass {

Custom Artifacts | 229

 String DESTINATION = "destination";

 String METHODS = "methods";

 /**

 * The class or interface to mix the methods into.

 *

 * @return the class or interface

 */

 Class<?> getDestination();

 /**

 * The closures to mix into the destination; the keys are method names and

 * the values are the closures to use for metamethods.

 * @return the methods

 */

 Map<String, Closure<?>> getMethods();

}

and an implementation of the interface:

package com.mycompany;

import groovy.lang.Closure;

import java.util.Map;

import org.codehaus.groovy.grails.commons.AbstractInjectableGrailsClass;

public class DefaultMethodMixinGrailsClass extends AbstractInjectableGrailsClass

 implements MethodMixinGrailsClass

 protected Class<?> destination;

 protected Map<String, Closure<?>> methods;

 @SuppressWarnings("unchecked")

 public DefaultMethodMixinGrailsClass(Class<?> wrappedClass) {

 super(wrappedClass, MethodMixinArtefactHandler.TYPE);

 destination = (Class<?>)getPropertyOrStaticPropertyOrFieldValue(

 DESTINATION, Class.class);

 methods = (Map<String, Closure<?>>) getPropertyOrStaticPropertyOrFieldValue(

 METHODS, Map.class);

 }

 public Class<?> getDestination() {

 return destination;

 }

 public Map<String, Closure<?>> getMethods() {

 return methods;

 }

}

And we’ll also need an ArtefactHandler implementation:

230 | Chapter 8: Plugins

package com.mycompany;

import org.codehaus.groovy.grails.commons.ArtefactHandlerAdapter;

public class MethodMixinArtefactHandler extends ArtefactHandlerAdapter {

 /** The artefact type. */

 public static final String TYPE = "MethodMixin";

 public MethodMixinArtefactHandler() {

 super(TYPE, MethodMixinGrailsClass.class,

 DefaultMethodMixinGrailsClass.class, TYPE);

 }

}

Register this in the plugin descriptor by adding the class to the artefacts list:

import com.mycompany.MethodMixinArtefactHandler

...

def artefacts = [MethodMixinArtefactHandler]

This will ensure that the artifact handler is discovered by Grails at startup. Because the

GrailsApplication dynamic methods work for all registered artifact handlers, appli‐

cations that use this plugin will be able to call getMethodMixinClasses() (or the prop‐

erty methodMixinClasses), isMethodMixinClass(Class), and getMethodMixin

Class(String).

We will need code to apply the metaclass methods. This should be done at startup, and

the doWithDynamicMethods callback is the best place for this:

import com.mycompany.MixinHelper

...

def doWithDynamicMethods = { ctx ->

 MixinHelper.mixinMethods application.methodMixinClasses

}

This depends on the MixinHelper utility class in src/groovy:

package com.mycompany

import org.codehaus.groovy.grails.commons.GrailsClass

class MixinHelper {

 static void mixinMethods(GrailsClass[] classes) {

 for (MethodMixinGrailsClass mm in classes) {

 mm.methods.each { String name, Closure impl ->

 mm.destination.metaClass."$name" = impl

 }

Custom Artifacts | 231

 }

 }

}

The code could have just been left in the plugin descriptor, but having it in a separate
class makes it easier to access to test and to call from other parts of the plugin or
application.

It’s a good idea to support reloading so changes made in development are discovered

and applied. Add a watchedResources property, which establishes the watch pattern

for classes in the methodMixins folder and logic to update based on changes in the

onChange callback:

def watchedResources = ['file:./grails-app/methodMixins/**/*MethodMixin.groovy']

...

def onChange = { event ->

 // put reloading logic here

}

It will be tricky to handle reloading for these artifacts, because methods could be re‐
moved. This is left as an exercise for the reader.

Applications that use this plugin will keep artifact classes in the grails-app/methodMix‐
ins folder, so it’s a good idea to create that folder during plugin installation. Add the
code to do that in scripts/_Install.groovy:

ant.mkdir dir: "$basedir/grails-app/methodMixins"

Having done all of this, we can now call the toStrings and second methods on any

List in an application that includes the ListMethodMixin class:

def numbers = [1, 2, 5]

assert numbers.toStrings().every { it instanceof String }

assert numbers.second() == 2

Some Notes on Plugin Development Workflow
After creating a new plugin and doing the cleanup work I described above, at some point
after some initial coding and testing, there will be a need to use the plugin in an appli‐
cation to verify that it works and to finish development. The inline plugin feature was
added to Grails after I had written several plugins, so I tend to not use it. Instead, I
change the plugin version from “0.1” to “0.1-SNAPSHOT,” build the plugin with the

package-plugin script, and install it into a test application using grails install-

plugin /path/to/the-new-plugin-0.1-SNAPSHOT.zip. Adding the “SNAPSHOT”
suffix is important because Grails doesn’t cache snapshot plugins, so there’s no risk of
installing a stale cached version when creating a second test application.

232 | Chapter 8: Plugins

Throughout this book, I’ve been advising against using install-plugin and using
BuildConfig.groovy dependencies instead, but there is no convenient way (as of this
writing) to register a dependency on a plugin ZIP. I could use a local plugin repository
server, but that’s overkill for my needs.

The big risk with this process is that it is more convenient to edit the application’s version
of the plugin code (under the target folder, because I use it as the work directory), but
then it’s far too easy to forget to update the original source, and it is a tediously manual
process. But I found an excellent graphical diff tool that I use to keep the code in sync:
Meld. You can see a current diff for the HDIV plugin in Figure 8-4.

Figure 8-4. Using the Meld diff tool

Recall that the package-plugin script excludes several directories and files from the
packaged ZIP file, so there will always be ignorable differences between the two directory
trees. This will include the .settings directory (if you use GGTS), the target and test
directories, along with BuildConfig.groovy, Config.groovy, and DataSource.groovy, and
other miscellaneous files and directories. You can see that I have collapsed most of these
nodes already. There are two real differences here: HdivUtils.groovy in src/groovy and
HdivTagLib in grails-app/taglib.

It’s easy to copy entire files from one tree to the other, or open a graphical diff and copy
individual lines. It doesn’t matter whether you edit the plugin project code or the code
installed into the application; in either case, you can conveniently synchronize the files.

So, periodically, once I’ve made some changes and verified that the changes make sense,
I update the plugin project code and commit the Git master repository. I keep Meld
open, so after I have updated more files I use Ctrl-R to refresh the trees to synchronize
the latest changes.

Some Notes on Plugin Development Workflow | 233

http://meldmerge.org/

There is one exception to this workflow: BuildConfig.groovy. BuildConfig.groovy is in‐
cluded in the plugin ZIP, but it is copied as dependencies.groovy. This may change in the
future where dependencies.groovy is only derived from BuildConfig.groovy, but cur‐
rently it is simply copied. So, if I make any dependency changes in the installed plugin,
I’ll make them in dependencies.groovy, but I have to remember to manually make the
same changes in the plugin project’s BuildConfig.groovy.

234 | Chapter 8: Plugins

CHAPTER 9

Security

The purpose of this chapter is to scare you. You are most likely not doing enough to
secure your application and your user data, and running a risk of an embarrassing
security breach that could gain you a lot of unwanted attention. In Hollywood, they say
that all publicity is good publicity, because whether it’s good or bad, it gets people
thinking about you. But for websites, this is far less true; users need to trust your site,
and if you violate that trust, they will find an alternative. I often joke at conferences
when I talk about security that you want to end up on Slashdot because you are awesome,
not because you got hacked.

Please note that this is a very cursory discussion of an important topic, and you should
make it a priority that at least someone on your team is knowledgeable about security
best practices.

OWASP
The Open Web Application Security Project (OWASP) is an organization that collects
web application security information and publishes a list of its top 10 highest-priority
security risks for web apps; this list is updated every three years, and the most recent is
from 2010. Grails does help mitigate some of the risks by default, and using a security
plugin helps with others, but it’s important to be aware of the risks and to be security
conscious.

A1: Injection
SQL injection is the most common type of injection attack, and Grails applications are
largely immune to these, but not entirely. An SQL injection attack typically consists of
tricking the application into running SQL queries or updates that either damage data
or expose information. This can happen when you have a search form or other web page

235

https://www.owasp.org/index.php/Main_Page
https://www.owasp.org/index.php/Top_10_2010-Main

that accepts user input and you use the input as part of a dynamically generated SQL
query without properly escaping the inputs.

Using regular JDBC, you can use a java.sql.Statement to run a select query; for
example:

String sql = "select * from person where username ='" + params.username + "'"

ResultSet rs = statement.executeQuery(sql)

This works well if you have control over the inputs, but users can enter whatever they

want in your form. If someone enters foo, then the where clause of your query will be

where username ='foo', but if a hacker enters ' or '1'='1, then it will be select *

from person where username ='' or '1'='1'. Because '1'='1' is always true, the

or results in the query returning unexpected records (in this case, all of them). Tricks
like this can be used to bypass password checks during login or create a denial-of-service
style attack where too much data is returned from the database repeatedly, or even to

damage data or tables. If you use execute instead of executeQuery, you can mix select
queries and updates and allow real damage:

boolean ok = statement.execute(sql)

If a hacker submits '; drop table foo; -- or '; truncate table foo; --, you’ll
be scrambling to restore the database from the most recent backup.

The problem here is that we’re trusting the users to do the right thing. The deeper
problem is a failure to escape the user input properly before sending it to the database.
You could look for patterns like the ones I’ve shown and implement a whitelist/blacklist
filtering approach to using user-submitted data in your queries, but the best approach

is to let the database driver do the work for you. Rather than using a Statement, use a

PreparedStatement with parameter placeholders in the SQL:

String sql = "select * from person where username = ?"

PreparedStatement ps = connection.prepareStatement(sql)

ps.setString(1, params.username)

ResultSet rs = ps.executeQuery()

Now, if an unfriendly user submits a username with quote characters, they will be es‐
caped properly (the approach is different for various databases, but the driver handles

it for us) and the worst-case scenario now is an SQLException.

Fortunately for us, Hibernate uses a PreparedStatement for criteria queries, and all
Grails queries are converted to criteria queries under the hood (the exception being

single-element queries like get() or read(), which also use a PreparedStatement).
You can see this by turning on SQL logging and enabling SQL comments in Data‐
Source.groovy:

dataSource {

 ...

 logSql = true

236 | Chapter 9: Security

}

hibernate {

 ...

 format_sql = true

 use_sql_comments = true

}

Given this simple domain class:

class Person {

 String username

}

You can use a few different approaches to find a user by username:

Person.findByUsername(params.username)

Person.where { username == params.username }.find()

Person.createCriteria().get {

 eq 'username', params.username

}

and each of these results in roughly the same SQL:

Hibernate:

 /* criteria query */ select

 this_.id as id0_0_,

 this_.version as version0_0_,

 this_.username as username0_0_

 from

 person this_

 where

 this_.username=?

You can see from the comment that Hibernate generated the SQL from a criteria query

and, from the SQL, that a PreparedStatement is being used because the username

parameter isn’t the actual string being queried, but the ? placeholder.

So we’re safe from SQL injection attacks in the general case, but we can also use HQL

queries with the executeQuery and executeUpdate methods. Hibernate converts our
HQL to SQL, so naive string concatentation of HQL can open up an SQL injection
vulnerability:

Person.executeQuery("from Person where username='" + params.username + "'")

Hibernate has no way of knowing that a parameter should be escaped, because it just
sees the final concatenated string. But, of course, HQL has the same support for place‐
holder replacement as SQL:

Person.executeQuery('from Person where username=?', [params.username])

and also has support for more readable named parameters:

OWASP | 237

Person.executeQuery('from Person where username=:username',

 [username: params.username])

So, as long as you use the standard GORM methods to run your queries and are careful
with HQL queries, you should be safe from SQL injection risks. Note that Groovy

GStrings don’t help here and, in fact, hide the problem to a certain extent. I could have

written the SQL above as "from Person where username='${params.username}'"

and the HQL as "select * from person where username ='${params.user

name}'"; the lack of + characters in the code can make it more likely that this would get
missed in a code review.

Command injection

Groovy makes it easy to execute arbitrary operating system commands by adding the

execute method to the metaclass of the String and String[] classes. For example, it’s

simple to get a directory listing on a Unix or Linux system by running 'ls -

l'.execute().text. If your application uses this feature and creates the commands to
be executed based on user input, you are at risk of a command injection attack. Un‐
fortunately, there isn’t a simple fix like there is for SQL; you will have to be vigilant and
scan the user input based on a whitelist and/or a blacklist of allowed characters and
expressions that are valid.

A2: Cross-Site Scripting (XSS)
A cross-site scripting (XSS) attack is one that takes advantage of unescaped input, much
like the injection attacks in the previous section. In fact, you can think of XSS as script
injection, because JavaScript is the most common input used.

Your site is vulnerable to XSS attacks if you fail to escape user-supplied input that you
display on your site. This can include any type of input, such as a search form, comments,
or editable content such as wikis. Most search engine sites display your original search
query along with the results; this is fine if your search is “Grails books,” but what if you
“search” for “<script>alert(Boo!)</script>”? If your GSP naively redisplays this text
without, at a minimum, HTML-encoding the bracket characters:

<div id='query'>You searched for '${originalQuery}'</div>

<div id='results'>

<g:each in='${results}' var='result'>

...

</g:each>

</div>

you will see a JavaScript pop-up when the results page loads because the rendered
HTML will look like this:

238 | Chapter 9: Security

<div id='query'>You searched for '<script>alert('Boo!')</script>'</div>

<div id='results'>

...

</div>

Remedies

Fortunately, Grails does have mechanisms to deal with this. When you initially create
a Grails application, the generated grails-app/conf/Config.groovy file contains this con‐
figuration option:

grails.views.default.codec = "none" // none, html, base64

The default codec is the one that is used to escape content inside of ${} blocks, and the
default is to do nothing. This is unfortunate but was chosen as the default because
changing the behavior to automatically encode might break existing pages that explicitly
encode, resulting in corrupted output from double-encoding. Luckily, it’s simple to
change to a sensible new value for your projects:

grails.views.default.codec = "html"

With this setting enabled, the HTML output would have been:

<div id='query'>You searched for '<script>alert('Boo!')</script>'</div>

<div id='results'>

...

</div>

and you would have seen the original “query” in the browser as text instead of the
JavaScript pop-up. Clearly, this should be one of the first things you do in a new Grails
application.

The fieldValue tag is another standard way of displaying data, typically from a domain
class or command object instance (the generated CRUD GSPs use this extensively).

fieldValue does escape the field value by default, regardless of the grails.views.de

fault.codec setting. For example, given this simple data class:

class Person {

 String name

}

and this simple controller:

class TestController {

 def index() {

 [person: new Person(name: '<script>alert("XSS!")</script>')]

 }

}

you can display the person’s name attribute three ways:

${person.name}

OWASP | 239

${fieldValue(bean: person, field: 'name')}

<%=person.name%>

The third one uses a <% ... %> block to write directly to the output stream; as you’ll
see, it’s the most dangerous and should be avoided. With no default codec, the rendered
HTML would be:

<script>alert("XSS!")</script>

<script>alert("XSS!")</script>

<script>alert("XSS!")</script>

and you would see two JavaScript pop-ups. With the "html" codec you would only see
one:

<script>alert("XSS!")</script>

<script>alert("XSS!")</script>

<script>alert("XSS!")</script>

So, the lesson here is clear: use automatic escaping where practical and avoid directly

writing to the output stream with <% ... %> blocks unless you are very confident that
the content is safe.

As described so far, this isn’t a particularly dangerous exploit. All the user has done is
to manage to get search results to display a JavaScript pop-up. But much more extensive
script code could have been used, along with HTML and CSS. Using input mechanisms
that store the input and redisplay it for other users later (e.g., comments, wikis, etc.),
you can inject script code that can bypass security checks, such as accessing authenti‐
cation cookies to allow the attacker to impersonate someone else. You can also perform
actions on the behalf of other users, such as executing a client-side GET or POST to
transfer funds from one account to another.

Best practices

The first thing to do is make sure the default code is "html" to ensure that ${} blocks
are properly encoded. You may end up with double-encoded output if you had (or a

plugin had) manually used the encodeAsHTML() method, such as ${someVariable.en

codeAsHTML()}, so those will have to be fixed. This would look bad, but encoding twice
is better than not at all.

If you are using the Servlet 3.0 spec (this requires newer servers such as Tomcat 7) there

is an option to set the HttpOnly flag for your cookies. This isn’t in the cookie spec but
is supported by all major browsers and disables JavaScript access to cookie values. You

can call setHttpOnly(true) when creating your cookies to enable this. Tomcat 7 au‐
tomatically sets this flag for your JSESSIONID cookie whether your application uses

240 | Chapter 9: Security

Servlet 3.0 or not, and Spring Security uses reflection to call the method if it’s available
when creating remember-me cookies.

Also consider using SSL for your site and setting the secure flag so the cookies are only
transmitted via SSL and are therefore always encrypted, even if the cookie value isn’t;

call setSecure(true) when creating the cookies. Spring Security creates secure cookies
by default when you are using SSL.

Other options include using libraries that detect and block or encode risky input; these
include AntiSamy, ESAPI, and HDIV, and are discussed later in the chapter.

There is a plugin that uses the ESAPI library to remove script tags and other malicious

text from request parameters: the xss-sanitizer plugin. It registers a servlet filter to
intercept all requests to make the necessary changes. The plugin is convenient in that
it does the work of registering the filter and making the changes for you, but you could
also use the ESAPI library directly.

See the OWASP XSS Prevention Cheat Sheet for much more information on this subject.

A3: Broken Authentication and Session Management
It is difficult to properly implement authentication. I find it very frustrating how often
Grails tutorials describe a simple authentication mechanism using filters, because it
encourages developers to implement security themselves and implies that it is easy to
do. It is easy to create a Grails filter and implement a check for an active user before
certain application URLs and redirect to a login page if one isn’t found. But, it’s too easy;
there is far more to security than just this. As you continue development, you will find
that more and more security-related features must be implemented (password hashing,
session fixation protection, remember-me, forgotten password workflows, etc.) and
each new feature that you implement yourself increases the likelihood that you will fail
to properly implement the feature and create a vulnerability.

If you don’t have extensive experience with security (and few of us do), then it’s far too
easy to expose information to hackers who are more clever than you (or have access to
clever tools). Not enough people know that MD5 and SHA-1 are too easy to exploit and
should be replaced with stronger alternatives (e.g., SHA-256, Bcrypt, etc.). Implement‐
ing a forgot-password approach too simplistically can allow hackers to change your
password and authenticate as you. Using URL-rewriting and allowing users’ session IDs
to be added to URLs makes it easy for an attacker to capture authenticated users’ session
ID and perform actions as them. These are just a few examples; the number of things
that can go wrong is significant.

Because HTTP is a stateless protocol, we must either resend authentication information
in headers for each request or store the information in the HTTP session. This must be
done securely. The best option is to disable URL rewriting and use cookies and SSL
(ideally for all pages in your site). This ensures that the cookies are sent securely and

OWASP | 241

http://grails.org/plugin/xss-sanitizer
http://bit.ly/YXgY2O

cannot be seen by attackers. This is discussed in more detail in the upcoming section
“A9: Insufficient Transport Layer Protection” on page 248.

Newer versions of Grails do not use URL rewriting; the grails.views.enable.jses

sionid configuration setting defaults to false, and it determines whether or not to call

the encodeRedirectURL response method when generating redirect URLs. If this is used,
the session ID is appended to the querystring, so it’s best to not enable this and only
allow cookie-based authentication. In addition, if you manually create redirect URLs,

use the encodeURL method but not the encodeRedirectURL method.

In addition, it is important to guard against session fixation. This is an attack where
someone tricks a user into clicking a URL that contains the attacker’s session ID. Then
when the user authenticates, the attacker and the user share the same session and the
attacker can perform actions as the user. The fix for this is simple; create a new session
when authenticating, and copy all (or a safe subset) of the previous session variables
into the new session. This is a feature of the Spring Security plugin; add this line in
Config.groovy to enable it:

grails.plugins.springsecurity.useSessionFixationPrevention = true

As in several of the other sections, the best advice I can give is to use a proven framework
and not “roll your own.” Take advantage of the experience of others so you can spend
time on the real features of your applications that provide business value.

A4: Insecure Direct Object References
An insecure direct object reference is one where you allow the user to choose the iden‐
tifier for some data, potentially allowing the user to see another’s data. For example, a
user’s personal information summary page might provide links to display purchases for
each registered credit card:

 Purchases for card xxxx-xxxx-xxxx-1234

 Purchases for card xxxx-xxxx-xxxx-1337

 ...

Once an attacker sees that this approach is used, it’s a simple matter to loop through
every value starting at 1 and request the page to view other users’ transaction data. Any
time you allow the identifier to be specified and don’t protect access, you risk exposing
information.

Remedies

For the credit card example above, the attack can only work if you access the credit card
data only by ID; for example,

def card = CreditCard.get(params.id)

242 | Chapter 9: Security

One way to defeat this is to take advantage of a relationship between the CreditCard

domain class and the owning User; for example:

class CreditCard {

 String number

 CreditCardType type

 ...

 User owner

}

It should be easy to access the currently authenticated user’s username or user ID, and
you can use that to retrieve the card; for example:

def userId = ... // retrieve from authentication

def user = User.load(userId)

def card = CreditCard.findByIdAndOwner(params.id as Long, user)

or:

def username = ... // retrieve from authentication

def user = User.findByUsername(username)

def card = CreditCard.findByIdAndOwner(params.id as Long, user)

Using this approach, we still trust the provided card ID, but don’t allow the user to specify
the username or ID—it’s already available from the authentication information. In this
case, the generated SQL will fail to return a result if the card ID is valid but the user ID
mismatches:

select ... from credit_card where id=? and user_id=?

Access control lists (ACLs) are a more rigorous but somewhat cumbersome approach
that is also an excellent option for protecting access to data. This feature is available in
the Spring Security ACL and Shiro plugins. This approach involves configuring access
control information (typically stored in the database), specifying who can access what
information and to what extent. You can grant different levels of access, such as read,
edit, delete, create, etc. You could use this to register that only the user with ID 142352
can access the cards with IDs 42 and 54312. In the case of the Spring Security plugin,
you would create a service method with an annotation that triggers the creation of a
secure proxy that checks the data at runtime and throws an exception if a mismatch
occurs:

@PreAuthorize("hasPermission(#id, 'com.yourapp.CreditCard', read)")

CreditCard getReport(long id) {

 CreditCard.get(id)

}

This has the benefit that the domain class method is not overly complicated—just a

simple get call—but with the added complexity of having to populate and maintain the
ACL data.

OWASP | 243

http://grails.org/plugin/spring-security-acl
http://grails.org/plugin/shiro

The HDIV library (described below) also has support for guarding against this type of
attack. If you use it to postprocess your URLs, it can replace real identifiers with place‐
holder values and replace them at the server when the request is submitted. Using the
example above, the generated HTML would be this instead:

 Purchases for card xxxx-xxxx-xxxx-1234

 Purchases for card xxxx-xxxx-xxxx-1337

 ...

and the real IDs would be stored on the server using the placeholder IDs as keys (0 →
42 and 1 → 54312). Now an attacker cannot simply choose the ID to view; only the
placeholder value is valid. If an ID other than 0 or 1 is used, it will be detected as a
tampering attempt. And this is all transparent to the server-side code, because a request

wrapper is configured by a filter, so calls to request.getParameter() are intercepted
to return the previously stored real IDs, not the actual submitted 0 or 1 values.

A5: Cross-Site Request Forgery
A cross-site request forgery (CSRF) attack is similar to an XSS attack. An attacker will
often use XSS vulnerabilities to create pages that make requests on the behalf of other
users and send personal information, cookies, or session IDs to the attacker’s server, or

perform some action on behalf of the user. One example of this is to insert an tag
into comment page. If the content isn’t escaped, the tag will end up as valid markup in
the HTML. Ordinarily, image URLs point to PNGs, JPGs, and GIFs, but the browser
will execute a GET request for whatever URL is specified, so this is valid:

The URL and querystring can be configured using JavaScript to include whatever in‐
formation is available (and this can be a lot). The request can initiate some action, or
might just be used to add a record with captured information in the server log for
retrieval later. The hacker could also create a local URL that would perform some action
by the user. It is often simple for the hacker to create an account and log in, and then
view the HTML source of the site’s pages to see how requests are made, and craft URLs
like this:

Assuming that the hacker’s account ID is 123, and the controller that handles

the /account/transfer action uses the active authentication to determine the source
user, this request could transfer $1,000 to the hacker’s account.

Remedies

The first line of defense against CSRF attacks is to ensure that XSS attacks are not possible
in your application, so refer to the discussion above for best practices there.

244 | Chapter 9: Security

The best way to defeat CSRF attacks is to generate a token for each clickable URL (ap‐

pended to the href) and form (using an <input type='hidden'> tag), and verify the
token at the server. If a request is made (either a GET or a POST), and there is no token
or it’s not valid, the action is blocked. As long as the value is unique and generated for
each request, even if an attacker accesses someone else’s valid token, it won’t be usable,
because it is only valid for that user.

This would be cumbersome to implement yourself, because it would require changing
all of your GSPs and controllers to add the tokens, and logic to properly generate and
validate the tokens. Fortunately, there is a library that make this all fairly straightforward,
HDIV. There is a Grails HDIV plugin that helps to configure the library for you. Un‐
fortunately, it depends on changes in Grails core that are only available as of version
2.3, so you will have to upgrade to take advantage of this. HDIV is discussed in more
detail later.

In addition, actions that make changes should always use POST instead of GET; GET

should only be used to retrieve information. Use the allowedMethods map in Grails
controllers to define which actions require which methods. This isn’t sufficient, because
it’s easy to craft client-side POST requests using JavaScript, but it raises the bar a bit.

See the OWASP CSRF Prevention Cheat Sheet for much more information on this
subject.

A6: Security Misconfiguration
Misconfigured security is a much more extensive problem than many of the other risks,
because it is impacted by potential issues with application, server, and operating system

code. It’s harder to automate any sort of fix; it’s far from as simple as using a Prepared

Statement for all database access or HTML-encoding rendered output.

Remedies

The general best practice to avoid security misconfiguration issues is to be proactive to
ensure that all of the components of the system are hardened to the extent that is
practical.

Never use a default password; if a software installation process doesn’t require that you
choose a password, change it ASAP. And use strong passwords, to the extent allowed
by the verification rules, with a good mix of upper- and lowercase letters, numbers,
spaces, and special characters.

You should disable unnecessary features; this reduces the “attack surface” and gives
attackers fewer options to exploit. This includes uninstalling (or not installing in the
first place) OS applications and features that won’t be needed. Similarly, it’s best to re‐
move default or automatically created accounts for any software or servers that you use.

OWASP | 245

http://www.hdiv.org/
http://grails.org/plugin/hdiv
http://bit.ly/11aBfAb

For example, MySQL configures a “test” user by default; the user can’t do much of
anything, but by removing the account, you again reduce the attack surface.

Be sure to routinely update software, especially when security fixes are available. This
includes issues with development frameworks, server software, and OS patches. Don’t
be the last to know about available fixes; sign up for mailing lists and other information
streams that will keep you aware of available updates.

A7: Insecure Cryptographic Storage
There are two general approaches to storing data in non-cleartext form: hashing and
encrypting.

A hash function takes an input and generates a fixed-length output. Because large and
small inputs generate an output of the same length, it’s possible to generate the same
hash value for two different inputs, but in practice they are of sufficient size that this is
extremely unlikely. Hashing is “lossy”—that is, not all of the input information is re‐
coverable from the output, and in fact, that is not the point of hashing; hashes are one-
way conversions of the inputs into the outputs.

An encryption function similarly converts an input into an output, but in contrast to
hash functions, encryption functions are designed to be decrypted. As such, they are
more suitable for different data types than are hash functions.

Passwords are typically hashed. There is rarely a need to decrypt a password stored in
a database, because during authentication, you merely need to hash the user’s supplied
password and compare it with the previously hashed value. If they agree (they may not
be identical depending on the hash algorithm, but the implementation will have a way
of determining that two hashes are equivalent), then it is very likely that the cleartext
passwords were the same and you can authenticate the user. If they do not agree, then
the inputs were definitely not the same and you deny access. Having decryptable pass‐
words does allow us the convenience of sending the user the cleartext password when
it is forgotten (and we have verified that the requesting user is the correct one), but this
is a huge security risk. It is much safer to never store cleartext passwords and not be
able to recover them, but instead deal with lost passwords by forcing the user (once
validated) to create a new one.

There are many popular hashing algorithms, but you should be aware that some are no
longer considered safe to use. One of these is MD5. When MD5 was originally created,
it was very robust, but given advances in computation power, it is a simple matter to
generate hashes of common (and not so common) passwords and store them in a da‐
tabase, and some of these are available online. Because these hashes are quick to compute
and easy to store, MD5 is considered unsafe and should be avoided. SHA-1 has similar
issues. You are better off using SHA-256 or SHA-512, or even better, Bcrypt. Bcrypt has
the significant advantage of specifying a number of hash iterations. This slows down

246 | Chapter 9: Security

the computation of the hash, but because users only authenticate once per session (or
less often if you use remember-me support), it’s acceptable to incur this cost. But a
hacker who is attempting a brute-force computational attack on your hashed passwords
will be slowed down significantly if you use a large number of iterations.

One technique to make hashing more robust is using a “salt” for each password. This
is a value that is included with the cleartext password when hashing, but is usually unique
to the user. This way, two users with the same password will end up with different hash
values, and this makes creating a lookup table of hash value much more computationally
expensive.

On the other hand, other data that must be guarded in a datastore, but periodically must
be available in its original form, is a candidate for encryption. Encryption is a complex
subject, but there is support for it in the JDK with the Java Cryptography Extension
(JCE). The Jasypt library is an excellent tool to avoid having to deal with the imple‐

mentation details of encrypting data, and there’s even a Grails plugin for it: the jasypt-

encryption plugin. Bouncy Castle is another popular library with even more options
than Jasypt, and the Jasypt plugin has support for using Bouncy Castle too, so you can
use both if you want.

Best practices

It’s important to secure the information that is used to generate your hashes and to
encrypt and decrypt your data. Encryption algorithms typically use passwords and keys,
so if a hacker is able to get access to these, then you might as well have stored the data
in cleartext.

Do not store passwords in config files, or even in files on the filesystem. Instead, create
a web page that you use to initialize the system where people trusted with passwords
enter the passwords (using SSL!) when the application starts up. Ideally, you shouldn’t
trust any one person with all of the information to start the system. For example, to use

JCE encryption, you will need to load a java.security.KeyStore, and this requires a

password, and you use this to create a javax.crypto.SecretKey, which also requires a
password. Use different passwords. If two people know the key store password and two
other people know the key password (it’s a good idea to have backup users in case
someone isn’t available), then no one person can decrypt the data or be coerced into
giving someone else access.

Here are some general best practices:

• Use Bcrypt with a large number of iterations; alternatively, if you use a traditional
hashing algorithm, use a strong one (e.g., SHA-256 or SHA-512, never MD5 or
SHA-1), and use a salt value for each password.

• Don’t store passwords on the filesystem, in code, or in source control.

OWASP | 247

http://www.jasypt.org/
http://grails.org/plugin/jasypt-encryption
http://grails.org/plugin/jasypt-encryption
http://www.bouncycastle.org/

• Rotate keys and change passwords frequently.

• Use crypto keys that are at least 128 bits.

• Don’t write sensitive information to logfiles.

• Avoid native database encryption; use strong algorithms and encrypt the data
yourself and store that.

• Never implement your own hash or crypto algorithm.

You can read the OWASP Guide to Cryptography for more information.

A8: Failure to Restrict URL Access
When most people think about Grails application security, they think of the Spring
Security and Shiro plugins. They are both excellent options for guarding access to var‐
ious application URLs. They’re not the only options, however; commercial options are
also available, and application servers typically offer URL access protection features.

The Spring Security plugin offers three approaches to guarding URLs: annotations,
database “requestmaps,” and a simple mapping of URLs and their required roles. In
addition, there is a “strict” mode option where URLs that do not have explicit access
rules defined are blocked. This errs on the side of caution, assuming that it is better to
have annoyed users and testers who cannot access URLs that they should have access
to until the misconfiguration is fixed than it is to have users annoyed by discovering
that information has been made available to unauthorized users because someone forgot
to properly configure access to part of the site. Enabling this is simple, just a single line
in Config.groovy:

grails.plugins.springsecurity.rejectIfNoRule = true

This vulnerability is relatively easy to test. You need to have a good sitemap to know
what all of the available URLs are, but you should have this already for other uses. Given
that information, it is typically just a mechanical process to write functional tests against
a running server that request guarded URLs and assert that you are prompted to log in.
Once you do authenticate, you can assert that all of the URLs that should be accessible
to you (by virtue of granted roles, user type, etc.) are accessible, and that those that
shouldn’t be accessible are not.

A9: Insufficient Transport Layer Protection
It’s relatively easy to intercept network traffic, so anything that shouldn’t be viewable by
an attacker should be guarded. One of the easiest ways to do this is to use SSL for your
web traffic. This can lead to some unexpected behaviors though, especially related to
the session ID cookie.

248 | Chapter 9: Security

https://www.owasp.org/index.php/Guide_to_Cryptography

Authentication should be done using SSL, because you don’t want to risk sending your
users’ passwords in the clear. It’s simple enough to do this; using the Spring Security

plugin, you can use the forceHttps property in Config.groovy:

grails.plugins.springsecurity.auth.forceHttps = true

and access to the login form will be redirected to the same URI but on the secure port
(by default, 443). You can also use the “channel security” configuration to explicitly

define that the login form URL (by default, /login/auth), and optionally other URLs,
requires SSL. The problem here is that, if you only use SSL for authentication, the cookie
has to be insecure in order to be usable on the other pages of the site. If you set the

secure flag, the browser will only send the cookie over SSL, and accessing pages on the
non-SSL port will not have access to it, and your users will appear to not be authenticated.
But, if you omit this flag, the cookie can be intercepted, because it is sent as a request
header with every request. So you trade encrypted passwords for the possibility that
attackers can access your users’ cookies and send them with their own requests, and
access the site as an authenticated user.

Athough there is a small cost to using SSL due to the processing work encrypting the
pages, you should consider using SSL for the entire site. Then, everything is transmitted
securely and the data is significantly less likely to be accessed by attackers. This all hinges
on proper SSL configuration, and ensuring that the certificates are renewed as needed
and that they are purchased from reliable vendors. The certificate should use strong
encryption, with a key size of at least 128 bits.

You can also encrypt traffic between servers such as between the web servers and
database server. For example, in MySQL, you can configure the server to use an SSL

certificate and create a user that requires SSL by appending REQUIRE SSL to the GRANT
statement:

GRANT SELECT, INSERT, UPDATE, DELETE on database_name.* to username@servername

IDENTIFIED BY 'the password' REQUIRE SSL;

The web servers must also be configured to use SSL by configuring system properties
for the location of the key store and trust store and their passwords. The JDBC URL
must also be updated with the required SSL configuration options. This is typically
overkill for most applications and will incur a performance cost for all database access,
so only configure this if you need this level of security.

A10: Unvalidated Redirects and Forwards
Blindly redirecting or forwarding users to other URLs exposes them to being taken
advantage of by attackers. For example, someone could use a cross-site scripting vul‐
nerability in your site or fake an email containing a link that uses your site to redirect
or forward to another site. This one could possibly install malware, or be styled like

OWASP | 249

your site and trick users into revealing information, because they might think that they
are still on your site.

If you do have a feature like this that accepts URLs as parameters, there are a couple of
different approaches you can use to make the process safer. Don’t create URLs
like /some/url?nextPage=/user/home because that could be changed to /some/url?next‐
Page=http://anyothersite.com/some/other/page. In general, if you are building these

URLs in GSP-generated pages, use flash scope to temporarily store the next URL and

use a controller to retrieve the URL from flash scope and redirect or forward there. If
the user can’t see or set the values, you have the control. If you need to embed URLs in
emails, use a placeholder code instead, such as /some/url?nextPage=a2, and use the code
to compute or look up the real URL.

And, of course, if you don’t need to parameterize this process, don’t. If the application
always knows where the next page in the workflow is, there is no need to use hidden or
obfuscated data.

Security Plugins
There are two primary plugins that secure Grails applications: spring-security-

core (and its secondary add-on plugins) and shiro. Both are robust plugins with most
or all of the authentication and authorization security features you will need and are
backed by well-known security implementations. There are other plugins, and you have
probably seen tutorials or blog posts promising how easy it is to “roll your own” security
solution, typically with filters. I don’t advise this approach; it’s best to take advantage of
the hard work and experience of others and use tested, proven frameworks and algo‐
rithm implementations.

I’ll focus on the Spring Security plugins here because I’m most familiar with those, but
don’t take that as a quality judgement of Spring Security versus Shiro—Shiro is a great
security framework and plugin, and if you find it more intuitive to use than Spring
Security, then use it instead.

spring-security-core
The original security plugin based on Spring Security was the Acegi plugin (so named
because at the time it was based on the Acegi security framework, before it was renamed
to Spring Security). Over several releases, it became somewhat bloated with various
features and support for several authentication providers (LDAP, OpenID, etc.) that

weren’t needed by every developer. One motivation in creating the spring-security-

core plugin was to address this by creating a small “core” plugin with form-based au‐
thentication backed by database storage of users and roles, and optional add-on plugins
that could be installed as needed to add extra functionality.

250 | Chapter 9: Security

http://grails.org/plugin/spring-security-core
http://grails.org/plugin/spring-security-core
http://grails.org/plugin/shiro

The spring-security-core plugin has many features available, including:

• Form-based authentication with a username and password

• HTTP Basic, Digest, and X509 browser certificate authentication

• URL-based access control (optionally stored in the database)

• Role-based access control

• Database storage of users and roles using Grails domain classes (although easily
customizable to use any source)

• Password hashing, optionally salted

• Security-related GSP tags (ifLoggedIn, ifAllGranted, ifAnyGranted, etc.)

• A utility service

• Easy configuration of authentication and authorization event handlers

• Remember-me cookie support

• Support for Ajax authentication

• Configuration for URLs that require SSL

• Admin “run-as” support to temporarily act as another user

• Session fixation prevention

In addition, the plugin (like Spring Security itself) is highly customizable. All of the
Spring beans that are needed are explicitly created by the plugin (rather than using
schema-based autoconfiguration) so as to make it easy to override beans in the con‐
taining application. In addition, any default bean dependencies are explicitly created as
their own beans—again, to make reconfiguring them easier. And all bean properties are
set from the Grails configuration; there are sensible default values for most settings
(except those that must be user-specified), and the settings are specified in Config.groo‐
vy to take advantage of configuration externalization, environment support, and using
Groovy code to set the values. It’s also easy to add additional authentication providers
and filters, both in extension plugins and in your own application.

In addition, there are extension plugins that build on the core plugin to add additional
features and authentication providers. These include:

Spring Security ACL
Adds support for object-level and method-level authorization using ACLs (access
control lists)

Spring Security AppInfo
Provides a basic UI to view the security configuration

Spring Security CAS
Adds support for single sign-on using Jasig CAS

Security Plugins | 251

Spring Security OpenID
Adds support for OpenID authentication

Spring Security Facebook
Adds support for Facebook authentication

Spring Security Kerberos
Adds support for single sign-on using Kerberos

Spring Security LDAP
Adds support for LDAP and ActiveDirectory authentication

Spring Security Mock
Adds support for fake/mock authentication during developement

Spring Security RADIUS
Adds support for RADIUS authentication

Spring Security Shibboleth Native SP

Adds support for container provided Shibboleth authentication

Spring Security Twitter
Adds support for Twitter authentication

Spring Security UI
Provides CRUD screens and other user management workflows

Getting started

It only takes a few minutes to get started and add security to your application. Like any

plugin, you add a dependency in BuildConfig.groovy in the plugins section:

plugins {

 runtime ":hibernate:$grailsVersion"

 build ":tomcat:$grailsVersion"

 ...

 compile ':spring-security-core:1.2.7.3'

}

Run grails compile to trigger the dependency resolution and plugin installation. Then

run the s2-quickstart script, which creates user and role domain classes as well as
login and logout controllers and associated GSPs. Note that using domain classes and
even a database at all is entirely optional. There is a chapter of the plugin’s user guide

that describes how to write your own UserDetailsService implementation that lets
you decide where the user and role data is stored, if you need to use something other
than a database, or a different database configuration than the default supplied by the
plugin.

252 | Chapter 9: Security

And that’s all it takes to get started. Be sure to check out the plugin documentation for
a more complete tutorial and more information about configuration options.

Access control

After running the s2-quickstart script, everything is ready to go but, of course, you
need to define the access rules for the various pages in your application. By default, the
plugin is configured to use annotations in your controllers:

import grails.plugins.springsecurity.Secured

class MyController {

 @Secured(['ROLE_USER'])

 def someAction() {

 ...

 }

 @Secured(['ROLE_ADMIN'])

 def someOtherAction() {

 ...

 }

 ...

}

This is my preference, because I like having the security information defined in the
classes that are being guarded. But there are two other approaches that you can use; one

is to specify a mapping of URLs and associated roles in the interceptUrlMap configu‐

ration property in Config.groovy, and the other uses a Requestmap domain class to store

the mappings in the database. Here’s an example of the interceptUrlMap property:

grails.plugins.springsecurity.interceptUrlMap = [

 '/secure/**': ['ROLE_ADMIN'],

 '/finance/**': ['ROLE_FINANCE', 'IS_AUTHENTICATED_FULLY'],

 '/js/**': ['IS_AUTHENTICATED_ANONYMOUSLY'],

 '/css/**': ['IS_AUTHENTICATED_ANONYMOUSLY'],

 '/images/**': ['IS_AUTHENTICATED_ANONYMOUSLY'],

 '/*': ['IS_AUTHENTICATED_ANONYMOUSLY'],

 '/login/**': ['IS_AUTHENTICATED_ANONYMOUSLY'],

 '/logout/**': ['IS_AUTHENTICATED_ANONYMOUSLY']

]

The advantage of the interceptUrlMap property is that everything is defined in one
place, and because it’s defined in Config.groovy, it can be programmatically generated
or externalized. Storing the mappings in the database is flexible, because it supports
updating the access rules while the application is running. Use whichever approach
makes sense for your applications.

Security Plugins | 253

Other Plugins and Libraries
Spring Security and Shiro provide URL and object security but do little for other aspects
of securing web applications—in particular, many of the items on the OWASP top 10
list. To protect your application against those types of attacks, there are a few good
options that you can use in your applications.

AntiSamy
The AntiSamy library is helpful when you accept user input and display it again, such
as allowing comments. You can avoid XSS attacks by using AntiSamy to remove mali‐

cious text (e.g., <script> and <iframe> tags) from user input. It uses an XML policy
file with extensive rules for how to work with HTML, CSS, and JavaScript. The project
includes policy files based on the rules used by Slashdot, eBay, and Myspace, so you can
use those directly or use them as a starting point for your own policy file.

You can use the library directly, or install the Markup Sanitizer Plugin, which integrates

AntiSamy. It adds a codec that provides an encodeAsSanitizedMarkup method, a service

with utility methods, and a markup constraint for domain classes.

ESAPI
The OWASP Enterprise Security API (ESAPI) project is more extensive than AntiSamy,
but has a different focus. It includes several features that overlap with Spring Security
and Shiro, including authentication and authorization, but it has input validation and
output encoding functionality that augment what Spring Security and Shiro offer.

The library has methods that are useful input validation and for escaping CSS, HTML,

and JavaScript, such as encodeForCSS, encodeForHTML, encodeForHTMLEntity, and

encodeForJavascript. It also has support for other formats, such as strings for SQL

(encodeForSQL) and LDAP (encodeForLDAP) queries. Unlike AntiSamy, which removes
tags, the ESAPI encoder replaces characters with format-specific safe strings.

You can use the library directly or install the xss-sanitizer plugin. The plugin inte‐
grates ESAPI and adds a servlet filter that escapes all request parameters and headers.

HDIV
The HDIV project adds protection against parameter tampering and XSS, SQL injec‐
tion, and CSRF attacks. Using the library in Spring MVC (as of version 3.1) and Grails
(as of version 2.3) is mostly transparent, because HDIV provides an implementation of

the Spring org.springframework.web.servlet.support.RequestDataValueProces

sor interface. This is used by the Spring and Grails form tags automatically. HDIV will

254 | Chapter 9: Security

http://bit.ly/12eR0bF
http://grails.org/plugin/sanitizer
http://bit.ly/10XJJKD
http://grails.org/plugin/xss-sanitizer
http://www.hdiv.org/

also hook into the validation process, updating the Errors instance with information
about SQL injection detection and other validation problems for fields.

HDIV can also help with “insecure direct object references” risks. It can replace object
identifiers with generic values that are used as keys to retrieve the actual identifier values
stored at the server. This reduces the risk that hackers can guess identifiers for objects
that they don’t have permission to view.

CSRF attack support is provided by hashing all form values (as long as you use Grails
tags to generate the HTML) to generate a CSRF token. This is added to forms in a hidden
tag and to links as an extra query string parameter. These tokens can then be validated
at the server to detect tampering or other attacks.

To add HDIV to your project, install the hdiv plugin. It configures many sensible de‐
faults for you and it is easy to customize the configuration in Config.groovy. Note that
because HDIV support was only added to Grails for version 2.3, the plugin will not work
with older versions of Grails.

General Best Practices
Don’t trust users. You can’t expect that users will do the right thing. Hackers will try to
break in, and regular users might too. Don’t assume that server requests will be the result
of a click in or a form submission from your user interface—it’s easy to create a GET or
POST request programmatically. A corollary to this is that you cannot presume that
client-side validations were used, so include them to make your site more usable and
helpful, but always perform server-side checks.

Require strong passwords; don’t trust that your users will make sensible decisions about
security. If a user chooses a naive password and gets hacked, it is mostly the user’s fault,
but you are also at fault for not protecting users from themselves. Require a minimum
length of at least eight characters, a mix of upper- and lowercase, special characters, etc.
Here’s an example of a user class that uses built-in constraints and a custom validator
to ensure that the password cannot the same as the username, be null (the implicit
default constraint), blank, shorter than 10 characters, longer than 128, and must include
at least one number, one uppercase letter, and one special character (one of !, @, #, $,
%, ^, or &):

class User {

 String username

 String password

 // other fields and methods

 static constraints = {

 password blank: false, minSize: 10, maxSize: 128,

 validator: { password, user ->

General Best Practices | 255

http://grails.org/plugin/hdiv

 if (user.username && user.username == password) {

 return 'user.password.error.username'

 }

 if (!password.matches('^.*(?=.*\\d)(?=.*[a-zA-Z])(?=.*[!@#$%^&]).*$')) {

 return 'user.password.error.strength'

 }

 }

 // other validation checks

 }

}

Be careful when accepting user input. Be aware that users may be malicious, so don’t
trust their input when constructing queries, and be careful about concatenating strings
when building HQL or SQL queries. If you will be redisplaying user input (either for
them or for other users), ensure that the input is filtered or escaped to avoid XSS and

CSRF exploits. Use automatic HTML encoding by ensuring that grails.views.de

fault.codec = "html" is set in Config.groovy.

Validate and escape when processing submitted inputs, but also consider doing the same
when redisplaying it, because otherwise you have to assume that all stored data was
properly checked when submitted, and that it wasn’t changed in a potentially unsafe
way afterward. This will add a small processing cost, but given the risks, should be
considered a worthwhile tradeoff.

Don’t reinvent any wheels; use proven technologies and frameworks. Use Spring Secu‐
rity or Shiro, or a commercial security implementation. Use strong encryption when
you need to be able to decrypt the data, and use robust hash algorithms for passwords
and other data that won’t be decrypted (e.g., Bcrypt or SHA-256/SHA-512, but never
MD5 or SHA-1).

Consider not using the remember-me feature. Requiring passwords for each authenti‐
cation makes it less likely that another person can use your site after someone has logged
in and left the computer.

Use a CAPTCHA on your login pages to help ensure real people are attempting to
authenticate. reCAPTCHA is an excellent implementation, and there is a Grails plugin,

the recaptcha plugin.

Enforce password expiration policies. Store the date that each user changes their pass‐
word, and use a Quartz job or some other scheduled process to look for users with
passwords that have expired. Spring Security has a feature to help with this; the generated

user domain class has a passwordExpired field that defaults to false but that you can

set to true. Subsequent login attempts will fail, and you can use this to redirect users to
a page where they must change their password; be sure to require the current password
and to check that the new password is different from the expired one.

256 | Chapter 9: Security

http://www.google.com/recaptcha
http://grails.org/plugin/recaptcha

Use SSL for all of your site’s pages. It will take slightly more processing power, but this
isn’t a problem with modern hardware.

Use a recent version of a web server that supports the Servlet 3.0 spec so you can set the

HttpOnly flag to block script access to your session cookie.

Don’t use HTTP Basic authentication, which sends the username and password very
weakly encoded to the server for every request. If you must use Basic authentication,
use SSL so at least the password is transmitted securely.

Think about security from the beginning of development. Just like testing and docu‐
mentation, it’s not always fun, but if you wait until the end of the project, it’s unlikely
that you will have the time to retrofit a sensible security implementation.

Don’t use “security by obscurity” and hope that because it’s not obvious that some parts
of your application aren’t locked down enough that hackers won’t get access. Automated
tools can find a surprising amount of information when given time.

Don’t store production database passwords or other sensitive information in application
code or configuration files like DataSource.groovy or Config.groovy, because the strings
will end up in the .class files and can be read if an attacker gets access to your deployed

WAR file. Use JNDI for your database connectivity, or use the grails.config.loca

tions attribute in Config.groovy to externalize the production database values. You can
either hardcode the file location, or if you’re using Tomcat, you can take advantage of
its lib directory being in the classpath and put an external configuration file there. Set
the property to something like this:

grails.config.locations = [

 "classpath:${appName}-config.groovy",

 "file:./${appName}-config.groovy"]

if (System.properties["${appName}.config.location"]) {

 grails.config.locations << 'file:' +

 System.properties["${appName}.config.location"]

}

and put the database information in a file call myappname-config.groovy with the prefix

dataSource for all of the properties you would have set in DataSource.groovy; for
example:

dataSource.driverClassName = 'com.mysql.jdbc.Driver'

dataSource.dialect = org.hibernate.dialect.MySQL5InnoDBDialect

dataSource.username = 'the username'

dataSource.password = 'the password'

dataSource.url = 'jdbc:mysql://localhost/the_database_name'

To be even more secure, delete the external config file after the server has successfully
started up because the information will be available in-memory.

Use autocomplete='off' in your authentication page’s <form> element or at least for
the username input. This will keep the browser from caching the form element infor‐

General Best Practices | 257

mation and make it less easy for others to authenticate as your users when using their
computers. This can be disabled with browser plugins, so it isn’t in any way a guarantee,
but it will help.

Don’t use the JavaScript eval function (or setTimeout or setInterval) with untrusted

JSON inputs. Use JSON.parse or trusted toolkit APIs (e.g., jQuery) that use best
practices.

Take advantage of the feature of servlet containers where files under the WEB-INF folder
are not accessible by clients. Any datafile that should not be viewable in a browser should
be under the WEB-INF and accessed using Spring’s resource API.

Don’t display stacktraces or other internal information on your error pages. In addition
to being embarrassing, it gives hackers extra information that they might be able to use
against you. Recent versions of Grails create an error.gsp similar to this one; if you are
using an older version, use a similar environment check to display a simple error mes‐
sage in production and optionally the full stacktrace and error message in development:

<!DOCTYPE html>

<html>

 <head>

 <title><g:if env="development">Grails Runtime Exception</g:if>

 <g:else>Error</g:else></title>

 <meta name="layout" content="main">

 <g:if env="development">

 <link rel="stylesheet" type="text/css"

 href="${resource(dir: 'css', file: 'errors.css')}">

 </g:if>

 </head>

 <body>

 <g:if env="development">

 <g:renderException exception="${exception}" />

 </g:if>

 <g:else>

 <ul class="errors">

 An error has occurred

 </g:else>

 </body>

</html>

Use GSP comments, not HTML comments, to put notes in your GSPs. It’s easy to view
the source of your generated HTML and see the comments, so if you want to include
comments that will not be rendered in the HTML, use either of these two comment
syntaxes:

<%-- your comment here --%>

or:

%{-- your comment here --}%

258 | Chapter 9: Security

Do regular code reviews or use pair programming to look for potential security vul‐
nerabilities. It’s too easy to accidentally make a mistake when you’re rushing to get a
feature completed, or even knowingly allow a vulnerability, assuming that you will have
time to fix it before the code is deployed. A code review will keep you honest and get
more eyes on potential issues, hopefully finding problems early while they’re still inex‐
pensive to fix.

Test your security. Do not use unit or even integration tests to test access control, because
they use mocks, and your tests will only be checking the mocks, not the real security
implementation. Use functional tests, and be as comprehensive as is practical, ideally
checking all application URLs. Free and commercial automated testing tools are avail‐
able that can scan your application for many known vulnerabilities and can automate
the process of finding issues. This can be significantly more productive than human
testing or code reviews (although these are still needed too).

Consider getting a security audit. Security companies are available and will attack your
application to perform a penetration test using the same techniques as hackers, and will
help you to find and fix vulnerabilities. It’s impractical to expect developers to “think
like hackers,” in the same way that it is difficult to think like a naive user when trying
to find usability issues. Except for rare cases, we’re developers, not security experts.

You should also familiarize yourself with the new approach taken to parameter and data
binding, described in this blog post. Changes were made in Grails 2.0.2 to the data
binding process to change the binding order to ensure that dependency-injected Spring
beans aren’t changed, excluding static, transient, and dynamically typed properties by
default, and adding whitelist and blacklist support in domain classes rather than having
to clutter application code with inclusions and exclusions.

General Best Practices | 259

http://blog.springsource.org/2012/03/28/secure-data-binding-with-grails/

CHAPTER 10

The Cloud

“The cloud” is a buzz topic right now, and for good reason. Cloud computing isn’t the
best approach for every deployment, but for many scenarios, using a cloud provider can
save time and money, and make your applications less susceptible to traffic surges. It
can also greatly simplify your deployment process and IT needs.

There is no one definition of cloud computing, and it is starting to become a misused
term (some are now referring to any online service as a cloud service). In fact, there are
three models of cloud computing: infrastructure as a service (IaaS), software as a Service
(SaaS), and platform as a service (PaaS). They’re all cloud services though—meaning,
they’re available over the Internet as metered (“pay as you go”) services. SaaS examples
include popular consumer services like Gmail, Hotmail, Facebook, and YouTube and
also more specialized software services available in a metered fashion over the Internet.
Amazon EC2, VMware vCloud, and Linode are popular IaaS options, and Amazon
Elastic BeanStalk, Heroku, Cloud Foundry, and Cloudbees are popular PaaS options.
Although Grails developers may integrate or create SaaS solutions, we will focus on IaaS
and PaaS, because they are more integral to the development and deployment process.
Also note that although Google App Engine is a viable option for traditional Java ap‐
plications, Grails applications typically don’t do well there; consider using Gaelyk in‐
stead to take advantage of a Groovy-based Grails-like environment.

The approach of hosting as a service rather than the more traditional product-based
hosting typically means that the provider makes computing resources available to you
over the Internet. So, instead of buying hardware that the provider hosts and monitors
for you, they provide everything but your applications and data. This includes the
“physical” servers (which are usually virtualized, to make it easier for them to provision
new instances and decommission unused instances), as well as services such as relational
databases, NoSQL datastores, storage, clustering, and others and features such as high
availability, job scheduling, and even Hadoop and more.

261

https://gaelyk.appspot.com/

Typically, cloud services are provided by a third party, but they can also be self-hosted,
private cloud solutions that function like those provided externally, such as if you were
to self-host an implementation of VMware’s Cloud Foundry. The model is the same,
and you have the same flexibility and elasiticity to add or remove capacity as needed,
but you have the benefit of avoiding going out to the Internet, and security concerns
are reduced. You can also implement hybrid solutions, mixing public and private cloud
services (often at the expense of added integration complexity).

Cost Savings
Users will typically see savings in multiple ways when using cloud solutions. These
include not having to purchase or maintain hardware; cloud providers can better take
advantage of economies of scale because they buy significant amounts of hardware.
They also often buy large servers with multiple processors and lots of RAM and use
virtualization to create multiple virtual servers for each physical server. And you will
also typically need a smaller IT staff when you outsource your hardware in this way,
and can take advantage of the provider’s often more experienced IT staff.

Typically, cloud providers implement a “utility computing” payment model where you
pay for bandwidth, CPU time, disk storage, and other resources on a metered basis. You
can use this to your advantage, because you only pay for what you use; if you anticipate
an upcoming increase in site traffic (because of a sale, a holiday, students returning back
to school in the fall, or another event), you can simply provision more servers. Once
the traffic returns to regular levels, you return the temporary instances to the provider’s
pool.

What You Give Up
Although there are significant advantages to deploying to a cloud provider, there are
also disadvantages. You lose a lot of freedom, because many choices are made for you.
If you deploy to a traditional provider where you (or the provider) install or mirror an
operating system, you get to install and/or configure some or all of the servlet container,
database, a frontend static web server such as Apache or nginx, and other services and
applications. You will be unlikely to have direct access to the filesystem, access to more
than a few TCP/IP ports, or features such as IP multicast (which can make configuring
distributed systems more convenient). You will even be limited in which version(s) of
the Java JDK you can use (and, in the case of Google App Engine, many JDK classes and
methods that you use often and take for granted). So there is a tradeoff when deploying
to a cloud provider, and you need to consider what you gain and what you lose and
determine if what the provider makes available is consistent with your deployment
needs.

262 | Chapter 10: The Cloud

Cloud Foundry
Cloud Foundry is VMware’s entry in the cloud space, and it’s a strong one. VMware
shook things up when they announced their open source cloud solution in April 2011.
Offering a hosted solution (in beta at the time of this writing), as well as a downloadable
“micro cloud” that runs in a virtual machine on your own laptop or server, and the
option to view and enhance the code base (and even contribute new features back to
VMware) make Cloud Foundry an interesting option. Although cloudfoundry.com is
still a beta service and has no paid options or service agreements, there are commercial
implementations of Cloud Foundry available that are independent of VMware, such as
AppFog.

The standard client that developers use to deploy applications is vmc. It’s a Ruby appli‐
cation, but it runs on Windows, Linux, and Mac OS, as long as you have Ruby and a few
dependencies installed. Groovy/Grails Tool Suite (GGTS) also has excellent support for
Cloud Foundry through its add-on; you can simply drag and drop your project onto
the configured Cloud Foundry server node to deploy your application, and various
wizards help you configure and attach services and configure your application runtime.

But being Grails developers, your best bet is the cloud-foundry plugin.

There are several services available to Cloud Foundry applications, including MySQL
and PostgreSQL relational databases, MongoDB and Redis NoSQL stores, and Rab‐
bitMQ messaging, and all are supported with a corresponding Grails plugin and by the
Cloud Foundry plugin.

Database Applications
To create a Grails application that uses a database (MySQL or PostgreSQL) and host it
at Cloud Foundry, take the following steps:

1. Create an account if you haven’t already.

2. Create the Grails application like you would for any hosting provider, but don’t
worry about the production datasource configuration yet.

3. Install the cloud-foundry plugin by adding it to BuildConfig.groovy.

4. Store your username and password in $HOME/.grails/settings.groovy or Con‐
fig.groovy.

5. Configure a database service, either MySQL or PostgreSQL (or you can wait and
have this automatically done for you when deploying).

6. Deploy the application, binding the database service that you already created, or
creating and binding a new one as part of the deployment step.

Cloud Foundry | 263

http://cloudfoundry.com/
https://www.appfog.com/
http://start.cloudfoundry.com/tools/vmc/installing-vmc.html
http://grails.org/products/ggts
http://grails.org/plugin/cloud-foundry
https://my.cloudfoundry.com/signup
http://grails.org/plugin/cloud-foundry

That’s not a lot of work, and once you’ve created an account and added your login
credentials to $HOME/.grails/settings.groovy, it’s even simpler for the second application
(assuming you want to automatically create and bind a database service):

1. Create the Grails application.

2. Install the cloud-foundry plugin.

3. Deploy the application, creating and binding a new database service.

You’ll notice that there’s no configuration mentioned other than specifying your login
credentials. That’s not an omission; it’s how the deployment process works. The plugin

includes a Spring bean postprocessor—grails.plugin.cloudfoundry.AppCloudSer

viceBeanPostprocessor, although most of the functionality is in its grails.plu

gin.cloudsupport.AbstractCloudBeanPostprocessor base class from the cloud-

support plugin—that reconfigures the DataSource bean based on the runtime database
service information that Cloud Foundry makes available during deployment. As long

as you have a dataSource bean configured and the VCAP_SERVICES environment vari‐
able set, its JSON content is parsed and the database username, password, and URL

values will be used to reconfigure the dataSource bean for you. This is obviously con‐
venient, because you don’t have to run a command to find the cryptic connection values.
But it also means there’s next to zero coupling with the hosting provider. So you can
easily change to a different cloud or more traditional hosting provider, or even deploy
to multiple providers.

Creating an application

To make this more concrete, let’s look at an example. I’ll assume that you already have
a Cloud Foundry account, and that you’ve added your username and password to
$HOME/.grails/settings.groovy (the file isn’t created for you, so create a new empty file
if you haven’t already done so) to avoid having your password in source control; for
example:

grails.plugin.cloudfoundry.username = 'your_username'

grails.plugin.cloudfoundry.password = 'your_password'

Add a dependency on the cloud-foundry plugin to your application’s BuildConfig.groo‐

vy in the plugins section:

plugins {

 runtime ":hibernate:$grailsVersion"

 runtime ':jquery:1.7.1'

 runtime ':resources:1.1.6'

 build ":tomcat:$grailsVersion"

 compile ':cloud-foundry:1.2.1'

}

264 | Chapter 10: The Cloud

http://grails.org/plugin/cloud-foundry
http://grails.org/plugin/cloud-support
http://grails.org/plugin/cloud-support

and run grails compile to let the plugins resolve. If you want to use a MySQL database,

add a dependency for its driver in the dependencies section:

dependencies {

 runtime 'mysql:mysql-connector-java:5.1.16'

}

otherwise, add a dependency for the PostgreSQL driver:

dependencies {

 runtime 'postgresql:postgresql:8.4-702.jdbc3'

}

Create a simple domain class so we can test the database persistence:

$ grails create-domain-class cloud.foundry.test.Person

and add some fields so it looks something like this:

package cloud.foundry.test

class Person {

 String firstName

 String lastName

}

Generate a static scaffolded UI:

$ grails generate-all cloud.foundry.test.Person

Enable the database console with the grails.dbconsole.enabled attribute in the pro

duction section in Config.groovy so we can take a look at the database and run some
queries once the application is deployed:

environments {

 ...

 production {

 ...

 grails.dbconsole.enabled = true

 }

}

Also add some logging code in BootStrap.groovy to display the database connection
information so we can use it to connect with the database console UI:

import grails.converters.JSON

class BootStrap {

 def init = { servletContext ->

 String VCAP_SERVICES = System.getenv('VCAP_SERVICES')

 println "VCAP_SERVICES: ${System.getenv('VCAP_SERVICES')}\n"

 def json = JSON.parse(VCAP_SERVICES)

 def service = json.find { it.key.startsWith('mysql') }.value[0]

Cloud Foundry | 265

 def hostname = service.credentials.hostname

 def port = service.credentials.port

 def credentials = service.credentials

 def user = service.credentials.user

 def password = service.credentials.password

 println """

MySQL url: jdbc:mysql://$hostname:$port/$credentials

 user: $user

 password: $password"""

 }

}

And that’s it—we’ll leave the settings in DataSource.groovy, alone because the connec‐
tion settings will be reconfigured for us when deploying. You can add some extra JDBC
URL parameters to a placeholder URL to configure the database if you want; for ex‐
ample, to enable Unicode and UTF-8:

environments {

 ...

 production {

 dataSource {

 ...

 url = 'jdbc:mysql://localhost/db?useUnicode=true&characterEncoding=utf8'

 }

 }

}

The cf-push (and cf-update) script can deploy an existing WAR file;
for example, if you have a nonstandard build that requires more than

running grails war, but by default will create a WAR for you. Because

all Grails commands except war and test-app default to the develop‐
ment environment unless a different one is specified, it’s very important

that you always run grails prod cf-push and grails prod cf-

update to ensure that you build a WAR optimized for a production
deployment.

Run the cf-push command to deploy the application. You should see output similar to
this if you don’t already have a MySQL service configured and you let the script add and
bind it for you (be sure to choose a unique application name):

$ grails prod cf-push

| Environment set to production.....

Building war file

| Done creating WAR target/cf-temp-1331686075902.war

>

Application Deployed URL: 'testing-testing-testing-1-2-3.cloudfoundry.com'? y

>

Would you like to create and bind a mysql service?[y,n] y

Service 'mysql-84fba3d' provisioned.

266 | Chapter 10: The Cloud

>

Would you like to create and bind a postgresql service?[y,n] n

Creating application testing-testing-testing-1-2-3 at

testing-testing-testing-1-2-3.cloudfoundry.com with 512MB and services [mysql-84fba3d]:

 OK

Uploading Application:

 Checking for available resources:

 OK

 Processing resources:

 OK

 Packing application:

 OK

 Uploading (452K):

 OK

Trying to start Application: 'testing-testing-testing-1-2-3'.

.....

Application 'testing-testing-testing-1-2-3' started at

http://testing-testing-testing-1-2-3.cloudfoundry.com

Although the cf-push script builds an entire WAR file (typically at least
25 MB), you can see from the output that only 452 K was transferred
to Cloud Foundry (this isn’t a fixed value; the number will be different
for each application). This is because the client is smart enough to cal‐
culate a hash of all of the files in your WAR file and compare them to
previously uploaded files, and not upload anything that’s already avail‐
able at the server. This is particularly helpful for JAR files, because it’s
very likely that other users have already deployed applications with the
Grails, Spring, Hibernate, and other library JARs that your application
is using. So you only need to upload rarely used JARs and your actual
application classes and files.

View the contents of the stdout.log file from the server with the cf-get-file script, and
it should look something like this:

$ grails cf-get-file logs/stdout.log

| Environment set to development.....

VCAP_SERVICES: {"mysql-5.1":[{"name":"mysql-84fba3d","label":"mysql-5.1",

"plan":"free","tags":["mysql","mysql-5.1","relational"],

"credentials"{"name":"d2df723ab1f14440a9dcbd37af9c1a4d1",

"hostname":"172.30.48.22","host":"172.30.48.22","port":3306,

"user":"umASXSmfZneBu","username":"umASXSmfZneBu","password":"pMKFw9EqZNuOS"}}]}

MySQL url: jdbc:mysql://172.30.48.22:3306/d2df723ab1f14440a9dcbd37af9c1a4d1

 user: umASXSmfZneBu

 password: pMKFw9EqZNuOS

Cloud Foundry | 267

If you navigate to the root URL of your application, it should display the start page with
a link to the scaffolded controller you created, as shown in Figure 10-1.

Figure 10-1. Home page of the test application

You can open up the database console by navigating to /dbconsole/; choose Generic
MySQL from the Saved Settings drop-down and enter the URL, username, and
password that was in the server logfile to log in. Figure 10-2 shows the console after
connecting.

Figure 10-2. Database console UI

268 | Chapter 10: The Cloud

There’s not much to see yet, because the application just started, but you can open up
the Person CRUD pages and add some data so you can run some queries. You can also

run show create table person to see the DDL that was used to create the table; it
should show that it’s an InnoDB table (because the plugin configures the appropriate

Hibernate Dialect for you) and that it uses UTF-8 charset (from the JDBC URL settings
that you added to DataSource.groovy).

Scaling
Initially, your application will be deployed on a single Tomcat instance, but it’s easy to

scale up your deployment with the cf-update-instances script and view instance in‐

formation with the cf-show-instances script.

You can see the single instance running with the cf-show-instances script:

grails> cf-show-instances

| Environment set to development.....

+-------+---------+--------------------+

| Index | State | Start Time |

+-------+---------+--------------------+

| 0 | RUNNING | 03/14/2012 02:11AM |

+-------+---------+--------------------+

and increase it to four instances (the maximum, because the account is limited to 2 GB

of memory across all instances, and each is 512 MB by default) with the cf-update-

instances script:

grails> cf-update-instances 4

Scaled 'testing-testing-testing-1-2-3' up to 4 instances.

You can see that three new instances get allocated but aren’t immediately available,
because the Tomcat instances need some time to start up and deploy the WAR file:

grails> cf-show-instances

+-------+----------+--------------------+

| Index | State | Start Time |

+-------+----------+--------------------+

| 0 | RUNNING | 03/14/2012 02:11AM |

+-------+----------+--------------------+

| 1 | STARTING | 03/14/2012 08:27PM |

+-------+----------+--------------------+

| 2 | STARTING | 03/14/2012 08:27PM |

+-------+----------+--------------------+

| 3 | STARTING | 03/14/2012 08:27PM |

+-------+----------+--------------------+

Cloud Foundry | 269

http://bit.ly/10XKAL8
http://bit.ly/117l19v

All four instances should be running soon afterward though:

grails> cf-show-instances

+-------+---------+--------------------+

| Index | State | Start Time |

+-------+---------+--------------------+

| 0 | RUNNING | 03/14/2012 02:11AM |

+-------+---------+--------------------+

| 1 | RUNNING | 03/14/2012 08:27PM |

+-------+---------+--------------------+

| 2 | RUNNING | 03/14/2012 08:27PM |

+-------+---------+--------------------+

| 3 | RUNNING | 03/14/2012 08:27PM |

+-------+---------+--------------------+

And you can scale back down at any time:

grails> cf-update-instances 1

Scaled 'testing-testing-testing-1-2-3' down to 1 instance.

HTTP sessions

Cloud Foundry uses sticky sessions between your instances, so functionality that de‐
pends on a consistent HTTP session will work well for the most part, because all requests
will go to a single server. Sessions aren’t replicated, however, so if the server that a user
is on crashes, the HTTP session will be lost, and after getting redirected to another
server, the session will have to be reinitialized. If authentication credentials are stored
in the session, the user will no longer be authenticated and have to log in again.

Server crashes are rare, but you might consider using an alternative approach to session
management. There are three plugins that you can use to change how sessions and

session data are stored: database-session (which stores sessions in a relational data‐

base), mongodb-session (which stores sessions in a MongoDB datastore), and cookie-

session (which stores sessions in a cookie, limiting you to a total of 4 KB of session
storage).

NoSQL, RabbitMQ, and Searchable
In addition to traditional relational databases, Cloud Foundry supports the Mon‐
goDB and Redis NoSQL stores and RabbitMQ messaging. And, if your application uses

one or more of the mongodb, redis-gorm, or rabbitmq plugins and you have the corre‐
sponding Cloud Foundry services configured for your application, the bean postpro‐

cessor that updates the dataSource bean will do the same autoreconfiguration of the
connection configuration for these services. The plugin also has support for ensuring

that the Lucene index created by the searchable plugin gets created in a writeable
directory.

270 | Chapter 10: The Cloud

http://grails.org/plugin/database-session
http://grails.org/plugin/mongodb-session
http://grails.org/plugin/cookie-session
http://grails.org/plugin/cookie-session
http://www.mongodb.org/
http://www.mongodb.org/
http://redis.io/
http://www.rabbitmq.com/
http://grails.org/plugin/mongodb
http://grails.org/plugin/redis-gorm
http://grails.org/plugin/rabbitmq
http://grails.org/plugin/searchable

Monitoring and the Cloud Foundry UI Plugin
The primary function of the Cloud Foundry plugin is to deploy and update your ap‐
plication, but it also has scripts that can give you a view into what’s happening with your
application.

Grails interactive mode makes monitoring your application from the command line a
lot faster, because you only incur the JVM startup and Spring application context con‐

figuration once. Just execute grails to get started:

$ grails

| Enter a script name to run. Use TAB for completion:

grails>

Once the application is running, you can look at the stdout.log and stderr.log files with

the cf-logs command:

grails> cf-logs

| Environment set to development.....

==== logs/stderr.log ====

Mar 14, 2012 1:06:23 AM org.apache.coyote.http11.Http11Protocol init

INFO: Initializing Coyote HTTP/1.1 on http-51810

Mar 14, 2012 1:06:23 AM org.apache.catalina.startup.Catalina load

INFO: Initialization processed in 379 ms

...

==== logs/stdout.log ====

VCAP_SERVICES: {"mysql-5.1":[{"name":"mysql-84fba3d","label":"mysql-5.1",

"plan":"free","tags":["mysql","mysql-5.1","relational"],

"credentials"{"name":"d2df723ab1f14440a9dcbd37af9c1a4d1",

"hostname":"172.30.48.22", "host":"172.30.48.22","port":3306,

"user":"umASXSmfZneBu","username":"umASXSmfZneBu",

"password":"pMKFw9EqZNuOS"}}]}

MySQL url: jdbc:mysql://172.30.48.22:3306/d2df723ab1f14440a9dcbd37af9c1a4d1

 user: umASXSmfZneBu

 password: pMKFw9EqZNuOS

Use the cf-info script to see your allocated memory, services, and application usage:

grails> cf-info

VMware's Cloud Application Platform

For support visit http://support.cloudfoundry.com

Target: http://api.cloudfoundry.com (v0.999)

User: beckwithb@vmware.com

Usage: Memory (512.0M of 2.0G total)

 Services (1 of 16 total)

 Apps (1 of 20 total)

Cloud Foundry | 271

http://bit.ly/XNnryC
http://bit.ly/16YtDEk

Use the cf-stats script to see the runtime CPU, memory, and disk usage, and total
uptime for your application:

grails> cf-stats

+----------+-------------+----------------+--------------+---------------+

| Instance | CPU (Cores) | Memory (limit) | Disk (limit) | Uptime |

+----------+-------------+----------------+--------------+---------------+

| 0 | 0.3% (4) | 382.2M (512M) | 41.0M (2G) | 0d:1h:46m:42s |

+----------+-------------+----------------+--------------+---------------+

You can also use the cf-list-files script to get a directory listing at the server:

grails> cf-list-files /tomcat/webapps/ROOT/js

application.js 183B

and the cf-get-file script to view a file once you’ve found it with the cf-list-

files script.

The cloud-foundry-ui Plugin

You can get a lot of information by using the command-line scripts, but they can

be tedious and impractical to work with. There is an add-on plugin for the cloud-

foundry plugin—the cloud-foundry-ui plugin—that creates a simple but very useful

monitoring frontend for your application. To use it, install it just like you did the cloud-

foundry plugin; that is, add it to BuildConfig.groovy:

plugins {

 runtime ":hibernate:$grailsVersion"

 runtime ':jquery:1.7.1'

 runtime ':resources:1.1.6'

 build ":tomcat:$grailsVersion"

 compile ':cloud-foundry:1.2.1'

 compile ':cloud-foundry-ui:1.1.1'

}

There isn’t much configuration required for this plugin, but you will need to add some
controller mappings in UrlMappings.groovy. You have flexibility in the prefix of the
URLs, but the other values must be the same as these:

class UrlMappings {

 static mappings = {

 "/$controller/$action?/$id?"{

 constraints {

 // apply constraints here

 }

 }

272 | Chapter 10: The Cloud

http://grails-plugins.github.com/grails-cloud-foundry/docs/manual/ref/Scripts/cf-stats.html
http://grails-plugins.github.com/grails-cloud-foundry/docs/manual/ref/Scripts/cf-list-files.html
http://grails-plugins.github.com/grails-cloud-foundry/docs/manual/ref/Scripts/cf-get-file.html
http://grails.org/plugin/cloud-foundry-ui

 "/admin/cfDashboard/$action?"(controller: 'cloudFoundryDashboard')

 "/admin/cfDashboard/application/$appName"(

 controller: 'cloudFoundryDashboard', action: 'application')

 "/admin/cfDashboard/service/$serviceName"(

 controller: 'cloudFoundryDashboard', action: 'service')

 "/admin/cfDashboard/files/$appName/$instanceIndex?"(

 controller: 'cloudFoundryDashboard', action: 'files')

 "/"(view:"/index")

 "500"(view:'/error')

 }

}

In this example, I’ve used the /admin prefix to differentiate the URLs from the main
site, and to make it easier to guard the pages with security, because I can most likely use

a wildcard pattern for /admin/**. Once you’ve installed the plugin and deployed the

application with cf-push or updated an existing application with cf-update, you can
navigate to the root URL that you defined in UrlMappings.groovy, such as http://
appname.cloudfoundry.com/admin/cfDashboard.

If you set your Cloud Foundry username and password in Config.groovy, then you’ll
immediately see the UI screens. If you set the values in $HOME/.grails/settings.groovy,
however, they’re not available at runtime, so you’ll be prompted with a login screen, as
shown in Figure 10-3, to enter your credentials so the plugin can make API calls on
your behalf.

Figure 10-3. Login screen

Cloud Foundry | 273

Once you’ve logged in, click the toolbar button with your application name, and you’ll
see the statistics dashboard as shown in Figure 10-4.

Figure 10-4. Statistics page

The gauges update themselves every five seconds unless you click the “Disable auto-
refresh” link. If you click the View link on the left under Files, you’ll see the file viewer
pages like the example in Figure 10-5 that allow you to see the entire directory tree (as
much as you’re allowed to see, anyway) and view any file.

Figure 10-5. File viewer

274 | Chapter 10: The Cloud

You can also right-click on any file to download it to your local machine.

Heroku
Heroku is another great cloud hosting option for Grails applications. For a long time,
Heroku was known for hosting Rails and other non-JVM platforms, but they have
jumped into JVM hosting with both feet and provide a solid deployment option for
Grails and Java applications. It’s a more established solution than Cloud Foundry, so
their add-on selection is much more extensive.

The workflow for creating Grails applications and deploying them to Heroku is quite
similar to that for Cloud Foundry. As of this writing, there isn’t a Java API client for

Heroku’s REST API yet, so you end up using a mix of the Grails plugin, the heroku
command-line client, and Git tools to get everything going, but even so, it is still an easy
process.

The Heroku deployment philosophy is quite different from that of Cloud Foundry;
instead of building and deploying a standard WAR file, you create your project and
commit it to a local Git repository, and configure a Git remote at the Heroku servers.
Pushing to the Heroku remote triggers the deployment process, and the server-side
components (a “build pack” in Heroku terminology) package up your application and
deploy it.

The Heroku model is convenient, because you’ll end up using less bandwidth to push
the initial application and to update and redeploy changes. Cloud Foundry does use an
intelligent hashing approach to avoid uploading files that are already available at the
server so you don’t actually upload an entire WAR in either case, but with Heroku, you
only push application code. JAR files and plugin dependencies referenced in BuildCon‐
fig.groovy are resolved at the Heroku servers when building the WAR file. This conve‐
nience comes at a small cost, however; you cannot use unreleased or locally modified
plugins. This isn’t a general problem, because most of the time you will be using released
plugins, but it makes testing new plugins somewhat harder. One workaround is to pub‐
lish the in-progress plugins to your own plugin repository (as long as it’s accessible to
Heroku’s servers), and you can also publish a snapshot release of an in-progress plugin
in the central Grails plugin repository (if you’re the plugin owner).

Heroku add-ons that work well with Grails applications include their PostgreSQL,
Memcache, MongoHQ and MongoLab, RabbitMQ, and Redis To Go services. All are
supported with a corresponding Grails plugin and by the Heroku plugin.

Database Applications
The general workflow for creating a Grails application that uses a PostgreSQL database
and hosting it at Heroku is as follows:

Heroku | 275

http://www.heroku.com/

1. Create an account if you haven’t already.

2. Install the heroku client and a Git client.

3. Create the Grails application like you would for any hosting provider, but don’t
worry about the production datasource configuration yet.

4. Install the heroku plugin by adding it to BuildConfig.groovy.

5. Commit your application code to a local Git repository.

6. Register the application with the heroku create command (this also creates a Git
remote so you can push to deploy).

7. Deploy the application with git push.

You don’t have to register a database add-on, because all Grails applications get a small,
free PostgreSQL instance.

Like with the Cloud Foundry plugin, there’s hardly any configuration needed, because

the heroku plugin uses a similar approach where a Spring bean postprocessor

(grails.plugin.heroku.HerokuBeanPostprocessor) reconfigures the DataSource
bean based on the runtime database service information that Heroku makes available
during deployment. Instead of one large JSON string in a single environment variable
like Cloud Foundry, each add-on registers its own environment variable(s), such as

DATABASE_URL for the PostgreSQL add-on; MONGOHQ_URL for the MongoHQ add-on;

MEMCACHE_SERVERS, MEMCACHE_USERNAME, and MEMCACHE_PASSWORD for Memcache; and

so on. You could run heroku config and use the connection information there to
hardcode values in DataSource.groovy, but it’s best to use the plugin and stay as decou‐
pled as possible to leave your options open.

Creating an application

Let’s look at an example of deploying to Heroku. I’ll assume that you already have a

Heroku account and that you’ve installed the heroku and git clients and have authen‐
ticated at Heroku.

Add a dependency on the heroku plugin to your application’s BuildConfig.groovy in the

plugins section:

plugins {

 runtime ":hibernate:$grailsVersion"

 runtime ':jquery:1.7.1'

 runtime ':resources:1.1.6'

 build ":tomcat:$grailsVersion"

 compile ':heroku:1.0.1'

}

276 | Chapter 10: The Cloud

https://api.heroku.com/signup
http://bit.ly/17eeP2R
http://git-scm.com/
http://grails.org/plugin/heroku

and run grails compile to let the plugins resolve. Add a dependency for the
PostgreSQL driver:

dependencies {

 runtime 'postgresql:postgresql:8.4-702.jdbc3'

}

Create a simple domain class so we can test the database persistence:

$ grails create-domain-class heroku.test.Person

and add some fields so it looks something like this:

package heroku.test

class Person {

 String firstName

 String lastName

}

Generate a static scaffolded UI:

$ grails generate-all heroku.test.Person

Enable the database console with the grails.dbconsole.enabled attribute in the pro

duction section in Config.groovy so we can take a look at the database and run some
queries once the application is deployed:

environments {

 ...

 production {

 ...

 grails.dbconsole.enabled = true

 }

}

Also add some logging code in BootStrap.groovy to display the database connection
information so we can use it to connect with the database console UI:

import grails.plugin.heroku.PostgresqlServiceInfo

class BootStrap {

 def init = { servletContext ->

 String DATABASE_URL = System.getenv('DATABASE_URL')

 if (DATABASE_URL) {

 try {

 PostgresqlServiceInfo info = new PostgresqlServiceInfo()

 println "\nPostgreSQL service ($DATABASE_URL): url='$info.url', " +

 "user='$info.username', password='$info.password'\n"

 }

 catch (e) {

 println "Error occurred parsing DATABASE_URL: $e.message"

 }

Heroku | 277

 }

 }

}

Leave the settings in DataSource.groovy alone, because the connection settings will be
reconfigured for us when deploying.

Now we just need to initialize the Git repo and configure the Heroku project. Run git

init:

$ git init

Initialized empty Git repository in /home/burt/workspace/heroku_grails/.git/

Run grails integrate-with --git to create a .gitignore file, and add the files and
commit them:

$ grails integrate-with --git

| Created Git project files..

$ git add .

$ git commit -m "initial commit"

[master (root-commit) 78181a3] initial commit

 69 files changed, 4487 insertions(+), 0 deletions(-)

 create mode 100644 .classpath

 create mode 100644 .gitignore

 create mode 100644 .project

 create mode 100644 application.properties

...

Create the application using heroku create:

$ heroku create --stack cedar

This command creates the application at Heroku’s server (but doesn’t deploy anything
yet). You can verify this by going to https://api.heroku.com/myapps where it will be listed
along with any other application you may have created. The command also registers a

Git remote to Heroku, which you can see by running git remote -v.

And we’re now ready to deploy. It’s as simple as pushing the commited application files

to the Heroku remote added by heroku create, so run git push heroku master and
watch the output. You’ll see that your application JAR and plugin dependencies are
resolved at the server, and a WAR file will be created and deployed to a Jetty server
instance. If there’s an error during deployment, the Git push will fail and you can fix
the issue, commit the changes, and push again to try deploying with the fixes applied.

If the deployment is sucessful, you can run heroku logs to see the server log output,

and run heroku logs -t to “tail” the log and continuously display updated lines of
output. The PostgreSQL connection information in the logs should look something like
this:

PostgreSQL service (

postgres://syrmypn:Dp_RHcV@ec2-23-21-182-175.compute-1.amazonaws.com/syrmypn):

278 | Chapter 10: The Cloud

https://api.heroku.com/myapps

url='jdbc:postgresql://ec2-23-21-182-175.compute-1.amazonaws.com:5432/syrmypn',

user='syrmypn', password='Dp_RHcV'

If you navigate to the root URL of your application, it should display the start page with
a link to the scaffolded controller you created. Figure 10-6 shows an example.

Figure 10-6. Home page of the test application

You can open up the database console by navigating to /dbconsole/; choose Generic
PostgreSQL from the Saved Settings drop-down and enter the URL, username, and
password that was in the server logfile to log in. Figure 10-7 shows the console after
connecting.

Figure 10-7. Database console UI

Heroku | 279

There’s not much to see yet because the application just started, but you can open up
the Person CRUD pages and add some data so you can run some queries.

Scaling
Initially, your application will be deployed on a single Jetty instance, but it’s easy to scale

up your deployment with the heroku scale command:

$ heroku scale web=4

Scaling web processes... done, now running 4

and if you rerun heroku logs -t after increasing the server count, you’ll see the three
new instances logging startup messages (each message contains the web instance it was
generated by).

Unlike the equivalent Cloud Foundry command, this isn’t limited by your account’s
quotas, because you pay for additional resources.

Each account gets 750 “dyno hours” free per month, and a single application deployed
on one instance running full time for a month will use 744 hours; so, as long as you use
the free versions of the various add-on services, you won’t have to pay anything for your
hosting. But once you add one or more web processes, you’ll go beyond the 750 hour
limit and have to pay for the rest.

Use the heroku ps command to get some state and uptime information about the var‐
ious instances:

$ heroku ps

Process State Command

------- ---------- ------------------------------------

web.1 up for 38m java $JAVA_OPTS -jar server/jetty-..

web.2 up for 4m java $JAVA_OPTS -jar server/jetty-..

web.3 up for 4m java $JAVA_OPTS -jar server/jetty-..

web.4 up for 4m java $JAVA_OPTS -jar server/jetty-..

[source,java]

HTTP sessions

Heroku does not offer session affinity, sticky sessions, or session clustering options. This
means that functionality that depends on a consistent HTTP session will not work on

Heroku. This includes basic HTTP session storage, but also Grails flash scope, because
that is implemented by storing the flash-scope data in the session until the next request.

It also means that plugins like spring-security-core that store authentication details
in your session will not work; you can authenticate, but because your requests will be
randomly assigned to different servers, you’ll appear logged in only on one instance but
not the others. Whereas alternative approaches to session management are an option
for Cloud Foundry, they’re more necessary for Heroku.

280 | Chapter 10: The Cloud

The heroku plugin depends on the database-session plugin, so by default, your users
will continue to split requests across multiple servers, but the session data will be stored
in the PostgreSQL database and shared across all servers. If you prefer to use the Mon‐

goDB version of the plugin, add an exclusion for the database-session plugin in

BuildConfig.groovy and add a dependency for the mongodb-session plugin:

plugins {

 runtime ":hibernate:$grailsVersion"

 runtime ':jquery:1.7.1'

 runtime ':resources:1.1.6'

 build ":tomcat:$grailsVersion"

 compile(':heroku:1.0.1') {

 excludes 'database-session'

 }

 compile ':mongodb-session:0.1'

}

Or if you prefer to use cookie-based storage (and you’re confident that user sessions

won’t go beyond the 4 K limit), use the cookie-session plugin instead:

plugins {

 runtime ":hibernate:$grailsVersion"

 runtime ':jquery:1.7.1'

 runtime ':resources:1.1.6'

 build ":tomcat:$grailsVersion"

 compile(':heroku:1.0.1') {

 excludes 'database-session'

 }

 compile ':cookie-session:0.1.2'

}

Build Packs
The process for deploying applications in the various platforms that Heroku supports
varies widely, so they have abstracted the process with the concept of a buildpack. For
Grails applications, this involves downloading a Grails/Jetty bundle that is created sep‐

arately for each version of Grails, running the Grails war script for your application
source code in their copy of the Git repo, and generating a Procfile that defines how to
start the Jetty server for your WAR file.

These buildpacks are open source and hosted at GitHub. This means that you can sug‐
gest changes to the standard Grails buildpack by submitting a pull request, or even create
your own buildpack to customize the build process. Using a custom buildpack is very
simple; all you need to do is reference the URL to the source. See the Heroku docu‐
mentation for more details.

Heroku | 281

http://grails.org/plugin/mongodb-session
http://grails.org/plugin/cookie-session
https://devcenter.heroku.com/articles/buildpacks
https://github.com/heroku/heroku-buildpack-grails
https://devcenter.heroku.com/articles/buildpacks#using-a-custom-buildpack
https://devcenter.heroku.com/articles/buildpacks#using-a-custom-buildpack

Other Providers
Heroku and Cloud Foundry are far from the only cloud options for deploying Grails
applications. There are many providers that can host JVM-based applications, with
varying levels of direct or indirect support for Grails. Some of these include:

• Amazon Elastic BeanStalk is a provider from Amazon that uses AWS services; there
is a plugin that simplifies the process of working with the available services. There
is also a detailed blog post on deploying a Grails application to Elastic BeanStalk.

• CloudBees is another solid option, and there is also a Grails plugin.

• Jelastic

• dotCloud

• openShift

Other Uses for Cloud Services
You use cloud providers for more than just deployment—continuous integration (CI)
of applications and plugins. Travis CI is a free CI provider with support for Grails; see
this blog post for some pointers on getting started. CloudBees has a free cloud-based
CI product called BuildHive that can support Grails. See this blog post for information
about using it, and this slide deck for an overview of the Grails CloudBees plugin and
using BuildHive for CI.

282 | Chapter 10: The Cloud

https://aws.amazon.com/elasticbeanstalk/
http://grails.org/plugin/aws
http://www.bobbywarner.com/2011/10/14/grails-on-aws/
http://www.cloudbees.com/
http://grails.org/plugin/cloud-bees
http://jelastic.com/
https://www.dotcloud.com/
https://openshift.redhat.com/app/
https://travis-ci.org/
http://bit.ly/138I0nf
https://buildhive.cloudbees.com/
http://bit.ly/10XUQ67
http://slidesha.re/12fw0lg

CHAPTER 11

AOP

Aspect-oriented programming (AOP) is a powerful technique to simplify software by
identifying “cross-cutting concerns,” or functionality that cannot be cleanly modular‐
ized into a single component, class, or module, and applying that logic centrally rather
than scattering copies across the code base. In a Grails application, this might involve
recognizing that security checks (or logging, timing, or any other shared logic) are re‐
quired in services, controllers, and Quartz jobs, for example; although the purpose of
each of these artifacts is quite different, they share a common need that “cuts across”
the different types. There are several simplistic approaches that could be used, but they
involve code duplication, artificial class hierarchies, or other brittle approaches that
make the code harder to maintain. But using AOP would more likely be a much cleaner
and more maintainable approach, because there isn’t a proper object-oriented approach
that can solve the problem.

AOP is a large topic, but for the sake of this discussion, let’s focus on before, after,

around, and after-throwing interception, which is useful to separate what gets exe‐

cuted from when it gets executed. before interception is where code runs before one or
more specified methods, and potentially blocks access to the method by throwing an
exception (e.g., in a security check where it’s determined that you’re not allowed)

or does some work before the method runs (e.g., starting or joining a transaction). after
interception cannot block access to the method, because it will already have been in‐
voked, but it is an opportunity to do some work afterward (e.g., committing a transac‐

tion). around interception can be thought of as a combination of before and after
interception, where you can do work before and/or after the method is invoked, invoke
the method with different arguments, or choose to not invoke the method at all and

instead perform another action. Finally, after-throwing interception happens when
an exception is detected, allowing work after having entered an error state.

283

Spring has excellent support for AOP using proxies and dedicates an entire chapter in
its documentation to the subject. In addition, we’ll see that Grails has a few AOP-like
techniques that can be used in a more limited fashion (including Grails filters and servlet
filters), and even Groovy can provide an AOP-like approach by using metaclass method
and property interception and mix-ins.

To be fair though, there are some risks and costs in using techniques like this. Grails
adds a lot of “magic” to your code—this is the essence of the “convention over config‐
uration” approach where, if you name classes correctly, put them in the correct folder,
and possibly add some configuration information, a lot of cool stuff is added to your
classes—and AOP can add more. But, when this magic code that you can’t see (at least
not directly or conveniently) fails, it can be difficult sometimes to even know where to
start looking for a fix. And done incorrectly, using AOP can actually trade complexity
for complexity; different isn’t necessarily better. And tooling can be limited, because
although there is excellent IDE support for AOP and Groovy, there isn’t anything out
there as of this writing that works with both at the same time in a project.

Grails Filters
Let’s start with a simple example of a Grails filter. Filters are backed by Spring Handler

Interceptor instances, so they’re limited to intercepting controller actions, whereas
HTTP filters can intercept any request. You can create them by hand, but it’s more

convenient to use the create-filters script; for example:

$ grails create-filters aop.Book

which creates this starter filters class:

package aop

class BookFilters {

 def filters = {

 all(controller:'*', action:'*') {

 before = {

 }

 after = { Map model ->

 }

 afterView = { Exception e ->

 }

 }

 }

}

See the Grails documentation for detailed information on filters.

284 | Chapter 11: AOP

http://bit.ly/XNo0Z8
http://bit.ly/XNo0Z8
http://grails.org/doc/latest/guide/single.html#filters

All four interception types are supported here. The before closure fires before any
matching controller requests (you can limit which controllers and/or actions are inter‐

cepted with the controller and action arguments) and you can return true or false

from the closure. true means that you want to allow the controller action to execute,

and false will stop the workflow and not call the controller action. Returning nothing

is the same as returning true. So you can do both before and around interception
depending on the state at the time of the request, the current request URL or query
parameters, or other criteria. You can perform some action and let the controller action

fire (before interception) or handle the request yourself, rendering a response directly

or forwarding or redirecting to another URL (around interception). around interception

isn’t directly supported, but can be implemented as a combination of before and after
interception.

The after and afterView closures support after interception, because in both cases,

the controller action will have been invoked. In the after closure, you have access to
the model map that will be used in the view (typically a GSP) and can alter its contents,

and also perform other post-action tasks. The afterView closure is similar, but it is
called after the view is rendered, so you don’t have an opportunity to alter the model

map but you can perform other post-action tasks. It also allows after-throwing inter‐

ception because you can detect that an exception has occurred by testing that the e
variable is null or not, and do work for the exception case there.

For example, you could manage redirecting from an older URL scheme to a new one

(e.g., after a site rework) with a filter like this (note that the redirects filter name is
arbitrary):

redirects(controller:'*', action:'*') {

 before = {

 if (request.forwardURI =~ '/old/action') {

 redirect controller: 'new', action: 'action',

 params: params, permanent: true

 return false

 }

 if (request.forwardURI =~ '/other/action') {

 redirect controller: 'newer', action: 'action',

 params: params, permanent: true

 return false

 }

 if (request.forwardURI =~ '/thing/show') {

 response.sendError 404

 return false

 }

 ...

 }

}

Grails Filters | 285

Here, we check the incoming requested URL, and redirect to a new controller action if

it matches /old/action or /other/action. If the URL matches /thing/show, we send
a 404 error code, and we could also add some logging or some other logic. The logic

here involves only before interceptors, so the optional after and afterView closures
have been deleted.

And, in this example, we use the after block to add the currently logged-in user’s
username to the model map:

username(controller:'*', action:'*') {

 after = { Map model ->

 if (model != null && springSecurityService.loggedIn) {

 model.username = springSecurityService.principal.username

 }

 }

}

Note that the null check of the model is important because it will be null for redirects.

Grails also supports simpler interceptors with the beforeIntercep

tor and afterInterceptor closures in controllers; these are the same
as Grails filters but can only apply to the controller they’re defined in,

and there is no afterViewInterceptor. This means that there’s no way
to handle exceptions, or do work after the view has been rendered, but

before, around, and after interception would be the same as for filters.

HTTP Filters
HTTP filters are classes that implement the javax.servlet.Filter interface. This is a

simple interface with only three methods: init and destroy are used to do initialization

work at startup and cleanup work at shutdown, respectively, and doFilter is called for
each request that the filter is configured to support:

void doFilter(ServletRequest request, ServletResponse response, FilterChain chain)

Filters are registered in web.xml with a filter element; for example:

<filter>

 <filter-name>charEncodingFilter</filter-name>

 <filter-class>org.springframework.web.filter.DelegatingFilterProxy</filter-class>

</filter>

Filters are also registered with a filter-mapping element to configure the URL pattern
that the filter applies to; for example:

286 | Chapter 11: AOP

<filter-mapping>

 <filter-name>charEncodingFilter</filter-name>

 <url-pattern>/*</url-pattern>

</filter-mapping>

To edit web.xml, run the install-templates script (if you haven’t already):

grails install-templates

and edit src/templates/war/web.xml.

You can write the class in Groovy or Java, but because they will typically apply to all
requests (including static resources), the small overhead that Groovy adds can add up,
so Java is usually a better choice.

The registered filters are called in order, which is determined by the position of the

filter-mapping elements in web.xml, and they form a filter chain. The chain is forward-

only, and each filter calls the next filter in the chain by calling doFilter() on the

FilterChain instance. You can do work before and/or after calling doFilter(), and

can stop filter processing by not calling doFilter(), and this is how the different in‐
terception approaches can be implemented.

You can do before interception by doing work before calling doFilter(). You can do

after interception by doing work after calling doFilter(). around interception is pos‐

sible by writing to the response Writer or OutputStream directly or redirecting or for‐

warding to another URL, and not calling doFilter(). And you can implement after-

throwing interception by wrapping the doFilter() call in a try/catch block:

public void doFilter(ServletRequest req, ServletResponse res, FilterChain chain)

 throws IOException, ServletException {

 // do "before" and/or "around" work here

 try {

 chain.doFilter(req, res);

 // do "after" work here

 }

 catch (Exception e) {

 // do "after-throwing" work here

 }

}

Groovy AOP
You can use metaclass techniques in Groovy to intercept method calls and property
access. These techniques are limited by the fact that they only work when calling the
methods from Groovy, although they can work when calling Groovy or Java classes.

Groovy AOP | 287

Things could be much simpler if you edit your code to add in hooks directly, such as

adding methodMissing or propertyMissing methods. You could also directly imple‐

ment the GroovyInterceptable marker interface that is used as a flag to Groovy to

route all calls through the invokeMethod method. Java classes can also participate by

extending GroovyObjectSupport and implementing GroovyInterceptable. These
changes are impractical in general and impossible for classes that are already compiled,
and it would be problematic to alter your own code this way (e.g., if the code were also
used in non-Groovy projects). In these cases, because we cannot use standard object-
oriented approaches, we’ll look at approaches that use runtime metaprogramming to
weave in extra functionality instead.

Consider this simple utility class with very useful add and multiply methods:

class MathUtils {

 int add(int i1, int i2) {

 i1 + i2

 }

 int multiply(int i1, int i2) {

 i1 * i2

 }

}

Because it’s a Groovy class, we can register a metaclass override for the invokeMethod

method that does any combination of before, after, around, and after-throwing
interception for all method calls:

def mc = MathUtils.metaClass

mc.invokeMethod = { String name, args ->

 // do "before" and/or "around" work here

 try {

 def value = mc.getMetaMethod(name, args).invoke(delegate, args)

 // do "after" work here

 return value // or another value

 }

 catch (e) {

 // do "after-throwing" work here

 }

}

This approach intercepts every method, but you can look at the method name and
arguments to determine if a particular method is one that should be handled specially
or if you should just let the standard logic apply. There is a small overhead added by
intercepting all method calls, however, so you can intercept individual method calls too:

288 | Chapter 11: AOP

def realAdd = MathUtils.metaClass.pickMethod('add', int, int)

MathUtils.metaClass.add = { int i1, int i2 ->

 // do "before" and/or "around" work here

 try {

 def sum = realAdd.invoke(delegate, i1, i2)

 // do "after" work here

 return sum // or another value

 }

 catch (e) {

 // do "after-throwing" work here

 }

}

Here we get a reference to the real add method and register a metaclass override, calling
the real method (or not, depending on your business rules).

We can do the same for getting (and setting) properties. Given this simple data class:

class Person {

 String firstName

 String lastName

}

we can intercept all property access:

def mc = Person.metaClass

mc.getProperty = { String name ->

 // do "before" and/or "around" work here

 try {

 def value = mc.getMetaProperty(name).getProperty(delegate)

 // do "after" work here

 return value // or another value

 }

 catch (e) {

 // do "after-throwing" work here

 }

}

or individual properties:

def mc = Person.metaClass

def firstNameProperty = mc.getMetaProperty('firstName')

mc.getFirstName = { ->

 // do "before" and/or "around" work here

 try {

 def value = firstNameProperty.getProperty(delegate)

Groovy AOP | 289

 // do "after" work here

 return value // or another value

 }

 catch (e) {

 // do "after-throwing" work here

 }

}

Registering Metaclass Interceptors
In Grails, there are two standard locations to register metaclass changes. In a plugin,

you can use the doWithDynamicMethods closure, and in an application, typically this is
done in BootStrap.groovy. The examples so far have described intercepting all or some
methods in individual classes, but Grails provides convenient access to all classes of a

particular artifact type (e.g., controllers, services, and domain classes) via the GrailsAp

plication.

class BootStrap {

 def grailsApplication

 def init = { servletContext ->

 for (sc in grailsApplication.serviceClasses) {

 def mc = sc.clazz.metaClass

 mc.invokeMethod = { String name, args ->

 long startTime = System.currentTimeMillis()

 try {

 return mc.getMetaMethod(name, args).invoke(delegate, args)

 }

 finally {

 delegate.log.trace "Service method $name with args $args " +

 "took ${System.currentTimeMillis() - startTime}ms"

 }

 }

 }

 }

}

290 | Chapter 11: AOP

In the previous examples, be sure to check that the getMetaMethod and

getMetaProperty calls return nonnull values. invokeMethod and get

Property interceptors can be used to handle nonexistent methods and
properties (e.g., to create DSLs and builders), but here we are interested
in working with existing functionality. If the requested method doesn’t

exist, throw a MissingMethodException such as throw new Missing

MethodException(name, delegate.getClass(), args) and throw a

MissingPropertyException for invalid properties such as throw new

MissingPropertyException(name, delegate.getClass()).

Error Code URL Mappings
Grails provides a simple but useful approach to handling particular exceptions during

controller action processing, and this is a form of after-throwing interception. The

default UrlMappings.groovy class that is generated by the run-app script includes a
catch-all handler for all exceptions that display errors with error.gsp:

"500"(view:'/error')

But you can define more fine-grained mappings too. The default example directly ren‐
ders a GSP, but it is more convenient to use a controller action, because you can do
arbitrary work before rendering an error page, and URL mappings allow either a view,
or a controller and action (although the action can be omitted to use the default action).

Here is an example that uses an ErrorsController to handle three exception types—

java.lang.IllegalArgumentException, java.lang.NullPointerException, and

MyException (a custom application-defined exception)—with an action for each type,
and retains the catch-all mapping for exceptions not specifically listed:

"500"(controller: "errors", action: "illegalArgument",

 exception: IllegalArgumentException)

"500"(controller: "errors", action: "nullPointer",

 exception: NullPointerException)

"500"(controller: "errors", action: "customException",

 exception: MyException)

"500"(view: "/errors/serverError")

Spring AOP
The Spring Framework is well known for its bean container, but its AOP functionality
makes a significant amount of power available to the Spring (and Grails) developer.
Spring AOP makes it easy to complement your object-oriented code with aspect-
oriented code without having to use a special compiler. In addition, you can write your
advice code in Java or Groovy instead of having to write your code in aspects (as you
would when using AspectJ). Spring AOP is implemented by creating proxies at runtime
that intercept method calls to the target instance, so you are limited to only using method

Spring AOP | 291

interception. Also, only Spring beans are candidates for interception, so this includes
Grails services, beans registered by Grails and installed plug-ins, and beans you have
registered in your application in resources.groovy. See the Spring documentation for
more detailed information.

Spring AOP is configured either in the application context configuration files (using
XML syntax or the Grails bean builder) or using AspectJ annotations; I’ll describe the
annotation approach here, because I find it to be the more convenient approach. These

include Aspect, Pointcut, Before, After, and Around (in the org.aspectj.lang.an

notation package). Only a subset of the AspectJ annotation functionality is supported

(e.g., you can intercept execution but not call), which is itself a subset of the func‐
tionality supported by defining aspects in *.aj Aspect files, but in practice, it is a large
subset and is very powerful.

One example of Spring AOP that you have likely used in Grails is in transactional serv‐

ices. By default, services are transactional unless this is disabled with static transac

tional = false, and it’s possible to have more fine-grained control over transaction

demarcation with the @Transactional annotation. The services become transactional
by being wrapped in a proxy that enforces the transaction configuration for the class,
and for individual methods if configured. This is implemented by dynamically sub‐
classing your class with CGLIB and retaining a reference to an instance of your service,
then intercepting method calls and calling your methods as needed. The general trans‐
action logic flow is something like this:

• If a transaction is disallowed (e.g., with Propagation.NEVER), throw an exception.

• If a new one is required (e.g., with Propagation.REQUIRES_NEW), suspend the cur‐
rent transaction (if active) and start a new one.

• If the propagation is Propagation.SUPPORTS and one is active, “join” it.

• If the propagation is Propagation.REQUIRED and one is active, “join” it, or create
one otherwise.

• Call your application code.

• If an exception occurs, check if it’s a runtime exception or error and automatically
roll back the transaction (although autorollback exception classes can be custom‐
ized).

• If the work succeeds and the transaction was new, commit it (otherwise, let the
initiator of the active transaction commit it).

Essentially, this boils down to multiple before checks and after checks. The Spring

Security @Secured annotation is similar, although the logic is all before. You can set
default behavior and settings at the class level, and override at the method level. The
checks involved at runtime are basically these:

292 | Chapter 11: AOP

http://bit.ly/XNo0Z8

• Determine if there is an active authentication.

• Check potentially complex rules (a combination of roles, IP addresses, SpEL ex‐
pressions, etc.) to determine which to enforce.

• Disallow access by throwing an exception if there is no authentication and one is
required, or you are authenticated but are not authorized to perform this action.

• Call your application code.

In both cases, there are many items to check and work to do based on various scenarios,
and these are both simplified descriptions of the real logic involved. You certainly would
not want this tangled with your application code, so letting Grails configure default
transaction rules or adding a few annotations helps reduce the clutter dramatically.

Enabling Spring AOP
The Spring documentation describes two ways to enable AOP support in an Applica

tionContext; one is to include a namespaced tag <aop:aspectj-autoproxy/> element

and the other is to register a bean for the AnnotationAwareAspectJAutoProxyCrea

tor class, such as <bean class="org.springframework.aop.aspectj.annotation.An

notationAwareAspectJAutoProxyCreator" />. The two approaches are essentially

equivalent; the namespaced tag is handled by the org.springframework.aop.con

fig.AspectJAutoProxyBeanDefinitionParser configuration class, which registers an

AnnotationAwareAspectJAutoProxyCreator bean with the bean name org.spring

framework.aop.config.internalAutoProxyCreator.

Luckily, none of this is necessary in Grails, because the work is done for you by

CoreGrailsPlugin in doWithSpring. This is also where the context namespace is reg‐

istered (xmlns grailsContext:"http://grails.org/schema/context") and the

<context:annotation-config> element is registered (using the BeanBuilder equiva‐

lent context.'annotation-config'()), which configures Spring to autodiscover and

register beans based on the existence of annotations such as @Component, @Service,

@Controller, and @Repository (in the org.springframework.stereotype package).
For more information on the Grails bean builder DSL syntax, see the documentation.

There is a configuration step required to get Spring to discover your annotated classes;

the grails.spring.bean.packages configuration option in Config.groovy specifies a
list of one or more package names to search the classpath for (because scanning the
entire classpath would be unnecessarily expensive); for example:

grails.spring.bean.packages = ['com.mycompany.myapp.beans']

This search is also configured in CoreGrailsPlugin with grailsContext.'component-

scan'('base-package':packagesToScan.join(',')).

Spring AOP | 293

http://grails.org/doc/latest/guide/spring.html#theBeanBuilderDSLExplained

It uses the Grails ClosureClassIgnoringComponentScanBeanDefinitionParser to do

essentially the same search as a traditional <context:component-scan> element. The

Grails class extends the Spring ComponentScanBeanDefinitionParser class to add
Groovy-awareness to the scanning process. Note that you don’t have to use autodis‐
covery; you can manually register the beans in resources.groovy if you prefer.

Defining AspectJ-Annotated Aspects
Spring AOP aspects must be Spring beans, and although most Grails artifacts are reg‐
istered as Spring beans, none are good candidates for being aspects, or even base classes
for them. So your aspect classes must be registered in the application context, either in

resources.groovy or by adding an annotation such as @Component and adding their pack‐

ages to the grails.spring.bean.packages list.

A discussion of the syntax for values in AspectJ annotations is beyond
the scope of this book. See the Spring AOP documentation and AspectJ
documentation for useful information and examples.

Let’s look at some examples to get a sense for what is possible here.

When using annotations, you create empty methods with the @Pointcut annotation
whose value contains the pointcut definition as a string. This isn’t required; you can

define them inline in the advice annotations (e.g., @Before, @Around), but it makes more
sense to split them logically and combine them in the advice annotations. That way, you
can easily reuse them, for example, in an abstract base class:

package book;

import org.apache.log4j.Logger;

import org.aspectj.lang.annotation.Pointcut;

public abstract class AbstractAspect {

 protected Logger log = Logger.getLogger(getClass());

 @Pointcut("execution(public * *..*Service.*(..))")

 public void publicServiceMethod() {}

 @Pointcut("execution(public groovy.lang.MetaClass getMetaClass()) ||" +

 "execution(public void setMetaClass(groovy.lang.MetaClass)) ||" +

 "execution(public Object getProperty(String)) ||" +

 "execution(public void setProperty(String, Object)) ||" +

 "execution(public Object invokeMethod(String, Object))")

 public void groovyObjectMethods() {}

 @Pointcut("execution(public * *$*(..))")

294 | Chapter 11: AOP

http://bit.ly/XNo0Z8
http://www.eclipse.org/aspectj/docs.php
http://www.eclipse.org/aspectj/docs.php

 public void groovyDollarSignMethods() {}

}

Here we have a publicServiceMethod pointcut that will match public methods in

classes in any package and with any signature, in classes with names that end in Ser

vice. This can find beans that aren’t Grails services, but there isn’t a practical way to

find all services. Another approach would be to use the bean() pointcut, looking for

any bean whose name ends in Service:

@Pointcut("bean(*Service) && execution(public * *(..))")

public void publicServiceMethod() {}

But, again, this can find beans with names that coincidentally end in Service but aren’t

Grails services, such as the userDetailsService bean that the Spring Security Core
plugin registers. If this happens, you can further customize the pointcut, for example,
by limiting it to being in a package pattern:

@Pointcut("execution(public * com.yourco.yourapp..*Service.*(..))")

or excluding beans that aren’t really matches:

@Pointcut("bean(*Service) && !bean(userDetailsService) && " +

 "execution(public * *(..))")

The other two pointcuts are there to identify methods added by the Groovy compiler:

getMetaClass and setMetaClass, getProperty and setProperty, and invokeMethod,

and methods with $ characters in them, such as __$swapInit, super$1$toString, and

super1wait. We typically use them to exclude the identified methods (via !groovyOb

jectMethods()).

Here’s an aspect that subclasses AbstractAspect to reuse its pointcuts, and adds around
advice for “real” public service methods to log the execution time of method calls:

package book;

import org.aspectj.lang.ProceedingJoinPoint;

import org.aspectj.lang.annotation.Around;

import org.aspectj.lang.annotation.Aspect;

import org.springframework.stereotype.Component;

import org.springframework.util.StopWatch;

@Aspect

@Component

public class ServiceMethodTimingAspect extends AbstractAspect {

@Around("publicServiceMethod() && !groovyObjectMethods() && " +

 "!groovyDollarSignMethods()")

 public Object traceServiceMethodCall(ProceedingJoinPoint jp) throws Throwable {

 String name = jp.getSignature().getDeclaringTypeName() + '.' +

 jp.getSignature().getName();

 StopWatch stopWatch = new StopWatch(name);

Spring AOP | 295

 stopWatch.start(name);

 try {

 return jp.proceed();

 }

 finally {

 stopWatch.stop();

 log.trace(stopWatch.shortSummary());

 }

 }

}

and another (written in Groovy because Spring doesn’t care) to log at the beginning and
at the end of method calls:

package book

import org.aspectj.lang.ProceedingJoinPoint

import org.aspectj.lang.annotation.Around

import org.aspectj.lang.annotation.Aspect

import org.springframework.stereotype.Component

@Aspect

@Component

class ServiceMethodCallAspect extends AbstractAspect {

@Around("publicServiceMethod() && !groovyObjectMethods() && " +

 "!groovyDollarSignMethods()")

 def traceServiceMethodCall(ProceedingJoinPoint jp) throws Throwable {

 String invocationDescription =

 "method '$jp.signature.name' of class [$jp.signature.declaringTypeName]"

 log.trace "Entering $invocationDescription"

 try {

 def result = jp.proceed()

 log.trace "Exiting $invocationDescription"

 return result

 }

 catch (Throwable e) {

 log.trace "Exception thrown in $invocationDescription", e

 throw e

 }

 }

}

To try this out, add these aspect classes to your application (in src/java and src/groovy)
and add a simple service to grails-app/services; for example:

package book

class BookService {

 String foo() {

 return 'bar'

296 | Chapter 11: AOP

 }

}

The aspects log at the “trace” level, so be sure to enable that in the log4j block in

Config.groovy (or change them to println statements):

log4j = {

 ...

 trace 'book'

}

When you call bookService.foo() (e.g., in a Grails console), you should see output
like this:

Entering method 'foo' of class [book.BookService]

Exiting method 'foo' of class [book.BookService]

2013-02-18 04:55:32,626 [Thread-14] TRACE book.ServiceMethodTimingAspect

StopWatch 'book.BookService.foo': running time (millis) = 33 Result: bar

Compile-Time Weaving
Spring AOP is very powerful, but its features are somewhat limitated in that only Spring
beans can be advised, and only a subset of the AspectJ functionality is supported. It is
possible to use AspectJ in a more traditional way in Grails applications, where the aspect
interception calls are actually added to the bytecode of advised classes. This opens up
many more possibilities, because now any class that is part of your application (or even
a plug-in, because most plugins are distributed in source form) can be compiled with
AspectJ weaving activated. This is problematic for Groovy-based projects though, be‐

cause AspectJ’s ajc compiler isn’t aware of or very compatible with Groovy’s groovyc
compiler. But, you’re in luck, because AspectJ can weave into compiled classes. So it’s

possible to use javac and groovyc to compile your Grails classes just as you are now,

and hook into the compilation process and call ajc after that.

This is straightforward to do manually, but there is a plugin that makes it much easier:

the aspectj plugin. It registers event listeners to hook into the compilation process (for

both local development using run-app and when building WAR files to deploy on a
server) and weave aspects into advised classes. It also enables the full functionality sup‐

ported by AspectJ annotations (e.g., advising call and not just execution pointcuts)
and even aspects written as *.aj files, which allow the full power of AspectJ.

An example illustrates the power that this approach affords. Database updates should
be done in a transaction, even when there is only a single change, because the workflow
may be different in the future, and it’s better to refactor the code early. And, although
you may think you’re only updating a single instance, that might not be the case, given
how much GORM does for you under the hood. For example, deleting or updating an
instance that has a mapped collection can affect both the top-level instance and collec‐

Spring AOP | 297

http://grails.org/plugin/aspectj

tion items, and an exception after a partial update can result in inconsistent database

state. Unfortunately, the controllers generated by the generate-controller and

generate-all scripts create, update, and delete domain class instances from the con‐
troller (as of this writing). These should be refactored to let the database work be done
in a transactional service method, calling the dependency-injected service from the
controller, and the same goes for updates from Quartz jobs and other nontransactional
artifacts.

So to help detect updates made outside of a transaction, we can advise calls to GORM
methods in domain classes that are executed outside the context of a running transac‐

tion. These include the variants of save and delete, as well as lock (which makes no

sense outside of a transaction) and the lesser-known mutex method. Those are instance

methods, but we also want to check calls to static methods, including lock, executeUp

date, saveAll, deleteAll, and findOrSaveWhere. While we’re here, let’s also look for

calls to withTransaction that happen during a transaction; this isn’t a problem, it’s just
redundant.

This aspect class defines the various pointcuts for all of these methods, and before advice
for the instance methods and static methods (two are required in order to make the
domain class instance available when checking instance methods):

package book;

import java.util.ArrayList;

import java.util.Arrays;

import java.util.List;

import org.aspectj.lang.JoinPoint;

import org.aspectj.lang.annotation.Aspect;

import org.aspectj.lang.annotation.Before;

import org.aspectj.lang.annotation.Pointcut;

import org.springframework.transaction.support.TransactionSynchronizationManager;

@Aspect

public class TransactionCheckAspect {

 @Pointcut("@within(grails.persistence.Entity)")

 public void isDomainClass() {}

 @Pointcut("execution(public Object save()) ||" +

 "execution(public Object save(java.util.Map)) ||" +

 "execution(public Object save(boolean))")

 public void saveMethod() {}

 @Pointcut("execution(public void delete()) ||" +

 "execution(public void delete(java.util.Map))")

 public void deleteMethod() {}

 @Pointcut("execution(public Object lock())")

298 | Chapter 11: AOP

 public void lockMethod() {}

 @Pointcut("execution(public Object mutex(groovy.lang.Closure))")

 public void mutexMethod() {}

 @Pointcut("execution(public static Object lock(java.io.Serializable))")

 public void staticLockMethod() {}

 @Pointcut("execution(public static Integer executeUpdate(..))")

 public void executeUpdateMethod() {}

 @Pointcut("execution(public static java.util.List saveAll(..))")

 public void saveAllMethod() {}

 @Pointcut("execution(public static void deleteAll(..))")

 public void deleteAllMethod() {}

 @Pointcut("execution(public static Object findOrSaveWhere(java.util.Map))")

 public void findOrSaveWhereMethod() {}

 @Pointcut("execution(public static Object withTransaction(" +

 "groovy.lang.Closure)) || " +

 "execution(public static Object withTransaction(" +

 "org.springframework.transaction.TransactionDefinition, " +

 "groovy.lang.Closure))")

 public void withTransactionMethod() {}

 @Before("isDomainClass() && (" +

 "saveMethod() || deleteMethod() ||" +

 "lockMethod() || mutexMethod()) " +

 " && this(instance)")

 public void ensureTransactionActive(JoinPoint jp, Object instance)

 throws Throwable {

 warn(jp, instance);

 }

 @Before("isDomainClass() && (" +

 "staticLockMethod() || executeUpdateMethod() || " +

 "saveAllMethod() || deleteAllMethod() || " +

 "findOrSaveWhereMethod() || withTransactionMethod())")

 public void ensureTransactionActiveStatic(JoinPoint jp) throws Throwable {

 warn(jp, null);

 }

 private void warn(JoinPoint jp, Object instance) {

 boolean txActive =

 TransactionSynchronizationManager.isSynchronizationActive();

 if ("withTransaction".equals(jp.getSignature().getName())) {

 if (txActive) {

Spring AOP | 299

 System.out.println("WARNING: withTransaction called inside of an " +

 "active transaction:\n" + describeState(null));

 }

 }

 else {

 if (!txActive) {

 System.out.println("WARNING: Method '" + jp.getSignature() +

 "' called outside of an active transaction:\n" +

 describeState(instance));

 }

 }

 }

}

This aspect is an example of an “architectural enforcement” aspect. It’s slightly different
from the security or transaction aspects, because it exists only to ensure the integrity of
the system as a whole and not modularize any behavior.

We also need a pointcut that limits the method calls to those on domain classes; we don’t

want to log spurious warnings for any call to save, delete, etc., in any class. We can do
this by leveraging AspectJ’s ability to look for methods and classes with particular an‐

notations, and the fact that Grails adds the grails.persistence.Entity annotation to
domain classes when it adds GORM methods with its AST transforms:

@Pointcut("@within(grails.persistence.Entity)")

public void isDomainClass() {}

The two before methods, ensureTransactionActive and ensureTransactionActive

Static, delegate to the warn method to check if there is an active transaction (with the

help of TransactionSynchronizationManager.isSynchronizationActive()) and log

a warning if needed. The implementation of describeState is omitted for brevity but
can be whatever implementation makes sense for your use cases.

This aspect class uses Spring annotations, but isn’t annotated with @Component because
this is a compile-time aspect and you don’t want Spring to autodetect it. That would be

okay in this case, but if you were to use call, cflow, or other pointcut expressions that
Spring doesn’t support, you will get an exception at startup. Here’s the same aspect
written as a regular Aspect *.aj aspect:

package book;

import grails.persistence.Entity;

import groovy.lang.Closure;

import java.io.Serializable;

import java.util.ArrayList;

import java.util.Arrays;

import java.util.List;

import java.util.Map;

300 | Chapter 11: AOP

import org.aspectj.lang.JoinPoint;

import org.springframework.transaction.TransactionDefinition;

import org.springframework.transaction.support.TransactionSynchronizationManager;

public aspect TransactionCheckAspect {

 pointcut isDomainClass() :

 within(Entity);

 pointcut saveMethod() :

 execution(public Object save()) ||

 execution(public Object save(Map)) ||

 execution(public Object save(boolean));

 pointcut deleteMethod() :

 execution(public void delete()) ||

 execution(public void delete(Map));

 pointcut lockMethod() :

 execution(public Object lock());

 pointcut mutexMethod() :

 execution(public Object mutex(Closure));

 pointcut staticLockMethod() :

 execution(public static Object lock(Serializable));

 pointcut executeUpdateMethod() :

 execution(public static Integer executeUpdate(..));

 pointcut saveAllMethod() :

 execution(public static List saveAll(..));

 pointcut deleteAllMethod() :

 execution(public static void deleteAll(..));

 pointcut findOrSaveWhereMethod() :

 execution(public static Object findOrSaveWhere(Map));

 pointcut withTransactionMethod() :

 execution(public static Object withTransaction(Closure)) ||

 execution(public static Object withTransaction(

 TransactionDefinition, Closure));

 before(Object instance) :

 isDomainClass() &&

 (saveMethod() || deleteMethod() || lockMethod() || mutexMethod()) &&

 args(instance) {

 warn(thisJoinPoint, instance);

 }

 before() :

Spring AOP | 301

 staticLockMethod() || executeUpdateMethod() || saveAllMethod() ||

 deleteAllMethod() || findOrSaveWhereMethod() || withTransactionMethod() {

 warn(thisJoinPoint, null);

 }

 private void warn(JoinPoint jp, Object instance) {

 boolean txActive =

 TransactionSynchronizationManager.isSynchronizationActive();

 if ("withTransaction".equals(jp.getSignature().getName())) {

 if (txActive) {

 System.out.println("WARNING: withTransaction called inside of an " +

 "active transaction:\n" + describeState(null));

 }

 }

 else {

 if (!txActive) {

 System.out.println("WARNING: Method '" + jp.getSignature() +

 "' called outside of an active transaction:\n" +

 describeState(instance));

 }

 }

 }

}

It’s interesting to note that the pointcuts are much shorter because we can move full
class names from the annotation’s defining strings to imports. Otherwise, the aspect is
essentially equivalent beyond the syntax differences.

An implementation of the describeState method could capture the current call stack
to give you information about where the method calls are coming from:

private static final List<String> IGNORED_PACKAGES = Arrays.asList(

 "com.springsource.loaded.", "groovy.lang.", "java.lang.", "sun.",

 "org.codehaus.groovy.reflection.", "org.codehaus.groovy.runtime.");

private String describeState() {

 List<StackTraceElement> elements = new ArrayList<StackTraceElement>();

 for (StackTraceElement element : Thread.currentThread().getStackTrace()) {

 if (element.getLineNumber() < 1) {

 continue;

 }

 if (element.getClassName().equals(getClass().getName())) {

 continue;

 }

 boolean ignore = false;

 for (String ignoredPackage : IGNORED_PACKAGES) {

 if (element.getClassName().startsWith(ignoredPackage)) {

 ignore = true;

 break;

 }

302 | Chapter 11: AOP

 }

 if (!ignore) {

 elements.add(element);

 }

 }

 StringBuilder sb = new StringBuilder();

 int i = 0;

 for (StackTraceElement element : elements) {

 if (i++ > 4) {

 break;

 }

 sb.append("\tat ").append(element).append('\n');

 }

 sb.append("\t...").append('\n');

 return sb.toString();

}

This will agressively prune the stack elements of rows that provide no useful information
(e.g., the extra method calls added by Groovy) and print the first five frames. To try this

out, create a Book domain class using grails create-domain-class aop.Book and

generate a standard Grails scaffolded controller (either dynamic using grails create-

scaffold-controller aop.Book or static with grails generate-all aop.Book). Start

the application with grails run-app and create a new Book. You should see output like
this:

WARNING: Method 'Object aop.Book.save(Map)' called without an active transaction:

 at aop.Book.save(Book.groovy:1)

 at aop.BookController.save(script1361178233350451886625.groovy:24)

 at org.codehaus.groovy.grails.web.servlet.mvc.MixedGrailsControllerHelper.

 invoke(MixedGrailsControllerHelper.java:69)

 at org.codehaus.groovy.grails.web.servlet.mvc.

 AbstractGrailsControllerHelper.handleAction(

 AbstractGrailsControllerHelper.java:330)

 at org.codehaus.groovy.grails.web.servlet.mvc.

 AbstractGrailsControllerHelper.executeAction(

 AbstractGrailsControllerHelper.java:211)

 ...

The AspectJ framework is large and powerful but has a rather steep learning curve.
Aspectj in Action by Ramnivas Laddad (Manning, 2009) is an excellent resource if you
find that your AOP needs are complex enough that you need AspectJ, or if you need its
other features such as compile-time weaving.

Spring AOP | 303

http://www.amazon.com/dp/1933988053/

CHAPTER 12

Upgrading Applications and Plugins

New Grails versions are released fairly often, and they always contain bug fixes and new
features that you probably want to have available in your applications and plugins. You
might not be able to upgrade for every release, but you shouldn’t get too far out of date.
We try our best to limit breaking changes and other changes that will make upgrading
harder, but sometimes progress has its costs.

Grails does have an upgrade script, but it doesn’t do all of the work needed to upgrade
between versions, and will likely be removed or at least renamed in a future version of
Grails, because the name is a bit misleading. It is useful in some respects, but there will
always be manual steps involved in upgrading to a newer version of Grails.

So what does the upgrade script do? There are a few fixes for very old (pre-1.0)
applications:

• Delete basedir/plugins/core (core taglibs are now part of Grails, not files in the
application)

• Move basedir/grails-tests test classes to test/integration

• Delete basedir/tmp

• Move basedir/spring and basedir/hibernate under basedir/grails-app/conf

and there are fixes for all versions:

• Copy current static resources (images, CSS, JS) to basedir/web-app

• Replace basedir/web-app/WEB-INF/sitemesh.xml and basedir/web-app/WEB-INF/
applicationContext.xml with the latest versions

• Copy current *.tld files to basedir/web-app/WEB-INF/tld

• Create missing grails-app/conf files (Config.groovy, BuildConfig.groovy, Data‐
Source.groovy, and UrlMappings.groovy)

305

http://bit.ly/138GUbf

• Update Config.groovy with new settings:

— grails.views.default.codec="none" // none, html, base64

— grails.views.gsp.encoding="UTF-8"

• Upgrade DataSource.groovy to use H2 instead of HSQLDB (only if the update-

data-source flag is specified)

• Update application.properties

• Run the scripts/_Upgrade.groovy script for each plugin

• Ensure basedir/grails-app/i18n/messages.properties exists

• Install or upgrade the “core” plugins (Hibernate and Tomcat)

If you’re upgrading a very old version of Grails, things will have changed so significantly
that you’ll have a lot more work to do than this script’s changes. So, for moderately recent
versions of Grails (say 1.2 or higher), these steps can be split into three groups:

• Necessary ones:

— Updating sitemesh.xml and applicationContext.xml

— Updating *.tld files

— Update Config.groovy with new settings

— Upgrade DataSource.groovy to use H2

— Update application.properties

• Unnecessary ones:

— Create missing grails-app/conf files

— Run scripts/_Upgrade.groovy scripts

— Ensure basedir/grails-app/i18n/messages.properties exists

• Problematic ones:

— Copy current static resources

— Install or upgrade the “core” plugins (Hibernate and Tomcat)

The unnecessary steps aren’t needed (in general), because the conf files and messag‐
es.properties will exist, and plugins rarely have upgrade scripts. The problematic ones
should be avoided because your UI designers will probably have deleted many of the
stock static resource files and customized the look and feel of your application; and, if
you’ve uninstalled the Hibernate plugin (e.g., to use a NoSQL datastore instead) or the
Tomcat plugin (to use Jetty instead), they will be reinstalled.

306 | Chapter 12: Upgrading Applications and Plugins

Using the dynamic grailsVersion instead of hardcoding the version (e.g., runtime

":hibernate:$grailsVersion") will ensure you’re always using the versions of the
Hibernate and Tomcat plugins that correspond to the current Grails version anyway.

One potential pain point when upgrading is due to having installed and edited templates.
You can install the templates that are used to create artifacts, GSPs, and web.xml by

running the install-templates script. This copies the standard files into your appli‐
cation in the src/templates folder, and Grails will use those instead of its own when
running scripts that generate files. Although this is convenient, it can be problematic
during an upgrade because you will retain the old templates instead of the updated ones.
This is primarily a UI issue, but differences in the web.xml template can cause your
application to fail. So be sure to merge your template changes into the new templates in
the destination version.

Another issue with the script is with preexisting files such as BuildConfig.groovy. For
example, if you are upgrading from 1.2.3 to 2.1.1, the default 1.2.3 file (minus comments)
is:

grails.project.class.dir = "target/classes"

grails.project.test.class.dir = "target/test-classes"

grails.project.test.reports.dir = "target/test-reports"

grails.project.dependency.resolution = {

 inherits("global") {}

 log "warn"

 repositories {

 grailsPlugins()

 grailsHome()

 }

 dependencies {}

}

whereas the default 2.1.1 file is:

grails.servlet.version = "2.5"

grails.project.class.dir = "target/classes"

grails.project.test.class.dir = "target/test-classes"

grails.project.test.reports.dir = "target/test-reports"

grails.project.target.level = 1.6

grails.project.source.level = 1.6

grails.project.dependency.resolution = {

 inherits("global") {}

 log "error"

 checksums true

 repositories {

 inherits true

Upgrading Applications and Plugins | 307

 grailsPlugins()

 grailsHome()

 grailsCentral()

 mavenLocal()

 mavenCentral()

 }

 dependencies {}

 plugins {

 runtime ":hibernate:$grailsVersion"

 runtime ":jquery:1.8.0"

 runtime ":resources:1.1.6"

 build ":tomcat:$grailsVersion"

 runtime ":database-migration:1.1"

 compile ':cache:1.0.0'

 }

}

There isn’t logic to add the missing configuration, so you’ll need to do that yourself.

Why Doesn’t the Upgrade Script Do More?
We could automate more of the process. This would involve carefully looking at appli‐
cation differences for every version delta and adding code to handle each. Then up‐
grading from 2.0.0 to 2.0.4 would involve making the necessary changes from 2.0.0 to
2.0.1, then to 2.0.2, then to 2.0.3, and finally 2.0.4. It would be way too much work to
be able to go directly between arbitrary versions, because that would explode the script
with all of the combinations; making all of the intermediate changes would suffice.

There are a few reasons why this isn’t happening now. One is resource availability; it
would be a lot of work, and it is more efficient to describe the changes required (which
might be as simple as listing fixed bugs and new features in the form of a JIRA release
notes page) than to spend engineering hours on a programmatic upgrade process, I’m
sure most of you would prefer that we spend our time adding more features and fixing
bugs. Another is the overall complexity of the task. It would be hard enough with a
“boring” language like Java, but all of the configuration files and most or all of the
application files in a Grails application are written in Groovy. It would be very difficult
to edit a file that can contain arbitrarily complex logic in a safe way, and too easy to
damage your application’s code in cases where the code is valid but doesn’t match the
expectations of the upgrade script.

For a concrete example, consider a similarly complex but much smaller problem:

changing the install-plugin script from adding entries in application.properties to

programmatically adding a dependency in the plugins section of BuildConfig.groovy.
Say we have this initial block:

308 | Chapter 12: Upgrading Applications and Plugins

plugins {

 runtime ":hibernate:$grailsVersion"

 runtime ':jquery:1.7.1'

 runtime ':resources:1.1.6'

 build ":tomcat:$grailsVersion"

}

and we want to install the console plugin. Running install-plugin will find the latest
version and add it to application.properties:

app.grails.version=2.1.1

app.name=my_cool_app

app.version=0.1

plugins.console=1.2

But that is problematic because we cannot choose the plugin scope, restrict its depen‐

dencies, or do any other configuration. So the install-plugin script could be made
intelligent enough to just add it to BuildConfig.groovy:

plugins {

 runtime ":hibernate:$grailsVersion"

 runtime ':jquery:1.7.1'

 runtime ':resources:1.1.6'

 build ":tomcat:$grailsVersion"

 runtime ":console:1.2"

}

That looks easy, but what if it were already installed? Or what if it were installed under
a different scope than “runtime”? Or what if it were included conditionally; for example:

plugins {

 runtime ":hibernate:$grailsVersion"

 runtime ':jquery:1.7.1'

 runtime ':resources:1.1.6'

 build ":tomcat:$grailsVersion"

 if (some logic here) {

 runtime ":console:1.2"

 }

}

And, what if it’s there, but commented out?

plugins {

 runtime ":hibernate:$grailsVersion"

 runtime ':jquery:1.7.1'

 runtime ':resources:1.1.6'

 build ":tomcat:$grailsVersion"

 /*

 runtime ":console:1.2"

 */

}

Why Doesn’t the Upgrade Script Do More? | 309

The detection logic would likely see it in both of the previous two cases, and hopefully
stop the process or start asking questions. But what if it were included using logic for
the declaration itself:

plugins {

 ...

 String name = ...

 String version = ...

 runtime ":$name:$version"

}

This is easy compared to some of the changes that needed to be made when upgrading
an entire application. In order to reduce or eliminate the risk of damaging your code
during the upgrade, many changes will either have to be skipped or manual intervention
will be required, and in both cases, that can only happen if the script detects that it can’t
do its work for some task. So other than a core set of changes, most real upgrade tasks
will require manual work guided by (hopefully) helpful release notes and upgrade
documentation.

A General Approach to Upgrading
For a small version delta, for example 2.1.0 to 2.1.2, it is often sufficient to just edit
application.properties and change the version. The next time you run a script that trig‐

gers dependency resolution (most do, and grails refresh-dependencies is a good
one to use) the Hibernate and Tomcat plugins will be upgraded for you—as long as you

keep the default version set to the grailsVersion variable in BuildConfig.groovy—un‐
less you have uninstalled one or both of them. Be sure to read the release notes for the
intermediate versions to be aware of any changes you need to or might want to make.
A larger delta requires a more formal process, however.

For bigger version differences, I favor an approach that uses a variant of a three-way
diff. Say you’re upgrading from version 1.2.3 to 2.1.1. It can be difficult to know what
you changed or removed without searching through your source control commit his‐
tory, so I create a new empty application using the old version of Grails (in this case,
1.2.3). The name doesn’t matter, since you’ll be deleting it. If you copied artifact tem‐

plates into your application with the install-templates script, run it in the 1.2.3 ap‐
plication so you can discover the changes that you made in those. Using whatever ap‐
proach you like, compare your application to the new one. There are good free and
commercial diff tools, both command-line and GUI-based. Meld is one that I like a lot,
and it’s cross-platform; and WinMerge is a popular Windows-only tool.

310 | Chapter 12: Upgrading Applications and Plugins

http://meldmerge.org/
http://winmerge.org/

Next, I create a new empty application in the new version of Grails (in this case, 2.1.1).
Name this the same as the application that you’re upgrading, because it will replace your
application. Once you determine what to keep and remove from the old application
based on the directory diff, make those changes in the new application and replace your
application with this one.

The diff that you run will show you files that you added, deleted, and modified (be sure
to ignore generated files like classes, and version-control files such as the contents of
the .git folder and .svn folders). Most or all of the files that you added can be copied into
the new application, but some changes may be required. Files that were deleted will

probably include the stock CSS, JavaScript, and images that are created by the create-

app and create-plugin scripts, so you will likely want to delete the corresponding files
in the new application. The files that were modified will require a bit more care though;
you can’t just make the same changes in all cases.

Because install-plugin is now deprecated and plugin dependencies should be added
to BuildConfig.groovy, be sure to move any plugin entries from application.properties
to BuildConfig.groovy. The “compile” scope is typically the one to use, but the plugin
pages include the syntax to use for the latest version. For example, the entry for the

atomikos plugin would be:

compile ":atomikos:1.0"

Doing this work will also give you a chance to update to the latest version. You can make

this process a bit faster by using the list-plugin-updates script.

Upgrading Petclinic: A Case Study
A customer reported that he was using the Grails version of the Spring Petclinic appli‐

cation [one of the available sample applications], saying that he had run grails up

grade to update it to 2.1, but things weren’t working. The latest version in the Git
repository used Grails version 1.3.4.BUILD-SNAPSHOT, so it was a fairly big change.
I updated the application to use Grails 2.1.1 (the most recent version of Grails at that
time).

Step 1: Determine the changes in the application

The first step (after cloning the Git repo to get the current code) was to create a new
empty application with the old version and compare it to the current code. I used Grails
1.3.4 for this, because it’s close enough to the 1.3.4.BUILD-SNAPSHOT version that
was used:

$ grails create-app empty134

Diffing the two applications showed that there were some changed files:

A General Approach to Upgrading | 311

http://grails.org/plugin/atomikos/
http://bit.ly/YL3qrZ
https://github.com/grails-samples/petclinic

• grails-app/conf/BootStrap.groovy

— Sample data population logic

• grails-app/conf/UrlMappings.groovy

— The “/” mapping was changed from view:"/index" to controller:'clinic'

• grails-app/i18n/messages.properties

— Several application-specific messages were added

• grails-app/views/layouts/main.gsp

— UI updates

• web-app/css/main.css

— UI updates

and some added files:

• grails-app/controllers

— Three new controllers

• grails-app/domain

— Seven new domain classes

• grails-app/views

— Nine new GSPs and templates

• test/unit

— One new unit test

• web-app/css/petclinic.css

• web-app/html/petclinic.html

• web-app/images

— A few new images

and some deleted files:

• petclinic.tmproj

• grails-app/views/index.gsp and web-app/index.gsp

— Not needed with the UrlMapping change to use ClinicController.index as the root
URL

• web-app/images

— A few images

312 | Chapter 12: Upgrading Applications and Plugins

In addition, there were some missing changes from previous upgrades that will be added
as part of this upgrade, including:

• Some properties in Config.groovy (grails.views.gsp.sitemesh.preprocess,

grails.scaffolding.templates.domainSuffix, grails.spring.bean.pack

ages, etc.)

• Updates in web-app/WEB-INF/tld/grails.tld

• Updates in web-app/WEB-INF/applicationContext.xml

• Slightly old version of Prototype (which will be removed anyway)

Step 2: Make the first round of changes in a new application

Now we can create a new empty application using the version of Grails we’re upgrading
to:

$ grails create-app petclinic211

The name is based on the original, plus an indicator of the version used; it will be changed
to the application name in a bit.

Now we can start making the corresponding changes in the new application. We start
with deletions:

• petclinic.tmproj

— Nothing to do because this is only created by the integrate-with script now

• grails-app/views/index.gsp and web-app/index.gsp

— Only delete grails-app/views/index.gsp because there is no web-app/index.gsp in
2.1.1

• web-app/images

— Delete the images that were previously deleted

Next we can work on the added files:

• grails-app/controllers

— Okay to copy, but we will do some refactoring

• grails-app/domain

— Okay to copy

• grails-app/views

— Okay to copy, but we will do some refactoring

A General Approach to Upgrading | 313

• test/unit

— Okay to copy, but we will do some refactoring

• web-app/css/petclinic.css

— Okay to copy, but there is a fix needed

• web-app/html/petclinic.html

— Okay to copy, but there are updates needed

• web-app/images

— Okay to copy

Next, we can look at the changed files:

• grails-app/conf/BootStrap.groovy

— Okay to copy with some minor changes

• grails-app/conf/UrlMappings.groovy

— Okay to copy

• grails-app/i18n/messages.properties

— Cannot copy because that will revert new default messages; instead, edit the file

and copy the added messages (owners.not.found, owner.firstName.blank,
etc.) at the end

• grails-app/views/layouts/main.gsp and web-app/css/main.css

— Cannot copy because that will revert several new changes; instead, manual edits
are needed

Note that, because this is a demo application, DataSource.groovy just uses the in-
memory (HSQLDB) database in all environments. Using this process, the default H2
databases will be used, but for most applications, some work configuring the database
connection settings would be required.

Also, there are a few new files added for us; grails-app/conf/ApplicationResources.groo‐
vy (the config file for the “resources” plugin) and a few new message bundles in grails-
app/i18n.

Step 3: Make the second round of changes

Some changed and added files cannot be copied unchanged, because some refactoring
and updates are needed. For example, the controllers use the older style of defining
actions with closures. This is still supported, but it’s a good idea to change to methods;
for example:

314 | Chapter 12: Upgrading Applications and Plugins

package org.grails.samples

class ClinicController {

 def index = {}

 def vets = {

 [vets: Vet.list()]

 }

}

to:

package org.grails.samples

class ClinicController {

 def index() {}

 def vets() {

 [vets: Vet.list()]

 }

}

Most of the time, changing closures to methods is the right thing to do,
but there can be some unexpected behaviors. See Tomas Lin’s blog
post that discusses some pitfalls.

While we’re looking at the controllers, there are some patterns to look for and update.
One is that, because public methods are considered actions, any old public helper
methods must be made private or protected. This makes sense anyway, because con‐
troller methods can only be called internally or within the class hierarchy. Also, speci‐

fying an unquoted action closure name as the argument to the redirect method was
supported because it references a class property, but this fails in 2.0+ because methods
cannot be referred to directly like fields can. So, if you do this, quote your action names.
Finally, because command object properties are now not-null by default, to be consistent
with domain class constraints, you may need to adjust the constraints in your command
objects.

I opted to do some database persistence refactoring too. Controllers should be very
dumb, capturing request query parameters and delegating to helpers (services, domain
classes, etc.) to implement business logic. Then they should render the next view using
what was returned from helper method calls (using a GSP, a JSON builder, or some other
helper) or redirect to the next URL. Putting too much logic in controllers doesn’t suf‐
ficiently separate concerns, makes the controllers overly hard to test, and can even result
in unexpected behavior. For example, database updates, deletes, and creates in control‐

A General Approach to Upgrading | 315

http://bit.ly/YL5PCV
http://bit.ly/YL5PCV

lers are not run in a transaction, so if an exception occurs after some changes but before
all have been done, you can end up with inconsistent database state.

So I created a new service, org.grails.samples.PetclinicService. I moved the logic

for creating and updating a Pet and creating a Visit from PetController, and moved

the logic for creating and updating an Owner from OwnerController. Rather than simply

passing the params object to the service, which would somewhat couple the web and
service tiers because now the service would need to know the “magic” map keys in the

params map, I converted the params values to their expected types and passed them to

the service methods, which can be called anywhere in the application, such as Pet cre

atePet(String name, Date birthDate, long petTypeId, long ownerId).

By adding a dependency injection for the service (def petclinicService), I can then

convert this Pet creation logic in the add action from:

def pet = new Pet(params['pet'])

if(pet.save())

 redirect controller:'owner',action:'show', id:pet.owner.id

else

 render view:'add', model: [pet: pet, types: PetType.list()]

to this:

def pet = petclinicService.createPet(params.pet?.name, params.pet?.birthDate,

 (params.pet?.type?.id ?: 0) as Long, (params.pet?.owner?.id ?: 0) as Long)

if (!pet.hasErrors()) {

 redirect controller: 'owner', action: 'show', id: pet.owner.id

 return

}

[pet: pet, types: PetType.list()]

For the new GSPs, they can for the most part be copied, but the createLinkTo tag calls

must be changed to resource calls. Layout GSP changes are more involved, but for the
most part, just involve copying changed sections into the new layouts. It’s important in
most cases to retain the new HTML5 tags to keep the benefits of the new UI changes.

In this case, I changed the title tag text, removed the Grails logo image and “spinner”

div, added a link tag for petclinic.css, and changed the “footer” div to include the
Petclinic HTML.

OwnerControllerTests needed a lot of work. Previously, it extended grails.test.Con

trollerUnitTestCase, but the preferred approach now is to use the new test mix-in
annotations. I changed it to not have a base class (using JUnit 4 annotations instead)

and added @TestFor(OwnerController) and @Mock(Owner) and the other changes re‐
lated to these to take advantage of the new testing approach.

web-app/css/petclinic.css was okay except for one line:

316 | Chapter 12: Upgrading Applications and Plugins

li ul {

 list-style: square url(images/sub-bullet.gif);

}

The problem here is that there was no sub-bullet.gif, and I couldn’t find it in the original
Spring application either. It’s not an important issue from a UI perspective, but it causes
an error message in the console at runtime because the resources plugin renames files
and changes URLs, so referenced files must exist to avoid this. So I hacked in a work‐
around to use an existing image:

li ul {

 list-style: disc url(../images/bullet-arrow.png);

}

I updated web-app/html/petclinic.html with various minor changes, updating some
URLs and the descriptions of the technogies being used.

I changed domain class save() calls to save(failOnError: true) in grails-app/conf/
BootStrap.groovy. I would almost never do this in application code that works with user
input, because exceptions shouldn’t be used for nonexceptional cases such as invalid

user input. It’s simple enough to check if the save() call failed by checking that the

return value is null, or with the hasErrors() method. But in tests, BootStrap.groovy,
and other places where you have hardcoded data that you expect to succeed, it makes
sense to throw an exception and fail loudly.

Also there are a few new files added for us: grails-app/conf/ApplicationResources.groo‐

vy (the config file for the resources plugin) and a few new message bundles in grails-
app/i18n. Similarly, some files are automatically updated, including grails-app/views/
error.gsp, web-app/js/application.js, web-app/WEB-INF/applicationContext.xml, web-
app/WEB-INF/sitemesh.xml, the TLD files c.tld, fmt.tld, and grails.tld, several grails-
app/i18n message bundles, grails-app/conf/BuildConfig.groovy, and grails-app/conf/
Config.groovy.

Note that, because this is a demo application, DataSource.groovy just uses the in-
memory (HSQLDB) database in all environments. By using this process, the default H2
databases will be used, but for most applications, some work configuring the database

connection settings would be required. cache.provider_class='net.sf.ehcache.hi

bernate.EhCacheProvider' becomes cache.region.factory_class='net.sf.ehc

ache.hibernate.EhCacheRegionFactory', because the older value is deprecated in the
more recent version of Hibernate that Grails now uses. Config.groovy and BuildCon‐
fig.groovy will usually require manual merging too, if you have made changes there.

application.properties now has setting app.grails.version=2.1.1 and no plugins lis‐

ted (they’re all in BuildConfig.groovy). I also removed the app.servlet.version prop‐
erty because it is ignored (the setting from BuildConfig.groovy is used instead).

A General Approach to Upgrading | 317

There were several new properties added in Config.groovy (some were pre-1.3.4 but
hadn’t been added):

• grails.project.groupId = appName

• grails.resources.adhoc.patterns = ['/images/*', '/css/*', '/js/*', '/

plugins/*']

• grails.views.gsp.sitemesh.preprocess = true

• grails.scaffolding.templates.domainSuffix = 'Instance'

• grails.json.legacy.builder = false

• grails.spring.bean.packages = []

• grails.web.disable.multipart=false

• grails.exceptionresolver.params.exclude = ['password']

• grails.hibernate.cache.queries = false

Step 4: Finishing up

We can now delete the empty134 application and make the petclinic211 application the
real petclinic application. If you’re using Git, you can do this by renaming the old ap‐
plication directory (e.g., to petclinic.old) and changing the petclinic211 directory name
to petclinic. Then move the .git folder to the new application, and run all of the Git
commands required to delete, add, and update the various files. The process for Sub‐
version and other source control systems is more involved but similar.

Run the application’s tests and run the app, testing various URLs and workflows. Hope‐
fully, everything works as expected and you have successfully upgraded to Grails 2.1.

Running the upgrade script instead

Having upgraded the application this way, I was curious what the upgrade script would

have done in this case. I made a copy of the preupgrade application and ran grails

upgrade --update-data-source on it. Here’s a summary of the changes that were
made:

• app.grails.version, plugins.hibernate, and plugins.tomcat were updated to
the latest version in application.properties

• TLD files c.tld, fmt.tld, and grails.tld were updated to the latest

• applicationContext.xml was updated to the latest to include the current parent ap‐
plication context beans

• sitemesh.xml was updated to the latest

318 | Chapter 12: Upgrading Applications and Plugins

• The CSS files errors.css and mobile.css were added

• Seven new images were added:

— apple-touch-icon.png

— apple-touch-icon-retina.png

— grails_logo.png

— leftnav_btm.png

— leftnav_midstretch.png

— leftnav_top.png

— springsource.png

In addition, thanks to the update-data-source flag, DataSource.groovy was updated

to use H2 instead of HSQLDB. The driverClassName property was updated, and the

url property for the development and test environments were converted to H2 syntax.

The production HSQLDB configuration wasn’t changed, because it’s unlikely that you
would use HSQLDB in production; and, for applications that still use the default con‐
figuration, the production HSQLDB settings configure a file-based database instead of
an in-memory one. Because this most likely contains data, you would need to manually
migrate that to an H2 file-based database. If you still want to use HSQLDB you can, just
add a dependency in BuildConfig.groovy.

Having done this, there are some steps that are required or a good idea:

• Convert the controllers to use methods instead of closures

• Refactor persistence from the controllers to a new service

• Update BootStrap.groovy save() calls

• Fix the production DataSource.groovy URL

• Update the GSPs and layout (main.gsp)

• Update OwnerControllerTests.groovy

• Update petclinic.css

• Update web-app/html/petclinic.html

There were many differences between the upgraded application (with the above fixes)
and the end result of the previous exercise, though:

• grails-app/conf/ApplicationResources.groovy wasn’t created, so we would need to do
that manually

• The new default plugins jquery, resources, database-migration, and cache
aren’t installed

A General Approach to Upgrading | 319

• BuildConfig.groovy hasn’t been updated

• Config.groovy has several missing properties

• DataSource.groovy is missing the new properties section in the production envi‐

ronment block that configure pooling, and still has a cache.provider_class set‐

ting instead of cache.region.factory_class

• grails-app/i18n/messages.properties and other language bundles are missing several
new messages and new language translations haven’t been added

• error.gsp wasn’t updated

• The Hibernate and Tomcat plugins are still in application.properties instead of
BuildConfig.groovy

• The Prototype javascript files are still there but unused

• Several old images are still there but unused

• web-app/js/application.js still uses Prototype instead of jQuery syntax

On balance, it should be clear that although the upgrade script does some work for you,
too much is not done, and an approach like the one I’ve described here makes a lot more
sense.

A Short History of Grails
When upgrading a Grails application or plugin, it’s important to know what changed
between versions. The changes include breaking changes that can cause failures in your
application if you don’t adjust for them, changes that you don’t need to adjust for at all
such as performance increases, and new features and enhancements that you may wish
to take advantage of. Release notes make for dry reading, so here is a summary of the
highlights for the Grails releases since 1.2. Note that some of the minor releases (e.g.,
1.3.x) aren’t listed, because they were mostly bug-fix releases.

Grails 1.2

• Ivy (with a significant amount of Grails customization and fixes) is now used to

manage JAR dependencies. This is configured in the grails.project.dependen

cy.resolution block in grails-app/conf/BuildConfig.groovy.

• BootStrap.groovy now has environment support; instead of having to use if/else or

switch blocks, you can use an environments block in the init closure just like in
Config.groovy and DataSource.groovy.

320 | Chapter 12: Upgrading Applications and Plugins

• The Spring framework version has been updated to version 3, which adds support
for many new features, including

— Spring MVC controllers using the @Controller annotation

— Spring beans defined in Java and Groovy using the @Component, using @Auto

wired for dependency injection

— Fine-grained transaction configuration in Grails services and other Spring beans

with the @Transactional annotation

• You can now configure default mapping settings with the grails.gorm.de

fault.mapping Config.groovy setting and default constraints with the

grails.gorm.default.constraints setting.

• You can now define GORM named queries and conveniently reuse and compose
them.

• For cases where a validation error should throw an exception, you can use the

failOnError option in the save() method: save(failOnError:true).

• GSPs are now precompiled when building a WAR file; this means that the permgen
cost that is required when compiling is incurred during the build instead of on your
server at application startup.

• You can define named URL mappings and refer to them in GSP tags.

• There is a new script to find available updates for your installed plugins, list-

plugin-updates. It works well in general, but because of the way we release the
Hibernate and Tomcat plugins for each Grails release, it can falsely report that there
is an available update for those plugins.

Grails 1.2.2
You can configure JVM settings such as heap and permgen size and with the

GRAILS_OPTS environment variable.

Grails 1.2.4
There’s one small fix in 1.2.4 that addresses an issue that many users found frustrating.
The artifact creation scripts assume that you will specify the logical name of the artifact,

for example, grails create-service user to create a UserService class. But often

users would run this as grails create-service userservice or grails create-

service UserService, which would result in a UserServiceService class. This is easy
to fix manually, but now the scripts detect this and adjust for it.

A Short History of Grails | 321

Grails 1.3

• You can now write tests with JUnit 4, using annotations instead of having to extend
a base class.

• The install-plugin and uninstall-plugin scripts and specifying plugin depen‐
dencies in application.properties are still supported, but the preferred approach now
is to declare the dependencies in BuildConfig.groovy in a similar way to how library
dependencies are specified. This approach allows for a more fine-grained config‐
uration; you can specify exlusions of transitive dependencies, specify plugin scope
(build, runtime, compile, etc.).

• You can now publish plugins to and load from Maven repositories.

• Groovy 1.7 is now used, which adds support for many features including anony‐
mous inner classes and nested classes, better support for annotations, and the
“Power Assert” display from failed assertions.

• There are new GORM methods for dirty checking, including isDirty(), isDir

ty(String propName), getPersistentValue(), getDirtyPropertyNames(),
which can be used to know what has changed in a domain class instance since it
was retrieved from the database.

• You can define derived properties in the mapping block in domain classes, for ex‐

ample, finalPrice formula: 'PRICE * 1.155',.

• You can use the load() method instead of the get() method to create a proxy
instead of retrieving the entire instance; this will load the data on-demand if you

access any property other than the id, but if you only need the primary key, for
example, to delete the instance, use it as a reference in another instance or use it in
a query—it is more efficient than incurring an unnecessary extra database hit.

• Artifacts defined in plugins can conveniently be overridden in the containing ap‐
plication. Plugins are now compiled into a separate directory from application

classes. The application’s classes directory is listed before the plugins’ in the run-

app classpath, and application classes are copied to the WAR file’s WEB-INF/
classes directory after the plugins’ so they can overwrite them. This also works for
GSP views and templates.

• You can now chain named queries.

• The dataSource bean is now a TransactionAwareDataSourceProxy, and the “real”

bean has the name dataSourceUnproxied for the rare cases where you need direct

access. This means that, if you get a connection from the DataSource, if there is
one in use in an active transaction or Hibernate session, you will get a reference

to that one instead of a new connection. This is useful when you use groo

vy.sql.Sql for queries and updates and need to have access to changes made by
GORM within the same transaction or session.

322 | Chapter 12: Upgrading Applications and Plugins

• You can specify your own Hibernate NamingStrategy. You can still configure table

and column names in the domain class mapping blocks on a case-by-case basis, but
if you have a consistent pattern, you can encapsulate that in one place with a custom
strategy.

• You can set a default GSP template with the grails.sitemesh.default.layout

setting in Config.groovy instead of adding <meta name="layout" con

tent="main" /> in every GSP.

• If you use the Grails documentation engine with *.gdoc files (this is more common

in plugins than applications), you can create a single PDF with the pdf flag; for

example, grails doc --pdf. There is also an init flag that will create the directory

structure and starter files for you: grails doc --init.

Grails 1.3.1

• You can partition filters into multiple classes and define the order that they run with

the dependsOn setting; for example, def dependsOn = [MyOtherFilters]. The

filters are still executed in the order specified in the class, but the dependsOn setting
groups the filters.

• You can now nest named queries.

Grails 1.3.2
The 1.3.2 release contains a convenient feature to help recover from command-line
typos. If you mistype a script name, all of the available scripts will be searched to find
the five closest matches, and you will be provided a “did you mean” list to choose from;

if you’re reasonably close (e.g., grails create-doman-class), then the one you wanted
will usually be the first choice.

Grails 1.3.4

• You can conveniently register event listeners for any various Hibernate events by

defining a hibernateEventListeners bean in resources.groovy.

• You can enable GSP reloading when your application is deployed as a WAR file with

the grails.gsp.reload.enable option in Config.groovy. This only makes sense if
the WAR file is exploded. There is a small performance impact when using this
because file modification times must be checked.

• The GrailsApplication instance is available in resources.groovy as the applica

tion variable.

A Short History of Grails | 323

• The embedded Tomcat instance used by run-app can be configured with the

grails.tomcat.jvmArgs setting in BuildConfig.groovy.

Grails 1.3.6

• You can create a beforeValidate event handler method in your domain classes.

• Groovy scripts can be run from the command line with the run-script command.
These are different from Gant scripts, and can access application classes directly,
use GORM, and access Spring beans.

• Exceptions that occur during controller requests are logged and include URI and
request parameters to help diagnose the cause.

Grails 1.3.7
You can now disable request parameter logging when an exception occurs by adding

grails.exceptionresolver.logRequestParameters=false in Config.groovy, and pa‐

rameter name exclusions can be defined in the grails.exceptionresolver.params.ex

clude setting (e.g., grails.exceptionresolver.params.exclude = ['password']).

Grails 1.3.8
1.3.8 was a small release but includes two important changes:

• To protect against data binding security attacks, dependency injection in domain
classes and command objects was moved from before data binding to after. So for

example, when using the common idioms new Person(params), there is no risk
that injected Spring beans can be modified by request parameters, because they
won’t be available yet. Further optimizations were made in the 2.0.2 release, in‐

cluding the new bindable constraint. See this blog post for a more complete dis‐
cussion.

• Plugins are now published to a Maven-compatible Artifactory repository, so the

grailsCentral() repository will resolve to the old repository if you don’t upgrade.
The old repository is still online but only contains older plugin releases.

Grails 1.3.9
1.3.9 has one fix, related to the data binding fix in 1.3.8. The data binding order was
further refined to do dependency injection before validation (but still after data bind‐
ing), so injected beans will be available to custom validators.

324 | Chapter 12: Upgrading Applications and Plugins

http://bit.ly/15g3hjk
http://repo.grails.org/

Grails 2.0
Grails 2.0 was a significant release. Originally it was going to be called 1.4 and there was
a 1.4-M1 release, but as development progressed, it was clear that, given the scope of
the changes and new features, renaming it to 2.0 (and pushing some of the changes that
had been planned for 2.0 to 3.0) was warranted.

• Many libraries were updated, the significant ones being Spring 3.1, Groovy 1.8,
Hibernate 3.6, and Tomcat 7.0.

• Code reloading in the development environment is no longer limited to controllers,
services, taglibs, and GSPs. Thanks to the reloading agent, all classes can be reloaded
at runtime, even src/groovy and src/java classes. This is a significant productivity
boost, because you can go a lot longer between server restarts while modifying code.
One wrinkle is that because domain class changes may affect the database schema,

the SessionFactory will be reloaded, and depending on your dbCreate setting, the
database may be dropped and rebuilt.

• The Servlet 3.0 spec is now supported (although the default is still 2.5). I wrote a
blog post demonstrating the new async features that are available in 2.0 if you enable

Servlet 3.0 support, including the new startAsync method.

• You can now compile plugins and deploy them as JAR files instead of deploying as

ZIP files, including source code. These are packaged with the binary flag, for ex‐

ample grails package-plugin --binary, or by adding def packaging = 'bina

ry' in the plugin descriptor.

• The datasources plugin has been merged into Grails core to allow the use of mul‐

tiple datasources in Grails domain classes. In addition, there is a new atomikos
plugin that adds support for XA transactions and two-phase commit (2PC) to en‐
sure that changes in multiple datasources (or even XA-aware technologies such as
JMS) are committed together or rolled back together.

• The console experience has been significantly updated.

— “Interactive” mode is started by just running grails instead of running the

interactive script. And you can get a lot more done in interactive mode, be‐
cause several memory issues have been fixed, and the new reloading approach
means you need to restart the console less often.

— In general, the output is far more condensed, because important output remains
visible in the console, but less important output is displayed on a single line
without scrolling. This results in dramatically less noisy output.

— Colors are more effectively used in console output.

— You can autocomplete scripts using tab completion, and this tab completion also

works for class names after the create-* commands.

A Short History of Grails | 325

http://burtbeckwith.com/blog/?p=1251

— Command history is maintained within the console, and between runs. Use the
up arrow to cycle through previous commands.

— You can use the open command in interactive mode to open files, with special

handling of unit test output with the test-report name, and dependency report

output with the dep-report name.

— You can run operating system commands and applications in the path by pre‐

fixing the command with a ! character.

• To help plugin authors know about plugin usage, there is now usage tracking of
installed plugins. This is optional; you can easily opt out. But the data collected is
trivial and helps to get a better sense of which plugins are popular.

• The CRUD pages that are generated by the generate-views and generate-all
scripts were completely reworked with a new look and feel, and support for HTML5.

• jQuery is now the default Javascript library, replacing Prototype. The jquery
plugin in installed by default, but can be uninstalled by removing it from Build‐
Config.groovy.

• The resources plugin is installed by default and provides extensive resource (CSS,
JavaScript, and image) management functionality. You can configure bundling,
GZIP compression, versioning, and other performance-related settings with this

plugin and its companion plugins such as zipped-resources and cached-

resources.

• Unit testing support was completely reworked. Rather than relying on extending
base classes (which requires a class hierarchy for each testing framework), you can
now annotate test classes and enable AST transformation mix-ins, which add the
methods and behavior that were previously made available with subclassing. This
gives you the freedom to use JUnit 3, JUnit 4, or Spock tests. In addition, a new in-
memory GORM implementation is available for testing domain classes, although
integration tests should be preferred for persistence testing so your tests take ad‐
vantage of a real database instead of a mock.

• GORM methods that were previously added to domain classes using runtime

metaprogramming via the MetaClass (e.g., save(), delete(), list(), count(),
etc.) are now added to the bytecode using compile-time metaprogramming with
AST transformations. This exposes the methods to Java and other languages, mak‐

ing integration easier. Dynamic methods such as findByFooAndBar are still added
to the metaclass, because they’re only added the first time they are used.

• HSQLDB was replaced with H2 as the default database provider. H2 is more robust
and is more similar to the databases that you’re likely to use in production, which
should result in fewer surprises and behavior differences when deploying to
production.

326 | Chapter 12: Upgrading Applications and Plugins

http://grails.org/plugin/resources

• H2 includes a web-based database console that works with any database that you

have a JDBC driver for. This is configured by default in development at the /dbcon

sole URI but not in production, although it can be enabled or disabled per envi‐
ronment and the URI can also be configured.

• The new GORM methods findOrCreateWhere, findOrSaveWhere, findOrCreate

ByXXX, and findOrSaveByXXX make it convenient to retrieve an instance if it exists,
or create and optionally persist it if it doesn’t, in a single method call.

• You can now conveniently send a permanent redirect (301 error code) in addition

to sending a temporary redirect (302 error code) with the permanent attribute, such

as redirect(controller: 'foo', action: 'bar', permanent: true).

• You can create links to Grails controllers and other resources in a service or other

artifact that isn’t in web scope like controllers and taglibs with the new grailsLink

Generator Spring bean. Add a dependency injection (def grailsLinkGenerator).

This is implemented by the org.codehaus.groovy.grails.web.mapping.Cachin

gLinkGenerator class, which adds a caching layer to the default implementation.

• Spring bean scope defaults to “singleton,” and typically, Spring MVC controllers are
implemented as stateless singletons, but Grails controllers are “prototype” scope,
so a new instance is created for each request. This is fairly inexpensive given how
efficient modern garbage collection is at managing short-lived objects, but you can

change the scope of your controllers to singleton either per-class with static

scope='singleton' or for all classes with grails.controllers.defaultScope in
Config.groovy. Make sure you have no per-request state before making this change
(injected singleton beans are fine, because they are shared but not modified).

• Reverting changes made to MetaClasses in unit tests is now automatic, thanks to

a registered instance of Groovy’s MetaClassRegistryChangeEventListener. This

causes an event to be fired when a MetaClass is changed, so Grails retains the

original MetaClass and resets it after the test runs. This removes the need to man‐

ually manage this or use the registerMetaClass method in GrailsUnitTestCase.

• GORM dynamic finder methods and executeQuery can now specify a readOnly
flag to make the returned results read-only. This is read-only in the Hibernate sense,
in that they can be modified but there is no dirty checking for these instances, so
changes won’t be automatically flushed. You can explicitly save or delete read-only
instances, though.

• Although they don’t depend on Grails 2.0, the new db-reverse-engineer and

database-migration plugins were released at the same time as Grails 2.0. These
can be used with Grails 1.3 or higher.

• By popular demand, the limitation to two expressions in dynamic finders (e.g.,

findByFooAndBar) was removed. This was an artificial limitation that was in place
to keep method names from becoming very long, so you’re now free to make meth‐

A Short History of Grails | 327

http://grails.org/plugin/db-reverse-engineer
http://grails.org/plugin/database-migration

od names as long as you like. You can only use all Ands or all Ors, however, because
the lack of parenthesis or grouping indicators complicates resolution order.

• You can now use the Hibernate DetachedCriteria feature. This lets you decompose
a criteria query and compose it as needed. This can be done explicitly by creating

a new DetachedCriteria or indirectly with the new where queries that use Detach

edCriteria under the hood but provide a more intuitive approach.

• Sending binary files to the response is much easier now with the file attribute for

the render method. This can either be the path to a file in the filesystem, a File

instance, an InputStream, or a byte[] array. If you specify the fileName attribute,

it will be specified in the Content-Disposition response header and it will be used

to determine the Mime type from the grails.mime.types map in Config.groovy

unless you specify it explicitly with the contentType argument. So it is now as simple

as render(file: '/path/to/the/file.txt') to render a text file or ren

der(file: person.badgePhoto, fileName: "${person.name}_badge.png",

contentType: 'image/png') to render an image stored in the database in the

Person domain class.

• Command object properties now default to being not-null to be consistent with

domain classes; add nullable: true in the constraints block to revert back to
the old behavior.

• Controller actions can now be methods instead of closures, although closures are
still supported. In addition, methods with arguments will have data binding con‐

versions applied from the params object. This saves you the work of explicitly con‐
verting them or using command objects. You cannot have overloaded methods
though, so if a parameter is optional, use a default value of null and it won’t be bound

if it is missing, such as def someActionName(String param1, Integer param2 =

null) { ... }.

• Generated unit test methods now intentionally fail as a not-very-subtle reminder
to write tests. The exception to this is the tests created for statically scaffolded con‐
trollers; the generation script creates a large amount of initial code for the tests
covering all of the important controller actions, although there are some TODO
instructions where you must finish the test, because it’s not an entirely automatable
process.

• The production section in DataSource.groovy now includes a default properties
section with pooling properties configured to help you get started with the various
advanced settings.

• For security reasons, GSPs cannot be directly accessed from a request; use a con‐
troller action or create a URL mapping instead.

328 | Chapter 12: Upgrading Applications and Plugins

• There is a new refresh-dependencies script that will install missing plugins, and

optionally download source if the include-source flag is specified and javadoc if

the include-javadoc flag is specified, and can optionally generate an XML report.

• There is a new groovyPageRenderer Spring bean that can render a GSP as a string
or to a Writer.

• The static holder classes (ConfigurationHolder, ApplicationHolder, PluginMa

nagerHolder, BuildSettingsHolder, etc.) are now deprecated, and dependency
injection should be used instead.

There were some breaking changes that you should be aware of:

• If your domain classes extend abstract base classes, move the base classes from
grails-app/domain to src/groovy to use the same table structure.

• Criteria query joins are now INNER joins instead of LEFT joins.

• Because public controller methods are considered actions, helper methods that
were unintentionally public should be changed to private. This is both as a best
practice (the methods are only called internally) and also because of the overloading
restriction that can cause startup errors.

• Because GORM methods are added to domain classes’ bytecode, you cannot have

a property called count because there now will be a static getCount() method.

• The release-plugin command has been removed. You must now use the release

plugin and its publish-plugin script.

• When the resources plugin is installed, the <g:resource> tag will throw a FileNot

FoundException if the referenced resource does not exist.

• The redirect() method no longer commits the response. This allows extra headers

to be added after the call, but code that relies on response.isCommitted() may

break and will need to change to use request.isRedirected() instead.

• The redirect() method uses the grails.serverURL setting in Config.groovy if it
is set. Set it if you know the server URL at deployment time, but remove it to
dynamically discover it from the current request.

• The loggers injected into artifacts (controllers, services, etc.) have changed from
being added dynamically using runtime metaprogramming to being added with an
AST at compile time, and this resulted in changes to some of the category name
prefixes:

— BootStrap.groovy changed from grails.app.bootstrap to grails.app.conf

— Codecs (in grails-app/utils) changed from grails.app.codec to

grails.app.utils

A Short History of Grails | 329

http://grails.org/doc/latest/ref/Command%20Line/refresh-dependencies.html

— Controllers changed from grails.app.controller to grails.app.control

lers

— Services changed from grails.app.service to grails.app.services

— TagLibs changed from grails.app.tagLib to grails.app.taglib

— Loggers for domain classes and filters didn’t change

• Use request.withFormat() instead of withFormat() to render different responses
depending on the request content type.

• The resources plugin changes the behavior of some core tags including <g:java

script>. Instead of directly rendering the tag output, it saves it and only renders

the output with a <r:layoutResources/> tag.

• The resources plugin adds /static between the context and the URI, so any ref‐
erences to the old URL patterns will have to be updated.

• The dependency resolution logic has changed and plugin dependency repositories
are not registered (although the dependencies are). The plugin portal pages will

display the syntax needed to add the repository; for example, the spring-security-

kerberos plugin page includes mavenRepo "http://maven.springframe

work.org/milestone/", which must be added in the application’s repositories
block in BuildConfig.groovy.

• Domain class constraints declared for nonexistent properties now throw a groo

vy.lang.MissingMethodException at startup; this helps to detect typos.

• If you have defined a beforeValidate() callback method, it will typically be called
two or more times during a request; be sure that the code can work correctly when
called multiple times.

• You can still use the older unit test base class hierarchy (e.g., GrailsUnitTest

Case, ControllerUnitTestCase, etc.), but you cannot use the new mix-in anno‐

tations (e.g., @TestFor) in test classes that extend these base classes.

• Output from Ant tasks using methods such as ant.echo() is now hidden by default;

use println, or the event mechanism (e.g., event('StatusUpdate', ['the mes

sage']) or event('StatusError', ['the error message'])), or if the plugin

only supports 2.0+ applications, the new GrailsConsole methods (e.g., grailsCon

sole.addStatus('the message'), grailsConsole.updateStatus('the mes

sage'), and grailsConsole.error('the error message')).

330 | Chapter 12: Upgrading Applications and Plugins

http://grails.org/plugin/spring-security-kerberos
http://grails.org/plugin/spring-security-kerberos

Grails 2.0.2

• The data binding security fixes that were made in version 1.3.8 were also applied
to version 2.0.2. See this blog post for a more complete discussion.

Grails 2.1.x

• Domain classes now have first and last methods.

• Groovy was upgraded to version 1.8.8.

• Spring Framework was upgraded to version 3.1.2.

• The default plugins in BuildConfig.groovy were updated; the jquery and resour

ces plugin versions were updated and the database-migration and cache plugins
were added.

Grails 2.2.x

• Groovy was upgraded to 2.0 (currently version 2.0.5), which adds the new @Type

Checked and @CompileStatic annotations, as well as partial support for “invoke‐
dynamic” in JDK 7 and higher.

• error.gsp now only displays stack traces in development mode.

• The domain class mappings block now supports seting comments for database
tables and columns, and default values for columns.

Notes on Upgrading
The best way to make upgrading easier is to stay aware of changes that are upcoming
in future releases. Sign up for the Grails user mailing list to see discussions about new
features and fixes. You should also follow the @grailsframework Twitter account since
releases and other news items are announced there. Prerelease versions are made avail‐
able before the final release (both beta releases and release candidates) and, if possible,
upgrade your application early to help us find bugs and to discover changes you need
to make in your application early.

Once the new version of Grails is released, read the release notes. A new page will be
created for each release, and they are all collected at the Release Notes page. Click
through to the JIRA issues and familiarize yourself with what changed. If something
doesn’t work or doesn’t work as expected, search the mailing list archives and use your
favorite search engine to do a search for previous discussions; it is unlikely that what
you are seeing is specific to you unless you are a very early adopter.

Notes on Upgrading | 331

http://bit.ly/15g3hjk
http://grails.org/Mailing+Lists
https://twitter.com/grailsframework
http://grails.org/Release+Notes
http://grails.1312388.n4.nabble.com/Grails-user-f1312389.html

We try to test library upgrades to the extent possible, but cannot test everything. So for
example, when we upgrade Hibernate or some other library, if you use a feature that we
haven’t got a test for, a bug can sneak through. And, because Grails is a metaframework
that wraps dozens of other frameworks, the combinations of interactions between li‐
braries make detecting all of the impacts of library upgrades impractical. So you should
also look at the release notes of the important libraries that you use to see if there might
be impacts to your application. Groovy is another important library that Grails uses
extensively, and changes in the Groovy language and libraries can affect how applica‐
tions run. Be sure to stay aware of changes in Groovy.

There are also upgrade-specific pages in the online Grails documentation. For example,
there is a section on upgrading and, a page on new features and changes in Grails 2.0
and Grails 2.1, so you should expect a new section for each new major release.

Additionally, there is a page on the Grails How-Tos site with a lot of useful information
about upgrading to Grails 2.

More information is available in two blog posts that discuss users’ experiences upgrading
to 2.0; in particular, the breaking changes around unit testing are highlighted. See Rob
Fletcher’s post and Ted Naleid’s post.

332 | Chapter 12: Upgrading Applications and Plugins

http://grails.org/doc/latest/
http://bit.ly/YL6apg
http://bit.ly/ZsVcAl
http://bit.ly/15aUyhZ
http://grails.github.com/grails-howtos/
http://bit.ly/ZwpuRR
http://bit.ly/138KeD9
http://bit.ly/138KeD9
http://bit.ly/YL6sfW

We’d like to hear your suggestions for improving our indexes. Send email to index@oreilly.com.

Index

Symbols
404 error codes, 286
@Transactional, 89, 292

A
Abstract Syntax Tree (AST), 7, 21
access control lists (ACLs), 243
after interceptions, 283
after-throwing interceptions, 283, 291
aggregate functions, 144
AntiSamy library, 254
Apache CXF, 174
applications

creating in Grails, 38
deployment-continuous integration (CI) of,

261
splitting into plugins, 218
vs. plugins, 205

around interceptions, 283
array initialization, 17
artifacts, custom, 227
as operator, 28
aspect classes, 294
aspect-oriented programming (AOP), 283–303

Grails filters, 284
Groovy AOP, 287
HTTP filters, 286
Spring AOP, 292

AspectJ weaving, 297
AspectJ-annotated aspects, 294
AST browser, 7
asynchronous emails, 171
asynchronous messaging, 110
atomikos plugin, 55, 164, 325
attributes, multivalued, 18
authentication mechanisms, 241
automated testing, 219

B
Bcrypt hashing algorithm, 247
bean aliases, 97
bean definition, troubleshooting, 2
bean life cycles/interfaces, 94
bean postprocessors, 95
bean proxies, 91
bean scopes, 54, 88

(see also Spring Framework)
before interceptions, 283
blank strings, converting to nulls, 76
broken authentication, 241
BuildConfig.groovy, 201
bytecode, 1

C
cache abstraction, 111
cache plugin, 43, 111

333

caching API, 139
caching behavior, 135–141, 156
call site caching, 22
camel-case syntax, 56
CAPTCHA login, 256
checked exceptions, 15, 54, 89, 104, 110
CLI (command line interfaces) testing, 224
client application, 176
client-side validations, 255
closures, 8–13
Cloud Foundry

bean postprocessing in, 96
cloud-foundry plugin, 272
database applications, 263
HTTP sessions, 270
nontraditional databases, 270
scaling, 269
standard client for, 263
UI plugin monitoring, 271

cloud services
Cloud Foundry, 263–275
cost savings of, 262
drawbacks of, 262
Heroku, 275–281
models of, 261
other providers, 282
other uses for, 282

codecs plugin, 45
collect GDK method, 27
collections

accessing a subset of, 147
creating in Groovy, 4
in HQL, 145

command injection attacks, 238
command line, 39
command line interfaces (CLI) testing, 224
compareTo, 134
compile-time metaprogramming, 21
compile-time weaving, 297
CompileStatic, 33, 331
config.groovy, 201
configuration files, 191–203

additional source folders, 202
BuildConfig.groovy, 201
environment-specific Spring beans, 198
external, 191
loading, 193
modularizing, 196
partitioning, 194

splitting resources, 195
constraints, 69, 75
constructors, 14, 50, 104, 114, 144
contains method, 28
continuous-integration servers, 219, 221
controller conventions, 57
controller interceptors, 105
controllers plugin, 47
convention over configuration philosophy, 36,

284
conventions, 57–65
converters plugin, 48
cookie-based authentication, 242, 248
core plugin, 48
cross-site request forgery, 244, 255
cross-site scripting (XSS) attacks, 238, 254
custom artifacts, 227
custom constraints, 75
custom repositories, 224
custom validation, 72

D
data binding

conventions for, 59, 259
Spring framework, 101

data mapping, 67–69
data type storage, customized, 127
data validation, 69–73, 101
database persistence, 102

(see also persistence strategy)
database updates, 298
database views, 150
database-migration plugin, 43, 223
dataSource plugin, 49
debugging, web service issues, 179
decompiliation

with javap, 8
with JD-GUI, 8

def keyword, 17, 31
default imports, 16
DefaultGroovyMethods, 21
delegate, 12, 22, 32, 73, 97, 105, 201
Dependency Injection (DI), 85–87, 100
dialects, 115–117
diff tools, 233
direct object references, insecurity in, 242
do/while loops, 17
documentation engines, 226

334 | Index

domain classes
conventions for, 61
creation of, 68
mapping customization, 148
mapping of, 113, 150
mapping verification, 130
saving/updating/deleting, 82
sub-select, 152

domain-specific languages (DSLs), 1
domainClass plugin, 49
doWithApplicationContext, 216
doWithDynamicMethods, 215
doWithSpring, 215
doWithWebDescriptor, 213
duck typing, 3
dynamic finders, 81
dynamic scaffolding, 54
dynamically generated SQL queries, 236

E
eagerly loaded collections, 157
Ehcache, 135
Elvis operator, 26
encrypted data, storage of, 127
encryption functions, 246
Enterprise JavaBeans (EJBs), 110
equal method, 134
error checking, 33
error codes

404 error codes, 286
URL mappings, 291

error messages, 75, 102, 258
exceptions, handling, 15, 291
executeQuery, 141
external configuration files, 191
extreme custom validation, 74

F
field access operator, 28
filters, 105, 284
filters plugin, 50
for loops, 17
functional testing, 219

G
Gant scripts, 221
GDK (Groovy Development Kit), 21

general domain model, 69
get method, 80, 154
getProperty, 24
getters, 5, 115
GORM constraints, 69
GORM methods, 2, 67, 114
Grails

command line, 39
conventions, 57–65
creating an application in, 38
features overview, 35–38
filters, 284
history of, 35
IDE support, 41
inclusion of Groovy in, 2
installation of, 38
plugins, 42–57
release note highlights, 320–331
services, 33
upgrading, 305–320, 331

Grails object relational mapping (GORM)
methods, 2, 67, 114

graphical diff tool, 233
Groovy

aspect-oriented programming (AOP), 287
closures, 8–13
closures vs. methods, 32
collections and maps in, 4
console for, 2
Groovy JDK (GDK), 21
installation of, 2
interoperability of, 1
Meta Object Protocol (MOP), 21
methods, 19, 22
new features of, 33
operator overload, 29–31
operator types, 26–29
optional typing, 3
optional vs. specific typing, 31
overview of, 1
properties, 5–8
reduced verbosity in, 13–16
strings, 19
this keyword, 20
vs. Java, 17–19

Groovy/Grails Tool Suite (GGTS), 41
groovyc, 1
groovyPages plugin, 51
GSP (Groovy Server Pages) support, 37, 51

Index | 335

GStrings, 19
GVM (Groovy enVironment Manager), 2, 38

H
hash functions, 246
hashCode method, 134
HDIV (HTTP Data Integrity Validator), 255
heredocs, 19
Heroku, 96, 275–281

build packs, 281
database applications, 275
deployment philosophy, 275
HTTP sessions, 280
scaling, 280

Hibernate ORM library
accessing session connection, 130
caching, 135–141
collections performance, 146
creating an application in, 118–123
custom configurations, 148
customized data type storage, 127
dialects, 115–117
get(), load(), and read() methods, 154
Hibernate Query Language (HQL), 141–145
Hibernate sessions, 123
Java type support, 126
mapping domain classes in, 113
mapping views, 150–153
open session in view (OSIV) pattern, 124
optimistic/pessimistic locking, 129
optimizing performance in, 156
overview of, 113
proxies, 133
schema-export, 130
Session.createFilter(), 147
SQL logging, 131

hibernate plugin, 44
Hibernate Query Language (HQL), 141–145
hibernate.cfg.xml, 118
HibernateUtil, 119
HTML emails, 169
HTTP Basic authentication, 257
HTTP filters, 286
HttpServletRequest metaclass, 55
HttpServletResponse metaclass, 55
HttpSession metaclass, 55
hyphenation syntax, 56

I
i18n message bundles, 102
i18n plugin, 52
IDE (integrated development environment)

support, 41
imports, default, 16
in keyword, 17
in operator, 28
infrastructure as a service (IaaS), 261
injection attacks, 235
inline plugins, 218, 232
input validation, 254
insecure cryptographic storage, 246
insecure direct object references, 242, 255
installation

Grails, 38
Groovy, 2

integration tests, 219
IntelliJ IDEA, 41
interception logic, 51, 283, 290
interface coercion, 11
internationalization support, 52, 98
Inversion of Control (IOC), 85–87
invokedynamic, 33
InvokerHelper, 21

J
Java

populating collections with Groovy, 4
vs. Groovy, 1, 17–19

Java API for XML Web Services (JAX-WS), 175
Java Cryptography Extension (JCE), 247
Java Data Objects (JDO) support, 104, 126
Java DataBase Connectivity (JDBC), 104
Java Development Kit (JDK), 21
Java Enterprise Edition (JEE) technologies, 159
Java Management eXtension (JMX), 110, 188
Java Message Service (JMS), 110, 159–167
javac, 1
JavaMail API, 111
javap, 8
JAX-WS services, 175
JConsole, 188
JD-GUI, 8
JDBC database, 44
JdbcTemplate, 104
JFrog Artifactory server, 224
jms plugin, 164

336 | Index

jmx plugin, 111
jquery plugin, 44
JSON format, 48
JSP (JavaServer Pages) support, 51
JVM (Java Virtual Machine) classes, 21

L
layout conventions, 59
lazy-loaded collections, 125, 133, 157
life cycle callbacks, for plugins, 213
Liquibase database refactoring tool, 43
load() method, 154
lock contention, 129
lock method, 80
Log4j logging, 131, 172, 188
logging plugin, 53

M
mail, 111, 167
malicious text, 254, 256
malware, 250
many-to-many relationships, 78, 147
many-to-one relationships, 78, 125, 147
mapped collections, 78, 147
mapping closure, 13
MBeans, 188
MD5 hashing algorithm, 247
Meld diff tool, 233
messaging, 159–167

Java Message Service (JMS), 159
XA transaction support, 164

messaging service, 110
Meta Object Protocol (MOP), 1, 21
metaclass interceptors, 290
metamethods, 19
metaprogramming, 1, 21, 288
method call caching, 111
methodMissing, 24
methods

adding, 22
method reference, 29
vs. closures, 32

mimeTypes plugin, 53
model-view-controller (MVC), 105
multiline strings, 19
multimethod dispatch, 19
multipart emails, 169
multivalued attributes, 18

MVC controllers, 106

N
NetBeans IDE, 41
non-primitive data types, 114
nonpersistent domain classes, 69
NoSQL support, 84, 270
null-safe dereference operator, 26
nullability, 114
nulls, conversion from blank strings, 76
nullSafeGet, 127
nullSafeSet, 127

O
object equality, 18
object references, evaluation of, 15
object-relational mapping (ORM) libraries, 113
onChange, 216
onConfigChange, 217
one-to-many collections, 125
onShutdown, 217
open classes, 21
open session in view (OSIV) pattern, 124
Open Web Application Security Project

(OWASP)
broken authentication/session management,

241
cross-site request forgery, 244
cross-site scripting (XSS) attacks, 238
failure to restrict URL access, 248
injection attacks, 235
insecure cryptographic storage, 246
insecure direct object references, 242
insufficient transport layer protection, 248
security misconfiguration, 245
unvalidated redirects/forwards, 250

operators
operator overload, 29–31
types of, 26–29

optimistic/pessimistic locking, 129
OSIV interceptors, 125
OWASP Enterprise Security API, 254

P
parentheses, 16
passwords

authentication of, 151, 246, 247, 248

Index | 337

confirmation of, 75
expiration of, 256
forgot-password approaches, 241
requirements for, 255

persistence strategy
data mapping, 67–69
data validation, 69–73
GORM (Grails object relational mapping),

67
Hibernate sessions and, 123, 130
mapped collections, 78
NoSQL support, 84
querying, 80
saving/updating/deleting, 82
Spring framework, 102
transaction support and, 88
transients, 77

persistent domain classes, 69
platform as a service (PaaS), 261
plugins, 42–57, 205–233

adding functionality with, 205
atomikos plugin, 55, 164, 325
building/releasing, 219
cache plugin, 43
cloud-foundry plugin, 272
codecs plugin, 45
command line interfaces (CLI) testing, 224
controllers plugin, 47
converters plugin, 48
core group of, 45
core plugin, 48
creating, 205
custom artifacts, 227
custom plugin repositories, 224
database-migration plugin, 43, 223
dataSource plugin, 49
default, 42
development workflow, 232
documentation for, 226
domainClass plugin, 49
filters plugin, 50
groovyPages plugin, 51
hibernate plugin, 44
i18n plugin, 52
installation of, 43
jms plugin, 164
jmx plugin, 111
jquery plugin, 44
logging plugin, 53

mimeTypes plugin, 53
optional, 43
plugin descriptors, 209
resources plugin, 44
scaffolding plugin, 54
security plugins, 250
services plugin, 54
servlets plugin, 55
Shiro plugin, 248, 250
splitting applications into, 218
Spring Security plugin, 248, 250
testing of, 219, 219
tomcat plugin, 44
urlMappings plugin, 56
validation plugin, 56, 75
vs. applications, 205
webxml plugin, 45

POGOs (Plain Old Groovy Objects), 5
POJOs (Plain Old Java Objects), 5
postal code validation, 75
primitive data types, 114
programmatic closures, 11
properties, 5–8

getProperty, 24
setProperty, 24

propertyMissing, 24
prototype beans, 88
proxies, 133
proxy clients, 108

Q
query caching, 140
query syntax, 143
querying, 80

R
RabbitMQ, 270
read method, 80, 156
relational databases, 44
remember-me feature, 256
remote method invocation (RMI), 107
remoting, 107
rendering, improving speed of, 44
report queries, 143
repositories, custom, 224
resource dependency injection, 100
ResourceLocator, 101
resources, 98–101

338 | Index

resources plugin, 44
resources.groovy, 196
REST (representational state transfer), 180–187
return keyword, 16
runtime metaprogramming, 21, 288

S
scaffolding plugin, 54
schema-export, 130
scope modifiers, 16
scope property, 54
script injection attacks, 238
Searchable, 270
security by obscurity, 257
security issues

AntiSamy, 254
best practices, 240, 247, 255
HDIV (HTTP Data Integrity Validator), 255
Open Web Application Security Project

(OWASP), 235–250
OWASP Enterprise Security API, 254
security plugins, 250

security misconfiguration, 245
self-documentation, 32
semicolons, 16
sendMail method, 168
server-side validations, 255
service conventions, 60
services plugin, 54
Servlet 3.0, 257
servlet filters, 50
ServletContext metaclass, 55
servlets plugin, 55
session fixation, 242
session ID cookies, 248
session management, 241, 270, 280
Session.createFilter(), 147
sessions, 123, 130
setProperty, 24
setters, 5, 115
SHA-256/512 hashing algorithms, 247
Shiro plugin, 248, 250
shopping carts, 88
simple text emails, 169
simple web services, 175
singletons, 88
SOAP XML, 179
SOAP-based web services, 174–180
software as a Service (SaaS), 261

Sonatype Nexus server, 224
spaceship operator, 27
spread operator, 27
Spring AOP

AspectJ-annotated aspects, 294
compile-time weaving, 297
configuration of, 292, 293
enabling, 293
overview of, 292

Spring Expression Language (SpEL), 86
Spring Framework

AOP functionality, 292
bean aliases, 97
bean creation, 51
bean declarations, 195
bean definition, 2
bean life cycles/interfaces, 94
bean postprocessors, 95
bean registration, 49, 60
bean scopes, 88
cache abstraction, 43, 111
data binding/validation, 101
database persistence, 102
email implementation, 111
Enterprise JavaBeans (EJBs), 110
environment-specific Spring beans, 198
integration with Grails, 48
internationalization, 98
Inversion of Control/Dependency Injection,

85–87
Java Management eXtension (JMX), 110
Java Message Service (JMS), 110
model-view-controller (MVC), 105
overview of, 85
remoting, 107
resources, 98–101
transactional services, 88–94, 292
validation, 74

Spring MVC controllers, 106
Spring Security plugin, 248, 250
Spring Web model-view-controller (MVC), 105
SQL injection attacks, 235
SQL logging, 131
SSL authentication, 249
static resources, 44, 50
strings, 19
sub-select domain classes, 152
synchronous messaging, 110

Index | 339

T
TCPMon, 179, 187
ternary expressions, 26
testing scripts, 221
TextMate, 41
this keyword, 12, 20
thread-local holders, 103
tomcat plugin, 44
transaction data, securing, 242
transaction proxies, 91
transaction support, 54, 61, 88–94, 292
transaction utility methods, 93
transactional write-behind, 158
transients, 77
transport layer protection, 248
true/false evaluations, 15
Two Phase Commit (2PC), 164
TypeChecked, 33

U
unchecked exceptions, 15
unit tests, 219
upgrades

automation of, 308
general approach to, 310
notes on, 331
Petclinic case study, 311
upgrade script, 305, 318

URI conventions, 60
URL access protection, 248
URL mapping support, 56, 291
URL redirects/forwards, 250

urlMappings plugin, 56
user input, 236, 254, 256
utility computing payment model, 262
utils folder, 47

V
validation

custom, 72
extreme custom, 74

validation plugin, 56, 75
validation-related metaclass methods, 56
values, comparison of, 27
view conventions, 57

W
weak typing, 3
web service calls, 50
web services, creating, 174–180
webxml plugin, 45
where clauses, 145
withNewSession method, 124
withSession method, 124
work directory, 38

X
XA transaction support, 164
XML format, 48

Z
zip code validation, 75

340 | Index

About the Author
Burt Beckwith has been a software developer for 15 years (most of that as a JVM de‐
veloper), and for the last five years, has been working with Grails and Groovy. He is a
core developer on the Grails team at SpringSource, and has created over 50 Grails
plugins. Burt is a frequent speaker at conferences and user groups where he shares his
passion for Grails and other Groovy-based technologies, in particular those that are
related to persistence, security, and performance. He blogs at http://burtbeckwith.com/
blog/.

Colophon
The animal on the cover of Programming Grails is an Antarctic giant petrel (Macronectes
giganteus), also known as a southern giant petrel. These large seabirds live in the south‐
ern hemisphere, nesting on subtropic islands around South America, Australia, and
Africa, as well as the Antarctic continent. The name “petrel” is derived from Saint Peter,
because this family of birds appear to run across water when they are taking off into the
air.

This is the largest of the petrels, with an average wingspan of 73–81 inches. Males weigh
around 11 pounds, and females range from 7–18 pounds. The majority of Antarctic
giant petrels have a light head and neck, with mottled brown plumage on the rest of
their body. On their upper beaks are “naricorns,” tubular nostrils used to expel excess
salt after drinking seawater (with the help of a gland that secretes concentrated saline).

Breeding season occurs in October and November, and the birds form loose colonies
while they are nesting. Giant petrel nests are built on the ground, and are made of moss,
grass, and stones. They only lay one egg at a time, which is incubated between 55–66
days.

Though the giant petrel catches squid and fish near the surface of the water and occa‐
sionally hunts other seabirds, it is largely a scavenger, eating whale, seal, and penguin
carcasses that have washed ashore. This carrion diet is of note when considering one of
their nicknames, “stinker”: their defense mechanism is to regurgitate food and oil and
spit it at whatever is threatening them. The northern and southern giant petrels are also
the only petrels that are able to efficiently walk on land.

The cover image is from Wood’s Animate Creations. The cover font is Adobe ITC Ga‐
ramond. The text font is Adobe Minion Pro; the heading font is Adobe Myriad Con‐
densed; and the code font is Dalton Maag’s Ubuntu Mono.

http://burtbeckwith.com/blog/
http://burtbeckwith.com/blog/

	Copyright
	Table of Contents
	Preface
	Who This Book Is For
	Other Resources
	Conventions Used in This Book
	Using Code Examples
	Safari® Books Online
	How to Contact Us
	Acknowledgments

	Chapter 1. Introduction to Groovy
	Installing Groovy
	Groovy Console

	Optional Typing
	Collections and Maps
	Properties
	Using the AST Browser
	Decompiling with JD-GUI
	Decompiling with javap

	Closures
	Interface Coercion
	Programmatic Closures
	Owner, Delegate, and this

	Groovy’s Contributions in the War Against Verbosity
	Constructors
	Checked Exceptions
	Groovy Truth
	Semicolons
	Optional Return
	Scope
	Parentheses
	Default Imports

	Differences Between Java and Groovy
	Array Initialization
	in and def Keywords
	do/while Loops
	for Loops
	Annotations
	Groovy Equality
	Multimethod Dispatch

	Groovy Strings
	Static this
	The Groovy JDK (GDK)
	DefaultGroovyMethods and InvokerHelper

	Metaprogramming and the MOP
	Adding Methods
	Intercepting Method Calls

	Operators
	Null-Safe Dereference
	Elvis
	Spread
	Spaceship
	Field Access
	as
	in
	Method Reference

	Overload Your Operators
	Being Too Groovy

	def Considered Harmful
	Closures Versus Methods
	TypeChecked, CompileStatic, and invokedynamic

	Chapter 2. Grails Internals
	Installing Grails
	Creating an Application

	The Grails Command Line
	IDE Support
	Plugins
	Optional Plugins
	Core Plugins

	Conventions
	Controller and View Conventions
	Service Conventions
	Domain Class Conventions

	More Information

	Chapter 3. Persistence
	Data Mapping
	Nonpersistent Domain Classes

	Data Validation
	Custom Validation
	Extreme Custom Validation
	Validation Plugins
	Friendly Error Messages
	Blanks Versus Nulls

	Transients
	Mapping Collections
	Querying
	Saving, Updating, and Deleting
	NoSQL Support

	Chapter 4. Spring
	Inversion of Control and Dependency Injection
	Complex Dependency Configuration Using Spring SpEL
	Manually Injecting Dependencies at Runtime

	Bean Scopes
	Transactional Services
	@Transactional
	Transaction Proxies
	Transaction Utility Methods

	Bean Life Cycles and Interfaces
	Bean Postprocessors
	A Groovier Way

	Bean Aliases
	Internationalization
	Resources
	Resource Dependency Injection
	ResourceLocator

	Data Binding and Validation
	Data Binding
	Validation

	Database Persistence
	Thread-Local Holders
	JdbcTemplate
	Other Database Support

	Spring MVC
	Filters
	Using Spring MVC Controllers

	Remoting
	Client Access

	JMS
	EJBs
	JMX
	Email
	Cache Abstraction

	Chapter 5. Hibernate
	Mapping Domain Classes
	Dialects
	Dialect Autodetection
	Dialect Customization

	Hibernate Without GORM
	hibernate.cfg.xml
	HibernateUtil
	Author
	Book
	Experimenting with the APIs

	The Session
	withSession
	withNewSession

	Open Session in View
	Disabling OSIV

	Custom User Types
	Optimistic and Pessimistic Locking
	Accessing the Session’s Connection
	schema-export
	SQL Logging
	Proxies
	equals, hashCode, and compareTo

	Caching
	Examples
	Caching API
	Query Caching Considered Harmful?

	HQL
	executeQuery
	Query Syntax
	Report Queries
	Aggregate Functions
	Expressions
	Collections

	Collections Performance
	The Solution

	Session.createFilter()
	Custom Configurations
	Mapping Views and Subselect Classes
	Subselect Domain Classes
	Selecting with a POGO

	get(), load(), and read()
	get()
	load()
	read()

	Performance
	Caching
	Lazy Loading
	Transactional Write-Behind

	Chapter 6. Integration
	JMS
	XA Support with the Atomikos Plugin

	Mail
	Sending Email
	Sending Email Asynchronously
	Sending Email from Log4j
	Testing

	SOAP Web Services
	The Server Application
	The Client Application
	TCPMon

	REST
	TCPMon

	JMX

	Chapter 7. Configuration
	External config Files
	Loading the Configuration
	Partitioning Config Files

	Splitting resources.groovy
	Modularizing Within resources.groovy
	Environment-Specific Spring Beans
	Beans Closures in Config.groovy

	Options for BuildConfig.groovy
	Adding Additional Source Folders
	Extra Folders Under grails-app

	Chapter 8. Plugins
	Creating a Plugin
	Initial Steps

	The Plugin Descriptor
	Metadata
	Life Cycle Callbacks

	Splitting Applications into Plugins
	Inline Plugins

	Building and Releasing
	Automated Testing

	Running the Tests
	Custom Plugin Repositories
	Plugin Documentation
	Custom Artifacts
	Some Notes on Plugin Development Workflow

	Chapter 9. Security
	OWASP
	A1: Injection
	A2: Cross-Site Scripting (XSS)
	A3: Broken Authentication and Session Management
	A4: Insecure Direct Object References
	A5: Cross-Site Request Forgery
	A6: Security Misconfiguration
	A7: Insecure Cryptographic Storage
	A8: Failure to Restrict URL Access
	A9: Insufficient Transport Layer Protection
	A10: Unvalidated Redirects and Forwards

	Security Plugins
	spring-security-core

	Other Plugins and Libraries
	AntiSamy
	ESAPI
	HDIV

	General Best Practices

	Chapter 10. The Cloud
	Cost Savings
	What You Give Up
	Cloud Foundry
	Database Applications
	Scaling
	NoSQL, RabbitMQ, and Searchable
	Monitoring and the Cloud Foundry UI Plugin

	Heroku
	Database Applications
	Scaling
	Build Packs

	Other Providers
	Other Uses for Cloud Services

	Chapter 11. AOP
	Grails Filters
	HTTP Filters
	Groovy AOP
	Registering Metaclass Interceptors
	Error Code URL Mappings

	Spring AOP
	Enabling Spring AOP
	Defining AspectJ-Annotated Aspects
	Compile-Time Weaving

	Chapter 12. Upgrading Applications and Plugins
	Why Doesn’t the Upgrade Script Do More?
	A General Approach to Upgrading
	Upgrading Petclinic: A Case Study

	A Short History of Grails
	Grails 1.2
	Grails 1.2.2
	Grails 1.2.4
	Grails 1.3
	Grails 1.3.1
	Grails 1.3.2
	Grails 1.3.4
	Grails 1.3.6
	Grails 1.3.7
	Grails 1.3.8
	Grails 1.3.9
	Grails 2.0
	Grails 2.0.2
	Grails 2.1.x
	Grails 2.2.x

	Notes on Upgrading

	Index
	About the Author

