
h

•Create,manage,andterminateWindowsserversinthecloud
•Managestorageoptionsincludingbackupandrecovery
•Configureavirtualnetworkincludingsubnetsandroutetables
•Secureyourserversusingsecuritygroupsandaccesscontrollists
•UseAutoScalingtorespondtochangingconditions
•DeploySQLServerusingRelationalDatabaseService
•UseSimpleStorageService(S3)toreliablystoreandarchivedata
•ControlaccesstoresourcesusingIdentityandAccessManagement(IAM)

www.allitebooks.com

http://www.allitebooks.org

For your convenience Apress has placed some of the front

matter material after the index. Please use the Bookmarks

and Contents at a Glance links to access them.

www.allitebooks.com

http://www.allitebooks.org

iii

Contents at a Glance

About the Author ...xiii

About the Technical Reviewers .. xv

Acknowledgments .. xvii

Introduction ... xix

Chapter 1: AWS Architecture Overview ■ ...1

Chapter 2: Getting Started ■ ...7

Chapter 3: Basic Instance Management ■ ..27

Chapter 4: Elastic Block Storage ■ ...49

Chapter 5: Virtual Private Cloud ■ ..67

Chapter 6: Advanced Instance Management ■ ...89

Chapter 7: Amazon Machine Images ■ ...115

Chapter 8: Monitoring and High Availability ■ ..135

Chapter 9: Relational Database Service ■ ..155

Chapter 10: Simple Storage Service ■ ..179

Chapter 11: Identity and Access Management ■ ..193

Appendix A: Glossary of Terms ■ ..215

Appendix B: Metadata URL Structure ■ ..219

Appendix C: List of Filters by EC2 Command ■ ...223

www.allitebooks.com

http://www.allitebooks.org

■ CONTENTS AT A GLANCE

iv

Appendix D: List of API Methods by Command ■ ..247

Appendix E: CloudWatch Metrics and Dimensions ■ ..273

Appendix F: SQL Server RDS Parameters ■ ..279

Index ...285

www.allitebooks.com

http://www.allitebooks.org

xix

Introduction

According to a survey by Forbes Magazine in July 2013, 59% of the CIOs surveyed say that enabling cloud
infrastructure is their number one priority (http://www.forbes.com/sites/louiscolumbus/2013/07/01/cios-on-
cloud-adoption-conquer-complexity-and-help-us-grow/). While cloud has been popular in the open source
community for years, enterprises are only just begining to make the transition. his book will prepare you for the
transition using the tools you are already familiar with.

Amazon Web Services (AWS) has been the leader in Infrastructure as a Service (IaaS) for years. According to
Gartner’s 2013 Magic Quadrant, which evaluated the top 15 IaaS vendors, AWS is 5 times the size of the next 14 cloud
vendors combined (https://www.gartner.com/doc/2575815). If you are going to take the time to learn about cloud,
there is no better place to start.

Who Should Read This Book?
Pro PowerShell for Amazon Web Services is for the Windows professional who is ready to make the leap to the cloud.
While Cloud Computing has been around for a while now, enterprise adoption is just beginning. his book is written
speciically for Windows professionals who already know PowerShell, and want to learn to host Windows workloads in
the Amazon Cloud.

Windows professionals ind themselves under pressure to move workloads to the cloud, but few books have been
written for Windows users, and none include examples in PowerShell. While there are many books on AWS, most are
written for the open source community. Pro PowerShell for Amazon Web Services will introduce you to Amazon Web
Services using a language you already know: Microsoft PowerShell.

his book assumes you have experience with Microsoft PowerShell. It will not teach you how to write PowerShell
scripts. here are numerous excellent books on the market already. As an example, Apress ofers a book titled Pro
Windows PowerShell by Hristo Deshev.

On the other hand, I do not expect you to have any experience with AWS. We will start with the basics and build
on that foundation. By the time you get to the end of the book you will know everything you need to run Windows
workloads.

What Does This Book Cover?
Amazon ofers a wide selection of cloud services, enough to ill many books. his book focuses on running Windows
workloads on Elastic Compute Cloud (EC2), which is Amazon’s virtual machine ofering. In addition, we will discuss
Virtual Private Cloud (VPC), Simple Storage Service (S3), Identity and Access Management (IAM), Simple Notiication
Services (SNS), Cloud Watch, Auto Scaling, and Elastic Load Balancing (ELB).

In general, each chapter will introduce a speciic topic (e.g., compute, storage, networking, etc.) and provide an
overview of the capabilities. hen, we discuss the PowerShell commands available and how to use each. Each chapter
ends with one or two exercises that bring together all of the commands introduced in the chapter.

www.allitebooks.com

http://www.forbes.com/sites/louiscolumbus/2013/07/01/cios-on-%0acloud-adoption-conquer-complexity-and-help-us-grow/
http://www.forbes.com/sites/louiscolumbus/2013/07/01/cios-on-%0acloud-adoption-conquer-complexity-and-help-us-grow/
https://www.gartner.com/doc/2575815
http://www.allitebooks.org

■ INTRODUCTION

xx

In the early chapters I begin by showing you how to use the Web Console, and then introduce the various
commands available in the PowerShell API. As the chapters progress and you get more comfortable with AWS,
I will focus less on the Web Console and more on PowerShell. By the end of the book you will be using PowerShell
exclusively.

How Much Will This Cost?
How much is this going to cost? In short, not much. AWS ofers the “free tier,” which allows you to use some resources
for free each month. he free tier covers 30GB of storage and 750 hours of micro instance usage each month for the
irst year of your account. Micro instances are small, single core servers, with 650MB of memory. hese are too small
to run a production workload, but more than enough to launch a few servers and get comfortable with the platform.

he free tier does not cover everything, but if you use micro instances and are diligent about cleaning up after
each exercise, your bill should be very small. Over the roughly six months I was writing this book, I spent a grand total
of about $25. You should be able to complete the examples for much less.

A Note on the Code Examples
PowerShell is a complicated language with many tricks and shortcuts. Many developers, myself included, pride
themselves on being able to accomplish as much as possible with a single line of code. I have done my best to focus
on readability and avoid complicated syntax. For example, the following code:

$VPCFilter = New-Object Amazon.EC2.Model.Filter
$VPCFilter.Name = 'vpc-id'
$VPCFilter.Value = 'vpc-12345678'
Get-EC2SecurityGroup -Filter $VPCFilter

could have been written in one line like this:

Get-EC2SecurityGroup –Filter @{ Name='vpc'; Value='vpc-12345678' }

While I think the irst version is easier to understand, don’t assume that the AWS toolkit does not support
advanced syntax features. You are free to use pipelining, splatting, etc.

In addition, I want to point out that the examples in this book are riddled with resource IDs. For instance, in the
example above, 'vpc-12345678' is the ID of a Virtual Private Cloud (VPC). Your VPC would have a diferent ID. Every
time you create a resource it is assigned a new ID. As you are reading the book be sure to replace the IDs with IDs
speciic to your resources.

PowerShell and AWS Tools for Windows
he examples in this book require PowerShell 3.0 or greater and the AWS Tools for Windows 2.0. Cloud Computing is
cutting edge technology and the things are changing fast. he examples in this book were tested using PowerShell 3.0
and AWS Tools for Windows 2.0. All the examples have also been tested in PowerShell 4.0, but as of this writing, AWS
does not oicially support PowerShell 4.0.

Also, as we were inalizing this book in late 2013, Amazon released version 2.0 of the AWS Toolkit for Windows
PowerShell. his book was originally written for version 1.0, and while all of the code has been tested in version 2.0,
I did not have time to change everything. As a result, you may notice a few discrepancies between the PowerShell
documentation and this book.

www.allitebooks.com

http://www.allitebooks.org

■ INTRODUCTION

xxi

For example, this book often uses the RunningInstances attribute of the EC2 Reservation object. In version 2.0
the PowerShell team changed the RunningInstances attribute to simply Instance. hankfully, they maintained
backward compatibility and most code written for version 1.0 continues to work. While you may see some discrepancies
with the latest documentation, rest assured that all examples in the book have been tested with version 2.0.

Using the Accompanying Source Code
he complete source code for the book is available for download at the book’s companion web site. Visit
http://www.apress.com and go to the book’s information page at http://www.apress.com/9781430264514. You can
then download the source code from the Source Code/Downloads section.

www.allitebooks.com

http://www.apress.com
http://www.apress.com/9781430264514
http://www.allitebooks.org

1

CHAPTER 1

AWS Architecture Overview

Introduction
If you are anything like me, you cannot wait to get started and launch an application in the cloud. But, before we
dive in and start launching servers, let’s take a step back and look at the big picture. Amazon Web Services (AWS) is
a global platform with data centers around the globe. A little time spent on the architecture will help you understand
why, and not just what, we are doing with AWS.

In this chapter, we will discuss the AWS global infrastructure, including regions and availability zones, and how to
use them to design a robust application in the cloud. We will also introduce all of the services we are going to discuss
throughout the book. Before we do, let’s begin by defining Cloud Computing.

What Is Cloud Computing?
It seems that every company has a different definition of Cloud Computing. Amazon describes cloud computing
as “the on-demand delivery of IT resources via the Internet with pay-as-you-go pricing”
(http://aws.amazon.com/what-is-cloud-computing/).

Cloud computing is about leasing servers and storage from a provider like Amazon. But, it’s also about so much
more. The cloud offers information technology workers significant cost savings and unimaginable agility. Tasks that
traditionally took weeks of work, costing thousands of dollars, can be completed in minutes for fractions of a penny.

In addition, cloud computing offers inconceivable scalability. With a single line of code, you can provision
thousands of servers. Most important, you pay only for what you need and give the equipment back when you’re
done. Furthermore, because you are paying by the hour, running one server for a thousand hours costs the same
amount as running a thousand servers for one hour. This is unthinkable in a traditional data center.

Finally, cloud computing is often used in concert with automation. When we combine scalability with
automation, we have the ability to build an application that responds to load. In Chapter 8, we will build a self-healing
web application that automatically reconfigures itself in response to changes in load. That’s what cloud computing is
all about.

Regions
AWS is organized into multiple regions around the globe. Each region is designed to be independent of the others.
This isolation allows us to design highly available applications that span the globe and ensure low-latency response
times to our users.

As you can see in Figure 1-1, there are currently nine regions around the world. With a few exceptions, most of
this book will focus on building an application in a single region. We will talk about copying snapshots (or backup
files) between regions in Chapter 4, and multiregion hosting in Chapter 8.

www.allitebooks.com

http://aws.amazon.com/what-is-cloud-computing/
http://www.allitebooks.org

CHAPTER 1 ■ AWS ARCHITECTURE OVERVIEW

2

All of the examples in this book were completed in Northern Virginia (us-east-1), but you can use the region
closest to you. In fact this is the whole idea. By selecting a region closest to your users, you can deliver the best
experience by minimizing latency.

Imagine you run an e-commerce site for a U.S.-based clothing company. Most of your users are also in the United
States, but recently you have had a small following in Australia. These users are complaining about the web site.
They say it is slow and transactions often time out. Before the cloud, you would have to build another data center in
Australia.

But using AWS, you can launch a few servers in Amazon’s data center. Remember that you are only paying for
what you use, so if you only need three or four servers in Australia, that’s all you pay for. And it might cost just $1-2 an
hour. This is one of the advantages of cloud computing.

Even more important, it may turn out that we are wrong. Maybe the users in Australia were just an anomaly.
Within a month, all of the Australian users have moved on. We simply shut done the site in Australia and immediately
stop paying. Cloud computing allows us to “fail fast,” which lets the company try new things that would have been too
expensive in the past.

Another reason you may want to use multiple regions is data privacy. Many companies are required to store data
in a specific region. The European Union requires that data about its citizens be stored in Europe. In this case, the
Ireland region (eu-west-1) would be a great choice. The specific regions and locations are listed in Table 1-1.

Figure 1-1. Amazon Global Infrastructure

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 1 ■ AWS ARCHITECTURE OVERVIEW

3

Notice that there are only eight regions listed in Table 1-1. Earlier, I mentioned there were nine. The ninth region
is called GovCloud and is a region specifically designed to store data for the U.S. government. It is located in the
Northwestern United States. If you are doing work for the U.S. government, GovCloud may be an option for you.

Regions allow you to deliver your application from the location closest to your users and build redundant
applications served from multiple regions. While this is great, Amazon also offers another layer of redundancy called
availability zones.

Availability Zones
Each region is further organized into two or more availability zones (AZs). You can think of each AZ as a separate data
center. The AZs within a region are isolated from failures but connected with high-speed, low-latency links.

Each AZ has separate power, cooling, and Internet access. In addition, their locations are chosen so they
are never in the same flood plain, etc. This allows you to architect highly available applications that span multiple
data centers.

Imagine we are deploying an application in a region with two availability zones (see Figure 1-2). We could deploy
two servers, one in each AZ, and use an elastic load balancer (ELB) to balance traffic between them. If one of the AZs
suffered an outage, the ELB would automatically send all of the traffic to the other AZ. If we are using a relational
database service (RDS), we could also enable the multi-AZ option, and AWS will automatically replicate data between
availability zones. (We will discuss ELB in Chapter 8 and RDS in Chapter 9.)

Table 1-1. List of Regions and Locations

Region Location

ap-northeast-1 Asia Pacific (Tokyo)

ap-southeast-1 Asia Pacific (Singapore)

ap-southeast-2 Asia Pacific (Sydney)

eu-west-1 EU (Ireland)

sa-east-1 South America (Sao Paulo)

us-east-1 U.S. East (Northern Virginia)

us-west-1 U.S. West (Northern California)

us-west-2 U.S. West (Oregon)

Region

Availability

Zone A
Availability

Zone B

Figure 1-2. Availability Zones

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 1 ■ AWS ARCHITECTURE OVERVIEW

4

Regions and availability zones allow you to build a highly available, low-latency application that you could never
dream of building in your own data center. Only a handful of companies around the globe have the resources to match
this functionality in their own data centers. Before we wrap up, let’s look quickly at the services available.

Services
AWS offers a lot of services and they are adding new services every day. This book is focused on Microsoft Windows,
and I discuss only those services that are relevant to building Microsoft applications. Figure 1-3 provides an overview
of the services we are going to use in this book.

Let’s spend a minute discussing these options:

Management
The services in the management category are used to access and configure AWS.

• AWS Management Console - The console is the web GUI for configuring AWS. You can
configure almost anything using the console, but this is a book on PowerShell. In the early
chapters I will show you how to get started using the console, but once we get comfortable we
will be using PowerShell almost exclusively.

• Identity and Access Management (IAM) - IAM allows you to control access to your account.
You can create users and groups and write policies to control access to resources. (We will
discuss IAM briefly in Chapter 2 and in detail in Chapter 11.)

Storage

Network

Compute

Management Monitoring

S3

Simple Storage Service

Elastic Compute Cloud

EC2

Elastic Load Balancing

Cloud Watch

Auto Scaling

Elastic Block Storage

EBS

Relational Database Service

RDS

AWS Management Console

Amazon Glacier

Amazon Route 53Virtual Private Cloud

SNS

Simple Notification ServicePowerShell API

Identity and Access

Management

Figure 1-3. AWS Reference Architecture

CHAPTER 1 ■ AWS ARCHITECTURE OVERVIEW

5

• PowerShell API - PowerShell gives you full control over all services. You can do things
in PowerShell that you cannot do in the AWS Management Console. AWS supports many
scripting languages, but with the exception of a single exercise in Chapter 7, this book will
focus on PowerShell.

Storage
Starting at the bottom of Figure 1-3 and working up, we have multiple storage options.

• Elastic Block Storage (EBS) - EBS is a storage area network we use to create disks for our
instances. EBS is a network-based solution similar to iSCSI. You can create volumes from 1GB
to 1TB. You can also manage IO operations per second (IOPS). We will use EBS throughout the
book, and focus on it in Chapter 4.

• Simple Storage Service (S3) - S3 is highly durable object storage in the cloud. You can use
S3 to store an unlimited number of files up to 5GB each. S3 uses HTTP/S to read and write
objects. Most important, you get 99.999999999% durability. (We will focus on S3 in Chapter 10.)

• Amazon Glacier - Glacier is a low cost, cold storage solution. Glacier offers the same high
durability as S3 for about 1/10 the cost, but stores data offline and requires advanced notice to
access your data. This is a great alternative to tape backup. (We will discuss Glacier in Chapter 10.)

Network
Moving up the stack in Figure 1-3, we have multiple network services that work together.

• Virtual Private Cloud (VPC) - VPC allows us to create a private network to isolate your
instances from those of other AWS tenants. You can create a custom network topology
and control network security. (We will use VPC throughout the book, but focus on it in
Chapters 4 and 5.)

• Elastic Load Balancers (ELB) - ELB is a managed load balancing solution. You can balance
traffic between multiple servers across availability zones. You can create public ELBs on the
Internet or use a private ELB to balance traffic between layers of a multitier application.
(We will discuss ELB in Chapter 8.)

• Route 53 - Route 53 is Amazon’s managed DNS solution. If you use Route 53 you can balance
traffic between multiple regions, and AWS will determine which region is closest to the user
and route them automatically. (We will discuss Route 53 briefly in Chapter 8.)

Compute
At the top of the stack there are two compute services we will discuss.

• Elastic Compute Cloud (EC2) - EC2 is Amazon’s virtual server service. This is how we
launch servers, called instances, in the cloud. EC2 offers thousands of images and hardware
configurations for every imaginable use case. This is the focus of the book, and we will use EC2
throughout.

• Relational Database Service (RDS) - RDS is Amazon’s managed database service. RDS
supports MySQL, Oracle, PostgreSQL, and Microsoft SQL Server. You can install any of these
on an EC2 instance, but with RDS, Amazon manages the administration for you. (We will do a
deep dive on RDS in Chapter 9.)

CHAPTER 1 ■ AWS ARCHITECTURE OVERVIEW

6

Monitoring
Finally, we have a collection of monitoring services.

• CloudWatch - CloudWatch is used to monitor the environment. CloudWatch allows you to
create custom alarms and defines what actions to take when an issue arises. For example,
you might raise an alarm when CPU utilization is above 80% for an extended period of time.
(We will use CloudWatch to monitor instances in Chapter 8.)

• Auto Scaling - Auto Scaling, combined with CloudWatch, allows you to automatically respond
to changing conditions. In Chapter 8 we will create an application that automatically launches
new instances when the application is under high load.

• Simple Notification Service (SNS) - SNS is Amazon’s notification system. CloudWatch can
publish messages to SNS whenever an alarm occurs. You can use SNS to subscribe to events
using e-mail, SMS text messages, and many other options. (We will use SNS in Chapters 8 and 9.)

Summary
As you can see, Amazon offers everything you need to create a world-class application in the cloud. Regions and
availability zones give you access to resources across the globe and allow you to build a highly available, low-latency
application. In addition, Amazon offers numerous services that can be used in concert to create a robust application.

In the next chapter, we will create an account and configure our PowerShell environment. With this in place we
can begin using all the services we just discussed. What are we waiting for? Let’s get going.

7

CHAPTER 2

Getting Started

In the previous chapter, we described cloud computing and then discussed the benefits of scripting your AWS
configuration. Before we get started writing these scripts, we need to create an AWS account and prepare our
PowerShell environment.

We will begin by creating a new AWS account and credentials for PowerShell. Then we will install the AWS
Toolkit and configure a few default values. Although this might not be the most exciting chapter, it is an important one
because the examples in the rest of the book assume that you have followed the steps in this chapter.

Creating an AWS Account
If you don’t already have an Amazon Web Services (AWS) account, go to http://aws.amazon.com and click Sign Up to
get started. If you already have one, skip ahead to the next section.

To create an AWS account, you will have to sign in using an Amazon.com account (see Figure 2-1). This can be the
same account you use to shop on Amazon.com. If you are creating an AWS account for work, you might want to create a
separate Amazon account using your work e-mail rather than using your personal account. If you want to create a new
account, or have been living under a rock and don’t have an Amazon account already, you can create one now.

Figure 2-1. Creating an AWS account

http://aws.amazon.com/
http://amazon.com/
http://amazon.com/

CHAPTER 2 ■ GETTING STARTED

8

If this is the first time you are using AWS, Amazon will ask you to confirm your phone number. Then an
automated system will call your phone and ask you to enter a verification code.

Next, you will have to pick a support plan (see Figure 2-2). I am using the free plan. Basically, this means that
there is no support. With the free plan, you will have access to the user forums, but there are no guarantees.

After you choose your support plan, you will need to confirm your selections to complete the wizard. Then it’s
time to create a user account, which is discussed next.

Creating a User Account
Now that you have an AWS account, you will need to create a new IAM user. (IAM stands for identity and access
management.) AWS has two types of users: Account Credentials and IAM Users. The e-mail address you used to create
the AWS account is called an “AWS Account Credential.” You should not use your account credentials for day-to-day
activities on AWS. Save your AWS account credentials to change account options and access your bills. Create an IAM
user for day-to-day activities instead.

IAM allows you to create multiple user accounts and configure the permissions of each user. If you already have
an IAM User with administrator privileges, you can skip to the next section.

Open http://console.aws.amazon.com. If you are not already signed in, use your AWS Account Credential
(i.e., the e-mail address used to create the account) to sign in. You will be taken to the AWS Management Console.
Click the IAM link at the bottom of the second column (see Figure 2-3).

Figure 2-2. Choosing a support plan

http://console.aws.amazon.com/

CHAPTER 2 ■ GETTING STARTED

9

From the IAM dashboard, click the Create a New Group of Users button (see Figure 2-4).

Create a new group called Admins (see Figure 2-5) and then click Continue. Members of the group will have full
control over AWS.

Figure 2-3. AWS Web Console dashboard

Figure 2-4. Identity and access management dashboard

CHAPTER 2 ■ GETTING STARTED

10

Next, choose the Administrator Access Policy Template (see Figure 2-6). A policy template is a set of common
permissions. You can also create custom policies, which we will do in a later chapter. For now, use the template.

Figure 2-5. Creating a new IAM group

Figure 2-6. Assigning IAM permissions

CHAPTER 2 ■ GETTING STARTED

11

You now have a chance to edit the policy. For now, just leave the default settings and click Continue (see Figure 2-7).

Now add a new user named admin to the Admins group (see Figure 2-8). Make sure that the Generate an access
key for each User check box is selected. Click Continue.

Figure 2-7. Reviewing the IAM policy

CHAPTER 2 ■ GETTING STARTED

12

Review the options and click Continue to confirm (see Figure 2-9).

Figure 2-8. Creating a new IAM user

Figure 2-9. Completing the IAM wizard

CHAPTER 2 ■ GETTING STARTED

13

On the next screen, make sure you download the admin credentials and remember where you saved them (see
Figure 2-10). You will use these keys to run PowerShell scripts. You will also need to enter your keys again in Chapter 7.

Caution ■ Note that AWS does not store your secret key. If you lose your credentials, you will not be able to get another

copy and will have to generate a new set.

Note that you have not yet chosen a password. In fact, not all users have a password. See the “Types of
Credentials” sidebar for a description of the various credential types and when to use each.

TYPES OF CREDENTIALS

IAM users have three types of credentials, and each one is used for a different purpose:

Username and Password: The username and password are used to access the web console. In addition to the

password, you can also opt for Multi Factor Authentication (MFA). MFA uses an authentication code for extra

security. MFA requires an authentication device or smartphone application like Google Authenticator.

Access Key ID and Secret Key: The Access Key ID and Secret Key are used to access the REST API. Both

PowerShell and the AWS Command Line Interface (CLI) use the REST API. Therefore, you need to download keys

to use PowerShell.

Signing Certificates: Signing Certificates are used for the SOAP web services. The SOAP service is being

deprecated, so I will not discuss it in this book.

Note that not all users will have all types of credentials. An administrator that does not use the API may only have

a username and password, for example, while a developer that does not have access to the web console may

only have an Access Key ID and Secret Key.

Figure 2-10. Downloading credentials

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 2 ■ GETTING STARTED

14

From the IAM dashboard, click on Users to display the IAM users in your account. Right-click the admin user and
choose Manage Password (see Figure 2-11).

Choose the Assign a custom password option, enter the password twice, and click Apply (see Figure 2-12).

The last thing we need to do is get the custom sign-in URL for your new account. In order to sign in using your
IAM username and password, you must visit the account sign-in URL. Each account has a unique sign-in URL, but the
default URL is very difficult to remember; let’s change it to something we can remember.

To change the sign-in URL, return to the IAM dashboard and scroll down to the bottom to the AWS Account Alias
section (see Figure 2-13). Click the button to specify a friendly account alias.

Figure 2-12. Creating a password

Figure 2-11. Assigning a password

CHAPTER 2 ■ GETTING STARTED

15

At this point you should sign out using the menu at the top right of the screen (see Figure 2-14).

Finally, navigate to the custom sign-in link and sign on as admin (see Figure 2-15).

Figure 2-13. Setting an account alias

Figure 2-14. Signing out

CHAPTER 2 ■ GETTING STARTED

16

Note that you are now logged in as an IAM User. Compare the IAM user listed in the top right corner
(see Figure 2-16) to the Account Credential in Figure 2.14. Note the IAM user includes the “@ alias.”

Figure 2-16. Signed In as an IAM User

Figure 2-15. Signing in with IAM credentials

At this point you have an AWS account and an IAM user with administrative privileges. Next, we are going to
install the AWS Tools for PowerShell and configure a few default values.

CHAPTER 2 ■ GETTING STARTED

17

Configuring PowerShell
AWS Tools for Windows PowerShell requires Windows XP or later and PowerShell 3.0 or later. PowerShell 3.0 is
the default for Windows 8 and Server 2012. You can also install PowerShell 3.0 on Server 2008R2 SP1 with the .Net
framework 4.0.

You can download the AWS tools from http://aws.amazon.com/powershell/. If you are running your script on
an AWS instance (e.g., a server running in the AWS Cloud), the tools are already installed. If you want to run the tools
on your own machine, download the installer from the site above. Note that the examples in this book were tested
using version 2.0 of AWS tools.

I usually write scripts using the PowerShell Integrated Script Environment (ISE) because it supports IntelliSense
and debugging. The PowerShell ISE is a Windows Feature. If it is not already enabled, you may need to enable the
feature from Windows Server Explorer. This feature is enabled by default on AWS instances.

Once you have the AWS tools installed, you need to import the AWS PowerShell Module. This Module includes all
of the PowerShell commands to manage AWS. Simply type Import-Module and include the path where you installed
the AWS Tools.

On a 32-bit OS, type:

Import-Module "C:\Program Files\AWS Tools\PowerShell\AWSPowerShell\AWSPowerShell.psd1"

On a 64-bit OS, type:

Import-Module "C:\Program Files (x86)\AWS Tools\PowerShell\AWSPowerShell\AWSPowerShell.psd1"

You will need to import this module each time you start a new PowerShell session.

Tip ■ If you are going to be working with AWS often, you may prefer to add the AWS Module to your profile. Your profile

is simply a script that runs each time PowerShell starts. Just open it in Notepad and add the Import-Module line.

The profile invoked when you start a PowerShell command prompt can be found at:

Documents\WindowsPowerShell\Profile.ps1

The profile invoked when you start the PowerShell ISE can be found at:

Documents\WindowsPowerShell\Microsoft.PowerShellISE_profile.ps1

Note ■ If you have never customized your profile, the file may not exist. Just create the folder and file as needed.

Let’s check if the AWS tools are working. Type Get-AWSRegion at the PowerShell command prompt and press
Enter, as shown here.

PS> Get-AWSRegion

http://aws.amazon.com/powershell/

CHAPTER 2 ■ GETTING STARTED

18

Get-AWSRegion will list all of the AWS regions (described in Chapter 1) around the globe, as shown in the
following code output:

Region Name
------ ----
us-east-1 US East (Virginia) ...
us-west-1 US West (N. California) ...
us-west-2 US West (Oregon) ...
eu-west-1 EU West (Ireland) ...
ap-northeast-1 Asia Pacific (Tokyo) ...
ap-southeast-1 Asia Pacific (Singapore) ...
ap-southeast-2 Asia Pacific (Sydney) ...
sa-east-1 South America (Sao Paulo) ...

If the command succeeds, your PowerShell environment is set up correctly. Notice that we did not use the
credentials we downloaded earlier. The Get-AWSRegion method does not require authentication. Before you can do
anything exciting, you are going to have to supply your credentials. Let’s see how to do this in the next section.

Specifying Credentials and Region
Now that we have the AWS tools installed and PowerShell configured, let’s try something more complicated. Type the
Get-EC2Instance command to list all of the instances deployed in the Cloud. Remember that an instance is Amazon’s
term for a server.

PS> Get-EC2Instance

Note that you have not deployed any instances yet, so this command is not expected to return anything. But when
we run the command we get the following error:

Get-EC2Instance : No credentials specified or obtained ...

Before you can use AWS, you need to log in. Remember that PowerShell uses the REST API. Therefore, you will
need an access key and secret key in order to use PowerShell.

All of the AWS commands support the AccessKey and SecretKey parameters. You must include the keys you
downloaded in the last section. For example, type:

PS> Get-EC2Instance -AccessKey AKIA...ZHDA -SecretKey 9wVJ...iXdG

Note, however, that we still get an error:

Get-EC2Instance : No region specified or obtained ...

The credential error is gone, but now we have a new error—we also need to specify a region. Each AWS region
is independent. You need to tell AWS which region you want to list the instances in. Note that you cannot list the
instances in all regions in a single command. Let’s list your instances in the Northern Virginia region. Type the
following:

PS> Get-EC2Instance -AccessKey AKIA...ZHDA -SecretKey 9wVJ...iXdG -Region us-east-1

CHAPTER 2 ■ GETTING STARTED

19

This code produces the following results:

ReservationId : r-12345678
OwnerId : 123456789012
RequesterId :
GroupId : {}
GroupName : {}
RunningInstance : {ip-10-1-1-5.brianbeach.com}

At this point, you should receive a list of your instances deployed in the specified region. If you just created a new
account, you probably don’t have any instances yet. As long as you don’t get an error, it’s working correctly. This is
everything you need to execute the scripts in this book, but there are still a few things we can do make life easier. For
example, it would be nice to save the default credentials and region so we don’t have to add them to every command.

Setting Defaults
It can get cumbersome including the keys on every line of every script. Life would be easier if you had to specify the
keys only once. Luckily, Amazon thought of this and included the Set-AWSCredentials and Set-DefaultAWSRegion
commands.

Note ■ I am no longer including the command prompt (PS>) in my examples. From here on, most examples will be

multiline scripts. I am using the PowerShell ISE to edit and run my scripts as a batch.

Just type the script into the top window and click the play button (or press the F5 key). If you prefer, you can enter
these commands, one at time, at the command prompt. Personally, I prefer the IDE.

Set-DefaultAWSRegion us-east-1
Set-AWSCredentials -AccessKey ACCESS_KEY -SecretKey SECRET_KEY
Get-EC2Instance

This script results in the following:

ReservationId : r-12345678
...

Notice that once I set a default region and credentials, I can run the Get-EC2Instance command without any
parameters. This is so much easier. I can simply include these two lines at the top of the script, and I don’t have to
worry about it again.

If you want to clear the defaults, you can use the Clear-AWSCredentials and Clear-DefaultAWSRegion
commands. For example:

Clear-AWSCredentials
Clear-DefaultAWSRegion

Setting defaults is great, but we have to remember to set them each time we start PowerShell. We can take it one
step further and persist the defaults between PowerShell sessions.

http://ip-10-1-1-5.brianbeach.com

CHAPTER 2 ■ GETTING STARTED

20

Persisting Defaults
The Initialize-AWSDefaults command will persist the credentials and region between sessions. PowerShell will
remember your defaults when you restart PowerShell or reboot your computer. Once you persist the credentials, you
no longer need to specify them in your script. This makes the script portable between developers and AWS accounts.
Note that unlike the PowerShell profiles, persisted defaults set in the ISE also affect the command line. Type the
following:

Set-DefaultAWSRegion us-east-1
Set-AWSCredentials -AccessKey ACCESS_KEY -SecretKey SECRET_KEY
Initialize-AWSDefaults

Notice the results:

Credentials retrieved from Session
Region retrieved from Session
Credentials and region will be saved in this session

When you start a new PowerShell session, the default values will be loaded automatically. For example:

Get-EC2Instance

Now, if the defaults were not already loaded, they will be loaded as needed. This command now produces the
following results:

Default credentials for this shell initialized from stored default profile
Default region for this shell initialized from stored default profile
ReservationId : r-12345678...

If you want to clear the defaults, you can use the Clear-AWSDefaults command:

Clear-AWSDefaults

We are almost done discussing defaults, but there is one more option I want to mention: stored credentials.
Stored credentials allow you to store multiple credentials and switch between them quickly.

Using Stored Credentials
You may find that you have more than one set of credentials to manage. Maybe you have separate AWS accounts for
development and production servers; in my opinion, this is a really good idea. (And I hope you’re not running these
examples in the same account that you use to host production workloads.)

You can use the Set-AWSCredentials command we discussed earlier to create named profiles and quickly switch
between them. To create a named profile, use the StoreAs attribute. For example:

Set-AWSCredentials -AccessKey ACCESS_KEY -SecretKey SECRET_KEY -StoreAs "Production"
Set-AWSCredentials -AccessKey ACCESS_KEY -SecretKey SECRET_KEY -StoreAs "Development"

CHAPTER 2 ■ GETTING STARTED

21

Now we can use the stored credentials as an attribute to any command. For example, if you want to list the
servers in the production environment, type:

Get-EC2Instance -StoredCredentials Production

Here is the result:

ReservationId : r-12345678...

And, if you want to list the servers in the development environment, type:

Get-EC2Instance -StoredCredentials Development

The preceding script produces this result:

ReservationId : r-87654321...

If you want to swap the default credentials between the development and production profiles, you can use
the Set-AWSCredentials command with the StoredCredentials attribute. All subsequent commands will use the
production credentials.

Set-AWSCredentials -StoredCredentials Production

You can list the various credentials you have stored using Get-AWSCredentials. For example, type:

Get-AWSCredentials –ListStoredCredentials

To get this result:

Development
Production

Finally, you can remove credentials using the Clear-AWSCredentials command:

Clear-AWSCredentials -StoredCredentials Development

At this point your PowerShell environment is ready. In the next chapter, we are going to launch a few instances.
Before you do that, however, you are going to need an EC2 key pair.

Using Key Pairs
Before we move on to creating instances, you will need a key pair. This key pair is used to encrypt the Windows
Password for a new instance. AWS keeps the public key, and you keep the private key. When you create a Windows
instance, AWS creates a local administrator account and generates a random password. It then encrypts the random
password with the public key and stores the encrypted copy.

You can retrieve the password any time and decrypt it with your private key. Note that AWS does not keep the
plain-text password. Therefore, only you can decrypt the password.

Caution ■ If you lose your private key, you will not be able to decrypt the password. Be careful with your keys!

CHAPTER 2 ■ GETTING STARTED

22

To create a key pair, log in using your IAM admin user and choose a region. I will be using Northern Virginia
(see Figure 2-17), but you can select the location nearest you.

From the AWS home page, select EC2. Then choose Key Pairs from the menu and click Create Key Pair
(see Figure 2-18).

Figure 2-17. Choosing an AWS region

Figure 2-18. Creating a key pair

CHAPTER 2 ■ GETTING STARTED

23

Name the key pair and click Create (see Figure 2-19). Your browser will download the private key. Make sure you
save it. Note that the examples in this book assume your key is stored in c:\aws\mykey.pem.

You can also create a new key pair using the New-EC2KeyPair command. This command generates a new key pair
and returns the private key. You can save the private key to a file using the Out-File command. Note that you must
specify the encoding as ASCII. For example:

$KeyPair = New-EC2KeyPair -KeyName MyKey
$KeyPair.KeyMaterial | Out-File -FilePath 'c:\aws\MyKey.pem' -Encoding ASCII

That’s everything you need to complete the exercises in this book. If you cannot wait any longer to launch an
instance, feel free to move on to Chapter 3. But, if you have the patience, I would like to tell you about one more
feature: IAM roles.

Using IAM Roles
We have covered a lot of material already in this chapter, but there is one more feature I want to discuss. It is a bad idea
to have your production scripts running as an individual user. What happens if that user leaves the company? If you
delete her account, all of your scripts will stop working.

You could create an additional IAM user just for running production scripts. But, how do you keep those keys
secret? How do you keep a disgruntled administrator you fired from using the keys to terminate all your servers?
Luckily, AWS provides a solution for this, too: IAM roles.

An IAM role allows you to grant permission to an EC2 instance. This way, you don’t need keys to run PowerShell
scripts. In other words, if you assign an IAM role to an instance, the instance has permission to run scripts rather
than a user. Any scripts that are run on that instance are implicitly granted the permissions defined to the IAM role.
Therefore, you don’t have to bother with keys at all. Although you don’t have to set credentials, you still need to set
the region.

Of course this only works for instances running in AWS. You cannot use IAM roles for machines running in your
data center. In addition, you have to assign the role when you create the instance; you cannot assign it later.

To create an IAM role, open the AWS Management Console and navigate to the IAM console. (I assume you
know how to do this by now. If not, go back to the “Creating a User Account” section at the beginning of this chapter.)
Choose Roles from the left navigation. Then, click the New Role button and name your new role (see Figure 2-20).
I will use the name AdminRole for the scripts in this book.

Figure 2-19. Naming your key pair

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 2 ■ GETTING STARTED

24

There are many types of roles available. We want to create an “Amazon EC2” role. Click the Select button next to
Amazon EC2 (see Figure 2-21).

Let’s grant this role administrator permission (see Figure 2-22), even though in a real-life scenario you would
want to restrict the role. With administrator permissions assigned to an EC2 instance, anyone who runs a script
on that instance will have full control over your account. For the purposes of this book, this is fine, but please be more
restrictive in real life.

Figure 2-20. Creating an IAM role

Figure 2-21. Selecting the Amazon EC2 role

CHAPTER 2 ■ GETTING STARTED

25

On the next screen, leave the default policy and click the Continue button. Then, on the Review screen, click the
Create Role button.

We will use this role in the second exercise of Chapter 3.

Summary
In this chapter we created an AWS account and IAM user. Then we installed the AWS Tools for PowerShell and
configured our PowerShell scripting environment with a default region and credentials. Finally, we created an EC2 key
pair and an IAM role. We now have everything in place to begin using the cloud. In the next chapter, we will launch a
few basic instances.

Figure 2-22. Selecting Administrator Access

27

CHAPTER 3

Basic Instance Management

Great! You’re done configuring your environment. I know the last chapter was a bit dull, but this chapter is where it
gets exciting. You’ll jump right in and get started by creating an instance. An EC2 instance is, simply, a server running
in the cloud. With a few quick clicks, you will have your first server up and running.

In this chapter we will focus on EC2 Classic instances. These are the instances that have been around since the
beginning. Amazon recently, however, introduced Virtual Private Cloud (VPC). VPC adds a lot of new and exciting
capabilities, which we will discuss in Chapter 6.

It’s important to note that Amazon is beginning to phase out EC2 Classic in favor of VPC—eventually, EC2 Classic
will no longer exist. This is an exciting time to be working with cloud technologies. The industry is moving very fast,
and while this can be fun, it also causes some inevitable headaches.

As of this writing, for example, AWS has deprecated EC2 Classic in the Oregon region. Lucky for us, they have
created a default VPC, which acts very much like EC2 Classic. Other than a few very minor UI changes, all of the
examples in this chapter will run in regions where EC2 Classic has been deprecated.

In this chapter you will learn to create new instances and connect them. Then we will discuss how to start, stop,
and terminate instances. We will learn various ways to access metadata and add custom metadata tags. In the
exercises at the end of the chapter, we will build a PowerShell script to automate the launch process and customize
the configuration of an instance.

Creating Instances
Let’s get started by creating a new instance. In this section we’ll launch a Windows Server 2012 instance. I’ll begin by
using AWS Management Console. The Console will give you a good overview of all the options available. Then, I’ll
show you how to do the same thing with a single line using PowerShell.

Launching an Instance with the Web Console
For this first exercise—launching an instance with the Web Console—I am going to include step-by-step instructions
with figures. I want to note that the Web Console changes often. Don’t be surprised if your console screens look a bit
different from my figures.

If you are not already signed in to the Web Console, sign in using the URL and IAM account you created in
Chapter 2. Do not use the e-mail address you used to create the account.

When you sign in, you will be taken to the AWS Management Console home page. The home page lists all of
the AWS services available. Click the EC2 link (see Figure 3-1). Elastic Compute Cloud (EC2) is Amazon’s service for
creating servers in the cloud.

CHAPTER 3 ■ BASIC INSTANCE MANAGEMENT

28

On the EC2 dashboard, make sure the region in the top right corner is the same one you used to create your key pair in
the last chapter (e.g., Northern Virginia), as shown in Figure 3-2. Then click the Launch Instance button to start the wizard.

Figure 3-1. The home page

Figure 3-2. EC2 dashboard

CHAPTER 3 ■ BASIC INSTANCE MANAGEMENT

29

The first page of the wizard lists the Amazon Machine Images (AMI). An AMI is a template used to create a new
instance. The quick start tab includes the most common images. There are additional images available from the other
tabs, currently more than 20,000. For now, we just need a basic version of Windows to get our feet wet. Find “Microsoft
Windows Server 2012 Base” and click the Select button (see Figure 3-3).

Figure 3-3. Choosing an AMI

On the instance details page, ensure that the Instance Type is set to T1 Micro and click the button that says
“Next: Configure Instance Details” (see Figure 3-4). The Instance Type is the virtual hardware we want to use. There
are numerous combinations of processors, memory, etc. Only the micro instance is eligible for the free tier. You can
read more about the free tier on the AWS web site. (An up-to-date description of the Instance types is available here:
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instance-types.html.)

Figure 3-4. Choosing an Instance Type

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instance-types.html

CHAPTER 3 ■ BASIC INSTANCE MANAGEMENT

30

Skip the next two pages by clicking the button that says “Next:...”. We will review all of these advanced options in
future chapters. On the Tag Instance page, assign a name to the instance and click the button that says
“Next: Configure Security Group” (see Figure 3-5).

Figure 3-5. Tagging the Instance

Figure 3-6. Configure Security Group

On the Configure Security Group screen, select the default group from the list of existing security groups
(see Figure 3-6) and click the button that says “Review and Launch.” Security groups act like a firewall within AWS.
You can use security groups to control what traffic is allowed to flow to and from the instance. (We will spend time
looking at security groups in Chapter 6.)

Take a minute to review the options we selected on the next page and click Launch. This will load the key pair
dialog box. Select the key pair you created in the previous chapter (see Figure 3-7). Remember that AWS uses this this
key to encrypt the Windows administrator password. Select the confirmation box and then click “Launch Instances”.

CHAPTER 3 ■ BASIC INSTANCE MANAGEMENT

31

You just launched your first server in the cloud. Click the “View Instances” button, and you wil be taken to the
EC2 Instances page. You should see your new instance in the list with a state of “pending.”

It will take about 10 minutes for the instance to launch. While we are waiting, let’s discuss how we can do the
same thing in PowerShell using a single line of code.

Launching an Instance with PowerShell
In PowerShell, we use the New-EC2Instance command to create instances. This is a really rich command that can do
everything the wizard can do. For now we will focus on the basics of the New-EC2Instance command.

In the following example, I have specified only the required parameters.

$AMI = Get-EC2ImageByName -Name 'WINDOWS_2012_BASE'
New-EC2Instance -ImageId $AMI[0].ImageId -KeyName 'MyKey' -InstanceType 't1.micro'
 -MinCount 1 -MaxCount 1

Let’s look at each parameter in turn, most of which are the same ones we saw when using the wizard in the
preceding section:

• ImageId specifies which AMI to use. An AMI is the image you want to launch. The image IDs
are different in each region; therefore, my examples will use Get-EC2ImageByName to look up the
correct ID in the current region. (We will discuss the Get-EC2ImageByName command in Chapter 7.)

• MinCount and MaxCount specify how many instances to launch. See the sidebar on reservations
for details.

• KeyName is the name of the key pair we created in the last chapter. It is used to encrypt the
administrator password. Technically, this parameter is optional, but without it you will not be
able to retrieve the admin password.

• InstanceType describes the hardware we wish to use. This parameter is also optional.
But, remember that only the “t1.micro” instance is eligible for the free tier. If you don’t specify
the InstanceType, Amazon will launch a “small” instance.

Figure 3-7. Choosing your key pair

CHAPTER 3 ■ BASIC INSTANCE MANAGEMENT

32

RESERVATIONS

Let’s spend a minute talking about the MinCount and MaxCount parameters. New-EC2Instance always creates

instances in batches called reservations. We are going to be using the reservation object in many of the scripts

later in this chapter.

A reservation is a batch of instances launched at the same time. Even if you only want a single instance, you

create a batch of size one. That’s what I did.

Even Amazon has a finite number of instances available. AWS will try to launch the number of instances specified

in MaxCount. If it cannot, Amazon will launch the largest possible number above MinCount. If MinCount is more

than Amazon EC2 can launch, no instances are launched.

Despite the name, New-EC2Instance actually returns a reservation object rather than an instance. If you want to

check the individual instances, the reservation includes a list called RunningInstance. You can use a zero-based

array syntax to read the individual instances. For example:

$AMI = Get-EC2ImageByName -Name 'WINDOWS_2012_BASE'
$Reservation = New-EC2Instance –ImageId $AMI[0].ImageId -KeyName 'MyKey'
 -InstanceType 't1.micro' -MinCount 2 -MaxCount 2
$Reservation.RunningInstance[0].InstanceId
$Reservation.RunningInstance[1].InstanceId

Produces the following output:

i-36d1455c
i-38d14552

By the way, I should mention that although the attribute is called RunningInstance, it also contains instances

that are in a stopped state.

You may have noticed that I did not specify the security group (i.e., Firewall.) Unlike the Web Console wizard,
the API will use the “Default” group if you don’t specify one.

There are numerous additional parameters to the New-EC2Instance command. These correspond to the options
we skipped in the wizard. Don’t worry. We will talk about them all in later chapters.

Windows instances take about 10 minutes to launch regardless of how we create them. The instance(s) you
launched with PowerShell are probably still launching, but the one we launched with the AWS Management Console
is probably ready; let’s go check it now.

Connecting to an Instance
Returning to the Web Console, let’s check on that instance we launched earlier.

Remember, from the last chapter, that AWS will generate a new administrator password and encrypt it using your
key pair. On the Instances page, select the instance, and click the Connect button at the top of the screen. Then click
the “Get Password” button (see Figure 3-8).

CHAPTER 3 ■ BASIC INSTANCE MANAGEMENT

33

Now, click the “Choose File” button (see Figure 3-9) and locate the private key you created in Chapter 2.
Then click the “Decrypt Password” button.

Figure 3-8. Connect to Your Instance

Figure 3-9. Decrypting the password

The dialog will now show the temporary password. Click the Download shortcut file link (see Figure 3-10).
This will launch a Remote Desktop session and prompt you for the password you just decrypted. Type it in and click
the Connect button.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 3 ■ BASIC INSTANCE MANAGEMENT

34

Great! Now you know how to create and connect to an instance using the web console.

Note ■ Depending on which region you are running in, you may need to add a rule to the security group to allow

Remote Desktop Protocol (RDP). Follow the instructions below. We will discuss Security Groups in detail in Chapter 6.

From the EC2 Web Console, choose Security Groups.•

Select the group named “default” and choose the Inbound tab.•

Choose RDP from the “create a new rule” dropdown, and click the “Add Rule” button.•

Finally, click the “Apply Rule Changes” button.•

You can, of course, retrieve the password using PowerShell. The PowerShell command is Get-EC2PasswordData
command. Get-EC2PasswordData takes an instance ID and the path to the private key and returns the password.
Note that your instance ID will be different from mine. Each instance has a different ID. You can get the ID from the
instances page of the AWS Management Console.

Get-EC2PasswordData -InstanceId 'i-2143eb59' –PemFile 'c:\aws\MyKey.pem'

The preceding code will return an error if the password is not available yet. Remember, it takes about 10 minutes to
launch a new instance. We will discuss how to test for password availability in the first exercise at the end of this chapter.

Now that you know how to launch and connect to an instance, let’s talk about starting, stopping, rebooting, and
terminating instances.

Managing the Instance Life Cycle
Now that you have a few instances created, you will want to be able to manage them. You can Start, Stop, Reboot,
and Terminate (i.e., Delete) an instance by right-clicking it in the AWS Management Console. Figure 3-11 shows the
relevant portion of the context menu.

Figure 3-10. Downloading the shortcut file

Figure 3-11. Instance life cycle menu options

CHAPTER 3 ■ BASIC INSTANCE MANAGEMENT

35

The equivalent PowerShell commands are all pretty simple. They each have a parameter called Instance, which
is the id of the instance you want to start, stop, etc.

To start an instance, you use Start-EC2Instance:

Start-Ec2Instance -Instance i-38d14552

To reboot an instance, you use Restart-EC2Instance:

Restart-Ec2Instance -Instance i-38d14552

To stop an instance, you use Stop-EC2Instance:

Stop-Ec2Instance -Instance i-38d14552

To terminate an instance, you use Stop-EC2Instance command with an additional attribute, Terminate. You will
be asked to confirm the terminate command. You can add the force attribute to suppress the prompt.

Stop-Ec2Instance -Instance i-38d14552 -Terminate -Force

Listing Instances and Metadata
You have already seen the list of instances in the Web Console. You can use the Get-EC2Instance to list instances
in PowerShell. The primary purpose of Get-EC2Instance is to return a list of all the instances in your account.
In addition, you will use the Get-EC2Instance command to get metadata about the instance. Metadata includes
information such as the IP address, drive configuration, and type of instance.

Get-EC2Instance

The preceding command returns the following results:

ReservationId : r-2143eb59
OwnerId : 123456789012
RequesterId :
GroupId : {}
GroupName : {}
RunningInstance : {ec2-54-226-246-207.compute-1.amazonaws.com}
...

Of course, you can use any of the standard PowerShell commands with the AWS commands. For example, we can
format our list of instances as a table.

Get-EC2Instance | Format-Table

The preceding command returns the following results:

ReservationId OwnerId ... RunningInstance
r-12345678 123456789012 ... {ec2-54-226
r-2345678a 123456789012 ... {ip-10-1-1-5
r-345678ab 123456789012 ... {ip-10-1-1-6
...

http://ec2-54-226-246-207.compute-1.amazonaws.com

CHAPTER 3 ■ BASIC INSTANCE MANAGEMENT

36

If you want a specific instance, use the Instance parameter. For example:

Get-EC2Instance -Instance i-2143eb59

This command returns the following results:

ReservationId : r-12345678
OwnerId : 123456789012
RequesterId :
GroupId : {}
GroupName : {}
RunningInstance : {ec2-54-226-246-207.compute-1.amazonaws.com}

If you have been paying attention, you probably noticed that Get-EC2Instance returns a reservation object.
Remember that New-EC2Instance always creates a batch called a reservation. When you call Get-EC2Instance,
AWS returns the reservation that includes that instance. The RunningInstance attribute includes the specific instance
you requested.

To access the instance metadata, you need to read the first instance in the RunningInstance list. For example:

(Get-EC2Instance -Instance i-2143eb59).RunningInstance[0]

This command returns the following results:

InstanceId : i-2143eb59
ImageId : ami-12121212
InstanceState : Amazon.EC2.Model.InstanceState
PrivateDnsName :
PublicDnsName : ec2-54-226-246-207.compute-1.amazonaws.com
StateTransitionReason :
KeyName : MyKey
AmiLaunchIndex : 0
ProductCode : {}
ProductCodes : {}
InstanceType : t1.micro
LaunchTime : 2013-01-01T00:00:00.000Z
Placement : Amazon.EC2.Model.Placement
KernelId :
RamdiskId :
Platform : windows
Monitoring : Amazon.EC2.Model.Monitoring
SubnetId :
VpcId :
PrivateIpAddress : 10.1.1.6
IpAddress :
SourceDestCheck : True
GroupId : {sg-3ac5aa55}
GroupName : {default}
StateReason :
Architecture : x86_64
RootDeviceType : ebs
RootDeviceName : /dev/sda1
BlockDeviceMapping : {/dev/sda1}

http://ec2-54-226-246-207.compute-1.amazonaws.com
http://ec2-54-226-246-207.compute-1.amazonaws.com

CHAPTER 3 ■ BASIC INSTANCE MANAGEMENT

37

InstanceLifecycle :
SpotInstanceRequestId :
License :
VirtualizationType : hvm
ClientToken :
Tag : {}
NetworkInterfaceSet : {}
EbsOptimized : False
InstanceProfile :

This will give you a great deal of information about the instance including storage, network, and other details.
We will use this information throughout the rest of the book. But before we get into that, let’s look at one other way to
access the metadata: the metadata URL.

Using the Metadata URL
Get-EC2Instance is a great way to get information about an instance, but there is another way: the metadata URL.
The metadata URL returns much of the same information as Get-EC2Instance, but always returns information about
the current instance.

The metadata URL is a web service that returns metadata about the current instance. The URL is
http://169.254.169.254/latest/meta-data. Note the metadata service is only available from a script running on
the EC2 instance. You cannot use the API from a machine outside the AWS data center. Nor can you use the metadata
service to get information about another instance.

Opening the metadata URL in Internet Explorer lists all of the options available (see Figure 3-12).

Figure 3-12. Metadata URL example

http://169.254.169.254/latest/meta-data

CHAPTER 3 ■ BASIC INSTANCE MANAGEMENT

38

Navigating to any of the sub-URLs will return useful information about the instance. For example, navigating to
http://169.254.169.254/latest/meta-data/instance-type will return the type of hardware you are running on
(see Figure 3-13).

Figure 3-13. Using the metadata URL to get the instance type

Of course, you can also access metadata from PowerShell using the Invoke-RestMethod command and passing
the metadata URL. The following script is equivalent to the earlier example:

Invoke-RestMethod 'http://169.254.169.254/latest/meta-data/instance-type'

The preceding script results in the following:

t1.micro

A common use of the metadata URL is to discover the id of the current instance and then use it call the AWS API.
This way, we can write a generic script that will run on any EC2 instance. The following script uses the metadata API
to discover the instance id and then calls Get-EC2Instance on it. Note that the instance id was not known ahead of
time. Instead, it was discovered by the script.

$InstanceID = Invoke-RestMethod 'http://169.254.169.254/latest/meta-data/instance-id'
Get-EC2Instance $InstanceID

http://169.254.169.254/latest/meta-data/instance-type
http://169.254.169.254/latest/meta-data/instance-type
http://169.254.169.254/latest/meta-data/instance-id

CHAPTER 3 ■ BASIC INSTANCE MANAGEMENT

39

Using User Data
One of the options we skipped over in the section on launching new instances was user data. User data is similar to
metadata, but it allows you to include any custom data you want. The user data is available via a web service call, just
like the metadata in the prior section.

One common use of user data is to include information needed to “bootstrap” the instance, or configure it after
launch. We will do this in the second exercise at the end of this chapter.

To include user data, simply type whatever you want into the text box at the bottom of the third page of the
Request Instances Wizard (see Figure 3-14). It is common, but not required, to use XML in the User Data section.
Using XML makes it easier to parse the data later. In the example in Figure 3-14, I am using a combination of free-form
text and XML-formatted data.

Figure 3-14. Setting user data

Once the instance launches, you can retrieve the data using the user-data URL,
http://169.254.169.254/latest/user-data (see Figure 3-15).

Figure 3-15. Retrieving user data

http://169.254.169.254/latest/user-data

CHAPTER 3 ■ BASIC INSTANCE MANAGEMENT

40

Similar to the metadata URL, this URL will always return the user data for the running instance. Each instance
has its own unique user data.

You can also include user data when calling New-Instance from PowerShell using the UserData parameter.
AWS anticipates that the user data will include XML. Remember that the API call is also a web service that may be
formatted as XML. Therefore, to avoid confusion, you must base 64 encode the user-data section. For example,
the following code is equivalent to the console example shown earlier:

$UserData = @'
This is a Test!!!
<TestValue>42</TestValue>
'@

$UserData = [System.Convert]::ToBase64String([System.Text.Encoding]::ASCII.GetBytes($UserData))

$AMI = Get-EC2ImageByName -Name 'WINDOWS_2012_BASE'
$Reservation = New-EC2Instance -ImageId $AMI[0].ImageId -KeyName 'MyKey'
 -InstanceType 't1.micro' -MinCount 1 -MaxCount 1 -UserData $UserData

Note ■ If you are not familiar with the @'...'@ syntax, this is just a convenient way to include a multiline string

in PowerShell.

You can also use the Invoke-RestMethod command that we used in the previous section to retrieve the user data
from PowerShell. For example:

$Invoke-RestMethod 'http://169.254.169.254/latest/user-data'

Results in the following output:

This is a Test!!!
<TestValue>42</TestValue>

You can change the user data after launching an instance, but the instance must be stopped. From the Web Console,
right-click an instance and choose View/Change User Data. Let’s stop our instance and try replacing the user data with
well-formed XML. For example:

<documentation>
 <document>
 <name>GettingStarted</name>
 <url>http://awsdocs.s3.amazonaws.com/EC2/latest/ec2-gsg.pdf</url>
 </document>
 <document>
 <name>UserGuide</name>
 <url>http://awsdocs.s3.amazonaws.com/EC2/latest/ec2-ug.pdf</url>
 </document>
 <document>
 <name>APIReference</name>
 <url>http://awsdocs.s3.amazonaws.com/EC2/latest/ec2-api.pdf</url>
 </document>
</documentation>

http://169.254.169.254/latest/user-data
http://awsdocs.s3.amazonaws.com/EC2/latest/ec2-gsg.pdf
http://awsdocs.s3.amazonaws.com/EC2/latest/ec2-ug.pdf
http://awsdocs.s3.amazonaws.com/EC2/latest/ec2-api.pdf

CHAPTER 3 ■ BASIC INSTANCE MANAGEMENT

41

The benefit of using XML is that the Invoke-RestMethod command will parse the response. This means that you
can interact with the response like any other object in PowerShell and you get IntelliSense in the IDE as well. Note
how we can navigate the object hierarchy and format the response:

$Response = Invoke-RestMethod 'http://169.254.169.254/latest/user-data'
$Response.documentation.document | Format-Table

The preceding code results in the following output:

name url
---- ---
GettingStarted http://awsdocs.s3.amazonaws.com/EC2/latest/ec2-gsg.pdf
UserGuide http://awsdocs.s3.amazonaws.com/EC2/latest/ec2-ug.pdf
APIReference http://awsdocs.s3.amazonaws.com/EC2/latest/ec2-api.pdf

There is one other really cool feature of user ddata. You can include scripts that you want to run when the instance
boots the first time. You can include Windows command shell scripts inside <script>...</script> or PowerShell
scripts inside <powershell>...</powershell> tags. We will do this in the second exercise at the end of this chapter.

Working with Tags
Every object in AWS supports tags. Tags are a great way to keep track of all your instances and other objects. A tag is
simply a key/value pair used to describe the object. For example, you can use a tag to record the name of an instance
or which department owns it. You can use tags to record any additional information you need.

Each object can have up to 10 tags. The key can be up to 128 characters, and the value can be up to 256 characters
long. Note that you can access tags on the Web Console using the Tags tab (see Figure 3-16). And, you can edit the tags
using the “Add/Edit Tags” button.

Figure 3-16. The Tags tab

http://169.254.169.254/latest/user-data
http://awsdocs.s3.amazonaws.com/EC2/latest/ec2-gsg.pdf
http://awsdocs.s3.amazonaws.com/EC2/latest/ec2-ug.pdf
http://awsdocs.s3.amazonaws.com/EC2/latest/ec2-api.pdf

CHAPTER 3 ■ BASIC INSTANCE MANAGEMENT

42

In Powershell we can read the tags from the tag collection of any object. To get the tags for an instance, just get a
reference to the instance and read the Tag property:

$Reservation = Get-EC2Instance -Instance i-1c242570
$Instance = $Reservation.RunningInstance[0]
$Instance.Tag

Here is the result:

Key Value
--- -----
Name MyServer
Department Marketing
... ...

If you want to retrieve a specific tag, use the Where-Object command to find it:

$Reservation = Get-EC2Instance -Instance i-38d14552
$Instance = $Reservation.RunningInstance[0]
$Tag = $Instance.Tag | Where-Object { $_.Key -eq "Name"}
$Tag.Value

Creating tags is a bit harder. A tag is a .Net object. There is no PowerShell command to create an EC2 tag. Instead,
we use the generic New-Object command to create a .Net object of type Amazon.EC2.Model.Tag. Once we have the
new tag, we simply set the Key and Value properties.

Let’s use the New-EC2Instance command to create a new instance and add a few descriptive tags:

$AMI = Get-EC2ImageByName -Name 'WINDOWS_2012_BASE'
$Reservation = New-EC2Instance -ImageId $AMI[0].ImageId -KeyName 'MyKey'
 -InstanceType 't1.micro' -MinCount 1 -MaxCount 1
$InstanceId = $Reservation.RunningInstance[0].InstanceId
$Tag = New-Object Amazon.EC2.Model.Tag
$Tag.Key ='Name'
$Tag.Value = 'MyServer'
New-EC2Tag -ResourceId $Instance.InstanceId -Tag $Tag

As I mentioned, you can add a tag to anything. When you have only a few instances, it is relatively simple to keep
track of everything. Once you launch 10 or more, it quickly gets very confusing.

One trick I have learned is to tag everything. Each instance has at least one volume and one network interface
attached. Therefore, whenever I create a machine, I tag the instance and all of the attached resources.

AWS makes it easy to tag multiple objects at once. You simply pass all the IDs to New-EC2Tag as an array. There is
no need to tell AWS what type of object each is. It can figure that out on its own.

$AMI = Get-EC2ImageByName -Name 'WINDOWS_2012_BASE'
$Reservation = New-EC2Instance -ImageId $AMI[0].ImageId -KeyName 'MyKey'
 -InstanceType 't1.micro' -MinCount 1 -MaxCount 1
$InstanceId = $Reservation.RunningInstance[0].InstanceId
Start-Sleep -s 60 #Wait for drives to be mounted, etc.
$Reservation = Get-EC2Instance -Instance $InstanceId
$VolumeId = $Reservation.RunningInstance[0].BlockDeviceMapping[0].EBS.VolumeId
$NetworkInterfaceId = $Reservation.RunningInstance[0].NetworkInterfaceSet[0].NetworkInterfaceId

CHAPTER 3 ■ BASIC INSTANCE MANAGEMENT

43

$Tag = New-Object Amazon.EC2.Model.Tag
$Tag.Key = 'Name'
$Tag.Value = 'MyServer'
New-EC2Tag -ResourceId $InstanceId, $VolumeId, $NetworkInterfaceId -Tag $Tag

Did you notice that Start-Sleep in the previous command? This is another little trick I have learned. When you
create a new instance, the command may return before all of the resources have been allocated. Therefore, you may
find that a volume or network interface is null.

To get around this, I have my script sleep for a few seconds. Then I query AWS for an updated copy of the instance
metadata. This gives AWS enough time to allocate resources.

Working with Filters
In the previous section, we used the Where-Object command to filter a collection and find a specific tag. This same
method could be applied to other objects—for example, to find all of the instances owned by a given department.

AWS provides a better solution: filters. A filter allows you to specify search criteria to be executed on the server.
This way you don’t have to download metadata from hundreds of instances when you are only interested in a handful.

The “Get” methods usually include a filter parameter. The filter allows you to return only those resources with a
specific value for a given attribute.

For example, if you want to return a list of instances that are currently running, you can use the instance-state-code
filter. A value of 16 is running. The filter names and values are not intuitive. They use the AWS CLI syntax, which may be
foreign to a user of the PowerShell API. I have included a list of filters and values with each “Get” command in Appendix C.

Once again, you have to use the generic New-Object to create the filter. For example:

$Filter = New-Object Amazon.EC2.Model.Filter
$Filter.Name = 'instance-state-code'
$Filter.Value = 16
Get-EC2Instance -Filter $Filter

You can also use filters to search for custom tags. For example, assume you record the department that owns each
instance. If you wanted to retrieve all of the instances that belong to the marketing department, you could use a filter
that specifies Department = Marketing. For example:

$Filter = New-Object Amazon.EC2.Model.Filter
$Filter.Name = 'tag:Department'
$Filter.Value = 'Marketing'
Get-EC2Instance -Filter $filter

Note that when you filter on tags, you use the format tag: followed by the key. Remember that keys are case
sensitive. If you are creating keys manually using the Web Console, be consistent.

EXERCISE 3.1: WAITING FOR AN INSTANCE TO LAUNCH

For this exercise let’s assume that you often receive requests to create new instances from developers in your

organization and those developers don’t have access to the AWS Web Console. As AWS adoption has grown, this

has become very time consuming. It would be nice to script the build in PowerShell.

You know you can create a new instance and get the password with a few lines of code. But, you still have to wait

for the build to finish and then send the instance name and password to the requestor. If would be great if the

script could wait for the build to finish and then automatically e-mail the password to the requestor. But, how do

we know when the server is finished?

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 3 ■ BASIC INSTANCE MANAGEMENT

44

One way to determine whether the server is finished is to poll the instance to check if the password is available.

We can call the Get-EC2PasswordData command to check if a password exists. This provides a convenient way

to check for password availability.

Let’s start by creating a new method, called GetPasswordWhenReady. This method checks once every minute until

the password is ready and then returns it. The method takes three parameters. The first is the id of the instance

to wait on. The second is the location of the private key used to decrypt the password. The third is the munber

of minutes to wait for the password, after which the script will give up. Note that it writes a period to the screen

each minute to let the user know that it is still working.

Function GetPasswordWhenReady()
{
 Param(
 [string][Parameter(Mandatory=$True)] $InstanceId,
 [string][Parameter(Mandatory=$True)] $PemFile,
 [Int] $TimeOut = 30
)

 $RetryCount = $TimeOut

 Write-Host "Waiting for password" -NoNewline

 While($RetryCount -gt 1) {
 Try {
 $Password = Get-EC2PasswordData -InstanceId $InstanceId -PemFile $PemFile
 Write-Host ""
 Return $Password
 } Catch {
 $RetryCount--
 Start-Sleep -s 60 #It's not ready. Let's wait for it.
 Write-Host "." -NoNewline #It's nice to give a little feedback now and then
 }
 }
}

All we need now is a method that sends e-mails. This method will take three parameters: recipient, instance

name, and password. Note that I have hard-coded the from address and SMTP server name in my script. You will

need to change them.

Function SendInstanceReadyEmail()
{
 Param(
 [string][Parameter(Mandatory=$True)] $Recipient,
 [string][Parameter(Mandatory=$True)] $InstanceName,
 [string][Parameter(Mandatory=$True)] $Password
)
 $Message = "You can access the instance at $InstanceName.
 The administrator password is $Password."

 #Create the message
 $Email = New-Object Net.Mail.MailMessage

CHAPTER 3 ■ BASIC INSTANCE MANAGEMENT

45

 $Email.From = "admin@brianbeach.com"
 $Email.ReplyTo = "admin@brianbeach.com"
 $Email.To.Add($Recipient)
 $Email.Subject = "Your Instance is Ready"
 $Email.Body = $Message

 #Send the message
 $SMTP = New-Object Net.Mail.SmtpClient('smtp.brianbeach.com')
 $SMTP.Send($Email)
}

Now we can test it. Here I am creating a new instance and retrieving the id. Then I wait for the password to

become available. This usually takes about 10 minutes. Once the password is ready, I refresh the metadata.

Remember that some attributes are not available when New-EC2Instance returns. The Public DNS of the new

instance is one of these. By refreshing the metadata after the build completes, we know that all variables are

present. Now we can send an e-mail to the requestor.

Param(
 [string][Parameter(Mandatory=$false)] $ImageID,
 [string][Parameter(Mandatory=$false)] $KeyName = 'MyKey',
 [string][Parameter(Mandatory=$false)] $PemFile = 'c:\aws\MyKey.pem',
 [string][Parameter(Mandatory=$false)] $InstanceType = 't1.micro',
 [string][Parameter(Mandatory=$true)] $EmailRecipient
)

#Create a new instance
If([System.String]::IsNullOrEmpty($ImageID)){ $ImageID = (Get-EC2ImageByName
 -Name "WINDOWS_2012_BASE")[0].ImageId}
$Reservation = New-EC2Instance -ImageId $ImageID -KeyName $KeyName
 -InstanceType $InstanceType -MinCount 1 -MaxCount 1
$InstanceId = $Reservation.RunningInstance[0].InstanceId

#Get the password to the new instance
$Password = GetPasswordWhenReady -Instance $InstanceId -PemFile $PemFile

#Get the latest meta-data including the DNS name
$Reservation = Get-EC2Instance –Instance $InstanceId
$InstanceName = $Reservation.RunningInstance[0].PublicDnsName

#Send an email with connection info
SendInstanceReadyEmail -Recipient $EmailRecipient
 -InstanceName $InstanceName -Password $Password

Note that I am using the PublicDnsName. Here I am assuming that we are using an EC2 Classic instance. If this

were a VPC instance, we would use the internal IP address rather than public DNS. But, we have not talked about

VPC instances yet. We’ll get to that in Chapter 6.

http://admin@brianbeach.com/
http://admin@brianbeach.com/
http://smtp.brianbeach.com/

CHAPTER 3 ■ BASIC INSTANCE MANAGEMENT

46

EXERCISE 3.2: BOOTSTRAPPING WITH USER DATA

Figure 3-17. Setting user data and IAM role

When this instance launches, it will be ready to run scripts without further configuration. Before we launch it,

though, let’s make a few more changes—and let’s use PowerShell to launch it.

It would be nice if we could interact with the instance without having to log in. Microsoft has many remote

administration technologies. Let’s configure PowerShell remoting for administration and Windows Management

Instrumentation (WMI) for monitoring and management.

PowerShell remoting is really easy. The command is simply

Enable-PSRemoting

At this point we know how to launch and manage instances. Before we close this chapter, let’s spend a minute

talking about how we can customize instances. You could, of course, just log in and configure each instance

manually. But the cloud is all about automation and standardization.

If we script the configuration of our server, the results will be more consistent and reproducible. Amazon thought

of this, and it included the capability to run configuration scripts when a server boots. In this exercise, I am going

to configure our instance for remote administration. We will use a PowerShell script in the user data to complete

the configuration.

Amazon includes the EC2 Config Service in every AMI they provide. The first time an instance boots, the EC2

Config Service will check the user data for <script>...</script> or <powershell>...</powershell> tags

and then execute them at the command prompt or PowerShell prompt respectively. By default, scripts are run

only the first time an instance boots, but you can configure it to run every time the instance starts. (We will look

at this in Chapter 7.)

We talked in the last chapter about specifying default credentials and a default region. We will use a server role to

provide credentials, but remember that we still need to set the default region. We can use PowerShell in the user

data to accomplish this. On the fourth tab of the Launch Instance Wizard, we can set the IAM Role and provide the

user data (see Figure 3-17).

CHAPTER 3 ■ BASIC INSTANCE MANAGEMENT

47

WMI is a bit more complicated. WMI is already running, but Windows Firewall will block external access.

Fortunately, the firewall rules are already configured. They just need to be enabled. All we need to do is use the

PowerShell command Enable-NetFirewallRule. Here I find and enable all of the WMI firewall rules:

Get-NetFirewallRule | Where { $_.DisplayName -like "Windows Management Instrumentation *" } |
 Enable-NetFirewallRule

The complete script is available with the accompanying code in a file called Bootstrap.ps1. For information

on downloading the sample code, see Chapter 1. You could simply use the “as file” option on the Advanced

Instance Options page of the Request Instances Wizard to open this file, but I prefer to launch the instance from

PowerShell. Let’s create another script that launches a new instance.

The following script will open the bootstrap script from disk. Then it will format the script for use with the

AWS API. Finally, it will launch the instance, passing the script as user data.

param(
 [parameter(mandatory=$false)][string]$KeyName = 'MyKey',
 [parameter(mandatory=$false)][string]$RoleName = 'AdminRole',
 [parameter(mandatory=$false)][string]$UserDataFile = 'C:\AWS\Chapter3\Excercise2\Bootstrap.ps1',
 [parameter(mandatory=$false)][string]$ImageId,
 [parameter(mandatory=$false)][string]$InstanceType = 't1.micro'
)

#If no image was specified, assume 2012 base
If([System.String]::IsNullOrEmpty($ImageID)){ $ ImageID = (Get-EC2ImageByName
 -Name "WINDOWS_2012_BASE")[0].ImageId}

#Read the bootstrap script from the file specified
$BootstrapScript = Get-Content $UserDataFile

#Get-Content returns an array of strings. Convert the array to a single string
$BootstrapScript = [System.String]::Join("`r`n", $BootstrapScript)

#Add the PowerShell tags to the script
$BootstrapScript = @"
<powershell>
$BootstrapScript
</powershell>
"@

#Base 64 encode the script
$UserData = [System.Convert]::ToBase64String([System.Text.Encoding]::ASCII.
GetBytes($BootstrapScript))

#Get the IAM Role to apply to the new instance
$Profile = Get-IAMInstanceProfile -InstanceProfileName $RoleName

#Launch the new instance with bootstrap script
$Reservation = New-EC2Instance -ImageId $ImageId -KeyName $KeyName
 -InstanceType $InstanceType -MinCount 1 -MaxCount 1 -UserData $UserData

CHAPTER 3 ■ BASIC INSTANCE MANAGEMENT

48

 -InstanceProfile_Arn $Profile.Arn
$InstanceId = $Reservation.RunningInstance[0].InstanceId
Write-Host "Launched new instance with id $InstanceId"

User data is a really powerful option. You can use this to make just about any customizations you need without

ever logging into a server. As your adoption of AWS matures, you will likely begin to use features such as auto

scaling, which deploys instances automatically in response to load. Obviously, it is critical that you can auto

configure these instances. (We will talk more about auto scaling in Chapter 8.)

Summary
In this chapter we got a good introduction to instances. We learned to launch instances using both Web Console
and PowerShell. We learned how to start, stop, and terminate instances. We also learned how to discover
information about our instance using both PowerShell and the metadata URL. Next, we learned how to include
custom data with user data and tags. Then we discussed how to use filters to find specific instances. In the
examples we created a complete script to managing launching instances. Then we learned how to customize our
instance using user data.

In the next chapter, we will discuss storage including volumes and snapshots. Volumes are the disks that are
attached to an instance, and snapshots are point-in-time backups of your volumes.

49

CHAPTER 4

Elastic Block Storage

In the last chapter, we learned how to launch and manage instances. In this chapter we will focus on the volumes,
or disks, attached to the instance. We will learn how to customize and add additional volumes at launch. Then we will
look at modifying the volumes after launch.

This chapter will also cover snapshots. Snapshots are a point-in-time copy of a volume, often used for backups.
Snapshots can be used to create copies of volumes or to recover from a disaster. We will talk about using snapshots
to create a backup of a volume and how to restore a volume when a disaster occurs.

Let’s start with a little background. Volumes are based on a technology Amazon calls Elastic Block Storage (EBS).
EBS is network-attached storage used by EC2 instances. Like iSCSI in a traditional data center, EBS shares bandwidth
with other network traffic. This means performance is affected by network load. I will show you how to configure
quality of service to guarantee the performance of your volumes.

EBS volumes are redundant within an availability zone. Therefore, there is no need to create RAID arrays of EBS
disks within the operating system. Remember that an availability zone is a single data center. Despite the redundancy
EBS provides, it is possible to lose an entire availability zone in a disaster. Therefore, you still need to back up your
volumes using snapshots.

Snapshots are backups of volumes stored in the Simple Storage Service (S3). (We will talk about S3 in detail in
Chapter 10.) Each snapshot is stored in multiple availability zones within a region to provide very high durability.
In addition, I will show you how to copy snapshots from one region to another.

Let’s get started by building on our experience in Chapter 3. In the next section, we will extend our launch scripts
to control volumes at launch.

Managing Volumes at Launch
In the last chapter, we discussed launching a new EC2 instance. If you remember, we skipped over a few of the screens
in the wizard. Let’s return to the wizard and look at the Storage Device Configuration screen. This screen allows us to
specify the number, size, and performance characteristics of the volumes that will be attached to the instance.

Open the AWS Management Console and click the Launch Instance button on the EC2 dashboard. Navigate
through the wizard and stop on the Storage Device Configuration screen (see Figure 4-1). This screen lists the default
volumes that come with the Amazon Machine Image (AMI) you choose. Remember that an AMI is the template that
describes an instance. Most Windows images include a 30GB root volume. SQL images are larger, and most Linux
distributions are significantly smaller.

CHAPTER 4 ■ ELASTIC BLOCK STORAGE

50

You can change the size of the root volume by simply typing into textbox under the heading Size (GB). Thirty GB
is good enough for most Windows applications, but some applications, such as SQL Server, require more room. A volume
can be between 1GB and 1TB. In addition, you can configure the IO Operations per Second (IOPS). (We will talk about
provisioned IOPS later in this chapter.)

You can also choose to delete the volume on termination. If you check this box, the volume will be automatically
deleted when you terminate the instance. In general, the root volume is configured to auto delete, and any additional
volumes you attach are not.

WHAT’S A GIBIBYTE (GIB)?

If you look closely at Figure 4-2 you may notice the Volume Size is measured in GiB, which is the abbreviation for

Gibibyte. A Gibibyte (GiB) is closely related to, but not equal to, a Gigabyte (GB).

You have probably heard that 1KB = 1024 bytes. Of course, in other scientific disciplines 1K = 1000. Computer

scientists prefer 1024 because it is a power of 2 (2^10 = 1024).

Amazon is using the unambiguous Gibibyte. I’m going to stick to the old GB, but I really mean GiB.

Manipulating the root volume in PowerShell is verbose, but straightforward. PowerShell uses .Net objects to
describe the drive configuration. You simply pass the .Net object to the New-EC2Instance we used in Chapter 3.

First, we use the Amazon.EC2.Model.EbsBlockDevice object to describe the volume. Here I want a 55GB standard
volume, which does not use provisioned IOPS. In addition, I want the volume to be deleted when I terminate the instance.

$Volume = New-Object Amazon.EC2.Model.EbsBlockDevice
$Volume.VolumeSize = 55
$Volume.VolumeType = 'standard'
$Volume.DeleteOnTermination = $True

Next, we use the Amazon.EC2.Model.BlockDeviceMapping object to describe how the volume should be attached
to the instance. The root volume is always attached to "/dev/sda1". Notice that I am passing the EbsBlockDevice
object created by the preceding code.

Figure 4-1. Storage device configuration

CHAPTER 4 ■ ELASTIC BLOCK STORAGE

51

$Mapping = New-Object Amazon.EC2.Model.BlockDeviceMapping
$Mapping.DeviceName = '/dev/sda1'
$Mapping.Ebs = $Volume

Finally, we call New-EC2Instance and include the BlockDeviceMapping parameter describing how we want the
volume configured.

$AMI = Get-EC2ImageByName -Name 'WINDOWS_2012_BASE'
$Reservation = New-EC2Instance -ImageId $AMI[0].ImageId -KeyName 'MyKey'
 -InstanceType 't1.micro' -MinCount 1 -MaxCount 1 -BlockDeviceMapping $Mapping
$Instance = $Reservation.RunningInstance[0]

You can also add additional volumes to your instance. See Figure 4-2. Windows instances will support up to
16 volumes. The New Instance Wizard allows you to add additional volumes using the EBS Volumes tab of the
Storage Device Configuration page. Most of these options are the same as the root volume with a couple of additions,
described next.

Figure 4-2. EBS volumes

You can choose to use a snapshot to initialize your disk. Recall that a snapshot is a copy of a volume at a specific
point in time. The root volume always uses the snapshot specified by the AMI, but additional volumes can use any
snapshot. You can choose your own snapshot, or there are numerous interesting data sets available that other users
have made available.

You can also set an attachment point. The attachment point describes how the volume is attached to the
instance. This is similar to describing which port the disk is plugged into on a physical machine. For Windows
instances you should use xvd[f-z]. Just use them in order: xvdf, xvdg, xvdh, etc.

Additional volumes are handled just like the root volume in PowerShell. We just create two EbsBlockDevice
objects and two BlockDeviceMapping objects. Note that the root volume is attached at "/dev/sda1" and the second
disk is attached at "xvdf". Also, note that I have chosen to delete the root volume when the instance is terminated,
but keep the second volume. You separate the mapping objects by commas when calling New-EC2Instance to create
an array of mappings.

CHAPTER 4 ■ ELASTIC BLOCK STORAGE

52

$Volume1 = New-Object Amazon.EC2.Model.EbsBlockDevice
$Volume1.DeleteOnTermination = $True
$Volume1.VolumeSize = 30
$Volume1.VolumeType = 'standard'

$Mapping1 = New-Object Amazon.EC2.Model.BlockDeviceMapping
$Mapping1.DeviceName = '/dev/sda1'
$Mapping1.Ebs = $Volume1

$Volume2 = New-Object Amazon.EC2.Model.EbsBlockDevice
$Volume2.DeleteOnTermination = $False
$Volume2.VolumeSize = 100
$Volume2.VolumeType = 'standard'

$Mapping2 = New-Object Amazon.EC2.Model.BlockDeviceMapping
$Mapping2.DeviceName = 'xvdf'
$Mapping2.Ebs = $Volume2

$AMI = Get-EC2ImageByName -Name 'WINDOWS_2012_BASE'
$Reservation = New-EC2Instance -ImageId $AMI[0].ImageId -KeyName 'MyKey'
 -InstanceType 't1.micro' -MinCount 1 -MaxCount 1 -BlockDeviceMapping $Mapping1, $Mapping2
$Instance = $Reservation.RunningInstance[0]

If you want to use a snapshot to initialize the second volume, you can use the SnapshotId parameter. You can
use a snapshot you created or use one of the many already available. For example, the following partial code example
will attach the Windows 2012 installation media in Northern Virginia. Note that there are no CD/DVD drives in EC2
instances. (Later in this chapter we will talk more about discovering the numerous snapshots available with AWS.)

$Volume2 = New-Object Amazon.EC2.Model.EbsBlockDevice
$Volume2.DeleteOnTermination = $False
$Volume2.VolumeSize = 100
$Volume2.VolumeType = 'standard'
$Volume2.SnapshotId = 'snap-9470c3e7'

The last tab of the Storage Device Configuration is for Instance Store (or ephemeral) Volumes. Ephemeral
volumes allow you to access the disks in the host server. While EBS volumes are network-attached storage, ephemeral
volumes are directly attached storage.

There can be significant performance gains using the directly attached ephemeral volumes—specifically, if you
choose an instance that has SSD drives in it. But, this approach comes with a big limitation. The ephemeral drives are
not persisted when the instance is stopped. The data is simply deleted. Therefore, ephemeral drives are good only for
temporary storage such as a cache or similar item.

If you selected a micro instance, there are no ephemeral volumes. In Figure 4-3, I have chosen an m1.small. Note
that all the drives are attached by default. You can remove them if you want, but you don’t pay anything extra for them.
Just be careful that you’re not using the ephemeral drives when you think you’re using an EBS volume.

CHAPTER 4 ■ ELASTIC BLOCK STORAGE

53

Figure 4-3. Ephemeral volumes

When you create an instance using PowerShell, the ephemeral drives are also attached automatically. There is no
reason to remove them, but if you want to you can do so by creating a BlockDeviceMapping with NoDevice=true. Note
in the following partial code example that there is no EbsBlockDevice object in this case.

$Mapping = New-Object Amazon.EC2.Model.BlockDeviceMapping
$Mapping.DeviceName = 'xvdca'
$Mapping.NoDevice = $true

Figure 4-4 shows the disk configuration of a Windows Server 2012 instance with all three volume types: a 30GB
root volume, one additional 100GB EBS volume, and a 160GB ephemeral volume. Note that not all instance types
have 160GB ephemeral volumes. Some, such as the t1.micro, have none. Others have as much as 48TB of ephemeral
storage. Still others have 2-4TB of high performance SSD.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 4 ■ ELASTIC BLOCK STORAGE

54

As we have seen, Amazon makes it really easy to manage volumes when launching an instance. Unfortunately,
we don’t always know exactly what the volumes should look like. We do our best to estimate how big each volume
needs to be, but requirements change. New software is installed, usage patterns change, etc. In the next section,
we will discuss how to add volumes to a running instance, and in Exercise 4.1 we will resize a volume.

Adding a Volume to a Running Instance
Often you want to add a volume after the instance is already running. You can create a new volume and attach it to a
running instance at any time.

To create an instance in the Web Console, click Create Volume on the Volumes page of the EC2 Service. You will
need to specify all of the options we discussed earlier, plus the Availability Zone (see Figure 4-5). Remember from
Chapter 1 that an availability zone is one of many data centers in a region. Obviously, you can only attach a volume
to an instance in the same availability zone.

Figure 4-4. EBS and ephemeral volumes as seen by Windows

CHAPTER 4 ■ ELASTIC BLOCK STORAGE

55

Figure 4-5. Creating a new volume

Creating a volume in PowerShell is really simple. The following example creates a new 100GB volume:

$Volume = New-EC2Volume -Size 100 -AvailabilityZone us-east-1a -VolumeType standard

If you wanted to use a snapshot to initialize your volume, just specify the snapshot ID. This example creates a
new 4GB volume with the Windows 2012 install media on it:

$Volume = New-EC2Volume -Size 4 -SnapshotId snap-9470c3e7
 -AvailabilityZone us-east-1a -VolumeType standard

Once the volume is created, you can attach it to an instance using the Add-EC2Volume command. But, you have to
wait for the instance to finish initializing. In the following example, I use a while loop to wait for the volume to become
available. Then I attach it to an instance using Add-EC2Volume.

$Volume = New-EC2Volume -Size 4 -SnapshotId snap-9470c3e7
 -AvailabilityZone us-east-1a -VolumeType standard
While($Volume.Status -ne 'available') {$Volume = Get-EC2Volume
 -VolumeId $Volume.VolumeId; Start-Sleep -Seconds 15 }
Add-EC2Volume -VolumeId $Volume.VolumeId -InstanceId i-2143eb59 -Device 'xvdg'

Once you are done with the volume, you can detach it from the instance using Dismount-EC2Volume. If you no
longer need the volume, you can also delete it using Remove-EC2Volume, but you have to wait a few seconds between
calls to ensure the dismount is complete.

Dismount-EC2Volume -VolumeId $Volume.VolumeId
Start-Sleep -Seconds 60
Remove-EC2Volume -VolumeId $Volume.VolumeId -Force

CHAPTER 4 ■ ELASTIC BLOCK STORAGE

56

Managing Quality of Service
Some instances—database servers, for example—are more IO intensive than others. AWS offers two options for
managing storage quality of service (QoS): EBS-optimized instances and provisioned IOPS. Note that both options
result in additional charges.

Remember that EBS volumes are shared network storage. Obviously, there are many AWS tenants competing for
the same resources. In addition, the EBS traffic is typically competing for bandwidth with the other network traffic to
and from your own instance. EBS-optimized instances get guaranteed network bandwidth between the instance and
the EBS volumes. This ensures that you get the expected performance regardless of how congested the network gets.

To create an EBS-optimized instance, add the EbsOptimized flag to the New-EC2Instance command. This setting
must be specified at launch and cannot be changed later. In addition, note that not all instance types support EBS
optimization. In the following example, I am launching an m1.large with EBS optimization enabled.

$AMI = Get-EC2ImageByName -Name 'WINDOWS_2012_BASE'
$Reservation = New-EC2Instance -ImageId $AMI[0].ImageId -KeyName 'MyKey' -InstanceType
 'm1.large' -MinCount 1 -MaxCount 1 -EbsOptimized:$true
$Instance = $Reservation.RunningInstance[0]

Provisioned IOPS allows you to specify the number of IO operations per second the EBS disks provide.
Remember that in addition to the network, EBS disks are also shared. If you create a standard disk, you get the best
performance available at that time. When you choose provisioned IOPS, you can specify the performance you need
from the disks. You can specify between 100 and 4000 IOPS, but you cannot change it after the volume is created.

To specify IOPS at launch time, use the EbsBlockDevice object. Simply, set the volume type to "io1" and specify
the IOPS desired. In the following example, I am launching a new EBS-optimized instance with a root volume
provisioned at 300 IOPS.

$Volume = New-Object Amazon.EC2.Model.EbsBlockDevice
$Volume.DeleteOnTermination = $True
$Volume.VolumeSize = 30
$Volume.VolumeType = 'io1'
$volume.IOPS = 300

$Mapping = New-Object Amazon.EC2.Model.BlockDeviceMapping
$Mapping.DeviceName = '/dev/sda1'
$Mapping.Ebs = $Volume

$AMI = Get-EC2ImageByName -Name 'WINDOWS_2012_BASE'
$Reservation = New-EC2Instance -ImageId $AMI[0].ImageId -KeyName 'MyKey'
 -InstanceType 'm1.large' -MinCount 1 -MaxCount 1 -BlockDeviceMapping $Mapping
 -EbsOptimized:$true
$Instance = $Reservation.RunningInstance[0]

CHAPTER 4 ■ ELASTIC BLOCK STORAGE

57

You can also create a new volume with provisioned IOPS and attach it to an existing instance:

$Volume = New-EC2Volume -Size 100 -AvailabilityZone us-east-1a -VolumeType io1 -IOPS 300

You could attach this volume to an instance the same way we did in the previous section:

Add-EC2Volume -VolumeId $Volume.VolumeId -InstanceId i-2143eb59 -Device 'xvdf'

Now we know how to create and manage volumes. We can add volumes when launching a new instance or add a
volume to a running instance. We can also manage the quality of service to guarantee performance. Next, we will talk
about snapshots. As you will see, snapshots allow us to take a point-in-time copy of a volume.

Working with Snapshots
Snapshots are used to create a point-in-time copy a volume often used for backup and recovery. Creating a new
snapshot is really simple. Just call New-EC2Snapshot and pass the ID of the volume. You can also add an optional
description. For example, let’s assume you are about to do a risky upgrade and you want to take a snapshot of an
instance. First, create the snapshot. Note that your volume will have a different ID.

$Snapshot = New-EC2Snapshot -VolumeId vol-c3605d89 -Description 'Before upgrade to version 3.22'

Now, let’s assume that our suspicions were correct, and we need to roll back the change. You already know how
to restore a snapshot. We did it in the last section. You just create a new volume using the snapshot. Make sure that
you restore the volume in the same availability zone as the instance you want to restore.

$Volume = New-EC2Volume -Size 30 -AvailabilityZone us-east-1a -VolumeType standard
 -SnapshotId $Snapshot.SnapshotId

You cannot overwrite the contents of an existing volume. A restore always creates a new volume. Therefore, to
replace the volume of an existing instance, you have to delete the current volume and replace it with the restored one.
Let’s delete the volume with the failed install and replace it with the restored volume. Note that this is the root volume
and the instance should be stopped first.

Dismount-EC2Volume -VolumeId vol-c3605d89
Start-Sleep -Seconds 60
Remove-EC2Volume -VolumeId vol-c3605d89 -Force
Add-EC2Volume -VolumeId $Volume.VolumeId -InstanceId i-2143eb59 -Device '/dev/sda1'

Now, just boot the instance, and you are back where you were before the upgrade.
Let’s assume the upgrade works the second time, and we want to delete the snapshot. Just use Remove-EC2Snapshot:

Remove-EC2Snapshot -SnapshotId $Snapshot.SnapshotId -Force

Before we move on, let’s talk about backup strategy. You are probably accustomed to taking tape backups each
night and storing them offsite. Can a snapshot replace offsite tape backups? Absolutely!

CHAPTER 4 ■ ELASTIC BLOCK STORAGE

58

Snapshots are stored in the AWS S3. S3 data is replicated three times across multiple availability zones within a
region. This provides 99.999999999% durability.

But, let’s say you have a truly critical application that cannot stand an outage. It is possible that an entire region
will suffer a power outage or other catastrophe that will bring your application down temporarily. You can optionally
copy the snapshot to another region using snapshot copy.

Let’s assume we have an application running in Northern Virginia (us-east-1) and want to copy it to Northern
California (us-west-1). The copy is always initiated from the destination region. Again, your snapshot ID will be different.

Copy-EC2Snapshot -SourceRegion 'us-east-1' -SourceSnapshotId 'snap-9d33c193' -Region 'us-west-1'
 -Description 'Copied from Northern Virginia'

Now, in the unlikely case that the all the data in the Northern Virginia region was destroyed, we could recover our
application in Northern California.

Managing Public Snapshots
At the beginning of this chapter, we created a volume that included the Windows 2012 install media from a public
snapshot. There are numerous snapshots available for your use. You can get a list by running Get-EC2Snapshot, but be
warned that there are a lot of snapshots to sift through, and not all of them are from trustworthy sources.

To get a list of snapshots from Amazon, use a filter on owner-alias. This will narrow the list considerably. In the
following example, I use a where clause to further filter the list looking for Windows 2012 media.

$Filter = New-Object Amazon.EC2.Model.Filter
$Filter.Name = 'owner-alias'
$Filter.Value = 'amazon'
Get-EC2Snapshot -Filter $Filter | Where-Object { $_.Description -like '*Windows 2012*' }

In addition to software, Amazon has numerous datasets that can be used for testing. For example, the following
command will return U.S. Census data.

$Filter = New-Object Amazon.EC2.Model.Filter
$Filter.Name = 'owner-alias'
$Filter.Value = 'amazon'
Get-EC2Snapshot -Filter $Filter | Where-Object { $_.Description -eq '1990 US Census (Windows)' }

If you find that you have an interesting dataset that you want to make available to others, you can share your
snapshots. You can choose to share with a specific AWS account or with all AWS accounts.

If you want to share your snapshot with everyone, you call Edit-EC2SnapshotAttribute with the UserGroup attribute.

Edit-EC2SnapshotAttribute -SnapshotId 'snap-9d33c193' -Attribute 'createVolumePermission'
 -OperationType 'add' -UserGroup 'all'

If you prefer to share with a specific account, use the UserId attribute and supply the account number. Note that
you must remove the dashes from your account number, for example, if your account number is 1234-1234-1234.

Edit-EC2SnapshotAttribute -SnapshotId 'snap-9d33c193' -Attribute 'createVolumePermission'
 -OperationType 'add' -UserId '123412341234'

CHAPTER 4 ■ ELASTIC BLOCK STORAGE

59

If you want to remove a permission, just set the operation type to "remove." For example:

Edit-EC2SnapshotAttribute -SnapshotId 'snap-9d33c193' -Attribute 'createVolumePermission'
 -OperationType 'remove' -UserId '123412341234'

And, if you want to remove all permissions to a snapshot, use the Reset-EC2SnapshotAttribute. For example:

Reset-EC2SnapshotAttribute -SnapshotId 'snap-9d33c193' -Attribute 'createVolumePermission'

In this chapter we learned about volumes and snapshots. We learned how to add volumes to an instance and
make copies of a volume using snapshots. In the first exercise, we will build a script to resize a volume. In the second
example, we will build a script to back up all the volumes in an account.

EXERCISE 4.1: RESIZING A VOLUME

Over time, you may find that a volume is not big enough, and you need to resize it. You cannot resize a volume,

per se, but you can create a copy on a larger volume and then replace it. In this example we will build a script that

automates the process.

The script takes two parameters: the id of the volume we want to resize and the new size.

Param(
 [string][Parameter(Mandatory=$True)] $VolumeId,
 [int][Parameter(Mandatory=$True)] $NewSize
)

Before we start, let’s get a reference to the volume so we know how it is attached and what instance it is

attached to.

$OldVolume = Get-EC2Volume -Volume $VolumeId
$Attachment = $OldVolume.Attachment[0]

Next, let’s check a few prerequisites. First, we cannot make the volume smaller, or there will not be room for the

snapshot when we restore it. Second, the instance must be stopped. Actually, this is not always true, but it is

usually a bad idea to remove a volume from a running instance.

If($NewSize -lt $OldVolume.Size) { Throw "New volume must be larger than current" }
If($Attachment.InstanceId -ne $null){
 If((Get-EC2InstanceStatus $Attachment.InstanceId) -ne $null){
 Throw "Instance must be stopped"
 }
}

Now, we can create a new snapshot of the old volume. Remember to wait until the snapshot completes before

you try to restore it.

$Snapshot = New-EC2Snapshot -VolumeId $OldVolume.VolumeId
While($Snapshot.Status -ne 'completed') {$Snapshot = Get-EC2Snapshot
 -SnapshotId $Snapshot.SnapshotId; Start-Sleep -Seconds 15 }

CHAPTER 4 ■ ELASTIC BLOCK STORAGE

60

Next, create a new volume from the snapshot. Notice that I am checking if the old volume is using provisioned

IOPS and creating a new volume with the same settings. Once again, remember to wait for the new volume to

become available.

If($OldVolume.VolumeType -eq 'standard')
{$NewVolume = New-EC2Volume -Size $NewSize -SnapshotId $Snapshot.SnapshotId
 -AvailabilityZone $OldVolume.AvailabilityZone -VolumeType 'standard'}
Else
{$NewVolume = New-EC2Volume -Size $NewSize -SnapshotId $Snapshot.SnapshotId
 -AvailabilityZone $OldVolume.AvailabilityZone -VolumeType 'io1' -IOPS
 $OldVolume.IOPS}
While($NewVolume.Status -ne 'available') {$NewVolume = Get-EC2Volume
 -VolumeId $NewVolume.VolumeId; Start-Sleep -Seconds 15 }

If the volume is attached to an instance, let’s remove the old volume and attach the new one.

If($Attachment.InstanceId -ne $null){
 Dismount-EC2Volume -VolumeId $OldVolume.VolumeId
 Start-Sleep -Seconds 15
 Add-EC2Volume -VolumeId $NewVolume.VolumeId -InstanceId $Attachment.InstanceId
 -Device $Attachment.Device
}

Finally, we can delete the old volume and the temporary snapshot we created.

Remove-EC2Volume -VolumeId $OldVolume.VolumeId -Force
Remove-EC2Snapshot -SnapshotId $Snapshot.SnapshotId -Force

The script is complete, but we are not quite done yet. The EBS volume has been resized, but the Windows

partition has not. See Figure 4-6 for a visualization. To extend the partition, log into Windows and start the

Computer Management MMC. On the Disk Management page, right-click the partition and select Extend Volume.

Just accept the defaults to extend it to its maximum size.

CHAPTER 4 ■ ELASTIC BLOCK STORAGE

61

Figure 4-6. Extending the partition

In this exercise we resized a volume. Note that AWS does not have native support for resizing. Instead, we created

a larger copy of the volume and deleted the original. This is a common pattern with AWS. In Chapter 8 we will use

a similar method to resize an instance. In the next exercise, we will create a script to back up all the volumes in

your account on a schedule.

EXERCISE 4.2: CREATING A BACKUP AGENT

AWS gives you the tools to back up and recover a volume on demand. This is a good start, but not enough.

We really need scheduled backups and the ability to delete snapshots after a specified retention period.

Let’s create a script that will back up every volume in our AWS account.

Our script will take two parameters: a type parameter used to differentiate backup sets and the number of days to

keep the backups. These parameters allow you to run multiple instances of the script with different configurations.

For example, I run a daily backup retained for two weeks and a weekly backup retained for 90 days.

param(
 [parameter(mandatory=$false)][string]$Type = 'Daily',
 [parameter(mandatory=$false)][string]$RetentionDays = 14
)

CHAPTER 4 ■ ELASTIC BLOCK STORAGE

62

The first thing we need to do is determine which volumes to back up. We may not want every volume backed up.

For example, we don’t want to back up our SQL data files. We only want to create a snapshot of the volume that

contains the SQL backup files.

Let’s use a tag to determine which volumes should be backed up. We will create a new tag, named

BackupEnabled. I would prefer to back up all volumes by default. Therefore, the first part of the script will look

for any volumes that have not been tagged. If it finds any, it will assume they should be backed up, and set the

BackupEnabled tag to true. If you don’t want a volume backed up, just change the tag to false.

Unfortunately, you can only use a filter to find items that have been tagged. You cannot use a filter to find items

that have not been tagged. Therefore, we need to get all instances and loop over them, checking for the tag.

If it does not exist, we add it using the New-EC2Tag we learned about in the last chapter.

#First, find any new volumes that have not been marked for backup
Get-EC2Volume | ForEach-Object {
 $HasKey = $False
 $_.Tag | ForEach-Object { If ($_.Key -eq 'BackupEnabled') { $HasKey = $True } }
 If($HasKey -eq $False) {
 #Add Tag to this volume
 $VolumeId = $_.VolumeId
 $Tag = New-Object amazon.EC2.Model.Tag
 $Tag.Key='BackupEnabled'
 $Tag.Value='True'
 Write-Host "Found new volume: $VolumeId"
 New-EC2Tag -ResourceId $VolumeId -Tag $Tag
 }
}

Now that our volumes are tagged, we can use a filter find all the volumes that need to be backed up. Then we can

loop over the volumes and take a snapshot.

$Filter = New-Object Amazon.EC2.Model.Filter
$Filter.Name = 'tag:BackupEnabled'
$Filter.Value = 'True'
Get-EC2Volume -Filter $Filter | ForEach-Object {
 #Backup routine goes here
}

If there is a disaster, we may not be able to access the metadata about which snapshot came from which

instance. Therefore, if the volume is currently attached to an instance, we should record the name and attachment

information in the snapshot description. The following code uses the Get-EC2Instance command we learned

about in the last chapter to get information about the instance.

if($_.Attachment){
 $Device = $_.Attachment[0].Device
 $InstanceId = $_.Attachment[0].InstanceId
 $Reservation = Get-EC2Instance $InstanceId
 $Instance = $Reservation.RunningInstance |
 Where-Object {$_.InstanceId -eq $InstanceId}
 $Name = ($Instance.Tag | Where-Object { $_.Key -eq 'Name' }).Value
 $Description = "Currently attached to $Name as $Device;"
}

CHAPTER 4 ■ ELASTIC BLOCK STORAGE

63

Now, we can create the snapshot as discussed earlier in the chapter.

$Volume = $_.VolumeId
Write-Host "Creating snapshot of volume: $Volume; $Description"
$Snapshot = New-EC2Snapshot $Volume -Description "$Type backup of volume $Volume;
 $Description"

We should also tag the snapshots so we know which were created by our script. We don’t want our script to

delete snapshots it didn’t create. For example, if a developer takes a snapshot before rolling out a new version

of an application, he may not want that to be deleted after two weeks. Let’s add a tag called BackupType used

to differentiate scheduled backups from any others.

#Add a tag so we can distinquish this shanpshot from all the others
$Tag = New-Object amazon.EC2.Model.Tag
$Tag.Key='BackupType'
$Tag.Value=$Type
New-EC2Tag -ResourceId $Snapshot.SnapshotID -Tag $Tag

Great! The routine to create a snapshot is done. Now we just have to create a routine to delete old backups after

the retention period expires. In this routine, I find all of the snapshots that were created by the backup agent, using

the BackupType tag. Then, I check how old it is. If it is older than the retention period, the snapshot is deleted.

Function PurgeBackups($Type, $RetentionDays)
{
 #Delete and snapshots created by this tool, that are older than the specified number of days
 $Filter = New-Object Amazon.EC2.Model.Filter
 $Filter.Name = 'tag:BackupType'
 $Filter.Value = $Type
 $RetentionDate = ([DateTime]::Now).AddDays(-$RetentionDays)
 Get-EC2Snapshot -Filter $filter | Where-Object { [datetime]::Parse($_.StartTime)
 -lt $RetentionDate} | ForEach-Object {
 $SnapshotId = $_.SnapshotId
 Write-Host "Removing snapshot: $SnapshotId"
 Remove-EC2Snapshot -SnapshotId $SnapshotId -Force
 }
}

At this point all we have to do is schedule the script to run once a day. I have this script deployed on an AWS

instance. The instance is configured with an IAM role (as we discussed in Chapter 2), and I saved the script as

C:\AWS\DailyBackup.ps1.

To schedule the job, log into the instance that is going to run the script and open Task Scheduler. Then follow

these steps:

1. Click the Create a Basic Task link.

2. Name the task “DailyBackup” and click Next.

3. Choose Daily, and click Next.

4. Pick a time of day for the script to run and click Next.

5. Choose Start a Program and click Next.

6. Fill in the next screen, as shown in Figure 4-7, and click Next.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 4 ■ ELASTIC BLOCK STORAGE

64

7. Check the “Open the properties dialog . . .” option and click Finish.

8. Click the Change User or Group button.

9. Change the user to NETWORK SERVICE, as shown in Figure 4-8, and click OK.

Figure 4-7. Configure a scheduled task

CHAPTER 4 ■ ELASTIC BLOCK STORAGE

65

10. Click OK to close the wizard.

In this chapter we created a scheduled task that uses snapshots to create a backup of all volumes. Let’s stop and

reflect on how easy that was. A few lines of code just replaced backup tapes forever. You don’t need an operator

on staff after hours to put tapes in servers. You don’t need to manage tape storage and rotation. And, if you added

a call to Copy-EC2Snapshot, you will never have to ship tapes to an offsite storage location again.

Summary
In this chapter we examined volumes and snapshots. We learned how to customize and add additional volumes at
launch as well modify volumes after launch. We learned how to back up and restore a volume using highly durable
snapshots and copy snapshots to another region for even greater durability.

In the first example, we created a script to resize a volume. You can use this script anytime you are running out
of space on an existing instance. In the second example, we created a scheduled task that backs up all the volumes in
your account. You can use this script to replace tape backups.

In the next chapter, we will learn how to configure a Virtual Private Cloud (VPC). VPC allows you to create your
own private network configuration in the cloud. We will discuss subnets, routing, and security.

Figure 4-8. Configure user or group

67

CHAPTER 5

Virtual Private Cloud

In this chapter we are going to discuss Virtual Private Cloud (VPC). VPC allows you to configure a custom network
topology, as well as manage IP routing and security. A network topology is the structure of the network and controls
how data flows between nodes.

This chapter will be a bit different from the prior ones. On one hand, the commands are relatively simple. Most
only have one or two parameters. On the other hand, these primitive commands can be woven together in countless
ways to create a seemingly endless combination of network topologies.

Throughout this chapter, we will continue to explore the Web Console and the individual PowerShell commands.
In previous chapters, each section stood alone. All the sections in this chapter will build upon each other and come
together at the end to produce a single solution, pictured in Figure 5-1.

VPC (192.168.0.0/16)

Public Subnet

192.168.1.0/24

Internet

Gateway

Private Subnet

192.168.2.0/24

Route

Table

EC2

Web Server

EC2

SQL Server

Figure 5-1. Simple VPC network topology

CHAPTER 5 ■ VIRTUAL PRIVATE CLOUD

68

Figure 5-1 shows a simple network with two subnets. The public subnet is Internet accessible. We would use
the public subnet to host our web servers. The private subnet is not connected to the Internet and is used to host
our database. This is a common pattern in IT. Typically we put the web servers in the “DMZ” and keep the database
behind the firewall.

Note ■ This chapter often takes a roundabout solution in order to show you each command. For example, I could

have created a new route table for the public subnet rather than altering the Main route table and then creating a new

main table. But, then I would not have reason to talk about deleting route tables and altering associations. If you want a

streamlined script, exercise 5.1 includes a complete script that will build the network pictured in Figure 5-1 in a much

more direct manner than I followed throughout the chapter.

Let’s get started with the first step in this process: creating a VPC.

Creating a VPC
VPC allows you to create one or more networks of EC2 instances. Note that each account can have up to five VPCs
per region. For example, you can implement a layered security approach or span multiple availability zones for high
availability. This chapter and Chapter 6 focus on security while Chapter 8 focuses on high availability.

As usual, let’s start in the Web Console and then move to PowerShell. In the Web Console, from the Services
dropdown at the top of the screen, choose VPC. We will build up our VPC in stages so we can discuss each piece. Note
that AWS offers a VPC wizard, which we are not going to use. The second option in the VPC wizard, “VPC with Public
and Private Subnets,” is similar to the network we are going to create in this chapter.

To create a new VPC, navigate to the Your VPCs page and click the Create VPC button. The Create VPC dialog has
only one tab (see Figure 5-2). Enter the CIDR range you wish to use.

Figure 5-2. The Create VPC dialog box

CHAPTER 5 ■ VIRTUAL PRIVATE CLOUD

69

You can provision a CIDR block up to a “/16.” A “/16” network will give you about 65,535 hosts. You can use
any network, but note that VPC addresses are not Internet accessible. Your hosts will access the Internet using
Network Address Translation (NAT). Therefore, you should use a private (non-routable) segment such as 10.0.0.0/8,
172.16.0.0/12, or 192.168.0.0/16.

Most organizations are already using the 10.0.0.0 network. Therefore, I tend to use 10.0.0.0 for any VPC that will
be attached to the corporate network. AWS uses 172.16.0.0 for the default VPC that is replacing EC2 Classic in some
regions. That leaves 192.168.0.0. I like to use 192.168.0.0 for VPCs that are neither attached to the corporate network
nor the default VPC. This makes it easy to tell which VPC is which later.

The Tenancy option allows you to provision a dedicated VPC. If you choose a dedicated VPC, you can only
launch dedicated instances into that VPC. A dedicated instance runs on dedicated hardware that is not shared with
other AWS clients. This is an expensive option and not one I have used often.

The equivalent PowerShell is equally simple.

$VPC = New-EC2Vpc -CidrBlock '192.168.0.0/16'
$VPC.VpcId

As you can see, creating a VPC is really easy. Before we can launch a machine into the VPC, we need to carve it up
into multiple subnets. In the next section we will create a subnet.

Creating a Subnet
Now that we have our VPC created, we want to carve it up into multiple subnets to host our instances. (We will add
hosts to the subnet in Chapter 6.)

Each subnet is assigned to an availability zone. Remember from Chapter 1 that an availability zone is one of
multiple data centers that comprise a region. We can use multiple availability zones to ensure high availability.
(I will cover high availability in Chapter 8.)

Each subnet is also assigned a subset of the VPC’s address space, again using CIDR notation. Here I am using
a “/24.” This will divide the VPC into 256 subnets of about 256 hosts each.

RESERVED IPS

In reality, we will not get 256 hosts per subnet when using “/24.” The first four and last addresses are reserved.

The reserved addresses are used as follows:

First - Network ID

Second - Gateway

Third - DHCP and DNS services

Fourth - Reserved for future use

Last - Network Broadcast

Creating a subnet using the Web Console is relatively easy. You simply identify the availability zone and CIDR
range (see Figure 5-3).

CHAPTER 5 ■ VIRTUAL PRIVATE CLOUD

70

Creating a subnet with PowerShell is equally easy. Just use New-EC2Subnet. This command takes the same
parameters as the Web Console: the VPC, availability zone, and CIDR block.

New-EC2Subnet -VpcId 'vpc-57074739' -CidrBlock '192.168.2.0/24' -AvailabilityZone 'us-east-1a'

You can list the subnets with the Get-EC2Subnet command. Unfortunately, Get-EC2Subnet does not have a VPC
parameter. This is true of all the VPC-related commands. If you want to list the subnets in a given VPC you have to use
a filter. For example:

$VPCFilter = New-Object Amazon.EC2.Model.Filter
$VPCFilter.Name = 'vpc-id'
$VPCFilter.Value = 'vpc-57074739'
Get-EC2Subnet -Filter $VPCFilter

Of course you can delete a subnet using the Remove-EC2Subnet command. Note that if the subnet has instances
assigned, the remove command will fail.

Remove-EC2Subnet -SubnetId 'subnet-0a9ace64' -Force

At this point we have a VPC with a single subnet. We could launch an instance into this subnet, but you would
not be able to connect to the instance because our VPC has no connection to the outside world. In the next section,
we will add an Internet gateway, which is a connection to the Internet.

Creating an Internet Gateway
At this point your VPC is isolated from the world. You can launch an instance, but it cannot connect to the Internet.
More importantly, you cannot connect to it either. To create a connection to the Internet, you need an Internet
gateway.

Think of the Internet gateway like your router at home. It connects all of the instances in your VPC to the Internet
using Network Address Translation (NAT). While your home network probably only has only one public IP address,
the EC2 Internet Gateway allows you to assign a public IP address to each instance. These public IP addresses are
known as Elastic IP addresses. (We will be assigning Elastic IP addresses in Chapter 6.)

Figure 5-3. The Create Subnet dialog box

CHAPTER 5 ■ VIRTUAL PRIVATE CLOUD

71

The process of creating an Internet gateway is the same using the Web Console or PowerShell. First you create
a new gateway and then you connect it to a VPC. In PowerShell it looks like this:

$InternetGateway = New-EC2InternetGateway
Add-EC2InternetGateway -InternetGatewayId $InternetGateway.InternetGatewayId -VpcId
 'vpc-57074739'

Despite the two-step process you can only connect the gateway to one VPC at a time. If necessary, you can
disconnect the gateway from VPC and connect it to another.

At this point you have a VPC with a subnet and Internet connection. In the next section we will configure routing
within the VPC.

Managing Route Tables
Now that we have an Internet connection, we need to tell instances how to find that connection. We use routes to do
this. Every subnet is associated with a route table that tells an instance the best way to reach a given destination.

Note ■ Routing is a fairly complicated topic. If you are not familiar with IP routing, I recommend reading up on the basics.

When we create the VPC, AWS created a default route table (see Figure 5-4). Notice that the route table is associated
with 0 subnets; this is deceiving. The route table is not explicitly associated with any subnets, but it is identified as the
Main route table in the VPC. Subnets will use the Main route table unless you explicitly configure them to use another
route table. Therefore, all of the subnets in our VPC are using this route table.

Figure 5.4. Sample route table displayed in the Web Console

The Main route table has only one route by default. This route says that all traffic destined for 192.168.0.0/16
should stay local. Remember that our VPC is using the range 192.168.0.0/16. In other words, only local traffic is
configured by default; there is no route to the Internet.

CHAPTER 5 ■ VIRTUAL PRIVATE CLOUD

72

To list route tables in PowerShell, use Get-EC2RouteTable. If you have more than one VPC, use a filter to display
only those route tables in a given VPC.

$VPCFilter = New-Object Amazon.EC2.Model.Filter
$VPCFilter.Name = 'vpc-id'
$VPCFilter.Value = 'vpc-57074739'
Get-EC2RouteTable -Filter $VPCFilter

Each route table has a Routes property that contains a list of the individual routes. It is easier to read if you pipe
the list to Format-Table:

$VPCFilter = New-Object Amazon.EC2.Model.Filter
$VPCFilter.Name = 'vpc-id'
$VPCFilter.Value = 'vpc-57074739'
 (Get-EC2RouteTable -Filter $VPCFilter).Routes | Format-Table

If you want to get a reference to the Main route table, use the association.main filter with a value of true.
Note that true will be passed as a string and must be specified in lower case.

$VPCFilter = New-Object Amazon.EC2.Model.Filter
$VPCFilter.Name = 'vpc-id'
$VPCFilter.Value = 'vpc-57074739'
$IsDefaultFilter = New-Object Amazon.EC2.Model.Filter
$IsDefaultFilter.Name = 'association.main'
$IsDefaultFilter.Value = 'true'
$DefaultRouteTable = Get-EC2RouteTable -Filter $VPCFilter, $IsDefaultFilter
$DefaultRouteTable.Routes | Format-Table

Now we want to tell our instances about the Internet gateway. To do this, we add a new route to the route table.
In Figure 5-5, I am adding a route to 0.0.0.0/0 to the Internet gateway we created.

Figure 5-5. Adding a new route to a route table

CHAPTER 5 ■ VIRTUAL PRIVATE CLOUD

73

The route table works like this. Whenever a request is received, AWS looks at the route table to determine what to
do with it. It tries to match the request with the most specific route. The larger the number after the forward slash, the
more specific the route. Since the rule we just added has a zero after the slash, this rule will be evaluated last.

For example, assume a request is destined for www.google.com at 173.194.43.2. AWS will first check it against the
most specific rule. In this case the 192.168.0.0/16 is the most specific. The rule says to check if the first 16 bits of the
destination (e.g., 173.194) match the route (192.168). Since they do not match, AWS tries the next route. The next route
has a zero after the slash. Since there are zero bits to match, this rule always matches (this is called the default route).
Therefore, AWS routes the request to the Internet gateway.

To add a new route to the route table using PowerShell, use the New-EC2Route command.

New-EC2Route -RouteTableId 'rtb-52007473c' -DestinationCidrBlock '0.0.0.0/0'
 -GatewayId 'igw-79095f17'

You can also create a route that points to a specific instance. You might do this if you want to take specific actions
on the traffic. For example, you might want to run a software firewall or web proxy on an EC2 instance. AWS offers
many such virtual appliances in the marketplace. There is an example of this in the exercises at the end of Chapter 6.

To route traffic to a specific instance in PowerShell, use InstanceId rather than GatewayId.

New-EC2Route -RouteTableId 'rtb-52007473c' -DestinationCidrBlock '0.0.0.0/0' -InstanceId
 'i-12345678'

Not all subnets in a VPC need to use the same route table. You can create a custom route table for each subnet.
A common use of this is to create a private subnet that does not have Internet connectivity, and a public subnet that
does. Security standards often require that databases be hosted in a private subnet without Internet connectivity.

Let’s create a new route table that does not have Internet connectivity.

New-EC2RouteTable -VpcId 'vpc-57074739'

Now that we have more than one route table, we need to associate the subnet with a route table. To this we use a
route table association.

Register-EC2RouteTable -RouteTableId 'rtb-d65006b8' -SubnetId 'subnet-334e185d'

At this point, we have two route tables in our VPC. Remember that we added Internet connectivity to our Main
route. This is the route that will be used by default. It would be better security practice to have our Main route table
be private. This way, if we create a new subnet, it defaults to the subnet without Internet access and only gets it if we
explicitly assign it to the public subnet.

Changing the Main route table is less than intuitive because there is no command to change the Main route table.
First, you have to find the Main route table using filters. Then, you find the Main route table association. Typically,
an association maps a route table to a subnet, but the main association is special in that the subnet is blank.

$VPCFilter = New-Object Amazon.EC2.Model.Filter
$VPCFilter.Name = 'vpc-id'
$VPCFilter.Value = 'vpc-57074739'
$IsDefaultFilter = New-Object Amazon.EC2.Model.Filter
$IsDefaultFilter.Name = 'association.main'
$IsDefaultFilter.Value = 'true'
$MainRouteTable = Get-EC2RouteTable -Filter $VPCFilter, $IsDefaultFilter
$Association = $MainRouteTable.Associations | Where-Object {$_.Main -eq $True}
$Association

http://www.google.com/

CHAPTER 5 ■ VIRTUAL PRIVATE CLOUD

74

This command returns:

RouteTableAssociationId RouteTableId SubnetId Main
----------------------- ------------ -------- ----
rtbassoc-5307473d rtb-5207473c True

Since there is no command to change the Main route table, we have to reassign the existing association to a new
route table using the Set-EC2RouteTableAssociation command.

Set-EC2RouteTableAssociation -AssociationId $Association.RouteTableAssociationId
 -RouteTableId 'rtb-d65006b8'

I know that was a lot of material very quickly. I strongly recommend that you work through the examples at the
end of this chapter to better understand EC2 routing. Let’s review our progress so far. We created a VPC, added a
subnet and Internet gateway, and configured routing. In the next section, we will configure network security.

Managing Network ACLs
Network Access Control Lists (ACLs) allow you to control what types of traffic can enter and leave a subnet. Each
ACL contains an ordered list of inbound and outbound rules. If you have worked with EC2 Classic in the past, you are
likely familiar with Security Groups. ACLs and Security Groups are similar in that they allow you to filter traffic on the
network. (We will cover security groups in Chapter 6.) The main differences are the following:

 1. ACLs are applied to a network segment, while security groups are applied to individual
instances.

 2. Security Groups are stateful while ACLs are stateless. This means ACLs require a rule for
both the request and response, while security groups only require a request rule.

AWS creates a default ACL for each new VPC. As you can see in Figure 5-6, the default ACL contains two
rules. The first allows all traffic to anywhere and second denies all traffic to anywhere. Rules are executed in order.
Therefore, the first rule is always applied and the default behavior is to allow all traffic to and from anywhere.
Obviously it is a good idea to create more conservative rules.

CHAPTER 5 ■ VIRTUAL PRIVATE CLOUD

75

To get the same list using PowerShell, use the Get-EC2NetworkACL command. Again, I am using a filter to only
return the ACLs from one VPC because you may have more than one VPC in a given region. Notice that there are both
inbound (egress=false) and outbound (egress=true) rules. Figure 5-6 was displaying the inbound rules only.

$VPCFilter = New-Object Amazon.EC2.Model.Filter
$VPCFilter.Name = 'vpc-id'
$VPCFilter.Value = 'vpc-57074739'
$ACL = Get-EC2NetworkAcl -Filter $VPCFilter
$ACL.Entries | Format-Table

This code returns the following output:

RuleNumber Protocol RuleAction Egress CidrBlock Icmp PortRange
---------- -------- ---------- ------ --------- ---- ---------
100 -1 allow True 0.0.0.0/0
32767 -1 deny True 0.0.0.0/0
100 -1 allow False 0.0.0.0/0
32767 -1 deny False 0.0.0.0/0

As you can see from the two rules numbered 100, the default ACL allows all traffic into and out of the subnet.
Now let’s learn how to modify the default rules.

Securing the Public Subnet
It is bad practice to allow all traffic into our network. Let’s assume that we are running a web site). The public subnet
hosts a web server and the private subnet hosts a database. We want to allow the minimum set of traffic possible into
each subnet.

Figure 5-6. Network ACLs

CHAPTER 5 ■ VIRTUAL PRIVATE CLOUD

76

First let’s remove the rule 100 that allows all traffic. Note that I am removing both the inbound and outbound rules.

Remove-EC2NetworkAclEntry -NetworkAclId acl-5507473b -RuleNumber 100 -Egress $true -Force
Remove-EC2NetworkAclEntry -NetworkAclId acl-5507473b -RuleNumber 100 -Egress $false -Force

Now let’s add rules for the public subnet. First, we need to allow HTTP traffic from the Internet. Remember that
0.0.0.0/0 means traffic from anywhere. Also, HTTP uses port 80 and TCP is protocol 6.

New-EC2NetworkAclEntry -NetworkAclId acl-5507473b -RuleNumber 100 -CidrBlock '0.0.0.0/0'
 -Egress $False -PortRange_From 80 -PortRange_To 80 -Protocol 6 -RuleAction 'Allow'

Remember that ACLs are stateless. This means that we need to create separate rules for the request and response.
Security groups on the other hand are stateful. You only need to create a rule for the request, and AWS takes care of
the response.

When the browser makes a request to our web server, the destination port is 80. But, there is also a source port,
called the ephemeral port. The ephemeral port is chosen at random in the range 49152 to 65535. The web server sends
its reply back to the ephemeral port the request was received from. Therefore, we need a corresponding egress rule for
the reply:

New-EC2NetworkAclEntry -NetworkAclId 'acl-5507473b' -RuleNumber 100 -CidrBlock '0.0.0.0/0'
 -Egress $True -PortRange_From 49152 -PortRange_To 65535 -Protocol 6 -RuleAction 'Allow'

The web server also needs to talk to the database. Let’s assume the database server is running Microsoft SQL
Server and is located in the private subnet. SQL Server uses port 1433 and the CIDR range for the private subnet is
192.168.2.0/24. Therefore, we need to allow the request on port 1433, and the response in the ephemeral range.

New-EC2NetworkAclEntry -NetworkAclId 'acl-5507473b' -RuleNumber 200 -CidrBlock '192.168.2.0/24'
 -Egress $True -PortRange_From 1433 -PortRange_To 1433 -Protocol 6 -RuleAction 'Allow'

New-EC2NetworkAclEntry -NetworkAclId 'acl-5507473b' -RuleNumber 200 -CidrBlock '192.168.2.0/24'
 -Egress $False -PortRange_From 49152 -PortRange_To 65535 -Protocol 6 -RuleAction 'Allow'

Notice that I have incremented the rule number by 100. It is common to increment by 100 to allow room to insert
additional rules later. Remember that the rules are always executed in order, until a rule is found that either allows or
denies the traffic. Before moving on to the private subnet, let’s spend a minute looking at deny rules.

You may have noticed that we allow HTTP traffic from any source (i.e., 0.0.0.0/0). This includes the private
subnet. This is not really what we intended. We wanted to allow traffic from the Internet, but not within the VPC.
We can block this by adding a deny rule that fires before rule 100.

New-EC2NetworkAclEntry -NetworkAclId 'acl-5507473b' -RuleNumber 50 -CidrBlock '192.168.0.0/16'
 -Egress $False -PortRange_From 80 -PortRange_To 80 -Protocol 6 -RuleAction 'Deny'

New-EC2NetworkAclEntry -NetworkAclId 'acl-5507473b' -RuleNumber 50 -CidrBlock '192.168.0.0/16'
 -Egress $True -PortRange_From 49152 -PortRange_To 65535 -Protocol 6 -RuleAction 'Deny'

In the preceding example, I have added a new rule with rule number 50. This rule will fire first. If a request
is received from within the VPC, the request will be denied and processing will stop. If the request is received
from outside the VPC, this rule will not match and rule 100 will fire next. Rule 100 will then allow the request and
processing will stop.

CHAPTER 5 ■ VIRTUAL PRIVATE CLOUD

77

Now let’s look at what would happen if we received a request we didn’t anticipate. We didn’t plan for HTTPS
requests. If we received a request on port 443, rules 50, 100, and 200 would again fire in order, but none would match
because none of the existing rules are for port 443. Next, rule 32767 would fire and deny the request. Rule 32767 is the
max rule number. It is always present and cannot be deleted. In other words, if none of the rules that we create match,
the traffic is always denied.

FINDING THE NEXT ACL RULE NUMBER

When you create new rules, you often need to know the largest rule number in the list so you can use the next

number. Here is a quick script to find the largest egress rule in PowerShell.

$MaxAcl = ((Get-EC2NetworkAcl -NetworkAclId acl-5507473b).Entries | Where-Object
 {$_.Egress -and $_.RuleNumber -lt 32767 } | Measure-Object RuleNumber
 -Maximum).Maximum
$NextAcl = $MaxAcl + 100

Now that we have the public subnet configured, let’s look at the private subnet.

Securing the Private Subnet
At this point we have our public subnet locked down, but we have ignored our private subnet. Even worse, we have
been applying the rules to the only access control list in the VPC. This means that the rules we applied to the public
subnet have also been applied to the private one that is going to host our database server. Let’s fix this.

First, let’s create a new access control list for the private subnet. In PowerShell, we use the New-EC2NetworkAcl
command.

$ACL = New-EC2NetworkAcl -VpcId 'vpc-57074739'
$ACL.Entries | Format-Table

This code returns the following output:

RuleNumber Protocol RuleAction Egress CidrBlock Icmp PortRange
---------- -------- ---------- ------ --------- ---- ---------
32767 -1 deny True 0.0.0.0/0
32767 -1 deny False 0.0.0.0/0

Notice that the list is effectively empty. The only entries are the default deny rules. This is different from the ACL
that was created when we created the VPC. That ACL allowed all traffic, and this one denies all traffic.

Let’s add rules to allow all traffic in and out of our private subnet. This may seem like we are cutting corners. Why
don’t we create specific rules like we did for the public subnet? We could, and we probably should, but remember that
the public subnet is Internet accessible. The public subnet is much more likely to be attacked. It is common to put
much stronger controls on the public subnets and leave the private subnets free to communicate among one another.
Think of this like your house. You likely have a much better lock on your front door than you do on your bedroom. For
now let’s keep it simple and allow all traffic.

New-EC2NetworkAclEntry -NetworkAclId $ACL.NetworkAclId -RuleNumber 100 -CidrBlock '0.0.0.0/0'
 -Egress $True -Protocol '-1' -RuleAction 'Allow'
New-EC2NetworkAclEntry -NetworkAclId $ACL.NetworkAclId -RuleNumber 100 -CidrBlock '0.0.0.0/0'
 -Egress $False -Protocol '-1' -RuleAction 'Allow'

CHAPTER 5 ■ VIRTUAL PRIVATE CLOUD

78

Now, all we have to do is attach this ACL to the private subnet. The process is similar to changing the Main route table.
First, we use a filter to find the ACL associated with the subnet. Then, we get a reference to the association for the ACL. Next,
we get a reference to the new ACL we want to assign to the subnet. Finally, we use the Set-EC2NetworkAclAssociation to
point the association to the new ACL.

$SubnetFilter = New-Object Amazon.EC2.Model.Filter
$SubnetFilter.Name = 'association.subnet-id'
$SubnetFilter.Value = 'subnet-334e185d'
$OldACL = Get-EC2NetworkAcl -Filter $SubnetFilter
$OldAssociation = $OldACL.Associations | Where-Object { $_.SubnetId -eq 'subnet-334e185d' }
Set-EC2NetworkAclAssociation -AssociationId $OldAssociation.NetworkAclAssociationId
 -NetworkAclId acl- db9dc0b5'

Working with ACLs can be very tedious. You must very careful to identify the traffic in both directions. In Chapter
6 we will discuss security groups, which offer a much easier solution to filter traffic to and from individual instances.
Before we end this chapter, let’s have a quick look at configuring DHCP.

Managing DHCP
VPC uses Dynamic Host Configuration Protocol (DHCP) to configure the instances in the VPC. Although you are likely
familiar with DHCP, it works a bit differently at AWS.

First, IP addresses are assigned to the instance for life. Once a primary IP address is assigned, it cannot be
changed, and cannot be assigned to another instance until the instance is terminated. (Note that you can add and
remove secondary IP addresses, which we will do in Chapter 6.)

Second, you cannot change the network configuration from within the instance. AWS does not use layer
two broadcasts to discover network configuration changes. Rather it depends on the instance metadata to make
forwarding decisions. If you change an IP address from within Windows, AWS will not learn of the change, and traffic
will not be forwarded to the server.

In addition to managing IP addresses, DHCP is also used to configure DNS, NetBIOS, and Network Time Protocol
(NTP). AWS offers DNS and NTP services, but if you prefer, you can choose to override the default settings to use
another service.

Let’s imagine that we are going to launch an Active Directory (AD) server into our private subnet. Our AD
instance will be assigned the IP address 192.168.2.10. The domain name is brianbeach.com. We want AD to be
the primary DNS, NetBIOS, and NTP server. Using the Web Console, you simply create a new option set and then
associate it with a VPC (see Figure 5-7).

http://brianbeach.com/

CHAPTER 5 ■ VIRTUAL PRIVATE CLOUD

79

To change the DHCP configuration using PowerShell, we first create an array of configuration options. Then,
we use New-EC2DHCPOption to create a new option set. Finally, we associate to the new option set with our VPC using
Register-EC2DhcpOption:

$Domain = New-Object Amazon.EC2.Model.DhcpConfiguration
$Domain.Key = 'domain-name'
$Domain.Value = 'brianbeach.com'
$DNS = New-Object Amazon.EC2.Model.DhcpConfiguration
$DNS.Key = 'domain-name-servers'
$DNS.Value = '192.168.2.10'
$NTP = New-Object Amazon.EC2.Model.DhcpConfiguration
$NTP.Key = 'ntp-servers'
$NTP.Value = '192.168.2.10'
$NetBios= New-Object Amazon.EC2.Model.DhcpConfiguration
$NetBios.Key = 'netbios-name-servers'
$NetBios.Value = '192.168.2.10'
$NetBiosType = New-Object Amazon.EC2.Model.DhcpConfiguration
$NetBiosType.Key = 'netbios-node-type'
$NetBiosType.Value = '2'
$DHCP = New-EC2DHCPOption -DhcpConfiguration $Domain, $DNS, $NTP, $NetBios, $NetBiosType
Register-EC2DhcpOption -DhcpOptionsId $DHCP.DhcpOptionsId -VpcId 'vpc-57074739'

Figure 5-7. Creating a new DHCP option set

http://brianbeach.com/

CHAPTER 5 ■ VIRTUAL PRIVATE CLOUD

80

Note that the DHCP configuration is associated with a VPC rather than a subnet. You cannot have a different
configuration in each subnet. If you choose to use your own DNS or other service, it is a good idea to launch more
than one of each service for high availability. For instance, you might have two AD servers. One uses IP 192.168.2.10,
and one uses 192.168.12.10. To configure this, just include both in the Options array. For example:

$Domain = New-Object Amazon.EC2.Model.DhcpConfiguration
$Domain.Key = 'domain-name'
$Domain.Value = 'brianbeach.com'
$DNS1 = New-Object Amazon.EC2.Model.DhcpConfiguration
$DNS1.Key = 'domain-name-servers'
$DNS1.Value = '192.168.2.10'
$DNS2 = New-Object Amazon.EC2.Model.DhcpConfiguration
$DNS2.Key = 'domain-name-servers'
$DNS2.Value = '192.168.12.10'
$DHCP = New-EC2DHCPOption -DhcpConfiguration $Domain, $DNS1, $DNS2

In the preceding example, note that not all options are required. You can choose to configure only some options.
If you choose to omit DNS, be sure to include a reference to AmazonProvidedDNS or you will not be able to resolve any
DNS names. Here is an example if you want to change the default domain name, but use Amazon’s DNS:

$Domain = New-Object Amazon.EC2.Model.DhcpConfiguration
$Domain.Key = 'domain-name'
$Domain.Value = 'brianbeach.com'
$DNS = New-Object Amazon.EC2.Model.DhcpConfiguration
$DNS.Key = 'domain-name-servers'
$DNS.Value = 'AmazonProvidedDNS'
$DHCP = New-EC2DHCPOption -DhcpConfiguration $Domain, $DNS

Wow, that was a lot of content to get through. I’m glad you made it! At this point your VPC is complete. In the next
chapter we will launch a few instances into the new VPC. But, before we do, let’s look at this chapter’s exercises. In the
first exercise, we will build a streamlined script that creates a new VPC identical to the one described in this chapter.
In the second example, we will use a Virtual Private Gateway to connect the VPC to a local office.

EXERCISE 5.1: CREATING A VIRTUAL PRIVATE CLOUD

In this exercise, we will create an end-to-end script to provision a Virtual Private Cloud (see Figure 5-8). The VPC

wizard, available in the Web Console, does a good job of creating a VPC, but you want more control. In addition,

you want the process to run unattended. Therefore, you decide to script the build in PowerShell.

http://brianbeach.com/
http://brianbeach.com/

CHAPTER 5 ■ VIRTUAL PRIVATE CLOUD

81

In continuous integration, you want to start fresh to ensure that manual changes made the day before do not

impact the results of testing. In the cloud, we can truly start from the ground up every day. Imagine how difficult

this would be with physical switches and routers. AWS makes continuous integration really easy.

This exercise will create and configure the VPC shown in Figure 5-8. I assume our application is a simple web

application with an SQL database. The script will create a public subnet for the web server and a private subnet

for the SQL Server. Note that the script will not launch the instances. We will build on this recipe in later chapters.

Here are the main components of our script:

Create a VPC•

Create a DHCP option set•

Create subnets•

Add an Internet gateway•

Configure a routing table•

Configure ACLs•

VPC (192.168.0.0/16)

Public Subnet

192.168.1.0/24

Internet

Gateway

Private Subnet

192.168.2.0/24

Route

Table

EC2

Web Server

EC2

SQL Server

Figure 5-8. Simple VPC (Note: Our script will not add instances.)

CHAPTER 5 ■ VIRTUAL PRIVATE CLOUD

82

Our script takes a few parameters. First, it requires a domain name (e.g., brianbeach.com). Second, it takes the

CIDR range of the VPC and two subnets.

param
(
 [string][parameter(mandatory=$true)]$DomainName,
 [string][parameter(mandatory=$false)]$VPCCIDR = '192.168.0.0/16',
 [string][parameter(mandatory=$false)]$PublicSubnetCIDR = '192.168.1.0/24',
 [string][parameter(mandatory=$false)]$PrivateSubnetCIDR = '192.168.2.0/24'
)

Next, we create a new VPC. I wait a few seconds to avoid errors. The Create Subnet command below will fail if the

VPC has not been created.

$VPC = New-EC2Vpc -CidrBlock $VPCCIDR
Start-Sleep -s 15 #This can take a few seconds

Then, we configure the DHCP options. Here I am using the default DNS provider.

#Configure the DHCP Options
$Domain = New-Object Amazon.EC2.Model.DhcpConfiguration
$Domain.Key = 'domain-name'
$Domain.Value = $DomainName
$DNS = New-Object Amazon.EC2.Model.DhcpConfiguration
$DNS.Key = 'domain-name-servers'
$DNS.Value = 'AmazonProvidedDNS'
$DHCP = New-EC2DHCPOption -DhcpConfiguration $Domain, $DNS
Register-EC2DhcpOption -DhcpOptionsId $DHCP.DhcpOptionsId -VpcId $VPC.VpcId

Now we can create our two subnets. The web servers will be hosted in the public subnet and have Internet

access. The SQL server will be hosted in the private subnet and will not have Internet access.

#Pick the first availability zone in the region.
$AvailabilityZones = Get-EC2AvailabilityZone
$AvailabilityZone = $AvailabilityZones[0].ZoneName

#Create and tag the Public subnet.
$PublicSubnet = New-EC2Subnet -VpcId $VPC.VpcId
 -CidrBlock $PublicSubnetCIDR -AvailabilityZone $AvailabilityZone
Start-Sleep -s 15 #This can take a few seconds
$Tag = New-Object Amazon.EC2.Model.Tag
$Tag.Key = 'Name'
$Tag.Value = 'Public'
New-EC2Tag -ResourceId $PublicSubnet.SubnetId -Tag $Tag

#Create and tag the Private subnet.
$PrivateSubnet = New-EC2Subnet -VpcId $VPC.VpcId
 -CidrBlock $PrivateSubnetCIDR -AvailabilityZone $AvailabilityZone
Start-Sleep -s 15 #This can take a few seconds
$Tag = New-Object Amazon.EC2.Model.Tag

http://brianbeach.com/

CHAPTER 5 ■ VIRTUAL PRIVATE CLOUD

83

$Tag.Key = 'Name'
$Tag.Value = 'Private'
New-EC2Tag -ResourceId $PrivateSubnet.SubnetId -Tag $Tag

Now, we add an Internet gateway and configure the route table.

#Add an Internet Gateway and attach it to the VPC.
$InternetGateway = New-EC2InternetGateway
Add-EC2InternetGateway -InternetGatewayId $InternetGateway.InternetGatewayId -VpcId $VPC.
VpcId

#Create a new routeTable and associate it with the public subnet
$PublicRouteTable = New-EC2RouteTable -VpcId $VPC.VpcId
New-EC2Route -RouteTableId $PublicRouteTable.RouteTableId -DestinationCidrBlock '0.0.0.0/0'
 -GatewayId $InternetGateway.InternetGatewayId
$NoEcho = Register-EC2RouteTable -RouteTableId $PublicRouteTable.RouteTableId
 -SubnetId $PublicSubnet.SubnetId

Finally, we configure the ACLs.

#Create a new Access Control List for the public subnet
$PublicACL = New-EC2NetworkAcl -VpcId $VPC.VpcId
New-EC2NetworkAclEntry -NetworkAclId $PublicACL.NetworkAclId -RuleNumber 50
 -CidrBlock $VPCCIDR -Egress $false -PortRange_From 80
 -PortRange_To 80 -Protocol 6 -RuleAction 'Deny'
New-EC2NetworkAclEntry -NetworkAclId $PublicACL.NetworkAclId -RuleNumber 50
 -CidrBlock $VPCCIDR -Egress $true -PortRange_From 49152
 -PortRange_To 65535 -Protocol 6 -RuleAction 'Deny'
New-EC2NetworkAclEntry -NetworkAclId $PublicACL.NetworkAclId -RuleNumber 100
 -CidrBlock '0.0.0.0/0' -Egress $false -PortRange_From 80
 -PortRange_To 80 -Protocol 6 -RuleAction 'Allow'
New-EC2NetworkAclEntry -NetworkAclId $PublicACL.NetworkAclId -RuleNumber 100
 -CidrBlock '0.0.0.0/0' -Egress $true -PortRange_From 49152
 -PortRange_To 65535 -Protocol 6 -RuleAction 'Allow'
New-EC2NetworkAclEntry -NetworkAclId $PublicACL.NetworkAclId -RuleNumber 200
 -CidrBlock $PrivateSubnetCIDR -Egress $true -PortRange_From 1433
 -PortRange_To 1433 -Protocol 6 -RuleAction 'Allow'
New-EC2NetworkAclEntry -NetworkAclId $PublicACL.NetworkAclId -RuleNumber 200
 -CidrBlock $PrivateSubnetCIDR -Egress $false -PortRange_From 49152
 -PortRange_To 65535 -Protocol 6 -RuleAction 'Allow'
New-EC2NetworkAclEntry -NetworkAclId $PublicACL.NetworkAclId -RuleNumber 300
 -CidrBlock '0.0.0.0/0' -Egress $false -PortRange_From 3389
 -PortRange_To 3389 -Protocol 6 -RuleAction 'Allow'

#Associate the ACL to the public subnet
$VPCFilter = New-Object Amazon.EC2.Model.Filter
$VPCFilter.Name = 'vpc-id'
$VPCFilter.Value = $VPC.VpcId
$DefaultFilter = New-Object Amazon.EC2.Model.Filter
$DefaultFilter.Name = 'default'
$DefaultFilter.Value = 'true'

CHAPTER 5 ■ VIRTUAL PRIVATE CLOUD

84

$OldACL = (Get-EC2NetworkAcl -Filter $VPCFilter, $DefaultFilter)
$OldAssociation = $OldACL.Associations | Where-Object { $_.SubnetId -eq $PublicSubnet.
SubnetId }
$NoEcho = Set-EC2NetworkAclAssociation -AssociationId $OldAssociation.NetworkAclAssociationId
 -NetworkAclId $PublicACL.NetworkAclId

#Log the most common IDs
Write-Host "The VPC ID is" $VPC.VpcId
Write-Host "The public subnet ID is" $PublicSubnet.SubnetId
Write-Host "The private subnet ID is" $PrivateSubnet.SubnetId

As you can see, it is easy to create and re-create a VPC. The examples in the next chapter will build on this VPC.

Feel free to use the script to create a new VPC for each exercise in Chapter 6. In the next example, we will build a

new VPC that is attached to our corporate network.

EXERCISE 5.2: CREATING A VIRTUAL PRIVATEGATEWAY

In this exercise, we will use a VPN connection to extend a company’s private network directly to the VPC. This will

allow you to connect to the private instance in your VPC and allow VPC instances to access resources on your

local network. We will create a Virtual Private Gateway and connect our offices to Amazon using an IPSec Tunnel.

Figure 5-9 provides an overview of the configuration. Our corporate LAN is using the private IP range 10.0.0.0/0.

We have decided to allocate a section of this, 10.200.0.0/16, for use at AWS.

Corporate Data Center

(10.0.0.0/8)

VPC (10.200.0.0/16)

Public Subnet

10.200.1.0/24

Internet

Gateway

Private Subnet

10.200.2.0/24

Route
Table

Virtual Private

Gateway

EC2

Web Server

EC2

SQL Server

Customer

Gateway

VP
N

 C
on

ne
ct

io
n

Figure 5-9. VPC with a virtual private gateway

CHAPTER 5 ■ VIRTUAL PRIVATE CLOUD

85

I’m going to assume that you know how to create the VPC, subnets, etc. Let’s get right to configuring the VPN

connection. Note that you will be charged for the VPN connection as soon as you create the virtual private

gateway, even if you never connect the local side of the VPN connection.

The first step is describing your customer gateway to AWS. The customer gateway is your side of the tunnel.

If you have multiple office locations, you can connect up to five customer gateways to each VPC. You need to tell

AWS your public IP address to connect to and the type of tunnel you want to create. At this time, IPSec is the only

type of tunnel supported. The PowerShell command is New-EC2CustomerGateway.

$CustomerGateway = New-EC2CustomerGateway -Type 'ipsec.1' -IpAddress '198.51.100.12'

The next thing you need to do is to create the virtual private gateway. This is Amazon’s side of the tunnel. You

simply tell AWS which availability zone to use and the type of tunnel you want to create. Then you attach it to an

existing VPC.

$VpnGateway = New-EC2VpnGateway -Type 'ipsec.1' -AvailabilityZone $AvailabilityZone
Add-EC2VpnGateway -VpnGatewayId $VpnGateway.VpnGatewayId -VpcId $VpcId

Now that we have both sides of the tunnel established, we create a new connection between them by calling

New-EC2VpnConnection. You need to pass the ID of the customer gateway and the virtual private gateway as well

as passing the type of tunnel one more time.

$VPNConnection = New-EC2VpnConnection -Type 'ipsec.1' -CustomerGatewayId
 $CustomerGateway.CustomerGatewayId -VpnGatewayId $VpnGateway.VpnGatewayId
 -StaticRoutesOnly $true

Note that I have configured this tunnel to use static routes. This means that you need to tell AWS what networks

are available on your side of the tunnel. You could also use dynamic routing and allow Border Gateway Protocol

(BGP) to learn the routes. BGP is beyond the scope of this book.

Before we can add static routes, we need to wait for the configuration to complete. I am using the loop below to

wait for the VPN connection to come online.

While ($VPNConnection.VpnConnectionState -eq 'pending') {
 #Wait for the VPN connection to become available
 Start-Sleep -s 15
 $VPNConnection = Get-EC2VpnConnection
 -VpnConnectionId $VPNConnection.VpnConnectionId
}

Now that the tunnel is up, we have to configure the static routing. We need to tell AWS that the rest of the private

network is available on the other side of the tunnel. The rule below tells AWS that it can find the 10.0.0.0/8

network by sending traffic over the tunnel. Note that AWS already knows that 10.200.0.0/16 is the local network.

Remember that the most specific route (the one with the largest number after the slash) is chosen first.

New-EC2VpnConnectionRoute -VpnConnectionId $VPNConnection.VpnConnectionId
 -DestinationCidrBlock '10.0.0.0/8'

CHAPTER 5 ■ VIRTUAL PRIVATE CLOUD

86

We could also choose to have traffic from our private instances bound for the Internet go over the tunnel rather

than using a NAT gateway from the prior section. The benefit of this is that we can configure the traffic to use all

of existing network appliances such as black lists, data loss prevention, etc. The downside is that we introduce a

lot of latency, specifically when accessing an Internet address hosted in the Amazon data center such as S3.

New-EC2VpnConnectionRoute -VpnConnectionId $VPNConnection.VpnConnectionId
 -DestinationCidrBlock '0.0.0.0/0'

The last thing we need to do is configure the route tables for the individual subnets in our VPC. Let’s assume that

we want our private instances to access the public Internet over the VPN tunnel and our public instances to use

the Internet gateway. Both subnets will have access to the rest of the private network over the VPN tunnel.

My private route table looks like this. Note that the default route (0.0.0.0/0) is pointed to the virtual gateway.

(Get-EC2RouteTable -RouteTableId $PrivateRouteTableID)[0].routes | Format-Table
===
DestinationCidrBlock GatewayId InstanceId State
-------------------- --------- ---------- ------
10.200.0.0/16 local active
10.0.0.0/8 vgw-e424c48d active
0.0.0.0/0 vgw-e424c48d active

And, my public route table looks like this. Note that the default route (0.0.0.0/0) is pointed to the Internet gateway.

(Get-EC2RouteTable -RouteTableId $PublicRouteTableID)[0].routes | Format-Table
===
DestinationCidrBlock GatewayId InstanceId State
-------------------- --------- ---------- ------
10.200.0.0/16 local active
10.0.0.0/8 vgw-e424c48d active
0.0.0.0/0 igw-79095f17 active

Of course, you would want to configure your ACLs as well, but I think we have spent enough time on ACLs in the

chapter. I’ll leave that up to you.

Please note that the VPN configuration above is for Amazon. You will also need to configure your side of the tunnel

on whatever device you are using. The process is different on each device type, but Amazon will help you by

autogenerating a script for common hardware types.

From the Web Console, go to the VPN service, click VPN connection from the left navigation, and click the

Download Configuration button. Now choose your hardware configuration (see Figure 5-10) and click

“Yes, Download” to download a script for your device.

CHAPTER 5 ■ VIRTUAL PRIVATE CLOUD

87

Once the VPN tunnel is established, you will be able to communicate with the AWS instances as if they were on

the local network.

Summary
In this chapter, we learned about networking with AWS. We learned to create a VPC, add subnets, and control how
traffic is routed and filtered. As you can see, VPC is very powerful and very simple. You can quickly build network
topologies that would take weeks to implement with physical equipment.

In addition, we saw how easy it was to script the build. When used with continuous integration, a scripted VPC
can be used to wipe and rebuild the entire environment on a daily basis.

In the next chapter, I will show you how to launch instances into our new VPC and manage their behavior.
We will learn how to configure IP addresses and network interfaces and security groups. Grab a cup of coffee and
keep reading!

Figure 5-10. Downloading a VPN configuration for your local device

89

CHAPTER 6

Advanced Instance Management

In the last chapter, we created a Virtual Private Cloud (VPC). In this chapter we are going to discuss configuring
instances in the VPC.

Before launching an instance we first need to configure security groups. Security groups are similar to the
network access control lists ACLs we discussed in Chapter 5, but are enforced at the instance rather than subnet.
I’ll show you how to create and manage rules, discuss the differences between security groups and traditional
firewalls, and show you how to add servers to a security group.

Once we have the security groups configured, we can launch a VPC instance. We will discuss managing
private IP addresses and assigning public IP addresses. Then, I will talk about elastic network interfaces and how
we manage them.

Managing Security Groups
We start out this chapter by discussing security groups. A security group is similar to a firewall. Traditionally, a firewall
is used to separate a network into security zones. For example, a firewall may be used to protect the private network
from the Internet, but the machines on the private network have no restrictions when communicating with other
machines on the private network.

In recent years, the cost of a firewall has decreased, and we have begun to use them to protect much smaller
segments of the network. For example, we may use a firewall to separate the finance department from the rest of
the organization or to protect a single application that hosts sensitive data. EC2 security groups take this idea to the
extreme. An EC2 security group is like having a firewall in front of each instance. No two instances can communicate
without traversing a firewall, even if they are in the same subnet. In other words, the security group is part of an
instance rather than part of the network.

Note ■ When I was writing this book, I debated discussing security groups in Chapter 5 along with ACLs. In the end,

I felt they were best discussed here to emphasize the difference between security groups and a traditional firewall.

A security group allows you to control what traffic is allowed to flow to and from an instance. You can control the
type of traffic (e.g., TCP, UDP, and ICMP), which ports are open, and the source and destination. While there were
security groups in EC2 Classic, you could filter inbound traffic only. In a VPC, security groups allow you to filter both
inbound and outbound traffic.

By default all instances are added to the default security group when launched from PowerShell. The default
group allows an instance to communicate freely with any other instance in the default security group. Note that if you
used the Wizard in the AWS Management Console, it will create a new security group for each instance rather than
adding the instance to the default group.

CHAPTER 6 ■ ADVANCED INSTANCE MANAGEMENT

90

Displaying Security Groups
Let’s start by looking at the default security group in the Web Console. I assume that you have created a VPC. If not,
use exercise 1 from Chapter 5 to create one. In Figure 6-1 you can see that there is only one inbound rule.

Figure 6-1. Inbound security group rules

Notice that this rule allows all traffic on any port from the security group sg-d23596bd. Note that sg-d23596bd
is the security group we are already looking at. In other words, this rule allows any instance in the security group
to communicate with any other instance in the group. All other traffic is blocked by default.

Now let’s look at the outbound rules in Figure 6-2. Again there is only a single rule. This rule allows outbound
traffic on any protocol and any port to any destination. In other words, all outbound traffic is allowed by default.

CHAPTER 6 ■ ADVANCED INSTANCE MANAGEMENT

91

Unlike traditional firewall rules, we are not specifying individual instances by IP address. In fact, we don’t even
have an instance in our VPC yet. The security architect can define all of the rules necessary before adding instances.
You can then give the developers permission to add instances to security groups that have been predefined, and they
don’t have to wait for a change request to be approved to open the firewall ports later.

Returning to PowerShell, you can list the security groups using the Get-EC2SecurityGroup command.

Get-EC2SecurityGroup | Format-Table

Notice that this command returns security groups for all VPCs. Make note of the GroupID of the default group in
your VPC. We will be using it to modify the security group in the next section.

OwnerId VpcId GroupId GroupName ...
------------ ------------ ---------- --------- ...
928041546250 sg-033e6b6b default ...
928041546250 vpc-881acde9 sg-d23596bd default ...

Adding and Removing Rules
Let’s add a rule to the default VPC security group to allow Remote Desktop Protocol (RDP) access to our Windows
instances. To add inbound rules to the group we use the now-common pattern of creating a .Net object to describe
the rule, and then call Grant-EC2SecurityGroupIngress. Note that FromPort and ToPort are used to specify a range
of destination ports, not the source and destination port. RDP runs on TCP port 3389; therefore, the PowerShell
command is the following:

$RDPRule = New-Object Amazon.EC2.Model.IpPermission
$RDPRule.IpProtocol='tcp'
$RDPRule.FromPort = 3389

Figure 6-2. Outbound security group rules

CHAPTER 6 ■ ADVANCED INSTANCE MANAGEMENT

92

$RDPRule.ToPort = 3389
$RDPRule.IpRanges = '0.0.0.0/0'

Grant-EC2SecurityGroupIngress -GroupId 'sg-d23596bd' -IpPermissions $SQLRule

The process to add an outbound rule is almost identical, but you use the Grant-EC2SecurityGroupEgress
command. Note that there is no need to add outbound rules because the default group already allows all traffic
outbound.

Grant-EC2SecurityGroupEgress -GroupId 'sg-d23596bd' -IpPermissions $Rule

You can easily create a security group using the New-EC2SecurityGroup command. For example, if we were developing
a web application, we might create a security group that allowed HTTP and HTTPS requests from the Internet.

$GroupId = New-EC2SecurityGroup -VpcId 'vpc-881acde9' -GroupName 'Web' -GroupDescription
 "Allows HTTP/S traffic from the internet."

A new group allows all outbound traffic by default, but does not allow any inbound traffic. Here I am opening
port 80 (HTTP) and 443 (HTTPS):

$HTTPRule = New-Object Amazon.EC2.Model.IpPermission
$HTTPRule.IpProtocol='tcp'
$HTTPRule.FromPort = 80
$HTTPRule.ToPort = 80
$HTTPRule.IpRanges = '0.0.0.0/0'

$HTTPSRule = New-Object Amazon.EC2.Model.IpPermission
$HTTPSRule.IpProtocol='tcp'
$HTTPSRule.FromPort = 443
$HTTPSRule.ToPort = 443
$HTTPSRule.IpRanges = '0.0.0.0/0'

Grant-EC2SecurityGroupIngress -GroupId $GroupId -IpPermissions $HTTPRule, $HTTPSRule

You can also remove inbound and outbound rules using Revoke-EC2SecurityGroupIngress and
Revoke-EC2SecurityGroupEgress, respectively. For example, you might want to remove the default rule that
allows all outbound traffic from our web group.

Unlike ACLs, security groups are stateful. That means that you do not need to explicitly add a rule to allow return
traffic. The security group knows that the HTTP request is going to have a corresponding response and will allow
it automatically. We only need the outbound rule when the instance is acting as the client. Therefore, the default
outbound rule is not needed. Let’s remove it.

$Rule = New-Object Amazon.EC2.Model.IpPermission
$Rule.IpProtocol='-1'
$Rule.IpRanges = '0.0.0.0/0'

Revoke-EC2SecurityGroupEgress -GroupId $GroupId -IpPermissions $Rule

Note that I used an IpProtocol of "-1." Security groups allow you to add rules for any IP protocol number. ICMP,
TCP, and UDP can all be referred to by name or number (1, 6, and 17, respectively). The less-common protocols must
be referenced by number. A value of "-1" means all protocols.

CHAPTER 6 ■ ADVANCED INSTANCE MANAGEMENT

93

As we saw in Figure 6-1 we can create rules based on other security groups. For example, imagine our web
application has an SQL database. The web servers must be able to access the SQL server. But, the number of
web servers will change throughout the day depending on the load.

Let’s create a new SQL group for our SQL servers. Then we will grant access to any instance in the web security
group we created earlier. My web security group has ID sg-0c3b9863. Note that SQL server uses TCP port 1433.

$GroupId = New-EC2SecurityGroup -VpcId vpc-881acde9 -GroupName SQL -GroupDescription
 "Allows SQL Queries from the web server."

$WebGroup = New-Object Amazon.EC2.Model.UserIdGroupPair
$WebGroup.GroupId = 'sg-0c3b9863'

$SQLRule = New-Object Amazon.EC2.Model.IpPermission
$SQLRule.IpProtocol='tcp'
$SQLRule.FromPort = 1433
$SQLRule.ToPort = 1433
$SQLRule.UserIdGroupPair = $WebGroup

Grant-EC2SecurityGroupIngress -GroupId $GroupId -IpPermissions $SQLRule

With this new security group in place, all we have to do is add web servers to the web security group and AWS will
grant access to the SQL server. There is no need to update the security group rules when a new instance is launched.

Before we close this section, let’s imagine that you want to be able to ping all of your instances.

Caution ■ This example poses a security risk, but I want to show you how ICMP rules work. I don’t recommend that

you allow ping from outside the VPC.

Let’s add a new rule to the default security group that allows ICMP Echo Request messages from anywhere. ICMP
uses message types rather than ports. To enable an ICMP message you use an IpProtocol of "icmp" and then put the
message type in FromPort. For example, an ICMP Echo Request is message type 8. Note that the ToPort is not used
and should be set to -1.

$PingRule = New-Object Amazon.EC2.Model.IpPermission
$PingRule.IpProtocol='icmp'
$PingRule.FromPort = 8
$PingRule.ToPort = -1
$PingRule.IpRanges = '0.0.0.0/0'

Grant-EC2SecurityGroupIngress -GroupId sg-d23596bd -IpPermissions $PingRule

In this section we discussed security groups. We saw that a security group is similar to a firewall, but is enforced
at the instance rather than network segment. We also looked at how to create various security group rules. Now, let’s
move on and launch an instance into our VPC.

CHAPTER 6 ■ ADVANCED INSTANCE MANAGEMENT

94

Launching Instances into a VPC
VPC gives you considerable control over network configuration of your EC2 instances. Let’s start by launching a new
instance into the VPC we created in Chapter 5. If you have not created a VPC, use the script from Exercise 5.1.

Once again let’s begin by looking at the Request Instances Wizard. Notice the network configuration options
at the bottom of page 3 in the Wizard shown in Figure 6-3. This page allows you to control the number of network
interfaces your instance has. It also allows you to choose a subnet and specify an IP address. In addition, you can add
secondary IP addresses to the instance.

Figure 6-3. Network options in the Request Instances Wizard

Creating a VPC instance with PowerShell is almost identical to creating an EC2 Classic instance. Once again we use
the New-EC2Instance command, but we add one new parameter: the id of the subnet you want to launch the instance
into. Note that you can only connect to instances in a public subnet so I recommend that you use the public subnet here.

$AMI = Get-EC2ImageByName -Name 'WINDOWS_2012_BASE'
New-EC2Instance -ImageId $AMI[0].ImageId -KeyName 'MyKey' -InstanceType 't1.micro' -MinCount 1
 -MaxCount 1 -SubnetId subnet-7922ea18

That’s all it takes to launch a VPC instance. But, there are many new options available that did not exist in EC2.
For example, the machine we just launched has a randomly assigned IP address within the CIDR range of the subnet
we specified. Unlike EC2 Classic, you can control the IP address of the instance. To specify an IP address at launch, use the
PrivateIPAddress parameter.

$AMI = Get-EC2ImageByName -Name 'WINDOWS_2012_BASE'
New-EC2Instance -ImageId $AMI[0].ImageId -KeyName 'MyKey' -InstanceType 't1.micro' -MinCount 1
 -MaxCount 1 -SubnetId subnet-7922ea18 -PrivateIpAddress 192.168.1.5

Note that the IP address is immutable. You can set it when you launch a new instance, but you cannot change it
once the machine is running. Also, remember that the first four IP addresses of each subnet are reserved.

Of course, you can also specify the security groups when you launch an instance. Notice, in Figure 6-4, that you can
select more than one security group. For example, I can make my new instance a member of the web and default groups
that we discussed in the prior section. The web group will allow HTTP traffic and the default group will allow RDP.

CHAPTER 6 ■ ADVANCED INSTANCE MANAGEMENT

95

To add an instance to a security group using PowerShell use the SecurityGroupId parameter and pass an array of
security group IDs.

$AMI = Get-EC2ImageByName -Name 'WINDOWS_2012_BASE'
New-EC2Instance -ImageId $AMI[0].ImageId -KeyName 'MyKey' -InstanceType 't1.micro' -MinCount 1
 -MaxCount 1 -SubnetId subnet-7922ea18 -SecurityGroupId sg-d23596bd, sg-0c3b9863

As we have just seen, running instances in a VPC gives you the ability to control the private network configuration
of the instance. We launched an instance into our public subnet and enabled HTTP and RDP traffic from the Internet
using security groups. But, so far, we have assigned a private IP address only. Without a public IP address there is no
way to access the instance from the Internet. To add a public IP, we need an elastic IP address.

Managing Elastic IP Addresses
So far our instances have a private IP address only. An instance needs a public IP address to communicate with the
Internet. AWS allows you to associate a public IP address – called an elastic IP (EIP) – with your instance.

In earlier chapters, when we were using EC2 Classic or the default VPC, every instance had a public IP address
assigned automatically. That meant that every instance was publicly addressable. In a VPC, we can choose which
instances are public and which are private.

To be public, an instance must be in a public subnet (one with a route to the Internet gateway) and have an EIP
address associated with it. AWS uses network address translation (NAT) to map traffic between the private IP and the
EIP. The NAT is implemented in the Internet gateway.

To create an EIP address we use New-EC2Address. You also have to tell AWS that the EIP will be used in a VPC
instance rather than an EC2 Classic instance. For example:

$EIP = New-EC2Address -Domain vpc

AWS will randomly assign you an EIP. In order to associate the EIP to your instance, use
Register-EC2PrivateIpAddress.

Register-EC2Address -InstanceId $Instance.InstanceId -AllocationId $EIP.AllocationId

Figure 6-4. Security groups in the Request Instances Wizard

CHAPTER 6 ■ ADVANCED INSTANCE MANAGEMENT

96

LOGGING INTO A VPC INSTANCE

At this point you can log in to the instance using REMOTE DESKTOP. Open the Web Console, decrypt the

password, and click the Connect link. If you don’t remember how, jump back to Chapter 3.

If you have an issue, review the configuration. You should check that

The VPC has an Internet gateway•

The public subnet has a route to the Internet gateway•

The subnet has an ACL that allows RDP in from the Internet•

The subnet has an ACL that allows a reply in from the ephemeral ports•

The instance is in the public subnet•

The default security group allows RDP in from the Internet•

The instance is a member of the default security group•

The instance has an EIP address assigned•

VPC is a powerful offering that gives you a lot of control over your environment, but as a result, it is also

complicated. Don’t worry; you will get very good at diagnosing these issues.

It is common to reassign an EIP as part of a disaster recovery plan. If the EIP is already assigned to another
instance you will get an error when you try to reassign it. You must include the AllowReassign attribute to reassign an
EIP that is assigned to another instance.

Register-EC2Address -InstanceId $Instance.InstanceId -AllocationId $EIP.AllocationId
 -AllowReassociation:$true

You can remove the EIP address from an instance using the Unregister-EC2Address command. First, get a
reference to the EIP using Get-EC2Address. Then, call Unregister-EC2Instance and pass the association id.

$EIP = Get-EC2Address -PublicIp '54.208.194.131'
Unregister-EC2Address -AssociationId $EIP.AssociationId

Note that AWS will charge you a fee for an EIP that is not attached to a running instance. If you are no longer
using an EIP, you can use the Remove-EC2Address command to abandon it and avoid the fees.

$EIP = Get-EC2Address -PublicIp '54.208.194.131'
Remove-EC2Address -AllocationId $EIP.AllocationId -Force

If you know when you are launching an instance that will need an EIP, you can automatically assign one by using
the AssociatePublicIp attribute of the New-EC2Instance command.

$AMI = Get-EC2ImageByName -Name 'WINDOWS_2012_BASE'
New-EC2Instance -ImageId $AMI[0].ImageId -KeyName 'MyKey' -InstanceType 't1.micro' -MinCount 1
 -MaxCount 1 -SubnetId subnet-7922ea18 -AssociatePublicIp:$true

CHAPTER 6 ■ ADVANCED INSTANCE MANAGEMENT

97

Public EIPs are a critical component of most applications. Now that we know how to manage public IPs, let’s look
more closely at private IP addresses. As you will see in the next section, spending a little extra time planning can make
your application easier to manage.

Managing Private IPs
In the previous sections we referred to the private IP as an attribute of an instance. This was oversimplification.
In reality, an instance can have many network interfaces and each interface can have many IP addresses. We will
look at adding network interfaces in the next section. For now let’s focus on IP addresses.

When AWS displays the private IP address of an instance, it really means the first IP address of the first network
interface. Earlier, I mentioned that the private IP address of an instance could not be changed. What I really meant
was that you cannot change the first IP address of a network interface. You can, however, add additional IP addresses
to an interface.

One common use is disaster recovery. The secondary IP can be easily moved between instances. If you have a
critical application that relies on a single instance, you may want to keep a second instance on standby. If you detect a
failure in the primary instance, you could move the IP address to a secondary instance.

To add a secondary IP address to an instance, first find the network interface. All of the network interfaces are
available from the NetworkInterfaces property of the Instance object.

$Reservation = Get-EC2Instance -Instance i-b67722cd
$Instance = $Reservation.RunningInstance[0]
$ENI = $Instance.NetworkInterfaces[0]

Now that we have the network interface we can use the Register-EC2PrivateIpAddress method to add a
secondary IP address. For example:

Register-EC2PrivateIpAddress -NetworkInterfaceId $ENI.NetworkInterfaceId
 -PrivateIpAddresses '192.168.1.6'

Unfortunately, DHCP will not configure the secondary IP addresses. In order to use secondary IPs, you must
disable DHCP and configure the network interface manually. Luckily there are PowerShell commands for this.
The following example will configure an instance with a static network configuration.

Note ■ You must log in to the instance you want to configure and execute these commands locally.

#Disable DHCP
Set-NetIPInterface -InterfaceAlias 'Ethernet' -Dhcp Disabled

#Configure the primary IP
New-NetIPAddress -InterfaceAlias 'Ethernet' -IPAddress '192.168.1.5' -PrefixLength 24
 –DefaultGateway '192.168.1.1'

#Configure DNS
Set-DnsClientServerAddress -InterfaceAlias 'Ethernet' -ServerAddresses '192.168.0.2'

#Add the secondary IP address
New-NetIPAddress -InterfaceAlias 'Ethernet' -IPAddress '192.168.1.6' -PrefixLength 24

CHAPTER 6 ■ ADVANCED INSTANCE MANAGEMENT

98

Caution ■ A static network configuration can be dangerous. You must be careful to ensure that the IP addresses

assigned within Windows match those assigned in AWS. Remember that the security groups are implemented at the

instance level. This means that if you assign a different IP address, the security groups will not allow traffic to flow to the

instance. I recommend that you take a snapshot before manually configuring the security groups.

Now that we know how to manage IP addresses let’s take a closer look at the network interfaces.

Managing Elastic Network Interfaces
As I mentioned, an instance can have multiple network interfaces. Amazon calls these interfaces elastic network
interfaces (ENIs). The maximum number of interfaces varies with the instance type. Unlike secondary IP addresses,
network interfaces can be deployed in separate subnets. See Figure 6-5.

VPC (192.168.0.0/16)

Public Subnet

192.168.1.0/24

Internet

Gateway

Private Subnet

192.168.2.0/24

Route

Table

EC2

Multihomed

Instance

ENI0

192.168.1.10

ENI1

192.168.2.10

Figure 6-5. A multihomed instance

CHAPTER 6 ■ ADVANCED INSTANCE MANAGEMENT

99

Every instance has at least one ENI, but you can add additional interfaces when you launch an instance.
Remember that the SubnetId, PrivateIpAddress, SecurityGroupId attributes of the New-EC2Instance command act
on the default ENI. You cannot use these parameters to launch instances with multiple interfaces.

If you want to add multiple interfaces to an instance, use a .Net object to describe them. Then, pass an array of
interfaces to the New-EC2Instance command using the NetworkInterfaces attribute. Each ENI has its own IP address
and can be in a different subnet. In addition, each ENI can be in a different set of security groups. To launch the
instance pictured in Figure 6-5, I used the following PowerShell script:

$ENI0 = New-Object Amazon.EC2.Model.InstanceNetworkInterfaceSpecification
$ENI0.PrivateIpAddress = '192.168.1.10'
$ENI0.SubnetId = 'subnet-7922ea18'
$ENI0.DeviceIndex = 0
$ENI0.Groups.Add('sg-e775d688')

$ENI1 = New-Object Amazon.EC2.Model.InstanceNetworkInterfaceSpecification
$ENI1.PrivateIpAddress = '192.168.2.10'
$ENI1.SubnetId = 'subnet-2f22ea4e'
$ENI1.DeviceIndex = 1
$ENI1.Groups.Add('sg-e775d688')

$AMI = Get-EC2ImageByName -Name 'WINDOWS_2012_BASE'
New-EC2Instance -ImageId $AMI[0].ImageId -KeyName 'MyKey' -InstanceType 't1.micro' -MinCount 1
 -MaxCount 1 -NetworkInterfaces $ENI0, $ENI1

Unfortunately, the reservation returned from New-EC2Instance does not include the network interfaces.
The command returns asynchronously, and it takes a few seconds for the interfaces to attach. If you want to check
the details, you have to wait a few seconds and then run Get-EC2Instance to refresh your copy of the metadata.
For example:

$Reservation = Get-EC2Instance -Instance i-b67722cd
$Instance = $Reservation.RunningInstance[0]
$Instance.NetworkInterfaces | Format-Table

This command returns:

NetworkInterfaceId SubnetId MacAddress PrivateIpAddress
------------------ --------------- ---------------- ----------------
eni-cc478fad subnet-7922ea18 2a:5b:de:70:8... 192.168.1.10
eni-cf478fae subnet-2f22ea4e 2a:5b:de:7b:8... 192.168.2.10

If you want to add an interface to an existing instance you can. First, create a new ENI using the
New-EC2NetworkInterface command. Then, attach it to an instance using the Add-EC2NetworkInterface command.
For example:

$NIC = New-EC2NetworkInterface -SubnetId subnet-1619ce77 -PrivateIpAddress 192.168.1.15
 -GroupId sg-d23596bd
Add-EC2NetworkInterface -NetworkInterfaceId $NIC.NetworkInterfaceId -InstanceId i-c829b8b3
 -DeviceIndex 1

CHAPTER 6 ■ ADVANCED INSTANCE MANAGEMENT

100

If you want to remove an ENI you can detach it using Dismount-EC2NetworkInterface. First, get the attachment
id and then pass that to the Dismount-EC2NetworkInterface command.

$NIC = Get-EC2NetworkInterface eni-c00ad7a1
Dismount-EC2NetworkInterface -AttachmentId $NIC.Attachment.AttachmentId

There are a few reasons that you might choose to add multiple interfaces to a server. On physical machines we
often include multiple interfaces to increase reliability and bandwidth. In EC2, and all virtual machine environments,
the interfaces all share the same physical interface in the hypervisor. Therefore, there is no real reliability or
bandwidth gain.

The other reason we include multiple interfaces it to allow our machine to span multiple subnets. Again there are
multiple reasons we may choose this. One common practice is to have a management subnet used for administration
and backup that is separate from the primary subnet. Again, this is likely not valuable with EC2. Security groups allow
us to control administrative traffic and backups do not use our private network.

We might choose to span subnets to allow our instance to route traffic from one subnet to another. You could
launch an application firewall that does traffic inspection or data loss prevention. The instance would have an
interface in the private and public subnets, and you would configure the route table to route all Internet traffic
through the application firewall.

Note that if you want use an instance to route traffic you must disable the source/destination check. Typically,
AWS will discard any traffic sent to an instance where the instance’s IP address is not the source or destination.
In order for the instance to forward traffic, you must disable this check. (We will do this in Exercise 6-1.)

Edit-EC2NetworkInterfaceAttribute -NetworkInterfaceId eni-c00ad7a1 -SourceDestCheck:$false

One other reason to use multiple interfaces is disaster recovery. Just as you might move a secondary IP from
the primary to standby instance, you could move the ENI. There are two advantages of moving an ENI rather than a
secondary IP. First, route tables refer to the interface rather than IP. If your disaster recovery plan involves an instance
that is routing traffic, you should use an ENI. Second, DHCP can be used to configure multiple ENIs, but not multiple
IP addresses on the same interface.

At this point you know how to manage security groups, private IPs, EIPs, and ENIs. Now let’s test our knowledge
with a couple of examples.

EXERCISE 6.1: MANAGING PRIVATE INSTANCES

In Chapter 5 we created a private subnet. Remember that instances in a private subnet are not accessible from

the Internet. While this is a good security practice, it introduces some new challenges.

The obvious issue is how we administer the private instances. How do we log in to a private instance to configure

it, debug issues, etc.? One way to address this is to launch a remote desktop gateway (RDG) server in the public

subnet and use it as a proxy to access the private instances.

In addition, the private instances are not able to access the Internet. This means that they cannot connect to the

Internet resources to get patches, antivirus definitions, etc. A common solution to this problem is to launch a proxy

server in the public subnet and configure the route table to route traffic from the private subnet through this proxy.

Figure 6-6 describes the complete solution. We will launch two new instances in a new subnet. Administrative

traffic comes in through the RDP gateway, and outbound web traffic goes out through the NAT gateway.

CHAPTER 6 ■ ADVANCED INSTANCE MANAGEMENT

101

Note that this example is, by far, the most complicated example in the book. Don’t worry if you have to read through

it more than once. I could have simply put all the instances in a public subnet or left the ACLs and security groups

open to all traffic. But, I wanted to give you a pattern for a real-world VPC that implemented security controls likely

to please an enterprise security architect.

Let’s begin by altering our network configuration. This exercise assumes you already have a VPC. If you don’t have

a VPC, you can use Exercise 5.1 to create one. We are going to add a new public subnet to host our resources

(the NAT and RDP gateways) with the CIDR block 192.168.0.0/24.

First, we define a few variables including the VPCID, CIDR Block, and the AMIs to use.

param
(
 [string][parameter(mandatory=$true)]$VPCID,
 [string][parameter(mandatory=$false)]$ResourcesSubnetCIDR = '192.168.0.0/24',
 [string][parameter(mandatory=$false)]$NAT_AMI,
 [string][parameter(mandatory=$false)]$RDP_AMI
)

VPC (192.168.0.0/16)

Resources Subnet

192.168.0.0/24

Internet

Gateway

Private Subnet

192.168.2.0/24

Route

Table

EC2

SQL Server

192.168.2.5

EC2

NAT Gateway

192.168.0.20

EC2

RDP Gateway

192.168.0.30

EIP

203.0.1113.58

203.0.1113.219

EIP

Figure 6-6. VPC with a NAT gateway and RDP gateway

CHAPTER 6 ■ ADVANCED INSTANCE MANAGEMENT

102

If the user does not provide an AMI, let’s assume he or she wants the default NAT and 2008R2.

If([System.String]::IsNullOrEmpty($NAT_AMI)){ $NAT_AMI =

(Get-EC2ImageByName -Name 'VPC_NAT')[0].ImageId}

If([System.String]::IsNullOrEmpty($RDP_AMI)){ $RDP_AMI =
(Get-EC2ImageByName -Name 'WINDOWS_2008_BASE')[0].ImageId}

Next, we choose an availability zone. I simply get the first availability zone in the region.

$VPC = Get-EC2VPC -VpcID $VPCID
$AvailabilityZones = Get-EC2AvailabilityZone
$AvailabilityZone = $AvailabilityZones[0].ZoneName

Now we create the resources subnet which will use a route table configured just like the public subnet that we

created in Chapter 5.

$ResourcesSubnet = New-EC2Subnet -VpcId $VPCID -CidrBlock $ResourcesSubnetCIDR
 -AvailabilityZone $AvailabilityZone
$ResourcesRouteTable = New-EC2RouteTable -VpcId $VPC.VpcId
$VPCFilter = New-Object Amazon.EC2.Model.Filter
$VPCFilter.Name = 'attachment.vpc-id'
$VPCFilter.Value = $VPCID
$InternetGateway = Get-EC2InternetGateway -Filter $VPCID
New-EC2Route -RouteTableId $ResourcesRouteTable.RouteTableId -DestinationCidrBlock
 '0.0.0.0/0' -GatewayId $InternetGateway.InternetGatewayId
Register-EC2RouteTable -RouteTableId $ResourcesRouteTable.RouteTableId -SubnetId
 $ResourcesSubnet.SubnetId

Next we need to configure the ACLs for our new subnet. First, we will allow traffic in to configure the NAT and RDP

gateway servers. The NAT instance is running Linux and requires port SSH port 22. The RDP instance is running

Windows and requires RDP port 3389. In addition, we need to remember to open the ephemeral ports to allow the

return traffic.

$ACL = New-EC2NetworkAcl -VpcId $VPCID
New-EC2NetworkAclEntry -NetworkAclId $ACL.NetworkAclId -RuleNumber 100 -CidrBlock
 '0.0.0.0/0' -Egress $false -PortRange_From 22 -PortRange_To 22 -Protocol 6
 -RuleAction Allow
New-EC2NetworkAclEntry -NetworkAclId $ACL.NetworkAclId -RuleNumber 110 -CidrBlock
 '0.0.0.0/0' -Egress $false -PortRange_From 3389 -PortRange_To 3389 -Protocol 6
 -RuleAction Allow
New-EC2NetworkAclEntry -NetworkAclId $ACL.NetworkAclId -RuleNumber 120 -CidrBlock
 '0.0.0.0/0' -Egress $true -PortRange_From 49152 -PortRange_To 65535 -Protocol 6
 -RuleAction Allow

Second, the NAT gateway will be used to download patches over HTTP and HTTPS. Therefore, we need to allow

traffic on 80 and 443 from our private subnets, through the resources subnet, and out to the Internet.

New-EC2NetworkAclEntry -NetworkAclId $ACL.NetworkAclId -RuleNumber 200 -CidrBlock
 $VPC.CidrBlock -Egress $false -PortRange_From 80 -PortRange_To 80 -Protocol 6
 -RuleAction Allow

CHAPTER 6 ■ ADVANCED INSTANCE MANAGEMENT

103

New-EC2NetworkAclEntry -NetworkAclId $ACL.NetworkAclId -RuleNumber 210 -CidrBlock
 $VPC.CidrBlock -Egress $false -PortRange_From 443 -PortRange_To 443 -Protocol 6
 -RuleAction Allow
New-EC2NetworkAclEntry -NetworkAclId $ACL.NetworkAclId -RuleNumber 230 -CidrBlock
 $VPC.CidrBlock -Egress $true -PortRange_From 49152 -PortRange_To 65535 -Protocol 6
 -RuleAction Allow
New-EC2NetworkAclEntry -NetworkAclId $ACL.NetworkAclId -RuleNumber 240 -CidrBlock
 '0.0.0.0/0' -Egress $true -PortRange_From 80 -PortRange_To 80 -Protocol 6
 -RuleAction Allow
New-EC2NetworkAclEntry -NetworkAclId $ACL.NetworkAclId -RuleNumber 250 -CidrBlock
 '0.0.0.0/0' -Egress $true -PortRange_From 443 -PortRange_To 443 -Protocol 6
 -RuleAction Allow
New-EC2NetworkAclEntry -NetworkAclId $ACL.NetworkAclId -RuleNumber 260 -CidrBlock
 '0.0.0.0/0' -Egress $false -PortRange_From 49152 -PortRange_To 65535 -Protocol 6
 -RuleAction Allow

Third, we also need to allow RDP traffic in through our RDP gateway. The RDP gateway creates an SSL tunnel

(port 443) from the client to the gateway. Then it uses RDP (port 3389) from the gateway to the server. Again,

we need to remember the ephemeral ports.

New-EC2NetworkAclEntry -NetworkAclId $ACL.NetworkAclId -RuleNumber 300 -CidrBlock
 '0.0.0.0/0' -Egress $false -PortRange_From 443 -PortRange_To 443 -Protocol 6
 -RuleAction Allow
New-EC2NetworkAclEntry -NetworkAclId $ACL.NetworkAclId -RuleNumber 310 -CidrBlock
 '0.0.0.0/0' -Egress $true -PortRange_From 49152 -PortRange_To 65535 -Protocol 6
 -RuleAction Allow
New-EC2NetworkAclEntry -NetworkAclId $ACL.NetworkAclId -RuleNumber 320 -CidrBlock
 $VPC.CidrBlock -Egress $true -PortRange_From 3389 -PortRange_To 3389 -Protocol 6
 -RuleAction Allow
New-EC2NetworkAclEntry -NetworkAclId $ACL.NetworkAclId -RuleNumber 330 -CidrBlock
 $VPC.CidrBlock -Egress $false -PortRange_From 49152 -PortRange_To 65535 -Protocol 6
 -RuleAction Allow

Next, we have to create security groups to protect the instances we are going to launch in the resources subnet.

First, we will create a security group for administration. This will allow SSH port 22 and RDP port 3389 to

configure the servers.

$RDPRule = New-Object Amazon.EC2.Model.IpPermission
$RDPRule.IpProtocol='tcp'
$RDPRule.FromPort = 3389
$RDPRule.ToPort = 3389
$RDPRule.IpRanges = '0.0.0.0/0'
$SSHRule = New-Object Amazon.EC2.Model.IpPermission
$SSHRule.IpProtocol='tcp'
$SSHRule.FromPort = 22
$SSHRule.ToPort = 22
$SSHRule.IpRanges = '0.0.0.0/0'
$AdminGroupId = New-EC2SecurityGroup -VpcId $VPCID -GroupName 'Admin' -GroupDescription
 "Allows RDP and SSH for configuration."
Grant-EC2SecurityGroupIngress -GroupId $AdminGroupId -IpPermissions $RDPRule, $SSHRule

CHAPTER 6 ■ ADVANCED INSTANCE MANAGEMENT

104

Second, we will create a security group to allow HTTP and HTTPS traffic from anywhere in the VPC to the

NAT gateway.

$HTTPRule = New-Object Amazon.EC2.Model.IpPermission
$HTTPRule.IpProtocol='tcp'
$HTTPRule.FromPort = 80
$HTTPRule.ToPort = 80
$HTTPRule.IpRanges = $VPC.CidrBlock
$HTTPSRule = New-Object Amazon.EC2.Model.IpPermission
$HTTPSRule.IpProtocol='tcp'
$HTTPSRule.FromPort = 443
$HTTPSRule.ToPort = 443
$HTTPSRule.IpRanges = $VPC.CidrBlock
$NatGroupId = New-EC2SecurityGroup -VpcId $VPCID -GroupName 'NATGateway'
 -GroupDescription "Allows HTTP/S from the VPC to the internet."
Grant-EC2SecurityGroupIngress -GroupId $NatGroupId -IpPermissions $HTTPRule, $HTTPSRule

Third, we will create a security group to allow RDP over SSL from the Internet to the RDP gateway.

$RDPRule = New-Object Amazon.EC2.Model.IpPermission
$RDPRule.IpProtocol='tcp'
$RDPRule.FromPort = 443
$RDPRule.ToPort = 443
$RDPRule.IpRanges = '0.0.0.0/0'
$RdpGroupId = New-EC2SecurityGroup -VpcId $VPCID -GroupName 'RDPGateway'
 -GroupDescription "Allows RDP over HTTPS from the internet."
Grant-EC2SecurityGroupIngress -GroupId $RdpGroupId -IpPermissions $RDPRule

Fourth, we must allow RDP traffic from the RDP gateway to the instances in the default subnet.

$VPCFilter = New-Object Amazon.EC2.Model.Filter
$VPCFilter.Name = 'vpc-id'
$VPCFilter.Value = $VPCID
$GroupFilter = New-Object Amazon.EC2.Model.Filter
$GroupFilter.Name = 'group-name'
$GroupFilter.Value = 'default'
$DefaultGroup = Get-EC2SecurityGroup -Filter $VPCFilter, $GroupFilter
$RDPGatewayGroup = New-Object Amazon.EC2.Model.UserIdGroupPair
$RDPGatewayGroup.GroupId = $RdpGroupId
$RDPRule = New-Object Amazon.EC2.Model.IpPermission
$RDPRule.IpProtocol='tcp'
$RDPRule.FromPort = 3389
$RDPRule.ToPort = 3389
$RDPRule.UserIdGroupPair = $RDPGatewayGroup
Grant-EC2SecurityGroupIngress -GroupId $DefaultGroup.GroupId -IpPermissions $RDPRule

Now we associate the resource subnet we created with the new ACL.

$VPCFilter = New-Object Amazon.EC2.Model.Filter
$VPCFilter.Name = 'vpc-id'
$VPCFilter.Value = $VPCID

CHAPTER 6 ■ ADVANCED INSTANCE MANAGEMENT

105

$DefaultFilter = New-Object Amazon.EC2.Model.Filter
$DefaultFilter.Name = 'default'
$DefaultFilter.Value = 'true'
$OldACL = (Get-EC2NetworkAcl -Filter $VPCFilter, $DefaultFilter)
$OldAssociation = $OldACL.Associations | Where-Object { $_.SubnetId -eq
 $ResourcesSubnet.SubnetId }
$NoEcho = Set-EC2NetworkAclAssociation -AssociationId $
 OldAssociation.NetworkAclAssociationId -NetworkAclId $ACL.NetworkAclId

Next, we launch a NAT gateway to serve as an outbound proxy. A NAT gateway is simply a Red Hat Linux instance

that forwards traffic to the Internet. There are numerous other proxies available in the AWS marketplace that

can do advanced inspection, but they are all relatively expensive. The NAT gateway is offered by Amazon as an

inexpensive (you pay only for the instance) solution.

$Reservation = New-EC2Instance -ImageId $NAT_AMI -KeyName 'MyKey' -InstanceType
 't1.micro' -MinCount 1 -MaxCount 1 -SubnetId $ResourcesSubnet.SubnetId
$NATInstance = $Reservation.RunningInstance[0]
$Tag = New-Object Amazon.EC2.Model.Tag
$Tag.Key = 'Name'
$Tag.Value = 'NATGateway'
New-EC2Tag -ResourceId $NATInstance.InstanceID -Tag $tag

You must wait for the instance to boot before moving on. This is different from the exercise in Chapter 3. Here I am

just waiting for the instance to boot. We do not have to wait for the initialization to complete and the password to

be available.

Start-Sleep -s 60
While ((Get-EC2InstanceStatus -InstanceId $NATInstance.InstanceID).InstanceState.name
 -ne 'running')
{
 Start-Sleep -s 60
 $NATInstance = (Get-EC2Instance -Instance $NATInstance.InstanceID).RunningInstance[0]
}

In order for the NAT instance to route traffic, we need to disable the source/destination check on the network

interface. Usually an instance must be either the source or destination of any traffic that it sends or receives.

To disable the check we use the Edit-EC2NetworkInterfaceAttribute command.

$NIC = $NATInstance.NetworkInterfaces[0]
Edit-EC2NetworkInterfaceAttribute -NetworkInterfaceId $NIC.NetworkInterfaceId
 -SourceDestCheck:$false

Next, we assign the instance an EIP. Remember that the Internet gateway uses NAT to translate private IP addresses

to Internet IP addresses. Therefore, traffic from an instance in a private subnet to the Internet gets translated twice.

First, the NAT gateway translates the private IP of the sender to its own private IP. Second, the Internet gateway

translates from the private IP of the NAT gateway to its corresponding EIP.

$EIP = New-EC2Address -Domain 'vpc'
Register-EC2Address -InstanceId $NATInstance.InstanceID -AllocationId $EIP.AllocationId

CHAPTER 6 ■ ADVANCED INSTANCE MANAGEMENT

106

Finally, we find the Main route table for the VPC and set the default route to the NAT gateway. I assume here that

all of your private subnets are using the Main route table.

#Find the Main Route Table for this VPC
$VPCFilter = New-Object Amazon.EC2.Model.Filter
$VPCFilter.Name = 'vpc-id'
$VPCFilter.Value = $VPC.VpcId
$IsDefaultFilter = New-Object Amazon.EC2.Model.Filter
$IsDefaultFilter.Name = 'association.main'
$IsDefaultFilter.Value = 'true'
$MainRouteTable = (Get-EC2RouteTable -Filter $VPCFilter, $IsDefaultFilter)

#Replace the default route with reference to the NAT gateway
$MainRouteTable.Routes | Where-Object { $_.DestinationCidrBlock -eq '0.0.0.0/0'} | %
 {Remove-EC2Route -RouteTableId $MainRouteTable.RouteTableId -DestinationCidrBlock
$_.DestinationCidrBlock -Force}
New-EC2Route -RouteTableId $MainRouteTable.RouteTableId -DestinationCidrBlock
 '0.0.0.0/0' -InstanceId $NATInstance.InstanceId

That takes care of the outbound traffic. Instances on the private subnets will route their traffic out through the

NAT gateway, which will, in turn, route it through the Internet gateway. Now let’s move on to the RDP gateway.

RDP is a Windows feature available on Windows server 2008R2 and 2012. It allows the RDP client to connect securely

over the public Internet using HTTPS to instances on a remote private network. The complete configuration of RDP

gateway requires purchasing SSL certificates and is beyond the scope of this book. (For more details about the

configuration of RDP gateway, see: http://technet.microsoft.com/en-us/library/dd983941(v=ws.10).aspx.)

For now, let’s use the user data section we learned about in Chapter 3 to enable the RDP gateway feature after the

instance launches.

#Create a user data script to configure the RDP Gateway
$UserData = @'
<powershell>
Add-WindowsFeature -Name RDS-Gateway -IncludeAllSubFeature
</powershell>
'@
$UserData =
 [System.Convert]::ToBase64String([System.Text.Encoding]::ASCII.GetBytes($UserData))

Now let’s launch the instance. Remember to include the subnet and pass the user data script to execute

after launch.

$Reservation = New-EC2Instance -ImageId $RDP_AMI -KeyName 'MyKey' -InstanceType
 't1.micro' -MinCount 1 -MaxCount 1 -SubnetId $ResourcesSubnet.SubnetId -UserData
 $UserData
$RDPInstance = $Reservation.RunningInstance[0]
$Tag = New-Object Amazon.EC2.Model.Tag
$Tag.Key = 'Name'
$Tag.Value = 'RDPGateway'
New-EC2Tag -ResourceId $RDPInstance.InstanceID -Tag $tag

http://technet.microsoft.com/en-us/library/dd983941(v=ws.10).aspx

CHAPTER 6 ■ ADVANCED INSTANCE MANAGEMENT

107

Now, we wait for the instance to boot and allocate an additional EIP for the NAT instance and we are done.

Start-Sleep -s 60
While ((Get-EC2InstanceStatus -InstanceId $RDPInstance.InstanceID).InstanceState.name
 -ne 'running')
{
 Start-Sleep -s 60
 $RDPInstance = (Get-EC2Instance -Instance $RDPInstance.InstanceID).RunningInstance[0]
}
$EIP = New-EC2Address -Domain 'vpc'
Register-EC2Address -InstanceId $RDPInstance.InstanceID -AllocationId $EIP.AllocationId

If you have completed the configuration of the RDP gateway, you should be able to connect to a private instance

and attempt to run Windows Update. In order to connect to an instance in the private network, you need to tell

your remote desktop client about the gateway server. See Figure 6-7. From the Advanced tab, click the Settings

button, and enter the name of the server gateway. Now you can connect to the VPC instances as if they were

publicly accessible.

Figure 6-7. Remote desktop connection with an RDP gateway

CHAPTER 6 ■ ADVANCED INSTANCE MANAGEMENT

108

EXERCISE 6.2: LEAST PRIVILEGE SECURITY GROUPS

So far we have been placing all of our private instances in the default group. The default group allows unrestricted

communications between all the group members. While this makes configuration really easy, it is not as secure as

it could be.

In information security, the principle of least privilege requires that a system only have access to the resources

it requires to do its job. In this example, we will build a set of security groups that allows the minimum set of

permissions required for a simple application. Our simple application, shown in Figure 6-8, consists of a web

server and SQL server, both of which are members of an active directory domain.

SQLIIS

WebServers SQLServers

DomainMembers DomainControllers

AD
AD

Figure 6-8. Least privilege security groups

At a high level, our application requires the following traffic flows:

HTTP/S from the Internet to the IIS server•

TDS from IIS to SQL •

Multiple protocols from the domain members (IIS and SQL) to the domain controllers•

Replication between the domain controllers•

Note that the IIS and SQL servers are members of two groups. Rather than adding the domain member rules to

the WebServer and SQLServer groups, it is better to have a group of each distinct role a server can hold. This will

make it easier to maintain the rules over time.

First, we have to create the four groups pictured in Figure 6-8.

$DomainMembersGroupId = New-EC2SecurityGroup -GroupName 'DomainMembers' -GroupDescription
 "Domain Members" -VpcId $VPCID
$DomainControllersGroupId = New-EC2SecurityGroup -GroupName 'DomainControllers'
 -GroupDescription "Domain controllers" -VpcId $VPCID
$WebServersGroupId = New-EC2SecurityGroup -GroupName 'WebServers' -GroupDescription "Web
 servers" -VpcId $VPCID
$SQLServersGroupId = New-EC2SecurityGroup -GroupName 'SQLServers' -GroupDescription "SQL
 Servers" -VpcId $VPCID

CHAPTER 6 ■ ADVANCED INSTANCE MANAGEMENT

109

Next, we add rules to the web group. The web group will allow HTTP (port 80) and HTTPS (port 443) from

anywhere on the Internet.

#First, the Web instances must allow HTTP/S from the internet
$HTTPRule = New-Object Amazon.EC2.Model.IpPermission
$HTTPRule.IpProtocol='tcp'
$HTTPRule.FromPort = 80
$HTTPRule.ToPort = 80
$HTTPRule.IpRanges = '0.0.0.0/0'
$HTTPSRule = New-Object Amazon.EC2.Model.IpPermission
$HTTPSRule.IpProtocol='tcp'
$HTTPSRule.FromPort = 443
$HTTPSRule.ToPort = 443
$HTTPSRule.IpRanges = '0.0.0.0/0'
Grant-EC2SecurityGroupIngress -GroupId $WebServersGroupId
 -IpPermissions $HTTPRule, $HTTPSRule

Then, we add rules to the SQL group. The SQL server should only be accessed from the web server. SQL uses a

protocol called Tabular Data Stream (TDS) that runs on port 1433. In addition, applications are increasingly using

SQL FileStream to store attachments. FileStream requires NetBIOS (port 139) and SMB (port 445) to stream the

attachments to and from the SQL server.

$WebGroup = New-Object Amazon.EC2.Model.UserIdGroupPair
$WebGroup.GroupId = $WebServersGroupId
$SQLRule = New-Object Amazon.EC2.Model.IpPermission
$SQLRule.IpProtocol='tcp'
$SQLRule.FromPort = 1433
$SQLRule.ToPort = 1433
$SQLRule.UserIdGroupPair = $WebGroup
$NetBIOSRule = New-Object Amazon.EC2.Model.IpPermission
$NetBIOSRule.IpProtocol='tcp'
$NetBIOSRule.FromPort = 139
$NetBIOSRule.ToPort = 139
$NetBIOSRule.UserIdGroupPair = $WebGroup
$SMBRule = New-Object Amazon.EC2.Model.IpPermission
$SMBRule.IpProtocol='tcp'
$SMBRule.FromPort = 445
$SMBRule.ToPort = 445
$SMBRule.UserIdGroupPair = $WebGroup
Grant-EC2SecurityGroupIngress -GroupId $SQLServersGroupId -IpPermissions $SQLRule,
 $NetBIOSRule, $SMBRule

Now, we add rules to the DomainMembers group. The DomainMembers group is really simple. The only traffic it

allows is ping from the domain controllers. The domain controllers will occasionally ping the domain members to

check that they are still running. In addition, the DomainMembers group is used as the source of all the rules in

the DomainControllers group.

$DCGroup = New-Object Amazon.EC2.Model.UserIdGroupPair
$DCGroup.GroupId = $DomainControllersGroupId
$PingRule = New-Object Amazon.EC2.Model.IpPermission
$PingRule.IpProtocol='icmp'

CHAPTER 6 ■ ADVANCED INSTANCE MANAGEMENT

110

$PingRule.FromPort = 8
$PingRule.ToPort = -1
$PingRule.UserIdGroupPair = $DCGroup
Grant-EC2SecurityGroupIngress -GroupId $DomainMembersGroupId -IpPermissions $PingRule

Finally, we add rules to the DomainControllers group. This group has a lot of rules. I’ll break them down by

IP protocol.

First, assuming you have more than one domain controller, they must be able to replicate data between each

other. Therefore, I am allowing unrestricted communications between the controllers.

$AllRule = New-Object Amazon.EC2.Model.IpPermission
$AllRule.IpProtocol='-1'
$AllRule.UserIdGroupPair = $DCGroup
Grant-EC2SecurityGroupIngress -GroupId $DomainControllersGroupId -IpPermissions $AllRule

Second, the domain controllers allow ping from any of the domain members.

$DMGroup = New-Object Amazon.EC2.Model.UserIdGroupPair
$DMGroup.GroupId = $DomainMembersGroupId
$PingRule = New-Object Amazon.EC2.Model.IpPermission
$PingRule.IpProtocol='icmp'
$PingRule.FromPort = 8
$PingRule.ToPort = -1
$PingRule.UserIdGroupPair = $DMGroup
Grant-EC2SecurityGroupIngress -GroupId $DomainControllersGroupId -IpPermissions $PingRule

Third, the domain controller must allow an array of TCP communication types from the domain members.

These include:

53 - DNS Queries. Note DNS uses both TCP and UDP.•

88 - Kerberos Authentication. Note Kerberos uses both TCP and UDP.•

135 - Remote Procedure Calls. Note: RPC will also use a port in the range 49152-65535.•

137–139 - NetBOIS. Note Kerberos uses both TCP and UDP.•

389 & 636 - Lightweight Directory Access Protocol (LDAP). •

445 - Server Message Block (SMB). •

464 - Password Reset. Note that it uses both TCP and UDP.•

3268 - Microsoft Global Catalogue.•

#Domain controllers must allow numerous TCP protocols from domain members
$DNSRule = New-Object Amazon.EC2.Model.IpPermission
$DNSRule.IpProtocol='tcp'
$DNSRule.FromPort = 53
$DNSRule.ToPort = 53
$DNSRule.UserIdGroupPair = $DMGroup

CHAPTER 6 ■ ADVANCED INSTANCE MANAGEMENT

111

$KerberosRule = New-Object Amazon.EC2.Model.IpPermission
$KerberosRule.IpProtocol='tcp'
$KerberosRule.FromPort = 88
$KerberosRule.ToPort = 88
$KerberosRule.UserIdGroupPair = $DMGroup
$NetBIOSRule = New-Object Amazon.EC2.Model.IpPermission
$NetBIOSRule.IpProtocol='tcp'
$NetBIOSRule.FromPort = 137
$NetBIOSRule.ToPort = 139
$NetBIOSRule.UserIdGroupPair = $DMGroup
$RPCRule = New-Object Amazon.EC2.Model.IpPermission
$RPCRule.IpProtocol='tcp'
$RPCRule.FromPort = 135
$RPCRule.ToPort = 135
$RPCRule.UserIdGroupPair = $DMGroup
$LDAPRule = New-Object Amazon.EC2.Model.IpPermission
$LDAPRule.IpProtocol='tcp'
$LDAPRule.FromPort = 389
$LDAPRule.ToPort = 389
$LDAPRule.UserIdGroupPair = $DMGroup
$SMBRule = New-Object Amazon.EC2.Model.IpPermission
$SMBRule.IpProtocol='tcp'
$SMBRule.FromPort = 445
$SMBRule.ToPort = 445
$SMBRule.UserIdGroupPair = $DMGroup
$PasswordRule = New-Object Amazon.EC2.Model.IpPermission
$PasswordRule.IpProtocol='tcp'
$PasswordRule.FromPort = 464
$PasswordRule.ToPort = 464
$PasswordRule.UserIdGroupPair = $DMGroup
$LDAPSRule = New-Object Amazon.EC2.Model.IpPermission
$LDAPSRule.IpProtocol='tcp'
$LDAPSRule.FromPort = 636
$LDAPSRule.ToPort = 636
$LDAPSRule.UserIdGroupPair = $DMGroup
$ADRule = New-Object Amazon.EC2.Model.IpPermission
$ADRule.IpProtocol='tcp'
$ADRule.FromPort = 3268
$ADRule.ToPort = 3269
$ADRule.UserIdGroupPair = $DMGroup
$RpcHpRule = New-Object Amazon.EC2.Model.IpPermission
$RpcHpRule.IpProtocol='tcp'
$RpcHpRule.FromPort = 49152
$RpcHpRule.ToPort = 65535
$RpcHpRule.UserIdGroupPair = $DMGroup
Grant-EC2SecurityGroupIngress -GroupId $DomainControllersGroupId -IpPermissions $DNSRule,
 $KerberosRule, $RPCRule, $LDAPRule, $PasswordRule, $LDAPSRule, $ADRule, $RpcHpRule

CHAPTER 6 ■ ADVANCED INSTANCE MANAGEMENT

112

Fourth, the domain controller must allow an array of UDP communication types from the domain members.

These include:

53 - DNS Queries. Note DNS uses both TCP and UDP.•

88 - Kerberos Authentication. Note Kerberos uses both TCP and UDP.•

123 - Network Time Protocol.•

137-139 - NetBOIS. Note Kerberos uses both TCP and UDP.•

389 - Lightweight Directory Access Protocol (LDAP). •

464 - Password Reset. Note that it uses both TCP and UDP.•

#Domain controllers must allow numerous TCP protocols from domain members
$DNSRule = New-Object Amazon.EC2.Model.IpPermission
$DNSRule.IpProtocol='udp'
$DNSRule.FromPort = 53
$DNSRule.ToPort = 53
$DNSRule.UserIdGroupPair = $DMGroup
$KerberosRule = New-Object Amazon.EC2.Model.IpPermission
$KerberosRule.IpProtocol='udp'
$KerberosRule.FromPort = 88
$KerberosRule.ToPort = 88
$KerberosRule.UserIdGroupPair = $DMGroup
$NTPRule = New-Object Amazon.EC2.Model.IpPermission
$NTPRule.IpProtocol='udp'
$NTPRule.FromPort = 123
$NTPRule.ToPort = 123
$NTPRule.UserIdGroupPair = $DMGroup
$NetBIOSRule = New-Object Amazon.EC2.Model.IpPermission
$NetBIOSRule.IpProtocol='udp'
$NetBIOSRule.FromPort = 137
$NetBIOSRule.ToPort = 139
$NetBIOSRule.UserIdGroupPair = $DMGroup
$LDAPRule = New-Object Amazon.EC2.Model.IpPermission
$LDAPRule.IpProtocol='udp'
$LDAPRule.FromPort = 389
$LDAPRule.ToPort = 389
$LDAPRule.UserIdGroupPair = $DMGroup
$PasswordRule = New-Object Amazon.EC2.Model.IpPermission
$PasswordRule.IpProtocol='udp'
$PasswordRule.FromPort = 464
$PasswordRule.ToPort = 464
$PasswordRule.UserIdGroupPair = $DMGroup
Grant-EC2SecurityGroupIngress -GroupId $DomainControllersGroupId -IpPermissions $DNSRule,
 $KerberosRule, $NTPRule, $NetBIOSRule, $LDAPRule, $SMBRule, $PasswordRule

As you can see, security groups allow you to create very specific rules to secure your resources. By writing rules

that are based on other security groups, we can define our security policy before launching instances and do not

have to change the rules as each instance is launched. The rules in this example are just a starting point. You will

need to add additional groups and rules as your infrastructure grows.

CHAPTER 6 ■ ADVANCED INSTANCE MANAGEMENT

113

Summary
VPC brings numerous new capabilities that were not available in EC2 Classic. We can define outbound rules in our
security groups. We can control the network configuration at launch including subnet, security group, and private
IP address. We can assign publicly addressable EIPs. And, we can add multiple IP address and multiple network
interfaces.

All of these features allow us to create fairly complicated network configurations. In the examples, we explored
advanced patterns for managing enterprise networks. First, we discussed how to manage and patch private instances
using an RDP and NAT Gateway. Second, we created a series of security groups to implement least privileged access
for Windows instances in an active directory domain.

While VPC brings new capabilities, it also brings complexity. In the remaining chapters on EC2 I will use a simple
VPC configuration that will allow us to focus on features without the complexity discussed in Chapters 5 and 6. In the
next chapter, we discuss creating our own Amazon Machine Images.

115

CHAPTER 7

Amazon Machine Images

In the last few chapters we have focused on creating and managing instances. This chapter is about the templates we
use to create those instances. Amazon refers to these templates as Amazon Machine Images (AMIs). In this chapter
we will explore the AMIs that already exist, and we will discuss how to create your own AMI and share it with others.
Finally, we learn how to import a VM from VMware or Hyper-V into AWS.

Many users will never have occasion to create a custom AMI. Most users will be happy with the countless
images that Amazon and its partners make available. But some users will want to have complete control over
their environment. For example, you may have a corporate server image that you want to make available to your
companies’ employees that are using AWS.

As your experience progresses, you will likely find that you want to automate instance builds. The DevOps
movement is all about scripting server builds to minimize build time and ensure consistency between builds.
Assuming you want to automate the build, there are many options. Most fall on a spectrum somewhere between
scripted builds and prepared images.

Working with Scripted Builds and Prepared Images
At one end of the spectrum is the scripted build. With a scripted build, you start with a generic image and use a series
of scripts to configure the server as needed. For example, to create a Web Server, you might start with the Amazon
Windows Server 2012 Base image. Then you could use the user data to include a custom PowerShell script that
enables the Web Server role and downloads the application from source control.

At the other end of the spectrum is the prepared image. With a prepared image, you configure the server, usually
manually, and then create an image. When a user needs a new server, her or she selects your server image and creates
a new instance. If you choose a prepared image, be sure to update the image periodically with the latest security
patches and virus definitions.

Both options have benefits and drawbacks. The scripted build is best when the application is changing often.
You always get the latest code and can change the script as requirements change. The prepared image, on the other
hand, is best when the application is stable. There are fewer external dependencies that can cause errors and the build
is usually faster.

Of course, there are many options on the spectrum between scripted build and prepared image. The Amazon
Windows AMIs provide a good example. Amazon offers a base image with nothing installed as well as Web and SQL
Server images. By using these images you do not have to script the configuration of the IIS and SQL Server. You simply
focus on scripting the deployment of your application.

Most of this chapter is focused on preparing images, but don’t overlook scripting as an option. In the first
example we will discuss the tradeoffs between scripted builds and prepared images a bit further while we will discuss
a common Windows task: joining a Windows domain.

CHAPTER 7 ■ AMAZON MACHINE IMAGES

116

Listing AMIs
Before we create our own AMI, or simply an image, let’s take a deeper look at the images that are already available.
We don’t want to spend time creating and maintaining an image if an identical image already exists.

Caution ■ There are over 20,000 images available giving you a ton of options to choose from, but be careful!

You should only launch images from publishers you trust. As you will see later in this chapter, anyone can publish

an image.

You can find images using the Get-EC2Image command, but this command will return the complete list of
over 20,000 images. Obviously, this is far too many to look through one at a time.

Limiting the Number of Instance Results
As you might expect, you can use filters to limit the number of instances. For example, if you are interested in a Windows
image, you can use the platform filter. The following example will return about 1700 Windows images in the Northern
Virginia region.

$Filter = New-Object Amazon.EC2.Model.Filter
$Filter.Name = "platform"
$Filter.Value = "windows"
Get-EC2Image -Filter $Filter | Select-Object Name

We can also filter by publisher using owner-alias. For example, you might list only those images that Amazon
publishes. Again it is a really good idea to only use images published by an owner you trust, such as Amazon.
The following example will return about 500 images.

$Filter = New-Object Amazon.EC2.Model.Filter
$Filter.Name = "owner-alias"
$Filter.Value = "amazon"
Get-EC2Image -Filter $Filter | Select-Object Name

This is still too many images to comb through one by one. Of course you can combine two or more filters. If we
combine the platform and owner alias, we get a much more reasonable list of about 100 images.

$Filter1 = New-Object Amazon.EC2.Model.Filter
$Filter1.Name = "platform"
$Filter1.Value = "windows"
$Filter2 = New-Object Amazon.EC2.Model.Filter
$Filter2.Name = "owner-alias"
$Filter2.Value = "amazon"
Get-EC2Image -Filter $Filter1, $Filter2 | Select-Object Name

CHAPTER 7 ■ AMAZON MACHINE IMAGES

117

Finding an Instance by Name
The prior examples assume you do not yet know which image you are looking for. If you know the name of the image
you want to find you can use the name filter. For example, to find the Windows Server 2012 Base image, use:

$Filter = New-Object Amazon.EC2.Model.Filter
$Filter.Name = "name"
$Filter.Value = "Windows_Server-2012-RTM-English-64Bit-Base-2013.09.11"
Get-EC2Image -Filter $Filter\

Note that Amazon updates most of its images periodically with the latest patches and updates. This causes a
problem because the image name includes the publication date, and changes over time. Luckily, filters support the
wildcard character (*). For example:

$Filter = New-Object Amazon.EC2.Model.Filter
$Filter.Name = "name"
$Filter.Value = "Windows_Server-2012-RTM-English-64Bit-Base*"
Get-EC2Image -Filter $Filter

So let’s review. We can use a combination of the platform and owner-alias filters to discover new images from a
trusted source. Then, once we know the name, we can search by name. If all of this seems cumbersome to you, I agree.
Wouldn’t it be great if we had a short list of the most common images?

Locating the Most Common Images
Luckily Amazon thought of the idea of getting a short list of the most common images and included another command,
Get-EC2ImageByName. This command will return the images that you find on the Quick Start tab of the New Instance
Wizard in the AWS Management Console. Note that the command may return an array with multiple versions of a given
instance. The most recent version will be listed first in the array. See the sidebar for a list of names. For example:

Get-EC2ImageByName -Name "WINDOWS_2012_BASE"

COMMON IMAGES FOR GET-EC2IMAGEBYNAME

WINDOWS_2012_BASE - Windows Server 2012 without SQL Server

WINDOWS_2012_SQL_SERVER_EXPRESS_2012 - Windows Server 2012 with SQL Server 2012 Express Edition

WINDOWS_2012_SQL_SERVER_STANDARD_2012 - Windows Server 2012 with SQL Server 2012 Standard Edition

WINDOWS_2012_SQL_SERVER_WEB_2012 - Windows Server 2012 with SQL Server 2012 Web Edition

WINDOWS_2012_SQL_SERVER_EXPRESS_2008 - Windows Server 2012 with SQL Server 2008 R2

Express Edition

WINDOWS_2012_SQL_SERVER_STANDARD_2008 - Windows Server 2012 with SQL Server 2008 R2

Standard Edition

WINDOWS_2012_SQL_SERVER_WEB_2008 - Windows Server 2012 with SQL Server 2008 R2 Web Edition

WINDOWS_2008_BASE - Windows Server 2008 R2 without SQL Server

CHAPTER 7 ■ AMAZON MACHINE IMAGES

118

WINDOWS_2008_SQL_SERVER_EXPRESS_2012 - Windows Server 2008 R2 with SQL Server 2012 Express Edition

WINDOWS_2008_SQL_SERVER_STANDARD_2012 - Windows Server 2008 R2 with SQL Server 2012

Standard Edition

WINDOWS_2008_SQL_SERVER_WEB_2012 - Windows Server 2008 R2 with SQL Server 2012 Web Edition

WINDOWS_2008_SQL_SERVER_EXPRESS_2008 - Windows Server 2008 R2 with SQL Server 2008 R2

Express Edition

WINDOWS_2008_SQL_SERVER_STANDARD_2008 - Windows Server 2008 R2 with SQL Server 2008 R2

Standard Edition

WINDOWS_2008_SQL_SERVER_WEB_2008 - Windows Server 2008 R2 with SQL Server 2008 R2 Web Edition

VPC_NAT - This is the NAT instance we launched in Example 6.1 in Chapter 6.

Finally, if you have launched your own images, as described later in this chapter, you can find them by using the
Owner parameter of the Get-EC2Image command. For example:

Get-EC2Image -Owner self

Now that we know how to find images, we can decide whether we need to create our own. Let’s assume that
none of the existing images meet our needs and we have decided to create our own image. Images are created using
SysPrep and the EC2Config Service. Before we get started creating an image, let’s look at the EC2Config Service.

Introducing the EC2Config Service
Before we move on to creating an image, I want to introduce the EC2Config Service. The EC2Config Service is a
Windows service that runs on all Amazon’s Windows images. We have mentioned this service a few times in prior
chapters, but now is a good time to look at it in detail.

The EC2Config Service is used to configure Windows instances. The service plays a critical role in configuring
an instance when it boots for the first time. For example, the EC2Config Service is responsible for encrypting the
administrator password and executing scripts in the user data.

When an instance boots for the first time, the EC2 Config Service performs the following tasks.

 1. Set the computer name. The instance will be renamed in the format ip-hhhhhhhh, where
hhhhhhhh is the hex encoding of the private IP address.

 2. Set the administrator password. A new, random password will be generated and encrypted
with the specified key pair.

 3. Create RDP certificate. A new self-signed host certificate is created for Remote Desktop
Connection. You cannot use RDP without a certificate.

 4. Extend the OS partition. Remember that you can change the size of the OS volume at
launch. Therefore, the service extends the partition to fill the volume.

On subsequent boots, the EC2 Config Service performs the following tasks.

 1. Activate Windows as necessary. Note that you can change the Key Management Server
(KMS) server in the settings file.

 2. Format disks. This mounts secondary EBS and instance store volumes, and formats them.

CHAPTER 7 ■ AMAZON MACHINE IMAGES

119

 3. Set the clock. Note that the default is UTC time, not the local time zone of the AWS region.

 4. Write event log entries to the AWS System Log. This can help debug errors that occur
before RDP is available in the boot sequence.

 5. Create a new wallpaper image. This includes useful information (name, type, memory,
etc.) about the image.

 6. Configure a few custom routes. For example, 169.254.169.250 and 169.254.169.251 are the
default KMS servers and 169.254.169.254 is the meta-data URL we used in Chapter 3.

All of these actions are performed by default, but you can customize them as needed using the EC2 Config Service
Settings. Log into any Windows instance and find “EC2 Config Service Settings” on the start menu. The application is
organized into four tabs: General, Image, Storage, and Support.

The first tab, shown in Figure 7-1, allows you to control basic settings.

Figure 7-1. EC2 Config Service General tab

CHAPTER 7 ■ AMAZON MACHINE IMAGES

120

Set Computer Name will rename the instance to match the private IP address. This is
enabled by default during the first boot. If you create your own image, you can disable it to
use a custom naming convention.

User Data will execute <script> and <powershell> scripts included in the user data at launch.
(Remember that we discussed this in Chapter 3.) By default, the user-data scripts are only
executed during the first boot. You can manually enable it to run on subsequent boots. Note
that during the first boot, scripts run under the administrator account. During subsequent
boots, scripts run under the service account that the EC2Config Service is running under.

Event Log will write errors to the AWS System Log. You cannot connect to an instance when
it is booting, and if it fails to boot you may not be able to connect at all. Therefore, it is difficult
to debug issues that occur during boot. Writing errors to the system log will allow you to see
them from the AWS Management Console.

Wallpaper Information writes information to the desktop. Often you will have users accessing
instances that do not have access to the AWS Management Console. The wallpaper allows
these users to see information about the instance they are using without needing to grant them
access to the AWS console.

The second tab, shown in Figure 7-2, allows you to create an image. I will show you, step-by-step, how to create
an image in the next section, but let’s review a few of the key options here.

Figure 7-2. EC2 Config Service Image tab

CHAPTER 7 ■ AMAZON MACHINE IMAGES

121

Administrator Password allows you to specify the password. You can either type in a
password, or allow the EC2Config Service to generate a random password for you.

Shutdown with SysPrep will prepare the image and shut down the instance. This is how we
will create a new image in the next section.

Details will tell you the location of the SysPrep answer file. You can manually edit the
answer file to further customize the image. For example, you can include credentials
needed to join the instance to a Windows domain.

The third tab, shown in Figure 7-3, allows you to configure volumes. The options are:

Figure 7-3. EC2 Config Service Storage tab

CHAPTER 7 ■ AMAZON MACHINE IMAGES

122

Root Volume will automatically extend the OS partition to fill the root volume. You can
disable this if you want to leave free space on the root volume to create additional partitions.

Initialize Drives will automatically mount and format any secondary or instance store
volumes. Disable this if you want to use a custom mount point or if you format the disk
using something other than NTFS.

Drive Letter Mapping allows you to control how volumes are mapped. You specify the
volume label and the drive letter you want it to use. This is useful if you are attaching
multiple disks with data already on them.

The fourth tab, not pictured, provides links to a few useful debugging tools. You can explore these tools on your own.
Now that you know your way around the EC2Config Service, let’s create our own image. In the next section we

will customize an Amazon AMI and create a new image that includes our customizations.

Preparing an AMI Using EC2Config
In the prior section we learned about the EC2Config Service. In this section we will prepare an image of our own.
To start, launch a new Windows Server 2012 Base instance that will serve as our template. You can either use the
AWS Management Console or the following PowerShell script.

$AMI = Get-EC2ImageByName -Name 'WINDOWS_2012_BASE'
$Reservation = New-EC2Instance -ImageId $AMI[0].ImageId -KeyName 'MyKey'
 -InstanceType 't1.micro' -MinCount 1 -MaxCount 1

Once the instance boots, you can log in and make whatever changes you want. Let’s assume we are developing
a web application and we want to create a server to test it on. Our application has some complicated authentication
requirements and needs a few features that were not enabled on the Amazon Windows 2012 Web Server AMI.

In Figure 7-4 I have configured the required roles and services. First, I enabled the Web Server (IIS) role. Next,
I enabled the Windows Identity Foundation 3.5 feature. Finally, I enabled six of the nine Web Server Security Role
Services. Obviously your configuration will depend on the applications you intend to run on the instance.

CHAPTER 7 ■ AMAZON MACHINE IMAGES

123

Once you have configured your server and installed any software you want in the template, it is time to prepare
the image. As I mentioned in the prior section, you use the EC2Config Service to create an image. Behind the scenes,
the EC2Config Service uses SysPrep to do the heavy lifting.

A NOTE ON SQL SERVER

I want to take a minute to talk about SQL Server images. Technically SQL Server does not support SysPrep.

If you SysPrep an instance that has SQL installed, the data in the master database will retain references to the

original server name. This will lead to issues with some SQL components including Reporting Service and SQL

Replication. The Amazon SQL images ignore this advice and use a script to fix the data in the master database.

The correct way to SysPrep SQL Server is to use the “Image preparation” option. A prepared image installs all

of the application bits, but does not create the master database. You can then safely SysPrep the image and

complete the installation after an instance is created from the image. For details see

http://technet.microsoft.com/en-us/library/ee210664.aspx.

Figure 7-4. Configuring the Web Server role

http://technet.microsoft.com/en-us/library/ee210664.aspx

CHAPTER 7 ■ AMAZON MACHINE IMAGES

124

Caution ■ Before continuing, you should take a snapshot of the instance. Once we SysPrep the image, there is no

going back. If the instance fails to boot, you will have to start over from scratch.

Open the “Ec2Config Service Settings” application from the start menu on your template instance. On the
General tab (see Figure 7-1 for reference) I enabled the User Data option to ensure that I can further customize any
instances I create from this image. I also enabled the Event Log output option to help debugging if the image fails.

On the Storage tab (see Figure 7-3 for reference) I enabled the option to dynamically extend the OS partition.
Remember that this will allow the users of our template to specify the volume size when creating an instance.

On the Image tab (see Figure 7-2 for reference) I set the administrator password to Random. This tells AWS to
generate a random password and encrypt it with our key pair.

At this point you can simply click the Shutdown with SysPrep button, but before we do let’s look at the SysPrep
script. If you click the Details button on the Image tab, you will see the path to the SysPrep configuration file.

Editing the SysPrep Answer File
The SysPrep answer file is used to customize the setup of a new Windows instance created from an image. Click the
Details button on the Image tab of the EC2Config Settings tool. Open this file in notepad.

Note ■ This section is optional.

The SysPrep answer file is broken into three sections that represent phases of the SysPrep and Setup process:
generalize, specialize, and oobeSystem. The generalize phase occurs when you run SysPrep and is responsible for
removing system-specific information from the template instance such as the server name, SID, etc. This section is
fairly generic and there is little you will want to change.

The specialize phase occurs when a new instance is first booted and is responsible for configuring new system-specific
information. This is your opportunity to change the machine name, join a domain, or run a custom script.

The oobeSystem or “out of the box experience” is the wizard the user is presented with when he or she logs in
for the first time. You have probably seen this if you have bought a new PC. This is your opportunity to change the
time zone and localization information. Remember when running at AWS, the user cannot see the Windows Console;
therefore, the configuration file must provide answers to all of the questions a user would see.

Let’s make a couple of changes to our answer file before running SysPrep. Note that I have included a complete
SysPrep file, called sysprep2008.xml, with the example code for this chapter. First, let’s change the default time zone
from UTC to Eastern Standard Time. You will find this about halfway down in the oobeSystem section (and shown in
bold in the following code).

<unattend xmlns="urn:schemas-microsoft-com:unattend">
 ...
 <settings pass="oobeSystem">
 ...
 <component name="Microsoft-Windows-Shell-Setup" ...>
 ...
 <BluetoothTaskbarIconEnabled>false</BluetoothTaskbarIconEnabled>
 <TimeZone>Eastern Standard Time</TimeZone>

CHAPTER 7 ■ AMAZON MACHINE IMAGES

125

 <RegisteredOrganization>Amazon.com</RegisteredOrganization>
 <RegisteredOwner>Amazon</RegisteredOwner>
 </component>
 </settings>
 ...
</unattend>

Next, let’s add instructions to join a domain and register with DNS. I am using a domain called AWSLAB.LOCAL.
You will need a username and password for a domain user that has permission to add machines to the domain. Now
add the following two components to the end of the specialize section.

<unattend xmlns="urn:schemas-microsoft-com:unattend">
 ...
 <settings pass="specialize">
 ...
 <component name="Microsoft-Windows-DNS-Client" processorArchitecture="amd64"
 publicKeyToken="31bf3856ad364e35" language="neutral" versionScope="nonSxS"
 xmlns:wcm="http://schemas.microsoft.com/WMIConfig/2002/State"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <DNSDomain>awslab.local</DNSDomain>
 <UseDomainNameDevolution>true</UseDomainNameDevolution>
 <DNSSuffixSearchOrder>
 <DomainName wcm:action="add" wcm:keyValue="1"> awslab.local</DomainName>
 </DNSSuffixSearchOrder>
 </component>
 <component name="Microsoft-Windows-UnattendedJoin" processorArchitecture="amd64"
 publicKeyToken="31bf3856ad364e35" language="neutral" versionScope="nonSxS"
 xmlns:wcm="http://schemas.microsoft.com/WMIConfig/2002/State"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <Identification>
 <Credentials>
 <Domain>AWSLAB.LOCAL</Domain>
 <Username>DOMAIN_JOIN_USERNAME</Username>
 <Password>DOMAIN_JOIN_PASSWORD</Password>
 </Credentials>
 <JoinDomain>AWSLAB.LOCAL</JoinDomain>
 <UnsecureJoin>
 </UnsecureJoin>
 </Identification>
 </component>
 ...
 </settings>
 ...
</unattend>

Now, you can click the Shutdown with SysPrep button on the Image tab of the EC2Config Service Settings tool.
The SysPrep process will run for a few minutes and the instance will shutdown.

The instance will begin running setup as soon as you start it, so do not start the instance again until we create an
image. In the next section we will create an AMI from this instance.

http://amazon.com/
http://schemas.microsoft.com/WMIConfig/2002/State
http://www.w3.org/2001/XMLSchema-instance
http://schemas.microsoft.com/WMIConfig/2002/State
http://www.w3.org/2001/XMLSchema-instance

CHAPTER 7 ■ AMAZON MACHINE IMAGES

126

Creating an AMI
The instance is now configured and waiting to run setup. We want to clone the instance in this state, so that each copy
runs setup when it first boots. It’s finally time to create an image. Let’s look at the AWS Administration Console first,
and then discuss the PowerShell commands.

In the AWS Management Console, right-click on the instance you want to create an image of and select Create
Image (EBS AMI). Figure 7-5 shows the Create Image dialog box. From here you can give your image a name and
description, and configure the volumes. Remember, from Chapter 4, that the user will have the option of modifying
the volume configuration when he or she launches an instance of your image. If the image requires multiple volumes,
you can set default values here.

Figure 7-5. Create Image dialog box

The equivalent PowerShell command is New-EC2Image. The command takes the id of the instance you want to
make a template from, as well as a name and description, and returns the ID of the new image. For example:

$AMIID = New-EC2Image -InstanceId i-208dc944
 -Name "WIN2012WEB" -Description "Windows 2012 Web Server"

As you might expect it takes a few minutes to create the image. You can check the ImageState to see if the image
is ready. To wait for an image you can use a while loop similar to the example below.

$AMI = Get-EC2Image $AMIID
While($AMI.ImageState -ne "available") {
 $AMI = Get-EC2Image $AMIID
 Start-Sleep -Seconds 15
}

CHAPTER 7 ■ AMAZON MACHINE IMAGES

127

Modifying the drive configuration works just like it did when we used the New-EC2Instance command in
Chapter 4. Let’s add another 100GB volume to our image to store IIS log files. Remember that the EC2Config Service
is configured to automatically mount and format any additional volumes that we attach. All we need to do is create
a block device and mapping descriptor and pass it to the New-EC2Image command using the BlockDeviceMapping
attribute. For example:

$Volume1 = New-Object Amazon.EC2.Model.EbsBlockDevice
$Volume1.DeleteOnTermination = $True
$Volume1.VolumeSize = 30
$Volume1.VolumeType = "standard"

$Mapping1 = New-Object Amazon.EC2.Model.BlockDeviceMapping
$Mapping1.DeviceName = "/dev/sda1"
$Mapping1.Ebs = $Volume1

$Volume2 = New-Object Amazon.EC2.Model.EbsBlockDevice
$Volume2.DeleteOnTermination = $False
$Volume2.VolumeSize = 100
$Volume2.VolumeType = "standard"

$Mapping2 = New-Object Amazon.EC2.Model.BlockDeviceMapping
$Mapping2.DeviceName = "xvdf"
$Mapping2.Ebs = $Volume2

$AMIID = New-EC2Image -InstanceId i-208dc944
 -Name "WIN2012WEB2" -Description "Windows 2012 Web Server 2"
 -BlockDeviceMapping $Mapping1, $Mapping2

At this point you have your own custom AMI and you can create instances. This same process can be used to
make as many variations as you need. If you find that an image is particularly useful, you may want to share it with
others. In the next section I will show you how to share your image.

Sharing an AMI
You may find that you want to share an image with other accounts. Maybe your company has multiple accounts and
you want to use a single corporate image across all accounts. Or maybe you have an image that includes a trial version
of your company’s software and you want to share it with the world.

To share an image with another account you use the Edit-EC2ImageAttribute command. In the following
example I am granting permission to launch an instance of an image to users of the account 1234-1234-1234.
Obviously your image id and account id will be different.

Edit-EC2ImageAttribute -ImageId 'ami-71ebba18' -Attribute 'launchPermission'
 -OperationType 'add' -UserId '123412341234'

To share an image with all accounts, you grant permission to the group “all.” For example:

Edit-EC2ImageAttribute -ImageId 'ami-71ebba18' -Attribute 'launchPermission'
 -OperationType "add" -UserGroup "all"

CHAPTER 7 ■ AMAZON MACHINE IMAGES

128

You can check which accounts and groups have access by using the Get-EC2ImageAttribute command.

Get-EC2ImageAttribute -ImageId 'ami-71ebba18' -Attribute 'launchPermission'

To revoke the launch permission from an account, use the remove operation type. For example:

Edit-EC2ImageAttribute -ImageId 'ami-71ebba18' -Attribute 'launchPermission'
 -OperationType 'remove' -UserId '123412341234'

You can revoke the launch permission from the group the same way. For example:

Edit-EC2ImageAttribute -ImageId 'ami-71ebba18' -Attribute 'launchPermission'
 -OperationType 'add' -UserGroup 'remove'

If you want to revoke the launch permission from all users and groups, you can use the
Reset-EC2ImageAttribute command. For example:

Reset-EC2ImageAttribute -ImageId 'ami-71ebba18' -Attribute 'launchPermission'

Finally, if you are sharing images between accounts, you can list the images owned by a specific account by
supplying the account number to the Get-EC2Image command. For example:

Get-EC2Image -Owner 123412341234

As you can see, AMIs are a powerful tool. You can leverage the tens of thousands of existing images, create your
own images, and even share your images with others. In Exercise 7.1, I will show you an alternative to creating a
prepared image: the scripted build.

EXERCISE 7.1: JOINING YOUR SERVER TO A DOMAIN

At the beginning of the chapter I talked about the difference between scripted builds and prepared images. Most

of this chapter has focused on prepared images, but I want to take a minute to return to the scripted build.

When we created the image earlier we modified the SysPrep answer file to join the new instance to a domain.

While this was a simple solution, it has a few flaws. Most notably the setup process generates a random server

name and we have no control over it. Many companies have strict naming conventions that indicate the location

and role of the server. In this example we will create a script that can act on any windows AMI to properly name

the server and join it to a domain.

First, we need quite a few inputs including the server name, the domain name and credentials to join, the instance

type and key pair to use, and the AMI.

param
(
 [string][parameter(mandatory=$true)]$ServerName,
 [string][parameter(mandatory=$true)]$SubnetId,
 [string][parameter(mandatory=$false)]$DomainName = 'AWSLAB.local',
 [string][parameter(mandatory=$false)]$DomainUser = 'AWSLAB\AWSAdmin',
 [string][parameter(mandatory=$true)]$DomainPassword,

CHAPTER 7 ■ AMAZON MACHINE IMAGES

129

 [string][parameter(mandatory=$false)]$InstanceType = 't1.micro',
 [string][parameter(mandatory=$false)]$KeyName = 'MyKey',
 [string][parameter(mandatory=$false)]$PemFile = 'C:\AWS\MyKey.pem',
 [string][parameter(mandatory=$false)]$AMI
)

If no AMI is specified we will look up the Windows 2012 AMI in the current region and use that.

If([System.String]::IsNullOrEmpty($AMI)){ $AMI = (Get-EC2ImageByName -Name
 "WINDOWS_2012_BASE")[0].ImageId}

Now is where it gets interesting. We could simply add the entire script to the user-data section before we launch.

But, this will include the domain credentials. We don’t want to make them available to anyone who logs into the

instance. Instead, I will add a PowerShell script to the user data to enable WMI calls through Windows Firewall.

Then, we can use remote WMI calls to join the server to the domain without exposing the password to users.

The script to open Windows Firewall was already discussed in Chapter 3. It simply enables the existing

firewall rules.

$UserData = [System.Convert]::ToBase64String(
 [System.Text.Encoding]::ASCII.GetBytes(@'
<powershell>
Get-NetFirewallRule | Where { $_.DisplayName -eq "Windows Management
 Instrumentation (ASync-In)" } | Enable-NetFirewallRule
Get-NetFirewallRule | Where { $_.DisplayName -eq "Windows Management
 Instrumentation (DCOM-In)" } | Enable-NetFirewallRule
Get-NetFirewallRule | Where { $_.DisplayName -eq "Windows Management
 Instrumentation (WMI-In)" } | Enable-NetFirewallRule
</powershell>
'@))

Now we can launch the instance specified. Remember that this script will work with any Windows image. It does

not require a custom AMI.

$Reservation = New-EC2Instance -ImageId $AMI -KeyName $KeyName -SubnetId $SubnetId
 -InstanceType $InstanceType -MinCount 1 -MaxCount 1 -UserData $UserData

Next, I retrieve the instance ID and IP address. I also label the instance with the name tag.

$Instance = $Reservation.RunningInstance[0].InstanceId
$IP = $Reservation.RunningInstance[0].PrivateIpAddress

$Tag = New-Object Amazon.EC2.Model.Tag
$Tag.Key = 'Name'
$Tag.Value = $ServerName
New-EC2Tag -ResourceId $Instance -Tag $Tag

CHAPTER 7 ■ AMAZON MACHINE IMAGES

130

Then, I wait for the administrator password to become available.

$LocalPassword = $null
While($LocalPassword -eq $null) {
 Try {
 Write-Host "Waiting for password."
 $LocalPassword = Get-EC2PasswordData -InstanceId $InstanceId
 -PemFile $PemFile -ErrorAction SilentlyContinue
 }Catch{}
 Start-Sleep -s 60
}

In order to add the server to a domain, we need two sets of credentials. First, we need credentials to log into the

new server. Second, we need credentials to log into the domain to add the server.

$DomainPassword = $DomainPassword | ConvertTo-SecureString -asPlainText -Force
$DomainCredential = New-Object System.Management.Automation.PSCredential($DomainUser,
 $DomainPassword)

$LocalComputer = $IP
$LocalPassword = $LocalPassword | ConvertTo-SecureString -asPlainText -Force
$LocalUsername = "administrator"
$LocalCredential = New-Object System.Management.Automation.PSCredential("administrator",
 $LocalPassword)

Now we can call Add-Computer, the PowerShell command to add a server to the domain.

Add-Computer -ComputerName $LocalComputer -LocalCredential $LocalCredential
 -NewName $ServerName -DomainName $DomainName
 -Credential $DomainCredential -Restart -Force

As you can see, you can either create a custom AMI with your changes baked in, or you can use an Amazon

AMI and then script the customizations. Of course, you could also choose a hybrid approach. You might build a

custom AMI that includes common tools like management and antivirus agents, and then use scripting to further

customize the instance for a specific application.

Although it is easy to customize an Amazon AMI, it would be great if we could leverage the library of images we

already have onsite. In Exercise 7.2, I will show you how to import an existing VM image from an onsite hypervisor

like VMware or Hyper-V.

EXERCISE 7.2: UPLOADING A VM

Many of us already have a library of images that we have built for our VMware or Hyper-V environments. The

good news is that Amazon allows you to upload an existing image into EC2. The bad news is that you cannot use

PowerShell for this.

There are PowerShell commands for the import process, but they assume that your image has been uploaded

to S3 in a very specific and poorly documented format. Luckily, the EC2 Command Line Interface Tools for Java

support the end-to-end process including the upload.

CHAPTER 7 ■ AMAZON MACHINE IMAGES

131

The entire process works like this:

1. Export the VM from VMware or another hypervisor.

2. Break the VMDK into 10BM chunks and upload to S3.

3. Import the chucks into EC2 Classic as a running instance.

4. Install tools and drives on the instance.

5. Create an Amazon Machine Image from the instance.

First, let’s set up the Java Tools. I assume you have Java installed on your machine already. You can download

the EC2 Tools from http://aws.amazon.com/developertools/351. The tools are packaged as a zip file, not an

installer. Simply unzip the package into c:\AWS.

Next, you will need an S3 bucket to upload the image to. If you don’t already have one, open AWS Management

Console and choose S3 from the services menu. Click the Create Bucket button on the first page to load the

Create Bucket dialog box shown in Figure 7-6. Name the bucket, and choose a region, then click Create. Don’t

worry about the details; we will discuss S3 in detail in Chapter 10.

Figure 7-6. Create a Bucket dialog box

Before you export the image you should prepare the VM by checking the following:

1. Check that remote desktop is enabled.

2. Check that Windows Firewall allows public RDP traffic.

3. Check that all patches and virus definitions are up to date.

4. Remove any virtualization tools such as the VMware Tools.

Now, it is time to export the image from your hypervisor. Note the ec2-import-instance command only imports

the OS volume. If you want to import additional volumes, use ec2-import-volume. Export the OS volume using

the management tools for your hypervisor. The import process supports VMDK, VHD, and OVF file formats.

http://aws.amazon.com/developertools/351

CHAPTER 7 ■ AMAZON MACHINE IMAGES

132

Next, we need to configure our Java environment. Open a new command prompt and set up the following

environment variables. Obviously you may need to change a few paths depending on where you installed the

various tools. Note that there is a complete batch file included with the example code.

SET JAVA_HOME=C:\Program Files\Java\jre6
SET EC2_HOME=C:\AWS\ec2-api-tools-1.6.7.2
SET CLASSPATH=%CLASSPATH%;%EC2_HOME%\lib
SET PATH=%JAVA_HOME%\bin;%PATH%;%EC2_HOME%\bin.

We also need to set a few default values. You will need your keys from Chapter 2 and the name of the S3 bucket

you created at the beginning of this exercise. Note that you do not need to specify the region. The image will be

imported into the same region you created the S3 bucket in.

SET AWS_ACCESS_KEY = AKIAIQPQNCQG3EYO6LIA
SET AWS_SECRET_KEY = +QYg/Uxmjs3HeMk2hNVEyjIyLeXZfY++PEGyXjMV
SET BUCKET_NAME = MyBucket

Now you can call ec2-import-instance command. For example:

ec2-import-instance "c:\aws\MyImage.vhd" -t t1.micro -f VHD -a i386
 -b %BUCKET_NAME% -o %AWS_ACCESS_KEY% -w %AWS_SECRET_KEY%

The ec2-import-instance command will dump a bunch of data to the screen and then display a progress bar.

Note the TaskId in the format import-i-fh37272p. You will need this to check the progress later.

The progress bar you see on screen represents the upload process. Depending on the size of the image, the

upload can take a long time. Luckily, if it fails, you do not need start over. You can resume an upload using the

ec2-resume-import command. For example:

ec2-resume-import "c:\aws\MyImage.vhd" -t import-i-fh37272p
 -o %AWS_ACCESS_KEY% -w %AWS_SECRET_KEY%

Once the upload completes, Amazon will begin the conversion behind the scenes. There is no progress bar for

this, but you can check on the conversion progress using ec2-describe-conversion-tasks command and

passing your TaskId. For example:

ec2-describe-conversion-tasks import-i-fh37272p

Once the conversion completes you will have an instance running in EC2 Classic. The import command does

not clean up the temporary data stored in S3. You can delete it manually, or use the ec2-delete-disk-image

command. For example:

ec2-delete-disk-image -t import-i-fh37272p
 -o %AWS_ACCESS_KEY% -w %AWS_SECRET_KEY%

Now you can log into the new instance. Note that you use the same password you used to log into the instance on

site. You cannot retrieve the password from EC2 because EC2 never knew the password. Once you log in,

CHAPTER 7 ■ AMAZON MACHINE IMAGES

133

you need to install a couple of tools. First, install the EC2Config Service, which can be downloaded from

http://aws.amazon.com/developertools/5562082477397515. Second install the Citrix PV Drivers are available

from http://aws.amazon.com/developertools/2187524384750206.

At this point your instance has been fully converted. You can either use it as is or follow the instructions in this

chapter to create an AMI. As you can see the ec2-import-instance command will allow you to leverage your

existing image library in the cloud and ensure that you have the same bits running on site and in the cloud.

Summary
In this chapter we learned about Amazon Machine Images. We saw how to find and leverage the over 20,000 images
already available. Then we discussed how to create our own custom images. We discussed how to prepare a Windows
instance using SysPrep. Finally, we learned how to share our images with others.

Then, in the first exercise, we saw an alternative to rolling a custom image: scripted builds. In the second exercise,
we saw how to import an existing image from VMware or Hyper-V. In the next chapter we will talk about scalability
and high availability.

http://aws.amazon.com/developertools/5562082477397515
http://aws.amazon.com/developertools/2187524384750206

135

CHAPTER 8

Monitoring and High Availability

This chapter is about architecting your application for high availability. It is also the last chapter on Elastic Compute
Cloud (EC2). We have covered almost all of the PowerShell commands for EC2, but EC2 is only one of many services
that AWS offers. In this chapter we will examine a few of the services that you can use in concert with EC2 to build a
highly available application. These services include Elastic Load Balancers (ELB), Simple Notification Service (SNS),
CloudWatch, Auto Scaling, and Route 53.

We will start by creating a new VPC focused on high availability. This will be a great opportunity to review the
material in the prior chapters. Next, we will create an ELB to balance HTTP and HTTPS web traffic across multiple
instances. We will configure the ELB to automatically detect errors and remove unhealthy instances. Then, we will use
SNS and CloudWatch to create an early warning system that can e-mail us when the application is under stress.

Once that detection system is running, we will use Auto Scaling to automatically scale the application by
monitoring load. Auto Scaling will leverage scripted builds to launch and terminate instances throughout the day
without human involvement. Finally, we will discuss how Route 53 can be used to extend our application across
multiple regions, serving each user from the location nearest them.

This chapter has two exercises. In the first, we consolidate everything we learned in the chapter into one
streamlined script. In the second, we create a script to scale up (or resize) an instance. Let’s get started.

Architecting for High Availability
In Chapters 5 and 6 we spent a lot of time discussing VPC with a focus on security. This section focuses on
availability. This is not to suggest that we must trade security for high availability. AWS gives you everything you need
to achieve both.

We have also discussed regions and availability zones on multiple occasions. Remember that each region
includes multiple availability zones connected by high speed, low latency links. Each availability zone is a stand-alone
data center with distinct power, Internet, and resources. By designing an application to span availability zones you can
build redundancy into your application.

A VPC is limited to a single region, but as shown in Figure 8-1, it can span multiple availability zones. As you
already know, a VPC can contain multiple subnets, and each subnet can be in its own availability zone. By spreading
our application across availability zones, we can ensure high availability. If one of the data centers was to fail,
the application could continue running in the other.

CHAPTER 8 ■ MONITORING AND HIGH AVAILABILITY

136

Let’s get started by creating the VPC in Figure 8-1. This will be a great opportunity to review much of what we
learned in prior chapters.

Let’s assume our application is a simple, single-tier web application with no database. First, we create a new VPC
and pick two availability zones in the same region. For example, I am using a private 192.168.0.0 network and the
Northern Virginia region. You may have to change the script to use availability zones in your region.

$VPC = New-EC2Vpc -CidrBlock '192.168.0.0/16'
$AvailabilityZone1 = 'us-east-1a'
$AvailabilityZone2 = 'us-east-1b'

Next, we create two subnets in our VPC. Notice that each subnet is using a different availability zone. (If any of
this is unfamiliar, go back and review Chapter 5.)

$WebSubnet1 = New-EC2Subnet -VpcId $VPC.VpcId -CidrBlock '192.168.3.0/24'
 -AvailabilityZone $AvailabilityZone1
$WebSubnet2 = New-EC2Subnet -VpcId $VPC.VpcId -CidrBlock '192.168.4.0/24'
 -AvailabilityZone $AvailabilityZone2

Region

Availability Zone

Subnet

Availability Zone

Subnet

Figure 8-1. High availability VPC

CHAPTER 8 ■ MONITORING AND HIGH AVAILABILITY

137

We need to launch at least two instances. This is going to be a web application, so I am using the user data
parameter to install and configure IIS. You could use the same method to install your application. (If you have
forgotten how to do this, return to Chapter 3.)

$UserData = [System.Convert]::ToBase64String([System.Text.Encoding]::ASCII.GetBytes(@'
<powershell>
Install-WindowsFeature Web-Server -IncludeManagementTools -IncludeAllSubFeature
</powershell>
'@))

Finally, we launch the two instances being careful to specify different subnets. (We covered this in Chapter 6
if you want to review.)

$AMI = Get-EC2ImageByName 'WINDOWS_2012_BASE'
$Reservation1 = New-EC2Instance -ImageId $AMI[0].ImageId -KeyName 'MyKey'
 -InstanceType 't1.micro' -MinCount 1
 -MaxCount 1 -SubnetId $WebSubnet1.SubnetId -UserData $UserData
$Instance1 = $Reservation1.RunningInstance[0]
$Reservation2 = New-EC2Instance -ImageId $AMI[0].ImageId -KeyName 'MyKey'
 -InstanceType 't1.micro' -MinCount 1
 -MaxCount 1 -SubnetId $WebSubnet2.SubnetId -UserData $UserData
$Instance2 = $Reservation2.RunningInstance[0]

At this point we have new VPC with two subnets each in a different availability zone. In addition, we have
launched two identical instances. If one of the instances fails, the other will keep running. In fact, even if the entire
availability zone failed, the instance in the other zone will keep running. In the next section, we create a load balancer
to distribute the load between our two instances.

Managing Elastic Load Balancers
Now that we have multiple instances deployed in multiple data centers, we need a way to distribute requests between
them. This is the role of a load balancer. An Elastic Load Balancer (ELB) receives requests and forwards them to
instances in our VPC. The ELB also monitors the health of the instances and automatically stops sending requests to
unhealthy instances. In addition, the ELB can be configured to terminate SSL and offload the encryption/decryption
from the instances acting as web servers.

Figure 8-2 shows our VPC from the prior section with an ELB added. Notice that the ELB is configured in both
availability zones. Obviously we need the ELB to be highly available just like the instances we created in the last
section. Luckily Amazon does a lot of the heavy lifting for us when we use an ELB. Let’s create one now.

CHAPTER 8 ■ MONITORING AND HIGH AVAILABILITY

138

Preparing the VPC for an ELB
First, we need to create a subnet in each availability zone for the ELB to live in. When we configure the ELB, we tell
Amazon to use these subnets. Initially, Amazon will launch an ELB into either one of the subnets. If that availability
zone fails, Amazon will automatically launch another ELB in the other availability zone. In addition, if the load grows
so that one ELB cannot handle the load, Amazon will launch additional ELBs to spread the load. For this reason, each
subnet must have at least 20 IP addresses available. Let's create two more subnets.

$ElbSubnet1 = New-EC2Subnet -VpcId $VPC.VpcId -CidrBlock '192.168.1.0/24'
 -AvailabilityZone $AvailabilityZone1
$ElbSubnet2 = New-EC2Subnet -VpcId $VPC.VpcId -CidrBlock '192.168.2.0/24'
 -AvailabilityZone $AvailabilityZone2

This ELB is going to accept requests from the Internet; therefore, we need to add an Internet gateway to our VPC.

$InternetGateway = New-EC2InternetGateway
Add-EC2InternetGateway -InternetGatewayId $InternetGateway.InternetGatewayId -VpcId $VPC.VpcId

Note ■ Not all ELBs are Internet facing. You can create an internal ELB that balances traffic between tiers of your

application. I’ll show you how to do that when we launch the ELB in the next section.

Region

Availability Zone

Subnet

EC2 Instance

Availability Zone

EC2 Instance

Elastic Load Balancing

Subnet

Subnet

Elastic Load Balancing

Subnet

Figure 8-2. VPC with ELB

CHAPTER 8 ■ MONITORING AND HIGH AVAILABILITY

139

Now that we have an Internet gateway, we are going to need to configure the route table to use it. One great side
effect of using an ELB is that only the ELB needs to be exposed to the Internet. Our instances can live on the private
network with no connection to the Internet. Let’s configure a new route table so that only our ELB subnets are public.
(If you need to review Internet gateways and route tables see Chapter 5.)

$PublicRouteTable = New-EC2RouteTable -VpcId $VPC.VpcId
New-EC2Route -RouteTableId $PublicRouteTable.RouteTableId -DestinationCidrBlock '0.0.0.0/0'
 -GatewayId $InternetGateway.InternetGatewayId
$NoEcho = Register-EC2RouteTable -RouteTableId $PublicRouteTable.RouteTableId
 -SubnetId $ElbSubnet1.SubnetId
$NoEcho = Register-EC2RouteTable -RouteTableId $PublicRouteTable.RouteTableId
 -SubnetId $ElbSubnet2.SubnetId

We also need to configure security groups. Let’s create a new security group for the ELBs. The ELBs will receive
HTTP requests on port 80 and HTTPS requests on port 443. This ELB is public facing; therefore, it should accept traffic
from anywhere. (If you want to review security groups go back to Chapter 6.)

$ElbGroupId = New-EC2SecurityGroup -GroupName 'ELB' -GroupDescription "Elastic Load Balancers"
 -VpcId $VPC.VpcId
$HTTPRule = New-Object Amazon.EC2.Model.IpPermission
$HTTPRule.IpProtocol='tcp'
$HTTPRule.FromPort = 80
$HTTPRule.ToPort = 80
$HTTPRule.IpRanges = '0.0.0.0/0'
$HTTPSRule = New-Object Amazon.EC2.Model.IpPermission$HTTPSRule.IpProtocol='tcp'
$HTTPSRule.FromPort = 443
$HTTPSRule.ToPort = 443
$HTTPSRule.IpRanges = '0.0.0.0/0'
$NoEcho = Grant-EC2SecurityGroupIngress -GroupId $ElbGroupId -IpPermissions $HTTPRule,
 $HTTPSRule

Note that I have not configured network ACLs. You can, and should, configure ACLs for your public subnets, but
for this example I am going to keep it simple and use the default ACL. In addition, note that we did not configure the
security groups for the web server instances in the prior section to allow requests from the ELBs. Remember that the
default security group allows communication on any port between any members of the default group. So, as long as
we add both the ELB and web server instances to the default group they will be able to communicate. Before we create
the ELB, let's get a reference to the default security group for our VPC.

$VPCFilter = New-Object Amazon.EC2.Model.Filter
$VPCFilter.Name = 'vpc-id'
$VPCFilter.Value = $VPC.VpcId
$NameFilter = New-Object Amazon.EC2.Model.Filter
$NameFilter.Name = 'group-name'
$NameFilter.Value = 'default'
$DefaultGroup = Get-EC2SecurityGroup -Filter $VPCFilter, $NameFilter

Now that we have our VPC configured, let's create an ELB.

CHAPTER 8 ■ MONITORING AND HIGH AVAILABILITY

140

Configuring an ELB for HTTP
Let’s get started by configuring an ELB for HTTP. (We will configure HTTPS in the next section.) The first thing we
need is a listener. The listener configures the ELB to receive traffic. We use a .Net object to describe the listener. In the
following example, I create a listener that listens for HTTP traffic on port 80 and forwards it to an instance on port 80.

$HTTPListener = New-Object 'Amazon.ElasticLoadBalancing.Model.Listener'
$HTTPListener.Protocol = 'http'
$HTTPListener.LoadBalancerPort = 80
$HTTPListener.InstancePort = 80

Now that we have the listener defined, we can create an ELB using the New-ELBLoadBalancer command.
In addition to the listener configuration, New-ELBLoadBalancer takes a name, a list of subnets to use, and the
security groups it should be a member of.

New-ELBLoadBalancer -LoadBalancerName 'WebLoadBalancer'
 -Subnets $ElbSubnet1.SubnetId, $ElbSubnet2.SubnetId
 -Listeners $HTTPListener -SecurityGroups $DefaultGroup.GroupId, $ElbGroupId

If you want to create an internal ELB that is not accessible from the Internet, just add the scheme parameter with
a value of Internal. For example:

New-ELBLoadBalancer -LoadBalancerName 'WebLoadBalancer'
 -Subnets $ElbSubnet1.SubnetId, $ElbSubnet2.SubnetId
 -Listeners $HTTPListner -SecurityGroups $DefaultGroup.GroupId, $ElbGroupId -Scheme Internal

While the ELB is launching, let's talk about health monitoring. As I mentioned, the ELB monitors the health of
the instances. If an instance is unhealthy, the ELB stops forwarding traffic to it. Let’s check out the configuration using
Get-ELBLoadBalancer. For example:

(Get-ELBLoadBalancer -LoadBalancerName 'WebLoadBalancer').HealthCheck

The previous command returns the following results:

Target : TCP:80
Interval : 30
Timeout : 5
UnhealthyThreshold : 2
HealthyThreshold : 10

This is the default health check and it works as follows. Every 30 seconds (the interval) the ELB will attempt
to create a TCP connection on port 80 (the target). If it succeeds, the instance is healthy. If the connection is not
completed within 5 seconds (the time-out) the instance is unhealthy. If the instance fails on 2 (the unhealthy
threshold) consecutive health checks, the ELB will stop forwarding traffic. At this point the ELB will continue to
monitor the instance. If the instance again appears healthy, the ELB will continue to monitor it until the check
succeeds 10 (the healthy threshold) consecutive times, at which point the ELB will begin forwarding traffic to it again.

Note that this is just checking the TCP connection. There are many other things that could go wrong. For example
there may be an issue in the application configuration. It would be much better to request a specific web page and
ensure that it is responding correctly. Let’s change the rule to check a specific page. In the following example, I have
configured the target to request the iisstart.htm page using HTTP on port 80. If the web server responds with a 200
status, the instance will be considered healthy. If not it will be marked unhealthy.

CHAPTER 8 ■ MONITORING AND HIGH AVAILABILITY

141

Set-ELBHealthCheck -LoadBalancerName 'WebLoadBalancer' -HealthCheck_Target
 'HTTP:80/iisstart.htm'
 -HealthCheck_Interval 30 -HealthCheck_Timeout 5 -HealthCheck_HealthyThreshold 2
 -HealthCheck_UnhealthyThreshold 10

Now that the ELB is configured, we can finally add our instances using the Register-ELBInstanceWithLoadBalancer
command. For example:

Register-ELBInstanceWithLoadBalancer -LoadBalancerName 'WebLoadBalancer'
 -Instances $Instance1.InstanceId, $Instance2.InstanceId

The last thing we need is the DNS name of our load balancer. To get the name, use the Get-ELBLoadBalancer
command and check the DNSName.

(Get-ELBLoadBalancer -LoadBalancerName 'WebLoadBalancer').DNSName

You will get a name similar to the following. Just copy the DNS name into your browser and it should display the
IIS start page. Don't be alarmed if the first request takes a few seconds. Subsequent requests will be much faster.

WebLoadBalancer-62156217.us-east-1.elb.amazonaws.com

Obviously we don’t want to share this ugly URL. You can use a DNS CNAME to create a friendly alias. For
example, I created an alias for aws.brianbeach.com. The process will depend on your DNS provider. I use GoDaddy
and the configuration looks like the one shown in Figure 8-3.

If the ELB is not working, you can check the health of the instances using Get-ELBInstanceHealth. It will list each
of the instances, if they are healthy, and the reason. If you are debugging an ELB, remember that it is configured for 10
consecutive healthy checks before it considers an instance healthy, which will take 5 minutes. To check the health of
our ELB use the following command:

Get-ELBInstanceHealth -LoadBalancerName 'WebLoadBalancer'

At this point our ELB is running and forwarding HTTP requests to our instances. In the next section we add
support for HTTPS.

Configuring an ELB for HTTPS
Most applications today require SSL for at least some portion of the site. As I mentioned earlier, an ELB can be
configured to terminate HTTPS. Note that the ELB can also receive an HTTPS request and forward it to the instance
without decrypting it, but I did not include an example. Let's add a new listener to our ELB that terminates HTTPS.

The first step is to import the SSL certificate. If you don't have an SSL certificate, see the sidebar for instructions
to create a self-signed certificate for testing. To import the certificate, use the Publish-IAMServerCertificate
command. Note that this command is from the Identity and Access Management (IAM) service. (We will look at

Figure 8-3. Creating a DNS CName in GoDaddy.com

http://amazonaws.com/
http://aws.brianbeach.com/
http://godaddy.com/

CHAPTER 8 ■ MONITORING AND HIGH AVAILABILITY

142

IAM in detail in Chapter 11). The Publish-IAMServerCertificate command takes as parameters the certificate and
private key as well as a name.

$Cert = [IO.File]::ReadAllText('C:\AWS\MyCert.cer')
$PrivateKey = [IO.File]::ReadAllText('C:\AWS\MyCert.pem')
$ServerCert = Publish-IAMServerCertificate -ServerCertificateName 'MyCert'
 -CertificateBody $Cert -PrivateKey $PrivateKey

GENERATING A SELF-SIGNED CERTIFICATE WITH OPENSSL

Once you become accustomed to paying two cents an hour for a server, an SSL certificate from VeriSign seems

very expensive. You can use OpenSSL, available from www.openssl.org, to create a self-signed certificate for

testing. Obviously no one is going to trust your certificate, but it will suffice for testing.

First, generate a new private key. The following example creates a 2048 bit RSA key and saves it in a file called

MyCert.pem.

openssl.exe genrsa 2048 > MyCert.pem

Next, we create a certificate request and save it as MyCert.csr.

openssl.exe req -new -key MyCert.pem -out MyCert.csr

When you run the prior command you will be asked a bunch of questions. You can leave them all blank (just press

Enter) except for the common name. When asked for the common name, enter the fully qualified domain name of

your server. For example, to create a certificate for https://aws.brianbeach.com I responded:

Country Name (2 letter code) [AU]:
State or Province Name (full name) [Some-State]:
Locality Name (eg, city) []:
Organization Name (eg, company) [Internet Widgits Pty Ltd]:
Organizational Unit Name (eg, section) []:
Common Name (e.g. server FQDN or YOUR name) []:aws.brianbeach.com
Email Address []:
Please enter the following 'extra' attributes to be sent with your certificate request
A challenge password []:
An optional company name []:

Usually you would send your certificate request to a certificate authority like VeriSign. We will use OpenSSL again

to sign the request with our private key and generate a certificate in the file MyCert.cer.

bin\openssl x509 -req -days 365 -in MyCert.csr -signkey MyCert.pem -out MyCert.cer

You can use this certificate in the remaining examples.

http://www.openssl.org/
https://aws.brianbeach.com/
http://aws.brianbeach.com/

CHAPTER 8 ■ MONITORING AND HIGH AVAILABILITY

143

Now that we have imported our certificate, we can create a new listener that uses HTTPS. Notice in the following
example that the ELB is listening on port 443 and forwarding the decrypted request to the instance on port 80.

$HTTPSListener = New-Object 'Amazon.ElasticLoadBalancing.Model.Listener'
$HTTPSListener.Protocol = 'https'
$HTTPSListener.LoadBalancerPort = 443
$HTTPSListener.InstancePort = 80
$HTTPSListener.SSLCertificateId = $ServerCert.Arn

We can add the new listener to our existing ELB using the New-ELBLoadBalancer command as follows:

New-ELBLoadBalancerListener -LoadBalancerName 'WebLoadBalancer' -Listeners $HTTPSListener

The ELB is now listening for both HTTP traffic on port 80 and HTTPS traffic on port 443. The instance does not
care which protocol is being used. It only sees decrypted traffic on port 80.

Before we move on let’s spend a minute discussing stickiness.

Managing Stickiness Policies
By default the ELB will balance each request independently. This means that each request from a user may be sent to
a different instance. Often the application maintains state on the instance and subsequent requests must be sent to
the same instance. Sending all traffic from a specific user to the same server is called stickiness.

For example, most ASP.Net applications use a cookie to maintain session state. The ELB can be configured to use
this cookie to maintain stickiness. To configure a stickiness policy that uses the ASP.Net session cookie, we use New-
ELBAppCookieStickinessPolicy and specify the name of the cookie. For example:

New-ELBAppCookieStickinessPolicy -LoadBalancerName 'WebLoadBalancer'
 -PolicyName 'ASPNETSession' -CookieName 'ASP.NET_SessionId'

Each listener can use a different policy to maintain stickiness. Therefore, we must assign the policy to a specific
listener using the Set-ELBLoadBalancerPolicyOfListener command. For example:

Set-ELBLoadBalancerPolicyOfListener -LoadBalancerName 'WebLoadBalancer'
 -LoadBalancerPort 80
 -PolicyNames 'ASPNETSession'

Some applications do not use a cookie to maintain state. If the application does not have a cookie you can have
the ELB add one using the New-ELBLBCookieStickinessPolicy command. For example, the following command will
add a cookie to each request with a 15-minute expiration. Note that the cookie the ELB adds is called “AWSELB.”

New-ELBLBCookieStickinessPolicy -LoadBalancerName 'WebLoadBalancer'
 -PolicyName 'ELB-15M'
 -CookieExpirationPeriod (60*15)

Again we have to associate the policy with a listener using Set-ELBLoadBalancerPolicyOfListener. For example:

Set-ELBLoadBalancerPolicyOfListener -LoadBalancerName 'WebLoadBalancer' -LoadBalancerPort 443
 -PolicyNames 'ELB-15M'

CHAPTER 8 ■ MONITORING AND HIGH AVAILABILITY

144

At this point our ELB is fully configured. It is listening for both HTTP and HTTPS requests. In addition, we have
configured both the health policy and stickiness policy. In the next section we will use CloudWatch to monitor our
instances and notify us when something goes wrong.

Monitoring with CloudWatch
Our application is now highly available and will failover automatically. While automatic issue resolution is desirable,
we still want to know what is happening with our application in the cloud. We need monitoring to alert us when
something goes wrong. In this section we will use CloudWatch to create an alert that will e-mail us when CPU
utilization exceeds 75% for an extended period of time.

CloudWatch is Amazon’s monitoring solution. CloudWatch can be used to monitor any of the AWS services.
Appendix E lists the metrics that can be monitored for all of the services we discussed in this book. In addition, you
can create custom metrics using the CloudWatch API. You can configure CloudWatch to take multiple actions when it
detects an issue, including the following: sending an e-mail, terminating the instance, launching additional instances,
and many other actions.

The first step in creating an e-mail alert is to create a topic with Simple Notification Service (SNS). SNS is a
generic service for sending notifications. It uses a publish-subscriber architecture where many receivers subscribe
to notifications that are published using the SNS API. Let’s begin by creating a new topic using the New-SNSTopic
command.

$Topic = New-SNSTopic -Name 'MyTopic'

Now that our topic is defined we want to subscribe to it using e-mail. To create a subscription, use the
Connect-SNSNotification command. You will get an e-mail asking you to confirm your e-mail address, and you
must accept it before you can receive notifications.

Connect-SNSNotification -TopicArn $Topic -Protocol 'email' -Endpoint 'alerts@brianbeach.com'

Now that our notification is configured, let’s test it. Remember that SNS is a generic notification service.
CloudWatch uses it to send alerts, but you can also use it to send custom notifications. To publish a new message, use
the Publish-SNSMessage command. You should receive an e-mail notification with the custom message. For example:

Publish-SNSMessage -TopicArn $Topic -Message "This is a test!"

Now that our notification is configured we can create an alert. We want to monitor our two instances and receive
a notification when CPU utilization exceeds 75% for an extended period of time. The first thing we need to do is define
the CloudWatch dimension. A dimension is used to group alerts. In this case we want to group our alerts by instance.
Without this dimension we would be measuring the average CPU utilization of all instances in our account. We use a
.Net object to create a dimension for the first instance.

$Dimension = New-Object 'Amazon.CloudWatch.Model.Dimension'
$Dimension.Name = 'InstanceId'
$Dimension.Value = $Instance1.InstanceId

Now we can create the alarm using the Write-CWMetricAlarm command. This command has a ton of parameters.
Here is a description of each:

• AlarmName is just a name unique within the account.

• AlarmDescription is anything that will help you remember what the alarm does.

• Namespace defines which AWS service is being monitored (see Appendix E for a list).

http://alerts@brianbeach.com/

CHAPTER 8 ■ MONITORING AND HIGH AVAILABILITY

145

• MetricName is what we want to monitor. For example CPU Utilization (see Appendix E for a list).

• Statistic describes how to aggregate the metric. For example average, minimum,
maximum, etc.

• Threshold is the value to compare the metric to.

• Unit is the units the metric is measured in. For example, MB, GB, etc.

• ComparisonOperator can be greater than, less than, etc.

• EvaluationPeriods is the number of periods the condition must be true before the alarm is
raised.

• Period is the length of the evaluation period. In my example we are waiting for
two five-minute periods before raising the alarm.

• Dimensions are the dimensions we created earlier.

• AlarmActions is the action to take when the alarm is raised. In my example, send a
notification.

The following example will create an alarm when the average CPU utilization exceeds 75% for two consecutive
five-minute monitoring periods.

Write-CWMetricAlarm -AlarmName 'CPU75' -AlarmDescription 'Alarm when CPU exceeds 75%'
 -Namespace 'AWS/EC2' -MetricName 'CPUUtilization' -Statistic 'Average' -Threshold 75
 -Unit 'Percent'
 -ComparisonOperator 'GreaterThanThreshold' -EvaluationPeriods 2 -Period (60*5)
 -Dimensions $Dimension -AlarmActions $Topic

CloudWatch is now monitoring our instance. You could create another alarm to monitor the other instance if you
want, but I will show an easier way to monitor an entire group of instances in the next section. It will take at least
10 minutes (2 periods of 5 minutes) to gather enough data to determine the current state. In the meantime, let’s test
our notification by explicitly setting the alarm using the Set-CWAlarmState command.

Set-CWAlarmState -AlarmName 'CPU75' -StateValue 'ALARM' -StateReason 'Testing'

You should receive an e-mail alarm just like the one you would receive if an instance were in distress. This section
has hardly scratched the surface of SNS and CloudWatch. Appendix E includes a list of metrics and dimensions
available for each AWS service. In the next section, we will use Auto Scaling to automatically add and remove
instances depending on load.

Using Auto Scaling
Notifications are a great start, but depending on an administrator to respond to alarms is slow. The cloud brings
infinite elasticity and with it a whole new way of thinking. Auto Scaling allows us to build an application that
automatically responds to changes in demand. Our application can scale out when demand is high and scale in when
demand is low. In addition, Auto Scaling can detect issues and replace unhealthy instances.

Figure 8-4 shows the same web application we have been working on throughout this chapter, but the two web
instances have been replaced by an Auto Scaling group. The Auto Scaling group is responsible for measuring current
load and launching the appropriate number of instances to serve our users.

CHAPTER 8 ■ MONITORING AND HIGH AVAILABILITY

146

The first thing we need to do is terminate the two instances we launched earlier. Going forward, we are going to let
the Auto Scaling group launch all of our instances. We don’t want to confuse things by launching instances manually.

Stop-EC2Instance -Instance $Instance1.InstanceId -Terminate
Stop-EC2Instance -Instance $Instance2.InstanceId -Terminate

Rather than launching instances one at a time, we are going to define a launch configuration and save it for later.
The launch configuration is simply a template that the Auto Scaling group will use whenever it needs to launch an
instance. Creating a launch configuration is very similar to launching an instance. First, we define the user data script.

$UserData = [System.Convert]::ToBase64String([System.Text.Encoding]::ASCII.GetBytes(@'
<powershell>
Install-WindowsFeature Web-Server -IncludeManagementTools -IncludeAllSubFeature
</powershell>
'@))

Then, we call the New-ASLaunchConfiguration command. New-ASLaunchConfiguration takes all the same
parameters as New-EC2Instance and a name used to save the configuration.

$AMI = Get-EC2ImageByName 'WINDOWS_2012_BASE'
New-ASLaunchConfiguration -LaunchConfigurationName 'MyLaunchConfig' -ImageId $AMI[0].ImageId
 -KeyName 'MyKey' -SecurityGroups $DefaultGroup.GroupId -UserData $UserData
 -InstanceType 't1.micro'

Region

Availability Zone Availability Zone

Subnet

Elastic Load Balancing

Subnet

Subnet

Elastic Load Balancing

Subnet

Auto Scaling Group

Figure 8-4. Auto Scaling

CHAPTER 8 ■ MONITORING AND HIGH AVAILABILITY

147

With our launch configuration defined, we can create an Auto Scaling group using New-ASAutoScalingGroup. The
Auto Scaling group defines how many instances can be launched. DesiredCapacity is the number of instances we
think we need, but we also define a min and max that Auto Scaling can work within depending on load. Auto Scaling
will ensure that we always have at least the minimum number of instances, but not more than the max.

In addition, we tell the group what subnets to launch instances into, and optionally, which load balancer to
register with when they start. Note that not all applications will require a load balancer. Some applications will get
work from a queue or database table. If you are using a load balancer, you can use HealthCheckType=ELB. By default,
Auto Scaling will use instance health (essentially a ping) to ensure the instance is healthy. The ELB health check will
rely on the rules defined in ELB to determine health. Remember that we defined a rule that checks a specific web page
every 30 seconds.

Finally, we can define a HealthCheckGracePeriod and DefaultCoolDown. These last two parameters are really
important. HealthCheckGracePeriod defines how long, in seconds, to wait before evaluating the health of a new
instance. The default value is 5 minutes, but it can take 10–15 minutes for a Windows instance to launch and configure
itself. If we do not override the defaults, the Auto Scaling group will think the instance is unhealthy and replace it
before it finishes configuration. Similarly, DefaultCoolDown defines how long to wait between each Auto Scaling
action. Again the default is 5 minutes. If we don’t change this, Auto Scaling will keep launching more and more
instances while it waits for the first instance to boot up.

$VPCZoneIdentifier = $WebSubnet1.SubnetId + "," + $WebSubnet2.SubnetId
New-ASAutoScalingGroup -AutoScalingGroupName 'MyAutoScalingGroup'
 -LaunchConfigurationName 'MyLaunchConfig'
 -MinSize 2 -MaxSize 8 -DesiredCapacity 2
 -LoadBalancerNames 'WebLoadBalancer' -VPCZoneIdentifier $VPCZoneIdentifier
 -HealthCheckType 'ELB' -HealthCheckGracePeriod (15*60) -DefaultCooldown (30*60)

As soon as we run New-ASAutoScalingGroup, the group will begin to launch new instances. You can use the Get-
ELBInstanceHealth command to monitor the instances that the group is managing and determine the status of each.
You will use this command often while you tune your Auto Scaling rules.

Get-ELBInstanceHealth -LoadBalancerName 'WebLoadBalancer'

At this point, the Auto Scaling group will launch the desired number of instances and monitor health. If an
instance fails, it will be replaced, but we have not defined any Auto Scaling rules so it will not yet respond to changes
in load. We use CloudWatch to define the rules just like we did before, but rather than sending a notification, the rule
will trigger an Auto Scaling policy.

The first thing we need to do is define a new CloudWatch dimension. In the previous example, we measured the
load of an individual instance. In this example, we want to measure the average load of our Auto Scaling group. The
following dimension will calculate the aggregate over the entire group:

$Dimension = New-Object 'Amazon.CloudWatch.Model.Dimension'
$Dimension.Name = 'AutoScalingGroupName'
$Dimension.Value = 'MyAutoScalingGroup'

Now we can define a policy to scale up using Write-ASScalingPolicy. This policy simply says to increase the
capacity by two instances. Note that you can also override the default cooldown to ensure the instance has time to
boot before the next scaling occurs.

$ScaleUpArn = Write-ASScalingPolicy -PolicyName 'MyScaleOutPolicy'
 -AutoScalingGroupName 'MyAutoScalingGroup'
 -ScalingAdjustment 2 -AdjustmentType 'ChangeInCapacity' -Cooldown (30*60)

CHAPTER 8 ■ MONITORING AND HIGH AVAILABILITY

148

You can also define a percentage change rather than a specific count.

$ScaleUpArn = Write-ASScalingPolicy -PolicyName 'MyScaleOutPolicy'
 -AutoScalingGroupName 'MyAutoScalingGroup'
 -ScalingAdjustment 20 -AdjustmentType 'PercentChangeInCapacity' -Cooldown (30*60)

With the scaling policy defined, we can create a CloudWatch alarm to trigger it. This is almost identical to the
alarm we created for notification except that the action invokes the scaling policy rather than sending an e-mail.

Write-CWMetricAlarm -AlarmName 'AS75'
 -AlarmDescription 'Add capacity when average CPU within the auto scaling group is
 more than 75%'
 -MetricName 'CPUUtilization' -Namespace 'AWS/EC2' -Statistic 'Average' -Period (60*5)
 -Threshold 75
 -ComparisonOperator 'GreaterThanThreshold' -EvaluationPeriods 2 -AlarmActions $ScaleUpArn
 -Unit 'Percent' -Dimensions $Dimension

Of course, we also need a policy to remove instances when load diminishes. Otherwise our application will grow
and never contract. The policy and alarm are almost identical with a few exceptions. First, the ScalingAdjustment is a
negative number to indicate we are removing instances. Second, our alarm is defined as less than 25%.

$ScaleInArn = Write-ASScalingPolicy -PolicyName 'MyScaleInPolicy'
 -AutoScalingGroupName 'MyAutoScalingGroup'
 -ScalingAdjustment -2 -AdjustmentType 'ChangeInCapacity' -Cooldown (30*60)

Write-CWMetricAlarm -AlarmName 'AS25'
 -AlarmDescription 'Remove capacity when average CPU within the auto scaling group
 is less than 25%'
 -MetricName 'CPUUtilization' -Namespace 'AWS/EC2' -Statistic 'Average' -Period (60*5)
 -Threshold 25
 -ComparisonOperator 'LessThanThreshold' -EvaluationPeriods 2 -AlarmActions $ScaleInArn
 -Unit 'Percent' -Dimensions $Dimension

Once your Auto Scaling group is running, it will work continuously to keep the application running. In fact, if you
manually terminate an instance, it will be replaced within a few minutes. So, as we approach the end of this chapter,
how do we stop this monster we created? You can use the Remove-ASAutoScalingGroup command to delete the group.
Add the ForceDelete flag, if you want the instances deleted and the traditional force flag to suppress the confirmation.

Remove-ASAutoScalingGroup -AutoScalingGroupName 'MyAutoScalingGroup' -ForceDelete $true -Force

At this point, we have created a self-healing, Auto Scaling application that can serve countless users. The only
limitation we face is network latency. In the next section we will look at how Route 53 can solve the latency issue.

Using Route 53
Our application is now designed to serve unlimited users, but we still have latency issues. My application is located
in Northern Virginia. If my user is in China, the application is going to feel slow regardless of how large we scale. The
only way to fix this is to get the application closer to the user. This is where Route 53 comes in.

As seen in Figure 8-5, Route 53 can be used to balance traffic between regions, similar to how an ELB routes
traffic between instances. Route 53 is a DNS service and requires that you make AWS your DNS provider. This is a

CHAPTER 8 ■ MONITORING AND HIGH AVAILABILITY

149

significant commitment you are not likely willing to make to run a few samples from a book. As a result, I have not
included any examples in this section, but I wanted you to be aware of Route 53 and how it can help you scale.

Region

Availability Zone Availability Zone

Subnet

Elastic Load Balancing

Subnet

Subnet

Elastic Load Balancing

Subnet

Auto Scaling Group

Route 53

Region

Availability Zone Availability Zone

Subnet

Elastic Load Balancing

Subnet

Subnet

Elastic Load Balancing

Subnet

Auto Scaling Group

Figure 8-5. Route 53

As you know, AWS offers multiple regions around the world. If we deploy our application in each region, we can
serve users from the region closest to them, minimizing latency. In addition, we add another layer of redundancy.
Now, even if all of the availability zones in Northern Virginia fail, our application will continue running in the
other regions.

The advantage of using Amazon’s DNS service is that it offers latency-based routing. Latency-based routing
uses geolocation to determine which region is closest to the user, and will therefore give them the best experience.
In addition, Route 53 can monitor the health of each region and will not route users to a region that is unhealthy.

As we have seen throughout this chapter, AWS offers many services that can be used to monitor and scale an
application. In the first exercise we will pull together everything we learned in this chapter into a single script.

EXERCISE 8.1: SCALING OUT

In this chapter we learned how to use EC2, VPC, SNS, CloudWatch, Auto Scaling, and Route 53 to create a

self-healing application that automatically responds to changes in load. In the process, we took a roundabout

approach focused more on exploring each technology than the final solution. In this exercise, we will pull together

everything we learned into a single provisioning script that will add an Auto Scaling group to an existing VPC.

CHAPTER 8 ■ MONITORING AND HIGH AVAILABILITY

150

First, we need to define the input parameters. This script will add to an existing VPC; therefore, we expect the VPC,

subnets (two for the ELBs and two for the application instances), and security groups, to be defined already. In

addition, the script takes the instance type, AMI, and user data configuration script.

param
(
 [string][parameter(mandatory=$true)]$VpcId,
 [string][parameter(mandatory=$true)]$ElbSubnet1Id,
 [string][parameter(mandatory=$true)]$ElbSubnet2Id,
 [string][parameter(mandatory=$true)]$WebSubnet1Id,
 [string][parameter(mandatory=$true)]$WebSubnet2Id,
 [string][parameter(mandatory=$true)]$ElbSecurityGroupId,
 [string][parameter(mandatory=$true)]$DefaultSecurityGroupId,
 [string][parameter(mandatory=$false)]$InstanceType = 't1.micro',
 [string][parameter(mandatory=$false)]$AmiId,
 [string][parameter(mandatory=$true)]$UserData,
 [string][parameter(mandatory=$false)]$KeyName = 'MyKey'
)

Note that the instance type and AMI are optional. If the AMI is missing we will look up the 2012 Base image for

the current region.

If([System.String]::IsNullOrEmpty($AmiId)){ $AmiId = (Get-EC2ImageByName -Name
 'WINDOWS_2012_BASE')[0].ImageId}

Next, we launch the new load balancer for our application. In this exercise I am only configuring HTTP, but you

could easily adapt the script to support HTTPS as described in the chapter.

$HTTPListener = New-Object 'Amazon.ElasticLoadBalancing.Model.Listener'
$HTTPListener.Protocol = 'http'
$HTTPListener.LoadBalancerPort = 80
$HTTPListener.InstancePort = 80

New-ELBLoadBalancer -LoadBalancerName 'WebLoadBalancer' -Subnets $ElbSubnet1Id,
 $ElbSubnet2Id
 -Listeners $HTTPListener -SecurityGroups $DefaultSecurityGroupId,
 $ElbSecurityGroupId

Note that I did not configure a health policy. Since we don’t know anything about the application, we don’t know

what page to monitor. Remember that the default rule simply establishes a TCP connection on the specified port

(in this case, port 80). You should update the rule to be specific to your application.

Now, we create a launch configuration based on the instance type, AMI and user data passed in.

$UserData = [System.Convert]::ToBase64String([System.Text.Encoding]::ASCII.
GetBytes($UserData))
 New-ASLaunchConfiguration -LaunchConfigurationName 'MyLaunchConfig'
 -ImageId $AmiId -KeyName $KeyName
 -SecurityGroups $DefaultSecurityGroupId -UserData $UserData
 -InstanceType $InstanceType

CHAPTER 8 ■ MONITORING AND HIGH AVAILABILITY

151

Then, we create the Auto Scaling group. Here I am specifying 2-8 instances with a 30-minute grace period and

cooldown. This is probably too high, but again we don't know what the application is; therefore, it is better to err

on the high side. If the instance is not up and running within the cooldown period, it will be killed and replaced.

This will result in thrashing, where the Auto Scaling continuously kills and replaces instances without giving them

time to become effective.

New-ASAutoScalingGroup -AutoScalingGroupName 'MyAutoScalingGroup'
 -LaunchConfigurationName 'MyLaunchConfig'
 -MinSize 2 -MaxSize 8 -DesiredCapacity 2 -LoadBalancerNames 'WebLoadBalancer'
 -VPCZoneIdentifier "$WebSubnet1Id, $WebSubnet2Id" -HealthCheckType 'ELB'
 -HealthCheckGracePeriod (30*60) -DefaultCooldown (30*60)

Now we can configure CloudWatch to monitor our application. First, we create a new dimension that aggregates

metrics across the entire Auto Scaling group.

$Dimension = New-Object 'Amazon.CloudWatch.Model.Dimension'
$Dimension.Name = 'AutoScalingGroupName'
$Dimension.Value = 'MyAutoScalingGroup'

Next, we create a policy and alarm to add two instances when CPU utilization exceeds 75%.

$ScaleUpArn = Write-ASScalingPolicy -PolicyName 'MyScaleOutPolicy'
 -AutoScalingGroupName 'MyAutoScalingGroup'
 -ScalingAdjustment 2 -AdjustmentType 'ChangeInCapacity' -Cooldown (30*60)
Write-CWMetricAlarm -AlarmName 'AS75'
 -AlarmDescription 'Add capacity when average CPU within the auto scaling group is
 more than 75%'
 -MetricName 'CPUUtilization' -Namespace 'AWS/EC2' -Statistic 'Average'
 -Period (60*5) -Threshold 75
 -ComparisonOperator 'GreaterThanThreshold' -EvaluationPeriods 2
 -AlarmActions $ScaleUpArn
 -Unit 'Percent' -Dimensions $Dimension

Finally, we create a policy and alarm to remove two instances when CPU utilization is below 25%.

$ScaleInArn = Write-ASScalingPolicy -PolicyName 'MyScaleInPolicy'
 -AutoScalingGroupName 'MyAutoScalingGroup'
 -ScalingAdjustment -2 -AdjustmentType 'ChangeInCapacity' -Cooldown (30*60)
Write-CWMetricAlarm -AlarmName 'AS25'
 -AlarmDescription 'Remove capacity when average CPU within the auto scaling group
 is less than 25%'
 -MetricName 'CPUUtilization' -Namespace 'AWS/EC2' -Statistic 'Average'
 -Period (60*5) -Threshold 25
 -ComparisonOperator 'LessThanThreshold' -EvaluationPeriods 2
 -AlarmActions $ScaleInArn
 -Unit 'Percent' -Dimensions $Dimension

That's all you need to build a self-healing application that automatically responds to changes in load. Auto Scaling

is a great solution, but the application must be built with scaling in mind. Some applications are simply not built

to scale out. For these applications you must scale up. In the next section we create a script to scale up, or move

from one instance type to another.

CHAPTER 8 ■ MONITORING AND HIGH AVAILABILITY

152

EXERCISE 8.2: SCALING UP

In this chapter we created a solution to scale out in respond to load. Scaling out refers to adding additional

instances in response to demand. Another option is to scale up, or increase the size of an instance. Some

systems, such as relational databases, do not scale out easily. These applications must be scaled up.

Luckily AWS has a command for this named Edit-EC2InstanceAttribute. Edit-EC2InstanceAttribute

allows you to change many of an instance’s attributes including:

• BlockDeviceMappings

• DisableApiTermination

• EbsOptimized

• Groups

• InstanceInitiatedShutdownBehavior

• InstanceType

• Kernel

• Ramdisk

• SourceDestCheck

• UserData

We are interested in changing the InstanceType. Let’s create a quick script to resize an instance. Our script will

take two simple parameters: the instance id you want to modify and the new instance type.

Param(
 [string][Parameter(Mandatory=$false)] $InstanceId,
 [string][Parameter(Mandatory=$false)] $NewInstanceType
)

Now all we need to do is call Edit-EC2Instance specifying the InstanceType attribute.

Edit-EC2InstanceAttribute -InstanceId $InstanceId -InstanceType $NewInstanceType

That’s all there is to it. Once again AWS makes it easy to do something that would be really hard with physical

servers in a traditional data center.

Before we wrap up, I want to point out a few limitations of this script:

1. Your instance must be stopped before you can resize it.

2. Be really careful with ephemeral storage. Ephemeral disk configurations depend on the

instance type and are not always compatible across systems. For example, a t1.micro has no

ephemeral storage. If you move from a larger instance with ephemeral storage to a t1.micro,

the ephemeral disks will not exist. Table 8-1 lists the ephemeral storage available in each

instance type.

CHAPTER 8 ■ MONITORING AND HIGH AVAILABILITY

153

Table 8-1. Available Ephemeral Storage for Various Instance Types

Instance Type Ephemeral Storage

cc2.8xlarge 4 x 840 GiB

c1.xlarge 4 x 420 GiB

c1.medium 1 x 340 GiB

cr1.8xlarge 2 x 120 GiB SSD

c3.large 2 X 16 Gib SSD

c3.xlarge 2 X 40 Gib SSD

c3.2xlarge 2 X 80 Gib SSD

c3.4xlarge 2 X 160 Gib SSD

c3.8xlarge 2 X 320 Gib SSD

cg1.4xlarge 2 x 840 GiB

Cg2.2xlarge 2 X 60 Gib SSD

hi1.4xlarge 2 x 1024 GiB SSD

m2.2xlarge 1 x 840 GiB

m2.xlarge 1 x 410 GiB

m2.4xlarge 2 x 840 GiB

hs1.8xlarge 24 x 2048 GiB

m1.xlarge 4 x 420 GiB

m1.large 2 x 420 GiB

m1.medium 1 x 400 GiB

m1.small 1 x 150 GiB

m3.2xlarge None

m3.xlarge None

t1.micro None

3. Be really careful with Elastic Network Interfaces (ENI) and secondary IP addresses. Again,

ENIs and secondary IP configurations differ among instance types. Table 8-2 lists the number

of ENIs and IPs for each instance type.

CHAPTER 8 ■ MONITORING AND HIGH AVAILABILITY

154

4. Be careful with marketplace instances. Marketplace instances cannot be resized as you are

licensed for a specific size.

In this exercise we created a script that can be used to resize an instance. In general, scaling out is preferred,

but when the application does not support it, we can always scale up.

Summary
In this chapter we saw the true power of the Cloud and AWS. We used VPC to build a highly available application
served from two or more active-active data centers. We developed a notification system using SNS and CloudWatch to
provide an early warning system that informs the administrator before the application fails.

We also used an ELB to balance traffic across multiple instances and monitor the health of the individual
instances. In addition, we used Auto Scaling to monitor load in real time to dynamically resize the application by
launching and terminating instances in response to load. Finally, we deployed our application in multiple regions and
used Route 53 to automatically route users to the nearest region, minimizing latency.

In the exercises we created scripts to scale out and scale up depending on the application.
It is very easy to overlook the power of what we just did. What we accomplished in this chapter, only a handful of

companies can do. Very few traditional enterprises can achieve Web Scale using their own data centers and enterprise
solution. But, using the cloud, a single person can build a world-class application from his or her favorite coffee shop.

This chapter wraps up our discussion on Elastic Compute Cloud (EC2). In the remaining three chapters we will
examine Relational Database Service (RDS), Simple Storage Service (S3), and Identity and Access Management (IAM).

Table 8-2. ENIs and IPs for Various Instance Types

Instance Type Maximum ENIs IP Addresses per ENI

cc2.8xlarge 8 30

cg1.4xlarge 8 30

c1.xlarge 4 15

c1.medium 2 6

hi1.4xlarge 8 30

m2.2xlarge 4 30

m2.xlarge 4 15

m2.4xlarge 8 30

cr1.8xlarge 8 30

hs1.8xlarge 8 30

m1.xlarge 4 15

m1.large 3 10

m1.medium 2 6

m1.small 2 4

m3.2xlarge 4 30

m3.xlarge 4 15

t1.micro 2 2

155

CHAPTER 9

Relational Database Service

Relational Database Service (RDS) is a service that makes it easy to create and manage a database in the cloud.
And while EC2 is classified as Infrastructure as a Service (IaaS), RDS is classified as Platform as a Service (PaaS).
This means RDS instances are managed by AWS, eliminating time-consuming activities, such as patching and
backups, and allowing you to focus on your application. The tradeoff is that you have limited access to the database
and no access to the underlying operating system.

In this chapter we discuss the RDS architecture and learn to launch an SQL Server RDS instance. Next, we will
learn to configure an RDS instance using parameters and options. Then, we will learn to manage backups and restores
using both snapshots and point-in-time restores.

RDS also supports highly available configurations spread across multiple availability zones. Unfortunately this
is not yet supported with SQL Server; therefore, we will use MySQL to learn how to configure high availability and
read replicas.

In the exercises we will focus on securing a RDS instance running SQL Server. In the first exercise, we will enable
SSL to encrypt the connection to SQL Server. In the second exercise, we will enable Transparent Database Encryption
(TDE) to encrypt data and back up files stored on disk.

RDS Architecture
RDS is designed to be deployed in multiple availability zones for high availability. Therefore, your VPC must have
subnets in at least two availability zones. Even if you choose to launch only a single stand-alone instance, you must
have two subnets in different availability zones to use RDS.

AWS uses a DB Subnet Group to identify which subnets are reserved for RDS. You simply create two or more
subnets in multiple availability zones and add them to the Subnet Group. In addition, we use VPC ACL and Security
Groups to control access to the RDS instances.

Figure 9-1 shows the basic configuration for the first half of this chapter. Let’s assume we have two web servers
running on EC2 instances, and they will use an RDS SQL Server instance to store data. The RDS instance will be
launched into one of the two subnets that make up the DB Subnet Group. Let’s first configure the VPC.

CHAPTER 9 ■ RELATIONAL DATABASE SERVICE

156

Creating a VPC
Before we can create a database instance, we need to configure a VPC for it to live in. Let’s begin by creating a new
VPC. If you prefer, you can add two new subnets to an existing VPC (for example, the VPC created in Chapter 8).
First, I create a new VPC using the 192.168.0.0 private IP range.

$VPC = New-EC2Vpc -CidrBlock '192.168.0.0/16'

Next, I create two subnets in our VPC. These are the subnets that the database instance will live in. Because we
want to be able to support a multi-AZ deployment, I am using two different availability zones. (This should all be
familiar by now, but if you need to review, go back to Chapter 5.)

$AvailabilityZone1 = 'us-east-1a'
$AvailabilityZone2 = 'us-east-1b'
$PrimarySubnet = New-EC2Subnet -VpcId $VPC.VpcId -CidrBlock '192.168.5.0/24'
 -AvailabilityZone $AvailabilityZone1
$StandbySubnet = New-EC2Subnet -VpcId $VPC.VpcId -CidrBlock '192.168.6.0/24'
 -AvailabilityZone $AvailabilityZone2

Region

Availability Zone

Subnet

Availability Zone

Subnet

RDS Instance (Master)

Subnet Subnet

EC2 Instance EC2 Instance

DB Subnet Group

Figure 9-1. Simple Deployment

CHAPTER 9 ■ RELATIONAL DATABASE SERVICE

157

Creating a Subnet Group
Now that we have our VPC configured, we need to describe how we plan to use it. We need to tell RDS which subnets
to use for database instances. We do this using a subnet group. To create a subnet group, use the New-RDSSubnetGroup
command. New-RDSSubnetGroup requires a name and description, along with a list of subnets to use. You will use the
name rather than an id to refer to this subnet group later. For example:

New-RDSDBSubnetGroup -DBSubnetGroupName 'MySubnetGroup' -DBSubnetGroupDescription 'Pair of
 subnets for RDS'
 -SubnetIds $PrimarySubnet.SubnetId, $StandbySubnet.SubnetId

Despite the fact that RDS does not support multi-AZ instances of SQL Server, you must specify at least two
subnets when creating a subnet group. In addition, the subnets must be in different availability zones.

Configuring Security Groups
The last thing we need is a security group. This security group is used to define which EC2 instances can connect to
the RDS database instance. First, we create a new security group for the RDS instance.

$RDSGroupId = New-EC2SecurityGroup –VpcId $VPC.VpcId -GroupName 'RDS' -GroupDescription "RDS Instances"

Next, we get a reference to the default group. In this example I am going to allow any instance in the default group
to access to our database instance. I am using filters to find the default group. (If you need to review, see Chapter 6.)

$VPCFilter = New-Object Amazon.EC2.Model.Filter
$VPCFilter.Name = 'vpc-id'
$VPCFilter.Value = $VPC.VpcId
$GroupFilter = New-Object Amazon.EC2.Model.Filter
$GroupFilter.Name = 'group-name'
$GroupFilter.Value = 'default'
$DefaultGroup = Get-EC2SecurityGroup -Filter $VPCFilter, $GroupFilter
$DefaultGroupPair = New-Object Amazon.EC2.Model.UserIdGroupPair
$DefaultGroupPair.GroupId = $DefaultGroup.GroupId

Then, we create a new rule allowing access on the default SQL Server port 1433, and specify the default group
as the source.

$SQLServerRule = New-Object Amazon.EC2.Model.IpPermission
$SQLServerRule.IpProtocol='tcp'
$SQLServerRule.FromPort = 1433
$SQLServerRule.ToPort = 1433
$SQLServerRule.UserIdGroupPair = DefaultGroupPair

Grant-EC2SecurityGroupIngress -GroupId $RDSGroupId -IpPermissions $SQLServerRule

In addition, we are going to use MySQL in the High Availability example later in this chapter, so let’s configure
rules for MySQL as well.

CHAPTER 9 ■ RELATIONAL DATABASE SERVICE

158

$MySQLRule = New-Object Amazon.EC2.Model.IpPermission
$MySQLRule.IpProtocol='tcp'
$MySQLRule.FromPort = 3306
$MySQLRule.ToPort = 3306
$MySQLRule.UserIdGroupPair = DefaultGroupPair

Grant-EC2SecurityGroupIngress -GroupId $RDSGroupId -IpPermissions $MySQLRule

Note ■ I am describing how to configure security groups for VPC instances. EC2 classic instances use a completely

different security group configuration. If you are reading the RDS help files, don’t be confused by references to RDS

Security Groups. RDS Security Groups are not used with VPC.

Now that we have our VPC configured, we are ready to launch a database instance. In the next section, we will
create an SQL Server instance. Remember that SQL Server instances do not support multi-AZ deployments. Later in
the chapter we will examine a multi-AZ configuration using My SQL.

Managing RDS Instances
Now that we have our VPC configured, we can begin working with RDS instances. Let’s get started by launching a new
SQL Server database on RDS.

Launching an Instance
To launch a new instance, we use the New-RDSDBInstance command. It takes a few minutes for a new instance to
launch – especially using the micro instances – so let’s jump right in and launch one. This is another one of those
commands with a ton of options. While the new instance is launching, we can examine all of the optional parameters
available.

Since you’re reading a book on PowerShell, I assume you are most interested in SQL Server. Remember that RDS
does not support multi-AZ instances of SQL Server. Therefore, we are going to create a stand-alone instance. To create
a new stand-alone SQL Server instance, enter the following command:

New-RDSDBInstance -DBInstanceIdentifier 'SQLServer01' -Engine 'sqlserver-ex' -AllocatedStorage 20
 -DBInstanceClass 'db.t1.micro' -MasterUsername 'sa' -MasterUserPassword 'password'
 -DBSubnetGroupName 'MySubnetGroup' -VpcSecurityGroupIds $GroupId

Note ■ Never use “password” as a password. Please choose something more complex and novel.

CHAPTER 9 ■ RELATIONAL DATABASE SERVICE

159

The previous command includes the minimum set of the parameters required to launch a database instance into
a VPC, which are:

• DBInstanceIdentifier is simply a unique name you will use to refer to the database instance
later. Unlike the EC2 and VPC commands we have been using, RDS uses a name, called an
identifier, rather than an id.

• Engine defines which type of database you want to use. RDS supports multiple versions of
MySQL, Oracle, and SQL Server. If you are not familiar with the various versions of each
database, see the vendor’s web site for details. The specific engine types are:

• mysql – There is only one version of MySQL that includes all options

• oracle-se1 – Oracle Standard Edition One

• oracle-se – Oracle Standard Edition

• oracle-ee – Oracle Enterprise Edition

• sqlserver-ex – SQL Server Express

• sqlserver-web – SQL Server Web Express

• sqlserver-se – SQL Server Standard Edition

• sqlserver-ee – SQL Server Enterprise Edition

• AllocatedStorage describes how much storage to allocate to the database. The maximum
storage is 1024GB, and each engine type has a different minimum. See Table 9-1 for details of
each database engine. Note that you cannot resize an SQL Server instance after creating it,
so I recommend you err on the high side.

Table 9-1. Storage by Engine Type

Engine Min Storage Max Storage

MySQL 5GB 1024GB

oracle-se1 10GB 1024GB

oracle-se 10GB 1024GB

oracle-ee 10GB 1024GB

sqlserver-ee 200GB 1024GB

sqlserver-se 200GB 1024GB

sqlserver-ex 30GB 1024GB

sqlserver-web 30GB 1024GB

• DBInstanceClass describes the hardware your database instance will use. This is similar to
the EC2 instance types. See Table 9-2 for a list of instance classes and the SQL Server Engines
supported on each.

CHAPTER 9 ■ RELATIONAL DATABASE SERVICE

160

• MasterUsername and MasterUserPassword are used to log into the database. Note that the
master user does not have sys admin rights to the database. Remember that you do not have
access to the underlying operating system when using RDS. Therefore, the master user has
limited access. In addition, note that SQL Server only supports database accounts. You cannot
use Windows Integrated Security and you cannot join the database instance to an Active
Directory domain. Of course you can create additional database accounts after logging in.

• DBSubnetGroupName is the name of the subnet group we created earlier. RDS will launch the
instance into one of the subnets in this group. If you want to specify which subnet to use, see
the optional AvailabilityGroup parameter described later.

• VpcSecurityGroupIds is a list of security groups the RDS instance should be placed into.

In addition to the required parameters, New-RDSDBInstance also supports a bunch of optional parameters,
which include:

• LicenseModel allows you to choose from multiple software licensing models. Depending on
the engine you are using, you can choose to bring your own license, or have the cost of license
included in with the hourly cost of the instance. The licensing models available for each
engine are described in Table 9-3.

Table 9-3. License by Engine Type

Engine General Public License Bring Your Own Included

MySQL X

oracle-se1 X X

oracle-se X

oracle-ee X

sqlserver-ee X

sqlserver-se X X

sqlserver-ex X

sqlserver-web X

Table 9-2. Supported Instance Classes by Engine Type

Engine Enterprise Edition Standard Edition Web Edition Express Edition

db.t1.micro X

db.m1.small X X X X

db.m1.large X X X

db.m1.xlarge

db.m2.xlarge X X X

db.m2.2xlarge X X X

db.m2.4xlarge X X X

CHAPTER 9 ■ RELATIONAL DATABASE SERVICE

161

• EngineVersion defines the specific version of each database type. For example, RDS supports
SQL Server 2008 R2 and 2012. If you omit this parameter, RDS will use the latest version.
At the time I am writing this, the latest version of SQL Server is SQL Server 2012 version
11.00.2100.60.v1. If you want to list all of the supported engine versions, use the command:
Get-RDSDBEngineVersion | Format-Table.

• AutoMinorVersionUpgrade tells RDS to automatically apply minor updates. Updates are
applied during the maintenance windows defined later. Major upgrades (e.g., SQL 2008R2 to
SQL 2012) are not supported. This option is enabled by default.

• MultiAZ specifies that you want to create both a primary and standby instance. The primary
and standby will be launched into subnets in different availability zones as defined in the
subnet group. (See the section on multi-AZ configuration later in this chapter.) Note that SQL
Server is not supported in a multi-AZ configuration.

• AvailabilityZone specifies which availability zone to launch the instance into. In a VPC, RDS
will use the subnet in the specified availability zone. You cannot specify availability zone if you
are using the MultiAZ option.

• Iops specifies the I/O operations per second (IOPS) desired from the disk. This is similar
to provisioned Iops in EC2, and you pay a premium for this option just like EC2. RDS uses
striping and can support 1,000–30,000 IOPS.

• PreferredMaintenanceWindow defines a weekly outage window when Amazon can apply
patches to the RDS instance. For example, you might specify sat:22:00-sat:23:00. If you
omit this option, AWS will choose a random 30-minute window from an 8-hour block defined
for each region. AWS will choose a time that is generally considered "off hours" for the region,
but it is best to specify your own window.

• PreferredBackupWindow defines when the daily full backup is taken. For example, you might
specify 23:00-24:00. The backup windows cannot overlap the maintenance window and
must be a minimum of 30 minutes. (There is more detail on backup and recovery later in this
chapter.)

• BackupRetentionPeriod defines how long to save backups. You can specify 0-8 days. The
default is 1 day and specifying 0 days disables backup.

• PubliclyAccessible specifies that the instance will be assigned a public IP address and can
be accessed from the Internet. In general this is a bad idea; I prefer to have a micro instance on
the VPC that I can use for administration. In the default VPC this option is enabled by default,
but in a custom VPC it is disabled.

• Port allows you to change the default port for your database. Table 9-4 lists the default ports
for each engine.

Table 9-4. Default Port by Engine Type

Engine Default Port

MySQL 3306

Oracle 1521

SQL Server 1433

CHAPTER 9 ■ RELATIONAL DATABASE SERVICE

162

• DBParameterGroupName allows you to alter engine parameters. For example, I will show you
how to enable the Common Language Runtime (CLR) in the next section. Note that Appendix
F includes a list of SQL Server parameters that you can alter.

• DBOptionGroupName allows you to alter engine options. For example, I will show you how to
enable Transparent Data Encryption (TDE) in the next section.

Wow, that was a lot of options to discuss. By now our instance should be running. You can use the
Get-RDSDBInstance command to check on it. Check the DBInstanceStatus attribute. For example:

(Get-RDSDBInstance -DBInstanceIdentifier 'SQLServer01').DBInstanceStatus

It will take a while for the instance to start. Once it is running you can get the endpoint address needed to connect
to SQL Server. For example:

(Get-RDSDBInstance -DBInstanceIdentifier 'SQLServer01').Endpoint.Address

In my case this returned:

sqlserver01.cz8cihropmwk.us-east-1.rds.amazonaws.com

You can now enter the address into SQL Server Management Studio to connect. Figure 9-2 shows an example.

Figure 9-2. Logging into an RDS Instance

Modifying an Instance
No sooner do you a launch a new instance than you realize you need to change something. Many of the options we
discussed in the last section can be modified after the RDS instance has been launched by using Edit-RDSDBInstance.

For example, the following command will change the security groups the instance is a member of:

Edit-RDSDBInstance -DBInstanceIdentifier 'SQLServer01' -VpcSecurityGroupIds $NewGroupId

The following options can be altered using Edit-RDSDBInstance. Some options take effect immediately, while
others are applied during the next maintenance window.

• AllocatedStorage

• AllowMajorVersionUpgrade

• ApplyImmediately

http://sqlserver01.cz8cihropmwk.us-east-1.rds.amazonaws.com/

CHAPTER 9 ■ RELATIONAL DATABASE SERVICE

163

• AutoMinorVersionUpgrade

• BackupRetentionPeriod

• DBInstanceClass

• DBParameterGroupName

• DBSecurityGroups

• EngineVersion

• Iops

• MasterUserPassword

• MultiAZ

• NewDBInstanceIdentifier

• OptionGroupName

• PreferredBackupWindow

• PreferredMaintenanceWindow

• VpcSecurityGroupIds

Note ■ SQL Server does not support resizing the disk. Therefore you must create a new instance and copy the data

manually.

Deleting an Instance
When you no longer need an instance, you can delete it using the Remove-RDSDBInstance command. If you want to
take a snapshot of the database before deleting it, you can simply specify the identifier when you call remove. (I will
explain RDS snapshots later in the chapter.) The following command will delete the database we created:

Remove-RDSDBInstance -DBInstanceIdentifier 'SQLServer01' -FinalDBSnapshotIdentifier
 'SQLServer01-Final-Snapshot' -Force

If you don’t need a backup of the instance, you can use the SkipFinalSnapshot parameter to tell RDS not to back
up the instance.

Remove-RDSDBInstance -DBInstanceIdentifier 'SQLServer01' -SkipFinalSnapshot $true -Force

As you can see, RDS makes launching and managing a database instance really easy. In the next section we will
discuss how to configure options specific to SQL Server.

Configuring a Database Engine
So far, all of the parameters we have configured are common to all of the database engines. Obviously there are also
engine specific configuration options to choose from. RDS breaks these into two categories: parameters and options.
Let’s spend a minute looking at parameters and options specific to SQL Server.

CHAPTER 9 ■ RELATIONAL DATABASE SERVICE

164

Modifying Parameters
Parameters allow you to configure your database engine. RDS organizes parameters into parameter groups for each
engine type. For example, the default parameter group for SQL Server Express is default.sqlserver-ex-11.0. You
can get a list of parameter groups using the Get-RDSDBParameterGroup command.

There are numerous parameters available for SQL Server. I have included a list in Appendix F, but not all
parameters are available on all SQL Server editions. For example, some options are only available on the enterprise
edition. To list the parameters available, use the Get-RDSDBParameter command. For example, the following code will
list the parameters specific to SQL Server Express.

Get-RDSDBParameter -DBParameterGroupName default.sqlserver-ex-11.0 |
 Format-Table ParameterName, Description, ParameterValue –AutoSize

If you want to customize the parameters, you can create your own parameter group using the
New-RDSDBParameterGroup command. For example, let’s assume you want to enable the Common Language
Runtime (CLR).

New-RDSDBParameterGroup -DBParameterGroupName 'SQL2012' -DBParameterGroupFamily
 'sqlserver-ex-11.0'
 -Description "SQL2012 with CLR enabled"

Now you can configure the individual parameters in the group. Once again, we use a .Net object to describe the
change and pass it to the EditRDSDBParameterGroup command. For example:

$Parameter = New-Object Amazon.RDS.Model.Parameter
$Parameter.ParameterName = 'clr enabled'
$Parameter.ParameterValue = 1
$Parameter.ApplyMethod = 'immediate'
Edit-RDSDBParameterGroup -DBParameterGroupName 'SQL2012' -Parameters $Parameter

Note the ApplyMethod parameter. Some parameter changes can be applied immediately while others require
a reboot. You can check if a reboot is required by checking the apply type column in Appendix F. If the apply type is
static, then a reboot is required. If the apply type is dynamic, you can choose to apply the change immediately or after a
reboot. To apply the change immediately, set the ApplyMethod parameter to immediate. To wait for the next reboot, set
the ApplyMethod parameter to pending-reboot. You can force the reboot using the Restart-RDSDBInstance method.

Use the DBParameterGroupName of the New-RDSDBInstance or Edit-RDSDBInstance command to associate the
new parameter group with an instance.

Modifying Options
Some database engines offer optional features that you can choose to enable. For example, SQL Server Enterprise
Edition offers Transparent Data Encryption (TDE). Actually, this is the only option available for SQL Server at the
moment. RDS refers to these features as options and allows you to configure them using option groups.

Option groups work a lot like parameter groups. First, you create a custom option group, and then you associate
your instance with the custom group. Let’s get started by creating a custom option group to enable SQL TDE on 2012.
To create a new group, use the New-RDSOptionGroup command and specify the database engine and version.
For example:

New-RDSOptionGroup -OptionGroupName 'SQL2012TDE' -OptionGroupDescription
 "SQL2012 Enterprise Edition with TDE"
 -EngineName sqlserver-ee -MajorEngineVersion '11.00'

CHAPTER 9 ■ RELATIONAL DATABASE SERVICE

165

Note ■ TDE is only available with the enterprise edition; therefore, you must use the bring-your-own license model

when you launch an instance.

Now, we need to describe the option we want to enable using a .Net object. TDE has no configuration parameters
so we simply specify a name.

$Option = New-Object Amazon.RDS.Model.OptionConfiguration
$Option.OptionName = 'TDE'

Then, we pass the option description to the EditRDSOptionGroup command.

Edit-RDSOptionGroup -OptionGroupName 'SQL2012' -OptionsToInclude $Option
 -ApplyImmediately $true

Now you can launch a new SQL Server instance and specify the option group. See Exercise 9-2 for a complete
example.

Working with Snapshots
RDS supports two types of backup: snapshots and point-in-time recovery. The backup windows and retention period
we discussed earlier are related to point-in-time recovery and will be discussed in the next section. This section is
about RDS snapshots, which are similar to EC2 snapshots.

A RDS snapshot creates a copy of the database just like an EC2 snapshot creates a copy of a volume. They are
created manually using either the AWS management console or the API. You can create as many snapshots as you
want, any time you want. Snapshots are retained until you manually delete them and are not effected by the retention
period specified when you create the instance.

When you restore a RDS snapshot, AWS always creates a new instance. You cannot overwrite an existing database
using a snapshot. This is just like restoring an EC2 snapshot, which, we already know, always creates a new volume
rather than overwriting an existing one.

You can create a new snapshot using the New-RDSDBSnapshot command. This command simply takes the name
of the instance you want to back up and a name to identify the snapshot.

New-RDSDBSnapshot -DBSnapshotIdentifier 'MySnapshot' -DBInstanceIdentifier 'SQLServer01'

It will take a few minutes to create the snapshot. You can check on the status of the snapshot using the Get-
RDSDBSnapshot command. For example, to check on the snapshot we just created, use the following command:

Get-RDSDBSnapshot -DBSnapshotIdentifier 'MySnapshot'

The Get-RDSDBSnapshot command can also be used to list all the snapshots taken for a given database instance.
The following command will list all snapshots taken of the SQLServer01 instance:

Get-RDSDBSnapshot -DBInstanceIdentifier 'SQLServer01'

You can restore a snapshot using the Restore-RDSDBInstanceFromDBSnapshot command. Remember that
restoring a snapshot always creates a new instance. Therefore, we need to include a new identifier. In addition, we can
change many of the parameters we specified when we created the database instance.

CHAPTER 9 ■ RELATIONAL DATABASE SERVICE

166

The following command will restore a RDS snapshot creating a new RDS instance called SQLServer02. The new
instance will have a new DNS name and you must update your application to use the new name.

Restore-RDSDBInstanceFromDBSnapshot -DBSnapshotIdentifier 'MySnapshot' -DBInstanceIdentifier
 'SQLServer02' -DBSubnetGroupName 'MySubnetGroup'

Note that I had to specify the subnet group in the preceding command. In addition, I could have changed any
of the following options. If you leave these options blank, RDS will use the settings that were present on the original
instance rather than the defaults defined for New-RDSDBInstance.

• DBInstanceClass

• Port

• AvailabilityZone

• MultiAZ

• PubliclyAccessible

• AutoMinorVersionUpgrade

• LicenseModel

• Engine – Note that the engine must be compatible. You cannot restore an SQL Server snapshot
to an Oracle database, but you can move from standard edition to enterprise edition.

• Iops

Note ■ Once again, you cannot change the disk size. If you want to increase disk size, you must create a new instance

and copy the data.

Just like EC2, RDS snapshots can be copied to another region for an additional level of redundancy. You can copy
a snapshot using Copy-RDSDBSnapshot. The copy is always initiated from the target region. Rather than specifying the
source region as we did with EC2 snapshots, you must use the fully qualified Amazon Resource Name (ARN) for the
source snapshot. The ARN uses the format:

arn:aws:rds:<region>:<account number>:<type>:<identifier>

For example, the following command will copy our snapshot from the Northern Virginia region to the Northern
California region:

Copy-RDSDBSnapshot -SourceDBSnapshotIdentifier 'arn:aws:rds:us-east-
1:486469900423:snapshot:MySnapshot'
 -TargetDBSnapshotIdentifier 'MySnapshot' -Region us-west-1

Obviously you are charged for the storage required to keep the snapshot. When you no longer need a snapshot,
you can delete it using the Remove-RDSDBSnapshot command.

Remove-RDSDBSnapshot -DBSnapshotIdentifier 'MySnapshot' -Force

CHAPTER 9 ■ RELATIONAL DATABASE SERVICE

167

Snapshots are a great way to back up a database when you can plan for a specific risk. For example, you might
take a snapshot before upgrading the application code. But, snapshots are not well suited for unexpected issues.
For example, if a disk failed, you might not have taken a snapshot recently. For unexpected issues we need to take
regularly scheduled database backups. In the next section we will examine how to do this.

Using Point-in-Time Restores
In addition to snapshots, RDS also supports database and transaction log backups. Using these backups we can
restore a database to within a second of any point in time within the retention period. The best part is that AWS takes
care of all the work required to create and maintain the backups.

When we launched the RDS instance at the beginning of this chapter, we accepted the default backup windows
and retention period. Remember that the default retention period is one day. As long as the retention period is greater
than zero, database backups are enabled. If backups are enabled, RDS will take a full backup of the database once a
day during the backup window. In addition, it will back up the transaction log every five minutes.

These backups can be used to create a point-in-time restore. Point-in-time restores allow you to specify a specific
time you want to restore, and since transaction log backups are taken every five minutes, you will never lose more
than five minutes.

Now, I want to mention a few details specific to SQL Server. First, if your SQL Server has multiple databases, the
individual databases will be restored to within one second of one another. Second, RDS does not support multi-AZ
SQL Server instances. As a result, you should expect a momentary outage when the full backup is taken. This does not
occur with multi-AZ databases because the backup is taken on the secondary instance.

Similar to snapshots, RDS point-in-time restores always create a new RDS instance. You cannot overwrite an
existing instance. Before restoring an instance, you should check when the last transaction log backup was taken and
how many days the backups are retained. You can restore to any point within this period. For example, to check the
time of the last transaction log backup and retention period of our SQL database, use the following code.

$DBInstance = Get-RDSDBInstance -DBInstanceIdentifier 'SQLServer01'
$DBInstance.LatestRestorableTime
$DBInstance.BackupRetentionPeriod

The output of this command, shown as follows, indicates that you can restore to any point within a one-day
window between November 4 at 5:22 p.m. and November 5 at 5:22 p.m.

Tuesday, November 5, 2013 5:22:42 PM
1

We can use the Restore-RDSDBInstanceToPointInTime command to create a new RDS instance restored to any
point within this range. For example, to restore to November 5th 2013, at 11:15 a.m., use the following command. This
is almost identical to the Restore-RDSDBInstanceFromDBSnapshot command except that I am specifying a time and
day to restore to. Note that RDS expects the time in UTC.

Restore-RDSDBInstanceToPointInTime -SourceDBInstanceIdentifier 'SQLServer01'
 -TargetDBInstanceIdentifier 'SQLServer03' -DBSubnetGroupName 'MySubnetGroup'
 -RestoreTime (Get-date('2013-11-05T11:15:00')).ToUniversalTime()

If you omit the RestoreTime parameter, RDS will restore to the latest time possible. For example:

Restore-RDSDBInstanceToPointInTime -SourceDBInstanceIdentifier 'SQLServer01'
 -TargetDBInstanceIdentifier 'SQLServer04'
 -DBSubnetGroupName 'MySubnetGroup' -UseLatestRestorableTime $true

CHAPTER 9 ■ RELATIONAL DATABASE SERVICE

168

Just like when restoring a snapshot, you are creating a new instance, and you can specify many of the options that
were available when we created the original instance, including:

• DBInstanceClass

• Port

• DBSubnetGroupName

• AvailabilityZone

• MultiAZ

• PubliclyAccessible

• AutoMinorVersionUpgrade

• LicenseModel

• Engine

• Iops

Unlike snapshots, there is no need to delete database backup files. They are automatically deleted after the
retention period. This is the benefit of the RDS platform. AWS takes care of the maintenance for you. In addition, you
cannot copy backups to another region.

In the next section we discuss how to keep track of our RDS instances using tags, and how to monitor our
instances using events and logs.

Working with Tags, Events, and Logs
As your inventory of servers grows, it will become more and more difficult to keep track of everything. It is really
important that you have a strategy for organizing and monitoring your resources. RDS offers tags to help categorize
everything and events and logs for monitoring. Let’s look at each.

Tags
We saw the power of tags with EC2. The same holds true for RDS. You can use tags to include metadata describing
your RDS resources. For example, you might want to tag an instance with the department that owns it so you can
create a chargeback report and know whom to contact if something goes wrong.

Creating a tag is similar to EC2. You begin by creating a .Net object used to describe the tag. Then you add a key
and value. For example, the following code will create a tag specifying the department=marketing.

$Tag = New-Object('Amazon.RDS.Model.Tag')
$Tag.Key = 'Department'
$Tag.Value = 'Marketing'

To add the tag to a RDS resource, you use the Add-RDSTagsToResource command. Remember that RDS uses
names rather than ids to identify resources. Different resource types can have the same name. For example, I can
name both an instance and snapshot “database1.” As a result, we have to use the fully qualified Amazon Resource
Name (ARN) to uniquely identify a resource. Remember that ARNs follow the format:

arn:aws:rds:<region>:<account number>:<type>:<identifier>

CHAPTER 9 ■ RELATIONAL DATABASE SERVICE

169

Therefore, to add the department=marketing tag to our instance, use:

Add-RDSTagsToResource -ResourceName 'arn:aws:rds:us-east-1:486469900423:db:SQLServer01'
 -Tags $Tag

And, to add the department=marketing tag to our snapshot, use:

Add-RDSTagsToResource -ResourceName 'arn:aws:rds:us-east-1:486469900423:snapshot:MySnapshot'
 -Tags $Tag

You can retrieve the tags using the Get-RDSTagForResoure command. For example:

Get-RDSTagForResource -ResourceName 'arn:aws:rds:us-east-1:486469900423:db:SQLServer01'

You can also remove a tag using the Remove-RDSTagsFromResource command. For example:

Remove-RDSTagFromResource -ResourceName 'arn:aws:rds:us-east-1:486469900423:db:SQLServer01'
 -TagKeys 'Name' –Force

Tags are a great way to organize RDS resources. In the next section, we will look at using RDS events to monitor
our instances.

Events
It is important that you always know what is going on in the cloud. Events allow us to monitor our RDS instances and
receive notifications from SNS when specific events occur. For example, you might want to be notified when the disk is
filling up.

To get a list of all events, we use the Get-RDSEvent command. For example:

Get-RDSEvent

You can control how many events are returned using the Duration and MaxRecords parameters. For example, the
following command will return the first 25 events that occurred in the last 15 minutes.

Get-RDSEvent -Duration 15 -MaxRecords 25

You can also specify a specific range using StartTime and EndTime, but events are only stored for 15 days.
For example:

Get-RDSEvent -StartTime '2013-11-01' -EndTime '2013-11-15'

RDS captures many event types. Events are organized into source types that correspond to the RDS resource
types and include: db-instance, db-security-group, db-parameter-group, and db-snapshot. Events are further
organized into categories. To get a list of categories, use the Get-RDSEventCategories command. For example, to get
the categories available for an RDS instance:

(Get-RDSEventCategories -SourceType 'db-instance').EventCategories

CHAPTER 9 ■ RELATIONAL DATABASE SERVICE

170

You can use the parameters of the Get-RDSEvent command to limit the events returned. For example, to only
retrieve events for the SQL instances we created earlier, use the following command:

Get-RDSEvent -SourceType 'db-instance' -SourceIdentifier 'SQLServer01'

Similarly you can filter for specific event categories. For example, the following command will return all
information about the backup of any RDS instance.

Get-RDSEvent -SourceType 'db-instance' -EventCategories 'backup'

Of course, you can combine these in various combinations to return the events you want. The following
command will return all of the backup events for a specific instance.

Get-RDSEvent -SourceType 'db-instance' -SourceIdentifier 'SQLServer01' -EventCategories 'backup'

Being able to query events is great, but we cannot expect someone to sit in front of PowerShell all day looking
for issues. We really want a more proactive solution. Luckily RDS allows us to subscribe to events using Simple
Notification Service (SNS) with the New-RDSEventSubscription command.

For example, let’s assume we want to know whenever a failure occurs or the disk space is getting low. More
specifically, we want to receive a notification via e-mail so we can respond quickly. First we need to create an SNS
topic and e-mail notification. This is exactly what we did in Chapter 8, for example:

$Topic = New-SNSTopic -Name 'RDSTopic'
Connect-SNSNotification -TopicArn $Topic -Protocol 'email' -Endpoint 'alerts@brianbeach.com'

Now we can create a RDS subscription. The RDS subscription will publish a notification to the SNS topic we just
created whenever a new RDS event occurs that matches the criteria we specify. To create the subscription, we use the
New-RDSEventSubscription command. For example, the following command will subscribe to all failure and low-
storage events and send a notification to our SNS topic.

New-RDSEventSubscription -SubscriptionName 'MyRDSSubscription'
 -SnsTopicArn 'arn:aws:sns:us-east-1:486469900423:RDSTopic'
 -SourceType 'db-instance' -EventCategories 'failure', 'low storage'

We can also subscribe to events from specific sources. For example, you might have both development and
production RDS instances in the same account. You don’t want to get a notification in the middle of the night if a
development instance fails, so you only set up notifications for the production instances. The following example
creates a subscription for a specific instance, SQLServer01.

New-RDSEventSubscription -SubscriptionName 'MyRDSSubscription2'
 -SnsTopicArn 'arn:aws:sns:us-east-1:486469900423:RDSTopic'
 -SourceType 'db-instance' -SourceIds 'sqlserver01'

Caution ■ The source id in the following example is all lowercase. Your source id must be lowercase or you will get

an error.

As our application changes over time, you may want to add or remove instances from the subscription. You can
do this using the Add-RDSSourceIdentifierToSubscription and Remove-RDSSourceIdentifierFromSubscription
commands. The following two examples add and then remove an instance from the subscription.

http://'alerts@brianbeach.com/

CHAPTER 9 ■ RELATIONAL DATABASE SERVICE

171

Add-RDSSourceIdentifierToSubscription -SubscriptionName 'MyRDSSubscription2'
 -SourceIdentifier 'sqlserver02'
Remove-RDSSourceIdentifierFromSubscription -SubscriptionName 'MyRDSSubscription2'
 -SourceIdentifier 'sqlserver02' –Force

Finally, you may want to delete a subscription altogether and stop receiving notifications. You can do so using the
Remove-RDSEventSubscription command. For example:

Remove-RDSEventSubscription -SubscriptionName 'MyRDSSubscription' –Force

Events are a great way to monitor your RDS instances, but you will likely need more detail to debug a failure when
it occurs. In the next section we discuss how to retrieve logs from the database engine.

Logs
With RDS you do not have access to the operating system and therefore cannot access the file system. This means
that you cannot see the detailed logs produced by the database engine. In order to access the logs you need to use an
API call.

To list the log files available on the instance, you use the Get-RDSDBLogFiles command. This command will list
the logs files available on the server. For example:

Get-RDSDBLogFiles -DBInstanceIdentifier 'SQLServer01'

You can also use the FilenameContains parameter to find specific files. For example, to find the error log on an
SQL Server use the following command. Note that the file name is case sensitive.

Get-RDSDBLogFiles -DBInstanceIdentifier 'SQLServer01' -FilenameContains 'ERROR'

Once you know which file you are looking for you can download the contents using the Get-
RDSDBLogFilePortion command. For example, to read the error log on our SQL instance, use the following command.

$Log = Get-RDSDBLogFilePortion -DBInstanceIdentifier 'SQLServer01' -LogFileName 'log/ERROR'
$Log.LogFileData

As you can see, RDS gives us all the tools we need to manage and monitor our database instance. In the next
section we will discuss building high availability databases using multi-AZ instances.

Multi-AZ Instances
RDS supports multi-AZ instances for high availability and durability. When you deploy a multi-AZ database, AWS
deploys a primary instance in one AZ and a synchronous replica in another AZ (see Figure 9-3). All of the complexity
is hidden from you, and the database appears to be one logical instance. If the primary database were to fail, RDS
automatically fails over and updates the DNS entry so your application begins using the secondary without manual
intervention.

CHAPTER 9 ■ RELATIONAL DATABASE SERVICE

172

Sounds great, right? Now for the bad news: RDS does not support multi-AZ deployments of SQL Server yet. SQL
Server 2012 introduced the technology, called Always On, needed to implement a multi-AZ deployment, but RDS
does not support it yet. In the meantime, I will use MySQL to explain how multi-AZ deployment works.

Launching a multi-AZ instance is just like launching a stand-alone instance, except that we add the MultiAZ
option. For example:

New-RDSDBInstance -DBInstanceIdentifier 'MySQL01' -Engine 'MySQL' -AllocatedStorage 20
 -DBInstanceClass 'db.t1.micro' -MasterUsername 'sa' -MasterUserPassword 'password'
 -DBSubnetGroupName 'MySubnetGroup' -VpcSecurityGroupIds $SecurityGroup.GroupId
 -MultiAZ $true

That is all there is to it! RDS takes care of the heavy lifting. All of the options we discussed above are supported,
except for the AvailabilityZone parameter on any of the commands that have it. You cannot choose which AZ the
primary database runs in. RDS manages that behind the scenes.

In addition to replicating to a standby instance, RDS can also replicate to additional read replicas. Let’s take a
look in the next section.

Region

Availability Zone

Subnet

Availability Zone

Subnet

RDS Instance

Subnet Subnet

EC2 Instance EC2 Instance

RDS Standby

Replication

Figure 9-3. Multi-AZ Deployment

CHAPTER 9 ■ RELATIONAL DATABASE SERVICE

173

Read Replicas
A read replica is similar to a standby instance in that changes are automatically replicated from the primary instance
to the replica. The difference is that a read replica is read only and uses asynchronous replication. Asynchronous
replication can lag the primary instance by a few seconds, and therefore, the read replica is not used for failover. Each
RDS instance can have up to five read replicas.

A read replica is not intended for high availability. A read replica is designed to enable scaling by offloading
some work from the primary instance. A common, and easy to implement, use of read replicas is to offload reporting
tasks from the primary database. If you design your application with read replicas in mind you can send all of the
read tasks to the replica and only use the primary for writes (see Figure 9-4). This can greatly reduce the load on the
primary instance and allow you to scale your application dramatically.

To create a read replica, you use the New-RDSDBInstanceReadReplica command and specify the source instance
for replication. For example, the following command will create a read replica of the MySQL database we created in
the last section called MySQLRR.

New-RDSDBInstanceReadReplica -DBInstanceIdentifier 'MySQL01RR'
 -SourceDBInstanceIdentifier 'MySQL01'

Region

Availability Zone Availability Zone

RDS Instance

Subnet Subnet

EC2 Instance

Writ
e

R
e
a
d

 &

W
ri

te

R
e
a
d

Replication

RDS Read Replica

EC2 Instance

Figure 9-4. Read Replica

CHAPTER 9 ■ RELATIONAL DATABASE SERVICE

174

The New-RDSDBInstanceReadReplica command supports some of the options you have when creating a new
database, including:

• DBInstanceClass - A read replica does not have to be the same instance type as the primary.
You may have a large primary with a small replica for reporting or vice versa.

• AvailabilityZone – You can specify which availability zone you want to deploy the replica in.
If running in a VPC, there must be at least one subnet in this AZ specified in the subnet group.

• Iops – Possibly your reporting database has much higher I/O requirements than the primary
transactional store.

• AutoMinorVersionUpgrade – I recommend you keep this the same as the primary, but you can
change it.

• OptionGroupName – I recommend you keep this the same as the primary, but you can
change it.

• PubliclyAccessible – An interesting use case might be keeping the primary instance
private, but allow end users to connect to a read replica to do business analysis using Excel or
something similar.

Once your read replica is up and running, you may choose to convert it to a stand-alone instance. You can do so
using the Convert-RDSReadReplicaToStandalone command. For example:

Convert-RDSReadReplicaToStandalone -DBInstanceIdentifier 'MySQL01RR'

Note that read replicas are not backed up, because the primary instance already is. Therefore, when you convert
to stand-alone, you have the option to specify a BackupRetentionPeriod and PreferredBackupWindow.

Note ■ I happen to be writing this chapter while attending re:Invent 2013, and AWS just announced that RDS will soon

support asynchronous read replicas across regions allowing you to replicate data around the globe. The details are not

out yet, but this exciting new feature should be available by the time this book publishes.

As you can see, RDS offers everything you need to build a robust database platform without having to worry
about the day-to-day details of system administration and backup. Let’s wrap up this chapter with two exercises
focused on securing SQL Server. The first will enable SSL to protect your connection and the second will enable
Transparent Data Encryption.

EXERCISE 9.1: SQL SERVER AND SSL ENCRYPTION

It always a good practice to encrypt the connection between your client and server. It is common to do so

between the user and a web server, but less common between the web server and database. SQL Server

supports encrypting the connection using SSL.

You can enable SSL when using an SQL Server RDS instance. All RDS instances include a self-signed certificate.

Of course your client machine will not trust the self-signed certificate until we import the public key into the

trusted store. Let’s build a script to do so.

CHAPTER 9 ■ RELATIONAL DATABASE SERVICE

175

You can download the public key from https://rds.amazonaws.com/doc/rds-ssl-ca-cert.pem. Let’s use

PowerShell to save a copy of the key on our client machine. This command must be run on the client machine.

Invoke-WebRequest 'https://rds.amazonaws.com/doc/rds-ssl-ca-cert.pem'
 -OutFile "$env:TEMP\rds-ssl-ca-cert.pem"

Next, we can use PowerShell to import the certificate into our trusted store. Note that you must run PowerShell as

an administrator on our client machine to complete this step.

Import-Certificate -FilePath "$env:TEMP\rds-ssl-ca-cert.pem"
 -CertStoreLocation 'Cert:\LocalMachine\authRoot' -Confirm:$false

Finally, we should clean up the temporary copy of the certificate.

Remove-Item "$env:TEMP\rds-ssl-ca-cert.pem"

That’s all there is to it. All you have to do to enable encryption is add two parameters to the connection string:

encrypt=true and TrustServerCertificate=true. For example:

Server=sqlserver01.cz8cihropmwk.us-east-1.rds.amazonaws.com;Database=myDataBase;
 User Id=sa;Password=password;encrypt=true;TrustServerCertificate=true"

Encrypting your database connection is a simple way to add an extra layer of security. In the next example,

I will show you how to encrypt the data that is stored on disk using TDE.

EXERCISE 9.2: SQL SERVER TOTAL DATABASE ENCRYPTION

Earlier in this chapter we talked about option groups, and I showed you how to create an option group that

enables SQL Server Transparent Data Encryption (TDE). In this exercise, we build on that example to fully

configure SQL TDE in a new instance. We will create an option group that enables TDE, launch a RDS instance

that uses the new option group, create a new database on the RDS instance, and encrypt the new database.

First, we need to accept a few parameters as input to our script. These should all look familiar; they are all the parameters

that will be passed to New-RDSDBInstance. Notice that the default engine is SQL Server Enterprise Edition. Remember

that TDE is only supported on the enterprise edition of SQL Server. In addition, notice that the default instance class is

small and I have allocated 200GB of disk. These are the minimum values for SQL Server Enterprise Edition.

param(
 [parameter(mandatory=$true)][string]$DBInstanceIdentifier,
 [parameter(mandatory=$false)][string]$DBInstanceClass = 'db.m1.small',
 [parameter(mandatory=$false)][string]$Engine = 'sqlserver-ee',
 [parameter(mandatory=$false)][string]$AllocatedStorage = 200,
 [parameter(mandatory=$true)][string]$MasterUsername,
 [parameter(mandatory=$true)][string]$MasterUserPassword,
 [parameter(mandatory=$true)][string]$DBSubnetGroupName,
 [parameter(mandatory=$true)][string]$VpcSecurityGroupIds
)

https://rds.amazonaws.com/doc/rds-ssl-ca-cert.pem
https://rds.amazonaws.com/doc/rds-ssl-ca-cert.pem

CHAPTER 9 ■ RELATIONAL DATABASE SERVICE

176

Next, we create the new option group just like I did earlier in this chapter. In the example below I first check to if

the option group already exists, and if not, create a new group.

Try {
 $OptionGroup = Get-RDSOptionGroup -OptionGroupName 'SQL2012TDE'
}
Catch [Amazon.RDS.Model.OptionGroupNotFoundException]{
 $OptionGroup = New-RDSOptionGroup -OptionGroupName 'SQL2012TDE'
 -OptionGroupDescription "SQL2012 with TDE"
 -EngineName sqlserver-ee -MajorEngineVersion '11.00'
 $Option = New-Object Amazon.RDS.Model.OptionConfiguration
 $Option.OptionName = 'TDE'
 Edit-RDSOptionGroup -OptionGroupName 'SQL2012TDE' -OptionsToInclude $Option
 -ApplyImmediately $true
}

Now that the option group has been created, we can launch a new instance using the parameters passed into

the script.

New-RDSDBInstance -DBInstanceIdentifier $DBInstanceIdentifier -Engine $Engine
 -AllocatedStorage $AllocatedStorage
 -DBInstanceClass $DBInstanceClass -MasterUsername $MasterUsername
 -MasterUserPassword $MasterUserPassword
 -DBSubnetGroupName $DBSubnetGroupName -VpcSecurityGroupIds $VpcSecurityGroupIds
 -OptionGroupName 'SQL2012TDE'

It will take a while for the instance to start. Let’s add a while loop that will wait for it.

While ($Instance.DBInstanceStatus -ne 'available') {$Instance = Get-RDSDBInstance
$DBInstanceIdentifier; Write-Host "Waiting for RDS instance to launch.";
 Start-Sleep -s 60}

Once it’s done we can get the address and report it back to the user so he or she can log into SQL Server and

finish the configuration.

$Instance = (Get-RDSDBInstance -DBInstanceIdentifier 'SQLServer01').Endpoint.Address
Write-Host "The RDS instance $DBInstanceIdentifier is ready. The address is $Address."

At this point TDE is enabled on the instance, but the individual databases are not encrypted. TDE allows you to

selectively encrypt individual databases on an instance. Each database has its own encryption keys, and the

individual encryption keys are protected by the server’s certificate, which was created by Amazon when we

enabled TDE.

We can use SQL scripts to create and encrypt a database. The remaining scripts in this exercise are SQL scripts

that should be run in SQL Management Studio against the RDS instance.

Let’s begin getting the name of the server certificate. Make reference of the name that is returned; you will need

it later.

CHAPTER 9 ■ RELATIONAL DATABASE SERVICE

177

USE [master]
SELECT TOP 1 Name FROM sys.certificates WHERE name LIKE 'RDSTDECertificate%'

Next, we create a new database that we will encrypt. If you already have a database on the instance, you can just

skip this step.

USE [master]
CREATE DATABASE MyDatabase

Then, we create a new encryption key for our database. Replace <<PUT_NAME_HERE>> with the name of the

certificate you found earlier.

Use [MyDatabase]
CREATE DATABASE ENCRYPTION KEY WITH ALGORITHM = AES_128 ENCRYPTION BY SERVER CERTIFICATE
 <<PUT_NAME_HERE>>

Finally, you can alter the database to enable encryption.

ALTER DATABASE MyDatabase SET ENCRYPTION ON

That’s all there is to it. With TDE enabled, everything SQL writes to disk is encrypted including data files and

backups.

Summary
RDS provides a developer everything that he or she needs to launch a database server without the burden of
managing it. AWS will take care of the maintenance, backups, replication, and monitoring, so you can concentrate on
your application.

We have seen how to launch and configure SQL Server instances. We learned how to restore instances from
snapshots and perform point-in-time recovery from database backups. We also learned to create scalable, highly
available architectures using multi-AZ instances and read replicas. Finally, we learned how to secure SQL Server using
SSL to encrypt the connection and TDE to encrypt files on disk.

In the next chapter, we will focus on Simple Storage Service (S3). S3 is a highly resilient data solution for storing
files. This is the data store AWS uses to keep snapshots and RDS backups, but you can use it to store anything you want.

179

CHAPTER 10

Simple Storage Service

Simple Storage Service (S3) is used to store objects in the cloud. S3 can scale to enormous size. You can store an
unlimited number of objects and access them from anywhere. You access S3 over HTTP or HTTPS using a REST API.
This is the same service Amazon uses to store data for its web site!

S3 provides an unprecedented 99.999999999% (that’s 11 nines) durability by storing data multiple times across
multiple availability zones within a region. A single object can be anywhere from 1 byte to 5 terabytes and you can
store an unlimited number of objects.

Unlike Elastic Block Storage you cannot attach S3 storage to an instance. All access is through the REST API. In
this chapter, I will show you how to create and manage buckets, which are used to store data. I will also show you how
to upload and download objects and manage storage options.

Next, we will discuss versioning and object life cycle. I will go on to show you how to save money by using
reduced redundancy and Glacier cold storage. Finally we will talk about security, including encryption at rest and
enabling public access to objects in your bucket.

This chapter has two exercises. The first will show you how to host a static web site in S3. We will deploy and
configure a web site using PowerShell. The second will discuss how to create pre-signed URLs that allow a user to
access data for a specific period of time. At the end of that period the URL expires, and the user can no longer access
the content. Let’s get started.

Managing Buckets
S3 stores objects in buckets. It may help to think of a bucket as a drive in a file system. Like a drive, a bucket contains
files and the files can be organized into a hierarchy of folders. But that is where the analogy ends. Unlike a drive, a
bucket is infinitely large and can store an unlimited number of objects. Buckets are also accessible anywhere in the
world using HTTP or HTTPS.

Each account can have up to 100 buckets, and each bucket must have a name that is unique across all accounts
and regions. To create a bucket, use the New-S3Bucket command. I always create a bucket with the same name as the
account alias for administrative storage such as logging and activity reports. For example, to create a bucket named
brianbeach (the name I picked for the account alias in Chapter 2), I call New-S3Bucket and supply the name.

New-S3Bucket -BucketName 'brianbeach'

As you might expect, there is a Get-S3Bucket command that can be used to list the buckets in your account.
When called without any parameters, it lists all the buckets in your account.

Get-S3Bucket

CHAPTER 10 ■ SIMPLE STORAGE SERVICE

180

If you want to get information about a specific bucket, you can call Get-S3Bucket with the BucketName parameter.

Get-S3Bucket -BucketName 'brianbeach'

If you just want to verify that a bucket exists, there is a separate command, Test-S3Bucket, that will return true if
the bucket exists and false if it does not. Of course you can always use Get-S3Bucket and compare the result to null,
but Test-S3Bucket is more convenient.

Test-S3Bucket -BucketName 'brianbeach'

The Get-S3Bucket command returns very little information. It only includes the name and creation date of the
bucket. If you want to know where the bucket is located, use the Get-S3BucketLocation command.

Get-S3BucketLocation -BucketName 'brianbeach'

Note ■ The Northern Virginia region is special. Unlike the other regions, buckets created in the Northern Virginia

region can store data in both the east and west region. The Northern Virginia region was the first, and since then

AWS has standardized the design. Buckets created in all other regions store data in only one region. As a result,

Get-S3BucketLocation will return “US” for buckets created in Northern Virginia. Buckets in all other regions will return

the region name (e.g., us-west-1).

Finally, if you want to delete a bucket, you can use the Remove-S3Bucket command. The bucket must be empty
before you can delete it or you can add the –DeleteObjects parameter to delete the contents of a bucket. Of course,
you also need to include the Force option to avoid being prompted for confirmation.

Remove-S3Bucket -BucketName 'brianbeach' -Force

Enough about buckets. Let’s put some data in there already. In the next section we learn how to read and
write objects.

Managing Objects
Now that we have a bucket created, we can start to upload files using the Write-S3Object command. For example,
the following command uploads the local file C:\AWS\HelloWorld.txt to the brianbeach bucket and saves it as
HelloWorld.txt.

Write-S3Object -BucketName 'brianbeach' -Key 'HelloWorld.txt'
 -File 'C:\aws\HelloWorld.txt'

You can also use the Content parameter to upload data without storing it on the local file system first. For example:

Write-S3Object -BucketName 'brianbeach' -Key 'HelloWorld.txt'
 -Content "Hello World!!!"

CHAPTER 10 ■ SIMPLE STORAGE SERVICE

181

If you want to list the objects in a bucket, you use the Get-S3Object command. Get-S3Object does not return the
objects, but rather lists the objects and a few attributes.

Get-S3Object -BucketName 'brianbeach'

You can also use Get-S3Object to discover information about a specific object. For example, the following
command will list information about the HelloWorld.txt file we uploaded earlier.

Get-S3Object -BucketName 'brianbeach' -Key 'HelloWorld.txt'

When you are ready to download a file, you use the Read-S3Object command. Unlike Write-S3Object,
Read-S3Object does not support the content parameter and must be used to write to a file on the local file system.
For example, the following command will download the HelloWorld.txt file and overwrite the original copy.

Read-S3Object -BucketName 'brianbeach' -Key 'HelloWorld.txt'
 -File 'C:\AWS\HelloWorld.txt'

Obviously we can create a copy of an object by downloading and uploading it with a different name. But, remember
that we pay for the bandwidth used. Therefore, it is more efficient to use the Copy-S3Object to create a copy on the
server without transferring the data. For example:

Copy-S3Object -BucketName 'brianbeach' -Key 'HelloWorld.txt'
 -DestinationKey 'HelloWorldCopy.txt'

We can also use Copy-S3Object to copy an object from one bucket to another. These buckets can even be in
different regions allowing you to move data directly from one region to another without making a local copy.

Copy-S3Object -BucketName 'brianbeach' -Key 'HelloWorld.txt'
 -DestinationBucket brianbeach2'
 -DestinationKey 'HelloWorldCopy.txt'

When you no longer need an object, you can delete it using the Remove-S3Object command. Remember to use
the Force option to avoid the confirmation prompt.

Remove-S3Object -BucketName 'brianbeach' -Key 'HelloWorld.txt' -Force

Now that we know how to create and use objects, let’s look at how we can use folders to organize them.

Managing Folders
In the previous examples we copied objects into the root of the bucket. As you add more objects you will end up with a
confusing mess. We use folders to organize objects. For example, we could have uploaded the HelloWorld.txt file into
a folder called MyFolder by modifying the Key.

Write-S3Object -BucketName 'brianbeach' -Key 'MyFolder/HelloWorld.txt'
 -File 'C:\AWS\HelloWorld.txt'

If you want to list the files in a folder, use the KeyPrefix parameter with Get-S3Object.

Get-S3Object -BucketName 'brianbeach' -KeyPrefix 'MyFolder'

CHAPTER 10 ■ SIMPLE STORAGE SERVICE

182

Note ■ Before we go any further, I want to say that folders don’t really exist in S3. At least they do not exist like they

do in a traditional file system. There is no folder object. The previous example is simply listing all files that begin with

‘MyFolder.’ I could just have easily uploaded a file called ‘MyFolder_HelloWorld.txt.’ AWS would not have cared,

and Get-S3Object would still have listed the file because it begins with ‘MyFolder.’

Folders are just a conversion used by the AWS Management Console. When the Console sees a forward slash, it creates a

folder icon and groups the files under it. With that said, you will likely find the folders in the Console very convenient.

You may find that on occasion you want to make an empty folder appear in the AWS Management Console.
To create an empty folder, just create a dummy object that has a key that ends with a slash.

Write-S3Object -BucketName 'brianbeach' -Key 'EmptyFolder/'
 -Content "Dummy Content"

The KeyPrefix (or folder) can be really useful. One great feature is the ability to upload an entire directory of files
with a single command. For example, the following command will upload all the files in the C:\AWS folder and prefix
all the files with “utils/.”

Write-S3Object -BucketName 'brianbeach' -KeyPrefix 'utils' -Folder 'c:\aws'

The previous command will ignore subfolders, but there is also an option to recursively upload all files in all of
the subfolders.

Write-S3Object -BucketName 'brianbeach' -KeyPrefix 'utils'
 -Folder 'c:\aws' -Recurse

When you read files you can use the KeyPrefix parameter to download all files that begin with a certain string.
Rather than using the File parameter as we did in a previous command, you use the Folder parameter. The Folder
parameter specifies where to put the files on the local file system. Note that Read-S3Object is always recursive.

Read-S3Object -BucketName 'brianbeach' -KeyPrefix 'utils' -Folder 'c:\aws'

On occasion you may find that you want to upload files that match a certain pattern. For example, you can upload
all executables in the c:\aws folder by using the SearchPattern parameter.

Write-S3Object -BucketName 'brianbeach' -KeyPrefix 'utils' -Folder 'c:\aws'
 -SearchPattern '*.exe'

Unfortunately, there is no SearchPattern attribute on Read-S3Object. We can use a combination of Get-S3Object
and Read-S3Object to produce a little PowerShell magic. For example:

Get-S3Object -BucketName 'brianbeach' -KeyPrefix 'utils' |
 Where-Object {$_.Key -like '*.exe'} | % {
 Read-S3Object -BucketName $_.BucketName -Key $_.Key
 -File ('C:\' + $_.Key.Replace('/','\'))
 }

As you can see, folders are a really powerful way to act on multiple objects at once. Next, we will look at how to
deal with large numbers of files.

CHAPTER 10 ■ SIMPLE STORAGE SERVICE

183

Managing Public Access
Many buckets require public or anonymous access. For example, we might be using S3 to store images for a web site
or the installer for our latest application. In both cases we want the objects to be available to the general public.
To create a bucket that holds objects that can be read by the general public, add the PublicReadOnly attribute to
New-S3Bucket. For example:

New-S3Bucket -BucketName 'brianbeach' -PublicReadOnly

Marking the bucket as public does not make all the objects in the bucket public. It only means that you can store
public objects. You still have to mark the individual objects as public when you upload them. For example:

Write-S3Object -BucketName 'brianbeach' -Key 'HelloWorld.txt'
 -Content "Hello World!!!" -PublicReadOnly

You can also configure a bucket to allow anonymous users to write to a bucket. For example, you might allow
customers to upload log files to your server so you can help debug an issue they are having. In general it is dangerous
to allow unauthenticated user to upload files. Not only could the individual files be dangerous, but you are also
charged for files they upload. If you allow anonymous uploads there is nothing stopping a nefarious user from
uploading large amounts of data, costing you thousands of dollars. If you still want to create a bucket with anonymous
read/write access, you can use the PublicReadWrite attribute with New-S3Bucket. For example:

New-S3Bucket -BucketName 'brianbeach' -PublicReadWrite

We will discuss identity and access management in detail in the next chapter.

Managing Versions
Often you want to store multiple versions of a document as you make changes. You may have regulatory requirements
that demand it, or you may just want the option to roll back. S3 supports this through bucket versioning.

When you enable versioning, S3 stores every version of every document in the bucket. If you overwrite an object,
AWS keeps the original. If you delete a document, AWS simply marks the document as deleted, but keeps all the prior
versions. When you read a document, AWS returns the latest version, but you can always request a specific version.

Before we enable versioning, let’s overwrite the HelloWorld document we created earlier so we have a clean
starting point. When you do, the old copy is replaced by this new copy.

Write-S3Object -BucketName 'brianbeach' -Key 'HelloWorld.txt'
 -Content "Hello World Version 1!!!"

Now, let’s enable versioning. Versioning is always enabled at the bucket. You cannot enable versioning within a
specific folder. To enable versioning, use the Write-S3BucketVersioning command.

Write-S3BucketVersioning -BucketName 'brianbeach'
 -VersioningConfig_Status 'Enabled'

Now that versioning is enabled, let’s overwrite the HelloWorld document. You do not have to do anything special
to create a version. Just write the new object and S3 will create a new version and retain the original.

Write-S3Object -BucketName 'brianbeach' -Key 'HelloWorld.txt'
 -Content "Hello Version 2!!!"

CHAPTER 10 ■ SIMPLE STORAGE SERVICE

184

If you were to call Get-S3Object, you would not see any difference. In fact, all of the commands we have used so far are
unaffected by versioning. The command below will return the latest version, which you can verify by checking the date.

Get-S3Object -BucketName 'brianbeach' -Key 'HelloWorld.txt'

To list the versions of all the objects in a bucket use the Get-S3Version command. Note that Get-S3Version
returns a complicated structure. You can ignore most of it and use the Versions property to list the versions.
For example:

(Get-S3Version -BucketName 'brianbeach').Versions

Unfortunately, this command is a bit primitive. There is no way to specify a specific object, only a prefix. Often
this is enough. For example, you could get the versions of our HellowWorld.txt document like this:

(Get-S3Version -BucketName 'brianbeach' -Prefix 'HelloWorld.txt').Versions

But, there are times when the prefix is not unique. For example, if we had both HelloWorld.doc and HelloWorld.
docx in a folder, it is impossible to list the versions of HelloWorld.doc without getting HelloWorld.docx. Therefore, it is
best to check the versions you get back by piping it to Where-Object.

(Get-S3Version -BucketName 'brianbeach' -Prefix 'HelloWorld.doc').Versions |
 Where-Object {$_Key -eq 'HelloWorld.doc'}

If you want to download a specific version of a document, the Read-S3Object accepts a version parameter.
First, you have to get the version using Get-S3Version. Note that Get-S3Version returns an array and the array is
sorted in reverse order so that the latest version is position 0. Once you find the version you want, you can pass the
id to Read-S3Object. For example:

$Versions = (Get-S3Version -BucketName 'brianbeach'
 -Prefix 'HelloWorld.txt').Versions
Read-S3Object -BucketName 'brianbeach' -Key 'HelloWorld.txt'
 -Version $Versions[1].VersionId -File 'c:\aws\versiontest.txt'

You can delete a version the same way:

Remove-S3Object -BucketName 'brianbeach' -Key 'HelloWorld.txt'
 -Version $Versions[1].VersionId

When you delete a version it is physically removed from the bucket. But, when you call Remove-S3Object, S3
simply marks the object as deleted. If you delete an object and list the versions, you will see that there is a new version
called a delete marker.

Remove-S3Object -BucketName 'brianbeach' -Key 'HelloWorld.txt' -Force
(Get-S3Version -BucketName 'brianbeach' -Prefix 'HelloWorld.txt').Versions

Note that the delete marker has the attribute IsDeleteMaker=True and a size of 0. You can still access the old
versions by specifying a version id. For example:

$Versions = (Get-S3Version -BucketName 'brianbeach'
 -Prefix 'HelloWorld.txt').Versions
Read-S3Object -BucketName 'brianbeach' -Key 'HelloWorld.txt'
 -Version $Versions[1].VersionId -File 'c:\aws\versiontest.txt'

CHAPTER 10 ■ SIMPLE STORAGE SERVICE

185

You can also undelete an object by removing the delete marker. Just find the version with IsDeleteMaker=True
and use Remove-S3Object to remove it.

$Marker = (Get-S3Version -BucketName 'brianbeach'
 -Prefix 'HelloWorld.txt').Versions |
 Where-Object {$_.IsDeleteMaker -eq $true}
Remove-S3Object -BucketName 'brianbeach' -Key 'HelloWorld.txt'
 -Version $Marker.VersionId -Force

Once you have versioning enabled, you cannot disable it, but you can choose to suspend versioning. When
versioning is suspended, the existing versions are maintained but new versions are not created. To suspend
versioning, call Write-S3BucketVersioning and set the status to Enabled.

Write-S3BucketVersioning -BucketName 'brianbeach'
 -VersioningConfig_Status 'Suspended'

As you can imagine, versioning, combined with 99.99999999 durability, will ensure that you never lose a
document again. Of course storing objects forever can get expensive. In the next section we will explore life-cycle
policies to manage aging objects.

Using Life-Cycle Management and Glacier
Over time you will accumulate a vast collection of objects. Sometimes you want to save these forever, but usually you
do not. You may need to keep to certain documents for a specified period of time. For example, the Sarbanes-Oxley
act, enacted after the Enron collapse, recommends that you keep ledgers for seven years and invoices for three.

Obviously you have the tools to create a PowerShell script to delete objects older than a certain date. But, S3 also
has a built in life-cycle policy that can manage retention for you. In addition, life-cycle management can be used to
copy objects to a cold storage solution called Glacier.

Glacier provides the same high durability as S3 for about 10% of the price. The tradeoff is that objects stored in
Glacier are not immediately available. You have to request that objects be restored, which takes about four hours.

One limitation of life-cycle policy is that you cannot apply policies to a bucket that has versioning enabled.
Therefore, I am going to delete and re-create my bucket.

Remove-S3Bucket -BucketName 'brianbeach' -DeleteObjects -Force
New-S3Bucket -BucketName 'brianbeach'

Now that we have a new bucket we can configure the life-cycle policy. We describe the policy using a series of
.Net objects. Let’s assume our bucket holds log files from a web server running on EC2. The development team often
refers to the logs to diagnose errors, but this almost always happens within a few hours of the error occurring. In
addition, the security team requires that we maintain logs for one year. Therefore, we decide to keep the logs online,
in S3, for one week. After one week, the logs are moved to cold storage, in Glacier, for one year. After one year the logs
can be deleted.

First, we define a life-cycle transition. The transition defines how long the logs are maintained in S3 and where
to move them after. The policy is always defined in days. The transition also defines the storage class to move the
document to. In the following example, I am moving the object to Glacier. You can also move an object to reduced
redundancy storage. (I will discuss reduced redundancy storage later in this chapter.)

$Transition = New-Object Amazon.S3.Model.LifecycleTransition
$Transition.Days = 7
$Transition.StorageClass = "Glacier"

CHAPTER 10 ■ SIMPLE STORAGE SERVICE

186

Next, we define the expiration policy. The expiration policy defines how long to keep the object before it is
deleted. In this case, I am keeping the object for 365 days. Note that the expiration is defined from the day the object
was first uploaded to S3, not the day it was transitioned to Glacier.

$Expiration = New-Object Amazon.S3.Model.LifecycleRuleExpiration
$Expiration.Days = 365

Now that we have both the transition and expiration defined, we can combine them into a single rule and apply
it to the bucket. Note that you do not need to define both the transition and expiration. Some rules only define a
transition and the object is maintained in Glacier until you manually delete it. Other rules only define an expiration
and the document is deleted from S3 without being transitioned.

$Rule = New-Object Amazon.S3.Model.LifecycleRule
$Rule.Transition = $Transition
$Rule.Expiration = $Expiration
Write-S3LifecycleConfiguration -BucketName 'brianbeach'
 -Configuration_Rules $Rule

Sometimes you want to have different rules applied to each folder in a bucket. You can define a folder level rule
by adding a prefix. For example:

$Rule = New-Object Amazon.S3.Model.LifecycleRule
$Rule.Transition = $Transition
$Rule.Expiration = $Expiration
$Rule.Prefix = "logs/"
Write-S3LifecycleConfiguration -BucketName 'brianbeach'
 -Configuration_Rules $Rule

Now, let’s assume a user of our web site claims his data was deleted a few months ago and we need to understand
why. We need to pull the log files from July 22 to diagnose the cause. First we check if the object exists and where it is
by using Get-S3Object. For example:

Get-S3Object -BucketName 'brianbeach' -Key 'logs/2013-07-22.log'

This command returns the following output. Note that the log files have been moved to Glacier, but have not yet
been deleted.

Key : logs/2013-07-22.log
BucketName : brianbeach
LastModified : Mon, 22 July 2013 23:59:39 GMT
ETag : "793466320ce145cb672e69265409ffeb"
Size : 1147
Owner : Amazon.S3.Model.Owner
StorageClass : GLACIER

To restore the object, we use the Restore-S3Object command. Restore-S3Object requires the bucket and key.
In addition, the Days parameter defines how long to keep the object in S3. In the following example I request that
object be restored for seven days. This should be plenty of time to figure out what happened to our user’s data. After
seven days, the object is automatically deleted from S3, but is still stored in Glacier until the expiration date.

Restore-S3Object -BucketName 'brianbeach' -Key '/logs/2013-07-22.log' -Days 7

CHAPTER 10 ■ SIMPLE STORAGE SERVICE

187

If you want to remove the life-cycle policy from a bucket, you can use the Remove-S3LifecycleConfiguration
command. For example:

Remove-S3LifecycleConfiguration -BucketName 'brianbeach'

As you can see, S3 gives you the tools to automate data retention. This is a great way to keep data sprawl in check
and manage costs. In the next section we will look at a few miscellaneous commands and then move on to the exercises.

Miscellaneous S3 Options
In this section we will look at a few miscellaneous options, none of which are big enough to warrant their own section.

Tagging
We have seen the power of tagging in EC2. S3 also supports tagging at the bucket level. To tag a bucket, create a tag
you use the Write-S3BucketTagging command and a few .Net helper classes. For example:

$Tag = New-Object Amazon.S3.Model.Tag
$Tag.Key = 'Owner'
$Tag.Value = 'bbeach'
$TagSet = New-Object Amazon.S3.Model.TagSet
$TagSet. Tags = $Tag
Write-S3BucketTagging -BucketName brianbeach -TagSets $TagSet

You can also get the tags using the Get-S3BucketTagging command:

Get-S3BucketTagging -BucketName brianbeach

And, you can remove all tags using the Remove-S3BucketTagging command

Remove-S3BucketTagging -BucketName brianbeach -Force

Pagination
As you add more and more objects to S3 it can become very difficult to sort through them all. AWS gives you the ability to
list files in batches. This is really convenient if you are trying to display the objects on a web page or other user interface.

Imagine you have hundreds of files in a bucket and you need to browse through them all. The following example
will return the first 10 objects in the bucket.

$Objects = Get-S3Object -BucketName 'brianbeach' -MaxKeys 10

After you browse through these first 10, you want to get 10 more. You can use the MaxKeys parameter to tell the S3
to return the next 10 objects. For example:

$Objects = Get-S3Object -BucketName 'brianbeach'
 -MaxKeys 10 -Marker $Objects[9].Key

CHAPTER 10 ■ SIMPLE STORAGE SERVICE

188

Encryption
When you upload an object to S3 you can have S3 encrypt the file before saving it. To enable encryption, use the
ServerSideEncryption parameter. At the moment, AES256 is the only supported encryption option. Note that in this
scenario AWS manages the encryption key.

Write-S3Object -BucketName 'brianbeach' -Key 'HelloWorld.txt'
 -Content "Hello World!!!" -ServerSideEncryption AES256

Reduced Redundancy
There are times when 99.999999999% durability is not required. For example, if you storing log files you probably
don’t want to pay for such high assurances. S3 supports reduced redundancy, which guarantees 99.99% durability.
As the name implies, reduced redundancy stores fewer copies of an object at a reduced price. To store an object with
reduced redundancy, include the ReducedRedundancyStorage parameter during upload. For example:

Write-S3Object -BucketName 'brianbeach' -Key 'HelloWorld.txt'
 -Content "Hello World!!!" -ReducedRedundancyStorage

Content Type
When you upload an object the content type is set to “application/octet-stream.” You can optionally include the
content type to tell the client what type of file it is. For example, your browser will always download files of type
“application/octet-stream”. If you want the browser to display the file, change the type to “text/plain.”

Write-S3Object -BucketName 'brianbeach' -Key 'HelloWorld.txt'
 -Content "Hello World!!!" -ContentType 'text\plain'

We will see an example of content type used in Exercise 1 where we create a static web site.

EXERCISE 10.1: STATIC HOSTING ON S3

You may have noticed that S3 feels a lot like a web server. We use HTTP or HTTPS to get objects using a URL.

In fact, you can use S3 to host a static web site with a few minor alterations. First, we are going to want a vanity

URL that does not reference S3. Second, we are going to want to support a default and custom error page.

S3 supports all of this and more.

Let’s create a simple web site with only two pages. I am going to use the domain name aws.brianbeach.com,

but you can use anything you want. The first thing we need to do is create a bucket. The bucket must be named

with the domain name of our web site and we must enable public read-only access. For example:

New-S3Bucket -BucketName 'aws.brianbeach.com' -PublicReadOnly

Next we need to create a page. A page is just an S3 object with the content type set to “text/html.” Remember

that if you do not set the content type, it will be set to “application/octet-stream” and your browser will download

the file rather than displaying it. You can upload images and other resources, but you have to set the content type

http://aws.brianbeach.com/
http://aws.brianbeach.com/

CHAPTER 10 ■ SIMPLE STORAGE SERVICE

189

correctly for each. We also need to the enable public read-only access to each file. The following example creates

a new page called index.htm:

$Content = @"
<HTML>
 <HEAD>
 <TITLE>Hello World</TITLE>
 </HEAD>
 <BODY>
 <H1>Hello World</H1>
 <P>Hello from my Amazon Web Services site.</P>
 </BODY>
</HTML>
"@

Write-S3Object -BucketName 'aws.brianbeach.com' -Key 'index.htm' -Content $Content
 -ContentType 'text/html' -PublicReadOnly

Next, we need to create an error page. This page will be displayed whenever an error occurs. Once again,

remember the content type and public read-only flag.

$Content = @"
<HTML>
 <HEAD>
 <TITLE>Oops</TITLE>
 </HEAD>
 <BODY>
 <H1>Oops</H1>
 <P>Something seems to have gone wrong.</P>
 </BODY>
</HTML>
"@

Write-S3Object -BucketName 'aws.brianbeach.com' -Key 'error.htm' -Content $Content
 -ContentType 'text/html' -PublicReadOnly

Now that our bucket is all set up, we can enable the WebSite feature. Write-S3BucketWebsite allows us to

identify the default and error documents in the site. The default document will be shown if the user requests

http://aws.brainbeach.com without including the path to a document. The error page will be displayed

whenever something goes wrong.

Write-S3BucketWebsite -BucketName 'aws.brianbeach.com'
 -WebsiteConfiguration_IndexDocumentSuffix 'index.htm'
 -WebsiteConfiguration_ErrorDocument 'error.htm'

You’re almost there. At this point the site is up and running on the URL: http://BUCKET.s3-website-REGION.

amazonaws.com. For example my site is running on aws.brianbeach.com.s3-website-us-east-1.amazonaws.com.

AWS does not own the domain brianbeach.com, and, therefore, cannot configure DNS to point to our bucket.

You must do that yourself by creating a CNAME record that points your domain name to the AWS bucket URL. The

process will depend on your provider. I use GoDaddy and the configuration looks like the one shown in Figure 10-1.

http://aws.brianbeach.com/
http://aws.brianbeach.com/
http://aws.brainbeach.com/
http://aws.brianbeach.com/
http://bucket.s3-website-region.amazonaws.com/
http://bucket.s3-website-region.amazonaws.com/
http://aws.brianbeach.com/
http://amazonaws.com/
http://brianbeach.com/

CHAPTER 10 ■ SIMPLE STORAGE SERVICE

190

Once the CNAME is done we can test:

If you navigate to • http://aws.brianbeach.com/index.htm, you should see the welcome page

we uploaded.

If you navigate to • http://aws.brianbeach.com, you should again see the welcome page.

If you navigate to • http://aws.brianbeach.com/DoesNotExist, you should see our custom

error page.

As you can see, S3 is a reliable and inexpensive way to host a static web site. In the next exercise, we will use

pre-signed URLs to grant temporary access to a customer without requiring them to log in.

EXERCISE 10.2: USING PRE-SIGNED URLS

At the beginning of this chapter, we discussed enabling anonymous access to a bucket, and I mentioned there is a

better way: pre-signed URLs. This is a really simple command to use and does not warrant an exercise of its own,

but it is a great opportunity to describe how AWS authentications works using access keys.

Imagine that you run a help desk and you often need to make tools and patches available to customers. You want

these tools available only to customers who call the help desk. Furthermore, customers should not be able to

download the tools later or share the link with friends. You could create a username and password for the user,

but then you have to manage another user. This is a great use case for a pre-signed URL.

A pre-signed URL has been signed with a secret key. In addition, the URL includes an expiration date after which

it can no longer be used. Note that the URL has been signed with the secret key, but does not include the secret

key. This allows AWS to prove the authenticity of the URL without exposing the secret key to the customer.

In fact, this is how all AWS web service calls work. Your secret key is never sent to AWS. Whenever we use a

PowerShell method, PowerShell creates the request and includes a digital signature to prove that the user knows

the secret.

Let’s get back to the help desk. You want to create a pre-signed URL. PowerShell has a command for this called

Get-S3PresignedURL. You need to pass in your access key and secret key as well as the HTTP verb, bucket, key,

and expiration date.

Note ■ You should use StoredCredentials rather than passing the access keys explicitly. (See Chapter 2 for details.)

I am including them here only to help explain how the encryption works.

Figure 10-1. Creating a DNS CName in GoDaddy.com

http://aws.brianbeach.com/index.htm
http://aws.brianbeach.com/
http://aws.brianbeach.com/DoesNotExist
http://godaddy.com/

CHAPTER 10 ■ SIMPLE STORAGE SERVICE

191

#Authentication Keys
$AccessKey = 'AKIAJ5N3RMX5LGUMP6FQ'
$SecretKey = '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'

#Web Query
$Verb = "GET"
$ExpirationDate = [DateTime]::Parse('2014-01-01')
$Bucket = 'MyBucket'
$Key = 'MyPath/MyFile.txt'

Get-S3PreSignedURL -Verb $Verb -Expires $ExpirationDate -Bucket $Bucket -Key $Key
 -AccessKey $AccessKey -SecretKey $SecretKey

The preceding code will return the following URL, which you can share with your customer. Notice that the URL

includes the access key and expiration date we supplied. The expiration date has been converted to seconds from

January 1, 1970. In addition, the URL incudes a signature created by the PowerShell command. Also notice that

your secret key is not included in the URL.

https://s3.amazonaws.com/MyBucket/MyPath/MyFile.txt?AWSAccessKeyId=
AKIAIQPQNCQG3EYO6LIA&Expires=1388552400&Signature=wBUgYztEdlE%2Btw9argXicUKvftw%3D

You can share this URL with your customer and they can download a single file. They do not have the secret

key and therefore cannot use it for anything else. In addition, AWS will refuse it after the expiration date. If the

customer changes anything in the URL, he or she will invalidate the signature and AWS will refuse it. What a

simple solution to a difficult problem.

While the Get-PreSignedURL method is really simple to use, this is a great opportunity to see how AWS

signatures work. Let’s write our own code to create a signature so we better understand how it works. If you’re

not interested, feel free to skip the rest of this example, but remember the Get-S3PreSignedURL method.

First, we will accept the same parameters as the Get-PreSignedURL command. My method only works for GET

requests, but you could easily add support for other HTTP verbs.

Param
(
 [string][parameter(mandatory=$true)]$AccessKey,
 [string][parameter(mandatory=$true)]$SecretKey,
 [string][parameter(mandatory=$false)]$Verb = 'GET',
 [DateTime][parameter(mandatory=$true)]$Expires,
 [string][parameter(mandatory=$true)]$Bucket,
 [string][parameter(mandatory=$true)]$Key
)

Next, we must calculate the expiration. Remember that the expiration is expressed in seconds since January 1,

1970. Also note that I am converting the time to UTC because the AWS servers may be in a different time zone

than our client.

$EpochTime = [DateTime]::Parse('1970-01-01')
$ExpiresSeconds = ($Expires.ToUniversalTime() - $EpochTime).TotalSeconds

https://s3.amazonaws.com/MyBucket/MyPath/MyFile.txt?AWSAccessKeyId

CHAPTER 10 ■ SIMPLE STORAGE SERVICE

192

Then, we need to canonicalize the input parameters to be signed. Before we can sign the data we must agree

on how the data will formatted. If both sides don’t agree on a common format, the signatures will not match.

This process is called canonicalization.

For AWS, we include the following data separated by a newline character.

HTTP Verb•

MD5 Hash of the Content•

Content Type•

Expiration Date•

Optional HTTP Headers•

URL Encoded Path•

In our case, we are only supporting GET; therefore, the content and content type will always be blank. In addition,

I am not supporting any HTTP headers.

$Path = [Amazon.S3.Util.AmazonS3Util]::UrlEncode("/$Bucket/$Key", $true)
$Data = "$Verb`n`n`n$ExpiresSeconds`n$Path"

Now that we have the canonicalized data we can use the .Net crypto libraries to sign it with our secret key.

Here I am using the SHA1 algorithm to generate the signature. Note that you must be very careful with how data

is encoded. The secret key must be UTF8 encoded and the resulting signature must be URL encoded.

$HMAC = New-Object System.Security.Cryptography.HMACSHA1
$HMAC.key = [System.Text.Encoding]::UTF8.GetBytes($SecretKey);
$signature = $HMAC.ComputeHash(
 [System.Text.Encoding]::UTF8.GetBytes($Data.ToCharArray()))
$signature_encoded = [Amazon.S3.Util.AmazonS3Util]::UrlEncode(
 [System.Convert]::ToBase64String($signature), $true)

Finally, we can build the URL. The result should be identical to what Get-PreSignedURL returned earlier.

"https://s3.amazonaws.com/$Bucket/$Key" + "?AWSAccessKeyId=$AccessKey&Expires=$ExpiresSeconds
&Signature=$signature_encoded"

That may have been a bit more than you wanted to know, but now that you know how to sign a request, you can

call the S3 Web Service methods directly in any language.

Summary
In this chapter we reviewed Simple Storage Service (S3). S3 allows you to store a seemingly limitless number of objects
in the cloud. We learned to create and manage buckets and folders and we learned to upload and download objects.

We learned how versioning can be used to store multiple versions of a document as it changes over time.
We also learned to use life-cycle policies to create retention rules and how to use Glacier cold storage to reduce costs
for long-term storage.

In the exercises, we created a static web site hosted entirely in S3 and then learned to create a pre-signed URL that
can be shared without needing AWS credentials. We also learned how AWS uses digital signatures in authentication.
In the next chapter we will learn how to use PowerShell to automate Identity and Access Management.

https://s3.amazonaws.com/$Bucket/$Key

193

CHAPTER 11

Identity and Access Management

As is too often the case, I have saved security for last. If you have been following along from the beginning, we have
completed all of the examples in this book while signed in as a user with administrator privileges. While this is a
convenient way to learn a new technology, you should never run a production system with administrator privileges.
If part of the system were compromised, you want to ensure you limit access as much as possible.

This chapter is all about Identity and Access Management (IAM). IAM is how you manage users, groups, and
permissions. In this chapter, I show you how to create users and groups. I also explain how IAM policies work and how
to create them. IAM policies describe which resources a user can access and the operations they can perform on those
resources. You will see that IAM gives you unprecedented control over access.

Finally, in the two exercises at the end of the chapter, we will create a framework for least privileged access and
grant access to billing and support. Let’s get started.

Managing Users
Let’s begin by adding a few users to our AWS account. We added a single user back in Chapter 2 using the AWS
Management Console. Now let’s add a few using PowerShell.

To add users you use the New-IAMUser command. The following script will add six users.

New-IAMUser -UserName 'alice'
New-IAMUser -UserName 'bob'
New-IAMUser -UserName 'chris'
New-IAMUser -UserName 'dan'
New-IAMUser -UserName 'eve'
New-IAMUser -UserName 'frank'

As you might expect there is also a Get-IAMUser command that can be used to get information about a user, such
as the username and date the account was created.

Get-IAMUser -UserName 'alice'

Get-IAMUser works a bit differently from other commands. Most get methods return a list of all objects when
you call them without parameters. If you call Get-IAMUser without the UserName parameter, it returns the currently
logged-in user. This is useful when writing a generic script that needs to discover who is currently logged in. For
example, you might want to tag an instance with the name of the current user.

$User = Get-IAMUser
$AMI = Get-EC2ImageByName -Name 'WINDOWS_2012_BASE'
$Reservation = New-EC2Instance -ImageId $AMI[0].ImageId -KeyName 'MyKey'
 -InstanceType 't1.micro' -MinCount 1 -MaxCount 1

CHAPTER 11 ■ IDENTITY AND ACCESS MANAGEMENT

194

$InstanceId = $Reservation.RunningInstance[0].InstanceId
$Tag = New-Object Amazon.EC2.Model.Tag
$Tag.Key ='Owner'
$Tag.Value = $User.UserName
New-EC2Tag -ResourceId $Instance.InstanceId -Tag $Tag

If you want to list all of the users in the account, use the Get-IAMUsers command.

Get-IAMUsers | Format-Table

You may remember from Chapter 2 that there are multiple types of credentials. We discussed that users need a
password to access the AWS Management Console, and access keys to use the REST API and PowerShell. But not all
users require both types of credentials. To allow a user to access the AWS Management Console, you must assign a
password using the New-IAMLoginProfile command.

New-IAMLoginProfile -UserName 'alice' -Password 'PASSWORD'

Conversely, if you want to remove a login profile and deny access to the AWS Management Console, use the
Remove-IAMLoginProfile command.

Remove-IAMLoginProfile -UserName 'alice' -Force

If you want the user to able to use the REST API, you must create an access key using the New-IAMAccessKey
command. Remember that we are using the REST API with PowerShell. Therefore, a user needs an access key to use
PowerShell for AWS. The New-IAMAccessKey command returns an object that includes both the AccessKeyId and
SecretAccessKey.

$Keys = New-IAMAccessKey -UserName 'alice'
$Keys.AccessKeyId
$Keys.SecretAccessKey

Remember to save the secret key because you cannot get it again. To store a copy in your PowerShell session,
you can use the Set-AWSCredentials command discussed in Chapter 2. For example:

$Keys = New-IAMAccessKey -UserName 'alice'
Set-AWSCredentials -AccessKey $Keys.AccessKeyId -SecretKey $Keys.SecretAccessKey
 -StoreAs 'alice'

If you want to delete a user’s access keys you can use Remove-IAMAccessKey.

Remove-IAMAccessKey -User Name 'alice' -AccessKeyId 'AKIAJV64XS4XLRAJIBAQ' -Force

You may find that you need to check if a user has either a password or access keys. You can use
Get-IAMLoginProfile and Get-IAMAccessKey to check if they exist.

Get-IAMLoginProfile -UserName 'alice'
Get-IAMAccessKey -UserName 'alice'

Each user can have two sets of access keys. The truly security conscious will rotate these keys on a regular basis.
For example, you might replace the older set of keys every 30 days. The following script will find the oldest set of keys
for a user, delete them, and create a new set.

CHAPTER 11 ■ IDENTITY AND ACCESS MANAGEMENT

195

$Key = Get-IAMAccessKey -UserName 'alice' | Sort-Object CreateDate
 -Descending | Select AccessKeyId -First 1
Remove-IAMAccessKey -UserName 'alice' -AccessKeyId $Key.AccessKeyId-Force
$Keys = New-IAMAccessKey -UserName 'alice'
$Keys.AccessKeyId
$Keys.SecretAccessKey

Now that we have a user created we need to assign the user permissions. Before we do, let’s look at groups.
Groups allow you to group related users together and assign them permissions as a unit. This process is usually less
time consuming and less error prone.

Managing Groups
When you apply permissions to individual users, it is very difficult to keep track of who has access to which resources.
Grouping related users makes managing permissions much easier. Groups reduce the number of unique permissions
sets you need to keep track of. (In the first exercise at the end of this chapter we build a set of common groups as a
starting point.)

To create a new group, use the New-IAMGroup command and assign a name.

New-IAMGroup -GroupName 'AWS_USERS'

Initially the group is empty. To add a user to a group, use the Add-IAMUserToGroup command and pass the name
of the user and the group to add him or her to.

Add-IAMUserToGroup -UserName 'alice' -GroupName 'AWS_USERS'

If you want to remove a user from a group, use the Remove-IAMUserFromGroup command passing the name of the
user and the group to remove him or her from.

Remove-IAMUserFromGroup -UserName 'alice' -GroupName 'AWS_USERS' -Force

Listing groups is similar to listing users. You use the Get-AIMGroups (plural) command to list all the groups in
your account.

Get-IAMGroups

You use the Get-IAMGroup (singular) command to get a specific group.

Get-IAMGroup -GroupName 'AWS_USERS'

Note that these two commands return different information. The Get-IAMGroups (plural) command returns
a group object that does not include the group members. The Get-IAMGroup (singular) command returns a
GetGroupResult object that includes the group and a collection of users.

Therefore, to list the members of a group, use Get-IAMGroup and then read the users property.

(Get-IAMGroup -GroupName 'AWS_USERS').Users

To get the opposite – a list of groups a user is a member of – you can use the Get-IAMGroupForUser command.
For example:

Get-IAMGroupForUser 'alice'

CHAPTER 11 ■ IDENTITY AND ACCESS MANAGEMENT

196

Unlike the Get-IAMUser command, Get-IAMGroupForUser cannot be called without a group parameter. It would
be nice if calling Get-IAMGroupForUser would list the groups the current user is a member of. We can use a little
PowerShell magic to combine Get-IAMUser and Get-IAMGroupForUser to get the list. For example:

Get-IAMUser | Get-IAMGroupForUser

At this point we have created a few users and groups and have added users to groups. But, our users still don’t
have permission to do anything. In the next section, we will grant permission to our users.

Managing Policies
We use policies to grant permissions to users and groups. Policies are JSON statements that describe what API calls a
user or group is allowed to call. You can grant or deny access to just about every API call. Before we get started, let’s do
a quick review of JSON.

JSON PRIMER

JavaScript Object Notation (JSON) was first used to send objects from a web server to a browser. JSON uses

key/value pairs to represent attributes. Here are a few examples of attributes in JSON:

"Name": "Joe"
"Age": 35
"Male": true

An array can be represented by a single key and multiple values in square brackets. For example:

"Children": ["Mary", "Charles", "Sam"]

An object is simply a list of key/value pairs separated by commas and enclosed in curly braces. For example,

we might represent a person as:

{
 "Name": "Joe",
 "Age": 35,
 "Male": true,
 "Children": ["Mary", "Charles", "Sam"]
}

We can also nest objects inside other objects. For example:

{
 "Name": "Joe",
 "Age": 35,
 "Male": true,
 "Children": [
 {
 "Name": "Mary",
 "Age": 3,
 "Male": false
 },

CHAPTER 11 ■ IDENTITY AND ACCESS MANAGEMENT

197

 {
 "Name": "Charles",
 "Age": 5,
 "Male": true
 },
 {
 "Name": "Sam",
 "Age": 7,
 "Male": true
 }
]
}

This is a very brief introduction, but you can see that JSON can be used to represent very complex structures.

I could write a whole book on JSON — and others have — but this is all we need to understand IAM policy

statements.

Policy statements are written in JSON. The statement must include three sections: effect, action, and resource.
The effect of the statement is to either allow access or deny access. The action is a list of API calls that are allowed. The
resource is the objects the user is allowed to act on. For example, the following statement will allow a user to call any
method on any object. In other words, this is an administrator policy.

{
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "*",
 "Resource": "*"
 }
]
}

Policy Actions
Actions determine which API calls are allowed or denied by a policy. The actions are the web service methods that are
allowed. Remember that PowerShell commands call API WebMethods. In other words, you can grant or deny access
to just about every PowerShell command.

Before we can write a policy, we need to know the API method name. As you can see in the following example,
the PowerShell help files often tell you what API method a command will call. Unfortunately this is not always true. (I
have included a mapping of PowerShell to API methods in Appendix D.)

PS C:\aws> help Get-IAMUsers

NAME
 Get-IAMUsers

CHAPTER 11 ■ IDENTITY AND ACCESS MANAGEMENT

198

SYNOPSIS
 Invokes the ListUsers operation against AWS Identity and Access Management.

...

Now that we know the method names, let’s write a custom policy. We use an array to list multiple methods in a
single policy. Note that the method name is preceded by the service type (i.e., "iam:") The following example allows
access to all the read methods in IAM. In other words, this policy grants read only access to IAM.

{
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "iam:GetAccountPasswordPolicy",
 "iam:GetAccountSummary",
 "iam:GetGroup",
 "iam:GetGroupPolicy",
 "iam:GetInstanceProfile",
 "iam:GetLoginProfile",
 "iam:GetRole",
 "iam:GetRolePolicy",
 "iam:GetServerCertificate",
 "iam:GetUser",
 "iam:GetUserPolicy",
 "iam:ListAccessKeys",
 "iam:ListAccountAliases",
 "iam:ListGroupPolicies",
 "iam:ListGroups",
 "iam:ListGroupsForUser",
 "iam:ListInstanceProfiles",
 "iam:ListInstanceProfilesForRole",
 "iam:ListMFADevices",
 "iam:ListRolePolicies",
 "iam:ListRoles",
 "iam:ListServerCertificates",
 "iam:ListSigningCertificates",
 "iam:ListUserPolicies",
 "iam:ListUsers",
 "iam:ListVirtualMFADevices"
],
 "Resource": "*"
 }
]
}

Often you want to grant access to an entire service such as EC2. In the administrator example, we used a wildcard
("*") to allow all actions. We can also scope a wildcard to grant access to a specific service. The following example will
grant access to EC2 and S3.

CHAPTER 11 ■ IDENTITY AND ACCESS MANAGEMENT

199

{
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "ec2:*",
 "s3:*"
],
 "Resource": "*"
 }
]
}

As you can see, IAM policies allow fine-grained control over access. In Exercise 11.1 we will develop a set of least
privileged roles for EC2. Now let’s look at resources.

Policy Resources
So far, the policies we have written apply to all resources. When we granted access to S3 in the following example, we
allowed the user to act on all objects in all buckets. Some services allow you to scope the access. In S3, we might want
to allow access to a specific bucket or folder.

For example, to scope access to the “MyBucket” bucket:

{
 "Statement": [
 {
 "Effect": "Allow",
 "Action": *,
 "Resource": "arn:aws:s3:::MyBucket"
 }
]
}

The resource statement is always written using an Amazon Resource Name (ARN). An ARN is used to uniquely
identify an AWS resource across accounts and regions. The ARN format is as follows.

arn:aws:service:region:account:resource

Note that S3 is a special case. The bucket name is already unique; therefore, the ARN does not include the
account and region and follows the format:

arn:aws:s3:::BUCKET/KEY

The following example will scope access to the MyFolder folder in the MyBucket bucket:

{
 "Statement": [
 {
 "Effect": "Allow",
 "Action": *,

CHAPTER 11 ■ IDENTITY AND ACCESS MANAGEMENT

200

 "Resource": "arn:aws:s3:::MyBucket/MyFolder"
 }
]
}

You could also scope access to a specific object in S3:

{
 "Statement": [
 {
 "Effect": "Allow",
 "Action": *,
 "Resource": "arn:aws:s3:::MyBucket/MyFolder/MyFile.txt"
 }
]
}

IAM also allows a few variables in the policy statements. (See the sidebar for a list of supported variables.)
Variables make it easier to create a generic policy . For example, let’s assume that every user has a personal folder in
S3 that is named with the user’s username. You can write a generic policy that grants each user access to his or her
own folder as follows:

{
 "Statement": [
 {
 "Effect": "Allow",
 "Action": *,
 "Resource": ["arn:aws:s3:::MyBucket/${aws:username}/*"]
 }
]
}

POLICY VARIABLES

Here is a list of variables supported in IAM policy statements.

Name Description

aws:CurrentTime Date and time of the request

aws:principaltype A value that indicates whether the principal is an account, user, federated,
or assumed role (see the explanation that follows)

aws:SecureTransport Boolean representing whether the request was sent using SSL

aws:SourceIp The requester’s IP address, for use with IP address conditions

aws:UserAgent Information about the requester’s client application, for use with string
conditions

aws:userid Unique ID for the current user

(continued)

CHAPTER 11 ■ IDENTITY AND ACCESS MANAGEMENT

201

Name Description

aws:username Username of the current user

s3:prefix Prefix passed in some S3 commands

s3:max-keys Max-Keys information passed in some S3 commands

sns:Endpoint Endpoint passed in some SNS calls

sns:Protocol Protocol passed in some SNS calls

Unfortunately, not all services support resources. For example, S3 and IAM do, but EC2 does not. Luckily we can

use conditions to control access to EC2 objects by tag. But, before we talk about conditions, let's look at policy

actions.

Policy Actions
All of the policy statements we have written so far allow access to a resource. You can also deny access to a resource
by using the deny action. For example, I could keep a user from terminating instances by denying access to the
ec2:TerminateInstances action.

{
 "Statement": [
 {
 "Effect": "Deny",
 "Action": "ec2:TerminateInstances",
 "Resource": "*"
 }
]
}

Effect, resource, and action are required components of every policy statement. There are also numerous
optional components. I’m not going to cover all of the options here, but I do want to discuss conditions. AWS recently
added conditions, which are very useful for controlling access to EC2. Let’s have a look.

Policy Conditions
Conditions allow you to write custom logic to determine if an action is allowed. This is a complex topic that could
easily fill a chapter. I am only going to show you how to write conditions based on EC2 tags. You can read more about
conditions in the IAM user guide.

Building on the prior example, imagine you want to allow users to terminate instances considered DEV but not
those considered QA or PROD. You could grant access to the terminate action, but use a condition to limit access to
those instances that have a tag called "environment" with the value "dev".

.
 "Version": "2012-10-17",
 "Statement": [{
 "Effect": "Allow",
 "Action": "ec2:TerminateInstances",
 "Resource": "arn:aws:ec2:us-east-1:123456789012:instance/*",

CHAPTER 11 ■ IDENTITY AND ACCESS MANAGEMENT

202

 "Condition": {
 "StringEquals": {
 "ec2:ResourceTag/environment": "dev"
 }
 }
 }
]
}

Notice that I have included the optional version to tell AWS this policy requires the latest version of the policy
language. Also notice the format of the resource ARN. Remember to replace the 123456789012 with your account
number.

Now that we know how to write a policy, let’s associate it with a user and group using PowerShell.

Creating Policies with PowerShell.

Creating an IAM policy in PowerShell is really easy. You simply create the JSON statement as a string and then
associate it with a user or group. For example, to grant Alice full control, use the Write-IAMUserPolicy command.

$Policy = @"
{
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "*",
 "Resource": "*"
 }
]
}
"@

Write-IAMUserPolicy -UserName "alice" -PolicyName "alice-FullControl" -PolicyDocument $Policy

Assigning a policy to a group is just as easy. For example, to grant full control to the ADMINS group, use the
Write-IAMGroupPolicy command.

Write-IAMGroupPolicy -GroupName "ADMINS" -PolicyName "ADMINS-FullControl"
 -PolicyDocument $Policy

As you can see, IAM policies give you fine-grained control over access to AWS. You can be very specific about who
has access to which resources. The details are all contained in the policy statement. In Exercise 11.1 we will create a
common set of groups with least privileged policy defined. But before we do that, let’s talk about IAM roles.

Managing Roles
Remember from Chapter 2 that an IAM role can be used to associate a policy with an instance, rather than a user. This
way scripts running on that instance do not need to include credentials.

To list the roles defined in your account use the Get-IAMRoles command. If you run this command, you should
see the “AdminRole” we created using the AWS Management Console in Chapter 2.

Get-IAMRoles

CHAPTER 11 ■ IDENTITY AND ACCESS MANAGEMENT

203

You can also get a specific role using the Get-IAMRole command.

Get-IAMRole -Rolename AdminRole

Creating a new role is similar to the process we used to create a group, but we also need a second policy that
defines what resources can assume the role. There are two policies required: the first describes who can use the role;
the second describes what the role can do.

Let’s begin by defining who can use this role. The policy shown here allows the EC2 service to assume this role. In
other words, this policy can be used by EC2 instances, but not RDS instances.

$AssumeRolePolicy = @"
{
 "Version":"2008-10-17",
 "Statement":[
 {
 "Sid":"",
 "Effect":"Allow",
 "Principal":{"Service":"ec2.amazonaws.com"},
 "Action":"sts:AssumeRole"
 }
]
}
"@

Next, we create an access policy just like we did in the prior section. This policy gives the role admin access
to all services.

$AccessPolicy = @"
{
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "*",
 "Resource": "*"
 }
]
}
"@

Now we can create the role using the New-IAMRole command, passing in the access policy.

New-IAMRole -RoleName 'MyAdminRole' -AssumeRolePolicyDocument $AssumeRolePolicy

Next, we use Write-IAMRolePolicy to associate the access policy to the role, just like users and groups.

Write-IAMRolePolicy -RoleName 'MyAdminRole'
 -PolicyName 'MyAdminRole-FullControl' -PolicyDocument $AccessPolicy

Finally, we need to create a new instance profile and add the new role to it.

http://amazonaws.com/

CHAPTER 11 ■ IDENTITY AND ACCESS MANAGEMENT

204

New-IAMInstanceProfile -InstanceProfileName 'MyAdminRoleInstanceProfile'
Add-IAMRoleToInstanceProfile -RoleName 'MyAdminRole'
 -InstanceProfileName 'MyAdminRoleInstanceProfile'

Remember from Chapter 3 that roles are assigned to an instance when they are launched. At this point you
know how to manage permissions for user, groups, and roles. Before we close this chapter, I want to discuss a few
miscellaneous IAM commands.

Miscellaneous IAM Commands
I want to discuss a few miscellaneous IAM commands that did not warrant their own section. Therefore, I included
them all here.

Managing Password Policy
Users that have access to the AWS Management Console need to have a password. Many organizations require a
specific password policy. You can control the IAM password policy using the Update-IAMAccountPasswordPolicy
command.

Update-IAMAccountPasswordPolicy
 -MinimumPasswordLength 8
 -RequireSymbols $false
 -RequireNumbers $true
 -RequireUppercaseCharacters $true
 -RequireLowercaseCharacters $true
 -AllowUsersToChangePassword $true

You can also get the current policy using Get-IAMAccountPasswordPolicy and remove the policy using
Remove-IAMAccountPasswordPolicy.

Using the Account Summary
You can use the Get-IAMAccountSummary command to generate a report. The report includes the total number of
users, groups, and roles; how many users have Multi Factor Auth (MFA) enabled; and other interesting details.

Setting the Account Alias
Finally, you can get and set the account alias. Remember from Chapter 2 that the account alias is used to create an
easy-to-remember sign-in URL.

You can set the account alias using the New-IAMAccountAlias command.

New-IAMAccountAlias -AccountAlias 'brianbeach'

You can also get the current alias using Get-IAMAccountAlias and remove the alias using Remove-
IAMAccountAlias.

That brings us to the exercises. As you have seen, IAM gives you fine-grained control over access to AWS
resources. You can be very specific about who has access to which resources. In Exercise 11.1 we create a set of
common groups that provide least privileged access. In Exercise 11.2 we will learn how to permit access to billing and
support.

CHAPTER 11 ■ IDENTITY AND ACCESS MANAGEMENT

205

EXERCISE 11.1: CREATING LEAST PRIVILEGED GROUPS

Throughout this book we have been using a single account that has administrator access to all services.

Obviously this is a bad idea in production. We only want to allow those permissions that each user needs. Let’s

create a few common groups as a starting point.

Let’s assume that our company is using AWS for development. The main users are software developers. We have

a team of AWS experts who support the developers. In addition, the developers are supported by the traditional

system administrators and network administrators. The system administrators support the operating system, and

the network administrators are responsible for routing, load balancers, and network security.

First, all users require a few common permissions. At a minimum they all need the ability to change their own

password. Let’s start by creating a group that allows a user to see the password policy change his or her own

password. All users should be a member of this group. Note that all of these examples are included with the

source code for this chapter.

$Policy = @"
{
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "iam:ChangePassword",
 "iam:GetAccountPasswordPolicy"
],
 "Resource": "*"
 }
]
}
"@

New-IAMGroup -GroupName "USERS"
Write-IAMGroupPolicy -GroupName "USERS" -PolicyName "USERS-ChangePassword"
 -PolicyDocument $Policy

Second, the AWS administrators require full access. Let’s create a group that has full control of all services.

This should be a very small group of people.

$Policy = @"
{
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "*",
 "Resource": "*"
 }
]
}

CHAPTER 11 ■ IDENTITY AND ACCESS MANAGEMENT

206

"@
New-IAMGroup -GroupName "ADMINS"
Write-IAMGroupPolicy -GroupName "ADMINS" -PolicyName "ADMINS-FullControl"
 -PolicyDocument $Policy

Third, the developers are using continuous development. They need to be able to create, start, stop, and terminate

instances. Let’s create a group for the developers.

$Policy = @"
{
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "ec2:AttachVolume",
 "ec2:CopySnapshot",
 "ec2:CreateKeyPair",
 "ec2:CreateSnapshot",
 "ec2:CreateTags",
 "ec2:CreateVolume",
 "ec2:DeleteKeyPair",
 "ec2:DeleteSnapshot",
 "ec2:DeleteTags",
 "ec2:DeleteVolume",
 "ec2:DescribeAddresses",
 "ec2:DescribeAvailabilityZones",
 "ec2:DescribeBundleTasks",
 "ec2:DescribeConversionTasks",
 "ec2:DescribeCustomerGateways",
 "ec2:DescribeDhcpOptions",
 "ec2:DescribeExportTasks",
 "ec2:DescribeImageAttribute",
 "ec2:DescribeImages",
 "ec2:DescribeInstanceAttribute",
 "ec2:DescribeInstances",
 "ec2:DescribeInstanceStatus",
 "ec2:DescribeInternetGateways",
 "ec2:DescribeKeyPairs",
 "ec2:DescribeLicenses",
 "ec2:DescribeNetworkAcls",
 "ec2:DescribeNetworkInterfaceAttribute",
 "ec2:DescribeNetworkInterfaces",
 "ec2:DescribePlacementGroups",
 "ec2:DescribeRegions",
 "ec2:DescribeReservedInstances",
 "ec2:DescribeReservedInstancesOfferings",
 "ec2:DescribeRouteTables",
 "ec2:DescribeSecurityGroups",
 "ec2:DescribeSnapshotAttribute",
 "ec2:DescribeSnapshots",
 "ec2:DescribeSpotDatafeedSubscription",

CHAPTER 11 ■ IDENTITY AND ACCESS MANAGEMENT

207

 "ec2:DescribeSpotInstanceRequests",
 "ec2:DescribeSpotPriceHistory",
 "ec2:DescribeSubnets",
 "ec2:DescribeTags",
 "ec2:DescribeVolumeAttribute",
 "ec2:DescribeVolumes",
 "ec2:DescribeVolumeStatus",
 "ec2:DescribeVpcs",
 "ec2:DescribeVpnConnections",
 "ec2:DescribeVpnGateways",
 "ec2:DetachVolume",
 "ec2:EnableVolumeIO",
 "ec2:GetConsoleOutput",
 "ec2:GetPasswordData",
 "ec2:ImportKeyPair",
 "ec2:ModifyInstanceAttribute",
 "ec2:ModifySnapshotAttribute",
 "ec2:ModifyVolumeAttribute",
 "ec2:MonitorInstances",
 "ec2:RebootInstances",
 "ec2:ReportInstanceStatus",
 "ec2:ResetInstanceAttribute",
 "ec2:ResetSnapshotAttribute",
 "ec2:RunInstances",
 "ec2:StartInstances",
 "ec2:StopInstances",
 "ec2:TerminateInstances",
 "ec2:UnmonitorInstances",
 "elasticloadbalancing:RegisterInstancesWithLoadBalancer"
],
 "Resource": "*"
 }
]
}
"@
New-IAMGroup -GroupName "DEVELOPERS"
Write-IAMGroupPolicy -GroupName "DEVELOPERS" -PolicyName "DEVELOPERS-ManageInstances"
 -PolicyDocument $Policy

Fourth, the network administrators need full control over the VPC features. They also create and configure load

balancers and manage security groups. On the other hand, network administrators do not need to create and

destroy instances. Let’s create a group for the network administrators.

$Policy = @"
{
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "directconnect:*",
 "ec2:AllocateAddress",

CHAPTER 11 ■ IDENTITY AND ACCESS MANAGEMENT

208

 "ec2:AssociateAddress",
 "ec2:AssociateDhcpOptions",
 "ec2:AssociateRouteTable",
 "ec2:AttachInternetGateway",
 "ec2:AttachNetworkInterface",
 "ec2:AttachVpnGateway",
 "ec2:AuthorizeSecurityGroupEgress",
 "ec2:AuthorizeSecurityGroupIngress",
 "ec2:CreateCustomerGateway",
 "ec2:CreateDhcpOptions",
 "ec2:CreateInternetGateway",
 "ec2:CreateNetworkAcl",
 "ec2:CreateNetworkAclEntry",
 "ec2:CreateNetworkInterface",
 "ec2:CreateRoute",
 "ec2:CreateRouteTable",
 "ec2:CreateSecurityGroup",
 "ec2:CreateSubnet",
 "ec2:CreateTags",
 "ec2:CreateVpc",
 "ec2:CreateVpnConnection",
 "ec2:CreateVpnGateway",
 "ec2:DeleteCustomerGateway",
 "ec2:DeleteDhcpOptions",
 "ec2:DeleteInternetGateway",
 "ec2:DeleteNetworkAcl",
 "ec2:DeleteNetworkAclEntry",
 "ec2:DeleteNetworkInterface",
 "ec2:DeleteRoute",
 "ec2:DeleteRouteTable",
 "ec2:DeleteSecurityGroup",
 "ec2:DeleteSubnet",
 "ec2:DeleteTags",
 "ec2:DeleteVpc",
 "ec2:DeleteVpnConnection",
 "ec2:DeleteVpnGateway",
 "ec2:DescribeAddresses",
 "ec2:DescribeAvailabilityZones",
 "ec2:DescribeBundleTasks",
 "ec2:DescribeConversionTasks",
 "ec2:DescribeCustomerGateways",
 "ec2:DescribeDhcpOptions",
 "ec2:DescribeExportTasks",
 "ec2:DescribeImageAttribute",
 "ec2:DescribeImages",
 "ec2:DescribeInstanceAttribute",
 "ec2:DescribeInstances",
 "ec2:DescribeInstanceStatus",
 "ec2:DescribeInternetGateways",
 "ec2:DescribeKeyPairs",
 "ec2:DescribeLicenses",

CHAPTER 11 ■ IDENTITY AND ACCESS MANAGEMENT

209

 "ec2:DescribeNetworkAcls",
 "ec2:DescribeNetworkInterfaceAttribute",
 "ec2:DescribeNetworkInterfaces",
 "ec2:DescribePlacementGroups",
 "ec2:DescribeRegions",
 "ec2:DescribeReservedInstances",
 "ec2:DescribeReservedInstancesOfferings",
 "ec2:DescribeRouteTables",
 "ec2:DescribeSecurityGroups",
 "ec2:DescribeSnapshotAttribute",
 "ec2:DescribeSnapshots",
 "ec2:DescribeSpotDatafeedSubscription",
 "ec2:DescribeSpotInstanceRequests",
 "ec2:DescribeSpotPriceHistory",
 "ec2:DescribeSubnets",
 "ec2:DescribeTags",
 "ec2:DescribeVolumeAttribute",
 "ec2:DescribeVolumes",
 "ec2:DescribeVolumeStatus",
 "ec2:DescribeVpcs",
 "ec2:DescribeVpnConnections",
 "ec2:DescribeVpnGateways",
 "ec2:DetachInternetGateway",
 "ec2:DetachNetworkInterface",
 "ec2:DetachVpnGateway",
 "ec2:DisassociateAddress",
 "ec2:DisassociateRouteTable",
 "ec2:GetConsoleOutput",
 "ec2:GetPasswordData",
 "ec2:ModifyNetworkInterfaceAttribute",
 "ec2:MonitorInstances",
 "ec2:ReleaseAddress",
 "ec2:ReplaceNetworkAclAssociation",
 "ec2:ReplaceNetworkAclEntry",
 "ec2:ReplaceRoute",
 "ec2:ReplaceRouteTableAssociation",
 "ec2:ResetNetworkInterfaceAttribute",
 "ec2:RevokeSecurityGroupEgress",
 "ec2:RevokeSecurityGroupIngress",
 "ec2:UnmonitorInstances",
 "elasticloadbalancing:ConfigureHealthCheck",
 "elasticloadbalancing:CreateAppCookieStickinessPolicy",
 "elasticloadbalancing:CreateLBCookieStickinessPolicy",
 "elasticloadbalancing:CreateLoadBalancer",
 "elasticloadbalancing:CreateLoadBalancerListeners",
 "elasticloadbalancing:DeleteLoadBalancer",
 "elasticloadbalancing:DeleteLoadBalancerListeners",
 "elasticloadbalancing:DeleteLoadBalancerPolicy",
 "elasticloadbalancing:DeregisterInstancesFromLoadBalancer",
 "elasticloadbalancing:DescribeInstanceHealth",
 "elasticloadbalancing:DescribeLoadBalancers",

CHAPTER 11 ■ IDENTITY AND ACCESS MANAGEMENT

210

 "elasticloadbalancing:DisableAvailabilityZonesForLoadBalancer",
 "elasticloadbalancing:EnableAvailabilityZonesForLoadBalancer",
 "elasticloadbalancing:RegisterInstancesWithLoadBalancer",
 "elasticloadbalancing:SetLoadBalancerListenerSSLCertificate",
 "elasticloadbalancing:SetLoadBalancerPoliciesOfListener"
],
 "Resource": "*"
 }
]
}
"@
New-IAMGroup -GroupName "NETWORK_ADMINS"
Write-IAMGroupPolicy -GroupName "NETWORK_ADMINS" -PolicyName
 "NETWORK_ADMINS-ManageNetwork" -PolicyDocument $Policy

Fifth, system administrators need full control over the instances. They need all the access a developer has so

they can support the developers. In addition they need to be able to create new Amazon Machine Images (AMIs).

They do not need access to the networking features that are being supported by the network administrators. Let’s

create a group for the system administrators.

$Policy = @"
{
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "ec2:AttachVolume",
 "ec2:CancelConversionTask",
 "ec2:CancelExportTask",
 "ec2:CancelSpotInstanceRequests",
 "ec2:CopySnapshot",
 "ec2:CreateImage",
 "ec2:CreateInstanceExportTask",
 "ec2:CreateKeyPair",
 "ec2:CreatePlacementGroup",
 "ec2:CreateSnapshot",
 "ec2:CreateSpotDatafeedSubscription",
 "ec2:CreateTags",
 "ec2:CreateVolume",
 "ec2:DeleteKeyPair",
 "ec2:DeletePlacementGroup",
 "ec2:DeleteSnapshot",
 "ec2:DeleteSpotDatafeedSubscription",
 "ec2:DeleteTags",
 "ec2:DeleteVolume",
 "ec2:DeregisterImage",
 "ec2:DescribeAddresses",
 "ec2:DescribeAvailabilityZones",
 "ec2:DescribeBundleTasks",
 "ec2:DescribeConversionTasks",
 "ec2:DescribeCustomerGateways",

CHAPTER 11 ■ IDENTITY AND ACCESS MANAGEMENT

211

 "ec2:DescribeDhcpOptions",
 "ec2:DescribeExportTasks",
 "ec2:DescribeImageAttribute",
 "ec2:DescribeImages",
 "ec2:DescribeInstanceAttribute",
 "ec2:DescribeInstances",
 "ec2:DescribeInstanceStatus",
 "ec2:DescribeInternetGateways",
 "ec2:DescribeKeyPairs",
 "ec2:DescribeLicenses",
 "ec2:DescribeNetworkAcls",
 "ec2:DescribeNetworkInterfaceAttribute",
 "ec2:DescribeNetworkInterfaces",
 "ec2:DescribePlacementGroups",
 "ec2:DescribeRegions",
 "ec2:DescribeReservedInstances",
 "ec2:DescribeReservedInstancesOfferings",
 "ec2:DescribeRouteTables",
 "ec2:DescribeSecurityGroups",
 "ec2:DescribeSnapshotAttribute",
 "ec2:DescribeSnapshots",
 "ec2:DescribeSpotDatafeedSubscription",
 "ec2:DescribeSpotInstanceRequests",
 "ec2:DescribeSpotPriceHistory",
 "ec2:DescribeSubnets",
 "ec2:DescribeTags",
 "ec2:DescribeVolumeAttribute",
 "ec2:DescribeVolumes",
 "ec2:DescribeVolumeStatus",
 "ec2:DescribeVpcs",
 "ec2:DescribeVpnConnections",
 "ec2:DescribeVpnGateways",
 "ec2:DetachVolume",
 "ec2:EnableVolumeIO",
 "ec2:GetConsoleOutput",
 "ec2:GetPasswordData",
 "ec2:ImportInstance",
 "ec2:ImportKeyPair",
 "ec2:ImportVolume",
 "ec2:ModifyImageAttribute",
 "ec2:ModifyInstanceAttribute",
 "ec2:ModifySnapshotAttribute",
 "ec2:ModifyVolumeAttribute",
 "ec2:MonitorInstances",
 "ec2:PurchaseReservedInstancesOffering",
 "ec2:RebootInstances",
 "ec2:RegisterImage",
 "ec2:ReportInstanceStatus",
 "ec2:RequestSpotInstances",
 "ec2:ResetImageAttribute",
 "ec2:ResetInstanceAttribute",

CHAPTER 11 ■ IDENTITY AND ACCESS MANAGEMENT

212

 "ec2:ResetSnapshotAttribute",
 "ec2:RunInstances",
 "ec2:StartInstances",
 "ec2:StopInstances",
 "ec2:TerminateInstances",
 "ec2:UnmonitorInstances"
],
 "Resource": "*"
 }
]
}
"@
New-IAMGroup -GroupName "SYS_ADMINS"
Write-IAMGroupPolicy -GroupName "SYS_ADMINS" -PolicyName "SYS_ADMINS-ManageImages"
 -PolicyDocument $Policy

In this exercise we created a group for each of the teams that uses AWS at our fictitious company. Obviously you

will need to tweak these groups to fit your company’s needs, but I hope this will create a good framework to get

you started. In the next exercise, we will grant access to billing and support to IAM users.

EXERCISE 11.2: DELEGATING ACCOUNT ACCESS TO IAM USERS

Back in Chapter 2 we discussed the difference between AWS account credentials and IAM users. Remember that

the AWS account is the e-mail address you used to create your account. You almost never use this account, but

there are a few times you need it. Two of these reasons are accessing your bill and getting support.

By default, you must log in using your AWS account credentials to see your bill or access support, but you can

also grant access to IAM users. And, as you might expect, you can control exactly which users can access the

billing and support features. Note that you have to pay extra for support.

You cannot enable IAM access to billing using PowerShell. You must sign into the AWS Management Console

using your account credentials to enable it. The following steps show you how:

1. Sign into the Console using the e-mail address and password you used to create your

account.

2. Click on your name on the menu bar at the top right of the screen.

3. Click My Account from the drop-down menu.

4. Scroll down until you see the section shown in Figure 11-1.

5. Select both the Account Activity Page check box and the Usage Reports Page check box. Click

the Activate Now button.

CHAPTER 11 ■ IDENTITY AND ACCESS MANAGEMENT

213

Next we have to create an IAM policy granting access to IAM users. Interestingly, you cannot configure billing and

support from the IAM wizard. You must create the policy manually. Luckily we know exactly how to do that. Let’s

create two groups: one for billing and one for support.

To create a group for billing you allow access to ViewBilling and ViewUsage. Billing is the summary information

and usage is the raw detail. Just like the last exercise, we will associate this policy with a new group called

BILLING.

$Policy = @"
{
 "Statement": [
 {
 "Action": [
 "aws-portal:ViewBilling",
 "aws-portal:ViewUsage"
],
 "Effect": "Allow",
 "Resource": "*"
 }
]
}
"@

New-IAMGroup -GroupName "BILLING"
Write-IAMGroupPolicy -GroupName "BILLING"
 -PolicyName "BILLING-BillingAndUsage" -PolicyDocument $Policy

To create a group for support we will create a policy that allows access to support:* and associate it with a

new group called SUPPORT.

$Policy = @"
{
 "Statement": [
 {
 "Action": "support:*",

Figure 11-1. IAM access to the AWS website

CHAPTER 11 ■ IDENTITY AND ACCESS MANAGEMENT

214

 "Effect": "Allow",
 "Resource": "*"
 }
]
}
"@

New-IAMGroup -GroupName "SUPPORT"
Write-IAMGroupPolicy -GroupName "SUPPORT"
 -PolicyName "SUPPORT-FullAccess" -PolicyDocument $Policy

Now, whenever you want to grant a user access to billing or support, you simply add the user to the appropriate

group.

Summary
In this chapter we saw how IAM provides unprecedented control over access. We learned to create users and manage
their passwords and access keys. Then, we learned to create groups and manage membership. We also learned to
create roles for EC2 instances.

Next we learned to create policies and saw that IAM offers the granularity to enable least privileged access control
over all of the AWS services. In the exercises we created a collection of groups for common IT roles and enabled access
to billing and support. This is a great start for creating an enterprise access policy.

This is it! You have reached the end of the book. The remainder of this book is appendix materials. One of the
appendices in particular, Appendix D, is useful for creating IAM policies. Appendix D lists the corresponding web
service method for each PowerShell command. You can use this table to look up the name of the actions to include in
your IAM policy for a specific PowerShell command.

215

APPENDIX A

Glossary of Terms

This appendix is a glossary of common terms. I have included many terms I used in the book and a description of all
the AWS services, including many that were not discussed in the book.

Note ■ This appendix has been adapted from documentation available on the AWS web site as of October 31, 2013.

For the most current version of the AWS documentation, please visit http://aws.amazon.com/documentation/.

Access Control List (ACL): A document that defines who can access a particular object. Each object in Amazon
Web Services has an ACL. The ACL defines what each type of user can do, such as write and read permissions.

Access Key: A string that AWS distributes to uniquely identify each AWS user; it is an alphanumeric token
associated with your secret access key.

Amazon Machine Image (AMI): An encrypted machine image stored in Amazon Elastic Block Store or Amazon
Simple Storage Service. AMIs are like a template of a computer’s root drive. They contain the operating system and can
also include software and layers of your application, such as database servers, middleware, web servers, and so on.

Amazon Web Services (AWS): An infrastructure web services platform in the cloud for companies of all sizes.
Auto Scaling: A web service designed to launch or terminate instances automatically based on user-defined

policies, schedules, and health checks.
Availability Zone (AZ): A distinct location within a region that is insulated from failures in other Availability

Zones, and provides inexpensive, low-latency network connectivity to other Availability Zones in the same region.
AWS Management Console: A graphical interface to manage compute, storage, and other cloud resources.
Bucket: A container for objects stored in Amazon S3. Every object is contained in a bucket. For example, if the

object named photos/puppy.jpg is stored in the johnsmith bucket, then authorized users can access the object with
the URL http://johnsmith.s3.amazonaws.com/photos/puppy.jpg.

Classless Inter-Domain Routing (CIDR): An Internet protocol address allocation and route aggregation
methodology. See also http://en.wikipedia.org/wiki/CIDR_notation.

CloudFormation: A service for writing or changing templates that create and delete related AWS resources
together as a unit.

CloudFront: An AWS content delivery service that helps you improve the performance, reliability, and
availability of your web sites and applications.

CloudWatch: A web service that enables you to monitor and manage various metrics, and configure alarm actions
based on data from those metrics. The state change may be triggered by a metric reaching the alarm threshold, or by
a SetAlarmState request. Each alarm can have one or more actions assigned to each state. Actions are performed once
each time the alarm changes to a state that has an action assigned, such as an Amazon Simple Notification Service
notification, an Auto Scaling policy execution, or an Amazon EC2 instance stop/terminate action.

Customer Gateway: A router or software application on your side of a VPN tunnel that is managed by Amazon VPC.
The internal interfaces of the customer gateway are attached to one or more devices in your home network. The external
interface is attached to the VPG across the VPN tunnel.

http://aws.amazon.com/documentation/
http://johnsmith.s3.amazonaws.com/photos/puppy.jpg
http://en.wikipedia.org/wiki/CIDR_notation

APPENDIX A ■ GLOSSARY OF TERMS

216

Dedicated Instance: An instance that is physically isolated at the host hardware level and launched within a VPC.
DevPay: An easy-to-use online billing and account management service that makes it easy for you to sell an

Amazon EC2 AMI or an application built on Amazon S3.
Domain Name System (DNS): A distributed naming system that associates network information with

human-readable domain names on the Internet.
EC2 Compute Unit: An AWS standard for compute CPU and memory. This measure enables you to evaluate the

CPU capacity of different EC2 instance types.
Elastic Block Store: A service that provides block level storage volumes for use with EC2 instances.
Elastic Compute Cloud (EC2): A web service that enables you to launch and manage Linux/UNIX and Windows

server instances in Amazon’s data centers.
Elastic IP Address (EIP): A fixed (static) IP address that you have allocated in Amazon EC2 or Amazon VPC and

then attached to an instance. Elastic IP addresses are associated with your account, not a specific instance. They are
elastic because you can easily allocate, attach, detach, and free them as your needs change. Unlike traditional static
IP addresses, elastic IP addresses allow you to mask instance or Availability Zone failures by rapidly remapping your
public IP addresses to another instance.

Elastic Load Balancing (ELB): A web service that improves an application’s availability by distributing incoming
traffic between two or more EC2 instances.

Elastic MapReduce: A web service that makes it easy to process large amounts of data efficiently. Amazon EMR
uses Hadoop processing combined with several AWS products to do such tasks as web indexing, data mining, log file
analysis, machine learning, scientific simulation, and data warehousing.

Elastic Network Interface (ENI): An additional network interface that can be attached to an instance. ENIs include
a primary private IP address, one or more secondary private IP addresses, an elastic IP address (optional), a MAC
address, membership in specified security groups, a description, and a source/destination check flag. You can create
an ENI, attach it to an instance, detach it from an instance, and attach it to another instance.

HMAC: Hash-based Message Authentication Code. A specific construction for calculating a message
authentication code (MAC) involving a cryptographic hash function in combination with a secret key. You can use it
to verify both the data integrity and the authenticity of a message at the same time. AWS calculates the HMAC using a
standard, cryptographic hash algorithm, such as SHA-256.

Identity and Access Management (IAM): A web service that enables Amazon Web Services customers to
manage users and user permissions within AWS.

Instance: A copy of an Amazon Machine Image running as a virtual server in the AWS cloud.
Internet Gateway: Connects a network to the Internet. You can route traffic for IP addresses outside your VPC to

the Internet gateway.
JavaScript Object Notation (JSON): A lightweight data-interchange format. For information about JSON,

see http://www.json.org/.
Key: In Amazon S3, the unique identifier for an object in a bucket. Every object in a bucket has exactly one key.

You can uniquely address every object in Amazon S3 through the combination of the web service endpoint, bucket name,
and key, for example: http://doc.s3.amazonaws.com/2006-03-01/AmazonS3.wsdl, where doc is the name of the bucket,
and 2006-03-01/AmazonS3.wsdl is the key.

Main Route Table: The default route table that any new VPC subnet uses for routing. You can associate a subnet
with a different route table of your choice. You can also change which route table is the main route table.

Multi-Factor Authentication (MFA): An optional AWS account security feature. Once you enable AWS MFA,
you must provide a six-digit, single-use code in addition to your sign-in credentials whenever you access secure AWS
web site pages or the AWS Management Console. You get this single-use code from an authentication device that you
keep in your physical possession.

NAT Instance: An instance that is configured to perform NAT in a VPC. A NAT instance enables private instances
in the VPC to initiate Internet-bound traffic without being directly reachable from the Internet.

Network ACL: An optional layer of security that acts as a firewall for controlling traffic in and out of a subnet.
You can associate multiple subnets with a single network ACL, but a subnet can be associated with only one network
ACL at a time.

On-Demand Instance: An Amazon EC2 pricing option that charges you for compute capacity by the hour with
no long-term commitment.

http://www.json.org/
http://doc.s3.amazonaws.com/2006-03-01/AmazonS3.wsdl

APPENDIX A ■ GLOSSARY OF TERMS

217

Pre-signed URL: A URL that uses query string authentication.
Private IP Address: All EC2 instances are assigned two IP addresses at launch, which are directly mapped to

each other through Network Address Translation (NAT): a private address (following RFC 1918) and a public address.
Exception: instances launched in Amazon VPC are assigned only a private IP address.

Private Subnet: A VPC subnet whose instances cannot be reached from the Internet.
Provisioned IOPS: A storage option designed to deliver fast, predictable, and consistent I/O performance.

When you specify an IOPS rate while creating a DB Instance, Amazon RDS provisions that IOPS rate for the lifetime of
the DB Instance.

Public AMI: An Amazon Machine Image that all AWS accounts have permission to launch.
Public Subnet: A subnet whose instances can be reached from the Internet.
Read Replica: An active copy of another RDS instance. Any updates to the data on the source DB instance are

replicated to the read replica DB instance.
Region: A named set of AWS resources in the same geographical area. A region comprises at least two

Availability Zones.
Relational Database Service (RDS): A web service that makes it easier to set up, operate, and scale a relational

database in the cloud. It provides cost-efficient, resizable capacity for an industry-standard relational database and
manages common database administration tasks.

REST: A type of HTTP-based request interface that generally uses only the GET or POST HTTP method and a
query string with parameters. In some implementations of a REST interface, other HTTP verbs besides GET and POST
are used.

Route 53: A web service you can use to create a new DNS service or to migrate your existing DNS service to the cloud.
Route Table: A set of routing rules that controls the traffic leaving any subnet that is associated with the route

table. You can associate multiple subnets with a single route table, but a subnet can be associated with only one route
table at a time.

Secret Access Key: A key that Amazon Web Services assigns to you when you sign up for an AWS account.
Sometimes called simply a “secret key.”

Security Group: A named set of allowed inbound network connections for an instance. (Security groups in
Amazon VPC also include support for outbound connections.) Each security group consists of a list of protocols,
ports, and IP address ranges. A security group can apply to multiple instances, and multiple groups can regulate a
single instance.

Simple Email Service (SES): An easy-to-use, cost-effective email solution for applications.
Simple Notification Service (SNS): A web service that enables applications, end users, and devices to instantly

send and receive notifications from the cloud.
Simple Queue Service (SQS): Reliable and scalable hosted queues for storing messages as they travel between

computers.
Simple Storage Service (S3): Storage for the Internet. You can use it to store and retrieve any amount of data at

any time, from anywhere on the Web.
Snapshot: Amazon Elastic Block Store creates snapshots or backups of your volumes and stores them in Amazon S3.

You can use these snapshots as the starting point for new Amazon EBS volumes or to protect your data for long-term
durability.

Source/Destination Check: A security measure to verify that an EC2 instance is the origin of all traffic that it sends
and the ultimate destination of all traffic that it receives, that is, that the instance is not relaying traffic. Source/destination
checking is enabled by default. For instances that function as gateways, such as VPC NAT instances, source/destination
checking must be disabled.

Spot Instance: A type of EC2 instance that you can bid on to take advantage of unused Amazon EC2 capacity.
If your maximum price exceeds the current price and your restrictions are met, Amazon EC2 launches instances on
your behalf.

Subnet: A segment of the IP address range of a VPC that EC2 instances can be attached to. You can create subnets
to group instances according to security and operational needs.

Tag: Metadata (consisting of up to 10 key/value pairs) that you can define and assign to Amazon EC2 resources.

APPENDIX A ■ GLOSSARY OF TERMS

218

Virtual Private Cloud (VPC): A web service that enables you to create a virtual network for your AWS resources.
An elastic network populated by infrastructure, platform, and application services that share common security and
interconnection.

Virtual Private Gateway (VPG): The Amazon side of a VPN connection that maintains connectivity. The internal
interfaces of the virtual private gateway connect to your VPC via the VPN attachment and the external interfaces
connect to the VPN connection, which leads to the customer gateway.

VPN Connection: Although VPN connection is a general term, we specifically mean the IPsec connection
between a VPC and some other network, such as a corporate data center, home network, or co-location facility.

219

APPENDIX B

Metadata URL Structure

This appendix includes a list of metadata URL paths to access common information about an instance. We discussed
the metadata URL in Chapter 3.

Note ■ This appendix has been adapted from documentation available on the AWS web site as of October 31, 2013.

For the most current version of the AWS documentation, please visit http://aws.amazon.com/documentation/.

Path Description

ami-id The AMI ID used to launch the instance.

ami-launch-index If you started more than one instance at the same time,
this value indicates the order in which the instance was
launched. The value of the first instance launched is 0.

ami-manifest-path The path to the AMI’s manifest file in Amazon S3. If you
used an EBS-backed AMI to launch the instance, the
returned result is unknown.

ancestor-ami-ids The AMI IDs of any instances that were rebundled to create
this AMI. This value will exist only if the AMI manifest file
contained an ancestor-amis key.

block-device-mapping/ami The virtual device that contains the root/boot file system.

block-device-mapping/ebsN The virtual devices associated with Amazon EBS volumes,
if any are present. This value is available in metadata only if
it is present at launch time. The N indicates the index of the
Amazon EBS volume (such as ebs1 or ebs2).

block-device-mapping/ephemeralN The virtual devices associated with ephemeral devices,
if any are present. The N indicates the index of the
ephemeral volume.

block-device-mapping/root The virtual devices or partitions associated with the root
devices, or partitions on the virtual device, where the root
(/ or C:) file system is associated with the given instance.

block-device-mapping/swap The virtual devices associated with swap. Not always present.

(continued)

http://aws.amazon.com/documentation/

APPENDIX B ■ METADATA URL STRUCTURE

220

Path Description

hostname The private hostname of the instance. In cases where
multiple network interfaces are present, this refers to the
eth0 device (the device for which the device number is 0).

iam/info Returns information about the last time the instance profile
was updated, including the instance’s LastUpdated date,
InstanceProfileArn, and InstanceProfileId.

iam/security-credentials/role-name Where role-name is the name of the IAM role associated
with the instance. Returns the temporary security
credentials (AccessKeyId, SecretAccessKey, SessionToken,
and Expiration) associated with the IAM role.

instance-action Notifies the instance that it should reboot in preparation for
bundling. Valid values: none | shutdown | bundle-pending.

instance-id The ID of this instance.

instance-type The type of instance.

kernel-id The ID of the kernel launched with this instance, if applicable.

local-hostname The private DNS hostname of the instance. In cases where
multiple network interfaces are present, this refers to the
eth0 device (the device for which the device number is 0).

local-ipv4 The private IP address of the instance. In cases where
multiple network interfaces are present, this refers to the
eth0 device (the device for which the device number is 0).

mac The instance’s media access control (MAC) address. In cases
where multiple network interfaces are present, this refers to
the eth0 device (the device for which the device number is 0).

network/interfaces/macs/mac/device-number The device number associated with that interface. Each
interface must have a unique device number. The device
number serves as a hint to device naming in the instance:
for example, device-number is 2 for the eth2 device.

network/interfaces/macs/mac/
ipv4-associations/public-ip

The private IPv4 addresses that are associated with each
public IP address and assigned to that interface.

network/interfaces/macs/mac/local-hostname The interface’s local hostname.

network/interfaces/macs/mac/local-ipv4s The private IP addresses associated with the interface.

network/interfaces/macs/mac/mac The instance’s media access control (MAC) address.

network/interfaces/macs/mac/owner-id The ID of the owner of the network interface. In
multiple-interface environments, an interface can be attached
by a third party, such as Elastic Load Balancing. Traffic on
an interface is always billed to the interface owner.

network/interfaces/macs/mac/public-hostname The interface’s public DNS. If the instance is in a VPC,
this category is returned only if the enableDnsHostnames
attribute is set to true.

(continued)

APPENDIX B ■ METADATA URL STRUCTURE

221

Path Description

network/interfaces/macs/mac/public-ipv4s The elastic IP addresses associated with the interface.
There may be multiple IP addresses on an instance.

network/interfaces/macs/mac/security-groups Security groups to which the network interface belongs.
Returned only for EC2 instances launched into a VPC.

network/interfaces/macs/mac/security-group-ids IDs of the security groups to which the network interface
belongs. Returned only for EC2 instances launched into a VPC.

network/interfaces/macs/mac/subnet-id The ID of the subnet in which the interface resides.
Returned only for EC2 instances launched into a VPC.

network/interfaces/macs/mac/
subnet-ipv4-cidr-block

The CIDR block of the subnet in which the interface resides.
Returned only for EC2 instances launched into a VPC.

network/interfaces/macs/mac/vpc-id The ID of the VPC in which the interface resides. Returned
only for EC2 instances launched into a VPC.

network/interfaces/macs/mac/
vpc-ipv4-cidr-block

The CIDR block of the VPC in which the interface resides.
Returned only for EC2 instances launched into a VPC.

placement/availability-zone The availability zone in which the instance launched.

product-codes Product codes associated with the instance, if any.

public-hostname The instance’s public DNS. If the instance is in a VPC,
this category is returned only if the enableDnsHostnames
attribute is set to true.

public-ipv4 The public IP address. If an elastic IP address is associated
with the instance, the value returned is the elastic IP address.

public-keys/0/openssh-key Public key. Only available if supplied at instance launch time.

ramdisk-id The ID of the RAM disk specified at launch time,
if applicable.

reservation-id ID of the reservation.

security-groups The names of the security groups applied to the instance.

223

APPENDIX C

List of Filters by EC2 Command

This appendix includes a list of filters for the EC2 “Get” commands. These are not included in the PowerShell help
files but are really useful.

Note ■ This appendix has been adapted from documentation available on the AWS web site as of October 31, 2013.

For the most current version of the AWS documentation, please visit http://aws.amazon.com/documentation/.

Get-EC2Address

Filter Description Type

domain Indicates whether the address is for use in a VPC. Valid values:
standard | vpc.

String

instance-id The instance the address is associated with (if any). String

public-ip The elastic IP address. String

allocation-id The allocation ID for the address (VPC only). String

association-id The association ID for the address (VPC only). String

network-interface-id The network interface (if any) that the address is associated with
(VPC only).

String

network-interface-owner-id The owner ID. String

private-ip-address The private IP address associated with the Elastic IP address (VPC only). String

Get-EC2AvailabilityZone

Filter Description Type

message Information about the availability zone. String

region-name The region for the availability zone (for example, us-east-1). String

state The state of the availability zone. Valid values: available | impaired | unavailable. String

zone-name The name of the zone. String

http://aws.amazon.com/documentation/

APPENDIX C ■ LIST OF FILTERS BY EC2 COMMAND

224

Get-EC2BundleTask

Filter Description Type

bundle-id The ID of the bundle task. String

error-code If the task failed, the error code returned. String

error-message If the task failed, the error message returned. String

instance-id The ID of the instance that was bundled. String

progress The level of task completion, as a percentage (for example, 20%). String

s3-bucket The Amazon S3 bucket to store the AMI. String

s3-prefix The beginning of the AMI name. String

start-time The time the task started (for example, 2008-09-15T17:15:20.000Z). DateTime

state The state of the task. Valid values: pending | waiting-for-shutdown |
bundling | storing | cancelling | complete | failed.

String

update-time The time of the most recent update for the task (for example,
2008-09-15T17:15:20.000Z).

DateTime

Get-EC2CustomerGateway

Filter Description Type

bgp-asn The customer gateway’s Border Gateway Protocol (BGP)
Autonomous System Number (ASN).

String

customer-gateway-id The ID of the customer gateway. String

ip-address The IP address of the customer gateway’s Internet-routable external
interface (for example, 12.1.2.3).

String

state The state of the customer gateway. Valid values: pending | available |
deleting | deleted.

String

type The type of customer gateway. Currently, the only supported
type is ipsec.1.

String

tag-key The key of a tag assigned to the resource. This filter is independent
of the tag-value filter. For example, if you use both the filter
“tag-key=Purpose” and the filter “tag-value=X”, you get any resources
assigned both the tag key Purpose (regardless of what the tag’s value is),
and the tag value X (regardless of what the tag’s key is). If you want to list
only resources where Purpose is X, see the tag:key filter.

String

tag-value The value of a tag assigned to the resource. This filter is independent of
the tag-key filter.

String

tag:key Filters the response based on a specific tag/value combination. String

APPENDIX C ■ LIST OF FILTERS BY EC2 COMMAND

225

Get-EC2DhcpOption

Filter Description Type

dhcp-options-id The ID of a set of DHCP options. String

key The key for one of the options (for example, domain-name). String

value The value for one of the options. String

tag-key The key of a tag assigned to the resource. This filter is independent of the
tag-value filter. For example, if you use both the filter “tag-key=Purpose” and
the filter “tag-value=X”, you get any resources assigned both the tag key
Purpose (regardless of what the tag’s value is), and the tag value X
(regardless of what the tag’s key is). If you want to list only resources
where Purpose is X, see the tag:key filter.

String

tag-value The value of a tag assigned to the resource. This filter is independent of the
tag-key filter.

String

tag:key Filters the response based on a specific tag/value combination. String

Get-EC2Image

Filter Description Type

architecture The image architecture. Valid values: i386 | x86_64. String

block-device-mapping.
delete-on-termination

Whether the Amazon EBS volume is deleted on instance termination. Boolean

block-device-mapping.
device-name

The device name (for example, /dev/sdh) for the Amazon
EBS volume.

String

block-device-mapping.
snapshot-id

The ID of the snapshot used for the Amazon EBS volume. String

block-device-mapping.
volume-size

The volume size of the Amazon EBS volume, in GiB. Integer

block-device-mapping.
volume-type

The volume type of the Amazon EBS volume. Valid values: standard | io1. String

description The description of the image (provided during image creation). String

image-id The ID of the image. String

image-type The image type. Valid values: machine | kernel | ramdisk. String

is-public Whether the image is public. Boolean

kernel-id The kernel ID. String

manifest-location The location of the image manifest. String

name The name of the AMI (provided during image creation). String

owner-alias The AWS account alias (for example, amazon). String

(continued)

APPENDIX C ■ LIST OF FILTERS BY EC2 COMMAND

226

Filter Description Type

owner-id The AWS account ID of the image owner. String

platform The platform. To only list Windows-based AMIs, use windows.
Valid value: windows.

String

product-code The product code. String

product-code.type The type of the product code. Valid values: devpay | marketplace. String

ramdisk-id The RAM disk ID. String

root-device-name The name of the root device volume (for example, /dev/sda1). String

root-device-type The type of the root device volume. Valid values:
ebs | instance-store.

String

state The state of the image. Valid values: available | pending | failed. String

state-reason-code The reason code for the state change. String

state-reason-message The message for the state change. String

tag-key The key of a tag assigned to the resource. This filter is independent of
the tag-value filter. For example, if you use both the filter
“tag-key=Purpose” and the filter “tag-value=X”, you get any resources
assigned both the tag key Purpose (regardless of what the tag’s value is),
and the tag value X (regardless of what the tag’s key is). If you want to list
only resources where Purpose is X, see the tag:key filter.

String

tag-value The value of a tag assigned to the resource. This filter is independent of
the tag-key filter.

String

tag:key Filters the response based on a specific tag/value combination. String

virtualization-type The virtualization type. Valid values: paravirtual | hvm. String

hypervisor The hypervisor type. Valid values: ovm | xen. String

Get-EC2Instance

Filter Description Type

architecture The instance architecture. Valid values: i386 | x86_64. String

availability-zone The availability zone of the instance. String

block-device-mapping.attach-time The attach time for an Amazon EBS volume mapped
to the instance (for example, 2010-09-15T17:15:20.000Z).

DateTime

block-device-mapping.delete-
on-termination

Indicates whether the Amazon EBS volume is deleted on
instance termination.

Boolean

block-device-mapping.device-name The device name (for example, /dev/sdh) for the Amazon
EBS volume.

String

(continued)

APPENDIX C ■ LIST OF FILTERS BY EC2 COMMAND

227

Filter Description Type

block-device-mapping.status The status for the Amazon EBS volume. Valid values:
attaching | attached | detaching | detached.

String

block-device-mapping.volume-id The volume ID of the Amazon EBS volume. String

client-token The idempotency token you provided when you
launched the instance.

String

dns-name The public DNS name of the instance. String

group-id The ID of the security group for the instance. If the
instance is in EC2-Classic or a default VPC, you can
use group-name instead.

String

group-name The name of the security group for the instance.
If the instance is in a nondefault VPC, you must use
group-id instead.

String

image-id The ID of the image used to launch the instance. String

instance-id The ID of the instance. String

instance-lifecycle Indicates whether this is a Spot Instance. Valid value: spot. String

instance-state-code The state of the instance. The high byte is an opaque
internal value and should be ignored. The low byte is set
based on the state represented. Valid values: 0 (pending) |
16 (running) | 32 (shutting-down) | 48 (terminated)
| 64 (stopping) | 80 (stopped).

Integer
(16-bit
unsigned
integer)

instance-state-name The state of the instance. Valid values: pending | running |
shutting-down | terminated | stopping | stopped.

String

instance-type The type of instance (for example, m1.small). String

instance.group-id The ID of the security group for the instance. If the
instance is in EC2-Classic or a default VPC, you can use
instance.group-name instead.

String

instance.group-name The name of the security group for the instance.
If the instance is in a nondefault VPC, you must use
instance.group-id instead.

String

ip-address The public IP address of the instance. String

kernel-id The kernel ID. String

key-name The name of the key pair used when the instance
was launched.

String

launch-index When launching multiple instances, this is the index
for the instance in the launch group (for example, 0, 1, 2,
and so on).

String

launch-time The time when the instance was launched (for example,
2010-08-07T11:54:42.000Z).

DateTime

(continued)

APPENDIX C ■ LIST OF FILTERS BY EC2 COMMAND

228

Filter Description Type

monitoring-state Indicates whether monitoring is enabled for the instance.
Valid values: disabled | enabled.

String

owner-id The AWS account ID of the instance owner. String

placement-group-name The name of the placement group for the instance. String

platform The platform. Use windows if you have Windows-based
instances; otherwise, leave blank. Valid value: windows.

String

private-dns-name The private DNS name of the instance. String

private-ip-address The private IP address of the instance. String

product-code The product code associated with the AMI used to
launch the instance.

String

product-code.type The type of product code. Valid values: devpay | marketplace. String

ramdisk-id The RAM disk ID. String

reason The reason for the current state of the instance (for example,
shows “User Initiated [date]” when you stop or terminate the
instance). Similar to the state-reason-code filter.

String

requester-id The ID of the entity that launched the instance on your
behalf (for example, AWS Management Console,
Auto Scaling, and so on)

String

reservation-id The ID of the instance’s reservation. A reservation ID is
created any time you launch an instance. A reservation ID
has a one-to-one relationship with an instance launch
request, but can be associated with more than one instance
if you launch multiple instances using the same launch
request. For example, if you launch one instance, you’ll
get one reservation ID. If you launch 10 instances using the
same launch request, you’ll also get one reservation ID.

String

root-device-name The name of the root device for the instance (for example,
/dev/sda1).

String

root-device-type The type of root device that the instance uses.
Valid values: ebs | instance-store.

String

source-dest-check Indicates whether the instance performs source/destination
checking. A value of true means that checking is enabled,
and false means checking is disabled. The value must
be false for the instance to perform network address
translation (NAT) in your VPC.

Boolean

spot-instance-request-id The ID of the Spot Instance request. String

state-reason-code The reason code for the state change. String

state-reason-message A message that describes the state change. String

subnet-id The ID of the subnet for the instance. String

(continued)

APPENDIX C ■ LIST OF FILTERS BY EC2 COMMAND

229

Filter Description Type

tag-key The key of a tag assigned to the resource. This filter is
independent of the tag-value filter. For example, if you use
both the filter “tag-key=Purpose” and the filter “tag-value=X”,
you get any resources assigned both the tag key Purpose
(regardless of what the tag’s value is), and the tag value X
(regardless of what the tag’s key is). If you want to list only
resources where Purpose is X, see the tag:key filter.

String

tag-value The value of a tag assigned to the resource. This filter is
independent of the tag-key filter.

String

tag:key Filters the response based on a specific tag/value
combination.

String

virtualization-type The virtualization type of the instance. Valid values:
paravirtual | hvm.

String

vpc-id The ID of the VPC that the instance is running in. String

hypervisor The hypervisor type of the instance. Valid values: ovm | xen. String

network-interface.description The description of the network interface. String

network-interface.subnet-id The ID of the subnet for the network interface. String

network-interface.vpc-id The ID of the VPC for the network interface. String

network-interface.network-
interface.id

The ID of the network interface. String

network-interface.owner-id The ID of the owner of the network interface. String

network-interface.availability-
zone

The availability zone for the network interface. String

network-interface.requester-id The requester ID for the network interface. String

network-interface.requester-
managed

Indicates whether the network interface is being managed
by AWS.

Boolean

network-interface.status The status of the network interface. Valid values: available |
in-use.

String

network-interface.mac-address The MAC address of the network interface. Valid values:
available | in-use.

String

network-interface-private-dns-
name

The private DNS name of the network interface. String

network-interface.source-
destination-check

Whether the network interface performs source/destination
checking. A value of true means checking is enabled, and
false means checking is disabled. The value must be false for
the network interface to perform network address translation
(NAT) in your VPC.

Boolean

network-interface.group-id The ID of a security group associated with the
network interface.

String

(continued)

APPENDIX C ■ LIST OF FILTERS BY EC2 COMMAND

230

Filter Description Type

network-interface.group-name The name of a security group associated with the network
interface.

String

network-interface.attachment.
attachment-id

The ID of the interface attachment. String

network-interface.attachment.
instance-id

The ID of the instance to which the network interface is
attached.

String

network-interface.attachment.
instance-owner-id

The owner ID of the instance to which the network
interface is attached.

String

network-interface.addresses.
private-ip-address

The private IP address associated with the network interface. String

network-interface.attachment.
device-index

The device index to which the network interface is attached. Integer

network-interface.
attachment.status

The status of the attachment. Valid values: attaching |
attached | detaching | detached.

String

network-interface.attachment.
attach-time

The time that the network interface was attached to
an instance.

Date

network-interface.attachment.
delete-on-termination

Specifies whether the attachment is deleted when an
instance is terminated.

Boolean

network-interface.
addresses.primary

Specifies whether the IP address of the network interface
is the primary private IP address.

Boolean

network-interface.addresses.
association.public-ip

The ID of the association of an Elastic IP address with a
network interface.

String

network-interface.addresses.
association.ip-owner-id

The owner ID of the private IP address associated with
the network interface.

String

association.public-ip The address of the Elastic IP address bound to the
network interface.

String

association.ip-owner-id The owner of the Elastic IP address associated with the
network interface.

String

association.allocation-id The allocation ID returned when you allocated the
Elastic IP address for your network interface.

String

association.association-id The association ID returned when the network interface
was associated with an IP address.

String

APPENDIX C ■ LIST OF FILTERS BY EC2 COMMAND

231

Get-EC2InstanceStatus

Filter Description Type

availability-zone The availability zone of the instance. String

event.code The code identifying the type of event. Valid values:
instance-reboot | system-reboot | system-maintenance |
instance-retirement | instance-stop.

String

event.description A description of the event. String

event.not-after The latest end time for the scheduled event. DateTime

event.not-before The earliest start time for the scheduled event. DateTime

instance-state-name The state of the instance. Valid values: pending |
running | shutting-down | terminated | stopping | stopped.

String

instance-state-code A code representing the state of the instance. The high
byte is an opaque internal value and should be ignored.
The low byte is set based on the state represented.
Valid values: 0 (pending) | 16 (running) | 32 (shutting-down) |
48 (terminated) | 64 (stopping) | 80 (stopped).

Integer
(16-bit
unsigned
integer)

system-status.status The system status of the instance. Valid values: ok | impaired |
initializing | insufficient-data | not-applicable.

String

system-status.reachability Filters on system status where the name is reachability.
Valid values: passed | failed | initializing |
insufficient-data.

String

instance-status.status The status of the instance. Valid values: ok | impaired |
initializing | insufficient-data | not-applicable.

String

instance-status.reachability Filters on instance status where the name is reachability.
Valid values: passed | failed | initializing |
insufficient-data.

String

Get-EC2InternetGateway

Filter Description Type

attachment.state The current state of the attachment between the gateway and the
VPC. Returned only if a VPC is attached. Valid value: available.

String

attachment.vpc-id The ID of an attached VPC. String

internet-gateway-id The ID of the Internet gateway. String

tag-key The key of a tag assigned to the resource. This filter is
independent of the tag-value filter. For example, if you use
both the filter “tag-key=Purpose” and the filter “tag-value=X”,
you get any resources assigned both the tag key Purpose
(regardless of what the tag’s value is), and the tag value X
(regardless of what the tag’s key is). If you want to list only
resources where Purpose is X, see the tag:key filter.

String

(continued)

APPENDIX C ■ LIST OF FILTERS BY EC2 COMMAND

232

Filter Description Type

tag-value The value of a tag assigned to the resource. This filter is
independent of the tag-key filter.

String

tag:key Filters the response based on a specific tag/value combination. String

Get-EC2KeyPair

Filter Description Type

fingerprint The fingerprint of the key pair. String

key-name The name of the key pair. String

Get-EC2NetworkAcl

Filter Description Type

association.association-id The ID of an association ID for the ACL. String

association.network-acl-id The ID of the network ACL involved in the association. String

association.subnet-id The ID of the subnet involved in the association. String

default Indicates whether the ACL is the default network ACL for the VPC. Boolean

entry.cidr The CIDR range specified in the entry. String

entry.egress Indicates whether the entry applies to egress traffic. Boolean

entry.icmp.code The ICMP code specified in the entry, if any. Integer

entry.icmp.type The ICMP type specified in the entry, if any. Integer

entry.port-range.from The start of the port range specified in the entry. Integer

entry.port-range.to The end of the port range specified in the entry. Integer

entry.protocol The protocol specified in the entry. Valid values: tcp | udp | icmp or
a protocol number.

String

entry.rule-action Allows or denies the matching traffic. Valid values: allow | deny. String

entry.rule-number The number of an entry (in other words, rule) in the ACL’s set
of entries.

Integer

network-acl-id The ID of the network ACL. String

tag-key The key of a tag assigned to the resource. This filter is
independent of the tag-value filter. For example, if you use
both the filter “tag-key=Purpose” and the filter “tag-value=X”,
you get any resources assigned both the tag key Purpose
(regardless of what the tag’s value is), and the tag value X
(regardless of what the tag’s key is). If you want to list only
resources where Purpose is X, see the tag:key filter.

String

(continued)

APPENDIX C ■ LIST OF FILTERS BY EC2 COMMAND

233

Filter Description Type

tag-value The value of a tag assigned to the resource. This filter is
independent of the tag-key filter.

String

tag:key Filters the response based on a specific tag/value combination. String

vpc-id The ID of the VPC for the network ACL. String

Get-EC2NetworkInterface

Filter Description Type

addresses.private-ip-address The private IP addresses associated with the network interface. String

addresses.primary Whether the private IP address is the primary IP address
associated with the network interface.

Boolean

addresses.association.public-ip The association ID returned when the network interface was
associated with the Elastic IP address.

String

addresses.association.owner-id The owner ID of the addresses associated with the
network interface.

String

association.association-id The association ID returned when the network interface was
associated with an IP address.

String

association.allocation-id The allocation ID returned when you allocated the Elastic IP
address for your network interface.

String

association.ip-owner-id The owner of the Elastic IP address associated with the
network interface.

String

association.public-ip The address of the Elastic IP address bound to the
network interface.

String

attachment.attachment-id The ID of the interface attachment. String

attachment.instance-id The ID of the instance to which the network interface is attached. String

attachment.instance-owner-id The owner ID of the instance to which the network interface
is attached.

String

attachment.device-index The device index to which the network interface is attached. Integer

attachment.status The status of the attachment. Valid values: attaching |
attached | detaching | detached.

String

attachment.attach.time The time that the network interface was attached to an instance. DateTime

attachment.delete-on-termination Indicates whether the attachment is deleted when an
instance is terminated.

Boolean

availability-zone The availability zone of the network interface. String

description The description of the network interface. String

group-id The ID of a security group associated with the network interface. String

(continued)

APPENDIX C ■ LIST OF FILTERS BY EC2 COMMAND

234

Filter Description Type

group-name The name of a security group associated with the
network interface.

String

mac-address The MAC address of the network interface. String

network-interface-id The ID of the network interface. String

owner-id The AWS account ID of the network interface owner. String

private-ip-address The private IP address or addresses of the network interface. String

private-dns-name The private DNS name of the network interface. String

requester-id The ID of the entity that launched the instance on your
behalf (for example, AWS Management Console,
Auto Scaling, and so on).

String

requester-managed Indicates whether the network interface is being managed
by an AWS service (for example, AWS Management Console,
Auto Scaling, and so on).

Boolean

source-dest-check Indicates whether the network interface performs
source/destination checking. A value of true means checking
is enabled, and false means checking is disabled. The value
must be false for the network interface to perform Network
Address Translation (NAT) in your VPC.

Boolean

status The status of the network interface. If the network interface
is not attached to an instance, the status shows available; if a
network interface is attached to an instance the status shows
in-use. Valid values: available | in-use.

String

subnet-id The ID of the subnet for the network interface. String

tag-key The key of a tag assigned to the resource. This filter is
independent of the tag-value filter. For example, if you use
both the filter “tag-key=Purpose” and the filter “tag-value=X,”
you get any resources assigned both the tag key Purpose
(regardless of what the tag’s value is), and the tag value X
(regardless of what the tag’s key is). If you want to list only
resources where Purpose is X, see the tag:key filter.

String

tag-value The value of a tag assigned to the resource. This filter is
independent of the tag-key filter.

String

tag:key Filters the response based on a specific tag/value combination. String

vpc-id The ID of the VPC for the network interface. String

APPENDIX C ■ LIST OF FILTERS BY EC2 COMMAND

235

Get-EC2PlacementGroup

Filter Description Type

group-name The name of the placement group. String

state The state of the placement group. Valid values: pending | available | deleting | deleted. String

strategy The strategy of the placement group. Valid value: cluster. String

Get-EC2Region

Filter Description Type

endpoint The endpoint of the region (for example, ec2.us-east-1.amazonaws.com). String

region-name The name of the region. String

Get-EC2ReservedInstance

Filter Description Type

availability-zone The availability zone where the Reserved Instance can be used. String

duration The duration of the Reserved Instance (one year or three years),
in seconds. Valid values: 31536000 | 94608000.

Long

end The time when the Reserved Instance expires. DateTime

fixed-price The purchase price of the Reserved Instance (for example, 9800.0). Double

instance-type The instance type on which the Reserved Instance can be used. String

product-description The product description of the Reserved Instance. Valid values:
Linux/UNIX | Linux/UNIX (Amazon VPC) | Windows | Windows
(Amazon VPC).

String

reserved-instances-id The ID of the Reserved Instance. String

start The time at which the Reserved Instance purchase request was
placed (for example, 2010-08-07T11:54:42.000Z).

DateTime

state The state of the Reserved Instance. Valid values:
pending-payment | active | payment-failed | retired.

String

tag-key The key of a tag assigned to the resource. This filter is
independent of the tag-value filter. For example, if you use
both the filter “tag-key=Purpose” and the filter “tag-value=X,”
you get any resources assigned both the tag key Purpose
(regardless of what the tag’s value is), and the tag value X
(regardless of what the tag’s key is). If you want to list only
resources where Purpose is X, see the tag:key filter.

String

(continued)

http://ec2.us-east-1.amazonaws.com

APPENDIX C ■ LIST OF FILTERS BY EC2 COMMAND

236

Filter Description Type

tag-value The value of a tag assigned to the resource. This filter is
independent of the tag-key filter.

String

tag:key Filters the response based on a specific tag/value combination. String

Get-EC2ReservedInstancesListing

Filter Description Type

status Status of the Reserved Instance listing.
Valid values: pending | active | cancelled | closed.

String

status-message Reason for the status. String

reserved-instances-listing-id The ID of the Reserved Instances listing. String

reserved-instances-id The ID of the Reserved Instances. String

Get-EC2ReservedInstancesOffering

Filter Description Type

availability-zone The availability zone where the Reserved Instance can be used. String

duration The duration of the Reserved Instance (for example, one year or three
years), in seconds. Valid values: 31536000 | 94608000.

Long

fixed-price The purchase price of the Reserved Instance
(for example, 9800.0).

Double

instance-type The instance type on which the Reserved Instance can be used. String

marketplace Set to true to show only Reserved Instance Marketplace offerings.
When this filter is not used, which is the default behavior, all offerings
from AWS and Reserved Instance Marketplace are listed.

Boolean

product-description The description of the Reserved Instance. Valid values: Linux/UNIX |
Linux/UNIX (Amazon VPC) | Windows | Windows (Amazon VPC).

String

reserved-instances-
offering-id

The Reserved Instances offering ID. String

usage-price The usage price of the Reserved Instance, per hour (for example, 0.84). Double

APPENDIX C ■ LIST OF FILTERS BY EC2 COMMAND

237

Get-EC2RouteTable

Filter Description Type

association.route-
table-association-id

The ID of an association ID for the route table. String

association.route-table-id The ID of the route table involved in the association. String

association.subnet-id The ID of the subnet involved in the association. String

association.main Indicates whether the route table is the main route table
for the VPC.

Boolean

route-table-id The ID of the route table. String

route.destination-cidr-block The CIDR range specified in a route in the table. String

route.gateway-id The ID of a gateway specified in a route in the table. String

route.instance-id The ID of an instance specified in a route in the table. String

route.origin Describes how the route was created. Valid values:
CreateRouteTable | CreateRoute | EnableVgwRoutePropagation.
CreateRouteTable indicates that the route was automatically
created when the route table was created. CreateRoute
indicates that the route was manually added to the route table.
EnableVgwRoutePropagation indicates that the route was
propagated by route propagation.

String

route.state The state of a route in the route table. The blackhole state indicates
that the route’s target isn’t available (for example, the specified
gateway isn’t attached to the VPC, the specified NAT instance has
been terminated, and so on). Valid values: active | blackhole.

String

tag-key The key of a tag assigned to the resource. This filter is independent
of the tag-value filter. For example, if you use both the filter
“tag-key=Purpose” and the filter “tag-value=X”, you get any
resources assigned both the tag key Purpose (regardless of what
the tag’s value is), and the tag value X (regardless of what the
tag’s key is). If you want to list only resources where Purpose is X,
see the tag:key filter.

String

tag-value The value of a tag assigned to the resource. This filter is
independent of the tag-key filter.

String

tag:key Filters the response based on a specific tag/value combination. String

vpc-id The ID of the VPC for the route table. String

APPENDIX C ■ LIST OF FILTERS BY EC2 COMMAND

238

Get-EC2SecurityGroup

Filter Description Type

description The description of the security group. String

group-id The ID of the security group. String

group-name The name of the security group. String

ip-permission.cidr The CIDR range that has been granted the permission. String

ip-permission.from-port The start of port range for the TCP and UDP protocols, or an
ICMP type number.

String

ip-permission.group-name The name of security group that has been granted the permission. String

ip-permission.protocol The IP protocol for the permission. Valid values: tcp | udp | icmp
or a protocol number.

String

ip-permission.to-port The end of port range for the TCP and UDP protocols, or an
ICMP code.

String

ip-permission.user-id The ID of an AWS account that has been granted the permission. String

owner-id The AWS account ID of the owner of the security group. String

tag-key The key of a tag assigned to the security group. String

tag-value The value of a tag assigned to the security group. String

vpc-id Only returns the security groups that belong to the specified EC2-
VPC ID.

String

Get-EC2Snapshot

Filter Description Type

description A description of the snapshot. String

owner-alias The AWS account alias (for example, amazon) that owns the snapshot. String

owner-id The ID of the AWS account that owns the snapshot. String

progress The progress of the snapshot, as a percentage (for example, 80%). String

snapshot-id The snapshot ID. String

start-time The time stamp when the snapshot was initiated. DateTime

status The status of the snapshot. Valid values: pending | completed | error. String

tag-key The key of a tag assigned to the resource. This filter is independent of the
tag-value filter. For example, if you use both the filter “tag-key=Purpose”
and the filter “tag-value=X,” you get any resources assigned both the tag key
Purpose (regardless of what the tag’s value is), and the tag value X (regardless
of what the tag’s key is). If you want to list only resources where Purpose is X,
see the tag:key filter.

String

(continued)

APPENDIX C ■ LIST OF FILTERS BY EC2 COMMAND

239

Filter Description Type

tag-value The value of a tag assigned to the resource. This filter is independent of
the tag-key filter.

String

tag:key Filters the response based on a specific tag/value combination. String

volume-id The ID of the volume the snapshot is for. String

volume-size The size of the volume, in GiB (for example, 20). String

Get-EC2SpotInstanceRequest

Filter Description Type

availability-zone-group The availability zone group. If you specify the same availability zone
group for all Spot Instance requests, all Spot Instances are launched
in the same availability zone.

String

create-time The time stamp when the Spot Instance request was created. String

fault-code The fault code related to the request. String

fault-message The fault message related to the request. String

instance-id The ID of the instance that fulfilled the request. String

launch-group The Spot Instance launch group. Launch groups are Spot Instances
that launch together and terminate together.

String

launch.block-device-mapping.
delete-on-termination

Whether the Amazon EBS volume is deleted on instance
termination.

Boolean

launch.block-device-mapping.
device-name

The device name (for example, /dev/sdh) for the Amazon
EBS volume.

String

launch.block-device-mapping.
snapshot-id

The ID of the snapshot used for the Amazon EBS volume. String

launch.block-device-mapping.
volume-size

The volume size of the Amazon EBS volume, in GiB. String

launch.block-device-mapping.
volume-type

The volume type of the Amazon EBS volume.
Valid values: standard | io1.

String

launch.group-id The security group for the instance. String

launch.image-id The ID of the AMI. String

launch.instance-type The type of instance (for example, m1.small). String

launch.kernel-id The kernel ID. String

launch.key-name The name of the key pair the instance launched with. String

launch.monitoring-enabled Whether monitoring is enabled for the Spot Instance. Boolean

launch.ramdisk-id The RAM disk ID. String

(continued)

APPENDIX C ■ LIST OF FILTERS BY EC2 COMMAND

240

Filter Description Type

launch.network-interface.
network-interface-id

The ID of the network interface. String

launch.network-interface.
device-index

The index of the device for the network interface attachment
on the instance.

Integer

launch.network-interface.
subnet-id

The ID of the subnet for the instance. String

launch.network-interface.
description

A description of the network interface. String

launch.network-interface.
private-ip-address

The primary private IP address of the network interface. String

launch.network-interface.
delete-on-termination

Indicates whether the network interface is deleted when the
instance is terminated.

Boolean

launch.network-interface.
group-id

The ID of the security group associated with the
network interface.

String

launch.network-interface.
group-name

The name of the security group associated with the
network interface.

String

launch.network-interface.
addresses.primary

Indicates whether the IP address is the primary private
IP address.

String

product-description The product description associated with the instance.
Valid values: Linux/UNIX | Windows.

String

spot-instance-request-id The Spot Instance request ID. String

spot-price The maximum hourly price for any Spot Instance launched to
fulfill the request.

String

state The state of the Spot Instance request. Spot bid status
information can help you track your Amazon EC2 Spot Instance
requests. Valid values: open | active | closed | cancelled | failed.

String

status-code The short code describing the most recent evaluation of your
Spot Instance request.

String

status-message The message explaining the status of the Spot Instance request. String

tag-key The key of a tag assigned to the resource. This filter is
independent of the tag-value filter. For example, if you use both
the filter “tag-key=Purpose” and the filter “tag-value=X,” you get
any resources assigned both the tag key Purpose (regardless of
what the tag’s value is), and the tag value X (regardless of what
the tag’s key is). If you want to list only resources where Purpose
is X, see the tag:key filter.

String

tag-value The value of a tag assigned to the resource. This filter is
independent of the tag-key filter.

String

tag:key Filters the response based on a specific tag/value combination. String

(continued)

APPENDIX C ■ LIST OF FILTERS BY EC2 COMMAND

241

Filter Description Type

type The type of Spot Instance request. Valid values: one-time |
persistent.

String

launched-availability-zone The availability zone in which the bid is launched. String

valid-from The start date of the request. DateTime

valid-until The end date of the request. DateTime

Get-EC2SpotPriceHistory

Filter Description Type

instance-type The type of instance (for example, m1.small). String

product-description The product description for the Spot Price. Valid values: Linux/UNIX | SUSE
Linux | Windows | Linux/UNIX (Amazon VPC) | SUSE Linux (Amazon VPC) |
Windows (Amazon VPC).

String

spot-price The Spot Price. The value must match exactly (or use wildcards; greater
than or less than comparison is not supported).

String

timestamp The timestamp of the Spot Price history (for example,
2010-08-16T05:06:11.000Z). You can use wildcards (* and ?). Greater than
or less than comparison is not supported.

DateTime

availability-zone The availability zone for which prices should be returned. String

Get-EC2Subnet

Filter Description Type

availability-zone The availability zone for the subnet. String

available-ip-address-count The number of IP addresses in the subnet that are available. String

cidr The CIDR block of the subnet. The CIDR block you specify must
exactly match the subnet’s CIDR block for information to be returned
for the subnet. Constraints: Must contain the slash followed by one or
two digits (for example, /28).

String

defaultForAz Indicates whether this is the default subnet for the availability zone. Boolean

state The state of the subnet. Valid values: pending | available. String

subnet-id The ID of the subnet. String

(continued)

APPENDIX C ■ LIST OF FILTERS BY EC2 COMMAND

242

Filter Description Type

tag-key The key of a tag assigned to the resource. This filter is
independent of the tag-value filter. For example, if you use both
the filter “tag-key=Purpose” and the filter “tag-value=X,” you get
any resources assigned both the tag key Purpose (regardless of what
the tag’s value is), and the tag value X (regardless of what the tag’s
key is). If you want to list only resources where Purpose is X,
see the tag:key filter.

String

tag-value The value of a tag assigned to the resource. This filter is independent
of the tag-key filter.

String

tag:key Filters the response based on a specific tag/value combination. String

vpc-id The ID of the VPC for the subnet. String

Get-EC2Tag

Filter Description Type

key The tag key. String

resource-id The resource ID. String

resource-type The resource type. Valid values: customer-gateway | dhcp-options |
image | instance | internet-gateway | network-acl | network-interface |
reserved-instances | route-table | security-group | snapshot | spot-
instances-request | subnet | volume | vpc | vpn-connection | vpn-gateway.

String

value The tag value. String

Get-EC2Volume

Filter Description Type

attachment.attach-time The time stamp when the attachment initiated. DateTime

attachment.delete-on-
termination

Whether the volume is deleted on instance termination. Boolean

attachment.device The device name that is exposed to the instance (for example,
/dev/sda1).

String

attachment.instance-id The ID of the instance the volume is attached to. String

attachment.status The attachment state. Valid values: attaching | attached | detaching
| detached.

String

availability-zone The availability zone in which the volume was created. String

create-time The time stamp when the volume was created. DateTime

size The size of the volume, in GiB (for example, 20). String

(continued)

APPENDIX C ■ LIST OF FILTERS BY EC2 COMMAND

243

Filter Description Type

snapshot-id The snapshot from which the volume was created. String

status The status of the volume. Valid values: creating | available | in-use |
deleting | deleted | error.

String

tag-key The key of a tag assigned to the resource. This filter is independent
of the tag-value filter. For example, if you use both the filter
“tag-key=Purpose” and the filter “tag-value=X,” you get any resources
assigned both the tag key Purpose (regardless of what the tag’s value
is), and the tag value X (regardless of what the tag’s key is). If you want
to list only resources where Purpose is X, see the tag:key filter.

String

tag-value The value of a tag assigned to the resource. This filter is independent
of the tag-key filter.

String

tag:key Filters the response based on a specific tag/value combination. String

volume-id The volume ID. String

volume-type The Amazon EBS volume type. If the volume is an io1 volume, the
response includes the IOPS as well. Valid values: standard | io1.

String

Get-EC2VolumeStatus

Filter Description Type

availability-zone The availability zone of the instance. String

volume-status.status The status of the volume. Valid values: ok | impaired | warning |
insufficient-data.

String

volume-status.details-name The cause for the volume-status.status. Valid values: io-enabled |
io-performance.

String

volume-status.details-
status

The status of the volume-status.details-name. Valid values for io-
enabled: passed | failed. Valid values for io-performance: normal |
degraded | severely-degraded | stalled.

String

event.description A description of the event. String

event.not-after The latest end time for the event. DateTime

event.not-before The earliest start time for the event. DateTime

event.event-id The event ID. String

event.event-type The event type. Valid values for io-enabled: potential-data-
inconsistency. Valid values for io-performance:
io-performance:degraded | io-performance:severely-degraded |
io-performance:stalled.

String

action.code The action code for the event for example, enable-volume-io. String

action.event-id The event ID associated with the action. String

action.description A description of the action. String

APPENDIX C ■ LIST OF FILTERS BY EC2 COMMAND

244

Get-EC2Vpc

Filter Description Type

cidr The CIDR block of the VPC. The CIDR block you specify must exactly match
the VPC’s CIDR block for information to be returned for the VPC. Constraints:
must contain the slash followed by one or two digits (for example, /28)

String

dhcp-options-id The ID of a set of DHCP options. String

isDefault Indicates whether the VPC is the default VPC. Boolean

state The state of the VPC. Valid values: pending | available. String

tag-key The key of a tag assigned to the resource. This filter is independent of the
tag-value filter. For example, if you use both the filter “tag-key=Purpose” and
the filter “tag-value=X,” you get any resources assigned both the tag key Purpose
(regardless of what the tag’s value is), and the tag value X (regardless of what the tag’s
key is). If you want to list only resources where Purpose is X, see the tag:key filter.

String

tag-value The value of a tag assigned to the resource. This filter is independent of the
tag-key filter.

String

tag:key Filters the response based on a specific tag/value combination. String

vpc-id The ID of the VPC. String

Get-EC2VpnConnection

Filter Description Type

customer-gateway-configuration The configuration information for the customer gateway. String

customer-gateway-id The ID of a customer gateway associated with the VPN
connection.

String

state The state of the VPN connection. Valid values: pending |
available | deleting | deleted.

String

option.static-routes-only Indicates whether the connection has static routes only.
Used for devices that do not support Border Gateway
Protocol (BGP).

Boolean

route.destination-cidr-block The destination CIDR block. This corresponds to the subnet
used in a customer data center.

String

bgp-asn The BGP Autonomous System Number (ASN) associated
with a BGP device.

Integer

tag-key The key of a tag assigned to the resource. This filter is
independent of the tag-value filter. For example, if you
use both the filter “tag-key=Purpose” and the filter
“tag-value=X,” you get any resources assigned both the tag key
Purpose (regardless of what the tag’s value is), and the tag
value X (regardless of what the tag’s key is). If you want to list
only resources where Purpose is X, see the tag:key filter.

String

(continued)

APPENDIX C ■ LIST OF FILTERS BY EC2 COMMAND

245

Filter Description Type

tag-value The value of a tag assigned to the resource. This filter is
independent of the tag-key filter.

String

tag:key Filters the response based on a specific tag/value combination. String

type The type of VPN connection. Currently the only supported type
is ipsec.1. Valid value: ipsec.1.

String

vpn-connection-id The ID of the VPN connection. String

vpn-gateway-id The ID of a virtual private gateway associated with the VPN
connection.

String

Get-EC2VpnGateway

Filter Description Type

attachment.state The current state of the attachment between the gateway and the VPC.
Valid values: attaching | attached | detaching | detached.

String

attachment.vpc-id The ID of an attached VPC. String

availability-zone The availability zone for the virtual private gateway. String

state The state of the virtual private gateway. Valid values: pending | available |
deleting | deleted.

String

tag-key The key of a tag assigned to the resource. This filter is independent of the
tag-value filter. For example, if you use both the filter “tag-key=Purpose”
and the filter “tag-value=X,” you get any resources assigned both the tag
key Purpose (regardless of what the tag’s value is), and the tag value X
(regardless of what the tag’s key is). If you want to list only resources
where Purpose is X, see the tag:key filter.

String

tag-value The value of a tag assigned to the resource. This filter is independent
of the tag-key filter.

String

tag:key Filters the response based on a specific tag/value combination. String

type The type of virtual private gateway. Currently the only supported type
is ipsec.1. Valid value: ipsec.1.

String

vpn-gateway-id The ID of the virtual private gateway. String

247

APPENDIX D

List of API Methods by Command

This appendix includes a list of all the PowerShell commands and the corresponding web service methods. You may
have noticed that there is very little documentation available for the AWS PowerShell libraries. When you find the
PowerShell help files inadequate, you can search for help on the web service method, which is usually much more
complete. In addition, the web service method name is used to allow or deny access in IAM policies.

Note ■ This appendix has been adapted from documentation available on the AWS web site as of October 31, 2013.

For the most current version of the AWS documentation, please visit http://aws.amazon.com/documentation/.

AWS Support

PowerShell Command API Method

Resolve-ASACase ResolveCase

New-ASACase CreateCase

Get-ASACases DescribeCases

Get-ASACommunications DescribeCommunications

Add-ASACommunicationToCase AddCommunicationToCase

Get-ASAdjustmentType DescribeAdjustmentTypes

Get-ASAServices DescribeServices

Get-ASASeverityLevels DescribeSeverityLevels

Request-ASATrustedAdvisorCheckRefresh RefreshTrustedAdvisorCheck

Get-ASATrustedAdvisorCheckRefreshStatuses DescribeTrustedAdvisorCheckRefreshStatuses

Get-ASATrustedAdvisorCheckResult DescribeTrustedAdvisorCheckResult

Get-ASATrustedAdvisorChecks DescribeTrustedAdvisorChecks

Get-ASATrustedAdvisorCheckSummaries DescribeTrustedAdvisorCheckSummaries

http://aws.amazon.com/documentation/

APPENDIX D ■ LIST OF API METHODS BY COMMAND

248

Auto Scaling

PowerShell Command API Method

Update-ASAutoScalingGroup UpdateAutoScalingGroup

Get-ASAutoScalingGroup DescribeAutoScalingGroups

Remove-ASAutoScalingGroup DeleteAutoScalingGroup

New-ASAutoScalingGroup CreateAutoScalingGroup

Get-ASAutoScalingInstance DescribeAutoScalingInstances

Get-ASAutoScalingNotificationType DescribeAutoScalingNotificationTypes

Set-ASDesiredCapacity SetDesiredCapacity

Set-ASInstanceHealth SetInstanceHealth

Stop-ASInstanceInAutoScalingGroup TerminateInstanceInAutoScalingGroup

Remove-ASLaunchConfiguration DeleteLaunchConfiguration

Get-ASLaunchConfiguration DescribeLaunchConfigurations

New-ASLaunchConfiguration CreateLaunchConfiguration

Get-ASMetricCollectionType DescribeMetricCollectionTypes

Enable-ASMetricsCollection EnableMetricsCollection

Disable-ASMetricsCollection DisableMetricsCollection

Get-ASNotificationConfiguration DescribeNotificationConfigurations

Remove-ASNotificationConfiguration DeleteNotificationConfiguration

Write-ASNotificationConfiguration PutNotificationConfiguration

Start-ASPolicy ExecutePolicy

Remove-ASPolicy DeletePolicy

Get-ASPolicy DescribePolicies

Suspend-ASProcess SuspendProcesses

Resume-ASProcess ResumeProcesses

Get-ASScalingActivity DescribeScalingActivities

Write-ASScalingPolicy PutScalingPolicy

Get-ASScalingProcessType DescribeScalingProcessTypes

Remove-ASScheduledAction DeleteScheduledAction

Get-ASScheduledAction DescribeScheduledActions

Write-ASScheduledUpdateGroupAction PutScheduledUpdateGroupAction

Set-ASTag CreateOrUpdateTags

Get-ASTag DescribeTags

Remove-ASTag DeleteTags

Get-ASTerminationPolicyType DescribeTerminationPolicyTypes

APPENDIX D ■ LIST OF API METHODS BY COMMAND

249

CloudFront

PowerShell Command API Method

Get-CFCloudFrontOriginAccessIdentities ListCloudFrontOriginAccessIdentities

Get-CFCloudFrontOriginAccessIdentity GetCloudFrontOriginAccessIdentity

Update-CFCloudFrontOriginAccessIdentity UpdateCloudFrontOriginAccessIdentity

New-CFCloudFrontOriginAccessIdentity CreateCloudFrontOriginAccessIdentity

Remove-CFCloudFrontOriginAccessIdentity DeleteCloudFrontOriginAccessIdentity

Get-CFCloudFrontOriginAccessIdentityConfig GetCloudFrontOriginAccessIdentityConfig

Get-CFDistribution GetDistribution

Update-CFDistribution UpdateDistribution

Remove-CFDistribution DeleteDistribution

New-CFDistribution CreateDistribution

Get-CFDistributionConfig GetDistributionConfig

Get-CFDistributions ListDistributions

Get-CFInvalidation GetInvalidation

New-CFInvalidation CreateInvalidation

Get-CFInvalidations ListInvalidations

New-CFNStack CreateStack

Remove-CFNStack DeleteStack

Update-CFNStack UpdateStack

Get-CFNStack DescribeStacks

Get-CFNStackEvent DescribeStackEvents

Get-CFNStackResource DescribeStackResource

Get-CFNStackResources DescribeStackResources

Get-CFNStackResourceSummary ListStackResources

Get-CFNStackSummary ListStacks

Test-CFNTemplate ValidateTemplate

Get-CFNTemplate GetTemplate

Measure-CFNTemplateCost EstimateTemplateCost

Get-CFStreamingDistribution GetStreamingDistribution

Remove-CFStreamingDistribution DeleteStreamingDistribution

New-CFStreamingDistribution CreateStreamingDistribution

Update-CFStreamingDistribution UpdateStreamingDistribution

Get-CFStreamingDistributionConfig GetStreamingDistributionConfig

Get-CFStreamingDistributions ListStreamingDistributions

APPENDIX D ■ LIST OF API METHODS BY COMMAND

250

CloudSearch
PowerShell Command API Method

Update-CSDefaultSearchField UpdateDefaultSearchField

Get-CSDefaultSearchField DescribeDefaultSearchField

Get-CSDomain DescribeDomains

New-CSDomain CreateDomain

Remove-CSDomain DeleteDomain

Start-CSIndex IndexDocuments

Remove-CSIndexField DeleteIndexField

Set-CSIndexField DefineIndexField

Get-CSIndexField DescribeIndexFields

Get-CSRankExpression DescribeRankExpressions

Remove-CSRankExpression DeleteRankExpression

Set-CSRankExpression DefineRankExpression

Update-CSServiceAccessPolicy UpdateServiceAccessPolicies

Get-CSServiceAccessPolicy DescribeServiceAccessPolicies

Get-CSStemmingOption DescribeStemmingOptions

Update-CSStemmingOption UpdateStemmingOptions

Update-CSStopwordOption UpdateStopwordOptions

Get-CSStopwordOption DescribeStopwordOptions

Get-CSSynonymOption DescribeSynonymOptions

Update-CSSynonymOption UpdateSynonymOptions

CloudWatch
PowerShell Command API Method

Get-CWAlarm DescribeAlarms

Remove-CWAlarm DeleteAlarms

Enable-CWAlarmAction EnableAlarmActions

Disable-CWAlarmAction DisableAlarmActions

Get-CWAlarmForMetric DescribeAlarmsForMetric

Get-CWAlarmHistory DescribeAlarmHistory

Set-CWAlarmState SetAlarmState

Write-CWMetricAlarm PutMetricAlarm

Write-CWMetricData PutMetricData

Get-CWMetrics ListMetrics

Get-CWMetricStatistics GetMetricStatistics

APPENDIX D ■ LIST OF API METHODS BY COMMAND

251

Direct Connect

PowerShell Command API Method

Get-DCConnection DescribeConnections

Remove-DCConnection DeleteConnection

New-DCConnection CreateConnection

Get-DCConnectionDetail DescribeConnectionDetail

Get-DCOffering DescribeOfferings

Get-DCOfferingDetail DescribeOfferingDetail

New-DCPrivateVirtualInterface CreatePrivateVirtualInterface

New-DCPublicVirtualInterface CreatePublicVirtualInterface

Get-DCVirtualGateway DescribeVirtualGateways

Get-DCVirtualInterface DescribeVirtualInterfaces

Remove-DCVirtualInterface DeleteVirtualInterface

Data Pipeline

PowerShell Command API Method

Invoke-DPExpression EvaluateExpression

Get-DPObject DescribeObjects

Find-DPObject QueryObjects

New-DPPipeline CreatePipeline

Remove-DPPipeline DeletePipeline

Get-DPPipeline ListPipelines

Enable-DPPipeline ActivatePipeline

Get-DPPipelineDefinition GetPipelineDefinition

Write-DPPipelineDefinition PutPipelineDefinition

Test-DPPipelineDefinition ValidatePipelineDefinition

Get-DPPipelineDescription DescribePipelines

Set-DPStatus SetStatus

Get-DPTask PollForTask

Update-DPTaskProgress ReportTaskProgress

Update-DPTaskRunnerHeartbeat ReportTaskRunnerHeartbeat

Set-DPTaskStatus SetTaskStatus

APPENDIX D ■ LIST OF API METHODS BY COMMAND

252

Elastic Beanstalk

PowerShell Command API Method

Remove-EBApplication DeleteApplication

Get-EBApplication DescribeApplications

Update-EBApplication UpdateApplication

New-EBApplication CreateApplication

New-EBApplicationVersion CreateApplicationVersion

Update-EBApplicationVersion UpdateApplicationVersion

Remove-EBApplicationVersion DeleteApplicationVersion

Get-EBApplicationVersion DescribeApplicationVersions

Restart-EBAppServer RestartAppServer

Get-EBAvailableSolutionStack ListAvailableSolutionStacks

Get-EBConfigurationOption DescribeConfigurationOptions

Get-EBConfigurationSetting DescribeConfigurationSettings

Test-EBConfigurationSetting ValidateConfigurationSettings

Remove-EBConfigurationTemplate DeleteConfigurationTemplate

New-EBConfigurationTemplate CreateConfigurationTemplate

Update-EBConfigurationTemplate UpdateConfigurationTemplate

Get-EBDNSAvailability CheckDNSAvailability

Stop-EBEnvironment TerminateEnvironment

Get-EBEnvironment DescribeEnvironments

Update-EBEnvironment UpdateEnvironment

New-EBEnvironment CreateEnvironment

Set-EBEnvironmentCNAME SwapEnvironmentCNAMEs

Remove-EBEnvironmentConfiguration DeleteEnvironmentConfiguration

Request-EBEnvironmentInfo RequestEnvironmentInfo

Get-EBEnvironmentInfo RetrieveEnvironmentInfo

Start-EBEnvironmentRebuild RebuildEnvironment

Get-EBEnvironmentResource DescribeEnvironmentResources

Get-EBEvent DescribeEvents

New-EBStorageLocation CreateStorageLocation

APPENDIX D ■ LIST OF API METHODS BY COMMAND

253

Elastic Compute Cloud (EC2)

PowerShell Command API Method

Get-EC2AccountAttributes DescribeAccountAttributes

Get-EC2Address DescribeAddresses

Remove-EC2Address ReleaseAddress

Unregister-EC2Address DisassociateAddress

Register-EC2Address AssociateAddress

New-EC2Address AllocateAddress

Get-EC2AvailabilityZone DescribeAvailabilityZones

Get-EC2BundleTask DescribeBundleTasks

Stop-EC2BundleTask CancelBundleTask

Get-EC2ConsoleOutput GetConsoleOutput

Stop-EC2ConversionTask CancelConversionTask

Get-EC2ConversionTask DescribeConversionTasks

Get-EC2CustomerGateway DescribeCustomerGateways

New-EC2CustomerGateway CreateCustomerGateway

Remove-EC2CustomerGateway DeleteCustomerGateway

Remove-EC2DhcpOption DeleteDhcpOptions

Register-EC2DhcpOption AssociateDhcpOptions

Get-EC2DhcpOption DescribeDhcpOptions

New-EC2DhcpOption CreateDhcpOptions

Copy-EC2Image CopyImage

New-EC2Image CreateImage

Register-EC2Image RegisterImage

Unregister-EC2Image DeregisterImage

Get-EC2Image DescribeImages

Edit-EC2ImageAttribute ModifyImageAttribute

Reset-EC2ImageAttribute ResetImageAttribute

Get-EC2ImageAttribute DescribeImageAttribute

Get-EC2ImageByName NA

New-EC2Instance RunInstances

Stop-EC2Instance StopInstances

Restart-EC2Instance RebootInstances

Import-EC2Instance ImportInstance

(continued)

APPENDIX D ■ LIST OF API METHODS BY COMMAND

254

PowerShell Command API Method

Start-EC2Instance StartInstances

Get-EC2Instance DescribeInstances

Get-EC2InstanceAttribute DescribeInstanceAttribute

Reset-EC2InstanceAttribute ResetInstanceAttribute

Edit-EC2InstanceAttribute ModifyInstanceAttribute

New-EC2InstanceBundle BundleInstance

Stop-EC2InstanceMonitoring UnmonitorInstances

Start-EC2InstanceMonitoring MonitorInstances

Send-EC2InstanceStatus ReportInstanceStatus

Get-EC2InstanceStatus DescribeInstanceStatus

Dismount-EC2InternetGateway DetachInternetGateway

Get-EC2InternetGateway DescribeInternetGateways

Add-EC2InternetGateway AttachInternetGateway

Remove-EC2InternetGateway DeleteInternetGateway

New-EC2InternetGateway CreateInternetGateway

New-EC2KeyPair CreateKeyPair

Import-EC2KeyPair ImportKeyPair

Get-EC2KeyPair DescribeKeyPairs

Remove-EC2KeyPair DeleteKeyPair

Get-EC2License DescribeLicenses

Disable-EC2License DeactivateLicense

Enable-EC2License ActivateLicense

Get-EC2NetworkAcl DescribeNetworkAcls

New-EC2NetworkAcl CreateNetworkAcl

Remove-EC2NetworkAcl DeleteNetworkAcl

Set-EC2NetworkAclAssociation ReplaceNetworkAclAssociation

Set-EC2NetworkAclEntry ReplaceNetworkAclEntry

New-EC2NetworkAclEntry CreateNetworkAclEntry

Remove-EC2NetworkAclEntry DeleteNetworkAclEntry

Add-EC2NetworkInterface AttachNetworkInterface

Remove-EC2NetworkInterface DeleteNetworkInterface

New-EC2NetworkInterface CreateNetworkInterface

Get-EC2NetworkInterface DescribeNetworkInterfaces

(continued)

APPENDIX D ■ LIST OF API METHODS BY COMMAND

255

PowerShell Command API Method

Dismount-EC2NetworkInterface DetachNetworkInterface

Get-EC2NetworkInterfaceAttribute DescribeNetworkInterfaceAttribute

Reset-EC2NetworkInterfaceAttribute ResetNetworkInterfaceAttribute

Edit-EC2NetworkInterfaceAttribute ModifyNetworkInterfaceAttribute

Get-EC2PasswordData GetPasswordData

New-EC2PlacementGroup CreatePlacementGroup

Remove-EC2PlacementGroup DeletePlacementGroup

Get-EC2PlacementGroup DescribePlacementGroups

Register-EC2PrivateIpAddress AssignPrivateIpAddresses

Unregister-EC2PrivateIpAddress UnassignPrivateIpAddresses

Confirm-EC2ProductInstance ConfirmProductInstance

Get-EC2Region DescribeRegions

New-EC2ReservedInstance PurchaseReservedInstancesOffering

Get-EC2ReservedInstance DescribeReservedInstances

Get-EC2ReservedInstancesListing DescribeReservedInstancesListings

New-EC2ReservedInstancesListing CreateReservedInstancesListing

Stop-EC2ReservedInstancesListing CancelReservedInstancesListing

Get-EC2ReservedInstancesOffering DescribeReservedInstancesOfferings

Set-EC2Route ReplaceRoute

Remove-EC2Route DeleteRoute

New-EC2Route CreateRoute

Get-EC2RouteTable DescribeRouteTables

New-EC2RouteTable CreateRouteTable

Remove-EC2RouteTable DeleteRouteTable

Register-EC2RouteTable AssociateRouteTable

Unregister-EC2RouteTable DisassociateRouteTable

Set-EC2RouteTableAssociation ReplaceRouteTableAssociation

New-EC2SecurityGroup CreateSecurityGroup

Get-EC2SecurityGroup DescribeSecurityGroups

Remove-EC2SecurityGroup DeleteSecurityGroup

Grant-EC2SecurityGroupEgress AuthorizeSecurityGroupEgress

Revoke-EC2SecurityGroupEgress RevokeSecurityGroupEgress

Revoke-EC2SecurityGroupIngress RevokeSecurityGroupIngress

(continued)

APPENDIX D ■ LIST OF API METHODS BY COMMAND

256

PowerShell Command API Method

Grant-EC2SecurityGroupIngress AuthorizeSecurityGroupIngress

Remove-EC2Snapshot DeleteSnapshot

Get-EC2Snapshot DescribeSnapshots

New-EC2Snapshot CreateSnapshot

Copy-EC2Snapshot CopySnapshot

Edit-EC2SnapshotAttribute ModifySnapshotAttribute

Get-EC2SnapshotAttribute DescribeSnapshotAttribute

Reset-EC2SnapshotAttribute ResetSnapshotAttribute

Get-EC2SpotDatafeedSubscription DescribeSpotDatafeedSubscription

Remove-EC2SpotDatafeedSubscription DeleteSpotDatafeedSubscription

New-EC2SpotDatafeedSubscription CreateSpotDatafeedSubscription

Request-EC2SpotInstance RequestSpotInstances

Get-EC2SpotInstanceRequest DescribeSpotInstanceRequests

Stop-EC2SpotInstanceRequest CancelSpotInstanceRequests

Get-EC2SpotPriceHistory DescribeSpotPriceHistory

New-EC2Subnet CreateSubnet

Get-EC2Subnet DescribeSubnets

Remove-EC2Subnet DeleteSubnet

Remove-EC2Tag DeleteTags

Get-EC2Tag DescribeTags

New-EC2Tag CreateTags

Disable-EC2VGWRoutePropagation DisableVGWRoutePropagation

Enable-EC2VGWRoutePropagation EnableVGWRoutePropagation

Get-EC2Volume DescribeVolumes

Remove-EC2Volume DeleteVolume

Import-EC2Volume ImportVolume

Dismount-EC2Volume DetachVolume

Add-EC2Volume AttachVolume

New-EC2Volume CreateVolume

Edit-EC2VolumeAttribute ModifyVolumeAttribute

Get-EC2VolumeAttribute DescribeVolumeAttribute

Enable-EC2VolumeIO EnableVolumeIO

Get-EC2VolumeStatus DescribeVolumeStatus

(continued)

APPENDIX D ■ LIST OF API METHODS BY COMMAND

257

PowerShell Command API Method

Remove-EC2Vpc DeleteVpc

Get-EC2Vpc DescribeVpcs

New-EC2Vpc CreateVpc

Get-EC2VpcAttribute DescribeVpcAttribute

Edit-EC2VpcAttribute ModifyVpcAttribute

New-EC2VpnConnection CreateVpnConnection

Get-EC2VpnConnection DescribeVpnConnections

Remove-EC2VpnConnection DeleteVpnConnection

Remove-EC2VpnConnectionRoute DeleteVpnConnectionRoute

New-EC2VpnConnectionRoute CreateVpnConnectionRoute

Get-EC2VpnGateway DescribeVpnGateways

New-EC2VpnGateway CreateVpnGateway

Dismount-EC2VpnGateway DetachVpnGateway

Remove-EC2VpnGateway DeleteVpnGateway

Add-EC2VpnGateway AttachVpnGateway

ElastiCache

PowerShell Command API Method

Restart-ECCacheCluster RebootCacheCluster

Edit-ECCacheCluster ModifyCacheCluster

Remove-ECCacheCluster DeleteCacheCluster

New-ECCacheCluster CreateCacheCluster

Get-ECCacheCluster DescribeCacheClusters

Get-ECCacheEngineVersions DescribeCacheEngineVersions

Get-ECCacheParameter DescribeCacheParameters

Edit-ECCacheParameterGroup ModifyCacheParameterGroup

Get-ECCacheParameterGroup DescribeCacheParameterGroups

New-ECCacheParameterGroup CreateCacheParameterGroup

Reset-ECCacheParameterGroup ResetCacheParameterGroup

Remove-ECCacheParameterGroup DeleteCacheParameterGroup

Get-ECCacheSecurityGroup DescribeCacheSecurityGroups

Remove-ECCacheSecurityGroup DeleteCacheSecurityGroup

(continued)

APPENDIX D ■ LIST OF API METHODS BY COMMAND

258

PowerShell Command API Method

New-ECCacheSecurityGroup CreateCacheSecurityGroup

Revoke-ECCacheSecurityGroupIngress RevokeCacheSecurityGroupIngress

Approve-ECCacheSecurityGroupIngress AuthorizeCacheSecurityGroupIngress

New-ECCacheSubnetGroup CreateCacheSubnetGroup

Edit-ECCacheSubnetGroup ModifyCacheSubnetGroup

Remove-ECCacheSubnetGroup DeleteCacheSubnetGroup

Get-ECCacheSubnetGroups DescribeCacheSubnetGroups

Get-ECEngineDefaultParameter DescribeEngineDefaultParameters

Get-ECEvent DescribeEvents

Get-ECReservedCacheNode DescribeReservedCacheNodes

Request-ECReservedCacheNodesOffering PurchaseReservedCacheNodesOffering

Get-ECReservedCacheNodesOffering DescribeReservedCacheNodesOfferings

Elastic Load Balancing (ELB)

PowerShell Command API Method

New-ELBAppCookieStickinessPolicy CreateAppCookieStickinessPolicy

Disable-ELBAvailabilityZoneForLoadBalancer DisableAvailabilityZonesForLoadBalancer

Enable-ELBAvailabilityZoneForLoadBalancer EnableAvailabilityZonesForLoadBalancer

Set-ELBHealthCheck ConfigureHealthCheck

Remove-ELBInstanceFromLoadBalancer DeregisterInstancesFromLoadBalancer

Get-ELBInstanceHealth DescribeInstanceHealth

Register-ELBInstanceWithLoadBalancer RegisterInstancesWithLoadBalancer

New-ELBLBCookieStickinessPolicy CreateLBCookieStickinessPolicy

New-ELBLoadBalancer CreateLoadBalancer

Get-ELBLoadBalancer DescribeLoadBalancers

Remove-ELBLoadBalancer DeleteLoadBalancer

Dismount-ELBLoadBalancerFromSubnet DetachLoadBalancerFromSubnets

Remove-ELBLoadBalancerListener DeleteLoadBalancerListeners

New-ELBLoadBalancerListener CreateLoadBalancerListeners

Set-ELBLoadBalancerListenerSSLCertificate SetLoadBalancerListenerSSLCertificate

Get-ELBLoadBalancerPolicy DescribeLoadBalancerPolicies

Remove-ELBLoadBalancerPolicy DeleteLoadBalancerPolicy

(continued)

APPENDIX D ■ LIST OF API METHODS BY COMMAND

259

PowerShell Command API Method

New-ELBLoadBalancerPolicy CreateLoadBalancerPolicy

Set-ELBLoadBalancerPolicyForBackendServer SetLoadBalancerPoliciesForBackendServer

Set-ELBLoadBalancerPolicyOfListener SetLoadBalancerPoliciesOfListener

Get-ELBLoadBalancerPolicyType DescribeLoadBalancerPolicyTypes

Add-ELBLoadBalancerToSubnet AttachLoadBalancerToSubnets

Join-ELBSecurityGroupToLoadBalancer ApplySecurityGroupsToLoadBalancer

Elastic Map Reduce (EMR)

PowerShell Command API Method

Add-EMRInstanceGroup AddInstanceGroups

Edit-EMRInstanceGroup ModifyInstanceGroups

Start-EMRJobFlow RunJobFlow

Stop-EMRJobFlow TerminateJobFlows

Get-EMRJobFlow DescribeJobFlows

Add-EMRJobFlowStep AddJobFlowSteps

Set-EMRTerminationProtection SetTerminationProtection

Set-EMRVisibleToAllUsers SetVisibleToAllUsers

Elastic Transcoder
PowerShell Command API Method

Read-ETSJob ReadJob

Stop-ETSJob CancelJob

New-ETSJob CreateJob

Get-ETSJobsByPipeline ListJobsByPipeline

Get-ETSJobsByStatus ListJobsByStatus

Update-ETSPipeline UpdatePipeline

Read-ETSPipeline ReadPipeline

Remove-ETSPipeline DeletePipeline

New-ETSPipeline CreatePipeline

Get-ETSPipeline ListPipelines

Update-ETSPipelineNotifications UpdatePipelineNotifications

(continued)

APPENDIX D ■ LIST OF API METHODS BY COMMAND

260

PowerShell Command API Method

Update-ETSPipelineStatus UpdatePipelineStatus

Get-ETSPreset ListPresets

Remove-ETSPreset DeletePreset

Read-ETSPreset ReadPreset

New-ETSPreset CreatePreset

Test-ETSRole TestRole

Identity and Access Management (IAM)

PowerShell Command API Method

New-IAMAccessKey CreateAccessKey

Update-IAMAccessKey UpdateAccessKey

Get-IAMAccessKey ListAccessKeys

Remove-IAMAccessKey DeleteAccessKey

New-IAMAccountAlias CreateAccountAlias

Get-IAMAccountAlias ListAccountAliases

Remove-IAMAccountAlias DeleteAccountAlias

Remove-IAMAccountPasswordPolicy DeleteAccountPasswordPolicy

Update-IAMAccountPasswordPolicy UpdateAccountPasswordPolicy

Get-IAMAccountPasswordPolicy GetAccountPasswordPolicy

Get-IAMAccountSummary GetAccountSummary

Update-IAMAssumeRolePolicy UpdateAssumeRolePolicy

New-IAMGroup CreateGroup

Remove-IAMGroup DeleteGroup

Update-IAMGroup UpdateGroup

Get-IAMGroup GetGroup

Get-IAMGroupForUser ListGroupsForUser

Get-IAMGroupPolicies ListGroupPolicies

Write-IAMGroupPolicy PutGroupPolicy

Get-IAMGroupPolicy GetGroupPolicy

Remove-IAMGroupPolicy DeleteGroupPolicy

Get-IAMGroups ListGroups

Get-IAMInstanceProfile GetInstanceProfile

(continued)

APPENDIX D ■ LIST OF API METHODS BY COMMAND

261

PowerShell Command API Method

New-IAMInstanceProfile CreateInstanceProfile

Remove-IAMInstanceProfile DeleteInstanceProfile

Get-IAMInstanceProfileForRole ListInstanceProfilesForRole

Get-IAMInstanceProfiles ListInstanceProfiles

Update-IAMLoginProfile UpdateLoginProfile

Remove-IAMLoginProfile DeleteLoginProfile

New-IAMLoginProfile CreateLoginProfile

Get-IAMLoginProfile GetLoginProfile

Disable-IAMMFADevice DeactivateMFADevice

Get-IAMMFADevice ListMFADevices

Enable-IAMMFADevice EnableMFADevice

Sync-IAMMFADevice ResyncMFADevice

Edit-IAMPassword ChangePassword

Remove-IAMRole DeleteRole

Get-IAMRole GetRole

New-IAMRole CreateRole

Remove-IAMRoleFromInstanceProfile RemoveRoleFromInstanceProfile

Get-IAMRolePolicies ListRolePolicies

Get-IAMRolePolicy GetRolePolicy

Write-IAMRolePolicy PutRolePolicy

Remove-IAMRolePolicy DeleteRolePolicy

Get-IAMRoles ListRoles

Add-IAMRoleToInstanceProfile AddRoleToInstanceProfile

Update-IAMServerCertificate UpdateServerCertificate

Remove-IAMServerCertificate DeleteServerCertificate

Get-IAMServerCertificate GetServerCertificate

Publish-IAMServerCertificate UploadServerCertificate

Get-IAMServerCertificates ListServerCertificates

Get-IAMSigningCertificate ListSigningCertificates

Update-IAMSigningCertificate UpdateSigningCertificate

Publish-IAMSigningCertificate UploadSigningCertificate

Remove-IAMSigningCertificate DeleteSigningCertificate

Update-IAMUser UpdateUser

(continued)

APPENDIX D ■ LIST OF API METHODS BY COMMAND

262

PowerShell Command API Method

Remove-IAMUser DeleteUser

Get-IAMUser GetUser

New-IAMUser CreateUser

Remove-IAMUserFromGroup RemoveUserFromGroup

Get-IAMUserPolicies ListUserPolicies

Write-IAMUserPolicy PutUserPolicy

Remove-IAMUserPolicy DeleteUserPolicy

Get-IAMUserPolicy GetUserPolicy

Get-IAMUsers ListUsers

Add-IAMUserToGroup AddUserToGroup

New-IAMVirtualMFADevice CreateVirtualMFADevice

Get-IAMVirtualMFADevice ListVirtualMFADevices

Remove-IAMVirtualMFADevice DeleteVirtualMFADevice

Import/Export
PowerShell Command API Method

Get-IEJob ListJobs

Update-IEJob UpdateJob

New-IEJob CreateJob

Stop-IEJob CancelJob

Get-IEStatus GetStatus

OpsWorks
PowerShell Command API Method

Remove-OPSApp DeleteApp

Update-OPSApp UpdateApp

New-OPSApp CreateApp

Get-OPSApps DescribeApps

Get-OPSCommands DescribeCommands

New-OPSDeployment CreateDeployment

Get-OPSDeployments DescribeDeployments

Get-OPSElasticIps DescribeElasticIps

Dismount-OPSElasticLoadBalancer DetachElasticLoadBalancer

(continued)

APPENDIX D ■ LIST OF API METHODS BY COMMAND

263

PowerShell Command API Method

Add-OPSElasticLoadBalancer AttachElasticLoadBalancer

Get-OPSElasticLoadBalancers DescribeElasticLoadBalancers

Get-OPSHostnameSuggestion GetHostnameSuggestion

Remove-OPSInstance DeleteInstance

Restart-OPSInstance RebootInstance

New-OPSInstance CreateInstance

Start-OPSInstance StartInstance

Update-OPSInstance UpdateInstance

Stop-OPSInstance StopInstance

Get-OPSInstances DescribeInstances

New-OPSLayer CreateLayer

Remove-OPSLayer DeleteLayer

Update-OPSLayer UpdateLayer

Get-OPSLayers DescribeLayers

Set-OPSLoadBasedAutoScaling SetLoadBasedAutoScaling

Get-OPSLoadBasedAutoScaling DescribeLoadBasedAutoScaling

Set-OPSPermission SetPermission

Get-OPSPermissions DescribePermissions

Get-OPSRaidArrays DescribeRaidArrays

Get-OPSServiceErrors DescribeServiceErrors

Stop-OPSStack StopStack

Start-OPSStack StartStack

Remove-OPSStack DeleteStack

Update-OPSStack UpdateStack

New-OPSStack CreateStack

Copy-OPSStack CloneStack

Get-OPSStacks DescribeStacks

Get-OPSTimeBasedAutoScaling DescribeTimeBasedAutoScaling

Set-OPSTimeBasedAutoScaling SetTimeBasedAutoScaling

Update-OPSUserProfile UpdateUserProfile

Remove-OPSUserProfile DeleteUserProfile

New-OPSUserProfile CreateUserProfile

Get-OPSUserProfiles DescribeUserProfiles

Get-OPSVolumes DescribeVolumes

APPENDIX D ■ LIST OF API METHODS BY COMMAND

264

Route 53

PowerShell Command API Method

Get-R53Change GetChange

Remove-R53HealthCheck DeleteHealthCheck

New-R53HealthCheck CreateHealthCheck

Get-R53HealthCheck GetHealthCheck

Get-R53HealthChecks ListHealthChecks

Get-R53HostedZone GetHostedZone

New-R53HostedZone CreateHostedZone

Remove-R53HostedZone DeleteHostedZone

Get-R53HostedZones ListHostedZones

Get-R53ResourceRecordSet ListResourceRecordSets

Edit-R53ResourceRecordSet ChangeResourceRecordSets

Relational Database Service (RDS)

PowerShell Command API Method

Get-RDSDBEngineVersion DescribeDBEngineVersions

Restart-RDSDBInstance RebootDBInstance

Get-RDSDBInstance DescribeDBInstances

New-RDSDBInstance CreateDBInstance

Remove-RDSDBInstance DeleteDBInstance

Edit-RDSDBInstance ModifyDBInstance

Restore-RDSDBInstanceFromDBSnapshot RestoreDBInstanceFromDBSnapshot

New-RDSDBInstanceReadReplica CreateDBInstanceReadReplica

Restore-RDSDBInstanceToPointInTime RestoreDBInstanceToPointInTime

Get-RDSDBParameter DescribeDBParameters

Remove-RDSDBParameterGroup DeleteDBParameterGroup

Edit-RDSDBParameterGroup ModifyDBParameterGroup

Reset-RDSDBParameterGroup ResetDBParameterGroup

New-RDSDBParameterGroup CreateDBParameterGroup

Get-RDSDBParameterGroup DescribeDBParameterGroups

Remove-RDSDBSecurityGroup DeleteDBSecurityGroup

(continued)

APPENDIX D ■ LIST OF API METHODS BY COMMAND

265

PowerShell Command API Method

Get-RDSDBSecurityGroup DescribeDBSecurityGroups

New-RDSDBSecurityGroup CreateDBSecurityGroup

Enable-RDSDBSecurityGroupIngress AuthorizeDBSecurityGroupIngress

Revoke-RDSDBSecurityGroupIngress RevokeDBSecurityGroupIngress

Get-RDSDBSnapshot DescribeDBSnapshots

Copy-RDSDBSnapshot CopyDBSnapshot

New-RDSDBSnapshot CreateDBSnapshot

Remove-RDSDBSnapshot DeleteDBSnapshot

Remove-RDSDBSubnetGroup DeleteDBSubnetGroup

New-RDSDBSubnetGroup CreateDBSubnetGroup

Get-RDSDBSubnetGroup DescribeDBSubnetGroups

Edit-RDSDBSubnetGroup ModifyDBSubnetGroup

Get-RDSEngineDefaultParameter DescribeEngineDefaultParameters

Get-RDSEvent DescribeEvents

Get-RDSEventCategories DescribeEventCategories

New-RDSEventSubscription CreateEventSubscription

Remove-RDSEventSubscription DeleteEventSubscription

Edit-RDSEventSubscription ModifyEventSubscription

Get-RDSEventSubscriptions DescribeEventSubscriptions

New-RDSOptionGroup CreateOptionGroup

Get-RDSOptionGroup DescribeOptionGroups

Edit-RDSOptionGroup ModifyOptionGroup

Remove-RDSOptionGroup DeleteOptionGroup

Get-RDSOptionGroupOption DescribeOptionGroupOptions

Get-RDSOrderableDBInstanceOption DescribeOrderableDBInstanceOptions

Convert-RDSReadReplicaToStandalone PromoteReadReplica

Get-RDSReservedDBInstance DescribeReservedDBInstances

Get-RDSReservedDBInstancesOffering PurchaseReservedDBInstancesOffering

Get-RDSReservedDBInstancesOfferings DescribeReservedDBInstancesOfferings

Remove-RDSSourceIdentifierFromSubscription RemoveSourceIdentifierFromSubscription

Add-RDSSourceIdentifierToSubscription AddSourceIdentifierToSubscription

Get-RDSTagForResource ListTagsForResource

Remove-RDSTagFromResource RemoveTagsFromResource

Add-RDSTagsToResource AddTagsToResource

APPENDIX D ■ LIST OF API METHODS BY COMMAND

266

Redshift
PowerShell Command API Method

Remove-RSCluster DeleteCluster

Restart-RSCluster RebootCluster

New-RSCluster CreateCluster

Edit-RSCluster ModifyCluster

Edit-RSClusterParameterGroup ModifyClusterParameterGroup

Reset-RSClusterParameterGroup ResetClusterParameterGroup

New-RSClusterParameterGroup CreateClusterParameterGroup

Remove-RSClusterParameterGroup DeleteClusterParameterGroup

Get-RSClusterParameterGroups DescribeClusterParameterGroups

Get-RSClusterParameters DescribeClusterParameters

Get-RSClusters DescribeClusters

Remove-RSClusterSecurityGroup DeleteClusterSecurityGroup

New-RSClusterSecurityGroup CreateClusterSecurityGroup

Revoke-RSClusterSecurityGroupIngress RevokeClusterSecurityGroupIngress

Approve-RSClusterSecurityGroupIngress AuthorizeClusterSecurityGroupIngress

Get-RSClusterSecurityGroups DescribeClusterSecurityGroups

Remove-RSClusterSnapshot DeleteClusterSnapshot

Copy-RSClusterSnapshot CopyClusterSnapshot

New-RSClusterSnapshot CreateClusterSnapshot

Get-RSClusterSnapshots DescribeClusterSnapshots

New-RSClusterSubnetGroup CreateClusterSubnetGroup

Edit-RSClusterSubnetGroup ModifyClusterSubnetGroup

Remove-RSClusterSubnetGroup DeleteClusterSubnetGroup

Get-RSClusterSubnetGroups DescribeClusterSubnetGroups

Get-RSClusterVersions DescribeClusterVersions

Get-RSDefaultClusterParameters DescribeDefaultClusterParameters

Get-RSEvents DescribeEvents

Restore-RSFromClusterSnapshot RestoreFromClusterSnapshot

Get-RSOrderableClusterOptions DescribeOrderableClusterOptions

Request-RSReservedNodeOffering PurchaseReservedNodeOffering

Get-RSReservedNodeOfferings DescribeReservedNodeOfferings

Get-RSReservedNodes DescribeReservedNodes

Get-RSResize DescribeResize

Revoke-RSSnapshotAccess RevokeSnapshotAccess

Approve-RSSnapshotAccess AuthorizeSnapshotAccess

APPENDIX D ■ LIST OF API METHODS BY COMMAND

267

Simple Storage Service (S3)

PowerShell Command API Method

Set-S3ACL SetACL

Get-S3ACL GetACL

Get-S3Bucket ListBucket

Remove-S3Bucket DeleteBucket

New-S3Bucket CreateBucket

Test-S3Bucket NA

Get-S3BucketLocation GetBucketLocation

Disable-S3BucketLogging DisableBucketLogging

Enable-S3BucketLogging EnableBucketLogging

Get-S3BucketLogging GetBucketLogging

Remove-S3BucketPolicy DeleteBucketPolicy

Write-S3BucketPolicy PutBucketPolicy

Get-S3BucketPolicy GetBucketPolicy

Get-S3BucketTagging GetBucketTagging

Remove-S3BucketTagging DeleteBucketTagging

Write-S3BucketTagging PutBucketTagging

Set-S3BucketVersioning SetBucketVersioning

Get-S3BucketVersioning GetBucketVersioning

Write-S3BucketWebsite PutBucketWebsite

Get-S3BucketWebsite GetBucketWebsite

Remove-S3BucketWebsite DeleteBucketWebsite

Get-S3CORSConfiguration GetCORSConfiguration

Remove-S3CORSConfiguration DeleteCORSConfiguration

Write-S3CORSConfiguration PutCORSConfiguration

Remove-S3LifecycleConfiguration DeleteLifecycleConfiguration

Write-S3LifecycleConfiguration PutLifecycleConfiguration

Get-S3LifecycleConfiguration GetLifecycleConfiguration

Set-S3NotificationConfiguration SetNotificationConfiguration

Get-S3NotificationConfiguration GetNotificationConfiguration

Read-S3Object GetBucket

Copy-S3Object NA

(continued)

APPENDIX D ■ LIST OF API METHODS BY COMMAND

268

PowerShell Command API Method

Get-S3Object ListBucket

Write-S3Object Put-Object

Remove-S3Object Delete-Object

Restore-S3Object RestoreObject

Get-S3ObjectMetadata GetObjectMetadata

Get-S3PreSignedURL GetPreSignedURL

Get-S3Version ListVersions

Simple Email Service (SES)

PowerShell Command API Method

Confirm-SESDomainDkim VerifyDomainDkim

Confirm-SESDomainIdentity VerifyDomainIdentity

Send-SESEmail SendEmail

Confirm-SESEmailAddress VerifyEmailAddress

Confirm-SESEmailIdentity VerifyEmailIdentity

Remove-SESIdentity DeleteIdentity

Get-SESIdentity ListIdentities

Get-SESIdentityDkimAttribute GetIdentityDkimAttributes

Set-SESIdentityDkimEnabled SetIdentityDkimEnabled

Set-SESIdentityFeedbackForwardingEnabled SetIdentityFeedbackForwardingEnabled

Get-SESIdentityNotificationAttribute GetIdentityNotificationAttributes

Set-SESIdentityNotificationTopic SetIdentityNotificationTopic

Get-SESIdentityVerificationAttribute GetIdentityVerificationAttributes

Send-SESRawEmail SendRawEmail

Get-SESSendQuota GetSendQuota

Get-SESSendStatistics GetSendStatistics

Remove-SESVerifiedEmailAddress DeleteVerifiedEmailAddress

Get-SESVerifiedEmailAddress ListVerifiedEmailAddresses

APPENDIX D ■ LIST OF API METHODS BY COMMAND

269

Storage Gateway (SG)

PowerShell Command API Method

Update-SGBandwidthRateLimit UpdateBandwidthRateLimit

Remove-SGBandwidthRateLimit DeleteBandwidthRateLimit

Get-SGBandwidthRateLimit DescribeBandwidthRateLimit

Add-SGCache AddCache

Get-SGCache DescribeCache

Get-SGCachediSCSIVolume DescribeCachediSCSIVolumes

New-SGCachediSCSIVolume CreateCachediSCSIVolume

Get-SGChapCredentials DescribeChapCredentials

Update-SGChapCredentials UpdateChapCredentials

Remove-SGChapCredentials DeleteChapCredentials

Remove-SGGateway DeleteGateway

Enable-SGGateway ActivateGateway

Stop-SGGateway ShutdownGateway

Start-SGGateway StartGateway

Get-SGGateway ListGateways

Get-SGGatewayInformation DescribeGatewayInformation

Update-SGGatewayInformation UpdateGatewayInformation

Update-SGGatewaySoftwareNow UpdateGatewaySoftwareNow

Get-SGLocalDisk ListLocalDisks

Update-SGMaintenanceStartTime UpdateMaintenanceStartTime

Get-SGMaintenanceStartTime DescribeMaintenanceStartTime

New-SGSnapshot CreateSnapshot

New-SGSnapshotFromVolumeRecoveryPoint CreateSnapshotFromVolumeRecoveryPoint

Remove-SGSnapshotSchedule DeleteSnapshotSchedule

Update-SGSnapshotSchedule UpdateSnapshotSchedule

Get-SGSnapshotSchedule DescribeSnapshotSchedule

New-SGStorediSCSIVolume CreateStorediSCSIVolume

Get-SGStorediSCSIVolume DescribeStorediSCSIVolumes

Add-SGUploadBuffer AddUploadBuffer

Get-SGUploadBuffer DescribeUploadBuffer

Remove-SGVolume DeleteVolume

Get-SGVolume ListVolumes

Get-SGVolumeRecoveryPoint ListVolumeRecoveryPoints

Add-SGWorkingStorage AddWorkingStorage

Get-SGWorkingStorage DescribeWorkingStorage

APPENDIX D ■ LIST OF API METHODS BY COMMAND

270

Simple Notification Service (SNS)

PowerShell Command API Method

Remove-SNSEndpoint DeleteEndpoint

Set-SNSEndpointAttributes SetEndpointAttributes

Get-SNSEndpointAttributes GetEndpointAttributes

Get-SNSEndpointsByPlatformApplication ListEndpointsByPlatformApplication

Publish-SNSMessage Publish

Disconnect-SNSNotification Unsubscribe

Connect-SNSNotification Subscribe

Add-SNSPermission AddPermission

Remove-SNSPermission RemovePermission

New-SNSPlatformApplication CreatePlatformApplication

Remove-SNSPlatformApplication DeletePlatformApplication

Get-SNSPlatformApplicationAttributes GetPlatformApplicationAttributes

Set-SNSPlatformApplicationAttributes SetPlatformApplicationAttributes

Get-SNSPlatformApplications ListPlatformApplications

New-SNSPlatformEndpoint CreatePlatformEndpoint

Get-SNSSubscription ListSubscriptions

Confirm-SNSSubscription ConfirmSubscription

Get-SNSSubscriptionAttribute GetSubscriptionAttributes

Set-SNSSubscriptionAttribute SetSubscriptionAttributes

Get-SNSSubscriptionByTopic ListSubscriptionsByTopic

Get-SNSTopic ListTopics

New-SNSTopic CreateTopic

Remove-SNSTopic DeleteTopic

Get-SNSTopicAttribute GetTopicAttributes

Set-SNSTopicAttribute SetTopicAttributes

APPENDIX D ■ LIST OF API METHODS BY COMMAND

271

Simple Queue Service (SQS)

PowerShell Command API Method

Remove-SQSMessage DeleteMessage

Receive-SQSMessage ReceiveMessage

Send-SQSMessage SendMessage

Send-SQSMessageBatch SendMessageBatch

Remove-SQSMessageBatch DeleteMessageBatch

Edit-SQSMessageVisibility ChangeMessageVisibility

Edit-SQSMessageVisibilityBatch ChangeMessageVisibilityBatch

Remove-SQSPermission RemovePermission

Add-SQSPermission AddPermission

Remove-SQSQueue DeleteQueue

Get-SQSQueue ListQueues

New-SQSQueue CreateQueue

Get-SQSQueueAttribute GetQueueAttributes

Set-SQSQueueAttribute SetQueueAttributes

Get-SQSQueueUrl GetQueueUrl

Convert-STSAuthorizationMessage DecodeAuthorizationMessage

Secure Token Service (STS)

PowerShell Command API Method

Get-STSFederationToken GetFederationToken

Use-STSRole AssumeRole

Get-STSSessionToken GetSessionToken

Use-STSWebIdentityRole AssumeRoleWithWebIdentity

273

APPENDIX E

CloudWatch Metrics and Dimensions

This appendix includes a list of CloudWatch metrics and dimensions for the services we discussed in this book.
You can use these to create alarms to warn you when something is wrong. This list is adapted from the Cloud Watch
Developer Guide available from http://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide.

Note ■ This appendix has been adapted from documentation available on the AWS web site as of October 31, 2013.

For the most current version of the AWS documentation, please visit http://aws.amazon.com/documentation/.

Auto Scaling
Namespace: AWS/AutoScaling

Metric Description

GroupMinSize The minimum size of the Auto Scaling group.

GroupMaxSize The maximum size of the Auto Scaling group.

GroupDesiredCapacity The number of instances that the Auto Scaling group attempts to maintain.

GroupInServiceInstances The number of instances that are running as part of the Auto Scaling group.
This metric does not include instances that are pending or terminating.

GroupPendingInstances The number of instances that are pending. A pending instance is not yet
in service. This metric does not include instances that are in service or
terminating.

GroupTerminatingInstances The number of instances that are in the process of terminating. This metric
does not include instances that are in service or pending.

GroupTotalInstances The total number of instances in the Auto Scaling group. This metric identifies
the number of instances that are in service, pending, and terminating.

The only dimension that Auto Scaling sends to CloudWatch is the name of the Auto Scaling group. This means
that all available statistics are filtered by Auto Scaling group name.

http://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide
http://aws.amazon.com/documentation/

APPENDIX E ■ CLOUDWATCH METRICS AND DIMENSIONS

274

Billing
Namespace: AWS/Billing

Metric Description

EstimatedCharges The estimated charges for your AWS usage. This can either be estimated
charges for one service or a roll-up of estimated charges for all services.

Dimension Description

ServiceName The name of the AWS service. This dimension is omitted for the total of
estimated charges across all services.

LinkedAccount The linked account number. This is used for consolidated billing only. This
dimension is omitted for the total of all accounts.

Currency The monetary currency to bill the account. This dimension is required. Unit: USD

Elastic Block Storage
Namespace: AWS/EBS

Metric Description

VolumeReadBytes The total number of bytes transferred in the period. Data is only reported to
Amazon CloudWatch when the volume is active. If the volume is idle, no data is
reported to Amazon CloudWatch. Units: Bytes

VolumeWriteBytes The total number of bytes transferred in the period. Data is only reported to
Amazon CloudWatch when the volume is active. If the volume is idle, no data is
reported to Amazon CloudWatch. Units: Bytes

VolumeReadOps The total number of operations in the period. Units: Count

VolumeWriteOps The total number of operations in the period. Units: Count

VolumeTotalReadTime The total number of seconds spent by all operations that completed in the
period. If multiple requests are submitted at the same time, this total could be
greater than the length of the period. For example, say the period is 5 minutes
(300 seconds); if 700 operations completed during that period, and each
operation took 1 second, the value would be 700 seconds. Units: Seconds

VolumeTotalWriteTime The total number of seconds spent by all operations that completed in the
period. If multiple requests are submitted at the same time, this total could be
greater than the length of the period. For example, say the period is 5 minutes
(300 seconds); if 700 operations completed during that period, and each
operation took 1 second, the value would be 700 seconds. Units: Seconds

VolumeIdleTime The total number of seconds in the period when no read or write operations
were submitted. Units: Seconds

VolumeQueueLength The number of read and write operation requests waiting to be completed in
the period. Units: Count

(continued)

APPENDIX E ■ CLOUDWATCH METRICS AND DIMENSIONS

275

Metric Description

VolumeThroughputPercentage Used with Provisioned IOPS volumes only. The percentage of I/O operations
per second (IOPS) delivered out of the IOPS provisioned for an EBS volume.
Provisioned IOPS volumes deliver within 10 percent of the Provisioned IOPS
performance 99.9 percent of the time over a given year. Units: Percent

VolumeConsumedReadWriteOps Used with Provisioned IOPS volumes only. The total amount of read and write
operations consumed in the period. Units: Count

The only dimension that Amazon EBS sends to CloudWatch is the Volume ID. This means that all available
statistics are filtered by Volume ID.

Elastic Compute Cloud
Namespace: AWS/EC2

Metric Description

CPUUtilization The percentage of allocated EC2 compute units that are currently in use on
the instance. This metric identifies the processing power required to run an
application upon a selected instance. Units: Percent

DiskReadOps Completed read operations from all ephemeral disks available to the instance
(if your instance uses Amazon EBS, see EBS Metrics). This metric identifies the
rate at which an application reads a disk. This can be used to determine the
speed in which an application reads data from a hard disk. Units: Count

DiskWriteOps Completed write operations to all ephemeral disks available to the instance
(if your instance uses Amazon EBS, see EBS Metrics). This metric identifies the
rate at which an application writes to a hard disk. This can be used to determine
the speed in which an application saves data to a hard disk. Units: Count

DiskReadBytes Bytes read from all ephemeral disks available to the instance (if your instance
uses Amazon EBS, see EBS Metrics). This metric is used to determine the
volume of the data the application reads from the hard disk of the instance.
This can be used to determine the speed of the application. Units: Bytes

DiskWriteBytes Bytes written to all ephemeral disks available to the instance (if your instance
uses Amazon EBS, EBS Metrics). This metric is used to determine the volume
of the data the application writes onto the hard disk of the instance. This can be
used to determine the speed of the application. Units: Bytes

NetworkIn The number of bytes received on all network interfaces by the instance. This
metric identifies the volume of incoming network traffic to an application on a
single instance. Units: Bytes

NetworkOut The number of bytes sent out on all network interfaces by the instance. This
metric identifies the volume of outgoing network traffic to an application on a
single instance. Units: Bytes

StatusCheckFailed A combination of StatusCheckFailed_Instance and StatusCheckFailed_System
that reports if either of the status checks has failed. Values for this metric are
either 0 (zero) or 1 (one). A zero indicates that the status check passed. A one
indicates a status check failure. Units: Count

(continued)

APPENDIX E ■ CLOUDWATCH METRICS AND DIMENSIONS

276

Metric Description

StatusCheckFailed_Instance Reports whether the instance has passed the EC2 instance status check in
the last 5 minutes. Values for this metric are either 0 (zero) or 1 (one.) A zero
indicates that the status check passed. A one indicates a status check failure.
Units: Count

StatusCheckFailed_System Reports whether the instance has passed the EC2 system status check in the
last 5 minutes. Values for this metric are either 0 (zero) or 1 (one.) A zero
indicates that the status check passed. A one indicates a status check failure.
Units: Count

Dimension Description

AutoScalingGroupName This dimension filters the data you request for all instances in a specified
capacity group. An AutoScalingGroup is a collection of instances you define if
you're using the Auto Scaling service. This dimension is available only for EC2
metrics when the instances are in such an AutoScalingGroup. Available for
instances with Detailed or Basic Monitoring enabled.

ImageId This dimension filters the data you request for all instances running this
EC2 Amazon Machine Image (AMI). Available for instances with Detailed
Monitoring enabled.

InstanceId This dimension filters the data you request for the identified instance only.
This helps you pinpoint an exact instance from which to monitor data.
Available for instances with Detailed Monitoring enabled.

InstanceType This dimension filters the data you request for all instances running with this
specified instance type. This helps you categorize your data by the type of instance
running. For example, you might compare data from an m1.small instance and
an m1.large instance to determine which has the better business value for your
application. Available for instances with Detailed Monitoring enabled.

Elastic Load Balancer
Namespace: AWS/ELB

Metric Description

HealthyHostCount The count of the number of healthy instances in each availability zone. Hosts are
declared healthy if they meet the threshold for the number of consecutive health
checks that are successful. Hosts that have failed more health checks than the value
of the unhealthy threshold are considered unhealthy. Preferred statistic: Average

UnhealthyHostCount The count of the number of unhealthy instances in each availability zone.
Hosts that have failed more health checks than the value of the unhealthy
threshold are considered unhealthy. Instances may become unhealthy due to
connectivity issues, health checks returning non-200 responses (in the case
of HTTP or HTTPS health checks), or timeouts when performing the health
check. Preferred statistic: Average

(continued)

APPENDIX E ■ CLOUDWATCH METRICS AND DIMENSIONS

277

Metric Description

RequestCount The count of the number of completed requests that were received and routed
to the back-end instances. Preferred statistic: Sum

Latency Measures the time elapsed in seconds after the request leaves the load
balancer until the response is received. Preferred statistic: Average

HTTPCode_ELB_4XX The count of the number of HTTP 4XX client error codes generated by the load
balancer when the listener is configured to use HTTP or HTTPS protocols.
Client errors are generated when a request is malformed or is incomplete.
Preferred statistic: Sum

HTTPCode_ELB_5XX The count of the number of HTTP 5XX server error codes generated by the
load balancer when the listener is configured to use HTTP or HTTPS protocols.
This metric does not include any responses generated by back-end instances.
The metric is reported if there are no back-end instances that are healthy or
registered to the load balancer, or if the request rate exceeds the capacity of the
instances or the load balancers. Preferred statistic: Sum

HTTPCode_Backend_2XX The count of the number of HTTP response codes generated by back-end
instances. This metric does not include any response codes generated by the
load balancer. Preferred statistic: Sum

HTTPCode_Backend_3XX The count of the number of HTTP response codes generated by back-end
instances. This metric does not include any response codes generated by the
load balancer. Preferred statistic: Sum

HTTPCode_Backend_4XX The count of the number of HTTP response codes generated by back-end
instances. This metric does not include any response codes generated by the
load balancer. Preferred statistic: Sum

HTTPCode_Backend_5XX The count of the number of HTTP response codes generated by back-end
instances. This metric does not include any response codes generated by the
load balancer. Preferred statistic: Sum

BackendConnectionErrors The count of the number of connections that were not successfully established
between the load balancer and the registered instances. Because the load
balancer will retry when there are connection errors, this count can exceed the
request rate. Preferred statistic: Sum

SurgeQueueLength A count of the total number of requests that are pending submission to a
registered instance. Preferred statistic: Max

SpilloverCount A count of the total number of requests that were rejected due to the queue
being full. Preferred statistic: Sum

Dimension Description

LoadBalancerName Limits the metric data to Amazon EC2 instances that are connected to the
specified load balancer.

AvailabilityZone Limits the metric data to load balancers in the specified Availability Zone.

APPENDIX E ■ CLOUDWATCH METRICS AND DIMENSIONS

278

Relational Database Service
Namespace: AWS/RDS

Metric Description

BinLogDiskUsage The amount of disk space occupied by binary logs on the master. Units: Bytes

CPUUtilization The percentage of CPU utilization. Units: Percent

DatabaseConnections The number of database connections in use. Units: Count

DiskQueueDepth The number of outstanding IOs (read/write requests) waiting to access the
disk. Units: Count

FreeableMemory The amount of available random access memory. Units: Bytes

FreeStorageSpace The amount of available storage space. Units: Bytes

ReplicaLag The amount of time a Read Replica DB Instance lags behind the source DB
Instance. Units: Seconds

SwapUsage The amount of swap space used on the DB Instance. Units: Bytes

ReadIOPS The average number of disk I/O operations per second. Units: Count/Second

WriteIOPS The average number of disk I/O operations per second. Units: Count/Second

ReadLatency The average amount of time taken per disk I/O operation. Units: Seconds

WriteLatency The average amount of time taken per disk I/O operation. Units: Seconds

ReadThroughput The average number of bytes read from disk per second. Units: Bytes/Second

WriteThroughput The average number of bytes written to disk per second. Units: Bytes/Second

Dimension Description

DBInstanceIdentifier This dimension filters the data you request for a specific database instance.

DatabaseClass This dimension filters the data you request for all instances in a database class.
For example, you can aggregate metrics for all instances that belong to the
database class db.m1.small.

EngineName This dimension filters the data you request for the identified engine name
only. For example, you can aggregate metrics for all instances that have the
engine name mysql.

279

APPENDIX F

SQL Server RDS Parameters

This appendix includes a list of RDS parameters for SQL Server. Parameters are used to control the behavior of SQL
Server. You can modify a parameter using the Edit-RDSDBParameterGroup command as described in Chapter 9.

Note ■ This appendix has been adapted from documentation available on the AWS web site as of October 31, 2013.

For the most current version of the AWS documentation, please visit http://aws.amazon.com/documentation/.

Name Apply

Type*

Data

Type

Description

1204 dynamic boolean Returns the resources and types of locks
participating in a deadlock and also the current
command affected.

1211 dynamic boolean Disables lock escalation based on memory pressure, or
based on number of locks. The SQL Server Database
Engine will not escalate row or page locks to table locks.

1222 dynamic boolean Returns the resources and types of locks that are
participating in a deadlock and also the current
command affected, in an XML format that does not
comply with any XSD schema.

1224 dynamic boolean Disables lock escalation based on the number of
locks. However, memory pressure can still activate
lock escalation.

2528 dynamic boolean Disables parallel checking of objects by DBCC
CHECKDB, DBCC CHECKFILEGROUP, and DBCC
CHECKTABLE.

3205 dynamic boolean Disable hardware compression for tape drivers.

3226 dynamic boolean Suppress log entries for backup operations.

3625 dynamic boolean Limits the amount of information returned in
error messages.

4199 dynamic boolean Controls multiple query optimizer changes
previously made under multiple trace flags.

(continued)

http://aws.amazon.com/documentation/

APPENDIX F ■ SQL SERVER RDS PARAMETERS

280

Name Apply

Type*

Data

Type

Description

4616 dynamic boolean Makes server-level metadata visible to application roles.

6527 dynamic boolean Disables generation of a memory dump on the first
occurrence of an out-of-memory exception in
CLR integration.

7806 dynamic boolean Enables a dedicated administrator connection
(DAC) on SQL Server Express.

access check cache bucket count dynamic integer Number of buckets used by the internal access check
result cache.

access check cache quota dynamic integer Number of entries used by the internal access check
result cache.

ad hoc distributed queries dynamic boolean Enable ad hoc distributed queries using
OPENROWSET and OPENDATASOURCE.

affinity i/o mask static integer Bind disk I/O to specified subset of CPUs.

affinity mask dynamic integer Dynamically control CPU affinity.

agent xps dynamic boolean Enable the SQL Server Agent extended stored
procedures on this server.

allow updates dynamic boolean Setting has no effect.

awe enabled static boolean Enable Address Windowing Extensions (AWE) to
provide access to physical memory in excess of the
limits set on configured virtual memory.

backup compression default dynamic boolean Default on whether to use compression during
backups.

blocked process threshold (s) dynamic integer Threshold, in seconds, at which blocked process
reports are generated.

c2 audit mode static boolean Enable C2 auditing.

clr enabled dynamic boolean Whether assemblies can be run by SQL Server.

common criteria compliance
enabled

static boolean Enable elements required for Common Criteria
compliance.

contained database
authentication

dynamic boolean Enable contained databases authentication to create
or attach contained databases to Database Engine
without authenticating a login at the Database
Engine level.

cost threshold for parallelism dynamic integer Threshold at which Microsoft SQL Server creates
and runs parallel plans for queries.

cross db ownership chaining dynamic boolean Configure cross-database ownership chaining for an
instance of Microsoft SQL Server.

cursor threshold dynamic integer Number of rows in the cursor set at which cursor
keysets are generated asynchronously.

(continued)

APPENDIX F ■ SQL SERVER RDS PARAMETERS

281

Name Apply

Type*

Data

Type

Description

database mail xps dynamic boolean Enable Database Mail on the server.

default full-text language dynamic integer Default language value for full-text indexed
columns.

default language dynamic integer Default language for all newly created logins.

default trace enabled dynamic boolean Enable or disable the default trace log files.

disallow results from triggers dynamic boolean Whether triggers can return result sets.

ekm provider enabled static boolean Enable Extensible Key Management device support
in SQL Server.

filestream access level dynamic integer Change the FILESTREAM access level for this
instance of SQL Server.

fill factor (%) static integer Server-wide default fill-factor value.

ft crawl bandwidth (max) dynamic integer Maximum size to which the pool of large memory
buffers can grow for full-text searching.

ft crawl bandwidth (min) dynamic integer Minimum size to which the pool of large memory
buffers can grow for full-text searching.

ft notify bandwidth (max) dynamic integer Maximum size to which the pool of small memory
buffers can grow for full-text searching.

ft notify bandwidth (min) dynamic integer Minimum size to which the pool of small memory
buffers can grow for full-text searching.

index create memory (kb) dynamic integer Maximum amount of memory initially allocated for
creating indexes.

in-doubt xact resolution dynamic integer Control default outcome of transactions that the
Microsoft Distributed Transaction Coordinator
(MS DTC) is unable to resolve.

lightweight pooling static boolean Whether to switch to fiber mode scheduling.

locks static integer Maximum number of available locks.

max degree of parallelism dynamic integer Number of processors to use in a parallel
plan execution.

max full-text crawl range dynamic integer Number of partitions that Microsoft SQL Server
should use during a full index crawl.

max server memory (mb) dynamic integer Maximum amount of memory in megabytes in the
buffer pool used by an instance of Microsoft
SQL Server.

max text repl size (b) dynamic integer Maximum size in bytes of text, ntext, varchar(max),
nvarchar(max), varbinary(max), xml, and image
data that can be added to a replicated column or
captured in a single INSERT, UPDATE, WRITETEXT,
or UPDATETEXT statement.

(continued)

APPENDIX F ■ SQL SERVER RDS PARAMETERS

282

Name Apply

Type*

Data

Type

Description

max worker threads static integer Number of worker threads available to Microsoft
SQL Server processes.

media retention dynamic integer System-wide default length of time to retain each
backup set.

min memory per query (kb) dynamic integer Minimum amount of memory in kilobytes that are
allocated for the execution of a query.

min server memory (mb) dynamic integer Minimum amount of memory in megabytes in the
buffer pool used by an instance of Microsoft
SQL Server.

nested triggers dynamic boolean Control whether an AFTER trigger can cascade.

network packet size (b) dynamic integer Packet size (in bytes) used across the entire network.

ole automation procedures dynamic boolean Whether OLE Automation objects can be
instantiated within Transact-SQL batches.

open objects static integer Setting has no effect.

optimize for ad hoc workloads dynamic boolean Improve efficiency of the plan cache for workloads
that contain many single use ad hoc batches.

ph timeout (s) dynamic integer Time, in seconds, that the full-text protocol handler
should wait to connect to a database before timing out.

precompute rank dynamic boolean Not implemented in SQL Server 2008.

priority boost static boolean Whether Microsoft SQL Server should run at a
higher Windows Server scheduling priority than
other processes on the same computer.

query governor cost limit dynamic integer Upper limit on the time period in which query
can run.

query wait (s) dynamic integer Time in seconds that a query waits for resources
before timing out.

recovery interval (min) dynamic integer Maximum number of minutes per database that
Microsoft SQL Server needs to recover databases.

remote access static boolean Control the execution of stored procedure from local
or remote servers on which instances of Microsoft
SQL Server are running.

remote admin connections dynamic boolean Enable client applications on remote computers to
use the dedicated administrator connection (DAC).

remote login timeout (s) dynamic integer Number of seconds to wait before returning from a
failed attempt to log in to a remote server.

remote proc trans dynamic boolean Protect the actions of a server-to-server procedure
through a Microsoft Distributed Transaction
Coordinator (MS DTC) transaction.

(continued)

APPENDIX F ■ SQL SERVER RDS PARAMETERS

283

Name Apply

Type*

Data

Type

Description

remote query timeout (s) dynamic integer How long, in seconds, a remote operation can take
before Microsoft SQL Server times out.

replication xps dynamic boolean Internal use only.

scan for startup procs static boolean Scan for automatic execution of stored procedures at
Microsoft SQL Server startup time.

server trigger recursion dynamic boolean Whether to allow server-level triggers to fire
recursively.

set working set size static boolean Setting has no effect.

show advanced options dynamic boolean Display the sp_configure system stored procedure
advanced options.

smo and dmo xps dynamic boolean Enable SQL Server Management Object (SMO) and
SQL Distributed Management Object (SQL-DMO)
extended stored procedures on this server.

sql mail xps dynamic boolean Enable SQL Mail on this server.

transform noise words dynamic boolean Suppress an error message if noise words cause a
Boolean operation on a full-text query to return zero
rows.

two digit year cutoff dynamic integer Cutoff year for interpreting two-digit years as four-
digit years.

user connections static integer Maximum number of simultaneous user
connections. Please note that the service may use up
to 40 connections for system maintenance.

user options dynamic integer Specify global default query processing options for
all users.

xp_cmdshell dynamic boolean Enable whether the xp_cmdshell extended stored
procedure can be executed on the system.

* If the method specified is “immediate” and the parameter apply type is “dynamic,” the change will take place without
restarting the DB Instances. If the method specified is “pending-reboot” or the parameter apply type is “static,” you
will have to reboot the DB Instances using the rds-reboot-db-instance command.

Symbols���������
AWS Architecture

availability zones (AZs), 3
cloud computing, 1
regions

amazon global infrastructure, 2
Govcloud, 3
list and locations, 3

services
compute, 5
management, 4
monitoring, 6
network, 5
storage, 5

EC2 classic instances
User data

bootstrap, 45

A, B���������
Amazon Machine Images (AMI), 29, 31
Amazon Machine Images (AMIs), 115

BlockDeviceMapping
attribute, 127

bucket dialog box creation, 131
EC2Conig Service, 118

Administrator Password, 121
Drive Letter Mapping, 122
Event Log, 120
General tab, 119
Image tab, 120, 124
Initialize Drives, 122
instance boots, 118
PowerShell script, 122
Root Volume, 122
Set Computer Name, 120
Shutdown with SysPrep, 121
Storage tab, 121, 124

subsequent boots, 118
User Data, 120
Wallpaper Information, 120
Web Server role, 123

ec2-delete-disk-image command, 132
ec2-describe-conversion-tasks

command, 132
ec2-import-instance command, 132
ec2-resume-import command, 132
Edit-EC2ImageAttribute command,

image, 127–128
end-to-end process, java, 130
irewall rules, 129
Get-EC2ImageByName, 117
hypervisor, 131
image dialog box creation, 126
ImageState, 126
name ilter, 117
name tag, 129
owner-alias, 116
platform ilter, 116
scripted build, 115
SysPrep answer ile, 124, 128
tools, 130
wildcard character (*), 117

Amazon Machine Images (AMIs)., 210
Amazon Resource Name (ARN), 166, 199
Amazon Web Service (AWS), 7

account, 7
credentials and region, 18
defaults, 19
IAM roles, 23

administrator access, 24–25
creation, 24
EC2 role, 24

key pair, 21
creation, 22
name, 23
region, 22

Index

285

persisting defaults, 20
stored credentials, 20
support plan, 8
user account

account alias, 14
assigning IAM permissions, 10
completion, 12
console dashboard, 9
custom password option, 14
custom sign-in link, 15–16
downloading credentials, 13
IAM group, 10
identity and access management

dashboard, 9
new IAM user, 11–12
password assignment, 14
reviewing IAM policy, 11
sign out, 15
types of credentials, 13

Windows PowerShell, 17
AWS Architecture, 1
AWS Reference Architecture, 4

C���������
CIDR, 69
Cloud computing, 1
Cloudwatch

AWS services, 144
Connect-SNSNotiication command, 144
New-SNSTopic command, 144
Publish-SNSMessage, 144
Set-CWAlarmState command, 145
Write-CWMetricAlarm command, 144

Command Line Interface (CLI), 13

D���������
DHCP, 97
Dynamic host coniguration protocol (DHCP), 78

AmazonProvidedDNS, 80
network time protocol (NTP), 78
New-EC2DHCPOption, 79
Options array, 80
option set, 79

E���������
EC2 classic instances, 27

AWS management console, 27
ilters

AWS CLI syntax, 43
Get methods, 43
Where-Object command, 43

Get-EC2Instance, 35
Get-EC2PasswordData, 44
launch instance, Web console, 27

Amazon Machine Images (AMI), 29
key pair, 31
security group coniguration, 30
tag instance, 30

life cycle management, 34
Restart-Ec2Instance, 35
Start-Ec2Instance, 35
Stop-Ec2Instance, 35

metadata URL, 37
New-EC2Instance, 45
PowerShell, 31

Amazon Machine Images (AMI), 31
MaxCount, 32
MinCount, 32
RunningInstance, 32

PublicDnsName, 45
SendInstanceReadyEmail()

method, 44
tags tab, 41
User data, 39

bootstrap, 39, 47
data retrieve, 39
Invoke-RestMethod, 40–41
setup, 39

Web Console Connect, 32
AWS management console, 34
Decrypt Password, 33
encrypt password, 32
Get-EC2PasswordData, 34
Remote Desktop session, 33

EC2 Classic instances, 27
EC2Conig Service

Administrator Password, 121
Drive Letter Mapping, 122
Event Log, 120
General tab, 119
Image tab, 120, 124
Initialize Drives, 122
instance boots, 118
PowerShell script, 122
Root Volume, 122
Set Computer Name, 120
Shutdown with SysPrep, 121
Storage tab, 121, 124
subsequent boots, 118
User Data, 120
Wallpaper Information, 120
Web Server role, 123

Elastic block storage
Quality of service (QoS), 56

optimized instance, 56
Provisioned IOPS, 56

■INDEX

286

Amazon Web Service (AWS) (cont.)

snapshots, 57
AWS accounts, 58
Copy-EC2Snapshot, 58
Edit-EC2SnapshotAttribute, 58
Get-EC2Snapshot, 58
New-EC2Snapshot, 57
Remove-EC2Snapshot, 57
Reset-EC2SnapshotAttribute, 59
U.S. Census data, 58

Storage Device Coniguration
Amazon.EC2.Model.EbsBlockDevice, 50
AMI, 49
AWS management console, 49
backup, 61
BlockDeviceMapping, 53
/dev/sda1, 51
EC2.Model.BlockDeviceMapping object, 50
Ephemeral volumes, 52
extended partition, 59, 61
for windows application, 50
New-EC2Instance, 51
SnapshotID parameter, 52
to running instance, 54
xvdf, 51

Elastic block storage (EBS), 49
Elastic Compute Cloud (EC2), 27, 135
Elastic IP addresses

deinition, 95
issues, 96
NAT, 95
Remove-EC2Address command, 96

Elastic Load Balancer (ELB)
DNS CNAME creation, 141
Get-ELBInstanceHealth, 141
Get-ELBLoadBalancer, 140
HTTP traic, 140
iisstart.htm, 140
internet gateway, 138
network ACLs, 139
New-ELBLoadBalancer

command, 140, 143
scheme parameter, 140
security groups, 139
self-signed certiicate, 142
SSL certiicate,import, 141
stickiness policies, 143
subnets, 138
TCP connection, 140
veriSign, 142
VPC with ELB, 138
web server, 137

Elastic network interfaces (ENIs)
Add-EC2NetworkInterface command, 99
Edit-EC2NetworkInterfaceAttribute

command, 105

ephemeral ports, 102
Get-EC2Instance, 99
HTTP and HTTPS, 104
multihomed instance, 98
multiple interfaces, 100
NAT gateway, 105
NAT gateway and RDP gateway, 101
PowerShell script, 99
private subnets, 106
proxy server, 100
RDP gateway, 107
remote desktop gateway (RDG)

server, 100
resources subnet creation, 102
SSL tunnel, 103
TCP communication types, 110
UDP communication types, 112
VPCID, CIDR Block, 101
web server and SQL server,

domain members, 108

F���������
Filters

AWS CLI syntax, 43
Get methods, 43
Where-Object command, 43

G���������
Gateway

internet gateway, 70
network address translation (NAT), 70
public IP address, 70

GATEWAY
VIRTUAL PRIVATE GATEWAY, 84

GIBIBYTE (GIB), 50

H���������
High availability, 135

Architecture
high availability VPC, 136
load balancer, 137
multiple availability zone, 135
single-tier web application, 136
span availability zone, 135
subnets creation, 136

auto scaling, 145–146
cloudWatch, 147
cloudWatch alarm creation, 148
DefaultCoolDown, 147
DesiredCapacity, 147
forcedelete, 148
load balancer, 147

■INDEX

287

New-EC2Instance parameter, 146
scalingadjustment, 148
user data script, 146
Write-ASScalingPolicy, 147

CloudWatch. See CloudWatch
ELB. See Elastic Load Balancer (ELB)
Publish-IAMServerCertiicate

command, 142
Route 53

auto scaling group, 151
balance traic, 148
EC2Instanceattribute, 152
ENIs and IPs, 154
Ephemeral Storage, 153
InstanceType attribute, 152
latency-based routing, 149
self-healing application, 149, 151

I���������
Identity and Access Management (IAM), 193

managing groups
Add-IAMUserToGroup command, 195
Get-IAMGroupForUser command, 196
New-IAMGroup command, 195
unique permissions sets, 195

managing policies
administrator policy, 197
ARN, 199
EC2 tags, 201
environmental tag, 201
generic policy, 200
JSON complex structures, 197
JSON statements, 196
multiple methods, 198
powerShell, 202
powershell help iles, 197
terminate instances action, 201
variables, 200
web service methods, 197
wildcard, 198

managing roles
access policy, 203
Get-IAMRoles command, 202
New-IAMRole command, 203

managing users
access keys sets, 194
Get-IAMUser command, 193
New-IAMAccessKey command, 194
New-IAMUser command, 193
Set-AWSCredentials command, 194

Miscellaneous IAM Commands
AMIs, 210
AWS account credentials Vs IAM users, 212

AWS administrators, 205
AWS experts, 205
BILLING, 213
common permissions, 205
continuous development, 206
Get-IAMAccountAlias

command, 204
IAM wizard, 213
login,AWS account, 212
managing password policy, 204
powershell, IAS access, 212
Remove-IAMAccountAlias

command, 204
using the account summary, 204
VPC features, 207

unprecedented control, 193
IDENTITY AND ACCESS MANAGEMENT (IAM)

MISCELLANEOUS IAM COMMANDS
LEAST PRIVILEGED GROUP

CREATION, 205
IO Operations per Second (IOPS), 50

J���������
JavaScript Object Notation (JSON), 196

K���������
Key Management Server (KMS), 118

L���������
Life cycle management

Restart-Ec2Instance, 35
Start-Ec2Instance, 35
Stop-Ec2Instance, 35

M���������
Managing RDS instances

DBInstanceIdentiier, 159
deleting an instance, 163
engine types, 159
engine type storage, 159
instance class engine type, 160
logging into RDS instance, 162
modifying an instance, 162
New-RDSDBInstance command, 158
optional parameters, 160

Miscellaneous IAM commands. See Identity
and Access Management (IAM),
miscellaneous IAM commands

Monitoring
CloudWatch. See CloudWatch

Multi Factor Authentication (MFA), 13

■INDEX

288

High availability (cont.)

N���������
Name ilter, 117
Network access control lists (ACLs), 74–75

private subnet secure, 77
public subnet secure, 75

Network address translation (NAT), 69, 95

O���������
oobeSystem, 124

P, Q���������
Platform ilter, 116
PowerShell

Amazon Machine
Images (AMI), 31

MaxCount, 32
MinCount, 32
RunningInstance, 32

Private IP address, 97

R���������
Relational database service (RDS), 3
Relational Database

Service (RDS), 155
architecture, 155

EC2 instances, 157
simple deployment, 156
SQL Server port 1433, 157
subnet group creation, 157

coniguring database engine, 163
modiication options, 164
modiication parameters, 164

creating a VPC, 156
events, 169
logs, 171
managing RDS Instances. See Managing

RDS Instances
multi-Az instances, 171
point-in-time restores, 167
read replicas

Convert-RDSReadReplicaToStandalone
command, 174

enable scaling, 173
New-RDSDBInstanceReadReplica

command, 173
robust database, 174

tags, 168
Working with Snapshots

ARN, 166
EC2 snapshot, 165
New-RDSDBInstance, 166

New-RDSDBSnapshot command, 165
SQLServer02, 166

Remote desktop gateway (RDG) server, 100
Remote Desktop Protocol (RDP), 91
Reservation, 36

S, T, U���������
Signing Certiicates, 13
Simple Notiication Service (SNS), 144
Simple Storage Service (S3), 179

HTTP/HTTPS, 179
managing buckets

features, 179
Get-S3Bucket command, 180
New-S3Bucket command, 179
Remove-S3Bucket

command, 180
Test-S3Bucket command, 180

managing folders
dummy object, 182
KeyPreix, 182
organize objects, 181
search pattern attribute, 182

managing objects
Content parameter, 180
Copy-S3Object, 181
Force option, 181

managing Public Access, 183
managing versions

AWS, 183
bucket version, 183
Get-S3Object, 186
Get-S3Version command, 184
life-cycle policy, 185
powerShell script, 185
Read-S3Object, 184
redundancy storage, 185
Remove-S3Object, 184
Restore-S3Object command, 186
S3BucketVersioning, 185
Where-Object, 184
Write-S3BucketVersioning

command, 183
miscellaneous S3 options

application/octet-stream, 188
AWS authentications, 190
AWS signatures work, 191
canonicalized data, 192
DNS CName creation, 190
encryption, 188
Get-S3PresignedURL, 190
pagination, 187
powershell command, 191
pre-signed URL, 190

■INDEX

289

public read-only lag, 189
reduced redundancy, 188
tagging, 187
Write-S3BucketWebsite, 189

REST API, 179
Stored credentials, 20

V���������
Virtual private cloud (VPC), 67, 80

creation, 68
AWS, 68–69
dialog box, 68
EC2 instances, 68
tenancy option, 69

dynamic host coniguration
protocol (DHCP), 78

AmazonProvidedDNS, 80
network time protocol (NTP), 78
New-EC2DHCPOption, 79
Options array, 80
option set, 79

internet gateway, 70
network address translation (NAT), 70
public IP address, 70

network access control lists (ACLs)
private subnet secure, 77
public subnet secure, 75

Network access control lists (ACLs), 74
network topology, 67
powerShell commands, 67
private subnet, 68
public subnet, 68
route tables, 71

association.main ilter, 72
EC2 instance, 73
EC2RouteTableAssociation command, 74
Get-EC2RouteTable, 72
internet gateway, 72

New-EC2Route command, 73
Routes property, 72
web console, 71

subnet, 69
subnet creation

CIDR, 69
dialog box, 70
Get-EC2Subnet command, 70
Remove-EC2Subnet command, 70

Virtual private gateway, 84
web console, 67

Virtual Private Cloud (VPC), 89
elastic IP addresses, 95

deinition, 95
issues, 96
NAT, 95
Remove-EC2Address command, 96

ENIs. See Elastic network interfaces (ENIs)
private IP address, 97
Request Instances Wizard, 94
security groups

EC2SecurityGroup command, 91
irewall, 89
HTTP and HTTPS requests, 92
inbound rules, 90
IpProtocol, 92
outbound rules, 91
pingRule, 93
PowerShell command, 91
Remote Desktop Protocol, 91
Revoke-EC2SecurityGroupEgress, 92
Revoke-EC2SecurityGroupIngress, 92
SQL server, 93
traic control type, 89

VIRTUAL PRIVATE GATEWAY, 84

W, X, Y, Z���������
Windows Management Instrumentation (WMI), 46
Windows PowerShell, 17

■INDEX

290

Simple Storage Service (S3) (cont.)

Pro PowerShell for

Amazon Web Services

DevOps for the AWS Cloud

Brian Beach

Pro Powershell for Amazon Web Services: DevOps for the AWS Cloud

Copyright © 2014 by Brian Beach

his work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material
is concerned, speciically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,
reproduction on microilms or in any other physical way, and transmission or information storage and retrieval,
electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.
Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material
supplied speciically for the purpose of being entered and executed on a computer system, for exclusive use by the
purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the
Copyright Law of the Publisher’s location, in its current version, and permission for use must always be obtained from
Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are
liable to prosecution under the respective Copyright Law.

ISBN-13 (pbk): 978-1-4302-6451-4

ISBN-13 (electronic): 978-1-4302-6452-1

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with every
occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an editorial fashion
and to the beneit of the trademark owner, with no intention of infringement of the trademark.

he use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identiied
as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication, neither
the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may
be made. he publisher makes no warranty, express or implied, with respect to the material contained herein.

President and Publisher: Paul Manning
Lead Editor: Jonathan Hassell
Technical Reviewers: Nicholas Beaugeard, Steve Roberts
Editorial Board: Steve Anglin, Mark Beckner, Ewan Buckingham, Gary Cornell, Louise Corrigan, James T. DeWolf,

Jonathan Gennick, Jonathan Hassell, Robert Hutchinson, Michelle Lowman, James Markham,
Matthew Moodie, Jef Olson, Jefrey Pepper, Douglas Pundick, Ben Renow-Clarke, Dominic Shakeshaft,
Gwenan Spearing, Matt Wade, Steve Weiss

Coordinating Editor: Anamika Panchoo
Copy Editor: Karen Jameson
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global
Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com, or visit
www.springeronline.com. Apress Media, LLC is a California LLC and the sole member (owner) is Springer Science +
Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Special Bulk Sales–eBook
Licensing web page at www.apress.com/bulk-sales.

Any source code or other supplementary materials referenced by the author in this text is available to readers at
www.apress.com. For detailed information about how to locate your book’s source code, go to
www.apress.com/source-code.

orders-ny@springer-sbm.com
www.springeronline.com
http://rights@apress.com
http://www.apress.com
http://www.apress.com/bulk-sales
http://www.apress.com/
http://www.apress.com/source-code/

v

Contents

About the Author ...xiii

About the Technical Reviewers .. xv

Acknowledgments .. xvii

Introduction ... xix

Chapter 1: AWS Architecture Overview ■ ...1

Introduction ...1

What Is Cloud Computing? ..1

Regions ..1

Availability Zones ..3

Services...4

Management .. 4

Storage .. 5

Network ... 5

Compute ... 5

Monitoring ... 6

Summary ...6

Chapter 2: Getting Started ■ ...7

Creating an AWS Account ..7

Creating a User Account ..8

Configuring PowerShell ...17

Specifying Credentials and Region..18

■ CONTENTS

vi

Setting Defaults ...19

Persisting Defaults ..20

Using Stored Credentials ...20

Using Key Pairs ...21

Using IAM Roles ..23

Summary ...25

Chapter 3: Basic Instance Management ■ ..27

Creating Instances ..27

Launching an Instance with the Web Console ... 27

Launching an Instance with PowerShell.. 31

Connecting to an Instance ...32

Managing the Instance Life Cycle ...34

Listing Instances and Metadata ..35

Using the Metadata URL ..37

Using User Data ...39

Working with Tags ...41

Working with Filters ..43

Exercise 3.1: Waiting for an Instance to Launch ...43

Exercise 3.2: Bootstrapping with User Data ..45

Summary ...48

Chapter 4: Elastic Block Storage ■ ...49

Managing Volumes at Launch ...49

Adding a Volume to a Running Instance ..54

Managing Quality of Service ...56

Working with Snapshots ...57

Managing Public Snapshots ..58

Summary ...65

■ CONTENTS

vii

Chapter 5: Virtual Private Cloud ■ ..67

Creating a VPC ...68

Creating a Subnet ..69

Creating an Internet Gateway ..70

Managing Route Tables ...71

Managing Network ACLs ...74

Securing the Public Subnet ... 75

Securing the Private Subnet .. 77

Managing DHCP ...78

Summary ...87

Chapter 6: Advanced Instance Management ■ ...89

Managing Security Groups ..89

Displaying Security Groups .. 90

Adding and Removing Rules ... 91

Launching Instances into a VPC ..94

Managing Elastic IP Addresses ...95

Managing Private IPs ...97

Managing Elastic Network Interfaces ...98

Summary ...113

Chapter 7: Amazon Machine Images ■ ...115

Working with Scripted Builds and Prepared Images ...115

Listing AMIs ...116

Limiting the Number of Instance Results .. 116

Finding an Instance by Name .. 117

Locating the Most Common Images .. 117

Introducing the EC2Config Service ..118

Preparing an AMI Using EC2Config ..122

Editing the SysPrep Answer File..124

■ CONTENTS

viii

Creating an AMI ...126

Sharing an AMI ..127

Summary ...133

Chapter 8: Monitoring and High Availability ■ ..135

Architecting for High Availability ...135

Managing Elastic Load Balancers ...137

Preparing the VPC for an ELB .. 138

Configuring an ELB for HTTP ... 140

Configuring an ELB for HTTPS ... 141

Managing Stickiness Policies .. 143

Monitoring with CloudWatch ...144

Using Auto Scaling ..145

Using Route 53 ..148

Summary ...154

Chapter 9: Relational Database Service ■ ..155

RDS Architecture ...155

Creating a VPC ... 156

Creating a Subnet Group ... 157

Configuring Security Groups .. 157

Managing RDS Instances ..158

Launching an Instance .. 158

Modifying an Instance ... 162

Deleting an Instance .. 163

Configuring a Database Engine ...163

Modifying Parameters ... 164

Modifying Options .. 164

Working with Snapshots ...165

Using Point-in-Time Restores..167

■ CONTENTS

ix

Working with Tags, Events, and Logs ..168

Tags ... 168

Events .. 169

Logs ... 171

Multi-AZ Instances ..171

Read Replicas ..173

Summary ...177

Chapter 10: Simple Storage Service ■ ..179

Managing Buckets ...179

Managing Objects ...180

Managing Folders ..181

Managing Public Access ...183

Managing Versions ..183

Using Life-Cycle Management and Glacier .. 185

Miscellaneous S3 Options ...187

Tagging .. 187

Pagination .. 187

Encryption ... 188

Reduced Redundancy .. 188

Content Type .. 188

Summary ...192

Chapter 11: Identity and Access Management ■ ..193

Managing Users ..193

Managing Groups ..195

Managing Policies ...196

Policy Actions .. 197

Policy Resources ... 199

Policy Actions .. 201

Policy Conditions ... 201

■ CONTENTS

x

Managing Roles ...202

Miscellaneous IAM Commands ...204

Managing Password Policy .. 204

Using the Account Summary ... 204

Setting the Account Alias ... 204

Summary ...214

Appendix A: Glossary of Terms ■ ..215

Appendix B: Metadata URL Structure ■ ..219

Appendix C: List of Filters by EC2 Command ■ ...223

Get-EC2Address ..223

Get-EC2AvailabilityZone ..223

Get-EC2BundleTask ...224

Get-EC2CustomerGateway ..224

Get-EC2DhcpOption ...225

Get-EC2Image ...225

Get-EC2Instance ..226

Get-EC2InstanceStatus..231

Get-EC2InternetGateway ...231

Get-EC2KeyPair ...232

Get-EC2NetworkAcl ...232

Get-EC2NetworkInterface ..233

Get-EC2PlacementGroup ...235

Get-EC2Region ..235

Get-EC2ReservedInstance ...235

Get-EC2ReservedInstancesListing ..236

Get-EC2ReservedInstancesOffering ..236

Get-EC2RouteTable ..237

Get-EC2SecurityGroup ...238

■ CONTENTS

xi

Get-EC2Snapshot ..238

Get-EC2SpotInstanceRequest ...239

Get-EC2SpotPriceHistory ...241

Get-EC2Subnet ..241

Get-EC2Tag ..242

Get-EC2Volume ...242

Get-EC2VolumeStatus ...243

Get-EC2Vpc ...244

Get-EC2VpnConnection ...244

Get-EC2VpnGateway..245

Appendix D: List of API Methods by Command ■ ..247

AWS Support ...247

Auto Scaling ..248

CloudFront ...249

CloudSearch ..250

CloudWatch ...250

Direct Connect ...251

Data Pipeline ...251

Elastic Beanstalk ...252

Elastic Compute Cloud (EC2) ...253

ElastiCache ..257

Elastic Load Balancing (ELB) ...258

Elastic Map Reduce (EMR) ..259

Elastic Transcoder ...259

Identity and Access Management (IAM) ..260

Import/Export ..262

OpsWorks ..262

Route 53 ..264

■ CONTENTS

xii

Relational Database Service (RDS) ..264

Redshift ...266

Simple Storage Service (S3)..267

Simple Email Service (SES) ...268

Storage Gateway (SG)..269

Simple Notification Service (SNS) ...270

Simple Queue Service (SQS) ...271

Secure Token Service (STS) ..271

Appendix E: CloudWatch Metrics and Dimensions ■ ..273

Auto Scaling ..273

Billing ..274

Elastic Block Storage ..274

Elastic Compute Cloud ..275

Elastic Load Balancer ..276

Relational Database Service ...278

Appendix F: SQL Server RDS Parameters ■ ..279

Index ...285

xiii

About the Author

Brian Beach is an enterprise architect with more than 15 years of experience
in software engineering and information technology management. Brian is an
Amazon Certiied Solution Architect, Microsoft Certiied Solution Developer
(MCSD), and Certiied Information Systems Security Professional (CISSP). He
holds a BS in Computer Engineering from NYU Poly, an MBA from Rutgers
Business School, and is a member of American Mensa. Brian is an advocate for
Cloud Computing on the AWS platform and currently manages a team of cloud
engineers at a Big Four accounting irm. Brian can be contacted through his blog
at http://blog.brianbeach.com or LinkedIn at http://www.linkedin.com/in/
brianjbeach.

http://blog.brianbeach.com
http://www.linkedin.com/in/brianjbeach
http://www.linkedin.com/in/brianjbeach

xv

About the Technical Reviewers

Nick Beaugeard is the Chief Technology Oicer and founder of HubOne,
Australia’s irst cloud integrator and Amazon Web Services Advanced Consulting
Partner. Nick’s been in and around Microsoft Systems Management since 1998,
working on all versions of System Center and was a Program Manager at Microsoft
working alongside the irst developers of PowerShell. Nick lives in Australia with
his wife and four kids, and apart from technology, he enjoys cooking, public
speaking, and generally thinking up crazy new ideas.

Steve Roberts is a Software Development Engineer at Amazon Web Services with
more than 20 years of experience in producing developer tools. He is currently a
member of the team responsible for the AWS SDK for .NET, AWS Toolkit for Visual
Studio, and AWS Tools for Windows PowerShell.

xvii

Acknowledgments

I would like to thank my wife, Karin, for supporting me through the many months of writing this book. I know it has
been hard on you and the family. hank you for your encouragement. I love you.

I would also like to thank the .Net team at Amazon Web Services – speciically Steven Roberts who was an
invaluable resource for this book. You guys are doing a great job. Keep up the good work.

	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewers
	Acknowledgments
	Introduction

