
Shelve in
Mobile Computing

User level:
Intermediate

BOOKS FOR PROFESSIONALS BY PROFESSIONALS®

www.apress.com
SOURCE CODE ONLINE

Pro
Android Wearables

Building Apps for Smartwatches

Wallace Jackson
Pro Android W

earables
Jackson

P ro Android Wearables details how to design and build Android
Wear apps for new and unique Android wearable device

types, such as Google Android smartwatches, which use the new
WatchFaces API. It’s time to take your Android 5 Wear application
development skills and experience to the next level and get
exposure to a whole new world of hardware. As smartwatches
continue to grab major IoT headlines, there is a growing interest
in building Android apps that run on these wearables, which
are now being offered by dozens of major manufacturers. This
means more revenue earning opportunity for today’s indie app
developers.

Additionally, this book provides new media design concepts which
relate to using media assets, as well as how to optimize Wear
applications for low-power, single-core, dual-core or quad-core
CPUs, and how to use the IntelliJ Android Studio IDE, and the
Android device emulators for popular new wearable devices.

• How to build apps beyond those that just run on
Android smartphones and tablets

• How to master the fundamentals of wearable app design

• How to build apps for wearables like smartwatches

9 781430 265504

54999
ISBN 978-1-4302-6550-4

www.allitebooks.com

http://www.allitebooks.org

For your convenience Apress has placed some of the front
matter material after the index. Please use the Bookmarks

and Contents at a Glance links to access them.

www.allitebooks.com

http://www.allitebooks.org

v

Contents at a Glance

About the Author ��xix

About the Technical Reviewer ��xxi

Acknowledgments ��xxiii

Introduction ���xxv

 Chapter 1: Introduction to Android Wearables: Concepts, Types, and ■
Material Design ��� 1

 Chapter 2: Setting Up an Android 5 Wearables Application Development ■
Workstation ��� 25

 Chapter 3: A Foundation for Android Wearables: New Wearable Features ■
in Android 5 ��� 47

Chapter 4: Exploring Android Studio: Getting Familiar with the IntelliJ IDEA ■ ����� 71

 Chapter 5: Android Virtual Devices: Setting Up Wearables ■
Application Emulators ��� 97

 Chapter 6: Introduction to Android Watch Faces Design: Considerations ■
and Concepts ��� 117

 Chapter 7: Program Watch Faces for Wear: Creating the Watch Face ■
Code Foundation �� 143

 Chapter 8: A Watch Faces Timing Engine: Using TimeZone, Time, and ■
BroadcastReceiver �� 169

www.allitebooks.com

http://www.allitebooks.org

vi Contents at a Glance

 Chapter 9: Implement a WatchFaces Engine: Core WatchFaces ■
API Methods �� 203

 Chapter 10: WatchFaces Vector Design: Using Vector Graphics ■
for WatchFaces �� 235

 Chapter 11: WatchFaces Bitmap Design: Using Raster Graphics ■
for WatchFaces �� 275

 Chapter 12: WatchFaces Digital Imaging: Developing Multiple ■
Mode Assets �� 317

 Chapter 13: Watch Face Configuration Companion Activity: ■
Google Mobile Services ��� 345

 Chapter 14: Watch Face Configuration Companion Activity Utility ■
and Wearable API �� 395

 Chapter 15: Wearables Application Testing: Using Hardware Devices ■
in Android Studio ��� 451

 Chapter 16: Wear API Deprecation: Updating Apps to Use New ■
Classes or Methods ��� 487

 Chapter 17: The Future of Android IoT APIs: Android TV, Glass, ■
Auto, and Wear �� 521

Index ��� 539

www.allitebooks.com

http://www.allitebooks.org

xxv

Introduction

Welcome to the Pro Android Wearables book, where you will learn how to develop
applications for smartwatch devices. There will be a follow-on book called Pro Android IoT
(Internet of Things), which will cover the other Android APIs such as Android TV, Android
Auto, and Android Glass, so in this book I can focus only on an exploring the smartwatch
device market.

The reason that smartwatches, along with iTV sets, are continuing to explode is a case
of basic economics. There are now dozens of manufacturers, including traditional watch
brands, such as Citizen, Rolex, Casio, Tag Heuer, Timex and Fossil, making smartwatches,
as well as all of the major consumer electronics giants, including Sony, Samsung, LGE,
ASUS, Huawei and Motorola, who now have multiple smartwatch models. This generates
incredibly massive competition, which drives down pricing, making this value proposition
difficult to argue with. I Google searched Android Wear watches today and found two of
the most impressive smartwatches, the Motorola MOTO 360 and the ASUS ZenWatch,
priced at less than $200. For a computer on your wrist, made with rose gold and calf leather
(ZenWatch) or a beautiful carbon black steel bracelet (MOTO), that is an exceptionally
reasonable price point. I expect smartwatches to range from $150 to $450 and to continue
to generate increasing sales into the future, while adding screen resolution (480 to 640
pixels), processor cores (two to four), and system memory (1 to 2 GB).

This book will cover how to develop applications for an exploding smartwatch market,
and it includes the new Watch Faces API released by Google that allows developers to
create their application as the watch face design itself! Since that is what a watch is used
for, I will discuss the Watch Faces API in detail, so that your smartwatch applications can
offer their functions to the users while also telling them the time, date, weather, activity,
notifications, and so forth. You will learn how to use Google Play Services and make Android
Wear applications that have components running on your smartwatch, as well as on the
smartphone or tablet, called a companion activity application.

Chapter 1 looks at Android Wear and wearable concepts and design considerations, before
you set up the Wear production workstation, including your IDE, SDKs, and New Media
Content Development applications in Chapter 2. I will discuss the new features of Android
Wear in Chapter 3, before you learn about the IntelliJ IDEA, and create a foundation for

www.allitebooks.com

http://www.allitebooks.org

xxvi Introduction

your Wear project in Chapter 4. In Chapter 5 you will set up the IntelliJ IDEA, also known as
Android Studio, for production readiness, by making sure all the SDKs and emulators are up
to date and creating AVDs to use for round or square watch face testing.

In Chapter 6, you will get ready to start coding by looking at the Android Watch Faces API
and all of its functionality and UI design considerations. In Chapter 7, you will actually code
your Watch Face Service and Watch Face Engine classes. These drive the Watch Face
infrastructure which you will be putting into place in subsequent chapters.

In Chapter 8 you will put your Watch Face Timing Engine into place, learning about the Time
and TimeZone classes, as well as implementing a BroadcastReceiver object to manage
the implementation of these classes (objects). In Chapter 9, you will implement core Watch
Faces API methods that control different watch face rendering styles and event processing.

In Chapter 10 you will learn about vector graphics and how to “render” designs on the
smartwatch face using the onDraw() method, and in Chapter 11 you will learn about raster
graphics and how to use BitmapDrawable objects along with PNG32 bitmap assets to add
digital imagery to your smartwatch designs. In Chapter 12 you will learn digital imaging
techniques that will allow you to optimize the number of colors used to accommodate
different smartwatch display color limitations, so you can get the most photorealistic results
for your smartwatch application design.

In Chapter 13 you will learn about the Google Mobile Services (GMS) APIs and how to
access Google Play Services so that your Wear apps can do even more than they can using
the native Android and Android Wear APIs. In Chapter 14 you will implement Android Wear
Data APIs in your code to create a Watch Face Utility class to manage your users’ settings.

In Chapter 15 you will learn how to set up a testing environment for real-world hardware
devices and learn about the Android Debug Bridge, or ADB, as well as how to implement
USB device drivers for your hardware devices.

In Chapter 16, you will learn how to dealing with API deprecation and class and method call
code updates, as you remove the deprecated Time class and replace it with the Calendar
and GregorianCalendar class code to make your application more efficient.

Finally, Chapter 17 goes over the Android IoT APIs and other Wear API features to consider
for your smartwatch applications, such as voice recognition and location tracking using the
Speech and GPS APIs, respectively. With the information in this book, you will be well on
your way to developing smartwatch applications using Android Wear and Android Watch
Faces APIs!

www.allitebooks.com

http://www.allitebooks.org

1

Chapter 1
Introduction to Android
Wearables: Concepts, Types,
and Material Design

Welcome to the Pro Android Wearables book! This book will show you how to develop
Android Studio applications for those Android devices that are outside your normal
smartphones and tablets. This book also includes Android development for devices that
can be worn on your person, which is why these Android devices are commonly called
“wearables.”

If you are looking to develop for Android appliances, such as iTV sets, 4K iTV, game
consoles, robots, or other appliances, then the book you want is the Pro Android IoT
(Apress, 2016) book. That title covers development for Android devices known as “Internet
of Things,” which include devices that are not worn on your person and are beyond the more
normal tablets and phones.

This chapter will look at the different types of wearables, as well as their features and
popular usage, and you will learn about the terminology, concepts, differentiating factors,
and important technology surrounding wearables and take a closer look at what types
of Android applications you can develop for wearable devices. I’ll get all of this
wearables-related learning out of the way here so you can focus on setting up your
workstation in Chapter 2, and then get into Android wearables features in Chapter 3. I will
also explain the distinction between wearable devices and Android wearable peripherals.

I’ll also discuss the new material design features that have been added to Android 5, as
these are available for wearables’ application development, and you will see all the cool
things you can do with these!

www.allitebooks.com

http://dx.doi.org/10.1007/9781430265504_2
http://dx.doi.org/10.1007/9781430265504_3
http://www.allitebooks.org

2 CHAPTER 1: Introduction to Android Wearables: Concepts, Types, and Material Design

Wearable Technology Defined: What Is a Wearable?
The term wearables, as well as the terms wearable technology and wearable devices, is
indicative of consumer electronics technology based on embedded computer hardware that
is built inside products that are worn on the outside of one’s body. This includes clothing
and accessories, including jewelry, such as watches, and protective wear, such as glasses,
as well as items of clothing such as socks, shoes, hats, and gloves and sports, health, and
fitness products that can be comfortably worn somewhere on your body.

Wearable devices often have some modicum of communications capability, and this
will allow the device wearer to access information in real time. Data input capability is a
necessary feature for wearable devices, as it allows users to access the features of the
wearable device and use it to run the applications you are going to be learning to develop
over the course of this book. Data input is usually in the form of touch screen interfaces,
voice recognition (also known as voice input), or sometimes through use of hardware
buttons built right into the wearable device itself.

Thanks to the cloud, local storage is not necessary for a wearable device, although some
feature micro SD (secure digital) cards or store data on linked, companion devices. Wearable
devices are able to perform many of the same application tasks as mobile phones and
tablets; in fact, many wearable devices require that the wearable device be “married” to
another Android device (more on this later on in the chapter) within the operating range of
Bluetooth 4.x technology.

Android wearable devices tend to be more sophisticated on the “sensor input” side of
the equation than hand-held technologies on the market today. This is because wearable
devices will provide sensory and scanning features not typically seen with smartphone or
tablet devices. Examples of this include features such as biofeedback and the tracking of
physiological functions, such as pulse, heart rate, workout intensity, sleep monitoring, and
so on.

Examples of wearable hardware devices include smartwatches, smartglasses, textiles,
also called smart fabrics, hats, caps, shoes, socks, contact lenses, ear rings, headbands,
hearing aids, and jewelry, such as rings, bracelets, and necklaces. Wearable technology
tends to refer to things that can be put on and taken off effortlessly. It’s important to note
that there are versions of the wearables concept that are more radical in nature, for instance
the implanted devices, such as microchips or even smart-tattoos. I will not be covering
application development for any of these nonmainstream device types in this book. Because
the general public will primarily be using smartwatches, I’ll be focusing on that type of
wearable device. Ultimately whether a device is worn on, or incorporated into, the body,
the purpose of these Android wearable devices is providing constant, convenient, portable,
seamless, and hands-free access to consumer electronics.

Wearable Application Development: What Types of Apps?
The uses of wearable technology are limited only by your imagination, and the implications
of these applications will be far reaching, which is why you have purchased this Pro Android
Wearables book in the first place!

www.allitebooks.com

http://www.allitebooks.org

3CHAPTER 1: Introduction to Android Wearables: Concepts, Types, and Material Design

Wearable applications will influence a wide spectrum of industry verticals in a large number
of ways. Some of the many industries that are embracing Android wearable devices include
the health care, pharmaceutical, education, fitness, entertainment, music, aging, disability,
transportation, finance, enterprise, insurance, automotive, and gaming industries, and the
list grows larger daily.

The goal of wearable applications in each of these industries should be to seamlessly
incorporate functional, portable electronics and computers into an individual’s daily life. Prior
to their presence in the consumer market, wearable devices were primarily utilized in military
operations as well as in the pharmaceutical, health care, sports, and medicine industries.

More than ten years ago, medical engineers started talking about a wearable device that
could monitor the health of their patients in the form of a smart-shirt or smart-wristband.
At least one of these is a mainstream technology today, and its aim is to monitor vital signs
and send that biofeedback information to an application or a web site for data tracking
and analysis.

The types of Android applications that you can create for use on wearable devices is limited
only to your imagination. This is because wearables are “paired” with more advanced
hardware and thus have those same hardware capabilities that smartphones or tablets have,
plus some sensors that smartphones and tablets do not have!

One of the logical application verticals is health and welfare monitoring; because of
these heart-rate sensors, Android wearables applications can be created that help with
health-related areas of users’ lives, such as their work out in the gym, tracking their diet on
the go while working or traveling, getting enough sleep, walking or running enough miles in a
day, and similar applications that will help users improve their health or at least stay healthy.

Another logical application vertical is social media, as the current trend these days is staying
connected to everyone at all times of the day, while also making new friends or business
associates. Androids are connected to the Internet, via Wi-Fi or 4G, at all times, so these
types of wear apps are also going to be very popular for use on wearable devices.

Of course, games, watch faces or skins, and entertainment consumption will also be a
massive application vertical for wearable devices. Let’s look at this aspect so you can get
some idea about how to apply what you’ll be learning!

Android Wearable Fun: Augmented Reality, Edutainment,
and Gamification
Although wearables technology could potentially have a significant impact in the areas of
social media connectivity, health, dieting, or fitness, the area of wearable technology also
promises to have a major impact on the casual gaming, audio video (AV) entertainment,
edutainment, and augmented reality (AR) markets. Wearable applications that make
everyday tasks into fun to play games, commonly termed gamification, is also a major
market opportunity.

AR, originally called mixed reality, can leverage wearable technology. AR uses i3D
OpenGL capabilities, found in the Android platform, to create a realistic and immersive 3D
environment that syncs up with the real world around you in real time, thanks to Java 7 code
in your Android 5 application. Whereas Android 4.4 and earlier used Java 6, Android 5 uses

www.allitebooks.com

http://www.allitebooks.org

4 CHAPTER 1: Introduction to Android Wearables: Concepts, Types, and Material Design

Java 7. Mixing virtual reality or interactive 3D (i3D) with actual reality, using digital video,
digital imaging, or global positioning satellite (GPS) location-based technology, is not new by
any stretch of the imagination. AR apps are the most advanced type of wearable apps.

AR delivered through the use of wearable devices has been contemplated since before
the turn of the century. What’s important is that AR hardware prototypes are morphing
from bulky technology, such as the massive goggles used by the Oculus Rift, into small,
lightweight, comfortable, highly mobile 3D virtual reality systems.

The next most complex type of application that will soon be appearing on a wearable device
will be wearable games. You can expect to see casual games created for smartwatches and
smartglasses on the market very soon. Careful optimization is the key to creating a game
application that will work well on a wearable device, and I will be covering that topic within
this book.

Another complex type of entertainment application for a wearable device is the AV application.
Playing digital audio or digital video on a wearable device also requires careful optimization, as
well as a user who owns a good pair of Bluetooth audiophile headphones, which fortunately
are made by more than a dozen major electronics manufacturers these days.

Finally, one of the more complex types of wearable applications is custom smartwatch faces
or skins. These turn the watch face that a user looks at all day long into something they want
their watch to look like. Of course you can also create loads of text-based apps, like office
utilities or handy recipe managers, for instance; these will work great on wearables!

The future of Android wearables applications needs to reflect the seamless integration of
fashion, functionality, practicality, visual, and user interface (UI) design. I’ll discuss how to
do this throughout the book, after you have put together the development workstation in
Chapter 2 and created the emulators in Chapter 5, so you have a foundation in place for
wearable development.

Mainstream Wearables: Smartwatches and
Smartglasses
There are two primary (i.e., mainstream) types of wearable devices that popular consumer
electronics manufacturers are scrambling to manufacture.

The smartwatch is currently the most popular type of wearable device, with hundreds of
affordable models already available in the marketplace. As the centuries have passed by,
watches have become the international fashion statement. Thus, it is no surprise that this is
the most popular and useful type of Android wearable device.

The other type of popular wearable genre is smartglasses, and dozens of products have
already been released by companies such as Google (Glass) and Vuzix (M100). Let’s take a
closer look at these two types of wearables hardware, since they are going to be the majority
of the device types that run the pro Android wearables applications you will be creating
during the course of this book.

www.allitebooks.com

http://dx.doi.org/10.1007/9781430265504_2
http://dx.doi.org/10.1007/9781430265504_5
http://www.allitebooks.org

5CHAPTER 1: Introduction to Android Wearables: Concepts, Types, and Material Design

Smartwatches: Round Watch Face vs. Square Organic
Light-emitting Diode
The smartwatch wearable genre of consumer electronics has the most products out
there, with dozens of branded manufacturers and actual product models numbering in the
hundreds, with all but one (Apple Watch) running one flavor of Android or another. For this
reason, I’ll focus on these in this book.

There is also a smartwatch from Samsung, the Galaxy Gear 2, which uses the Tizen OS,
utilizing Linux, HTML5, JavaScript, and CSS3 for app development. I won’t be covering
these in this book, instead focusing on the Samsung Gear S.

Android 5 Wear Software Development Kit (SDK) supports two different smartwatch face
types, round and square, as watches normally come in these two configurations. You’ll
create Android virtual devices (AVDs) (software emulators) for both of these smartwatch
types in Chapter 5.

Smartglasses: Glasses and Other Smartglasses Manufacturers
The smartglasses wearables consumer electronics product genre is the next fastest growing
wearables products genre. Brand eyewear manufacturers are scrambling to get into this
wearables space, so look for smartglasses from Luxottica soon. For this reason, this will be
the secondary focus in this book.

Smartglasses will generally run the Google Glass Development Kit (GDK) or Android 4.x,
and you can expect Android 5 smartglasses wearables in 2015. There are a number of
smartglasses companies, including Google, Vuzix, GlassUp, Sony, six15, and Ion. Google has
of course stopped producing the glasses, promising new and better products in the future.

Wearable Application Programming Interfaces
There are two primary application programming interfaces (APIs), both of which run under
Google Android Studio, that can be used to access features for wearable devices that are
not yet standard in the version of Android 5 that spans across mainstream devices, such
as smartphones and tablets. The smartwatch API is called Wear SDK and the smartglasses
API is called Glass GDK. It’s important to note that some wearable devices can run the full
Android operating system (OS).

The smartwatch example of this would be the Neptune Pine Smartwatch, which runs a full
Android OS, and the Google Glass product does not require that you use Glass GDK unless
you need to use special features of Google Glass or want to develop “native” glass apps. In
other words, Google Glass will run Android apps that run on normal smartphones and tablets.

This means that Neptune Pine and Google Glass can run the same application you develop
for other Android devices. Newer versions of this Neptune Pine product line will utilize the
Wear SDK, which is largely what I will be covering within the scope of this book.

http://dx.doi.org/10.1007/9781430265504_5

6 CHAPTER 1: Introduction to Android Wearables: Concepts, Types, and Material Design

Android Studio 1.0: Android Wear SDK
Android Wear SDK is the API created by Google for use with Android wearables (wearable
devices that run on Android).

It was launched at the beginning of 2015 via the Android developer web site along with
several customized “vertical” APIs, including Android Auto SDK (for automobiles), Android
TV SDK (for 2K or 4K iTV sets), and an Android Wear SDK (for smartwatches). For now, Wear
SDK is targeted at smartwatches, but later it may expand to other wearables such as shoes,
hats, and the like.

Android Wear SDK provides a unified Android wearables development platform that can span
across multiple smartwatch products. Before the Wear SDK was available, a smartwatch
manufacturer had to either provide its own APIs, like the Sony SmartWatch One and Two did
back in 2014, or support the full Android 4 OS, like the Neptune Pine did during 2014.

It is important to note here that this Android Wear SDK does not provide a separate
operating system, but in fact is an extension of the Android 5 OS that requires a portion of
the Android wearable application to run on your host Android device. This would normally
be an Android smartphone, as that is the most portable device and the device type that
connects to a wide variety of networks and carriers.

Because the Android smartwatch represents the majority of the wearable application
marketplace, I will focus the majority of this book on that area of wearable application
development, although I’ll also cover Google Glass in Chapter 17.

Google Glass Development Kit: GDK for Android or Mirror
When developing Google Glass wearable applications, you have two different GDK API
options. You can use these separately or in conjunction with each other. Additionally, there is
a third option of simply using the Android OS without either of the APIs. Let’s take a closer
look at Glass development.

Google Glass’s Android Studio GDK: The Glass Development Kit
The Google Android GDK is an add-on to the Android OS APIs (also known as the
Android 5 SDK), which allows you to build what Google terms Glassware. Glassware
comprises the Google Glass wearable apps that run directly on Google Glass hardware.

In general, you would want to use this Android GDK development approach if you need
direct access to unique hardware features of the Google Glass, real-time interaction with
the Google Glass hardware for your users, or an off-line capability for your application if no
Internet, Wi-Fi, 2G, 3G, or 4G cellular network is available.

By using the Android SDK in conjunction with the GDK, you can leverage the wide array of
Android APIs while, at the same time, designing a great user experience for Google Glass
owners. Unlike the Mirror API, Glassware built using this Android GDK runs on Glass itself.
This allows access to Glass hardware’s low-level, proprietary (unique to Google Glass)
product features.

http://dx.doi.org/10.1007/9781430265504_17

7CHAPTER 1: Introduction to Android Wearables: Concepts, Types, and Material Design

Develop Google Glass Apps Using Only the Android Environment
Google designed the Glass platform to make their existing Android SDK work on Glass.
What this means is that you may use all of the existing Android development tools, which
you’ll be downloading and installing in Chapter 2, and your Glassware can be delivered
using the standard Android application package (APK) format.

This opens up a lot of those other pro Android development book titles, such as Pro Android
Graphics (Apress 2013) or Pro Android UI (Apress 2014), which will show you how to make
visual Android applications that work well on Google Glass devices. This is because the
Google Glass product is designed to run the full Android OS, and, therefore, any applications
that will run on it. This means you can develop an application that will run across all of
the Android devices out there, including Google Glass. This allows a code once, deliver
anywhere (highly optimized) development work process for your app, as long as users don’t
need to run on smartwatches, other than Pine!

Using RESTful Services with Google Glass: The Mirror API
There’s another API that works with Google Glass and is not tied to Google Android OS at
all. This is what is known as the Google Glass Mirror API, and it is what is commonly known
as a RESTful API.

The Mirror API allows developers to build Glassware for Google Glass using any
programming language they choose. RESTful services provide easy access to web-based
APIs that will do most of the data transfer heavy lifting for the application developer.

In general, you would want to utilize this Mirror API if you need to use a cross-platform
infrastructure such as HTML or PHP, need to access built-in functions for the Google Glass
product, or need platform independence from the Android OS. This would be how you would
use Google Glass with iOS or Windows, for instance.

Hybrid Glass Applications: Mixing Android GDK and the Mirror API
Finally, it’s interesting to note that developers can also create “hybrid” Google Glass
applications. This is because, as you may have suspected, the Google Glass Mirror API can
interface with the Google Glass Android GDK.

This is done by using a menu item to invoke Mirror API code that sends an Intent object
to the Android GDK API and then to the GDK application code. I’ll be using Intents,
which are an Android platform-specific Java Object type, in this book. Intents are used to
communicate among applications, menus, devices, activities, and APIs, such as the Mirror
API. You can even use this hybrid development model to leverage existing web properties
that can launch enhanced i3D experiences that run directly on Google Glass.

http://dx.doi.org/10.1007/9781430265504_2

8 CHAPTER 1: Introduction to Android Wearables: Concepts, Types, and Material Design

True Android or Android Peripheral: Bluetooth Link
In the world of pro Android wearables, and in some cases even in the world of pro Android
appliances, there is often a distinction that you will need to be aware of as a developer that
the marketers of Android products will have a tendency to want to hide. This is because the
cost to manufacture one type of Android device will be quite high (miniaturization), while the
cost to manufacture another type of Android device will be quite low, so profit margins will
be higher, especially if the public can be convinced the product is running an Android OS,
when in fact it’s not actually doing so!

This is quite evident in Android wearables product segments, which include smartwatches
and smartglasses, such as Google Glass. A couple of smartwatches are True Android
devices; that is they have a computer processing unit (CPU), memory, storage, an OS, Wi-Fi,
and the like, right inside of the smartwatch. A good example of one of these True Android
devices is the Neptune Pine.

True smartwatch devices would actually be like having a full smartphone on your wrist and
would be offered by telecommunications carriers just as smartphones currently are. This
True Android smartwatch would be your only Android device, you would not need to carry a
smartphone anymore. Embedded computer miniaturization advances will eventually allow all
smartwatches to do the same things that the Neptune Pine did in 2014, placing a full-blown
Android device on someone’s wrist.

In case you are wondering, I borrowed this “true” Android description from the TrueHD
(HDTV) industry term. TrueHD is 1920-by-1080 resolution, and it is a necessary descriptive
modifier because there is another lower 1280-by-720 resolution in the marketplace that is
called just HD (I call it pseudo-HD).

Other smartwatches are not True Android devices and could be described as more of
a “peripheral” to your existing smartphone, phablet, or tablet, and these use Bluetooth
technology to become an extension of an Android device that has the CPU (processor),
memory (application runtime), data storage, and telecommunication (Wi-Fi access and 4G
LTE cellular network) hardware.

Peripheral Android devices would obviously require a different application development work
process and have different data optimization and testing procedures to achieve an optimal
performance and user experience.

Obviously, because this book will be looking at developing for some of these more
popular Android wearable devices, I will be getting into this “remote Android peripheral”
development issue in greater detail and taking a look at how to design and optimize
wearable peripheral apps.

I just want you to be aware that there are two completely different ways to approach Android
development now: on-board, or native Android apps, and remote or two-way (back-end)
communication Android app functionality.

With the advent of Bluetooth wearables and second-screen technology (which is covered in
the book Pro Android IoT [Apress, 2016]), this is going to become an important distinction in
Android applications’ development as time goes on, and these extension Android products
continue emerging into the market.

9CHAPTER 1: Introduction to Android Wearables: Concepts, Types, and Material Design

The bottom line is that you need to know which consumer electronics device is hosting the
CPU, memory, storage, and telecommunications hardware, which consumer electronics
device is hosting the touch screen, display, and input, and which technology (and how fast it
is) is connecting those two together. This is important for how well you’ll be able to optimize
app performance, as user experience (UX) is based on how responsive and easy an app is
to use.

Wearable Apps Design: Android 5 Material Design
Android 5, released in 2014 along with the Android TV, Wear, and Auto SDK add-ons,
features an all new UI paradigm. Google calls it Material Design because it is more 3D
savvy. Texturing or “skinning” a 2D or 3D object involves using what are commonly termed
materials in the media design industry.

Google created Material Design to be a far-reaching UI design guideline for end-user
interaction, animated motions, and visual design across the Google Chrome OS and Android
OS platforms, as well as across consumer electronics devices that run Chrome OS (HTML5,
CSS3, and JavaScript on top of Linux) or Android 5 OS (Java 7, CSS3, and XML on top of a
64-bit Linux Kernel).

One of the cool features in the Android 5 OS, which you may have learned about if you read
the book Android Apps for Absolute Beginners (Apress 2014), is support for Material Design
in apps across all types of Android 5 devices.

You will learn about using Material Design for Android wearables apps in this chapter, as well
as throughout the rest of this book. Android 5, also known as Android API Level 21 (and later),
offers some new components and new OS functionality, specifically for Material Design.

This includes a new Android 5 theme, Android View widgets for new viewing capabilities,
improved shadows and animation APIs, and improved Drawables, including better vector
scaling, 32-bit PNG tinting using the 8-bit alpha, and the automatic Color Extraction API.
I will be covering all of these in more detail during the rest of this chapter.

The Android Material Design Themes: Light and Dark
This Android 5 Material Design Theme provides the new Android 5 conforming style to
use for your Android 5 apps. Because the Android Wear SDK is a part of Android Studio 1
(Android 5 plus IntelliJ), these new themes will apply to pro Android wearables as well. You
will be installing Android Studio, as well as some other open source content development
software in Chapter 2, and exploring Android Studio 1.x and IntelliJ in Chapter 3 and
Java 7 in Chapter 4. If you’re developing for Android 4, you will use the HOLO Theme;
if you are developing for Android 5, you will use the Material Theme.

Both Theme.Holo and Theme.Material offer a dark and a light version. You can customize
the look of the Material Theme to match a brand identity using the custom color palette
you define. You can tint an Android Action Bar as well as the Android Status Bar by using
Material Theme attributes.

http://dx.doi.org/10.1007/9781430265504_2
http://dx.doi.org/10.1007/9781430265504_3
http://dx.doi.org/10.1007/9781430265504_4

10 CHAPTER 1: Introduction to Android Wearables: Concepts, Types, and Material Design

Your Android 5 widgets have a new UI design and touch feedback animations. You can
customize these touch feedback animations, as well as the Activity transitions for your app.
An Activity in Android is one logical section or UI screen for your application. I am assuming
you already have knowledge of Android lingo, because this is an intermediate to advanced
level (pro) book.

Defining the Wearable Material Theme: Using the Style Attribute
Just as in the previous versions of Android, the material theme is defined using the Android
Style attribute. Examples of the various material themes would be defined using XML, using
the following XML 1.0 markup:

@android:style/Theme.Material (the default dark UI version)
@android:style/Theme.Material.Light (the light UI version)
@android:style/Theme.Material.Light.DarkActionBar (a light version with a dark version

Actionbar)

As I mentioned, the Theme.Material UI style (or theme) is only available in Android 5, API
Level 21 and above. The v7 Support Libraries provide themes with Material Design styles for
some pre-5 View widgets and support for customizing the color palette prior to Android 5.

Defining the Wearable Material Theme Color Palette: The Item Tag
If you wanted to customize your Material Design theme’s primary color to fit your wearables
app branding, you would define your custom colors using the <item> tag, nested inside
a <style> tag, nested inside a <resources> tag inside a themes.xml file. You create an
AppTheme with parent attributes inherited from the Theme.Material parent theme and add
your custom color references using the colors.xml file that holds the hexadecimal color data
using an XML markup structure. This should look something like this:

<resources>
 <style name="AppTheme" parent="android:Theme.Material">
 <item name="android:colorPrimary">@color/primary</item>
 <item name="android:colorPrimaryDark">@color/primary_dark</item>
 <item name="android:colorAccent">@color/accent</item>
 </style>
</resources>

Again, I assume you know basic Android (Java and XML) development here. The style name
used for the app here is AppTheme, it references a parent style of Theme.Material and
sets custom color values, set in a colors.xml file, using <item> tags containing your main
theme style constants—colorPrimary, colorPrimaryDark, and colorAccent. Android is
hard wired to use these theme constants, so all you have to do is reference custom color
values to them.

11CHAPTER 1: Introduction to Android Wearables: Concepts, Types, and Material Design

Customizing a Wearable Material Theme Status Bar: statusBarColor
You can also easily customize the application Status Bar for Theme.Material, and you can
specify another color that fits the wearable application brand and will provide a decent
amount of color contrast to show the white status icons. To set the custom color for your
application Status Bar, add an android:statusBarColor attribute when you extend a
Theme.Material style definition. Using the previous example, your XML should look like this:

<resources>
 <style name="AppTheme" parent="android:Theme.Material">
 <item name="android:colorPrimary">@color/primary_color</item>
 <item name="android:colorPrimaryDark">@color/primary_dark</item>
 <item name="android:colorAccent">@color/accent_color</item>
 <item name="android:statusBarColor">@color/status_bar</item>
 </style>
</resources>

The statusBarColor constant will inherit the value of the colorPrimaryDark constant if you
do not provide one specifically, as is seen above. You can also can draw behind the Status
Bar using the alpha channel component of an Android 5 #AARRGGBB 32-bit hexadecimal
color data value. If you want to delve into Android graphics, check out the book Pro Android
Graphics (Apress 2013).

For example, if you wanted to show the Status Bar as completely transparent, you would
use an @android:color/transparent constant, which sets the alpha channel to zero (off or
#00000000). However, this would not be a good UI design practice, as you could have a
background with white in it behind the Status Bar, which would then render the Status Bar
icons invisible.

So what you would really want to do is create a tinted Status Bar over a background
(image, photo, 3D, 2D, artwork). You should use a dark gradient to ensure the white status
icons are visible. To do this, you would set the statusBarColor to transparent and also set
the WindowManager object’s windowTranslucentStatus attribute to a data value of true
using an Android WindowManager.LayoutParams class (objects) FLAG_TRANSLUCENT_
STATUS constant. You can also use the Window.setStatusBarColor() method with Java
code to implement Status Bar animation or translucency fade-in or fade-out.

As a UI design principle, your Android Status Bar object should always have a clear
demarcation against an Action Bar, except in cases where you design custom UI images
or new media content behind these bars, in which case you should use your darkening
gradient, which will ensure that icons are still visible. When you customize both UI navigation
(Action Bar) and a Status Bar, you should make them both transparent or only change the
transparency for the Status Bar. The navigation bar should remain black in all other cases.

Customizing a Wearable Material Theme: Individual View Themes
Android Styles and Themes can not only be used for customizing a look and feel for your
entire wearables application globally, but they can also be used to style and theme local
screens, which are components of your application.

12 CHAPTER 1: Introduction to Android Wearables: Concepts, Types, and Material Design

Why would one want to go to the trouble of developing a style or theme for an individual
View object or Activity object in Android 5, you might ask?

The answer can be found in the concept of UI design modularity, which is a cornerstone of
Android wearables app development. Once you develop a Style and Theme using an XML
file, you can apply it whenever necessary, which will probably be multiple times during your
wearables app development process. In this way, you do the UI design work once (create
a module) and apply it many times thereafter. This also ensures that the theme or style is
applied in exactly the same way every time. If you need to get into UI design for Android 5
development in greater detail, the book Pro Android UI (Apress 2014) covers all of the
Android UI design issues in depth.

UI elements (Android widgets subclassed from View) in your XML user interface layout
container definitions (Android layout containers are subclassed from ViewGroup) can
reference an android:theme attribute or an android:style attribute. This allows you to
reference your prebuilt style and theme resources in a modular fashion.

Referencing one of the prebuilt style or theme attributes will then apply that UI element
as well as any child elements inside that UI design element. This capability can be quite
useful for altering theme color palettes in a specific section of your wearables application
UI design.

Android Material Design View Widgets: Lists and Cards
The Android 5 API provides two completely new View subclasses (widgets). These can be
used for displaying information cards or recyclable lists using the Material Design themes,
styles, animation, and special effects.

The RecyclerView widget is a plug-and-play enhancement of Android ListView class. It
supports many layout types and provides performance improvement. The CardView widget
allows your wearable application to display contextual pieces of information using “cards”
that have a consistent look and feel.

Let’s take a closer look at the new UI design tools before I move on to dropshadows,
animation, and special effects like Drawable tinting and Color extraction.

Android RecyclerView Class: Optimized (Recycled) List Viewing
The Android RecyclerView is a UI design widget that is a more feature-filled version of the
Android ListView widget. The RecyclerView is used to display extensive lists of applications
data. What is unique about the class is that the data contained in the View can be scrolled
extremely efficiently. The way this is done is through the RecyclerView ViewGroup (a layout
container) subclass. It holds a limited number of data (View) objects inside its ViewGroup
layout container at any single moment in time.

This memory optimization principle is quite similar to how digital video streaming works,
keeping only the currently utilized portion of your data list in the system memory, which makes
this class faster and more memory efficient. You would want to utilize Android’s RecyclerView
widget when you have data collections where the data inside are going to be changed at
runtime, based on the actions of your application’s end users or by network transactions.

13CHAPTER 1: Introduction to Android Wearables: Concepts, Types, and Material Design

The RecyclerView class accomplishes all this by providing developers a number of software
components that wearable developers can implement in their code. These include layout
managers, for positioning data View items in the List, animation to add visual effects to data
View item operations, and flexibility in designing your own custom layout managers and
animation for your wearable application’s implementation of this RecyclerView widget.

Android CardView Class: The Index Card Organization Paradigm
The Android CardView class is a ViewGroup layout container class extending the
FrameLayout class. The Android FrameLayout class allows you to display a single View
UI element (widget) so the CardView would be a collection of FrameLayout individual
Views in the paradigm of a stack of 3-by-5 index cards. This class allows you to show any
informational data for your wearable application on virtual cards that have a consistent look
across the Android (application, wearable, TV, or auto SDK) platforms.

Your CardView widget can also feature shadows and rounded corners for each card in this
CardView layout container, although it is the CardView itself that is dropshadowed and
rounded, not each individual card. To create a card with a shadow, you need to use a
card_view:cardElevation attribute.

The CardView class accesses the actual elevation attribute and creates the dynamic
shadowing automatically if your user is using Android 5 (API Level 21) or later, and for earlier
Android versions, it will create a programmatic shadow implementation based on earlier
versions.

If you wanted to enhance the appearance of your CardView widget, you would provide a
custom corner radius value, say 6dip, which would create rounded corners for each card in
your CardView using a cardCornerRadius attribute.

If you wanted to show a background image, behind your CardView widget, you would
provide a custom background color value, like #77BBBBBB, which would create a light
gray transparent background color for each card that is in your CardView, using the
cardBackgroundColor attribute.

If you wanted a dropshadow behind the CardView widget, you would provide a custom
elevation value, say 5dip, which would create a nice, highly visible dropshadow
behind each card in a CardView using a cardElevation attribute. Before you use the
cardElevation attribute, you will need to set a Padding compatibility constant, called
cardUseCompatPadding, to a value of true in order for the dropshadowing (elevation) effect
to be computed by CardView.

To access these CardView attributes, you must import a custom XMLNS (or XML naming
schema) for both your LinearLayout parent layout container class as well as for the nested
CardView child layout container class. This is done by using the following XML parameter
inside each layout container tag:

xmlns:card_view=http://schemas.android.com/apk/res-auto

Once you have this in place, you can use the attributes specified above by prefacing them
with a card_view: modifier, so that your cardCornerRadius attribute would be then be
written as card_view:cardCornerRadius, for example.

http://schemas.android.com/apk/res-auto

14 CHAPTER 1: Introduction to Android Wearables: Concepts, Types, and Material Design

To implement the three examples I outlined previously in this section, the markup for the
LinearLayout parent layout container containing a CardView containing a TextView object
would look something like the following XML:

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 xmlns:card_view="http://schemas.android.com/apk/res-auto" >
 <android.support.v7.widget.CardView xmlns:card_view="http://schemas.android.com/apk/res-auto"
 android:id="@+id/my_card_view"
 android:layout_gravity="center"
 android:layout_width="180dip"
 android:layout_height="180dip"
 card_view:cardCornerRadius="6dip"
 card_view:cardBackgroundColor="#77BBBBBB"
 card_view:cardUseCompatPadding="true"
 card_view:cardElevation="5dip" >
 <TextView android:id="@+id/info_text"
 android:layout_width="match_parent"
 android:layout_height="match_parent" />
 </android.support.v7.widget.CardView>
</LinearLayout>

Now let’s look at special effects applications in Material Design and learn about
dropshadowing and animating the View widgets.

Android Material Design Effects: Shadows and Animation
Although Android has always had a shadows and animation feature set, which works with
Android View objects (called Android widgets), Material Design takes these effects to a
new level by providing more advanced shadows so that everything on a screen has a 3D
z axis element to it. For instance View objects other than Text objects can now access
dropshadows, and there are now advanced transition animation effects, such as curve
interpolation motion and things that simulate 3D effects on the screen such as ripples.

Android Material Design 3D Effects: Automatic View Shadowing
In addition to the x and y properties, Android widgets, which are subclassed from the
View class in Android, now feature a third, z axis property. This property, which is called
an elevation property, defines the height of the View object, which in turn determines the
characteristics of its shadows.

As many of you who are familiar with 3D know, this takes Android UI design from a 2D place
into the exciting 3D realm. This allows photo-realistic i3D UI designs, whereas before, only
“flat,” 2D UI designs were possible.

This new elevation property was added to represent the elevation or height of a View object,
relative to other View objects above and below it in the UI design. The elevation property
(or if you prefer, attribute or characteristic) will be used by the Android OS to determine the
size of the shadow, so a View object (widget) with a larger elevation value should cast a
wider shadow, making the widget appear to be at a higher elevation.

www.allitebooks.com

http://schemas.android.com/apk/res/android
http://schemas.android.com/tools
http://schemas.android.com/apk/res-auto
http://schemas.android.com/apk/res-auto
http://www.allitebooks.org

15CHAPTER 1: Introduction to Android Wearables: Concepts, Types, and Material Design

The View widgets in the UI design will also obtain their drawing order via the z values. This
is commonly called the z order or z index, and your UI View objects that have been assigned
a higher z value will always appear on top of other View objects (widgets) that have been
assigned lower z values.

Android Material Design Animation: Touch Feedback for Your UI
The upgraded Animation API in Android 5 lets you create custom animation for touch
feedback for your UI controls (widgets). These allow for triggering these animation effects
based on changes in the View widget state, and also allow Activity transitions when the user
navigates between Activity screens in your application.

The Material Design–related enhancement to the Animation API allows you to respond to
touch screen events on your View widget using new touch feedback animations. These
implement the new ripple element (RippleDrawable class), and can be defined as bounded
(contained within the View) or as unbounded (emanating beyond a View bounds). Defining
this using XML is fairly straightforward, although it can also be defined using Java 7.

To define a bounded ripple touch feedback animation, reference it inside the
android:background parameter in your View widget tag, like this:

<Button android:id="@+id/my_rippling_muscles_I_mean_button"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:background="?android:attr/selectableItemBackground" />

To define an unbounded ripple touch feedback animation, again reference it using the
android:background parameter in your View widget tag, like this:

<Button android:id="@+id/my_rippling_abs_I_mean_button"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:background="?android:attr/selectableItemBackgroundBorderless" />

Touch feedback animations are now integrated inside several standard View widget
subclasses, such as the Button class. A new API lets you customize these touch feedback
animations so you can add them to your custom View.

Users can now hide and show View widgets using a circular reveal animation, which adds
another level of wow-factor to the Android operating system. Those of you familiar with 2D
and 3D graphics will know that this is being accomplished by applying an animated circle
(ShapeDrawable) clipping shape into the rendering pipeline between the two UI widget visuals.

16 CHAPTER 1: Introduction to Android Wearables: Concepts, Types, and Material Design

Android Material Design Transitions: Enhanced Activity Transitions
In the area of activity transitional animation, you can now switch between activities with
custom activity transition animations. The custom Activity transitions will be applied by the
Android OS whenever the user transfers from one Activity to another using an Intent object.

These Activity animations are intended for usage in conjunction with other Material Design
animation effects. I suspect that these were added so that the Material Design UX is uniform
across the entire Android 5 wearable application. Now, both View and Activity objects offer
prebuilt animation! You can also create custom transitional animation, as you could before
Android 5.

There are four different types of prebuilt Activity animations in Android 5 Material Design:
enter and exit control full-screen animation effects, and SharedElementEnter and
SharedElementExit control localized UI elements effects for UI elements, which are shared
(on both Activity screens).

The enter Activity animation will be triggered when a user switches into a new Activity
screen from another Activity screen in a wearable application and, thus, this enter transition
determines how View widgets in an Activity enter the screen. For example, in an explode
transition, View widgets enter the screen from the outside of the screen, flying in toward
the center of the screen. Be sure to use graphic designs for your Activity that enhance this
transitional special effect.

Conversely, an exit type of Activity animation can be triggered when users exit an Activity
screen in their wearable application. The exit transition will determine how View widgets in
your wearable Activity exit the screen. For example, using the explode transition example, in
the exit transition, your wearable application View widgets will exit the screen traveling away
from the center, the opposite of an enter explode transition animation.

If there are shared UI elements between two Activity screens, then the shared element
transitions can be applied for this UI design scenario. As you may have guessed, these are
called the SharedElementEnter and SharedElementExit transitions. The SharedElement
transition determines how View widgets that are shared between two Activity screens will
handle the transition between these Activity screens.

For example, if two Activity screens have the same digital image, but it’s in a different
position or resolution, the changeImageTransform shared element transition will translate
(reposition) or scale (resize) the image smoothly between the two Activity screens.

There are other shared element transitions such as the changeBounds shared element
transition, which will animate any changes in the layout bounds of any target Activity View
widgets. There is also a changeTransform shared element transition that can animate any
changes in the scale (size) and rotation (orientation) of target View widgets between two
Activity screens being transitioned. Finally, there is a changeClipBounds shared element
transition, which will animate any changes in the clipping path boundary for target Activity
View widgets that have clipping paths assigned to them.

Android 5 now supports three primary enter and exit transitions; these can also be utilized in
conjunction with a shared element transition. There is the explode transition, which moves
View widgets in or out from the center of the screen, the slide transition, which slides View
widgets in from, or away from, the edges of the scene, and the fade transition, which adds,
or removes, the View widgets from the screen by changing their opacity value.

17CHAPTER 1: Introduction to Android Wearables: Concepts, Types, and Material Design

You’re probably wondering if there’s any way to create custom transitions. This is done by
creating a custom transition subclass using the Visibility class, a subclass of the Transition
class, created for this exact purpose.

Android Material Design Motion: Enhanced Motion Curves or Paths
Those of you who are experienced with 3D animation software such as Blender3D or
digital video editing software such as Lightworks are familiar with the concept of using
motion curves to control the rate of change in speed for things like video clips or 3D object
movement in scenes.

This is called a motion curve because it allows you to precisely control the way in which
something moves over time, which is important in film making, character animation, and
game design. There is another closely related tool that is called a motion path. A motion path
defines how an object will move through a 2D or 3D space.

Therefore, a motion curve is a tool that will be used for defining temporal animation attributes
(changes in animation speed over time), while a motion path is a tool that will be used for
defining spacial animation attributes.

Animation in Android OS, as well as in the new Android 5 Material Design, relies on these
motion curves using the Interpolator class. This class can now be used to define more
complex 4D motion curve interpolation (a fourth dimension, or 4D, means change over time).
Material Design now adds motion paths to support 2D spatial movement patterns, so now
not only the rate of movement can be controlled, but also where that movement occurs.

The PathInterpolator class is a new Interpolator subclass based on Bézier, which is a
complex type of curve definition mathematics. Bézier curves have been implemented in
Android 5 as Path (class) objects. This Interpolator class can specify Bézier motion curves in
a 1-by-1 square, with anchor points at 0,0 and 1,1 and with custom x,y control points, which
developers specify using the pathInterpolator class’s constructor method parameters. You
will usually define a PathInterpolator object using an XML resource, like this:

<pathInterpolator
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:controlX1="0.5"
 android:controlY1="0"
 android:controlX2="1"
 android:controlY2="1" />

This Android 5 operating system provides XML resources for three basic new motion curves
in the Material Design specification. These would use markup and would be referenced in
your XML markup, or Java code, using the @interpolator/ path referencing header, like this:

@interpolator/linear_out_slow_in.xml
@interpolator/fast_out_linear_in.xml
@interpolator/fast_out_slow_in.xml

http://schemas.android.com/apk/res/android

18 CHAPTER 1: Introduction to Android Wearables: Concepts, Types, and Material Design

Android Material Design Animate State Change:
StateListAnimator Class
Android state changes, such as the signal meters on your phone, can now be animated
using the new Android 5 Material Design feature set. This will allow wearable applications
developers to add even more detail to the wow-factor elements inside their Android
wearables’ applications design.

The new Android StateListAnimator class lets developers use ObjectAnimator objects that
are triggered (run) by the Android OS whenever the state of a View object changes. The way
you would set up your StateListAnimator as an XML resource leverages the <selector> tag
(selects among different states) and the <set> tag (creates selection set), along with <item>
tags defining the states and the <objectAnimator> tags defining the Object Animation. A
simple pressed=true and pressed=false StateListAnimator Selector object is set up in this
fashion, by using a four-level (deep) nested XML construct:

<selector xmlns:android="http://schemas.android.com/apk/res/android" >
 <item android:state_pressed="true" >
 <set>
 <objectAnimator android:propertyName="translationZ"
 android:duration="120"
 android:valueTo="5dip"
 android:valueType="floatType" />
 </set>
 </item>
 <item android:state_pressed="false"
 android:state_enabled="true"
 android:state_focused="true" >
 <set>
 <objectAnimator android:propertyName="translationZ"
 android:duration="120"
 android:valueTo="0"
 android:valueType="floatType" />
 </set>
 </item>
</selector>

To attach custom state change animations to the View, define an ObjectAnimator using the
<selector> element in an XML resource file as shown above. Next, reference it inside the
View object XML tag you want to be effected by it using the android:stateListAnimator
XML parameter.

To assign this state change in animations StateListAnimator to a View in your Java code, you
should utilize an AnimationInflater.loadStateListAnimator() method call, and then remember
to assign this ObjectAnimator to your View, using the View.setStateListAnimator()
method call.

It is important to remember that whenever your wearables application theme extends a
Theme.Material Material Design theme, UI Button objects have a z animation enabled
(setup and activate) by default. To avoid this behavior in your UI Button objects, set this
android:stateListAnimator attribute to a data value of @null in the XML markup, or “null in
Java code.

http://schemas.android.com/apk/res/android

19CHAPTER 1: Introduction to Android Wearables: Concepts, Types, and Material Design

Next let’s look at what Android 5 added to a plethora of Android Drawable classes already
in Android 4.x to be able to provide this greatly enhanced Material Design capability via
animated vectors, bitmap graphics, tinting capabilities, color extraction, and new state
animation graphics.

Android Material Design Graphics Processing: Drawables
There are also some new Drawable API capabilities for Material Design that make it
easier to use Android Drawable objects to help you implement sleek material design
wins for your applications. New Android Drawable classes include a VectorDrawable,
AnimatedVectorDrawable, RippleDrawable, Palette, and AnimatedStateListDrawable, all of
which I’ll discuss in this section.

These new Android 5 Drawable classes add Scalable Vector Graphics (SVG) path support,
morphing, i3D ripple special effects, palette color extraction, and animated transitions
for multistate Drawable objects to Android OS. Android 5 has added some very powerful
classes, where 2D vector and bitmap graphics are concerned!

Android 5 Drawable Tinting: .setTint() and .setImageTintMode()
With Android 5 and above, you can tint BitmapDrawable objects as well as
NinePatchDrawable objects. You can tint the digital image objects in their entirety or limit
this tinting effect to certain pixels. This is done by defining an alpha channel to “mask” the
tinting effect.

You can tint these Drawable objects using Android Color class resources or using Android
Theme attributes that reference these Color class resources. Usually, you would create these
assets once, and then use them across your wearable applications, using the tint capability
to tint them as needed to match your theme. As you might imagine, you can use this for
optimization, as you would use far less graphic image assets across an entire application.

You can apply a tint to BitmapDrawable or NinePatchDrawable objects in the Java code
for your wearable application using a .setTint() method. You can also set the tint color and
the tint mode in the XML UI layout container definition. This is accomplished by using the
android:tint and an android:tintMode parameters (attributes) inside your View object tags.

Android 5 Vector Drawable Objects: The VectorDrawable Class
The new Android 5 VectorDrawable class and the object created using this class can be
scaled up or down without losing any quality. This is because, unlike the bitmap image, a
vector image is made up of code and mathematics (lines, curves, fills, and gradients) and
not pixels. Therefore, if scaling occurs, the vector image will actually be rendered to fill the
amount of pixels available to display it. A vector image is not being resampled like a pixel-
based image is when it is scaled, but rather rerendered to fit the new screen resolution,
whether it’s a 320-by-240 smartwatch or 4096-by-2160 iTV.

20 CHAPTER 1: Introduction to Android Wearables: Concepts, Types, and Material Design

For this reason, vector imagery can be used from wearables all the way up to 4K iTVs, with the
same exact visual quality. This is not possible using bitmap images. Because vector imagery is
text based, it will be at least one order of magnitude more data compact than bitmap imagery,
because vectors are code (math and text), not an array of data-heavy pixel values.

As you might imagine, vector imagery would be perfect for single-color app icons. You only
need one image asset for a vector image, as opposed to the bitmap image format, where
you would need to provide an asset file for each screen density. To create a vector image,
you would define SVG data for the shape inside of a <vector> XML parent tag. The XML
markup to define an SVG vector image of a color filled square would look like the following:

<vector xmlns:android="http://schemas.android.com/apk/res/android"
 android:height="320dip"
 android:width="320dip"
 android:viewportWidth="160"
 android:viewportHeight="160" >
 <path android:fillColor="#AACCEE"
 android:pathData="M0,0 L0,100 100,100 100,0 Z" />
</vector>

SVG imagery is encapsulated in Android 5 using VectorDrawable objects. For information
about SVG Path command syntax, see the SVG Path reference on the W3C web site
(http://www.w3.org/TR/SVG/paths.html). I also cover this in depth in the book Beginning
Java 8 Games Development (Apress 2014), since Java 8 and JavaFX have extensive
SVG Path support.

You can also simulate the popular multimedia software genre called warping and morphing
by animating the SVG path property of VectorDrawable objects, thanks to another all new
Android 5 class called AnimatedVectorDrawable.

Next let’s take a closer look at all of the new Android 5 (automatic) color extraction
capabilities, which are provided by the Android Palette class.

Android 5 Automated Color Palette Extraction: The Palette Class
Android 5 added a new Palette class that facilitates a colors extraction algorithm, which
allows developers to automatically extract prominent colors from a bitmap image asset in
your application. The Android Support Library r21 and above includes the Palette class,
which lets you extract prominent colors from an image in Android application versions
previous to version 5, such as Android 3.x and Android 4.x applications. Palette will extract
the following types of prominent colors from a bitmap image’s color spectrum:

Vibrant	

Vibrant dark	

Vibrant light	

Muted	

Muted dark	

Muted light	

http://schemas.android.com/apk/res/android
http://www.w3.org/TR/SVG/paths.html

21CHAPTER 1: Introduction to Android Wearables: Concepts, Types, and Material Design

The Palette class is a helper class, which helps developers extract six different
classifications of colors (listed above). To use this helper class, you would pass the bitmap
object you want palettized to the Palette class’s .generate(Bitmap image) method, using
the following method call:

Palette.generate(Bitmap imageAssetName);

Be sure to do this in a background thread where you load the image assets. If you can’t
use a background thread, you can also call the Palette class’s .generateAsync() method,
providing a listener instead, like this:

public AsyncTask<Bitmap, Void, Palette> generateAsync (Bitmap bmp, Palette.
PaletteAsyncListener pal)

You can also retrieve the prominent colors from the image using the getter methods in the
Palette class, like .getVibrantColor() or .getMutedColor(). A .generate() method will return
a 16-color palette. If you need more than that, you can use another (overloaded) .generate()
method with this format:

Palette.generate(Bitmap image, int numColorsInPalette);

I looked at the source code for this Palette class and there does not seem to be any
maximum number of colors you can ask this class to provide (most palettes max out at 8-bit
color, or 256 colors). This allows for some very interesting applications for this class, as it is
not tied to 8-bit color. The more colors you ask for in a palette, the longer your processing
time. This is why there’s an AsyncTask<> version of the .generate() method call!

To use the Palette class in your wearables application’s IntelliJ project, you will need to add
the following Gradle dependency to your app’s module:

dependencies { ... (default Gradle dependencies remain in here)
 compile 'com.android.support:palette-v7:21.0.+' }

Android 5 State Animation: An AnimatedStateListDrawable Class
Besides the new Android RippleDrawable class, which creates the effects discussed
in the past couple sections, and VectorDrawable class, there’s also an all new
AnimatedStateListDrawable class that allows you to animate the transition between
StateListDrawable objects.

The Android AnimatedStateListDrawable class lets you create an animated state list
of drawable objects (hence the class name), which calls animations between state
changes for the referenced View widget. Some of these system widgets in Android 5
will use these animations by default. The following example shows how to define an
AnimatedStateListDrawable by using an XML resource:

<animated-selector xmlns:android="http://schemas.android.com/apk/res/android">
 <item android:id="@+id/pressed"
 android:drawable="@drawable/drawable_pressed"
 android:state_pressed="true" />

http://schemas.android.com/apk/res/android

22 CHAPTER 1: Introduction to Android Wearables: Concepts, Types, and Material Design

 <item android:id="@+id/focused"
 android:drawable="@drawable/drawable_focused"
 android:state_focused="true" />
 <item android:id="@id/default"
 android:drawable="@drawable/drawable_default" />
 <transition android:fromId="@+id/default"
 android:toId="@+id/pressed" >
 <animation-list>
 <item android:duration="85"
 android:drawable="@drawable/asset1" />
 <item android:duration="85"
 android:drawable="@drawable/asset2" />
 </animation-list>
 </transition>
 <transition android:fromId="@+id/pressed"
 android:toId="@+id/default" >
 <animation-list>
 <item android:duration="85"
 android:drawable="@drawable/asset2" />
 <item android:duration="85"
 android:drawable="@drawable/asset1" />
 </animation-list>
 </transition>
</animated-selector>

The top part of the <animated-selector> XML definition defines the states, using <item>
tags specifying each state, and the bottom part defines your transitions, using (surprise)
<transition> tags with <animation-list> tags nested inside them.

What You Will Learn from This Book
This book will focus on those features of the Android 5 operating system and the IntelliJ
IDEA, which are used to create Android wearable apps, using Android Studio and the Wear
SDK. If you require foundational Android 5 apps development knowledge or want to learn
how to create a wearable application for Neptune Pine (or another smartwatch that does not
use Wear SDK), take a look at my book Android Apps for Absolute Beginners (3rd edition,
2014, Apress).

The first part of this book will create the foundation for the rest of the book, including
this chapter covering wearable types, concepts, and the new Android 5 Material Design
additions to the Android OS. Then you’ll set up a development workstation, go over the
wearables features of Android, and learn about the new IntelliJ IDEA. You’ll also set up the
emulators that will be used to test the wearable applications during the book.

The second part of the book will show you how to create wearable apps for smartwatches
using the Wear SDK. You will learn about areas of Android technology that are important
for wearables application developers to master, such as creating and delivering a wearable
application, notifications, data layer, synchronization, and user interface layout design, using
cards, and lists.

23CHAPTER 1: Introduction to Android Wearables: Concepts, Types, and Material Design

The third part of the book will explain how to create smartwatch faces using the Android
Watch Faces API. You’ll learn how to create a Watch Face Service, how to draw your Watch
Faces to the screen, how to design Android Watch Faces, how to optimize your Watch Faces
for best performance, how to display information (data) inside of your Watch Faces designs,
and finally how to create Watch Faces app configuration screens for your Watch Faces.

Summary
In this first chapter, you took a look at wearables’ types and concepts, and learned about the
many new features that Google added to Android 5 OS. You looked at Bluetooth LE, Material
Design, new Drawable types, and advanced 3D such as OpenGL ES 3.1.

In the next chapter, you’ll put together your development workstation and all of the
open source software that you will be able to use to develop your advanced pro Android
wearables application.

25

Chapter 2
Setting Up an Android 5
Wearables Application
Development Workstation

Now that you have some foundational knowledge about wearables and what Android 5
has added to make the wearable applications memorable, this chapter will help you put
together another type of foundation. Your development workstation is the most important
combination of hardware and software for reaching your goal of Pro Android Wearables
application development. Here I will spend some time upfront considering the hardware
you’ll need and the software infrastructure that you will need to put together a professional,
well-rounded, Android software development workstation with a dozen arrows in your
software development quiver right off the bat (strange analogy mix isn’t it? Robin Hood and
baseball). Then you will have everything you need for the rest of the book, no matter what
type of wearable app you develop!

We’ll also get all of those tedious tasks out of the way regarding putting together a 100%
professional Pro Android Wearables production workstation.

Because readers of this book will generally want to be developing using an identical Android
Wearables Applications Software Development Environment, I will outline all of the steps
in this chapter to put together a completely decked-out Android Studio Development
Workstation. You’ll need to do this because everything you will be learning over the course
of this book needs to be experienced equally by all of the readers of this book. You’ll learn
where to download and how to install some of the most impressive open source software
packages on the face of this planet!

www.allitebooks.com

http://www.allitebooks.org

26 CHAPTER 2: Setting Up an Android 5 Wearables Application Development Workstation

Work Process for Creating an Android Workstation
The first thing that you’ll do after taking a look at hardware requirements is download and
install the entire Java software development kit (SDK), which Oracle calls Java SE 7 JDK
(Java Development Kit). Android OS uses the Java Standard Edition (SE) Version 7 update 71,
as of Android Studio 1.0. Android Studio 1.2, which I just upgraded to as I went over my
second edit on this book, uses Java 7 update 79. When you read this, it may well use a later
version than that! That is the nature of software development.

It’s important to note that Java Version 8 also exists and was released in the second quarter
of 2014. Java 8 includes powerful JavaFX APIs that turn Java programming language into
a powerful new media engine. Java 7 support for JavaFX does exist outside of Android OS,
and if you want to use JavaFX, there is a work process for getting a JavaFX new media
application to work under Android 5. Thus the future of open source development (Android
OS, XML, Java7, Java8, JavaFX, HTML5, CSS, JavaScript, and OpenGL) has arrived!

The second thing that you will download and install is Android Studio, which you’ll get
from Google’s developer.android.com web site. Android Studio 1.0, which is actually
a software bundle, consists of IntelliJ IDEA (Integrated Development Environment for
Android) along with an Android Developer Tools ADT 5 plug-in. Prior to Android 4.4, the
Eclipse IDE, Android SDK, and ADT Plug-Ins were all installed separately, which made
the install difficult.

This ADT plug-in, which is now an integral part of Android Studio, bridges the Android
SDK, which is also part of the Android Studio download, with version 14 of the IntelliJ IDEA.
ADT plug-in makes this IntelliJ Java IDEA into the IntelliJ Android Studio IDEA. It is important
to note that IntelliJ could still be used for straight Java SE 7 application development as well.
IntelliJ also supports Java 8 and JavaFX.

After your Android Studio wearables application development environment is set up, you’ll
then download and install the new media asset development tools, which you will utilize
in conjunction with (but outside of) Android Studio for things such as digital image editing
(GIMP), digital video editing and special effects (EditShare Lightworks), digital audio mix-down,
sweetening and editing (Audacity), and 3D modeling, rendering, and animation (Blender).

All of these software development tools, which you will be downloading and installing,
will come close to matching all of the primary feature sets of expensive paid-for software
packages such as those from Apple (Final Cut Pro), Autodesk (3D Studio Max), or Adobe
(Photoshop, Premiere, or After Effects).

Open source software is free to download, install, and even upgrade, and is continually
adding features and becoming more and more professional each and every day. You’ll be
completely amazed at how professional open source software packages have become
over the past decade or two; if you have not experienced this already, you are about to
experience this in a major way!

27CHAPTER 2: Setting Up an Android 5 Wearables Application Development Workstation

Android Development Workstation: Hardware Foundation
Because you will be putting together in this chapter what will be the foundation of your
Pro Android Wearables Application Development workstation used for the duration of the
book, let’s take a moment to review Android Studio 1.0 development workstation hardware
requirements first, as that is the factor that will influence your development performance
(speed). This is clearly as important as the software itself, since the hardware runs the
software.

Minimum requirements for Android Studio include 2GB of memory, 2GB of hard disk space,
and 720p HD (1280 by 800) display. Next let’s discuss what you need to make the Android
Studio Wearable Workstation usable, starting with upgrading that 1280-by-800 HD display to
a 1920-by-1080 True HD display!

I recommend using at a bare minimum an Intel i7 quad-core processor, or an AMD 64-bit
octa-core processor, with at least 8GB of DDR3 1600 memory. I’m using the octa-core
AMD 8350 with 16GB of DDR3 1866. Intel also has a six-core i7 processor. This would
be the equivalent of having 12 cores, as each i7 core can host two threads; similarly, the
i7 quad-core should look like eight cores to a 64-bit operating system thread-scheduling
algorithm.

There are also high-speed DDR3 1866 and DDR3 2133 clock-speed memory module
components available as well. A high number signifies faster memory access speed. To
calculate the actual megahertz speed that the memory is cycling at, divide the number by
4 (1333 = 333Mhz, 1600 = 400Mhz, 1866 = 466Mhz, 2133 = 533Mhz clock rate). Memory
access speed is a major workstation performance factor because your processor is usually
“bottlenecked” by the speed at which the processor cores can access the data (in memory)
it needs to process.

With all this high-speed processing and memory access going on inside your workstation
while it is operating, it is also important to keep everything cool so that you do not
experience “thermal problems.” I recommend using a wide full-tower enclosure, with
120mm or 200mm cooling fans (one or two at least), as well as a captive liquid induction
cooling fan on the CPU. It’s important to note that the cooler a system runs, the faster it can
run and the longer it will last, so load the workstation with lots of silent fans!

If you really want the maximum performance, especially while emulating AVDs (Android
virtual devices) for rapid prototyping or testing, which I will be covering in Chapter 5, install
an SSD (solid-state disk) drive as the main disk drive, where your applications and operating
software will load from. Use legacy HDD (hard disk drive) hardware for your D:\ hard drive,
for slower data storage.

As far as OS goes, I am using a 64-bit Windows 8.1 operating system, which is fairly
memory efficient. Linux 64-bit OS is extremely memory efficient. I recommend using a 64-bit
OS, so you can address more than 3GB of memory!

http://dx.doi.org/10.1007/9781430265504_5

28 CHAPTER 2: Setting Up an Android 5 Wearables Application Development Workstation

Android Development Workstation: Software Foundation
To create a well-rounded Android Applications Development Workstation, you will be
installing all of the primary genres of open source software that I’m going to be exposing
you to later on in the book. First, you’ll install JavaSE 7, Android Studio, and Gimp,
Lightworks, Blender3D, and Audacity, which are also all open source software packages and
programming languages (Android uses Java, XML, CSS, and HTML5). Thus, you’ll be putting
together a 100% open source workstation (unless you are using the Windows 8.1 OS, which
is paid software). I also recommend other free software at the end of the chapter, so you can
put together a mega-production workstation!

Because open source software has reached the level of professionalism of paid
development software packages, and because I want all of you to be able to participate,
I’ll also use open source. Using open source software packages, such as Java, IntelliJ,
Blender3D, GIMP, Audacity, Lightworks, and others, you can put together a free new media
applications development workstation that rivals paid software workstations, which can cost
several thousands of your country’s units of currency (just to make this book international).

For those of you who have just purchased their new Pro Android Wearables development
workstation PC and are going to put an entire development software suite together
completely from scratch, I’ll go through an entire work process, starting with Java 7, then
adding Android Studio, and finally various media content development software packages
from each major genre: digital imaging, digital video editing, 3D, and digital audio editing. If
you have Macintosh, most of the open source software supports that platform as well as the
popular Linux distributions and even Oracle’s Open Solaris.

Java 7: Installing the Foundation for Android Studio
The first thing you’ll want to do is to visit the Oracle web site and download and install
the latest Java 7 JDK environment, which, at the time of the writing of this book, was
Java SE 7u71, as is shown in Figure 2-1.

29CHAPTER 2: Setting Up an Android 5 Wearables Application Development Workstation

The URL is in the address bar of Figure 2-1, or you can simply Google Java SE 7 JDK
Download. This will give you the latest link to the Java web page, which I will also put here,
in case you wanted to simply cut and paste it:

www.oracle.com/technetwork/java/javase/downloads/jdk7-downloads-1880260.html

You will pull your scrollbar on the right side of the web page halfway down the page, to
display the Java SE Development Kit 7u71 (or later version 7u79) download links table,
as can be seen on the very bottom of Figure 2-1. You can also read the explanation of the

Figure 2-1. Oracle TechNetwork web site Java SE 7 download section; find the latest Java SE 7 JDK for your OS

http://www.oracle.com/technetwork/java/javase/downloads/jdk7-downloads-1880260.html

30 CHAPTER 2: Setting Up an Android 5 Wearables Application Development Workstation

new CPU and PSU Java release versions located right above the download link table; for
examples in this book I’ll be using Java 7u71.

Once you click the Accept License Agreement radio button on the top left of this
download links table, the links will become bolded and you will be able to click the link
you wish to use. If you are on Windows and your OS is 64-bit, use the Windows x64 link,
otherwise use the Windows x86 link. I am using what is described in these links
as “Windows x64,” which is the 64-bit versions of Windows, for my Windows 7 and
Windows 8.1 workstations.

Make sure that you use this Java SE Development Kit 7u71 downloading link, and do not
use a JRE download (Java Runtime Edition) link. The JRE is part of the JDK 7u71, so you do
not have to worry about getting the Java Runtime separately. In case you’re wondering, you
will indeed use the JRE to launch and run the IntelliJ IDE, and you will use the JDK inside
of that software package to provide the Java core class foundation, which is used as the
foundation for the Android OS Java-based API classes.

Make sure not to download a JDK 8u25 or the JDK 8u25 Bundle, which includes NetBeans 8.0
from the normal (current, latest Java) download page, because Android 5 uses Java 7u71 and
the IntelliJ IDEA, not the NetBeans 8.0.1 IDE, for its ADT plug-ins, so be very careful regarding
this particular initial Java 7 JDK foundational software installation step in your work process!

I actually use a different Windows 7 workstation for my JavaFX development which has
Java SE 8u25 and NetBeans 8, and I have another HTML development workstation that has
Java SE 8u25 and NetBeans 8.0 (only) installed on it.

Before you run this installation, you should remove your older versions of Java, using your
Windows Control Panel, via the Add or Remove Programs (XP and older) or Programs
and Features (Windows Vista, 7, and 8.1) utilities.

This will be necessary especially if your workstation is not brand new, so that your latest
Java SE 7u71 and JRE 7u71 are the only Java versions that are currently installed on the
Android Studio wearables workstation.

Once the installation executable has downloaded, open it and install this latest Java SE 7u71
JDK on your system by double-clicking the EXE file to launch a Setup dialog, as shown on
the left-hand side of Figure 2-2. Click the Next button to access the Custom Setup dialog,
shown in the middle of Figure 2-2. Click the Next button again to access the Extracting
Installer Progress dialog, as shown on the right-hand side of Figure 2-2. Once you have
extracted the installation software, you can select an installation folder.

Figure 2-2. Java SE 7 JDK extraction; click on Next button to proceed to extraction

31CHAPTER 2: Setting Up an Android 5 Wearables Application Development Workstation

Use the default C:\ProgramFiles\Java\jre7 in the Destination Folder dialog shown on the
left-hand side of Figure 2-3, and then click the Next button. This will install the Java Runtime
Edition (JRE) edition in that folder.

Interestingly, the installer does not ask you to specify a JDK folder name for some reason,
probably because it wants the Java JDK to always be a set or fixed (locked in the same
location) name. This JDK folder will be named C:\ProgramFiles\Java\jdk1.7.0_71, and
you will notice that internally Java 7 is actually referred to as being Java 1.7.0. Thus Java 6
would be 1.6.0, and Java 8 would be 1.8.0. This is useful to know, in case you are looking for
Java versions using a search utility, for example, or just to show off!

Once you click the Next button, you’ll get the Java Setup Progress dialog, shown in the
middle of Figure 2-3. Once Java 7 is finished installing, you will finally see your Complete
dialog, which can be seen on the right-hand side of Figure 2-3. Congratulations! You have
successfully installed Java!

Remember that the reason you did not download the JRE is because it is part of this JDK
installation. This Java Runtime Edition is the executable (platform) that runs your Java
software once it has been compiled into an application, and thus the latest JRE will be
needed to run IntelliJ, which as you now know is 100% completely written using the
Java SE platform.

Once Java 7u71 (or later) JDK is installed on your workstation, you can then download
and install the latest Android Studio software installer from the developer.android.com
web site. This is getting more and more exciting with each layer of Pro Android Wearables
development software you install!

You can also use that same Programs and Features or Add or Remove Programs utility
in the Control Panel, which you might have recently used to remove older Java versions
or even to confirm the success of a new Java install, to remove any older versions of any
Android 4 development environments that might be currently installed on your Android
development workstation.

Now you are ready to add the second layer of Android wearables applications development
software (Android Studio 1.0 and IntelliJ) on top of Java 7.

Figure 2-3. Java 7 JDK install; click on Next button to install, then Close button

32 CHAPTER 2: Setting Up an Android 5 Wearables Application Development Workstation

Android Studio 1.0: Download the Android 5 IDEA
The second step in this process is to visit the developer.android.com web site and
download and install an Android Studio software installer file from the /sdk/ folder of the
Android developer web site, at the following URL:

https://developer.android.com/sdk/index.html

From the Android Developer web site’s home page, this page can be reached by clicking the
Get the SDK button found on the bottom left of the web site’s home page. This will take you
to the SDK section of this web site, as can be seen on the right-hand side in Figure 2-4. You
can also get to the web page from an Android Studio Overview page, seen on the left-hand
side of Figure 2-4. The Android Studio Overview page is located at the following URL:

http://developer.android.com/tools/studio/index.html

Once you are on the Android Studio SDK page, click the Download Android Studio sage
green button on the lower left and download Android Studio for Windows, as shown in
Figure 2-4. This will take you to a downloading page.

Figure 2-4. Android Studio download link (left) and download page (right); click the green Download Android Studio button

The actual Android Studio downloading page, seen in Figure 2-5, contains a section at the
top, outlining the Android Software Development Kit License Agreement. This agreement
is what is commonly termed an End-User Licensing Agreement (EULA), and it stipulates
what you can and cannot do with Android 5 Studio SDK, IDEA, Software, Tools, Codecs,
and APK (Application Package).

https://developer.android.com/sdk/index.html
http://developer.android.com/tools/studio/index.html

33CHAPTER 2: Setting Up an Android 5 Wearables Application Development Workstation

Review the Terms and Conditions section of this web page carefully, along with your legal
department, if necessary, and then click the check box next to the statement at the bottom,
which reads: I have read and agree with the above terms and conditions, as is shown
highlighted in red in Figure 2-5.

Once this check box has been activated (checked), you should now be able to see a blue
Download Android Studio for Windows button. The download site automatically detects
your operating system, as well as the bit-level (32-bit or 64-bit) that your operating system
supports. This should match the workstation, so if you have a 64-bit processor (CPU), you
should also have a 64-bit OS.

If you downloaded the Java 7u71 JDK for Windows x64 or Linux x64, you would thus have
the 64-bit version of Android Studio; conversely, if you selected Java 7u71 for a 32-bit x86
OS, you would have a 32-bit version of Android Studio.

Click the Download Android Studio blue button once it is activated and begin the
download process. If you have a slow Internet connection (modem, or ISDN), this could take
an hour or two. If you have a DSL or 4G connection, it will take about half an hour. If you
have a fiber-optics connection, it should only take a minute or two.

Once this download is complete, you’ll launch a software installer, which will set up the
Android 5 SDK and integrated development environment (IDE) for use on your Pro Android
Wearables Development Workstation. These files used to be installed using a ZIP file, so this
is a big improvement! It is important to note that these file sizes change from time to time as

Figure 2-5. Select the “I have read and agree with the terms and conditions” check box and click the blue Download
Android Studio for Windows button

34 CHAPTER 2: Setting Up an Android 5 Wearables Application Development Workstation

well, so they may be different if an SDK has changed between the time of writing this book
and when you do this.

Before this Android Studio “Bundle” became available in Version 4, setting up this Android
IDE was a complicated and involved process, taking some 50 or more steps. These included
installing Java SDK, then Android SDKs, then Android plug-ins, and then configuring the
plug-ins to see an Android SDK. Setting up the Android 5 development environment is so
much simpler now!

The new bundling approach accomplishes all of this Android SDK and plug-in configuration
by including the IntelliJ IDE, along with all of the Android SDK and plug-in components,
which allows all this configuration work to be done in advance by the people at Google,
instead of by developers at home.

Installing Android Studio: IntelliJ IDEA and Android SDK
The first thing you’ll need to do once your download is complete is to find the file you just
downloaded. It should be in your operating system’s Downloads folder, or in my case, I
specified my Software folder for this download, so I navigated to that folder to find and then
launch it.

If you don’t know where your browser put your file after it downloaded it, you can also right-
click the downloaded file, located in the browser’s download progress window, and select
the View in Folder option. If a right-click does not work, there should be a down-arrow next
to the file name that will give you a drop-down menu item list.

Download progress tabs are usually located on the bottom status bar area of each browser
or can be accessed via a download menu option or an icon in the upper right of the browser
(usually this is three black bar stripes indicating a menu list can be accessed via that icon).

In my case, this file was called android-studio-bundle-135.1641136.exe (I told you it was
a software bundle), which I will use for my 64-bit Windows 8.1 workstation. Once you find
the EXE file, right-click it and select the Run As Administrator option from the context
sensitive menu. This will launch an Android Studio Setup dialog, as seen on the left side
of Figure 2-6.

Figure 2-6. Launch Android Studio installer (left), choose default components (middle), agree to licensing (right)

35CHAPTER 2: Setting Up an Android 5 Wearables Application Development Workstation

Once you have the Welcome to the Android Studio Setup dialog, click the Next button,
which will take you to the Choose Components dialog, shown in the middle of Figure 2-6.
Accept the default component install selections, and then click the Next button. This will
take you to a License Agreement dialog, seen on the right side of Figure 2-6. Click the I
Agree button, which will take you to the Configuration Settings dialog, which is seen on
the left side of Figure 2-7. Accept the default installation locations for Android Studio and
Android SDK, and then click the Next button to proceed.

Figure 2-7. Accept default locale (left), accept Android Studio name, click Install (middle), Installing dialog (right)

Figure 2-8. Select Start Android Studio check box (left), startup screen (middle), confirm install components (right)

In the Choose Start Menu Folder dialog, shown in the middle of Figure 2-7, make sure the
folder is named Android Studio and then click the Install button to begin the installation
process. You will then see an Installing dialog, shown on the right in Figure 2-7, which will
show you what components are being extracted and installed on your workstation. If you
want to see more detail than the progress bar, click the Show details button in this dialog.

Once the extraction and installation processes have been completed, you’ll see the
Completing the Android Studio Setup dialog, shown on the left side of Figure 2-8. Leave
the Start Android Studio option selected. Next, click the Finish button, which will then
launch the Android Studio so that you can make sure the installation created a usable
IDE. The startup screen and a Setup Wizard are shown in the middle and right portions of
Figure 2-8. You can see that Android SDK was installed and is up to date, so you are done!

www.allitebooks.com

http://www.allitebooks.org

36 CHAPTER 2: Setting Up an Android 5 Wearables Application Development Workstation

Click the Finish button, and then launch Android Studio, which is shown on the left side of
Figure 2-9. At the bottom left of the dialog, you will see a Check for updates now link, and
you should click this in order to make sure that your Android Studio IDEA is completely up
to date, which it should be, as you just downloaded and installed it! As you can see at the
top right of Figure 2-9, I clicked the link and got a Checking for updates progress bar, and
then the Update Info dialog, seen at the bottom right of Figure 2-9, telling me that I have the
latest version of Android Studio.

Figure 2-9. Check for updates (bottom left highlighted), progress bar (top right), Update Info dialog (bottom right)

For the remainder of this chapter, you will download and install other tools that you will need.

Professional Digital Imaging Software: GIMP 2.8.14
The GIMP is a digital imaging software package that’s similar to Photoshop, which is
currently at version 2.8.14. Version 3.0 is expected out in 2015.

GIMP has a number of important tools for the creation of the digital image assets you will
need for your Pro Android Wearables application, including digital image manipulation,
masking, alpha channel transparency, auto path creation, vector (SVG) path manipulation,
layer compositing, and so forth.

To get to the GIMP web site, you would either enter GIMP into your Google search box or
you can type in a URL for the web site to go directly to the GIMP home page. The URL for
the nonprofit (.ORG) GIMP 2.8.14 web site takes the following format:

www.gimp.org/

When the GIMP 2 home page appears, as shown in Figure 2-10, you will see an orange
Download button in the top middle of the page, as well as an orange Downloads link on
the top right of the web site home page. You will click either one of these to access the
GIMP 2.8.14 www.gimp.org/downloads page.

http://www.gimp.org/
http://www.gimp.org/downloads

37CHAPTER 2: Setting Up an Android 5 Wearables Application Development Workstation

You can download versions of GIMP compiled specifically for Windows Vista, XP, 7,
and 8.1, Linux (generic), Mac OS/X, BSD, Solaris, Debian, Mandriva, Fedora, Open SUSE,
and Ubuntu. GIMP supports 32-bit and 64-bit versions of each of these OSs. Simply click a
download link for an OS and download the software onto your Pro Android Wearables apps
development workstation.

Until recently, GIMP 2 was hosted on SourceForge, but the company made the decision
to self-host on HTTP and Torrent servers, due to some activity regarding advertiser opt-ins
that the creators of the GIMP didn’t support. I used the standard HTTP link to start the
64-bit Windows 8.1 GIMP 2.8.14 download, and it works great. Next, let’s take a look at the
Lightworks 12 digital video editing and special effects open source software package.

Once your download is complete, launch your installer EXE, which should be named
gimp-2.8.14-setup-1.exe, unless a later version has become available (version 2.10 is
expected out in Q1 2015, and version 3.0, later in 2015). You can right-click an installer and
Run as Administrator to launch it.

Professional Digital Video Editing: Lightworks 12
EditShare Lightworks used to be a (expensive) paid digital video editing and special effects
software, and to this day, it competes head-to-head with leading digital video editing
packages (FinalCut Pro X and After Effects).

Figure 2-10. Go to the gimp.org site, and click the orange Download button to get the latest version of GIMP

38 CHAPTER 2: Setting Up an Android 5 Wearables Application Development Workstation

You can find out more about this leading digital video editing FX software package on the
EditShare web site at www.editshare.com or the Lightworks web site at www.lwks.com, where
you can also sign up to get a copy of the software, and once you do that, you can download
it for your own free use.

When EditShare made Lightworks open source, it became the third, free open source software
(the first was GIMP, the second was Blender3D) to be able to compete feature-for-feature
with the paid software package in its new media production genre (digital video editing,
compositing, special effect applications, and compression). In fact, EditShare won an NAB
“Best of Show” award for its speed of processing and innovative user interface approach.

Lightworks was one of the first software packages to rewrite their code to run on the GPU
(graphic card, like an nVidia GeForce or AMD ATI Radeon). A GPU will process effects and
encoding at an order of magnitude faster rate than a CPU will, and many other software
packages, including GIMP, are now moving to implement GPU-based processing in their
code as well.

Once you register on this Lightworks web site, you will be able to create a video editor
profile for your company and log in to be able to download a copy of Lightworks 12.1 for
the content development workstation you are putting together in this chapter. Because
EditShare Lightworks is such a valued piece of software, you’ll need to register to get it,
which I didn’t object to, given that this software previously had a four-figure price tag.

Once you are signed up as a proud Lightworks 12 user, you can click the Downloads
button located at the top right of the site menu, and you’ll see tabs for the three different
OS versions—Mac, Linux, and Windows—and tabs for tools and documentation for the
software.

Click the red Download button that matches the bit level of your OS, or the blue Download
button if you want the latest beta version that is in development. After you download it,
install it using the default settings, create a quick launch icon for it, and launch it to make
sure it’s working properly with your workstation, as you have done with your other software.

This Downloads page for EditShare Lightworks version 12, released in Q4 of 2014, can be
seen in Figure 2-11. Click the tab that represents your OS and then download the 75MB
software installer. I downloaded the Lightworks 64-bit version 12.0.2 for Windows 8.1.

http://www.editshare.com/
http://www.lwks.com/

39CHAPTER 2: Setting Up an Android 5 Wearables Application Development Workstation

Now that you have 2D image and video editing software packages in place, you probably
should also get 3D and digital audio editing software packages!

Professional 3D Modeling and Animation: Blender
Next let’s get one of the most popular open source software packages in the world, the
Blender3D Modeling, Rendering, and Animation software package, which can be found on
the Blender web site at the following URL:

www.blender.org/

Blender has an extremely active development community and has updates that come out on
a monthly basis or even more frequently than that sometimes. I would imagine that there will
be a later version of the software available by the time you get to this in this book, however,
everything in this section should still apply. There are also 3D movies that are made with
Blender, just in case you wanted to master the software and then become a major filmmaker!

As you can see in Figure 2-12, there is also a Download Blender 2.72b blue button on the
Blender.org home page, which will also take you to a Blender download page, where you
can select a 32-bit or 64-bit version of Blender for Windows. Blender is also available for
Linux, Mac, Unix, and Solaris.

Figure 2-11. Go to the lwks.com web site, register, and click an OS tab and Download button matching your system

http://www.blender.org/

40 CHAPTER 2: Setting Up an Android 5 Wearables Application Development Workstation

This site will auto-detect the OS version you are currently running, and since I am running
Windows 8, you will see in Figure 2-13 that Blender for Windows tab is selected showing a
blue primary software download area.

Figure 2-13. The blender.org/download/ page; select an OS tab at the top, and click an Installer link for your OS type

Figure 2-12. Go to the blender.org web site, and click the blue Download button from the cloud icon

41CHAPTER 2: Setting Up an Android 5 Wearables Application Development Workstation

As you can see there are a number of different download servers around the world that host
this incredibly popular software package, so if you are in the Netherlands (NL) or Germany,
you can click those links to download the software faster (or at least closer to you).

Because I have new media content production workstations running Windows XP
(32-bit), Windows Vista (32-bit), Windows 7 (64-bit), and recently Windows 8.1 (64-bit),
I have downloaded both of these versions of Blender, as you can see if you look back at the
screenshot shown in Figure 2-13. Click the version (the OS bit-level) that matches your
OS configuration (32-bit or 64-bit) and then download the appropriate version of Blender.

Once your download is completed, launch the installer EXE, which should be named
blender-2.72-windows32.exe or blender-2.72-windows64.exe, unless the later revision
has become available (version 2.8 is expected out in 2015). Once your installation is
complete, right-click the icon or executable file and select the Pin to Taskbar option to
create a Quick Launch Icon.

Professional Digital Audio Editing: Audacity 2.0.6
The Audacity project is hosted on sourceforge.net, an open source software development
web site, which you might find extremely interesting to search for software that interests
you, if you didn’t already know about this site! To reach the Audacity project, go to the
audacity.sourceforge.net URL and you will see a Download Audacity 2.0.6 link, as shown
in Figure 2-14.

Figure 2-14. Go to the audacity.sourceforge.net page on the SourceForge web site and click Download Audacity

42 CHAPTER 2: Setting Up an Android 5 Wearables Application Development Workstation

Notice that the 32-bit Audacity supports decades-ancient operating systems such as
Windows 2000, well over a decade old, and Windows XP, now almost a decade old. I am
hoping that you are using either a Windows 7 or a Windows 8.1 operating system for your
Android Wearables development workstation as Windows 8.1 is getting to be almost as
memory efficient now as Linux is!

Once an Audacity installer file has been downloaded, you can launch it and proceed to
install this feature-filled digital audio editing software. The first thing that it asks you is what
language you want to run the software in, I selected the default, English. Then I clicked a
Next button and read the information. Then I clicked the Next button again, accepting a
default installation location, and created the desktop icon. Finally, I clicked the Install button
and got the Installing progress bar dialog, as well as more information regarding the Audacity
project, and a final dialog where I could click the Finish button to exit the installer software.

If you like, you can follow the same work process that I did with Blender and place a quick
launch short-cut icon on your taskbar by right-clicking the Audacity 2.0 icon and selecting
Pin to Taskbar. You can reposition launch icons by dragging them into any position you
prefer on the taskbar.

Now that Audacity is installed, you can launch the audio editing software and make sure it is
working on your system. Launch Audacity via your quick launch icon or by double-clicking
the icon on the desktop. You should see a new blank project, as shown in Figure 2-15,
opened up on the desktop. You will be using Audacity later in this book to add sound effects
to your Android UI element objects, such as your buttons and ImageButton objects.

Figure 2-15. Launch Audacity to make sure that it’s running properly on your wearables development workstation

Next let’s download the leading, open source, user interface design prototyping software
package, Pencil 2.0.5. This is available for Windows, Linux, and Macintosh and supports
both Android and HTML5 user interfaces in the form of what are termed “stencil” packages,
which are offered for Android 4, iOS, Dojo JS, Ext JS Neptune, and probably at some point
in the future, Android 5. If you like to diagram UI designs, you’ll love Pencil!

43CHAPTER 2: Setting Up an Android 5 Wearables Application Development Workstation

Professional UI Design Wireframing: Pencil Project 2.0.5
Next, you will download and install a user interface (UI) wireframing or prototyping tool
called Pencil, which is currently at revision 2.0.5. Do a Google search for Pencil or go
directly to the following URL, which can be seen at the top of Figure 2-16:

http://pencil.evolus.vn

Figure 2-16. Go to the pencil.evolus.vn web site and click the orange Download button to download Pencil 2.0.5

Figure 2-17. Showing the Quick Launch taskbar, with key OS utilities, new media software, and the Android Studio

When the Pencil Project home page appears, click the orange Download button and
download the 22MB software installer executable file. This should be named something like
Pencil-2.0.5.win32.installer.exe. Pencil only uses a 32-bit binary, as the software does not
need the capabilities offered by 64-bit.

Once the download is complete, launch the installer and when it’s finished, right-click your
desktop icon or Start Menu icon (or even on an executable file) and select the Pin to Taskbar
option to create the Quick Launch Icon shortcut for the software. My Windows 8.1 taskbar is
shown in Figure 2-17; notice I have added font, calculator, text, and file management utilities.

Now, just to be thorough, let’s install a full business production software suite, just in case
you need to put together quotes, spreadsheets, and even contracts for a future Android
wearables software development project!

http://pencil.evolus.vn/

44 CHAPTER 2: Setting Up an Android 5 Wearables Application Development Workstation

Professional Business Software Suite: OpenOffice 4
To make 100% sure your Android development workstation has everything installed you
will need for your Pro Android Wearables Applications Development business, let’s finish
off this impressive run of professional software installation with yet another package, called
OpenOffice 4, which was originally from Sun Microsystems, the makers of Java, and was
acquired by Oracle and then handed over to Apache, after it was made open source.

Do a Google search for Apache Open Office, or go to the www.openoffice.org web site,
and then click the I want to download OpenOffice 4 link or go to the Open Office 4.1.1
downloads page, which is located at the following URL, if you want to type the URL into
your browser directly:

https://www.openoffice.org/download/index.html

As you can see in Figure 2-18, the web site can detect the OS and bit level that you are
using, as well as the language you are speaking (using)!

Figure 2-18. The Apache OpenOffice 4.1.1 download page, which has autodetected my 64-bit Windows 8.1 OS

Once you are on the /download/ page, shown in Figure 2-18, click the green arrow to
download the most recent version of the office suite for your OS, which in my case was
Windows 8.1 (which the site autodetected for me). This download is almost 135MB and
includes more than half a dozen productivity software packages, including a word processor,
a spreadsheet, and a database.

Once the download has completed, launch your installer EXE, and when it is finished, right-
click the icon or executable file and select the Pin to Taskbar option to create the Quick
Launch Icon shortcut for the software.

Next, I will tell you about some of the other open source and affordable 3D software
packages that I use to create new media content for my clientele.

http://www.openoffice.org/
https://www.openoffice.org/download/index.html

45CHAPTER 2: Setting Up an Android 5 Wearables Application Development Workstation

Other Open Source and Affordable Media Software
There are lots of other open source software packages, which are available if you want them,
including SketchUp (architectural rendering), TerraGen3 (virtual world creation), TrueSpace
(3D), Wings 3D, Bishop 3D, POV Ray 3.7 (3D Rendering), Rosegarden (Music Composition,
MIDI and Scoring), Qtractor (Sound Design and MIDI), DAZ Studio 4.6 (Character
Modeling), and this list of amazing open source software just goes on and on!

There are also some very affordable 3D software packages you should take a look at as well,
including NeverCenter SILO 2.3 (Quad 3D Modeling), Moment of Inspiration 3 (NURBs 3D
Modeling), Vue 3D (3D world generation), Hexagon 2.5 (Polygon 3D Modeling), Auto-Des-Sys
Bonzai (3D Modeling), and NewTek Lightwave 3D (3D Modeling, 3D Animation, and 3D
Special Effects).

I install each of these professional open source software packages on each of my new
media content production workstations. This allows you to create fully loaded 3D production
workstations for all of your producers, and the only cost is the hardware, which you can get
at Walmart for $300 to $600.

Congratulations! You have now assembled a professional-grade, Android Wearable
Applications and New Media Content Development Workstation you can now utilize to
create Pro Android Wearable apps and develop user interface designs and user experiences
hither before unseen by the world!

Next, let’s take a quick overview of some of the things that you are going to learn about
over the course of the book, now that you have learned about wearables, Android 5 Material
Design, and set up the Pro Android Wearables development workstation you’re going to use
to develop wearable apps.

Summary
In this chapter, you completely set up your comprehensive Pro Android Wearables Android
Studio application development workstation, learning the hardware requirements (and what
you should really have) and all about open source software, which over the past decade or
two has ultimately become as professional as paid software packages that could have easily
cost thousands!

You downloaded and installed Java SE 7, to Android Studio, to new media content
production software, to (optional) User Interface Design prototyping, to business productivity
tools, and you downloaded and then installed the most impressive open source software
packages that can be found on the planet.

You did this to create the foundation for your Pro Android Wearables and Appliances
application development work process, which you will undertake during this book. Rather
than install these software packages as you went along, I decided to have you set up all this
software first. I did this in case you wanted to explore some of the many features of these
powerful, exciting new media content production software packages before you actually
have to use them during the book. I think that’s only fair.

www.allitebooks.com

http://www.allitebooks.org

46 CHAPTER 2: Setting Up an Android 5 Wearables Application Development Workstation

The best thing about the process was that you accomplished it by using open source,
100% free for commercial usage, and professional-level application software packages,
which is pretty darned amazing if you think about it.

You started by downloading and installing Oracle’s Java SE 7u72 JDK or Java
Development Kit, which is the Java 7 programming language’s SDK. This Java JDK is
required to use Eclipse, as well as to develop application software for the Android operating
system platform for consumer electronic devices.

You then visited the Android Developer web site and downloaded and installed the Android
Studio Bundle, which built the IntelliJ IDEA complete with all of the Android Developer
Tool plug-ins on top of your Java SE 7 programming software development environment.

Next you downloaded and installed GIMP 2.8.14, the powerful digital image editing package
that is available for Windows, Linux, and Macintosh OSs.

Then you downloaded and installed Lightworks 12, a digital video editing and special
effects package, which was recently released as open source and is currently available for
all of the popular OSs.

You then downloaded and installed Blender 2.72, a professional 3D modeling, rendering,
and animation tool available for Windows, Linux, and Mac OSs.

Next you downloaded and installed Audacity 2.0.6, an open source digital audio editing tool
available for the Windows, Linux, and Mac OSs.

Then you downloaded and installed Pencil 2.0.5, the popular UI wireframing and prototyping
tool that is available for Windows, Linux, and Mac OSs.

Finally, you installed Apache Open Office 4.1.1, just to make sure that you have a
completely well-rounded open source workstation at your disposal.

In the next chapter, you will learn all about the new features in Android 5 so that you have a firm
foundation on what Android 5 OS offers for your custom wearables application development.

47

Chapter 3
A Foundation for Android
Wearables: New Wearable
Features in Android 5

Now that you have an Android Development Workstation assembled, with those valuable
(but free), professional-level, open source packages installed on it, it is time to take a look at
all of the new things that Android 5 adds for wearable development. I discussed the Material
Design additions thoroughly in Chapter 1 along with wearable types and concepts, so this
chapter will be covering more technical and “under-the-hood” additions, such as new media
hardware and codec support, new technologies such as the latest Bluetooth, OpenGL,
WebKit, WebAudio, and WebRTC platforms, and other things you will want to be advised
of and up to speed on so that your Android wearables applications feature everything that
users need them to.

I will of course attempt to utilize as many of these Android 5 features as I can during this
book to add a plethora of features to your wearables application. That said, I only have a
few hundred pages here to accomplish this, and Android OS has thousands of classes,
methods, and constants, so I am going to focus on the Android 5 features, and how these
will apply to wearables applications. I’m approaching it this way primarily because this is a
book about Pro Android wearables, and as such, I am assuming that you’re already up to
speed on Android 4, as well as previous Android OS versions. This chapter will take a look at
Android 5 power management, network connectivity, video, audio, and 3D new media, web
media rendering, ultra high definition camera support, data storage, LockScreen notification
and notification metadata, screen sharing, screen capturing, and the Android Extension Pack.

http://dx.doi.org/10.1007/9781430265504_1

48 CHAPTER 3: A Foundation for Android Wearables: New Wearable Features in Android 5

Android’s Project Volta: Power Management Tools
One of the most critical areas for wearables applications currently is the area of power
management. Many smartwatch models are still struggling with the issue of battery life.
Smartwatch manufacturers are trying to make the products last for weeks or months without
charging; however, better battery technology, or maybe a simple smartwatch stand that
charges your battery when the smartwatch is on it, during the night, while users are sleep,
is likely to result in a better solution in the end. Regardless, Android 5 addresses the power
issue in its Project Volta, a focus on making Android more power efficient by using task
scheduler (power management) and task minimization (power optimization) APIs.

Android 5 Process Scheduler: JobScheduler and JobInfo
Android 5 adds a new android.app.job package, which contains JobScheduler, a class
(object) that lets you optimize wearables’ battery life by defining jobs (task processing) for
the Android operating system to run asynchronously. Asynchronous processing allows
tasks to be processed “out of sync” (out of order), possibly at a later time, so that the
operating system can optimize memory and CPU usage at a lower level. Because you as
a wearable application developer do not know which apps, and in what order, the user will
be running, you will not be able to implement this level of optimization as a wearable apps
developer, and this job API allows Android to do it for you.

These jobs (tasks) can also be scheduled for processing under more optimal conditions,
such as when the Android device is charging and has access to unlimited power or under
other types of conditions that can be specified by the wearable applications developer, such
as when video is streaming.

This JobScheduler class is used to guarantee an Android wearable device’s power
optimization in wearables development scenarios where the wearable app has non-user-facing
tasks (background processing) that you can defer or where the application has tasks that a
developer prefers to have processed when the wearable device (and host) is plugged into a
power source (charging).

Developers can also schedule task processing based on the availability of external
resources, for example, telecommunication (4G LTE) network access, a Bluetooth host
device, or the availability of a local Wi-Fi connection.

You can also use this JobScheduler class for batch processing. This allows developers to
group scheduled tasks together, so that they can be run in a “batch.” Batch processing
became popular back in the days of mainframe and minicomputers, which is currently called
enterprise computing and servers!

Batch processing is where a computer processes tasks all at the same time. This is usually
done on a regular schedule, such as hourly, daily, weekly, or monthly. Back in the early days
of mainframe computing, batch processes were scheduled at night, when the IT department
was resting and all of the computer power could be focused on that processing. Note that
you can also schedule time-based tasks one at a time as well, so the JobScheduler class
can also be used to perform routine or time-based task processing as well.

49CHAPTER 3: A Foundation for Android Wearables: New Wearable Features in Android 5

The JobScheduler object runs inside of the JobService object (class), which is an Android
service subclass, which manages all of your jobs that need to be scheduled. Each “unit of
work” to be processed by a JobScheduler object is defined using a JobInfo (class) object.
Android OS will also generate a JobParameters object. This contains job identification,
configuration, and parameters. These are generated by Android OS based on all scheduled
jobs.

The JobInfo object is used to specify how a developer wants the scheduling criteria to be
handled by the Android OS. This object is created using the JobInfo.Builder class, which
allows developers to use Java Builder syntax and to easily configure how the scheduled task
should run.

You can schedule your JobInfo task objects to run under precise (exacting) or specific
conditions. These include starting the task when the device is charging or only processing
that task when the device is charging, running or starting the task when the device is
connected to an unmetered network, starting the task processing whenever the device is
idle (not being actively used), or processing the task before a certain deadline occurs or with
a minimum delay before the processing of the task is started.

For example, the following Builder Java code structure will, in this order, create a JobInfo
object that will persist across device reboots, require that the device be on the charger, run
the task periodically, delay the running of the task by a certain latency factor, and require
the device to be connected to an unmetered network (such as home Wi-Fi or DSL [digital
subscriber line] service).

JobInfo uploadTask = new JobInfo.Builder(mJobId, mJobServiceComponent)
 .setPersisted(true)
 .setRequiresCharging(true)
 .setPeriodic(intervalUsingLongDataValueInMilliseconds)
 . setMinimumLatency(minimumLatencyUseLongData

ValueMilliseconds)
 . setRequiredNetworkCapabilities(JobInfo.NetworkType.

UNMETERED)
 .build();

JobScheduler jobScheduler = (JobScheduler) context.getSystemService(Context.JOB_SCHEDULER_
SERVICE);
jobScheduler.schedule(uploadTask);

It is important to note that if the device has “stable” power—that is, it has been plugged in
(for more than two minutes) and the battery life is at a healthy level—the system will run
any scheduled job that is ready to run if that JobInfo object’s task processing deadline has
not expired.

Android 5 Battery Optimizer: The BatteryHistorian Tool
There is also a new adb shell dumpsys batterystats command that generates statistical
data regarding the battery usage on your Android devices. These data are organized using
a unique user ID (UID). The statistics, which will be collected whenever the command is
invoked, include a history of battery-related events and global power-related statistics for

https://developer.android.com/reference/android/app/job/JobInfo.Builder.html#setPersisted(boolean)
https://developer.android.com/reference/android/app/job/JobInfo.Builder.html#setRequiresCharging(boolean)
https://developer.android.com/reference/android/app/job/JobInfo.Builder.html#setPeriodic(long)

50 CHAPTER 3: A Foundation for Android Wearables: New Wearable Features in Android 5

that Android hardware device, an approximation of power usage per UID, and for system
components, per-application mobile milliseconds per data packet, UID system aggregated
statistics, and UID application aggregated statistics.

If you would like to learn more about the various command-line options for tailoring the
output of the utility, you would want to use a switch called --help (command-line utilities use
switches, or options, prefaced by a pair of minus signs or dashes). I would use the following
command-line format:

$ adb shell dumpsys batterystats --help

For example, if you wanted to print out the battery usage statistics for a given application’s
package since the Android device was last charged, you would run this command-line
format to accomplish that:

$ adb shell dumpsys batterystats --charged <your-package-name-here>

You can use the Google Battery Historian tool on the output of the dumpsys batterystats
commands. This will generate an HTML5-based visualization for your power-related events
from the command logs. This information makes it easier for you to understand, and diagnose,
your battery-related wearables’ application programming issues. You can download a copy of
Google’s Battery Historian tool on GitHub if you like, at the following URL:

https://github.com/google/battery-historian

Next, I’ll explain the different types of networks Android 5 can connect with. This is obviously
very important for wearables applications.

Android’s Network Connection: NFC and Bluetooth
Another critical support area for Android wearables hardware devices currently is the area
of multiple data networks support. Wearables that support more telecommunications
networks are going to be connected to the world better and thus feature more useful
wearable applications. When your wearable Android devices can find and tap into a
variety of different data networks, such as 4G LTE, Wi-Fi, Bluetooth, and NFC (near field
communication), your wearable applications become more valuable to both businesses and
consumers alike.

Android 5 Multiple Network Support: ConnectivityManager
Android 5 provides an all new multinetworking API that will allow your wearable application
to dynamically scan for available networks with specific capabilities. Once the API finds a
network, you will be able to establish a connection to it to provide data for your wearable
application’s features.

The functionality provided by the Android ConnectivityManager class can be quite useful
when the wearable application requires a specialized network. Networks that are currently
supported by Android can be found inside a constant list in the ConnectivityManager

https://github.com/google/battery-historian

51CHAPTER 3: A Foundation for Android Wearables: New Wearable Features in Android 5

class, which includes TYPE_BLUETOOTH (Bluetooth data connection), TYPE_DUMMY
(Dummy connections), TYPE_ETHERNET (an Ethernet connection), TYPE_MOBILE (Mobile
connection), TYPE_MOBILE_DUN (DUN Mobile connect), TYPE_MOBILE_HIPRI (High
Priority Mobile connection), TYPE_MOBILE_MMS (MMS Mobile data), TYPE_MOBILE_
SUPL (a SUPL Mobile data), TYPE_VPN (a Virtual Private Network), TYPE_WIFI (WIFI
connection), and the TYPE_WIMAX (a WiMAX data connection). This class can also be
useful if you wanted to transfer your data with a particular type of transport protocol.

To select and connect to a data network dynamically from your app, you will first
need to create a ConnectivityManager object. Next, you’ll use a builder class called
NetworkRequest.Builder to create the NetworkRequest object and then specify the
network features and transport type that the wearable app is interested in connecting with
(network type) and utilizing (the protocol).

To scan for various supported data networks, you can use .requestNetwork() and
then you can pass the NetworkRequest object into the method call along with a
ConnectivityManager.NetworkCallback object. This should be done via the following
.requestNetwork() method call to the Java programming structure:

.requestNetwork(NetworkRequest, ConnectivityManager.NetworkCallback)

You can also set up Android to notify your application of detected network availability by
using a .registerNetworkCallback() method call to set up a listener in your Java code for
networks as they come into range. This should be done using the .registerNetworkCallback()
method call with the following Java programming structure:

.registerNetworkCallback(NetworkRequest, ConnectivityManager.NetworkCallback)

You would use the requestNetwork() method if you wanted to actively switch to a suitable
network, once it has been detected. If you wanted to receive only notifications for
scanned networks without actively switching over to them, then you would want to use a
.registerNetworkCallback() method call.

When the Android operating system detects a suitable network, it will then connect to the
network and invoke an .onAvailable() callback method call.

You can poll this network object that is returned from the NetworkCallback object if you
want to ascertain additional information about the available network(s). After you do this, you
can then direct your applications to use one of these selected networks to perform your data
transfer operations.

Android 5 Low Energy Bluetooth: The Bluetooth LE API
You probably remember that in 2014 Android 4.3 introduced platform support for Bluetooth
Low Energy (a Bluetooth LE API), to support the Wear SDK. In Android 5, your user’s
Android hardware device can act as a Bluetooth LE peripheral device as well, allowing it to
“socialize” with other Bluetooth devices. In essence, this turns the Android hardware into a
Bluetooth hub!

52 CHAPTER 3: A Foundation for Android Wearables: New Wearable Features in Android 5

Android 5 wearables applications could use this capability to make their presence known to
any Bluetooth-capable consumer electronic device nearby. Using this new capability, you
can build wearables apps that allow a device to function as a pedometer or heart monitor,
if the wearable hardware can support these features, and then communicate the resulting
health care data with another Bluetooth LE device that happens to be nearby.

This new Bluetooth LE API is contained in an Android package that is named android.
bluetooth.le, as you may have already guessed. This new API enables your wearables
applications to do things like broadcasting advertisements, scan for a response, and form
connections with other Bluetooth LE devices.

If you want to use these new advertising or scanning features, you need to add the
BLUETOOTH_ADMIN permission into the AndroidManifest.xml file. When your end users
download (or update) your wearable app from the Google Play Store, they will be asked
to grant this “Bluetooth connection information: Allows the app to control Bluetooth,
including broadcasting to, or getting information about, nearby Bluetooth devices”
permission for your wearables application. This gets the permission from the user before the
application is used to connect to (going in either direction) other Bluetooth devices.

To begin Bluetooth LE advertising so any Bluetooth-capable devices will be able to
detect the wearable application, call a .startAdvertising() method and then pass it an
implementation of the Android AdvertiseCallback class.

This AdvertisingCallback object will receive the report regarding success, or failure, of
Bluetooth LE advertising operations. Android 5 also added a ScanFilter class so that
wearables can scan for only the specific types of devices they are interested in connecting
to. To begin a Bluetooth LE device scan, you would call a .startScan() method, passing
in your list of ScanFilter objects. You must also provide a reference to your ScanCallback
object. The ScanCallback object will report back to a wearable application whenever any
specified Bluetooth (device) advertisement has been detected.

Android 5 NFC Improvements: Near Field Communication
Android 5 has also added enhancements to their NFC technology implementation. These
additions will enable a wider range as well as a more flexible application of this powerful
NFC technology.

The Android Beam technology, which was added in Android 4 but never really had a solid
user experience design applied to it because the technology was difficult to initiate relative
to the two different Android users, has been added to the Android Share Icons area for the
Android 5 OS.

Your wearable application can invoke this Android Beam application on your user’s Android
hardware whenever you want a user to share data. This would be accomplished by calling
the .invokeBeam() method.

Setting things up using this method call circumvents the need for the user to manually tap
their device against other NFC-capable devices in order to complete a data transfer, making
this technology easier to use from a user-experience standpoint.

53CHAPTER 3: A Foundation for Android Wearables: New Wearable Features in Android 5

To transfer data over an NFC connection, you’ll need to create and utilize an NDEF (NFC
Data Exchange Format) Record, which uses a light-weight binary format. This NDEF
format was specified by the NFC Forum and can be used to encapsulate typed data for
transmission and storage using an NFC connection. It is interesting to note that NDEF is
transport agnostic.

This NDEF is used to define messages and data records. Your NDEF Record will contain
typed data, such as a URL or URI (uniform resource identifier), MIME-typed media, a text
message, or a custom application data transfer “payload.” An NDEF Message is a container
for one or more of the NDEF Record structures. This might take a little getting used to, as
normally, a data record would contain a message, not the other way around. I would have
called it a NDEF Packet, but as long as you know that NDEF Messages are collections of
NDEF Records, then you are good to go if you want to develop apps that use NFC!

For instance, if you wanted to create an NFC messaging application, you can use the new
.createTextRecord() method to create an NDEF Record containing UTF-8 text data. This
Android NdefRecord class also has a .createUri() and a .createMime() method for creating
URI and MIME data record types, respectively.

If you are developing a credit payment application, you now have the ability to register
your NFC Application ID (AID) dynamically. This can be accomplished by calling a
registerAidsForService() method. You can also use a setPreferredService() method call to
set a preferred card emulation service. This method would always be called when a specific
activity is in the foreground (in use by an end user). Next, let’s look at Android Media!

Android 5 Media: Adding Wow-Factor to Wearables
Unless your wearable applications are all purely functional, a lot of your wearable
applications’ success in the marketplace will be based on how you implement media
elements to achieve a level of wow-factor. This will allow you to have buyers choose your
application over other (competing) wearable applications. This section will look at all of the
new media assets, such as digital video, digital audio, and 3D, as well as other areas, such
as web browser support (WebKit), WebAudio, WebGL, WebRTC, MediaBrowser, and the new
ultra high definition (UHD) savvy Camera 2 API.

Digital Video Playback: MediaController and MediaSession
Android 5 adds an entirely new package for media control that is called android.media.
session. The package contains the all new MediaController and MediaSession classes,
as well as nested classes for these two classes, and the MediaSessionManager and
PlaybackState classes, which also have nested classes.

Use the new notification and media APIs to ensure that the system UI knows about your
media playback and can extract and show album art. Controlling media playback using a
UI Design with a MediaSessionManager Service is now a seamless developer experience
thanks to the MediaSession, PlaybackState, and MediaController classes, along with their
nine utility nested classes.

54 CHAPTER 3: A Foundation for Android Wearables: New Wearable Features in Android 5

You would use a Context.getSystemService(Context.MEDIA_SESSION_SERVICE) call
in order to obtain an instance of the MediaSessionManager object (class) and call the
.getSystemService(Context.MEDIA_SESSION_SERVICE) method off of your Context object.
This conveniently gives a MediaSessionManager Service class the context (object) showing
what the wearable application is doing.

The MediaSession class replaces the now deprecated RemoteControlClient class and
provides a unified set of callback methods. These handle the transport controls as well as
the media buttons. If your wearable app provides media playback, you’ll need to use the
MediaSession class (object) to handle the transport controls using these callback methods.
It’s important to note an app coded in this fashion can run on both Android TV and Android
Wear SDK.

You can even create your own MediaController wearable application with the
MediaController class. This class provides a “thread-safe” approach so you can monitor
and control your media asset playback from inside the wearable application’s UI process
(primary UI thread). To create a media controller, you specify a MediaSession.Token object.
Once this has been done, your app can interact with the MediaSession object. You will
call the .play(), .stop(), .skipToNext(), or .setRating() method to control the media asset
playback.

This is done by using the MediaController.TransportControls object (nested class), which,
as you may notice from the class name, provides a UI Transport Control object to use with
your MediaController object, which is a part of your MediaSession object.

Another MediaController nested class, MediaController.Callback, will allow you to register
a MediaController.Callback object. This will listen for an asset’s metadata and will report any
state changes for the MediaSession to the wearable application in real time so your code
can respond to it.

You can create multimedia notifications, which allow your playback controls to be tied to
a media session using the new Notification.MediaStyle class. This class is a part of the
android.app package and is subclassed from the Notification.Style class, and it allows you
to mix your media with multimedia designs, for instance, showing your album cover along
with a transport UI.

Digital Audio Playback: Enhanced AudioTrack Precision
The Android 5 AudioTrack class is also in the android.media package, and it manages and
plays a single audio resource for Java applications. It allows developers to stream (dynamic)
or play (static) PCM (pulse-code modulation) audio buffers directly from the system memory
to the audio hardware for a low-latency user experience.

This is achieved by loading data to the AudioTrack object in the system memory by using
one of the three .write() method call parameter list structures:

.write(byte[], int, int)
.write(short[], int, int)
.write(float[], int, int, int)

55CHAPTER 3: A Foundation for Android Wearables: New Wearable Features in Android 5

In stream (dynamic) mode, a wearable application writes a continuous stream of data into
an AudioTrack object using one of the three .write() methods. A dynamic stream mode is
useful when playing blocks of audio data that are too data heavy to be able to fit in memory
at one time, either because the duration of the audio is too long or because of the digital
audio asset data compression characteristics (high-frequency sampling rate at 24-bit sample
resolution, for instance, like THX, 48Khz 16-bit or 24-bit digital audio).

A dynamic audio stream is also flexible as it can be received or generated while previously
queued (loaded in system memory) digital audio plays.

A static audio mode should be utilized when dealing with short sounds that will easily fit
into system memory that need to play back using the smallest amount of latency (delay) for
synchronization accuracy.

The static audio mode should thus be utilized when implementing UI or game audio assets
that need to be played often, or rapidly, several times in a row, using low latency and the
smallest amount of system memory possible.

Once you create an AudioTrack object, Android OS initializes an associated audio buffer
for an AudioTrack object. The size of the buffer is specified during the construction of the
AudioTrack object. This determines how long an AudioTrack object will play from memory
before running out of data. For an AudioTrack object that uses static mode, the buffer size is
the maximum size of the sound that can be played using the AudioTrack object.

The AudioTrack class offers three overloaded constructor methods that can take the
following constructor method call parameter list formats:

AudioTrack(int streamType, int sampleRateInHz, int channelConfig, int audioFormat,
 int bufferSizeInBytes, int mode)
AudioTrack(int streamType, int sampleRateInHz, int channelConfig, int audioFormat,
 int bufferSizeInBytes, int mode, int sessionId)
AudioTrack(AudioAttributes attributes, AudioFormat format, int bufferSizeInBytes,
 int mode, int sessionId)

For the streaming mode, data will be written to the audio sink in chunks less than or equal
to the total buffer size. AudioTrack is not final and thus permits subclasses, but such use
is not recommended. This release includes a number of changes of note to the Android
AudioTrack class.

Your app can now supply audio data using the high-precision floating-point format with the
new Android constant ENCODING_PCM_FLOAT. This is to permit increased dynamic range
for your PCM (also known as WAVE audio) audio data format. This allows high-definition
(24-bit and 32-bit) WAVE digital audio (.WAV files) to have more consistent precision as well
as more “headroom.”

The reason for this is because floating-point precision can be very useful for providing more
accurate results in the types of calculations used with digital audio assets. The playback
endpoints still use integer data format for digital audio assets and, therefore, utilize a lower
bit depth. As with Android 5, portions of the internal digital audio pipeline have not yet been
fully recoded to utilize 100% floating point data representations.

www.allitebooks.com

http://www.allitebooks.org

56 CHAPTER 3: A Foundation for Android Wearables: New Wearable Features in Android 5

There are also some powerful digital audio processing algorithm classes in Android 5,
held inside the android.media.audiofx package. Those of you who are familiar with
audio engineering will tremble with anticipation as I simply mention some of the class
names, which reveal what each process does. Some of these impressive audio processing
algorithms that are implemented as classes include BassBoost, EnvironmentalReverb,
Equalizer, Virtualizer, PresetReverb, Visualizer, LoudnessEnhancer, NoiseSuppressor, and,
finally, AcousticEchoCanceler and AutomaticGainControl.

As you can see, Android is focusing quite a bit on the professional multimedia genres of
digital video, digital audio, digital illustration, and 3D rendering and animation, which I’ll
explain next. Hold on to your hats folks, we’re about to venture into the third dimension!

Real-Time 3D Rendering: OpenGL ES and Extension Pack
Android 5 adds a plethora of powerful interactive 3D, also known as i3D, features. These are
intended to increase the wow-factor of the Android OS so that it can compete with all of the
other 64-bit operating systems that are in the marketplace, such as iOS 8 and the upcoming
Windows 9.

It’s commonly said that “flat UI design” is the popular trend; however, the Android 5 OS
seems to be bucking this trend by including things like 3D ripple effects, fine-tune controls
for dropshadow (shadow height, Z layer order, View autoshadowing), OpenGL ES 3 support,
and OpenGL 4.4 emulation.

These features target placing Android 5 on a level playing field with Xbox and PlayStation
game consoles. Much of this i3D capability is utilized for the new Android 5 Material Design
schema, which I discussed in exacting detail in Chapter 1. Let’s learn about OpenGL and
Android Extension Pack!

Open GL ES 3.1: Enhanced 3D Rendering Technology for Android 5
One of the most powerful 3D features added in Android 5 is the inclusion of the latest
version of OpenGL ES 3.1. As you may have guessed, this “ES” stands for embedded
systems. This version of OpenGL is optimized to run in browsers and on embedded
devices, such as smartwatches and smartglasses.

OpenGL ES 3.1 is the latest version of this real-time i3D rendering technology. OpenGL is
often used in popular 3D video games. Most of the new features are related to the “skins”
that make a 3D object look realistic. These are called “texture maps” in the 3D modeling or
animation industry. These texture maps are made up of different “shading attributes,” which
are commonly called “shaders.”

Advanced effects such as animated surfaces or surfaces that are responsive to game play
or position can be created using the “Shader Language” in each shader “slot” in a surface
material. This is somewhat akin to using layers in image compositing, only shaders are
far more mathematically complex, as they contain a number of attributes that allow them
to achieve photorealism. Some of them include color, transparency, luster (shininess),
illumination (glow), reflectiveness (reflection), and bump mapping (surface height).

http://dx.doi.org/10.1007/9781430265504_1

57CHAPTER 3: A Foundation for Android Wearables: New Wearable Features in Android 5

OpenGL ES 3.1 supports Enhanced Texture Mapping functionality, including a “Multi-
Sample” texture capability, which can yield higher edge quality, in texture map applications.
This is similar to the anti-aliasing you will be learning about later on during this book.

Also supported in OpenGL ES 3.1 is stencil texture mapping, which is used to enhance
an illusion of depth in your texture map. These can be created using depth buffer textures,
rather than actual 3D geometry (the underlying mesh or 3D polygon model). These advanced
features allow 3D game output quality that rivals the traditional game platforms such as
PlayStation 4 or Xbox.

It’s apparent that Google is going after their 3D game console competitors with Android 5.
There are already several Android-based game consoles on the market, including the
$99 OUYA, the Amazon Fire TV, and the $199 nVidia Shield. These will all most likely be
upgraded to Android 5 during 2015.

OpenGL ES 3.1 also supports something called a “compute shader.” These are not
actually texture maps or shaders at all, but rather they are a programming construct that
allows developers to use the graphics processing unit (GPU) to perform non-3D-related
calculations. Using the GPU, rather than the CPU, for math calculations is faster and more
efficient, as the GPU is optimized for floating-point math, whereas a CPU is better suited
(optimized) for integer-based mathematics.

In game applications, the popular implementation for a compute shader will be to use the
compute shader to offload game physics calculations onto the GPU. This is done because
current GPU technology is more powerful than CPU technology, at least when it comes to
solving highly complex mathematical calculations, which are commonly utilized inside i3D
game applications.

Many open source software packages, such as GIMP 3 or EditShare Lightworks 12, leverage
compute shaders to make their software perform complex special effects and pixel filter
applications at lightning fast speeds.

A wearable application can also utilize compute shaders as long as a user has an nVidia
GeForce or AMD Radeon GPU in their Android device. There are Android devices that
feature the Tegra K1 microprocessor (manufactured by nVidia and currently in the nVidia
Shield and the Amazon Fire TV) and can therefore take advantage of this ability to use the
GPU for non-3D-centric computation by using these OpenGL ES 3.1 compute shaders.

OpenGL ES 3.1 is also backwardly compatible with OpenGL ES 2 and OpenGL ES 3,
so rest assured that none of your existing 3D wearable application code will be broken.
OpenGL ES 3.1 will offer optional “extensions,” which allow third-party manufacturers (like
nVidia) to add things like advanced blending modes (a texture layer compositing special
effect) and fine-tuned shading effects such as those that are found in the full OpenGL 4.4
specification.

In fact, the Android Extension Pack (AEP), which I’ll discuss next, is a prime example of this
third-party extension feature.

58 CHAPTER 3: A Foundation for Android Wearables: New Wearable Features in Android 5

Android 5 adds Java interfaces and native support for OpenGL ES 3.1. The Java interface
for OpenGL ES 3.1 on Android is provided via GLES31. If you use OpenGL ES 3.1, be
sure to declare it in the Android Manifest file with the <uses-feature> tag, along with the
android:glEsVersion attribute, like this:

<manifest>
 ...
 <uses-feature android:glEsVersion="0x00030001" />
</manifest>

Next, let’s take a look at how to upgrade Android 5 to OpenGL 4.4!

Android Extension Pack: Simulate OpenGL 4.4 Using OpenGL ES
There is an additional extension to the OpenGL ES 3.1 standard called AEP
(Android Extension Pack). AEP allows features such as those found in the full OpenGL 4.4
release. This means 3D console games with 3D graphics that are similar to those seen in
Madden Football, Unreal 4, and Halo 4 will be able to run on Android 5 and later hardware
devices supporting GPU hardware such as the nVidia Tegra K1.

Primary features of the AEP include Tesselation Shaders, Geometry Shaders, and
Adaptive Scalable Texture Compression (ASTC™), all of which I’ll cover in this section.
A geometry shader was the first feature to come out in OpenGL, so let’s look at that
concept first.

The geometry of a 3D object is the underlying 3D model, like a shape, only in three
dimensions instead of two. Geometry is also sometimes referred to as the “mesh,” because
without any texture mapping, this is exactly what it looks like. Another term for 3D geometry,
called a “wireframe,” also comes from what this mesh-like 3D geometry looks like. Geometry
is modeled using “polygons,” each of which are triangular (called “tris”) or quadrilateral
(called “quads”).

A geometry shader allows an underlying mesh to become more refined without adding
any more polygons. This allows 3D models to be created using a “low polygon” modeling
approach, which lowers the data footprint (smaller file size). Geometry shaders allow
low-poly meshes to look like high-poly meshes, which are smoother. Geometry shaders use
the GPU to apply a refinement algorithm called “tesselation,” which adds more “vertices.”

Each polygon is made up of “vertices” (points in space), which are elements connected
with “edges.” A triangular polygon has three vertices and three edges, and a quad polygon
has four vertices and four edges. It is important to note that a quad polygon can be
split in half (diagonally), making two triangle polygons. An example of a quad modeler is
the NeverCenter SILO2 software, and an example of a triangular modeler would be the
Blender3D software.

The rendering pipeline (a 3D layer stack, if you will) usually goes from a “Vertex Shader” on the
top, or skin, of the 3D mesh (model) down through the “Tessellation Shader,” which provides
fine-tuned tessellation control over how the underlying geometry shader will be tessellated.

How this all works is beyond the scope of a Pro Android programming title, but I wanted to
cover it briefly here so you have a good idea of how advanced the AEP is.

59CHAPTER 3: A Foundation for Android Wearables: New Wearable Features in Android 5

Finally, ASTC is akin to a more advanced 3D version of the advanced WebM and WebP
codecs added in Android 4. ASTC is in OpenGL 4.4 as well as in OpenGL ES 3.1, so it is an
advanced technology that is used in popular 3D video games. ASTC allows even better 3D
texture map optimization, allowing both an application’s data footprint and the amount of
memory used for these texture maps to be applied to your 3D polygonal mesh to be
reduced significantly.

In addition to OpenGL ES 3.1, Android 5 provides this extension pack and Java interfaces and
native support for using AEP’s incredibly advanced i3D graphics functionality. The AEP extensions
are treated as a single package by Android. If the ANDROID_extension_pack_es31a
extension is present, your wearables apps can assume all extensions in this package are present.
This will enable shading language features using a single #extension statement.

A Java interface for Android extension pack is provided with GLES31EXT. In your wearables
application manifest, you can declare that your app must be installed only on devices that
support the extension pack, just like this:

<manifest>
 ...
 <uses-feature android:glEsVersion="0x00030001" />
 <uses-feature android:name="android.hardware.opengles.aep" android:required="true"
/>
</manifest>

Next, let’s take a look at browsing media related to the World Wide Web.

WebKit Media: WebView, WebAudio, WebGL, and WebRTC
One of the super powerful features of Android is a WebKit API, which you can use to display
HTML content or even to create your own browser. The Android WebView uses the WebKit
Rendering Engine to display a web site, and Android 5 upgrades this to the latest version
of Chromium, which is the equivalent of Google Chrome Browser version 37. I just looked
at my Chrome browser, and it is at version 39, so this is fairly recent. I would expect Google
to keep this part of Android 5 recent, so with each of the Android 5.x updates, expect this
version number to advance (increase), as it has already increased to Android 5.1 during the
writing of this book.

Android WebView Class: The PermissionRequest Class
Besides updating the Android 5 WebView implementation to Chromium M-37, Android 5
takes security enhancements to a new level, increasing stability of the WebView class and
WebKit Rendering Engine, via numerous bug fixes.

Your default user-agent string for running a WebView on Android 5 has been updated to
incorporate 37.0.0.0 as your latest version numbering schema.

Android 5 adds a new PermissionRequest class. This class allows your app to grant
a WebView object permission to access protected resources such as the camera or a
microphone. This is accomplished using WebKit APIs such as getUserMedia(). The app

60 CHAPTER 3: A Foundation for Android Wearables: New Wearable Features in Android 5

must declare the correct Android permissions to be able to use these resources in the first
place before you then grant these permissions over to the WebView object for its usage.

The PermissionRequest class creates your permission request object and is required when
you wish to request access to web content that has protected resources incorporated into
the web site. There are three constants in this class that relate to the types of data you will
need permission to access.

The RESOURCE_AUDIO_CAPTURE resource permission will allow access for audio
capture devices such as microphones. There’s a RESOURCE_PROTECTED_MEDIA_ID
resource permission that will allow you to access a protected media asset, and the
RESOURCE_VIDEO_CAPTURE will allow you access to video capture devices, such as an
HD digital video camera.

The PermissionRequest class’s permission request events are delivered with an
onPermissionRequest(PermissionRequest) method call and can be canceled by using
an onPermissionRequestCanceled(PermissionRequest) method call.

The PermissionRequest class has the .grant() and .deny() methods for granting or
denying permission, respectively. You will call either a .grant() or a .deny() method in your
application’s UI thread to respond to a permission request.

There’s also a new .onShowFileChooser() method, which allows you to use an input form
with a files field in a WebView that will launch a file chooser, allowing the end user to select
images or files from their Android device.

This Android 5 release also adds support for several powerful new media-related open
source standards, including WebAudio, WebGL, and WebRTC. I’ll cover what these
three technologies are and what capabilities they’ll give to your wearables application
development next.

WebAudio: Digital Audio Synthesis and Real-Time Processing
Until the advent of this WebAudio API, web browsers have not had powerful digital audio
processing and synthesis capabilities. An introduction of an <audio> tag in HTML5 started
it all off, allowing for basic streamed audio playback support. Whereas the audio tag was
powerful enough to allow audio streaming, all processing of this digital audio stream had to
be done on the server side (or before posting the digital audio on the server).

To really have powerful digital audio processing, the digital audio must be able to respond to
complex digital audio (programming) applications on the client side, that is, inside the web
browser or embedded OS browser itself.

The WebAudio API provides this client-side processing capability. The API has been
designed to support a plethora of digital audio processing uses. The API has been designed
in a modular fashion so that much more advanced capabilities can be added as time goes on.

WebAudio API supports a wide range of complex digital audio applications, including games
and interactive audio design and synthesis applications. I would include virtual synthesizers,
audio sequencers, and music composition software in the types of digital audio applications
that could be created using the WebAudio API, which makes it extremely impressive. Any
wearable with the right hardware support would be able to take advantage of these!

61CHAPTER 3: A Foundation for Android Wearables: New Wearable Features in Android 5

WebAudio provides a great synergy with the more advanced graphic features offered by
WebGL, which I’ll cover in the next section. The WebAudio API features modular digital
audio sample routing (in analog audio, this would be termed signal routing), providing the
ability to create complex mixing and allowing developers to create highly detailed special
effects pipelines.

This WebAudio API will allow developers to program multiple digital audio data “send”
(sources), as well as submixing. The API supports high dynamic ranges by using the 32-bit
floating point data format for internal processing.

The API allows audio developers to utilize sample-accurate scheduled sound playback that
features a very low latency. This is necessary for musical applications that require a high
degree of rhythmic precision, such as drum machines and audio sequencers. Low latency
(delays) allows the possibility of dynamic (real-time) creation of digital audio special effects.

The API allows for the automation of audio parameters for features such as envelopes,
fade-ins, fade-outs, granular (noise) effects, filter sweeps, or LFOs (low-frequency oscillations).
Developers are afforded flexible ways to handle audio input channels, allowing input audio to
be split apart, or merged together, in real time.

You can process audio sources extracted from audio or video media elements or process
live audio input via a MediaStream obtained using a method call to .getUserMedia().
You could also integrate WebAudio and WebRTC, which I’ll be covering after I
cover WebGL. You can process audio received from a remote peer by using the
MediaStreamAudioSourceNode method with WebRTC.

Developers can perform digital audio synthesis or digital audio processing using JavaScript
and can even send a generated (or processed) audio stream to a remote peer by using the
MediaStreamAudioDestinationNode method.

The 3D audio is also supported through spatialized audio, which supports a wide range
of 3D games and immersive environments. There are also several audio panning models,
including HRTF (heat-related transfer function), equal power, and pass-through panning.

Other notable features include distance attenuation, Doppler shift, sound cones, support for
obstruction (or occlusion), and a linear convolution engine that allows you to create a range
of high-quality special effects such as simulating audio in different types of rooms (ambient
sound spaces) like an amphitheater, cathedral, concert hall, hallway, tunnel, caves, and forests.

The WebAudio API also supports oscillators (tone generation); waveshaping effects for
sound design; distortion; nonlinear audio processing effects; real-time, time-domain, and
frequency analyses; music visualization support; highly efficient bi-quad filters that can
be used for lowpass, highpass, and other common filter applications; comb filter effects;
sample reverse; and dynamics compression for overall control and sweetening of a
mixdown. Whether or not the smartwatch can take advantage of this is an issue that pertains
to audio hardware feature support.

Next let’s take a look at WebGL, which is even more powerful than WebAudio and applies to
the i3D genre of media rather than the digital audio genre.

62 CHAPTER 3: A Foundation for Android Wearables: New Wearable Features in Android 5

WebGL Support: Interactive 3D Rendering, Shading, and Animation
WebGL is exactly what it sounds like, OpenGL ES for the web (browser). The initial WebGL
(1.0) supports the OpenGL ES 1.1 and 2.0 specifications, and the next WebGL 2 (2.0)
specification will support OpenGL ES 3.0 and 3.1 as well as 1.1 and 2.0. Both WebGL and
OpenGL are managed by the Khronos Group, a group of developers who manage open
source specifications for i3D-related technology, such as OpenGL, OpenGL ES, OpenCL,
OpenSL, OpenSL ES, Collada, WebGL, WebCL, OpenMAX, gITF, and a number of other
3D-related technologies.

You can find out more about the WebGL specification on the Khronos web site as well as the
W3C web site. These sites are located at the following URLs:

https://www.khronos.org/webgl/
www.w3.org/community/declarative3d/wiki/Related_technologies

Until WebGL 2.0 is supported using WebKit, Pro Android wearables developers will want to
use the OpenGL ES 3.1 discussed earlier (with AEP if needed) and not use WebGL, as using
Android’s native OpenGL ES will render faster.

WebRTC Support: Real-Time Communication for Your Wearables
The WebRTC standard is a free, open source project that provides browsers and mobile
applications with real-time communications (RTC) capabilities.

The WebRTC API offers web application developers an ability to write rich, real-time
multimedia applications (such as chat, audio chat, or video chat) on the web, without
requiring plug-ins, downloads, or installs. Its purpose is to help build a robust free RTC
platform that works across multiple web browsers, as well as across multiple operating
system platforms.

Like WebAudio and WebGL, this is accomplished by using the WebRTC API. The WebRTC
components have been optimized for serving the purpose of real-time audio and video
telecommunications inside of web browsers and inside of CE (consumer electronics) devices
(also called embedded devices) such as iTV, smartwatches, smartphones, tablets, e-readers,
game consoles, and the like.

A WebRTC API allows robust, professional quality RTC applications to be developed for
web browsers, mobile platforms, tablet or e-reader platforms, and IoT devices such as
smartwatches and smartglasses.

This WebRTC API allows each of these consumer electronics device genres to communicate
with one another using a common set of protocols that have been agreed upon by all of the
platform software and hardware manufacturers.

The WebRTC initiative is an open industry project that is currently agreed upon, and
supported by, Google, Mozilla, and Opera. The WebRTC API web site is being maintained by
the Google Chrome team.

https://www.khronos.org/webgl/
http://www.w3.org/community/declarative3d/wiki/Related_technologies

63CHAPTER 3: A Foundation for Android Wearables: New Wearable Features in Android 5

Android MediaBrowser Class: Browsing Third-Party Media
Android 5 introduces the ability for wearable applications to browse the media content
library of other applications using an android.media.browse API. To expose the media
content that is inside your wearable apps, extend the MediaBrowserService class.

Your custom class’s implementation (subclass) of MediaBrowserService would provide
access to the MediaSession.Token nested class. This should be done so your wearable
applications can play media content provided through your MediaBrowserService Service
class, which is scheduled via Android OS.

To interact with this MediaBrowserService object, you use the MediaBrowser class (object).
To do this, you would first specify the component name for your MediaSession class
(object). This would be done at the same time that you create your MediaBrowser instance,
by using the constructor method.

Using your MediaBrowser object instance, your apps can then connect to the
MediaBrowserService object, which you have “wired up” or referenced to it. This
MediaBrowserService object will obtain a MediaSession.Token object to play the new
media content, which is exposed through that Android Service.

Android Camera 2 API: UHD Image Processing Support
Android 5 introduced a new android.hardware.camera2 package, and its API (classes,
interfaces, methods, properties and constants) allows developers to implement HDRI (high
dynamic range images) photographic capture as well as HDRI processing. There’s already
one smartwatch model with an HDRI camera in the crown, the Hyetis. You can expect HDRI
camera support to take wearable application development by storm as more products add
in these cameras.

You can now access an HDRI camera device available to the operating system in your Java
code. You would use a .getCameraIdList() method to ascertain the cameras are available to
the user’s hardware device, and then connect to a specific camera hardware device, using
the .openCamera() method call.

Once this has been done, you can start to capture HDRIs, by creating a
CameraCaptureSession object and then specifying Surface objects to send the captured
images into for display in your wearable applications. These CameraCaptureSession objects
can be configured to either capture a single image shot or to capture multiple HDRIs in a
single burst image shot.

To notify the wearable application when a new image has been captured, you implement
the CameraCaptureSession.CaptureCallback listener and set it in your capture request.
When the system completes the image capture request, the CameraCaptureSession.
CaptureCallback listener will receive the call to .onCaptureCompleted(), which will provide
your wearable application with an image capture metadata object encapsulated inside a
CaptureResult object.

There is also a CameraCharacteristics class (object), which will allow your wearable
application to detect which HD camera features are available on a given hardware device.
The object features a INFO_SUPPORTED_HARDWARE_LEVEL property, which will contain
data representing the level of functionality.

64 CHAPTER 3: A Foundation for Android Wearables: New Wearable Features in Android 5

All camera-compatible Android devices are required to support at least the
INFO_SUPPORTED_HARDWARE_LEVEL_LEGACY hardware support data variable level.
This property contains support for non-HDRI camera capabilities, which are essentially
equivalent to that of the “deprecated” (discontinued but still supported) camera APIs. So
basically this Camera 2 API replaces the original camera (Camera1) API. Android devices
that support the INFO_SUPPORTED_HARDWARE_LEVEL_FULL hardware support data
variable level are capable of manual control of image capture and image postprocessing,
as well as capturing high-resolution images, using hyperfast frame rates.

Android 5 Notifications: LockScreen and MetaData
Android 5 adds some new notification features to its lockscreen feature as well as its
MetaData capabilities. Let's take a look at these next.

LockScreen Notifications: Privacy Safeguard Control APIs
Android 5 LockScreen APIs now have the ability to present notifications. Users of your
application can now choose, via Android OS settings, whether to allow “sensitive” (private)
notification content to be seen on a secure (locked) Android device screen. Developers can
control the level of detail that is visible on the LockScreens when notifications are displayed
on a user’s LockScreen, representing a much needed increase in flexibility when developing
LockScreen applications, which are growing in popularity.

To control the visibility level, call the .setVisibility() method and then specify one of the
visibility constants: private, public, or secret.

The VISIBILITY_PRIVATE constant tells the LockScreen that it can show only the most
basic information, such as the notification’s icon, but hides the notification’s full content from
view (as it is deemed to be private). The VISIBILITY_PUBLIC constant tells your LockScreen
that it is allowed to show a notification’s full content (as it is deemed to be public), and the
VISIBILITY_SECRET constant tells the LockScreen that it must show nothing, excluding
any notification text and even a notification icon (Shhh, it’s a secret). When you set a visibility
constant as VISIBILITY_PRIVATE, you also have the option of providing a “redacted” (limited or
abridged) version of your LockScreen notification content, which will hide any personal details.

Say that you wanted to create a texting (SMS; short message service) wearable application
and you wanted to display a notification showing “5 new SMS text messages arrived” and
you needed to hide the actual message text as well as sender identity.

To provide this alternative notification, first create the replacement notification using
Notification.Builder. When you create the private notification object, attach the replacement
notification to it through the setPublicVersion() method.

65CHAPTER 3: A Foundation for Android Wearables: New Wearable Features in Android 5

Notification MetaData: Intelligent Notification Classification
Android 5 now supports metadata properties, which you can associate with your wearables
application notifications. This allows your applications to sort these notifications more
intelligently. To install this metadata, you would call any (or all) of three methods in your
Notification.Builder when you construct your Notification object using an associated
Builder object.

The first of the three methods, a .setCategory() method, instructs Android regarding how to
handle your wearable application’s notifications when the Android device happens to be in
the priority mode. You can, for example, add categories for your notification that represent
an instant message, an incoming call, or an alarm notification. Categories are String
constants.

The .setPriority() method sets a priority level for a Notification object. You can set the
Notification object’s priority to be either more or less important than a normal system
notification. Notification objects with the priority field set to PRIORITY_MAX or to
PRIORITY_HIGH appear in a small floating window if your Notification object features sound
(or vibration).

The .addPerson() method call will allow wearables developers to add one or more people
to a Notification object. These individuals should be relevant to your Notification objects.
Your wearable application might utilize this to signal to the Android operating system that
Notification objects should be grouped together after they arrive from persons added using
this method call. You could also use this method call to rank notifications from these people
as being more important or less important based on a priority flag.

More Android 5 Operating System Enhancements
Finally, let’s look at a few other areas that were improved in Android 5 and can be
leveraged in Pro Android wearables application development. The recent applications
and documents area of Android 5 OS has been completely overhauled, as has the file
management by directory structure. In addition, there are the all-important second
screen capabilities that allow Android devices to cross-dress one another (had to spin
something in the book controversially) so that smartwatches or smartglasses can control
things like UHD 4K iTVs!

The Recents Screen: Concurrent Document Support
In Android OS releases prior to 5, the “recents” screen will only display one single task for
each application an end user has interacted with recently. This provided limited multitasking
capability and needed to be upgraded significantly in Android 5. This allows Android 5 to be
able to better compete with all of the other popular OSs.

With Android 5, your wearable applications can open more tasks, as needed for additional
concurrent activity screens for application documents. This feature will add in the much
needed multitasking support by letting users efficiently switch between individual activity
screens (which contain user documents) simply using the new recents screen. This provides
a consistent task-switching user experience across Android 5 apps currently being used.

www.allitebooks.com

http://www.allitebooks.org

66 CHAPTER 3: A Foundation for Android Wearables: New Wearable Features in Android 5

Examples of concurrent tasks that might be utilized in the recents screen would include
multiple open tabs in any mobile web browser, any concurrent gameplay sessions in a game
application, business documents in one of your business productivity applications, or text
messages in any messaging app.

Your wearables applications can manage its tasks for the recents screen by using an
Android ActivityManager.AppTask class (or object). This is one of eight nested classes for
the ActivityManager class, which is part of the android.app package. This class is important
as it allows your application to see all of the other Android apps that may be running
alongside yours!

This Android ActivityManager class allows wearables developers to interact in various ways
with all of the currently active Activity objects that are running in the Android operating
system. This class has eight nested class structures, which will allow you to interface with
what is running on your users’ incarnation (current memory or processor deployment) of
Android OS. I’ll cover them here as it’s important for you know about what they can do to
allow your wearables applications to know what is going on around them!

The ActivityManager.AppTask class allows you to manage your application’s tasks
(hence its name). There is also an ActivityManager.MemoryInfo class, which allows
you to poll operating system information regarding available memory by using a
.getMemoryInfo(ActivityManager.MemoryInfo) method call.

The ActivityManager.ProcessErrorStateInfo class will allow developers to retrieve
information regarding OS processes (threads) that are in an error condition. The
ActivityManager.RecentTaskInfo will allow you to retrieve information regarding tasks that
a user has most recently started or visited.

The ActivityManager.RunningAppProcessInfo class will allow you to retrieve system
information regarding what processes are currently running, and the ActivityManager.
RunningServiceInfo class will allow you to retrieve system information regarding a particular
service that’s currently running inside the Android OS.

The ActivityManager.RunningTaskInfo class will allow you to process system information
regarding a particular task that is currently running in the OS thread manager. The
ActivityManager.TaskDescription class will allow you to retrieve information regarding a
current activity within the recent task list.

To insert a logical break, so that the system treats the activity as a new task, you can use
your FLAG_ACTIVITY_NEW_DOCUMENT constant when you launch your activity using the
.startActivity() method call. You can also achieve this behavior by setting your <activity>
XML element’s documentLaunchMode attribute to “intoExisting” or “always” in your
AndroidManifest XML file.

To avoid cluttering your user’s recents screens, you could set the maximum number of
recent tasks to show from inside your applications, which limits the tasks that can appear
inside that screen. To do this, you would set the <application> parent tag’s parameter called
android:maxRecents.

The current maximum that can be specified is 50 tasks per user, unless you are on a low-
memory Android device, in which case it’s set to 25. Tasks in users recents screen can
also be set to persist across reboots. To control this task-persistence behavior, use the
android:persistableMode parameter.

67CHAPTER 3: A Foundation for Android Wearables: New Wearable Features in Android 5

You can also change the visual properties of the activity in the recents screen. This includes
your activity’s color, label, and icon. This is done by calling the .setTaskDescription()
method of the activity.

Data Storage: Directory Structure Selection Support
Another impressive Android 5 upgrade has to do with data storage access. The Android
Storage Access Framework capability has been expanded to allow developers (as well as
their users) to select an entire directory subtree. This will allow your wearable applications
to have read, as well as write, data storage access to all documents contained in a given
directory folder structure, without requiring user confirmation for each item to boot!

To select an entire directory subtree, you will want to create and send an OPEN_
DOCUMENT_TREE Intent object. An Android operating system will display any and all
DocumentsProvider object instances that will support a subtree selection. This allows the
end users to browse and select a directory. The returned URI object will reference access to
the selected subtree. You can then use the .buildChildDocumentsUriUsingTree() method
call in conjunction with the .buildDocumentUriUsingTree() method call, and then use a
.query() method call to explore the data inside of the subtree.

There is also a new .createDocument() method call, which lets you create a new document
or directory structure anywhere underneath a subtree. If your wearable application needs
to manage an existing document, you will want to use a .renameDocument() or a
.deleteDocument() method call. You can also check the COLUMN_FLAGS constant to
verify provider support for these calls before issuing them.

If you wanted to implement your DocumentsProvider object and also want to support
subtree data selection, you will want to utilize the method called .isChildDocument() and
then set the FLAG_SUPPORTS_IS_CHILD constant in the COLUMN_FLAGS attribute,
asking Android OS to grant child document support.

Android 5 also introduced the new package-specific directory on shared storage. Your app
can place media files there for inclusion in MediaStore.

A new .getExternalMediaDirs() method call will return a path reference for the external
MediaStore directories across all the shared storage devices.

No additional permissions will be needed by the app to access any returned paths, which
is similar to the functionality of the .getExternalFilesDir() method call. The Android OS will
periodically scan for media located in these directories. You could also force the operating
system to perform one of these media asset scans by using the MediaScannerConnection
object (class), which will allow developers to scan to detect the existence of new media
content at any time. The class implements a ServiceConnection interface and also features
two nested helper classes.

A MediaScannerConnection.MediaScannerConnectionClient nested helper
class will provide developers with the interface needed for notifying clients of
MediaScannerConnection objects whenever any connection to the MediaScanner Service
has been established or when the scanning of a file has completed.

68 CHAPTER 3: A Foundation for Android Wearables: New Wearable Features in Android 5

Another MediaScannerConnection.OnScanCompletedListener nested helper class
provides a listener interface, which can be used to listen for, and notify any clients of, the
results of the scanning for a requested media file.

Second Screen: Screen Capturing and Screen Sharing
Finally, Android 5 OS has ratcheted up its second screen capabilities by allowing
developers to add both screen-capturing as well as screen-sharing capabilities to their Pro
Android wearables applications using the all new android.media.projection package and its
powerful APIs.

Second screen functionality could be very useful, especially for wearables applications, as
you might well imagine! For example, if your users wanted to enable screen sharing in a
video conference app, they could see another party in life-sized splendor, using a 2K or 4K
Android TV capable iTV set.

There’s also a .createVirtualDisplay() method that is new that allows your wearables
application to capture the contents of your main screen (default display) and put that screen
capture data inside a Surface object. Your application can then send those data across a
network. This API only allows the capture of screen content that has not been secured and
will not work for system audio captures.

To begin the screen capturing process, your application must first request the user’s
permission by launching a screen capture dialog using an Intent, which is obtained by using
the .createScreenCaptureIntent() method call. A call to this method will then return an Intent
object, which must be passed to the .startActivityForResult() method in order for the screen
capture to be initiated. To retrieve screen captures, use a .getMediaProjection() method.

By using the .getMediaProjection(int resultCode, Intent resultData) method call, you
can then access the MediaProjection object that will be obtained from a successful
.createScreenCaptureIntent() screen capture request.

Congratulations! You have just updated yourself on the key things that the Android 5 OS has
added that will bring you up to speed from your Android 4.4 (and prior) knowledge base.
Many of these can be used creatively in one way or another for Pro Android wearables
application development.

Summary
This chapter looked closely at all of the features other than Material Design, which was
covered in detail in Chapter 1, in Android 5. This included everything from OS features to new
media features, to a new version of OpenGL, and far beyond (Hey, to infinity and beyond!).

First, I discussed the Android Project Volta, which aims to allow the developer community to
take power management, and optimization, into their own hands. This can be done by using
the JobScheduler and JobInfo classes, in conjunction with the Battery Historian Tool.

Next, I discussed the new Android Network Connection technology improvements, both
to NFC and Bluetooth, as well as to the new Bluetooth LE APIs. You learned all about the
Android ConnectivityManager class, as well as NDEF, and Android Beam technology, and
how to implement them in Java 7.

http://dx.doi.org/10.1007/9781430265504_1

69CHAPTER 3: A Foundation for Android Wearables: New Wearable Features in Android 5

Next, I discussed all of the new wow-factor opportunities afforded by all of the cool
multimedia additions to Android 5. I discussed the MediaSession and MediaController
classes, for digital video playback, and AudioTrack for digital audio, and you learned how to
use these for new media playback.

Next, I delved into Open GL ES 3.1 and the Android Extension Pack and explained how
to implement these, to take OpenGL from 3.1 to 4.4, adding all new real-time i3D rendering
power into your Android i3D applications.

Finally, I discussed WebKit support and WebView class, as well as the new support for the
latest WebAudio, WebGL, and WebRTC APIs. Then I finished up by looking at what is new
with the Android recents screen, the new file (directory) management capabilities, and the
new second screen and screen capturing capabilities, as well as how to implement these
cool new features in your Pro Android wearables applications.

In the next chapter, you will get up to speed on the software development environment, the
IntelliJ IDEA, which you will be using over the rest of this book to develop Android 5 Wear SDK
applications. This is presented so you will have a solid foundation regarding the tools you will
be using to write your Java 7 code, and XML markup, during the duration of this book.

71

Chapter 4
Exploring Android Studio:
Getting Familiar with the
IntelliJ IDEA

Now that you have a comprehensive overview of the new features in Android, including the
new Material Design paradigm and other new Android 5 features, this chapter will take a look
at the integrated development environment for Android Studio, IntelliJ IDEA. You took care
of getting your Development Workstation assembled during Chapter 2, so all that is left to do
now is to get you up to speed regarding the ins and outs of the IDE software tool that you will
be using from here on out during this book. Once this is out of the way, you can then focus on
Java 7 coding or XML markup for the duration of the next 13 chapters in this book.

Let’s start by looking at how IntelliJ allows you to learn about all of its features, and then
take a look at how to find out exactly which of the Android APIs are currently installed, using
the Android SDK Manager. I want to show you how to make sure that all of the latest APIs
for Wear and Android TV are installed, so you have some practice in upgrading your IDE.

After that, you’ll spend the rest of this chapter learning about how your IntelliJ IDEA will be
laid out and its various functioning components. I’ll then explain how to use some of the
IDEA features and functions, as well as the IDEA interfaces with the Android SDK to build
wearables applications. I’ll show you how to use the SDK Manager so you can install APIs
that will allow you to develop Google cloud wearable apps. Then I’ll show you how to create
Wear smartwatch apps and how the Wear components work.

http://dx.doi.org/10.1007/9781430265504_2

72 CHAPTER 4: Exploring Android Studio: Getting Familiar with the IntelliJ IDEA

Updating IntelliJ IDEA: Using the Update Info Dialog
If you have not done so already, go ahead and launch the Android Studio environment with
the quick launch icon you created in Chapter 2. This will launch the IntelliJ IDEA, which is
the foundation for Android Studio, replacing the Eclipse ADT IDE used in Android version 4.x
and previously.

As you can see in Figure 4-1, if there is an update to Android Studio, your Welcome to
Android Studio launch screen will have a lime green Update Info message in the upper right
corner. Fortunately, when I launched today there was an update from 1.0.1 to 1.0.2, so I can
show you the work process that is involved in updating, as you will most likely encounter this
at some point in your wearable application development.

Figure 4-1. Launch Android Studio, click the update link, click the Update and Restart button, and update the IDE

Click the blue update link, highlighted in a red box in Figure 4-1, and launch the Android
Studio update process. This will open a dialog shown in the top right corner of Figure 4-1,
which will give you the current build, the current version number, and the size of your
patch. This patch will only update those parts of your Android Studio installation that have
changed. This is called an incremental update, and it is preferable to having to download
the full one gigabyte (maybe more) Android Studio development environment again, which
would be redundant. Click the Update and Restart button and you will see the Update
Progress Bar dialog, shown in the lower right side of Figure 4-1, and you will be updating to
the latest version of Android Studio.

Exploring IntelliJ IDEA: Help, Tips, and Keymaps
After you have updated and relaunched Android Studio (IntelliJ IDEA), the lower left part of
the Welcome to Android Studio screen will show the latest version number, which is 1.0.2,
as shown in Figure 4-2. Click the Docs and How-Tos option, seen on the bottom left side
of Figure 4-2. This will open the Docs and How-Tos panel, shown on the right-hand side of
Figure 4-2.

http://dx.doi.org/10.1007/9781430265504_2

73CHAPTER 4: Exploring Android Studio: Getting Familiar with the IntelliJ IDEA

As you can see, there are a number of helpful areas for you to explore for your IDEA learning
curve climb, including the Read Help documents, which you’ll look at next, Tips of the Day
dialog, Default Keymap Reference, and, if you have unlimited bandwidth, JetBrains TV.

JetBrains is the developer of this IntelliJ IDEA. If you wanted to develop third-party plug-ins
for IntelliJ, which is beyond the scope of this book, there is also an option to get educated
about that endeavor.

Click the Read Help option at the top of the Docs and How-Tos panel and open the IntelliJ
IDEA Help section of their web site, which can be seen in Figure 4-3. There are logically
grouped areas of information regarding new features, the Help system, a Quick Start Guide,
the basic IDEA concepts, a tutorials section, and similar reference materials.

Figure 4-2. Once Android Studio restarts, click the Docs and How-Tos option to explore the IntelliJ documents

Figure 4-3. Clicking the Read Help option opens up the JetBrains IntelliJ IDEA version 14 Web Help web site

74 CHAPTER 4: Exploring Android Studio: Getting Familiar with the IntelliJ IDEA

I would suggest that you read through all of this material at some point if you want to
master the integrated development environment that you’ll be using to develop Pro Android
Wearables applications over the course of this book. I’ll also cover the basics of the IntelliJ
IDEA during this chapter.

Click the Getting Help link and see what options you have for Help with the IntelliJ IDEA. As
you can see in Figure 4-4, clicking the link will open a subpanel in the left content navigation
pane of the web site that shows more detail in the form of links that you can click to explore
different areas of the IntelliJ IDEA Help system.

Figure 4-4. Click the Getting Help navigation link, in the left navigation pane, and peruse the subsections listed

This includes information on how to use Help Topics, how to use the Tip of the Day dialog,
how to use the IntelliJ online resources, how to use IDEA productivity guidelines, how to
report any issues you are having with your IntelliJ IDEA installation (or functionality), how
to submit your feedback regarding which features you would like to see in future versions,
and your keymapping references, in case you like to use keyboard shortcuts instead of the
mouse and IDEA menuing system.

Later in this chapter, I will go over some of these core IntelliJ IDEA concepts that are
expounded on in the Concepts section, as shown highlighted in gray in Figure 4-4. I will do
this so you have some core concepts regarding the IDEA under your belt before you start to
use these in earnest in Chapter 5 and throughout the duration of this book.

If you are the curious type, go ahead and look through some of this online material now so
that you’re familiar with it when I start to cover it in earnest later in the book.

Next, let’s take a look at the Configure menu on the Android Studio startup screen to learn
how to use your SDK Manager tool to customize your IDEA.

http://dx.doi.org/10.1007/9781430265504_5

75CHAPTER 4: Exploring Android Studio: Getting Familiar with the IntelliJ IDEA

Configure Android Studio: Using the SDK Manager
Because this is a Pro Android title, you probably have some experience using the Eclipse
ADT IDE for Android 4.4 (and earlier) application development, which includes an Android
SDK Manager menu option and dialog. This utility can also be accessed in IntelliJ IDEA by
using the Configure ➤ SDK Manager panel sequence, which is shown in Figure 4-5.

Figure 4-5. Click the back arrow to return to the Quick Start, and click the Configure option and SDK Manager option

The Android Studio Configure panel also accesses dialogs for your IntelliJ IDEA settings,
manages plug-ins for IntelliJ IDEA, and sets Import and Export parameters.

You should really take some time to explore these dialogs. You will be using some of these
dialogs during this book as well so that you will get some hands-on experience using IntelliJ
IDEA to its fullest capacity for your Pro Android Wearables development work process.

Once you click the SDK Manager option, as shown at the top of Figure 4-5, this will open
the Android SDK Manager dialog, which is seen in Figure 4-6. Notice that there is a Fetching
URL progress bar at the bottom of the dialog that goes out to a repository at the download
secure socket layer (dl-ssl) Google server and checks everything in your IDEA against the
latest APIs on the Android 5 Google server. This is so that the next dialog can recommend
packages for you to install, so that you can bring your Android Studio (IntelliJ 14 IDEA) up
to the latest capabilities, or hardware platform (Wear SDK, Android TV, Auto SDK, etc.)
support levels.

76 CHAPTER 4: Exploring Android Studio: Getting Familiar with the IntelliJ IDEA

As you can see in Figure 4-7, this Android SDK Manager will populate those check boxes
that it thinks you should check to invoke updates or new APIs.

Figure 4-6. Once you launch the Android SDK Manager, you will see the Fetching URL progress bar loading APIs

Figure 4-7. Android SDK Manager dialog (top on left, bottom on right) with default Google USB Driver selection

77CHAPTER 4: Exploring Android Studio: Getting Familiar with the IntelliJ IDEA

There are updates to Android Studio 1.0.2, or you could view this as a new API for Android
Studio 1.0.2 delineated here as Android SDK Tools version 24.0.2, which is an internal
numbering schema and is shown in the Rev(ision) column.

There are also seven new system images for Android Wear or Android TV, for both the ARM
and Intel (Atom) processor hardware. I left them checked as they are suggested because
they will be needed in the examples in Chapter 5, where I will be covering your AVD (Android
virtual device) emulator creation. These can be seen on the bottom left of Figure 4-7, which I
had to cut (the dialog) in half to fit on the page.

On the right side of Figure 4-7, you can see at the bottom that there are new Android 5
Support Tools (a new Support Repository and a new Support Library), as well as a new
Google USB Driver (version 11). The support library and its repository are important as they
provide backward compatibility. Using the support library allows you to develop for Android
5 and still support earlier versions of the OS, such as 2.3.7 (Kindle Fire) and 4.x.

You can also use this Android SDK Manager dialog to install the “extras,” like Google Web
Driver, which are shown on the bottom right in Figure 4-7.

Once you click the (in this case) Install 11 Packages button, these will all be installed
(or updated) in your Android Studio, which as you now know is the fusion of version 14 of
the IntelliJ IDEA and the Android 5.0.2 SDK. If Android Studio is at 1.0.2, Android OS would
be at 5.0.2.

Before you can install any of the APIs, which are essentially new software packages, you
must agree to each of their licensing “terms and conditions,” which are shown in this
Choose Packages to Install dialog in Figure 4-8. Select the Accept License radio button,
shown highlighted in red, and click the Install button to continue with the installations.

Figure 4-8. The Choose packages to Install dialog and the Accept License agreement

I clicked on the Install button, and what should have been a fairly long install process went
by in less than five seconds! The dialog as shown in Figure 4-9 appeared a few seconds
after I clicked the Install button. This was somewhat puzzling to me, so I waited to see if a
download log dialog would pop up. Sure enough it did, and filled with errors to boot! Oh boy!

http://dx.doi.org/10.1007/9781430265504_5

78 CHAPTER 4: Exploring Android Studio: Getting Familiar with the IntelliJ IDEA

I got a “Download interrupted: bad record MAC” error for each of the packages I selected for
installation, as can be seen in Figure 4-10.

Figure 4-9. Showing the Downloading SDK updates progress dialog bar, located at the bottom of the dialog

Figure 4-10. Showing the Android SDK Manager Log dialog and Download interrupted: bad record MAC error

Notice at the bottom left of the Log dialog, shown highlighted with red in Figure 4-10, that
the installation is done and Nothing was installed! Thus my premonition was correct, and
when I Googled this error, I didn’t find a solution to this problem, so I then decided to try
launching Android Studio as a System Administrator, so I have top-level admin privileges.
I will show you this work process, as this is always the second approach I’ll try when a
software install does not work, because sometimes a file is trying to write to the hard disk
drive but does not have the authority to do so!

Run As Administrator: Installing Using Admin Privileges
There are two ways to invoke the Run as Administrator command in Windows, which are
shown in Figures 4-11 and 4-12. The cool shortcut way that few developers know about is
to right-click the Android Studio Taskbar Launch Icon and select Android Studio ➤ Run as
Administrator. This is shown in Figure 4-11, along with a far more involved Android Studio
➤ Properties approach, which I’ll explain next.

79CHAPTER 4: Exploring Android Studio: Getting Familiar with the IntelliJ IDEA

From that same menu, you could also select the Properties menu option and open the
properties dialog for the Android Studio file that would tell you the EXE file name and where
it is located on your hard disk drive.

Armed with this information, you would then right-click that file in the Windows Explorer
(or Linux OS file management utility) and then select the Run as Administrator option. From
that point you launch Android Studio as an Administrator before you again use a Configure
➤ SDK Manager sequence. Then try the update (upgrade) again, this time, with admin
privileges!

Figure 4-12 shows the Android Studio Properties dialog with the target file folder and the
fact that you want to use the studio64.exe (64-bit version) as the file you will right-click and
launch using the very same menu sequence shown in Figure 4-11.

As you can see in Figure 4-13, the installation is now creeping along at an exceedingly
slow pace, which means that this time around, I am getting a very different result! What this
means is that the update will probably be successful, so if no Log dialog pops up, Run as
Admin will solve the problem.

Figure 4-11. Right-Click on the Android Studio icon and select Run as administrator

Figure 4-12. Look in the bin subfolder to find the studio64 executable file; right-click and select Properties to review
its properties dialog (seen at right)

80 CHAPTER 4: Exploring Android Studio: Getting Familiar with the IntelliJ IDEA

I wanted to show you the solution to this SDK Manager API update quagmire in case you
encountered it, as there are not a lot of web sites that feature this quick and simply variant
on how to launch IntelliJ IDEA as an admin!

It is important to note that you do not always have to launch your Android Studio 1.0.2
(IntelliJ IDEA 14) as an administrator to use the development environment, only when you
are trying to update your SDK environments and encounter errors that relate to reading or
writing files on your operating system hard disk drive areas that are deemed “sensitive”
(or privileged).

After this second attempt, I did not have an Android SDK Manager Log dialog (window) pop
open! Instead, at the end of this installation process, I was presented with the Android Tools
Updated message dialog, which can be seen in Figure 4-14.

Figure 4-13. Use the SDK Manager dialog to download any new Android SDK updates

Figure 4-14. Once you update your SDK you will get the Android Tools Updated dialog

This dialog recommends closing the SDK Manager window and reopening it. I took the
suggestion to the next level and closed Android Studio (IntelliJ IDEA) and relaunched it to
load the latest version into memory. I did this to make 100% sure everything in memory was
Android Studio 1.0.2 “clean.”

81CHAPTER 4: Exploring Android Studio: Getting Familiar with the IntelliJ IDEA

Let’s again use the Configure ➤ SDK Manager option pane sequence, and you will see
that the Android SDK Manager shows that it is now installed. This is shown in Figure 4-15,
and as you can see there, there is a folder-check Installed icon next to everything you were
attempting to update or install.

Figure 4-15. Use the Configure ➤ SDK Manager sequence to launch the SDK Manager and confirm installations

You will want to perform this work process anytime you get the little green Update dialog
upon launching your Android Studio (reference Figure 4-1).

This green dialog (more of an alert post-it, actually) will tell you that Android Studio
(IntelliJ IDEA) has an update waiting. This will alert you that you also need to use your
Configure ➤ SDK Manager panel sequence, because updates to the SDK, drivers,
libraries, repositories, services, and system images almost always happen in lockstep with
every major (and minor) update to the IntelliJ IDEA itself!

Next I want to give you a quick overview of IntelliJ IDEA as well as present the concepts
pertaining to how it works so you have a bird’s eye view before I dive into actually using the
IDEA later in this chapter to create an Android project, as well as in Chapter 5 when you will
create AVD emulators (virtual device), so you know how to create and test Android projects.

http://dx.doi.org/10.1007/9781430265504_5

82 CHAPTER 4: Exploring Android Studio: Getting Familiar with the IntelliJ IDEA

Learning the IntelliJ IDEA Basics: Projects and SDK
There are two major levels covered in the IntelliJ IDEA documentation. You will see this if you
review it in detail. Some of it will apply to you as an Android application developer and some
of it will apply to Google’s Android Studio development teams, as it pertains to integrating
customized SDKs and plugging them into IntelliJ IDEA to create platforms such as the
Android Studio 1.0.2 (or later version) platform you just upgraded to.

IntelliJ Project Level: Developing Android Applications
When you use the IntelliJ IDEA, you need to create a “project” for each of your applications.
You will be doing this a bit later on in this chapter so you can see the work process that is
involved. An IntelliJ project is used to organize your application into functional development
component assets. As you know as a Pro Android developer, this includes things such as
Java code, XML markup, digital images, digital video, digital audio, your build.gradle and
AndroidManifest.xml file, and the components that you just installed in the SDK Manager
that also need to be in your application to provide the foundation for what you code (and
markup) on top of the Java or Android SDK code base.

A finished, or “compiled,” wearable application’s APK (Application PacKage) may look like
a single file, but it actually contains a plethora of discrete or “isolated” modules that provide
code organization similar to a package in Java. The IntelliJ IDEA projects define which
modules are to be utilized within any given wearable application.

This project approach allows a highly visual way for developers to bring a project together
inside an IDE (integrated development environment) and ties these functional modules
together using a visual development editor. This is similar to a word processor, but it is
optimized for writing code rather than business documents and is popularly known using the
abbreviation IDE.

Just to clarify, this IntelliJ IDEA “Project” does not contain your actual development
assets, called “artifacts” in IntelliJ terminology, like media assets, Java code, XML markup,
compilation build scripts, documentation, and the like. These projects are the highest level
of organization for the IntelliJ IDEA, and they define project-wide settings, a collection of
what are termed modules and libraries, and references to various assets (files) that you use
within the project to create the application. As you can see, this IntelliJ Project really ties
everything together in one project file, which is, of course, going to be necessary for the IDE
to generate an app!

IntelliJ Project File Formats: Files, Folders, and Configuration
The IntelliJ IDEA will store the configuration data for a project, as well as its component
parts, using a plain text XML file format. This will make it easier for you to manage, as XML
is a relatively simple format to edit, or debug, if needed, and you can also share the project
configuration data with others more easily using this XML data format. There are two types
of configuration data formats that are available to IntelliJ developers that can be used for
storing your Android Studio wearables applications project configuration data. These include
directory-based and file-based formats.

83CHAPTER 4: Exploring Android Studio: Getting Familiar with the IntelliJ IDEA

The IntelliJ IDEA Directory-based Data Format
When a directory-based data format is being utilized for the IntelliJ IDEA project, you will find
the .idea directory in your IntelliJ project folder structure. This .idea subdirectory will contain
a collection of the XML configuration files mentioned in the previous section.

Each of these XML files will contain only a logical portion of the overall project configuration
data. The names of the files reflect the functional areas within your IntelliJ IDEA project. In this
way, what you are looking for will be easy to find, using this logical file-naming approach.

As an example, you might see the compiler.xml file containing XML markup that relates to
how your project is to be compiled, an encodings.xml file that would relate to how your
project implements encoding, or a modules.xml file that contains the modules that are
required for your Android Studio application project.

Almost all of these files will contain information that is central to the project itself. This would
include things such as file names and locations for the component modules and libraries
needed, or maybe compiler settings or other IDEA configuration settings. These files can
(and should) be kept under version control, just like all the other files in your project.

There is, however, one exception to this file-naming approach, which is named workspace.xml.
This XML file will contain all of your preference settings, such as the placement of IDEA
editing panes and the positioning of various editor UI windows. This file also contains your
VCS (version control system) and History settings.

This workspace file can also contain any additional data pertaining to the IntelliJ IDEA
integrated development environment. For this reason, you may not wish to share this file
publicly, unless you want folks to mimic your IDE!

The IntelliJ IDEA File-based Data Format
There is also a file-based configuration format, which should be used with IntelliJ, when you
wish to place only two configuration files in a project directory. One of these files features an
.ipr extension, which stands for IntelliJ Project. This file will store the primary IntelliJ IDEA
project’s configuration information.

The other more secondary file will use an .iws extension, which stands for IntelliJ
WorkSpace, and this file stores your personal workspace settings. This .iws file should not
be placed under version control, while your .ipr file can (and should) be placed under version
control, if you are using version control.

A file-based configuration file format can additionally be converted into a directory-based
configuration file format (see “Converting Projects into Directory-Based Format” on the
JetBrains website for further information).

IntelliJ Features: SDK, Language Support, and Auto-Coding
To develop any kind of application, you will always need to use a Software Development Kit
(SDK). An example that pertains to Android Studio would be the Android SDK, which you
updated earlier in this chapter, which runs on top of the Java 7 Software Development Kit,
which Oracle calls the JDK.

84 CHAPTER 4: Exploring Android Studio: Getting Familiar with the IntelliJ IDEA

The IntelliJ IDEA does not in and of itself contain any SDK; however, this Android Studio 1.x
bundle of IntelliJ IDEA and Android SDK is based on the Java 7 JDK, as you know, from
Chapter 2. Usually, before you start writing any application code, you would have to download
and install one of the supported SDKs and then configure it for use in the IntelliJ IDEA.

You can specify an SDK when you first create your application project, and you could even
specify an SDK at a later time. To define an SDK in an IntelliJ IDEA, what you’ll have to do is
to specify the SDKs name and its location.

The location on the hard disk drive is the disk letter and directory path, which is commonly
referred to as your SDK’s “Home” directory, similar to the terminology that Java uses. This would
be the directory that you installed the SDK into, and since you’ve already installed the Java 7
JDK in Chapter 2, you may remember that for Java it was C:/ProgramFiles/Java/jdk1.7.0_71.

Let’s take a look at some of the popular development environments that can be supported
by (used with) an IntelliJ IDEA, just in case you’re planning to develop applications in Flash
(using Flex or AIR) as well as Java SE or Java ME, and, of course, using Android Studio 1.0.2
(Android 5.0.2). There are third-party plug-ins that allow other development platforms as well.

Popular SDKs Supported by IntelliJ: Android, Java, and Flash
Some of the most widespread software development platforms that are used with the
IntelliJ IDEA include open source Java 8 SE, Java 8 ME, Java 7 SE with Android Studio on
top, and the paid software from Adobe called Flash, which is not really supported on many
of the embedded devices (smartphone, tablet, smartwatch, smartglasses, iTV sets, game
consoles, set-top boxes, e-book readers, home media centers) these days, as Flash is very
data-heavy and is also expensive for manufacturers to implement (it is not open source).

The Java 7 or 8 SDK (JDK) covers the development of Java desktop (Java SE) and
Enterprise (Java EE) applications, as well as Java mobile (Java ME) or Java Embedded (Java
SE Embedded and Java ME Embedded) applications. JavaFX is also now a part of Java 7
and Java 8, so this is included in all of the versions of Java. I wrote Beginning Java 8 Games
Development (Apress 2014) that covers this topic if you happen to be interested.

The Android SDK, which once it is preintegrated with IntelliJ using the Android Studio 1.x
Bundle, is used to develop applications for Android 5 and earlier devices (using the Android
Support API backward compatibility library discussed earlier).

There are also Adobe Flex and Adobe AIR SDKs that are used to develop applications for
the Adobe Flash platform, which has been declining in popularity for a decade now. Free
for commercial use, open source platform usage has surged ahead, taking away market
share from paid platforms such as Apple, Adobe, and MS Windows due to a similar level
of functionality at zero cost to the media developer. This is why you see so many devices
based on HTML5 and Android.

There is also support for the Flexmojos SDK, which will launch the Adobe Flex compiler and
debuggers. It is important to note that this SDK will be created by IntelliJ IDEA automatically
when a Flexmojos project is opened.

Finally, there are “native” IntelliJ IDEA platform plug-in SDKs that are used to develop
customized plug-ins for the IntelliJ IDEA. A IntelliJ IDEA installation will inherently act as an
IntelliJ IDEA platform plug-in SDK.

http://dx.doi.org/10.1007/9781430265504_2
http://dx.doi.org/10.1007/9781430265504_2

85CHAPTER 4: Exploring Android Studio: Getting Familiar with the IntelliJ IDEA

Popular Languages Supported by IntelliJ: Java 8, XML, and Groovy
The development of modern software applications currently involves the use of several
(unrelated) programming languages within one single development infrastructure. This
describes a development environment called a polyglot programming environment. Android
Studio 1.x is the perfect example of this as it uses Java 7 for coding and XML markup for
quick object definition.

As you know as a Pro Android developer, these objects are later “inflated” and the XML
markup structures are transformed into Java objects. IntelliJ IDEA is the professional IDE for
polyglot programming, which is why Google adopted it for Android Studio 1.x and Android 5
(and earlier) development.

The primary programming languages that are supported by this free version of the IntelliJ IDEA
include Java 8 (and lambda expression) as well as the earlier Java support, including Java 7
(without lambda expression support) used with Android Studio, as well as XML and XSL. XML
is used extensively for Android application development, so IntelliJ is perfect for Android 5.
IntelliJ also supports Groovy, which is not usually used for Android apps development, but
as you might imagine, the Groovy crowd has found a way to make Groovy development for
Android a reality, so if you groove on Groovy then you are in luck, and all supported IntelliJ
languages work together! The Gradle build system in Android Studio uses Groovy syntax.

An “Ultimate” edition of the IntelliJ IDEA supports a plethora of advanced languages, such
as Java Server Pages (JSP and JSPX), Flex, ActionScript, HTML5, CSS3, JavaScript, SQL,
PHP, Spring, and a number of other languages.

Ultimate costs are around $500 to purchase (first time) or $300 to upgrade. There are
50% discounts for startups, as well as free versions for students and teachers. There is
a free open source license available to noncommercial OS software projects that meet
the definition of open source software and a set of additional criteria defined on the
IntelliJ licensing and upgrade (the “buy” page) web page. There are also free versions for
educational and training purposes, so it turns out JetBrains is quite a generous company!

IntelliJ Auto-Coding Features: Highlighting, Formatting, and Folding
Like the NetBeans (JavaFX, HTML5) or Eclipse (Java) IDE software packages, IntelliJ IDE
has a number of advanced features, just like a word processor has for writing, only these
features are used to assist in code programming.

IntelliJ Code Highlighting, File Templates, Code Completion, and Code Generation
The most obvious feature, which a word processor doesn’t do to your words, is highlighting
different words using different colors based on their use. Syntax and error highlighting are
common in all of the IDEs, but IntelliJ seems to have the most professional appearance of
any of these, because of the Ultimate (or paid) version that the free version was created
from. You can also change your code-coloring color values, if you like, although the default
colors used in the IntelliJ IDEA are the industry standard colors.

86 CHAPTER 4: Exploring Android Studio: Getting Familiar with the IntelliJ IDEA

Code highlight colors can be configured in the Colors and Fonts section of the Settings
dialog, which you can see on the right-hand side of Figure 4-5, second from the top, which
you have probably already explored, as I suggested that you do earlier.

There’s another cool feature called “file templates,” which allows IntelliJ to create what I call
bootstrap, or partially coded (these are also called stubs), for languages supported in the
IDE. This enables IntelliJ to create “empty” classes and methods, for instance, for Java 7, or
XML 1.0 markup.

There is another popular feature that is found in all IDE software that is called code
completion, which looks at the context of what you are coding and finishes portions of that
code for you. There is also code generation, which is closely related to the file templates’
function that provides your bootstrap code “snippets” that you can then modify as needed.

IntelliJ Code Formatting, Code Folding, Search and Replace, Macros and
Documentation
Not only does IntelliJ IDEA write and color your code for you, in order to make things easier,
it also formats, hides (and shows), and automates your programming in other cool ways.

One of the features that helps you organize and get a better overview of your program logic
is called code folding. Code folding will generally use plus (+) or minus (-) icons at the
left side of major blocks of code, such as classes and methods in Java 7, to allow you to
“collapse” these program structures so you are able to have more room on your screen to
work on other code structures or to get a bird’s eye view of your code structure for the Java
class you are working on.

As you might expect, IntelliJ allows you to rapidly access the Android API documentation so
you can research constants, interfaces, methods, or classes quickly and easily. The Android
5 API has become so vast that this feature becomes an important addition to your wearable
apps development.

Another automation feature that becomes more and more valuable as your code becomes
more complex includes the use of macros in the editing pane. Macros are automated work
processes, which go all the way back to the early days of mainframe computing, DOS, and
batch processing.

There are other useful features such as console windows you can open so you can execute
commands interactively without leaving the IntelliJ IDEA.

Besides code editing assistance features, IntelliJ IDEA enables debugging, for Java,
JavaScript, PHP, and Adobe Flash (Flex) applications. Debugging for JavaScript-related
applications is currently supported in the Mozilla Firefox and the Google Chrome browsers.
Now, let’s create a wearables app!

Creating an Android Wearable App: Using IntelliJ
It’s time to fire up Android Studio using the quick launch shortcut and this time instead of the
Configure or Docs and How-Tos options, click the Start a new Android Studio project option,
as shown selected in Figure 4-16.

87CHAPTER 4: Exploring Android Studio: Getting Familiar with the IntelliJ IDEA

Figure 4-16. Select Start a new Android Studio project; name your application ProAndroidWearable

Name your application ProAndroidWearable and set wearables.android.pro.com as
your domain, then click the Next button. In the next dialog, as shown in Figure 4-17, select
Android 4.3 Jelly Bean API Level 18 from the drop-down, and then check the Wear check
box option. Leave the Phone and Tablet check box option checked (as this is the default
application development option).

Figure 4-17. Select API 18, Wear, Phone and Tablet

88 CHAPTER 4: Exploring Android Studio: Getting Familiar with the IntelliJ IDEA

Once you click the Next button, you will then be taken to an Add an activity to Mobile
dialog, as shown in Figure 4-18. Select the Add No Activity option, shown in the upper left
corner of this dialog, so as to not create an Activity for the Phone or Tablet option portion of
the previous dialog.

Figure 4-18. Select an Add No Activity option in the Add an activity to Mobile dialog (for Phone and Tablet option)

Figure 4-19. Select the Blank Wear Activity option in the Add an activity to Wear dialog and click the Next button

Once you click the Next button, you will get the fourth dialog, the Add an activity to Wear
dialog, which is where you will select your Blank Wear Activity option, which as you can
see in Figure 4-19, shows both the round and square Android Wear smartwatch screen
(Activity) configurations. Click the Next button, after you have selected the Blank Wear
Activity and you can name the Main Activity for the wearable application, and have IntelliJ
set up (generate the code for) the bootstrap XML files in the next dialog.

In the Choose options for your new file dialog, which can be seen in Figure 4-20, accept
the suggested Android 5 Java and XML file-naming conventions that are suggested by
Android Studio and name your primary Java bootstrap MainActivity.java and the primary

89CHAPTER 4: Exploring Android Studio: Getting Familiar with the IntelliJ IDEA

XML user interface layout container file activity_main.xml. The Wear UI layout container
XML files preface the file names with round_ and square_, respectively, which seems logical
to me.

Figure 4-20. Accept standard Java and XML file name conventions in the Choose options for your new file dialog

After you click the Finish button, you will get a Windows Security Alert dialog, which is
shown on the left side of Figure 4-21. Click the Allow access button so that Android Studio
can continue to launch, building a project with Gradle, as shown in the build dialog on the
right side of Figure 4-21.

Figure 4-21. Click the Allow access button in the Windows Security Alert dialog to unblock Windows Firewall

Once Android Studio (IntelliJ IDEA) launches with your bootstrap project, you will see the Tip
of the Day dialog, which could also be accessed using the Docs and How-Tos ➤ Tip of the
Day panel sequence, as shown in Figure 4-22.

90 CHAPTER 4: Exploring Android Studio: Getting Familiar with the IntelliJ IDEA

You can either click the Next Tip button, shown in blue in Figure 4-22, or you can click
the Previous Tip button to the left of it to cycle the tip queue backward, if you’re a
nonconformist, and read all of these hot tips regarding IntelliJ IDEA, which I vigorously
recommend.

After you have finished with the Tip of the Day, click the Close button on the right of the
Next Tip button and close the Tip of the Day dialog. Then open the Android Studio IntelliJ
IDEA full screen, so you can look at it next, now that it has your Pro Android Wearables
project open in it for the first time! This hands-on usage is getting quite exciting!

As you can see in Figure 4-23, there is a Project pane on the left that has your
ProAndroidWearable project structure. The middle editor pane features two tabs currently,
one for the Java 7 code used in Android 5, which you’ll look at next, and another for the XML
user interface layout markup, which is the default tab that opens with any IDEA startup.

Figure 4-22. Upon IntelliJ launch, the Tip of the Day dialog will open

91CHAPTER 4: Exploring Android Studio: Getting Familiar with the IntelliJ IDEA

The XML tab has a design mode, the default shown on startup, and indicated at the bottom
left of the editing pane using a blue tab, labeled “design.” On the right of that there is a white
tab labeled “text,” which you will be using to write your XML markup by hand (from scratch),
since this is a Pro Android title! The design tab has a rendering engine that is used to show
what the XML markup will probably look like on an Android hardware device. This is not as
accurate as an AVD emulator, which you will be setting up in Chapter 5, where you’ll learn
how to create and configure emulators.

The Design Editor in IntelliJ provides a drag-and-drop user interface for adding UI widgets
and setting their properties (attributes or parameters, if you prefer those terms). The widgets
are on the left in a Palette pane and can be dragged to the smartphone preview to add them
to the design.

The properties for each widget are shown on the bottom right of Figure 4-23, when a given
UI widget has been selected for editing. The pane is called Properties and will contain any
attributes (or parameters, also known as properties) that the selected user interface widget
supports for further customization.

There is also the Component Tree pane, on the top right of the XML editing area in
Figure 4-23, that shows the widget components that are currently being used, such as
those UI widgets that have been added to the current design preview.

This pane gives you a bird’s eye view, essentially the top-level UI design hierarchy structure.
This is provided for complex UI design hierarchy use, just as code folding is provided in the
Java editing pane to make things easier when your code gets more complex.

Figure 4-23. Once you finish the project creation process the new project will open

http://dx.doi.org/10.1007/9781430265504_5

92 CHAPTER 4: Exploring Android Studio: Getting Familiar with the IntelliJ IDEA

Next, click the Text tab at the bottom left of the XML editor pane so that it turns blue and
shows you the XML markup structure that creates the preview, which you will notice in
Figure 4-24 is now being shown on the right side of the XML editing area this time instead of
in the middle.

Figure 4-24. Click the Text tab at the bottom, expand the Project pane file tree, and opt in or out to usage stats

Next, use the right-facing arrowhead icons in the Project pane on the left of IntelliJ to open
all of the folders in that pane that are closed. Your project already has one Java file, four
PNG image assets, three XML layout files, one XML file with String values in it, and six
Gradle scripts, which are used to “build” your wearables application.

When I get to the Java code and XML markup in Chapter 7, you will start to learn the details
regarding what this Java code (and XML markup) is doing.

Next, click the MainActivity.java tab at the top left of the edit pane in the middle of the IntelliJ
IDEA and take a look at the Java code that was created for you using the new Android
project series of dialogs.

Let’s take a look at the bootstrap Java code that Android Studio has created for you and see
where it was taken from. Your first Java package statement came from the dialog shown in
Figure 4-16 on the right side, and it concatenates your Company Directory field with your
Application Name field to create the following Java package statement:

package com.pro.android.wearables.proandroidwearable;

http://dx.doi.org/10.1007/9781430265504_7

93CHAPTER 4: Exploring Android Studio: Getting Familiar with the IntelliJ IDEA

Then you have import statements. These import four Android classes: Bundle, Activity,
TextView, and WatchViewStub. These are needed to create Activity objects, save the
application state, and create UI widgets (View objects). The Java code for these four initial
import statements (there will be more added later as you add more widgets and functions)
look like the following:

import android.app.Activity;
import android.os.Bundle;
import android.support.wearable.view.WatchViewStub;
import android.widget.TextView;

The important part of the Java code that was generated is the MainActivity class, which
is your subclass of the Android Activity class. The way that you know this is the class
hierarchy is because it is being indicated through the usage of the Java extends keyword:

public class MainActivity extends Activity {
 private TextView mTextView;
 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);
 final WatchViewStub stub = (WatchViewStub) findViewById(R.id.watch_view_stub);
 stub.setOnLayoutInflatedListener(new WatchViewStub.OnLayoutInflatedListener() {
 @Override
 public void onLayoutInflated(WatchViewStub stub) {
 mTextView = (TextView) stub.findViewById(R.id.text);
 }
 });
 }
}

Let’s go through what is inside the body of this Java code, which is shown in Figure 4-25.
I will go over this here so you know how everything interconnects between these Java
classes and the XML markup in your files. The first line of code declares a TextView widget
named mTextView, so half the import statements are now used, as the Activity import is
used for the MainActivity subclass and the TextView import for this Text View Widget.

94 CHAPTER 4: Exploring Android Studio: Getting Familiar with the IntelliJ IDEA

As you probably know as a Pro Android developer, you must always @Override an
onCreate() method for Activities you create for an Android application. If you need to review
Android development, I just wrote the third edition of Android Apps for Absolute Beginners
(Apress) in Q3 2014 that covers it all in great detail. This method call uses the Bundle class
you imported to create state memory (all states or settings related to the Activity instance in
memory) Bundle, which is appropriately named savedInstanceState. If Android has to swap
your Activity out of memory for any reason, this little Bundle object will allow Android OS to
reconstruct your Activity exactly as the user had left it, so the user does not even know that
the Activity was removed from the system memory temporarily.

The first thing that you see inside this .onCreate() method structure is the super.onCreate
(savedInstanceState); statement. This creates (or re-creates using the Bundle object if the
Activity has been removed from memory by Android) the Activity object by using the parent
Activity class .onCreate() method, which is called from the parent Activity class using a Java
super keyword.

The next code statement is one that every Android application must have to set up your user
interface layout container. This is your setContentView() method call, which references the
activity_main.xml file, which you looked at earlier in the activity_main.xml tab. This is how
the XML UI definition is connected to the Java 7 code for your wearable application.

The next line of code is what bridges the Android application part of your wearable app to
the wearable itself, using the fourth WatchViewStub import statement, so that now you’ve
used all of the imported classes. You create a WatchViewStub object named stub and load
it with the watch_view_stub UI widget, which has been defined in the activity_main.xml file,
by using the findViewById() method call.

Figure 4-25. Click the MainActivity.java tab at the top, expand Project pane file tree, and opt in or out to use stats

95CHAPTER 4: Exploring Android Studio: Getting Familiar with the IntelliJ IDEA

Next a Listener is attached to the WatchViewStub object named stub using a
.setOnLayoutInflatedListener() method. The code inside this method will be triggered after
the watch_view_stub XML layout definition is inflated.

This construct will ensure that the wearables UI definition is in place before any Java
statements inside the .onLayoutInflated() method structure are executed. Notice inside of
this .setOnLayoutInflatedListener() method, a new .onLayoutInflatedListener() object is
created in the parameter area.

This .onLayoutStubListener() method is called by using a path reference to the
WatchViewStub class that contains this method. This is very dense Java code, and it sets
up your entire Listener structure, as well as what it is going to do, after a UI layout has been
inflated. This is all accomplished using only a half dozen lines of Java code.

Inside the onLayoutInflated() method, the mTextView TextView object will be loaded using
the XML definition of the TextView UI widget with an ID of text. As you can see, there is no
TextView widget or any other widget with an ID of text, so you need to open one of the other
XML UI layout container files. This is done by right-clicking the rect_activity_main.xml file
name in the Project pane and selecting the Jump to Source menu item, which in IntelliJ
lingo means “open file in a tab in the central editing area.”

As you can see in the rect_activity_main.xml tab in Figure 4-26, there’s a TextView widget
named @+id/text, which is what the Java code is referencing inside the .onLayoutInflated()
method structure using findViewById().

Figure 4-26. Right-click the rect_activity_main.xml file, select a Jump to Source menu option to open in a tab

96 CHAPTER 4: Exploring Android Studio: Getting Familiar with the IntelliJ IDEA

If you want to see how the UI definition in the rect_activity_main.xml tab is referenced in
your activity_main.xml UI definition, as shown in Figure 4-24, look at line number 7. If you
want to turn on line numbering in IntelliJ, right-click in the gray column just at the left of the
XML markup pane and select a Show Line Numbers option. Line 7 looks like the following
markup:

app:rectLayout="@layout/rect_activity_main" app:roundLayout="@layout/round_activity_main"

These two app: references to a rectLayout and roundLayout property are the properties
that Android Wear looks at to determine which UI design to use for smartwatches that are
rectangular (square) or round.

So now that you know how everything connects together in the bootstrap project, the next
thing you need to do is to make sure your AVD emulators are in place and ready to use for
the rest of this book. Congratulations! You are making great progress.

Summary
In this chapter, you learned all about the IntelliJ IDEA as well as how Android Studio
combines their Android 5 SDK and Java JDK to turn it into a customized Pro Android
wearables application integrated development environment software tool.

You also learned how to use the SDK Manager to see which SDKs are installed as well as
to install the other features that you’ll be needing during this book. You learned that little-
known Run as Administrator trick, which can also solve many other failed installation
scenarios besides the one encountered when you tried to update Android Studio 1.0.1 to
Android Studio 1.0.2. Luckily an update was available so I was able to show you that little
trick that gives you read or write privileges across the OS board.

You learned all about version 14 of your IntelliJ IDEA: how to update it, how to learn about
its features, and about its projects structure, files, folder hierarchies, and configuration files.
You learned what SDKs IntelliJ will support and what versions of IntelliJ (free versus paid)
support which programming languages. You learned about myriad programming features
that will make your coding job easier.

Finally, you created your ProAndroidWearable application so you could explore the IntelliJ
IDE. You looked at the Java 7 and XML markup and went through what the Java code does
and how it links into (is wired up with) the XML markup UI definition files.

In the next chapter on AVDs, you will learn exactly how to set up an Android AVD emulator
for custom wearables devices and get some experience with AVD creation, configuration,
set up, and customization.

97

Chapter 5
Android Virtual Devices:
Setting Up Wearables
Application Emulators

Now that you have an overview of the features in Android Studio, this chapter will discuss
Android virtual devices (AVD), which are software emulators.

The reason that these are important is because they allow you to test your Pro Android
wearables application more rapidly, without having to transfer your APK file to a hardware
device via a USB cable (although you did install the latest USB driver in Chapter 4 in case you
want to do this) every time you want to test your application’s Java code or XML markup.

Let’s start out by creating AVDs for both square and round Wear hardware (smartwatch
peripherals). You will do this for both the Intel x86-based smartwatches as well as ARM
EABI7-based smartwatches. This is possible due to the x86 and ARM system images, which
you installed in Chapter 4, using the SDK Manager, when you updated to Android OS 5.0.2.

After that, you’ll spend the rest of this chapter learning how your AVDs interface with the rest
of the Android 5 wearables application development project inside the IntelliJ IDEA. You’ll
learn how to select which AVD emulator you will use to test your application at any given
time during the development. This is important for Wear application development as you will
need to create both square and round versions of your UI design, as discussed in detail in
Chapter 4, when you learned how the WatchViewStub object allows Android OS to detect
and serve the correct UI design for the user’s smartwatch shape.

Using the AVD Manager: Creating Wear Emulators
If you’ve not done so already, launch the Android Studio development environment with the
quick launch icon you created in Chapter 2. This will launch IntelliJ IDEA and display the

http://dx.doi.org/10.1007/9781430265504_4
http://dx.doi.org/10.1007/9781430265504_4
http://dx.doi.org/10.1007/9781430265504_4
http://dx.doi.org/10.1007/9781430265504_2

98 CHAPTER 5: Android Virtual Devices: Setting Up Wearables Application Emulators

ProAndroidWearable project you created in Chapter 4. Click the Tools menu at the top of the
IDE, as is shown in Figure 5-1, and click the Android menu to display the submenu that has
the AVD Manager option on it. Also notice that underneath the AVD Manager is your SDK
Manager option, so if you were wondering how to access an SDK dialog once you’re inside
IntelliJ in Project mode, this is how you would accomplish that.

This will open the AVD Manager dialog and a list of currently installed AVD emulators called
the Your Virtual Devices screen, as shown in Figure 5-2.

Figure 5-1. Use the Tools ➤ Android ➤ AVD Manager menu sequence in IntelliJ and launch the AVD Manager

Figure 5-2. Use the Create Virtual Device button on the lower left of the AVD Manager dialog to create an AVD

http://dx.doi.org/10.1007/9781430265504_4

99CHAPTER 5: Android Virtual Devices: Setting Up Wearables Application Emulators

This dialog lists the basic AVDs that are currently installed in IntelliJ IDEA with the default
software installation, including Motorola’s Android 5 OS compatible Nexus 5 API Level 21
for Intel Atom x86 processor emulation. For those of you who did not hear the industry
news, Google bought Motorola several years ago.

On the bottom left of the dialog there is a button labeled Create Virtual Device. Clicking this
button brings up a second level of AVD creation.

This second level dialog in your AVD Manager is used to Select Hardware in the Virtual
Device Configuration dialog, as shown in Figure 5-3. It lists all of the currently predefined
Phone, Tablet, Wear, and TV hardware and classifies and organizes these by Category
buttons on the left side of the dialog. As you can see in Figure 5-3 “True SmartWatches,”
which are not smartwatch peripherals, are listed in a Phone section, since they act as a
phone strapped to your wrist. I’ve highlighted the Neptune Pine SmartWatch in Figure 5-3
so you can see how the attributes are listed on the right.

Figure 5-3. Notice the Neptune Pine SmartWatch is a full Android (phone) device and is not under Android Wear

Click the Wear button on the left side of the dialog and see what built-in Android Wear
device options there are listed for use in the IntelliJ IDEA.

There are predefined SmartWatch emulators for Android Wear Square, as well as Android
Wear Round, as shown in Figure 5-4. Let’s start by creating the Android Wear Round AVD
emulator for Intel Atom (x86) processors.

100 CHAPTER 5: Android Virtual Devices: Setting Up Wearables Application Emulators

Figure 5-4. Select the Android Wear Round Hardware Emulator and click the blue Next button to define it for use

Figure 5-5. Select an Intel x86 Lollipop System Image for Android Wear, which you installed using SDK Manager

Select the Android Wear Round entry, shown selected in blue in Figure 5-4, and then click
the blue Next button. This will then take you to a third level, to a System Image dialog,
which is shown in Figure 5-5. Notice that there are two different hardware versions, ARM and
Intel processors, listed in this dialog. You will be creating emulators for both types of Wear
hardware, since some smartwatch products are ARM based and others are Intel based.
Select the Lollipop x86 API Level 21 option and click Next to proceed to the next dialog in
the series, where you can define the emulator options for the Intel Atom x86 Android Wear
Round SmartWatch AVD emulator.

The fourth level down in the series of dialogs is the Verify Configuration dialog, which
is shown in Figure 5-6. You will see two check boxes under the Emulated Performance
section, one for GPU emulation and one for storage of a memory snapshot for the last
emulator state, which is used for faster loading of the emulator. I assume that you took
my advice in Chapter 2 and have an SSD hard drive, so the Use Host GPU option is more
valuable to select as it allows 3D OpenGL to be emulated. It’s important to note that both
of these check boxes cannot be selected at the same time. You’ll have to choose between
these two important emulator perks, so choose carefully!

http://dx.doi.org/10.1007/9781430265504_2

101CHAPTER 5: Android Virtual Devices: Setting Up Wearables Application Emulators

Once you click the Finish button, as shown on the bottom right of Figure 5-6, you will be
taken to the Your Virtual Devices dialog, as shown in Figure 5-7.

Figure 5-6. Select the Use Host GPU to enable emulator graphics to run on your workstation’s graphics adapter and
click Finish

Figure 5-7. Once you click Finish, the Android Wear Round API 21 x86 AVD will be listed in the Virtual Devices

Again, click the Create Virtual Device button on the bottom left of the dialog as shown in
Figure 5-7, and let’s create an Android Wear Square API 21 AVD next. In the Select Hardware
dialog, as shown in Figure 5-8, this time select the Android Wear Square device, as shown
selected in blue. Notice again on the right that information is listed about the specifications
of this AVD emulator, in this case a small size, long ratio, HDPI density, and 280 DP.

102 CHAPTER 5: Android Virtual Devices: Setting Up Wearables Application Emulators

Click the blue Next button, which will open the System Image dialog, as shown in
Figure 5-9. Again select a Lollipop API Level 21 x86 system image.

Figure 5-8. Select the Android Wear Square Hardware Emulator, and click the Next button to define it for use

Figure 5-9. Select an Intel x86 Lollipop System Image for Android Wear, which you installed via SDK Manager

Click the blue Next button and proceed to the Verify Configuration dialog, as shown
in Figure 5-10. I am again using the Use Host GPU option because I have an advanced
3D graphics card and I am a 3D modeler and animator who is planning to eventually use
OpenGL in my Android applications. It is important to note that many of your dialogs “lag” a
version in the upgrade process. So even though you made sure that you were 5.0.2 “clean”
in Chapter 4, details such as updating the dialog text feedback information, for example, the
Android 5.0.1 x86 that is now Android 5.0.2 x86, didn’t get into an update of the dialog UI
labels that are being used currently!

http://dx.doi.org/10.1007/9781430265504_4

103CHAPTER 5: Android Virtual Devices: Setting Up Wearables Application Emulators

Click Finish and return to the Virtual Devices dialog, as shown in Figure 5-11.

Figure 5-10. Select the Use Host GPU to enable emulator graphics to run on the workstation’s graphics adapter

Figure 5-11. Intel Atom Android Wear AVD emulators for Round and Square SmartWatches have been created

I would suggest using the exact same work process you did for Intel Atom–based
SmartWatches, which can also be seen in Figures 5-4 through 5-11, and creating AVD
emulators that use the ARM processor technology. If you do this, you will have all four of
the emulators at your disposal later on when you need them for Android Wear Round and
Android Wear Square testing. During this book, I will be following the “do it right the first
time” work process, so get everything done you will need when you’re in that dialog.

104 CHAPTER 5: Android Virtual Devices: Setting Up Wearables Application Emulators

Figure 5-12 shows the Your Virtual Devices dialog, after all four of these Android Wear AVD
emulators have been created.

Now that you’ve gotten some practice creating ARM and Intel AVD emulators for your
Android Studio IntelliJ IDEA, you will be prepared when it comes time to test your Pro
Android wearable application.

Next, let’s take a look at how these AVD emulators can be used to test the
ProAndroidWearable app you created in Chapter 4.

Using Wear Emulators: Testing Your Wearable App
The emulator settings in Android Studio IntelliJ IDEA are accessed via the Run/Debug
Configurations dialog, which you may have perused when you were looking at the
Configure dialogs in Chapter 4 when you updated and explored the IntelliJ advanced
integrated development environment for Android 5.

As you can see in Figure 5-13, this could also be accessed from the inside of your project,
by using a Run ➤ Edit Configurations menu sequence, which is seen highlighted in blue.
Click the Run menu at the top of the IntelliJ IDEA and select the Edit Configurations menu
item to open the dialog.

Figure 5-12. Intel Atom or ARM Android Wear AVD emulator for Round or Square SmartWatches ready for use

http://dx.doi.org/10.1007/9781430265504_4
http://dx.doi.org/10.1007/9781430265504_4

105CHAPTER 5: Android Virtual Devices: Setting Up Wearables Application Emulators

As you can see in Figure 5-14, there are three main tabs: General, LogCat, and Emulator.
Here you will be looking at how to use LogCat (Logger-Cataloging) as you start to generate
errors that need to be corrected over the course of this book. LogCat is something that you
really need to look at in the context of the development work process, which is why I didn’t
discuss the LogCat functionality in Chapter 4.

You might think the Emulator tab is where you need to set your AVD emulator, however, in
fact there is a Target Device section located at the bottom of the General tab where this
functionality is set up for use with IntelliJ.

As you can see in Figure 5-14 at the bottom, there are several options for setting up the
Target Device that will be used for testing your wearables applications in IntelliJ. These range
from using the emulator AVD to using the USB Driver you updated in Chapter 4 to instructing
IntelliJ to poll you regarding which device (emulator or real hardware) to utilize to test your
Android Wear application’s Java code and XML markup.

Figure 5-13. Use the Run ➤ Edit Configurations menu sequence to set the AVD emulator that you want to use

http://dx.doi.org/10.1007/9781430265504_4
http://dx.doi.org/10.1007/9781430265504_4

106 CHAPTER 5: Android Virtual Devices: Setting Up Wearables Application Emulators

If you want to select a target device manually, every time you use the Run or Run
Wear icon or menu sequence, you will want to select the radio button that is next to the
Show chooser dialog option. Each time you start a Run Wear or Debug operation in IntelliJ
with this configuration setting, Android Studio IntelliJ IDEA will display a Choose Device
dialog for you.

If you choose the USB Device option, IntelliJ will detect a plugged-in USB device upon
your application start up, which will then be used for testing purposes. This would be your
optimal option if you own a Wear SmartWatch!

Because I cannot make the assumption that all of the readers will own a Wear SmartWatch,
I will primarily be using the Android Wear Square and Android Wear Round AVD emulators
during the course of this book for the wearables application testing purposes. That brings
you to the third emulator option.

If you select the third Emulator radio button, you will be able to select the Prefer Android
Virtual Device setting from a drop-down menu. This is populated with the AVD emulators
that you created earlier in the chapter.

I am going to initially select the Android Wear Round API 21 (Intel Atom), which you will be
testing next, to make sure that it works. You will also be testing your ARM AVD emulators
and the Android Wear Square AVD during this chapter so you can see how they look and
work as hardware emulators.

Figure 5-14. In the General tab, select the Emulator target device radio button, and set the drop-down selector

107CHAPTER 5: Android Virtual Devices: Setting Up Wearables Application Emulators

If you intend to change AVD emulators and go back and forth between a USB driver
(external hardware device) and using AVD emulators, you’ll want to experiment with using
the Show chooser dialog radio button option. This will allow you to select how you want to
test a wearables application each time you click that Run icon (looks like a green video Play
transport button) or use the Run ➤ Run Wear menu sequence to test your application.

Using IntelliJ Run: Running Wearable Apps in Round Wear
Let’s use the Run ➤ Run menu sequence and execute the bootstrap wearables application
called ProAndroidWearable, which you created in Chapter 4. I get an error, which is shown
in Figure 5-15, at the bottom left of the screenshot. I also show the Run ➤ Run menu
sequence in this screenshot as well. As you can see, my system, which happens to be an
AMD FX-8350, seems to be having trouble running the Intel HAXM x86 emulation. This may
be due to the intense competition in the CPU and GPU market between Intel and AMD,
therefore, it is not surprising that this is happening.

Figure 5-15. Use a Run ➤ Run menu sequence to try and launch the AVD; notice the error in the output (bottom)

Let’s take a look at the proper work process to get Intel HAXM working properly, just in case
the HAXM error message happens to you!

http://dx.doi.org/10.1007/9781430265504_4

108 CHAPTER 5: Android Virtual Devices: Setting Up Wearables Application Emulators

Installing the Intel Hardware Extension Manager: The intelhaxm.exe
Open your OS file management utility and use the Search Bar, and enter the intelhaxm or
intelhaxm.exe search term, as highlighted in red at the top of Figure 5-16. This will locate
the intelhaxm-android.exe file for you.

Figure 5-16. Use your file management tool to search for intelhaxm.exe file, then right-click it and select Run as
administrator

You can actually right-click the file (result), as shown in Figure 5-16, and use the Run as
administrator menu option to install the Intel Hardware Accelerated Execution Manager
(HAXM) on your system to get rid of the HAXM error you are getting inside of the Android
Studio IntelliJ IDEA.

On my system, I received the dreaded “This computer does not support Intel Virtualization
Technology” error message inside a VT not supported dialog, as shown on the left side of
Figure 5-17. Fortunately for me, specifically, in this case, I installed all of the AVD types and
can still use an ARM AVD in my Android Wearable application development. I can continue
writing the book!

109CHAPTER 5: Android Virtual Devices: Setting Up Wearables Application Emulators

Once I clicked the OK button, shown on the left in Figure 5-17, I received this “Intel
Hardware Accelerated Execution Manager Setup Wizard ended prematurely” dialog, as
shown on the right side of Figure 5-17, so I clicked Finish.

If you do not get the dialog shown in Figure 5-17, install the Intel HAXM, and that
should take care of any error messages you may be getting inside the IntelliJ IDEA in the
Run/Debug/Compile output pane and tabs at the bottom of the IDEA (these are shown
in Figure 5-15).

Switching AVDs: Running Apps in Round Wear ARM AVD
Because I cannot emulate this Intel Atom Android Wear Round AVD, I went back into
the Run/Debug Configurations dialog, as shown in Figure 5-18, using that Run ➤ Edit
Configurations menu seen in Figure 5-13. I selected the Android Wear Round API 21 2
option from the drop-down. Because I just created all of these AVDs a few minutes ago, I
know that this is the ARM version, so I can use this emulator to show you how to test your
ProAndroidWearable app.

Figure 5-17. If you are using a powerful AMD 8-core FX processor like I am, you are going to be out of luck!

110 CHAPTER 5: Android Virtual Devices: Setting Up Wearables Application Emulators

Figure 5-18. Select your ARM Android Wear Round API 21 2 AVD (notice Intel AVD is now marked in red)

This time I am going to have you click the green Play (Run) icon at the top of IntelliJ.
As you’ll see during this chapter, there are several ways to Run your wearables application.
Once you click the Run icon, you’ll see the output pane shown at the bottom of Figure 5-19,
which shows a plethora of technical information related to running your application inside
the AVD emulator. The last line says “creating window” (contains the emulator) at 30,30
(upper right corner of your OS desktop) sized for a 320x320 Round AVD emulator. If you
want to take a peek at what this looks like, it is shown in Figure 5-20, starting up for the very
first time on my system!

111CHAPTER 5: Android Virtual Devices: Setting Up Wearables Application Emulators

When you first run and launch the Android Wear AVDs, it simulates exactly what you would
experience with any smartwatch product when you run it for the first time. The sequence
of screens you will see can be seen in Figure 5-20, including a screen that says that the
Android Wear app is not on your phone.

Figure 5-19. Click the green Run (Play) icon at the top to run ARM emulator; notice the stats in output tab (bottom)

Figure 5-20. First time launch displays accurate Wear emulation; SmartWatch shows this when you first turn it on

If you swipe the emulator screen to the side, using your mouse, you’ll see other screens
that advise you to install the Android Wear application from the Google Play Store, so that
the Wear SmartWatch Peripheral can function properly. It’s important to note that this is
not needed; this is just the emulator being exceptionally accurate in an attempt to simulate
real-world Android Wear experiences. Also notice on the far right side of Figure 5-20 that
there is also a Project Volta Power off (shutting down) screen that’s displayed if you don’t do
anything with the AVD emulator (after a minute).

112 CHAPTER 5: Android Virtual Devices: Setting Up Wearables Application Emulators

If you shut down the AVD emulator, click the red X to close the window and simply restart it
using a Run process in IntelliJ. I will show you another way to directly run your application
using a right-click context-sensitive menu-based work process. Click the MainActivity.java
tab, as shown in the top middle of Figure 5-21, and then right-click, in the right side of your
editing pane, and select a Run ‘MainActivity’ menu option to again launch the AVD you
chose in the Run ➤ Edit Configurations Run/Debug dialog.

Figure 5-21. Another way to launch an AVD from the project is to right-click in the code area and select Run ‘MainActivity’

Figure 5-22. AVD optimizes and starts apps, shows the Android Wear start-up logo, and Ok Google time screen

The second time you launch the AVD, you will get a different series of AVD start-up screens,
which tell you the number of apps that are being loaded, optimized for Wear devices,
starting, and the like. You will also see a Wear start-up logo screen, and a SmartWatch
screen with the time and indicators for cloud and charge, as well as the “Ok Google,” as
shown in Figure 5-22.

113CHAPTER 5: Android Virtual Devices: Setting Up Wearables Application Emulators

Once you get the default Android Wear Home Screen (the time), you can swipe your
mouse over the screen and pull down different watch faces, as shown on the far left side
of Figure 5-23. You can also swipe up or down; this will scroll through different options, as
shown in the second pane of Figure 5-23.

Figure 5-23. Once emulator starts, swipe screen to find the Start button, then swipe to find the ProAndroidWearable app

Scroll down and find the blue Start option, then click that to get your applications screen,
which can be seen in the third pane in Figure 5-23.

You can scroll up and down through that Start Application screen until you find your
ProAndroidWearable application, which will launch when you click it. This will run the
bootstrap application and display the Hello Round World! message. This text String object
is contained in a TextView widget, which can be found in your round_activity_main.xml file
that is referenced inside your activity_main.xml file.

I highlighted the markup reference in Figure 5-19 using light blue. I did this by clicking my
mouse cursor on the XML file reference, so look for an insertion bar inside this reference.
This is where the Android OS looks at which emulator (or smartwatch hardware) you are
using and then calls the correct UI layout design XML definition file which will fit with that
type of SmartWatch face! You as the developer will define that upfront, and I will be focusing
on SmartWatch UI design during the course of this book.

Switching AVDs: Running Apps in Square Wear ARM AVD
Go into IntelliJ and use the Run ➤ Edit Configurations work process, which was shown
in Figure 5-13 (I’m not going to duplicate screenshots here), and select the Android Wear
Square API 21 2 (ARM, unless your Intel AVDs are working, your choice). Then use one of
the Run methods shown in Figure 5-15, Figure 5-19, or Figure 5-21 and this time run the
wearable application in the Android Wear Square AVD emulator so that you can see how the
user experience compares with the Android Wear Round AVD emulator.

Notice that whenever you change an Android Virtual Device emulator, you’ll get a “Waiting
for adb” progress bar dialog, because IntelliJ IDEA will need to load that new AVD emulator
system image definition into the system memory. This progress bar is shown in Figure 5-24,
and if you have a fast multiple core system with an SSD hard disk drive, it should only
display for a few seconds at the most.

114 CHAPTER 5: Android Virtual Devices: Setting Up Wearables Application Emulators

After this progress bar disappears, your Android Wear Square emulator will appear at the
same location (upper right of your desktop) as the Android Wear Round emulator did earlier.
As you can see in Figure 5-25, there is a Just a minute (loading) screen that will appear,
and then you will see the same connect screen that you saw on the Android Wear Round
emulator.

Figure 5-25. When you first launch an AVD it emulates what a real smartwatch will do

Figure 5-24. If you switch to a different AVD emulator in IntelliJ, you will get the Waiting for adb progress bar

With the Android Wear Round AVD emulator, if you do not use your emulator, just like how
Project Volta works with your SmartWatch, your AVD will shut itself down if you don’t use it
within a minute or so of launch.

For this reason, I’d suggest testing the ProAndroidWearable application as soon as it
launches in your Android Wear emulator! One would assume that a developer would be
eager to see if their Java programming logic, or XML UI Design, works anyway, so letting the
AVD go into “power-saving” mode will seldom be a problem.

Once your emulator has loaded, you will get a “Paired!” screen, simulating the pairing of
a Wear device with a smartphone or tablet, as shown on the left side of Figure 5-26. After
that screen disappears, you will see a You’re all set! screen, telling you to Swipe up to get
started, which is shown on the right side of Figure 5-26.

115CHAPTER 5: Android Virtual Devices: Setting Up Wearables Application Emulators

Figure 5-26. Once you get the Paired screen and You’re all set! screen, swipe up!

If you swipe down the screen at this point, you see a list of the various things you can do
with the wearable, just like you did with the Android Wear Round AVD, and as shown in
Figure 5-27 in the left-hand pane. Find the Start icon and click it to load the applications that
are on the device. Next, find your ProAndroidWearable application and click it. Once you do,
you will see your application running, as shown on the right pane in Figure 5-27.

Figure 5-27. Find the Start menu and the ProAndroidWearable app and start it to run

Because there are both round and square smartwatches, you need to test your applications
on each of these emulators to make sure your app works on both types of screens. Some
top manufacturers, such as LG (Lucky-Goldstar) Electronics, even have both types of
screens. LG has G (square) and R (round) smartwatch products being offered currently.

116 CHAPTER 5: Android Virtual Devices: Setting Up Wearables Application Emulators

Summary
In this chapter, you learned about how to create software emulation for your Pro Android
wearables IntelliJ development environment. These are called Android virtual devices, also
known as AVDs, created using the Run/Debug dialog in your IntelliJ IDEA and accessed
using your Run ➤ Edit Configurations menu sequence.

First, you learned how to use the AVD Manager to create AVD emulators to be used inside
Android Studio (IntelliJ IDEA). You created an Android Wear Round and Android Wear Square
AVD emulator for the Intel Atom processor as well as for the ARM processor. This was done
so that you have four different emulators to use for your Android development work process.

When I tried to run the Android Wear Round AVD for the Intel Atom, I got an error message
in an output pane in IntelliJ. So I took that opportunity to show you exactly how to find and
install Intel’s Hardware Accelerated Execution Manager (HAXM) on the workstation in case
you encounter this same problem.

I found out Intel does not support AMD processors (no surprises there), so I will have to
use those ARM AVDs for my Pro Android wearables development work process. Next, you
learned how to actually use these AVDs to run your ProAndroidWearable application and
how to navigate the AVD emulation mode.

In the next section of this book, you will start learning the ins and outs regarding how to
develop Android wearables apps and add wearable features.

117

Chapter 6
Introduction to Android Watch
Faces Design: Considerations
and Concepts

Now that you have some “foundational knowledge” in place regarding Android 5 and its new
features, Material Design, Android Studio IntelliJ IDEA, and AVD emulators and have set up,
updated, and configured an open source Pro Android Wearables application development
workstation, the time has come for you to get down to business and learn about the
various parts of the Android 5 API that directly apply to and affect wearables application
development.

You have already learned how to create a brand new ProAndroidWearable application in
Chapter 4 (I wanted to give you a head start), so in this chapter you will begin to learn about
the most popular type of Android Wear SDK application. This is called the Watch Faces API,
released by Google to enable developers to create custom watch faces that will work across
all smartwatch models.

Because there is so much interest in how to create Watch Faces in Wear SDK and although
it is complex, it provides a foundation for creating some of the other more advanced types
of wearable applications, so I’m going to cover Watch Faces in detail during this book. I’ll
cover more advanced Android Wearable development topics in Chapter 17. Let’s start by
looking at watch face design considerations; after that, you’ll be learning some of advanced
graphic design concepts over the next few chapters.

http://dx.doi.org/10.1007/9781430265504_4
http://dx.doi.org/10.1007/9781430265504_17

118 CHAPTER 6: Introduction to Android Watch Faces Design: Considerations and Concepts

Watch Face Design: Considerations and Guidelines
Google’s Android Wear SDK recently introduced a Watch Faces API in Android Studio 1.x
that allows developers to create customized watch faces. This allows developers to create
smartwatch “skins” or “faces” using customized designs that are based on a combination
of Java code, XML user interfaces, and new media assets such as SVG (Shapes), PNG
(Images), and UI widgets.

These Watch Faces applications can simply tell the user what time it is in a new and unique
fashion, and they can also show contextually relevant information to the watch wearer, like
notifications, the weather, health information, incoming text messages, phone caller names,
and similar information that users would want to access in real time to improve their
day-to-day lives. The Watch Faces API allows Android 5 developers to create a design
that integrates all of these data into one seamless user experience.

A Watch Faces UI: Seamless Blending of Art and Function
Your Watch Faces UI Design will start with your activity_main.xml file, which you created in
Chapter 4, and then progress from to the more customized designs in the square_activity_
main.xml and round_activity_main.xml files. As you know, these hold your different watch
faces UI design types, which I’ll be getting to shortly.

As you might imagine, a watch face design will optimally feature a perfect blend of graphics,
algorithms, and data, creating a visual user experience that informs users of various types of
information in a beautiful fashion without requiring any additional viewing effort.

Your goal as a Watch Faces API developer will be to create elegant, clear, organized, and
attractive user interface layouts that are able to adjust to different smartwatch display types,
screen shapes, and bezel sizes.

Throughout this chapter, and the remainder of this book, you’ll learn how to design the
Watch Faces UI as well as provide your users with options for color and presentation. This
will empower your users to create their own personalized Watch Faces user experience
using a Wear smartwatch device that fits their lifestyle.

You will also need to consider how Android OS user interface elements will interact with your
Watch Faces application design, including system icons such as battery power, Bluetooth,
or 4G LTE signal indicators. I’ll discuss the various options for positioning these within the UI
design layout for your watch face design a bit later in the chapter.

Watch Faces Power Usage: Interactive and Ambient Modes
The Android Watch Faces API requires that developers provide two different power usage
modes for their Watch Faces applications. These are called the interactive (color) mode and
the ambient (grayscale) mode. Your watch face UI designs will need to take these different
power consumption modes into account. I’ll discuss how to optimize designs for both of
these modes.

Usually if a watch face design looks professional in ambient mode, it will look even more
pristine in the interactive (color) mode. The opposite will not always be the case, as certain

http://dx.doi.org/10.1007/9781430265504_4

119CHAPTER 6: Introduction to Android Watch Faces Design: Considerations and Concepts

colors that contrast in the interactive mode may exhibit the same shades of gray in a
grayscale mode, and for this reason, Watch Faces API graphics design will be a lot more
tricky than you might expect it would be.

Watch Faces Interactive Mode: Full Color with 30 FPS Animation
The highest level mode in your Watch Faces smartwatch skin UI design is the interactive
mode, which allows full color and animation for your Watch Faces design. In interactive
mode, when users move their wrists to glance at their watch faces, their screen switches
into interactive mode.

Your watch faces (or skins) graphic design can use full color pixels along with high frame
rate animation in interactive mode. This is not to say you should use high frame rate
animation, if you can avoid doing so, as it uses power at a much faster rate than a static
interactive mode watch face design would.

Watch Faces Ambient Mode: Grayscale with Per Minute Updates
The next highest level mode in your Watch Faces smartwatch skin UI designs will be
the ambient mode. This mode will help a smartwatch device conserve power by using
fewer colors (on a select few models) or using grayscale or black and white to represent
your Watch Face UI Design. Your UI design can make it obvious to your user that their
smartwatch screen is in an ambient mode by using only grayscale colors for that Watch
Face Design component.

It’s important not to use a lot of pure white (full on #FFFFFF white pixel color value) in
ambient mode. This is because it can drain battery life and can be distracting to the user
compared to just a black background color.

In ambient mode, a smartwatch display screen will only be updated one time every minute.
For this reason, the Watch Face UI Design should only update hours and minutes when it is
in ambient mode. You should only show seconds when it is in interactive mode, and only if
the watch face requires it.

The Android OS will alert your watch face applications when the smartwatch device switches
into ambient mode, as you will see during this section of the book. you can create a Watch
Face ambient mode design to be used in this mode specifically. So, if you are serious about
designing Watch Faces applications, you will need to design your graphics at the pixel level
to fit all of these different modes, including those super low power modes, which I’ll cover in
the next section of this chapter.

Watch Face Power Conservation: Low-bit and Burn Protect
All of today’s latest Android Wear smartwatch devices utilize a wide array of different display
screen hardware technology. These include LCD (liquid crystal display), LED (light-emitting
diode), OLED (organic light-emitting diode), AMOLED (active matrix organic light-emitting
diode), and Qualcomm’s Mirasol front-lit technology.

120 CHAPTER 6: Introduction to Android Watch Faces Design: Considerations and Concepts

Each of these display pixel array manufacturing approaches that come with their own
advantages and power conservation considerations. An important consideration for
designing an ambient mode display for your watch face is how it affects battery life and even
screen burn-in, which can affect some screen technologies such as AMOLED and OLED.

You can configure your watch face application to display different ambient design graphics
depending on the kind of screen available on each device, if you want to get that detailed in
your Java coding and XML design. I’ll be discussing all of these screen type constants and
more complex Watch Faces API considerations during this section of the book so you can
craft the best overall design for your watch faces across all screen types.

Low-bit Ultra Power Conservation: Considerations and Techniques
Pixels in some display screen technology such as OLED or transflective LED will either
be “on” or white, or “off” or black, when in ambient mode. The ambient mode in these
situations, that is, on these screen types, such as the ASUS ZenWatch, is commonly known
as a “low-bit” ambient mode.

When designing for a low-bit ambient mode, use only black and white colors and avoid
using grayscale values, as they do not work on low-bit displays. Make sure to test your UI
design on devices that use low-bit ambient mode.

This means that you’ll need to disable anti-aliasing in your paint styles, which I’ll discuss later
in the book, which covers the graphics design concepts, such as anti-aliasing, alpha channels,
blend modes, and the work processes that are needed to implement these concepts.

Burn-in Protection and Prevention: Considerations and Techniques
When designing for display screens such as AMOLEDs and OLEDs, which can produce pixel
burn-in, much like the old cathode ray tube (CRT) screens would get from displaying the
same image for prolonged periods of time, you should minimize white pixel coloration, both
for power efficiency and to minimize the display screen burn-in effect.

When these types of display screens are operating in the ambient mode, the operating
system will shift the content of the display screen periodically by a few pixels, which will help
to avoid this pixel burn-in phenomenon.

The key to minimizing screen burn-in for low-bit ambient mode design is to keep 90% of
your pixels black. Replace solid grayscale shapes in a regular ambient mode design with
outline shapes in low-bit ambient mode to provide burn-in protection.

Another good idea is to replace grayscale image areas that are filled with pixel (matrix) patterns.
For analog (round) watch face designs, hollow out a center (where the hands meet) area so you
can avoid pixel burn-in in the center of the watch when it is in low-bit ambient mode.

121CHAPTER 6: Introduction to Android Watch Faces Design: Considerations and Concepts

Watch Faces UI Design Shapes: Square vs. Round
If you’re going to be a Pro Watch Faces API developer, then you will need to learn how to
optimize your Java code, XML markup, UI designs, and graphics design to fit both square
and round devices. This can be done by using one single design that fits both shapes or by
providing two different designs.

If you provide two different designs, then you can use the Android operating system’s
capability to detect face shapes to your advantage. I’ll discuss how to do this in your Java
code and XML markup in this part of the book.

Some Watch Face Design concepts may work better in one or the other format, as you
might expect. However, with a little clever designing, you can create a hybrid design that
will allow users to utilize the watch faces regardless of the display screen format that their
smartwatches use.

Let’s go over some of the Watch Faces API design guidelines that will help your watch face
applications span across both square and round devices.

Watch Faces Concept Design: Create a Flexible Design Concept
A visual functionality for the watch face design should work in both round and square
formats. The visual functions for your watch face should always be flexible enough to be
viewable in either format without any adjustment.

However, some watch face design concepts will ultimately require different executions,
that is, different Java code, different XML markup, different graphics design, and different
animations, across square and round screens.

Watch Faces Style Design: Use a Common Set of Design Styles
Similar to what you would do using CSS3 with your HTML5 apps and web sites, or using
Styles, Themes, and Material Design with your Android application, use a stylized collection
of colors, line thicknesses, shading, gradients, graphic design elements, animations, and
other design elements to draw the visual connection between your square and round Watch
Faces apps versions.

By using similar color palettes or consistent visual elements, your overall UI design’s look
and feel for your square and round watch face will appear to be customized for each watch
face shape while still retaining a feeling that the watch faces application design is part of the
same visual system.

Watch Faces Design Type: Round Analog vs. Square Digital
Some of your Watch Faces Design concepts would probably take the format of the
traditional analog clock, since that is the most popular look and feel for time telling
throughout the centuries, and it uses a radial (round) approach featuring a center pivot point
with hands for hours, minutes, and seconds.

122 CHAPTER 6: Introduction to Android Watch Faces Design: Considerations and Concepts

Using this traditional Watch Faces Design scenario, developers will have an opportunity
to assimilate the rounded-corner areas that will inevitably be present when translating this
design into the square Watch Faces format.

This will give your Watch Faces Design process a creative spark as you try to discover
innovative and attractive ways of extending and exploring this additional Watch Faces
screen “real estate.” This might involve decorative elements, operating system indicators,
animated elements, functioning user interface elements, date-related indicators, or calendar
dates information.

Watch Faces Integration: Assimilating OS Functions
The Android Watch Faces API requires that you assimilate all necessary OS features within
your watch faces’ design, so that your design accommodates basic Android Wear UI
elements, such as states, status, and notifications.

These OS-rendered (controlled) UI elements give your Watch Face user their status
information regarding their wearable hardware (power, signal, etc.) and show various types
of notifications from services on the user’s phone, or tablet, which is running the Wear
peripheral application.

For this reason, it is important to have a Watch Faces Design work process that displays
critical operating system UI elements in a logical location and clearly defined within the
watch face design. For instance, ensure the OS-provided UI elements and messages are not
obscured by any of your Watch Faces graphic design or UI design elements.

Android Notifications: CardView UI Layout Messaging
Android “Cards” is a new notification system in Android 5 that bridges information between
a wearable peripheral and its host mobile device. This is how most wearable applications
are going to notify end users of various things. A user might be notified on their wearable
regarding things such as e-mails or text messages. As a watch face developer, you’ll
be required to support large as well as small Cards in your design. Your watch faces
applications can specify your preference for the Card size, but users can override this
setting. A user can also temporarily hide a Card by swiping it downward.

A Peek Card is the top Card in the notification stream and will be visible at the bottom of
your smartwatch screen. A Variable Peek Card has a height attribute, which is determined
by the amount of text within a notification. A Small Peek Card will leave more room for the
watch face design. Watch faces with round analog hands usually use the Small Peek Card.
If the time is clearly visible above the maximum height of the Variable Peek Card, you can
choose to use a Variable Peek Card if you wish. A Variable Peek Card will display more
notification information, however, Watch Faces with information on the bottom half of it
should optimally utilize a Small Peek Card.

It is important to note that your Android 5 operating system will notify your watch face
design (Java code) when the Bounds (dimensions) of a Peek Card changes. For this reason,
your Java code will interactively rearrange the user interface and graphic design elements
in the watch face design if the Peek Card Bounds object changes and make an interactive
rearrangement necessary.

123CHAPTER 6: Introduction to Android Watch Faces Design: Considerations and Concepts

Android Hardware State Indicators: Hardware Mode Status
Android State Indicators are used to tell users the status of the wearable device, such
as how much power it has left, if it’s currently charging, or if it’s in airplane mode. When
creating your watch faces design, you need to consider how these indicator icons will fit into
your watch face visual design composition.

Android status indicators on a smartphone or tablet are in the Status Bar, no surprises there;
however, in a Watch Faces Design, these can be placed in several fixed locations around the
display screen for the wearable device.

An Android CardView class is used to create the new “cards” paradigm under material
design. If you need to support a larger Peek Card, your indicator placement for your status
indicator icons should go near the top or on the center of your Watch Faces Design. If you
instead position the hardware status icons on the bottom of a Watch Faces Design, the
operating system will be forced to use Small Peek Cards.

If the perimeter of the watch face contains important visual elements, for instance,
decorative elements, ticks, or numbers, place your indicators in the center of your Watch
Faces Design.

Android Hotword Placement: The OK Google Phrase
Another important consideration to keep in mind for integrating Android OS functionality into
your Watch Faces UI Design is to include spacing for the Android “hotword.” The Android
hotword is the phrase OK Google, which is shown on startup and tells the user that they
can interact with the watch by using voice recognition technology, including predefined
vocal commands.

When your user turns on their wearable device, this hotword appears on the smartwatch
display screen for a few seconds. The hotword no longer appears after the user says OK
Google five times, and for this reason, placement of this Android OS UI element is not as
critical as the status icons or cards.

You should avoid covering up important UI elements of a watch faces design using the
Android hotword location. There are also “background protection” UI element settings for
the hotword and state indicators that can help to increase contrast (readability). These UI
element options should be turned on, unless your design is tailored to have the UI element
appear on top of it with maximum contrast (e.g., using dark colors with no patterns).

Android Peripheral Connection: The Wear Companion App
The Android Wear companion app is the bridge between the “host” smartphone or tablet
and the “peripheral” Android Wear smartwatch hardware. This app will give your users
access to all of the watch face designs in your app, and allow them to select from the
included designs and to change their settings, such as color, numbers, style, animation,
features, and the like.

124 CHAPTER 6: Introduction to Android Watch Faces Design: Considerations and Concepts

Watch Faces Manifest: You Don’t Have to Provide a Launcher Icon
All available Watch Faces apps are accessed from an Android Wear companion app or
from your bundled third-party app. For this reason, your application launcher icon is for the
bundled peripheral (smartphone or tablet) app and not for the Watch Faces app.

For this reason, there’s no need for a standalone app launcher icon to be declared inside
your AndroidManifest.xml file for any of your Android Wear Watch Faces applications.

Watch Faces Control Panel: Your Settings Dialog Panel
Your Watch Faces Design can also have a Watch Faces Settings panel if your design has
useful options that need to be set using a Settings dialog. The settings dialog (or panel) can
be made accessible using a Watch Face itself or by using the (larger) display screen on the
companion application that is installed on the user’s smartphone or tablet.

You should design your Watch Faces settings on the watch face itself to be limited to on
or off (termed binary) selections. You can also use ListView objects (class) to implement
scrollable lists of settings.

Settings on the Wear companion application on a smartphone or tablet might include more
complex configuration items in addition to the basic settings you make available on the
watch face UI design.

You can use the standard UI layout container classes (UI components), such as the Android
CardView class, to design a settings dialog or the settings panel in most cases, as you will
learn later in this book.

As you become a more advanced Android Watch Faces API developer, you might also want
to explore other, more complex, creative settings option designs once you have built a solid
work process for designing your watch faces.

Watch Faces Function: Functional Data Integration
Now that I have covered the Watch Face Design rules and Form, I’ll cover Watch Faces
functions. Your Watch Faces Design can show users “contextually relevant” data, such as
the weather outside, the phases of the moon, or colors representing nighttime, sunrise,
midday, or sunset and similar textual data representations, which will turn raw data into
Watch Faces Design graphics.

Watch Face Designs will usually visualize different types of external data by changing colors,
styles, or graphic designs for the Watch Faces Designs. This is done using Java code and
XML markup. Let’s take a look at some of the many considerations for adding function to
form for Watch Face Design.

125CHAPTER 6: Introduction to Android Watch Faces Design: Considerations and Concepts

Data Visualization: The Data You Want a User to See
The first step in Watch Faces Design where data integration is involved is the graphic design
that will bring to life, or visualize, the data themselves.

Decide how your watch face is going to define your viewer’s perceptions of the data you
want to display as part of your watch face design. Your visual conceptualization of the data
should be easy to recognize or figure out by the user. Additionally, the data your watch
design is trying to visualize need to be supported by a real user’s day-to-day requirements
and the need to put these data to real-world usage.

You need to think about what you want the end users to know after they look at the watch
faces’ design. Will they understand what your design is trying to convey using the colors,
style changes, or graphic design you’ve chosen?

Once you have designed your data visualization and tested it to make sure that users can
identify how your design is visualizing the data they are interested in, the next thing you will need
to do is determine how the watch face is going to obtain the data you are going to visualize.

Data Integration: A Fusion of Watch Face Design and Data
If you are going to visualize data other than just the time of day, design the watch faces
application so that it includes other useful types of data that relate closely to the time data
that are central to the watch face.

Logical types of data to include with time data would include the date, of course, and maybe
a timer (stopwatch), alarms, calendar appointments, time zone features, weather forecasts,
moon phases, and maybe even location or fitness data.

You also need to find a way to seamlessly integrate the data visualization with your Watch
Faces Design in a way that creatively inspires the viewers when they glance quickly at the
watch face application to consume the data you’re visualizing using color, text, style, or
custom graphic design.

The brilliance with which your design both visualizes and integrates the external data will
directly relate to the popularity of a watch face app. For this reason, you will want to avoid
overlaying a time-based watch face with extra data, without seamlessly integrating it into the
overall design in a clever fashion, using an inspired design.

When designing your data integration, you need to consider how that type of data can
be expressed through the design you are using for your watch face. As an example, if
you’re designing a weather-related watch face, use color gradients that reflect the current
temperature range for the day, so a range of 80 to 100 degrees can be represented using
orange to red color or 20 to 40 degrees might be represented using white to light blue colors.

Data Assimilation: Use a Simple, Unified Design Objective
Once you have decided how you are going to visualize your data and have reached your
watch face concept decision, it is time to use Java code, XML markup, and digital imaging
(GIMP for instance) to achieve your desired UI design.

126 CHAPTER 6: Introduction to Android Watch Faces Design: Considerations and Concepts

The most popular watch face designs are ultimately going to be the designs that are, at the
same time, both simple and elegant. Watch Faces that can convey a lot of information with
one simple glance are going to be in high demand in the Wear market. Watch Faces that
are able to deliver a unified design that expresses different types of data are going to be
considered to be the most “genius” watch faces in the Google Play Store.

In order to craft one singular watch face data visualization “message,” you will have to rank
the most important data you want to visualize within the design. For instance, instead of
trying to put a comprehensive weather forecast on the watch face, you might use a graphic
design that shows what the sky will look like if you go outside (sunny, cloudy, stars, rain,
snow, and the like).

If you’re displaying text-based information, try to minimize the number of characters on the
screen at any one given time. For instance, if you are adding calendar features, instead of
trying to display an entire month of calendar events, your design should only display one or
at the most two upcoming events.

Utilize the process of “reverse reduction,” which I’ll discuss next, and you’ll be able to craft
one singular expression of data in the design.

Watch Face Development: Start Basic and Add as You Go
Make sure your watch faces design work process begins with careful thought regarding
what your Watch Face will provide to your end user. This should give you the insight into
the needs and expectations of your end users so you can construct a winning watch face
application, which is the topic of discussion over the course of this book.

It’s always a good idea to run a concept by other smartwatch aficionados to see if the
consensus regarding the design concept is a good and popular one. You should also
test your watch face design thoroughly as you develop it, and even implement a “beta
test program” and include other smartwatch users who can confirm any of the design
assumptions you’ve made about your watch face design.

It might even be a great idea to start your watch face design work process by drawing out a
rough sketch of the watch face design on a napkin and ask a smartwatch end user or two to
tell you what they think of the design, as well what they would use it for.

Don’t make the assumption that you are going to develop an epic Watch Face Design on the
very first try, as that is not likely to happen. You’ll need to try the watch face design and data
combination with different types of data in conjunction with different design scenarios. You
should also be sure to test your watch face design with an actual watch screen before you
start coding.

Watch Faces Graphic Design: Multimedia Concepts
Let’s take a look at the different types of graphics concepts and support in Android 5 that
you’re likely to use in your Watch Faces Design. The primary assets you will be using in
Watch Faces Design are vector illustration, called Shapes and Gradients in Android,
and bitmap images, which use graphic file formats such as JPEG, WebP, and PNG, and

127CHAPTER 6: Introduction to Android Watch Faces Design: Considerations and Concepts

Animation, which support both vector animation and bitmap animation and brings both of
these types of multimedia into a fourth dimension (movement over time).

Let’s start by learning about the most data compact graphic technology, vector illustration,
which is done using only code, then cover bitmaps and graphic formats supported in
Android and core digital image concepts, and then finish by examining how animation is
implemented in Android, using XML markup in conjunction with bitmap image assets and
vector code. After I’ve covered all of this, you’ll be ready to dive into Java coding, XML
markup, and the graphic design work process needed to create Watch Faces!

Vector Watch Faces: Using SVG, Shapes, and Gradients
The most data-optimized type of new media asset that can be used in Watch Face Design
is digital illustration, commonly known as vector graphics. If you are familiar with Adobe
Illustrator or InkScape, then you already know that vector graphics involves lines, curves,
strokes, fills, and gradients.

The major open source file format for vector graphics is called SVG, which stands for
Scalable Vector Graphics. All the popular open source platforms support SVG data,
including Android, as well as HTML5 and JavaFX (Java 8).

As a Pro Android developer, you know that multimedia assets in Android are represented
using Drawable objects. Vector shapes will use a ShapeDrawable class to create an outline
of the vector shape and can fill the shape with a gradient use of the GradientDrawable class.
Your Watch Faces app can create these scalable vector graphic elements on the smartwatch
screen using only Java code, or using Java code in conjunction with XML definition files.

It’s important to note that entire Watch Faces applications can be created only using SVG,
which means that they’ll be 100% Java code and XML markup. For this reason, the file size
for these application APK files will be exceptionally small, as there will be no new media
asset (digital image file) storage inside the APK file.

Certain Watch Faces Design elements are especially well suited to scalable vector elements.
Lines can be used for hour, minute, and second hands, text can be used for numbers and
Roman numerals, or circle elements can be used for the watch rim or chronograph elements,
for instance.

Usually there will be some combination of vector graphic elements, bitmaps, and animation
used for a Watch Faces Design, so let’s look at the BitmapDrawable object for Android next,
as well as other supported digital image formats and even a few important digital imaging
concepts so that you will better understand what I am talking about during the remainder of
this book.

Bitmap Watch Faces: Bitmap Formats and Image Concepts
Because you’ll be using digital images for your Watch Faces Design and digital images are
also the foundation of your AnimationDrawable objects in Android, I will spend some time
providing those of you who are not professional digital image editors with the foundational
knowledge that is needed to understand the concepts in this book. Android 5 supports a
number of popular open source digital image file formats, some of which, such as GIF, have
been around for decades. Let’s look at those next.

128 CHAPTER 6: Introduction to Android Watch Faces Design: Considerations and Concepts

Android Digital Image Format Support: PNG, JPEG, WebP, and GIF
Digital image formats supported by Android 5 range from your decades-old Compuserve
Graphic Information Format (GIF) and ancient Joint Photographic Experts Group (JPEG)
formats, to the more recent Portable Network Graphics (PNG) and Web Photo (WebP)
formats. I will cover these in order of origin, from the older (and much less desirable) GIF,
to the newest WebP format.

Compuserve GIF is still supported by the Android 5 OS, however, it is not recommended
for everyday use. GIF is a lossless digital image file format, as it does not throw away any
image data to achieve its better compression result. The GIF compression algorithm, called
a codec (Coder-DECoder), is not as refined (read: powerful) as the other formats. It only
allows indexed color, which I’ll cover later in this chapter. That said, if all your image assets
are already created and they use GIF format, you’ll still be able to use them without any
problems, other than decreased visual quality in a Watch Face.

The next oldest digital imagery file format that Android supports is JPEG, which uses a
truecolor depth instead of an indexed color depth. JPEG is a lossy digital image file format.
The term comes from the fact that it “throws away” or loses original image data, in order to
be able to achieve this smaller file size. JPEG format can compress imagery up to, or greater
than, an order of magnitude (or ten times, if you are wondering) smaller.

It’s important to note that the original image data, which is known by the term “raw,” or
uncompressed image data, is unrecoverable after compression by a JPEG codec encoding
has taken place. For this reason, you should make sure to save your original (uncompressed)
image before you run your image through this JPEG digital image compression algorithm.

If you zoom into JPEG images after compression, you’ll see discolored areas, which clearly
were not present in the original image. These degraded areas in JPEG image data are
termed compression artifacts in the digital imaging industry. Compression artifacts occur
when using lossy image compression.

This is a primary reason that JPEG file format is not a highly recommended digital image
format for use in Android. The most recommended image format for use in Android 5
application development is the PNG file format. PNG is pronounced “ping” in the digital
image industry. PNG has both its indexed color version, called PNG8 (or PNG5, if you only
need to use 32 colors), as you’ll discover later in this chapter, and truecolor versions, which
are called PNG24 (no alpha channel) or PNG32 (with alpha channel). I’ll discuss the concept
of a digital image alpha channel later in the chapter as well, as it’s very important.

The PNG8 and PNG24 numbering extensions I am using represent the bit-depth of color
support, so truecolor PNG with an alpha channel could technically be referred to as a
PNG32. Similarly, a PNG using 16 colors should be said to be a PNG4, a PNG using
64 colors should be referred to as a PNG6, and a PNG using 128 colors should be referred
to as a PNG7 and so on. The reason PNG is the recommended format for use with Android 5
is because it uses lossless compression. This will provide high image quality as well as good
digital image data compression efficiency.

The most recent image format was added to Android 5 when Google acquired ON2, the
WebP image format. This format is supported with Android 2.3.7 for image read or playback
support, and in Android 4.0 or later for image writing or digital image file saving support.

129CHAPTER 6: Introduction to Android Watch Faces Design: Considerations and Concepts

Image writing support in Android, in case you might be wondering, would be used with your
Android camera, so your users can save or write images to their SD card or to the cloud via
remote web server. WebP is a static image version of the WebM video encoder file format.
WebM is also known in the industry as the ON2 VP8 video codec, which was acquired by
Google, and then declared for (also termed “released into”) open source availability.

The Foundation of Watch Faces Digital Imagery: The Pixel
Digital imagery is made up of 2D arrays or grids. These contain data elements commonly
referred to as pixels. This industry term is a conjugation of the word picture (some people
call these “pix”) and element (if you shorten the word elements you get the hip word “els”).

The number of pixels in your digital image asset is expressed using a term called resolution.
This is the number of pixels in both the width (denoted using a W or an X for the x axis), and
the height (denoted using an H or a Y for the y axis) dimensions of an image. Resolution for
image assets is usually expressed using two (X and Y) numbers, with an “x” in the middle, or
using the word “by,” such as 800x480 or as 800 by 480 pixels.

To find the total number of pixels in a 2D image, simply multiply the width pixels by the
height pixels. For instance, HDTV resolution, 1920-by-1080 images contain 2,073,600 pixels,
or over two million pixels. This is also referred to as two megapixels. The more pixels in an
image, the higher its resolution can be said to be, giving higher visual quality.

Just like digital cameras, which range from three-megapixel smartphone cameras to
75-megapixel DSLRs (digital single-lens reflex), the more megapixels in your digital image
grid or array, the higher the quality level that can be achieved using the image. This is
why 4K UHDTV screens, which have a resolution of 4096 by 2160, are becoming popular.
Android supports smartwatch resolution through 4K UHDTV.

The Shape of a Watch Faces Digital Image: The Image Aspect Ratio
A more complicated aspect (no pun intended!) of digital imagery resolution would be the
image aspect ratio, a concept that also applies to Android 5 device hardware displays.
Aspect ratio is the ratio of width to height, or W:H, or if you like to think in terms of an
x axis and y axis, it would be X:Y. The aspect ratio will define the shape of an image or
display screen, that is, how square or rectangular (popularly called widescreen) the image or
the display screen might be. Watch Faces have a square aspect ratio.

A 1:1 aspect ratio display (or digital image) is perfectly square, as is a 2:2 or a 3:3 aspect
ratio image. It is important to notice that it is the ratio between these two numbers that
defines the shape of the image, or of a screen, not the numbers themselves. That is why this
is called an aspect ratio, although it is often called the image “aspect” for short.

The image aspect ratio is usually expressed as the smallest set or pair of numbers that can
be achieved (reached) on either side of the aspect ratio colon. If you paid attention in high
school, when you learned about lowest (or least) common denominators, the aspect ratio
math will be very easy.

130 CHAPTER 6: Introduction to Android Watch Faces Design: Considerations and Concepts

I perform the mathematical matriculation by continuing to divide each side by two. Taking a
fairly common 1280-by-1024 SXGA resolution as an example, half of 1280:1024 is 640:512;
half of that, would be 320:256; half of that would be 160:128; half of that again is 80:64; half
of that is 40:32; half of that is 20:16; half of that is 10:8, and half of that is 5:4, so an SXGA
screen uses a 5:4 aspect ratio.

Interestingly, all the above aspect ratios are the same aspect ratio, thus all are valid! So if
you want to take the really easy way out, replace the “x” in your image resolution with a
colon and you have an aspect ratio for the image, although distilling it down to the lowest
format, as I did here, is far more useful and is the industry standard way to do things.

The original PC screens used a more square 4:3 aspect ratio, and early 2:3 aspect ratio
CRT television sets were nearly square as well. The closer these numbers on either side of
the colon are to each other in size, the more square the image or the screen aspect ratio is.
Always remember that identical numbers represent a square aspect ratio, unless one of the
numbers is a one. The 2:1 aspect is a widescreen display, and a 3:1 aspect display would be
downright panoramic, if and when it comes into existence that is!

The current display market trend is certainly toward widescreens as well as ultra high
resolution displays. Android 5 Watch Faces could change this trend back toward a square
aspect ratio. Square screens are being used in a variety of new consumer devices, one of
which is Android 5 smartwatches.

Coloring Your Digital Images: RGB Color Theory
Now that you understand digital image pixels, how they are arranged in 2D rectangular
arrays, and about aspect ratio, which defines a rectangular shape, the next logical aspect
(again no pun intended) to look into is how each of the pixels is assigned a color value.
Pixel colors are defined by an amount of three colors: red, green, and blue (or RGB). These
are present in varying amounts in each pixel. Android display screens utilize additive color,
which is where the wavelength of light for each RGB color plane can be summed together.
Additive colors are used to create tens of millions of different color values. This is used in
popular LED, LCD, and OLED displays, which are used in smartwatches, smartphones, iTV
sets, or tablets. Additive color is the opposite of subtractive color, which is utilized in printers.

The amounts, or numbers, of RGB “shades” or intensities of light that you have available to
mix together determined the total amount of colors you will be able to reproduce. In today’s
digital devices, we can produce 256 levels of light intensity for each RGB color. Colors are
generated for each image pixel, so every pixel in an image will have 256 levels of color
intensity for each of the RGB data values. Each of these RGB “plates” or “planes” would use
one byte of data per RGB color.

Amount of Color in Watch Faces Digital Imagery: The Color Depth
The number of bits that are used to represent color data in digital image assets is referred
to as the color depth of that image. It is important to note that in digital images, fewer than
eight bits can be used to represent an amount of color in an image. This only applies when
you’re using “indexed” color models, which I’ll be discussing in this section.

131CHAPTER 6: Introduction to Android Watch Faces Design: Considerations and Concepts

There are several common color depths used in the digital imaging industry, and I will
outline the most common ones here, along with the digital image file format that uses them
in Android OS. The lowest color depth exists in the eight-bit indexed color digital image
formats. An indexed color image will use 256 total color values per pixel and will use the
GIF or a PNG8 image format to contain these indexed color digital image data.

Indexed color imagery does not have (RGB) color planes, so it is generally three times
smaller than a truecolor RGB image will be. Instead, it uses a “palette” of up to
256 maximum color values to represent all of the colors in a digital image. This palette is
“culled” using a compression algorithm (codec), which finds the most frequently used colors
in that digital image.

A 24-bit color or truecolor depth image features the full eight-bit color data values for each
of your RGB color plates (also called color planes). These truecolor images are capable
of displaying 16 million potential colors per pixel. This is calculated as 256 × 256 × 256 and
equals 16,777,216 colors.

Using a 24-bit color depth will give you the highest digital image quality level, which is why
Android prefers the use of the PNG24 or the JPEG image file format. Because PNG24 is
lossless, which means that it loses no quality during its compression process, it offers the
highest quality compression and lowest original data loss, along with the highest quality
color depth.

For this reason, the PNG24 is the preferred digital image format to use as far as Android
is concerned. This is because the use of PNG produces the highest quality visual results
across any and all Android 5 applications.

It’s important to note that higher color depth (16 bits of data in each of the RGB channels)
imagery currently exists, made popular by the i3D gaming industry. This color depth is called
HDRI (high dynamic range imagery).

Representing Color in Watch Faces: Using Hexadecimal Notation
Now that you know what color depth is and that colors are represented as a combination of
three different color channels within any given image, let’s look at how, as programmers, we
are going to represent these three RGB color values inside Android apps so we’ll be able to
create any color in the visible color spectrum.

It’s important to note that in the Android 5 OS, color is not only used in digital image assets
known as BitmapDrawable objects, but also in scalable vector graphics such as color fills
and gradients, which you learned about earlier. Color data values are also used for setting
UI color, such as the background color value utilized in your user interface screen or for your
textColor values, for instance, that fill your font outlines with color.

In Android 5, different levels of RGB color intensity are represented as data values using
hexadecimal notation. Hexadecimal notation is based on the original Base16 computer
notation used decades ago to represent 16-bit data values. Base10 notation will count from
zero through nine, whereas Base16 notation will count from zero through F, where F would
represent a Base10 value of 15. Counting from zero through 15 gives you 16 total data values.

132 CHAPTER 6: Introduction to Android Watch Faces Design: Considerations and Concepts

To tell Android that you’re giving it the hexadecimal value, you would preface the Base16
values using the pound sign, also known as the hash tag, like this: #FFFFFF. This
hexadecimal notation data value represents a color of white, because if you blend red,
green, and blue light wavelengths together, your resulting light color will be white, sometimes
considered no color at all!

Because each slot in this 24-bit hexadecimal representation represents one Base16 value,
to get the 256 values you need for each RGB color will take two of these slots, as 16 × 16
equals 256. Therefore, for a 24-bit image, you would need six slots after your hash tag, and
for a 32-bit image, you would need eight slots after your hash tag. I’ll be covering what
32-bit images are, and what they are used for, in the next section of this chapter.

The hexadecimal data slots represent the RGB values in the following format: #RRGGBB.
Thus, for the color white, all red, green, and blue channels in this hexadecimal color data
value representation are at a maximum luminosity of fully on, or FF, which would be
16 × 16, and a full 256 data value for each RGB color channel. As you can see, I’m using the
different industry terminology (color channels, color planes, color plates) that you will find
being utilized currently in the graphics design industry. All these digital imaging terms can be
used interchangeably, if you so desire.

If you additively sum all of the colors together, you will get white light. In differing amounts,
they will create colors! The color yellow is represented by the red and green channels being
on and the blue channel being off, so the hexadecimal notation representation for the color
yellow would be #FFFF00, where both red and green channel slots will be fully on, using FF
for a color intensity (level) value of 256, and the blue channel slots being fully off, using 00,
indicating a zero value.

As I mentioned earlier in this section, there is also a 32-bit image color depth whose data
values are represented using an ARGB color channel model. In this model, A stands for
alpha, which is short for alpha channel. I’ll be going over the concept of image alpha and
alpha channels in far greater detail in the next section of the chapter, and I’ll also cover the
more advanced (and related) concept of pixel blending.

The hexadecimal notation data slots for your ARGB color channel model data values will
hold data in the following format: #AARRGGBB. Thus, to represent the fully opaque color
white, all the alpha, red, green, and blue channels in your hexadecimal color data value
representation should be at a maximum luminosity (and maximum opacity). The alpha
channel is set to fully opaque by using an FF value, so the full hexadecimal value would be
#FFFFFFFF.

A 100% transparent alpha channel, on the other hand, is represented by the alpha slots
being set to zero. Thus, a fully transparent image pixel could be configured as #00FFFFFF, or
#00000000, or even #00F7D9C4, if you like.

It is important to notice here that if an image alpha channel is set to be transparent, then it
follows that each pixel color data value, represented by the last six hexadecimal data slot
values, does not even matter! This is because a 100% transparency data value will override
any color value using what a “pixel needs to be composited with a completely transparent
setting” for that particular pixel’s ARGB (alpha channel plus color) data value.

133CHAPTER 6: Introduction to Android Watch Faces Design: Considerations and Concepts

Representing Transparency in Watch Faces: Using Alpha Channels
This section will look at how digital images are composited together in a process known
as image compositing. This is done by a professional graphic artist who is called a digital
image compositor.

Digital image compositing is a process of blending together more than just one single
layer of digital imagery (a photograph). This is done to obtain a more complex image. A
composite image on a display screen will appear as though it were one single image. In
reality, an image composite is actually a collection, in a stack, of more than one, seamlessly
composited digital image layers. To be able to accomplish seamless image compositing,
the images used in each layer need to use an alpha channel (a transparency level) data value
that is associated with each of the pixels in the image.

You can use an alpha value for each pixel in the image to precisely control the blending of
the pixel with other pixels with the same image coordinate or location, but on other layers,
above or below that particular image layer. It is because of this layer-stacking paradigm that
I refer to this compositing as 3D, as these layers are stacked along a z axis and can be said
to have a particular Z order. Do not get this confused with 3D modeling software such as
Blender3D, as the end result of a digital image compositing (layer) stacking is still a resulting
2D digital image asset.

Like all channels, alpha channels also support 256 levels of transparency. These are
represented using your first two data slots within a hexadecimal representation for the ARGB
data value, which has eight slots (32-bits) of data, rather than the six slots used to represent
a 24-bit image. A 24-bit image can be thought of as being a 32-bit image, with opaque alpha
channel data. Don’t use a 32-bit image format unless you need transparency values!

To relate this to image compositing, 24-bit imagery doesn’t use an alpha channel and is
not going to be used for image compositing, unless it is the bottom plate (or back plate)
in an compositing layer stack. A 32-bit image, on the other hand, is going to be used as a
compositing layer on top of something else that will need the ability to show through (via
transparency values) in some of the pixel locations. These 32-bit composite image layers
on top of a 24-bit back plate use pixel transparency to create a final composited digital
image. So you might be wondering how having an alpha channel and using digital image
compositing factor into Watch Faces graphic design.

A primary advantage is the ability to split what looks like a single image into a number of
component layers. The reason for doing this is to be able to apply Java code logic to
individual layer elements in order to control component parts of Watch Face Designs you
can’t individually control.

Algorithmic Image Compositing in Watch Faces: Blending Modes
There is another more powerful aspect of image compositing called blending mode. If you
are familiar with Photoshop or GIMP, you know that each layer in a digital image composite
will be set to use a different blending mode. Blending modes are algorithms that specify
how the pixels for a layer are blended (mathematically) with the previous layers (underneath
that layer).

134 CHAPTER 6: Introduction to Android Watch Faces Design: Considerations and Concepts

These pixel blending algorithms take into account your transparency level, and they can be
used to achieve virtually any compositing results you are trying to achieve. Blending modes
can be implemented in Android 5 using the PorterDuff class. This PorterDuff class gives
Watch Face designers the same blending modes Photoshop (or GIMP) affords to digital
image artisans.

The major difference with Android is that blending modes can be controlled interactively,
using custom Java 7 programming logic. This is the exciting part for us Watch Faces
developers. Some powerful Android PorterDuff class blending modes include XOR,
SCREEN, OVERLAY, DARKEN, LIGHTEN, MULTIPLY, or ADD. Apress’s Pro Android
Graphics (2013) title covers how to implement PorterDuff blending modes inside a complete
image compositing pipeline, if you are interested in diving into this area of Android 5 in far
greater detail.

Masking Watch Faces Digital Imagery: Leveraging Alpha Channels
One of the most popular uses of the alpha channel is to “mask” out an area of a digital
image. This creates a layer that can be utilized in the image compositing layer stack. This
is clearly important to Watch Face Design as components such as hands, numerals, or
decorative components will use this.

Masking is a process of extracting subject matter, essentially cutting the subject matter out
of your source image, so that it can be placed (pasted) onto its own transparent layer. I’ll
explain the work process for performing this masking process using GIMP during the course
of this book.

A masking process yields a part of your image on its own layer. The masked subject will
be isolated from the rest of the source image, but because of the layer transparency, it will
appear as if it were still in the final image composite. Once the masked image element has
its own alpha channel, you’ll be able to do things such as rotate, tint, scale, or move this
element and not affect the rest of your image composite.

The implications for Watch Faces Design are fairly obvious, which is why I’m covering this
foundational material here and why you’ll be using a masking work process later on in this
book, so you’ll get some masking experience.

A masking work process allows you to put image elements (subject material) to use inside
other imagery, such as Watch Faces or to use for special effects applications. Digital image
software (Photoshop and GIMP) has many tools and features that are specifically there to
be used for masking, and later in image composites. You can’t really do effective image
compositing without creating a mask, so it is an important area to master for graphics
designers, and for Pro Android Wearables (and Watch Faces) developers.

The major important consideration in a masking process is getting a smooth but crisp edge
around a mask object, so that when you “drop it into” a new background image, it looks as
though it belonged there in the first place.

The key to masking is a proper selection work process. Using digital image software
selection tools (there are a half-dozen of these in GIMP 2.8) in the proper way with an
optimal work process is the key to “pulling” the “clean” image mask (an additional cool
industry term for you to toss around, to make you appear both artistic as well as tech savvy).

135CHAPTER 6: Introduction to Android Watch Faces Design: Considerations and Concepts

If there are areas of uniform color around a subject that you want to mask, it makes the
masking process easier. You can shoot subjects on bluescreen, or on greenscreen, and then
you can use the “magic wand tool” along with a threshold setting to select everything except
the object and then invert a selection set, in order to obtain a selection set containing the
object.

Other GIMP selection tools contain complex algorithms that can look at the color changes
between pixels in an image. These can be very useful in edge detection, which you can use
for other types of selection work processes.

The GIMP Scissor edge-detection selection tool will allow you to drag your cursor along the
edge of the object you wish to mask, while the edge-detection selection tool’s algorithm lays
down the precise, pixel-perfect placement of the selection edge automagically (based on its
algorithms).

Smoothing Watch Faces Edges: The Concept of Anti-Aliasing
Anti-aliasing is an imaging technique that is usually implemented using an algorithm. What
it does is find where two adjacent colors meet in an image and blend the pixels around that
jagged edge. Anti-aliasing will add blend colors along the edge between two colored areas
to visually smooth blended colors together along that (formerly) jagged edge. This makes
jagged edges appear to be smoother when the image is zoomed out, when the pixels aren’t
individually visible. What anti-aliasing does is it tricks your eyes into seeing smoother edges,
to eliminate what is commonly called the “jaggies.” Anti-aliasing provides impressive results,
using very few (seven or eight) intermediary averaged color values for the pixels that lie
along an edge that needs to look smoother.

By intermediary or averaged I mean some colors or spectrum of colors, which is partway
between the two colors that are intersecting along an edge. I created a visual example of
anti-aliasing to show you the effect. As you can see in Figure 6-1, I created a seemingly
smooth red circle against a yellow background. I zoomed into the edge of that circle and
grabbed a screenshot. I placed this alongside the zoomed out circle to show the anti-
aliasing (orange) values for colors between (colors which are made using) the red and yellow
color values that border each other on the edge of the circle. Notice that there are seven or
eight average color values.

136 CHAPTER 6: Introduction to Android Watch Faces Design: Considerations and Concepts

The best way to get great anti-aliasing results is to use the proper image masking work
process, using proper settings with any given selection tools you might be using. One of the
other tricks for implementing your own anti-aliasing effect is to use the Gaussian blur tool
with a very low blur value (0.15 to 0.35) on the transparency layer containing the object that
has jagged edges. This will provide the same anti-aliasing you see in Figure 6-1, and not
only that, it will “blur” your transparency values for the alpha channel (mask) itself as well.
This will allow you to anti-alias that 32-bit image object with any background imagery you
may be attempting to seamlessly composite it against. I’ll be showing you these cool digital
image compositing techniques using GIMP 2.8 later in this book in Chapter 12, so get ready
to learn how to be a digital image compositing Android Wearables Watch Faces designer
and developer! Next, let’s look at image optimization!

Optimizing Your Watch Faces: Digital Image Compression Factors
There are several technical factors affecting digital imagery compression, which is the
process of using a codec that an algorithm looks at for your image data and finds a way to
save it as a file that uses less data. A codec’s encoder essentially finds “data patterns” in
the image and turns them into a form of data that the decoder part of a codec can use to
reconstruct an original image.

There are some approaches that can be used to obtain higher quality image compression
results, which should result in a smaller file size along with higher image quality. The
image with a small file size and a high level of quality can be said to have achieved a
highly optimized data footprint.

This is a primary objective in optimizing digital imagery, to get the very smallest data
footprint possible while at the same time achieve a high quality visual end result. Let’s start
by discussing the image attributes that affect data footprint the most and examine how
each of these aspects can contribute to data footprint optimization for a given digital image.
Interestingly, these are similar to the order of digital imaging concepts that I covered thus far
during the second half of this chapter!

Figure 6-1. A red circle on a yellow background (left) and a zoomed in view (right) showing the anti-aliasing

http://dx.doi.org/10.1007/9781430265504_12

137CHAPTER 6: Introduction to Android Watch Faces Design: Considerations and Concepts

The most critical contributor to your resulting image file size (your data footprint) is the
number of pixels or the resolution of the digital image. This is logical, because each of the
pixels needs to be stored, along with the color values for each of these pixel’s RGB color
channels. Therefore, the smaller you can make your image resolution, while still having it
look detailed, the smaller your image file size will be, as there are less data.

Raw (uncompressed) image sizes can be calculated using this formula: width × height ×
color channels. So for 24-bit RBG images, there are three (RGB) color channels, and there
are four (ARGB) color channels for 32-bit images. Thus, an uncompressed, truecolor (24-bit),
VGA image will have 640 × 480 × 3, equaling 921,600 bytes, of original uncompressed data.
If you divide 921,600 by 1,024 (number of bytes in a kilobyte), you will get the number of
kilobytes that are in a raw VGA image (an even 900 KB).

As you can see, color depth is therefore the next most critical contributor to data footprint in
the image, because the number of pixels in that image is multiplied by one (eight-bit) or two
(16-bit) or three (24-bit) or four (32-bit) color data channels. This may be a primary reason
indexed color imagery is still being widely utilized, usually via PNG8 image format. Lossless
compression algorithms like PNG8 lose no image data (quality), and PNG8 will generally
utilize four times less data than a PNG32 and three times less data than a PNG24, so using
PNG8 alone can reduce your data footprint 200% up to 300%.

The final concept that can increase the data footprint of the image is the alpha channel,
as adding an alpha adds another eight-bit color channel (transparency) to the image being
compressed. If you need the alpha channel to define transparency, in order to support future
compositing needs with your image, there is no other choice but to include these alpha
channel data. Just make sure you do not use a 32-bit image format to contain a 24-bit
image that has an empty (unused) alpha channel.

It is interesting to note that most alpha channels, which are used to mask objects in your
image, will compress extremely well. This is because alpha channels contain fill areas of
white (opaque) or black (transparent) color with very few gray values. The only gray values
are in the pixels along edges between the black and white colors. These anti-alias the mask.
These gray values in an alpha channel are anti-aliasing values, and, as you know, they are
used to provide visually smooth edge transitions for image composites.

The reason for this is because in your alpha channel image mask, the eight-bit transparency
gradient is defined with a white to black spectrum (gradient) that defines the alpha channel
transparency levels. The gray values along the edges of each object in your mask are
essentially averaging (blending) the color of your object with colors in your target background
image. This essentially provides real-time anti-aliasing using any background imagery.

Using Indexed Color Images in Watch Faces: Dithering the Pixels
Indexed color images can simulate truecolor images if the colors that are used to create
an image do not vary widely. Indexed color images use eight-bit data to define the image
colors, using a palette of 256 optimally selected colors, rather than three RGB color channels.
Depending on how many colors are used in the image, using only 256 colors to represent
your image can cause an effect called banding, where the transfers between adjoining
colors are not smooth. Indexed color image codecs have an option to correct for this, called
“dithering.” Dithering is a process of creating dot patterns along the edges between two

138 CHAPTER 6: Introduction to Android Watch Faces Design: Considerations and Concepts

adjoining color areas in the image. This tricks your eyes into thinking there is a third color
being used. Dithering gives us a perceptual amount of colors of 65,536 colors (256 times
256), only if each of the 256 colors borders on each of the other 256 colors (otherwise less).

You can see the potential for creating additional colors, and you would be amazed at the
results an indexed color image can achieve in some scenarios, that is with certain images.
I took a truecolor image, such as the one shown in Figure 6-2, and saved it as an indexed
color image to show you the dithering effect. Look at the dithering effect on the driver’s side
rear fender in this Audi 3D image, as it contains a gradient of color that will show a dithered
effect when I saved it as indexed color.

Figure 6-2. A truecolor source image uses 16,777,216 colors that are optimized to eight-bit PNG8

Figure 6-3. Showing the dithering effect in an indexed color image with compression set to 32 colors (five-bit color)

I set the codec to encode the PNG8 image, as shown in Figure 6-3, using five-bit color
(32 colors), so that you can clearly visualize the dithering effect. As you can see, many dot
patterns are added between adjacent colors by the dithering algorithm, which creates the
perception of additional colors.

139CHAPTER 6: Introduction to Android Watch Faces Design: Considerations and Concepts

It is interesting to notice that you have the option to use less than 256 colors when
compressing an eight-bit indexed color image. This is usually done to reduce your data
footprint. For instance, an image that can attain good results using 32 colors would actually
be a five-bit image (PNG5), even though the format is generally termed PNG8. Notice you
will also set a percentage of dithering used. I usually select either the 0% or 100% setting,
but you may fine tune your dithering effects anywhere in between those two extreme values.
You may also select your dithering algorithm type. I use diffusion dithering, as it may yield
a smoother gradient effect along an irregularly shaped gradient, such as the one you see in
Figure 6-3 on the Audi fender.

Dithering, as you might imagine, adds data patterns to the image that are more challenging
for the codec’s algorithms to compress. Because of this, dithering increases the data
footprint by a few percentage points. Be sure to compare the file sizes with and without
dithering applied to make sure dithering provides improved the visual results.

Now that I’ve covered static digital imagery concepts and techniques, a will provide a little
information on how Android 5 uses the Animation and AnimationDrawable classes (objects)
to allow you to take the digital imagery you learned about to the next level using animation
before I finish this chapter.

Animated Watch Faces: Animation and AnimationDrawable
Android 5 OS has both bitmap animation, also known as frame animation, and vector
animation, commonly known as procedural animation. Vector animation is referred to as
tween animation in Android jargon. Animation in Android is handled by two different sets of
classes. The AnimationDrawable class handles frame animation using the /res/drawable
project folder to hold your animation assets, and the Animation class handles vector
animation, using the /res/anim project folder to hold the procedural animation definitions.

Frame Animation for Watch Faces: The AnimationDrawable Class
The Android AnimationDrawable class is the way you implement what are commonly referred
to as “flipbook” animation, allowing you to play a range of bitmap frames in rapid succession
to create the illusion of motion. The AnimationDrawable class gives developers the ability to
create animation assets outside of Android 5, using powerful third-party tools like Blender
or Lightworks. If you wanted to create animation inside Android, you would use procedural
Animation classes using only Java code with XML. Apress’s Pro Android UI (2014) title
covers both animation topics in great detail.

Using the AnimationDrawable class is fairly easy, since all you have to do is define your
bitmap frames using GIF, JPEG, WebP, or PNG image assets. This is done using an XML
format to define what the file name of each frame asset is and what the duration is for it
to be displayed on the screen. This XML file is then “inflated” into an AnimationDrawable
object, using Java 7 code, and then Java 7 methods can be used to control playback for your
frame animation’s new media asset and from that point on in your Watch Faces apps. Frame
animation assets use more memory and less processor than vector animation, because
it’s easy to “flip” through frames, but these must be held in memory to be able to do this.
Vector animation uses very little memory to hold the code for the animation “moves,” but the
processor needs to compute and “render” the moves, creating animated digital illustration.

140 CHAPTER 6: Introduction to Android Watch Faces Design: Considerations and Concepts

Tween Animation for Watch Faces: The Animation Classes
The Android Animation class is a different way to implement animation with code
(procedures) rather than with pixels. This type of animation allows a definition of what are
called transformations. These include translations (movements), rotations (directional
changes), and scaling (size changes).

Vector animation allows developers to define complex “sets” of transforms, using an
AnimationSet class. These include logical grouped transformations including movements
(translate), orientations (rotate), and sizing (scale).

The Android OS renders these to the screen using the processor on the user’s device,
creating an illusion of motion. An Animation class gives developers the ability to create
animation assets inside Android 5, using only XML and Java code, with no external new
media assets needed. It is interesting to note that procedural animation can not only be used
to animate a vector shape, gradients, and text, but will also transform bitmap assets as well,
including while your frames are animating. I’ll cover this in the next section of the chapter,
under what I like to term “hybrid animation.”

Using the Animation class is not as easy as using AnimationDrawable, because you have
to define fairly complex transformational structures using either XML markup or Java
code. This is usually done with an XML definition file, which is used to define a hierarchy
of grouped rotate, scale, and movement transformations. These harness the power of
the Android Animation classes, which include an Animation, AnimationSet (used for
grouping), and of course the RotateAnimation, ScaleAnimation, TranslateAnimation,
and AlphaAnimation classes. As you may have guessed from the previous section of the
chapter, this AlphaAnimation class allows you to also procedurally animate opacity, which
will allow you to fade in and fade out components of your animation! These five specialized
transformation classes are all direct subclasses of an Animation superclass, so all six
classes will work together seamlessly.

Your procedural animation XML definition file will also be “inflated” into an Animation object,
using Java 7 code, and after that, Java 7 methods can be used to control playback for your
vector animation’s new media asset from that point on in your Watch Faces application.
Remember, Android 5 uses Java 7.

Vector animation assets use more of the CPU processing resources and less of the system
memory resources than frame animations use. This is because the user’s hardware device
processor is rendering a vector animation using math, data, and code in real time. This takes
a lot of processing, but very little memory to hold vector and code variables being processed
over time.

Hybrid Animation for Watch Faces: The Power of Combination
It is also interesting to note here, before I finish this chapter, that it is possible to combine
your AnimationDrawable frame animation XML definition with your Animation class-based
vector animation XML definition.

141CHAPTER 6: Introduction to Android Watch Faces Design: Considerations and Concepts

This is accomplished by applying a vector animation to the UI element that contains the
running frame animation. If you set it up correctly, you will be able to achieve even more
complex and fantastic animation results using all of the Android animation classes in
conjunction with one another.

Summary
In this chapter, you learned about Watch Faces Design considerations and guidelines, which
you will need to create Watch Faces during the remainder of this book.

You learned about important Watch Faces power conservation considerations and about
interactive mode and ambient mode, as well as low-bit mode, used by some smartwatch
manufacturers, such as ASUS. You looked at Watch Faces Design shapes and how to
assimilate Android 5 OS features such as hardware state icons, hotwords, and notification card
messages in your Watch Faces Designs. You also looked at advanced Watch Faces settings
dialogs and data integration considerations that you will need to create professional apps.

Next, I took some time to make sure you are up to speed on multimedia concepts that I will
be using to help you create your Pro Android Wearables applications. In this way, I presented
all of the foundational learning you need in this one chapter.

In the next chapter, you will start to learn how to put Java code and XML markup in place to
form the foundation for your Watch Faces Design and Watch Faces applications.

143

Chapter 7
Program Watch Faces for
Wear: Creating the Watch
Face Code Foundation

Now that you have the foundational knowledge in place regarding Android Watch Faces
Design and Digital Imaging and Android Animation concepts, you are ready to start coding
your Watch Face application, using the bootstrap Java code and XML markup you started
in Chapter 4.

Because there was no New Android Project work process included in the earlier coding
to create a Watch Face Bootstrap Project infrastructure, this chapter will show you how
to morph a standard Wear Project bootstrap infrastructure, turning it into a Watch Faces
project. Along the way you’ll learn how a Watch Face is set up in Android, what permissions
it needs, how Watch Faces AndroidManifest XML files are different from a standard app, and
much more.

Let’s start by taking a look at the Gradle Build Configuration files and the repositories and
dependencies they references, and then add permission entries to your Wear and Mobile
app AndroidManifest.xml files.

Once these are in place, you will learn how to create a New Java Class. This will create the
Watch Face Service and Engine, which will be the foundation of your Watch Face Design
and Watch Face Processing Code. After that, you will create a new /res/xml resource
directory and create a watch_face.xml file. This file is needed to create the living wallpaper
paradigm, which is used to make the Watch Faces API operational. Next you’ll modify
some Watch Face Preview drawable assets and add your Service class and a dozen related
parameters to your AndroidManifest XML file. Let’s get started!

http://dx.doi.org/10.1007/9781430265504_4

144 CHAPTER 7: Program Watch Faces for Wear: Creating the Watch Face Code Foundation

Gradle Scripts: Setting Gradle Build Dependencies
If you’ve not done so already, launch the Android Studio development environment with the
quick launch icon you created in Chapter 2. This will launch IntelliJ IDEA and display the
ProAndroidWearable project you created in Chapter 4. Click the arrow next to the Gradle
Scripts folder in the left panel of the IDE to open it, as shown in Figure 7-1.

Figure 7-1. Open the Gradle Scripts folder in your ProAndroidWearable project and open the Project build.gradle

Right-click the master build.gradle (Project: ProAndroidWearable) file, as shown
highlighted in blue at the left of Figure 7-1, and select the Jump to Source menu option,
or simply use an F4 function key shortcut if you wish. This will open the top-level (master)
Project Gradle Configuration file in the editing area of the IDEA, as shown on the right
two-thirds of Figure 7-1.

This top-level build.gradle file will use a (green) classpath reference in the dependencies
section, referencing the Android Gradle Build Tool on the Android repository server, by
using com.android.tools.build:gradle:1.0.0.

If the Android Gradle Build Tool has been updated, then the version numbering may be
different. This was all set up correctly by the Android New Project series of dialogs; the
important thing to note in Figure 7-1 is an important message: Note: Do not place your
application dependencies here; they belong in the individual module build.gradle files.
Because an Android Wear project has a Wear as well as a Mobile component, as you can
see in the IntelliJ Project Navigator Pane on the left, each of the app components will have
their own unique Gradle Build Script files, which I will discuss next.

It’s important that you place Gradle Build Dependencies in a file matching each Wear and
Mobile app component, so that Gradle build works correctly.

Next, right-click the mobile build.gradle (Module: mobile) file, shown highlighted in blue at
the left of Figure 7-2, and select a Jump to Source menu option, or simply use the
F4 function key shortcut if you prefer.

http://dx.doi.org/10.1007/9781430265504_2
http://dx.doi.org/10.1007/9781430265504_4

145CHAPTER 7: Program Watch Faces for Wear: Creating the Watch Face Code Foundation

This is the build.gradle file for your Mobile application component, which will contain your
application ID, a concatenation of your package name and class name, which is
com.pro.android.wearables.proandroidwearable, as well as the Minimum SDK Version
specification set at API Level 18 (Android 4.3) and Target SDK Version of API Level 21
(Android 5), as shown in the android section of the build.gradle file in the top half of
Figure 7-2.

At the bottom of Figure 7-2, you will see the Gradle dependencies section, referencing
the wearApp project (‘:wear’) project type and the compilation dependencies for
Android Support Library, which you installed in Chapter 4, denoted using com.android.
support:appcompat-v7:21.0.3, and the Google Play Services Support Library, denoted
using the compile statement setting that specifies com.google.android.gms.play-
services:6.5.87.

It is important to note that you’ll see some projects, such as those that are still using Eclipse
ADT IDE, that set the Google Play Services in the Android Manifest file. This can be done
using the following meta-data tag:

<application>
 <meta-data android:name="com.google.android.gms.version"
 android:value="@integer/google_play_services_version" />
</application>

Because you are setting this compile dependency in the build.gradle file, you will not
need to include this <meta-data> tag in your Android Manifest XML file, which you
will be transforming to work with WatchFaces API during this chapter. I will explain what
<meta-data> tags do later!

Figure 7-2. Open the second build.gradle Module: mobile Gradle Build Script in the ProAndroidWearable project

http://dx.doi.org/10.1007/9781430265504_4

146 CHAPTER 7: Program Watch Faces for Wear: Creating the Watch Face Code Foundation

Finally, right-click the wear build.gradle (Module: wear) file, as seen highlighted in blue at
the left of Figure 7-3, and select a Jump to Source menu option, or simply use the
F4 function key shortcut if you prefer.

Figure 7-3. Open the third build.gradle Module: wear Gradle Build Script in your ProAndroidWearable project

This is the build.gradle file for the SmartWatch (Wear SDK) app component, which as you can
see will also contain your application ID as well as the Minimum SDK Version specification.
Note in this Gradle Build specification file that this is set for Wear, at API Level 21
(Android 5), the same as the Target SDK Version of API Level 21 (Android 5), as shown in
the android section of the build.gradle file in the top half of Figure 7-3.

At the bottom of Figure 7-3, you will see the Gradle dependencies section. Instead
of referencing the Android Support Library, this Wear Gradle Build specification will
instead reference the Android Wear Support Library with the com.google.android.
support:wearable:1.1.0 repository path and file and version string concatenation. It’s
interesting to note the Android Support Library is at com.android.support; Wear is also at
com.google.android.support!

Notice you’ll need to again reference the Google Play Services Support Library using the
same compile statement you used in the mobile Gradle build.

Android Permissions: Watch Face Uses-Permission
Click the down arrow, next to the Gradle Scripts folder in the left panel, to close that,
and then click the arrow next to wear to open that folder. Next click the arrow next to the
manifests folder to open that folder as well, revealing the AndroidManifest.xml file, as
shown in Figure 7-4. Right-click the /wear/manifests/AndroidManifest.xml file, as shown
highlighted in blue at the left of Figure 7-4, and select a Jump to Source menu option,

147CHAPTER 7: Program Watch Faces for Wear: Creating the Watch Face Code Foundation

or simply use the F4 function key shortcut if you prefer. As you can see, this opens the
AndroidManifest.xml file that was created by a New Android Studio Project series of dialogs
you used in Chapter 4.

Figure 7-4. Add two <uses-permission> tags for PROVIDE_BACKGROUND and WAKE_LOCK to wear Manifest

Add two <uses-permission> tags right after (or even before, if you prefer) the <uses-
feature> tag specifying smartwatch hardware. The uses-permission attribute is set using
this XML tag and defines which permissions your app will request for use from the Android
operating system.

Notice that these child tags need to be “nested” inside your <manifest> parent tag. This
is because the <uses-permission> tag will access constant values that are contained in
the Android Manifest.permission class. If you are the curious type and would like to see
all of the permissions that are allowed by the Android OS in one single location, visit the
following URL:

http://developer.android.com/reference/android/Manifest.permission.html

One of the permissions you will be using is not listed, and I’ll explain why next!

The uses-permission attribute uses the android:name variable to set up the predefined
operating system constants used to specify permissions required for the use of certain
hardware (or software) features in the Android OS.

If you use a constant that is not a part of the Manifest.permission class, then that constant
will need to be prefaced by the repository path, so you will notice that the PROVIDE_
BACKGROUND constant, shown highlighted at the top of Figure 7-4, uses a com.google.
android.permission.PROVIDE_BACKGROUND constant reference, whereas a WAKE_
LOCK permission constant reference uses an android.permission.WAKE_LOCK, which is a
shorter reference path directly accessing the constant that can now be seen in the Manifest.
permission class inside of the Android OS (SDK).

http://dx.doi.org/10.1007/9781430265504_4
http://developer.android.com/reference/android/Manifest.permission.html

148 CHAPTER 7: Program Watch Faces for Wear: Creating the Watch Face Code Foundation

If you visit the Manifest.permissions URL that I included earlier, you will see that the WAKE_
LOCK constant is used to enable a permission that allows using an Android PowerManager
WakeLocks feature that keeps hardware device processors from sleeping and keeps your
(smartwatch) screen from dimming. The XML tags you need to add to the Manifest should
look like this:

<uses-permission android:name="com.google.android.permission.PROVIDE_BACKGROUND" />
<uses-permission android:name="android.permission.WAKE_LOCK" />

Next, click the arrow next to mobile to open that folder. Next click the arrow next to your
manifests folder to open that folder, revealing another Android Manifest file, as shown
in Figure 7-5. Right-click this /mobile/manifests/AndroidManifest.xml file, as seen
highlighted in blue at the left of Figure 7-5, and select a Jump to Source menu option
or simply use your F4 function key shortcut if you wish. Add these same two tags to this
Manifest file as well, because your wearable permissions need to be a subset of (or equal
with) the mobile (phone or tablet) permissions set.

Figure 7-5. Add <uses-permission> tags for PROVIDE_BACKGROUND and WAKE_LOCK to mobile Manifest

Now you’re ready to create the core class for your Watch Faces application, which you will
call ProWatchFaceService.java and will use the Android CanvasWatchFaceService class as
its superclass. This is getting exciting!

Canvas Watch Face Service: A Watch Face Engine
This section will look at the classes that drive the foundation of a Watch Face Service,
CanvasWatchFaceService and CanvasWatchFaceService.Engine, as well as where
they come from in the Java and Android class hierarchies. You’ll also learn how they are
implemented in your current ProAndroidWearable project code base, which you’ll be
morphing into a Pro Watch Face project, so that you know how to do this if you wanted to
develop using the Android 5 WatchFaces API.

149CHAPTER 7: Program Watch Faces for Wear: Creating the Watch Face Code Foundation

The CanvasWatchFaceService Class: An Overview
The Android CanvasWatchFaceService class is a public abstract class, which means
that you must subclass it in order to be able to use it. You will be doing this in the next
section of the chapter, after I provide a bird’s eye view of the class itself and where it comes
from, which will tell you quite a bit about what it is doing and where it gets the capabilities
to do so.

The Java class hierarchy is fairly complex and looks like the following:

java.lang.Object
 > android.content.Context
 > android.content.ContextWrapper
 > android.app.Service
 > android.service.wallpaper.WallpaperService
 > android.support.wearable.watchface.WatchFaceService
 > android.support.wearable.watchface.CanvasWatchFaceService

Of course every class and object in Java is based on java.lang.Object, and in Android,
a Service class is based on the Context class, because a Service will need contextual
information regarding what your Service, in this case the WatchFaceService, is trying to
accomplish. Notice the WatchFaceService is subclassed from WallpaperService, which tells
you that the Watch Face API is based on the Android Wallpaper API, which is why you have
to implement Wallpaper objects and BIND_WALLPAPER capabilities during this chapter.

The CanvasWatchFaceService class is a base class used to create watch face apps that
uses a Canvas object to draw a Watch Face on your display screen. This class provides
an invalidate screen refresh mechanism that is similar to an invalidate() method call. The
method call is foundational to Android and is found in the View class, and it allows View
objects to be refreshed.

Creating a ProWatchFaceService Subclass: extends Keyword
Now let’s put this abstract CanvasWatchFaceService class to use and create an all new Java
class in this ProAndroidWearable project. Open your /wear/java folder by clicking the right-
facing arrow icon. Next right-click the com.pro.android.wearables.proandroidwearable
(package) folder and then select the New ➤ Java Class menu sequence, as shown in blue
in Figure 7-6. I also placed the Create New Class dialog in the screenshot at the right
side to save space. Select the Class option from the Kind drop-down menu selector, enter
the Name of ProWatchFaceService, and finally click the OK button to create your new
ProWatchFaceService WatchFace Service and Engine subclass.

150 CHAPTER 7: Program Watch Faces for Wear: Creating the Watch Face Code Foundation

Once you have created the new Java class, it will be opened for you in an editing tab, as
seen in the right two-thirds of Figure 7-7. The bootstrap class is provided for you with the
following “empty” public class Java code:

package com.pro.android.wearables.proandroidwearable;
public class ProWatchFaceService {...}

The first thing you will need to do is add your Java extends keyword, which you’ll insert
after your ProWatchFaceService class name, referencing the CanvasWatchFaceService
superclass, and giving your ProWatchFaceService class all of the power, algorithms,
methods, variables, and features of the Android CanvasWatchFaceService superclass.

If you type in the Java extends keyword and the first few letters of this superclass name,
the IntelliJ IDEA will drop down a helper selector dialog for you, as shown in Figure 7-7, and
you can find and double-click your CanvasWatchFaceService (android.support.wearable.
watchface package) option and have IntelliJ finish writing the code for you. Now you have
your empty ProWatchFaceService subclass and are ready to code an Engine inside of it.

Figure 7-6. Right-click your package folder and use New ➤ Java Class to create the ProWatchFaceService class

151CHAPTER 7: Program Watch Faces for Wear: Creating the Watch Face Code Foundation

Before you code your WatchFaceService Engine class, let’s take a quick look at the
CanvasWatchFaceService.Engine to get an overview of what it can do.

The CanvasWatchFaceService.Engine Class: The Engine
The CanvasWatchFaceService.Engine is a public class that provides the Draw
Engine that calls the onDraw() method to actually do the heavy lifting of drawing (or
animating in some instances) your Watch Face on the smartwatch screen. The Java class
hierarchy still comes from WallpaperService.Engine, however, it is far less complex than
CanvasWatchFaceService and looks like the following:

java.lang.Object
 > android.service.wallpaper.WallpaperService.Engine
 > android.support.wearable.watchface.WatchFaceService.Engine
 > android.support.wearable.watchface.CanvasWatchFaceService.Engine

This class provides an actual implementation of a Watch Face that draws on a Canvas
using onDraw(). You will need to implement the .onCreateEngine() method in your code in
order to get your class to return the usable Engine implementation. This class’s constructor
method will be combined with this onCreateEngine() method to get Android OS to return the
new Engine object.

This is done using the following Java constructor method structure, which you will be
implementing in the next section of this chapter:

public CanvasWatchFaceService.Engine onCreateEngine() { return new Engine(); }

The class has a number of powerful methods that you will be using in your advanced Watch
Face Java code development, which you will be adding over the remainder of this book
once you put a Watch Face Code Foundation in place later in this chapter.

Figure 7-7. Use an extends keyword to subclass a ProWatchFaceService class from CanvasWatchFaceService

152 CHAPTER 7: Program Watch Faces for Wear: Creating the Watch Face Code Foundation

One of the most important methods is the invalidate() method, which causes the Engine to
redraw the watch face screen. The method will schedule calls to the onDraw(Canvas, Rect)
method requesting that an Engine draw the next frame of either animation or time update.

There are several onSurface() method calls that handle the surface of the canvas, including
your .onSurfaceChanged(SurfaceHolder holder, int format, int width, int height)
method, where you can define what happens when a Watch Face Surface changes, and the
.onSurfaceCreated(SurfaceHolder holder) method, where you can define what happens
whenever a Watch Face Surface is created. There is also the .onSurfaceRedrawNeeded
(SurfaceHolder holder) method, where you can define what happens whenever the Watch
Face Surface needs to be redrawn.

There is also the .postInvalidate() method, which requests that the Android OS post a
message that schedules a call to the .onDraw(Canvas, Rect) method, requesting that it draw
the next frame. Let’s create that Engine class now!

Creating a Private Engine Class: Using onCreateEngine()
Inside the ProWatchFaceService class (inside the curly braces), you need to implement a
CanvasWatchFaceService() constructor method, using the Java @Override keyword. Type
the @Override and then press the Return key to enter a new line of code, then type the Java
public keyword and start to type the constructor method name CanvasWatchFaceService().

When IntelliJ pops up the method insertion helper dialog, as shown in Figure 7-8, choose
the CanvasWatchFaceService(android.support.wearable.watchface) option and have
IntelliJ IDEA write the Java code statement for you. Type a period and the word Engine, to
access the complete CanvasWatchFaceService.engine class path.

At this point, all you have to do is add in the onCreateEngine() method call discussed in the
previous section after a public keyword and the class name. Inside the curly braces, add the
return new Engine(); statement, and the construct that creates your Watch Face Engine will
be created. This would be done using the following Java code structure:

public CanvasWatchFaceService.Engine onCreateEngine() {
 return new Engine();
}

153CHAPTER 7: Program Watch Faces for Wear: Creating the Watch Face Code Foundation

Once you put this public CanvasWatchFaceService.Engine onCreateEngine() in place, as
shown error-free in Figure 7-9, you can code a structure for your Engine private inner class,
which will hold the onDraw() method structure.

Figure 7-8. Add @Override, type the Java keyword public and the letter C, and select CanvasWatchFaceService

Figure 7-9. Add the onCreateEngine() method call and return new Engine(); statement inside the structure

Create a private inner class inside the ProWatchFaceService class named Engine
using the Java private keyword, and use the Java extends keyword to subclass the
CanvasWatchFaceService.Engine class. Your resulting structure should look like the
following Java code:

private class Engine extends CanvasWatchFaceService.Engine { // An Empty Class Structure }

154 CHAPTER 7: Program Watch Faces for Wear: Creating the Watch Face Code Foundation

As you can see in Figure 7-10, the code is error-free, and you’re ready to code your
public void onDraw() method inside this private Engine class.

Figure 7-11. Code an empty public void onDraw method with Canvas watchface and rect object parameters

Figure 7-10. Code an empty private class named Engine extending the CanvasWatchFaceService.Engine class

Inside the Engine class (inside the curly braces), you need to implement a public void
onDraw() method, again using the Java Override keyword. Type the @Override and then
press the Return key to enter a new line of code. Then type the Java public keyword and a
void Java return type, the onDraw() method name with a Canvas object parameter named
watchface, the Rect object parameter named rect, and your two curly braces, as shown in
Figure 7-11.

155CHAPTER 7: Program Watch Faces for Wear: Creating the Watch Face Code Foundation

As you can see at the bottom of Figure 7-11, there’s a wavy green underline highlight
under watchface. If you mouse-over it, you’ll see the “Parameter ‘watchface’ is never
used” concern that IntelliJ has. You can ignore this green (mild warning level) code
highlighting for now, because you are going to call a .drawColor() method off this
watchface Canvas object later.

Also notice the red color that IntelliJ had added to your Canvas and Rect objects (classes).
This means that you will need to write an import statement before you use these in
your code. After you pass Canvas and Rect objects into the .onDraw() method in your
CanvasWatchFaceService.Engine superclass using the Java super keyword, you will see
how to get IntelliJ to code these import statements for you. Patience is a virtue!

Inside the body of the onDraw() method, that is, inside the open and the close curly
braces, type the Java super keyword and a period character to bring up the IntelliJ helper
dialog, showing methods in your superclass that can be utilized. Figure 7-12 shows the
onDraw(Canvas canvas, Rect bounds) selection; once you double-click this, IntelliJ will write
a Java code statement for you, generating a wavy red (severe error level) line, which I will
discuss next (this is why I took this specific work process).

Figure 7-12. Inside the onDraw method, use the Java super keyword to call the onDraw(Canvas, Rect) method

As you can see in Figure 7-13, if you mouse-over the wavy red error highlights, IntelliJ will
tell you what your problem is. In this case, the package and class for android.graphics.
Canvas and android.graphics.Rect are shown and an error “onDraw(Canvas,Rect) in
Engine cannot be applied” is being shown.

The fact that the package and class name parts of the import statement are being used here
should trigger an “import statement” in your thought process, so the only thing you need to
know is how to get IntelliJ to code these.

156 CHAPTER 7: Program Watch Faces for Wear: Creating the Watch Face Code Foundation

As you can see in Figure 7-14, if you mouse-over the Canvas or the Rect in your public void
onDraw(Canvas watchface, Rect rect) method declaration, a somewhat cryptic, abbreviated
“? android.graphics.Rect? Alt+Enter” message will appear. I would translate this cryptic
message to “Question: Import your android.graphics.Rect package and class for you? If
yes, press the Alt key, and at the same time, press the Enter key, and I’ll code it!” You will
find that if you mouse-over each of these red-colored class names and press the Alt-Enter
keystroke sequence as suggested, IntelliJ will code both of the import statements for you, as
you’ll see in Figure 7-15.

Figure 7-14. Mouse-over the red Canvas and Rect class names in the code and use Alt+Enter to import the classes

Figure 7-13. Mouse-over the wavy red error highlighting to see the problem with the Canvas and Rect classes

157CHAPTER 7: Program Watch Faces for Wear: Creating the Watch Face Code Foundation

Now the time has come to use the watchface Canvas object in the body of the onDraw()
method. You will be calling a .drawColor(int color) method off this object to set the color
of the Canvas to black. This optimizes power use for the Watch Faces Design, of course, as
black pixels use zero power!

Type in the watchface object name and then a period key and then type in a few characters
of drawColor, which will provide you with the pop-up helper dialog containing the draw
methods that start with the letter C, as shown in Figure 7-15, at the bottom right of the
screenshot. Double-click in the drawColor(int color) option to call the method off the
watchface Canvas object. Now all you have to deal with is your Color class parameter,
which you will be passing into the method call, and you will be done coding the basic Engine
structure, which will draw the black (empty) watch face!

You might have noticed that my approach has been to get an empty Java code structure
in place and working before trying to get more complicated code in place. This is because
Java is a complex language, and Android 5 is a complex operating system; therefore, I
usually start out with the lowest level of functionality coding.

My development approach is to build up gradually from empty but error-free code constructs
that have all of the needed import statements and coding syntax (keywords, parenthesis,
curly braces, etc.) properly in place.

As you can see in Figure 7-16, I have typed in a Color class name (object) and pressed the
period key to bring up the Color constants helper dialog, so I can find the color I want to use
for the Watch Face background color.

For power conservation reasons, I have selected the Color class constant of Color.BLACK
(android.graphics), as seen selected with blue in Figure 7-16.

Figure 7-15. Type in the watchface Canvas object and use a period and drawC to bring up the method helper dialog

158 CHAPTER 7: Program Watch Faces for Wear: Creating the Watch Face Code Foundation

Once you’ve double-clicked the Color.BLACK constant in the helper dialog, you will see
a lightbulb in the left margin of the Java code editor pane, as shown on the left side of
Figure 7-17. You can either mouse-over the icon or click the drop-down arrow next to it to
open the solutions IntelliJ has to offer you regarding this line of code you’ve just generated.

This message says “Add static import for android.graphics.Color.BLACK,” so it looks like
IntelliJ IDEA (or Android Studio) wants you to add an import statement not for the Color
class but for the Color.BLACK constant itself!

A Java static import statement was created to provide a type-safe mechanism for including
constants in your Java code, without the need of referencing the entire (Color in this case)
class originally defined as a constant.

Figure 7-17. Click the lightbulb drop-down arrow, and add the suggested static import

Figure 7-16. Inside the watchface.drawColor() method type the Color class and select BLACK

159CHAPTER 7: Program Watch Faces for Wear: Creating the Watch Face Code Foundation

Congratulations! You have now put in place a Java code foundation for your
ProWatchFaceService and its accompanying Engine class, including your core onDraw()
method, which currently draws a blank, black, empty watch face to the smartwatch
display screen.

This core .onDraw() method will ultimately update your Watch Face whenever it’s necessary.
It is true that this is currently an empty Java structure, although it does provide a blank black
screen (a Canvas) for you to create your Watch Faces Design on, so it is still significant that
you have put it into place and that you’re taking baby steps to learn how this Watch Faces
API is implemented as well as how it all works under the hood.

Your code is now error-free, which can be seen in Figure 7-18. You can see the three import
statements, one static import statement, and one unneeded (shown in IntelliJ using gray
color) import statement for the Color class. This shows the Color class is referenced, but
that a full import statement is not needed. IntelliJ has a Code ➤ Optimize Imports feature
that you can use to remove all unnecessary import statements once the app is developed.

Figure 7-18. Completed private class Engine and five import statements, one static

Now that you have the Java code in place that provides the core Watch Face processing
functionality, let’s finish putting all of the XML foundational markup in place. There is still a lot
of setup work to do!

The XML part of the Watch Faces API set up will include an all new /res/xml directory, the
XML Wallpaper object definition, and you’ll finish morphing both the mobile application and
wear application AndroidManifest.xml files from the default Wear application bootstrap to
the Watch Faces API application compatibility. After you do this, you’ll be able to create
watch face image previews.

160 CHAPTER 7: Program Watch Faces for Wear: Creating the Watch Face Code Foundation

Watch Face XML Assets: Create and Edit XML Files
Even though you’ve added Watch Faces API-related permissions and created a Watch
Faces rendering engine using Java 7 code, there are still a number of pieces of the puzzle
that you’ll need to put in place using XML markup.

These include creating an XML resource folder, Wallpaper object definition, and adding the
<service> declaration into the AndroidManifest.xml file. You’ll also add (or delete) some other
XML tag and parameter entries to make some key adjustments in both of the (mobile and
wear) Android Manifest XML definition files. This will show you how to “morph” the bootstrap
Wear app into a Watch Faces API application, which is what this chapter of the book is all
about! Let’s get to work on all of this XML markup so you can finish up this foundational
chapter and then start to create the Watch Faces Design!

Watch Face Wallpaper: Creating a Wallpaper Object in XML
The next thing you need to create is the /res/xml/watch_faces.xml file that defines your
Wallpaper object and contains the Watch Faces Design. As you can see in Figure 7-19, a
/res/xml folder doesn’t exist in the project folder yet, so you need to right-click the
/wear/res folder and use the New ➤ Android resource directory menu sequence to create
the directory that is needed to hold the watch_faces.xml file you will be creating next to hold
the XML <wallpaper> object parent tag and xmlns referencing.

Figure 7-19. Right-click on /res folder and select New ➤ Android resource directory

After you invoke this menu sequence, you will see a New Resource Directory dialog, which
can be seen in Figure 7-20. Select your Resource type as xml and set the Directory name
to xml. It is important to notice that IntelliJ will name the directory for you if you select a
Resource type first. Leave everything else set as is, and then click the OK button to create
the XML folder, which as you can see has been created successfully in Figure 7-21.

161CHAPTER 7: Program Watch Faces for Wear: Creating the Watch Face Code Foundation

Right-click the new /res/xml folder and select New ➤ XML resource file, as shown in
Figure 7-21, to create the new watch_faces.xml wallpaper file.

Figure 7-20. Select an xml resource type, which will name this directory /res/xml

Figure 7-21. Right-click on /res/xml directory, and select New ➤ XML resource file

After you invoke the menu sequence, you’ll see a New Resource File dialog, which can be seen
in Figure 7-22. Select your Source set as main, then set the File name to watch_face.xml.
Leave everything else set as is, and then click the OK button to create the watch_faces.xml
definition file, which, as you can see in Figure 7-23, has been created successfully and has been
opened for you in an editing pane inside the IntelliJ IDEA for editing.

162 CHAPTER 7: Program Watch Faces for Wear: Creating the Watch Face Code Foundation

Enter the <xml> version container tag and <wallpaper> parent tag using the following XML
markup, which can be seen in the right half of Figure 7-23:

<?xml version="1.0" encoding="utf-8"?>
<wallpaper xmlns:android="http://schemas.android.com/apk/res/android" />

This creates the Wallpaper object in Android for use with your watch face.

Figure 7-22. Name the file watch_face.xml and set Source set to main (leave the defaults)

Figure 7-23. Right-click on watch_face.xml to view it in a tab using Jump to Source

Now you have put everything into place that is needed to be able to create the <service>
declaration in the wear Android Manifest XML file, which will declare your
ProWatchFaceService (and Engine) for use and reference all of the various other watch
face image previews and a wallpaper object using <meta-data> child tags inside the parent
<service> tag.

http://schemas.android.com/apk/res/android

163CHAPTER 7: Program Watch Faces for Wear: Creating the Watch Face Code Foundation

Declaring a WatchFace Service: The XML <service> Tag
Click the AndroidManifest.xml tab for your wear app in IntelliJ so you can declare your
Service for use in the Watch Face application. As you can see in the title bar of IntelliJ
in Figure 7-24, it shows you the path to the file you are currently editing. Use this feature
to make certain you are editing the correct (wear) AndroidManifest and not the mobile
AndroidManifest. I have made the <uses-feature> and <uses-permission> tags and their
parameters fit on one line of code to make room for a <service> parent tag and its child tag
structure, which you will create next.

The <service> tag itself has nearly a half-dozen parameters that configure it for use, starting
with the BIND_WALLPAPER permission, which allows your Service object to “bind.”
Binding means establishing a “real-time refresh” or real-time updating connection with the
Wallpaper object you created in the previous section. You’ll also need to give the <service>
tag a Service class name, which is .ProWatchFaceService, as well as a label of Pro Watch
Face. Finally, you will need to set a true (on) flag for the allowEmbedded option, as well as
add an empty string value to a required taskAffinity parameter (attribute). This would be
done using the following XML markup:

<service
 android:permission="android.permission.BIND_WALLPAPER"
 android:name=".ProWatchFaceService"
 android:label="Pro Watch Face"
 android:allowEmbedded="true"
 android:taskAffinity="" >
 <meta-data
 android:name="android.service.wallpaper"
 android:resource="@xml/watch_face" />
 <meta-data
 android:name="com.google.android.wearable.watchface.preview"
 android:resource="@drawable/preview_pro_square" />
 <meta-data
 android:name="com.google.android.wearable.watchface.preview_circular"
 android:resource="@drawable/preview_pro_circular" />
 <intent-filter>
 <action android:name="android.service.wallpaper.WallpaperService" />
 <category android:name="com.google.android.wearable.watchface.category.WATCH_FACE" />
 </intent-filter>
</service>

164 CHAPTER 7: Program Watch Faces for Wear: Creating the Watch Face Code Foundation

There are also three <meta-data> child tags inside the <service> parent tag as well as an
<intent-filter> child tag. I’ll cover the Intent Filter first, as there is only one of these and
because it is very important. The Intent Filter child tag has two of its own (nested) child
tags. One is for an action, which is a WallpaperService class, that is a superclass of the
WatchFaceService class. This is a superclass to the CanvasWatchFaceService superclass
for the ProWatchFaceService class. The other child tag is for a category for the action,
which, not surprisingly, is a WATCH_FACE constant.

The reason I went into detail here covering the CanvasWatchFaceService class (and its
nested Engine class) is so that when it comes time to look at the Intent Filter set up you will
understand that the WallpaperService is the uppermost type of bindable Service class and
that the WATCH_FACE category is really pointing out a WatchFaceService subclass type for
this WallpaperService superclass.

Next, you’ll need to add in <meta-data> child tags that define certain things for this Watch
Faces Service declaration. The most important of these will define the Wallpaper object,
which you created in the previous section with your watch_face.xml file and is referenced in
a meta-data tag named android.service.wallpaper that references an XML resource file in
/res/xml using the android:resource=“@xml/watch_face” parameter referencing syntax.

The other two <meta-data> child tags will provide the Drawable assets for the Watch Face
Round and Square version previews. Let’s create those next.

The <meta-data> child tag for the square watch face preview will use a name value of com.
google.android.wearable.watchface.preview with a reference to an XML resource file
that you’ll be creating in the next section that uses the android:resource=“@drawable/
preview_pro_square” parameter referencing syntax. Notice in the name parameter that
the default watch face screen shape type is square, whereas round would be coded as
preview_circular.

Figure 7-24. Add a <service> parent tag and <meta-data> child tags defining Service

165CHAPTER 7: Program Watch Faces for Wear: Creating the Watch Face Code Foundation

Notice in Figure 7-24 that IntelliJ is wavy green underline highlighting the word watchface,
just like it was doing with the Java object name. It turns out IntelliJ thinks that this is a
spelling error, so, hopefully, at some point IntelliJ will update its dictionary and add in the
watchface and WatchFaces API correct spellings!

The <meta-data> child tag for your round watchface preview will have the name
value of com.google.android.wearable.watchface.preview_circular and an XML
reference to a Drawable resource file that you’ll be creating in the next section using the
android:resource=“@drawable/preview_pro_round” parameter referencing syntax.

Next, you’ll need to create and add these watchface.preview assets into the correct /res/
drawable folders, so, before I end this chapter with a fully loaded (but empty) and configured
Watch Face API application, let’s look at some digital image asset placement work to show
you how this is done.

Watch Face Image Preview: Using Drawable Assets
The next thing that you need to do to get rid of those red error indicator text highlights in the
<meta-data> tags for the watch face preview imagery shown in the bottom half Figure 7-24
is to copy both (square and circular) watch face preview PNG images into the correct /res/
drawable folder in the wear portion of your project. I will be using preview images from a
later chapter in Part 2 covering graphic design asset creation and integration into the Watch
Face design, code, UI design, XML markup, and application.

The preview imagery needs to be 320 x 320 pixels in image resolution. This means that the
images are HDPI (high-density pixel images) resolution and will therefore need to go into
the /wear/src/main/res/drawable-hdpi folder in order for Android 5 to locate them. This
folder can be seen on the left-hand side of Figure 7-25, as well as on the left-hand side of
Figure 7-26.

Find the preview_pro_square and preview_pro_circular PNG images in the Pro Android
Wearables archive in the book’s repository and copy them into the /AndroidStudioProjects/
ProAndroidWearable/wear/src/main/res/drawable-hdpi/ folder, as seen in Figure 7-25.
These preview images will be used with the watch faces companion app that runs on
phones or tablets to show the users what a watch face looks like pixel for pixel (watch faces
use 320 pixels).

166 CHAPTER 7: Program Watch Faces for Wear: Creating the Watch Face Code Foundation

Once the digital image assets have been properly copied into place in your /wear/src/
main/res/drawable-hdpi/ folder, that red error code highlighting that was present in
Figure 7-24 will vanish. This can be seen on the right side of Figure 7-26, and now the
AndroidManifest.xml markup is also error-free. You have made a significant amount of
progress during this chapter!

Figure 7-25. Copy the preview_pro_circular and preview_pro_square files to drawable-hdpi

Figure 7-26. Once PNG assets are copied into a /res/drawable folder, errors go away

167CHAPTER 7: Program Watch Faces for Wear: Creating the Watch Face Code Foundation

Summary
In this chapter, you learned about how to create the foundation for your Watch Face
Application by taking your Pro Android Wearable bootstrap application and morphing it into
a Watch Face App using the IntelliJ IDEA.

First, you learned how the Gradle Scripts in the project need to be stratified, as well as how
they should be set up in order to have a successful watch faces application hierarchy. You
learned about dependency and repositories and how to set up the Google Play Services
using Gradle.

Next you added the Android Permissions, which are necessary to create Watch Faces
applications, and learned that there are two Android Manifest XML files that you need to
deal with: one for the wearable peripheral device and one for the phone or tablet “master”
mobile device.

After that you learned about the Android CanvasWatchFaceService class and its Java class
hierarchy, which describes how it’s an Object that uses Context to start a Service that
creates a Wallpaper that is used to create a Watch Faces Engine that uses the Canvas to
Draw to the smartwatch display. It is interesting how one Java hierarchy can show us exactly
how Google has implemented their WatchFaces API in Android 5 OS, isn’t it?

Then you learned about the Android CanvasWatchFaceService.Engine class and its
hierarchy and how to implement it as a private class for your ProWatchFaceService class.
You learned how to implement the .onDraw() method and created an empty Watch Face
Service Engine that will be used for the rest of Part 2 of this book covering Watch Faces API.

Next, I discussed Watch Face XML definitions and you created a /res/xml folder and then a
watch_face.xml file, which defined a Wallpaper object to use for our Watch Faces Design.

Then I discussed the Wear Android Manifest and you crafted the Service entry, which
defined the new ProWatchFaceService.java class as well as other key things like the
Wallpaper object, Intent Filter, and preview imagery.

Finally, you put the Watch Face Preview Images into place in a drawable HDPI folder, so that
all of the Java code and XML markup became green and thus error-free!

In the next chapter, you will start adding Watch Face features to the public
ProWatchFaceService class and private Engine class.

169

Chapter 8
A Watch Faces Timing
Engine: Using TimeZone,
Time, and BroadcastReceiver

Now that you have your CanvasWatchFaceService subclass and private Engine class in
place and have your Gradle Scripts, XML assets, Wallpaper object, and preview assets
installed where they’re supposed to be, you’re ready to start getting into learning more
advanced Java utility classes and Android classes and methods that implement the
WatchFaces API.

Topics will get more advanced as you progress through the watch face creation process
throughout this book. During this chapter, you’ll be taking an in-depth look at the drawing
surface, setting up your watch face styling, time zone management, the Time object, and the
time zone broadcasting class that will need to be implemented in order to create a functional
watch face design application.

You’ll also be taking a detailed look at the WatchFaceStyle class and its WatchFaceStyle.
Builder nested class. These classes will allow you to build, and configure, the required
parameters that you learned about in Chapter 6.

You’ll also be taking a look at Android time-related classes and methods, such as Time
and TimeZone, as well as the Android SurfaceHolder class, and finally at the Android
BroadcastReceiver class and methods. This chapter is full of information about Java and
Android classes, so, let’s get started!

http://dx.doi.org/10.1007/9781430265504_6

170 CHAPTER 8: A Watch Faces Timing Engine: Using TimeZone, Time, and BroadcastReceiver

Your WatchFace Surface: Android SurfaceHolder
Your Watch Faces Design will be “hosted” by using an Android SurfaceHolder object.
This object is compatible and works in conjunction with the Android Canvas object and
your .onDraw() method, both of which you have put into place in your code and will be
expanding your use of as you progress through this chapter.

I want to give you an overview of this SurfaceHolder interface before you implement it in your
code. Then I will go over the WatchFaceStyle class and finally cover the key WatchFaceService
and WatchFaceService.Engine classes, which contain most of the important WatchFaces API
methods you will implement during the course of the next few chapters.

Android SurfaceHolder Interface: The Watch Face Surface
The Android WatchFaces API uses a SurfaceHolder object as the lowest-level object to
hold your Watch Faces Design. The SurfaceHolder is a public abstract Java interface, so
it defines methods or constants you will need to implement in order to create Watch Face
Apps. It’s a member of the android.view.SurfaceHolder package because it is a type of
Android View.

The SurfaceHolder object was designed to facilitate holding (hosting) a display screen
drawing surface. This interface allows you to control the display drawing surface format or
sizing as well as edit the pixels on its surface.

There are methods that can be used to monitor any changes to the surface. This interface
is usually accessed using a SurfaceView class, however, the WatchFaces API accesses it
through the .onCreate() method. I will be covering this method in the WatchFaceService.
Engine section of the chapter after a brief discussion on the SurfaceHolder and
WatchFaceStyle classes.

An Android SurfaceHolder interface contains three nested classes: two that are interfaces that
can be utilized in order to determine when changes to a WatchFace Surface have occurred
and one that is a class that is utilized for bad Surface type exception error handling.

The SurfaceHolder.Callback interface can be implemented in your Java code, and it allows
your Watch Face app to receive information about changes to the SurfaceHolder object.
There is a second SurfaceHolder.Callback2 interface that implements the SurfaceHolder.
Callback interface, providing additional callbacks that can be received.

The SurfaceHolder.BadSurfaceTypeException class provides an exception that is thrown
from the .lockCanvas() method when that method is called from a SurfaceHolder object
whose type has been set to SURFACE_TYPE_PUSH_BUFFERS.

This constant usually will not affect Watch Faces Design and Application development, and
I am including it here only for the sake of completeness in covering the class across all of its
implementations in the Android OS.

The interface also contains about a dozen public methods, several of which can be used in
Watch Faces Design. These methods are abstract, so you must implement them with your
own unique code. They are listed in Table 8-1. You can familiarize yourself with them here so
you know what they can do.

171CHAPTER 8: A Watch Faces Timing Engine: Using TimeZone, Time, and BroadcastReceiver

Now that you have an overview of the SurfaceHolder interface, let’s take a real-world look at
how SurfaceHolder is used to provide a Surface (Holder) for the Canvas object that you will
be using for your Watch Faces API Design.

A SurfaceHolder Object: onCreate(SurfaceHolder surface)
If you’ve not done so already, launch the Android Studio development environment with the
quick launch icon you created in Chapter 2. This will launch the IntelliJ IDEA and display the
ProAndroidWearable project you created in Chapter 4, where you added Watch Faces to in
Chapter 7.

Close all of the editing tabs except for the ProWatchFaceService.java tab, as shown in
Figure 8-1, because you are going to be working on this tab during this chapter. You’ll be
adding the methods from the WatchFaceService.Engine class, which you’re going to be
learning about later on in this chapter, the first of which will be the .onCreate() method, as
shown in Figure 8-1.

Table 8-1. SurfaceHolder Interface Methods along with Data Type, Method Call Structure, and Purpose

Method Type Method Structure Method Purpose

abstract void addCallback(SurfaceHolder.Callback callback) Add callback interface

abstract Surface getSurface() Access the Surface object

abstract Rect getSurfaceFrame() Get current dimensions

abstract boolean isCreating() Surface being created?

abstract Canvas lockCanvas() Edit surface pixels

abstract Canvas lockCanvas(Rect dirtyRect) Dirty Rect lock Canvas

abstract void removeCallback(SurfaceHolder.Callback cback) Remove the callback

abstract void setFixedSize(int width, int height) Make surface fixed W×H

abstract void setFormat(int format) Set the pixel format

abstract void setKeepScreenOn(boolean screenOn) Keep ScreenOn option

abstract void setSizeFromLayout() Allow surface resizing

abstract void unlockCanvasAndPost(Canvas canvas) Finish editing surface

http://dx.doi.org/10.1007/9781430265504_2
http://dx.doi.org/10.1007/9781430265504_4
http://dx.doi.org/10.1007/9781430265504_7

172 CHAPTER 8: A Watch Faces Timing Engine: Using TimeZone, Time, and BroadcastReceiver

Type in the @Override public void onCreate() {} method infrastructure, and inside the
parameter area type in Sur to trigger IntelliJ to bring up a helper dialog with all of the object
(class) types that can be utilized with the method call. Find the SurfaceHolder (android.
view package) option and double-click it to insert the SurfaceHolder object into the method
call and name it surface, because that is what it is acting as (holding).

The public void onCreate() method structure that creates the SurfaceHolder object, which is
named surface, will take the following Java structure, as can also be seen in Figure 8-2:

@Override
public void onCreate(SurfaceHolder surface) { Your Java method body will go in here }

Figure 8-2. Type in the Java super keyword and select the onCreate (SurfaceHolder holder) option to add it in

Figure 8-1. Add a public void onCreate() method to the private Engine class and type Sur in the parameter list

173CHAPTER 8: A Watch Faces Timing Engine: Using TimeZone, Time, and BroadcastReceiver

As you can see in Figure 8-2, if you simply type in the Java keyword super and the period
key inside of the method body, IntelliJ IDEA will provide a method helper dialog. You can use
this dialog to peruse all of the methods that can be used with the .onCreate() method.

Double-click the onCreate(SurfaceHolder holder) void option and insert the .onCreate()
method call to your superclass, using the surface object you created inside of the public
void onCreate(SurfaceHolder surface) method construct. This passes your SurfaceHolder
object, named surface, up to the superclass .onCreate() method for processing at that
higher level. This is how you create a SurfaceHolder and implement it in your WatchFace.

You will notice in Figure 8-3 that if you start to type your SurfaceHolder object name
(surface) inside the super.onCreate() method call parameter area, IntelliJ will find this object
name, along with every other compatible object types that are available, and put them
together into one big helper dialog for you to select from.

Figure 8-3. Type an s in the .onCreate() method parameter area, and select the surface object from the dialog

Now that you have put your SurfaceHolder into place using this .onCreate() method call, let’s
build a WatchFace Style using the WatchFaceStyle class.

Setting Watch Face Style: WatchFaceStyle.Builder
The WatchFaces API contains your WatchFaceStyle and WatchFaceStyle.Builder classes,
which are used to build and configure the Watch Faces Design with the many Android
design requirements you learned about in Chapter 6.

These considerations define how your WatchFace will assimilate the Android OS
considerations such as placement of the Status Bar indicators, peek card support,
placement of the Google hotword indicator, and so forth.

http://dx.doi.org/10.1007/9781430265504_6

174 CHAPTER 8: A Watch Faces Timing Engine: Using TimeZone, Time, and BroadcastReceiver

Android WatchFaceStyle Class: Styling Your Watch Face
The Android WatchFaceStyle class is a public class that extends the Object class and
implements the Java Parcelable interface. This class is part of the android.support.wearable
package. The hierarchy of this WatchFaceStyle class indicates (due to a lack of any other
classes in the hierarchy) that it was “scratch-coded” by Google’s Android development team.
The class was created to provide Watch Faces Styles, and the hierarchy looks like this:

java.lang.Object
 > android.support.wearable.watchface.WatchFaceStyle

It is important to note that the Wearable Support Library classes that are found in this
android.support.wearable package are subject to change. The WatchFaceStyle class
provides constants and methods allowing a Watch Face to be described and configured.
The parameters outlined in this class define how the WatchFaceService will draw Android’s
operating system user interface (UI) elements over your custom watch face design.

An instance of this class will be passed into a method that you will be using in the next
section, called setWatchFaceStyle(WatchFaceStyle), for the onCreate method in your
private Engine class in the ProWatchFaceService.java class.

To construct your WatchFaceStyle object instance, you will use the Java new keyword to
create a new WatchFaceStyle.Builder object. This is done inside this setWatchFaceStyle()
method using a Context object from your class.

The WatchFaceStyle class thus contains one solitary nested class, which is named
WatchFaceStyle.Builder. I’ll be covering this in detail during the next section of this chapter.
You will also be using this nested class, in the section of the chapter after that, when you
build a WatchFace Style.

The WatchFaceStyle class holds 11 important watch face constants that you will be using in
your watch faces design and applications development. These are shown in Table 8-2, along
with the proper name and a description of what they do.

Table 8-2. WatchFaceStyle Class Constant Names along with Their Intended Functionality

WatchFaceStyle Constant Name WatchFaceStyle Constant Function

AMBIENT_PEEK_MODE_HIDDEN Hides the peek cards when the watch is in ambient mode

AMBIENT_PEEK_MODE_VISIBLE Displays a peek card when the watch is in ambient mode

BACKGROUND_VISIBILITY_INTERRUPTIVE Shows the peek card Background briefly on Interrupt

BACKGROUND_VISIBILITY_PERSISTENT Shows the peek card Background always for Interrupt

PEEK_MODE_SHORT Displays the peek cards using a single line of text

PEEK_MODE_VARIABLE Displays the peek card using multiple lines of text

PEEK_OPACITY_MODE_OPAQUE Displays the peek card using opaque/solid background

PEEK_OPACITY_MODE_TRANSLUCENT Displays the peek card with a translucent background

PROTECT_HOTWORD_INDICATOR Use Semi-Transparent Black background in Hotword

PROTECT_STATUS_BAR Use Semi-Transparent Black background StatusBar

PROTECT_WHOLE_SCREEN Use Semi-Transparent Black background for Screen

175CHAPTER 8: A Watch Faces Timing Engine: Using TimeZone, Time, and BroadcastReceiver

This WatchFaceStyle class contains public methods that allow you to access information
about a WatchFaceStyle. Most of these are .get() methods, which match up with the
.set() methods you will access later using a nested WatchFaceStyle.Builder class. I will be
covering that class next.

There is a .describeContents() method to describe WatchFaceStyle contents, as well as an
.equals(Object otherObject) method, which is used to compare WatchFaceStyle objects.
There’s a .getComponent() method that gets a value for a component of the watch face
whose style is being specified, and your standard inherited .toString(), .hashCode(), and
.writeToParcel() methods.

The getter methods include a .getAmbientPeekMode() method that shows how
a primary peek card will be displayed while the watch is in ambient mode, and a
.getBackgroundVisibility() method that shows how the background display is set for
the primary peek card. The .getCardPeekMode() method shows how far into your watch
face display screen the primary peek card will go, and the .getHotwordIndicatorGravity()
method shows where you have positioned an OK Google hotword on the watch face
screen. The .getPeekOpacityMode() shows a Peek Card Opacity setting, and a
.getShowSystemUiTime() shows whether your WatchFaceStyle is configured to show the
system time over your watch face.

There is also a .getStatusBarGravity() method call that allows you to poll and find out the
position of the Status Bar icons on your screen, as well as a .getViewProtectionMode()
that allows you to poll the setting pertaining to adding a transparent black background color
to elements on your watch face screen so they are readable on the watch face.

Finally, there’s a method called .getShowUnreadCountIndicator() that polls the
WatchFaceStyle object to find if the WatchFaceStyle object contains an indicator that, if set
to the true value, shows how many unread peek cards are left to be read by the user from
their unread peek cards input stream.

Next, let’s take a look at the WatchFaceStyle.Builder nested class and its many watch face
styling methods. You are going to be using most of these methods in the section of the
chapter that follows this next section as you create and build a WatchFaceStyle object.

Android WatchFaceStyle.Builder Class: Building the Style
The Android WatchFaceStyle.Builder public static class also has an extends Object
indicating that it was also scratch-coded for building your WatchFaceStyle objects. This class
provides the “builder methods” that are used to create WatchFaceStyle objects. The Java
class hierarchy looks like the following:

java.lang.Object
 > android.support.wearable.watchface.WatchFaceStyle.Builder

This is another one of the Wearable Support Library classes that can be found in the
android.support.wearable package, and like the WatchFaceStyle class, it is also subject to
change in the future as smartwatch manufacturers change the way their products function.
For instance, more smartwatches will inevitably switch from being peripherals to full
Android devices (like the Neptune Pine) as consumer electronics component miniaturization
progresses and as these miniaturized component prices continue to decline over time.

176 CHAPTER 8: A Watch Faces Timing Engine: Using TimeZone, Time, and BroadcastReceiver

The public Constructor method for your WatchFaceStyle.Builder object takes a Service,
specifically your WatchFaceService subclass, in this case, a ProWatchFaceService class,
and it's Context object (this), as its parameter, using the following format:

WatchFaceStyle.Builder(Service service) // This is the Generic Constructor Method Format
WatchFaceStyle.Builder(ProWatchFaceService.this) // This is our specific Constructor Method Format

A Java this keyword contains the Context of the ProWatchFaceService class, and that
Context object contains all of the relevant information about the class.

This WatchFaceStyle.Builder class contains ten public method calls. I will show you how
to implement each of these in your private Engine class’s .onCreate() method. You’ll do
this in the next section of the chapter, when you add your WatchFaceStyle object into the
ProWatchFaceService.java class.

The core method in the WatchFaceStyle class is your .build() method, which actually builds
the WatchFaceStyle object, using a read-only data (object) format. This is because the
WatchFaceObject is meant to be “configured” at start up using an .onCreate() method, and
then simply read from during the watch face application’s execution.

The .setAmbientPeekMode(int ambientPeekMode) method allows you to specify the
visibility setting for peek cards. This will determine whether Peek Cards will be displayed
while your watch face is in an ambient mode. This method uses the first two constants listed
in Table 8-2 to determine whether Peek Cards will be displayed or hidden while the watch
face is in ambient mode. Here you will set this to display peek cards in ambient mode.

The .setBackgroundVisibility(int backgroundVisibility) method allows you a way to specify
how you want to display your background for your peek card. This method uses the second
two constants listed in Table 8-2 to determine whether or not Peek Card backgrounds will be
displayed persistently.

The .setCardPeekMode(int peekMode) method allows you to specify just how far onto a
watchface a peek card will overlay while a watchface is displayed. This method uses the
third two constants listed in Table 8-2 to determine how much of the Peek Cards will be
displayed over your watch face screen.

The .setPeekOpacityMode(int peekOpacityMode) method allows you to specify a Peek
Card Background Opacity as being a solid or translucent background. This method uses the
fourth two constants listed in Table 8-2 to determine whether Peek Cards backgrounds are
solid (nontranslucent) or translucent.

The .setViewProtection(int viewProtection) method allows you to add a dark translucent
background effect to UI elements over your watch faces screen. This method uses the last
three constants listed in Table 8-2 to determine whether a Status Bar, hotword, or both
(whole screen) will be “protected.”

The .setHotwordIndicatorGravity(int hotwordIndicatorGravity) method allows you to set
a position constant (or constants) to position a hotword over a watch face. A parameter uses
one or more standard Gravity constant values.

177CHAPTER 8: A Watch Faces Timing Engine: Using TimeZone, Time, and BroadcastReceiver

The .setStatusBarGravity(int statusBarGravity) method allows you to set the position
of the Status Bar icons on the watch face screen. This parameter also uses one or more
standard Android Gravity constant values.

The .setShowSystemUiTime(boolean showSystemUiTime) method call allows you to
specify if the operating system will draw the time over your watch face design. The parameter
for the method is a simple true or false value.

The .setShowUnreadCountIndicator(boolean show) method allows you to set if an
indicator showing how many unread cards there are waiting to be read is showed along with
the StatusBar icons. The parameter for this method is a simple true or false value. You will
use a true value in the watch face app developed in this chapter.

Building Your Watch Face: Using .setWatchFaceStyle()
Let’s build the WatchFaceStyle object next, so you can learn how to create this required
watch face object that defines how your watch face is going to assimilate the Android OS
functionality. You will put this object right after the super.onCreate(surface); line of code,
which creates the SurfaceHolder object for the Watch Face.

Add a line of code, and type the word set to initiate the IntelliJ method helper dialog, as can
be seen in Figure 8-4. Locate your setWatchFaceStyle (WatchFaceStyle watchFaceStyle)
method and double-click it to add it to the Java code you are creating to implement a
WatchFaceStyle object.

Figure 8-4. Add a line of code after super.onCreate(), type set, and select the setWatchFaceStyle method option

Inside the setWatchFaceStyle() method parameter area, you will nest your constructor
method for this WatchFaceStyle.Builder object using a Java new keyword. This creates
a more dense (and complex) Java construct, but it is also more compact, allowing you to
construct and configure a WatchFaceStyle object using less than a dozen lines of Java

178 CHAPTER 8: A Watch Faces Timing Engine: Using TimeZone, Time, and BroadcastReceiver

programming logic. This could even be one single (extremely long) line of Java code;
however, I’ll format it using a dozen lines in the IntelliJ IDEA for much improved readability!

The primary Java construct for the setWatchFaceStyle() method call and the new
WatchFaceStyle.Builder() constructor method nested inside it will look like the following
Java code, which is also shown in Figure 8-5:

setWatchFaceStyle(new WatchFaceStyle.Builder(ProWatchFaceService.this));

Figure 8-5. Add a line, type a period to bring up the method helper dialog, and select setHotwordIndicatorGravity

Add a line of code by pressing the Return key with the cursor placed after your
WatchFaceStyle.Builder() method’s closing parenthesis, and before the setWatchFaceStyle
statement’s terminating parenthesis and semicolon, press the period key and select a
.setHotwordIndicatorGravity(int hotwordIndicatorGravity) method from the IntelliJ
pop-up method helper dialog, as shown in Figure 8-5.

In the parameter area, type Gravity and a period, as shown in Figure 8-6.

179CHAPTER 8: A Watch Faces Timing Engine: Using TimeZone, Time, and BroadcastReceiver

Double-click the Gravity.BOTTOM constant to place the OK Google hotword at the bottom
of the watch face design, as shown in Figure 8-6. Next use a vertical bar | character to add
another Gravity.CENTER_HORIZONTAL constant to the method call parameter area. What
this will do is center the hotword horizontally at the bottom of your watch face design. Make
sure that there are no spaces between the vertical bar separator and the Gravity constants
because that will be perceived by the compiler as multiple parameters rather than one single
“unified” Gravity concatenation parameter.

Next, let’s add in another line of code. Press the period key and select the
setShowSystemUiTime(boolean showSystemUiTime) option from the pop-up helper
dialog, then enter the value of false, as you will want to control all of the watch face time
displayed using application code. The setWatchFaceStyle() method structure should now
looks like the following Java 7 programming logic:

setWatchFaceStyle(new WatchFaceStyle.Builder(ProWatchFaceService.this)
 .setHotwordIndicatorGravity(Gravity.BOTTOM|Gravity.CENTER_HORIZONTAL)
 .setShowSystemUiTime(false)
);

Next, let’s set up the Peek Card configuration settings, starting with the background visibility
method and constant value, as shown in Figure 8-7.

Figure 8-6. Type Gravity object inside of the parameter area, and use the period key to bring up the helper dialog

180 CHAPTER 8: A Watch Faces Timing Engine: Using TimeZone, Time, and BroadcastReceiver

Add a line of code under the .setShowSystemUiTime() method and add in your
.setBackgroundVisibility() method call. In the method parameter area, type WatchFaceStyle,
and press the period key to open your helper dialog. Use the BACKGROUND_VISIBILITY_
INTERRUPTIVE constant value with this method to allow your watchface design to be at
least partially visible when a Peek Card appears. This would be done using the following
Java code structure:

setWatchFaceStyle(new WatchFaceStyle.Builder(ProWatchFaceService.this)
 .setHotwordIndicatorGravity(Gravity.BOTTOM|Gravity.CENTER_HORIZONTAL)
 .setShowSystemUiTime(false)
 .setBackgroundVisibility(WatchFaceStyle.BACKGROUND_VISIBILITY_INTERRUPTIVE)
);

Next, let’s add in the .setCardPeekMode() and .setPeekOpacityMode() method calls to
finish configuring how the Peek Cards will work in interactive mode. After that, you can add
the other four configuration methods. The Peek Card method call configuration using the
WatchFaceStyle constants covered in Table 8-2 is shown in Figure 8-8 and should look like
the following Java code:

setWatchFaceStyle(new WatchFaceStyle.Builder(ProWatchFaceService.this)
 .setHotwordIndicatorGravity(Gravity.BOTTOM|Gravity.CENTER_HORIZONTAL)
 .setShowSystemUiTime(false)
 .setBackgroundVisibility(WatchFaceStyle.BACKGROUND_VISIBILITY_INTERRUPTIVE)
 .setCardPeekMode(WatchFaceStyle.PEEK_MODE_SHORT)
 .setPeekOpacityMode(WatchFaceStyle.PEEK_OPACITY_MODE_TRANSLUCENT)
);

Figure 8-7. Add a setBackgroundVisibility() method and type WatchFaceStyle inside and select
BACKGROUND_VISIBILITY_INTERRUPTIVE

181CHAPTER 8: A Watch Faces Timing Engine: Using TimeZone, Time, and BroadcastReceiver

Let’s add the last four WatchFaceStyle configuration methods and constants so you can
get some hands-on experience implementing and utilizing all of the WatchFaceStyle object
attributes for your Watch Faces API.

Next you will enable Peek Cards when the watch face is in ambient mode, position the
Status Bar at the top center of the watch face design, turn on the View protection feature for
the Status Bar and Hotword, and show the unread Peek Card messages counter.

The very last method call that must end the method call chaining that uses Java dot notation
is the .build() method. Notice that you could chain each of these separate lines together as
one long line of code. I’m just lining up the methods in the chain using the dot connector for
better readability, as can be seen in the final Java construct, which is shown in Figure 8-8:

setWatchFaceStyle(new WatchFaceStyle.Builder(ProWatchFaceService.this)
 .setHotwordIndicatorGravity(Gravity.BOTTOM|Gravity.CENTER_HORIZONTAL)
 .setShowSystemUiTime(false)
 .setBackgroundVisibility(WatchFaceStyle.BACKGROUND_VISIBILITY_INTERRUPTIVE)
 .setCardPeekMode(WatchFaceStyle.PEEK_MODE_SHORT)
 .setPeekOpacityMode(WatchFaceStyle.PEEK_OPACITY_MODE_TRANSLUCENT)
 .setAmbientPeekMode(WatchFaceStyle.AMBIENT_PEEK_MODE_VISIBLE)
 .setStatusBarGravity(Gravity.TOP|Gravity.CENTER_HORIZONTAL)
 .setViewProtection(WatchFaceStyle.PROTECT_STATUS_BAR|WatchFaceStyle.

PROTECT_HOTWORD_INDICATOR)
 .setShowUnreadCountIndicator(true)
 .build()
);

Next, let’s take a look at the Android (and Java) timing-related classes as these provide the
functionality for getting the system time and updating the watch face design, so it shows the
correct time all in real time!

Figure 8-8. Add the .build() method call to the end of the method chain to build the WatchFaceStyle object

182 CHAPTER 8: A Watch Faces Timing Engine: Using TimeZone, Time, and BroadcastReceiver

Setting Watch Face Time: The Time-Related Classes
Now that you have fully satisfied the operating system feature assimilation requirements
that you learned about in Chapter 6 and created the Watch Faces SurfaceHolder and
WatchFaceStyle objects that are needed to form the core surface of the WatchFace
Design and display the required operating system features on top of it using those
CanvasWatchFaceService and CanvasWatchFaceService.Engine classes you put in place
in Chapter 7, it is time to learn about the time-related features in both Java 7 and Android 5
classes and packages.

This is the next level of foundation you’ll need to put in place so your watch faces design can
take system time and time zone values and convert them to display on the surface of your
watch face design using whatever visual design paradigm you have decided to implement.

Java Time Utility Classes: TimeUnit and TimeZone
Because this WatchFaces API is meant to create applications that tell time, let’s take a
closer look at the time-related classes. These would be found in the java.util and java.util.
concurrent packages, and they control conversion of time units such as hours, minutes,
seconds, milliseconds, microseconds, nanoseconds, and the like, as well as conversions
between GMT time zones.

Translating Between Units of Time: Using the TimeUnit Class
The public enum TimeUnit class is a subclass of a java.lang.Enum<TimeUnit> class, and
it is part of the java.util.concurrent package. The class is an enumeration class, which is
used to enumerate, that is, provide the numeric representation for, units of time that are used
in your Java 7 applications.

The Java class hierarchy for this TimeUnit class looks like the following:

java.lang.Object
 > java.lang.Enum<TimeUnit>
 > java.util.concurrent.TimeUnit

The TimeUnit class (and object) is used to represent time durations at any specified
unit of time duration granularity. You’ll be using it for SECONDS and MILLISECONDS in
the WATCH_FACE_UPDATE_RATE constant, which you will put into place after a brief
discussion covering these Java 7 TimeUnit and TimeZone classes.

This class provides developers with utility methods that can convert time across discrete
time units, hence its class name. You can use these methods to implement timing and delay
operations using these time units.

It is important to note that a TimeUnit does not maintain time information itself! It simply
helps developers organize or use time representations that are maintained separately
across various Context objects. So TimeUnit objects could be thought of as a
real-time time conversion filter, for all you sound designers, video special effects editors,
or animators out there.

http://dx.doi.org/10.1007/9781430265504_6
http://dx.doi.org/10.1007/9781430265504_7

183CHAPTER 8: A Watch Faces Timing Engine: Using TimeZone, Time, and BroadcastReceiver

The TimeUnit properties that are supported are expressed in this class as Enum Constants.
These include DAYS, HOURS, MINUTES, SECONDS, MILLISECONDS, MICROSECONDS,
and NANOSECONDS.

A nanosecond is defined as one-thousandth of a microsecond, a microsecond is defined as
one-thousandth of a millisecond, a millisecond is defined as one-thousandth of a second, a
minute is defined as 60 seconds, an hour is defined as 60 minutes, and a day is defined as
24 hours.

The TimeUnit class contains over a dozen methods that are used for controlling and
converting time, including .toMillis(long duration), which you will be using in the
ProWatchFaceService.java class.

There are also a half-dozen other .to() methods in this class, including .toDays(), .toHours(),
.toSeconds(), .toNanos(), and .toMicros(). All of the .to() TimeUnit class methods take a long
data value in the parameter area.

Next, let’s take a look at the TimeZone class, so you can not only convert time into different
units, but you can also convert time around the Earth! This is important for the international
compatibility of the watch face design.

Transitioning Between Time Zones: Using the TimeZone Class
The Java public abstract TimeZone utility class extends a java.lang.Object class. This
signifies that the TimeZone utility class was scratch-coded to provide time zone support.
The class is part of the java.util package. This TimeZone class has one known direct
subclass called SimpleTimeZone, but you’ll be using this top-level TimeZone class. In
case you’re wondering what a known direct subclass is, it is a direct subclass that has
been made a part of the Java API. Thus, your direct subclasses would be unknown direct
subclasses, until Oracle officially makes them a permanent part of Java 9!

The Java class hierarchy for this TimeZone class looks like the following:

java.lang.Object
 > java.util.TimeZone

The TimeZone class creates an object that is used to represent a Time Zone Offset.
It is important to notice that the TimeZone class will also figure out daylight saving time
adjustments for you as well, which is convenient.

Typically you get the TimeZone object by calling the .getDefault() method, which creates
a TimeZone object based on a time zone where your Watch Face application is running
currently. For example, for a WatchFace application running in Santa Barbara, where I live, the
.getDefault() method creates a TimeZone object based on Pacific Standard Time, also known
as PST. You can get the ID of a TimeZone object using the .getID() method call, like this:

TimeZone.getDefault().getID()

184 CHAPTER 8: A Watch Faces Timing Engine: Using TimeZone, Time, and BroadcastReceiver

You can also get a TimeZone object for a specific Time Zone if you like by calling the
.getTimeZone() method, in conjunction with the .getID() method call, using the following
Java dot chaining method call structure:

TimeZone.getTimeZone().getID()

You will need to know what the TimeZone ID values are in order to use this approach
correctly. For instance, the TimeZone ID for the Pacific TimeZone is “America/Los_Angeles.”
If you wanted to create a TimeZone object loaded with Pacific Standard Time, you would
use the following Java statement:

TimeZone timeZone = TimeZone.getTimeZone("America/Los_Angeles");

If you don’t know all of the supported TimeZone ID values, you can use the .getAvailableIDs()
method, and then iterate through all the supported Time Zone ID values. You can choose a
supported TimeZone ID and then obtain that time zone. If a TimeZone ID that you want to
use is not represented by one of the currently supported TimeZone ID values, then a custom
TimeZone ID can be specified by a developer in order to produce a custom TimeZone ID.
The syntax of a custom TimeZone ID is CustomID: GMT Sign Hours : Minutes.

When you create the TimeZone object, it will create your custom TimeZone ID attribute. This
NormalizedCustomID will be configured using the following syntax: GMT Sign (OneDigit,
or TwoDigit) Hours: (TwoDigit) Minutes. Other acceptable formats include GMT Sign Hours
Minutes and GMT Sign Hours.

The sign will be either a + or a - minus (hyphen) sign, and the TwoDigit Hours will range
between 00 and 23. The Minutes always use two digits, from 00 to 59.

Digits will always be one of the following: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9.

Hours need to be between 0 to 23 and Minutes must be between 00 to 59. For example,
“GMT+10” means ten hours ahead of the GMT, where “GMT+0010” means ten minutes
ahead of the GMT, so “GMT+1010” would be ten hours ten minutes ahead of the GMT, and
so forth.

The TimeZone data format is location independent, and digits must be taken from the Basic
Latin block of the Unicode standard. It’s important to note that you cannot specify a custom
daylight savings time transition schedule using a custom TimeZone ID. If your specified
String value does not match the required syntax, then the “GMT” String value will be utilized.

When you create the TimeZone object, it will create your custom TimeZone ID attribute.
This NormalizedCustomID will be configured using the following syntax: GMT Sign
TwoDigitHours : Minutes.

The sign will be either a + plus or a - minus sign, and the OneDigit Hours will range from
1 through 9, and the TwoDigit Hours will range between 10 and 23. The Minutes also use
two digits, ranging from 00 through 59. As an example, TimeZone.getTimeZone("GMT-8").
getID() will return a GMT-08:00 data value.

185CHAPTER 8: A Watch Faces Timing Engine: Using TimeZone, Time, and BroadcastReceiver

The TimeZone class has 21 methods, which I will not go into great detail here, but you will
be using the .getID() and .getDefault() methods in your Watch Faces application code.
These will allow you to obtain the current time zone in use by an Android user and its
ID, so that you can switch time zones in your Watch Faces application if the user’s host
device (phone or tablet) does so at any time. The watch face design will then reflect this
time zone change as well.

If you want to dive more deeply into all these powerful time zone methods, you can visit the
TimeZone URL on the docs.oracle.com web site:

http://docs.oracle.com/javase/7/docs/api/java/util/TimeZone.html

Next, let’s start to implement some of these classes you have been learning about by using
some time-related Java 7 code in your ProWatchFaceService class. After that, you will learn
about Android BroadcastReceiver and how it allows you to broadcast (and receive) time-
related data from the host phone that can be used to set the timezone (in real time no less)
on a watch face.

Keep Watch Face Time: WATCH_FACE_UPDATE Constant
Let’s get started by adding the timing-related Java code to the watchface app by adding the
constant that defines the update rate for the watch face. A TimeUnit will be used to do this,
and you will use one-thousand (millisecond) timing resolution for the watch face, because
you will be using a second hand.

As you know, the TimeUnit class methods use a long data type, and because this is a
constant that will only be used inside the class, let’s make this a private static final long
variable. You can name this WATCH_FACE_UPDATE_RATE, because that’s what it will
represent within the context of this application.

You will set this constant equal to a TimeUnit value of 1000, where you will use the TimeUnit.
SECONDS.toMillis(1) construct to set this value. A SECONDS constant in the TimeUnit class
represents that you are dealing with seconds as the time unit, and the .toMillis(1) method
call (and parameter) converts one second to its milliseconds value, which, as I already
mentioned, is 1000.

The Java code for this constant declaration statement should go at the top of the
ProWatchFaceService.java class, as shown in Figure 8-9, and should look like the following:

private static final long WATCH_FACE_UPDATE_RATE = TimeUnit.SECONDS.toMillis(1);

http://docs.oracle.com/javase/7/docs/api/java/util/TimeZone.html

186 CHAPTER 8: A Watch Faces Timing Engine: Using TimeZone, Time, and BroadcastReceiver

Android Classes: Time, Handler, and BroadcastReceiver
Besides the WatchFaceService and WatchFaceService.Engine classes, which you already
subclassed in Chapter 7 and whose methods I will be delving into in great detail in Chapter
9, there are a few other important Android classes that are utilized in Watch Faces Design.
I want to cover these in detail during this section, as well as implement some of their key
methods in the public ProWatchFaceService and the private Engine classes to show you
how these classes are used in Watch Faces App Design.

First, let’s start with the Android Time class, which is used to hold the current time value and
is accurate to the second. Next, I’ll discuss the Android BroadcastReceiver class, which is
used to receive time zone changes, and finally, I’ll discuss the Handler class, which is used
to send messages containing the updated timezone value.

The Android Time Class: Time Processing Using Seconds
The Android Time class is a public class that extends the java.lang.Object class. The class
hierarchy for the Time class looks like the following:

java.lang.Object
 > android.text.format.Time

This Time class is the Android alternative to the java.util.Calendar and the java.util.
GregorianCalendar classes. This is why you’re going to utilize it with the Watch Faces API.
A Time object (an instance of the Time class) is used to represent a single moment in time
and specifies time using SECONDS as far as time precision is concerned, which works well
for Watch Face app usage. It is important to note that the Time class is not thread-safe and
does not consider leap seconds. None of these feature limitations presents any problems for
a watch face application implementation, however.

Figure 8-9. Add a private static final long WATCH_FACE_UPDATE_RATE variable and convert it to MILLISECONDS

http://dx.doi.org/10.1007/9781430265504_7
http://dx.doi.org/10.1007/9781430265504_9

187CHAPTER 8: A Watch Faces Timing Engine: Using TimeZone, Time, and BroadcastReceiver

The Time class has a number of calendar (day and date specific) issues, and if you’re using
it for a calendar-centric usage, it is recommended that you use the GregorianCalendar class
for calendar-related applications.

When performing time calculations with the Time class, arithmetic currently uses 32-bit
integer numeric representation. This limits your reliable time range representation from 1902
through 2037, meaning if you use this class for Calendar-centric watch face design, you
will need to rewrite your code around two decades from now. Much of the formatting and
parsing of Time objects uses ASCII text, and, therefore, this class is also not suitable for use
with non-ASCII time processing, which doesn’t apply to WatchFace apps.

The Time class features three overloaded constructor methods. One of these allows you to
specify a TimeZone for the Time object, and it looks like this:

Time(String timezoneId)

The constructor method, which you will be using, allows you to construct a Time object in
the current, or default, time zone and will look like this:

Time()

The third constructor allows you to make a copy of an existing Time object by passing
an existing Time object as a parameter. This should be used for “nondestructive editing”
purposes, for instance, and it will look like this:

Time(Time other)

The Time class contains 26 methods, which I am not going to cover in detail here. Because
you are only going to be using the .clear() and the .setToNow() method calls with your
Watch Faces application, I will cover those methods in detail here. If you’re interested in
learning about the other two dozen methods in the Time class, you can find this information
on the Android Developer web site:

http://developer.android.com/reference/android/text/format/Time.html

The public void clear (String timezoneId) method was added into Android in API Level 3
and, when called, it resets (clears out) all current time values and sets the time zone to the
TimeZone value, which is specified inside the method call parameter area using a String
object and its data value.

The .clear() method call will also set the isDst (is daylight saving time) attribute (or property)
of the Time object to have a negative value, which signifies that it is “unknown” if daylight
saving time is active (or not).

This .clear() method call is usually used before the .setToNow(), or other set() method call, is
used. This will ensure that a Time object is cleared and that it is set to the current time zone
before a time value is loaded.

http://developer.android.com/reference/android/text/format/Time.html

188 CHAPTER 8: A Watch Faces Timing Engine: Using TimeZone, Time, and BroadcastReceiver

The public void .setToNow() method has no parameters, and when it is called it sets
the Time object to the current time, using the settings being used in your user’s Android
operating system and hardware devices. This method was also added in API Level 3,
and you’ll be using it after the clear() method call, using the following Java programming
statements:

watchFaceTime.clear(intent.getStringExtra("time-zone"));
watchFaceTime.setToNow();

Next, let’s create a Time object in the Watch Face application. After you do that, I will get
into how TimeZone data values will be broadcast between a Host (smartphone or tablet)
and a smartwatch, using the Android BroadcastReceiver class. Then, I will get into how the
system time itself is sent to the smartwatch, using the Handler class, and custom messaging
that you’ll create in an updateTimeHandler object.

Adding the Watch Face Time Object: watchFaceTime
Add a Time object as a first line of code in your Engine class. Select the android.text.
format Time version seen in the helper dialog in Figure 8-10.

Figure 8-10. Add a Time object declaration at the top of your Engine class; select the android.text.format version

Name the Time object that you’re declaring for use watchFaceTime. Once the Java
statement is in place, use the Alt+Enter shortcut and import the Time class. Select an
android.text.format.Time version, as shown in Figure 8-11.

189CHAPTER 8: A Watch Faces Timing Engine: Using TimeZone, Time, and BroadcastReceiver

Now that you’ve declared your watchFaceTime Time object, the time has come to construct
the object using the Java new keyword. You will do this inside the onCreate() method,
because this is where it is best to create things for use in the watch face application.

The Java programming statement to construct the Time object is simple, as shown
highlighted in Figure 8-12, and it should look like the following:

watchFaceTime = new Time();

Figure 8-11. Name a Time object watchFaceTime, use Alt+Enter to import Time class; select android.text.format.Time

Figure 8-12. Inside the Engine class, construct your watchFaceTime Time object by using the Java new keyword

Now that the Time object that will hold your Time value is in place, let’s take a look at
how to broadcast the current TimeZone setting. You will do that so that if the user is
traveling, or manually changes the time zone, it will immediately be reflected in the Watch
Face Time Display.

190 CHAPTER 8: A Watch Faces Timing Engine: Using TimeZone, Time, and BroadcastReceiver

Android’s BroadcastReceiver Class: Broadcasting Time Messages
Android’s public abstract BroadcastReceiver class extends java.lang.Object and
has four known direct subclasses: WakefulBroadcastReceiver, AppWidgetProvider,
DeviceAdminReceiver, and RestrictionsReceiver. The Java class hierarchy for this
BroadcastReceiver class looks like the following:

java.lang.Object
 > android.content.BroadcastReceiver

A BroadcastReceiver class provides Intent broadcasting (delivery) methods. This class
provides the infrastructure that will allow your watch faces to receive Intents sent by the
Android OS whenever the time zone has changed.

You will dynamically register an instance of this class in your watch face app by
implementing a private void registerTimeZoneReceiver() method. This method will be
called whenever a watch face goes to sleep (is not visible) and then wakes up, setting the
updateTimeZoneReceiver flag and sending out an Intent object loaded with an
ACTION_TIMEZONE_CHANGED constant.

This TimeZoneChange Intent will then ascertain if your user’s time zone has changed
(since their watch went to sleep and woke up), and then calls the timeZoneReceiver
BroadcastReceiver object by using the .registerReceiver() method. You will be creating
this timeZoneReceiver BroadcastReceiver in the next section of this chapter. The
timeZoneReceiver BroadcastReceiver object will set your Time object to the TimeZone
object. This will ensure that the time zone your watch face is using is always current.

This BroadcastReceiver class has one basic BroadcastReceiver() constructor method call,
and it has 18 methods. I will not be covering all of these in detail here, however, I will cover
the .onReceive() method, which you will be using in the Watch Face application. If you want
to research this class in detail, you can visit the Android developer web site at this URL:

http://developer.android.com/reference/android/content/BroadcastReceiver.html

This public abstract void onReceive(Context context, Intent intent) method takes two
parameters. The first is the Context object named context, which contains the Context
object for your (private) Engine class, in which this BroadcastReceiver is running. The
second is the Intent object named intent, which is the Intent object that will be received by
your timeZoneReceiver object. This method is an original Android method originating in API
Level 1, since BroadcastReceiver objects were a core building block for Android.

The method that calls out to this .onReceive() method, when you wish your BroadcastReceiver
object to receive Intent broadcasts, is registerReceiver. The .registerReceiver
(BroadcastReceiver, IntentFilter) method also has the .unregisterReceiver
(BroadcastReceiver) counterpart, both of which you will be implementing during this chapter
to create a Time Zone Broadcast System.

http://developer.android.com/reference/android/content/BroadcastReceiver.html

191CHAPTER 8: A Watch Faces Timing Engine: Using TimeZone, Time, and BroadcastReceiver

It is also important to note that you can’t launch any pop-up dialog in the implementation
of the .onReceive() method, and that implementations of the .onReceive() method should
respond only to known operating system actions, such as the ACTION_TIMEZONE_
CHANGED, that you will be using. Implementations should ignore any “unexpected”
(unknown to the operating system) or custom Intents that your .onReceive() method
implementation might receive.

Now let’s implement timeZoneReceiver BroadcastReceiver and its public void .onReceive()
method on the inside of your private Engine class.

Adding a Time Zone BroadcastReceiver Object: timeZoneReceiver
Let’s add a final BroadcastReceiver object named timeZoneReceiver after the Time object
named watchFaceTime and use the Java new keyword and type the first few letters of
BroadcastReceiver to bring up the method helper dialog. Double-click the BroadcastReceiver
(android.content) option and insert that constructor method into your Java code, as shown
in Figure 8-13.

Figure 8-13. Add a final BroadcastReceiver object, named timeZoneReceiver, after your watchFaceTime object

Click the drop-down arrow indicator located next to the red error lightbulb on the left side
of that line of Java 7 code. Select the Implement Methods option, as seen on the left side of
Figure 8-14, and in the Select Methods to Implement dialog, as shown on the right side
of Figure 8-14, select the onReceive(context:Context,intent:Intent):void and click the
OK button.

192 CHAPTER 8: A Watch Faces Timing Engine: Using TimeZone, Time, and BroadcastReceiver

After you click OK, the IntelliJ IDEA will create an empty bootstrap method structure for this
public void onReceive(Context context, Intent intent){ } method implementation for you.
Now all that you need to do is clear the watchFaceTime Time object and load it with the new
TimeZone information in an Intent object named intent, which is passed into the method.
The TimeZone String is accessed using the .getStringExtra() method called off of intent
using the extra data field named “time-zone” to access this TimeZone data.

After that is done, all you have to do is set your watchFaceTime object to the current
system time by using the .setToNow() method call, and your Time object is now set to
the correct time zone and time information. This Java code for your .onReceive() method
implementation should look like the following Java 7 method structure:

@Override
public void onReceive(Context context, Intent intent) {
 watchFaceTime.clear(intent.getStringExtra("time-zone"));
 watchFaceTime.setToNow();
}

As you can see in Figure 8-15, the code is error free, and you are ready to add in a boolean
flag variable, which will tell you when your watch face has gone to sleep and that it needs to
check your OS Time Zone setting when it wakes back up! Let’s do that next, and then I will
explain more about the Android Handler class.

Figure 8-14. Add a Java new keyword and BroadcastReceiver() constructor method; select Implement Methods

193CHAPTER 8: A Watch Faces Timing Engine: Using TimeZone, Time, and BroadcastReceiver

The final thing you need to do relative to this timeZoneReceiver is to create a boolean “flag”
variable that tells you when you need to update this timeZoneReceiver.

Let’s name the flag updateTimeZoneReceiver and set it to an initial value of false,
as shown in Figure 8-16, because the assumption is that a watch face has not initially
gone to sleep, and that the .onReceive() method in your timeZoneReceiver object does
not need to be called (as it would be if this were set to true). This boolean flag needs to
start out as false. Later on, in .registerReceiver(), this boolean flag will be set to true,
and in .unRegisterReceiver(), this boolean flag will be set back to false to unregister a
BroadcastReceiver.

boolean updateTimeZoneReceiver = false;

Figure 8-15. Inside the onReceive() method add .clear() and .setToNow() method calls off the watchFaceTime object

194 CHAPTER 8: A Watch Faces Timing Engine: Using TimeZone, Time, and BroadcastReceiver

This boolean updateTimeZoneReceiver, being set to a false value initially, indicates that
a BroadcastReceiver is not registered for use. In this next section, you will create the
.registerTimeZoneReceiver() method, which will set this value to true, indicating that a
BroadcastReceiver is being used.

Your timeZoneReceiver BroadcastReceiver object will then update a TimeZone object value
and then your .unregisterTimeZoneReceiver() method, which you will also be creating
during this chapter, will set this boolean value back to false.

Let’s get to work creating your register, and unregister, TimeZoneReceiver methods, so I can
get into the Handler class and more time-related code!

Calling Your timeZoneReceiver Object: registerTimeZoneReceiver()
Underneath the boolean updateTimeZoneReceiver variable, create the private void
registerTimeZoneReceiver() method structure, and inside it, create an if() conditional
statement. Inside the evaluation area of this if() statement, type the first few letters of
the updateTimeZoneReceiver object, and then select it from the pop-up helper dialog by
double-clicking it. This selection is shown highlighted in blue, at the bottom of Figure 8-17.

Figure 8-16. After the timeZoneReceiver add a boolean updateTimeZoneReceiver variable set to a value of false

195CHAPTER 8: A Watch Faces Timing Engine: Using TimeZone, Time, and BroadcastReceiver

Figure 8-17. Create a private void registerTimeZoneReceiver() method and add an if condition by typing the first few
letters of update

Finish the initial conditional if() structure for the method, providing an exit to this
method if your updateTimeZoneReceiver boolean flag is already set to a true value.
The if(updateTimeZoneReceiver) construct would equate to true, whereas the
if(!updateTimeZoneReceiver) construct would equate to false, as you’ll be doing inside
your .unregisterTimeZoneReceiver() method.

Therefore, the following conditional if() statement structure will “break” out of this method,
that is, exit this method without doing anything else, if the updateTimeZomeReceiver
boolean flag is already set to a true value:

if(updateTimeZoneReceiver) { return; }

So the logic here is, if the receiver is already registered, the method is not needed, so let’s
get back out of it by using the Java return keyword.

Once you have ascertained that your updateTimeZoneReceiver boolean flag is set to a false
value, as it will be on the start of the application thanks to your variable creation and the
initialization statement you put into place in the previous section, you’ll set the boolean flag
to a true value by using the following Java statement, which can be seen in Figure 8-18:

updateTimeZoneReceiver = true;

196 CHAPTER 8: A Watch Faces Timing Engine: Using TimeZone, Time, and BroadcastReceiver

Figure 8-18. If updateTimeZoneReceiver is true, return (exit the method); then set updateTimeZoneReceiver to true

The next thing you need to do is create your Intent object that is loaded with the
ACTION_TIMEZONE_CHANGED Intent, which will tell the Android OS what you are looking
to ascertain from the user’s system settings area.

This can be done using an Android IntentFilter class, so you will need to create a complex
IntentFilter Java statement that declares that class for usage, names the IntentFilter object
intentFilter, constructs that object using a IntentFilter() constructor method, and finally
loads it with a Changed Time Zone Intent by using the Intent.ACTION_TIMEZONE_
CHANGED reference to that Intent class (object) constant value.

Type in the Java statement as shown in Figure 8-19, using a pop-up helper dialog to find
the correct Android operating system Intent constant. These Intent constants that populate
the helper dialog list when you type in the word ACTION_ are what I was referring to earlier
as known operating system actions, as they’re “hard coded” inside the Android OS using
the Intent class. This is the reason that a “reference path” to the constant uses the format
Intent.ACTION_TIMEZONE_CHANGED because the constant is in that class.

The Java code, shown at the bottom of Figure 8-19, should look like this:

IntentFilter intentFilter = new IntentFilter(Intent.ACTION_TIMEZONE_CHANGED);

197CHAPTER 8: A Watch Faces Timing Engine: Using TimeZone, Time, and BroadcastReceiver

Finally, you need to use the .registerReceiver() method call to register your timeZoneReceiver
BroadcastReceiver object. This enables the timeZoneReceiver object for a one-time use and
will also send it over the Intent object you just created in the IntentFilter class.

This is done by using the following Java 7 statement, which can be seen in Figure 8-20, as
it’s being created using the IntelliJ pop-up helper dialog:

ProWatchFaceService.this.registerReceiver(timeZoneReceiver, intentFilter);

Figure 8-19. Add an IntentFilter named intentFilter, construct it using a new keyword, and type Intent.ACTION_T

Figure 8-20. Call a .registerReceiver() method off the Context (this keyword) for the ProWatchFaceService class

198 CHAPTER 8: A Watch Faces Timing Engine: Using TimeZone, Time, and BroadcastReceiver

This calls the .registerReceiver method, off the Context object for your
ProWatchFaceService class, using the Java this keyword and dot notation to reference
a Context object, using ProWatchFaceService.this at the first part of the programming
statement. Inside your method call parameter area, you will pass a timeZoneReceiver
BroadcastReceiver object, as well as the intentFilter object you created and loaded with the
ACTION_TIMEZONE_CHANGED Intent object in your previous line of code.

To create this, type ProWatchFaceService.this and a period, and select the .registerRece
iver(BroadcastReceiver receiver, IntentFilter filter) option, and insert the method call into
your programming statement, as shown at the bottom of Figure 8-20.

Now all you have to do is specify the timeZoneReceiver object as your
BroadcastReceiver for the method and specify the intentFilter object you created holding the
ACTION_TIMEZONE_CHANGED Intent object. After you have done this, your Java code will
be error-free, as shown in Figure 8-21, and you will have your .registerTimeZoneReceiver()
method ready for use!

Figure 8-21. In the .registerReceiver() parameter area, call a timeZoneReceiver object with the intentFilter Intent

Next, you need to create the .unregisterTimeZoneReceiver() method that will unregister
the BroadcastReceiver object and set the updateTimeZone boolean flag variable back to its
original false value.

Calling Your timeZoneReceiver Object: registerTimeZoneReceiver()
Underneath your private void .registerTimeZoneReceiver() method, create an empty private
void unregisterTimeZoneReceiver() method structure, with the following Java keywords
and code, as shown at the bottom of Figure 8-22:

private void unregisterTimeZoneReceiver() { your custom method code will go inside here }

199CHAPTER 8: A Watch Faces Timing Engine: Using TimeZone, Time, and BroadcastReceiver

Inside this method, create another conditional if() structure. Inside the evaluation area of
the if() statement, type in the false value for the updateTimeZoneReceiver object, which
would be if(!updateTimeZoneReceiver), and then a return statement inside the curly braces
for the body of the conditional if() statement. This will exit the method if your boolean flag is
already false. Otherwise, the next line of code sets the flag to false, so that it is set back to
false when you unregister the receiver. The code structure should look like the following, and
can be seen in Figure 8-23:

private void unregisterTimeZoneReceiver() {
 if(!updateTimeZoneReceiver) { return; }
 updateTimeZoneReceiver = false;
}

Figure 8-22. Add a private void unregisterTimeZoneReceiver() method after a registerTimeZoneReceiver method

200 CHAPTER 8: A Watch Faces Timing Engine: Using TimeZone, Time, and BroadcastReceiver

Next type in the ProWatchFaceService.this Context object and a period, and select the
unregisterReceiver(BroadcastReceiver receiver) dialog option, as shown in Figure 8-24.

Figure 8-24. Add the method call to .unregisterReceiver() off your ProWatchFaceService.this Context object

Figure 8-23. Add a conditional if(!updateTimeZoneReceiver) statement inside the method with a return statement

201CHAPTER 8: A Watch Faces Timing Engine: Using TimeZone, Time, and BroadcastReceiver

Inside the .unregisterReceiver() method call, pass the timeZoneReceiver BroadcastReceiver
object. This will then unregister that BroadcastReceiver object and will therefore allow this
BroadcastReceiver object to be used, again, to poll for the current time zone in use by your
watch face user, as shown in Figure 8-25.

Figure 8-25. Pass the timeZoneReceiver BroadcastReceiver object as your parameter for .unregisterReceiver()

You’ll be implementing these two methods in the next chapter, when I will cover the core
WatchFaceService classes and methods used for the Watch Faces API.

Summary
In this chapter, you learned about some of the Java utility classes and Android classes that
are used for Watch Faces application development. They included the SurfaceHolder class,
which you used to create the surface for your watch face, and the WatchFaceStyle.Builder
class, which you used to style the watch face with the required Android UI elements.

Next, I delved into Android time-related classes, including Time, TimeUnit, and TimeZone.
I also explained the BroadcastReceiver class as well as Intent objects, and you learned
how to use the .registerReceiver() and .unregisterReceiver() methods to control a
BroadcastReceiver object. You’ll use this TimeZone broadcasting system in the next chapter
to check on the user’s time zone every time a watch face goes to sleep.

In the next chapter, you’ll learn about the core WatchFaceService.Engine methods.

203

Chapter 9
Implement a WatchFaces
Engine: Core WatchFaces
API Methods

Now that you have put the Canvas SurfaceHolder, WatchFaceStyle, TimeZone, TimeUnit,
Time, and BroadcastReceiver objects into place for your WatchFace application, you are
ready to start getting into the advanced core methods that implement the WatchFaces API.

This chapter will take an in-depth look at the superclasses for the
CanvasWatchFacesService and the CanvasWatchFacesService.Engine on which you
based your ProWatchFaceService class and Engine class. It is important to learn about the
WatchFaceService and WatchFaceService.Engine classes because these contain the
methods, attributes, and constants you’ll need to know about to correctly implement the
WatchFaces API.

The WatchFaceService class contains the constants you’ll utilize in your Watch Face
applications, and the WatchFaceService.Engine nested class contains 14 methods, more
than half of which you’ll be implementing in your ProWatchFaceService public class inside
the private Engine class.

The majority of this chapter’s discussion will focus on these methods, which will need
to be implemented inside the private Engine class for the core Watch Faces API Engine
functionality. First, I’ll explain how to use the Android Handler class to update the watch
face time once per second in interactive mode. Then I’ll explain Android Message and
System. There are a ton of Android classes and methods that you will learn about during
this chapter, so let’s get started implementing the core WatchFaces API methods.

204 CHAPTER 9: Implement a WatchFaces Engine: Core WatchFaces API Methods

WatchFace Seconds Time Engine: Using a Handler
Before I get into those core WatchFaceService.Engine methods, there are a few
more objects and methods that you need to implement relating to the second hand
time animation.

The way you update a second hand each second in Android is by using a Handler object.
For this reason, I’ll give you an overview of the Android Handler class, and after that you will
create the updateTimeHandler Handler object and a .handleMessage() method structure
that implements the watch face second hand time update programming logic.

Android’s Handler Class: Handling Time Update Messages
The Android Handler class is a public class that extends java.lang.Object, which means it
was scratch-coded to implement thread and message handling for Android OS. The class
hierarchy for the Handler class looks like this:

java.lang.Object
 > android.os.Handler

This Handler class has four known direct subclasses: HttpAuthHandler, AsyncQueryHandler,
AsyncQueryHandler.WorkerHandler, and SslErrorHandler.

The Handler class (object) will allow you to send, and process, Message or Runnable
objects that are associated with the application thread and its MessageQueue. You will
be using a Message object to implement the updateTimeHandler Handler object and its
.handleMessage() method.

Each Handler object instance will be associated with one single Thread and that Thread object’s
MessageQueue object. When you create your new Handler object, it is “bound” to a Thread
object and MessageQueue object belonging to the Thread object that created the Handler object.
Once the Handler is constructed, that Handler object will deliver messages (and runnables) for
that MessageQueue object, processing them as they leave the MessageQueue.

There are two primary uses for the Handler object: scheduling messages to be processed
or runnables to be executed at some time in the future, and queuing an action that needs to
be performed on a thread other than the application’s primary thread. You’ll use the former
in the Watch Faces API implementation in the next section of this chapter. Scheduling
a message is accomplished using a .post(Runnable) method, .postAtTime(Runnable,
long) method, .postDelayed(Runnable, long) method, .sendEmptyMessage(int)
method, .sendMessage(Message), .sendMessageAtTime(Message, long) method, or
sendMessageDelayed(Message, long) method.

Here you will be using the .sendEmptyMessage() method call in the .updateTimer()
method, which you will be writing after you implement the Handler object.

The post version of these methods will allow you to queue Runnable objects to be called by
a MessageQueue object after they are received, whereas the sendMessage version of these
methods allows developers to queue up Messages containing data Bundle objects that can be
processed by a Handler object’s handleMessage(Message) method, which you are required
to implement in the Handler object. You will be doing that in the next section of this chapter.

205CHAPTER 9: Implement a WatchFaces Engine: Core WatchFaces API Methods

When posting or sending to a Handler object, you can either allow the item to be processed
as soon as the MessageQueue object is ready, or you could specify a delay (before it gets
processed) or an absolute time for it to be processed. Here you will use the former, however,
the latter two will allow you to implement timeouts, ticks, or other time-based behaviors.

When a process is created for your WatchFaces application, the main thread is dedicated
to hosting this MessageQueue object. This object manages the “top-level” application
objects (Activity, BroadcastReceiver, Service) and any of the display windows they might
need to create.

You can create your own thread and communicate with your main application thread using a
Handler. In the example in this chapter, you will be creating an updateTimeHandler. This is
done by calling the same post or sendMessage methods as before but from a new thread.
A Message (or Runnable) will then be scheduled in your Handler object’s MessageQueue
object and processed whenever it is requested using a Message object, at least as far as the
implementation for the example in this chapter goes.

The Handler class has one nested class, the public static interface called Handler.Callback
in the android.os package. This nested class provides the Handler callback interface you will
use when instantiating the Handler to avoid having to implement your own custom subclass
of Handler. This nested class has one method, .handleMessage(Message message), which
you’ll be using in the Java code for the updateTimeHandler Handler object you’ll be coding.

The Handler class has four overloaded public constructor methods that you’ll be using for
the Watch Faces API implementation in this chapter. The simplest one you’ll be using looks
like the following, including the Java new keyword:

final Handler updateTimeHandler = new Handler() { Message Handling code will go in here }

If you construct the Handler.Callback object, you would use the following constructor
method format:

Handler(Handler.Callback callback)

You could also provide your own customized Message Looper object using the following
Handler constructor method format:

Handler(Looper looper)

Custom Looper objects, which allow you to create a MessageQueue for custom Threads,
are not needed for Watch Faces API implementation, so I will not cover this in depth in
this book. That said, I’ll cover the Handler constructor methods in detail here for the sake
of completeness.

The fourth and final constructor method provides the Message Looper object and
accepts a Handler.Callback object in the same constructor method call, as shown in the
following code:

Handler(Looper looper, Handler.Callback callback)

206 CHAPTER 9: Implement a WatchFaces Engine: Core WatchFaces API Methods

The Handler class supports 30 methods, which I clearly cannot cover in detail here, so I’ll be
covering the three methods you will be using in the code in the next section of this chapter.
If you wanted to research all 30 in detail, you can visit the following developer web site URL:

http://developer.android.com/reference/android/os/Handler.html

The main method you’ll be implementing inside the updateTimeHandler object to
handle messages is the, you guessed it, .handleMessage() method. This public void
handleMessage(Message msg) method will take the .handleMessage(Message
yourMessageNameHere) generic format. The method was added in API Level 1, as it is a
core feature and function for Android OS.

You will be using two other Handler class methods to talk to the Handler object from
“outside” the updateTimeHandler object and to remove the Message object from the
MessageQueue object, when it is no longer needed.

The public final boolean sendEmptyMessage(int what) sends an empty Message object
with the what data value. This method was also added in API Level 1 and it returns a true
value if a Message object is successfully placed into the MessageQueue object. As you may
have surmised, it will return the false value upon failure.

The public final void removeMessages(int what) method, on the other hand, will remove
any and all pending scheduling of Message objects that use the integer code for the what
attribute of the Message object. In the watch faces application case, this will be zero, which
is currently inside the MessageQueue object. Let’s look at the Android Message class next
so you’ll get an overview of all of the object types you’ll be using.

Android’s Message Class: Create a Time Update Message
Android Message is a public final class that extends the java.lang.Object master class,
meaning that it was scratch-coded for holding Message objects for use with the Android OS.
The class hierarchy looks like the following:

java.lang.Object
 > android.os.Message

The Message class allows you to create, define, and instantiate the Message object that will
contain your Message description as well as any arbitrary data that need to be sent to your
Handler object. In this watch face case, that would be your updateTimeHandler.

The Message object contains two extra int fields and an extra object field that allow you to
avoid using any additional memory allocation in most uses. Whereas the constructor method
for the Message class is public, as required by the Java programming language, the best
code to create a Message object is to call Message.obtain(), or in the example here, the
Handler.sendEmptyMessage() method call. This will pull the Message object from a “pool”
of “recycled” Message objects.

http://developer.android.com/reference/android/os/Handler.html

207CHAPTER 9: Implement a WatchFaces Engine: Core WatchFaces API Methods

The Message object has a number of data fields. These provide attributes, properties, or
data fields (select a term most comfortable for you to use) that you can use to describe the
content of the Message object, including arg1, arg2, obj, replyTo, sendingUid, and what.
Here you’ll be using the what attribute to send the update time message code inside a
Message object.

The public int arg1 attribute is a “low-overhead” alternative to using the Message.
setData() method if you only need to store a few integer values. A public int arg2 is also
used to provide two integer data values.

The public Object obj gives you an arbitrary object as part of the Message object so
you can send an object to the Message object recipient. The public Messenger replyTo
provides you with an (optional) Messenger object. A Messenger object is another type of
object that allows for the implementation of interprocess message-based communication.
This allows creation of a Messenger object pointing to (referencing) a Handler, all in one
process, and allows that Handler to handle the Messenger object across another process.

The public int sendingUid affords you an optional field indicating the UID (user
identification) that sent the Message object in the first place. The public int what is used
to provide a developer-defined message code. You’ll be using this in your code to allow a
recipient (Handler object) to be able to identify what the Message is all about, in this case,
watch face timing.

The Android Message class has one public constructor method, the Message() constructor;
however, the preferred way to get a Message object is to call Message.obtain() or one of the
Message.sendMessage() method calls, which will construct the Message object for you.

This Message class has close to two dozen public methods, none of which you will be using
in the watch faces development here, but if you are interested in learning more about these
methods, detailed information can be found at the developer’s web site:

http://developer.android.com/reference/android/os/Message.html

Creating a Second Hand Timer: The updateTimeHandler
Let’s create the final updateTimeHandler Handler object by typing the Java keyword
final and the class name (object name) Handler and selecting the Handler (android.os)
option from the pop-up helper dialog, as shown in Figure 9-1. Note there is also a java.
util.logging.Handler class, which is why I used this work process, so be sure to select the
correct Handler.

http://developer.android.com/reference/android/os/Message.html

208 CHAPTER 9: Implement a WatchFaces Engine: Core WatchFaces API Methods

Once you double-click the android.os.Handler class to insert it, you’ve declared the
Handler object as being final. This makes sure that it’s only assigned (to memory) once and
thus fixes it in the system memory, at the same memory location, for the duration of the
running of your application.

Next, you will finish the Handler object named updateTimeHandler, using the Java new
keyword and the Handler() constructor method call. The resulting empty Handler object
structure should look like the following Java code:

final Handler updateTimeHandler = new Handler() { // An Empty Handler Object Structure };

As you can see in Figure 9-2, the updateTimeHandler Handler object’s code is error free and
you are ready to code the public void .handleMessage() method. This message handling
method is created inside curly braces for the final updateTimeHandler Handler object
implementing the Message object handling capabilities for the updateTimeHandler handler
object. As mentioned earlier, this is the method that is required for implementation. Once this
is done, a Handler object is “viable” and other methods can be called off it.

Figure 9-1. Add a final Handler object declaration using the pop-up helper dialog to find the android.os Handler

209CHAPTER 9: Implement a WatchFaces Engine: Core WatchFaces API Methods

Inside the updateTimeHandler object, you’ll add an @Override public void
handleMessage(Message) method structure, selecting the android.os.Message option in
the pop-up, as shown in Figure 9-3, using the following Java code:

@Override
public void handleMethod(Message updateTimeMessage) { // Message object evaluation goes in
here }

Figure 9-2. Use the Java new keyword and Handler() constructor method to create an empty updateTimeHandler

Figure 9-3. Code a public void handleMessage(Message) method, using the pop-up to select android.os Message

210 CHAPTER 9: Implement a WatchFaces Engine: Core WatchFaces API Methods

Once you have created the empty .handleMessage() method structure, as shown in
Figure 9-4, you will need to create some Java code that will evaluate the Message object
named updateTimeMessage. This Message object is going to be automatically passed
into the .handleMessage() method whenever the Handler object is referenced with the
.sendEmptyMessage() method call. An example of this referencing can be seen in this line
of Java code:

updateTimeHandler.sendEmptyMessage(UPDATE_TIME_MESSAGE); // Send TimeZone Update Message
to Handler

You will actually be creating this line of code a bit later in the chapter.

The next step in this process is to evaluate the updateTimeMessage Message object that
is passed into the .handleMessage() method using a Java switch evaluation structure.
This structure will have case statements for each of the Message object’s what attributes.

The Message object what attribute or property can be referenced using Java dot
notation. For an updateTimeMessage Message object, this would look like
updateTimeMessage.what and would be later referenced within the switch() statement’s
evaluation parameter area, using the following Java structure:

switch(updateTimeMessage.what) { your case statements evaluating what attributes will go
in here }

As you can see in Figure 9-5, once you type in the switch() statement and the
updateTimeMessage Message object inside the evaluation parameter area and press the
period key, you will be presented with a pop-up helper dialog containing the attributes you
learned about in the previous section of this chapter. Double-click the what attribute to add
it to the switch.

Figure 9-4. The (empty) updateTimeHandler Handler object with handleMessage() processing construct is now in place

211CHAPTER 9: Implement a WatchFaces Engine: Core WatchFaces API Methods

The next thing you’ll need to do is create an update time message’s what attribute integer
data constant at the top of the private Engine class so that you have that in place before you
add a case evaluation statement. The Java keywords used to define a constant are static
and final, so your Java programming statement declaring an integer constant set to an
initial zero data value and named UPDATE_TIME_MESSAGE should look like the following:

static final int UPDATE_TIME_MESSAGE = 0;

Create a Java switch statement evaluating the what attribute, called off of the
updateTimeMessage object, and inside the UPDATE_TIME_MESSAGE constant case
evaluator, call the invalidate() method, and then break out of the switch statement.

switch(updateTimeMessage.what) {
 case UPDATE_TIME_MESSAGE:
 invalidate();
 break;
}

As you can see in Figure 9-6, your Java code is now error free, and you are ready to
implement more advanced features that kick in when the smartwatch enters ambient mode.

Figure 9-5. Add a Java switch statement that will evaluate updateTimeMessage object’s what attribute

212 CHAPTER 9: Implement a WatchFaces Engine: Core WatchFaces API Methods

Now it’s time to use the watchface Canvas object in the body of the onDraw() method.
You’ll be calling a .drawColor(int color) method off this object to set the color of the
Canvas to black. This optimizes power use for the watch faces design, of course! You
learned well in Chapter 6!

Watch Faces Time Calculation: Using System Time
The next Java code constructs you will be crafting will look at watch face modes (visible or
on vs. off, and ambient vs. interactive), and you’ll then determine if the updateTimeHandler
is needed to update the watch face design second hand if a watchface is visible and in
interactive mode. If the updateTimeHandler is needed, the system time in milliseconds will
be used to calculate the next whole second (which equates to an exact value of
1,000 milliseconds), and moves the second hand in an .onDraw() method, which you’ll be
coding in Chapter 10.

Java System Class: Accessing Time in Milliseconds
The Java public final System class extends a java.lang.Object master class and provides
access to system-related information and resources, including system time functions, which
you’ll be using, as well as standard system IO (input and output). The System class hierarchy
looks like the following:

java.lang.Object
 > java.lang.System

Figure 9-6. Declare an UPDATE_TIME_MESSAGE integer valuable and add in your switch case statement for it

http://dx.doi.org/10.1007/9781430265504_6
http://dx.doi.org/10.1007/9781430265504_10

213CHAPTER 9: Implement a WatchFaces Engine: Core WatchFaces API Methods

All of the methods in this class are accessed in a static fashion, and the class itself can’t be
instantiated. So you can’t have any System objects, but you will reference system functions
by using a System.methodCallName() approach. So, to reference the System Time using
milliseconds, your method call structure would look like the following Java code, which you’ll
be using in the next section of this chapter:

System.currentTimeMillis()

Next, let’s put the code in place that ascertains when the second hand, or seconds value,
needs to be calculated for your watch face using the custom isTimerEnabled() method.
After you do that, you can implement this method to tell you when you need to calculate
second hand timing inside the Handler object’s handleMessage() switch statement’s Java
programming structure.

Watch Face Seconds: Calculating Second Hand Movement
The first thing you’ll need to do is create a method that will return a true value if the watch
face is currently visible and not using ambient mode, which means that it is in interactive
mode and being viewed by the user. Add a line of code under the updateTimeHandler object
and declare a private boolean isTimerEnabled() method, as shown in Figure 9-7. Inside
the method body, type the Java return keyword and then the word is, and then double-click
the isVisible() method option to insert it into your code when it appears in the IntelliJ pop-up
method selector helper dialog.

Figure 9-7. Creating the private boolean isTimerEnabled() method with return statement, by typing is and then
selecting isVisible()

214 CHAPTER 9: Implement a WatchFaces Engine: Core WatchFaces API Methods

Next, type in the Java logical AND operator (&&) and the Java logical NOT (!) operator, and
then type the word is. This will bring up an IntelliJ pop-up method helper dialog where
you can then select an isInAmbientMode() method option, as seen selected with blue in
Figure 9-8. Next, double-click the method to insert it into your code and add a semicolon to
finish the return statement. Your code should be error free, as shown in Figure 9-9.

Figure 9-8. Type a Java && Logical AND operator, and the not ! symbol, and is, then select isInAmbientMode()

Now you can call this isTimerEnabled() method, inside a conditional if() structure, to
ascertain if the smartwatch is operating in interactive mode. If this method returns a
true value, you can calculate the system time to the nearest even whole second
(exactly 1,000 milliseconds) value, moving the second hand as the second occurs
precisely in the system clock.

Add a line of code inside the switch construct for the case statement for the UPDATE_TIME_
MESSAGE, after the invalidate() method call and before the Java break keyword. You will
need to first put the empty conditional if() statement in place and then create the whole
second timing logic after that.

The empty conditional if() statement that evaluates whether or not second timing needs to
be calculated should look like the following Java code:

If(isTimerEnabled()) { Your Whole Second Timer Programming Logic Will Go In Here }

As you can see in Figure 9-9, your code is error free and you are ready to add the body
of the conditional if() statement to calculate system time to the nearest whole second
value, which will then trigger the second hand to tick one more time on the user’s watch
face design.

215CHAPTER 9: Implement a WatchFaces Engine: Core WatchFaces API Methods

The first thing you’ll need to do for this nearest whole second time calculation is to get
the system time using the System.currentTimeMillis() method call and assign it to a long
variable, which you’ll name msTime.

Inside the body of the conditional if() statement, declare a long msTime variable and then
type the equals (=) operator and the System class name. Then press the period key to bring
up the IntelliJ pop-up method helper dialog, which is shown in Figure 9-10. Double-click
the currentTimeMillis() method option and insert it into your Java code to complete the
statement, declaring, naming, and setting the value for this msTime variable.

Figure 9-9. Add an if(isTimerEnabled()){ } evaluation construct after the invalidate() and before the break keyword

Figure 9-10. Declare a long variable named msTime by typing equals, System, and period; then select
currentTimeMillis()

216 CHAPTER 9: Implement a WatchFaces Engine: Core WatchFaces API Methods

Next, you’ll need to calculate a delay value that represents the number of milliseconds that
exist between the current system time and the next even 1,000-millisecond value. This would
represent the next even (exact) second, which is precisely the time value you will want to
advance the second hand in your watch face design to the next tick mark on the watch face.

As you can see in Figure 9-11, you need to add another long variable named msDelay,
which will hold the calculated delay value. This will represent the amount of milliseconds
until the next even millisecond will occur.

Figure 9-11. Declare a long variable named msDelay and then type = WATCH, select WATCH_FACE_UPDATE_RATE

Type in the Java long variable type and the msDelay variable name, as well as the equals
operator and the first few letters of WATCH_FACE_UPDATE_RATE, which is the variable
seen at the top of Figure 9-11 that holds the Time resolution value of 1,000 milliseconds for
every full second.

Find the WATCH_FACE_UPDATE_RATE option, which IntelliJ will most likely put at the top
of the list, and double-click it to insert it into your Java code. Now all you have to do is find
a “delta” or millisecond difference between the current time and the next full second, and
you’ll be finished.

The key to finding the delta, or time delay value, lies in the Java modulo operator. To
calculate this msDelay time to wait before calling the next full second hand advance,
take the 1,000-millisecond WATCH_FACE_UPDATE_RATE and subtract the modulo
(which calculates a leftover, or delta, time value) of the current millisecond time value and
1,000-millisecond time resolution, which will give you the amount of milliseconds until the
next full second. This can be done using the following Java code, as shown in Figure 9-12:

long msDelay = WATCH_FACE_UPDATE_RATE - (msTime % WATCH_FACE_UPDATE_RATE);

217CHAPTER 9: Implement a WatchFaces Engine: Core WatchFaces API Methods

As you can see, the code is now complete and error free and you’re ready to
start implementing the core methods for the WatchFaceService class and the
WatchFaceService.Engine class. I’ll present an overview of the class and its nested Engine
class, and then you’ll implement some of these methods.

WatchFaces API: Core Methods to Implement
This section will look at the core WatchFaces API methods that are held within the
WatchFaceService and WatchFaceService.Engine classes.

Android WatchFaceService Class: Core Constants
A public abstract WatchFaceService class extends a WallpaperService class, which then
extends a Service class, which extends a ContextWrapper class, which extends a Context
class, which extends a java.lang.Object class. Two known direct subclasses include the
CanvasWatchFaceService you’ll be using and Gles2WatchFaceService. The class hierarchy
for this looks like the following:

java.lang.Object
 > android.content.Context
 > android.content.ContextWrapper
 > android.app.Service
 > android.service.wallpaper.WallpaperService
 > android.support.wearable.watchface.WatchFaceService

Figure 9-12. Calculate the offset to the next full second using the msTime modulo % WATCH_FACE_UPDATE_RATE

218 CHAPTER 9: Implement a WatchFaces Engine: Core WatchFaces API Methods

WatchFaceService and WatchFaceService.Engine, which I’ll cover next, are subclasses of
WallpaperService and WallpaperService.Engine, respectively. If you want to create watch
faces for wearables, you will use this instead of the more vanilla WallpaperService, which
you would use for wallpaper apps for smartphones, tablets, e-readers, and iTV sets.

The WatchFaceService object, just like a WallpaperService, must implement one important
method, onCreateEngine(), which you implemented in Chapter 7. As you did in Chapter 7,
here you must also create the (inner class) private class Engine, extending either
WatchFaceService.Engine or one of its known direct subclasses.

This class also provides the “wake lock,” which will be held so the device doesn’t go to
sleep until a watch face finishes drawing. This is intended for watch face updates that occur
while the smartwatch is in ambient mode.

This class has one nested class named WatchFaceService.Engine, which is the actual
implementation of the Watch Faces API. I will cover this next.

This class has five constants that control things such as watchface design interruptions
(what notifications are shown) and hardware features such as screen burn-in protection and
the low-bit (power saving) ambient mode. Two of these constants are String values and three
are integer values:

The 	 INTERRUPTION_FILTER_ALL integer constant is returned by a
call to the .getInterruptionFilter() method. It can also be passed as the
parameter in the .onInterruptionFilterChanged(int) method, which you’ll
be implementing.

The 	 INTERRUPTION_FILTER_NONE integer constant is returned by a
call to the .getInterruptionFilter() method. It can also be passed as the
parameter in the .onInterruptionFilterChanged(int) method, which you’ll
be implementing.

The 	 INTERRUPTION_FILTER_PRIORITY integer constant is returned
by a call to a .getInterruptionFilter() method. It can also be passed as a
parameter in the .onInterruptionFilterChanged(int) method, which you’ll
be implementing.

The 	 PROPERTY_BURN_IN_PROTECTION String constant will pass
a Bundle object to .onPropertiesChanged(Bundle) to indicate whether
burn-in protection is supported on the smartwatch hardware.

The 	 PROPERTY_LOW_BIT_AMBIENT String constant will pass a
Bundle object to .onPropertiesChanged(Bundle) to indicate whether
there is hardware-device support for implementation of a low-bit
ambient mode.

Next, let’s implement variables that can hold these constants in your Watch Face
application. After that, I’ll cover the WatchFaceService.Engine nested class, and you
can implement the core methods that are required for a Watch Faces API–based
application. After that, you can focus on drawing your Watch Faces Design on the surface
of the watch face, which I cover in Chapter 10, and how to draw watch face element
ShapeDrawable objects.

http://dx.doi.org/10.1007/9781430265504_7
http://dx.doi.org/10.1007/9781430265504_7
http://dx.doi.org/10.1007/9781430265504_10

219CHAPTER 9: Implement a WatchFaces Engine: Core WatchFaces API Methods

Adding WatchFaceService Constants: Burn-In and Low-Bit
Because you want to support burn-in protection and low-bit ambient mode, and since the
WatchFaces API does not currently have methods for this (like the .isInAmbientMode()
method), which you have already utilized in the custom isTimerEnabled() method, let’s add
boolean variables to hold these flags.

You can declare both boolean flag variables by using a compound declaration statement,
because you are not specifically setting any default values. It is important to note that if you
don’t declare any boolean values, Java’s default initialization value for any boolean variable
will be false.

Let’s provide logical names for these boolean flags that signify what they do: let’s name
them lowBitAmbientModeFlag and burnInProtectModeFlag. Your Java compound
statement should look like the following, which is error free and shown highlighted in the
bottom half of Figure 9-13:

boolean lowBitAmbientModeFlag, burnInProtectModeFlag;

The time has come for you to implement several of the most important Watch Faces API
methods from the WatchFaceService.Engine nested class. You’ll be adding .onDestroy(),
which is in the CanvasWatchFaceService.Engine class, because it needs to “destroy”
(remove from memory) your Canvas and any related .onDraw() components that are in
system memory as well.

From the WatchFaceService.Engine class, let’s implement four methods: .onTimeTick(),
.onVisibilityChanged(), .onAmbientModeChanged(), and .getInterruptionFilter().
Remember, you already implemented .onCreate(), although you’ll be adding to this method
later on when you learn about the graphics and .onDraw() portions of your watch faces
design, which I will be covering in detail in Chapter 10.

Figure 9-13. Add boolean variables in your Engine class for lowBitAmbientModeFlag and burnInProtectModeFlag

http://dx.doi.org/10.1007/9781430265504_10

220 CHAPTER 9: Implement a WatchFaces Engine: Core WatchFaces API Methods

Android WatchFaceService.Engine Class: Core Methods
The Android WatchFaceService.Engine class is a public abstract class that extends the
WallpaperService.Engine class, which means that Google Android developers created a
Watch Faces API primarily by using the Wallpaper API.

This class represents the core Java code implementation of the Watch Faces API. You will
need to implement the .onCreateEngine() method, as you did in Chapter 7 (see Figure 7-9),
to return the Watch Face Engine implementation. The Java class hierarchy for this class will
look like the following:

java.lang.Object
 > android.service.wallpaper.WallpaperService.Engine
 > android.support.wearable.watchface.WatchFaceService.Engine

The Android WatchFaceService.Engine class has two known direct subclasses:
a CanvasWatchFaceService.Engine, which you are currently using for the
ProWatchFaceService class, and the Gles2WatchFaceService.Engine, which is used to
implement OpenGL ES 2.0 WatchFaceService.Engine functionality.

The class has one public constructor method, WatchFaceService.Engine(), and 14 public
methods, which I’ll discuss here, along with one method from the CanvasWatchFaceService.
Engine (onDestroy()) so you’ll know what all of the core Watch Faces API methods are
capable of providing.

You have already created the void .onCreate(SurfaceHolder holder) method, which is used
to create variables and objects in memory on the Watch Face Service Engine creation.

The void .onDestroy() method is actually described in the documentation for the
CanvasWatchFaceService.Engine class, on the Android developer web site, but I will
include it here, because it will be implemented in this chapter. This method will remove the
WatchFaceService.Engine from memory, and it can also remove Message objects from the
MessageQueue object. Be sure to do this before calling the super.onDestroy() statement.
The uses for the three void methods are:

The void .onTimeTick() method is called one per minute when the watch
face is in ambient mode to update the watch face’s time (hour and
minute hands).

The void .onPropertiesChanged(Bundle properties) method is called
when the properties of the hardware device are determined. This method
will be used to set the low-bit and burn-in flags you created in the
previous section.

The void .onVisibilityChanged(boolean visible) method is called to inform
you of the watch face becoming visible or hidden. You’ll be using this to
send a Message object to make sure the TimeZone object is in sync with
the Time object. What the logic does is set the Time object to the TimeZone
object value. This ensures the TimeZone is always set correctly.

http://dx.doi.org/10.1007/9781430265504_7

221CHAPTER 9: Implement a WatchFaces Engine: Core WatchFaces API Methods

Two of the methods in this class relate to setting attributes that affect the logic in the
.onDraw() method. Since I cover the Draw logic in Chapter 10, you’ll implement the next two
methods in that chapter:

A void .onAmbientModeChanged(boolean inAmbientMode) method
will be called whenever the user’s hardware device enters or exits its
ambient mode.

The void .onInterruptionFilterChanged(int interruptionFilter) method will
be called when the user changes the interruption filter setting (constant).

You’ve already implemented some of these methods in this class, such as the
.isInAmbientMode(), and there’s also a method you can use to modify a Watch Face
Style object, which you’ve already created as well. I’ll cover these two methods next,
just to be thorough:

The final boolean .isInAmbientMode() method will return your boolean
value, which will tell the app whether the watch face hardware is in
ambient mode.

The void .setWatchFaceStyle(WatchFaceStyle watchFaceStyle)
method will set WatchFaceStyle attributes so you can change UI
settings dynamically.

There are also three getter methods for this class, which allow developers to ascertain the
current state (setting) for the interruption filter, Peek Card positioning, and the unread Peek
Card count:

The final int .getInterruptionFilter() method returns interruption filter
constants that have been selected by the user and are currently in force.

The final Rect .getPeekCardPosition() method returns the screen location
X and Y coordinates of your first peeking card using the Rect object.

A final int .getUnreadCount() method will return a number for notification
cards that are currently in a “to be read queue” that have not been read.

There are also three other .on() methods that will not be implemented, but I will mention
them here just for the sake of completeness:

The Bundle .onCommand(String action, int x, int y, int z, Bundle extras,
boolean resultRequested) implements Android’s Live Wallpaper capability
for intercepting a touch event from the surface of the watch face design.

The void .onPeekCardPositionUpdate(Rect rect) method is called
whenever a first Peek Card positions itself on the watch face screen, giving
its position using a Rect object.

The void .onUnreadCountChanged(int count) method is called when the
number of unread notification cards in the “to be read queue” has changed.

I’ll spend the remainder of this chapter discussing the core watch face methods that have
not yet been added so you can then work on the .onDraw() method.

http://dx.doi.org/10.1007/9781430265504_10

222 CHAPTER 9: Implement a WatchFaces Engine: Core WatchFaces API Methods

Adding WatchFaceService.Engine Methods: Core Function
Over the rest of the chapter, I’ll discuss the other core watch face methods that have to
do with time and memory optimization. They allow you to detect whether a watch face is
visible and the power saving and screen burn-in protection modes that are available for the
smartwatch device hardware configuration the user is currently using.

Once all of these core watch face creation, styling, timing, and broadcast receiver objects
and methods have been put into place in your code, you can then focus on how to draw
your watch face design, which is covered in Chapter 10.

Telling Time While in Ambient Mode: The .onTimeTick() Method
The simplest core method to implement is the void .onTimeTick() method, so let’s start with
that and add it at the top of the private Engine class.

Add the Java @Override keyword, signifying that you are about to override the superclass
method, and type in public void onTimeTick(). Inside the method body, use a Java super
keyword to pass the .onTimeTick() method call to the CanvasWatchFaceService.Engine
superclass. Your code for the basic method body, as shown in Figure 9-14, should look like
the following:

@Override
public void onTimeTick() {
 super.onTimeTick();
}

Figure 9-14. Add public void onTimeTick() method; inside it, use the Java super keyword to call the parent method

Use the pop-up helper dialog, as shown in Figure 9-14, to select the method call.

http://dx.doi.org/10.1007/9781430265504_10

223CHAPTER 9: Implement a WatchFaces Engine: Core WatchFaces API Methods

You’ll also need to update the watch face time in this method, using the .invalidate() method
call, so that Android knows to update the time on the watch face. Make sure to put this
after the super.onTimeTick() superclass method call. This is so everything else that needs
to be done by the superclass for the .onTimeTick() method is processed before you call this
.invalidate() method call. The .onTimeTick() method structure should look like the following
code, which can be seen in Figures 9-15 and 9-16:

@Override
public void onTimeTick() {
 super.onTimeTick();
 invalidate();
}

Figure 9-15. Add an .invalidate() method call to update the watch face once the super.onTimeTick() has been called

If you want IntelliJ to write the code for you, you can simply type in an “I” and select the
invalidate() method from the pop-up helper method dialog or you can double-click the
method you want IntelliJ to write for you, as shown in Figure 9-15.

Let’s code another relatively simple method next, the .onDestroy() method.

Removing a Watch Face from Memory: The .onDestroy() Method
Add another Java @Override keyword after the .onTimeTick() method, again signifying that
you are about to override the superclass method, and type in public void onDestroy().
Inside the method body, use a Java super keyword to pass this .onDestroy() to
the CanvasWatchFaceService.Engine superclass. If you have not implemented an
updateTimeZoneReceiver function in the watchface application, this would be all that you
would need to do.

224 CHAPTER 9: Implement a WatchFaces Engine: Core WatchFaces API Methods

The code for the basic .onDestroy() method body would therefore look like the following
Java method structure:

@Override
public void onDestroy() {
 super.onDestroy();
}

Because you are using a BroadcastReceiver object, you’ll need to remove the Message
object from the MessageQueue object by using the .removeMessages() method call. This
will need to be done before the super.onDestroy() method call, or this will never occur
because the WatchFaceService.Engine object will no longer exist and the Message object
will still be in the queue.

So add the @Override public void onDestroy(){ } empty method structure and then add
the reference to the updateTimeHandler Handler object. Next, press the period key, to
initiate the pop-up helper dialog, and select the removeMessages(int what) option, as
shown in Figure 9-16.

Figure 9-16. Add public void onDestroy() method; inside it, use the updateTimeHandler.removeMessages() method

Inside the resulting updateTimeHandler.removeMessages() method call’s parameter area,
type in the UPDATE_TIME_MESSAGE Message object constant, or type in a “U,” and
select it from the pop-up helper dialog list. Then you can add the super.onDestroy(); Java
code statement, and you will be finished!

The .onDestroy() method structure, shown error free in Figure 9-17, should look like the
following Java code structure after you are finished:

@Override
public void onDestroy() {
 updateTimeHandler.removeMessages(UPDATE_TIME_MESSAGE);
 super.onDestroy();
}

225CHAPTER 9: Implement a WatchFaces Engine: Core WatchFaces API Methods

Next, you’ll implement the .onPropertiesChanged() method, which, at six lines of code, is a
little more complicated than the previous two methods.

Determining Low-Bit and Burn-In Modes: .onPropertiesChanged()
The next thing you need to do to is to implement an .onPropertiesChanged() method,
using the Java @Override keyword. This can be seen at the bottom of Figure 9-18, and it
results in the following empty Java method structure:

@Override
public void onPropertiesChanged(Bundle properties){ // The method implementation will
go in here }

Figure 9-18. Create an empty @Override public void onPropertiesChanged(Bundle properties) method structure

Figure 9-17. After using removeMessages() to remove Message object from MessageQueue, call super.onDestroy()

226 CHAPTER 9: Implement a WatchFaces Engine: Core WatchFaces API Methods

This method uses the Android Bundle object, named properties, to pass a bundle of
smartwatch properties into the method for processing. As you can see, at the bottom of
Figure 9-18, the Bundle class will most likely need to be imported, so click your mouse
inside the empty method and use the Alt+Enter work process to have IntelliJ write the
import android.os.Bundle import statement for you. Now you’re ready to code the
body of the method.

Inside the .onPropertiesChanged() method, type the Java super keyword and a period, and
then select the onPropertiesChanged(Bundle properties) option from the pop-up helper
dialog and double-click it to insert it into the Java statement, as shown at the bottom of
Figure 9-19.

Figure 9-19. Type in the Java super keyword, and select the onPropertiesChanged(Bundle properties) option

This will pass a Bundle object named properties to the superclass, and you will be ready to
set the properties contained in the Bundle object in the boolean variables for low-bit and
burn-in that you declared at the top of the private (inner) Engine class.

Under the super.onPropertiesChanged(properties); Java programming statement, type the
lowBitAmbientModeFlag boolean variable name, the equals sign, and then the properties
Bundle object, which you’re going to use to invoke a method call. Right after properties,
press the period key to get the pop-up method helper dialog.

When the pop-up method helper dialog appears, select the getBoolean(String key,
boolean defaultValue) option, or double-click it, which will insert the .getBoolean() method
call structure into the Java statement you are coding, as shown in Figure 9-20. Once you are
done using the IntelliJ pop-up helper dialog, the Java statement will look like this:

lowBitAmbientModeFlag = properties.getBoolean(PROPERTY_LOW_BIT_AMBIENT);

227CHAPTER 9: Implement a WatchFaces Engine: Core WatchFaces API Methods

Inside the .getBoolean() method parameter area, type a “P” and select the PROPERTY_
LOW_BIT_AMBIENT constant, as shown in Figure 9-21, which I discussed earlier in the
chapter. Double-click this to set the lowBitAmbientModeFlag variable to the value of this
LOW_BIT constant.

Figure 9-21. Type a “P” inside of the .getBoolean() method parameter area, and select PROPERTY_LOW_BIT_AMBIENT

Figure 9-20. Type in your lowBitAmbientModeFlag variable, an equals sign, and the word properties and a period

228 CHAPTER 9: Implement a WatchFaces Engine: Core WatchFaces API Methods

Now that you have extracted the low-bit ambient mode flag setting from the properties
Bundle object and set it to the lowBitAmbientModeFlag variable, you’ll need to do the exact
same thing for the burnInProtectModeFlag variable.

Underneath the lowBitAmbientModeFlag Java programming statement, type in the
burnInProtectModeFlag boolean variable name, an equals sign, and then the properties
Bundle object, which you’re going to use to invoke a method call. Right after properties,
press the period key to initiate the pop-up method helper dialog.

When the pop-up method helper dialog appears, select the getBoolean(String key,
boolean defaultValue) option, or double-click it, which will insert the .getBoolean() method
call structure into the Java statement you are coding, as was shown in Figure 9-20. Once
you are done using the IntelliJ pop-up helper dialog, your Java statement will look like this:

burnInProtectModeFlag = properties.getBoolean(PROPERTY_BURN_IN_PROTECTION);

Inside the .getBoolean() method parameter area, type a “P” and select the PROPERTY_
BURN_IN_PROTECTION constant, as shown in Figure 9-22. Double-click the constant,
which will set the burnInProtectModeFlag variable to the value of this BURN_IN constant, so
your app knows if the user’s smartwatch supports (requires, actually) burn-in protection.

Figure 9-22. Type in a burnInProtectModeFlag, set it equal to properties.getBoolean(BURN_IN_PROTECTION)

Now that you know what special screen (display) modes your user’s smartwatch hardware
supports, the next most complex (and important, for that matter) method you need to
implement is the .onVisibilityChanged() method. This method will take 10 lines of code to
implement, so, let’s get started now!

229CHAPTER 9: Implement a WatchFaces Engine: Core WatchFaces API Methods

Determining if the Watch Face Is Visibile: .onVisibilityChanged()
With the exception of .onDestroy(), you will call a super method call using the Java super
keyword and the method name first, and then implement any custom programming logic, as
you did with the previous method structure.

Let’s do that here by adding the Java @Override keyword and the public void
onVisibilityChanged(boolean visible){ } empty method structure. Inside it, type the Java
super keyword and a period character, and then select the onVisibilityChanged(boolean
visible) option, as shown in Figure 9-23. The basic method structure should look like the
following Java code:

@Override
public void onVisibilityChanged(boolean visible) {
 super.onVisibilityChanged(visible);
}

Figure 9-23. Create an onVisibilityChanged() method, type a Java super keyword, and call onVisibilityChanged()

The rest of this method will consist of the if-else conditional structure, which will tell the
watch face application what to do if the watch face is visible or not visible. The empty if-else
conditional statement looks like the following and is shown error free in Figure 9-24:

public void onVisibilityChanged(boolean visible) {
 super.onVisibilityChanged(visible);
 if(visible) { visible=true statements here } else { visible=false statement here }
}

230 CHAPTER 9: Implement a WatchFaces Engine: Core WatchFaces API Methods

The first thing to do if the watch face comes alive (visible = true) is to call the
registerTimeZoneReceiver() method to check whether the time zone has changed since
the watch went to sleep. Inside an if(visible){ } portion of the if-else conditional construct,
type the “r” character and select a registerTimeZoneReceiver() option from the helper dialog,
as shown in Figure 9-25, and insert this method call into the conditional if-else statement.

Figure 9-25. Inside the if(visible) structure, type an “r” and select the registerTimeZoneReceiver() method call

Figure 9-24. Add an empty if(visible){ } else { } conditional structure after the super.onVisibilityChanged() method

The next thing you want to do is to make sure the time zone is set in a Time object correctly
by calling a .clear() method off the watchFaceTime object. Inside the parameter area, type
“Ti” and then select a TimeZone (java.util) class from the pop-up helper dialog, as shown
in Figure 9-26.

231CHAPTER 9: Implement a WatchFaces Engine: Core WatchFaces API Methods

After the TimeZone, press the period key and select the getDefault() method, as shown in
Figure 9-27.

Figure 9-27. Type a period after the TimeZone object and select the getDefault() TimeZone method from the
pop-up helper

Figure 9-26. Call a .clear() method off a watchFaceTime Time object and select the TimeZone (java.util) option

232 CHAPTER 9: Implement a WatchFaces Engine: Core WatchFaces API Methods

After you double-click the .getDefault() TimeZone option in the pop-up helper dialog, type
a period, which will initiate another pop-up helper dialog, where you can select a getID()
method. Double-click that, which will give you the final Java statement, reloading the
TimeZone into the Time object. The final Java statement, as shown in Figure 9-28, should
look like the following:

watchFaceTime.clear(TimeZone.getDefault().getID());

The next thing that you will need to do, now that you have loaded a current TimeZone object
into the Time object, is to use the .setToNow() method call to set the Time object to the
current time using the newly loaded TimeZone as the guide to what the time value
should be set to. The Java code, which is shown error free in Figure 9-28, should look
like the following:

watchFaceTime.setToNow();

Figure 9-28. Type a first few letters of the unregisterTimeZoneReceiver() method and double-click it in the pop-up

Now all you have left to construct is the else{ } portion of this if-else conditional statement.
This is what you want the watch face application to do when the user’s smartwatch is asleep
(the watch face is not visible).

Just like you call a .registerTimeZoneReceiver() method when the watch face is visible (true),
you will similarly call an .unregisterTimeZoneReceiver() method when the watch face is
invisible (false), as shown in Figure 9-28.

Type a “u” inside the else{ } structure, and when the method helper pop-up appears, select
the unregisterTimeZoneReceiver() method that you created in Chapter 8. Double-click this
to have IntelliJ write the Java statement for you. Your error-free method is now complete, as
shown in Figure 9-29.

http://dx.doi.org/10.1007/9781430265504_8

233CHAPTER 9: Implement a WatchFaces Engine: Core WatchFaces API Methods

Figure 9-29. The onVisibilityChanged() method with both the if(visible) and else{ } portions coded and error free

Congratulations! You have now implemented all of the nongraphics portions of your
WatchFaces API application! You are now ready to get into the .onDraw() method!

Summary
In this chapter, you learned about how to create the core WatchFace Service Engine class
methods for your Watch Face Application. There are a few more that relate to the .onDraw()
related code that I am saving for the next chapter, when you’ll start learning about vector
graphics watchface design.

First, I discussed how to implement a second hand on your watch face using a Handler
object and Message object. You created an updateTimeHandler, which will allow you to
update the second hand on the watch every second.

Next, I discussed the core WatchFaces API classes: WatchFaceService and
WatchFaceService.Engine. After I went over these classes in detail, you started
implementing the constants and methods that you learned about inside the
ProWatchFaceService and Engine classes.

In the next chapter, you will start adding vector graphics 2D design elements to the Watch
Face application, and you will learn how to create a watch face using only code, because
vector graphics are created using only an SVG or Shape class, that is, using only math or
code. In Chapter 11, you’ll learn how to use bitmap graphics for your watch faces design.

http://dx.doi.org/10.1007/9781430265504_11

235

Chapter 10
WatchFaces Vector Design:
Using Vector Graphics for
WatchFaces

Now that you have most of the WatchFaces API infrastructure in place that does not directly
relate to the Canvas object you will be “painting” on using vector graphics, you are ready to
start implementing the .onDraw() method and learning about vector graphics as well as the
Android classes that implement them.

This chapter will take an in-depth look at the Android classes that are used with a Canvas
object, primarily the Android Paint class and nested classes, as you might have guessed,
since one paints on a canvas!

You will also learn about the Android Canvas class and the .drawLine() method it contains,
which you will be using to draw all the components of your watch face design.

The vector graphic draw methods, such as the .drawLine() method you’ll be using during
this chapter, use the Paint class (and object) to paint the vector (Shape) objects onto your
Canvas. In your watch face implementation thus far, this is the SurfaceHolder object that
holds this Canvas Surface object.

I will spend the majority of this chapter discussing the onDraw() method as well as methods
that will need to be implemented in order to support all of the different modes you learned
about in Chapter 6, such as low-bit ambient mode or burn-in protection mode. Once
these are in place, you will be able to finish the last few WatchFaceService.Engine method
implementations.

http://dx.doi.org/10.1007/9781430265504_6

236 CHAPTER 10: WatchFaces Vector Design: Using Vector Graphics for WatchFaces

WatchFace Painting Engine: Using the Paint Object
Before I get into the coding you will need for the objects and methods you will use to draw
the vector graphics-based watch face design on the Canvas (screen), let’s take an in-depth
look at the Android Paint class.

The way that you stroke, color, style, and anti-alias your watch face design components is
all done using constants and method calls that are from this Android Paint class and its six
nested “helper” classes.

For this reason, let’s take a close look at the Paint class, and after that, you’ll create the Java
code that draws the watch face with vectors.

Android’s Paint Class: Paint Vector Shapes on the Canvas
The public Android Paint class extends the java.lang.Object master class and was scratch-
coded to provide all the digital paint functionality for the Android OS. The Java class
hierarchy code for the Paint class looks like this:

java.lang.Object
 > android.graphics.Paint

The Paint class has one known direct subclass—the TextPaint class. A Paint class creates a
Paint object that contains information regarding the style and color. This information guides
the Android graphics engine when it comes time to draw the vector Shape objects, also
known as “geometries,” as well as Text objects (and Font objects), and it even guides how
to render any BitmapDrawable objects, which I will discuss in Chapter 11.

The Paint class has six nested classes. I will cover only two of them in detail in the chapter,
since you will be using these for the example’s Watch Faces Design, as well as in the Watch
Face Application’s Java code.

The enum Paint.Align nested class allows developers to specify how
the .drawText() method should align a Text object relative to the X,Y
coordinates.

The enum Paint.Cap nested class allows developers to specify the
treatment of (square ends or rounded ends) the beginning and ending of
stroked lines and paths. This will allow you to define the look and feel for
your second hand, minute hand, and hour hand for your watch, as well as
the tick marks.

The class Paint.FontMetrics nested class describes the metrics for Font
object implementation at any given floating point size property for Text
objects.

The class Paint.FontMetricsInt nested class provides convenience
methods for developers who wish to define FontMetrics values as
integers.

http://dx.doi.org/10.1007/9781430265504_11

237CHAPTER 10: WatchFaces Vector Design: Using Vector Graphics for WatchFaces

The enum Paint.Join nested class allows developers to specify how lines
or curve segments will “join” together (straight or curved join) on a stroked
path. This is similar to the Paint.Cap function, except that it is applied at the
join or intersection of two or more lines or paths, rather than on the open
(unjoined) end of a line or path.

The enum Paint.Style nested class specifies how vector Shape objects,
also known as primitives, are to be drawn. This can be specified with a FILL,
a STROKE, or FILL_AND_STROKE. You will be using FILL and STROKE in
your code.

The Paint class specified a dozen constant values, although one of them is no longer used
by the Android OS. I’ll mention them all here so you have a decent overview of what this
Paint class can achieve, since the graphic design is one of the key components for your
watch faces application design process.

The int ANTI_ALIAS_FLAG is a Paint flag constant that enables
anti-aliasing when your Paint object is being drawn on your Watch Face
Canvas object.

The int DEV_KERN_TEXT_FLAG is a Legacy Paint flag used to affect the
kerning of Font objects relative to Text objects. It is no longer used.

The int DITHER_FLAG is a Paint flag that enables dithering when
rendering. Turning dithering on enables true color graphics to be emulated
on hicolor (15-bit 32,767 color, or 16-bit 65,536 color) or indexed color
(8-bit or 256 color) smartwatch device hardware display screens (low color
support).

The int EMBEDDED_BITMAP_TEXT_FLAG is a Paint flag that enables you
to use Bitmap Font objects when you are drawing Text objects onto the
Watch Face.

The int FAKE_BOLD_TEXT_FLAG is a Paint flag that allows developers to
apply a synthetic bolded effect to a Text object. This is used with custom
Font definitions that do not support (come with) a Font-Bold component.

The int FILTER_BITMAP_FLAG is a Paint flag that enables bi-linear
sampling on BitmapDrawable objects if (and when) they are scaled. This
should be in use in your Watch Face application if you want the highest
quality results. (This will be covered in Chapter 11 when you learn how to
use BitmapDrawable.)

The int HINTING_OFF and the int HINTING_ON Paint flag constants
disable or enable, respectively, the Font object hinting option. Font Hinting
is the equivalent of anti-aliasing. Therefore, if you are rendering Font objects
in a Watch Face application, turn HINTING_OFF when in low-bit ambient
mode!

http://dx.doi.org/10.1007/9781430265504_11

238 CHAPTER 10: WatchFaces Vector Design: Using Vector Graphics for WatchFaces

The int LINEAR_TEXT_FLAG is a Paint flag that enables a smooth, linear
scaling of Text objects and their Font objects. This is analogous to the
filtering of BitmapDrawable objects, and therefore you would want to turn
this on.

The int STRIKE_THRU_TEXT_FLAG is a Paint flag that applies strike-
through decoration to the Text object if the Font object that Text object is
using does not include the Font-StrikeThrough Font definition component.

The int SUBPIXEL_TEXT_FLAG is a Paint flag that enables subpixel
positioning capability for the Text objects.

The int UNDERLINE_TEXT_FLAG is a Paint flag that, when enabled,
allows an underline decoration to be applied to rendered Text objects if
Font objects that the Text objects are using do not include a Font-Underline
definition component.

The Paint class has three public constructor methods, including the default Paint()
constructor, which creates a new Paint object with default settings. There is also a “flag-
savvy” constructor that creates the new Paint object while at the same time setting those
flag constants I just mentioned. This constructor uses the format Paint(int flags) to create
your new Paint with specific flag constants (features) enabled.

There is also a “copycat” Paint object constructor method that uses a form of Paint(Paint
paint) to create a new Paint object, and it initializes this using the attributes of another Paint
object by using that specified Paint object inside the parameter list area of the constructor
method call.

The Paint class supports 92 methods, which I obviously can’t cover in detail here, so I will
only be covering those methods that you will be using in the code during this chapter. If you
want to research all 92 methods in detail, you can visit the following developer web site URL:

http://developer.android.com/reference/android/graphics/Paint.html

The public void setARGB(int a, int r, int g, int b) method is a helper for the
.setColor() method. This .setARGB() method takes four color plates (or color
planes) and configures the 32-bit Color object using those data. The A or
alpha component supports 256 levels (8-bit) of transparency (opacity), the
R or red component supports 256 levels (8-bit) of red color value, the G or
green component supports 256 levels (8-bit) of green color value, and the B
or blue component supports 256 levels (8-bit) of blue color value.

The public void setAlpha(int a) method is also a .setColor() helper method,
however, it only assigns the Color object’s Alpha value, leaving RGB values
unchanged. The .setAlpha() 8-bit (integer) value must range from 0 to 255.

http://developer.android.com/reference/android/graphics/Paint.html

239CHAPTER 10: WatchFaces Vector Design: Using Vector Graphics for WatchFaces

The public void setAntiAlias(boolean aa) method is a helper for the
.setFlags() method. This method allows you to set or clear a Paint constant
called ANTI_ALIAS_FLAG, which I mentioned earlier. A true value sets anti-
aliasing on and a false value turns anti-aliasing off.

The public void setColor(int color) method sets a Paint object’s color. An
integer parameter holds a numeric value that contains the Alpha as well as
the RGB data values. This 32-bit value is not premultiplied, meaning that the
alpha can be independently set to any value via .setAlpha() regardless of the
RGB data values. You can research the Android Color class for more details.

The public void setStrokeCap(Paint.Cap cap) method sets the Paint
object’s Cap style constant. This can be BUTT (the default value), ROUND,
or SQUARE.

The public void setStrokeWidth(float width) method sets the pixel width
with which to stroke a line or path Shape object. Pass a zero to stroke
in hairline mode. Hairline always draws a single pixel independent of a
Canvas matrix. The width parameter sets a Paint object’s stroke width.
This would be used whenever the Paint object’s style is set to STROKE or
STROKE_AND_FILL.

The public void setStyle(Paint.Style style) method sets the Paint
object’s style. This is used for controlling how vector Shape primitive
geometry is interpreted. An exception to this is drawBitmap, which always
assumes FILL.

Now that you know about the basic Paint class methods and their constants, you can start
to implement the core methods and constants from this class in watch face design with only
Java code, vector (Shape) objects, and Paint objects.

WatchFaces Painting: Creating Watch Face Paint Objects
The first thing you’ll need to do is declare those Paint objects that will define how the watch
face components are going to look on the screen. The basic watch face components are the
ticks and the watch hands.

Declare Multiple Paint Objects: Using Compound Java Declarations
Now let’s add a Paint object declaration after the low-bit and burn-in boolean flag variable
declarations and name four paint objects pHourHand, pMinuteHand, pSecondHand, and
pTickMarks, as shown (highlighted) at the bottom of Figure 10-1. Click anywhere inside
the red Paint error message and use Alt+Enter to have IntelliJ write the import android.
graphics.Paint; declaration for you.

240 CHAPTER 10: WatchFaces Vector Design: Using Vector Graphics for WatchFaces

Figure 10-2. Create a public void createHourHand() method; instantiate a new Paint object named pHourHand

Figure 10-1. Add a compound Paint object declaration for pHourHand, pMinuteHand, pSecondHand, and pTickMarks

Creating a WatchFace Component Method: Configuring the Paint
The next thing you want to do is create four logical method bodies to hold the Paint object
construction (instantiation), configuration, and programming statements. I am constructing
the Java code in this fashion in case you ever wanted to go back and make each Paint
object more complex. A more organized code structure will pay off as an application
becomes more complex, and this will allow you to use expand and collapse functions.

You’ll work from the top (hour) to the bottom (second and ticks) and start with the creation of
a .createHourHand() method. The Java code will look like this:

public void createHourHand() { pHourHand = new Paint(); }

Add a line of code under the compound Paint declaration and type in the public void
createHourHand(){} empty method structure. Then, inside it, add a pHourHand = new
Paint(); Java object instantiation statement to create the first Paint object you will be
configuring to paint the hour hand. As you can see in Figure 10-2, you can select the Paint
(android.graphics) option from the pop-up helper dialog and see the nested helper classes
as well underneath it. Double-click the Paint class to insert it into the code.

241CHAPTER 10: WatchFaces Vector Design: Using Vector Graphics for WatchFaces

Now that you’ve instantiated the Paint object named pHourHand, you can start to configure
it using attributes such as color and drawing style. The most important attribute is color,
so let’s add the .setARGB() method call that will configure the HourHand Paint to be fully
opaque and to use full blue as a color. The Java statement is shown in Figure 10-3 and
should look like this:

pHourHand.setARGB(255, 0, 0, 255);

Figure 10-3. Call a .setARGB() method off the pHourHand Paint object using the IntelliJ pop-up helper dialog

Type in the pHourHand Paint object and then a period. When the pop-up helper dialog
appears, select the .setARGB(int a, int r, int g, int b) option, as shown in Figure 10-3, to
insert this method call into the Java statement, and then enter 255, 0, 0, 255.

The next most important characteristic of the hour hand is how thick it is, which is
configured using the .setStrokeWidth() method, which you’ll set to 6 pixels (6/320 is .01875
or 1.875% of the screen). The Java statement, as shown in Figure 10-4, should look like the
following in the code base:

pHourHand.setStrokeWidth(6.f);

242 CHAPTER 10: WatchFaces Vector Design: Using Vector Graphics for WatchFaces

You are configuring the Paint object as a default for the interactive watch face mode and
then detecting ambient, low-bit, and burn-in, as these arise, depending on a user’s watch
model and what it is doing at any given time. So you’ll turn anti-aliasing on for the default
mode, for optimal visual quality, and make the tip of the hour hand rounded as well.

The Java statements to accomplish this are shown in Figure 10-5 and will look like the
following code:

pHourHand.setAntiAlias(true);
pHourHand.setStrokeCap(Cap.ROUND);

Figure 10-4. Call a .setStrokeWidth() method off the pHourHand Paint object using the IntelliJ pop-up helper dialog

Figure 10-5. Call a .setAntiAlias() method and a .setStrokeCap() method off the pHourHand Paint object using
Cap.ROUND

243CHAPTER 10: WatchFaces Vector Design: Using Vector Graphics for WatchFaces

As you can see in Figure 10-5, if you type any portion of the Paint class (or object) name in
the parameter area of the .setStrokeCap() method call, you will get the Paint.Cap nested
(helper) class constants in this dialog.

Double-click the Cap.ROUND (android.graphics.Paint) option in the pop-up helper
dialog, as shown in Figure 10-5, and finish the configuration code for a public void
.createHourhand() method structure configuring a Paint object.

The finished .createHourHand() method structure, which is shown in Figure 10-6, which you
will be copying and pasting below to create the other three methods, should look like the
following Java method structure:

public void createHourHand() {
 pHourHand = new Paint();
 pHourHand.setARGB(255, 0, 0, 255);
 pHourHand.setStrokeWidth(6.f);
 pHourHand.setAntiAlias(true);
 pHourHand.setStrokeCap(Cap.ROUND);
}

Figure 10-6. Copy createHourHand() method structure; paste it underneath it to create the createMinuteHand() method

244 CHAPTER 10: WatchFaces Vector Design: Using Vector Graphics for WatchFaces

Creating Minute, Second, and Tick WatchFace Component Methods
As you can see in Figure 10-6, your Java code is now error free, and you’re ready to block
copy and paste a .createHourHand() method underneath it to create a .createMinuteHand()
method. I have bolded the parameters you will be changing in the Java code listing just prior
to this paragraph.

Because you will be using a rounded minute hand as well, you only need to change
parameters for two of the six lines of code. However, do not forget to change the
method name and the Paint object names from pHourHand to pMinuteHand. Change
the .setARGB() method call, to paint the minute hand green, by turning the green data
parameter fully on (255), and the red and blue parameters fully off (0), and then make the
minute hand 4 pixels wide instead of 6 pixels wide (4/320 will represent 1.25% of a display
screen). The code for a .createMinuteHand() method structure should look like this:

public void createMinuteHand() {
 pMinuteHand = new Paint();
 pMinuteHand.setARGB(255, 0, 255, 0);
 pMinuteHand.setStrokeWidth(4.f);
 pMinuteHand.setAntiAlias(true);
 pMinuteHand.setStrokeCap(Cap.ROUND);
}

Because you’re going to use a square second hand, you’ll need to change three parameters
in three of these six lines of code (bolded in the code above). Don’t forget to change the
method name and the Paint object names from pMinuteHand to pSecondHand.

Change the .setARGB() method call to paint the second hand red by turning a red data
parameter fully on (255), with green and blue parameters turned off (0). Let’s make the
second hand 2 pixels wide instead of 4 pixels wide (2/320 will represent 0.625% of the
display screen). The Java code for the .createSecondHand() method structure should look
like the following code:

public void createSecondHand() {
 pSecondHand = new Paint();
 pSecondHand.setARGB(255, 255, 0, 0);
 pSecondHand.setStrokeWidth(2.f);
 pSecondHand.setAntiAlias(true);
 pSecondHand.setStrokeCap(Cap.SQUARE);
}

As you can see in Figure 10-7, the code is error free and you are ready to create the final
method that will create and configure a Paint object to be used to paint tick marks around
the perimeter of the watch face.

245CHAPTER 10: WatchFaces Vector Design: Using Vector Graphics for WatchFaces

Copy and paste the CreateSecondHand() method underneath it to create a
createTickMarks() method. The only method call you’ll need to edit is your .setARGB()
method call, setting all values to 255, to make the tick marks a white color. The Java code
for the method structure should look like this:

public void createTickMarks() {
 pTickMarks = new Paint();
 pTickMarks.setARGB(255, 255, 255, 255);
 pTickMarks.setStrokeWidth(2.f);
 pTickMarks.setAntiAlias(true);
 pTickMarks.setStrokeCap(Cap.SQUARE);
}

As you can see in Figure 10-8, the code is error free and you are ready to invoke the four
methods you created inside the .onCreate() method that are required to be implemented by
the WatchFaces API.

Figure 10-7. Copy createMinuteHand() method structure; paste it underneath it to create the createSecondHand()
method

246 CHAPTER 10: WatchFaces Vector Design: Using Vector Graphics for WatchFaces

You’ve already implemented part of the method, including a super.onCreate() superclass
method call, as well as created a WatchFaceStyle object, using the WatchFaceStyle.Builder
class, that you learned about in Chapter 8.

After you’ve called these methods from an .onCreate() method to set up the Paint objects
for the hour, minute, second hand and ticks, you can start working on the .onDraw()
method. You can create the logic that uses these paint objects to draw watch face design
components onto the Canvas by using the .drawLine() method from the Android Canvas
class, which I will discuss in detail in the next section of the chapter.

Calling the WatchFace Component Paint Methods from .onCreate()
Open the .onCreate() method implementation and call a .createHourHand() method before
the WatchFaceStyle object’s construction and configuration, or after it, if you prefer. As you
can see in Figure 10-9, if you type in the word create, all the methods you just created are
now part of the IntelliJ pop-up helper dialog. Double-click each, inserting all four.

Figure 10-8. Copy createSecondHand() method structure; paste it underneath itself to create the createTickMarks()
method

http://dx.doi.org/10.1007/9781430265504_8

247CHAPTER 10: WatchFaces Vector Design: Using Vector Graphics for WatchFaces

Figure 10-9. Add a createHourHand() method call in the public void onCreate() method to create the first Paint

Once you type in the word “create” four times and double-click the first four method calls,
your code will look like that shown in Figure 10-10.

Figure 10-10. Add all four Paint object creation method calls at the top of the public void onCreate() method

Next, let’s take a quick look at the Android Canvas class, which is the class that hosts
(contains) the .onDraw() method. After that you will code the statements in the .onDraw()
method to draw the watch face components.

248 CHAPTER 10: WatchFaces Vector Design: Using Vector Graphics for WatchFaces

WatchFace Drawing Engine: The .onDraw() Method
The Android WatchFaces API uses the Android Canvas class as a drawing surface and the
.onDraw() method, which applies Paint objects to a Canvas object. In this section, you will
take a closer look at these classes objects, and see how they function in conjunction with
one another.

The Android Canvas Class: Your Canvas Drawing Methods
The Android Canvas public class extends the java.lang.Object master class, meaning it
was scratch-coded for usage as a drawing canvas. This class is in the android.graphics
package. The Java class hierarchy for the Android Canvas class looks like the following:

java.lang.Object
 > android.graphics.Canvas

The Canvas class is designed to create a Canvas drawing surface object to hold the
.onDraw() method calls. In order to be able to draw on the Canvas object, you will need to
have four basic components. The first is a Bitmap object, which holds the actual pixels that
represent the Canvas surface.

The second is a Canvas object itself, which hosts, or provides, an interface for the .onDraw()
method calls, which write data values into this bitmap object. The third is a “drawing
primitive,” such as vector (Shape) subclass objects like Rect, Path, Text, or Line, or a raster
BitmapDrawable object. The fourth is the Paint object, which I covered in the previous
section of this chapter, which is used to describe the colors and styles for the drawn
components.

This Canvas class has two nested, also known as helper, classes. One is an enum
Canvas.EdgeType, which defines edge constants AA (anti-aliased), or BW (black and white),
which is not anti-aliased. The other nested class is the enum Canvas.VertexMode, which
deals with 3D OpenGL ES, which I’m not going to be covering in this book.

The Canvas class has 90 methods, almost as many as the Paint class. You’ll be using the
public void drawLine(float startX, float startY, float stopX, float stopY, Paint paint)
method to draw line segments using the specified start and stop X,Y coordinates. The line
will be drawn using the specified Paint object(s), which you created in the previous section
of this chapter.

Drawing Your WatchFace: Using the .drawLine() Method
Next, let’s collapse the .onCreate() method by clicking the minus sign to the left of the
method, and expand the .onDraw() method by clicking the plus sign to the left of the
method. You’re going to first add the basic integer and floating point variables to set the
center of the watch face design. Then you’ll get the system time from the Time object, and
then calculate the rotations for all of the watch face design components.

249CHAPTER 10: WatchFaces Vector Design: Using Vector Graphics for WatchFaces

Finding the Center of the WatchFace Design: centerX and centerY
Let’s first create an integer variable named width and get the width of the Canvas using a
.width() method call off a Rect object, which defines the Canvas bounds, or boundaries. To
determine the vertical center, you would divide this number, which is going to be 320 pixels
if the smartwatch uses the entire screen, by two. You will do this for the height (Y) value as
well, using the following Java code, which is also shown in Figure 10-11:

int width = rect.width();
float centerX = width / 2.f;
int height = rect.height();
float centerY = height / 2.f;

Figure 10-11. Get the width and height of onDraw() Rect object and use them to calculate centerX and centerY

You will be using these centerX and centerY values for everything you do in this section of
the chapter. These values are used to provide the origin coordinate of the watch face hands
and the center point around which ticks can be arrayed. The next thing you need to do is
create integer variables, which have the time values for hours, minutes, and seconds in
them. You do this because the Time object uses integer values.

Finding the Current Time: Hours, Minutes, and Seconds Integers
One of the most important things an .onDraw() method will need to do every second is
rotate all of these hands (hours, minutes, and seconds) to point in the correct direction,
based on the current system time value. This is held in the watchFaceTime Time object,
which you have already put into place in the code. All you have to do is create integer
variables to hold the hours, minutes, and seconds components of the current system
time, so you can perform calculations on them using PI, Sine, and Cosine to find out what
direction each of your watch face hands should be pointing.

This can be done using the following Java code, also shown in Figure 10-12 in the
construction of the first of these three statements using IntelliJ:

int hours = watchFaceTime.hour();
int minutes = watchFaceTime.hour();
int seconds = watchFaceTime.hour();

250 CHAPTER 10: WatchFaces Vector Design: Using Vector Graphics for WatchFaces

If you type in int hours =, along with the name of the watchFaceTime Time object, and
then a period, you will access the IntelliJ pop-up helper dialog where you can see the hour,
minute, and second method calls.

As you can see, the variable declaration and initialization code so far is error free and takes
only seven lines of code, as shown in Figure 10-13. I clicked a watchFaceTime object
reference in the Java code to show its usage, which is tracked by IntelliJ using a purple tint.
The watchFaceTime that I clicked is indicated by IntelliJ using a pale yellow highlight.

Figure 10-12. Create an integer variable named hours and set it to the watchFaceTime object hour attribute

Figure 10-13. Create integer variables for minutes and seconds and set it to the watchFaceTime object attributes

I’ll do this throughout this section to help you see the usage of the Time object. Now you’re
ready to calculate rotation via Sine, Cosine, and PI methods.

Now that you have the variables holding the watch face center point coordinates as well
as the current hours, minutes, and seconds of your Time object, the time (no pun intended)
has come for you to implement Java code that will rotate all of the basic watch faces
components into position every second.

251CHAPTER 10: WatchFaces Vector Design: Using Vector Graphics for WatchFaces

Rotating an Hour Hand: Using the Math Class PI, Sine, and Cosine
Declare a float variable named hourRot to hold the hour hand rotation. The hour hand will
show the hours value from the Time object, and it will also show a fractional component
between each hour. You would take the minutes value from the Time object and divide
that by 60, and then add it back onto the hours value using this equation format:
(hours+(minutes/60)).

Because you’re using the Sine Wave Function of the Java Math class, and PI defines one full
cycle (wave facing up and wave facing down) of a Sine Wave, you need to divide the number
of hours (12) in a full circle in half, and then divide the refined hours value by six, using the
following equation format: ((hours+(minutes/60))/6). Now all you have to do to get the
rotation angle is multiply this by PI, which is accessed using the Math.PI method. This will
be cast to a floating point value using (float)Math.PI, so you don’t get a compiler error. The
Java code for an hour hand rotation, which is shown in Figure 10-14, should look like the
following:

float hourRot = ((hours + (minutes / 60.f)) / 6.f) * (float) Math.PI;

Figure 10-14. Create an hourRot to hold the HourHand rotation calculation and a hourLength to hold the length

The code for the hour hand length is considerably easier and involves the declaration of a
float value named hourLength, which is set to the centerX (the watch face radius) value
minus 80 pixels to make the hour hand shorter.

Remember that the centerX value is the radius of a watch face surface area because it is the
Rect.width() divided by two. The code for the hour hand length, which is shown in
Figure 10-14, should look like the following Java programming statement:

float hourLength = centerX - 80;

252 CHAPTER 10: WatchFaces Vector Design: Using Vector Graphics for WatchFaces

Next, you need to calculate the end of your Line Shape object, which you are going to draw
from the centerX end of the Line to the hourX coordinate, so that an Hour Hand Line will be
pointing in exactly the correct declination (direction). The Sine function takes the hourRot
value and turns it into a rotational vector value for the X coordinate. You’ll need to do the
same thing for your Y coordinate in the next line of code. The Java statement should look
like the following Java code:

float hourX = (float) Math.sin(hourRot) * hourLength;

As you type the line of code into IntelliJ, you should use the pop-up helper dialog, as shown
in Figure 10-14, to select a Math class sin(double d) option, and insert that into the code,
specifying hourRot as the double parameter.

To find the hourY value, you simply need to invert the Sine wave by using a Cosine wave
instead, and then flip that value around the other axis with a minus sign to change this value
into a negative value. Your Java statement should look like the following code, which can be
seen in Figure 10-15:

float hourY = (float) -Math.cos(hourRot) * hourLength;

Figure 10-15. Type in the watchface Canvas object and select the drawLine() method call from the pop-up helper

You now have the hour hand offsets that determine X and Y coordinates for the outer
end of the Hour Hand Line. You also have all the variables you need to be able to call the
.drawLine() method to draw the Hour Hand line.

The .drawLine() method is called off of the Canvas object named watchface, which is declared
in your public void onDraw(Canvas watchface, Rect rect), as shown in Figure 10-15. As you
can see, if you type in the watchface Canvas object and then the period key, your IntelliJ method
pop-up helper dialog should appear. Double-click the drawLine(float startX, float startY,

253CHAPTER 10: WatchFaces Vector Design: Using Vector Graphics for WatchFaces

float stopX, float stopY, Paint paint) void method option to insert it into the code, which should
look like the following Java statement, as shown in Figure 10-16:

watchface.drawLine(centerX, centerY, centerX+hourX, centerY+hourY, pHourHand);

Figure 10-16. Call a .drawLine() method off a watchface Canvas object; pass in hour Paint object and coordinates

The method call structure for this .drawLine() method should include the start of the line in
the center of the watch face, represented by using the centerX and centerY variables, and
the end of the line would use the centerX+hourX and centerY+hourY data values, which
are calculated inside this method call as a shortcut. The final parameter is the pHourHand
Paint object that you created and configured in the first section of this chapter, which defines
exactly how the Hour Hand Line is to be drawn.

Rotating a Minute Hand: Using the Math Class PI, Sine, and Cosine
The Minute Hand Line drawing logic is very similar to the Hour Hand Line drawing logic,
except that it does not have to adjust for partial minutes, as the hour hand needs to for hour
accuracy. A minute hand is longer than an hour hand, so you’d only subtract 40 pixels from
the half-screen value instead of 80. The Java code for the drawing of a Minute Hand Line is
seen error free in Figure 10-17 and should look like the following:

float minuteRot = minutes / 30f * (float) Math.PI
float minuteLength = centerX - 40;
float minuteX = (float) Math.sin(minuteRot) * minuteLength;
float minuteY = (float) -Math.cos(minuteRot) * minuteLength;
watchface.drawLine(centerX, centerY, centerX + minuteX, centerY + minuteY, pMinuteHand);

254 CHAPTER 10: WatchFaces Vector Design: Using Vector Graphics for WatchFaces

Next, you’ll code the Second Hand Draw Logic. This is very similar to the Hour and Minute
Hand Logic, except it only draws when it is in interactive mode.

Rotating Your Second Hand: Using the .isInAmbientMode() Method
The Second Hand Line logic is quite similar to the Minute Hand Line logic, with two
exceptions. The line that is drawn is longer and is calculated as centerX - 20, and the
Math.sin, Math.cos, and Canvas.drawLine() methods are only called if a smartwatch is
in ambient mode. Your Java code for the Second Hand Line, including a conditional
if(!isInAmbientMode()) statement, which isolates the processing of the Math and Canvas
method calls, should look like the following Java code structure, and is shown in Figure 10-18:

float secondRot = seconds / 30f * (float) Math.PI
float secondLength = centerX - 20;
if (!isInAmbientMode()) {
 float secondX = (float) Math.sin(secondRot) * secondLength;
 float secondY = (float) -Math.cos(secondRot) * secondLength;
 watchface.drawLine(centerX, centerY, centerX + secondX, centerY + secondY, pSecondHand
);
}

Figure 10-17. Call a .drawLine() method off of a watchface Canvas object; pass in minute Paint object and coordinates

255CHAPTER 10: WatchFaces Vector Design: Using Vector Graphics for WatchFaces

The Second Hand Line drawing code does not draw the line at all if a watch face is in
ambient mode, as per the Android Watch Face API rules, and does not call any math
functions if the watch is in Ambient mode, so the logic also serves to optimize processor
usage involving second hand calculation.

Creating Watch Face Tick Marks: Using a Java for Loop Structure
The code for drawing tick marks for each hour around the perimeter of the screen is similar
to that used for Hand drawing code as far as the math is concerned. You’ll still use the
PI constant (3.14159) and Math.sin and -Math.cos to position the ticks around a watch face
perimeter, using the for loop to position all 12. The code for this, shown at the bottom of
Figure 10-19, looks like the following:

float innerTicksRadius = centerX - 10;
for (int ticksIndex = 0; ticksIndex < 12; ticksIndex++) {
 float ticksRot = (float) (ticksIndex * Math.PI * 2 / 12);
 float innerX = (float) Math.sin(ticksRot) * innerTicksRadius;
 float innerY = (float) -Math.cos(ticksRot) * innerTicksRadius;
 float outerX = (float) Math.sin(ticksRot) * centerX;
 float outerY = (float) -Math.cos(ticksRot) * centerX;
 watchface.drawLine(centerX+innerX, centerY+innerY, centerX+outerX, centerY+outerY,
pTickMarks);
}

Figure 10-18. Implement Second Hand Line drawing logic using a conditional if(!isInAmbientMode()) structure

256 CHAPTER 10: WatchFaces Vector Design: Using Vector Graphics for WatchFaces

Now you are ready to implement some of the code that controls how the Paint objects will
be modified when the different smartwatch hardware modes have been put into play. This
will implement the required specialized drawing modes that you learned about in Chapter 6.
The next section of this chapter will show you how to support the modes using only Paint
constant settings code.

Advanced Mode Support: Dynamic Paint Methods
This section will explain how to create several methods that can set Paint object
characteristics dynamically based on the different modes that are supported on, and which
are active in, the user’s smartwatch hardware.

These modes include ambient mode, low-bit ambient mode, and burn-in protect mode, and
they provide different graphic design characteristics, as discussed in Chapter 6. Interactive
mode uses full (bright) colors, ambient mode uses a dimmed color or grayscale, depending
on the hardware support, low-bit mode uses black and white, and burn-in protection uses
only “edge-pixels” to define the watch face design, so that as few of the pixels are on
(burning) as possible.

Figure 10-19. Create a for loop to draw tick marks using an innerTicksRadius and centerX as the outer radius

http://dx.doi.org/10.1007/9781430265504_6
http://dx.doi.org/10.1007/9781430265504_6

257CHAPTER 10: WatchFaces Vector Design: Using Vector Graphics for WatchFaces

Controlling Anti-Aliasing: Creating a setAntiAlias() Method
Now add a line of (new) code above the .onCreate() method and create a private void
setAntiAlias(boolean antiAliasFlag) method. It is important to notice that Java is smart
enough to let you use this method name in the watchface application ProWatchFaceService.
java class because it references things by using dot notation between packages, classes,
and methods, so it knows that this ProWatchFaceService.Engine.setAntiAlias() that
you are about to create is completely different from the android.graphics.Canvas.
setAntiAlias().

This fact allows you to call this method setAntiAlias(), even though there is already an
Android Canvas.setAntiAlias() method in the android.graphics package. It is interesting to
note here that you’ll actually be using this (Canvas) .setAntiAlias() method call inside the
.setAntiAlias() method code as well. This is the reason I set it up this way, to show that it can
be done, and that your IntelliJ (Java + Android) compiler is good with it!

If this bothers your sensibility, you can always name the method something different, such as
.setAntiAliasingMode(), if you like. Inside the method, call the Canvas class’s .setAntiAlias()
method off the pHourHand Paint object, as shown in Figure 10-20. Your Java code should
look like this:

private void setAntiAlias(boolean antiAliasFlag){
 pHourHand.setAntiAlias(antiAliasFlag);
}

If you want to use the IntelliJ pop-up helper dialog, type in pHourHand.set, as shown in
Figure 10-20, and double-click the setAntiAlias(boolean aa) option to insert this method
call into the Java statement.

Figure 10-20. Create a private void setAntiAlias using a boolean antiAliasFlag parameter passed into the method

258 CHAPTER 10: WatchFaces Vector Design: Using Vector Graphics for WatchFaces

Add this .setAntiAlias(antiAliasFlag) method call off all of your Paint objects, which will
set an on/off (true/false) setting on all of the Paint objects, allowing you to turn anti-aliasing
on or off for the watch face. The Java code, which is shown in Figure 10-21, should look
like this:

private void setAntiAlias(boolean antiAliasFlag){
 pHourHand.setAntiAlias(antiAliasFlag);
 pMinuteHand.setAntiAlias(antiAliasFlag);
 pSecondHand.setAntiAlias(antiAliasFlag);
 pTickMarks.setAntiAlias(antiAliasFlag);
}

Figure 10-21. Call a .setAntiAlias() method off each of the Paint objects and pass in the boolean antiAliasFlag

Now that you have created the method that allows you to turn anti-aliasing on and off for
your watch face design, you can create another method that draws only the edges of the
hour hand and minute hand for burn-in protect mode. Finally, let’s create a third method
that implements low-bit ambient mode (black and white pixels only), and you’ll then be in
conformance with all of the Watch Faces API you learned about in Chapter 6.

Controlling Burn-In: Creating a setBurnInProtect() Method
The next method you need to create deals with smartwatch hardware that requires screen
burn-in protection, which is implemented using edge render code that only renders (draws
onto the canvas using custom paint options) the edges of the watch face components.

Create the private void setBurnInProtect(boolean enabled) method structure and declare
a Paint.Style object named paintStyle, and set it equal to the default value of Paint.Style.
FILL because that is what the watch face vector shape needs to use in every other mode
except for this burn-in protection mode.

http://dx.doi.org/10.1007/9781430265504_6

259CHAPTER 10: WatchFaces Vector Design: Using Vector Graphics for WatchFaces

As you type this statement in, an IntelliJ pop-up method helper dialog will appear, and you
can select the Paint.Style.FILL option, or double-click it, which will insert it into the Java
statement.

The Java method structure, which is shown in Figure 10-22, should look like this, once you
are done using the IntelliJ pop-up helper dialogs:

private void setBurnInProtect(boolean enabled) {
 Paint.Style paintStyle = Paint.Style.FILL;
}

Figure 10-22. Create a private void setBurnInProtect using a boolean enabled parameter passed into the method

The next thing you need to add is a conditional if-else structure that will handle if burn-in
protection needs to be turned on (enabled) or else turned off (!enabled) if it is not needed.
The if(enabled) part of the if structure should set the Paint.Style object named paintStyle to
the STROKE constant, as shown in the pop-up helper dialog in Figure 10-23. The first part
of the if() structure should look like the following Java code:

private void setBurnInProtect(boolean enabled) {
 Paint.Style paintStyle = Paint.Style.FILL;
 if(enabled) {
 paintStyle = Paint.Style.STROKE;
 } else {
 // an empty else structure for now
 }
}

260 CHAPTER 10: WatchFaces Vector Design: Using Vector Graphics for WatchFaces

Figure 10-24. Add paintStyle object set to FILL in an else portion of the conditional if statement for enabled = false

Figure 10-23. Add an if(enabled) { } else { } empty conditional structure and inside it set paintStyle to STROKE

The else portion of the if-else conditional statement will set the default Paint.Style value of
FILL, which you’ll also set at the head (beginning) of the method, so that if this burn-in mode
is not needed (false), the vector components will be filled and not stroked, making them
filled with color instead of filled with black. This ensures that the only way STROKE will be
used is if enabled is true. The Java code for the method so far should look like this, as
shown in Figure 10-24:

private void setBurnInProtect(boolean enabled) {
 Paint.Style paintStyle = Paint.Style.FILL;
 if(enabled) {
 paintStyle = Paint.Style.STROKE;
 } else {
 paintStyle = Paint.Style.FILL;
 }
}

261CHAPTER 10: WatchFaces Vector Design: Using Vector Graphics for WatchFaces

The final thing that the method will need to do is set the Paint object for the hour hand and
second hand components of the watch face to use this paintStyle. This is done by calling a
.setStyle() method and passing the paintStyle that has either been set as a default to FILL or
changed to STROKE in the if(enabled) conditional structure.

The Java method structure should look like the following code after you are finished:

private void setBurnInProtect(boolean enabled) {
 Paint.Style paintStyle = Paint.Style.FILL;
 if(enabled) {
 paintStyle = Paint.Style.STROKE;
 } else {
 paintStyle = Paint.Style.FILL;
 }
 pHourHand.setStyle(paintStyle);
 pMinuteHand.setStyle(paintStyle);
}

The final method is shown error free in Figure 10-25. I have selected the paintStyle attribute
so you can see its use through this method body.

Figure 10-25. After the if-else, set pHourHand and pMinuteHand Paint objects to the paintStyle, using .setStyle()

It’s important to note that this method will only change the value of the Paint objects to
STROKE if the .onPropertiesChanged() method detects that the screen burn-in protection
flag has been set for the user’s smartwatch hardware. This method will be called in the
.onAmbientModeChanged() method, which you will be creating later in this chapter (which is
why you’re creating it here now, so that it is available for use later when you need it).

The next thing you want to do is make sure that the Paint objects are configured correctly for
the low-bit ambient and ambient modes, so let’s create the .ensureModeSupport() method
next, which controls the color and Alpha values, which in turn will control how bright (or dim)
the watch face components are drawn on the screen against a black background color.

262 CHAPTER 10: WatchFaces Vector Design: Using Vector Graphics for WatchFaces

Ensuring Mode Support: An ensureModeSupport() Method
Add a line of code underneath the .setBurnInProtect() method and create a
private void ensureModeSupport() method. Declare the boolean flag variable
named enableLowBitAmbientMode and set it equal to the Logical AND of the
lowBitAmbientModeFlag boolean flag variable and the value that is returned from the
isInAmbientMode() method call. The code for this is shown in Figure 10-26.

Figure 10-26. Create a private void ensureModeSupport, and add a boolean enableLowBitAmbientMode parameter

Figure 10-27. Add an if(enableLowBitAmbientMode) { } else if(isInAmbientMode) { } else { } conditional structure

Once you have created this enableLowBitAmbientMode boolean flag variable, create an
empty if{}else-if{}else{} structure by using the following Java code structure, which is also
shown in Figure 10-27:

private void ensureModeSupport() {
 boolean enableLowBitAmbientMode = isInAmbientMode() && lowBitAmbientModeFlag
 if(enableLowBitAmbientMode) { // Low-Bit Ambient Mode Java Statements
 } else if(isInAmbientMode()) { // Ambient Mode Java Statements
 } else { // Interactive Mode Java Statements
 }
}

263CHAPTER 10: WatchFaces Vector Design: Using Vector Graphics for WatchFaces

The characteristic of low-bit ambient mode is that it only uses one bit of data per pixel,
which means full white on full black. Thus, you will have to set the Alpha to 255 (so that
white has no black tint, from the background color) and the Color values to Color.WHITE
as well.

The .setAlpha() method calls off the Paint objects, which is shown in Figure 10-28, and it
should look like the following Java statements:

private void ensureModeSupport() {
 boolean enableLowBitAmbientMode = isInAmbientMode() && lowBitAmbientModeFlag
 if(enableLowBitAmbientMode) {
 pHourHand.setAlpha(255);
 pMinuteHand.setAlpha(255);
 pSecondHand.setAlpha(255);
 pTickMarks.setAlpha(255);
 } else if(isInAmbientMode()) { // Ambient Mode Java Statements
 } else { // Interactive Mode Java Statements
 }
}

Figure 10-28. Add .setAlpha(255) method calls, setting all Paint objects to paint using 100% of their color values

The next thing you will need to do is set the color of all the watch face design elements to
white with a .setColor(Color.White) call off the Paint objects. The Java code, as shown in
Figure 10-29, looks like this:

pHourHand.setAlpha(255);
pMinuteHand.setAlpha(255);
pSecondHand.setAlpha(255);
pTickMarks.setAlpha(255);
pHourHand.setColor(Color.WHITE);
pMinuteHand.setColor(Color.WHITE);
pSecondHand.setColor(Color.WHITE);
pTickMarks.setColor(Color.WHITE);

264 CHAPTER 10: WatchFaces Vector Design: Using Vector Graphics for WatchFaces

Now that you have ensured that only black and white values are used on the watch face
screen in low-bit ambient mode, you need to implement an else-if section of the conditional
logic that dims the color used in the component parts of the watch face by 50%. This is done
using the Alpha value of 127, which has the same effect as dimming the color values 50%
due to the black (zero value) background color. The Java code, as shown in Figure 10-30,
looks like the following:

private void ensureModeSupport() {
 boolean enableLowBitAmbientMode = isInAmbientMode() && lowBitAmbientModeFlag
 if(enableLowBitAmbientMode) {
 pHourHand.setAlpha(255);
 pMinuteHand.setAlpha(255);
 pSecondHand.setAlpha(255);
 pTickMarks.setAlpha(255);
 pHourHand.setColor(Color.WHITE);
 pMinuteHand.setColor(Color.WHITE);
 pSecondHand.setColor(Color.WHITE);
 pTickMarks.setColor(Color.WHITE);
 } else if(isInAmbientMode()) {
 pHourHand.setAlpha(127);
 pMinuteHand.setAlpha(127);
 pSecondHand.setAlpha(127);
 pTickMarks.setAlpha(127);
 } else {
 // Interactive Mode Java Statements
 }
}

Figure 10-29. Add .setColor(Color.WHITE) method calls setting all Paint objects to paint using white color value

265CHAPTER 10: WatchFaces Vector Design: Using Vector Graphics for WatchFaces

Using the Alpha value as a dimmer (due to the black background color) will allow you to
support smartwatches that support color in ambient mode and still allow you to dim the
screen 50% for ambient mode support in the code.

The final else portion of the conditional if-else statement is the code that will be executed if
the smartwatch is not in ambient mode at all (not in low-bit ambient mode and not even in
ambient mode), which means it is in interactive mode.

What you want to do in interactive mode is turn the Alpha value back up, so that full
brightness is used (because there is no blending with a black background color, which
serves to dim color values and reduces brightness).

To do this, you will use the same four statements you used at the head of the
if(enableLowBitAmbientMode) section of the conditional statement, where you called the
.setAlpha() method with a fully-on value of 255.

Your finished ensureModeSupport() method structure, which is shown in Figure 10-31,
should look like the following Java code:

private void ensureModeSupport() {
 boolean enableLowBitAmbientMode = isInAmbientMode() && lowBitAmbientModeFlag
 if(enableLowBitAmbientMode) {
 pHourHand.setAlpha(255);
 pMinuteHand.setAlpha(255);
 pSecondHand.setAlpha(255);
 pTickMarks.setAlpha(255);
 pHourHand.setColor(Color.WHITE);
 pMinuteHand.setColor(Color.WHITE);
 pSecondHand.setColor(Color.WHITE);
 pTickMarks.setColor(Color.WHITE);

Figure 10-30. Add .setAlpha(127) calls in else-if(), setting all Paint objects to paint using 50% of their color values

266 CHAPTER 10: WatchFaces Vector Design: Using Vector Graphics for WatchFaces

 } else if(isInAmbientMode()) {
 pHourHand.setAlpha(127);
 pMinuteHand.setAlpha(127);
 pSecondHand.setAlpha(127);
 pTickMarks.setAlpha(127);
 } else {
 pHourHand.setAlpha(255);
 pMinuteHand.setAlpha(255);
 pSecondHand.setAlpha(255);
 pTickMarks.setAlpha(255);
 }
}

Figure 10-31. Add .setAlpha(255) calls in else { } setting for all Paint objects to paint using 100% of their color values

As you can see, for the most part, this method controls the alpha channel data, which you
are using to act as a dimmer in ambient mode and to ensure fully white (or fully colored) pixel
values for low-bit ambient and interactive modes, respectively. You are taking advantage of
the watch’s black background color to use Alpha values to darken or brighten pixels, so you
can leave color values in place (except for low-bit ambient mode).

Now you have the methods in place that are needed for (and called from) the
.onAmbientModeChanged() method from the WatchFaceService.Engine class, which you
will be implementing next to make sure all of these various modes are supported when the
smartwatch hardware goes into ambient mode.

267CHAPTER 10: WatchFaces Vector Design: Using Vector Graphics for WatchFaces

Invoking Mode Methods: onAmbientModeChanged()
Add a line of code after the .onVisibilityModeChanged() method and add the @Override
public void onAmbientModeChanged(boolean ambientModeFlag) method structure, so
that you can implement the watch face programming logic, which covers what you want to
happen when the user’s smartwatch hardware switches into ambient mode from interactive
mode (to save battery power).

Inside the empty method structure, use a Java super keyword to call the superclass’s
.onAmbientModeChanged() method, passing up an ambientModeFlag boolean variable
that is being passed into the method you’re coding. The method structure so far is shown in
Figure 10-32, and the code looks like this:

@Override
public void onAmbientModeChanged(boolean ambientModeFlag) {
 super.onAmbientModeChanged(ambientModeFlag);
}

Figure 10-32. Create a public void onAmbientModeChanged() method, and call it off the Java super keyword

Next, add a conditional if(lowbitAmbientModeFlag){} structure. If you want, let IntelliJ write
it for you by typing an “l” inside the if() and then selecting the lowBitAmbientModeFlag
boolean option, as shown in Figure 10-33, by double-clicking it to have IntelliJ write the
conditional statement for you. Your Java conditional if() structure should look like the
following:

if(lowBitAmbientModeFlag) {
 // Java statements to be processed for low-bit ambient mode will go in here
}

268 CHAPTER 10: WatchFaces Vector Design: Using Vector Graphics for WatchFaces

Inside the conditional if structure, call the setAntiAlias() method, as shown in Figure 10-34,
using the opposite of an ambientModeFlag value that was passed into this method. This
uses the setAntiAlias(!ambientModeFlag) method call format. The Java code, thus far,
should look like this:

if(lowBitAmbientModeFlag) {
 setAntiAlias(!ambientModeFlag);
}

Figure 10-33. Add an if(lowBitAmbientModeFlag){} conditional structure and use a helper dialog to write the code

Figure 10-34. Inside the conditional structure, type set and double-click the setAntiAlias(antiAliasFlag) method

269CHAPTER 10: WatchFaces Vector Design: Using Vector Graphics for WatchFaces

Create another if(burnInProtectModeFlag) conditional structure that calls the
setBurnInProtect() method you just coded, using the same value as ambientModeFlag,
which will turn Burn-In Protection on if the flag is set that tells the watch face the
smartwatch hardware needs this feature.

So far, the onAmbientModeChanged() method makes sure that if the smartwatch supports
low-bit in ambient mode, anti-aliasing is turned off, and if the user’s smartwatch needs
burn-in protection, the components of the watch face are stroked (only the edges are
shown) rather than filled. The Java code thus far, as shown in Figure 10-35, should look like
the following method structure:

@Override
public void onAmbientModeChanged(boolean ambientModeFlag) {
 super.onAmbientModeChanged(ambientModeFlag);
 if(lowBitAmbientModeFlag) {
 setAntiAlias(!ambientModeFlag);
 }
 if(burnInProtectModeFlag) {
 setBurnInProtect(ambientModeFlag);
 }
}

Figure 10-35. Create two conditional if structures that will call the setAntiAlias() and setBurnInProtect() methods

The next thing the .onAmbientModeChanged() method needs to do is call the
ensureModeSupport() method, as shown in Figure 10-36, which you just created. After all
of the Paint attributes have been reconfigured (reset), you can redraw the watch face design
by calling the .invalidate() method.

270 CHAPTER 10: WatchFaces Vector Design: Using Vector Graphics for WatchFaces

The one final thing you need to do is create a .checkTimer() method. This will reset the
updateTimeHandler and reset the timer logic so that it knows how long to wait until it can
read the next even (1,000 millisecond) second value to set the watch face second hand,
because the ambient mode might have changed back to interactive mode!

Returning to Interactive Mode: checkTimer() Method
There is one last thing you need to put into place that applies to the .onVisibilityChanged()
and .onAmbientModeChanged() methods. You’ll need to make sure to reset the second
hand timer logic, using an isTimerEnabled() method, in case the visibility or ambient mode
changes back to interactive.

Add a line of code underneath the onAmbientModeChanged() method and create a public
void checkTimer() method structure. Inside this structure, type in the updateTimehandler
object, and then press the period key. Then select the removeMessages(int what) void
option from the pop-up helper dialog, by double-clicking it, as shown in Figure 10-37.

Figure 10-36. Call the ensureModeSupport() method, then refresh a watch face by calling the invalidate() method

Figure 10-37. Create a public void checkTimer() method, type updateTimeHandler, select removeMessages(int what)

271CHAPTER 10: WatchFaces Vector Design: Using Vector Graphics for WatchFaces

Add an UPDATE_TIME_MESSAGE constant as the parameter to remove any Message
objects that might have been left in the MessageQueue when the watch face went into
ambient mode or went into invisible (not visible) mode.

The Java method structure, thus far, should look like the following code:

public void checkTimer() {
 updateTimeHandler.removeMessages(UPDATE_TIME_MESSAGE);
}

The next part of this method needs to check the .isTimerEnabled() boolean return value with
a conditional if structure. If the value equals true, it needs to call the .sendEmptyMessage()
method off the updateTimeHandler object, using the following Java code structure, as
shown in Figure 10-38:

If(isTimerEnabled) { updateTimehandler.sendEmptyMessage(UPDATE_TIME_MESSAGE); }

Figure 10-38. Add an if(isTimerEnabled) condition and call the .sendEmptyMessage() off of the updateTimeHandler

Now all you need to do is add a checkTimer() method call to the end of the
onAmbientModeChanged() method, as shown highlighted in Figure 10-39.

272 CHAPTER 10: WatchFaces Vector Design: Using Vector Graphics for WatchFaces

Finally, you need to also add a checkTimer() method call to the end of the
onVisibilityChanged() method, as shown highlighted in Figure 10-40. This call will be needed
when a watch turns back on. To get the value, the Timer will have to wait until it can get the
next even second (even 1,000 millisecond).

Figure 10-39. Open the onAmbientModeChanged() method, and add the checkTimer() method call at the end

Figure 10-40. Open the onVisibilityChanged() method and add in the checkTimer() method call at the end

Now you have the basic methods in place for rendering a watch face!

273CHAPTER 10: WatchFaces Vector Design: Using Vector Graphics for WatchFaces

Summary
In this chapter, you learned how to create “vector” watch face designs using methods from
the Android Paint and Canvas classes. First, I presented an in-depth look at the Paint class,
nested classes, constructors, and methods that you were going to be using in the watch
face design Java code. After that, you created your Paint objects for the hour hand, minute
hand, second hand, and tick marks. I then discussed the Canvas class and the .drawLine()
method, which you used to draw all of the watch face components.

Next, you created the .onDraw() method logic to draw the watch face component parts
onto the Canvas, and then you developed Advanced Mode Support, using Paint methods,
to implement special watch face API modes using methods that dynamically adjust the
Paint characteristics based on boolean flag values. After that, you implemented these new
methods in the onAmbientModeChanged() and onVisibilityChanged() methods, which are
the core WatchFaceService methods.

In the next chapter, you will start adding bitmap graphics and 2D design elements to the
Watch Face application, and you will learn how to create a watch face that uses both
new media assets as well as vector code. You will also start to test your code using AVD
emulators.

275

Chapter 11
WatchFaces Bitmap Design:
Using Raster Graphics for
WatchFaces

You now have enough of the WatchFaces API code in place to be able to test your Java
code, which means that this is going to be a busy chapter. You’ll learn how to get the
emulators working, test the code, and make any additions, and after you have a working
vector watch face application, you’ll then look at how to incorporate a BitmapDrawable
asset to create a background image for the watch face application. Most watch face designs
will utilize a combination of bitmap assets and vector drawing code to create a design.

After you get the AVD emulators working and test the code base you have put in place thus
far, you will make sure each of the Java statements that are needed to make the watch face
work are in place. Advanced warning, I left one or two out, so you can see how to use the
AVDs to test the WatchFaces API Java code!

After you get your basic watch face code working, you will add a method that detects
whether a watch face is round or square, and then you will get into the different bitmap
image–related classes that are needed to implement background imagery behind the vector
watch face design.

I will discuss the Android WindowInsets class used to access inset information, as well as
the Android Bitmap and Resources classes you will need to obtain the digital image assets.
I will also discuss the Android Drawable and BitmapDrawable classes that are needed to
wrap your digital image resource and raw Bitmap data into a format the onDraw() method
can utilize to write the Bitmap Image Asset to your watch face background.

276 CHAPTER 11: WatchFaces Bitmap Design: Using Raster Graphics for WatchFaces

Testing a WatchFaces Design: Using the Round AVD
Since you now have enough code in place to test the watch face application, open the
Android Studio ProAndroidWearable project and let’s run the code through the Watch Face
Round 2 (ARM) emulator. I have collapsed all of the code to show around 60 top-level lines
of code, as shown (marked with a 1) on the left side of Figure 11-1. Use the Run menu at
the top of the IDE to access the Run... submenu (marked with a 2), which will open the
Run floating menu (marked with a 3). If you are selecting this for the first time, your Edit
Configurations dialog will open, which is what you want, because you’ll need to select the
Do not launch Activity option shown (marked with a 4).

Figure 11-1. Use the Run ➤ Wear menu sequence; in the Edit configuration dialog, select Do not launch Activity

Once you select the Do not launch Activity option, because the WatchFace app does not
use an Activity object (as it is a Wallpaper object), click the Apply button (at the bottom right
of the dialog) and then the Run button.

This will start a Waiting for adb progress bar dialog, as shown at the top of Figure 11-2.
Eventually, your Android_Wear_Round AVD emulator will appear.

277CHAPTER 11: WatchFaces Bitmap Design: Using Raster Graphics for WatchFaces

As you can see on the left side of Figure 11-2, the emulator will load and optimize its
components into memory, telling you that Android is starting, and then your Android OS will
appear. In my case, Android seemed to know I was writing this book, and the AVD crashed
on me, so I took this opportunity to show you, on the right side of Figure 11-2, that an
Android development environment is no more bulletproof than an operating system is! This
will be especially true in new versions of software, such as Android 5 (Android Studio 1.x), as
they are not yet perfected. You should expect hiccups, like the AVDs not working correctly,
to happen, and do not let them deter you!

If you ever get this “Android Wear isn’t responding” screen, as shown in Figure 11-2 on the
right, simply click the OK button, make any changes, and try again! I encountered some
problems with both the Square as well as the Round AVD emulators, so I’ll show you some
of the things that I did to rectify these problems in the first section of this chapter.

When I used the Run ➤ Run Wear menu sequence to try again, I got the wear tab seen at
the bottom left in Figure 11-3. This section of the IDEA shows you what is happening with
the AVD, including placement and any problems.

Figure 11-2. Launch the Android Wear Round AVD to try to test the application. AVD crashes, click OK to close

278 CHAPTER 11: WatchFaces Bitmap Design: Using Raster Graphics for WatchFaces

This time when I ran the AVD emulator, the Android DDMS also popped open a panel,
showing process info in the left-hand pane and a logcat, which is short for Error Log
Catalog, in the right-hand pane, as shown in Figure 11-3. The logcat pane is currently
empty, so no errors have been logged, at least for the time period that includes the launch of
the code. Once you start using an Android application, errors may appear inside this pane to
inform you about any problems in your code.

Once your AVD launches, as shown in Figure 11-4, find the Settings option, click it, and find
the Change watch face option, then click that and scroll sideways through the watch faces
until you find your Pro Watch Face option. Once you click your preview image, Android
launches the Pro Watch Face design, which is shown on the far right side of Figure 11-4. It
appears that the onDraw() method is drawing a watch face design correctly, but the second
hand is not advancing, so you will need to check the timing code.

Figure 11-3. Try launching AVD again with Run ➤ Wear menu sequence; Android DDMS panel shows processes

Figure 11-4. Find the Settings ➤ Change watch face sequence, select Pro Watch Face, and run your watch face

279CHAPTER 11: WatchFaces Bitmap Design: Using Raster Graphics for WatchFaces

Sending the Whole Second Delay to Your Handler Object
Because the second hand is frozen in place, a logical place to start looking at the code is
the Handler object named updateTimeHandler, since this code is where the watch face
application starts the timer logic each second.

Inside the .handleMessage() method, will notice that within the conditional
if(isTimerEnabled()) structure you have calculated the msDelay (the time until the next
whole second offset value). However, you have not sent that msDelay data value over to the
Handler object so it can trigger the next time-related Message object.

This is done by using the .sendEmptyMessageDelayed() method call, and the Java
programming statement to accomplish sending the msDelay value to the handler object will
go right after the msDelay calculation. The Java code can be seen in Figure 11-5 and should
look like the following statement:

updateTimeHandler.sendEmptyMessageDelayed(UPDATE_TIME_MESSAGE, msDelay);

Figure 11-5. Add a call to a .sendEmptyMessageDelayed() method off the updateTimeHandler object

What this does is send the UPDATE_TIME_MESSAGE value and the delay value in
milliseconds to the updateTimeHandler using the method call that specifies (by its very
name) for it to send an empty message (a trigger) at that exact msDelay value, which
represents the next whole (1,000ms) second.

Use a Run ➤ Run Wear menu sequence to launch an AVD to test the watch face. The second
hand is still frozen, so there must be something else missing!

280 CHAPTER 11: WatchFaces Bitmap Design: Using Raster Graphics for WatchFaces

Setting a Time Object to a Current Time in the Draw Logic
Now that the Handler object is broadcasting the correct whole second time, the next
logical place to check that timing-based logic is in the .onDraw() method. Notice that
you use the watchFaceTime Time object to calculate the hour, minute, and second hand
angle positions. You need to make sure that the Time object is set accurately before
these calculations are performed. Thus, you need to call the .setToNow() method, off the
watchFaceTime Time object, at the top of the .onDraw() method.

I put this after the super.onDraw() method call and after the .drawColor() method call that
sets the background color to black. The Java programming statement should look like the
following:

watchFaceTime.setToNow();

As you can see in Figure 11-6, the Java code is error free and you’re are now ready to test
the code again using the Round AVD. I clicked the watchFaceTime object reference in the
Java code to track its use in the onDraw() method.

Figure 11-6. Add a call to the .setToNow() method off the watchFaceTime object after the .drawColor() call

After the watchFaceTime Time object updating line of Java code is added to the code, test
the watch face again in the Round AVD. Now the second hand should be ticking away, and
you’re ready to test the code in the Square AVD emulator to get some experience working
with the Android_Wear_Square AVD.

281CHAPTER 11: WatchFaces Bitmap Design: Using Raster Graphics for WatchFaces

Testing a WatchFace Design: Using a Square AVD
Use the Run ➤ Edit Configurations menu sequence (as shown in Figure 11-1) and set the
Emulator to the Android Wear Square AVD, as shown in Figure 11-7.

Figure 11-7. Use Edit Configurations dialog to select the Square AVD

I went into Settings ➤ Change watch face to find a square watch face preview, and it was
not included! I checked my AndroidManifest.xml file to make sure the correct image asset
was referenced, and then I used Google to see if anyone else had encountered this problem
with the square watch face emulator. The one suggestion I saw related to the AVD Use Host
GPU option. Some suggested deselecting this option, and others suggested selecting it!

282 CHAPTER 11: WatchFaces Bitmap Design: Using Raster Graphics for WatchFaces

So I tried both; neither setting worked! So I tried Landscape Orientation, which turned my
content sideways in the emulator, but it didn’t reveal the square watch face preview, so I
tried increasing the RAM to 1GB as well as the Internal Storage to 500MB, the results of all
of these can be seen in Figure 11-8.

Figure 11-8. Try altering the Use Host GPU and Orientation settings, and increasing RAM and Internal Storage

Neither of these settings worked, and I spent a few days trying to get the square preview
to appear in the emulator so I could test the code. I wanted to make sure that these AVD
emulators worked because not all of you will have Smartwatch hardware to test on! I kept on
trying different things to figure out why the square Pro Watch Face preview was not showing
up in the Square AVD emulator.

Because this might happen to you at some point (not only with the emulator), I will tell you
some of the things I tried and what finally worked!

283CHAPTER 11: WatchFaces Bitmap Design: Using Raster Graphics for WatchFaces

After the suggested Use Host GPU didn’t work and giving an AVD more system resources
didn’t work either, I wondered if a 320 pixel square preview was too big for the standard 280
DIP square watch face, as Android’s documentation recommended 280 DIP dimensions for
use with square watch face designs.

As I iterated among all of these different AVD settings and image asset dimensions, I had
a couple of crashes of the Android Square ARM AVD, which gave me the dialog shown in
Figure 11-9. I did not let this discourage me, as Android Studio and Android 5 are all new
platforms, and bound to have numerous bugs, at least for a while. I simply closed the AVD
(if it didn’t vanish due to an emulator-arm.exe error dialog) and kept on trying.

Figure 11-9. The Square AVD crashed during the process showing this dialog

I found a solution, at least for my hardware setup and installation, under the Emulator tab
in the Run/Debug (Edit) Configurations dialog. The tab is shown selected in Figure 11-10,
and underneath this tab is an option that was checked as a default in my installation called
Additional command line options. I thought it was strange that this option was checked,
as well as being empty, so I deselected it. I also selected the Wipe user data option to
make sure that I was getting a “clean” load of this ARM AVD into my system memory each
time it was launched.

284 CHAPTER 11: WatchFaces Bitmap Design: Using Raster Graphics for WatchFaces

My thought process here was that there was something that was being loaded into the AVD
emulator code in system memory that was preventing the square watch face preview from
loading into, or being displayed in the UI of, the Android Square ARM AVD emulator. As it
turns out, this solved the problem, which is great, as I need this AVD emulator to work for
those who do not have physical smartwatch hardware but want to learn about Android Wear.

The advanced emulator options are shown in the middle of Figure 11-10, including the
Wipe user data option, which I have now selected (as shown).

There is also a Disable boot animation you could select, if you wish, to speed up the AVD
load sequence, also shown in Figure 11-10.

Now when I launched a Square AVD and selected the Settings ➤ Change watch face
option, I could scroll and find the Pro Watch Face square watch face preview image, which
can be seen in the third pane from the left in Figure 11-11. It is important to note that this
work process can also solve the same problem in the Round AVD emulator if you happen to
encounter it.

Figure 11-10. Deselecting the Additional command line options and selecting Wipe user data

285CHAPTER 11: WatchFaces Bitmap Design: Using Raster Graphics for WatchFaces

When I click the Pro Watch Face preview image, I now get the watch face design and the
second hand is ticking, so the basic watch face code works!

You are now ready to test the various special modes (low-bit, burn-in) that have been
implemented in the program logic, which kick in when the watch face enters ambient mode.
Before I get into testing the custom hardware modes, I want to take a look at how to work
with the AVD emulators, which tend to crash a lot because they are relatively new, and how
to use the F7 key, which toggles the ambient mode on and off in the AVD emulator.

AVD Crashes: Can’t Connect and Not Responding Panels
When I was testing the watch faces code as I was writing this chapter, I had a ton of crashes
as well as the problem mentioned in the previous section, where I could not even get a
square watch face preview to select so I could test my Java code. Once I got this figured
out, I still had a lot of problems with “hanging” AVD emulator software, so let’s look at the
two scenarios I encountered in this section so you know how to resolve the situation if you
ever happen to encounter it. Hopefully, these issues will be fixed by the time this book is out,
but you never know, so I’ll include it here just to be thorough.

These crashes took the form of either a “Can’t connect to the Android Wear app on your
phone” screen or an “Android Wear isn’t responding” screen. A “Can’t connect” error, which
can be seen in Figure 11-12 on the left, will often allow you to “Retry” or “Reset device” and
continue the testing. To get into these two screens, use the “Swipe for some tips” option, as
shown on the first screen (on the left) in Figure 11-12. This presents buttons you can click; be
sure to try the Retry (green) button first before using a Reset (red) button as your last resort.

Figure 11-11. Select the Settings ➤ Change watch face dialog, find the (square) Pro Watch Face, run and test it

286 CHAPTER 11: WatchFaces Bitmap Design: Using Raster Graphics for WatchFaces

I have used both of these buttons successfully, to “save” the AVD session, so that I did not
have to exit (by using a square red X in the upper right corner of dialog window) the AVD
emulator software and start all over.

If the Retry or Reset device button works, you will see the startup screen shown in the
middle pane of Figure 11-13, and you can then proceed to test your watch face application.

Figure 11-12. If you get a Can’t connect to the Android Wear app screen, swipe left a few times to get the Retry and
Reset panes

Figure 11-13. If you get an Android Wear isn’t responding pane, click Wait and you’ll get the start screen. Press F7 for
Ambient Mode

Another show-stopper error screen you might encounter is the “Android Wear isn’t
responding” screen, which can be seen on the far left-hand side in Figure 11-13. If you
click the Wait button, you may eventually get the startup screen shown in the middle of
Figure 11-13. If you click the OK button, the AVD emulator will close, just as if you had used
the square red X in the upper left corner of the dialog window.

Also shown on the right-hand pane in Figure 11-13 is the AVD ambient mode, which you
invoke by pressing the F7 key (Function key 7, along the top of your keyboard). As you can
see, the code that dims the color to 50% of its brightness, by using the .setAlpha(127)
technique, is working well. If you want to use grayscale instead of color in ambient mode,
you should add the .setColor(Color.WHITE) method call inside that section of the Java code.

Now that you know how to use the F7 key to put the AVD emulator into ambient mode, you
can move on and test the low-bit ambient mode code.

287CHAPTER 11: WatchFaces Bitmap Design: Using Raster Graphics for WatchFaces

Special Screen Modes: Testing the Low-Bit Ambient Mode
There are a number of ways you can test the low-bit ambient mode code by forcing
the lowBitAmbientModeFlag to be turned on by adding the line of code that does this
somewhere inside the application programming logic.

The lowBitAmbientModeFlag=true; toggle statement would logically go either in the
onAmbientModeChanged() method or the onPropertiesChanged() method; you’ll be
using both during this chapter so you can see how this works in each.

Add a lowBitAmbientModeFlag=true; Java statement in the onAmbientModeChanged()
method after the superclass method call, as shown in Figure 11-14.

Figure 11-14. Add lowBitAmbientModeFlag=true setting to the onAmbientModeChanged() method to test low-bit
ambient mode

Figure 11-15. Use Settings ➤ Change watch face ➤ Pro Watch Face series, and F7 to test low-bit ambient mode

Once you artificially set the value of the low-bit flag to true, you will use the Run ➤ Run Wear
menu sequence to launch the AVD emulator. Next, use the Settings ➤ Change watch face ➤
Pro Watch Face sequence and launch your watch face application. The watch face in
low-bit ambient mode can be seen on the far right in Figure 11-15, and it uses a white color
for everything as well as no anti-aliasing (as indicated by the jagged edges) on any lines.

Because burn-in is usually used with low-bit mode, let’s add the burn-in flag setting next,
and you can test both of these flags in their “on” setting.

288 CHAPTER 11: WatchFaces Bitmap Design: Using Raster Graphics for WatchFaces

Special Screen Modes: Testing Low-Bit and Burn-In Modes
Add a burnInProtectModeFlag=true; statement right before the if() statement that evaluates
that flag, as shown in Figure 11-16. A lightbulb icon popped up in IntelliJ, so I dropped
down the suggestion menu and double-clicked the “Remove braces from ‘if’ statement”
suggestion. This allowed IntelliJ IDEA to streamline the Java code a bit. If IntelliJ gives you a
reasonable code optimization suggestion, it is often wise to take it and see how it works!

Figure 11-16. Add a burnInProtectModeFlag=true, and take the IntelliJ suggestion to streamline the if() constructs

In this case, it reduced the lines of code for this method from 12 to six, or a 50% code
reduction, once you remove the flag forcing lines of code, which you will put into the
.onPropertiesChanged() method next.

The Java code for the revised onAmbientModeChanged() method (sans the true flag
settings) can be seen error-free in Figure 11-17 and would look like the following Java
method structure:

@Override
public void onAmbientModeChanged(boolean ambientModeFlag) {
 super.onAmbientModeChanged(ambientModeFlag);
 if(lowBitAmbientModeFlag) setAntiAlias(!ambientModeFlag);
 if(burnInProtectModeFlag) setBurnInProtect(ambientModeFlag);
 ensureModeSupport;
 invalidate;
 checkTimer;
}

289CHAPTER 11: WatchFaces Bitmap Design: Using Raster Graphics for WatchFaces

Next, let’s put these special mode flag “forced true” settings into the onPropertiesChanged()
method, at the end of the method, as shown in Figure 11-18. The new Java code for this
method structure should look like this:

@Override
public void onPropertiesChanged(Bundle properties) {
 super.onPropertiesChanged(properties);
 lowBitAmbientModeFlag = properties.getBoolean(PROPERTY_LOW_BIT_AMBIENT, false);
 burnInProtectModeFlag = properties.getBoolean(PROPERTY_BURN_IN_PROTECTION, false);
 lowBitAmbientModeFlag = true;
 burnInProtectModeFlag = true;
}

Figure 11-17. Once you implement the IntelliJ if() refinement suggestion, the method is reduced to six lines of code

Figure 11-18. Move special mode flags set to true values to the bottom of the onPropertiesChanged() method

Now let’s test the watch face again using the Settings ➤ Change watch face ➤ Pro Watch
Face sequence. As you can see in the third pane from the left in Figure 11-19, when you
press the F7 key to toggle the watch face into ambient mode, the low-bit flag logic is
working, as you know already.

290 CHAPTER 11: WatchFaces Bitmap Design: Using Raster Graphics for WatchFaces

However, your burn-in programming logic is not placing that outline around the hands of
the watch face as you expected it to. Press the F7 key again to toggle back into interactive
mode, as shown in the fourth pane at the far right of Figure 11-19. As you can see, the RBG
color values for the watch face hands are not being restored, so you will also need to take a
look at the ensureModeSupport() method as well as the setBurnInProtect() method. Let’s
fix the switch back into interactive RGB color mode first.

Because you configured the watch face hands color in the .onCreate() method by calling the
custom .createHand() methods, you need to set the color back in the final else section of
the ensureModeSupport() method.

You’re already setting the alpha value back to 255 (fully opaque) using the .setAlpha()
method call, so, you need to use the .setColor() method call to reconfigure the Paint objects
to use the BLUE, GREEN, RED, and WHITE Color class constants. I’m coding this in this
way using a different method call to show you a different way to set color values. Remember
that you used the .setARGB() method to set the color value in the .createHand() methods.
The Java code, shown error-free in Figure 11-20, should look like the following:

} else {
 pHourHand.setAlpha(255);
 pMinuteHand.setAlpha(255);
 pSecondHand.setAlpha(255);
 pTickMarks.setAlpha(255);
 pHourHand.setColor(Color.BLUE);
 pMinuteHand.setColor(Color.GREEN);
 pSecondHand.setColor(Color.RED);
 pTickMarks.setColor(Color.WHITE);
}

Figure 11-19. Test your watch face Java code thus far by using the Android_Wear_Square_API_21 AVD emulator

291CHAPTER 11: WatchFaces Bitmap Design: Using Raster Graphics for WatchFaces

Now let’s take a look at why the .setStyle(Paint.Style.STROKE) approach is not stroking the
single pixel outline around the hour hand and minute hand watch face components. As you
can see in Figure 11-19, the .setBurnInProtect() method is clearly having zero impact on
what is being drawn to the screen.

As you saw in Figure 10-25, you’re trying to use the STROKE Paint.Style constant to create
the outline effect around the hour and minute hand vector objects and a FILL Paint.Style to
create a solid, or filled, effect. Whereas this approach will work well with just about any of
the 2D ShapeDrawable objects in Android, including Text, Circles, Rectangles, and other
“closed” line or curve-based shapes, it will not work with 1D “open” line or curve-shaped
objects because they have no interior! So in the case of a 1D vector “ray” object, STROKE
and FILL will yield the exact same effect!

What you need to do to get this working is use the .setStrokeWidth() method call with the
Line Shape objects, which will allow you to optimize the burn-in method, by not having to
declare a Paint.Style object named paintStyle, and simplify the if-else conditional structure
to use three pixels for the hour hand, which needs to be thicker than the minute hand,
and two pixels for the minute hand, which is the same value you’re using for the tick mark
elements, so they can be easily seen on the watch face display.

Using one single pixel for drawing watch face elements will not allow the end user to easily
read the watch face time, even though that would be the most optimal setting for the screen
burn-in protection. You can experiment with using 1.f stroke width data values in your watch
face applications if you would like to see how it looks! In this case, the hour hand would
need to be 2.f to differentiate it, and the minute hand and tick marks would use a 1.f setting.

Figure 11-20. Add .setColor() method calls in the else portion of the if-else loop in ensureModeSupport() method

292 CHAPTER 11: WatchFaces Bitmap Design: Using Raster Graphics for WatchFaces

A new method structure, which sets the StrokeWidth attribute for the Paint objects, can be
seen in Figure 11-21 and should look like this:

private void setBurnInProtect(boolean enabled) {
 if(enabled) {
 pHourHand.setStrokeWidth(3.f);
 pMinuteHand.setStrokeWidth(2.f);
 } else {
 pHourHand.setStrokeWidth(6.f);
 pMinuteHand.setStrokeWidth(4.f);
 }
}

Figure 11-21. Remove the Paint.Style logic from setBurnInProtection method, and instead use .setStrokeWidth()

Figure 11-22. Use Settings ➤ Change watch face ➤ Pro Watch Face series, and F7 to test low-bit ambient mode

Now when you use the Run ➤ Run Wear and launch the AVD emulator and use the Settings ➤
Change watch face ➤ Pro Watch Face ➤ F7 key, you will get the ambient mode with
low-bit and burn-in modes enabled, as shown on the far right pane in Figure 11-22.

As you can see, the watch face is still attractive, readable, and completely usable, even
when using zero anti-aliasing. The watch face design is using very few pixels to draw in the
watch face design elements, which serves to provide screen burn-in protection, which is the
objective of this mode.

293CHAPTER 11: WatchFaces Bitmap Design: Using Raster Graphics for WatchFaces

The next thing you need to do is learn how to detect whether the user has a square or
round watch face, using Android’s WindowInsets class. After you put that watch face
shape detection code in place, you will learn about the Android Bitmap, Drawable, and
BitmapDrawable classes, as well as how to use these to implement bitmap background
images with your vector watch face components, taking your Android watch faces to all
new levels.

Android WindowInsets Class: Polling Screen Shape
The Android WindowInsets class is a public final class that extends the java.lang.Object
class. The class hierarchy looks like this:

java.lang.Object
 > android.view.WindowInsets

This class is part of the android.view package because it is used with View objects.
A WindowInsets object can be used to describe a set of insets for the application window
content. In this case, this object holds watch face characteristics such as the shape of the
watch face and whether it has a shelf, as the Motorola MOTO 360 does currently.

These WindowInsets objects are “immutable” (fixed or not changeable). They may be
expanded (by Google’s Android Team) to include other inset types in the future. Here you’ll
be using the WindowInsets object in conjunction with the .onApplyWindowInsets(Window
Insets) method, which you will be coding next.

This WindowInsets class has one public constructor method, which takes the format
WindowInsets(WindowInsets insets) and constructs a (new) WindowInsets object. It does
this by copying the data values from a source WindowInsets definition, in this case, this
would be from each SmartWatch manufacturer.

This WindowInsets class has 18 methods, two of which you would want to know about for
WatchFaces API development. The .isRound() method will tell you if the watch face is round
(or not round, which would be square), and the .getSystemWindowInsetBottom() method will
tell you the size (integer) for the “shelf” the MOTO 360 uses to connect its watch face screen.

Next, let’s create the onApplyWindowInsets() method, which is one of those
WatchFaceService.Engine classes whose implementation I saved until now when you are
learning about something that could actually “leverage” what it provides!

Detecting WatchFace Shape: Using WindowInsets
Add a public void onApplyWindowInsets(WindowInsets insets){ } empty method structure
in the Engine class after the onTimerTick() method. As you can see in Figure 11-23, you
will have to use Alt+Enter and have IntelliJ code the import android.view.WindowInsets;
statement for you at the top of your class.

294 CHAPTER 11: WatchFaces Bitmap Design: Using Raster Graphics for WatchFaces

The next step is to add the roundFlag boolean variable to the end of the compound
boolean statement (at the top of the private Engine class) using the following Java variable
declaration statement, as shown (highlighted) at the top of Figure 11-24:

boolean lowBitAmbientModeFlag, burnInProtectModeFlag, roundFlag;

Figure 11-23. Add the public void onApplyWindowInsets(WindowInsets insets){ } empty method structure

295CHAPTER 11: WatchFaces Bitmap Design: Using Raster Graphics for WatchFaces

Inside the empty onApplyWindowInsets() method, call the superclass using the Java super
keyword and pass the WindowInsets object named insets up to the parent class. Next, set
the roundFlag boolean variable equal to boolean value of the .isRound() method call off the
insets WindowInsets object.

The Java method, as shown at the bottom of Android Studio in Figure 11-24, should look
like the following Java method construct:

@Override
private void onApplyWindowInsets(WindowInsets insets) {
 super.onApplyWindowInsets(insets);
 roundFlag = insets.isRound();
}

Now you have a way to find out if the user’s smartwatch is using round or square display
hardware. This boolean value will be used in the next part of the chapter when you learn
how to place bitmap imagery behind the vector watch face components. First, however,
let’s take a look at Android’s Bitmap and Resources classes, which you will use to load your
image data.

Figure 11-24. Add a boolean variable named roundFlag to the Engine class and set it equal to insets.isRound() inside
of the onApplyWindowInsets() method

296 CHAPTER 11: WatchFaces Bitmap Design: Using Raster Graphics for WatchFaces

Android Bitmap Class: Using Digital Image Assets
The Android Bitmap class is a public final class that implements the Java Parcelable
interface and extends the java.lang.Object master class. The Bitmap class hierarchy looks
like the following:

java.lang.Object
 > android.graphics.Bitmap

The Android Bitmap class has two nested (helper) classes. The first is the enum
Bitmap.CompressFormat class, which specifies known image file formats these Bitmap
objects can be compressed into using codecs, which are part of the Android OS. Enum
values include JPEG, WEBP, and PNG.

The second is an enum Bitmap.Config class, which specifies possible bitmap
configurations. These include ALPHA_8, which is the 8-bit 256 transparency level alpha
channel–only format, as well as ARGB_8888, which is the 32-bit format using 8-bits of data
per color plane (and alpha channel).

There is also a 16-bit bitmap format called RGB_565, which is interesting, because there is
no 16-bit codec support (BMP, TIF, and TGA all support 16-bit color) currently in Android.
There is also the deprecated (meaning, no longer supported) ARGB_4444 format, which you
should not use because it was deprecated in Android API Level 13.

The Bitmap class has more than 50 methods, so clearly I can’t cover these in detail here,
but I will cover those methods that you will be utilizing to implement bitmap assets in the
WatchFaces API designs in this chapter, as well as in the next chapter, when I will discuss
digital imaging techniques used to create the other watch face mode bitmap assets.

The .getWidth() method call will return the width attribute of the Bitmap object and,
similarly, the .getHeight() method call, which will return the height attribute of the Bitmap
object.

The public static Bitmap createScaledBitmap (Bitmap src, int dstWidth, int dstHeight,
boolean filter) method, added in Android API Level 1, creates a new Bitmap object by
scaling image data from the source Bitmap object. The method parameters include a src,
the source Bitmap object, a dstWidth, or the destination Bitmap object’s target width, a
dstHeight, the destination Bitmap object’s target height, and a boolean filter data value,
which will be set to true if you want Android to apply Bi-Linear Interpolation to the image
scaling algorithm. You’ll be using this option to achieve the highest quality image scaling
result. This is especially important if you’re going to be up-sampling (going from a lower
resolution to a higher resolution).

The method returns a scaled Bitmap object, or if no scaling was performed, it would then
logically return the source Bitmap object. The method throws an IllegalArgumentException if
the source Bitmap object width is less than (or equal to) zero or if the Bitmap object height is
less than or equal to zero. You’ll be using this method later on in the chapter in the .onDraw()
method to make sure that your Bitmap object fits your watch face display.

Next, let’s take a look at the Android Resources class, because you will have to use this to
load the digital image resources into the Bitmap object.

297CHAPTER 11: WatchFaces Bitmap Design: Using Raster Graphics for WatchFaces

Android Resources Class: Using Your Res Folder
The public Android Resources class extends java.lang.Object and is part of the
android.content.res package. It has one known direct subclass, which is called
MockResources. The Java class hierarchy looks like the following:

java.lang.Object
 > android.content.res.Resources

The Resources class is used to create objects that allow you to access the application
resources that are stored in the /res folder. This Android “R” resource system (for instance, the
images that are stored in /res/drawable-hdpi and referenced as R.drawable.imagename)
keeps track of all noncode assets associated with your Android application. You can use this
class to access these application resources, as you will be doing in the next section.

You can acquire a Resources object that is loaded with all the references to your external
project assets (resources) within your application by using the .getResources() method call
off the application’s primary Context, which is accessed using the Java this keyword. In this
application scenario, it would look something like the following Java statement:

Resources watchFaceResources = ProWatchFaceService.this.getResources();

The Android SDK tools installed in IntelliJ IDEA compile the application resources into the
application binary at build time, where they go from the /res/drawable reference path to the
R.drawable reference path. This is why you would use R.drawable.image_asset_name in
Java method calls rather than /res.

To be able to use an external asset as a resource, you must locate it in the correct source
subfolder inside the project res/ directory, so the images or shapes would go into /res/
drawable (R.drawable) and the vector animation would go into /res/anim (R.anim), for
instance.

As part of your application build (compilation) process, Android SDK tools will generate
R. symbols for each asset resource. You can then use these R. references inside the
application’s Java code to access the resources. Make sure to use R. references in Java
code to access assets at runtime.

Using an external application resource allows developers the capability of changing the
visual characteristics of their applications without modifying the Java code or the XML
markup. Additionally, providing these alternative resources will allow developers to optimize
their applications, across the exceptionally wide (and rapidly growing) collection of consumer
electronic device hardware configurations. An ability to dynamically access different new
media resources will allow developers to accommodate scenarios such as different end-user
languages, disparate screen sizes, shapes and densities, and, in this case, round watch
faces versus square watch faces!

Being able to access various assets dynamically at runtime is an essential aspect of
developing Android Watch Faces (and other) applications that are compatible across a wide
range of disparate types of hardware devices.

298 CHAPTER 11: WatchFaces Bitmap Design: Using Raster Graphics for WatchFaces

The Resources class has two nested (also called helper) classes. There is the Resources.
NotFoundException class, which handles throwing an exception for the Resource API
when your requested resource (or its path) cannot be found. There is also a Resources.
Theme class, which holds current attribute values for the particular OS Theme that was
implemented in the app.

There is one public constructor method for creating Resource objects, which takes
this parameter format: Resources(AssetManager assets, DisplayMetrics metrics,
Configuration config). Note that if you use .getResources(), this Resource object will be
created for you, and you do not have to explicitly use this constructor method call and
format.

This is the case with an implementation that you will be utilizing later on in this chapter in the
Java statement, which was outlined earlier in this section. Now let’s create the Bitmap and
Resources objects for the watch face application.

Accessing Imagery: Using Bitmap and Resources
The first thing you need to do at the top (declarations area) of the private Engine class is
create the compound statement that declares and names two Bitmap objects. One of these
Bitmap objects will hold the image asset (the original image data) and the other will hold the
scaled version of the image data if for some reason the smartwatch hardware is using some
resolution other than 320 by 320 pixels.

This approach would allow you to use higher resolution digital image assets, if higher
resolution watch faces were developed in later years. The Java code for the compound
statement can be seen in Figure 11-25 and should look like the following:

Bitmap watchFaceBitmap, scaleWatchFaceBitmap;

Figure 11-25. Add a compound Bitmap object declaration naming watchFaceBitmap and scaleWatchFaceBitmap

Click anywhere in the line of code, shown highlighted in Figure 11-25, and use the Alt+Enter
keystroke sequence to tell IntelliJ to write the import statement for you.

299CHAPTER 11: WatchFaces Bitmap Design: Using Raster Graphics for WatchFaces

The next thing you want to do is create the Resources object. Your most logical method for
doing this is the onCreate() method, because it only needs to be done once on application
startup. You could declare Resources watchFaceResources at the top of the Engine class
with other declarations, or you can declare, name, and load this object locally in onCreate(),
using the following Java statement, which can also be seen in Figure 11-26:

Resources watchFaceResources = ProWatchFaceService.this.getResources();

Figure 11-26. Create a Resources object named watchFaceResources; load it using the .getResources() method

Click in the Resources line of code and use the Alt+Enter work process to direct IntelliJ to
code the import statement, as shown in Figure 11-26.

Before you continue coding, let’s take a minute to get an overview of the Android Drawable
class, because you will be implementing the Drawable object in your code to hold one of
these Bitmap objects.

Android Drawable Class: Creating Drawable Objects
The Android public abstract Drawable class was scratch-coded for creating Drawable objects
in Android, so it directly extends the java.lang.Object, as shown in the following code:

java.lang.Object
 > android.graphics.drawable.Drawable

A Drawable is an Android term for something that can be drawn on a screen. The Drawable
class provides the generic API for dealing with an underlying visual asset (resource), which
might be any one of a plethora of graphics-related drawing element types, such as a
nine-patch, vector, color, shape, gradient, inset, layer, clip, or a bitmap, which is what you
will be using in the next section of this chapter.

300 CHAPTER 11: WatchFaces Bitmap Design: Using Raster Graphics for WatchFaces

The Drawable object does not have any ability to receive or process events or directly
interact with the user, so you must “wrap” the Drawable object with a View object (widget) of
some sort in able to be able to do this.

There are 15 known direct subclasses of drawable. You will be working with the
BitmapDrawable subclass, but there are also others you could use in application
development, including: VectorDrawable, GradientDrawable, NinePatchDrawable,
AnimatedVectorDrawable, PictureDrawable, LayerDrawable, ClipDrawable, ColorDrawable,
ScaleDrawable, RotateDrawable, ShapeDrawable, InsetDrawable, RoundedBitmapDrawable,
and there’s also a DrawableContainer.

There are seven known indirect subclasses; these are the subclasses of the direct
subclasses and include: AnimatedStateListDrawable, RippleDrawable, AnimationDrawable,
PaintDrawable, LevelListDrawable, StateListDrawable, and TransitionDrawable.

Drawables are not directly visible to Android applications until they are wrapped in a View.
Drawables take on a variety of graphic element formats:

The BitmapDrawable is the drawable you’ll be using here; it is a map
of “bits,” or pixels, and uses the GIF, PNG, WEBP, or JPEG digital image
“codecs” to compress and decompress the digital image data assets into
system memory.

The NinePatchDrawable is an extension to the PNG data format, allowing
the image to specify how to stretch and scale perimeter areas.

The ShapeDrawable contains simple vector drawing commands instead
of a raw Bitmap object, allowing the vector artwork to “render” to any
screen size.

The LayerDrawable allows developers to create an image composite
drawable. This type of drawable is like having a mini-GIMP in Android,
where you can stack multiple bitmap drawables on top of one another using
z-order layers.

The StateDrawable is another type of compound drawable that selects one
of a given set of drawables based on the state setting for the StateDrawable.
A great example of this would be a multistate Android ImageButton widget.

The LevelDrawable is another type of compound drawable that selects one
of a given set of drawables, based on the level setting for the LevelDrawable
object. A good example of this is the signal level icon on the Status Bar.

There are a plethora of other Drawable object types in Android, so if you are interested in
learning about all of these in greater detail, check out the Apress Pro Android Graphics
(2013) title.

Now it’s time to create the watch face Drawable object and use it to load a Bitmap object,
so that you can start adding background imagery to the watch face design. You will also
incorporate the roundFlag boolean so that if you have different designs for the square
versus round watch face, you’ll know how to set up your watch face code to use the correct
version.

301CHAPTER 11: WatchFaces Bitmap Design: Using Raster Graphics for WatchFaces

Loading the Drawable: Using the roundFlag Boolean
The first thing you need to do, at the top of the private Engine class, is declare, and name,
your Drawable object. Let’s use the logical name watchFaceDrawable for this Drawable
object, so you know exactly what it is when you use it in the code. The Drawable object
declaration can be seen in Figure 11-27, and should look like the following Java object
declaration:

Drawable watchFaceDrawable;

Figure 11-27. Add a Drawable object declaration in the Engine class, and name the object watchFaceDrawable

The next thing you’ll want to do is add an empty conditional if-else structure at the top of the
onCreate() method, after the Resources object declaration and instantiation line of code.

The conditional structure will evaluate the roundFlag boolean variable and load the
watchFaceDrawable object with the correct digital image resource. The empty statement,
which can be seen under construction in Figure 11-28, should look like the following Java
conditional if-else (empty) structure:

if(roundFlag) {
 // Round Watch Face Java Statements
} else {
 // Square Watch Face Java Statements
}

302 CHAPTER 11: WatchFaces Bitmap Design: Using Raster Graphics for WatchFaces

Inside the if part of the conditional statement, set the watchFaceDrawable object equal to a
getDrawable(R.drawable.preview_pro_circular) method call off the watchFaceResource
object. This preview_pro_circular PNG can be seen highlighted in blue in Figure 11-38. The
Java code, as shown in Figure 11-29, should look like the following once you’ve coded the
entire conditional if-else structure:

if(roundFlag) {
 watchFaceDrawable = watchFaceResources.getDrawable(R.drawable.preview_pro_circular);
} else {
 watchFaceDrawable = watchFaceResources.getDrawable(R.drawable.preview_pro_square);
}

Figure 11-28. Add an if(roundFlag) conditional structure in onCreate() method; choose roundFlag from the pop-up

Figure 11-29. Add a watchFaceDrawable object in the if, and load it with the watchFaceResources.getDrawable()

As you can see in Figure 11-29, as you’re coding the .getDrawable() method call, IntelliJ will
list your Resources (R.) object assets for you, as you type in each period character. Type in
the R and then a period, then select the drawable type (folder). Next, type in another period,
and then select the preview_pro_circular PNG image reference to complete the Java
programming statement. Now all you have to do is repeat this in the else structure.

303CHAPTER 11: WatchFaces Bitmap Design: Using Raster Graphics for WatchFaces

Once you finish creating this if(roundFlag)-else structure that loads your watchFaceDrawable
object with the correct Resources object reference, your code should be error-free, as
shown in Figure 11-30, with the square watch face digital image asset reference in place
(and highlighted).

Figure 11-30. Add a different watchFaceResources.getDrawable() method call in the else portion of the if-else
statement

Next, let’s take a quick look at the Android BitmapDrawable class, which you will be using
in the next line of Java code to “cast” the Drawable object, which has now been loaded with
the correct image asset Resource reference, based on the setting of the roundFlag boolean
variable, which you’ve culled from the WindowInsets object using the .isRound() method
call. Whew!

I wanted to give you an overview of this class because BitmapDrawables are one of the most
powerful and often used types of Drawable objects in Android application development, both
for the UI design as well as for the graphics design for applications. If you are looking for
more advanced material covering 2D Android UI design, check out the Apress title
Pro Android UI (2014) when you have a chance.

Android’s BitmapDrawable Class: Image Drawables
Android’s public BitmapDrawable class extends the Drawable class and is included in the
android.graphics.drawable package. The Java class hierarchy looks like the following:

java.lang.Object
 > android.graphics.drawable.Drawable
 > android.graphics.drawable.BitmapDrawable

304 CHAPTER 11: WatchFaces Bitmap Design: Using Raster Graphics for WatchFaces

A BitmapDrawable is a Drawable object that contains a Bitmap object, which can be tiled,
stretched, rotated, tinted, faded, or aligned. You can create a BitmapDrawable using one of
three overloaded constructor methods, of the eight original constructor methods, introduced
in Android API Level 1:

BitmapDrawable() // This constructor was deprecated in API 4
and can be ignored

BitmapDrawable(Resources res) // This constructor was deprecated in API 18

and can be ignored

BitmapDrawable(Bitmap bitmap) // This constructor was deprecated in API

level 4 and can be ignored

BitmapDrawable(Resources res, Bitmap bitmap) // Creates Drawable using an external bitmap

resource

BitmapDrawable(String filepath) // This constructor was deprecated in API

level 5 and can be ignored

BitmapDrawable(Resources res, String filepath) // Create a Drawable by decoding from a

file path

BitmapDrawable(InputStream is) // This constructor was deprecated in API

level 5 and can be ignored

BitmapDrawable(Resources res, InputStream is) // Create Drawable decoding bitmap from input

stream

Because you will be casting the BitmapDrawable object, I will not cover all of these
constructor methods here; however, suffice it to say that you can create a BitmapDrawable
object by using an image file path, using an input stream, using another Bitmap object, using
XML definition inflation, using another Bitmap object, or using a Resources object, as you
will be doing.

If you want to define a BitmapDrawable using an XML definition file, use a <bitmap> XML
tag to define this element. BitmapDrawable would be used with a Bitmap object, which
handles management and transformation of raw bitmap graphics and ultimately will be the
object that is used when drawing to the Canvas object, as you will notice in the code used in
this chapter.

There are a number of XML properties, parameters, or attributes that can be used with
Bitmap objects, which are outlined in Table 11-1.

305CHAPTER 11: WatchFaces Bitmap Design: Using Raster Graphics for WatchFaces

Using BitmapDrawable Object: Extract and Scale
Next, let’s implement a BitmapDrawable object to obtain the Bitmap object data needed
from the Drawable object that contains it. The Java statement casts the watchFaceDrawable
Drawable to a (BitmapDrawable) with the following code, which can be seen error-free in
Figure 11-31:

watchFaceBitmap = ((BitmapDrawable) watchFaceDrawable).getBitmap(); // Cast to a
(BitmapDrawable)

Table 11-1. BitmapDrawable Attributes Accessible Using XML Tag Parameters

Bitmap Attribute Description of Bitmap Attribute Function

antialias Enables or disables anti-aliasing (edge smoothing algorithm)

dither Enables bitmap dithering for color-depth mismatch (ARGB8888 to RGB565)

filter Enables or disables bitmap bilinear filtering for high-quality scaling

gravity Defines the gravity constant setting to be used for the Bitmap object

mipMap Enables or disables the mipMap hinting feature

src Bitmap asset file identifier resource path

tileMode Defines the overall Bitmap object tiling mode

tileModeX Specifically defines the horizontal tiling mode

tileModeY Specifically defines the vertical tiling mode

Figure 11-31. Add a watchFaceBitmap object, and set it equal to the bitmap asset inside the watchFaceDrawable object

This one compact line of Java code has the watchFaceBitmap Bitmap object, the
watchFaceDrawable Drawable object (which contains your image resource), an undeclared
BitmapDrawable object that is acting as a bridge between the Drawable asset in the APK
file, and the raw bitmap that needs to live in the end-user’s Android hardware device system
memory.

306 CHAPTER 11: WatchFaces Bitmap Design: Using Raster Graphics for WatchFaces

What this statement is doing is setting the watchFaceBitmap Bitmap object equal to the
result of a .getBitmap() method call, which was called off the casting structure, where
the watchFaceDrawable object is cast into a BitmapDrawable using a (BitmapDrawable)
watchFaceDrawable casting structure, which magically turns the Drawable object into a
BitmapDrawable object.

Once the Drawable is cast into a BitmapDrawable, this .getBitmap() method call will work,
that is, it will be a valid method call and will not throw an exception.

Now that you have the methods in place that will be needed for (and called from) the
.onAmbientModeChanged() method from the WatchFaceService.Engine class, you’ll need
to make sure all of these various modes are supported when the smartwatch hardware goes
into ambient mode.

Scaling Bitmaps: Using the .createScaledBitmap() Method
The next area where you need to put code in place is inside the onDraw() method, where
you need to insert a Bitmap object into the draw pipeline. Create an empty conditional if
structure after the width and height value calculations, because you’ll be using these values to
determine if scaling is needed. The code, which is shown under construction in Figure 11-32,
should look like this:

if(scaleWatchFaceBitmap) {
 // an empty conditional if statement thus far
}

Figure 11-32. Add an if(scaleWatchFaceBitmap) conditional structure to ascertain if you need to scale the bitmap

Inside the conditional if structure, evaluate if the scaledWatchFaceBitmap is unused
(empty or null) or if it has different dimensions than a source bitmap. The Java code, as
shown in Figure 11-33, should look like the following:

if (scaleWatchFaceBitmap == null ||
 scaleWatchFaceBitmap.getWidth() != width ||
 scaleWatchFaceBitmap.getWidth() != height) { // Java code to be processed will go in here

}

307CHAPTER 11: WatchFaces Bitmap Design: Using Raster Graphics for WatchFaces

Inside the conditional if structure, if the bitmap needs scaling, call the .createScaledBitmap()
method, off the Bitmap class, as shown in Figure 11-34, and load the scaleWatchFaceBitmap
object with this result. The Java code, thus far, should look like this:

if (scaleWatchFaceBitmap == null ||
 scaleWatchFaceBitmap.getWidth() != width ||
 scaleWatchFaceBitmap.getWidth() != height) {
 scaleWatchFaceBitmap = Bitmap.createScaledBitmap(watchFaceBitmap, width, height, true);
}

Figure 11-33. Add the boolean OR logic that determines if the scaleWatchFaceBitmap object is empty or needs setting

Figure 11-34. Inside the conditional if, call a Bitmap.createScaledBitmap() method off the scaleWatchFaceBitmap

As you can see in Figure 11-34, if you type in the Bitmap class name and press the
period key, IntelliJ will give you a helper dialog pop-up, filled with all of the methods
that apply. You can select the option that applies to what you want to do, in this case,
.createScaledBitmap(Bitmap src, int dstWidth, int dstHeight, boolean filter).
The Java code, thus far, is error-free, and is shown in Figure 11-35.

308 CHAPTER 11: WatchFaces Bitmap Design: Using Raster Graphics for WatchFaces

Notice that if the scaleWatchFaceBitmap has not been used (null), this
.createScaledBitmap() method call will transfer the watchFaceBitmap object into the
scaleWatchFaceBitmap object, even if the width and height are the same! As you learned
in the previous section, this is how the method works, as it will return the original Bitmap
object if no scaling was required.

The next thing you need to do is draw the bitmap as the background, at the top left (0,0)
corner of the watch face screen. This is done using the .drawBitmap() method call. The Java
statement, as shown in Figure 11-36, should look like the following:

watchface.drawBitmap(scaleWatchFaceBitmap, 0, 0, null);

Figure 11-35. Pass the watchFaceBitmap object and watchface width and height into the .createScaledBitmap()

Figure 11-36. Call the .drawBitmap() method off the watchface Canvas object, using the scaleWatchFaceBitmap

In case you’re wondering, the null at the end of the method call parameter area references a
Paint object. If you have not defined a Paint object, to apply more screen drawing options to
your bitmap, then this would be null, as in empty or undefined. If you want to define further
options regarding how the Bitmap object is drawn (painted) on the screen, you would create
this Paint object, name it, load it (configure it), and use its name in the method call’s last
parameter slot.

309CHAPTER 11: WatchFaces Bitmap Design: Using Raster Graphics for WatchFaces

Testing Background Bitmaps: Round vs. Square
Let’s test the application using both AVD emulators to make sure that your Bitmap assets
are now rendering where they should be behind the watch face design. As you can see
on the right-hand side of Figure 11-37, your bitmap background for the round watch face
seems to be using a square watch face bitmap asset, which means that the roundFlag is
not getting set to true.

Figure 11-37. Test bitmap code in both AVD emulators

Of course, there could also be some problem with the Bitmap object scaling, as this round
watch face AVD seems to be zoomed in quite a bit. Let’s make sure and create a couple of
test images with text in them that says round and square. I’ll use alpha channel transparency
in the PNG32 image assets, so you will be able to see the Canvas object background
(BLACK) color, since that line of code was left in the .onDraw() method and is currently
being overdrawn by a Bitmap object. This will show you another level of flexibility; that is,
seamlessly combining bitmaps and vector approaches to watch faces design. I’ll include a
round perimeter hoop in the round watch face image.

Copy the round_face_text.png and square_face_test.png image assets to the
/AndroidStudioProjects/ProAndroidWearable/wear/src/main/res/drawable-hdpi/ folder,
the result of which can be seen on the right side of Figure 11-38.

310 CHAPTER 11: WatchFaces Bitmap Design: Using Raster Graphics for WatchFaces

Next, change the references to the watch face preview images that you were using to test
the if(roundFlag) code to the watch_face_test images, as shown (highlighted) in Figure 11-39,
using the following Java code:

if(roundFlag) {
 watchFaceDrawable = watchFaceResources.getDrawable(R.drawable.round_face_test);
} else {
 watchFaceDrawable = watchFaceResources.getDrawable(R.drawable. square_face_test);
}

Figure 11-38. Add test bitmaps into the wear/src/main/res/drawable-hdpi folder using an OS file management utility

Figure 11-39. Add if-else conditional structure that evaluates if the round watch face is being used and gets the
correct resource

Let’s run this new configuration in both AVD emulators to confirm what is happening. As you
can see in Figure 11-40, the scaling is being performed correctly, as the 320 pixel source is
in the Round AVD pixel for pixel and the Square AVD is down-sampling to the 280 pixels that
Android says a square watch face uses. You can tell by looking at the text (font) sizing.

311CHAPTER 11: WatchFaces Bitmap Design: Using Raster Graphics for WatchFaces

I Googled this “.isRound() not being set correctly” problem and found that a ton of
developers are having problems with this issue, both on the AVDs as well as on actual
smartwatch hardware. One of the solutions involved UI layout design workarounds using
XML, but these do not apply to what you’re doing here, which is writing directly to the
Canvas object (admittedly an advanced approach). Therefore, I’m going to try to figure this
one out for myself!

Solving the roundFlag Problem: onCreate() to onDraw()
I am going to make the assumption that the onApplyWindowInsets() method is working and
is setting the roundFlag variable correctly, and that the real problem I am having is with the
timing of this method’s execution. If the onCreate() method is being called first, then the
roundFlag is not set to anything other than its default (false) value. So, the first thing that I
am going to try is to put the code that is in the onCreate() method into the onDraw() method,
after the width and height variable calculations.

As you can see in Figure 11-41, I am leaving some space around this code I moved so I can
either move it back or refine it further, if needed.

Figure 11-40. Test your Java code thus far in the Square and Round AVD emulators and make sure the code is working

312 CHAPTER 11: WatchFaces Bitmap Design: Using Raster Graphics for WatchFaces

Figure 11-41. Move the Bitmap and Drawable related code from the onCreate() method inside of the onDraw() method

I tested the app in both AVDs to see if this was the problem, and it was, indeed, the problem,
and the watch face now uses the correct bitmap asset, as shown in Figure 11-42.

Figure 11-42. Test new Bitmap code located in the .onDraw() method in both Round and Square AVD emulators

This is great news because you will want to do all of the watch face design using the
Android Canvas and Java 7 code, but this also causes some new optimization problems,
as the onDraw() method is called frequently, and you only want to do these things one time,
before the first draw, which is why I optimally tried to place these code statements in the
onCreate() method.

313CHAPTER 11: WatchFaces Bitmap Design: Using Raster Graphics for WatchFaces

Hopefully, the Android OS developers will change this method call order in the future so an
onApplyWindowInsets() is called before onCreate(). I will show you how to make sure that
these bitmap setup statements are only performed one time, so your app does not do all
these operations more than one time, which would not be very optimal, because you only
want to load a Resources object, determine the image resource to use (round or square),
and then scale that resource, one single time, at application startup.

Let’s optimize the bitmap portion of the .onDraw() method to implement the firstDraw boolean
variable, so that these operations are only performed on the first onDraw() method call.

Optimizing Your onDraw(): First Draw vs. Every Draw
At the top of the Engine class, create a boolean variable named firstDraw and set it equal to
a true value, because, if you do not explicitly set this boolean variable, it will default to the
false value. The Java code, which is shown (highlighted) in Figure 11-43, should look like the
following:

boolean firstDraw = true;

The next thing you need to do is wrap the if(firstDraw) conditional statement around
bitmap-related code, which you copied from the .onCreate() method into the onDraw()
method. This will ensure that these statements are only executed one time, so that you do
not waste memory or CPU cycles.

Because this will be true the first time you run the app, all you have to do is put the code
you want executed one time in this structure, then set the firstDraw boolean value to be
false at the end of the conditional statement, before the statement is exited. This will lock
the statement to any future use, effectively allowing you to simulate .onCreate() functionality
inside this .onDraw() method structure, as shown in Figure 11-44.

Figure 11-43. Create a boolean firstDraw variable at the top of the Engine class and set it equal to a true value

314 CHAPTER 11: WatchFaces Bitmap Design: Using Raster Graphics for WatchFaces

Figure 11-44. Add an if(firstDraw) structure around the bitmap code, so that it is only performed on the first draw

Because I’m kind of an optimization freak, I immediately started wondering if there were
other statements inside this .onDraw() method that should be locked within this
“only processed one time” box.

I decided to put the if(scaleWatchFaceBitmap) conditional structure that’s after the
if(firstDraw) statement inside the statement as well, so that all of the Bitmap object–related
image processing is only done once, because hardware characteristics (screen resolution
and shape) don’t change during runtime, so you can do all of this processing on the first
onDraw() cycle.

Copy the if(scaleWatchFaceBitmap) conditional structure from the outside of the if(firstDraw)
conditional structure to the inside of it, after the if(roundFlag) in-else structure. Make sure
that you paste this before the Java statement that sets the firstDraw boolean variable
equal to false, at the end of the structure. Be sure to indent the if(scalewatchFaceBitmap)
structure, as shown in Figure 11-45. If you test this in the AVD, you will see your second
hand ticking away, which means this code is working.

315CHAPTER 11: WatchFaces Bitmap Design: Using Raster Graphics for WatchFaces

Figure 11-45. Put the if(scaleWatchFaceBitmap) structure inside the if(firstDraw) structure before firstDraw=false

Now all you have to do is develop bitmap assets for the other watch face modes, which
you’ll be learning about in Chapter 12, and you will have mastered watch face design from
both vector as well as bitmap standpoints!

Summary
In this chapter, you tested the Java code you have developed so far, using the AVD
emulators. You learned the ins and outs of the AVDs, and then got into implementing the
onApplyWindowInsets() method so that you can detect the round watch face type.

You learned about the Android classes you will need to implement the bitmap imagery as
decorative backgrounds for the watch face design. These included the Bitmap class, the
Resources class, and the Drawable class and its subclass the BitmapDrawable class.

After that, you learned how to implement these classes to load and display a bitmap asset
in the background of the watch face design in the onDraw() method, using a conditional
if structure to optimize the processing load on the smartwatch and smartphone device
hardware.

In the next chapter, you will use GIMP image editing software to create the different digital
image backgrounds to support the different modes the WatchFaces API requires that you
support.

http://dx.doi.org/10.1007/9781430265504_12

317

Chapter 12
WatchFaces Digital
Imaging: Developing Multiple
Mode Assets

Now that you have a bitmap asset installed as a background for your watch face design, it is
time to get into digital imaging and the work process for creating different mode-compatible
versions of a bitmap. You will be using GIMP (GNU Image Manipulation Program) in this
chapter, because everyone has free access to it, but you could also use Photoshop CS.

First, I will discuss what digital image processing algorithms GIMP afford us for converting
the interactive mode asset, which I am using as a PNG Indexed color (256 colors) asset, into
grayscale and black and white modes for use with ambient mode, low-bit ambient mode,
and burn-in protect mode.

Once you have created bitmap assets for interactive (PNG8), ambient (PNG3), ambient
low-bit (PNG1), and ambient burn-in (PNG1) modes, you will get back into Java coding. You’ll
modify the custom methods to incorporate switching among these bitmap assets, so that
both the vector assets as well as the bitmap assets conform to the mode requirements (or get
close) and the vector and raster design components render (work) together seamlessly.

You will rework the .onDraw() method structure so that Bitmap objects will be rescaled
whenever mode changes occur, since you will now be implementing a wide range of bitmap
image assets across all of the modes.

You’ll also overhaul the ensureModeSupport() method to optimize processing, add Bitmap
object (background) support, add burn-in protection mode support, and expand the if-else-if
structure using another else-if section.

318 CHAPTER 12: WatchFaces Digital Imaging: Developing Multiple Mode Assets

Ambient Mode Bitmap: GIMP Grayscale Image Mode
If you haven’t already, download and install the latest version of GIMP at gimp.org and
launch it. Use the File ➤ Open menu sequence, and access your Open Image dialog,
shown in Figure 12-1, and open your prowatchfaceint.png file, which should be available in
the file repository for this book.

As you can see in the dialog, GIMP will allow you to navigate a disk drive folder hierarchy
with the left Places pane in the dialog and will show you information about the digital image
file you have selected, using the Preview pane seen on the right side of the dialog. The file
I’ve selected is shown in the middle section of the dialog. Click the Open button in the lower
right corner of the dialog and open the file you have selected.

Notice that I have already optimized this interactive mode source imagery using the PNG8
file format, which uses 256 colors plus dithering. Using dithering allows you to simulate
more than 256 colors. In this way, when you create the grayscale ambient mode image
also using 256 levels of grayscale, this will also have dithering in place, making it appear
as though there are more than 256 levels of gray in the ambient mode image. By using this
digital image optimization approach, you’ll be able to “preoptimize” the image assets for
ambient mode as well as for the other required modes.

By preoptimizing the 8-bit imagery using dithering, you will be able to simulate more than
256 levels of grayscale, in ambient mode, allowing it to look like more than 256 colors (or
for ambient mode, levels of gray). This is one of the advantages of optimizing 8-bit, indexed

Figure 12-1. Use a File ➤ Open menu sequence to access the Open Image dialog

319CHAPTER 12: WatchFaces Digital Imaging: Developing Multiple Mode Assets

color dithered image assets; when you apply the grayscale algorithm to them (for ambient
mode), the dithering also comes across, affording the ambient mode asset the same visual
upgrade effect that dithering affords to the interactive mode asset with the exact same data
footprint optimization (maybe even better).

To create this preoptimized ambient mode grayscale image, look under the Image menu in
GIMP and find the Mode submenu. Click that right-facing arrow at the right side of the Mode
menu option and drop down the sub-submenu. Select the Grayscale option, as shown at
the top of Figure 12-2.

As you can see, GIMP has already ascertained that the image selected is an indexed 8-bit
image. If the image is 24-bit (PNG24) or 32-bit (PNG32), then the RGB option would be
bulleted. Once you select this Grayscale option, it will be bulleted, and a GIMP algorithm will
be applied that will remove the Hue (color) from the image and leave only the Luminosity
(brightness) values.

Now all you have to do is use the File ➤ Export As menu sequence, shown in Figure 12-3
on the left, to access the GIMP Export Image dialog.

Figure 12-2. Use an Image ➤ Mode ➤ Grayscale menu sequence to convert a color image to a grayscale image

320 CHAPTER 12: WatchFaces Digital Imaging: Developing Multiple Mode Assets

Once you are in the Export Image dialog, which is shown in Figure 12-4, you can select the
prowatchint.png in the center area, so that you don’t have to type it all in again, and then
change the “int” to “amb.” Once you click the Export button, you’ll get the Export Image as
PNG options dialog. Leave all options unchecked to yield the smallest file size.

Figure 12-3. Use the GIMP File ➤ Export As menu sequence to access the Export Image dialog (like Save As in
Photoshop)

Figure 12-4. To use grayscale ambient mode, name the file prowatchfaceamb.png and select maximum PNG
compression

321CHAPTER 12: WatchFaces Digital Imaging: Developing Multiple Mode Assets

This will give you the 8-bit grayscale ambient mode image, which uses the maximum
number of gray color values (256) your grayscale ambient mode image can support.
Certainly some smartwatches can support 8-bit grayscale, however, some will reduce the
image to fewer shades of gray, so I am going to show you how to optimize to lower bit
level grayscale imagery in case you are targeting a smartwatch that only uses 16 shades of
gray in ambient mode. I will also show you how to create bitmap images that only use eight
shades of gray and still look great (and I will even show you how to make four shades of
gray look acceptable). I will also cover the 1-bit (two shades of gray or black and white)
low-bit ambient mode that is used by the ASUS ZenWatch.

Low-Bit Mode Bitmaps: GIMP’s Posterize Algorithm
The next thing you need to do is create low-bit level ambient mode imagery. Some
smartwatches when they are not actively in use (being looked at) switch into an “ambient,”
low-power usage mode. For instance, the Sony SmartWatch 3 (SW3) uses a transflective
screen (a technology that can be easily read in sunlight), which uses 16-bit (RGB 565) color
when it is in interactive mode (as well as a backlight), and turns a backlight off in ambient
mode in order to save power. So you could use color in Sony SW3 ambient mode, although
the Google WatchFaces API documents suggest using lower-bit level grayscale.

This is why I am detailing this low-bit level grayscale optimization work process in this
section of the chapter. Some smartwatch manufacturers will ultimately use fewer levels of
gray than the 256 levels I mentioned earlier. Some may use 16 (PNG4 4-bit) levels of gray,
but it could be even fewer. Check with your smartwatch manufacturer to find out just how
low bit their ambient mode really is!

Armed with the knowledge of how many shades of gray (or color) your target smartwatch
manufacturer supports in ambient mode, and with a work process that you’ll be learning
during this section of this chapter, you can even optimize for eight levels of gray (PNG3), or
even a meager four levels of gray (PNG2), and still have the resulting bitmap image asset
look good, especially on a smaller smartwatch face, which uses a relatively fine dot pitch
(i.e., small pixel size).

To reduce the amount of grayscale levels in the 8-bit grayscale image, you will want to access
the GIMP Colors menu, which can be seen at the top of Figure 12-5. Find the Posterize
option and select that to access a dialog that will allow you to apply a color (or grayscale)
reduction algorithm.

322 CHAPTER 12: WatchFaces Digital Imaging: Developing Multiple Mode Assets

You want to select even bit level numbers of colors: two colors for 1-bit or four colors for
2-bit or eight colors for 3-bit or 16 colors for 4-bit grayscale.

Yes, even shades of gray, or black and white, are considered colors! Let’s launch the
Posterize dialog next and create a PNG4 4-bit grayscale image.

As you can see in Figure 12-6, if you select the Preview check box, you’ll be able to see the
effects of this algorithm’s slider setting in real time on the grayscale image.

Figure 12-5. Use GIMP Colors ➤ Posterize menu sequence to access the Posterize dialog to reduce the number of
gray colors

323CHAPTER 12: WatchFaces Digital Imaging: Developing Multiple Mode Assets

If you set the slider value to 16 (4-bit) color values, you will see the visual results are
almost as good as the 256 color version, using 16 times less grayscale value data! There
is some visible “banding,” however, which is not so desirable. Later I will discuss how to
mitigate Indexed Color Banding by using the technique called dithering, after I explain the
Posterization algorithm. I will explain both work processes so you will know all of the primary
ways you can achieve color value reductions using GIMP.

Currently, it is difficult to get physical specifications from a smartwatch manufacturer
regarding the bit level used for grayscale (or even color) in ambient mode. Hopefully,
manufacturers will release a technical information white paper covering this for Android
Wearables developers in the future.

The most “low bit” that this ambient mode can go is the 1-bit or low-bit ambient mode.
Here you will be using 1-bit imagery to create your burn-in image.

Next, let’s look at a different work process that allows you to access GIMP 2 dithering
algorithms by using the Indexed Color Conversion dialog.

Dithering Low-Bit Imagery: Indexed Mode Conversion
Because you can’t access a Floyd-Steinberg dithering algorithm inside the Posterize
dialog, which I feel is an oversight by the developers of GIMP 2, let’s look at another work
process (and the resulting dialog) that affords us more options in this area of color (grayscale
in this case) reduction.

Figure 12-6. Set Posterize to 16 levels of gray coloration to accommodate 4-bit grayscale ambient mode displays

324 CHAPTER 12: WatchFaces Digital Imaging: Developing Multiple Mode Assets

To access the Floyd-Steinberg dithering algorithm, you will need to use the Indexed Color
Conversion dialog. This is accessed using the Image ➤ Mode ➤ Indexed menu sequence,
as shown in Figure 12-7. This will change an image back to the Indexed Color mode, which
you may recall is where it started. Going to Grayscale mode stripped out Hue values, leaving
only Luminosity values.

Figure 12-7. Use the Image ➤ Mode ➤ Indexed menu sequence, and select the Floyd-Steinberg dithering algorithm

Going back into the Indexed Image mode (in this case, it is grayscale, due to the source
image data) will trigger an Indexed Color Conversion dialog. This is where you can find the
Floyd-Steinberg dithering algorithm option, which you can see selected in the bottom
right-hand corner of Figure 12-7.

Select the Generate optimum palette radio button and set a Maximum number of colors
value of 16, 8, 4, or 2, and click the Convert button. As you can see in Figure 12-8, dithering
that will be applied can make a significant quality difference in the resulting low-bit grayscale
ambient imagery. The lower-right corner 1-bit ambient mode (nondithered) image has been
inverted (I will discuss this work process next in the burn-in mode section) and the algorithm
processed, so as to minimize the number of white pixels used.

325CHAPTER 12: WatchFaces Digital Imaging: Developing Multiple Mode Assets

Once you have determined the level of low-bit grayscale supported by your target
smartwatch manufacturer, you will export the file to the file name prowatchfacelow.png. If
you have any doubt as to the number of gray level values that are supported, use the 1-bit
approach, invert it (if needed), and then export your file. You want most of your screen to use
black (off) pixel values. I will be covering Invert later in the Burn-In Mode section.

After you have the low-bit grayscale ambient mode imagery that optimally fits the target
smartwatch low-bit ambient mode (or ambient mode), use the GIMP File ➤ Export As menu
sequence, as shown in Figure 12-3, and name the file prowatchfacelow.png, as shown in
Figure 12-9 in the Name field, at the top of the dialog. Click the Export button to export the
indexed color PNG file (selecting no options), which will be PNG4 for 16 gray levels, PNG3
for eight gray levels, PNG2 for four gray levels, and PNG1 for black and white.

Figure 12-8. As you can see, dithering will improve low-bit ambient mode image quality by an order of magnitude

Figure 12-9. Use a File ➤ Export As menu sequence to use an Export Image dialog to save prowatchfacelow.png

326 CHAPTER 12: WatchFaces Digital Imaging: Developing Multiple Mode Assets

Creating a Burn-In Mode Bitmap: Using an Invert Algorithm
The next thing you need to create is the black and white only (1-bit) low-bit ambient mode
graphic that will also be used for the burn-in mode.

The first step in this process is to undo whatever you did last, which was either the
Posterization dialog or the Indexed Color Conversion dialog.

The GIMP Edit ➤ Undo menu customizes itself, based on your last operation, so if you
had been using the Posterization dialog, it would be Edit ➤ Undo Posterize for this menu
sequence. This can be seen in the top left corner of GIMP, as shown in Figure 12-10. The
reason you would use Edit ➤ Undo is so you will have the full 8-bit 256 levels of grayscale
image going into any algorithm.

Figure 12-10. Use the Edit ➤ Undo work process to return to the 8-bit (256 color) original grayscale image data

You would want to do this before you “reposterize” the image down to two colors
(1-bit or PNG1) because you want to give this posterization algorithm the maximum amount
of original grayscale to work with as you can, because the more data the algorithm has to
work with, the better results it will produce.

Use the GIMP Colors ➤ Posterize menu sequence (as shown in Figure 12-5) and again
access the Posterize dialog. This time around, you’ll need to select 1-bit color (two colors),
which is the lowest possible posterization setting.

327CHAPTER 12: WatchFaces Digital Imaging: Developing Multiple Mode Assets

The reason for using a posterization algorithm is because you specifically do not want the
1-bit color dithering effect, seen at the top right corner in Figure 12-8. This is because you
are trying to get a line drawing effect that will provide the desired result once you alpha
blend the watch face black background color, which will dim the white pixels to a medium
gray. This is to ensure that no burn in will occur in burn-in protect mode.

The setting and its results can be seen in Figure 12-11. As you can see, the results look
good, and it will look even better on the smartwatch display, because the pixel pitch dot size
screen density is finer. If you want to see what this will look like with .setAlpha(127), take a
look at the far right panel in Figure 12-15.

Figure 12-11. Use the Posterize dialog and set the Posterize levels setting to two colors and click the OK button

If you want even finer (thinner) lines, you can use the zoom tool (it is a magnifying glass) and
the eraser tool (looks like your old school eraser) to manually erase some of the pixels in the
thicker parts of your lines.

As you might have noticed, even though the graphic now uses only black and white color
values, and no anti-aliasing, as required by burn-in mode, the problem now is that your
watch face is turned on (white) instead of turned off (black). What you ultimately will need to
do is the exact opposite result of what you have on your screen now. Fortunately, GIMP has
an algorithm that will “flip” or “invert” pixel values, and luckily it works best with black and
white imagery, as you might well imagine.

328 CHAPTER 12: WatchFaces Digital Imaging: Developing Multiple Mode Assets

The way that you’ll algorithmically handle flipping around white background color values to
make the background black, while, at the same time, making the black line drawing white, is
to use the GIMP Invert algorithm. This is also located under the Colors menu, a bit farther
down on the menu than the Posterize option, as you can see in the middle of Figure 12-12.

Figure 12-12. To invert the black lines on white background to a black background, use the Colors ➤ Invert menu

When you select this option, there is no dialog, as GIMP will simply invert the pixel
color values for you, and your image will immediately become the white lines on a black
background result you need for burn-in protect mode.

As you can see in Figure 12-13, you are very close to the result you need to have for screen
burn-in protection, which is white pixels only in those places where you absolutely need
them, with black pixels everywhere else. It’s important to notice that you can edit lines in
either of these invert modes to make the lines thinner if you wanted less pixels to be turned
on in burn-in protection mode.

329CHAPTER 12: WatchFaces Digital Imaging: Developing Multiple Mode Assets

In fact, that might be a great way to get some GIMP 2 digital image editing practice in. To edit
these lines, use the magnifying glass tool to zoom in to the image, and then use the GIMP
eraser tool to remove pixels until all of the lines in the image are one or two pixels wide.

To be meticulous, you could also remove the color (white) from the interior of those slippers;
I’ll leave this work for you to do yourself so you can get some practice using GIMP, because
this is an important Android watch face development tool for you to master.

It is important to point out that these BagelToons LLC images belong to my client Ira H.
Harrison-Rubin, and they should be used only to learn and practice within the context of this
book, as BagelToons will be releasing all BagelToons artwork, including this one, as Watch
Faces apps.

When you are done refining, use a File ➤ Export As menu sequence to access the
Export Image dialog, as shown in Figure 12-14, and then name this digital image
prowatchfacelow.png. Click the Export button (selecting no options), and export this
burn-in protect image asset in the PNG1 image file format.

Figure 12-13. The result of the Colors ➤ Invert menu sequence seen on the right preview area of GIMP 2.8.14

330 CHAPTER 12: WatchFaces Digital Imaging: Developing Multiple Mode Assets

If you are going to use 1-bit grayscale for both ambient low-bit and burn-in modes, then you
will save the file as prowatchfacelow.png and use only three bitmaps to cover four modes.
I’ve shown four bitmaps—interactive (8-bit color), ambient (3-bit, eight level grayscale),
low-bit ambient (black and white), and burn-in protection (black and gray)—for one image,
as shown in Figure 12-15, so you can compare these all together visually.

Figure 12-14. Use File ➤ Export As menu sequence to use the Export Image dialog to save prowatchfacelow.png

Figure 12-15. Four bitmap assets—8-bit color, 3-bit grayscale, black and white, black and gray—cover all your modes

Now let’s switch gears and get into some Java coding, so you can implement the first three
bitmap files. Later on, you’ll implement the burn-in mode, which can be achieved with a
bitmap asset or with alpha blending in code.

Multimodal Bitmaps: Changing Bitmaps Using Java
The next thing you will need to do to make the watch face app bitmap assets compatible
with your mode detection code is to change the onDraw() and the ensureModeSupport()
methods to add code that changes the bitmap asset.

First, move the Resources watchFaceResources = ProWatchFaceService.this.getResources();
Java statement from the onDraw() method to the top of the private Engine class declarations
area, as shown in Figure 12-16. Because more than one method is going to be using this
Resource object, you have to make it more “visible.”

331CHAPTER 12: WatchFaces Digital Imaging: Developing Multiple Mode Assets

Because you will be scaling more than one Bitmap object more than one time, that is,
from interactive to ambient mode(s) and back to interactive mode, you need to move the
if(scaleWatchFaceBitmap) structure back outside the if(firstDraw) conditional if() structure,
as shown in Figure 12-17.

Figure 12-17. Move if(scaleWatchFaceBitmap) structure outside the if(firstDraw) structure (evaluate on every draw)

Figure 12-16. Move the Resources object declaration, naming and loading Java statement to the top of Engine

Notice that now the if(scaleWatchFaceBitmap) is its own structure, and you can trigger it to
work its bitmap evaluation and scaling magic by setting the scaleWatchFaceBitmap object
to the null (clearing or emptying its) value.

This is because part of the Logical OR structure for the if() conditional evaluator is
scaleWatchFaceBitmap = null, so if you want what is inside this construct to be invoked,
you simply set the object to null to call this rescaling logic for any of the bitmap assets you
have created.

Before you get into rewriting the code in the .ensureModeSupport() method, you will need
to install the assets you created earlier in the chapter using GIMP into the correct Android
Studio project HDPI drawable resource folder.

332 CHAPTER 12: WatchFaces Digital Imaging: Developing Multiple Mode Assets

Copy the prowatchfaceamb.png, prowatchfaceint.png, and prowatchfacelow.png bitmap
assets from whichever folder you saved them in into the /ProAndroidWearable/wear/src/
main/res/drawable-hdpi/ folder, as shown in Figure 12-18.

Figure 12-18. Copy 8-bit interactive, 3-bit ambient, and 1-bit low-bit ambient bitmaps into the project’s /drawable-hdpi
folder

As you can see, I am using the three most highly optimized bitmap assets so that the
fewest colors, levels of grayscale, and black and white are used and the smallest file size is
achieved for the least power used by the smartwatch to display the imagery. As you can see
in Figure 12-18, the visual quality is good, and here I am only using 256 colors (interactive
mode) eight gray levels (ambient mode) or black and white (low-bit or burn-in mode).

Now you’re ready to modify the Java code for ambient mode and low-bit ambient mode
so that the correct bitmap assets will be used. White watch face elements that worked
well against a black background will be reset to use the Black color for maximum contrast
against the White bitmap asset, except for the burn-in protect bitmap asset, where you
will use White watch face design elements. Let’s start with the grayscale bitmaps and then
implement the Java code for indexed color and burn-in protect mode bitmap assets.

Installing Bitmap Objects into Your Low-Bit Ambient Mode
Copy the watchFaceDrawable configuration statement with a prowatchfacelow asset
reference and the watchFaceBitmap statement from the onDraw() method to the top of
the if(enableLowBitAmbientMode) construct. The Color values remain WHITE as the
background is black. The Java code for the if structure is seen, error-free, in Figure 12-19,
and should look like the following:

if(enableLowBitAmbientMode) {
 watchFaceDrawable = watchFaceResources.getDrawable(R.drawable.prowatchfacelow);
 watchFaceBitmap = ((BitmapDrawable) watchFaceDrawable).getBitmap();
 scaleWatchFaceBitmap = null;
 pHourHand.setAlpha(255);

333CHAPTER 12: WatchFaces Digital Imaging: Developing Multiple Mode Assets

 pMinuteHand.setAlpha(255);
 pSecondHand.setAlpha(255);
 pTickMarks.setAlpha(255);
 pHourHand.setColor(Color.WHITE);
 pMinuteHand.setColor(Color.WHITE);
 pSecondHand.setColor(Color.WHITE);
 pTickMarks.setColor(Color.WHITE);

Figure 12-19. Copy watchFaceDrawable and watchFaceBitmap code and add the scaleWatchFaceBitmap = null

As you can see, the third line of code is a scaleWatchFaceBitmap = null; statement, which
will trigger the if(scaleWatchFaceBitmap) conditional statement. The mode change that
triggers this method will also trigger the image rescale code (if needed) due to this statement
being in place after the first two.

Because the background image is now grayscale and primarily white, you will need to
change the .setColor() method calls to reference the Color.BLACK constant, so that the
tick marks and watch face hands will have maximum contrast against a background Bitmap
object (grayscale digital image asset).

Next, you’ll make changes to the .setAlpha() method call, add .setColor() method calls,
and add the Bitmap object–related statements to the second else-if(isInAmbientMode())
structure. You will again need to use the BLACK Color value constant due to the largely
white background image used in the ambient mode, and you will also want to make the
watch face design elements fully black, for maximum readability, as well as turn off the
screen pixels for those watch face design elements. For this reason, you would also want
to set your current 127 Alpha value to the fully opaque value of 255. I have bolded the Java
statements in this method structure that have been changed. The Java code, as shown in
Figure 12-20, should now look like this:

} else if(isInAmbientMode()) {
 watchFaceDrawable = watchFaceResources.getDrawable(R.drawable.prowatchfaceamb);
 watchFaceBitmap = ((BitmapDrawable) watchFaceDrawable).getBitmap();
 scaleWatchFaceBitmap = null;
 pHourHand.setAlpha(255);
 pMinuteHand.setAlpha(255);
 pSecondHand.setAlpha(255);

334 CHAPTER 12: WatchFaces Digital Imaging: Developing Multiple Mode Assets

 pTickMarks.setAlpha(255);
 pHourHand.setColor(Color.BLACK);
 pMinuteHand.setColor(Color.BLACK);
 pSecondHand.setColor(Color.BLACK);
 pTickMarks.setColor(Color.BLACK);

Figure 12-20. Add bitmap-related code, change Alpha values to 255, and change color values to Color.BLACK

Next, let’s modify the else portion of the if-else-if-else structure to add the Bitmap
object–related statements that will set the Indexed Color image asset you’re going to use for
the watch face when it is in interactive mode.

Refining Interactive Mode: Set Tick Marks Color to Black
The final else section of the conditional if-else structure that makes up a majority of the
ensureModeSupport() method is what sets the interactive mode characteristics, if none of the
other mode flags have been set. This section of code has the least changes, changing only
the pTickMarks object to Color.BLACK and adding the bitmap-related Java statements that
you added in the other sections. Your code, as shown in Figure 12-21, should look like this:

} else {
 watchFaceDrawable = watchFaceResources.getDrawable(R.drawable.prowatchfaceint);
 watchFaceBitmap = ((BitmapDrawable) watchFaceDrawable).getBitmap();
 scaleWatchFaceBitmap = null;
 pHourHand.setAlpha(255);
 pMinuteHand.setAlpha(255);
 pSecondHand.setAlpha(255);
 pTickMarks.setAlpha(255);
 pHourHand.setColor(Color.BLUE);

335CHAPTER 12: WatchFaces Digital Imaging: Developing Multiple Mode Assets

 pMinuteHand.setColor(Color.GREEN);
 pSecondHand.setColor(Color.RED);
 pTickMarks.setColor(Color.BLACK);
}

Now that you have made the bitmap-related additions and Color changes that maximize
readability to the existing Java code in the ensureModeSupport() method, let’s test the
interactive, ambient, and low-bit ambient modes next in the Square AVD emulator.

Testing Interactive and Ambient Modes in the Square AVD
Make sure you have removed all occurrences of forced flag settings in the
private Engine class, in other words, eliminate lowBitAmbientModeFlag=true; and
burnInProtectModeFlag=true; code snippets. Next, use the Run ➤ Run Wear
menu sequence and launch the Square AVD emulator. You can use the Run ➤ Edit
Configurations menu sequence if you want to make sure your Square AVD emulator is the
one that is currently selected.

Once the emulator starts and you load your Pro Watch Face, you’ll see your SQUARE watch
face test pattern, because you left that code in the firstDraw part of the .onDraw() method.
If you were wondering why I did this, it was to show you how to display a different bitmap
(say a legal disclaimer, behind the watch face, the first time it launches) on watch face startup.

Figure 12-21. Add Bitmap object–related code at the top of the else structure, and change the pTickMarks to
Color.BLACK

336 CHAPTER 12: WatchFaces Digital Imaging: Developing Multiple Mode Assets

It is fairly useful to know how to implement when you add the Round watch face decoration
support in Chapter 13 covering watchface configuration dialogs. Optimally you would
remove this code entirely and use only square bitmap assets for the watch face background.

However, I wanted to show you that it is possible to do this by using the if(firstDraw)
technique, inside the .onDraw() method structure. In any event, once you see the SQUARE
test screen, which is still called from the if(firstDraw) code, press the F7 key and you will see
the ambient mode bitmap asset, which is shown on the left-hand side in Figure 12-22.

Figure 12-22. Use Settings ➤ Change watch face ➤ Pro Watch Face series, and F7 to test ambient mode

If you toggle the F7 key again, you will trigger the code that is in the else construct inside
the .ensureModeSupport() method. The color result can be seen on the right-hand side of
Figure 12-22, and as you can see, the positioning of the Status Bar icon and the Peek Card
with the background artwork is nothing short of perfection.

To test the low-bit (1-bit color in the case of this optimized asset) mode, you need to again
install a lowBitAmbientModeFlag=true; forced mode switch in the onAmbientModeChanged()
method right after the super.onAmbientModeChanged() method call statement, as shown
in Figure 12-23.

http://dx.doi.org/10.1007/9781430265504_13

337CHAPTER 12: WatchFaces Digital Imaging: Developing Multiple Mode Assets

Forcing this low-bit, ambient mode flag to be set to the “on” state, which should be done
right before the if(lowBitAmbientModeFlag) turns off anti-aliasing in the code, as you can
see in Figure 12-24, also calls the ensureModeSupport() method, which installs low-bit
(1-bit color) graphics.

Figure 12-24. Use Settings ➤ Change watch face ➤ Pro Watch Face series, and F7 to test low-bit ambient mode

Figure 12-23. Set the lowBitAmbientModeFlag boolean to a true value in the onAmbientModeChanged() method

Now, when you use the Run ➤ Run Wear and launch the AVD emulator, and then use
Settings ➤ Change watch face ➤ Pro Watch Face ➤ F7 key, you will get the ambient
mode with the low-bit mode enabled, as shown on the left side of Figure 12-24.

The next thing you need to do is create the burn-in mode version of the low-bit ambient mode
bitmap, which will use gray color values instead of white ones. You will use GIMP to change
the white pixels to a 50% gray color value, which will match the Android Color.GRAY constant
perfectly, providing a gray “burn-in” version of the low-bit ambient mode.

After that you will add the if(enableBurnInAmbientMode) construct into the
enableModeSupport() method, which sets the correct Bitmap and Color values.

338 CHAPTER 12: WatchFaces Digital Imaging: Developing Multiple Mode Assets

Android Wear Burn-In Mode: Bitmap and Java Code
To be thorough about the watch face design, let’s implement a burn-in mode image and
Java code, creating burn-in protection with this low-bit design!

Creating Burn-In Mode Bitmaps: GIMP Brightness-Contrast
Open GIMP if it’s not still open, and use the File ➤ Open menu sequence to open your
prowatchfacelow.png file. You are going to “dim” the white light intensity for the bitmap by
50%, matching the Android Color.GRAY constant.

As you can see in Figure 12-25, the way you are going to achieve this in GIMP is by using
the Colors ➤ Brightness-Contrast menu sequence, which will open a dialog that will allow
you to dim the light (brightness) that is coming out of the white pixels in the watch face
design. Pretty cool!

Figure 12-25. Open the prowatchfacelow.png file and invoke the Colors ➤ Brightness-Contrast menu sequence

The Brightness-Contrast dialog, which is shown on the right side of Figure 12-26, will allow
you to set Presets at different brightness (or contrast) settings. This is done by clicking the
plus sign (+) icon when you’ve set a setting you want to save. You could try it now and save
a setting as “Android 50% Gray Burn-In Protect Mode Preset,” for instance.

339CHAPTER 12: WatchFaces Digital Imaging: Developing Multiple Mode Assets

Drag the Brightness slider to the left to the -127 value, which is really 128, because you
count from zero, which is exactly half of the 256 values you have with the 8-bit grayscale
range. Make sure your Preview check box is selected, so you can see the modification
in real time, then click the OK button, which will complete the operation and apply the
algorithm.

Next, you need to save the burn-in mode digital image asset using the GIMP File ➤ Export As
work process, which is shown in Figure 12-27, and name the file prowatchfacebur.png
using the same 15-character format.

Figure 12-26. Adjust the Brightness slider all the way to the left to reduce the brightness by 50% (or 127 of 255)

Figure 12-27. Use File ➤ Export As menu sequence to use the Export Image dialog to save prowatchfacebur.png

Now you’re ready to get back into Java coding and implement burn-in protect mode in the
enableModeSupport() method by inserting a new if-else section.

340 CHAPTER 12: WatchFaces Digital Imaging: Developing Multiple Mode Assets

Burn-In Protection in Java: if(enableBurnInAmbientMode)
The first thing you will need to do in the ensureModeSupport() method structure is to add
a boolean enableBurnInAmbientMode variable at the top of the method structure. You will
set it equal to a Logical AND condition, which will return a true value if isInAmbientMode()
returns true AND the burnInProtectModeFlag is set to a true value. Otherwise, this will
evaluate to false, as burn-in protection requires ambient mode to be on and the burn-in
manufacturer support constant to be in place and specified.

After this new boolean flag is created inside the private method, you will need to add an
if-else conditional section after the low-bit ambient section and before the ambient mode
only section. The end of the method is the final else section, which covers the interactive
mode settings.

This if(enableBurnInAmbientMode) construct should load a watchFaceDrawable
object with the prowatchfacebur.png image asset you just created and then extract
the new burn-in mode Bitmap object from the Drawable with the .getBitmap() method,
placing that in the watchFaceBitmap object. Once this is accomplished, you can set the
scaleWatchFaceBitmap object to null. This will then trigger the rescaling evaluation in your
onDraw() method, because you have changed bitmap assets for a new mode, and this may
be necessary.

As an optimization technique, instead of using the 127 alpha channel value to create the
50% gray value, as you did previously, I am going to use a 255 (Fully On) Alpha value and
the Android OS Color.GRAY constant to set the color value for the watch face hands and
tick marks.

In case you are wondering why using this Android Color.GRAY constant is an optimization,
if you are using an alpha channel value of 255, it is because Android will not invoke its
blending algorithm, which can be processing intensive. Also, you don’t want the bright pixels
that would be created by blending a White color with the Gray color used in the burn-in
protection image you created.

You’ll notice in the Java code listing for the ensureModeSupport() method, which I am going
to include here in its entirety, since you are now done implementing all of these modes
and their Bitmap objects, that you are not using any alpha blending whatsoever with these
bitmap image assets, so you have applied this optimization technique across this entire
method. If you are going to use background bitmaps, you may decide to remove these calls!

The finished .ensureModeSupport() method can be seen in Figure 12-28, and the Java code
should look like the following method structure:

private void ensureModeSupport(){
 boolean enableLowBitAmbientMode = isInAmbientMode() && lowBitAmbientModeFlag;
 boolean enableBurnInAmbientMode = isInAmbientMode() && burnInProtectModeFlag;
 if (enableLowBitAmbientMode) {
 watchFaceDrawable = watchFaceResources.getDrawable(R.drawable.prowatchfacelow);
 watchFaceBitmap = ((BitmapDrawable) watchFaceDrawable).getBitmap();
 scaleWatchFaceBitmap = null;
 pHourHand.setAlpha(255);
 pMinuteHand.setAlpha(255);
 pSecondHand.setAlpha(255);

341CHAPTER 12: WatchFaces Digital Imaging: Developing Multiple Mode Assets

 pTickMarks.setAlpha(255);
 pHourHand.setColor(Color.WHITE);
 pMinuteHand.setColor(Color.WHITE);
 pSecondHand.setColor(Color.WHITE);
 pTickMarks.setColor(Color.WHITE);
 } else if (enableBurnInAmbientMode) {
 watchFaceDrawable = watchFaceResources.getDrawable(R.drawable.prowatchfacebur);
 watchFaceBitmap = ((BitmapDrawable) watchFaceDrawable).getBitmap();
 scaleWatchFaceBitmap = null;
 pHourHand.setAlpha(255);
 pMinuteHand.setAlpha(255);
 pSecondHand.setAlpha(255);
 pTickMarks.setAlpha(255);
 pHourHand.setColor(Color.GRAY);
 pMinuteHand.setColor(Color.GRAY);
 pSecondHand.setColor(Color.GRAY);
 pTickMarks.setColor(Color.GRAY);
 } else if (isInAmbientMode()) {
 watchFaceDrawable = watchFaceResources.getDrawable(R.drawable.prowatchfaceamb);
 watchFaceBitmap = ((BitmapDrawable) watchFaceDrawable).getBitmap();
 scaleWatchFaceBitmap = null;
 pHourHand.setAlpha(255);
 pMinuteHand.setAlpha(255);
 pSecondHand.setAlpha(255);
 pTickMarks.setAlpha(255);
 pHourHand.setColor(Color.BLACK);
 pMinuteHand.setColor(Color.BLACK);
 pSecondHand.setColor(Color.BLACK);
 pTickMarks.setColor(Color.BLACK);
 } else {
 watchFaceDrawable = watchFaceResources.getDrawable(R.drawable.prowatchfaceint);
 watchFaceBitmap = ((BitmapDrawable) watchFaceDrawable).getBitmap();
 scaleWatchFaceBitmap = null;
 pHourHand.setAlpha(255);
 pMinuteHand.setAlpha(255);
 pSecondHand.setAlpha(255);
 pTickMarks.setAlpha(255);
 pHourHand.setColor(Color.BLUE);
 pMinuteHand.setColor(Color.GREEN);
 pSecondHand.setColor(Color.RED);
 pTickMarks.setColor(Color.BLACK);
 }
}

342 CHAPTER 12: WatchFaces Digital Imaging: Developing Multiple Mode Assets

Now it’s time to test the burn-in protection mode’s Java code, as well as the bitmap digital
asset, which you created earlier in this section using the GIMP Brightness-Contrast dialog.

Testing the Burn-In Protect Mode Bitmap and Java Code
Open the .onAmbientModeChanged() method structure and remove the forced
lowBitAmbientModeFlag=true; boolean flag statement, which you used to test low-bit
ambient mode. Instead, here you will add in the forced burnInProtectModeFlag=true;
boolean flag statement, which you’ll now utilize to test the burn-in protection mode.

The .onAmbientModeChanged() method structure, which can be seen in Figure 12-29,
should look like the following Java method structure:

@Override
public void onAmbientModeChanged(boolean ambientModeFlag) {
 super.onAmbientModeChanged(ambientModeFlag);
 if(lowBitAmbientModeFlag) setAntiAlias(!ambientModeFlag);
 burnInProtectModeFlag = true;

Figure 12-28. Add an else if(enableBurnInAmbientMode) construct with Color.GRAY and prowatchfacebur image

343CHAPTER 12: WatchFaces Digital Imaging: Developing Multiple Mode Assets

Figure 12-29. Set burnInProtectModeFlag equal to true, forcing the Burn-In Protect Mode to test the bitmap

Figure 12-30. Use Settings ➤ Change watch face ➤ Pro Watch Face series, and the F7 key to test ambient burn-in mode

 if(burnInProtectModeFlag) setBurnInProtect(ambientModeFlag);
 ensureModeSupport();
 invalidate();
 checkTimer();
}

Use a Run ➤ Run Wear work process in IntelliJ and test the code and Bitmap object using
an Android Wear Square AVD emulator. As you can see in Figure 12-30, you’ve achieved a
50% dimmed burn-in mode version of low-bit mode.

It’s important to note that I’ll be covering Round AVD emulator and round watch face design
principles and techniques by adding additional Java code in the next chapter, which covers
how to allow users to customize the watch face design. The reason for this is primarily an
optimization-driven decision. Why provide round and square image assets for watch face

344 CHAPTER 12: WatchFaces Digital Imaging: Developing Multiple Mode Assets

design when the square asset can be used for both? Round watch face decorations, such
as a decorative rim, for instance, can be added by the end users for their own customization
decorations. In this way, even a square watch face can feature round watch face design
decorations if the user wishes to make that happen. This adds value to watch face design,
via the user interface.

Summary
In this chapter, you learned how to create, using GIMP, and how to implement, using your
enableModeSupport() and onDraw() methods, a plethora of different watch face design
modes. Some of these low-power modes will be required by smartwatch manufacturers,
depending on the display technology.

First, I discussed how to take an optimized interactive mode bitmap image asset and
convert it into a grayscale image, which ambient mode usually requires and Android
recommends.

After that, you learned how to reduce the number of gray colors or levels that the image
asset uses, so you can optimize this for certain lower-bit modes that some manufacturers
smartwatch products require. The Sony SmartWatch 3, for instance, has a 3-bit, or eight
levels of gray, ambient mode, and now you know how to perfectly optimize your bitmap for
this using a Floyd-Steinberg dithering algorithm.

After you created several digital image assets, you also learned how to add Java code to
the .enableModeSupport() method structure, as well as how to modify the onDraw() method
structure so that every time the mode changes, the bitmap assets will be reevaluated and
rescaled, if necessary, to fit the smartwatch screen if its resolution differs from the image asset.

In the next chapter, you will learn how to use the other side (or component) of an Android
Wear application, the “mobile” side, as it is called in Android Studio (IntelliJ). For this topic,
the Java coding and XML markup get even more complex. Therefore, the next chapter
will serve to “bridge” this watch face design section of the book with the other Android
(non-WatchFaces API) Wear topics chapter of the book (Chapter 17).

http://dx.doi.org/10.1007/9781430265504_17

345

Chapter 13
Watch Face Configuration
Companion Activity: Google
Mobile Services

Now that you have the basic bitmap and vector watch face design working in all display
modes, it’s time to switch over to mobile (smartphone) devices and create the watch face
“feature selector” application, which will allow your users to customize their very own watch
face designs. This will allow you to charge money for your watch faces applications because
they will be customized watch face generator applications, not just simple watch faces.

This is as complex as watch face design itself is, but in a different way. In this chapter, you
will be learning about the Google API Client Java interface, which is used to integrate
Google Play Services into your watch face wearable apps.

This involves using a series of com.google.android.gms packages and their classes, which
is the bulk of what I’ll be covering during this chapter, along with the creation of one class
that will run on the user’s smartphone and another that will be a listener class that will reside
in the wear section of the project. Google Mobile Services (GMS) is the Android Wear cloud!

You will learn about the Android GMS classes and interfaces that can be used to create
Wear Companion smartphone applications. They include APIs such as the GoogleApiClient,
which allows you to create a Google Play Services “client.” Other Wear APIs include
the DataApi, DataItem, DataMap, DataMapItem, ComponentName, MessageEvent,
WatchFaceCompanion, and even the CompanionResult. You’ll also learn about the
Android AlertDialog class and the Android Uri class and how they are used in WatchFace
app development.

346 CHAPTER 13: Watch Face Configuration Companion Activity: Google Mobile Services

Creating a ProWatchFaceCompanionConfigActivity
In this section, you’ll create the foundation for the dialog on the watch face users’ phone
that will allow them to configure the watch face design characteristics. The more control
you give the user over their watch face design, the more you will be able to charge for your
watch face application. You will add an <activity> tag to the AndroidManifest.xml file that is
located in the mobile portion of your Android Studio project. Then you will create an empty
ProWatchFaceCompanionConfigActivity.java structure in the mobile component of your
project, and then learn about the Android GoogleApiClient public interface before you
actually write Java code to implement this class, which will provide a UI for your watch face.

The Mobile App: Adding Your Activity to AndroidManifest
Close all your open edit tabs relating to the wear portion of your Android Studio project
and then open the mobile section of the project, as shown in Figure 13-1. In the manifests
folder, right-click AndroidManifest.xml and select the Jump to Source option to open this
file in an editing tab.

Figure 13-1. Close all tabs, open the mobile section of project, right-click AndroidManifest, and select Jump to Source

Add a child <activity> tag inside the parent <application> tag and name it
ProWatchFaceCompanionConfigActivity with an app_name label. Add a child
<intent-filter> tag inside the <activity> tag. Inside this add an <action> child tag with
a CONFIG_DIGITAL action constant as well as two <category> child tags, with
COMPANION_CONFIGURATION and DEFAULT constants. Notice that I also
added a <uses-sdk> tag at the top of the manifest, with a Minimum SDK Version

347CHAPTER 13: Watch Face Configuration Companion Activity: Google Mobile Services

API Level 18 and Target SDK Version of API Level 21. The <uses-permission> tags add
PROVIDE_BACKGROUND and WAKE_LOCK functions. Your XML markup, as shown in
Figure 13-2, should look like the following:

<manifest xmlns:android=http://schemas.android.com/apk/res/android
 package="com.pro.android.wearables.proandroidwearable">
 <uses-sdk android:minSdkVersion="18" android:targetSdkVersion="21" />
 <uses-permission android:name="com.google.android.permission.PROVIDE_BACKGROUND" />
 <uses-permission android:name="android.permission.WAKE_LOCK" />
 <application android:allowBackup="true"
 android:label="@string/app_name" android:icon="@drawable/ic_launcher"
 android:theme="@style/AppTheme" >
 <activity
 android:name=".ProWatchFaceCompanionConfigActivity"
 android:label="@string/app_name" >
 <intent-filter>
 <action android:name="com.pro.android.wearables.proandroidwearable.

CONFIG_DIGITAL" />
 <category android:name=
 "com.google.android.wearable.watchface.category.

COMPANION_CONFIGURATION" />
 <category android:name="android.intent.category.DEFAULT" />
 </intent-filter>
 </activity>
 </application>
</manifest>

Figure 13-2. Add an <activity> parent tag for ProWatchFaceCompanionConfigActivity and <intent-filter> child tag

As you may have noticed, IntelliJ is giving a red text error highlight on the android:name
parameter value of .ProWatchFaceCompanionConfigActivity, because you have not yet
created that Java file. You will be rectifying that in the next section of the chapter, so this will
disappear very soon!

http://schemas.android.com/apk/res/android

348 CHAPTER 13: Watch Face Configuration Companion Activity: Google Mobile Services

While you are at it, let’s open the /mobile/res/values/strings.xml file and give the Activity an
app_name of Pro WatchFace Options so that the label for the application describes what it
does. This is shown in Figure 13-3.

Next, you need to create a ProWatchFaceCompanionConfigActivity Java class.

The Java Class: Creating a WatchFace Companion Activity
Let’s create a new Java class by right-clicking the mobile java folder, then selecting the
New ➤ Java Class context-sensitive menu sequence, as is shown on the left side of
Figure 13-4 (numbered as step 1). In the Choose Destination Directory dialog, select the
main package (not the androidTest option) and click the OK button. In the Create New
Class dialog, name your class ProWatchFaceCompanionConfigActivity, set Kind as the
Class, and click the OK button to create a watch face design configuration Activity class.

Figure 13-3. Edit the app_name variable in /res/values/strings.xml and name the Activity Pro WatchFace Options

349CHAPTER 13: Watch Face Configuration Companion Activity: Google Mobile Services

When I typed in the package name, I got a red error highlight, which can be seen at the
top of Figure 13-5. When I looked inside the IntelliJ Project management pane, I noticed
that IntelliJ had not followed my instructions, as shown in Figure 13-4 numbered 2, and put
my class in the androidTest folder where it subsequently generated the “not the correct
package path” error.

Figure 13-4. Create the ProWatchFaceCompanionConfigActivity.java file to remove the red error highlight

Figure 13-5. Drag the ProWatchFaceCompanionConfigActivity and drop it on the proandroidwearable package

350 CHAPTER 13: Watch Face Configuration Companion Activity: Google Mobile Services

The way that I rectified this error (on the part of IntelliJ) was to drag the Java class file out
of the androidTest folder and drop it on the normal (non-androidTest) package folder. This
caused the Move Class dialog to appear, where I clicked the Refactor button to move the
class to the correct folder and set the internal “factors” (pointers) for everything correctly, so
that the compiler can “see” how everything goes together. This can be seen in Figure 13-5.

Now you can add the Java extends keyword and the Activity class that you’ll need to
extend to make this class into an Android Activity, which is used to hold user interface
designs, for the most part.

You will additionally need to add the Java implements keyword, because you are going to
be specifying three Java interfaces. These will be needed for communication between your
smartphone and the smartwatch hardware.

You can see both of these Java keywords in place in Figure 13-6 along with the IntelliJ
pop-up helper dialog, which is showing the two interfaces and one nested class that are
part of the GoogleApiClient interface. You will be learning about GoogleApiClient in the next
section after you create this empty code infrastructure so you can see what’s required to
implement a basic (that is, empty) watch face companion configuration Activity class, public
interface, and overridden (@Override keyword) method infrastructure.

After the implements keyword, type in the GoogleApiClient interface and a period, which
will bring up the pop-up helper dialog, where you can select a ConnectionCallbacks
(com.google.android.gms.common.api.GoogleApiClient) option. Double-click
this option if you want IntelliJ to write the code for you. Do the same thing for the
OnConnectionFailedListener interface as well, which is also shown in the pop-up helper
dialog in Figure 13-6.

Figure 13-6. Implement the GoogleApiClient class’s ConnectionCallbacks interface using a pop-up helper dialog

351CHAPTER 13: Watch Face Configuration Companion Activity: Google Mobile Services

Once you implement the GoogleApiClient interfaces, you will want to add in the
ResultCallback public interface, which you can see I have added in the middle of
Figure 13-7. Your completed (empty) Java class declaration would look like the following
Java structure, which can also be seen in Figure 13-7:

public class ProWatchFaceCompanionConfigActivity extends Activity implements
 GoogleApiClient.ConnectionCallbacks, GoogleApiClient.OnConnectionFailedListener,
 ResultCallback<DataApi.DataItemResult> { // Your Java class code will go in here }

As you can see in Figure 13-7, you will need to use an Alt+Enter keystroke combination to
have IntelliJ write the DataApi import statement for you.

As you’ll notice in Figure 13-8, as well as in IntelliJ, there is an error suggestion lightbulb icon
on the left. Drop down this how-to-correct error suggestion menu and select the Implement
Methods option, which opens a Select Methods to Implement dialog, as shown on the
right side of Figure 13-8.

Figure 13-7. Add the ResultCallback<DataApi.DataItemResult> interface; import the DataApi class with Alt+Enter

Figure 13-8. Drop down the error suggestion, and select the Implement Methods option; implement all methods

352 CHAPTER 13: Watch Face Configuration Companion Activity: Google Mobile Services

Leave all of the required methods that need to be overridden selected and click the OK
button, and IntelliJ will write the entire class structure for you. The resulting empty class
structure can be seen in Figure 13-9.

The next thing you need to do is add the <meta-data> tag to support the CONFIG_DIGITAL
constant value, which the CompanionConfigurationAction metadata object holds. This is
done in the wear project’s AndroidManifest XML definition file, inside the existing parent
<service> tag.

The Wear App: Adding Companion Metadata to Manifest
The next thing you need to do is add a fourth <meta-data> tag into the wear application’s
parent <service> tag, which is already in an Android Manifest file for the wear application
part (section) of your project. The metadata entries define things you’re going to use in an
application, such as the wallpaper resource, watch face preview image resources, or, in this
case, the CONFIG_WATCH_FACE ACTION you defined in the mobile AndroidManifest.xml,
which launches the Configuration Companion Activity.

The XML markup for this <meta-data> tag can be seen highlighted in the bottom part of
Figure 13-10 and should look like the following XML tag structure:

<meta-data android:name="com.google.android.wearable.watchface.companionConfigurationAction"
 android:value="com.pro.android.wearables.proandroidwearable.CONFIG_WATCH_FACE" />

Figure 13-9. Empty ProWatchFaceCompanionConfigActivity, with six import statements, four required methods

353CHAPTER 13: Watch Face Configuration Companion Activity: Google Mobile Services

Now that the Android Manifest XML definition files are set up and you have put the empty
ProWatchFaceCompanionConfigActivity class structure into place, let’s take a quick
overview of the GoogleApiClient class and learn about Google Play Services before you get
into coding all of these methods.

Google Play Services: The GoogleApiClient Class
To access the Google Mobile Services and Google Play Services servers, you need to
create a GoogleApiClient object for any class that accesses these servers. I like to name my
GoogleApiClient object myGoogleApiClient.

Android’s GoogleApiClient: Using Google Mobile Services
The GoogleApiClient public interface is part of the Google Mobile Services API. It’s in the
com.google.android.gms.common.api.GoogleApiClient package and is the primary app
“entry point” for Google Play Services integration.

Figure 13-10. Add a <meta-data> child tag in the wear/manifests/AndroidManifest.xml inside of the <service> tag

354 CHAPTER 13: Watch Face Configuration Companion Activity: Google Mobile Services

Before any operation is executed, the GoogleApiClient must be connected to Google Play
Services using a .connect() method. This is generally done via the .onStart() method, which
you will be coding a bit later on during this chapter, using the following Java structure:

@Override
protected void onStart() {
 super.onStart();
 myGoogleApiClient.connect();
}

Your Google Play Services client is not deemed connected until the public void
onConnected(Bundle bundle) callback method has been called. The empty method for this
can be seen in the middle of Figure 13-9.

A GoogleApiClient object can be used with a number of static methods. Some of these
methods will require the GoogleApiClient object to be connected, while other methods
queue up calls before the GoogleApiClient is connected to the client Activity. Check the
current API documentation for each method in order to determine whether or not your client
needs to be connected.

When your watch face application is done using the GoogleApiClient object, you will want
to call the .disconnect() method. This is generally done via the .onStop() method, which you
will also be coding a bit later on in this chapter, using the following Java structure:

@Override
protected void onStop() {
 if (myGoogleApiClient != null && myGoogleApiClient.isConnected()) {
 myGoogleApiClient.disconnect();
 }
 super.onStop();
}

You should instantiate the GoogleApiClient object inside your Activity onCreate(Bundle
savedInstanceState) method using a GoogleApiClient.Builder nested (helper) class. The
Java code you will be writing later on in this chapter will look something like this:

protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_pro_watch_face_config);
 myGoogleApiClient = new GoogleApiClient.Builder(this)
 .addConnectionCallbacks(this)
 .addOnConnectionFailedListener(this)
 .addApi(Wearable.API)
 .build();
 }

Interestingly, all of the nested classes I am discussing here are called in the GoogleApiClient
instantiation code listed above.

355CHAPTER 13: Watch Face Configuration Companion Activity: Google Mobile Services

The GoogleApiClient.Builder nested class provides a Builder class, which
is used to configure GoogleApiClient objects using dot notation chaining.
You can see this in the code above, although the method chains are being
aligned using periods, instead of using the period to “chain” the method
calls together.

The GoogleApiClient.ConnectionCallbacks nested interface provides
callback objects that are called when the client is connected or
disconnected from the Google Play Service.

A GoogleApiClient.OnConnectionFailedListener nested interface will
provide a callback object for those scenarios in which Google Play Services
access results in a failed attempt to connect the GoogleApiClient object to
this Google Play Service.

The GoogleApiClient class contains 15 public methods. I cannot cover all of these here, but
I will cover the ones you will be using in your Java code to implement the companion watch
face configuration activity.

If you want to get up to speed on all 15 GoogleApiClient method call specifications, you can
visit the Android Developer web site with this URL:

https://developer.android.com/reference/com/google/android/gms/common/api/
GoogleApiClient.html

The abstract void .connect() method is used to connect
the GoogleApiClient object to a Google Play Service server.
You will be implementing this in the .onStart() method in the
ProWatchFaceCompanionConfigActivity class.

The abstract void .disconnect() method is used to close the
connection to the Google Play Services server when you are
finished using it. You will be using it in an .onStop() method in the
ProWatchFaceCompanionConfigActivity class later in the chapter when you
start implementing all of your methods.

The abstract boolean .isConnected() method is used to check to see if the
GoogleApiClient object is currently connected to the Google Play Services.
If it is, then requests to other Google Play Service methods will succeed.

The abstract boolean .isConnecting() method checks if the GoogleApiClient
object is currently attempting to connect with the Google Play Service.

Next, let’s put some of the XML infrastructure in place for the onCreate() method for the
ProWatchFaceCompanionConfigActivity class. After these XML assets have been created,
you can reference the XML components in the Java code. After that you’ll learn about the
GoogleApiClient.Builder nested class, and then build the GoogleApiClient object so you can
implement Google Play Services in the Pro Watch Face application you are continuing to
enhance as you progress throughout this book. There is a ton of code to write and a plethora
of Android classes to learn about, so let’s get on with it!

https://developer.android.com/reference/com/google/android/gms/common/api/
GoogleApiClient.html
https://developer.android.com/reference/com/google/android/gms/common/api/
GoogleApiClient.html

356 CHAPTER 13: Watch Face Configuration Companion Activity: Google Mobile Services

Creating the Play Client: Coding Your .onCreate() method
The most important method in any Android Activity is the onCreate() method, as it always
must be in place and it creates the user interface layouts, and in this case, also the
GoogleApiClient object and its Peer ID.

The first thing you need to do is override the Activity superclass onCreate() method via
a protected void onCreate(Bundle savedInstanceState) method structure. Inside the
method, you will use the Java super keyword to pass the savedInstanceState Bundle object
up to the Activity superclass so that the superclass .onCreate() method can process it.
The Java method structure, which can be seen highlighted in yellow in the middle of
Figure 13-11, should look like the following Java code:

@Override
protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
}

Before you can call the standard Activity .setContentView() method, you need to create the
layout XML directory and put assets in place in this mobile part of the project. Right-click
the /mobile/res folder and select the New ➤ Android resource directory menu sequence.
Select layout using the Resource type drop-down; this will also set the folder name, as
shown in Figure 13-12.

Figure 13-11. Add a protected void onCreate() method and super.onCreate() superclass method call to the class

357CHAPTER 13: Watch Face Configuration Companion Activity: Google Mobile Services

Click the OK button to create the /mobile/res/layout folder, and then right-click this new
folder in the project navigation pane and select the New ➤ Android resource file menu
sequence.

This menu sequence can also be seen in Figure 13-12, at the top of the New submenu, so
I will only show the New Resource File dialog here, which you can see in Figure 13-13.
You will name the XML resource file using Android Activity user interface layout file naming
conventions (activity first and use underscore characters), so use the name activity_pro_
watch_face_config and select a LinearLayout root element and leave the other two
fields with their default settings (main and layout). Click the OK button to create a new
activity_pro_watch_face_config.xml user interface layout definition file. This will hold a
user interface definition for the configuration UI.

Figure 13-12. Right-click the /res folder and select New ➤ Android resource directory menu option and dialog

Figure 13-13. Right-click the new /res/layout folder and select New ➤ Android Resource File option and dialog

358 CHAPTER 13: Watch Face Configuration Companion Activity: Google Mobile Services

The bootstrap <LinearLayout> parent tag will be configured using a default vertical
orientation, which is what you want, as well as the default layout constants of match_
parent. This tells your user interface layout container to fill the screen dimensions, since the
display screen is a parent of the LinearLayout user interface layout container XML definition.

Inside the <LinearLayout> parent container, add the child <TextView> UI widget, which will
contain the title for the user interface design. Add a parameter for ID with the
@+id/title value and the android:text parameter with the @string/prowatchface_config
value. Finally, add the layout_height and layout_width parameters, which Android OS
requires to be specified for every user interface element. Set the layout_width to
match_parent and the layout_height to wrap_content. These constant settings will specify
the layout parameters for the TextView element, which will force it to span the screen from
side to side and constrain it to only be as tall as the text that it contains, which is going to be
the title (header) for your UI design.

The basic user interface layout definition XML markup, which is shown in Figure 13-14,
should look like the following XML definition structure:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical" android:layout_width="match_parent"
 android:layout_height="match_parent">
 <TextView
 android:id="@+id/title"
 android:text="@string/prowatchface_config"
 android:layout_width="match_parent"
 android:layout_height="wrap_content" />
</LinearLayout>

Before I get into the Java coding of the onCreate() method, you will need to create the
<string> constant that is referenced in the user interface layout definition file. Open the
/mobile/res/values/strings.xml file and add a child <string> tag underneath the parent
<resources> tag. Name this prowatchface_config with the data value Configure Watch
Face, as shown in Figure 13-15, so you can compare these all together visually.

Figure 13-14. Add a <TextView> inside the parent <LinearLayout> container with the android:id value of title

http://schemas.android.com/apk/res/android

359CHAPTER 13: Watch Face Configuration Companion Activity: Google Mobile Services

Now you are ready to switch gears and get into some Java coding, so you can implement
the rest of the companion app .onCreate() method structure. Add the setContentView
(R.layout.activity_pro_watch_face_config); statement, as shown in Figure 13-16, as well
as declaring a private String watchFacePeerId at the top of the class. As you can see, you will
be instantiating the PeerId next, using the WatchFaceCompanion class, the .getIntent(), and
.getStringExtra() method calls. You’ll be learning about these classes and method calls next.

Instantiate the watchFacePeerId by using the .getIntent().getStringExtra() method chain,
then pass in the WatchFaceCompanion.EXTRA_PEER_ID constant.

The Java statement, as shown in Figure 13-17, should look like the following:

watchFacePeerId = getIntent().getStringExtra(WatchFaceCompanion.EXTRA_PEER_ID);

Figure 13-15. Create a <string> constant named prowatchface_config with a data value of Configure Watch Face

Figure 13-16. Add a private String variable named watchFacePeerId; set it equal to .getIntent()getStringExtra()

360 CHAPTER 13: Watch Face Configuration Companion Activity: Google Mobile Services

Notice that there is a red error lightbulb at the left of the IDE, so drop down this menu and
select the Add library ‘wearable-1.1.0’ to the classpath option. Usually, the first option is
the most optimal. Android Studio will prioritize options, based on what it thinks is the most
viable solution.

Interestingly, when I selected this, Android Studio instead wrote an import statement for the
WatchFaceCompanion class, so Android Studio will need to correct their pop-up helper user
interface code to correct this anomaly, as I looked in the project’s Gradle files but did not see
any additions.

Let’s take a moment to get a high-level overview of the WatchFaceCompanion and
ComponentName classes, and after that, you will resume your Java coding.

The WatchFaceCompanion Class: Configuration Constants
The Android public final WatchFaceCompanion class extends java.lang.Object and
defines constants for use by watch face configuration Activity classes. This is why the class
is declared using the Java final keyword.

The Java class hierarchy for the WatchFaceCompanion class looks like this:

java.lang.Object
 > android.support.wearable.companion.WatchFaceCompanion

Figure 13-17. Drop down the error suggestion menu; select the Add library ‘wearable-1.1.0’ to classpath option

361CHAPTER 13: Watch Face Configuration Companion Activity: Google Mobile Services

As you’ve seen already during this chapter, to register your configuration Activity to be
started on a companion phone, you will add the <meta-data> entry to the watch face
component (the wear portion of the project) in an AndroidManifest.xml file. This specifies
your Intent ACTION constant, which will be “fired” to start the Activity subclass. You can see
this in Figure 13-10, if you want to revisit the XML markup you wrote earlier.

The Activity subclass also needs to have an <intent-filter> specification, which will list the
same ACTION constant specified in the metadata block of XML markup, in addition to two
WEAR categories, DEFAULT and COMPANION_CONFIGURATION, which were also put into
place, as shown in Figure 13-2.

For a watch face configuration dialog Activity class, substitute category com.google.android.
wearable.watchface.category.WEARABLE_CONFIGURATION for com.google.android.
wearable.watchface.category.COMPANION_CONFIGURATION.

This WatchFaceCompanion class uses two constants, both of which are String values:

The EXTRA_PEER_ID constant contains a key value for a String extra
specifying the PeerId for the currently connected device in the phone-side
configuration Activity Intent (launching) object.

The EXTRA_WATCH_FACE_COMPONENT constant contains the key value
for a String extra specifying the ComponentName for the watch face that is
being configured using the configuration Activity Intent (launching) object.

Before you get into writing the WatchFaceCompanion-related Java code, let’s dig a bit
deeper into the Android ComponentName class and see what it offers Android developers,
especially where WatchFaces API development is concerned.

The ComponentName Class: Specify a Component
The Android public final ComponentName class is part of an android.content package,
and it implements the Parcelable Cloneable Comparable<ComponentName> interface.
This class extends the java.lang.Object master class; therefore, the ComponentName class
has the following Java class hierarchy:

java.lang.Object
 > android.content.ComponentName

This ComponentName class provides an identifier for a specific application component.
Application components in Android include an Activity, Service, BroadcastReceiver, or
ContentProvider (DataBase or DataStore) object. This class, therefore, allows developers to
specify their Android component type.

In the examples in this book, it’s an Activity component type that you are seeking to define
for Android OS. Two pieces of information, encapsulated in a ComponentName object, are
required to identify any given Android component. The first is the package (String value)
a component resides in, and the second is the subclass name (also a String value) for the
component type that lives inside that specified package.

362 CHAPTER 13: Watch Face Configuration Companion Activity: Google Mobile Services

This class has one attribute or field specified, which is the public static final
Creator<ComponentName> CREATOR attribute.

There are four overloaded public constructor methods, none of which you’ll be using,
as you’ll be creating a ComponentName object named componentName by using the
.getIntent().getParcelableExtra() method chain. You’ll do this using the following Java
statement in the next section of this chapter:

componentName = getIntent().getParcelableExtra(WatchFaceCompanion.EXTRA_WATCH_FACE_
COMPONENT);

You can see in this line of Java code the link between the ComponentName class and the
WatchFaceCompanion class, which you just learned about.

The ComponentName class has 16 public methods, including the .clone() method, which
will clone ComponentName objects, a .compareTo(ComponentName componentName)
method to compare ComponentName objects, an .equals(Object object) method, a
.getClassName() method, a .getPackageName() method, a .toString() method, and other
similar utility methods, which can be used to access ComponentName information. If you
wanted to dive into these 16 methods in detail, you will want to visit this Android developer
web site URL:

http://developer.android.com/reference/android/content/ComponentName.html

Next, let’s finish writing the Java code that uses the WatchFaceCompanion class, which
IntelliJ has already written an import statement for, as seen highlighted at the top of
Figure 13-18. After that, you will learn about the GoogleApiClient.Builder nested (helper)
class, so you can code the part of the .onCreate() method that instantiates (that is, builds) a
GoogleApiClient object. After that, you’ll have finished creating your Google Play Services
object.

Setting Watch Face Identity: ComponentName and PeerId
Add a line of code after the setContentView() method call and declare and instantiate the
TextView title object using a .findViewById() method call, referencing your title ID. Set the
watchFacePeerId String object equal to the getIntent().getStringExtra() method chain,
referencing a EXTRA_PEER_ID constant from the WatchFaceCompanion class.

Declare a ComponentName object named componentName at the top of the class so you
can instantiate this object inside the onCreate() method. You’ll set the object equal to the
getIntent().getParcelableExtra() method chain.

Inside the getIntent().getParcelableExtra() method chain, you will want to reference the
EXTRA_PEER_ID constant from the WatchFaceCompanion class.

http://developer.android.com/reference/android/content/ComponentName.html

363CHAPTER 13: Watch Face Configuration Companion Activity: Google Mobile Services

The Java code for the .onCreate() method structure so far should look like the following,
which can also be seen at the bottom of Figure 13-18:

ComponentName componentName;
@Override
protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_pro_watch_face_config);
 TextView title = (TextView)findViewById(R.id.title);
 watchFacePeerId = getIntent().getStringExtra(WatchFaceCompanion.EXTRA_PEER_ID);
 componentName = getIntent().getParcelableExtra(WatchFaceCompanion.EXTRA_WATCH_FACE_

COMPONENT);
}

The only thing you have to do now is declare and instantiate your GoogleApiClient object,
which involves using your GoogleApiClient.Builder class, which I will be explaining next.

The GoogleApiClient.Builder: Building a Google API Client
The Android public static final GoogleApiClient.Builder class extends the java.lang.Object
master class, creating the following class hierarchy:

java.lang.Object
 > com.google.android.gms.common.api.GoogleApiClient.Builder

This class creates a Builder class, which is used to configure the GoogleApiClient.

Figure 13-18. Declare ComponentName object; instantiate a TextView, watchFacePeerId, and componentName

364 CHAPTER 13: Watch Face Configuration Companion Activity: Google Mobile Services

To instantiate and build a GoogleApiClient object named myGoogleApiClient, with
ConnectionCallbacks and OnConnectionFailedListener support for the Android Wearable
API application, you would use the following structure:

myGoogleApiClient = new GoogleApiClient.Builder(this)
 .addConnectionCallbacks(this)
 .addOnConnectionFailedListener(this)
 .addApi(Wearable.API)
 .build();

The GoogleApiClient.Builder class has two public constructor methods. The first one, which
is the one shown above that you will be utilizing, takes the Context object, which you will
be passing into the method using the Java this keyword. This constructor method takes the
following format:

GoogleApiClient.Builder(Context context)

There is also a more complex (overloaded) constructor method where you can specify a
ConnectionCallbacks object and OnConnectionFailedListener object if these objects have
already been created in your Java code:

GoogleApiClient.Builder(Context context, GoogleApiClient.ConnectionCallbacks connectedListener,
 GoogleApiClient.OnConnectionFailedListener connectionFailedListener)

This GoogleApiClient.Builder class features a dozen methods, which I will cover here (just
as I covered all of the WatchFaceStyle.Builder methods), so you can build any type of
GoogleApiClient object structure that an application might need to connect to the Google
Play Services server:

The <O extends Api.ApiOptions.HasOptions> GoogleApiClient.Builder
addApi(Api<O> api, O options) method allows developers to specify which
APIs are requested by a client.

The GoogleApiClient.Builder addApi(Api<? extends Api.ApiOptions.
NotRequiredOptions> api) method also allows developers to specify which
APIs are requested by a client.

The GoogleApiClient.Builder addConnectionCallbacks(GoogleApiClien
t.ConnectionCallbacks listener) method allows you to register a listener
to receive connection events from your GoogleApiClient object. You will be
using this in our watch face application.

Another method you’ll be using in your watch face configuration app is the
GoogleApiClient.Builder addOnConnectionFailedListener(GoogleApiClient.
OnConnectionFailedListener listener) method, which adds your listener
to register to receive connection failed events from your GoogleApiClient
object.

365CHAPTER 13: Watch Face Configuration Companion Activity: Google Mobile Services

The GoogleApiClient.Builder addScope(Scope scope) method allows
developers to specify any OAuth 2.0 scopes that need to be requested by
the Wear application.

The GoogleApiClient build() method allows developers to build an
GoogleApiClient object for communicating with the Google Play Service
server APIs.

The GoogleApiClient.Builder enableAutoManage(FragmentAc
tivity fragmentActivity, int clientId, GoogleApiClient.
OnConnectionFailedListener unresolvedConnectionFailedListener)
method allows developers to implement an automatic lifecycle
management using the support library FragmentActivity that connects to
the GoogleApiClient in the .onStart() method and disconnects from it in the
.onStop() method.

The GoogleApiClient.Builder setAccountName(String accountName)
method allows developers to specify an account name on the hardware
device that should be utilized to connect with the Google Play Services
server.

The GoogleApiClient.Builder setGravityForPopups(int
gravityForPopups) method allows developers to specify the general locale
on a display screen at which games service pop-ups will be displayed using
the Android gravity constants.

The GoogleApiClient.Builder setHandler(Handler handler) method
allows developers to set a Handler to indicate which thread to use when
invoking callbacks.

The GoogleApiClient.Builder setViewForPopups(View viewForPopups)
method allows developers to set the specified View for use as the content
view to use for pop-ups.

The GoogleApiClient.Builder useDefaultAccount() method allows
developers to specify that the default account should be used when
connecting to the Google Play Services server.

Now that you have a better overview of the Builder class, let’s build the GoogleApiClient
object using a Java new keyword and the basic constructor.

366 CHAPTER 13: Watch Face Configuration Companion Activity: Google Mobile Services

Building the GoogleApiClient: Using the Wearable API
Let’s add the Builder code example, from the previous section, which adds the
ConnectionCallbacks and OnConnectionFailed Listener objects, as well as a Wearable.
API, and builds the myGoogleApiClient object. The Java code for the onCreate() method is
shown in Figure 13-19 and should look like this:

GoogleApiClient myGoogleApiClient;
@Override
protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_pro_watch_face_config);
 TextView title = (TextView)findViewById(R.id.title);
 watchFacePeerId = getIntent().getStringExtra(WatchFaceCompanion.EXTRA_PEER_ID);
 componentName = getIntent().getParcelableExtra(WatchFaceCompanion.EXTRA_WATCH_FACE_

COMPONENT);
 myGoogleApiClient = new GoogleApiClient.Builder(this)
 .addConnectionCallbacks(this)
 .addOnConnectionFailedListener(this)
 .addApi(Wearable.API)
 .build();
}

Figure 13-19. Declare and instantiate the myGoogleApiClient object and use the Builder class to configure it

367CHAPTER 13: Watch Face Configuration Companion Activity: Google Mobile Services

Notice that you are passing the current Context object for the class via the Java this
keyword to the GoogleApiClient (class), as well as the nested classes ConnectionCallbacks
and OnConnectionFailedListener, which I will be covering in detail later in this chapter. The
reason for this is that the Context object contains all of the relevant (system) information
about the class, and these classes would need to reference and use this information (no pun
intended) to be able to perform their related functions optimally.

Starting and Stopping a Play Client: onStart() and onStop()
Now that you have created the Google Play Services client and a UI layout container inside
the onCreate(), the next step is to create the code that starts up your client. Create a
protected void onStart() method that calls the Activity superclass onStart() method using
the Java super keyword, and after that, call a .connect() method off the myGoogleApiClient
object.

This can be done with the following Java code, which can also be seen in Figure 13-20.
I clicked the myGoogleApiClient object to highlight its usage:

@Override
protected void onStart() {
 super.onStart();
 myGoogleApiClient.connect();
}

Figure 13-20. Add protected void onStart() and onStop() methods that connect and disconnect from Google Play Service

368 CHAPTER 13: Watch Face Configuration Companion Activity: Google Mobile Services

The onStop() method is a bit more complicated as it involves a conditional if() statement
that evaluates the myGoogleApiClient object to see if it is connected. If it is connected,
it disconnects it. After that, a Java super keyword is used to pass an onStop() method
function call up to an Activity superclass, which removes the application from the device’s
system memory. The following code accomplishes this:

@Override
protected void onStop() {
 if (myGoogleApiClient != null && myGoogleApiClient.isConnected()) {
 myGoogleApiClient.disconnect();
 }
 super.onStop();
}

Next, create the onConnected() method that will contain the Java code for what you want to
do once you are connected to Google Play Services.

Connect a Client: Creating the onConnected Method
Now let’s implement the onConnected() method. The method was created for us by IntelliJ
using the Java interfaces you specified in your class declaration. The first thing you want
to do in your empty bootstrap method is create an empty if-else method that looks at the
watchFacePeerId and ascertains if it has been used, that is, if it contains a non-null value.
The (still) empty method structure, as shown in Figure 13-21, looks like this:

@Override
public void onConnected(Bundle bundle) {
 if (watchFacePeerId != null) {
 // Things to do if a connection is detected, that is, watchFacePeerId has some ID value
 } else {
 // Things to do if there has not been any connection, that is, watchFacePeerId is empty
 }
}

369CHAPTER 13: Watch Face Configuration Companion Activity: Google Mobile Services

Now that you have the evaluation structure in place, I’ll provide some information on the Uri
and Uri.Builder classes before you implement the rest of the Java code.

Android Uri Class: Uniform Resource Identifier Objects
The Android public abstract Uri class extends the java.lang.Object master class and
implements a Parcelable Comparable<Uri> interface. It is found in the android.net package.
Its class hierarchy looks like the following:

java.lang.Object
 > android.net.Uri

The Android Uri object contains the immutable Uniform Resource Identifier (URI) reference
path. A URI reference includes a URI and a fragment, the component of the URI following a
pound sign (#).

Just like the Uri class in the java.net package (don’t get these confused), the Android Uri
class and its Uri.Builder nested class builds, and parses, URI references that conform to the
RFC 2396 standard.

In order to maximize performance, the Uri class does not perform data validation on the Uri
path content itself. This means that the behavior of the Uri is undefined for invalid Uri path
data input. The class is therefore somewhat forgiving; when faced with invalid input data,
this class returns garbage, rather than throwing an exception, unless a developer specifies
otherwise.

Figure 13-21. Add an empty if-else conditional structure evaluating the watchFacePeerId String to see if it’s used

370 CHAPTER 13: Watch Face Configuration Companion Activity: Google Mobile Services

The Android Uri class contains one nested class, the Uri.Builder “helper” class, which is
used for building or manipulating URI references. You will be using both of these classes
in your onConnect() method, after a short discussion on the Uri.Builder class in the next
section.

There are 39 methods in the Android Uri class, and unfortunately I cannot go into all of these
in detail, since you’re going to be using methods from the Uri.Builder class. However, if you
plan to use Uri objects frequently, you can dive into all these methods at your leisure at the
following URL:

http://developer.android.com/reference/android/net/Uri.html

Android Uri.Builder Class: Building an Android URI Object
The public static final Uri.Builder class extends java.lang.Object, which means the class was
scratch-coded and has the following class hierarchy:

java.lang.Object
 > android.net.Uri.Builder

The Uri.Builder class is a nested or helper class that’s used for building or manipulating URI
references. It is important to note that this Builder class isn’t safe for concurrent use, that is,
there is no synchronization provided across threads; use it in one thread only.

If you wanted to build upon a Uri object that already exists, use the .buildUpon() method
from the Uri class.

The Uri.Builder class has one public constructor method, the Uri.Builder() method, which
will construct, or instantiate, a new Uri.Builder object. To declare and instantiate a UriBuilder
object named uriBuilder, you would use the following Java programming statement:

Uri.Builder uriBuilder = new Uri.Builder();

The Uri.Builder class has 17 public methods, all of which I cannot cover here. However, I will
cover those methods you will be using to finish the onConnect() method, which you’ll do in
the next section of the chapter:

A Uri.Builder class .authority(String authority) method is used to set the
authority for a Uri object. A Uri.Builder class .path(String path) method is
used to set the path for a Uri object.

A Uri.Builder class .scheme(String scheme) method can be used to specify a
scheme for a Uri object. A Uri class .build() method is used to construct a Uri
object, using the other Uri attributes that have been set using the Uri.Builder
methods listed on the Android developer website Uri URL listed above.

http://developer.android.com/reference/android/net/Uri.html

371CHAPTER 13: Watch Face Configuration Companion Activity: Google Mobile Services

Building a Uri for a Client: Finishing the onConnected()
If the watchFacePeerId is not null, that means that it has been assigned a value by Google
Play Services, so, in the if(watchFacePeerId != null) section of the onConnected()
method, you would want to declare and instantiate the uriBuilder Uri.Builder object by using
the following line of Java code:

Uri.Builder uriBuilder = new Uri.Builder();

Once that has been done, you can use the Uri.Builder methods that you just learned about
and set the scheme to wear, your path to PATH_WITH_FEATURE, and the authority to the
watchFacePeerId value. Be sure to add a .build() method call at the end of the method
chain, as shown in Figure 13-22 and in the following Java statement:

Uri uri = uriBuilder.scheme("wear").path(PATH_WITH_FEATURE).authority(watchFacePeerId).
build();

As you can see in Figure 13-22, you’ll need to use the Alt+Enter keystroke combination
and have IntelliJ write an android.net.Uri class import statement for you. That will take care
of the red error code highlighting, at least for Uri (parent class), Uri.Builder (nested class),
and .scheme() (method) references, as all of those are contained in android.net.Uri and will
therefore be properly referenced using the import statement. The only red error text that will
remain is the PATH_WITH_FEATURE path constant.

To get rid of the final red error highlight, you’ll need to add a constant at the top of the
class using the Java private static final keyword chain to define Java constant values.
Use the String variable type, name it PATH_WITH_FEATURE, and set it equal to
/watch_face_config/ProWatchFace with the following Java programming statement, as
shown in Figure 13-23:

private static final String PATH_WITH_FEATURE = "/watch_face_config/ProWatchFace";

Now that you have learned about and set up your Uri object, the next thing you need
to configure with this custom Uri is the Wearable.API, which you created using a

Figure 13-22. Instantiate a Uri.Builder object named uriBuilder; set a Uri object named uri equal to the build scheme,
path and authority and then use .build()

372 CHAPTER 13: Watch Face Configuration Companion Activity: Google Mobile Services

GoogleApiClient.Builder class’s .addApi() method call. This can be seen in Figures 13-19
and 13-20, if you need to visualize it.

Android’s GMS DataApi Interface: Configuring a Data API
This Android Google Mobile Services (GMS) DataApi public interface is part of the com.
google.android.gms.wearable.DataApi package. This interface is used to expose an API
for Android Application components to use to read or write DataItem or Asset objects to
GMS, in our case, for use with Wearable applications. A DataApi object contains DataItem
as well as Asset (sub) objects.

A DataItem will be synchronized across all the hardware devices in your Android Wear
network. It is possible to load, or configure, these DataItem objects when the Wear
application is not currently connected to any of the nodes on the network. These DataItem
objects will be synchronized when any of the network’s nodes appear as being online.

DataItem objects are private to the application that created them. DataItem objects are
therefore only accessible by that application on other network nodes. Developers should
generally optimize their DataItem objects so they are small in file size.

If you need to transfer large or persistent data objects, such as images, you should use
an Asset object, which is the other type of object that can be contained within (inside of) a
DataApi object.

Each DataItem object is identified using a URI, accessible with .getUri(). The Uri (object)
will contain the DataItem object creator and path. Fully specified URIs should follow the
following format:

wear://<node_id>/<path>

Figure 13-23. Create private static final PATH_WITH_FEATURE with a /watch_face_config/ProWatchFace value

373CHAPTER 13: Watch Face Configuration Companion Activity: Google Mobile Services

The <node_id> portion is the Node ID of the wearable node that created the DataItem
object, and the <path> is an application-defined path. This means that given a DataItem
object URI, calling the .getHost() method can return the object creator’s node ID data value.

In some of the methods for the DataApi class, including the one that you’ll be using, the
.getDataItem(GoogleApiClient, Uri) method, it is possible to leave out (not utilize) a node
ID value from the URI, using only the path.

In this particular use case, the Uri object could be utilized to reference multiple data items.
The reason for this is that multiple nodes can create DataItem objects that use the same
exact path value.

Uri objects that contain a partially specified data item URI will utilize a single forward slash
(/) character after wear, in the format wear:/<path>.

Concurrent DataItem object modification in different nodes could result in inconsistencies. In
our use case, the DataItem object creator will own the DataItem, so DataItem objects will be
updated by an original creator node.

A more complicated use case might use what is termed a “producer consumer” approach,
where one network node is responsible for producing the DataItem and another network
node is responsible for consuming this DataItem, once it has been processed, of course. If
you use the more complicated use case, you should make sure that the DataItem objects
have unique ID values, and make sure that these DataItem objects are not modified after
creation.

The DataApi interface has four nested interfaces: a DataApi.DataItemResult interface
contains the single DataItem, the DataApi.DataListener interface is used with an
.addListener(GoogleApiClient, DataApi.DataListener) method to listen for, and receive,
data events, the DataApi.DeleteDataItemsResult interface contains the number of deleted
DataItem objects, and finally the DataApi.GetFdForAssetResult interface contains the file
descriptor for the requested Asset object.

The DataApi interface contains nine public methods. You will be using the abstract
PendingResult<DataApi.DataItemResult> getDataItem(GoogleApiClient client, Uri uri)
method in the onConnect() method. This method retrieves a single DataItem object from the
Android Wear GMS network.

Using the DataApi Class: Configuring the Wearable.API
Call the .getDataItem() off the Wearable.DataApi class and pass in your
myGoogleApiClient and Uri object. Create a method chain by adding a method call to
the PendingResult class’s .setResultCallback() method, and pass in the current Context
object with a Java this keyword. This is done with the following Java statement, seen
highlighted at the bottom of Figure 13-24:

Wearable.DataApi.getDataItem(myGoogleApiClient, uri).setResultCallback(this);

374 CHAPTER 13: Watch Face Configuration Companion Activity: Google Mobile Services

Let’s take a quick look at the Android PendingResult class and then create a method called
noConnectedDeviceDialog() that uses the AlertDialog class.

The Android PendingResult Class: Receiving the Result
The Android GMS PendingResult public interface is part of the Wear API, which is
included in the com.google.android.gms.common.api.PendingResult<R extends com.google.
android.gms.common.api.Result> package. This interface has one known indirect subclass:
the Batch class.

A PendingResult object contains the pending result from calling a Wear API method from the
Google Play Services server. The final result object from a PendingResult is of type R, which
is the raw data type for Java. The raw data packet type can be retrieved in Java by using
one of two approaches.

The first approach is to use blocking calls to an .await() or .await(long, TimeUnit) method.
The second approach, which is what you will be doing, is to use a ResultCallback interface
(object). This is done by passing in an object implementing a ResultCallback public interface
to the .setResultCallback(ResultCallback) method call.

After the PendingResult has been retrieved using .await(), or delivered to the result
callback, if you attempt to retrieve this result again, it will cause an error to be thrown. It
is the responsibility of a calling entity, or of the callback receiver, to release any resources
associated with the returned result. Some result types may implement Releasable, in which
case a .release() method call should be used to free up associated resources.

The PendingResult public interface has six methods, including the abstract R .await()
method, which blocks until the PendingResult task is completed; and an abstract R
.await(long time, TimeUnit units) method, which blocks until the PendingResult task is
completed or has timed out a specified number of time units (milliseconds) waiting for a
PendingResult.

Figure 13-24. Set Wearable.API to Uri object with .setResultCallback(this), .getDataItem(myGoogleApiClient, uri)

375CHAPTER 13: Watch Face Configuration Companion Activity: Google Mobile Services

There is also an abstract void .cancel() method, which will request that a PendingResult be
canceled. There is an abstract boolean .isCanceled() method, which will indicate whether
a PendingResult has been canceled either due to calling {GoogleApiClient#disconnect} or
calling .cancel() directly on the PendingResult object or on an enclosing Batch object.

Finally, there is the abstract void .setResultCallback(ResultCallback<R> callback)
method, which sets the callback if you want the result object to be delivered via a callback
when the result is ready, and an abstract void .setResultCallback(ResultCallback<R>
callback, long time, TimeUnit units) method, which sets the callback if you want the result
to be delivered via a callback when the result is ready or has timed out waiting for the result.

Next, let’s create a method that alerts the user if there is no connection.

Creating a Not Connected Dialog: Using AlertDialog
Add a noConnectedDeviceDialog() method call in the else portion of the onConnected()
method if-else structure, which IntelliJ will highlight with red error text, as you can see
highlighted at the bottom of Figure 13-25.

Select the Create Method option from the red lightbulb drop-down menu and have IntelliJ
create the method structure, which is shown in Figure 13-26. First, declare two String
variables named noConnectText and okButtonLabel.

Figure 13-25. Add a noConnectedDeviceDialog() method call in the else portion and select Create Method option

376 CHAPTER 13: Watch Face Configuration Companion Activity: Google Mobile Services

Next, open the mobile/res/values/strings.xml file in its tab in IntelliJ, add the two <string>
constants referenced in the noConnectedDeviceDialog() method, and provide a descriptive
AlertDialog message and UI Button text for them. This can be seen (highlighted) in
Figure 13-27, and should look like the following XML markup:

<string name="no_connected_device">Wearable Device Not Connected!</string>
<string name="ok_button_label">OK</string>

Before you finish coding the noConnectedDeviceDialog() method, let’s take a quick overview
of the Android AlertDialog class.

Figure 13-26. In this method structure that IntelliJ has created for you, declare and instantiate two String objects

Figure 13-27. Create text <string> definitions to tell the user that the device is not connected and to click OK

377CHAPTER 13: Watch Face Configuration Companion Activity: Google Mobile Services

Android AlertDialog: Creating an Alert Dialog for Your App
The Android public AlertDialog class extends the Android Dialog class and implements
the DialogInterface. It is included in the android.app package and has three known
direct subclasses: DatePickerDialog, ProgressDialog, and TimePickerDialog. The class
hierarchy would look like the following:

java.lang.Object
 > android.app.Dialog
 > android.app.AlertDialog

The AlertDialog is a special type of Android dialog that can display one, two, or three
buttons. If you only want to display a String in the dialog, which you will be doing to tell the
user that there is no GMS connection, a .setMessage() method would need to be called.
If you want to design custom user interface View objects, you should use an .addView()
method call, and you can later change that View UI design using the .setView() method call.

The AlertDialog class contains one nested helper class, which is a builder class aptly called
the AlertDialog.Builder class, which you’ll be using for constructing the AlertDialog object
when you resume the Java coding.

The AlertDialog class supports five Android Theme constants: THEME_DEVICE_DEFAULT_
DARK, THEME_DEVICE_DEFAULT_LIGHT, THEME_HOLO_DARK, THEME_HOLO_
LIGHT, and the THEME_TRADITIONAL constant, for earlier Android versions prior to
Android 4.x, which introduced the HOLO Theme. Android 5.x uses the Material Theme (the
first two constants covered above).

The AlertDialog has three protected constructor methods, including the one that you’re
going to use, AlertDialog(Context context), and a couple more advanced constructors:

The AlertDialog(Context context, int theme) constructor will construct
an AlertDialog that uses a completely unique theme you can specify.

A AlertDialog(Context context, boolean cancelable, DialogInterface.
OnCancelListener cancelListener) constructor allows you to specify if
an AlertDialog is cancelable and attach a cancelListener to it using the
constructor method call.

Android AlertDialog.Builder: Building the Alert Dialog
Android’s public static AlertDialog.Builder class extends java.lang.Object and thus was
scratch-coded to build alert dialogs. It has the following hierarchy:

java.lang.Object
 > android.app.AlertDialog.Builder

378 CHAPTER 13: Watch Face Configuration Companion Activity: Google Mobile Services

The class has two public constructor methods. The first one, which you will be using, is the
AlertDialog.Builder(Context context) method, which will construct an AlertDialog using a
Context object, in our case, the Java this keyword, for this AlertDialog.Builder object and the
AlertDialog object that it is used to create.

The second constructor is AlertDialog.Builder(Context context, int theme), which allows a
different Theme to be specified for the AlertDialog that is being created.

The AlertDialog.Builder class has three dozen public methods, all of which I cannot cover
here in detail, but I will cover the methods that you’ll be using in the Java code in the next
section.

The AlertDialog .create() method creates a AlertDialog with the arguments
you have supplied to this AlertDialog.Builder class.

The .setCancelable(boolean cancelable) method sets whether or not your
dialog can be canceled.

The .setMessage(int messageId) method will set a message to display,
using the given resource ID, in our case, an XML <string> constant.

A .setPositiveButton(int textId, DialogInterface.OnClickListener listener)
method will set a listener to be invoked, when the positive button of your
dialog is pressed.

The .show() method displays an AlertDialog using the arguments supplied
to the AlertDialog.Builder and overlays the AlertDialog object on the screen.

Using AlertDialog.Builder: Coding the AlertDialog System
Inside the noConnectedDeviceDialog() method, declare and instantiate an AlertDialog.
Builder named alertBuilder using the Java new keyword and pass the Context (this)
object to the basic builder constructor method. Now you can call three methods, using dot
notation chaining, off this object to customize the AlertDialog, using the .setMessage() and
.setCancelable() to define the text and UI (Cancel) functions and the .setPositiveButton()
to implement the UI (Button) element and its onClick() listener and handling. The basic Java
code, as shown in Figure 13-28, should look like the following:

AlertDialog.Builder alertBuilder = new AlertDialog.Builder(this);
alertBuilder.setMessage(noConnectText)
 .setCancelable(false)
 .setPositiveButton (okButtonLabel, new DialogInterface.OnClickListener()

{ // handler });

379CHAPTER 13: Watch Face Configuration Companion Activity: Google Mobile Services

As you can see in Figure 13-28, you have some red error code highlighting, which tells you
that you need to use an Alt+Enter keystroke combination to have IntelliJ write an import
statement for the DialogInterface class. The import of this class triggers IntelliJ to give you
another error solution drop-down. Select the first Implement Methods option, as shown in
Figure 13-29.

Figure 13-28. Instantiate the AlertDialog.Builder using .setMessage(), .setCancelable(), and .setPositiveButton()

Figure 13-29. Select the Implement Methods error resolution option to have IntelliJ code an onClick() method

380 CHAPTER 13: Watch Face Configuration Companion Activity: Google Mobile Services

The IDE will code a public void onClick(DialogInterface dialog, int which) method inside
the DialogInterface.OnClickListener() object, which can be seen in Figure 13-30, along
with the code that declares, instantiates, and shows the AlertDialog object, which will look
like the following code:

AlertDialog.Builder alertBuilder = new AlertDialog.Builder(this);
alertBuilder.setMessage(noConnectText).setCancelable(false)
 .setPositiveButton(okButtonLabel, new DialogInterface.OnClickListener() {
 public void onClick(DialogInterface dialog, int which) { }
 });
AlertDialog alertDialog = alertBuilder.create();
alertDialog.show();

Coding an onResult Method: DataItem and DataMap
Next you need to code the onResult() method, which will contain an if-else structure that
evaluates whether or not a DataItemResult has been received by the Activity, hence the
method name onResult(). The if() condition uses a Logical AND to detect if the .getStatus().
isSuccess() method call chain returns true AND if the .getDataItem() method call does not
return anything (null), meaning that there is something inside a DataItemResult object.

Figure 13-30. Declare and instantiate an AlertDialog object named alertDialog; call a .show() method to display it

381CHAPTER 13: Watch Face Configuration Companion Activity: Google Mobile Services

An empty DataItemResult processing structure, as shown in Figure 13-31, should look like
this (empty) Java conditional if()-else{} processing structure:

public void onResult(DataApi.DataItemResult dataItemResult) {
 if (dataItemResult.getStatus().isSuccess() && dataItemResult.getDataItem()

!= null) {
 // DataItemResult Detected! Processing
 } else {
 // No DataItemResult Detected Processing
 }
}

Now you can write the DataItem, DataMap, and DataMapItem object processing code. This
goes inside the if() portion of the statement, since it only gets executed if a DataItemResult
object contains data to be worked with.

The next step is to do this coding, in addition to looking at two Android GMS classes and
one Android GMS interface in greater detail, so you understand what these data-related
objects can be utilized for in your apps.

Android’s DataItem Interface: A Foundation for Wear Data
The Android public DataItem interface implements Freezable<DataItem> and is part of
the com.google.android.gms.wearable.DataItem package. A DataItem represents the
base (foundation) object of data stored in an Android Wear network. DataItem objects are
replicated across all devices in a network.

A DataItem object contains a “blob” of data, as well as associated assets. A DataItem is
identified using a Uri that contains its creator and a path. A DataItem class has four public
methods: the .getAssets() method retrieves a map of assets contained in the DataItem; the

Figure 13-31. Create an if-else structure inside an onResult() method that evaluates the dataItemResult object

382 CHAPTER 13: Watch Face Configuration Companion Activity: Google Mobile Services

.getData() method retrieves an array of data stored at a specified Uri; the .getUri() method
returns the DataItem Uri; and the .setData(byte[] data) method sets a data byte[] array
inside a DataItem. Let’s implement a DataItem in our code!

Loading a DataItem Object: Using a .getDataItem() Method
Let’s create a DataItem object named configDataItem and set it equal to a .getDataItem()
method call off the dataItemResult DataItemResult object, which was passed into the
onResult() method using the following Java code and can be seen highlighted in
Figure 13-32. As you can see, you’ll need to use the Alt+Enter work process so IntelliJ
imports the DataItem class:

DataItem configDataItem = dataItemResult.getDataItem();

Let’s take a look at the Android GMS DataMapItem class next, since that is the next object
you’ll be using in the onResult() method if() structure.

Android’s DataMapItem Class: A DataItem with a Map
An Android public DataMapItem class extends java.lang.Object. It is included in the com.
google.android.gms.wearable package and its hierarchy looks like this:

java.lang.Object
 > com.google.android.gms.wearable.DataMapItem

The DataMapItem class (object) wraps a DataItem object to create advanced mapped
DataItem objects called DataMapItem objects. These objects contain more structured
data or even serializable data. The class has three public methods: the static

Figure 13-32. Declare DataItem named configDataItem and set it equal to a getDataItem() call off dataItemResult

383CHAPTER 13: Watch Face Configuration Companion Activity: Google Mobile Services

.fromDataItem(DataItem dataItem) method provides a DataMapItem object that wraps
a DataItem object; the .getDataMap() method extracts a DataMap object, which you will
be learning about next; and the .getUri() method extracts a Uri object. Let’s implement the
DataMapItem.

Using a DataMapItem Object: The .fromDataItem() Method
Declare a DataMapItem named dataMapItem and set it equal to the result of a
.fromDataItem(configDataItem) method call off the DataMapItem object by using the
following statement, which is highlighted in Figure 13-33:

DataMapItem dataMapItem = DataMapItem.fromDataItem(configDataItem);

Next, let’s take a look at the Android GMS DataMap class, and then you will finish coding
the if() portion of the onResult() method structure.

Android Data Map
The Android GMS public DataMap class extends java.lang.Object and is part of the
com.google.android.gms.wearable package. The GMS DataMap Java class hierarchy
looks like the following:

java.lang.Object
 > com.google.android.gms.wearable.DataMap

A DataMap object contains a map of data supported by PutDataMapRequest and
DataMapItem objects. The DataMap objects can also be converted to and from Bundle
objects. It is important to note that this conversion process would drop any data types not
explicitly supported by the DataMap object during this data conversion process.

Figure 13-33. Declare DataMapItem named dataMapItem and set it equal to a fromDataItem(configDataItem) call

384 CHAPTER 13: Watch Face Configuration Companion Activity: Google Mobile Services

The DataMap class has one public constructor method, DataMap(), and 55 public methods,
all of which I cannot cover here. I’ll cover some of the more useful methods you may want to
use in your Wear app development:

The .clear() method will remove all data elements from the mapping for the
DataMap object that the method is called off of (so it clears a DataMap).

The .containsKey(String key) method will return true if the requested key is
contained in a mapping of a DataMap object the method is called off of.

The .fromByteArray(byte[] bytes) method will return a DataMap object
given an array of bytes, annotated in Java as byte[].

The .getByte(String key) method can return a value associated with a given
key, or byte 0 if no mapping of the desired type exists for the given key.

The .getByte(String key, byte defaultValue) method returns the data value
associated with a given key, or defaultValue, if no mapping of the desired
type exists for the provided key.

The .getByteArray(String key) method will return the value associated with
the given key, or null if no mapping of the desired type exists for the given
key, or if a null value was explicitly associated with that key.

The .getDataMap(String key) method will return a value associated with the
given key, or null if no mapping of the desired type exists for a given key, or
the null value, if that was explicitly associated with that key.

An .isEmpty() method returns true if the mapping of a DataMap is empty.
A .keySet() method will return a Set, containing the Strings used as keys in
the DataMap.

The .putAll(DataMap dataMap) method can insert all mappings from the
given DataMap into the DataMap. The .putByte(String key, byte value) will
insert a byte value into the mapping of the DataMap, replacing any existing
value for the provided key.

The .putByteArray(String key, byte[] values) method will insert a byte
array value into the mapping of this dataMap, replacing any currently
existing values for the provided key.

The .putDataMap(String key, DataMap value) method will insert the
DataMap into the mapping of the target DataMap. This replaces any existing
DataMap for that provided key value.

385CHAPTER 13: Watch Face Configuration Companion Activity: Google Mobile Services

The .toByteArray() method can return serialized byte[] array objects that
represent the contents of a DataMap as an array.

The .remove(String key) method selectively removes any data entry with
the provided key value from a mapping for a target DataMap.

The .size() method will return the number of key-value pairs in the DataMap.

The .toBundle() method will return (create) a Bundle object that contains all
the elements contained within a target DataMap that this method has been
called off of.

Creating a DataMap Object: Using a .getDataMap() Method
Declare a DataMap object named configDataMap and instantiate it using the
.getDataMap() method, called off of the dataMapItem object created in your previous line
of code. This is done with the following statement, which is highlighted in Figure 13-34.
Don’t forget to use an Alt+Enter work process and have IntelliJ write the import DataMap
Java import statement for you:

DataMap configDataMap = dataMapItem.getDataMap();

Because you are implementing the core Google Mobile Service engine during this
chapter, you will finish coding the onMessageReceived() method in the body of your
ProWatchFaceConfigListenerService class next.

Figure 13-34. Declare a DataMap named configDataMap, and set it equal to a dataMapItem.getDataMap() call

386 CHAPTER 13: Watch Face Configuration Companion Activity: Google Mobile Services

Creating a Listener Service: .onMessageReceived()
Close all of the open editing tabs in IntelliJ and go into the wear/java folder and open the
ProWatchFaceConfigListenerService class using a right-click Jump to Source work process,
as shown in Figure 13-35.

As you can see in Figure 13-36, because IntelliJ created the empty class for you, you will
need to drop down the error helper dialog menu and select an Implement Methods option.
This will allow IntelliJ to finish creating the empty class, overriding all methods that are
required to be implemented.

Interestingly, you will not be adding any new (proprietary) code into these methods, but be
aware that this does not mean that these methods do not do anything (the superclass will
implement their default behavior code), just that they do not do anything else (custom or
new) for this implementation.

Now you can declare the myGoogleApiClient GoogleApiClient and get to work!

Figure 13-35. Close all tabs and go into wear/java and right-click and open ProWatchFaceConfigListenerService

387CHAPTER 13: Watch Face Configuration Companion Activity: Google Mobile Services

Declare the private myGoogleApiClient GoogleApiClient object at the top of
the class, as can be seen highlighted in Figure 13-37, so you can build it in an
onMessageReceived(MessageEvent messageEvent) method structure, which you are
going to code after a brief discussion about this MessageEvent class.

Figure 13-36. Click the red error lightbulb drop-down menu, select an Implement Methods option, click the OK button

Figure 13-37. Add a private GoogleApiClient object named myGoogleApiClient; leave the @Override methods empty

388 CHAPTER 13: Watch Face Configuration Companion Activity: Google Mobile Services

The Android MessageEvent Class: Processing a Message
The Android GMS public MessageEvent interface handles information about a message
received by a listener, in this case a wearable listener service. It is contained within the
com.google.android.gms.wearable package.

The interface exposes four public methods: the .getData() method, which returns the data
passed with a message; the .getPath() method, which returns the path that a message
is being delivered to; the .getRequestId() method, which returns the request ID for the
message that is generated by the sender; and the .getSourceNodeId() method, which
returns a node ID for the sender. You’ll use the .getData() method next to extract your
settings.

Implementing a MessageEvent Object: Extracting the Data
Let’s override an onMessageReceived() method next, as that will be the main
method your ConfigListenerService will use to process configuration settings data
that will be held inside the MessageEvent object. Create the empty public void
onMessageReceived(MessageEvent messageEvent) method structure, as shown in
Figure 13-38, using the following Java code:

@Override
public void onMessageReceived(MessageEvent messageEvent) {
 // Message Event Processing Code goes in here
}

Figure 13-38. Add a public void onMessageReceived(MessageEvent) method; use Alt+Enter to import this class

389CHAPTER 13: Watch Face Configuration Companion Activity: Google Mobile Services

Inside the onMessageReceived() method, declare the byte[] array named rawData, and then
set it equal to the result of the .getData() method call off the messageEvent MessageEvent
object using the following Java code:

byte[] rawData = messageEvent.getData();

Remember that this messageEvent object is the object that was passed into the
onMessageReceived() method. The next line of Java code will create the DataMap object,
let’s name it keysToOverwrite, and then load it using the .fromByteArray() method call,
using the following Java code statement:

DataMap keysToOverwrite = DataMap.fromByteArray(rawData);

As you can see from the red error code highlight in Figure 13-39, you will have to use the
Alt+Enter keystroke combination and have IntelliJ import the DataMap class for use in the
ProWatchFaceConfigListenerService class.

The next step in creating the onMessageReceived() method is to create two empty
conditional if() structures to hold the condition processing tasks.

One of these would be used when the GoogleApiClient object is empty (null value), and the
other would be used if a GoogleApiClient exists but is not currently connected. The Java
code for these two conditional if structures can be seen in Figure 13-40, and should look like
the following Java code:

if(myGoogleApiClient == null) {
 // Code to Create and Build a GoogleApiClient Object
}
if(!myGoogleApiClient.isConnected()) {
 // Code to Execute if GoogleApiClient is NOT connected
}

Figure 13-39. Add a byte array named rawData, and use the .getData() method to load it; add a DataMap object

390 CHAPTER 13: Watch Face Configuration Companion Activity: Google Mobile Services

If there are no data loaded in the myGoogleApiClient object initially, that is, if a
myWatchFaceClient object has a null value, then you would want to create a new
GoogleApiClient object using the nested builder helper class.

This is the same exact GoogleApiClient.Builder code you wrote earlier for the
ProWatchFaceCompanionConfigActivity.java class, and it should look like the following Java
code block, as shown in Figure 13-41:

if(myGoogleApiClient == null) {
 myGoogleApiClient = new GoogleApiClient.Builder(this)
 .addConnectionCallbacks(this)
 .addOnConnectionFailedListener(this)
 .addApi(Wearable.API)
 .build();
}

Figure 13-40. Add two conditional if() statements to see if the client object is empty or if the client object is not
connected

391CHAPTER 13: Watch Face Configuration Companion Activity: Google Mobile Services

As you can see in Figure 13-41, you’ll need to use the Alt+Enter keystroke combination
and have Intelli-J import the Android Wearable class, so you can use its API inside the
GoogleApiClient.Builder method chain .addApi() method call.

Next, you need to write the other conditional if() structure that evaluates the GoogleApiClient
object (if it is not null) to see if it is connected to the server. If this is not connected
to the Google Play Service server, then you will want to write some code, using the
.blockingConnect() method, which will connect the Wear application to the Google Play
Service server.

Before you implement the if(!myGoogleApiClient.isConnected()) structure, let’s take a
closer look at the ConnectionResult class (and object) that you will be using to extract
the WatchFaces configuration data from. After that, you can finish implementing
the onMessageReceived() method, and then in the next chapter, you will create the
Configuration Utility class that pulls it all together.

The ConnectionResult Class: Connecting to the Network
Android’s public final ConnectionResult class extends Java.lang.Object and implements
Parcelable. Its Java class hierarchy looks like the following:

java.lang.Object
 > com.google.android.gms.common.ConnectionResult

The ConnectionResult class contains all of the possible network connection error codes for
use when a client fails to connect to Google Play Service.

Figure 13-41. Instantiate and .build() a new GoogleApiClient.Builder object if myGoogleApiClient object is null (empty)

392 CHAPTER 13: Watch Face Configuration Companion Activity: Google Mobile Services

The error codes are used by the GoogleApiClient.OnConnectionFailedListener helper class,
and they are all listed in Table 13-1 so you can familiarize yourself with them. These are the
errors that are generated by the Google Play Service server when something does not work.
Working with Google Play will be an important area for Wear developers to master; thus, I
wanted to cover a ConnectionResult constant table in detail as you need to know these flags.

The ConnectionResult class has one public constructor method that creates
a ConnectionResult object. This public constructor method takes the format
ConnectionResult(int statusCode, PendingIntent pendingIntent). This class has
ten public methods, including a .describeContents() method; .equals() method;
.getErrorCode() method, which indicates the type of error that has interrupted the
connection; .getResolution() method, containing a pending intent to resolve a failed
connection, and .hasResolution() method, which will return true if calling .startResolutionF
orResult(Activity, int) and will start any Intent objects that might require user interaction.

There is an .isSuccess() method, which returns true if the connection was a success. A .sta
rtResolutionForResult(Activity activity, int requestCode) method resolves network errors
by starting any Intent objects that require user interaction. There is also a .toString() method
for converting result data to text and a .writeToParcel(Parcel out, int flags) method to write
a result to a Parcel object format. Now, let’s implement a ConnectionResult!

Table 13-1. ConnectionResult Class Constants and What They Signify Regarding the Network Connection Status

ConnectionResult Constant What It Signifies

API_UNAVAILABLE API components you attempted to connect to are not
available

CANCELED The client canceled the connection, by calling .disconnect()

DEVELOPER_ERROR The application has somehow been misconfigured

INTERNAL_ERROR An internal error occurred

INTERRUPTED An interrupt occurred while waiting for connection complete

INVALID_ACCOUNT Client attempt to connect service using invalid account name

LICENSE_CHECK_FAILED The application is not licensed to the user

NETWORK_ERROR A network connection or transport error has occurred

RESOLUTION_REQUIRED Completing the connection requires some form of resolution

SERVICE_DISABLED Installed version of Google Play Service disabled on device

SERVICE_INVALID Google Play Service installed on the device is not authentic

SERVICE_MISSING Google Play Service application software missing from device

SERVICE_UPDATE_REQUIRED Installed version of Google Play Services is out of date

SIGN_IN_FAILED Client attempted to connect to service user is not signed in

SIGN_IN_REQUIRED Client attempted to connect to service user is not signed in

SUCCESS Your connection has been successfully negotiated

TIMEOUT Timeout exceeded while waiting for a connection to complete

393CHAPTER 13: Watch Face Configuration Companion Activity: Google Mobile Services

Implementing a ConnectionResult: Blocking a Connection
The next conditional if() structure will ascertain whether or not the GoogleApiClient
object is connected to the Google Play Service server by using the opposite (a Java
NOT operand represented by a preceding exclamation point) of the myGoogleApiClient.
isConnected() method call. If the GoogleApiClient object is not connected, you’ll declare
a ConnectionResult object, name it myConnectionResult, and set it equal to the
.blockingConnect() method call off the myGoogleApiClient object. Give the network
connection attempt 30 seconds, using a 30 integer value with the TimeUnit.SECONDS
constant to retry subsequent connection attempts. This would be accomplished using the
following Java code, as is shown highlighted at the bottom of Figure 13-42:

if(!myGoogleApiClient.isConnected()) {
 ConnectionResult myConnectionResult = myGoogleApiClient.blockingConnect(30, TimeUnit.
SECONDS);
}

This is a perfect stopping (resting) point for this chapter covering Google Play Services and
the APIs that allow us to connect with and talk to it before I get into coding the configuration
constant utility class in the next chapter.

Figure 13-42. Declare and name a myConnectionResult object, and load it using the .blockingConnect() method

394 CHAPTER 13: Watch Face Configuration Companion Activity: Google Mobile Services

Summary
In this chapter, you learned about Google Mobile Services (GMS) packages in Android,
which is the API that is used to interface with the Google Play Service server. You looked
at this in the context of writing two more classes that will be needed to implement a
WatchFace Configuration App.

You’ll be writing a third class, a utility class, in the next chapter, and then you’ll begin testing
watch faces on real-world devices and using real-world services!

First, you created the ProWatchFaceCompanionConfigActivity.java class and the XML
assets needed to make it function, and then you created the GoogleApiClient object, so
you could network with Google’s Play Services. You learned how to build a client using
GoogleApiClient.Builder and how the data are encapsulated with a DataItem, DataMapItem,
and DataMap object (classes), as well as how these will related to your watch face
configuration data.

Then you created a ProWatchFaceConfigListenerService.java class, which will be used in
conjunction with the companion Activity class ProWatchFaceCompanionConfigActivity as
well as with a utility class, which you will be creating in the next chapter.

In the next chapter, you will create the ProWatchFaceUtility class, and you will finish wiring
it up to the classes you created in this chapter, as well as to the watch face application you
have created in the chapters prior to this one.

395

Chapter 14
Watch Face Configuration
Companion Activity Utility
and Wearable API

Now that you have coded the foundation Activity class for your watch face companion
configuration Activity in the mobile section of your project, it is time to create the
ProWatchFaceUtility class that will live in the wear section of your project. This class
will define the configuration setting constants and house the functions (methods) that
manipulate them, using DataMap, DataItem and DataMapItem objects, along with the
Wearable class’s API, DataApi, NodeApi, and MessageApi attributes (data fields).
You will be learning all about this Wearable class, and its APIs, during this chapter.

You will also be using XML markup during this chapter to create your user interface design
for the watch face configuration activity. This UI design will use four Spinner widgets,
which will allow your user to select one of eight standard system colors for use with your
watch face design elements, which include tick marks, an hour hand, a minute hand, and a
second hand.

In this chapter you will learn about, and implement in Java code, each of the Android
Wearable class data field API attributes. These include the API, DataApi, NodeApi, and
MessageApi. You’ll also learn about the Android LinearLayout container class and the
Android Spinner and TextView widgets.

You will implement a complex Android Utility class that talks across a GMS network using a
DataAPI, NodeAPI, and MessageAPI. You’ll develop key-value data pairs that will define the
watch face configuration data for the DataMap, DataItem, and DataMapItem objects, and
you’ll implement this in Java code.

396 CHAPTER 14: Watch Face Configuration Companion Activity Utility and Wearable API

The ProWatchFaceUtility Class: Managing the Data
In this first section, you’ll create the last class for the companion configuration foundation for
the dialog on the watch face user’s phone that will allow them to configure their watch face
design colors.

The Pro WatchFaces Utility class will live in the wear/java portion of the Android
Studio project, along with the ProWatchFaceConfigListenerService and the initial
ProWatchFaceService class that renders the watch face itself.

After you create the ProWatchFaceUtility.java class structure and constants for the color
values you want your users to be able to configure for watch face interactive mode, I will
discuss the PutDataMapRequest class, and then you will write the code to implement a
utility class, using the classes you have learned about over the past few chapters.

Creating a ProWatchFaceUtility Class: Defining Constants
Right-click the /wear/java/package folder, as shown in Figure 14-1, and select the New
➤ Java Class menu sequence to access a Create New Class dialog. Because this is the
utility class, let’s name it ProWatchFaceUtility and select the Kind of Class as Class from
the drop-down in the dialog, as shown in the upper right corner of Figure 14-1. Click the OK
button and create the class, which will open in a new editing tab in IntelliJ.

Figure 14-1. Use the New ➤ Java Class menu sequence and dialog to create your ProWatchFaceUtility class

Add the Java final keyword, after the public keyword and before the class declaration and name,
to make your class final. This locks it for use only as your WatchFaces configuration utility.

Next, add five public static final String constants. The first should be a PATH_
WITH_FEATURE constant that provides a unique identifier for the watch
face companion application, as you created in your mobile app component,
WatchFaceCompanionConfigActivity. An ID, which should be unique to each of your

397CHAPTER 14: Watch Face Configuration Companion Activity Utility and Wearable API

Watch Faces API applications if you create more than one, is how different WatchFaces
components know they’re talking to a matching application component over the GMS
network infrastructure.

The four color constants will allow the user to define the colors used for the watch face
design features, that is, the tick marks, hour hand, minute hand, and second hand. You
will need color constants for the key-value pairs used in the DataItem and DataMap
objects. Let’s create the key constants first using KEY_COLOR before a design element
type, so KEY_COLOR_TICK_MARK would represent the key value for your tick mark color
configuration data value.

Your final class declaration, along with five Java constant declarations, as seen highlighted
in Figure 14-2, should look like the following code:

public final class ProWatchFaceUtility {
 public static final String PATH_WITH_FEATURE = "/watch_face_config/ProWatchFace";
 public static final String KEY_COLOR_TICK_MARK = "COLOR_TICK_MARK";
 public static final String KEY_COLOR_HOUR_HAND = "COLOR_HOUR_HAND";
 public static final String KEY_COLOR_MINUTE_HAND = "COLOR_MINUTE_HAND";
 public static final String KEY_COLOR_SECOND_HAND = "COLOR_SECOND_HAND";
}

Figure 14-2. Add the final modifier to the class declaration and constants for the path and interactive mode color values

Now that you have your key Strings defined (sounds like it could be a country hit: “You
Define My Key Strings Babe”), let’s define the Android Color class constant for each one,
which will define the default color setting. For this app thus far, these would include White
(ticks), Blue (hours), Green (minutes), and Red (seconds).

398 CHAPTER 14: Watch Face Configuration Companion Activity Utility and Wearable API

Make sure to utilize the Android System Color constants, as these are already defined inside
the OS for you. Later you can use the .parseColor() method to turn these into integer color
data values that Android OS can use. This is shown in the middle portion of Figure 14-3,
using the following Java code:

public static final String COLOR_TICK_MARK_INTERACTIVE = "White";
public static final String COLOR_HOUR_HAND_INTERACTIVE = "Blue";
public static final String COLOR_MINUTE_HAND_INTERACTIVE = "Green";
public static final String COLOR_SECOND_HAND_INTERACTIVE = "Red";

Figure 14-3. Create a private static int parseOptionColor() method to convert the color String to the Color class
constant

Let’s create a private static method called .parseOptionColor() and return an int (integer)
data value representing the Android Color class constant.

This method will take in a String parameter, which you will name optionColor, and return
the Color value as an integer, using the .toLowerCase() method call, off the optionColor
parameter. This is done inside the parameter area of the Color.parseColor() method call,
because you always want to write dense Java code. Your Java method structure, which can
be seen highlighted at the bottom of Figure 14-3, should look like the following Java code:

private static int parseOptionColor(String optionColor) {
 return Color.parseColor(optionColor.toLowerCase());
}

Make sure to click the red error code highlight and use the Alt+Enter work process to have
IntelliJ write the import statement you need.

The next step is to use the .parseOptionColor() method you coded to create the
COLOR_VALUE constants. These will be used for the second part of your key-value pairs,
which is used in the DataItem and DataMap objects and will use the same constant names

399CHAPTER 14: Watch Face Configuration Companion Activity Utility and Wearable API

as your default COLOR constants, except you’ll be inserting the word VALUE after the word
COLOR, so that your constant is more descriptive, for instance: COLOR_VALUE_TICK_
MARK_INTERACTIVE.

The Java code for the four method calls, which set constant values for the value portion of
your key-value data pairs, can be seen at the very bottom of Figure 14-4, and should look
like the following four Java statements:

public static final int COLOR_VALUE_TICK_MARK_INTERACTIVE =
 parseOptionColor(COLOR_TICK_MARK_INTERACTIVE);
public static final int COLOR_VALUE_HOUR_HAND_INTERACTIVE =
 parseOptionColor(COLOR_HOUR_HAND_INTERACTIVE);
public static final int COLOR_VALUE_MINUTE_HAND_INTERACTIVE =
 parseOptionColor(COLOR_MINUTE_HAND_INTERACTIVE);
public static final int COLOR_VALUE_SECOND_HAND_INTERACTIVE =
 parseOptionColor(COLOR_SECOND_HAND_INTERACTIVE);

Figure 14-4. Create the COLOR_VALUE constants that call the parseOptionColor() method to configure themselves

Now that you have defined over a dozen constants and written one very small but useful
utility method, it is time to get into some more complex method coding as well as learn
about another Android GMS class related to sending DataItem objects (and DataMap
objects) over the network.

The method you’ll be creating next loads the constant values into a DataMap object and
submits these as a DataItem object to GMS.

Loading DataItems into a DataMap: .putConfigDataItem()
Let’s create a public static void putConfigDataItem() method that accepts a
GoogleApiClient object and a DataMap object in the parameter list area.

Name the GoogleApiClient object googleApiClient and the DataMap object newConfigData.
Because you haven’t used either of these object (class) types yet in this Java class, you will
get red error code highlighting, for which you will need to use the Alt+Enter work process to
get IntelliJ to write the import statements for these classes for you.

400 CHAPTER 14: Watch Face Configuration Companion Activity Utility and Wearable API

The empty Java method structure, which can be seen highlighted in yellow at the bottom of
Figure 14-5, should look like the following Java code:

public static void putConfigDataItem(GoogleApiClient googleApiClient,
DataMap newConfigData) { }

Figure 14-5. Create a public static void putConfigDataItem(GoogleApiClient, DataMap) empty method structure

Before you use the PutDataMapRequest class and object, which is central to this method,
let’s learn a little bit about this Android GMS class next.

Android PutDataMapRequest Class: Put in a Data Request
The Android GMS public PutDataMapRequest class extends java.lang.Object and is
contained in the com.google.android.gms.wearable package. The Java hierarchy for the
class looks like the following:

java.lang.Object
 > com.google.android.gms.wearable.PutDataMapRequest

A PutDataMapRequest class is a DataMap-aware version of the PutDataRequest class.
The class has six public methods, which relate to putting in DataMap requests to the Google
Play Services server.

The .asPutDataRequest() method, which you will be using in the next section of the
chapter when you finish writing the putConfigDataItem() method, creates a PutDataRequest
object from a PutDataMapRequest object.

You will also be using the .create(String path) method, which will create a
PutDataMapRequest object using a custom PATH_WITH_FEATURE (constant) path.
There’s also a .createFromDataMapItem(DataMapItem source) method that will create a
PutDataMapRequest from a DataMapItem, using a DataMapItem object. A .createWithAuto
AppendedId(String pathPrefix) method creates an automated PutDataMapRequest, using
a randomly generated ID, prefixed with your path.

401CHAPTER 14: Watch Face Configuration Companion Activity Utility and Wearable API

There’s a .getDataMap() method, which you will be using to extract a DataMap object from
the PutDataMapRequest object, as well as a .getUri() method if you want to extract the Uri
object from the PutDataMapRequest object.

Using PutDataMapRequest to Put a Configuration DataItam
Now let’s implement a PutDataMapRequest object. I will show you how it is used in the
ProWatchFaceUtility.java class to put your configuration DataItem over to Google Play.
Declare and instantiate the PutDataMapRequest, naming it putDataMapRequest. Set
this equal to a call to the .create() method off the PutDataMapRequest class, as shown in
Figure 14-6, using this Java code:

PutDataMapRequest putDataMapRequest = PutDataMapRequest.create(PATH_WITH_FEATURE);

Figure 14-6. Create a PutDataMapRequest object named putDataMapRequest and instantiate it using .create()

You will pass the PATH_WITH_FEATURE constant into the .create() method to identify this
PutDatamapRequest object to the Google Play Service as being related to your specific
WatchFaces API application. Think of this kind of like uniquely branding your app, so that
GMS does not get things mixed up.

Now that you’ve created a PutDataMapRequest object branded with your watch face
application’s unique path specifier, the next step is to create the DataMap object for
this PutDataMapRequest object by extracting an “empty” DataMap object from this
PutDataMapRequest object, using the .getDataMap() method. Your completed (empty)
Java class declaration would look like the following Java structure, which can also be seen
in Figure 14-7:

DataMap configurationToPut = putDataMapRequest.getDataMap();

402 CHAPTER 14: Watch Face Configuration Companion Activity Utility and Wearable API

As you can see in Figure 14-7, you will need to use an Alt+Enter keystroke combination to
have IntelliJ write the DataMap class import statement for you. Now you can load the empty
DataMap object with the configuration data.

To accomplish this, use the .putAll() method with the newConfigData DataMap object that
is passed into the putConfigDataItem() method. This is how the DataMap containing your
configuration parameters will replace this empty configurationToPut DataMap that lives
inside the PutDataMapRequest:

configurationToPut.putAll(newConfigData);

As you’ll notice in Figure 14-8, this line of code requires no imports and is error free,
so you can now get into the most complex Java statement you will be coding for this
putConfigDataItem() method relating to putting the PutDataMapRequest in a Wearable
class DataApi object using .putDataItem().

Figure 14-7. Create a DataMap object named configurationToPut; load it with putDataMapRequest.getDataMap()

403CHAPTER 14: Watch Face Configuration Companion Activity Utility and Wearable API

Let’s take a closer look at the Android Wearable class before you use it in the rest of your
Java code to access its various APIs. In this way you will be familiar with its API types, data
fields, and nested classes.

Android Wearable Class: Android’s Wearable APIs
The Android public Wearable class extends java.lang.Object and is part of the com.google.
android.gms.wearable package. It is important to notice that the Wearable class and the
wearable package use the same name, so wearable for Android is both a package and a
class, as well as the smartwatch platform.

The Wearable class (and object) contains the wearable APIs for the Android Wear platform.
Your class hierarchy for this Wearable class looks like the following, indicating that this
Wearable class was scratch-coded for Android Wear:

java.lang.Object
 > com.google.android.gms.wearable.Wearable

There’s one nested helper class, the Wearable.WearableOptions class, which contains the
API configuration parameters for the Android Wearable API.

The four properties, attributes, or data fields that the Wearable class or object contains
represent the Primary API, as well as a Network Node API, a Messaging API, and the
Data API.

Figure 14-8. Use .putAll() to load newConfigData DataMap into configurationToPut DataMap, and call .putDataItem()

404 CHAPTER 14: Watch Face Configuration Companion Activity Utility and Wearable API

The public static final Api<Wearable.WearableOptions> API field contains a Token object
to pass over to an .addApi(Api) method to enable the Wearable Options (features) outlined
in a WearableOptions object. The public static final DataApi DataApi field contains the
Data API, while the public static final MessageApi MessageApi field contains a Message
API and the public static final NodeApi NodeApi field contains a Network Node API.

Using the Wearable Class: Putting a DataApi Data Request
The next seven lines of Java code that you are about to write are actually a complex Java
statement that features both method (dot) chaining as well as a nested onResult() method
inside the .setResultCallback() method! The construct starts with a Wearable class,
referencing its DataApi field, off of which a .putDataItem() method is called.

Inside the .putDataItem() parameter area, you pass the GoogleApiClient object named
googleApiClient as well as the result of an .asPutDataRequest() method call off the
putDataMapRequest object, which transmutes it into a PutDataRequest object. The
PutDataRequest class (and the object) is used to create new DataItem objects in the Android
Wear network.

The .putDataItem() method call requires the GoogleApiClient object and the PutDataRequest
object to be passed in as parameters. This portion of the Java statement submits the
request to the GMS server.

The next portion of the statement, connected to the .putDataItem() method using dot
chaining, is the .setResultCallback() method, which sets up the application to listen for the
Data Request response from the GMS server.

Inside the .setResultCallback() method parameter area, you instantiate a new
ResultCallback<DataApi.DataItemResult> object. Inside the construct, you @Override the
public void onResult() method, leaving it empty, so that it performs its default processing of
the DataItemResult object (contained inside the ResultCallback object). The Java statement,
as shown in Figure 14-8, should look like the following Java code construct:

Wearable.DataApi.putDataItem(googleApiClient, putDataMapRequest.asPutDataRequest())
 .setResultCallback(new ResultCallback<DataApi.DataItemResult>() {
 @Override
 public void onResult(DataApi.DataItemResult dataItemResult) {
 // an empty method represents using the default onResult()

functionality
 }
 });

Now that you have the DataApi request taken care of, let’s look at Node Api.

Using Android’s Node API: .fetchConfigDataMap() Method
Let’s create a .fetchConfigDataMap() method that will use the Node API to fetch (retrieve)
the configuration DataMap object. Declare a public static void fetchConfigDataMap()
method, with the final GoogleApiClient object named client and a final
FetchConfigDataMapCallback object named callback.

405CHAPTER 14: Watch Face Configuration Companion Activity Utility and Wearable API

The resulting empty class structure can be seen in Figure 14-9, and would utilize the
following Java code:

public static void
fetchConfigDataMap(final GoogleApiClient client, final FetchConfigDataMapCallback
callback) {
 // Empty Method
}

Figure 14-9. Create an empty public static void fetchConfigDataMap() method structure right after the constants

As you can see in Figure 14-9, the FetchConfigDataMapCallback has red code error
highlighting, because the public interface it references has not yet been created.
If you drop down an error suggestion option list, you’ll see “Create public interface
FetchConfigDataMapCallback,” so let’s do just that now. Add a public interface
FetchConfigDataMapCallback after the constants at the top of the class. Inside the public
interface, declare the void onConfigDataMapFetched(DataMap config) method required
for implementation.

The Java structure for the FetchConfigDataMapCallback interface can be seen highlighted
in the bottom part of Figure 14-10 and should look like the following Java public interface
structure:

public interface FetchConfigDataMapCallback {
 void onConfigDataMapFetched(DataMap config);
}

406 CHAPTER 14: Watch Face Configuration Companion Activity Utility and Wearable API

Inside the FetchConfigDataMap() method, you will be using a NodeApi class and object, so
let’s do a quick overview of this Android GMS class first.

The Android NodeApi Interface: Searching for Connected Nodes
The Android public NodeApi interface exposes the API for your Wear apps to utilize poll
(i.e., search) for local or connected Nodes. This NodeApi interface is a part of the com.
google.android.gms.wearable.NodeApi package. Node API events can be delivered to all
applications on a device, and you’ll be learning how to listen for and take advantage of these
Node events. This NodeApi interface has three nested (also known as helper) interfaces:

The NodeApi.GetConnectedNodesResult interface contains a list of
connected nodes on the Wear GMS network.

The NodeApi.GetLocalNodeResult interface contains a unique name and
an ID, which will uniquely represent the user’s hardware device. You will be
using this interface in your Java code in the next section of this chapter.

A NodeApi.NodeListener interface is intended to be utilized with Android’s
.addListener(GoogleApiClient, NodeApi.NodeListener) method to receive
Node API events so that they can be processed.

This NodeApi interface has four public methods:

The PendingResult<Status> .addListener(GoogleApiClient client,
NodeApi.NodeListener listener) method registers a listener that is able to
receive (filter) all Node API events.

The abstract PendingResult<NodeApi.GetConnectedNodesResult> .getCo
nnectedNodes(GoogleApiClient client) method will obtain a list of nodes
the user’s hardware device is currently connected to.

Figure 14-10. Create the public interface FetchConfigDataMapCallback with an onConfigDataMapFetched() method

407CHAPTER 14: Watch Face Configuration Companion Activity Utility and Wearable API

The abstract PendingResult<NodeApi.GetLocalNodeResult>
.getLocalNode(GoogleApiClient client) method will obtain the Node that
refers to the user’s current hardware device. You will be using this method in
your Java code in the next section of this chapter.

The abstract PendingResult<Status> .removeListener(GoogleApiClient
client, NodeApi.NodeListener listener) method will remove the listener
that was previously added by using the .addListener(GoogleApiClient,
NodeListener).

Now let’s finish the Java coding for the .fetchConfigDataMap() method, which uses
NodeApi-related methods and classes.

Harness NodeApi: Using getLocalNode() and getLocalNodeResult()
Inside an empty fetchConfigDataMap() method structure, access Android’s Wearable
class NodeApi interface, using dot notation. Call .getLocalNode() off this construct
and pass in the GoogleApiClient object named client, which is passed into this
fetchConfigDataMap() method.

Next, use Java method chaining and add a .setResultCallback() method call. Inside
this, instantiate the ResultCallback object, using the Java new keyword, to create a
ResultCallback object for the <NodeApi.GetLocalNodeResult> object type, which is
designated using a ResultCallback<NodeApi.GetLocalNodeResult> Java construct. Inside
this construct, you will @Override an onResult() method, which you will be completing next,
using Java code, which will determine what you want to happen when you get a LocalNode
result back.

The Java structure for the fetchConfigDataMap() method thus far, including the Wearable.
NodeApi structure, getting the LocalNodeResult, and setting a result callback, as well as
your (currently) empty onResult() method body, can be seen in Figure 14-11, and should
look like the following Java code:

public static void
fetchConfigDataMap(final GoogleApiClient client, final FetchConfigDataMapCallback callback)
{
 Wearable.NodeApi.getLocalNode(client)
 .setResultCallback(new ResultCallback<NodeApi.GetLocalNodeResult>() {
 @Override
 public void onResult(NodeApi.GetLocalNodeResult getLocalNodeResult) {
 // Java code to be executed when a LocalNodeResult object appears
 }
 });
}

408 CHAPTER 14: Watch Face Configuration Companion Activity Utility and Wearable API

Inside the onResult(NodeApi.GetLocalNodeResult getLocalNodeResult) method, you will
declare the String object named myLocalNode and load it with the result of a .getNode().
getId() method chain, off the getLocalNodeResult object, which has been passed into this
onResult() method structure.

Once myLocalNode is loaded with this NodeApi identification data, you will declare a
Uri object named uri and instantiate it using a Uri.Builder class constructor method in
conjunction with the new keyword. Using method chaining, you will set the URI scheme
to wear, the path to PATH_WITH_FEATURE, and the authority to the ID data in the
myLocalNode String object, as shown in Figure 14-12. Your Java code thus far should look
just like the following:

Wearable.NodeApi.getLocalNode(client)
 .setResultCallback(new ResultCallback<NodeApi.GetLocalNodeResult>() {
 @Override
 public void onResult(NodeApi.GetLocalNodeResult getLocalNodeResult) {
 String myLocalNode = getLocalNodeResult.getNode().getId();
 Uri uri = new Uri.Builder()
 .scheme("wear")
 .path(ProWatchFaceUtility.PATH_WITH_FEATURE)
 .authority(myLocalNode)
 .build();
 }
 });

Figure 14-11. Call a .getLocalNode() and .setResultCallback() off a NodeApi, and override an onResult() method

409CHAPTER 14: Watch Face Configuration Companion Activity Utility and Wearable API

Now that you have the GoogleApiClient and Uri objects, you can use them in a
.getDataItem() method call, off the Wearable.DataApi. Then chain the .setResultCallback()
method, requesting a new DataItemResultCallback() constructor that passes
over a FetchConfigDataMapCallback object callback, which is passed into this
fetchConfigDataMap() method construct. As you’ll see in Figure 14-13, your finished Java
method structure looks like this:

public static void
fetchConfigDataMap(final GoogleApiClient client, final FetchConfigDataMapCallback callback)
{
 Wearable.NodeApi.getLocalNode(client)
 .setResultCallback(new ResultCallback<NodeApi.GetLocalNodeResult>() {
 @Override
 public void onResult(NodeApi.GetLocalNodeResult getLocalNodeResult) {
 String myLocalNode = getLocalNodeResult.getNode().getId();
 Uri uri = new Uri.Builder()
 .scheme("wear")
 .path(ProWatchFaceUtility.PATH_WITH_FEATURE)
 .authority(myLocalNode)
 .build();
 Wearable.DataApi.getDataItem(client, uri)
 .setResultCallback(new

DataItemResultCallback(callback));
 }
 });
}

Figure 14-12. Add a myLocalNode String to extract the LocalNodeResult node data and build a Uri object with it

410 CHAPTER 14: Watch Face Configuration Companion Activity Utility and Wearable API

As shown in Figure 14-13, there’s still one red error code highlight that you will need to
address, so let’s do that next, so you can get this method error free and move on to create
the other needed methods.

Click this line of code, preferably on that red error code highlighting itself, and you should
then get a red error lightbulb drop-down arrow, on the left side of the IDE.

Click the down-arrow to drop down a menu list of error-fixing suggestions that IntelliJ thinks
will solve the code continuity problem it sees. There are two options: create an entirely
separate class, or create a private or inner class inside the ProWatchFaceUtility.java class.
In the interests of keeping the number of classes needed to implement your watch faces
apps compact, select the second “Create Inner Class 'DataItemResultCallback'” option, as
can be seen highlighted at the bottom of Figure 14-14.

Figure 14-13. Call the .getDataItem() method off the Wearable.DataApi, passing it to the client and new Uri object

411CHAPTER 14: Watch Face Configuration Companion Activity Utility and Wearable API

This will pop open a second chooser dialog with a list of two more options that allow you
to specify a Target Class in which you want the inner class to be contained. You want the
private static inner class inside the ProWatchFaceUtility class, so select this by double-
clicking it, and IntelliJ will code a private static class DataItemResultCallback that
implements the ResultCallback<DataApi.DataItemResult> interface. This will have some
red error highlighting until you implement the required methods, which you will be doing in
the next section of this chapter.

IntelliJ will create the private static (inner) class at the bottom of the ProWatchFaceUtility
class, as can be seen at the bottom of Figure 14-15.

Figure 14-14. Select a “Create Inner Class” error drop-down menu option and ProWatchFaceUtility target class

412 CHAPTER 14: Watch Face Configuration Companion Activity Utility and Wearable API

Let’s write the Java code that will make up the body of this method, which will extract the
Watch Face Configuration DataMap from the DataItem using a DataMapItem, as you have
done before using the .fromDataItem() method.

Using Wearable DataApi: DataItemResultCallback() Class
The first thing you’ll want to do in this DataItemResultCallback class is declare a private final
FetchConfigDataMapCallback object and then name it mCallback. Next, create a public
DataItemResultCallback() method, which takes a FetchConfigDataMapCallback object
named callback as the parameter.

Inside this method, set the mCallback object created at the top of this class equal to a
callback object passed into this DataItemResultCallback() method. The code, as shown in
Figure 14-16, should look like the following:

private static class DataItemResultCallback implements ResultCallback<DataApi.
DataItemResult> {
 private final FetchConfigDataMapCallback mCallback;
 public DataItemResultCallback(FetchConfigDataMapCallback callback) {
 mCallback = callback;
 }
}

Figure 14-15. Now your callback object reference is in place and private static inner class created

413CHAPTER 14: Watch Face Configuration Companion Activity Utility and Wearable API

Notice in Figure 14-16 that the wavy red error highlighting is still present, so mouse-over
the error highlight and reveal the error message, which says “Class must either be declared
abstract or implement method onResult(R).”

Override the public void .onResult(DataApi.DataItemResult dataItemResult) method, at the
end of the DataItemResultCallback() method, which will add an empty method (for now)
and remove that red error highlighting. The Java method, shown error free in Figure 14-17,
should look like the following:

private static class DataItemResultCallback implements ResultCallback<DataApi.
DataItemResult> {
 private final FetchConfigDataMapCallback mCallback;
 public DataItemResultCallback(FetchConfigDataMapCallback callback) {
 mCallback = callback;
 }
 @Override
 public void onResult(DataApi.DataItemResult dataItemResult) { // empty method removes

error }
}

Figure 14-16. Add the private final mCallback variable; set it equal to the callback passed into
DataItemResultCallback()

414 CHAPTER 14: Watch Face Configuration Companion Activity Utility and Wearable API

Next, you need to create conditional if() structures, which determine if this onResult()
method has returned a DataItemResult (an outer if() structure), and a second, inner
conditional if() structure, which will determine if the DataItemResult has been used or is not
empty (that is, it is != null).

The first outer conditional if() structure uses a .getStatus().isSuccess() method chain off
the dataItemResult DataItemResult object, which you’ve seen used before to obtain the
successful result status flag (true value).

A second inner conditional if() structure then uses a getDataItem() method call off the
dataItemResult object and compares it to a null value. If the DataItemResult object has
something inside it, the if portion is processed. If it’s empty (null), then the else portion of the
construct is processed.

The first line of code inside the nested if() structure also relates to the DataItemResult
processing, so I am going to include this here as well. This .getDataItem() method is again
used to get the valid DataItem result, and it is installed into a DataItem object named
configDataItem in one single Java statement that declares, names, and instantiates that
DataItem so it can receive a dataItemResult.getDataItem() method call object transfer.

The Java code for the .onResult() method structure, which can also be seen highlighted at
the bottom of Figure 14-18, should look like the following:

public void onResult(DataApi.DataItemResult dataItemResult) {
 if (dataItemResult.getStatus().isSuccess()) {
 if (dataItemResult.getDataItem() != null) {
 DataItem configDataItem = dataItemResult.getDataItem();
 } else {
 }
 }
}

Figure 14-17. Add an @Override onResult() method to remove red error highlighting on DataItemResultCallback

415CHAPTER 14: Watch Face Configuration Companion Activity Utility and Wearable API

The next thing you want to do, now that all the DataItemResult object processing is in
place, is to transmute the DataItem into a DataMapItem so later you can transmute the
DataMapItem into the DataMap object you need.

The code for loading a DataMapItem object with a DataItem object is shown in Figure 14-19
and should look just like the following two lines of code:

DataItem configDataItem = dataItemResult.getDataItem();
DataMapItem dataMapItem = DataMapItem.fromDataItem(configDataItem);

Figure 14-18. Create an if() and nested if-else structure inside onResult(); use .getDataItem() to extract the result

Figure 14-19. Declare a DataMapItem, name it dataMapItem, and set it equal to the result of .fromDataItem()

416 CHAPTER 14: Watch Face Configuration Companion Activity Utility and Wearable API

The next thing you want to do, now that all of the DataMapItem object processing is in
place, is to transmute the DataMapItem into a DataMap, so later you can pass the DataMap
object into an onConfigDataMapFetched() method call. This transmution of DataItem to
DataMapItem to DataMap can be seen in Figure 14-20, and should be done using these
three lines of Java code:

DataItem configDataItem = dataItemResult.getDataItem();
DataMapItem dataMapItem = DataMapItem.fromDataItem(configDataItem);
DataMap config = dataMapItem.getDataMap();

Figure 14-20. Declare a DataMap named config, set it equal to the result of a .getDataMap() call off dataMapItem

The final step in this if portion of the conditional statement is to pass the config
DataMap object into the mCallback FetchConfigDataMapCallback object by using the
.onConfigDataMapFetched() method call.

In the else portion of the conditional if-else statement, if the DataItem object is indeed
empty (null), you would then simply instantiate a new DataMap object by using the Java new
keyword and the DataMap() constructor method call inside the .onConfigDataMapFetched()
method, called off the mCallback FetchConfigDataMapCallback object. The finished
onResult() method structure, as shown in Figure 14-21, should look like the following:

public void onResult(DataApi.DataItemResult dataItemResult) {
 if (dataItemResult.getStatus().isSuccess()) {
 if (dataItemResult.getDataItem() != null) {
 DataItem configDataItem = dataItemResult.getDataItem();
 DataMapItem dataMapItem = DataMapItem.fromDataItem(configDataItem);
 DataMap config = dataMapItem.getDataMap();
 mCallback.onConfigDataMapFetched(config);
 } else {
 mCallback.onConfigDataMapFetched(new DataMap());
 }
 }
}

417CHAPTER 14: Watch Face Configuration Companion Activity Utility and Wearable API

Notice that I clicked the .onConfigDataMapFetched() method in the code to track its
implementation back to the FetchConfigDataMapCallback Java interface, which is shown
highlighted in blue at the top of Figure 14-21.

Next, let’s create the last major method you’ll need to code for this class. The
.overwriteKeysInConfigDataMap() method will replace any changed key-data pairs that a
user specifies, creating an all-new DataMap object.

Replacing Changed Data: overwriteKeysInConfigDataMap
Let’s create the public static void overwriteKeysInConfigDataMap() method with a final
GoogleApiClient, which you will name googleApiClient, and the final DataMap object,
which you will name configKeysToOverwrite, as shown in Figure 14-22. The Java code
should look like this empty method body declaration:

public static void overwriteKeysInConfigDataMap(final GoogleApiClient googleApiClient, final
DataMap configKeysToOverwrite) { // empty method: your method body will go in here }

Figure 14-21. Set the FetchConfigDataMapCallback object to the DataMap using .onConfigDataMapFetched()

418 CHAPTER 14: Watch Face Configuration Companion Activity Utility and Wearable API

The first thing you are going to code inside this method body is a method call to one
of the methods you created earlier in this chapter. This will be referenced with the
ProWatchFaceUtility class name, a period, and the method name, as shown in Figure 14-23.

Inside the method call parameter area, you will pass the GoogleApiClient object and
instantiate a new fetchConfigDataMapCallback object using the Java new keyword. The
Java code for the empty method declaration should look like the following code:

ProWatchFaceUtility.fetchConfigDatamap(googleApiClient, new fetchConfigDataMapCallback() {
empty method });

Figure 14-22. Create empty public static void overwriteKeysInConfigDataMap() method

Figure 14-23. Use the IntelliJ pop-up helper dialog to implement your FetchConfigDataMapCallback interface

419CHAPTER 14: Watch Face Configuration Companion Activity Utility and Wearable API

The fetchConfigDatamap(GoogleApiClient, FetchConfigDataMapCallback) method
is currently being designated (colored) as unused by the IntelliJ IDEA, as you can see in
Figure 14-22. Unused methods or variables are defined using gray code text coloration, and
once they’re referenced in other code, they will turn black. As you can see in Figure 14-23,
IntelliJ can help code an empty method body; for instance, if you type in a Java new
keyword and the Fe characters, an IntelliJ helper dialog will pop up, where you can select
the FetchConfigDataMapCallback interface from the drop-down list of options.

When you select the FetchConfigDataMapCallback interface, IntelliJ will also implement the
required .onConfigDataMapFetched(DataMap config) method for you, which can be seen
in Figure 14-24, producing the following Java code:

ProWatchFaceUtility.fetchConfigDatamap(googleApiClient, new fetchConfigDataMapCallback() {
 @Override
 public void onConfigDataMapFetched(DataMap config) { // an empty method created by

IntelliJ }
});

Figure 14-24. IntelliJ will implement the complete (empty) FetchConfigDataMapCallback infrastructure for you

Now all you have to do is to write the Java statements that create the new DataMap, which
will hold the latest (updated) configuration data array by overwriting the current (or default, if
this is the first update) DataMap.

Updating a DataMap Object: onConfigDataMapFetched()
Inside this public void onConfigDataMapFetched() method, which IntelliJ has created for
you, change the name of the DataMap parameter passed into the method to currentConfig.
This is done to more accurately reflect what is being passed into this method structure.

420 CHAPTER 14: Watch Face Configuration Companion Activity Utility and Wearable API

Next, declare and instantiate a new DataMap object, named overwriteConfig, which is used
to hold the DataMap and will contain the modified configuration parameters. To load that
object with the currentConfig DataMap passed into this method, call the .putAll() method
using the currentConfig object as a parameter, off the overwriteConfig DataMap object.

The Java method structure thus far, which you can see highlighted at the bottom of
Figure 14-25, should look just like the following Java code:

ProWatchFaceUtility.fetchConfigDatamap(googleApiClient, new fetchConfigDataMapCallback() {
 @Override
 public void onConfigDataMapFetched(DataMap currentConfig) {
 DataMap overwriteConfig = new DataMap();
 overwriteConfig.putAll(currentConfig);
 }
});

Figure 14-25. Declare and instantiate a DataMap named overwriteConfig and use a .putAll() method to load it

Now that your current settings, or default settings if this is your first configuration
parameters update, are in an overwriteConfig DataMap, you’ll then use the same
putAll() method to overwrite (replace) new configuration parameters passed into this
overwriteKeysInConfigDataMap() method.

This work process ensures that if there are any incomplete or missing key-data pairs in the
incoming (updates or changes) DataMap after the two .putAll() method are called, they will
be processed and there’ll be a complete DataMap object with all of the parameters, both
changed as well as unchanged (or default).

421CHAPTER 14: Watch Face Configuration Companion Activity Utility and Wearable API

The Java method structure thus far, which you can see highlighted at the bottom of
Figure 14-26, should look just like the following Java code:

ProWatchFaceUtility.fetchConfigDatamap(googleApiClient, new fetchConfigDataMapCallback() {
 @Override
 public void onConfigDataMapFetched(DataMap currentConfig) {
 DataMap overwriteConfig = new DataMap();
 overwriteConfig.putAll(currentConfig);
 overwriteConfig.putAll(configKeysToOverwrite);
 }
});

Figure 14-26. Use another .putAll() method call to overwrite the updated configuration data over the current data

The final programming “move” that you need to make is to write the updated
overwriteConfig DataMap object, by passing it to the .putConfigDataItem() method,
which you coded earlier in this chapter. Because you are calling this method outside
the current method body, you’ll preface this method name with the class name, like
this: ProWatchFaceUtility.putConfigDataItem(). Inside the parameter area, pass the
GoogleApiClient object and DataMap object containing the updated (overwritten) watch face
configuration data.

The final Java code for this method structure can be seen highlighted at the bottom of
Figure 14-27 and should look like the following:

ProWatchFaceUtility.fetchConfigDatamap(googleApiClient, new fetchConfigDataMapCallback() {
 @Override
 public void onConfigDataMapFetched(DataMap currentConfig) {
 DataMap overwriteConfig = new DataMap();
 overwriteConfig.putAll(currentConfig);
 overwriteConfig.putAll(configKeysToOverwrite);
 ProWatchFaceUtility.putConfigDataItem(googleApiClient, overwriteConfig);
 }
});

422 CHAPTER 14: Watch Face Configuration Companion Activity Utility and Wearable API

The next thing you need to do is call the ProWatchFaceUtility class from the
ProWatchFaceConfigListenerService class, wiring the two classes together.

Connect the Maps: Call the Utility from the Listener
Click the ProWatchFaceConfigListenerService.java tab, or open it if it isn’t open
in the IDE. Add a final line of code to the onMessageReceived() method, which
will send the keysToOverwrite DataMap object into the ProWatchFaceUtility class
.overwriteKeysInConfigDataMap() method. The Java statement, as shown in Figure 14-28,
should look just like the following:

ProWatchFaceUtility.overwriteKeysInConfigDataMap(myGoogleApiClient, keysToOverwrite);

Figure 14-27. Send the updated DataMap configuration data to the smartwatch, using the .putConfigDataItem()
method called off the ProWatchFaceUtility class

423CHAPTER 14: Watch Face Configuration Companion Activity Utility and Wearable API

As you’ll see in Figure 14-29, the utility class Java code is error free, and no Java code
(other than constants, which I’ll address next) is gray.

Figure 14-29. Now that the two classes are cross-wired (using each other), the only gray code is for the constants

Figure 14-28. Open the Listener class and call the overwriteKeysInConfigDataMap method off the ProWatchFaceUtility
class passing over keysToOverwrite

424 CHAPTER 14: Watch Face Configuration Companion Activity Utility and Wearable API

Now you are ready to go back into the ProWatchFaceCompanionConfigActivity, which you
coded originally when you started developing all of this code in Chapter 13. You will finish
up by creating the key-value data pairs that you need in the other classes you have created,
as well as doing all the UI design work that is needed to create the color selection user
interface design for your watch face users to use to customize their watch face app.

Finishing the Configuration Companion: UI Design
Open the ProWatchFaceCompanionConfigActivity.java class (in the mobile section of
your project) and add in the same four KEY_COLOR constants you declared at the top of the
ProWatchFaceUtility.java class.

The only difference in these constants are that they will be declared with a Java private
keyword because they’re only used in the class, rather than a public keyword, as in
ProWatchFaceUtility. These constant declarations can be seen in Figure 14-30 and will look
like the following Java statements:

private static final String PATH_WITH_FEATURE = "/watch_face_config/ProWatchFace";
private static final String KEY_COLOR_TICK_MARK = "COLOR_TICK_MARK";
private static final String KEY_COLOR_HOUR_HAND = "COLOR_HOUR_HAND";
private static final String KEY_COLOR_MINUTE_HAND = "COLOR_MINUTE_HAND";
private static final String KEY_COLOR_SECOND_HAND = "COLOR_SECOND_HAND";

Figure 14-30. Declare private KEY_COLOR constants matching the utility constants in the companion activity

Now that all of the Java code is in place for passing DataMap and DataItem objects around
between all of the classes, let’s switch gears and go into UI design mode. Let’s write
some XML markup to define the user experience on the smartphone for your WatchFaces
Configuration Companion Activity.

http://dx.doi.org/10.1007/9781430265504_13

425CHAPTER 14: Watch Face Configuration Companion Activity Utility and Wearable API

Choosing Color Using the Spinner Widget: XML UI Layout
Open the mobile/res/activity_pro_watch_face_config.xml file in an editing tab and add
a nested <LinearLayout> tag under the <TextView> tag. Set the orientation parameter to
horizontal, so the Text widget will be next to the Spinner widget. Inside this LinearLayout
container, nest a TextView tag and reference the <string> constant using @string/pro_config_
tick_mark. Then set the layout_width parameter to zero and the layout_weight parameter to
one. The XML markup, as shown in Figure 14-31, should look like the following:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical" android:layout_width="match_parent"
 android:layout_height="match_parent">
 <TextView android:id="@+id/title" android:text="@string/prowatchface_config"
 android:layout_width="match_parent" android:layout_height="wrap_content" />
 <LinearLayout android:layout_width="match_parent" android:layout_height="wrap_content"
 android:orientation="horizontal" >
 <TextView android:text="@string/pro_config_tick_mark" android:layout_width="0dp"
 android:layout_height="wrap_content" android:layout_weight="1" />
 </LinearLayout>
</LinearLayout>

Figure 14-31. Add a nested <LinearLayout> and inside that, nest a <TextView> tag to hold the first UI construct

The reason you set the layout_width parameter to zero density pixels, or density
independent pixels (DIP), is because this setting tells Android OS to allow the layout_weight
parameter to determine the relative layout percentage of screen allocation. If you set a
Spinner widget layout_weight to two, your TextView would get one-third of the screen,
calculated as 1/(1+2). A Spinner layout_weight of three, which is what you are going to
implement next, gives your TextView 25% of the screen and the Spinner 75% of the screen.

http://schemas.android.com/apk/res/android

426 CHAPTER 14: Watch Face Configuration Companion Activity Utility and Wearable API

Let’s get rid of the red error code highlighting seen in Figure 14-31, and open the mobile/
res/values/strings.xml file and add the <string> constant named pro_config_tick_mark
using a data value of Tick Marks. While you are at it, add the other <string> constants for
the hour, minute, and second hands. The XML markup, as shown in Figure 14-32, should
look like the following:

<string name="pro_config_tick_mark">Tick Marks</string>
<string name="pro_config_hour_hand">Hour Hand</string>
<string name="pro_config_minute_hand">Minute Hand</string>
<string name="pro_config_second_hand">Second Hand</string>

Figure 14-32. Create <string> constants for UI labels to use for tick marks and hour, minute, and second hands

Inside this initial child horizontal <LinearLayout> construct, add the <Spinner> widget,
right underneath the <TextView> widget. Give it an ID of tickMarks using the format
@+id/tickMarks, and again set the layout_width to 0dp (or 0dip if you prefer) and the
layout_weight to 3.

To load the Spinner widget with color values, add the entries parameter set to an array
named color_array, using the format @array/color_array.

Your XML markup thus far, which can be seen highlighted in Figure 14-33, should look like
the following XML layout definition construct:

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical" android:layout_width="match_parent"
 android:layout_height="match_parent">
 <TextView android:id="@+id/title" android:text="@string/prowatchface_config"
 android:layout_width="match_parent" android:layout_height="wrap_content" />
 <LinearLayout android:layout_width="match_parent" android:layout_height="wrap_content"
 android:orientation="horizontal" >

http://schemas.android.com/apk/res/android

427CHAPTER 14: Watch Face Configuration Companion Activity Utility and Wearable API

 <TextView android:text="@string/pro_config_tick_mark" android:layout_width="0dp"
 android:layout_height="wrap_content" android:layout_weight="1" />
 <Spinner android:id="@+id/tickMarks" android:entries="@array/color_array"
 android:layout_width="0dp" android:layout_height="wrap_content"
 android:layout_weight="3" />
 </LinearLayout>
</LinearLayout>

Figure 14-33. Add a <Spinner> widget child tag underneath the <TextView> tag referencing a color_array

To get rid of the red error text highlight, click the strings.xml tab and add color data value
constants, which you must put in place before you can create an array object that references
these color constant values.

I am going to use the eight primary Color constants from the Android Color class. These
are the most standardized colors that are defined within the Android OS, and these will look
great against the black background color.

This will give your users 1,680 different (nonunique) color combinations, which means that
the same color could be used for more than one watch face design element. The way you
would calculate the number of variations is C! (number of colors factorial) over E! (number of
elements factorial).

There are eight different color possibilities, or eight factorial 8!, which is 8*7*6*5*4*3*2*1=40320.
You then divide this by the four different watch face design elements, or four factorial 4!,
which is 4*3*2*1=24. This gives you 1,680 potential color combinations!

The XML markup to define the eight colors, which is shown in Figure 14-34, should look like
the following:

<string name="color_yellow">Yellow</string>
<string name="color_blue">Blue</string>
<string name="color_red">Red</string>
<string name="color_green">Green</string>

428 CHAPTER 14: Watch Face Configuration Companion Activity Utility and Wearable API

<string name="color_cyan">Cyan</string>
<string name="color_magenta">Magenta</string>
<string name="color_gray">Gray</string>
<string name="color_white">White</string>

Figure 14-34. Add eight <string> constant definitions referencing the most common Android OS Color constants

After the color constant <string> XML definitions are in place, you’ll add a <string-array>
object XML definition, which will create the Array object construct that will hold the Color
Constant String Values.

What this <string-array> tag does is create a String Array object using XML by nesting
<item> tags that reference <string> constants inside the <string-array> Array object
definition construct.

The XML markup that you need to code to achieve the creation of the String Array structure
can be seen in Figure 14-35, and should look like the following:

<string-array name="color_array">
 <item>@string/color_yellow</item>
 <item>@string/color_blue</item>
 <item>@string/color_red</item>
 <item>@string/color_green</item>
 <item>@string/color_cyan</item>
 <item>@string/color_magenta</item>
 <item>@string/color_gray</item>
 <item>@string/color_white</item>
</string-array>

429CHAPTER 14: Watch Face Configuration Companion Activity Utility and Wearable API

As you will see in Figure 14-36, now that you have created the XML String Color constants
and the Array, there are no red error code highlights, and you are ready to copy and paste
your first nested <LinearLayout> structure and create the second one for an Hour Hand
Color Selection Spinner UI element.

Figure 14-35. Add a <string-array> structure filled with eight <item> child tags that reference the eight Colors

Figure 14-36. Copy and paste the first nested LinearLayout UI container to create a second one for the hour hand

430 CHAPTER 14: Watch Face Configuration Companion Activity Utility and Wearable API

Select the child <LinearLayout> XML structure and its two child UI widgets and right-click
and select Copy, or use the CTRL+C keystroke combination. Next, click the mouse to insert
the insertion bar (cursor) right before the final </LinearLayout> closing tag for the parent
LinearLayout, and right-click and select Paste, or use your CTRL+V keystroke combination
to paste. The results can be seen in Figure 14-36 and should look like the following:

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical" android:layout_width="match_parent"
 android:layout_height="match_parent">
 <TextView android:id="@+id/title" android:text="@string/prowatchface_config"
 android:layout_width="match_parent" android:layout_height="wrap_content" />
 <LinearLayout android:layout_width="match_parent" android:layout_height="wrap_content"
 android:orientation="horizontal" >
 <TextView android:text="@string/pro_config_tick_mark" android:layout_width="0dp"
 android:layout_height="wrap_content" android:layout_weight="1" />
 <Spinner android:id="@+id/tickMarks" android:entries="@array/color_array"
 android:layout_width="0dp" android:layout_height="wrap_content"
 android:layout_weight="3" />
 </LinearLayout>
 <LinearLayout android:layout_width="match_parent" android:layout_height="wrap_content"
 android:orientation="horizontal" >
 <TextView android:text="@string/pro_config_hour_hand" android:layout_width="0dp"
 android:layout_height="wrap_content" android:layout_weight="1" />
 <Spinner android:id="@+id/hourHand" android:entries="@array/color_array"
 android:layout_width="0dp" android:layout_height="wrap_content"
 android:layout_weight="3" />
 </LinearLayout>
</LinearLayout>

Because you want to allow your users to configure colors for four watch face design
elements, you will need to again perform this time-saving, copy and paste work process,
and select both of these nested LinearLayout container XML markup blocks and paste them
at the bottom of the UI definition.

What you’ll end up with in the end is a master parent vertical LinearLayout container
arranging nested child horizontal LinearLayout containers, which contain the TextView
(labels), Spinner (color selector), and UI elements.

The final activity_pro_watch_face_config.xml user interface layout design XML definition,
which can be seen, error free, in Figure 14-37, should use the following XML markup:

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical" android:layout_width="match_parent"
 android:layout_height="match_parent">
 <TextView android:id="@+id/title" android:text="@string/prowatchface_config"
 android:layout_width="match_parent" android:layout_height="wrap_content" />

 <LinearLayout android:layout_width="match_parent" android:layout_height="wrap_content"
 android:orientation="horizontal" >
 <TextView android:text="@string/pro_config_tick_mark" android:layout_width="0dp"
 android:layout_height="wrap_content" android:layout_weight="1" />

http://schemas.android.com/apk/res/android
http://schemas.android.com/apk/res/android

431CHAPTER 14: Watch Face Configuration Companion Activity Utility and Wearable API

 <Spinner android:id="@+id/tickMarks" android:entries="@array/color_array"
 android:layout_width="0dp" android:layout_height="wrap_content"
 android:layout_weight="3" />
 </LinearLayout>

 <LinearLayout android:layout_width="match_parent" android:layout_height="wrap_content"
 android:orientation="horizontal" >
 <TextView android:text="@string/pro_config_hour_hand" android:layout_width="0dp"
 android:layout_height="wrap_content" android:layout_weight="1" />
 <Spinner android:id="@+id/hourHand" android:entries="@array/color_array"
 android:layout_width="0dp" android:layout_height="wrap_content"
 android:layout_weight="3" />
 </LinearLayout>

 <LinearLayout android:layout_width="match_parent" android:layout_height="wrap_content"
 android:orientation="horizontal" >
 <TextView android:text="@string/pro_config_minute_hand" android:layout_width="0dp"
 android:layout_height="wrap_content" android:layout_weight="1" />
 <Spinner android:id="@+id/minuteHand" android:entries="@array/color_array"
 android:layout_width="0dp" android:layout_height="wrap_content"
 android:layout_weight="3" />
 </LinearLayout>

 <LinearLayout android:layout_width="match_parent" android:layout_height="wrap_content"
 android:orientation="horizontal" >
 <TextView android:text="@string/pro_config_second_hand" android:layout_width="0dp"
 android:layout_height="wrap_content" android:layout_weight="1" />
 <Spinner android:id="@+id/secondHand" android:entries="@array/color_array"
 android:layout_width="0dp" android:layout_height="wrap_content"
 android:layout_weight="3" />
 </LinearLayout>

</LinearLayout>

Figure 14-37. Copy and paste the first two nested LinearLayout UI containers to create the minute and second hands

432 CHAPTER 14: Watch Face Configuration Companion Activity Utility and Wearable API

Now that the XML UI Layout Definition is built, let’s switch back to Java programming mode
and write the methods that make these Spinners function.

Setting the Spinner Widget: setUpColorPickerSelection()
In the next few sections, you will be coding the Java methods that relate to the back-
end processing (Java code; XML markup is the front-end design) for your Color Selection
Widgets. These are implemented using the Spinner class (object) definitions you put in place
using the <Spinner> tag.

Click the ProWatchFaceCompanionConfigActivity.java tab (or open it) and add a private
void setUpColorPickerSelection() method at the bottom of the class before the ending curly
brace (}). You’ll need to pass four parameters into this method: one for the Spinner ID
parameter you created in the XML UI definition, a String holding configuration data key, a
DataMap with the key-value pairs, and the Resource ID integer for a default Color constant.
The Java code, as shown in Figure 14-38, should look like the following:

private void setUpColorPickerSelection(int spinnerId, final String configKey, DataMap
config,
 int defaultColorNameResId) {
 String defaultColorName = getString(defaultColorNameResId);
 int defaultColor = Color.parseColor(defaultColorName);
 int color;
}

Figure 14-38. Add private void setUpColorPickerSelection() method at the end of the class and declare the variables

The next Java construct you will need to put into place in this method is an if-else
conditional statement that will ascertain if the DataMap has been loaded (used) or if it is a
virgin (unutilized) DataMap.

433CHAPTER 14: Watch Face Configuration Companion Activity Utility and Wearable API

The way that you ascertain this is by using the if(config != null) condition, as a non-null
DataMap contains a map of data! If the DataMap is “live,” you use the .getInt(String,
integer), called off the config DataMap object. This will extract an integer value associated
with a configKey String key. This is assigned to the color integer variable you declared earlier.

On the other hand, within an else portion of the construct, if the DataMap is empty (null
value), you’ll simply set the color integer variable to the defaultColor value, which you
extracted from the defaultColorName variable using the .getString() method call. The Java
code for the construct, as shown in Figure 14-39, should look like the following method
structure:

private void setUpColorPickerSelection(int spinnerId, final String configKey, DataMap
config,
 int defaultColorNameResId) {
 String defaultColorName = getString(defaultColorNameResId);
 int defaultColor = Color.parseColor(defaultColorName);
 int color;
 if (config != null) {
 color = config.getInt(configKey, defaultColor);
 } else {
 color = defaultColor;
 }
}

Figure 14-39. Add an if-else conditional structure, evaluating the config DataMap, and processing it accordingly

The final step in completing the method is to create a Java Spinner object named spinner
and inflate it using the <Spinner> XML definition using the findViewById() method. The
process of inflation in Android is populating a Java object using an XML object definition
that you’ve created previously. You then create a colorNames String[] Array and
populate it using the data you created using the XML <string-array> construct and the

434 CHAPTER 14: Watch Face Configuration Companion Activity Utility and Wearable API

.getStringArray() method chained off a getResources() method. Use a for loop and load
the colorNames Array with your Color constant values. The Java code to do this can be seen
in Figure 14-40 and should look like the following:

private void setUpColorPickerSelection(int spinnerId, final String configKey, DataMap
config,
 int defaultColorNameResId) {
 String defaultColorName = getString(defaultColorNameResId);
 int defaultColor = Color.parseColor(defaultColorName);
 int color;
 if (config != null) {
 color = config.getInt(configKey, defaultColor);
 } else {
 color = defaultColor;
 }
 Spinner spinner = (Spinner) findViewById(spinnerId);
 String[] colorNames = getResources().getStringArray(R.array.color_array);
 for (int i = 0; i < colorNames.length; i++) {
 if (Color.parseColor(colorNames[i]) == color) {
 spinner.setSelection(i);
 break;
 }
 }
}

Figure 14-40. Create a Spinner object named spinner; load it with String[] Array data, defined in your XML array

Now that you have loaded your Spinner object with the Color values, the next step us to set
up the Color Picker Listener object to listen for user selection changes.

435CHAPTER 14: Watch Face Configuration Companion Activity Utility and Wearable API

Setting Up a Spinner Listener: setUpColorPickerListener()
Now that you’ve populated the Spinner object with the Color constant values in the
<string-array> that you created earlier, you also need to set up the Listener object, which
will listen for any changes your user makes to the Spinner default (or previous) Color
constant selection.

Create a private void setUpColorPickerListener() method at the end of your class that
takes in the Spinner ID integer and configKey KEY_COLOR String Color constant values
as its two method parameters.

Inside the method, declare a Spinner object named spinner and inflate it using the
findViewById(spinnerId) method call and parameter. You did this in the previous method
you just created; however, notice that both of these are local (or private) variables for use
inside each of the methods, and as such, they don’t conflict. You need a unique Spinner
object for this method, because you are going to construct a Listener structure off of it.

The Java method structure thus far, which can be seen highlighted at the bottom of
Figure 14-41, should look like the following Java code:

private void setUpColorPickerListener(int spinnerId, final String configKey) {
 Spinner spinner = (Spinner) findViewById(spinnerId);
}

Figure 14-41. Create a public void setUpColorPickerListener() method at the bottom of the class; then inflate
the Spinner

The next thing you need to do is use the .setOnItemSelectedListener() method to create an
AdapterView Listener. The Spinner class is subclassed from the AdapterView class, so the
Spinner object is also an AdapterView object. It uses an AdapterView.OnItemSelectedListener()

436 CHAPTER 14: Watch Face Configuration Companion Activity Utility and Wearable API

constructor method call, in conjunction with the Java new keyword. Create this Listener
using the following Java code, as shown highlighted at the bottom of Figure 14-42:

private void setUpColorPickerListener(int spinnerId, final String configKey) {
 Spinner spinner = (Spinner) findViewById(spinnerId);
 spinner.setOnItemSelectedListener(new AdapterView.OnItemSelectedListener() { // empty
method });
}

Figure 14-42. Call a .setOnItemSelectedListener() method off the spinner and construct a new AdapterView Listener

Figure 14-43. Use error suggestion drop-down, select Implement Methods, and implement all required methods

As you can see in Figure 14-42, you will need to use the Alt+Enter work process to have
IntelliJ write an import statement for the AdapterView class. Once IntelliJ does this, it
will reevaluate your code and give you a wavy red error highlight under the AdapterView.
OnItemSelectedListener() constructor method. In the error drop-down shown in Figure 14-43,
select the Implement Methods option, and implement both required methods, with Insert @
Override selected. IntelliJ will then create an onItemSelected() construct for you.

437CHAPTER 14: Watch Face Configuration Companion Activity Utility and Wearable API

Inside the empty onItemSelected() method, shown highlighted in Figure 14-44, create a final
String colorName variable and call the .getItemAtPosition() method off the AdapterView
object named parent, which is passed into this method structure. You can use an IntelliJ
pop-up helper dialog if you wish.

Figure 14-44. Create a final String variable named colorName and use the .getItemPosition() method to load it

After you have the Color constant that has been selected in the Spinner by the user, call a
sendConfigUpdateMessage() method with a configKey DataMap and an integer result
from a Color.parseColor(colorName) nested statement.

As you can see in Figure 14-45, this sendConfigUpdateMessage() method does
not yet exist, so use the error suggestion drop-down and select the Create
Method option to have IntelliJ code the empty method structure for you in
ProWatchFaceCompanionConfigActivity (a Choose Target Class dialog option).

Figure 14-45. Call the sendConfigUpdateMessage() method with DataMap and Color Key; then select Create Method

438 CHAPTER 14: Watch Face Configuration Companion Activity Utility and Wearable API

Edit the private void .sendConfigUpdateMessage(String configKey, int i) method
structure that IntelliJ wrote for you to more accurately reflect what is going on inside
the method by changing int i to int color. Now you can code the inside of this
sendConfigUpdateMessage() method structure and then finish up this class by coding the
.setUpAllPickers() method.

Figure 14-47. Create the if() condition to see if watchFacePeerId exists; inside it, create a DataMap and load it with the
key-value pair

Figure 14-46. IntelliJ will create the sendConfigUpdateMessage(String configKey, int i) method; then rename i to color

Everything in this method is executed if there is a watchFacePeerId value.

The first thing to do inside the if(watchFacePeerId != null) structure is to construct a
DataMap named newConfig, and then use a .putInt() method to load it with the configKey
and Color constant passed into this method. The Java code, as shown in Figure 14-47,
should look like the following:

If (watchFacePeerId != null) { DataMap newConfig = new DataMap();
 newConfig.putInt(configKey, color); }

439CHAPTER 14: Watch Face Configuration Companion Activity Utility and Wearable API

The next two lines of code will declare a byte[] Array named rawConfigData and use a
.toByteArray() method call to extract the data from the DataMap named newConfig. The
heavy lifting is done by the Wearable.MessageApi and the .sendMessage() method call,
which passes the rawConfigData byte[] Array to the GMS server, along with the unique
watchFacePeerId, GoogleApiClient object, and PATH_WITH_FEATURE constant, using the
following code, as shown in Figure 14-48:

byte[] rawConfigData = newConfig.toByteArray();
Wearable.MessageApi.sendMessage(myGoogleApiClient,watchFacePeerId,
PATH_WITH_FEATURE,rawConfigData);

Figure 14-48. Create a byte[] Array from the DataMap and use the .sendMessage() method to submit it to Wearable

Next, you need to create a method that sets up all four Spinner UI elements, which will allow
the application to set up color picking for all of the watch face design elements.

Setting Up All Four Spinners: A .setUpAllPickers() Method
Add a line of code after the public void onResult() method and declare a private
void setUpAllPickers() method. The last method you’re going to code will call those
setUpColorPickerSelection() and setUpColorPickerListener() methods you just finished
coding. It takes in one DataMap parameter, which holds the DataMap object, and will pass
that, along with watch face design elements to be configured and chosen default color
values for those elements, to the setUpColorPickerSelection() method.

As you know from coding this .setUpColorPickerSelection() method, you will need to pass
the ID reference for the Spinner object, the KEY_COLOR String constant for the data you
want to set up, a configData DataMap object that contains the key-value data pairs, and
the default Color String reference.

440 CHAPTER 14: Watch Face Configuration Companion Activity Utility and Wearable API

The Java method structure, which can be seen in Figure 14-49, should look like the following
code, once you declare it and add the four method calls to configure each of the four
Spinner objects for the watch face elements:

private void setUpAllPickers(DataMap configData) {
 setUpColorPickerSelection(R.id.tickMarks, KEY_COLOR_TICK_MARK, configData, R.string.

color_gray);
 setUpColorPickerSelection(R.id.hourHand, KEY_COLOR_HOUR_HAND, configData, R.string.

color_blue);
 setUpColorPickerSelection(R.id.minuteHand,KEY_COLOR_MINUTE_HAND,configData,R.string.

color_green);
 setUpColorPickerSelection(R.id.secondHand,KEY_COLOR_SECOND_HAND,configData,R.string.

color_red);
}

Figure 14-49. Call setUpColorPickerSelection() method for the watch face design elements, passing the configData

Now that you’ve configured all of your Spinner UI widgets as to what Color they will display
initially (as the default), the next thing you will need to do is set up a Listener so that if your
user changes this Color setting, your app code can process this new setting and send that
Color to the watch face application. The listener needs to know which Spinner (ID) to listen
for and which KEY_COLOR constant to process if it is triggered.

The Java code for calling the setUpColorPickerListener() method four times to set up each
Spinner is shown highlighted in Figure 14-50, and it should look like the following finished
Java method structure:

private void setUpAllPickers(DataMap configData) {
 setUpColorPickerSelection(R.id.tickMarks, KEY_COLOR_TICK_MARK, configData, R.string.

color_gray);
 setUpColorPickerSelection(R.id.hourHand, KEY_COLOR_HOUR_HAND, configData, R.string.

color_blue);
 setUpColorPickerSelection(R.id.minuteHand,KEY_COLOR_MINUTE_HAND,configData,R.string.

color_green);
 setUpColorPickerSelection(R.id.secondHand,KEY_COLOR_SECOND_HAND,configData, R.string.

color_red);

441CHAPTER 14: Watch Face Configuration Companion Activity Utility and Wearable API

 setUpColorPickerListener(R.id.tickMarks, KEY_COLOR_TICK_MARK);
 setUpColorPickerListener(R.id.hourHand, KEY_COLOR_HOUR_HAND);
 setUpColorPickerListener(R.id.minuteHand, KEY_COLOR_MINUTE_HAND);
 setUpColorPickerListener(R.id.secondHand, KEY_COLOR_SECOND_HAND);
}

Figure 14-50. Call setUpColorPickerListener() method for watch face design elements; then pass the Spinner ID
and KEY

Now that you have everything in place, let’s try to run the mobile component of the watch
face application in the Nexus 5 AVD emulator and see if your UI design is working.

Testing the WatchFaceCompanion Activity: Nexus 5
Let’s run the mobile component of the WatchFaces application you have been
developing in the default AVD emulator in Android Studio, which happens to be Google’s
Nexus 5 running Android 5.0. Use the Run ➤ Edit Configurations menu sequence
to access the Run/Debug Configurations dialog seen in Figure 14-51, and set the
IntelliJ Module drop-down to mobile and the Prefer Android Virtual Device drop-
down to Nexuas 5 API 21. In the Activity section, set the Launch radio button to the
ProWatchFaceCompanionConfigActivity class. Click the Apply button and then the OK
button to make your settings final.

442 CHAPTER 14: Watch Face Configuration Companion Activity Utility and Wearable API

Figure 14-51. Use the Configurations dialog to set the Run options

Use the Run ➤ Run 'ProWatchFaceCompanionConfigActivity' menu sequence and run
the application code thus far to see if it runs and to check the UI.

As you can see in Figure 14-52, I got a package error saying that “package android.
support.wearable.companion does not exist” and that a Gradle Build “cannot find symbol
variable WatchFaceCompanion.” What a bummer!

443CHAPTER 14: Watch Face Configuration Companion Activity Utility and Wearable API

The WatchFaceCompanion class is referenced in the code, which is where the error was
thrown. I know the class (and package) does exist because I have reviewed its information
on the Android Developer web site extensively.

Because the android.support.wearable.companion package seems to be missing, as Gradle
Build has highlighted the import statement for you in yellow, as shown in Figure 14-52, the
logical place for you to check the compile statements is the Gradle configuration file for
the mobile component of the application.

The way you do this is to click the right-facing arrow next to the Gradle Scripts section
of the Project pane. This will drop down (open) the content in the Gradle Scripts folder,
including the build.gradle scripts.

Find the build.gradle (Module: mobile) configuration file, right-click it, and select the Jump
to Source option, to open it in an editing pane.

What you’ll be looking for is a dependencies section for the configuration where compile
statements are added, providing a path for support libraries.

Figure 14-52. Four errors have appeared in the Gradle Build Messages pane, regarding the companion package

444 CHAPTER 14: Watch Face Configuration Companion Activity Utility and Wearable API

As you can see in the dependencies section, at the bottom of Figure 14-54. I have the
appcompat-v7 and play-services installed, but not the wearable. Add the
compile “com.google.android.wearable:1.1.+” statement to fix this.

Figure 14-53. Open the Gradle Scripts drop-down arrow and right-click it, then select Jump to Source for the
mobile module

Figure 14-54. Add a compile “com.google.android.support:wearable:1.1.+” statement in dependencies section

445CHAPTER 14: Watch Face Configuration Companion Activity Utility and Wearable API

The next time I tested the application, I noticed that IntelliJ was using a Wear Round AVD,
which was strange, so I used a Run ➤ Edit Configuration menu sequence to check the
settings IntelliJ was currently using.

Sure enough, as you can see in Figure 14-55, the Target Device > Emulator drop-down setting
was blank (unset), so I selected the Nexus 5 API 21 default Android Studio AVD emulator.

Figure 14-55. Check Target Device ➤ Emulator in Run/Debug Configurations

446 CHAPTER 14: Watch Face Configuration Companion Activity Utility and Wearable API

This time the compiler did not throw an error, meaning that I had fixed the build.gradle
configuration file problem, but then I was getting an AVD error, relating to not having Intel
hardware, since I am using an AMD-64 8-core processor, as you can see at the bottom of
Figure 14-56.

Figure 14-56. Again Run the application, if you are on an AMD-64 system, you may get these Intel Hardware
Accelerated Execution Manager (HAXM) errors

You need to be diligent and ready for anything when developing for Android OS, so I used
the Tools ➤ Android ➤ AVD Manager to change my AVD emulator.

I needed to change the configuration to use an ARM emulator version, just as I did when
I set up emulators for Wear, and I made sure you had both x86 and ARM versions, as not
everyone uses Intel architecture.

Open the Tools ➤ Android ➤ AVD Manager dialog and select the Nexus 5 API 21, then
click the green pencil icon at the far right. This will open a Virtual Device Configuration
dialog, where you can change core settings.

Notice in the top section of this dialog that you can change your AVD name, and you might
want to do this for your Wear AVD emulators at some point in time, renaming Android Wear
Square and Round 2 AVDs to Android Wear Square and Round ARM, for instance. Always
take some time to customize your IDEA, so everything is crystal clear to you during your
application development.

In the third section of the dialog, you will see the software platform, for this AVD that is
Lollipop, and this hardware (software) emulator currently set is x86 (Intel), which I would have
to change to be an ARM so I can test on my AMD-64 system.

447CHAPTER 14: Watch Face Configuration Companion Activity Utility and Wearable API

Look for the Change button on the right side of the section, which you can use to access a
dialog that allows you to select the ARM hardware emulator if you need to do so. As you’ll
see in Figure 14-57, I needed to change the AVD to use ARM hardware emulation rather than
Intel hardware emulation, so another error that I was encountering in the testing process has
now been solved. You’re getting close to being able to see this Multi-Spinner UI Design!

Figure 14-57. Use a Virtual Device Configuration dialog to rename or reconfigure hardware emulation settings

Click the Finish button, and make sure that the CPU/ABI column has the new setting listed
in it, in my case this would be ARM, as shown highlighted in Figure 14-58. Now you’re ready
to try and run the application and test it.

448 CHAPTER 14: Watch Face Configuration Companion Activity Utility and Wearable API

As you can see in Figure 14-59, the Nexus 5 emulator is now launching, and you can see
that I forgot to rename this emulator with the _ARM extension, so I’ll had to go back and do
that! On the left is the initial launch screen, in the middle are the icons, and because an app
icon isn’t available, I am going to use the Run command in IntelliJ again, which will place this
app into the emulator, now that it has been launched inside system memory.

Figure 14-58. Be sure to check your new emulator settings in the Android Virtual Device Manager home screen

Figure 14-59. Run the Companion Configuration Activity in the Nexus 5 API 21 AVD emulator to check the UI design

449CHAPTER 14: Watch Face Configuration Companion Activity Utility and Wearable API

As you can see on the right-hand side of Figure 14-59, the <LinearLayout> UI design filled
with the nested <LinearLayout> containers with <TextView> and <Spinner> widgets are
rendering correctly and have the <string-array> data in them as expected. The reason
that the defaults haven’t been set via the Java code you have written is because the AVD
emulator can only go so far, and connecting with the Google Play GMS server is not a
current capability of the AVD environment in IntelliJ.

For this reason, I will take the entire next chapter to explain how you test WatchFaces
API-based Android applications on real-world hardware products, like Samsung Gear S or
Sony SmartWatch 3, using real-world network providers (I use T-Mobile) and using a real-world
smartphone (I use T-Mobile’s Samsung Note4). This is getting more and more exciting with
each progressive chapter!

Summary
In this chapter, you learned about the wearable package as well as the Wearable class
in Android, which contains the APIs that are used to communicate across a GMS network.
These include the API, DataAPI, NodeAPI, and WearableAPI, all of which you utilized in the
Java code you wrote during this chapter to implement the final ProWatchFaceUtility.java class.

After creating the utility class and defining the constants, you coded the
putConfigDataItems() method to load the DataItem objects into the DataMap object. You
learned about the PutDataMapRequest class and how to put in a DataMap request, and
then you learned about the Android Wearable class and its four API data fields.

Next, you created a fetchConfigDataMap() method to ask the GMS network for a
DataMapResult. This uses the fetchConfigDataMapCallback() interface that you coded to
set up the ResultCallback and processes it with an onResult() method structure.

Then you created the dataItemResultCallback() method, which utilizes the
fetchDataMapCallback() method and processes a DataItem object to extract a DataMapItem
object used to create a DataMap object inside the onResult() method structure. If the
fetched DataItem is empty (null), an empty DataMap is created.

Next, you created the overwriteKeysInDataMap() method to update existing configuration
DataMap objects. This implements an onConfigDataMapFetched() method, which was
defined as needing to be implemented inside the fetchConfigDataMapCallback() interface
and uses the .putAll() method call to overwrite the keys in the current (or new) DataMap with
the user’s latest configuration preferences.

You then switched gears and opened the ProWatchFaceCompanionConfigActivity
class and added constants to match those used in the ProWatchFaceUtility class. Then
you designed your user interface for the four Spinner widgets, using XML markup, in an
activity_pro_watch_face_config.xml definition file.

450 CHAPTER 14: Watch Face Configuration Companion Activity Utility and Wearable API

Next, you added Java methods that set up the color picker (Spinner) widgets and then
tested the mobile side of the application using the AVD emulator. You looked at some of the
issues that might get in the way of testing the application and how to solve these. You made
sure that your UI design was working, and you are now ready to test on real-world hardware
and a live network.

You will take a closer look at how to test your watch face application on an actual hardware
device in the next chapter, including using the Java Singleton Design Pattern, which is the
last coding step in the watch faces API implementation, before I get into how to set up the
hardware, Gradle build, and running and testing your application.

451

Chapter 15
Wearables Application
Testing: Using Hardware
Devices in Android Studio

Now that you have the majority of the coding and design completed for your watch faces
application, you need to begin testing your application on real-world hardware devices,
which can be a very involved work process.

The first step will be to get the computer, smartphone, and smartwatch hardware
working together, and that is the primary objective of this chapter, to bridge the software
development environment (Android SDK and IntelliJ IDE) with your hardware device(s)
environment. I have already discussed using only a computer (with AVDs), so now I’ll discuss
using the computer and the smartphone with the AVD, and finally I’ll discuss using your
computer with your smartphone and your smartwatch at the same time.

This will involve using your manufacturer’s USB driver software, unless you’re using Google
hardware devices, which are also the devices that are used for the emulator. If your hardware
does not have a USB driver, you’ll learn how to use Google’s USB driver to get your Android
smartwatch device to interface with the computer. You’ll also install the Google Wear App
on your smartphone and learn how to configure it for pairing and debugging.

After that, you will learn about the Android Debug Bridge, or ADB, and how to use that
command-line utility to establish communication ports between your computer and USB
or Bluetooth-connected devices. You’ll then learn how to get the Android Studio IDE to
recognize, and build to, the hardware device using features in IntelliJ and its Gradle Build
System. Let’s get started!

452 CHAPTER 15: Wearables Application Testing: Using Hardware Devices in Android Studio

Interfacing a Device with a Computer: USB Drivers
The first thing you’ll want to do, unless you’re using a Google Nexus device (in which case
you can use the USB Driver, the SDK Manager, installed for you when you installed Android
Studio), is to go to the OEM USB Drivers page on the Android Developer web site, which is
at the following URL:

http://developer.android.com/tools/extras/oem-usb.html

Once you have arrived at the page, right-click the manufacturer driver URL for your Android
device. This will open a context-sensitive menu, seen encircled in red in the top right corner
of Figure 15-1. Select the first context menu option, Open link in new tab, and open your
Android device manufacturer web site in a second tab in your browser (I’m using Google
Chrome browser).

Because I’m currently using a Samsung Galaxy Note 3 running Android 4.4 from T-Mobile,
I will show my Samsung Note 3 work process over the next several screenshots, which
should be similar to your manufacturer’s work process.

Find the support section on your manufacturer’s web site, if the Android link does not
take you there, as it did in my case. Click your device type, in my case, this was labeled
“Cell Phones.” The link I clicked can be seen encircled in red at the bottom left portion of
Figure 15-2.

Figure 15-1. Go to developer.android.com/tools/extras/oem-usb.html and right-click and open the manufacturer’s
web site

http://developer.android.com/tools/extras/oem-usb.html

453CHAPTER 15: Wearables Application Testing: Using Hardware Devices in Android Studio

This should take you to the page where you can find your exact smartphone product, usually
using some sort of search application dialog or possibly using a process of refinement over
a series of pages to find your device.

On the Samsung web site, this is a series of drop-down (spinner) UI control elements
that allow you to refine your search from Genre (mobile, preset), to Hardware Device (Cell
Phones, preset), to Choose the Cell Phone Carrier.

My carrier is the popular T-Mobile service, therefore, I selected T-Mobile for that option,
as is seen in Figure 15-3 on the bottom left. T-Mobile is an excellent network for Android
development and testing as they support a wide variety of Android hardware and feature
modern, lightning-fast 4G LTE and, recently, a wide-band 4G LTE network. T-Mobile now has
4G LTE technology installed everywhere, even here on the Point Conception Peninsula, next
to a famous space technology company (Space-X) and Vandenberg Air Force Base.

Figure 15-2. Find the section of the manufacturer’s web site that matches the type of Android device you’re using

454 CHAPTER 15: Wearables Application Testing: Using Hardware Devices in Android Studio

As you can see in Figure 15-4, once I specified T-Mobile as the carrier, I was then able to
access a fourth drop-down spinner UI element where all of the Samsung phones supported
by T-Mobile are listed. I found the SM-N900T, which stands for Samsung Manufacturing
Note 900 Telephone (I’m guessing).

Notice that there is a W (White) and a K (Black, for those of you who are not familiar with
print, and with the CMYK color model) version. Because the color of the case does not
affect the driver, I could have selected either of these options, but I went with the technically
correct Black version so I could show off an image of my smartphone inside the screenshot
shown in Figure 15-4. As you can see in the right side of Figure 15-4 (don’t let the pretty
hardware device distract you), once you have selected a hardware model number, you will
be provided a “GET DOWNLOADS” (or similar) button. Click the download button and open
your driver software download page.

Figure 15-3. Find your product; on the Samsung web site this was under the Mobile ➤ Cell Phones ➤ T-Mobile Cell
Phones drop-down

Figure 15-4. Find the model number on your device, and find that exact product, and download the USB driver

455CHAPTER 15: Wearables Application Testing: Using Hardware Devices in Android Studio

Look for the DOWNLOAD (.EXE) or similar button on the downloads page and click it to
begin the download process. Once you do, there should be a progress tab at the bottom of
the browser, which is shown at the bottom of Figure 15-5. Once the download is completed,
use the drop-down options menu for the download file and select a Show in folder option,
which will give you the file in a file management utility where you have the most control.

As you can see in Figure 15-6, once you are in the file management utility you can right-click
this downloaded file and again get a context-sensitive menu full of options, one of which
will be a Run as administrator option, which will allow you to run the file using full OS
(read and write) permissions.

Go through the installation process. As you can see in Figure 15-7, I chose US English and
accepted a default C:/Program Files/SAMSUNG/USB Drivers as my installation directory.
I then used an Install button and installed the drivers on my 64-bit Windows 8.1 AMD-64
system, as shown in Figure 15-7.

Figure 15-5. Download USB Driver (top); when the Download finishes, select Show in folder from the drop-down menu

Figure 15-6. Right-click the driver installer executable file and select the Run as Administrator menu option

456 CHAPTER 15: Wearables Application Testing: Using Hardware Devices in Android Studio

It’s important to note that you are not actually installing the USB Driver into your OS
configuration at this point; you are only installing your USB driver software on your hard
drive so that the Computer Management dialog can find it and make it part of your current
OS hardware configuration.

As you can see in Figure 15-8, the way you access this dialog is by right-clicking your
Computer, My Computer, or in the case of Windows 8.1 the icon called This PC. On
the context-sensitive menu, you will find a Manage option that will open the Computer
(Hardware) Management dialog.

The Windows 8.1 Computer Management dialog should more accurately be named the
Computer Hardware Device Manager Utility, since that is what it’s used for. If you feel like
exploring your computer set up, you can click the right-facing arrows in the left pane and
open all of the areas in your System Tools listing. Click the Device Manager entry to show
all of the hardware devices connected to your computer, as shown in Figure 15-9.

This should include the smartphone, which you should have attached to your USB port
using the USB charging cable. I keep mine attached to my computer all the time, so I
always have a full charge. You can see it in the middle pane, it is highlighted and says:
Wallace Jackson (SM-N9), which represents the owner’s name and the first few letters
of the model name. If your smartphone is not attached, plug it in now, and it should be
detected and appear.

Figure 15-7. Progress through the installation configuration dialogs using the Next button; then click the Install button

Figure 15-8. Right-click This PC (Computer) icon; select Manage option, to open Computer Management dialog

457CHAPTER 15: Wearables Application Testing: Using Hardware Devices in Android Studio

Again use a right-click to access a context-sensitive menu and select the Update Driver
Software menu option. This opens your Update Driver Software dialog, as shown in
Figure 15-10. Click Search automatically for updated driver software to make sure you
have the latest version of the USB driver.

Figure 15-9. Select Device Manager in the left pane; find the USB driver; right-click and select Update Driver Software

Figure 15-10. Select Search automatically for the latest driver version to make sure you have the latest driver revision

458 CHAPTER 15: Wearables Application Testing: Using Hardware Devices in Android Studio

Now that you have made sure you have the latest USB driver version, select the other
option, Browse my computer for driver software. Your OS will then find the latest USB driver
software, which you have downloaded, and will start the installation process, which can be
seen in the series of dialogs shown in Figure 15-11. Now your computer can transfer data to
your smartphone, and your smartphone will be visible to IntelliJ IDEA.

Now when you look in your File Explorer (file management) utility, you’ll be able to see an
Android Hardware Device, as shown in Figure 15-12.

Figure 15-11. Browse your computer for the USB driver software and install the USB driver on your operating system

Figure 15-12. Showing my Galaxy Note 3 Smartphone mounted to my PC using the USB driver

459CHAPTER 15: Wearables Application Testing: Using Hardware Devices in Android Studio

Installing Wear API: Linking Smartwatch with Phone
Now that you have set up the Wear development workstation with the correct software, the
next step is to make sure you have Android Wear installed on the mobile devices you are
going to use with your wearable hardware.

This includes the smartphone (or tablet) and smartwatch you are going to be using to
test your various Pro Android Wearables applications. These will include your watch face
application, which you will be testing on real-world hardware devices.

Because your smartwatch has Android 5.0 and Wear already on it, this amounts to installing
these Wear APIs on your smartphone, and then interfacing the smartwatch with your
smartphone. This is what you will be doing in this section of the chapter, so that you have
your mobile hardware set up.

Downloading and Installing Wear API: Google Play Store
The way you will be downloading and installing the Wear API is on the smartphone itself,
through the service provider (in my case, that would be the T-Mobile 4G LTE service).
Find your Google Play Store icon on the smartphone you are going to use to test your
applications and launch the Play Store. In your Google Play Store search bar, type the word
“wear” so you can find Android Wear-related software.

One of the first results that appears will be the Android Wear application itself. The
application will indicate that it is free for you to download. The download section of your
Android devices should look similar to what’s shown in Figure 15-13, with statistics that
reflect current use, of course.

The Android Wear app essentially installs the wearable APIs you have been learning about
onto any end-user’s smartphone, so they can run a Wear application. The Wear application
gives the smartphone the ability to “pair” with any Wear-compatible smartwatch hardware,
by using technologies such as Bluetooth 4.x, NFC, or Wi-Fi, if smartwatch hardware
supports it.

Because the Apple Watch supports Wi-Fi, it won’t be long before Android Wear SmartWatch
products support it. In fact, the Sony SmartWatch 3 already supports it. It’s interesting to
note that the Google app (the main Google app, which includes all things/apps Google) also
wanted to update itself right after I installed Android Wear on my Note 3, so I updated this
app as well.

Figure 15-13. Android Wear after the Install (before Wear is opened)

460 CHAPTER 15: Wearables Application Testing: Using Hardware Devices in Android Studio

Now that you have upgraded your smartphone to work with Android Wear SmartWatches, it
is time to set up the smartwatch itself and pair it with your smartphone so you can get into
setting up IntelliJ to work with these.

Setting Up the Smartwatch: Sony SmartWatch 3
Next I am going to set up my Sony SmartWatch 3, which I just received for use in Wear
development for this book. I plugged in the SW3 as instructed for 30 minutes to charge
it, and then turned it on before pairing it with the Galaxy Note 3, which now has the Wear
application installed on it.

Interestingly, I got the exact same start-up animation as shown in the AVD emulator
(spinning Google colored dots) and then a language menu selector. I selected English
(United States) and then the “Install Android Wear on your phone” notification.

Next, I launched the Android Wear application and got a “Let’s get you set up” screen,
where I tapped the proceed (right arrow in a blue circle) icon so that I could continue with the
smartwatch pairing process.

The next screen has information about the Google Location Service, the Google Fit Service,
as well as an Accept option. Once you select this, you indicate (agree) that you accept the
Privacy Policy and Terms of Service.

The next screen I got was the “Turn on Bluetooth” screen, so I swiped down the top of my
screen and tapped the Bluetooth button, turning that feature on for my Note 3. I selected
(checked) My Device (Wallace Jackson (SM-N9).

This Bluetooth dialog also showed me the SmartWatch 3 804D as an available device. Next
I selected the Scan button, just to make sure everything was set up correctly.

When I went back to the Wear App, I was able to then select a SmartWatch 3 804D option
and got a “Pairing” dialog, giving me a 224433 pairing code.

On my SmartWatch 3, I selected (touched) the check mark UI option, and then got a
downloading screen while the two devices paired themselves together.

This process took quite a while, because I was on the 2G connection at the time. If you have
a 3G or 4G connection, it would proceed much faster. The point is that the update process
goes over the Google Mobile (GMS) Network, so the speed will be predicated upon the
connection speed at the time.

On my smartphone, I got a “Turn on Watch Notifications” screen where I was told to go to
the SmartWatch Notification Settings and select the check box next to Android Wear, so I
tapped this notification, and it took me to the screen where I could put a check mark next to
this option. I then finished this set up by using the Back button at the bottom of that screen.

It’s important to note that the Turn on Watch Notifications is part of the Wear App and not a
part of the SmartWatch UI, so make sure you aren’t looking for it there, because you won’t
find it! (I made this time consuming mistake.)

When I first used the smartwatch after the Wear update (download), it had a series of how-to
screens that matched those seen in the AVD exactly. Let’s get into how to interface all of this
hardware with Android Studio next.

461CHAPTER 15: Wearables Application Testing: Using Hardware Devices in Android Studio

Using ADB: Linking a Smartphone with the AVD
In this section of the chapter, I will explain how to use the IntelliJ AVD emulator as a
smartwatch. You will do this by hooking it up to a smartphone using the USB cable and set it
up so that the AVD acts as your smartwatch.

The primary purpose of the ADB, or Android Debug Bridge, is to provide the real-time
connection of Android Device Hardware. This bridge allows you to make your device
hardware an extension of Android Studio (IntelliJ), which will allow seamless interaction
between a development system, in this case Android Studio, and device hardware for
testing.

This data connection will allow AVD emulators and physical Android devices to “see” each
other using a USB (universal serial bus) port, going in both “directions,” for the purposes of
running and debugging applications.

First, let’s look at how to implement the Hardware ➤ IDEA direction so you can use your
Wear AVD as a smartwatch, and then I’ll get into using the Android Device Hardware instead
of the AVD for testing, which would equate to the IDEA ➤ Hardware direction.

To enable the Android hardware to “see” the USB hardware, you will need to enable
the developer settings option on the smartphone. Once this is done, you will be able to
select the Enable USB Debugging setting, allowing your phone to communicate with your
workstation and, ultimately, with your IDE.

To do this, go into the Apps area of the smartphone (a 16-square grid icon labeled Apps)
and click the Gear Icon labeled “Settings.” Click the General tab at the top and scroll down
to the About option, then click that. In the About section you will find a Build Number entry,
which you will click seven consecutive times. This will unlock an Android developer mode
for the smartphone, and a new Developer Options section will appear under your General
tab. Inside of this section are a plethora of developer options.

Select the USB debugging option to enable debugging (communication with Android
Studio) when the USB connection between your smartphone and your workstation is
detected to be active (in place, or plugged in). Now that you have installed the USB driver
on the computer and enabled the use of USB on your smartphone, all you have left to do
is configure the software on your workstation to manage this connection using something
called ADB.

Next, let’s take a detailed overview of the Android Debug Bridge functionality. This is
important because ADB is a real-time networking (data connectivity) link between the
development workstation Android Studio IDEA and any Android device hardware that
you may want to test your application with to see how it looks and functions. IntelliJ can
access many advanced features of connected hardware, allowing you to benchmark your
application usage of the CPU, system memory, screen real estate, and similar information.

462 CHAPTER 15: Wearables Application Testing: Using Hardware Devices in Android Studio

Android Debug Bridge: Networking Hardware and Software
ADB is a command-line tool that lets you communicate with an AVD emulator instance or
connected Android-powered device. You can find it on your hard disk drive by using your file
manager search feature.

To do this, open your file manager (in Windows 8.1, it is called Explorer), and in the left
pane, click the topmost OS level (This PC, My Computer, Computer, etc.) inside your file
management utility. This will show the search utility what level you want to search (down) from.

Next, enter the adb.exe executable file you’re looking for into the search bar, as shown in
Figure 15-14 on the top right of the screenshot, encased in red. Once you hit the Enter key
on your keyboard to “initiate” your search, the file management utility will search your entire
hard disk drive so you can find the file. More importantly, this will show you a path you will
need to use (next) in order to access and run this ADB file using the Command Prompt utility.
The path (folder address) is seen on the right side of the search result, as shown highlighted
in blue in Figure 15-14.

Figure 15-14. Using a Search Results in This PC feature of the File Explorer with an adb.exe search specification

ADB.exe is a client portion of a client-server architecture that includes three primary
components, including the client that runs on a development machine and a server that
runs as a background process on a development machine. This server will manage all
communication between your client and the ADB daemon, which will either be running
on your emulator, on your device, or both, depending on what you are doing and which
direction you are going in your development (IDEA ➤ Device, or Device ➤ AVD) process.

You can invoke the client from a shell, in the case of Windows this is the DOS Command
Line Utility, which you’ll be using soon. To issue an adb command, you should invoke the
ADB executable and give it a series of switches and commands and, optionally, data input
options, using a command-line prompt.

463CHAPTER 15: Wearables Application Testing: Using Hardware Devices in Android Studio

Other Android tools such as the ADT plug-in or DDMS will also automatically create adb
clients, so that modules like AVDs and hardware can communicate with them as one,
seamless development environment. This is why ADB stands for Android Device Bridge
because it allows you to connect or bridge things into the IDE.

The third component is the ADB daemon, which runs as a background process on each AVD
emulator and is active on each hardware device instance.

You can find the adb tool in the <sdk-install-folder>/platform-tools/ folder, but this is
usually a hidden folder, at least in Windows. As you can see in Figure 15-14, the search
utility found adb.exe in the /AppData/ folder, which is not visible in the folder hierarchy
pane shown on the left side.

It is important to note that if you’re still using Eclipse IDE and have an ADT plug-in installed,
you do not need to use adb directly to install your application on the emulator or device
because the ADT plug-in handles the packaging and installation of the application. However,
Eclipse was discontinued for Android Studio development more than a year ago, so you may
want to switch to IntelliJ IDE version 14 (Android Studio) and Gradle as soon as you can.

Using AVD Inside Android Studio: ADB Port Forwarding
To send data between your smartphone hardware and the AVD emulator, you’ll need to
set up something called ADB port forwarding. This would be done by using the adb -d
forward command-line entry and specifying your TCP port.

Let’s go over the process in detail so you can interface your hardware devices. Launch
Android Studio, access Run ➤ Edit Configurations and specify a Wear Module, the Do
Not Launch Activity option, and the Android Wear Round AVD Emulator, as shown in
Figure 15-15, and click the Apply button and then OK.

464 CHAPTER 15: Wearables Application Testing: Using Hardware Devices in Android Studio

Next, make sure the Enable ADB Integration option is checked in the Tools ➤ Android
submenu, as shown highlighted in Figure 15-16.

Figure 15-15. Set wear Module and Wear_Round Emulator

465CHAPTER 15: Wearables Application Testing: Using Hardware Devices in Android Studio

Next, make sure your smartphone has the Wear App and is connected via the USB to your
workstation, and that the Wear App has been launched on the phone, then click the Play
icon at the top of IntelliJ, or use Run ➤ Run Wear to launch the AVD emulator. You could
also use Run ➤ Debug Wear to launch the emulator in Debug mode. Either approach
should work for the purposes of this example (I tested it both ways and it worked).

Wait until the Wear AVD emulator initializes, showing an Android Wear home screen, and
then you can “pair” the smartphone with the AVD emulator. This is done by forwarding the
AVD communication port to the connected hand-held device, using the following command
sequence:

adb -d forward tcp:5601 tcp:5601

It is important to note that you would perform this step every single time you connect your
smartphone to your workstation with the USB port (or if you turn your workstation off or
unplug your smartphone).

The way that this is done under Windows 8.1 is to right-click the Start menu (looks like
a window pane) and then select the Command Prompt (Admin) option from the context-
sensitive menu, as shown highlighted in Figure 15-17.

This will open the Command Prompt (Windows Shell or Command Line) utility, which is what
you’ll use to run the adb.exe utility and send it switches, commands, and parameters, like
the adb -d forward tcp:5601 tcp:5601 command outlined above. The -d is a switch (d means
device), forward is a command, and the tcp:5601 is a parameter (TCP is a transmission
control protocol or Internet protocol and 5601 is a port location or “address”). There are
two of these TCP port addresses, one for each side (workstation and device) of the network
connection “equation” that is being created in memory by using this ADB device forwarding
command-line sequence.

Figure 15-16. Make sure that Tools ➤ Android ➤ Enable ADB Integration submenu item has been selected

466 CHAPTER 15: Wearables Application Testing: Using Hardware Devices in Android Studio

When your Administrator: Command Prompt window appears, the command prompt will
show the directory where this cmd.exe utility “lives,” so you’ll know where on the computer
hard disk drive you’re “standing.” This will be C:\WINDOWS\system32> as you can see
at the top left, as shown in Figure 15-18. Type in a cd\ command, which means “Change
Directory: Root” and hit Enter. The prompt will now read C:\> and you can use the CD
(or cd) command to change the directory (folder) to your platform-tools folder, which you
located in Figure 15-14. The change directory (cd) command uses a cd command and then
the Users\Default.Default-PC\AppData\Local\Android\sdk\platform-tools path, which
specifies the folder on the hard drive you want to “stand” in.

Figure 15-17. Right-click Start Menu, and select Command Prompt (Admin)

Figure 15-18. Navigate to the platform-tools folder, list attached devices, forward adb port, and list more
attached devices

467CHAPTER 15: Wearables Application Testing: Using Hardware Devices in Android Studio

The prompt now shows that you are in the platform-tools folder and can run the adb.exe file
because it is in the same folder you’re now standing in. You can now list all devices that are
attached to a workstation using an adb devices command-line entry. This outputs a List
of devices attached and as you can see in Figure 15-18, my AVD has not yet launched, so
only my Note 3 is shown.

In my case, the smartphone device is listed as 4d4f4baf, which most likely is a memory
location. I entered a adb -d forward tcp:5601 tcp:5601 command and then once the AVD
had finished loading into memory, I ran the adb devices command again, as you can see in
Figure 15-18 at the bottom, and an AVD is now visible in the attached devices list, specified
as emulator-5554.

The next step is to launch the Android Wear app on your Android device and connect to the
emulator, which can also be difficult because the menu item you need to find is not directly
visible on the Android Wear Settings menu, and the work process isn’t outlined in too many
places on the Internet, so pay close attention to this step in the process! It’s important to
note that the Android Wear App might change the UI design in the future to make this “Pair
with emulator” option easier to locate.

Select the functions menu for Android Wear, this was accessed via the menu button in the
lower left-hand corner of my Note 3 smartphone hardware. This will look like a square icon
with two horizontal bars inside and therefore looks like a drop-down menu. Click it, and a
menu will appear on the screen.

On the top of the menu there’s a “Pair with a new wearable” option. Select this, and there
is a “Choose a Device” screen, which does not list the AVD at all, only paired smartwatch
devices, in my case this was the Sony SmartWatch 3. Once this screen is visible, again click
the hardware menu button, and then you will see the “Pair with emulator” option that you
need to select.

To test the ADB connection and send data to the AVD, again access the Wear functions
menu (on my Note 3, this was using the menu hardware key). Midway down this menu you
will see an option to select the Demo Cards feature.

You can use this feature to test your AVD that is set up as a smartwatch. Simply select some
of the demo cards, and make sure they appear to be transferred for display on your AVD as
notifications on the home screen of the Wear Round AVD emulator. I selected the Sports,
Hotel, and Stocks demo cards to test the workstation to device interface established using
an ADB connection protocol over the USB bus (ports), as shown in Figure 15-19.

468 CHAPTER 15: Wearables Application Testing: Using Hardware Devices in Android Studio

Next, the process will get even more complex, and you’ll attach the smartwatch hardware as
well, so your workstation talks to the smartwatch through your smartphone.

Bluetooth Debugging: Linking to your Smartwatch
The reason I covered how to link from smartphone to AVD first is because those steps will
need to be performed, in this same order, to connect your IDE to hardware devices, going in
the other direction. You will need to be able to send your apps from Android Studio through
the USB cable into your smartphone, and then over to the smartwatch. Let’s go through the
steps to pair a smartwatch to a smartphone and then establish a real-time link from Android
Studio through the USB, to the smartphone to the smartwatch.

It is important to note that you do not need to do all this if you wish to plug both the
smartwatch and smartphone into USB ports on the workstation. Some smartwatches, such
as the MOTO 360, do not permit USB connection, and because all smartwatches have
Bluetooth Debugging, I’m going to show the more complex way to get everything working
without a smartwatch USB connection.

Smartwatch Set Up: Pair and Enable Bluetooth Debugging
The three primary steps you need to do is pairing the smartwatch with your smartphone,
enabling Bluetooth Debugging for the smartwatch, and then enabling Bluetooth Debugging
on your smartphone. The first is done via the Wear App on your smartphone, the second is
done on the smartwatch, and the third is done on the smartphone. After all of that is done,
you will use an ADB forward and connect the command sequence to make everything visible
to the ADB daemon.

Figure 15-19. Testing the smartphone to AVD (through Android Studio, on the workstation) ADB connection link

469CHAPTER 15: Wearables Application Testing: Using Hardware Devices in Android Studio

Start the Wear App on your smartphone and make sure it is paired with your smartwatch,
or use the Pair with a new wearable on the Wear functions menu, which you used in the
previous section. The first time you do the pairing, the Android Wear companion app will
suggest you take a short tutorial that introduces the Wearable UI and its basic functions.
After that you will be able to access a standard Wear UI, where you can select watch faces,
enable voice actions, and browse suggested Wear apps in the Google Play Store.

The next step is to enable Bluetooth debugging for your smartwatch device. All wearable
devices will disable USB debugging as a default setting, thus you will have to manually
enable it on the smartwatch. An option to enable Bluetooth Debugging will be hidden
just like it is on the smartphone. This is so “normal” end users do not accidentally enable
debugging modes.

You will need to open Settings, select About, and then click Build Number, seven times in
a row. This new Settings menu then includes the Developer options, where you can enable
debugging over Bluetooth. On my SmartWatch 3 (Sony), the Debugging over Bluetooth
option was grayed out (disabled) until I selected the ADB Debugging option first. So for each
smartwatch hardware device, the sequence needed to turn on the Debugging over Bluetooth
may be different.

The next step is to return to your smartphone device where you can start a “Device
Debugging Session.” This is done by again opening the Android Wear application and going
to the Wear Settings (Gear) Icon in the upper right-hand corner of the application.

Tap the Settings icon to open the Settings menu, scroll to the bottom, and find the
Debugging over Bluetooth option and place a check mark next to it to enable this feature
(function).

Underneath the Debugging over Bluetooth feature title there should be some smaller font
text, which indicates that the Host (your workstation running ADB connecting to Android
Studio) is disconnected, and that a Target (your smartwatch) is connected.

The next step involves using the Command Prompt utility to access your ADB daemon
and configure it to see the smartwatch using a Bluetooth link. This is done by entering two
commands, the forward, and then a connect, via the DOS Command Prompt. The first adb
forward command should look like this:

adb forward tcp:4444 localabstract:/adb-hub

The second adb connect command is simpler and should look like this:

adb connect localhost:4444

As you can see in Figure 15-20, I still had the AVD emulator running so I got an error.

470 CHAPTER 15: Wearables Application Testing: Using Hardware Devices in Android Studio

Once this is successful, you will get an “Allow USB Debugging?” message on your Wear
app, along with a This Computer’s RSA encryption key fingerprint is: <key string here>
message. Hit the OK button to complete this set up. There’s also an “Always allow from this
computer” option, which I selected.

After you do this, the smaller font text under the Debugging over Bluetooth option in Wear
application Settings will change to display the following:

Host: connected
Target: connected

Now that you have “wired” everything together, you should be able to access both your
smartphone and your smartwatch from your workstation. You’re now set up to test the
Watch Faces API classes and functionality you have built thus far during this book.

Before you get into testing and debugging in Android Studio, I would like to cover
one additional topic, the Java Singleton Design Pattern. You’ll add one last private
constructor method to the ProWatchFaceUtility.java class, and then you’ll be ready to test
and debug your new application.

Java Singleton: ProWatchFaceUtility() Constructor
In Java software development, a singleton pattern is a design pattern that restricts an
instantiation of a class to one single object. This is useful when exactly one object is needed
to coordinate actions across the system, as in your ProWatchFaceUtility class. This concept
is often generalized to scenarios that operate more efficiently when only one object exists,
such as Wear (wear or smartwatch-side) components that have limited resources.

Figure 15-20. Invoke adb forward and adb connect commands, to connect the smartwatch

471CHAPTER 15: Wearables Application Testing: Using Hardware Devices in Android Studio

The first step in doing this is to create your class’s default constructor method as private.
This will prevent a direct instantiation of this object by other classes. Add the empty private
ProWatchFaceUtility(){ } constructor method at the end of your ProWatchFaceUtility.java
class, as shown highlighted at the bottom of Figure 15-21.

Figure 15-22. Use ProWatchFaceUtility.overwriteKeysInConfigDataMap() for static access (ProWatchFaceUtility)

Figure 15-21. Add a private ProWatchFaceUtility() constructor method at end of your ProWatchFaceUtility class

This makes this private method a class-level method, which means that your
ProWatchFaceUtility can be accessed statically without creating an object. As you might
well imagine, this is a memory and CPU optimization technique.

In fact, you will see this IntelliJ suggestion Add on demand static import for ‘com.pro.
android.wearable.proandroidwearables.ProWatchFaceUtility’ via a yellow lightbulb on
the left side of the IDEA, as shown in Figure 15-22.

472 CHAPTER 15: Wearables Application Testing: Using Hardware Devices in Android Studio

By using the singleton pattern here, you will now be able to access methods in your
ProWatchFaceUtility class (as you have in your onMessageReceived() method structure
inside your ProWatchFaceConfigListenerService.java class) using the ProWatchFaceUtility.
overwriteKeysInConfigDataMap() methodology, no pun intended, as can be seen highlighted
at the bottom of Figure 15-22.

Next, let’s get into testing and debugging your Watch Faces Apps!

Testing and Debugging: Creating Your .APK Files
In order to test, and if necessary, debug your wear application inside Android Studio using
external hardware devices, you need to generate .APK files. You can also test these debug
and release “builds” using your AVDs.

You use the debug build version to test your attached hardware devices, using AVD
emulators, and you use a release build version to distribute your application in the Google
Play Store once you “sign” (serialize) it.

The Android Studio Build System: An Overview
Android Studio’s build system is built on top of the advanced Gradle build system, as
previously discussed. It is an integrated toolkit you will utilize to build, test, run, and
ultimately package (publish) an app.

The Gradle build system can run as an integrated toolkit using the Android Studio menuing
system, as well as independently from the command line. You can use features of this build
system to configure, customize, and extend this Gradle build process to suit your specific
application development needs.

It’s possible to create multiple APK versions for your app using different features
inside the same project and its modules. You will reuse both code assets and resources,
across different application source “sets.” The flexibility of Android’s Gradle build system
enables developers to achieve all these optimization perks without modifying core source
files for apps.

The Android build process involves many tools and processes that generate a significant
number of “intermediate” files, like .java, .class, .dex, and .apk, along the way to produce
a signed, memory optimized .apk that you can put in the Google Play Store. If you are
developing apps using Android Studio, a complete build process will be undertaken every
time you run the Gradle build task for a project and its modules. It’s useful to understand
what’s happening during various stages in the process, because much of the build process
is configurable and is even extensible.

For this reason, I’ll present a detailed look at various components involved in the Gradle
build system, and then I’ll explain how to create builds in your Android Studio projects,
which is a fairly involved work process.

473CHAPTER 15: Wearables Application Testing: Using Hardware Devices in Android Studio

Components of a Build System: AAPT, AIDL, DEX, CLASS, and APK
The way that a Gradle build process works is that an APPT (Android Asset Packaging Tool) will
collect all of your application’s resource files, such as XML files, that are needed for UI design,
the application manifest, and new media assets. AAPT compiles all of these nonprogramming-
logic assets and produces the R.java module that you will reference in your Java code as R.,
which is really a dot notation path through this R.java file to the asset, as in the following code:

watchFaceDrawable=watchFaceResources.getDrawable(R.drawable.prowatchfacelow);
//ProWatchFaceService

This will access the prowatchfacelow.png PNG BitmapDrawable asset from the proper
resolution density folder (/res/drawable-hdpi) in your project /res resource folder, where
your R.java resources are organized for the AAPT to compile into a format that can be used
at runtime.

The AIDL (Android Interface Definition Language) tool converts your .aidl interfaces, which
are used to implement IPC (inter-process communication) into Java interfaces. IPC is not
commonly used in Wear applications and is not within the scope of this book, but if you need
to utilize it, you will be able to get more information at the following developer web site URL:

http://developer.android.com/guide/components/aidl.html

As you can see in the hierarchy shown in Figure 15-23, all custom Java code, including the
R.java generated by AAPT and AIDL generated .aidl files, are compiled by a Java compiler
to create intermediate .class files, which you have also referenced in your AndroidManifest.
XML application definition.

Figure 15-23. The Android Build Process, from the AAPT down to .java, to .class, to .dex, to .apk, to signed APK

http://developer.android.com/guide/components/aidl.html

474 CHAPTER 15: Wearables Application Testing: Using Hardware Devices in Android Studio

The next step in the build process is the conversion of the Java bytecode in the .class file
into an optimized .dex file format, using the Dalvik VM tool. All third-party libraries and .class
files that you’ve included in the project module build will also be converted into .dex files.
This is so that these can be packaged into the final .apk file.

All noncompiled resources, which are generally placed into your project’s /res/raw folder,
as well as all compiled resources (R.java) and your .dex files are then sent to the apkbuilder
tool to be packaged into your APK.

Once your .apk is built, it must be signed, using either a debug or release key, before it
can be installed on an Android hardware device for testing (debug) or usage (release). I’ll be
covering the release portion of the equation in the next chapter, where I’ll explain the last row
(step) in a Gradle build process, as shown in Figure 15-23.

Just to finish explaining the build process, if your application was being signed in a release
mode, you must align the .apk using the zipalign tool. In case you are wondering, aligning
your final .apk will decrease memory usage when your application is run on an Android
hardware device.

Android Application Java Code Limitation: 64 Kilobytes of Methods
Android applications have a code limit of 64 kilobytes allocated to method references—64 KB
represents 65,536 characters of code. If your app reaches this limit, the Gradle build
process will not get past the .dex conversion.

As the Android API libraries, which developers can pull on to create apps, have ballooned
in size, so too has the resulting size of Android apps created using these Java classes
or methods. When applications and the libraries they reference reach a certain size, you
will encounter build errors that indicate the app has reached the 64 KB Android app build
limitation.

Early versions of the Android 4 build system report this error as follows:

Conversion to Dalvik format failed:
Unable to execute dex: method ID not in [0, 0xffff]: 65536

The recent versions of the Android 5 (Android Studio) Gradle build system may display a
different error, which is an indication of the same problem:

Trouble writing output:
Too many field references: 128000; max is 65536.
You may try using --multi-dex option.

Both error conditions display the decimal equivalent for 64 KB: 65,536. This number
represents the total number of references that can be invoked by your Java code inside a
single Dalvik Executable (DEX) bytecode file. If you build Android Wear applications that
“throw” this error, you probably have a plethora of Java code and may want to look at code
optimization.

There’s a way to get around this limitation, which is what this section of the chapter explains.
I included this in case your apps need to be complex. Android Application Packages (or
APK) files contain executable bytecode files. These will take the form of Dalvik Executable
(DEX) files, which contain the Dalvik VM optimized Java bytecode needed to run the app.

475CHAPTER 15: Wearables Application Testing: Using Hardware Devices in Android Studio

The current Dalvik Executable optimization specification limits the total number of methods
that can be referenced in a single .dex file to 65,536. This is an even “Power of 2” memory
boundary and can include your Android API framework methods, library methods, and
custom methods that you create for your application’s functionality.

It’s possible to go past this 64 KB limit by “chaining” .dex files together. This requires you to
configure your application’s Gradle build process to generate more than one .dex file. This is
commonly referred to in Android as the multidex application distribution configuration.

Android platform versions prior to Android 5 use the Dalvik VM runtime for executing
app code, whereas version 5 and later using the ART (Android Run Time) customized for
Android. The Dalvik VM limits apps to one classes.dex bytecode file in each .apk file. To get
around the limitation, you can use the multidex support library. This library will become
part of the primary .dex file of your app and will then manage access to your additional .dex
files, effectively chaining over to the bytecode they contain.

Android 5 and later uses the Android runtime (ART), which natively supports loading multiple
.dex files, using a single .apk file. This is because ART does its precompilation at the time
that users install their application, so ART can therefore scan for multiple classes.dex files
and compile them into a single .oat file for execution by the Android device. An .oat file
stores native C++ code for an application designed for the new Android RunTime (ART) that
is available in Android 4.4 and higher.

Before you configure an app to use more than 65,536 method references, you should try
to optimize the total number of references called by the app’s Java code. This includes
methods defined in the application’s Java code or more likely by reducing the number of API
library package imports.

To accomplish this, optimize your app’s direct and transitive dependencies by ensuring any
large libraries you include in your app are used in a fashion that outweighs the amount of
code being added to your application.

A mistake developers sometimes make is to include large libraries when a few utility
methods are seldom used. Reducing your Java code dependencies can usually accomplish
avoiding this 64 KB .dex method reference limitation.

You can also remove unused code using ProGuard. To do this, configure your ProGuard
settings for an app to run ProGuard and ensure that you have shrinking enabled for your
APK release Gradle builds. Enabling shrinking will ensure that you are not including any
unused Java classes or methods with an APK.

Using these optimization techniques may help avoid the build configuration changes
required to allow more method references in your app. Optimization can also decrease the
size of an APK. This could be particularly important for those markets where bandwidth
costs are high, making the running of your apps less expensive!

Configuring Gradle Builds: Creating Different APK Types
The Gradle build will generate a specific .apk file for each build variant in your app/build
folder. Generally this will be a debug variant, used for your testing work process, and a
release variant, used for publishing your app to the Google Play Store for distribution.

476 CHAPTER 15: Wearables Application Testing: Using Hardware Devices in Android Studio

You could create any other “flavors” of your application that you need for your Wear
application publishing endeavors. For instance, you could create a “limited feature demo”
version in a /src/demo folder and instruct Gradle to create a ProWatchFace-demo-
release.apk file for you, using the contents of that folder.

The APK files generated into the app/build/outputs/apk/ directory will contain packages
named using the following APK file naming convention:

<application name>-<flavor>-<buildtype>.apk

As an example, ProWatchFace-full-release.apk would be your release APK, or the
ProWatchFace-full-debug.apk would be the debug version for your full watch face
application demo version.

Next, let’s check to make sure you have the latest version of Android Studio before I get
into at the discussion of ProGuard and the Gradle build system. After you do this, you can
actually use Android Studio to generate a build, and you can start looking at the process of
building and testing your Watch Face app.

Launch Android Studio and use the Help ➤ Check for Updates menu sequence to make
sure there are no new Android components that have been released. Hopefully, you will get
the “You already have the latest version of Android Studio installed” dialog, as shown in
Figure 15-24, along with the Help ➤ Check for Updates menu sequence. If needed, update
Android Studio before proceeding here!

Next, let’s take a closer look at your Gradle build configuration file for your mobile module
(component) and learn about some of the other sections (besides the Android and
dependencies sections, which I’ve already covered in some detail) inside your build.gradle file.

Configuring Gradle Build: Anatomy of a build.gradle Configuration
First, let’s take an in-depth look at the gradle.build file for the mobile module of the
application. Open the Gradle Scripts section of your app and right-click the build.gradle
(Module: mobile) and select Jump to Source (or press the F4 function key) to open this
Gradle script in an editing tab, as shown in Figure 15-25.

Figure 15-24. Before starting the build, debug and testing phase, always use the IDE’s Check for Update feature

477CHAPTER 15: Wearables Application Testing: Using Hardware Devices in Android Studio

If you get a yellow “Gradle files have changed” message at the top of your build.gradle
editing pane, click the Sync Now link option at the right. This will sync your project, which
you always need to do before you build.

The first apply plug-in statement allows an android {} section of the build configuration to
reference the com.android.application definition on Google’s Android Maven repository. This
allows the android {…} section of the file to exist (that is, to have meaning) and therefore to
be parsed correctly.

The android section defines your versioning and package naming conventions, as you
already know, and your dependencies section references external API libraries, which
Gradle will need to pull into your application compilation process. Notice there is a wearApp
project entry, which connects the wear module of your application, as well as a compile
fileTree entry, which will include any third-party JAR files (i.e., physics or 3D render libraries)
that you might place in the /ExternalJarFiles directory of your project.

At build time, the buildTypes{} section is what is of primary concern. The buildTypes{}
section in Figure 15-25 shows the nested release{} subsection of the buildTypes{} section. In
case you are wondering which coding format build.gradle files are using, it is a programming
language called Groovy.

Figure 15-25. Open the mobile module build.gradle file and use the Sync Now feature to make sure it’s up to date

478 CHAPTER 15: Wearables Application Testing: Using Hardware Devices in Android Studio

You may be wondering why there is no debug{} subsection, since there are two primary build
types that are always generated. This is because debug build specifications are generated
automatically (as defaults) without having to have an explicit build configuration specification
implemented. That said, you can use a debug{} subsection if you like.

For instance, you could add the applicationIdSuffix of “.debug” to further identify your
debug file version, if you wish, using the following Groovy code:

debug {
 applicationIdSuffix ".debug"
 }

The release{} section of your buildTypes{} section will optimize your .APK file release
version, using the ProGuard utility and minification flag, by using the following Groovy code,
which does not use a semicolon character to terminate its statements! This can be seen
highlighted in Figure 15-25:

buildTypes {
 release {
 minifyEnabled false
 proguardFiles getDefaultProguardFile('proguard-android.txt'), 'proguard-rules.pro'
 }
}

Next, let’s take a look at the ProGuard utility and the minification flag in detail, so you know
exactly what they are and why they should be utilized for your release APK file builds.

Using ProGuard: Compacting, Optimizing, and Obfuscating Code
The ProGuard tool optimizes your code, making it more compact, and it also makes the
code harder to reverse engineer, a process called “obfuscation.” It accomplishes this by
removing unused code and renaming classes, fields, and methods with obscure names,
making code difficult to reverse engineer.

The result is a more compact release .apk file, which is more difficult to reverse engineer.
Because ProGuard makes your applications harder to reverse engineer, it is important that you
implement ProGuard when the application utilizes features that are sensitive to security, for
instance when you’re licensing an application or when it contains proprietary or valuable IP.

ProGuard is integrated into the Android build system, as shown in Figure 15-25, so you
do not have to manually code the call to implement it, using Groovy. ProGuard should be
invoked only when you build your application in the release mode. This is so you don’t have
to debug using obfuscated code when you build your application using debug mode, which
would be confusing to say the least!

Running the ProGuard process is optional, however, it’s highly recommended. To turn
on ProGuard, set the minifyEnabled flag equal to a true value, and to disable (turn off)
ProGuard, set the minifyEnabled flag equal to false. This minifyEnabled property is part of
the buildTypes{} section inside the release{} subsection, which controls the settings applied
to your release build. Set the minifyEnabled property to true to enable ProGuard when you
are ready to have your Java code compacted (compressed) and obfuscated.

479CHAPTER 15: Wearables Application Testing: Using Hardware Devices in Android Studio

It’s important to note that even though Android wants you to use ProGuard, which is why
these two Groovy statements are installed for you by Android Studio, Android stops one
step short of implementing it for you by setting minifyEnabled to a false value, which turns
ProGuard off initially.

The getDefaultProguardFile() method sets a ‘proguard-android.txt’ ProGuard configuration
definition, which is shown highlighted in Figure 15-25. This is your default ProGuard
configuration setting, and this file can be found in the Android <SDK>/tools/proguard/ folder.

There is also a proguard-android-optimize.txt file, which is also available in the Android
<SDK>/tools/proguard/ folder. The file implements identical rules, but it also enables
“bytecode-level” optimization. These optimizations will perform additional optimization
analysis at the Java bytecode level. This is done both inside and across methods to help
make your app smaller and run faster when it’s run as Java bytecode by the Android
RunTime (ART) engine.

Finally, also note in the highlighted line of Groovy code in Figure 15-25, Android Studio
uses a comma at the end of the proguardFiles entry and adds the ‘proguard-rules.pro’ file
reference at the root of this module. This is so you can easily add your own, customized,
ProGuard rules if you need to, which should be specific to the release module, that you
would add into this file so they will be sure to take effect.

Next, let’s take a look at your build.gradle (Module: wear) and make sure it does not need
to be synchronized before you build your app.

Right-click the build.gradle (Module: mobile) and select Jump to Source (or press the F4
function key) to open this Gradle script in an editing tab, as shown in Figure 15-26. If you get
the yellow “Gradle files have changed” message at the top of your build.gradle editing pane,
click Sync Now.

Figure 15-26. Open the build.gradle file for the wear module and use the Sync Now link to synchronize to your project

480 CHAPTER 15: Wearables Application Testing: Using Hardware Devices in Android Studio

Now it’s time to look at the Gradle build process and create the debug APK, so you can start
the long testing, debugging, and publishing process, which will span the rest of this chapter
as well as the next one.

Building Your Project: Using the Gradle Build Engine
Although you can test project components internally using an AVD emulator, in order to
really test your project components at the next level requires that you “build” them into an
Android Package, or .APK for short, file format. This format can also be tested using an AVD.
More importantly, it can be tested on real-world hardware, usually at the end of the app
development process.

Running the Make Project Utility: Using the Gradle Build Console
Open your project in Android Studio and use the Build ➤ Make Project menu sequence
and invoke the Gradle build process, as shown in Figure 15-27.

Figure 15-27. Use Build ➤ Make Project to create Android Package APK files for the ProAndroidWearable project

As you can see in the menu shown in Figure 15-27, you could just build the mobile module,
but because this is a Wear book, you will build the project, which will build both the mobile
(phone) and wear (smartwatch) components.

To see what Gradle is doing inside the build process for the mobile and wear sections of
your project, click the Gradle Console tab, located at the bottom right corner of Android
Studio. As you can see in Figure 15-28, I had to use two screens (in one figure) to show the
24 mobile build steps and 24 wear build steps resulting in a successful APK build in
29 seconds.

481CHAPTER 15: Wearables Application Testing: Using Hardware Devices in Android Studio

Now that you have built your project, the next step is running the project modules to see
how they work, via USB connected, Android hardware devices.

Running Your APK: Using a USB Device Target Device Setting
When you run a module as an Android Application (APK), Android Studio will automatically
create your run configuration. The default run configuration will launch the default project
Activity and use Automatic Target Mode for device selection. Automatic Target Device
Mode will have the Emulator selected with none of the (preferred) AVDs selected (empty
drop-down menu area).

A Manual Target Device Mode is what you have been using thus far during this book,
where you selected Nexus or Wear AVDs that you want to launch. Now you are going to
select the USB device option for the Target Device section of the General tab in your
Run/Debug Configurations dialog, as shown in Figure 15-29 (left side is the mobile
module, right side is wear module).

Figure 15-28. Click the Gradle Console tab at the bottom right and review the build tasks being done by Gradle

482 CHAPTER 15: Wearables Application Testing: Using Hardware Devices in Android Studio

I had to reestablish the hardware interface over USB, so I included my DOS Command
Prompt window in Figure 15-30 to show you how I used adb devices to see if there is a
device connected, and how once I got the device visible, I used the forward and connect
commands to access the smartphone and smartwatch.

Figure 15-30. Use ADB commands to set up the USB smartphone connection and smartwatch Bluetooth

Figure 15-29. Use the Run/Debug Configuration dialog to set the mobile and wear modules to use a USB device

483CHAPTER 15: Wearables Application Testing: Using Hardware Devices in Android Studio

After this was set up, I used the Run Project (not Run wear) to run both a mobile module
and wear module so I could test them together. I got the Allow Google to Check Device
for Viruses and Wear Not Connected messages on my device, even though the Wear
application was running. I got a couple of errors and warnings in the LogCat pane, as shown
in Figure 15-31.

I addressed the error messages in red first, using Google search, to see if any other
developers were getting this sendUserActionEvent() mView == null error message. Turns
out this is an issue with Samsung hardware, and because I am using the Galaxy Note 3
currently, I ruled this out as a bug that I’ll need to look for a solution for in my code base.

I wanted to address the other warning that there is no sepolicy file to find out what a
sepolicy file was, so I did a Google search on that as well and found that this error was
related to running more than one build session and had nothing to do with the watch face
not coming up on the smartwatch.

The next thing to try in this situation would be to connect the smartwatch via USB cable
directly so that both smartphone and smartwatch are directly connected and Bluetooth
debugging (which is slower and may be the problem) can be turned off, taking a layer of
complexity out of the equation. It is important to note that smartwatches without a USB
port such as the MOTO360 must use Bluetooth debugging, which is why I have covered it
in detail.

Hardwired USB Connection: Setting Up a Smartwatch USB Driver
Because I could not find a dedicated Sony SmartWatch 3 USB driver, this will be a great
opportunity to show you how to use the Google USB driver, which you installed using the
Android SDK Manager, to accomplish the connection.

Figure 15-31. Devices and LogCat panes will open up next to the Gradle Console showing warnings and errors

484 CHAPTER 15: Wearables Application Testing: Using Hardware Devices in Android Studio

Because you have installed the Google USB driver, the only thing you’ll need to do is to
locate it in your AppData/Local/Android/sdk folder. It is not in the /platform-tools folder,
instead it is in a different directory, called /extras/google/usb_driver and is named
android_winusb.

Perform the same steps you did earlier for the smartphone USB driver, which can be seen in
Figures 15-8 through 15-10, except this time, specify the Google USB driver for Windows,
which you just located. It is important to note that if you’re using Linux or Macintosh, you
don’t have to install any USB driver.

Now the ADB command sequence becomes easier as you do not have to use that adb
forward and adb connect Bluetooth sequence; you would only use the adb devices
command to see that the hardware devices are connected. You do not need the adb -d
forward tcp:5601 tcp:5601 command enabling port forwarding through the smartphone to
the smartwatch either.

As you can see in Figure 15-32, the new ADB command line sequence is quite a bit shorter,
because you do not have to set up a Bluetooth port and then connect to it.

When you go into Android Studio and look in the Android pane next to the Gradle Console
pane, you will see that there are now two hardware devices, as shown in the drop-down
menu that is highlighted on the left side of the screen in Figure 15-33.

Figure 15-32. The ADB command-line sequence is much shorter when both hardware devices connect via USB

485CHAPTER 15: Wearables Application Testing: Using Hardware Devices in Android Studio

Figure 15-33. In the Android tab, at the bottom of IntelliJ, you will find both hardware devices on the drop-down menu

Figure 15-34. When you select Run ➤ wear or Run ➤ mobile, you’ll get a Choose Device dialog with the
hardware listed

When you use the Run ➤ Project, Run ➤ Wear, or Run ➤ Mobile sequence, the Choose
Device dialog, as shown in Figure 15-34, will pop up so that you can select the hardware
device you want that build to be pushed onto.

However, whereas my companion app was launching just fine on a smartphone, my watch
face component was not showing up on the smartwatch. On a whim, I checked for updates
and learned that Android 5.2 had just been released.

The 5.2 release proved to be a major one and made significant API changes. This affected
the ProWatchFaceService class and the methods I am using. So I decided to end this
chapter here and add another chapter on how to deal with these major OS update changes,
so you can see the entire process in case it happens to you, which it invariably will, as
Android is a “moving target.”

486 CHAPTER 15: Wearables Application Testing: Using Hardware Devices in Android Studio

Summary
In this chapter, you learned how to get your computer, smartphone, and smartwatch
hardware working together, to bridge a software development environment (Android Studio)
with your hardware device(s) environment.

This involved getting a manufacturer USB driver software and learning how to use Google’s
USB driver if you needed to get your Android smartwatch device to interface with the
computer.

You learned how to make sure a Google Wear App is installed on your phone and how to
configure it for pairing and debugging purposes.

You learned about the Android Debug Bridge (ADB) command-line utility and how to
access it using a DOS command prompt to establish communication ports between your
computer, a USB, or Bluetooth-connected devices. Then you got into using the Android
Studio IDE to recognize and build to your hardware devices, using the various panes and
dialog features in IntelliJ and its Gradle build system.

In the next chapter, you will upgrade to Android 5.2 and take a deprecated method call out
of your BitmapDrawable code, and learn how developing in Android can be a moving target
and how best to deal with this!

487

Chapter 16
Wear API Deprecation:
Updating Apps to Use New
Classes or Methods

In Chapter 15, you set up the hardware devices so that they could talk with Android Studio by
using the Android Debug Bridge. Then you attempted to get the wear component to show up
on a smartwatch so you could test the configuration companion activity. One of the things I
tried in my work process was to check for updates to Android Studio and Android SDK.

There had been a major OS update, Android Studio 1.2 (Android 5.2), made available!
So I decided to make the process for this update and the deprecated code update part
of its own chapter. This chapter will cover the process of updating this project’s wear
component, which thus far has not run as expected on the smartwatch device hardware.
I will cover this entire process, spanning from dealing with an unexpected major SDK
upgrade to recoding any deprecated classes or methods. In this case, these will involve the
ProWatchFaceService.java class.

Therefore, during this chapter, you will learn more about the Calendar and
GregorianCalendar classes, which will be used to replace the use of the Time class,
which was deprecated in Android 5.2. You will also implement a different version of the
.getDrawable() method, as one of the two versions of this method call was deprecated in
this Android 5.2 API (SDK) upgrade.

As I was finishing up the code upgrades, an Android Studio 1.2.1.1 upgrade was also
released, which created some problems with the integration of the Gradle build system with
IntelliJ (Android Studio). So I’ll explain more about Gradle and IntelliJ to help you learn how
to solve this problem.

http://dx.doi.org/10.1007/9781430265504_15

488 CHAPTER 16: Wear API Deprecation: Updating Apps to Use New Classes or Methods

Dealing with the Unexpected Update: Android 5.2
When I checked for updates, I got the series of dialogs, as shown in Figure 16-1. I then
proceeded around dialogs shown in Figure 16-1 to update Android. I clicked the Update
and Restart button, I got the Downloading Patch File and the Update progress bar
dialogs, and finally, I selected the I want to import my settings from a previous version
radio button, and the OK button to finish the process. A couple of weeks later, 1.2.1 came
out, and then 1.2.2 a week after that, so I had to do it all over again!

Figure 16-1. Dialogs for updates, showing a major 71MB update was available to update to Android Studio 1.2

Figure 16-2. This installation autoselected 28 SDK packages, libraries, and system images, to install or update

As you can see in Figure 16-2, this update is a major one, with 28 API SDK packages to
install. I clicked the Install 28 packages button and updated.

489CHAPTER 16: Wear API Deprecation: Updating Apps to Use New Classes or Methods

An Android SDK Manager Log shows the download and installation of revision 24.1.2 of
Android SDK Tools and revision 22 of Android SDK platform tools, which as you now know
includes the ADB server and utility. The install can stop the ADB server if it is running, which
it did, and then the installer tried to rename the current /platform-tools folder in order to
back it up. This failed because I had a command prompt open, so the installer stopped and
generated an error message, which is shown in red in Figure 16-3.

Figure 16-3. I had to close the command prompt utility for install to continue

Figure 16-4. Select the latest Android SDK Build-tools; update the Intel x86 emulator to see if it will work on AMD

Once I closed the command prompt, the install finished, as shown in Figure 16-4.

490 CHAPTER 16: Wear API Deprecation: Updating Apps to Use New Classes or Methods

As you can see, the latest version of Android Build Tools (22.0.1) was not selected for
installation. I selected this as well, as I’m trying to solve this problem of the watch face
(wear) side of my project not showing up on the smartwatch, and the solution might be in
this new Build Tools 22 code.

I also selected the update to the Intel x86 Emulator Accelerator (HAXM) to see if any support
for the AMD64 line of processors had been added. Next I clicked an Install 2 packages
button and installed these packages that didn’t get installed on the first OS platform update,
which you will often have to do in order to get everything you need installed in your IDE.

Now that I have updated to the next major version of Android (5.2), it is time to look at the
ProWatchFaceService.java file (class) to see if there is anything in the code that may be
preventing the watch face (wear) side of the application from running on the smartwatch
device hardware.

Dealing with Deprecation: .getDrawable() and Time
As you can see in Figure 16-5, there are now highlights in your code that weren’t there prior
to the latest version update. Deprecated code is lined out (this uses the strike-thru font),
which can be somewhat unnerving, but it visually informs developers that the code they are
using is no longer supported by the Android 5.x platform, which is what deprecated means.
You can mouse-over the highlighted (and lined-out) code and you will get a pop-up note,
which will tell you that this .getDrawable(int) method call is deprecated. This means you
need to go to the developer’s web site and review the API.

Figure 16-5. Open the ProWatchFaceService class, which is not working on the smartwatch, to review the code

You can see the color-highlighted note in the Gradle Console, shown at the bottom of
Figure 16-5, that advises you that if you want to use deprecated code, you need to use the
compile switch called -Xlint:deprecation. I want to use 100% clean (bug-free and current)
code for this book, so I am going to take the more difficult path here and rework the
Java code.

491CHAPTER 16: Wear API Deprecation: Updating Apps to Use New Classes or Methods

There are two major deprecations in Android 5.2 (Android Studio 1.2) that affect the code
you have been writing. One is the Time class and the other is the .getDrawable(int) method.
In this section of the chapter, I’ll discuss the classes and methods that can be used instead
of the deprecated classes and methods you have been using. It’s important to note that you
could still use the code you’ve added earlier in the book, however, over time deprecated
code will eventually become discontinued code, so it is best to deal with upgrading
(replacing) deprecated Java statements right away!

Android’s Resources Class: Two .getDrawable() Methods
I have already explained the Android Resources class, so I won’t revisit that material here.
I will just cover what applies to the necessary Java code upgrade, which will get rid of your
strike-thru (lined out) code in IntelliJ (Android Studio 1.2).

In order to upgrade the deprecated .getDrawable(int) method call, you will need to look at
Android’s Resources class on the developer’s web site. You need to do this to ascertain
whether there are other versions of these .getDrawable() method calls that will allow you
to retrieve the background image Drawable assets from the /res/drawable-hdpi/ folder. The
Resources class technical information page can be found at the following URL:

http://developer.android.com/reference/android/content/res/Resources.html

Notice there are two .getDrawable() methods listed in the Resources class, and one is now
deprecated, so you’ll have to use the newer one, which is what is suggested in the online
documentation. The technical information regarding these .getDrawable() method structures
online should look like this:

Drawable getDrawable(int id)
This method was deprecated in API level 22. Use getDrawable(int, Theme) instead.

Drawable getDrawable(int id, Resources.Theme theme)
Return Drawable object associated with a particular resource ID and styled for the specified
theme.

Therefore, your solution to this Android 5.2 upgrade deprecation is to use a different version
of .getDrawable(), which uses a Resources.Theme object named theme. If you want
to keep using your currently specified Theme, use a null value. Let’s take a look at the
Resources.Theme nested class next.

The Resources.Theme Nested Class: Theme Attributes
The Resources class has a nested public final Resources.Theme class, which extends the
java.lang.Object master class and has the following hierarchy:

java.lang.Object
 > android.content.res.Resources.Theme

This nested helper class was created to hold your current attribute values for a particular
Theme object definition. As you know, a Theme is a set of values defining a user’s interface
look and feel, using resource attributes.

http://developer.android.com/reference/android/content/res/Resources.html

492 CHAPTER 16: Wear API Deprecation: Updating Apps to Use New Classes or Methods

The Theme objects encapsulate a TypedArray object, which holds these Theme attributes.
The TypedArray can be utilized to resolve the final values for an attribute using an int[] array
and AttributeSet. You would normally use the .obtainStyledAttributes(AttributeSet, int[],
int, int) API to retrieve the XML-defined Theme attributes with style and theme information
applied using parent and child user interface attribute definition tags. Wear apps don’t
usually change Themes, at least not the Watch Face app you’re coding.

When you want to leave a default or current Theme in place, you will use a null value for the
Resources.Theme object in a .getDrawable() method call.

The Theme object’s attributes come into play in two ways. The first is via the styled attribute,
which can explicitly reference any value in the Theme by using a themeParameterName="?them
eAttribute" syntax in the XML tag parameters.

The second way you can reference a Theme object attribute is in your Java code using the
.obtainStyledAttributes(AttributeSet, int[], int, int) API method call to retrieve the XML-
defined Theme attributes. If you want to maintain backward compatibility, there is also a
ResourcesCompat class.

Let’s take a look at the ResourcesCompat class next, as adding a backward compatibility
feature could prevent this from happening again. This class also has a .getDrawable()
method, allowing you to pass in the Resource R reference, a Drawable index integer, and a
Theme, all in one method call.

The ResourcesCompat Class: Backward Compatibility
Android’s public ResourcesCompat class also extends java.lang.Object and was thus
scratch-coded to provide backward compatibility for Resources. A Java class hierarchy for
this class would look like the following code:

java.lang.Object
 > android.support.v4.content.res.ResourcesCompat

This class was created to be a helper class that developers can utilize to access features in
Resources that were introduced after API level 4. This is done in a backward compatible
way, so that Android developers can avoid exactly what happened during the process of this
book on out into the future. You don’t need to use this for wear development as Wear was
introduced in 4.4 and is quickly progressing to primarily utilize 5.0 through 5.2 (so far).

This class features one public constructor method, ResourcesCompat(), which is
used to create an object. There are two public method calls in this class as well. One
is .getDrawable(Resources res, int id, Resources.Theme theme), which returns the
Drawable object that is associated with the referenced resource ID and will be styled using
the specified Theme object.

The other is the getDrawableForDensity(Resources res, int id, int density, Resources.
Theme theme) method call. This could be used to access different density Drawable
assets. Most smartwatch products range from 320 to 400 pixels (I hope that this may
increase to 480 to 640 pixels by 2016), so you won’t need to use this version of the method
call for now, which adds in a variable for the density (folder) to access the Drawable asset(s).

493CHAPTER 16: Wear API Deprecation: Updating Apps to Use New Classes or Methods

Because the Resources class is a more often used and standard class for Wear applications,
and what you have already been using, I’m going to use that. Let’s take a look at the other
major deprecation next, an entire class!

Dealing with Deprecated Classes: The Time Class
You may have also noticed at the top of the ProWatchFaceService class that the Time class
(object) reference is lined out in the code, which means it too is deprecated. This class can
still be used, at least until 2038, when the date (time) range that it covers runs out (expires).
This is, most likely, the primary reason that this class is being deprecated in the first place,
although no specified reason is given on the Android developer’s web site.

This is another major deprecation in this Android 5.2 update that affects the
ProWatchFaceService class Java code, meaning you will have to recode to fix the problem.

This time, an entire class, the Time class, will need to be replaced using either the Calendar
or GregorianCalendar classes or a combination thereof. As you’ll soon learn, these classes
are closely related, as well as being related to the Android Date and TimeZone classes.

The Android Calendar class is an abstract class that is used to create the
GregorianCalendar concrete class, and the Date and TimeZone objects can be accessed
(utilized) by this Calendar abstract class and the GregorianCalendar concrete class. You will
be using the Calendar class (object) directly with the .getInstance() method call, which you
will be learning about next.

The Calendar Class: An Abstract Class for Date and Time
The Android public abstract Calendar class extends java.lang.Object and it implements the
Serializable Cloneable Comparable<Calendar> Java interface. The Java class hierarchy
for this Calendar class looks like the following:

java.lang.Object
 > java.util.Calendar

The Calendar class has one known direct subclass, GregorianCalendar, which I’ll cover
in the next section. The Calendar class is an abstract class that was used to create the
GregorianCalendar class. It provides the method calls that can be used to extract data from
a Date object and the set of integer fields this Date object contains.

These include YEAR, MONTH, DAY, HOUR, SECOND, MINUTE and MILLISECOND. A Date
object represents an instant in time and has the capability of using millisecond precision, if
you need it. You’ll be using this data extraction capability in your new code base soon, so
I’m covering this class and its related methods in detail here.

Similar to other Android 5 location-sensitive classes, this Calendar class provides a method
call named .getInstance(). This can be used to create an instance of this Calendar class for
general usage. A .getInstance() method will return a Calendar object whose location’s fine
tuning is based on the application user’s system settings. This object’s time data fields will
be initialized using a user’s current system date and system time.

494 CHAPTER 16: Wear API Deprecation: Updating Apps to Use New Classes or Methods

Object declaration and instantiation can be accomplished in one unified statement, and this
could be done by using the following Java statement:

Calendar calendar = Calendar.getInstance(); // Declare a Calendar object named calendar and
load it

You will be using a Calendar object in your new code, and this will be done a little bit
differently using the following Java code:

Calendar watchFaceTime = Calendar.getInstance(); // Create/Load Calendar object named
watchFaceTime

You’ll then access the Calendar object’s attributes with Calendar.ATTRIBUTE constants via
the .get() method call, using the following Java statements:

int hour = watchFaceTime.get(Calendar.HOUR);
int minute = watchFaceTime.get(Calendar.MINUTE);
int second = watchFaceTime.get(Calendar.SECOND);

Calendar objects can be defined as being lenient or nonlenient. A lenient Calendar object
accepts a wider range of field values than it produces. As an example, if you’re using a
lenient GregorianCalendar object, if you use MONTH == APRIL, DAY_OF_MONTH == 31, it
would interpreted the day to be May 1.

A nonlenient GregorianCalendar would throw an exception in this scenario, due to the
attempt to set an out-of-range data field value. When a Calendar object recomputes a field
value for return as a result of a .get() method call, your Calendar object will “normalize” it. As
an example, the Android GregorianCalendar will always produce a DAY_OF_MONTH value
that is between 1 and the length of the current month, taking leap year rules into account as
well. A Calendar object defines location-specific seven-day weeks using two parameters.
The first is the first day of the week and the second is a number of “minimal days” in the first
week (1 to 7). The numbers are taken from the location resource data when your Calendar
object is instantiated.

Location-specific data parameters may also be specified explicitly by the Android developer
by utilizing methods in this Calendar API. If you would like to dive deeper into information
regarding all the ins and outs of the Calendar object (class), peruse the Android Developer
page using this URL:

http://developer.android.com/reference/java/util/Calendar.html

One final point that I would like to make is that this Calendar class has two constructor
methods: Calendar() and Calendar(TimeZone timezone Locale locale). Why would
an abstract class have a constructor method if it can’t be instantiated? Not only can an
abstract class have a constructor method, but it always will have one. If you don’t specify
a constructor, the class will have a default, no argument object constructor, just like other
class types such as nested and anonymous classes. In the case of anonymous classes,
it’s impossible to specify a constructor, so you’ll always get the default constructor. The
constructor method is always accessed using the subclass, so you can’t say Calendar
calendar = new Calendar(); but you can create a Calendar object by utilizing a Calendar
calendar = Calendar.getInstance(); Java statement.

495CHAPTER 16: Wear API Deprecation: Updating Apps to Use New Classes or Methods

This Calendar class is an excellent example of an abstract class that has a constructor
method. You will be creating your Calendar object by calling Calendar.getInstance(), but
Calendar has constructors that are protected.

The reason Calendar constructors are protected (not private) is so it can be extended by a
subclass, like GregorianCalendar. Because Calendar’s constructors are protected, only other
classes in their package can extend Calendar. As of Java 7, which was used for Android 5,
the GregorianCalendar class is the only subclass that can access the two Calendar
constructors.

Next, it’s time to take a closer look at the GregorianCalendar subclass of the Calendar
class, so that you have complete knowledge of both viable Calendar classes. You will be
using the top-level Calendar class in the new code to eliminate the deprecated code in
ProWatchFaceService, however, the GregorianCalendar class (object) is recommended to
use in lieu of the Time class (object), so I am including this next section to provide complete
topic coverage. In this way, you’ll have a comprehensive overview of both of the Android
(Java 7) calendar utility classes you can use in your apps.

The GregorianCalendar Class: A Concrete Class for Date and Time
The public GregorianCalendar class is a concrete subclass of Calendar, and it provides a
standard calendar representation utilized across most of the world. It is contained in a java.
util package, and its Java class hierarchy would therefore look something like the following:

java.lang.Object
 > java.util.Calendar
 > java.util.GregorianCalendar

In case you’re wondering what a concrete class is and how it differs from an abstract class,
a concrete class will be instantiated, using a Java new keyword along with a constructor
method, whereas an abstract class cannot be instantiated using the Java new (instance)
keyword, as you now know.

I use abstract classes in the 2014 Apress Beginning Java 8 Games Development title to
create the game actor classes, if you wish to review this concept in greater detail. In Java,
a concrete class is designed to be subclassed, like abstract classes, but it can also be
instantiated, unlike an abstract class, which cannot be directly used in your compiled (final)
code base.

The standard Gregorian calendar supports two “eras,” BC and AD. The Android
implementation handles a single discontinuity that corresponds by default to the date the
Gregorian calendar was implemented, on October 15, 1582, in most countries, although
this could be later in other countries. This “cutover date” can be changed in Android by
the developer by calling the .setGregorianChange() method. In countries that adopted
the Gregorian calendar first, October 4, 1582, will be followed by October 15, 1582. This
Calendar subclass will therefore model this date anomaly correctly.

Before this Gregorian cutover date, the Android GregorianCalendar class will implement the
Julian calendar. The difference between a Gregorian and a Julian calendar is its leap year
rules. The Julian calendar will specify a leap year every four years, no matter what.

496 CHAPTER 16: Wear API Deprecation: Updating Apps to Use New Classes or Methods

A Gregorian calendar will omit leap years in every even century year for those century years
that are not evenly divisible by 400.

The Android GregorianCalendar class implements both a Gregorian and Julian calendar at
the same time. Dates are computed by extrapolating the current rules backward as well as
forward in time using a specified cutoff date.

Due to this fact, the GregorianCalendar class can be used for all years to generate
meaningful and consistent date results for your watch faces apps and can also be used to
access the system time, accurate to a millisecond.

The date obtained by accessing a GregorianCalendar object is “historically accurate” only
from March 1, 4 AD and onward. This is when a modern Julian calendar rule was adopted.
Before this date, the leap year rule was applied irregularly. Note that before 45 BC, a Julian
calendar did not exist. Prior to the institution of the Gregorian calendar, New Year’s Day was
March 25!

To avoid any confusion, the Calendar subclass will always use January 1. Manual
adjustments can be made by developers if needed, for dates that are prior to the Gregorian
cutoff and fall between January 1 and March 24.

A GregorianCalendar class accesses data fields (properties, or attributes) from its Calendar
superclass, which I will discuss next. They include constant names, such as MONTH,
DAY_OF_MONTH, WEEK_OF_MONTH, HOUR, HOUR_OF_DAY, MINUTE, SECOND,
MILLISECOND, DAY_OF_WEEK, DAY_OF_YEAR, AM_PM, WEEK_OF_YEAR, and DAY_OF_
WEEK_IN_MONTH.

In a sense, you can use this deprecation from using a Time class to using one of the
Calendar classes to your advantage. By accessing the system time through a Calendar
object, you will be putting in the infrastructure to allow a cool date readout in your watch
face design, if that is needed.

Now it is time to start morphing the previous use of the Time class to use the Calendar class
in your ProWatchFaceService Java code.

Upgrading Your Code: Calendar and .getDrawable()
To get rid of the strike-through font (lined out code), you need to replace a Time object
instantiation with a Calendar.getInstance() object and upgrade the .getDrawable(int) usage
with the .getDrawable(int, Theme) method call.

You will do the class replacement first, since this is the major change, and then add a null
value to the .getDrawable() method calls. This will do the same thing as your previous
method call, but it won’t generate deprecated code highlighting. As you know, a null tells
this method to use the current Theme object definition. You defined this earlier using
an XML definition.

497CHAPTER 16: Wear API Deprecation: Updating Apps to Use New Classes or Methods

Upgrading the Time Class Code: Using the Calendar Class
As you can see in Figure 16-6, the Android Time class has been discontinued for use
(deprecated), in API level 22. First, you would need to mouse-over this to see if there is any
advice regarding what to do to make your Java code completely up to date. As you can see,
in Figure 16-6, there is not a lot of information in the suggestion tool tip even if you click the
more link, which states the same exact thing as the pop-up yellow tool tip. This means you
will have to look at your Android Time class documentation.

Figure 16-6. You can see a deprecated Time class declaration (reference) at the top of the private Engine class

Figure 16-7. Change the Time class reference to a Calendar class reference in the watchFaceTime declaration

Change the Time watchFaceTime; Java object declaration statement to instead use the
Calendar class. This will make it a Calendar watchFaceTime; Java statement.

As you can see, highlighted in the middle of Figure 16-7, you will need to use the Alt+Enter
keystroke work process and have Android Studio code your import statement for you at the
top of your ProWatchFaceService class. Make sure to delete the Time class import statement.

498 CHAPTER 16: Wear API Deprecation: Updating Apps to Use New Classes or Methods

The next thing you’ll need to do is to load this Calendar object in the onCreate() method,
using the Calendar.getInstance() structure that you learned about in the previous section.
Use the following Java statement, which can be seen highlighted in pale yellow in the middle
of Figure 16-8:

watchFaceTime = Calendar.getInstance();

This will create a watchFaceTime Calendar object and load it with a valid Calendar object, in
this case, that would be a GregorianCalendar subclass.

In this way, you’re setting up your code so that you will not have to cast GregorianCalendar
to Calendar or vice versa, and you can just use Calendar in your code. Because
GregorianCalendar is the concrete class, this is what will be created (since Calendar is
the static class) and this is what a recommendation in the Time class suggests you use to
replace Time.

Now that you have the watchFaceTime GregorianCalendar object that replaces the
watchFaceTime Time object, you will need to change the .clear() method call and
.setToNow() method call for the Time class with some method calls that work with the
GregorianCalendar and Calendar classes. These include a .setTimeInMillis() method
call, a .get() method call, and a .setTimeZone() method call. Let’s do this for the
timeZoneReceiver BroadcastReceiver now.

Upgrading timeZoneReceiver: The .setTimeZone() Method
Click the plus (+) icon in the left margin and open your timeZoneReceiver object structure.
Comment out the .clear() and .setToNow() method call structures, as shown in Figure 16-9,
so you can use deprecated code if you want to later on (the Time class will still work if you
want to use it).

Figure 16-8. Set a watchFaceTime Calendar object to a Calendar.getInstance() inside of the onCreate() method

499CHAPTER 16: Wear API Deprecation: Updating Apps to Use New Classes or Methods

To replace these, use a .setTimeZone() method, with a call to the TimeZone class
.getDefault() method, to replace the .clear(intent.getStringExtra("time-zone") and
then call the invalidate() method to update the watch face time onDraw logic. This would be
done using the following updated Java structure:

public void onReceive(Context context, Intent intent) {
 watchFaceTime.setTimeZone(TimeZone.getDefault());
 invalidate();
}

Next, let’s work on upgrading the code that is in the onDraw() method, as that is the next
most important code. You will get the current time at the top of the method, using a new
Calendar .setTimeInMillis() method call.

Upgrading the onDraw() Method: Using .setTimeInMillis()
First, let’s comment out the super.onDraw(watchface, rect); because you are replacing the
onDraw() logic completely, and your watchFaceTime.setToNow(); Java statement, because
you are going to replace that with a different Calendar class method call. Type in the
watchFaceTime GregorianCalendar object and hit the period key, then start to type “.setTi”
and double-click the .setTimeInMillis(long milliseconds) option, as shown in the drop-
down method selection helper in Figure 16-10.

Figure 16-9. In the BroadcastReceiver onReceive() method, use the .setTimeZone() method, instead of .clear()

500 CHAPTER 16: Wear API Deprecation: Updating Apps to Use New Classes or Methods

Inside the method parameter area, type the System class and a period, and then
double-click the currentTimeMillis() option and insert it into your Java statement, as shown
in Figure 16-11. The resulting Java statement should look like the following:

watchFaceTime.setTimeInMillis(System.currentTimeMillis()); // Load Calendar object with
current time

Figure 16-11. Inside the .setTimeInMillis() method, access the System.currentTimeMillis() method to set the time

Figure 16-10. In the onDraw() method, replace the .setToNow() method call with a .setTimeInMillis() method call

Now that your GregorianCalendar object has been loaded with a current time value using
the System.currentTimeMillis() getter method, you will upgrade the hour, minute, and second
integer variables to extract the time values from the Calendar constants you learned about in
the section of the chapter covering the Calendar class.

501CHAPTER 16: Wear API Deprecation: Updating Apps to Use New Classes or Methods

Loading Your Time Variables: Using the .get() Method
To extract the system time values from the watchFaceTime GregorianCalendar object, you
will use the .get() method call and pass in the Calendar.VALUE constant that you want the
data for, in this case, HOUR, MINUTE, and SECOND, which will give you the values that
the rest of the onDraw() logic you have in place will need to position the hour hand, minute
hand, and second hand, respectively.

The Java statements that replace your watchFaceTime Time object’s simpler method calls
to the Time object’s .hour(), .minute(), and .second() method calls are shown highlighted in
Figure 16-12 and should look like the following three Java programming statements:

int hours = watchFaceTime.get(Calendar.HOUR);
int minutes = watchFaceTime.get(Calendar.MINUTE);
int seconds = watchFaceTime.get(Calendar.SECOND);

Figure 16-12. Convert the hours, minutes, and seconds integers to use a .get(Calendar.TIME_UNIT) method call

An advantage here is that you can also use .get() for other Date or TimeZone data!

Now that your onDraw() method has been updated to the latest code, you can move on to
upgrade the onVisibilityChanged() method to use .setTimeZone().

Upgrade the onVisibilityChanged() Method: .setTimeZone()
Click the plus (+) icon in the left margin to open the onVisibilityChanged() method structure
and comment out the .clear() and .setToNow() method call structures, as shown in
Figure 16-13, so you can use deprecated code, if you want to, later on. Notice that this is the
same modification you made in the onReceive() method of the BroadcastReceiver object.

502 CHAPTER 16: Wear API Deprecation: Updating Apps to Use New Classes or Methods

It is important to note that you will not need to include the invalidate() method call as this
was already done in the onReceive() method update.

Upgrading the Code: Using the .getDrawable(int, Theme)
Let’s go back into the onDraw() method and upgrade the BitmapDrawable code to use a
nondeprecated .getDrawable(int, Theme) method version by adding a comma and a null value
inside the method call parameter area. This is a fairly basic Java statement upgrade, and it can
be seen highlighted in Figure 16-14. The new Java statement should look like the following:

if(firstDraw) {
 if (roundFlag) {
 watchFaceDrawable = watchFaceResources.getDrawable(R.drawable.round_face_test, null);
 } else {
 watchFaceDrawable = watchFaceResources.getDrawable(R.drawable.square_face_test, null);
 }
 watchFaceBitmap = ((BitmapDrawable) watchFaceDrawable).getBitmap();
 firstDraw = false;
}

Figure 16-13. Inside the onVisibilityChanged() method, change the .clear() and .setToNow() to .setTimeZone()

503CHAPTER 16: Wear API Deprecation: Updating Apps to Use New Classes or Methods

As you can see in Figure 16-15, you will also need to make this exact same upgrade to
the .getDrawable(int) method call in the ensureModeSupport() method, which is needed to
convert this method to the still-supported .getDrawable(int, Theme) version.

Figure 16-14. Upgrade .getDrawable() method call to use a null to instruct Android to keep using the current Theme

Figure 16-15. Upgrade .getDrawable() method calls in ensureModeSupport() method to use the null value as well

504 CHAPTER 16: Wear API Deprecation: Updating Apps to Use New Classes or Methods

This will also need to be done for the four BitmapDrawable assets used for the
prowatchfacelow.png, prowatchfacebur.png, prowatchfaceamb.png, and prowatchfaceint.
png watchFaceResources object asset loader Java statements.

This finishes the deprecated code upgrades for the old Time class, as well as the older
.getDrawable(int) method call. The next logical step would be to test this code, but Android
Studio threw us a 1.2.1.1 upgrade curve ball!

Solving IDE Problems Introduced by SDK Upgrades
Right when I was about to start testing, I checked for updates, as I’ll always do before I start
any serious application testing. I found the Android Studio 1.2.1.1 update was available, as
shown in Figure 16-16. I again went through the steps shown in Figures 16-1 through 16-4.

Figure 16-16. Another rapid fire Android Studio upgrade from 1.2.0 to 1.2.1.1 requires the upgrade process again

I applied the patch to Android Studio (IntelliJ plus the Android SDK plug-ins) and then
used the Android SDK Manager to make sure I had all the upgrades to APIs, tools,
documentation, system images, and the like that I needed in place. Then I restarted Android
Studio and launched the new 1.2.1.1 version.

As you can see in Figure 16-17, I encountered a fairly major problem. This was clearly not
my fault, as I had only changed Java code, nothing else. I received a message in the upper
right corner of IntelliJ that asked me if I wanted to Migrate Project to Gradle? Because
the project has always been a Gradle build system project, I needed to find out what was
causing this problem. This caused me to add this section to the chapter on how I figured
this out, as this is likely to happen to you at some time. So here I’ll go deeper into the
Gradle build system, projects integrated in IntelliJ, and how to use Invalidate and Restart,
Import a Project, and the most drastic solution, how to create your project from scratch.
After I explain how to solve this problem and turn the project back into Gradle build system
compatibility, which the 1.2.1.1 upgrade seems to have altered.

505CHAPTER 16: Wear API Deprecation: Updating Apps to Use New Classes or Methods

I’ll show you the order in which I tried things, from the necessary Gradle build definitions
upgrades, to using Invalidate and Restart, to the Import Project work process, to completely
re-creating an Android Wear project.

Upgrading Gradle Files: Adding Build Definition Sections
The first logical thing that I tried to fix the Migrate Project to Gradle warning was to upgrade
the build.gradle (wear, mobile, and project) build definition files.

As you can see in Figure 16-18, I added a buildscript definitions section, containing
subsections for repositories and dependencies, shown at the top of the definition file for
wear, and compileOptions specifying Java 7, and sourceSets, specifying Java and resources
locations, as shown at the bottom.

Figure 16-17. Upon restart after upgrading, the project no longer thinks that it is using the Gradle build system

506 CHAPTER 16: Wear API Deprecation: Updating Apps to Use New Classes or Methods

Figure 16-18. Upgrade wear gradle.build definition to include buildscript, compileOptions and sourceSets section

Next, I added these same sections to the mobile gradle.build file, as shown in Figure 16-19.
I upgraded my compile dependencies and added a couple more.

507CHAPTER 16: Wear API Deprecation: Updating Apps to Use New Classes or Methods

Because I didn’t have the insight as to which compile dependencies to use for WatchFaces
API, I used https://github.com/googlesamples/android-WatchFace as a guide to what the
internal development team at Google has found works for version 1.2.1.1. These compile
dependencies will accommodate any features you decide to add to your WatchFace API
design. It is important to note an unused compile dependency will not cause any problem if
you do not use it.

The GitHub WatchFace code no longer features the root (ProAndroidWearable) gradle.build
file, so I simply upgraded mine from the Gradle 1.0 classpath to the 1.2.3 classpath using
the following statement, and is shown in Figure 16-20:

buildscript {
 repositories { jcenter() }
 dependencies { classpath 'com.android.tools.build:gradle:1.2.3' }
}

Figure 16-19. Upgrade mobile gradle.build definition to include buildscript, compileOptions, and sourceSets sections

508 CHAPTER 16: Wear API Deprecation: Updating Apps to Use New Classes or Methods

Figure 16-20. Upgrade the classpath dependency for the root gradle.build to use com.android.tools.gradle:1.2.3

The new gradle.settings file references the Wearable and Application folders:

include ':Application', ':Wearable'

After I restarted Android Studio, I opened the AndroidManifest, and as you can see in
Figure 16-21 on the left side of the screenshot, the referencing errors still exist. These errors
cause the Run/Debug Configurations dialog to not be able to run (build, execute) the project,
so it can’t be tested, as you can see on the right side of Figure 16-21.

Figure 16-21. Upgrading the Gradle build system definitions did not fix the AndroidManifest referencing problem

Since upgrading the Gradle configuration files did not solve this problem, the next thing that
I tried, which is the next easiest solution, was to use the Invalidate function, which is found
under the File menu.

If this does not work, try the next most difficult solution, which is to Import the Project and
then see if it will build and run. If that does not work, you would have to re-create the project
from scratch, which would fix any Android Studio (IntelliJ 14) file referencing problems.

509CHAPTER 16: Wear API Deprecation: Updating Apps to Use New Classes or Methods

Using Invalidate and Restart: Rebuilding Project Structure
Click the File menu in Android Studio, as shown in Figure 16-22. Select the Invalidate
Caches / Restart menu option, and click Invalidate and Restart.

Figure 16-22. Fixing the project referencing by using the File ➤ Invalidate Caches and Restart Utility

The IDEA will disappear and relaunch itself. Open AndroidManifest, and you will see if the
red referencing errors have disappeared. My AndroidManifest.xml was still showing the red
error highlights, which can be seen in Figure 16-21.

The next most difficult work process involves moving the project to a backup folder,
launching IntelliJ as you did the first time, with no new project, and using the Import Project
feature to hopefully import the code and XML from a project that’s been corrupted into a
new IntelliJ file and project hierarchy structure that does not have these referencing errors.

Using Import Project
The work process I used to import this project was to back up the project, using Cut
and Paste, as shown in Figure 16-23. I right-clicked the project folder and used Cut to
remove it from the AndroidStudioProjects folder and then right-clicked the C:/Back-Up/
AndroidStudioProjects folder and used Paste to move an entire project hierarchy folder
location on my C:\ drive.

510 CHAPTER 16: Wear API Deprecation: Updating Apps to Use New Classes or Methods

What this will do is make Android Studio think there is no current project in use, since there
is nothing in the AndroidStudioProjects folder.

This will then produce an IntelliJ dialog that contains the Import Project option. This is what I
needed to use to try to create a new IntelliJ project infrastructure, which will hopefully fix this
asset referencing problem.

Figure 16-24 shows the ProAndroidWearable project backed up to my C:\ drive.

Once your project folder hierarchy is backed up (and hidden from IntelliJ), start up Android
Studio and you will get the original menu that allows you to Start a New Project, Open
Existing Projects, Import Code Samples, Check Out Projects from Version Control, and
Import a Project.

Select the Import Project option, as shown in Figure 16-25, then select the C:/Back-Up/
AndroidStudioProjects/ProAndroidWearable/gradle.build file, and click the OK button.
You will see a Building Project progress bar, and the new project will finally open in an
empty Android Studio IntelliJ IDEA.

Figure 16-24. I created a Back-Up\AndroidStudioProjects folder, using Paste, to move ProAndroidWearable there

Figure 16-23. Empting the AndroidStudioProjects folder using Cut and Paste to move the project to C:\Back-Up

511CHAPTER 16: Wear API Deprecation: Updating Apps to Use New Classes or Methods

Right-click the AndroidManifest.xml file in the wear component (folder) of the project
hierarchy and use the Jump to Source option to inspect the file.

As you can see in Figure 16-26, I still have referencing errors highlights in my
AndroidManifest XML file. They are different referencing errors than I had before, and I
additionally have a new Frameworks detected warning at the top right of the IDE, along
with a Configure link. This opens a dialog called Setup Frameworks, seen highlighted in
Figure 16-26, which is what corrupted my project in the first place. It does not matter which
of these drop-down menu options you select, type or directory, your end result is the same.
In my case, this equated to different AndroidManifest referencing errors in the XML file, so it
looks like I will be re-creating the project!

Figure 16-25. Launch Android Studio with no project, use Import Project, and select build.gradle, rebuilt project

Figure 16-26. On second launch of Android Studio, I get the Frameworks detected warning that changed the project

512 CHAPTER 16: Wear API Deprecation: Updating Apps to Use New Classes or Methods

As you can see in Figure 16-27, this new project now has the same problems that the project
I imported had, so I’ll need to create a new Android Wear project and copy all of my Java
code, XML markup, and assets over into it.

Because the original project was created under Android Studio 1.0 and the IDE is now at
1.2.1.1, there are probably some new features, possibly relating to the WatchFaces API,
that can be used to shortcut the Java coding or XML markup tasks. I am going to leave the
coding from the first 15 chapters in this book as they are, because they show you how to
create a Watch Faces Application from absolute scratch, so you have the maximum learning
experience in learning how to fix the coding.

Re-creating a Project from Scratch: Copy Code and Assets
Cut and paste any subfolders under the AndroidStudioProjects folder as you did in the
previous section and in the startup menu shown in Figure 16-25, then select the Start a New
Android Studio Project option. It will give you the dialog seen in Figure 4-16, where you will
use the same ProAndroidWearable and wearables.android.pro.com entries. Make sure
the project is in a User’s folder and in an AndroidStudioProjects subfolder. After you click
the Next button, you’ll get a Target Android Devices dialog, as shown in Figure 16-28. This
dialog can also be seen in Figure 4-17, using older Wear API Levels.

Figure 16-27. AndroidManifest now has the same referencing errors I had before, so this is what broke the project

513CHAPTER 16: Wear API Deprecation: Updating Apps to Use New Classes or Methods

Figure 16-28. Select an API Level 18 for the Phone and Tablet, and an API Level 21 for the Wear component

Figure 16-29. Select the WatchFace option to have Android Studio write your WatchFace API code infrastructure

Select Android 4.3 API 18 for the Phone and Tablet App and Android 5.0 API 21 for the
Wear App component. Then click the Next button to access an Add an activity to Wear
dialog, which is shown in Figure 16-29. If you want to see the older version of this dialog,
reference Figure 4-19.

Notice that there are two options in this dialog that were not available in Android Studio 1.0:
the Display Notification and the WatchFace API. I will select the WatchFace API option to
show you that Android Studio will write the WatchFace API code for you, as you’re going to
replace this soon.

In the Service Name data field, type in the ProWatchFaceService Java class name and
select your Analog WatchFace Style option in the drop-down menu, as shown in Figure 16-30,
and then click Finish to create your project.

514 CHAPTER 16: Wear API Deprecation: Updating Apps to Use New Classes or Methods

Figure 16-30. Name your Service ProWatchFaceService and select the Analog WatchFace Style and click Finish

After building your new project, the IntelliJ IDEA will now open up, using the standard
bootstrap WatchFace API code, which is not nearly as detailed, or complex, as the code you
had been developing over the course of this book. I have also used more descriptive object
and variable names so you can visualize what each of these objects and data fields are
doing for your WatchFace API code base as a whole.

It’s important to note that none of this code will be used! What I’m doing here is using this
new project structure, primarily, new .IML, or IntelliJ Mark-Up Language project structure
definitions, to fix the problem I have been encountering. All the Java code, XML, and assets
will be copied over.

I noticed in the bootstrap code base that the deprecated Time class hasn’t been replaced with
the Calendar class code, as you can see highlighted in yellow near the top of Figure 16-31.
I guess they will get to that in the Android Studio 1.3 update, which is supposed to be out
sometime later in 2015, hopefully by the time you get this book.

515CHAPTER 16: Wear API Deprecation: Updating Apps to Use New Classes or Methods

These rapid updates are getting to be really a bear!.

The first thing I did was to restart the IDE, rebuild the project, and make sure everything is
as it should be in the Gradle Console tab. I’m glad I took this step, because as you can see
in Figure 16-32, there is an error present in the Gradle Console for this bootstrap project
structure! Let’s click the Open File Encoding Settings link and fix this right away. In the
Project Encoding drop-down, select UTF-8, and click the OK button to set a suggested
UTF-8 project encoding format for the entire Wear project.

Figure 16-31. Android Studio creates the basic Analog WatchFace Service class and all the basic methods for you

Figure 16-32. Fixing a Gradle sync issue project encoding problem (left), using the File Encodings dialog (right)

516 CHAPTER 16: Wear API Deprecation: Updating Apps to Use New Classes or Methods

As you can see in Figure 16-33, after I clicked the Gradle Project Refresh icon shown at
the upper right, my Gradle Console was now clear of all error or warning messages. I also
show you the menu sequence you will use if you want to get back into this File Encodings
dialog again on the left side of the figure. This is done using File ➤ Settings ➤ Editor ➤ File
Encodings.

Figure 16-33. Open (click) the Gradle tab (right) and use the Refresh Gradle Project icon to clear Gradle Console

I am going to follow the order you did things during this book in this rebuild of the project
that you are doing, so the next thing that you did in Chapter 5 was to create the AVD
emulator infrastructure for the project. I looked in the Run/Debug Configurations dialog and
the Round and Square AVD emulators that I created in Chapter 5 were still a part of Android
Studio, which makes sense as these are independent of projects, so let’s move on.

Chapter 7 covered gradle.build and XML definition files, so let’s put them in place now. Copy
the build.gradle file text from your ProAndroidWearable folder, wear and mobile folders,
and replace the build.gradle file text for the new bootstrap project. The wear/res/xml/
watch_face.xml file is already in place, so copy and paste the values in the strings.xml file
in a backup wear/res/values folder to the new project wear/res/values/strings.xml file,
replacing your bootstrap <string> values. Do the same for your strings.xml values in your
mobile/res/values/strings.xml so the color array and values are in place for the WatchFace
Companion App.

Next let’s transfer the Activity UI design. Create the /layout folder in your mobile/res
folder and then create an activity_pro_watch_face_config.xml file. Copy and paste your
Configuration Activity UI definition. Before you can replace both AndroidManifest.xml files,
you will need to copy your PNG assets that the Manifest files access, or you’ll get error
highlights.

The PNG files are fortunately all in the wear/res/drawable-hdpi folder, so next, you need
to copy and paste these into your new project as well, into the res/drawable-dpi folders for
scaling or res/drawable-nodpi for fixed use.

http://dx.doi.org/10.1007/9781430265504_5
http://dx.doi.org/10.1007/9781430265504_5
http://dx.doi.org/10.1007/9781430265504_7

517CHAPTER 16: Wear API Deprecation: Updating Apps to Use New Classes or Methods

It’s interesting to note that as I was researching these new Android 1.2.1 and 1.3
WatchFaces API upgrades and updates that I found a new recommended WatchFaces
background bitmap image size of 400 pixels and a recommendation that images go in
the /wear/res/drawable-nodpi/ folder, so I am pasting my bitmap assets into this folder.
My guess is a new 400-pixel recommendation is because a new Huawei SmartWatch that
features a 400-pixel screen. This means that once a 480-pixel smartwatch comes out, which
will be in 2015 or 2016, this recommended NODPI resolution for the WatchFaces Bitmap will
change to 480.

Another thing that I noticed is that the res/drawable-dpi folders had been replaced by
res/mipmap-dpi folders. A mipmap capability was introduced for use with icons in Android 4.3,
and mipmaps have their origins in 3D. These are precalculated to fit Android DPI icon
resolutions using preoptimized PNG32 images, each of which is a lower resolution
representation resampled from the highest resolution version of that same application icon
image. I would use these folders for your application icons only, and use /drawable folders
for BitmapDrawable assets you use inside your Wear apps.

Because your AndroidManifest.xml files also reference the Java classes you have created,
you will need to create these Java classes using the IDEA New ➤ Java class feature, and
copy and paste your Java logic into these next.

Let’s start with your ProWatchFaceService.java file first, because this Java class
was created by the New Project series of dialogs. Copy and paste the code into your
ProWatchFaceService tab, replacing the bootstrap code. Next right-click the /wear/
java/com.pro.android.wearables.proandroidwearable folder and use the New ➤
Java Class dialog to create the ConfigListener ProWatchFaceConfigListenerService.
java file. Then copy and paste the Java code you wrote during the book into your
ProWatchFaceConfigListenerService tab, replacing the empty Java class code. There will be
an error until you create the ProWatchFaceUtility.java class file, so let’s do that next.

Right-click the /wear/java/com.pro.android.wearables.proandroidwearable folder and
use the New ➤ Java Class dialog to create your Utility class ProWatchFaceUtility.java file.
Then copy and paste the Java code you wrote during this book into the ProWatchFaceUtility
tab, replacing the empty Java class code. Let’s finish up by adding in the mobile
component’s Java code.

Right-click the /mobile/java/com.pro.android.wearables.proandroidwearable
folder and use the New ➤ Java Class dialog to create the ConfigActivity class
ProWatchFaceCompanionConfigActivity.java file. Then copy and paste the Java code for
this class into the ProWatchFaceCompanionConfigActivity tab, replacing the empty Java
class. Now you can copy and paste the wear and mobile AndroidManifest.xml files. Change
your icon referencing to use the mipmap with this line of code:

android:icon="@mipmap/ic_launcher" // Replace the @drawable reference with an @mipmap
reference

Now that the mobile AndroidManifest.xml is copied over, with only a single reference
change, it is time to copy the more complex wear AndroidManifest, which may have some
upgrades, since you created it under Android Studio 1.0.

518 CHAPTER 16: Wear API Deprecation: Updating Apps to Use New Classes or Methods

Besides the mipmap reference change, the wear AndroidManifest.xml is error free, and I
am also adding a <uses-sdk> tag specifying API Level 21 at the top of the Manifest, inside
the <manifest> parent tag. This can be seen highlighted at the top of Figure 16-34 and uses
the following XML markup:

<uses-sdk android:minSdkVersion="21" android:targetSdkVersion="21" />

I am also adding a <meta-data> child tag, right before the </application> closing tag, to
define a Google Mobile Services (GMS) version for this app. This can be seen highlighted in
yellow at the bottom of Figure 16-34 and uses the following XML markup:

<meta-data android:name="com.google.android.gms.version"
 android:value="@integer/google_play_services_version" />

Next I did a Run ➤ Run Wear, and the project build was again working using the Gradle build
system, so I was back to having a working IDEA, although it took an extreme work process
to get there!

Figure 16-34. Add a <uses-sdk> specifying API Level 21 and another <meta-data> tag for Google Play Services

519CHAPTER 16: Wear API Deprecation: Updating Apps to Use New Classes or Methods

The Moral of the Story: Android Is More than Java or XML
It’s important to remember that programming these days is a moving target, involving
multiple and integrated components such as the IDE (IntelliJ), a build system (Gradle),
an SDK (Android Studio), programming language (Java 7), a markup language (XML),
new media codecs (MPEG4, JPEG, PNG, MP3, GIF, WebM, WebP, etc.), technology APIs
(WebKit, OpenGL, SQLite), and operating system (Windows, Linux, and Mac) platforms, and
that’s just on the Android application development side of the equation, which I covered in
this book.

On the device side of the equation, you also have a Dalvik Virtual Machine (DVM) or Android
Run Time (ART) engine, Android OS, and Linux 64 Kernel, so developing and publishing
Android applications of any type, whether they are generic Android or more specialized
Android Wear (this book), Android TV, Android Auto, or Android Glass (the Apress Pro
Android IoT book), is never going to be a walk in the park by any stretch of the imagination!

All of the components are maintained by literally hundreds of programmers, working at
multiple companies (Google and Oracle, for instance) and open source organizations (MPEG
LA, Khronos, Apache, and W3C, for instance). We have even experienced an occurrence
where a brand new, 100% Android Studio-generated project had a Gradle build system
error, which had to be fixed immediately!

Summary
In this chapter, you learned how to upgrade your deprecated code to use new,
recommended classes and methods of more current API classes. I also showed you how to
fix noncode-related, in this case, IntelliJ IDEA-related problems that will inevitably arise due
to OS API upgrades.

This required that you learn about a Calendar superclass, and its subclass the
GregorianCalendar class, and the new methods you will need to use to replace the
Time class and its methods that had been used originally to implement a Watch Faces
API. The deprecated classes and methods will still work, if you don’t mind having lined-out
(strike-thru) code in your IDEA.

You also learned how to use a more advanced getDrawable(int, Theme) method call,
which Android deprecated the simpler getDrawable(int) version of, in my opinion to force
developers to incorporate a Theme into their code usage.

In the next chapter, you will take a look at the other Android APIs, as well as some of the
other cool things such as GPS location awareness and voice recognition capabilities that
you can add to your Wear applications.

521

Chapter 17
The Future of Android IoT
APIs: Android TV, Glass, Auto,
and Wear

Because there’s no possible way to cover all of Android, or any of the niche hardware device
SDKs that have become available for Android, I thought I would leave you with a chapter
that gives you some ideas regarding what to take a look at next on your Android hardware
device development journey.

Android is intelligently organizing these APIs, matching API function with hardware product
genres or types, such as interactive television sets (iTV sets) running Android TV, Smart
Eyeglasses running Android Glass, which is not released but is shown in the New Project
dialog (see Figure 16-28), or Automobile Dashboards running Android Auto, and let’s not
forget the smartwatches running Android Wear, which is what this book explores.

I will be writing a book on Android IoT next year, which will cover these other APIs, as well as
any other Internet of Things APIs that might materialize in the meantime. As other consumer
electronic genres grow more popular and are adopted by major hardware manufacturers,
Android will release other customized APIs.

For example, many manufacturers have virtual reality headsets, which could run an Android
VR API. Android-driven robots, and even drones, are growing in popularity, so an Android
Robot API would allow developers to create an application customizing their robot or drone.
Another growing area is home appliances, so do not be surprised to see an Android Home
API. During this chapter, I’ll discuss some of these other Android APIs as well as some of the
other features of Wear you should take a look at implementing.

522 CHAPTER 17: The Future of Android IoT APIs: Android TV, Glass, Auto, and Wear

HD and UHD Android TV: The Opposite of Wear
Android TV SDK addresses the opposite end of the consumer electronics size spectrum than
the Android Wear SDK, which is optimized for small square or round screens. Android TV is
geared for developing apps for big widescreen displays that have True HD, or 1920-by-1080
resolution, or the newer UHD, or 4096-by-2160 resolution. These displays range from 60 to
80 inches for their diagonal screen size, whereas smartwatches range from 1 to 2 inches!

Logical Android TV application types include 2D and 3D Games, Live Content Streaming,
Television Playback, Interactive Television, and Content Search.

Android TV applications need to have a 320-by-180 pixel home screen banner in the
res/drawable-xhdpi project folder and should include localized text identifying the
application. This banner is declared and referenced in the AndroidManifest.xml application
definition, using the following parameter:

<application android:banner="@drawable/png_banner_name" >
 // Nested Tags for the TV Application will go in here
</application>

Android TV apps intended to run on iTV set devices will need to declare an iTV Launcher
Activity for the Android TV API in the AndroidManifest, using the CATEGORY_LEANBACK_
LAUNCHER constant in the <intent-filter> child tag.

This Intent Filter will serve to identify iTV apps as being TV compatible. This is required for
Google Play to correctly categorize an iTV set app to be in the Android TV app section of the
store. This Intent also identifies the Activity to launch when a user selects the icon on an iTV
home screen. The following XML markup shows how to code an intent filter in a Manifest:

<application android:banner="@drawable/banner" >
 <activity android:name="com.example.android.MainActivity" android:label="@string/app_name" >
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 <activity
 android:name="com.example.android.iTVsetActivity"
 android:label="@string/itv_app_name"
 android:theme="@style/Theme.Leanback">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LEANBACK_LAUNCHER" />
 </intent-filter>
 </activity>
</application>

523CHAPTER 17: The Future of Android IoT APIs: Android TV, Glass, Auto, and Wear

Android has a support library for iTV user interface design called the V17 Leanback Library.
This provides standard themes for iTV activities, called Theme.Leanback, as you can see
applied (in bold) in the above XML markup.

The Theme.Leanback android: theme parameter can implement consistent visual UI styles
for the iTV set apps. Use of this leanback theme is recommended for most iTV apps. The
Theme.Leanback should be used with iTV UI design classes that are from the V17 Leanback
Library, which also supports TV media playback classes.

Other classes that can be used for Android TV development include the V7 RecyclerView
Library, which offers classes for memory-efficient management and display of long
lists. A number of classes in the V17 Leanback Library depend on the classes in the V7
RecyclerView Library. There is also the V7 CardView Library, which offers developers
additional user interface widgets for displaying content information cards that contain media
item pictures and media item text description. The V7 Leanback Library is also dependent
on the V4 Support Library, so just like with Wear apps, many older versions of support
libraries may need to be included in the build.gradle dependencies section for the Android
TV applications.

You will also need to declare that your app uses a Leanback user interface at the
<manifest> level of your Android Manifest XML file. If you set this required <uses-feature>
attribute to a true value, the Android TV app will only run on iTV set devices that implement
an Android TV Leanback UI. The XML markup for this would look like the following:

<manifest>
 <uses-feature android:name="android.software.leanback" android:required="true" />
 // Other Manifest Child Tags will go in here
</manifest>

If you are developing apps that run on mobile phones, wearables, tablets, e-book readers,
and the like, in addition to running on Android TV, you will set this required attribute to a
false value, using the following markup:

<manifest>
 <uses-feature android:name="android.software.leanback" android:required="false" />
 // Other Manifest Child Tags will go in here
</manifest>

Android TV apps that you intend to run on iTV sets use a remote and don’t rely on
touchscreens for input, at least until major manufacturers release touchscreen iTV sets,
which they probably will at some point in time.

In order to clarify the use of touch for your users, the Manifest for your iTV applications needs
to declare this android.hardware.touchscreen feature as not being required. This is done by
using a false setting inside the <uses-feature> tag. The following XML markup shows how to
include this in the Android Manifest application settings and privileges declaration file:

<manifest>
 <uses-feature android:name="android.hardware.touchscreen" android:required="false" />
 // Other Manifest Child Tags will go in here
</manifest>

524 CHAPTER 17: The Future of Android IoT APIs: Android TV, Glass, Auto, and Wear

This setting will identify your iTV application as being able to work with an Android TV
device, and it is required for the app to be considered an Android TV application and listed in
the correct iTV area in Google Play.

It is important to note that currently an iTV application must be declared in this fashion, that
is, that touchscreen support is not required in your app manifest, as shown in this example
code, or your app cannot appear in the Google Play Store under TV devices.

Besides interactive television shows, one of the most popular types of iTV set applications
will surely be iTV games. Unlike smartphone apps designed for portrait orientation or
smartwatch apps designed for square and round screens, Android TV apps are designed
in landscape orientation. The normal aspect ratio for an HDTV (1920 by 1080) is 16:9, but
super-wide 16:8 WHD screens that feature a 2160-by-1080 resolution are also appearing
as well.

Unlike most multiplayer games, shared over a network, which use their own display, system
memory, and processors, iTV games do not need any network, reducing latency, but they
also share the same screen, system memory, and multicore processor, and thus they require
careful design and optimization. A shared screen can also present some unique multiplayer
game design challenges as all of your players can see everything, which is especially difficult
when designing card games and similar strategy games that rely on the player’s proprietary
(undisclosed) game play strategy information.

A possible solution to this would be a companion app, also called a second screen display
app. This would be running on Bluetooth-connected phones or tablets. This would enable
the player to conceal game strategy information that only they can view, using this second
screen Bluetooth-connected app.

An Android TV home screen lists games in a different area than regular iTV apps. To cause a
game to appear in this list of games, set android:isGame attribute to “true” in your Manifest
<application> tag, using this markup:

<application android:isGame="true" >

In order to advise users that a game requires or supports game controllers, you must include
the following <uses-feature> entry in the Manifest file:

<uses-feature android:name="android.hardware.gamepad" />

If your iTV game uses, but does not absolutely require, a game controller, you will
additionally include an android:required="false" parameter inside the <uses-feature> tag.
This XML markup would look like the following:

<uses-feature android:name="android.hardware.gamepad" android:required="false" />

525CHAPTER 17: The Future of Android IoT APIs: Android TV, Glass, Auto, and Wear

Android Auto: Android Apps for the Car Dashboard
The Android Auto SDK (API) platform enables you to extend your application to work with
automobile console systems that are using Android Auto. These Android Auto console
devices provide basic Android user interfaces for car apps. These car apps will allow users
to take app functionality along with them on the way to work, shopping, entertainment, on
dates, or a road trip.

Just like with Android Wear, apps that work with Android Auto consoles run on the
Bluetooth-connected device, for instance, a phone or tablet. The app communicates via
specific APIs with the dashboard’s Android console, which provides the Android Auto user
interface for a connected Android Auto app that is specifically designed for use inside the
car environment.

Android Auto application users interact with the apps and services through voice
recognition-invoked actions and the vehicle input controls, such as the in-dashboard
touchscreen or even physical dashboard hardware buttons.

Android Auto SDK currently supports two types of applications: Audio apps, which allow
the user to browse, preview, and play music, as well as spoken audio content, such as
audiobooks, inside a car stereo environment, or Messaging apps, which receive incoming
notifications, read messages aloud using text-to-speech synthesis, or send replies via voice
input in the car using microphones built into the automobile or the dashboard.

You can configure current audio or messaging apps developed for phones and tablets
to work under Android Auto without having to accommodate vehicle-specific hardware
differences. To enable these applications to use Android Auto, the app must use a targetSdk
setting of Android 5.0 API level 21 or higher. The application Manifest must declare the car
capabilities that it uses, such as audio playback or messaging services. This is done in a
very similar way to how you would do this in Android Wear for the Watch Faces API.

In the application Manifest, you should provide a reference to the Android Auto XML
configuration file automotive_app_desc.xml, which you will create in the /res/xml folder,
just like you did for the res/xml/watch_face.xml file.

To do this, you’ll use a <meta-data> child tag inside the <application> parent tag. This
<meta-data> tag references the android:name parameter set to “com.google.android.gms.
car.application” and android:resource parameter set to “@xml/automotive_app_desc” by
using the following XML markup:

<application>
 <meta-data android:name="com.google.android.gms.car.application"
 android:resource="@xml/automotive_app_desc"/>
 // Other Application Child Tags will be nested inside of the parent <application> tag
</application>

You will specify the Android Auto capabilities that the car app uses using the XML file you
placed in the project XML resources directory, which you will probably have to create
(res/xml) just like you did for Wear.

526 CHAPTER 17: The Future of Android IoT APIs: Android TV, Glass, Auto, and Wear

To declare an audio application for use with Android Auto, create the file called automotive_
app_desc.xml, saving it under the project res/xml folder, and make sure the XML definition
contains the <automotiveApp> and <uses> tags:

<automotiveApp>
 <uses name="media" />
</automotiveApp>

The child <uses> tag declares the Android Auto feature that an application intends to utilize.
Multiple <uses> tags will be added if your application needs to use multiple Android Auto
SDK capabilities. The name=“” attribute is used to specify the capability the application is
going to utilize.

The <uses name=“value”> constants that are supported include media, used for playing
music in a vehicle (enables audio app), and notification, used to display message
notifications via a car Overview screen, which allows users to select a message to be read
aloud and lets the user respond through voice input to the message (enables an Android
Auto messaging app).

For this media constant, Android Auto console devices expect to connect to a
Media Browser Service to browse audio track listings. You should declare this
MediaBrowserService subclass in the Manifest. This will allow a car’s dashboard device
hardware to discover the service and connect to the app.

The XML markup needed to declare the MediaBrowserService object as well as the Intent
object used to start it and would look much like the following:

<application>
 <service android:name=".ProAutoMediaBrowserService" android:exported="true">
 <intent-filter>
 <action android:name="android.media.browse.MediaBrowserService"/>
 </intent-filter>
 </service>
 // Other Application Child Tags will be nested inside of the parent <application> tag
<application>

As you can see, the ProAutoMediaBrowserService object, as I named it, that
the application provides for browsing audio tracks must extend the Android
MediaBrowserService class, which will become the ProAutoMediaBrowserService class’s
superclass.

Android Auto hardware devices also use Intent objects for the notification constant as well,
to indicate that a user has read or replied to a message provided by an app. An app defines
Intent types for reading or replying to messages and adds this information to messaging
notifications, so that the dashboard system can notify an app when a user takes one of
these actions.

527CHAPTER 17: The Future of Android IoT APIs: Android TV, Glass, Auto, and Wear

You’ll need to define both a heard Action Intent and a reply Action Intent for the application.
These are used by the BroadcastReceiver classes, which handle the Intents defined in the
application Manifest definition file. An example of the XML markup to implement these
Intents, and their associated BroadcastReceiver objects, should look something like the
following:

<application>
 <receiver android:name=".ProAutoMessageHeardReceiver">
 <intent-filter>
 <action android:name="com.myapp.messagingservice.PRO_AUTO_ACTION_MESSAGE_HEARD"/>
 </intent-filter>
 </receiver>
 <receiver android:name=".ProAutoMessageReplyReceiver">
 <intent-filter>
 <action android:name="com.myapp.messagingservice.PRO_AUTO_ACTION_MESSAGE_REPLY"/>
 </intent-filter>
 </receiver>
</application>

In this XML “ProAutoMessageReadReceiver” and “ProAutoMessageReplyReceiver” are
the names of the BroadcastReceiver subclasses you code to handle your Intents. You can
choose to define any constant you like as the Action object name. Make sure that all of the
Action names are completely unique.

Building the notifications for use with Android Auto console devices will require classes
from the Android V4 Support Library. Use the Android SDK Manager to update the Extras >
Android Support Repository to version 9 or higher and update the Extras > Android Support
Library to version 21.0.2 or a higher version numbering, if a later version has become
available.

After you have updated these Android Support Libraries, import these into the Android
Studio development project by adding this dependency to your Android Auto application’s
build.gradle file, using the following Groovy code:

dependencies { compile 'com.android.support:support-v4:21.0.2' }

Android Auto SDK uses standard user interfaces and user interaction models, which work
across all consoles, so you don’t need to worry about different dashboard hardware. Android
takes driver distraction seriously, and it has specific design requirements to qualify Auto
apps for sale in the Google Play Store.

When users connect to Android Auto, they first encounter an Overview screen, which
displays context cards based on the user’s location and time of day. The user can use this
screen to view notifications from messaging apps and select messages to send responses
via voice input. Tap on a headphone icon in an Activity Bar to see the audio apps installed
on a hand-held device. After the user selects the audio app, the display shows this primary
app UI. The media control card in the primary app UI supports up to four main actions, as
well as four auxiliary actions (on overflow bar) and the Return action.

528 CHAPTER 17: The Future of Android IoT APIs: Android TV, Glass, Auto, and Wear

Android Auto uses a drawer UI paradigm for List browsing actions, and your car console’s
display will show the contents of a data list using a drawer transition. For media (audio)
applications, a customized List UI shows the media containers and audio files provided by
the media service in the app. You can customize data entries in the drawers, using icons for
list items.

The standard Android Auto user interfaces describe different color schemes for daytime
vs. nighttime usage. The Android Auto platform provides the state (daytime or nighttime)
variable and automatically sets this state.

As far as Android Auto color themes go, your application is allowed to use colors from the
Material Theme’s color palette. The Material color palette comprises 500 primary and
accent colors that can be used for illustration or to develop your application color schema.
They’ve been designed to work harmoniously with one another and can be seen at the
following Google URL:

http://www.google.com/design/spec/style/color.html

This color palette starts with 20 primary colors of white, red, green, blue, purple, pink, indigo,
cyan, teal, lime, yellow, amber, orange, gray, blue gray, brown, deep orange, deep purple,
light green, and light blue. If you consider black as a color, there are actually 21 colors in all.

The other 480 colors fill in this spectrum to create a complete and usable palette for
Android or WebKit. Google suggests using the 500 colors as the primary color selections
for your apps and then using other custom colors as your accent colors. Your Android
Auto applications will be permitted to specify two colors for the system palette. These are
defined in the Android OS using the colorPrimaryDark and the colorAccentNext data field
constants.

The Android Auto platform is designed to maximize safety and to reduce any distractions,
and this color palette is only a small part of that process.

Android Auto app user interfaces need to be quick and easy to navigate, and each Android
Auto app must pass formal reviews and meet minimum safety and driver distraction
requirements and regulations. Android Auto apps need to be completely predictable and
inherently intuitive to ensure that drivers will always keep their eyes on the road, as lives
could be at stake here.

Your application needs to be customized for Android Auto. Don’t specify an Android Auto
compatibility in the Android Manifest XML file without making user interface, usability,
and design adjustments for a driving experience. Complex actions, such as creating an
account, signing in, or even creating a playlist, should be performed on a phone or tablet,
not an Auto display.

Android Auto application design should conform to the principles that this platform
implements in its own Auto platform UI, including a glanceable UI design and predictable
application functionality, have continuously connected user experiences, and offer an
integrated application environment to users.

https://www.google.com/design/spec/style/color.html

529CHAPTER 17: The Future of Android IoT APIs: Android TV, Glass, Auto, and Wear

Google Glass: Develop Apps for Smart Eyeglasses
Google Glass Development Kit, also known as GDK, is the add on for Android SDK that
lets you build Glassware (Glass apps) that runs directly on Google Glass. The Google Glass
1 was discontinued as of the time of the writing of the book; however, Google Glass 2 is
scheduled for release sometime during 2015. If Google is smart, instead of making Glass 2
an external API for Android, it will do the same thing that was done for Wear, TV, and Auto
and make it an Android Glass API and SDK that is far more integrated with the Android OS
and available to all smart eyeglass manufacturers, such as Luxottica, LGE, Sony, six15,
Vuzix, Samsung, GlassUp, PivotHead, Meta AR, and many others.

Google Glass 1 featured a screen resolution of 640 by 360. This is quarter pseudo-HD, since
a 1280-by-720 screen has four 640-by-360 rectangular areas. Like Android TV or Auto,
Glass has a unique UI paradigm that specifically fits your hardware device. This is designed
around a timeline UI paradigm.

This timeline is the main user interface that is presented to users. It is comprised of
640- by-360 resolution cards. The Glass UI provides some linear features, such as a
common way to review animated and static cards, invoke voice recognition commands,
and launch your Android Glass applications.

Android Glass users can scroll linearly between different sections of this timeline UI,
revealing card UI elements from the past, present, and future, which equate to on-screen
(present), previously reviewed (past), and yet to have been reviewed (future). The most
recently reviewed (past) items would remain closest to the Home card. This is the default
card users see when they resume using Android Glass or use it for the first time.

In addition to navigating timeline cards, this Android Glass UI provides a response to user
input. Users navigate the timeline UI using the touchpad and can launch Android Glass
applications using voice commands. Cards also are allowed to feature menu items, thus
Android Glass applications will be able to give control over to users so that they may
complete actions, such as replying to an incoming text message or even share a photo
or video.

The Android Glass timeline UI and its cards are organized into a number of different
functional sections, including Home, Past, Present, and Future. A default Home card
features an Android Glass clock. This Home card occupies the center of the timeline user
interface, and it appears whenever the user starts using an Android Glass device. This Home
card remains in the center area of the timeline UI because it provides access to the rest of
the UI.

Android Glass provides either voice or touch commands, allowing Glass users to start
other operating system components of or custom applications for Android Glass. Voice
commands allow hands-free operation of Android Glass.

On the right side of the Android Glass Home screen (clock) is the history section,
representing the past and displaying static data cards. The reason for this is because live
cards are always considered to be in the present, so they will never appear in this history
section of the Android Glass UI.

530 CHAPTER 17: The Future of Android IoT APIs: Android TV, Glass, Auto, and Wear

Static cards will naturally “decay” in this history section if they aren’t refreshed by revisiting
them. As newer cards end up in this past section, they will be positioned closest to the
Home screen (clock). Android Glass will position the oldest card the farthest to the right. The
Glass OS will remove any card older than seven days, or when the 200 card limit is reached.

On the left side of the Android Glass Home screen (clock) are the present and future
sections, which contain both static as well as live cards. Live cards always display current
information that is relevant to users and is happening in real time. Live cards should always
appear in the present and future sections. When a live card has focus and Android Glass
goes to sleep, that card will be the one that becomes the default card that will appear when
Android Glass comes back on. Static cards that contain future “timestamps” or that are
“pinned” will also appear in the present and future sections.

For instance, a Google Now weather card might show relevant information automatically
in the present and future sections, even though it is a static card. Static information can be
updated dynamically, at predefined times.

At the far left of the timeline UI are the Settings cards. With these, you are able to configure
Android Glass operating system settings, like volume or what Wi-Fi network you are
connecting with.

Live cards are clearly the central feature of Android Glass, because these will always contain
rich, real-time content, or content the user has requested to be periodically updated and
remain on the present section of the screen. Live cards should be updated frequently
using custom graphics that will show the user’s compelling, real-time information. This
functionality is necessary for animated user interfaces that need to constantly update, based
on some user data or on external data the user is consuming.

Live cards have access to low-level sensor data like the accelerometer and GPS. This allows
cutting-edge types of user interactions and features that are not possible with static cards,
because sensors such as these stream out dynamic data in real time and, therefore, require
a live card format.

Live cards are capable of running inside the Android Glass timeline UI. Users can scroll left
or right to view and interact with other live cards, while each of these live cards is running.
This allows users to multitask and seamlessly maintain each live card’s run-time state in the
background.

Static cards can only display text, imagery, and video content, which will be able to be
loaded into memory once (static) and contain data that does not change (is not dynamic).
Video is animated, but it is a series of images. Therefore, digital video, although it looks
dynamic, is not, as it does not change over time and is the same series of imagery each
time it is played! Static cards contain information you can build with HTML, text, images, or
video. Static cards do not update their data frequently, if at all, and they should be designed
for content display and quick notifications.

Static cards are allowed to have a share menu item, which allows your users to share the
card with other people, called contacts, or even with another Android Glass application.
You can declare these Android Glass timeline UI cards to be “shareable,” and you can also
define a contact for the Android Glass application that can accept shared timeline UI static
card items.

531CHAPTER 17: The Future of Android IoT APIs: Android TV, Glass, Auto, and Wear

When you need full user interface control for your user experience, Android Glass has
something called “immersions.” These would be run outside the typical Android Glass
timeline user interface or user experience.

Immersions allow you to render your own user interfaces, processing all of the user input
inside the Android Glass application programming logic. Immersions are needed for Android
Glass applications that cannot function within the rigid linear constraints of a timeline user
interface paradigm and required a freeform, nonlinear, or object-oriented GUI approach.

It is important to note that both timeline cards as well as immersions can contain menu
items. These carry out associated actions, such as replying, configuring, dismissing, sharing,
data entry, and many more user actions.

The original Google Glass 1 API (called Mirror API and Glassware GDK) was not 100%
Android specific, although it did support Java 1.6 and, therefore, 32-bit Android 4.x. Glass
Mirror also supported Python and PHP as well. An Android Glass API, which would naturally
be part of the new Glass 2.0, would be 64-bit Android 5.x or even 6.x, and use Java 1.7
(Java 7) or Java 1.8 (Java 8) or even Java 1.9 (Java 9).

Because this API is currently under development and not available yet, I’ll just cover the
basics of Google Glass 1 in this section of the chapter and cover Android Glass (or Google
Glass 2.0) in my next Pro Android title, Pro Android IoT (Apress, 2016).

Android Wear: Interesting API Elements to Explore
For the rest of the chapter, I am going to cover some other important features of Android
Wear that I did not cover earlier in the book. You can use most of these on top of your Watch
Face code infrastructure, which will allow you to make Android Wear applications that are
also watch face compatible at the same time, which is going to be a trend for Android Wear
as the smartwatch hardware device is first and foremost used for a digital wristwatch. This is
why I made sure I covered Watch Faces API completely during this book.

Detecting Location: GPS Data from Google Play Services
Some Wear applications will need to be aware of their location in order to be able to
calculate distances traveled (fitness and travel apps) or even ascertain where the user
is on the face of the planet. Some users, such as myself, tend to turn GPS features on
smartphones off, for privacy reasons, unless there’s a compelling reason to allow one’s self
to be tracked. Keep this in mind, as well, when considering Wear apps that utilize GPS data.

Many wearable devices include a GPS sensor that can retrieve location data without being
tethered to another device such as a tablet or a smartphone. Fortunately, when you request
the location data in the wearable app, there is no need to worry about where this location
data originates. Android can ascertain location data and update the data using a power-
efficient method on either the smartphone or the smartwatch.

A Wear application should be able to handle any loss of the location data, in case the wear
hardware device loses the connection with a paired device and does not happen to have the
GPS sensor hardware on board.

532 CHAPTER 17: The Future of Android IoT APIs: Android TV, Glass, Auto, and Wear

GPS location data on a wearable device will be obtained through Google Play Services
(location API), which you’ve already learned how to utilize during this book. For GPS, you
would utilize the FusedLocationProviderApi, and its accompanying classes, to obtain this
location data. To access GPS location Services, create your instance of GoogleApiClient,
which is the main entry point for any of the Google Play Services APIs, just like you did for
your Android Wear Watch Faces API implementation during this book.

To connect to Google Play Services, create an instance of GoogleApiClient and create
an Activity that specifies an implementation for the interfaces ConnectionCallbacks,
OnConnectionFailedListener, and the LocationListener. To manage the connection
lifecycle, call connect() in an onResume() method and disconnect() in an onPause() method,
similar to the following Java code:

public class WearableMainActivity extends Activity implements GoogleApiClient.
ConnectionCallbacks,
 GoogleApiClient.OnConnectionFailedListener, LocationListener {
 private GoogleApiClient myGoogleApiClient;
 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 myGoogleApiClient = new GoogleApiClient.Builder(this)
 .addApi(LocationServices.API)
 .addApi(Wearable.API) // used for the data layer API
 .addConnectionCallbacks(this)
 .addOnConnectionFailedListener(this)
 .build();
 }
 @Override
 protected void onResume() {
 super.onResume();
 mGoogleApiClient.connect();
 }
 @Override
 protected void onPause() {
 super.onPause();
 mGoogleApiClient.disconnect();
 }
}

After an app connects to Google Play Services, it is ready to receive location updates.
When Android invokes the .onConnected() callback for the client, you’ll build the location
data request by creating a LocationRequest object and setting options using methods such
as .setPriority(). You would request location updates using .requestLocationUpdates()
in onConnected() or remove location updates using .removeLocationUpdates() in the
onPause() method, as can be seen in the following implemented methods example code:

@Override
public void onConnected(Bundle bundle) {
 LocationRequest locationRequest = LocationRequest.create()
 .setPriority(LocationRequest.PRIORITY_HIGH_ACCURACY)
 .setInterval(UPDATE_INTERVAL_MS)
 .setFastestInterval(FASTEST_INTERVAL_MS);

533CHAPTER 17: The Future of Android IoT APIs: Android TV, Glass, Auto, and Wear

 LocationServices.FusedLocationApi
 .requestLocationUpdates(myGoogleApiClient, locationRequest, this)
 .setResultCallback(new ResultCallback() {
 @Override
 public void onResult(Status status) {
 if (status.getStatus().isSuccess()) {
 if (Log.isLoggable(TAG, Log.DEBUG)) {
 Log.d(TAG, "Successfully requested location updates");
 }
 } else { Log.e(TAG, "Failed in requesting location updates, "
 + "status code: " + status.getStatusCode()
 + ", message: " + status.getStatusMessage());
 }
 }
 });
}
@Override
protected void onPause() {
 super.onPause();
 if (myGoogleApiClient.isConnected()) {
 LocationServices.FusedLocationApi.removeLocationUpdates(myGoogleApiClient, this);
 }
 myGoogleApiClient.disconnect();
}
@Override
public void onConnectionSuspended(int i) {
 if (Log.isLoggable(TAG, Log.DEBUG)) {
 Log.d(TAG, "connection to location client suspended");
 }
}

Once you enable location updates, the system calls an .onLocationChanged() method with
the updated location using the interval value you specify using the .setInterval() method call.

Not all smartwatch hardware will feature the GPS sensor. If a user goes out for a spin and
leaves their phone or tablet behind, the wearable app can’t receive GPS location data using
the tethered connection. If the smartwatch hardware doesn’t feature a GPS sensor, you
could detect this situation and warn users the GPS location functionality is not currently
available. This is accomplished by using the .hasSystemFeature() method call. This example
Java code polls a device to see if it has GPS when it starts the Activity:

protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main_activity);
 if (!hasGpsData()) {
 // Fall-back functionality, for use without location data (Or warn user: No location
 data!)
 }
}
private boolean hasGpsData() {
 return getPackageManager().hasSystemFeature(PackageManager.FEATURE_LOCATION_GPS);
}

534 CHAPTER 17: The Future of Android IoT APIs: Android TV, Glass, Auto, and Wear

It’s also possible that smartwatch hardware devices that rely on tethered connections for
their location data could lose the connection abruptly. If your smartwatch app processes a
constant stream of GPS data, you will need to handle disconnections based on where the
data is interrupted or becomes unavailable. On smartwatch hardware that does not feature a
GPS sensor, a loss of GPS location data may occur when the smartwatch loses its tethered
data connection.

In cases where your app depends on a tethered data connection for location data and the
wear device does not have a GPS sensor, you should detect the connection loss, warn the
user, and change the functionality for the app.

To detect a loss of a tethered data connection, you would need to extend a
WearableListenerService. This service will allow you to process data layer events. To
do this, declare an <intent-filter> in the AndroidManifest that notifies Android about
the WearableListenerService. This filter will allow the operating system to bind to your
WearableListenerService when needed.

Your XML markup for the <service> parent tag defining the ListenerService class and a
BIND_LISTENER child <intent-filter> tag should look like this:

<service android:name=".MyNodeListenerService">
 <intent-filter>
 <action android:name="com.google.android.gms.wearable.BIND_LISTENER" />
 </intent-filter>
</service>

Inside the MyNodeListenerService subclass of WearableListenerService, you would then
implement the .onPeerDisconnected() method to handle cases pertaining to whether or not
a smartwatch hardware device features built-in GPS. The Java code would look something
like the following:

public class MyNodeListenerService extends WearableListenerService {
 @Override
 public void onPeerDisconnected(Node peer) {
 if(!hasGpsData()) {
 // Fall-back to functions that don't use location or notify user to bring their
 handset
 }
 }
}

If it loses GPS data (signal), you should retrieve the last known location by using the
.getLastLocation() method call. This method can be helpful in scenarios where you’re not
able to get GPS data or when a smartwatch does not feature a built-in GPS and loses
its connection with a phone or a tablet. Here’s how you would use the .getLastLocation()
method call (remember to request GPS location permission in your Manifest XML file) in
order to retrieve the last known GPS location data, if it is available:

Location location = LocationServices.FusedLocationApi.getLastLocation(myGoogleApiClient);

535CHAPTER 17: The Future of Android IoT APIs: Android TV, Glass, Auto, and Wear

If your smartwatch application records data using an on-watch GPS, you can also
synchronize the smartwatch location data with the smartphone location data. Using the
LocationListener, you can implement an .onLocationChanged() method in order to detect,
and record, the GPS location data as it changes by using the following Java programming
structures:

@Override
public void onLocationChanged(Location location) {
 addLocationEntry(location.getLatitude(), location.getLongitude());
}
private void addLocationEntry(double latitude, double longitude) {
 if (!mySavedGpsLocation || !myGoogleApiClient.isConnected()) { return; }
 mCalendar.setTimeInMillis(System.currentTimeMillis());
 String path = Constants.PATH + "/" + mCalendar.getTimeInMillis();
 PutDataMapRequest putDataMapRequest = PutDataMapRequest.create(path);
 putDataMapRequest.getDataMap().putDouble(Constants.KEY_LATITUDE, latitude);
 putDataMapRequest.getDataMap().putDouble(Constants.KEY_LONGITUDE, longitude);
 putDataMapRequest.getDataMap().putLong(Constants.KEY_TIME, mCalendar.getTimeInMillis());
 PutDataRequest request = putDataMapRequest.asPutDataRequest();
 Wearable.DataApi.putDataItem(myGoogleApiClient, request)
 .setResultCallback(new ResultCallback() {
 @Override
 public void onResult(DataApi.DataItemResult dataItemResult) {
 if (!dataItemResult.getStatus().isSuccess()) {
 Log.e(TAG, "Failed to set the data, "
 + "status: " + dataItemResult.getStatus()
 .getStatusCode());
 }
 }
 });
}

The other major feature that is supported more and more in Wear smartwatch hardware is a
microphone, so let’s take a look at speech recognition next!

Voice Actions: Using Speech Recognition Technology
We all remember (or do we?) the vanguard Dick Tracy (when is someone going to remake
this as a hit film?) comic series where hero Dick Tracy was able to talk into his smartwatch
and elicit miracles that always saved the day.

Now you too can allow your user to talk to your smartwatch app and have it work miracles
for them, because voice actions have become an integral part of the Android Wear user
experience, allowing users to trigger app actions hands free and relatively quickly.

Android Wear allows developers two types of voice actions. System-provided voice actions
are OS task based and are built into the Wear platform. You use IntentFilter objects to define
them for the Activity you wish to start when a particular voice action is invoked using a
speech recognition engine in Android, which I will be discussing later on. Some examples of
system-provided voice actions would include “Take a note,” and “Set an alarm,” or “Call a
Taxi” and even “Start Stopwatch” and many more.

536 CHAPTER 17: The Future of Android IoT APIs: Android TV, Glass, Auto, and Wear

The second type of voice action is the application-provided voice actions. These voice
actions are application based, and you declare them much like a launcher icon. To utilize
these actions, the user will state “Start” and an action (specified as a label) in order to utilize
the voice actions, and an Activity subclass that you specify will subsequently launch (start).

The Android Wear platform provides a number of voice Intent constants that are based
on user actions and allow users to say what they want to do and let the system figure
out the best Activity to launch. These are contained in the android.speech package’s
RecognizerIntent class and can be found at the following Android developer web site URL, if
you want to research them:

http://developer.android.com/reference/android/speech/RecognizerIntent.html

When users invoke a voice action, your app can filter for the Intent that is utilized to launch
the associated Activity, as defined in your Manifest.

If you want to start a Service instead, show the Activity as a visual cue, and start the Service
inside that Activity. Make sure to call .finish() when you want to get rid of the Activity’s
(Service’s) visual cue wrapper.

As an example, the XML markup block that should be utilized to implement the “Take a Note
to Self” command declares a child <intent-filter> inside a parent <activity> that will start the
Activity subclass named SelfNote, as follows:

<activity android:name="SelfNoteActivity">
 <intent-filter>
 <action android:name="android.intent.action.SEND" />
 <category android:name="com.google.android.voicesearch.SELF_NOTE" />
 </intent-filter>
</activity>

If none of the voice Intent constants apply to your app, you can start your app directly with
a customized “Start Activity [Name Here]” voice action. The way to register your application
to use a custom “Start” action is the same as registering your launcher icon. Instead of
requesting the application icon in the launcher XML construct, an app will request a voice
action instead, using the android:label parameter. To specify a voice command for the
user to use after “Start:”, specify the label attribute for the Activity you wish to launch. For
example, this <intent-filter> construct recognizes the “Start: Voice Control App” voice action,
launching StartVoiceActivity:

<application>
 <activity android:name="StartVoiceActivity" android:label="VoiceControlApp">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
</application>

http://developer.android.com/reference/android/speech/RecognizerIntent.html

537CHAPTER 17: The Future of Android IoT APIs: Android TV, Glass, Auto, and Wear

In addition to using voice actions in conjunction with the built-in speech recognition
constants in Android Wear to launch activities, you could also process “free-form” or
nonstandard speech input, using a SpeechRecognizer class, which accesses the
RecognitionService class and the RecognizerIntent class that accessed the predefined
voice action constants covered earlier.

These are just some of the components of the android.speech package. This Speech
Recognizer class and related classes will be utilized to obtain hands-free voice input from
users and process that voice input, providing a result.

An example of this might entail sending a short text message or specifying a search term for
a search engine. It is important to note that the speech APIs are not intended to be used for
continuous voice recognition, such as you would have with a professional speech software
package like the Dragon Naturally Speaking Premium software from Nuance Communications.
There also is a speech recognition capability built into Microsoft Windows 8.1.

The reason you don’t want to do continuous voice (speech) recognition with Android Wear is
because Android OS, although quite powerful, is still just an embedded device OS and does
not currently possess the CPU cores, memory, and clock speeds to perform continuous
speech recognition and translation.

Trying to accomplish this level of speech recognition inside a Wear app would consume
a significant amount of battery life, processing overhead and network bandwidth. The
SpeechRecognizer methods need to be invoked using the main application thread. You
call startActivityForResult() using an ACTION_RECOGNIZE_SPEECH action, launching
a speech recognition Activity. You would then handle the result in an onActivityResult()
method, using the following Java structure:

private static final int SPEECH_REQUEST_CODE = 0;
private void displaySpeechRecognizer() {
 Intent intent = new Intent(RecognizerIntent.ACTION_RECOGNIZE_SPEECH);
 // Create an Intent object
 intent.putExtra(RecognizerIntent.EXTRA_LANGUAGE_MODEL,
 RecognizerIntent.LANGUAGE_MODEL_FREE_FORM);
 startActivityForResult(intent, SPEECH_REQUEST_CODE); // Start the Activity
}
@Override // The callback which is invoked when the Speech Recognizer returns
protected void onActivityResult(int requestCode, int resultCode, Intent data) {
// Process Intent if (requestCode == SPEECH_REQUEST_CODE && resultCode == RESULT_OK) {
 List<String> results = data.getStringArrayListExtra(RecognizerIntent.EXTRA_RESULTS);
 String spokenWord = results.get(0);
 // Process Voice Recognition Result
 }
 super.onActivityResult(requestCode, resultCode, data);
}

Adding Location Awareness and Speech Recognition can make your apps aware!

538 CHAPTER 17: The Future of Android IoT APIs: Android TV, Glass, Auto, and Wear

Summary
Congratulations, you’ve finished this Pro Android Wearables book, and with flying colors at
that! You’re well on your way to creating innovative Wear applications primed and ready to
spark this Internet of Things revolution!

In this final chapter, you learned about some of the additional Internet of Things APIs that
Android OS has recently introduced, in addition to Wear. You took a look at Android TV,
which allows you to create applications for the massive 64- to 96-inch screens users are
now installing in their living rooms.

Next, you got an overview of the new Android Auto API, which allows you to create
applications that work seamlessly inside an automobile dashboard environment and
leverage built-in automobile hardware like audio speakers.

You also took a look at Google Glass 1, soon to be Android Glass 2, and at some of the
other features of Android Wear that you should consider using.

Next, you took a look at implementing location based services, using the GPS sensor
hardware data, along with Google Mobile Services (GMS), and Google Play Services.

The chapter concluded with a look at use of the latest speech recognition technology as well
as internal voice action commands provided by Android.

539

A ■
ActivityManager.AppTask class, 66
Adaptive Scalable Texture

Compression (ASTC™), 59
addApi() method, 372
Admin privileges

Android tools updated dialog, 80
icon and select option, 79
pane sequence option, 81
properties, 78
studio64 executable file, 79
updates, 80

Ambient mode bitmap
8-bit grayscale ambient

mode image, 321
dithering, 318
Export Image dialog, 319–320
Grayscale option, 319
Open Image dialog, 318
PNG8 file format, 318

Android 5.2, 488
Android Application Packages (APK) files

build system, 472
debug and test, 472
gradle build configuration, 476
test project components, 480

Android Asset Packaging Tool (APPT), 473
Android Debug Bridge (ADB)

command-line sequence, 465
connection link, 468
integration submenu, 465
networking hardware and software, 462
platform-tools folder, 466
port forwarding, 463
real-time connection, 461
running and debugging applications, 461
wear module, 463

Android Extension Pack (AEP), 58
Android Interface Definition

Language (AIDL) tool, 473
Android RunTime (ART), 475
Android Wearable app

bundle class, 94
check box option, 87
component tree pane, 91
file-naming conventions, 88
findViewById() method, 94
finish button, 89
mobile dialog, 88
onCreate() method, 94
onLayoutInflated() method, 95
.onLayoutStubListener() method, 95
palette pane, 91
panel sequence, 89
ProAndroidWearable, 87
project creation process, 91
project pane file tree, 94
properties, 91
setContentView() method, 94
.setOnLayoutInflatedListener() method, 95
source menu option, 95
text tab, 92
wear dialog option, 88
XML markup pane, 96

Animation, 39
API methods

burn-in and low-bit, 219
core constants, 217
engine methods, 204
function, 222
integer values, 218
methods, 220

Audacity project
audacity.sourceforge.net, 41
UI element objects, 42

Index

540 Index

Augmented reality (AR), 3
Auto console devices

Action Intent, 527
audio/messaging apps, 525
car apps, 525
colorPrimaryDark and color

AccentNext, 528
constants, 526
definition, 526
Groovy code, 527
hardware devices, 526
material color palette, 528
MediaBrowser

Service object, 526
types, 525
use of, 528
user interface, 525
XML configuration file, 525

Automobile console systems. See Auto
console devices

B ■
Batch processing, 48
BatteryHistorian Tool, 49
BIND_WALLPAPER permission, 163
BitmapDrawable, 300
blockingConnect() method, 391
Bluetooth debugging, 468
Bluetooth Low Energy, 51
BroadcastReceiver class, 190
BroadcastReceiver object.

See timeZoneReceiver
build.gradle Configuration, 476
Build system

Android Asset Packaging Tool, 473
Android Interface Definition

Language, 473
Android RunTime, 475
Application Packages, 474
.class files, 473
components, 473
Dalvik Executable, 474
Java code limitation, 474
multidex application, 475
overview, 472
shrinking enable, 475

buildUpon() method, 370

Burn-In Mode Bitmap
BagelToons LLC images, 329
eraser tool, 327
GIMP Invert algorithm, 328
Indexed Color Conversion dialog, 326
line drawing effect, 327
Posterize menu sequence, 326
prowatchfacelow.png, 330
zoom tool, 327

Burn-In Mode Bitmaps
creation, 338
in Java

burnInProtectModeFlag, 340
ensureModeSupport()

method, 340–341
if(enableBurnInAmbientMode)

construct, 340, 342
onAmbientModeChanged()

method, 342, 344
Burn-in protection, 219

C ■
Calendar class. See also

getDrawable() method
.getDrawable(int, Theme) method, 502
onDraw() method, 499
onVisibilityChanged() method, 501
Time class code, 497
time variables, 501
timeZoneReceiver object, 498

cancel() method, 375
CanvasWatchFaceService class

invalidate() method, 149
Java class hierarchy, 149
private engine

android.graphics.Canvas, 155–156
android.graphics.Rect, 155–156
Color.BLACK constant, 158
development approach, 157
drawColor() method, 155
extends keyword, 153
import statements, 159
onCreateEngine() method, 152–153
onDraw() method, 154, 159
period key, 157
super keyword, 155

ProWatchFaceService Subclass, 149

541Index

CanvasWatchFaceService.Engine Class
invalidate() method, 152
onCreateEngine() method, 151
onDraw() method, 151
onSurface() method, 152

CardView library, 523
checkTimer() method, 270–271
clear() method, 231, 384
Codec, 128
Code folding, 86
Command-line tool, 462
connect() method, 355
Constructor method, 187
containsKey() method, 384
Core functions

clear() method, 231
.getBoolean() method, 227
getDefault() method, 231
invalidate() method, 223
.onDestroy() method, 223
.onPropertiesChanged() method, 225
.onTimeTick() method, 222
.onVisibilityChanged() method, 229
registerTimeZoneReceiver() method, 230
unregisterTimeZoneReceiver()

method, 232
Core methods

constants, 217
.getInterruptionFilter() method, 221
.getPeekCardPosition() method, 221
.getUnreadCount() method, 221
.isInAmbientMode() method, 221
.onAmbientModeChanged(boolean

inAmbientMode) method, 221
.onCreateEngine() method, 220
.onCreate(SurfaceHolder holder)

method, 220
.onDestroy() method, 220
.onInterruptionFilterChanged(int

interruptionFilter) method, 221
.on() methods, 221
.onPropertiesChanged(Bundle

properties) method, 220
.onTimeTick() method, 220
.onVisibilityChanged(boolean visible)

method, 220
.setWatchFaceStyle(WatchFaceStyle

watchFaceStyle) method, 221

createDocument() method, 67
createHourHand() method, 240, 244
createMinuteHand() method, 244
createScaledBitmap() method, 306
createScreenCaptureIntent(), 68
createSecondHand() method, 244
createTextRecord() method, 53
createTickMarks() method, 245
createVirtualDisplay() method, 68
currentTimeMillis() method, 215
currentTimeMillis() option, 500

D ■
Dalvik Executable (DEX) files, 474–475
deleteDocument() method, 67
Density independent

pixels (DIP), 425
.describeContents() method, 175
Digital audio playback

AudioTrack class, 54
dynamic stream mode, 55
ENCODING_PCM_FLOAT, 55
static audio mode, 55

Digital image assets, 296
Digital video playback

MediaController, 54
MediaSession classes, 53

Directory-based data format, 83
disconnect() method, 354–355
Dithering, 137
Dithering Low-Bit Imagery, 323

1-bit approach, 325
Floyd-Steinberg dithering

algorithm, 324
low-bit ambient mode, 325
prowatchfacelow.png, 325

drawColor() method, 155, 212
drawLine() method, 235, 248
Dynamic paint methods

checkTimer() method, 270
ensureModeSupport()

method, 262
if() structure, 259–260
onAmbientModeChanged(), 267
setAntiAlias() method, 257
setBurnInProtect() method, 258
setStyle() method, 261

542 Index

E ■
EditShare Lightworks, 37
End-User Licensing Agreement (EULA), 32
Engine methods

handleMessage(Message) method, 209
Handler class, 204
Handler() constructor method, 208
Handler (android.os) option, 207
hand timer, 207
message class, 206
switch() statement, 210
system time, 212
UPDATE_TIME_MESSAGE integer, 212

ensureModeSupport() method, 262, 330,
336, 340–341, 503

.equals(Object otherObject) method, 175
Extends keyword, 350
EXTRA_PEER_ID constant, 361
EXTRA_WATCH_FACE_COMPONENT

constant, 361

F ■
File-based configuration format, 83
findViewById() method, 94, 362
Floyd-Steinberg dithering algorithm, 323–324
fromByteArray() method, 384, 389
fromDataItem() method, 383

G ■
Geometry shaders, 58
.getAmbientPeekMode() method, 175
.getBackgroundVisibility() method, 175
getBitmap() method, 306
.getBoolean() method, 227
getByteArray ()method, 384
getByte() method, 384
getCameraIdList() method, 63
.getCardPeekMode() method, 175
getComponent() method, 175
getDataItem() method, 382
getDataMap() method, 384–385
getDefault() method, 231
getDefaultProguardFile() method, 479
getDrawable() method, 302

abstract Calendar class, 493
deprecation, 493
GregorianCalendar class, 495

ProWatchFaceService class, 490
resources class, 491
ResourcesCompat class, 492
Resources.Theme class, 491

getExternalFilesDir() method, 67
getExternalMediaDirs() method, 67
getHeight() method, 296
getHotwordIndicatorGravity() method, 175
getIntent() method, 359
.getInterruptionFilter() method, 221
.getLastLocation() method, 534
getMediaProjection() method, 68
get() method, 175, 494, 501
getResources() method, 298–299
.getPeekCardPosition() method, 221
.getPeekOpacityMode() method, 175
.getShowSystemUiTime() method, 175
.getShowUnreadCountIndicator()

method, 175
.getStatusBarGravity() method, 175
getStringExtra() method, 192, 359
getter methods, 175
.getUnreadCount() method, 221
getUserMedia() method, 59, 61
.getViewProtectionMode() method, 175
getWidth() method, 296
GIMP 2.8.14

Downloads link, 36
download versions of, 37
gimp-2.8.14-setup-1.exe, 37
HTTP and Torrent servers, 37
tool types, 36

Glasses, 521
Glass GDK, 5
GoogleApiClient Class

Builder class, 363
findViewById() method, 362
Google Mobile Services

Builder class, 355
connect() method, 355
disconnect() method, 354
GoogleApiClient.

ConnectionCallbacks nested
interface, 355

GoogleApiClient.OnConnection
FailedListener nested interface, 355

isConnected() method, 355
isConnecting() method, 355
Java structure, 354

543Index

onStop() method, 354
static methods, 354

onCreate() method, 356, 363
onStart() method, 367
onStop() method, 367
public final ComponentName

class, 361–362
public final WatchFaceCompanion

class, 360–361
Wearable API, 366–367

Google Glass
API, 7
GDK development approach, 6
hybrid Glass, 7
Pro Android Graphics, 7
RESTful API, 7

Google Glass Development Kit (GDK), 529
Google Mobile Services (GMS), 372–373, 538

Builder class, 355
connect() method, 355
disconnect() method, 354
GoogleApiClient.ConnectionCallbacks

nested interface, 355
GoogleApiClient.OnConnection

FailedListener nested
interface, 355

isConnected() method, 355
isConnecting() method, 355
Java structure, 354
onStop() method, 354
static methods, 354

Google Play Services (GPS), 531
Gradle build engine

build.gradle configuration, 476
console tab, 480
debug and release variant, 475
device dialog, 485
getDefaultProguardFile() method, 479
hardware devices, 484
hardwired USB connection, 483
IDE’s Check, 476
obfuscation, 478
ProGuard, 478
project utility, 480
run/debug configuration dialog, 482
smartphone connection and

smartwatch bluetooth, 482
USB device target device, 481

Gradle files
AndroidManifest referencing problem, 508
GitHub WatchFace code, 507
wear gradle.build definition, 505

Gradle scripts
Android Support Library
build.gradle (Module: mobile) file, 144
configuration, 144
IntelliJ IDEA, 144
meta-data tag, 145
SmartWatch (Wear SDK) app

component, 146
Watch Face Uses-Permission, 146

Graphic Information Format (GIF), 128
GregorianCalendar class, 495
Groovy, 85

H ■
Hairline mode, 239
handleMessage() method, 204, 209, 279
Handler.sendEmptyMessage() method, 206
Handling time update messages, 204
Hard disk drive (HDD), 27
Hardware Accelerated Execution

Manager (HAXM), 108
Hardware devices

Android Debug Bridge (see Android
Debug Bridge (ADB))

bluetooth debugging, 468
Java singleton, 470
testing and debugging (see Android

Application Packages (APK) files)
USB drivers, 452

Hardwired USB connection, 483
.hasSystemFeature() method, 533
Hexadecimal notation

alpha channel, 132
pixel blending, 132
pound sign, 132

High dynamic range images (HDRI), 63–64

I ■
Immersions, 531
Implements keyword, 350
Import project

AndroidManifest.xml file, 511
AndroidStudioProjects folder, 509

544 Index

ProAndroidWearable project, 510
referencing errors, 512
Setup Frameworks, 511

int ANTI_ALIAS_FLAG, 237
int DEV_KERN_TEXT_FLAG, 237
int DITHER_FLAG, 237
Integrated development environment.

See IntelliJ IDEA
IntelliJ IDEA

admin privileges, 78
Android application developments, 82
Android Wearable app (see Android

Wearable app)
bootstrap, 86
code completion and generation, 86
code folding, 86
colors and fonts section, 86
comprehensive overview, 71
directory-based data format, 83
explore docs and how-tos option, 73
features, 83
file-based configuration format, 83
Groovy, 85
highlighting, 85
navigation pane and peruse

subsections, 74
polyglot, 85
Read Help option, 73
SDK Manager, 75
search and replace, macros and

documentation, 86
stubs, 86
update info dialog, 72
XML markup structures, 85

int EMBEDDED_BITMAP_TEXT_FLAG, 237
int FAKE_BOLD_TEXT_FLAG, 237
int FILTER_BITMAP_FLAG, 237
int HINTING_OFF, 237
int HINTING_ON Paint flag, 237
int LINEAR_TEXT_FLAG, 238
int STRIKE_THRU_TEXT_FLAG, 238
int SUBPIXEL_TEXT_FLAG, 238
int UNDERLINE_TEXT_FLAG, 238
invalidate() method, 149, 152, 214, 223, 269
Invert algorithm, 326
invokeBeam() method, 52

IoT APIs
auto consoles, 525
Google Glass Development Kit, 529
TV application, 522
Wear applications, 531

isCanceled() method, 375
isConnected() method, 355
isConnecting() method, 355
isEmpty() method, 384
isInAmbientMode() method, 214, 221,

254–255, 262
isRound() method, 293, 295
isTimerEnabled() method, 213
isVisible() method, 213

J ■
Java Runtime Edition (JRE), 30–31
Java singleton, 470
Java system class, 212
Java Time Utility classes

TimeUnit class, 182
TimeZone class, 183

JobScheduler, 48
Joint Photographic Experts Group (JPEG)

format, 128

K ■
keySet() method, 384

L ■
LayerDrawable, 300
Leanback library, 523
LevelDrawable, 300
Low-bit ambient mode, 219, 265,

287–288, 332
lowBitAmbientModeFlag

boolean option, 267
Low-bit level ambient mode

dithering, 323
Posterize option, 321–323
transflective screen, 321

M ■
Macros and documentation, 86
Masking, 134

Import project (cont.)

545Index

Material Design
android:statusBarColor attribute, 11
android:theme attribute, 12
AppTheme, 10
CardView class

cardBackgroundColor
attribute, 13

cardCornerRadius attribute, 13
cardElevation attribute, 13
card_view:cardElevation

attribute, 13
CardView widget, 12
Drawable API

AnimatedStateList
Drawable class, 21

Palette class, 20
.setTint() method, 19
VectorDrawable class, 19

modularity, 12
RecyclerView widget, 12
shadows and animation

Activity animations, 16
elevation property, 14
motion curve, 17
PathInterpolator class, 17
shared element transitions, 16
StateListAnimator class, 18
Touch feedback animations, 15

statusBarColor, 11
Theme.Holo, 9
Theme.Material, 9–10

MediaBrowserService class, 63
MediaStreamAudioDestinationNode

method, 61
MediaStreamAudioSourceNode

method, 61
Message.setData() method, 207
Meta-data tag, 145
Multidex application, 475
Multimodal Bitmaps

conditional if() structure, 331
ensureModeSupport() methods, 330
interactive mode

Set Tick Marks Color, 334–335
Square AVD, 335

Logical OR structure, 331
Low-bit ambient mode, 332

N ■
Near field communication (NFC), 52
Network connection

Bluetooth Low Energy, 51
ConnectivityManager class, 50
NetworkRequest.Builder, 51
NFC, 52

Networking hardware and software, 462
NinePatchDrawable, 300
noConnectedDeviceDialog() method, 375

AlertDialog, 377
AlertDialog.Builder, 377
XML markup, 376

NodeApi interface
error drop-down, 411
fetchConfigDataMap() method, 404
fromDataItem() method, 412
getDataItem() method, 410
getLocalNode() method, 407
getLocalNodeResult() method, 408
nested interfaces, 406
onResult() method, 407
public methods, 406
setResultCallback() method, 407, 409
Target Class, 411
Uri.Builder class, 408

Notifications
LockScreen, 64
MetaData, 65

O ■
Obfuscation code, 478
onActivityResult() method, 537
onAmbientModeChanged() method, 221, 266,

267, 287–288, 342–343
onApplyWindowInsets() method, 311, 313
onAvailable() callback method, 51
onCaptureCompleted(), 63
onConnected() method

empty method structure, 368
GMS, 372–373
PATH_WITH_FEATURE, 371–372
PendingResult public interface, 374
setResultCallback() method, 373
Uri.Builder class, 370
Uri class, 369–370

546 Index

OnConnectionFailedListener interface, 350
onCreateEngine() method, 151–152, 220
onCreate() method, 94, 220, 245–247,

312, 363, 498
onCreate(SurfaceHolder surface), 171
.onDestroy() method, 220, 223
onDraw() method, 151, 154, 155, 159, 212,

248, 312, 499
.onInterruptionFilterChanged(int

interruptionFilter) method, 221
.onLayoutStubListener() method, 95
onLayoutInflated() method, 95
.onLocationChanged() method, 535
onMessageReceived() method, 387

blockingConnect() method, 391
conditional if structures, 389–390
getData() method, 389
Java code, 388

.on() methods, 221
onPause() method, 532
.onPeerDisconnected() method, 534
onPropertiesChanged() method, 220, 225,

261, 289
onReceive(Context context, Intent intent)

method, 190
onResult() method

DataItemResult, 381
DataMap class, 383
DataMapItem Class, 382–383
fromDataItem() Method, 383
getDataItem() Method, 382
getDataMap() method, 385

onShowFileChooser() method, 60
onStart() method, 367
onStop() method, 354, 367
onSurface() method, 152
.onTimeTick() method, 220, 222
onVisibilityChanged() method, 220, 229,

272, 501
Operating system actions, 191

P, Q ■
Pencil, 43
Performance factor, 27
PermissionRequest class, 59
Plyglot, 85

Portable Network Graphics (PNG), 128
postInvalidate() method, 152
Power management tools

BatteryHistorian Tool, 50
JobInfo, 49
JobScheduler, 48
smartwatch manufacturers, 48

Pro Android wearables
ActivityManager.AppTask class, 66
concurrent activity screens, 65
data storage, 67
screen capture, 68
screen sharing, 68

Pro Android Wearables
affordable 3D software packages, 45
Android Studio Overview page, 32
animation, 39
Apache OpenOffice 4.1.1, 44
Audacity project

audacity.sourceforge.net, 41
UI element objects, 42

creation, 26
DSL/4G connection, 33–34
EditShare Lightworks, 37
EULA, 32
GIMP 2.8.14 (see GIMP 2.8.14)
hardware, 27
installation

Accept License Agreement, 30
extracting installer

progress dialog, 30
IntelliJ IDEA, 34
Java Setup Progress dialog, 31
Java SE 7u71, 28–29
JRE, 30
programs and features, 31
SDK, 34
Windows x64 link, 30

new media asset development
tools, 26

Pencil, 43
software, 28
3D modeling, 39
terms and conditions, 33

ProGuard, 478
Prototyping tool, 43
PROVIDE_BACKGROUND, 347

547Index

ProWatchFaceCompanionConfigActivity
AndroidManifest

<intent-filter> child tag, 347
Jump to Source option, 346
strings.xml file, 348
XML markup, 347

CONFIG_WATCH_
FACE ACTION, 352–353

Java class creation
androidTest folder, 349–350
Choose Destination Directory

dialog, 348
extends keyword, 350
implement methods option, 351–352
implements keyword, 350
OnConnectionFailedListener

interface, 350
KEY_COLOR constants, 424
LinearLayout container

color_array, 426
layout_weight parameter, 425
layout_width parameter, 425
String Array object, 428
String Color constants, 429
Tick Marks, 426
UI layout design, 430

setUpAllPickers() method
setUpColorPickerListener()

method, 440
setUpColorPickerSelection()

method, 439
setUpColorPickerListener() method

AdapterView.OnItemSelected
Listener() method, 435

findViewById() method, 435
getItemAtPosition() method, 437
onItemSelected() method, 436
putInt() method, 438
sendConfigUpdateMessage()

method, 437
sendMessage() method, 439
setUpAllPickers() method, 438
toByteArray() method, 439

setUpColorPickerSelection()
method, 432

findViewById() method, 433
getResources() method, 434

getStringArray() method, 434
getString() method, 433

ProWatchFaceConfigListenerService class
ConnectionResult class, 391
implement methods option, 386–387
MessageEvent interface, 388
onMessageReceived() method, 387

blockingConnect() method, 391
conditional if structures, 389–390
getData() method, 389
Java code, 388

ProWatchFaceService Subclass, 149
ProWatchFaceUtility class, 395

color constants, 397
Color.parseColor() method, 398
key constants, 397
key-value data pairs, 399
Nexuas 5 API, 441

ARM emulator, 446
AVD emulator, 445
compile statements, 443
CPU/ABI column, 447
Gradle configuration file, 443
package error, 442
Run command, 448
Virtual Device Configuration

dialog, 446
overwriteKeysInConfigDataMap()

method, 422
parseColor() method, 398
parseOptionColor() method, 398
ProWatchFaceCompanionConfigActivity

(see ProWatchFace
CompanionConfigActivity)

putConfigDataItem() method, 399
PutDataMapRequest class

asPutDataRequest() method, 400
create() method, 401
getDataMap() method, 401
getUri() method, 401
putAll() method, 402
putConfigDataItem() method, 402

toLowerCase() method, 398
unique identifier, 396

ProWatchFaceUtility(){ } constructor.
See Java singleton

Public abstract class, 149

548 Index

Public constructor method, 176
putAll() method, 384
putByteArray() method, 384
putDataMap() method, 384

R ■
Real-Time 3D Rendering, 56

AEP, 58
OpenGL ES 3.1

compute shader, 57
effects, 56
Enhanced Texture Mapping, 57
stencil texture mapping, 57
<uses-feature> tag, 58
Tegra K1 microprocessor, 57

Real-time communications (RTC), 62
Real-world hardware devices.

See Hardware devices
Rebuilding project structure, 509
RecyclerView library, 523
registerNetworkCallback() method, 51
.registerReceiver() method, 197
registerTimeZoneReceiver()

method, 190, 194, 230
conditional if() structure, 199
context object, 200
.unregisterReceiver(), 201
unregisterTimeZoneReceiver()

method, 198
release() method, 374
remove() method, 385
requestNetwork() method, 51
ResourcesCompat class, 492

S ■
Scalable Vector Graphics (SVG), 127
Search and replace, IntelliJ code format, 86
sendEmptyMessageDelayed() method, 279
.sendEmptyMessage() method, 204
setAlpha() method, 238, 263, 290, 333
.setAmbientPeekMode(int

ambientPeekMode) method, 176
setAntiAlias() method, 242, 257, 268
setARGB() method, 238, 241, 290
.setBackgroundVisibility(int

backgroundVisibility) method, 176
setBurnInProtect() method, 258, 290–291

.setCardPeekMode(int peekMode)
method, 176

setCategory() method, 65
setColor() helper method, 238
setColor() method, 333
setContentView() method, 94, 356
.setGregorianChange() method, 495
.setHotwordIndicatorGravity(int

hotwordIndicatorGravity)
method, 176

.setInterval() method, 533

.set() methods, 175

.setOnLayoutInflatedListener() method, 95

.setPeekOpacityMode(int
peekOpacityMode) method, 176

setResultCallback() method, 373
.setShowSystemUiTime(boolean

showSystemUiTime) method, 177
setShowUnreadCountIndicator(boolean

show) method, 177
.setStatusBarGravity(int statusBarGravity)

method, 177
setStrokeCap() method, 243
setStrokeWidth() method, 241–242, 292
setStyle() method, 261
.setTimeInMillis() method.

onDraw() method
.setTimeZone() method, 501
.setTimeZone() Method, 498
setToNow() method, 188, 192, 280
setVisibility() method, 64
setWatchFaceStyle() method, 221

.build() method, 181
configuration methods and

constants, 181
gravity object, 179
IntelliJ method helper dialog, 177
setBackgroundVisibility() method, 180
setHotwordIndicatorGravity, 178

ShapeDrawable, 300
show() method, 378
size() method, 385
Smartphone and smartwatch

Android Debug Bridge (see Android
Debug Bridge (ADB))

bluetooth debugging, 468
Sony SmartWatch 3, 460
wear API, 459

549Index

Software Development
Kit (SDK), 26, 34

analog WatchFace service class, 515
Google Play Services, 518
gradle files, 505
Gradle sync issue project, 515
import project, 509
invalidate and restart, 509
Java/XML, 519
manager

bad record MAC error, 78
configure panel, 75
downloading SDK updates progress

dialog bar, 78
fetching URL progress bar, 76
google USB driver selection, 76
install dialog package, 77
internal numbering schema, 77

project re-creation, 512
ProWatchFaceService, 514
upgrade process, 504
wear component, 513

Solid-state disk (SSD), 27
Sony SmartWatch 3, 460
Speech recognition

technology, 535
startActivityForResult() method, 68
startActivity() method, 66
startAdvertising() method, 52
startScan() method, 52
StateDrawable, 300
super keyword, 155
SurfaceHolder object

interface methods, 170
onCreate() method, 172

switch() statement, 210
System.currentTimeMillis()

getter method, 500
System time

currentTimeMillis() method, 215
hand movement, 213
invalidate() method, 214
isInAmbientMode() method, 214
isTimerEnabled() method, 213
java system class, 212
WATCH_FACE_UPDATE_RATE

option, 216

T ■
taskAffinity parameter, 163
Television, 521
Television apps

application definition, 522
cardView library, 523
declaration file, 523
leanback library, 523
recyclerView library, 523
XML markup code, 522

Tessellation Shader, 58
Theme attributes, 491
This keyword, 364
3D Modeling, 39
Time class Code, 497
Time processing, 186
Time-related classes and methods

Java Time Utility classes, 182
overview, 169
SurfaceHolder object, 170
time, handler, and Broadcast

Receiver, 186
WatchFaceStyle.Builder, 173
WATCH_FACE_UPDATE constant, 185

TimeUnit class, 182
Time update message creation, 206
TimeZone class, 183
timeZoneReceiver, 191
timeZoneReceiver object

registerTimeZoneReceiver()
method, 194, 198

.setTimeZone() Method, 498–499
toBundle() method, 385
toByteArray() method, 385
.toString(), .hashCode(), and

.writeToParcel() methods, 175

U, V ■
Unique user ID (UID), 49
Universal serial bus (USB) drivers

administrator menu option, 455
browse option, 458
computer (Hardware) management

dialog, 456
device manager entry, 456
download driver, 455

550 Index

file explorer utility, 458
finding model number, 454
installation configuration dialogs, 456
manufacturer web site, 452
Samsung web site, 453
search option, 457
work process, 452

unregisterTimeZoneReceiver()
method, 194, 232

Update info dialog, 72
updateTimeHandler, 207
UPDATE_TIME_MESSAGE constant, 271
UPDATE_TIME_MESSAGE value, 279
.updateTimer() method, 204
updateTimeZoneReceiver, 194

W ■
WAKE_LOCK constant, 148
WAKE_LOCK function, 347
WatchFace Drawing Engine

Canvas public class, 248
centerX and centerY values, 249
Current Time, 249
drawLine() method, 248
for loop structure, 255–256
Hour Hand rotation, 251
IntelliJ, 249–250
isInAmbientMode() Method, 254–255
Java statement, 253
Math.PI method, 251
Minute Hand Line, 253–254
Sine function, 252

WatchFace Painting Engine
class Paint.FontMetricsInt

nested class, 236
class Paint.FontMetrics

nested class, 236
copycat, 238
createHourHand() method, 240, 244
createMinuteHand() method, 244
createSecondHand() method, 244
createTickMarks() method, 245
enum Paint.Align nested class, 236
enum Paint.Cap nested class, 236
enum Paint.Join nested class, 237
enum Paint.Style nested class, 237

geometries, 236
Java class hierarchy code, 236
key components, 237–238
onCreate() method, 246–247
paint object declaration, 239
setAntiAlias() method, 242
setARGB() method, 241
setStrokeCap() method, 243
setStrokeWidth() method, 241–242
super.onCreate() superclass

method, 246
TextPaint class, 236
URL, 238–239

WatchFaces Bitmap design
createScaledBitmap() method, 306
digital image assets, 296
drawable objects

android.graphics.drawable
package, 303, 305

getBitmap() method, 306
Java statement casts, 305
roundFlag Boolean, 301
XML definition file, 304

drawable objects creation, 299
getResources() method, 298–299
onApplyWindowInsets()

method, 293–295
resources class, 297
Round AVD emulator

Additional command line
options, 283–284

bulletproof, 277
burn-in modes, 288
DDMS panel, 278
Disable boot animation, 284–285
Do not launch Activity option, 276
Edit Configurations dialog, 281
emulator-arm.exe error dialog, 283
handleMessage() method, 279
low-bit ambient mode, 287–288
RAM and Internal Storage, 282
Retry and Reset panes, 286
sendEmptyMessageDelayed()

method, 279
Settings option, 278
setToNow() method, 280
Waiting for adb progress

bar dialog, 276

Universal serial bus (USB) drivers (cont.)

551Index

testing
first draw vs. every draw, 313
onApplyWindowInsets()

method, 311
onCreate() method, 312
onDraw() method, 312
round vs. square, 309

WindowInsets class, 293
Watch Faces design, 117

activity_main.xml file, 118
ambient mode, 118–119
AnimationDrawable class, 139

Animation class, 140
Animation superclass, 140
hybrid animation, 140
transformations, 140
vector animation, 140

assumptions, 126
burn-in effect, 120
data assimilation, 125
data integration, 125
data visualization, 125
digital image format

anti-aliasing concept, 135
blending mode, 133
color depth, 130
compression, 136
dithering, 137
Gaussian blur tool, 136
GIF, 128
Hexadecimal notation, 131
image aspect ratio, 129
image compositing, 133
JPEG, 128
masking, 134
pixels, 129
PNG, 128
resolution, 129
RGB color plane, 130
UHDTV screens, 129
WebP, 129

display screen hardware, 119
flexible design, 121
graphic file formats, 127
hybrid design, 121
interactive mode, 118–119
low-bit ambient mode, 120

OS-rendered UI elements
CardView class, 123–124
launcher icon, 124
ListView objects, 124
OK Google phrase, 123
Peek Card, 122
Settings panel, 124
status indicators, 123

round_activity_main.xml file, 118
square_activity_main.xml file, 118
styles, 121
traditional analog clock, 121
vector graphics

GradientDrawable class, 127
ShapeDrawable class, 127
SVG, 127

WatchFaceStyle.Builder, 173
builder methods, 175
.setWatchFaceStyle(), 177
WatchFaceStyle class, 174

watchFaceTime, 188
WATCH_FACE_UPDATE constant, 185
Wearable class, 403

addApi() method, 404
DataItemResultCallback() method, 412

dataItemResult.getDataItem()
method, 414

DataMapItem object, 415
getDataItem() method, 414
getStatus() method, 414
isSuccess() method, 414
onConfigDataMapFetched()

method, 416–417
onResult() method, 416

fetchConfigDataMap() method, 404
error drop-down, 411
fromDataItem() method, 412
getDataItem() method, 410
getLocalNode() method, 407
getLocalNodeResult() method, 408
NodeApi interface, 406
onResult() method, 407
setResultCallback() method, 407, 409
Target Class, 411

onConfigDataMapFetched() method, 419
putAll() method, 420
putConfigDataItem() method, 421

552 Index

onResult() method, 404
overwriteKeysInConfigDataMap() method

empty method, 417
fetchConfigDataMapCallback

object, 418
GoogleApiClient object, 418
IntelliJ, 419

putDataItem() method, 404
setResultCallback() method, 404

Wearables, 2
AR, 3–4
Bluetooth, 8
edutainment, 3
gamification, 3
logical application verticals, 3
Material Design (see Material design)
smartglasses, 4–5
smartwatches, 4–5
types, 3
Wearables application testing. See also

Hardware devices
download and installation, 459
smartwatch, 459
Sony SmartWatch, 3, 460

Wear API deprecation
Android 5.2, 488
calendar and .getDrawable(), 496
.getDrawable() and time, 490
IDE problems, 504
OS update, 487

Wear applications
connection lifecycle, 532
.getLastLocation() method, 534
Google Play Services, 531
.onLocationChanged() method, 535
onPause() method, 532
.onPeerDisconnected() method, 534
speech recognition technology, 535

Wear Emulators, 97
drop-down menu, 106
Host GPU option, 100
LogCat, 105
Run/Debug Configurations dialog, 104
Show chooser dialog option, 106
System Image dialog, 102
Target Device, 105
USB Device option, 106

using AVD Manager
ARM and Intel processors, 100
ARM processor technology, 103
Hardware dialog, 101
Host GPU option, 102
IntelliJ, 98
Neptune Pine SmartWatch, 99
SmartWatch emulators, 99
Verify Configuration dialog, 100
Virtual Device Configuration dialog, 99
Virtual Devices dialog, 101, 103

using IntelliJ Run, 107
adb progress bar, 114
AMD 8-core FX processor, 109
ARM version, 109
green Play (Run) icon, 110
HAXM, 108
intelhaxm-android.exe file, 108
MainActivity.java tab, 112
Paired screen, 114
power-saving mode, 114
ProAndroidWearable application, 115
round_activity_main.xml file, 113
Run/Debug dialog, 112
Run methods, 113
SmartWatch, 111
watch faces, 113
Wear start-up logo screen, 112

Verify Configuration dialog, 102
Wear SDK, 5–6
WebKit Media

PermissionRequest class, 59
WebAudio API, 60
WebGL Support, 62
WebRTC Support, 62

Web Photo (WebP) format, 128
write() method, 54

X, Y, Z ■
XML assets

PNG images, 165
WatchFace Service declaration, 163
watch face wallpaper

android resource directory menu
sequence, 160

resource file, 161
<xml> version container tag, 162

XML definition structure, 358

Wearable class (cont.)

Pro Android Wearables
Building Apps for Smartwatches

Wallace Jackson

Pro Android Wearables: Building Apps for Smartwatches

Copyright © 2015 by Wallace Jackson

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with
reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed
on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or
parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location, in its
current version, and permission for use must always be obtained from Springer. Permissions for use may be
obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution under
the respective Copyright Law.

ISBN-13 (pbk): 978-1-4302-6550-4

ISBN-13 (electronic): 978-1-4302-6551-1

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol
with every occurrence of a trademarked name, logo, or image we use the names, logos, and images only
in an editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
 material contained herein.

Managing Director: Welmoed Spahr
Lead Editor: Steve Anglin
Technical Reviewer: Jeff Tang
Editorial Board: Steve Anglin, Louise Corrigan, Jim DeWolf, Jonathan Gennick, Robert Hutchinson,

Michelle Lowman, James Markham, Susan McDermott, Matthew Moodie, Jeffrey Pepper,
Douglas Pundick, Ben Renow-Clarke, Gwenan Spearing, Steve Weiss

Coordinating Editor: Mark Powers
Copy Editor: Mary Bearden
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com,
or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member (owner) is Springer
Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use.
eBook versions and licenses are also available for most titles. For more information, reference our Special Bulk
Sales–eBook Licensing web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this text is available to readers at
www.apress.com/9781430265504. For additional information about how to locate and download your book’s
source code, go to www.apress.com/source-code/. Readers can also access source code at SpringerLink in the
Supplementary Material section for each chapter.

http://orders-ny@springer-sbm.com
www.springeronline.com
http://rights@apress.com
www.apress.com
www.apress.com/bulk-sales
www.apress.com/9781430265504
www.apress.com/source-code/

The Pro Android Wearables book is dedicated to everyone in the open source community
who is working diligently to make professional new media application development software

and content development tools freely available to rich application developers to utilize to
achieve our creative dreams and our financial goals. Last, but not least, I dedicate this book
to my father, Parker Jackson, my family, my life-long friends, and all my ranch neighbors, for

their constant help, assistance, and those relaxing, late night BBQ parties.

vii

Contents

About the Author ��xix

About the Technical Reviewer ��xxi

Acknowledgments ��xxiii

Introduction ���xxv

 Chapter 1: Introduction to Android Wearables: Concepts, Types, and ■
Material Design ��� 1

Wearable Technology Defined: What Is a Wearable? �� 2

Wearable Application Development: What Types of Apps? ��� 2

Android Wearable Fun: Augmented Reality, Edutainment, and Gamification �� 3

Mainstream Wearables: Smartwatches and Smartglasses �� 4

Smartwatches: Round Watch Face vs� Square Organic Light-emitting Diode �� 5

Smartglasses: Glasses and Other Smartglasses Manufacturers �� 5

Wearable Application Programming Interfaces �� 5

Android Studio 1�0: Android Wear SDK ��� 6

Google Glass Development Kit: GDK for Android or Mirror�� 6

viii Contents

True Android or Android Peripheral: Bluetooth Link �� 8

Wearable Apps Design: Android 5 Material Design �� 9

The Android Material Design Themes: Light and Dark �� 9

Android Material Design View Widgets: Lists and Cards �� 12

Android Material Design Effects: Shadows and Animation ��� 14

Android Material Design Graphics Processing: Drawables ��� 19

What You Will Learn from This Book ��� 22

Summary �� 23

 Chapter 2: Setting Up an Android 5 Wearables Application Development ■
Workstation ��� 25

Work Process for Creating an Android Workstation �� 26

Android Development Workstation: Hardware Foundation ��� 27

Android Development Workstation: Software Foundation �� 28

Java 7: Installing the Foundation for Android Studio �� 28

Android Studio 1�0: Download the Android 5 IDEA ��� 32

Installing Android Studio: IntelliJ IDEA and Android SDK �� 34

Professional Digital Imaging Software: GIMP 2�8�14 �� 36

Professional Digital Video Editing: Lightworks 12 �� 37

Professional 3D Modeling and Animation: Blender �� 39

Professional Digital Audio Editing: Audacity 2�0�6 �� 41

Professional UI Design Wireframing: Pencil Project 2�0�5��� 43

Professional Business Software Suite: OpenOffice 4 ��� 44

Other Open Source and Affordable Media Software ��� 45

Summary �� 45

 Chapter 3: A Foundation for Android Wearables: New Wearable Features ■
in Android 5 ��� 47

Android’s Project Volta: Power Management Tools �� 48

Android 5 Process Scheduler: JobScheduler and JobInfo �� 48

Android 5 Battery Optimizer: The BatteryHistorian Tool �� 49

ixContents

Android’s Network Connection: NFC and Bluetooth ��� 50

Android 5 Multiple Network Support: ConnectivityManager ��� 50

Android 5 Low Energy Bluetooth: The Bluetooth LE API �� 51

Android 5 NFC Improvements: Near Field Communication ��� 52

Android 5 Media: Adding Wow-Factor to Wearables �� 53

Digital Video Playback: MediaController and MediaSession ��� 53

Digital Audio Playback: Enhanced AudioTrack Precision �� 54

Real-Time 3D Rendering: OpenGL ES and Extension Pack ��� 56

WebKit Media: WebView, WebAudio, WebGL, and WebRTC ��� 59

Android MediaBrowser Class: Browsing Third-Party Media ��� 63

Android Camera 2 API: UHD Image Processing Support ��� 63

Android 5 Notifications: LockScreen and MetaData ��� 64

LockScreen Notifications: Privacy Safeguard Control APIs ��� 64

Notification MetaData: Intelligent Notification Classification�� 65

More Android 5 Operating System Enhancements ��� 65

The Recents Screen: Concurrent Document Support ��� 65

Data Storage: Directory Structure Selection Support ��� 67

Second Screen: Screen Capturing and Screen Sharing �� 68

Summary �� 68

Chapter 4: Exploring Android Studio: Getting Familiar with the IntelliJ IDEA ■ ����� 71

Updating IntelliJ IDEA: Using the Update Info Dialog �� 72

Exploring IntelliJ IDEA: Help, Tips, and Keymaps �� 72

Configure Android Studio: Using the SDK Manager �� 75

Run As Administrator: Installing Using Admin Privileges �� 78

Learning the IntelliJ IDEA Basics: Projects and SDK �� 82

IntelliJ Project Level: Developing Android Applications �� 82

IntelliJ Features: SDK, Language Support, and Auto-Coding �� 83

Creating an Android Wearable App: Using IntelliJ �� 86

Summary �� 96

x Contents

 Chapter 5: Android Virtual Devices: Setting Up Wearables ■
Application Emulators ��� 97

Using the AVD Manager: Creating Wear Emulators �� 97

Using Wear Emulators: Testing Your Wearable App �� 104

Using IntelliJ Run: Running Wearable Apps in Round Wear �� 107

Switching AVDs: Running Apps in Round Wear ARM AVD ��� 109

Switching AVDs: Running Apps in Square Wear ARM AVD �� 113

Summary �� 116

 Chapter 6: Introduction to Android Watch Faces Design: Considerations ■
and Concepts ��� 117

Watch Face Design: Considerations and Guidelines��� 118

A Watch Faces UI: Seamless Blending of Art and Function �� 118

Watch Faces Power Usage: Interactive and Ambient Modes �� 118

Watch Face Power Conservation: Low-bit and Burn Protect �� 119

Watch Faces UI Design Shapes: Square vs� Round �� 121

Watch Faces Integration: Assimilating OS Functions ��� 122

Android Notifications: CardView UI Layout Messaging ��� 122

Android Hardware State Indicators: Hardware Mode Status �� 123

Android Hotword Placement: The OK Google Phrase �� 123

Android Peripheral Connection: The Wear Companion App �� 123

Watch Faces Function: Functional Data Integration ��� 124

Data Visualization: The Data You Want a User to See �� 125

Data Integration: A Fusion of Watch Face Design and Data �� 125

Data Assimilation: Use a Simple, Unified Design Objective �� 125

Watch Face Development: Start Basic and Add as You Go ��� 126

Watch Faces Graphic Design: Multimedia Concepts �� 126

Vector Watch Faces: Using SVG, Shapes, and Gradients �� 127

Bitmap Watch Faces: Bitmap Formats and Image Concepts �� 127

Animated Watch Faces: Animation and AnimationDrawable �� 139

Summary �� 141

xiContents

 Chapter 7: Program Watch Faces for Wear: Creating the Watch Face ■
Code Foundation �� 143

Gradle Scripts: Setting Gradle Build Dependencies �� 144

Android Permissions: Watch Face Uses-Permission �� 146

Canvas Watch Face Service: A Watch Face Engine �� 148

The CanvasWatchFaceService Class: An Overview �� 149

Creating a ProWatchFaceService Subclass: extends Keyword ��� 149

The CanvasWatchFaceService�Engine Class: The Engine ��� 151

Creating a Private Engine Class: Using onCreateEngine() �� 152

Watch Face XML Assets: Create and Edit XML Files ��� 160

Watch Face Wallpaper: Creating a Wallpaper Object in XML �� 160

Declaring a WatchFace Service: The XML <service> Tag ��� 163

Watch Face Image Preview: Using Drawable Assets �� 165

Summary �� 167

 Chapter 8: A Watch Faces Timing Engine: Using TimeZone, Time, and ■
BroadcastReceiver �� 169

Your WatchFace Surface: Android SurfaceHolder ��� 170

Android SurfaceHolder Interface: The Watch Face Surface �� 170

A SurfaceHolder Object: onCreate(SurfaceHolder surface) �� 171

Setting Watch Face Style: WatchFaceStyle�Builder �� 173

Android WatchFaceStyle Class: Styling Your Watch Face ��� 174

Android WatchFaceStyle�Builder Class: Building the Style ��� 175

Building Your Watch Face: Using �setWatchFaceStyle() ��� 177

Setting Watch Face Time: The Time-Related Classes ��� 182

Java Time Utility Classes: TimeUnit and TimeZone ��� 182

Keep Watch Face Time: WATCH_FACE_UPDATE Constant ��� 185

Android Classes: Time, Handler, and BroadcastReceiver �� 186

Summary �� 201

xii Contents

 Chapter 9: Implement a WatchFaces Engine: Core WatchFaces ■
API Methods �� 203

WatchFace Seconds Time Engine: Using a Handler ��� 204

Android’s Handler Class: Handling Time Update Messages �� 204

Android’s Message Class: Create a Time Update Message �� 206

Creating a Second Hand Timer: The updateTimeHandler ��� 207

Watch Faces Time Calculation: Using System Time ��� 212

Java System Class: Accessing Time in Milliseconds �� 212

Watch Face Seconds: Calculating Second Hand Movement ��� 213

WatchFaces API: Core Methods to Implement �� 217

Android WatchFaceService Class: Core Constants ��� 217

Adding WatchFaceService Constants: Burn-In and Low-Bit ��� 219

Android WatchFaceService�Engine Class: Core Methods �� 220

Adding WatchFaceService�Engine Methods: Core Function �� 222

Summary �� 233

 Chapter 10: WatchFaces Vector Design: Using Vector Graphics ■
for WatchFaces �� 235

WatchFace Painting Engine: Using the Paint Object ��� 236

Android’s Paint Class: Paint Vector Shapes on the Canvas ��� 236

WatchFaces Painting: Creating Watch Face Paint Objects ��� 239

WatchFace Drawing Engine: The �onDraw() Method �� 248

The Android Canvas Class: Your Canvas Drawing Methods �� 248

Drawing Your WatchFace: Using the �drawLine() Method ��� 248

Advanced Mode Support: Dynamic Paint Methods ��� 256

Controlling Anti-Aliasing: Creating a setAntiAlias() Method ��� 257

Controlling Burn-In: Creating a setBurnInProtect() Method �� 258

Ensuring Mode Support: An ensureModeSupport() Method ��� 262

Invoking Mode Methods: onAmbientModeChanged() �� 267

Returning to Interactive Mode: checkTimer() Method �� 270

Summary �� 273

xiiiContents

 Chapter 11: WatchFaces Bitmap Design: Using Raster Graphics ■
for WatchFaces �� 275

Testing a WatchFaces Design: Using the Round AVD ��� 276

Sending the Whole Second Delay to Your Handler Object �� 279

Setting a Time Object to a Current Time in the Draw Logic �� 280

Testing a WatchFace Design: Using a Square AVD ��� 281

AVD Crashes: Can’t Connect and Not Responding Panels �� 285

Special Screen Modes: Testing the Low-Bit Ambient Mode ��� 287

Special Screen Modes: Testing Low-Bit and Burn-In Modes �� 288

Android WindowInsets Class: Polling Screen Shape �� 293

Detecting WatchFace Shape: Using WindowInsets��� 293

Android Bitmap Class: Using Digital Image Assets ��� 296

Android Resources Class: Using Your Res Folder ��� 297

Accessing Imagery: Using Bitmap and Resources ��� 298

Android Drawable Class: Creating Drawable Objects ��� 299

Loading the Drawable: Using the roundFlag Boolean ��� 301

Android’s BitmapDrawable Class: Image Drawables �� 303

Using BitmapDrawable Object: Extract and Scale �� 305

Scaling Bitmaps: Using the �createScaledBitmap() Method ��� 306

Testing Background Bitmaps: Round vs� Square �� 309

Solving the roundFlag Problem: onCreate() to onDraw() ��� 311

Optimizing Your onDraw(): First Draw vs� Every Draw ��� 313

Summary �� 315

 Chapter 12: WatchFaces Digital Imaging: Developing Multiple ■
Mode Assets �� 317

Ambient Mode Bitmap: GIMP Grayscale Image Mode �� 318

Low-Bit Mode Bitmaps: GIMP’s Posterize Algorithm �� 321

Dithering Low-Bit Imagery: Indexed Mode Conversion��� 323

Creating a Burn-In Mode Bitmap: Using an Invert Algorithm �� 326

xiv Contents

Multimodal Bitmaps: Changing Bitmaps Using Java �� 330

Installing Bitmap Objects into Your Low-Bit Ambient Mode ��� 332

Refining Interactive Mode: Set Tick Marks Color to Black �� 334

Testing Interactive and Ambient Modes in the Square AVD �� 335

Android Wear Burn-In Mode: Bitmap and Java Code ��� 338

Creating Burn-In Mode Bitmaps: GIMP Brightness-Contrast �� 338

Burn-In Protection in Java: if(enableBurnInAmbientMode) �� 340

Testing the Burn-In Protect Mode Bitmap and Java Code �� 342

Summary �� 344

 Chapter 13: Watch Face Configuration Companion Activity: ■
Google Mobile Services ��� 345

Creating a ProWatchFaceCompanionConfigActivity ��� 346

The Mobile App: Adding Your Activity to AndroidManifest��� 346

The Java Class: Creating a WatchFace Companion Activity �� 348

The Wear App: Adding Companion Metadata to Manifest ��� 352

Google Play Services: The GoogleApiClient Class ��� 353

Android’s GoogleApiClient: Using Google Mobile Services ��� 353

Creating the Play Client: Coding Your �onCreate() method ��� 356

The WatchFaceCompanion Class: Configuration Constants �� 360

The ComponentName Class: Specify a Component �� 361

Setting Watch Face Identity: ComponentName and PeerId �� 362

The GoogleApiClient�Builder: Building a Google API Client ��� 363

Building the GoogleApiClient: Using the Wearable API �� 366

Starting and Stopping a Play Client: onStart() and onStop() �� 367

Connect a Client: Creating the onConnected Method ��� 368

Android Uri Class: Uniform Resource Identifier Objects ��� 369

Android Uri�Builder Class: Building an Android URI Object ��� 370

Building a Uri for a Client: Finishing the onConnected() ��� 371

Android’s GMS DataApi Interface: Configuring a Data API �� 372

Using the DataApi Class: Configuring the Wearable�API ��� 373

The Android PendingResult Class: Receiving the Result �� 374

xvContents

Creating a Not Connected Dialog: Using AlertDialog �� 375

Android AlertDialog: Creating an Alert Dialog for Your App ��� 377

Android AlertDialog�Builder: Building the Alert Dialog �� 377

Using AlertDialog�Builder: Coding the AlertDialog System �� 378

Coding an onResult Method: DataItem and DataMap ��� 380

Android’s DataItem Interface: A Foundation for Wear Data��� 381

Loading a DataItem Object: Using a �getDataItem() Method �� 382

Android’s DataMapItem Class: A DataItem with a Map ��� 382

Using a DataMapItem Object: The �fromDataItem() Method ��� 383

Android Data Map ��� 383

Creating a DataMap Object: Using a �getDataMap() Method �� 385

Creating a Listener Service: �onMessageReceived() �� 386

The Android MessageEvent Class: Processing a Message ��� 388

Implementing a MessageEvent Object: Extracting the Data ��� 388

The ConnectionResult Class: Connecting to the Network ��� 391

Implementing a ConnectionResult: Blocking a Connection �� 393

Summary �� 394

 Chapter 14: Watch Face Configuration Companion Activity Utility ■
and Wearable API �� 395

The ProWatchFaceUtility Class: Managing the Data ��� 396

Creating a ProWatchFaceUtility Class: Defining Constants ��� 396

Loading DataItems into a DataMap: �putConfigDataItem() ��� 399

Android PutDataMapRequest Class: Put in a Data Request �� 400

Using PutDataMapRequest to Put a Configuration DataItam �� 401

Android Wearable Class: Android’s Wearable APIs ��� 403

Using the Wearable Class: Putting a DataApi Data Request ��� 404

Using Android’s Node API: �fetchConfigDataMap() Method �� 404

Using Wearable DataApi: DataItemResultCallback() Class ��� 412

Replacing Changed Data: overwriteKeysInConfigDataMap �� 417

Updating a DataMap Object: onConfigDataMapFetched() �� 419

xvi Contents

Connect the Maps: Call the Utility from the Listener �� 422

Finishing the Configuration Companion: UI Design �� 424

Choosing Color Using the Spinner Widget: XML UI Layout �� 425

Setting the Spinner Widget: setUpColorPickerSelection() �� 432

Setting Up a Spinner Listener: setUpColorPickerListener() �� 435

Setting Up All Four Spinners: A �setUpAllPickers() Method �� 439

Testing the WatchFaceCompanion Activity: Nexus 5 �� 441

Summary �� 449

 Chapter 15: Wearables Application Testing: Using Hardware Devices in ■
Android Studio ��� 451

Interfacing a Device with a Computer: USB Drivers ��� 452

Installing Wear API: Linking Smartwatch with Phone ��� 459

Downloading and Installing Wear API: Google Play Store ��� 459

Setting Up the Smartwatch: Sony SmartWatch 3 ��� 460

Using ADB: Linking a Smartphone with the AVD ��� 461

Android Debug Bridge: Networking Hardware and Software ��� 462

Using AVD Inside Android Studio: ADB Port Forwarding ��� 463

Bluetooth Debugging: Linking to your Smartwatch �� 468

Smartwatch Set Up: Pair and Enable Bluetooth Debugging ��� 468

Java Singleton: ProWatchFaceUtility() Constructor �� 470

Testing and Debugging: Creating Your �APK Files ��� 472

The Android Studio Build System: An Overview �� 472

Configuring Gradle Builds: Creating Different APK Types �� 475

Building Your Project: Using the Gradle Build Engine ��� 480

Summary �� 486

 Chapter 16: Wear API Deprecation: Updating Apps to Use New Classes ■
or Methods �� 487

Dealing with the Unexpected Update: Android 5�2 ��� 488

Dealing with Deprecation: �getDrawable() and Time �� 490

Android’s Resources Class: Two �getDrawable() Methods�� 491

The Resources�Theme Nested Class: Theme Attributes ��� 491

xviiContents

The ResourcesCompat Class: Backward Compatibility �� 492

Dealing with Deprecated Classes: The Time Class ��� 493

Upgrading Your Code: Calendar and �getDrawable() �� 496

Upgrading the Time Class Code: Using the Calendar Class �� 497

Upgrading timeZoneReceiver: The �setTimeZone() Method �� 498

Upgrading the onDraw() Method: Using �setTimeInMillis() �� 499

Loading Your Time Variables: Using the �get() Method ��� 501

Upgrade the onVisibilityChanged() Method: �setTimeZone() �� 501

Upgrading the Code: Using the �getDrawable(int, Theme) �� 502

Solving IDE Problems Introduced by SDK Upgrades��� 504

Upgrading Gradle Files: Adding Build Definition Sections �� 505

Using Invalidate and Restart: Rebuilding Project Structure �� 509

Using Import Project ��� 509

Re-creating a Project from Scratch: Copy Code and Assets ��� 512

The Moral of the Story: Android Is More than Java or XML �� 519

Summary �� 519

 Chapter 17: The Future of Android IoT APIs: Android TV, Glass, Auto, ■
and Wear ��� 521

HD and UHD Android TV: The Opposite of Wear �� 522

Android Auto: Android Apps for the Car Dashboard �� 525

Google Glass: Develop Apps for Smart Eyeglasses �� 529

Android Wear: Interesting API Elements to Explore �� 531

Detecting Location: GPS Data from Google Play Services �� 531

Voice Actions: Using Speech Recognition Technology �� 535

Summary �� 538

Index ��� 539

xix

About the Author

Wallace Jackson has been writing for international multimedia
publications about his content production work for major
international brand manufacturers since the advent of
Multimedia Producer Magazine, nearly two decades ago, when
he wrote about advanced computer processor architecture for
an issue centerfold (removable “mini-issue” insert) distributed
at the SIGGRAPH trade show. Since then, he has written for
a number of popular publications about his production work
using interactive 3D and new media advertising campaign
design, including 3D Artist Magazine, Desktop Publishers
Journal, CrossMedia Magazine, AVvideo/Multimedia Producer
Magazine, Digital Signage Magazine, and Kiosk Magazine.

He has authored a half-dozen Android book titles for Apress,
including four titles in the popular Pro Android series. This

particular Pro Android Wearables application development title focuses on the Java 7
programming language that is used with Android 5 (and most other popular platforms as
well) so that developers can “code once, deliver everywhere.” Open source technologies
such as Java, XML, WebKit, Gradle, SQL, and others used in Android 5 allow free for
commercial use applications in an open environment that does not have to be approved and
can make millions in profits.

He is currently the CEO of Mind Taffy Design, a new media content production and digital
campaign design and development agency, located in North Santa Barbara County, halfway
between its clientele in Silicon Valley to the north and in West Los Angeles, Beverly Hills,
Hollywood, “The OC” (Orange County) and San Diego to the south.

Mind Taffy Design has created open source technology-based (HTML5, JavaScript, Java 8,
JavaFX 8, and Android 5) digital new media content deliverables for more than a quarter
century (since 1991) for a large number of leading branded manufacturers worldwide,
including Sony, Tyco, Samsung, IBM, Dell, Epson, Nokia, TEAC, Sun, Micron, SGI, and
Mitsubishi.

xx About the Author

He received his undergraduate degree in business economics from the University of
California at Los Angeles (UCLA). He received his graduate degree in MIS design and
implementation from the University of Southern California (USC). He also received his
postgraduate degree in marketing strategy at USC, and completed the USC graduate
entrepreneurship program. His USC degrees were completed while at the USC night-
time Marshall School of Business MBA program, which allowed him to work full time as a
programmer while he completed his graduate and his postgraduate business degrees.

xxi

About the Technical
Reviewer

Jeff Tang has successfully developed mobile, web, and
enterprise apps on many platforms. He became a Microsoft-
certified developer and a Sun-certified Java developer last
century; had Apple-featured, top-selling iOS apps in the App
Store; and was recognized by Google as a top Android market
developer. He has a master’s degree in computer science
with an emphasis on artificial intelligence and believes in
lifelong learning. He loves playing basketball (he once made
11 three-pointers and 28 free throws in a row), reading Ernest
Hemingway and Mario Puzo, and fantasizing about traveling
around the world.

xxiii

Acknowledgments

I would like to acknowledge all my fantastic editors and the support staff at Apress who
worked long hours and toiled so diligently on this book to make it the ultimate Pro Android
Wearables title.

Steve Anglin, for his work as the Lead Editor for this book, and for hiring me to write all of
these Android and Java programming titles over the past decade.

Matthew Moodie, for his work as the Development Editor on the book, and for his
experience and guidance during the process of making this book one of the truly great Pro
Android smartwatch software development titles.

Mark Powers, for his work as the Coordinating Editor for this book, and for his constant
diligence in making sure I hit, or surpassed, my always looming writing and editing
deadlines.

Mary Bearden, for her work as the Copy Editor on this book, and for her close attention to
every detail, and also for conforming the text to the current Apress book writing standards.

Jeff Tang, for his work as the Technical Reviewer on the book, and for making sure I didn’t
make any programming mistakes. Java code with mistakes does not run properly, if at all,
unless they are very lucky mistakes, which is quite rare in computer programming these
days.

Finally, I’d like to acknowledge Oracle for acquiring Sun Microsystems and for continuing
to enhance Java, so that it remains the premiere open source programming language, and
Google, for making 64-bit Android 5 the premiere open source operating system and for
acquiring ON2’s VP8 video codec and making it available to multimedia producers on both
the Android 5 and HTML5 interactive content development platforms.

	Contents at a Glance
	Contents
	About the Author
	About the TechnicalReviewer
	Acknowledgments
	Introduction
	Chapter 1: Introduction to Android Wearables: Concepts, Types, and Material Design
	Wearable Technology Defined: What Is a Wearable?
	Wearable Application Development: What Types of Apps?
	Android Wearable Fun: Augmented Reality, Edutainment, and Gamification

	Mainstream Wearables: Smartwatches and Smartglasses
	Smartwatches: Round Watch Face vs. Square Organic Light-emitting Diode
	Smartglasses: Glasses and Other Smartglasses Manufacturers

	Wearable Application Programming Interfaces
	Android Studio 1.0: Android Wear SDK
	Google Glass Development Kit: GDK for Android or Mirror
	Google Glass’s Android Studio GDK: The Glass Development Kit
	Develop Google Glass Apps Using Only the Android Environment
	Using RESTful Services with Google Glass: The Mirror API
	Hybrid Glass Applications: Mixing Android GDK and the Mirror API

	True Android or Android Peripheral: Bluetooth Link
	Wearable Apps Design: Android 5 Material Design
	The Android Material Design Themes: Light and Dark
	Defining the Wearable Material Theme: Using the Style Attribute
	Defining the Wearable Material Theme Color Palette: The Item Tag
	Customizing a Wearable Material Theme Status Bar: statusBarColor
	Customizing a Wearable Material Theme: Individual View Themes

	Android Material Design View Widgets: Lists and Cards
	Android RecyclerView Class: Optimized (Recycled) List Viewing
	Android CardView Class: The Index Card Organization Paradigm

	Android Material Design Effects: Shadows and Animation
	Android Material Design 3D Effects: Automatic View Shadowing
	Android Material Design Animation: Touch Feedback for Your UI
	Android Material Design Transitions: Enhanced Activity Transitions
	Android Material Design Motion: Enhanced Motion Curves or Paths
	Android Material Design Animate State Change: StateListAnimator Class

	Android Material Design Graphics Processing: Drawables
	Android 5 Drawable Tinting: .setTint( ) and .setImageTintMode( )
	Android 5 Vector Drawable Objects: The VectorDrawable Class
	Android 5 Automated Color Palette Extraction: The Palette Class
	Android 5 State Animation: An AnimatedStateListDrawable Class

	What You Will Learn from This Book
	Summary

	Chapter 2: Setting Up an Android 5 Wearables Application Development Workstation
	Work Process for Creating an Android Workstation
	Android Development Workstation: Hardware Foundation
	Android Development Workstation: Software Foundation

	Java 7: Installing the Foundation for Android Studio
	Android Studio 1.0: Download the Android 5 IDEA
	Installing Android Studio: IntelliJ IDEA and Android SDK

	Professional Digital Imaging Software: GIMP 2.8.14
	Professional Digital Video Editing: Lightworks 12
	Professional 3D Modeling and Animation: Blender
	Professional Digital Audio Editing: Audacity 2.0.6
	Professional UI Design Wireframing: Pencil Project 2.0.5

	Professional Business Software Suite: OpenOffice 4
	Other Open Source and Affordable Media Software
	Summary

	Chapter 3: A Foundation for Android Wearables: New Wearable Features in Android 5
	Android’s Project Volta: Power Management Tools
	Android 5 Process Scheduler: JobScheduler and JobInfo
	Android 5 Battery Optimizer: The BatteryHistorian Tool

	Android’s Network Connection: NFC and Bluetooth
	Android 5 Multiple Network Support: ConnectivityManager
	Android 5 Low Energy Bluetooth: The Bluetooth LE API
	Android 5 NFC Improvements: Near Field Communication

	Android 5 Media: Adding Wow-Factor to Wearables
	Digital Video Playback: MediaController and MediaSession
	Digital Audio Playback: Enhanced AudioTrack Precision
	Real-Time 3D Rendering: OpenGL ES and Extension Pack
	Open GL ES 3.1: Enhanced 3D Rendering Technology for Android 5
	Android Extension Pack: Simulate OpenGL 4.4 Using OpenGL ES

	WebKit Media: WebView, WebAudio, WebGL, and WebRTC
	Android WebView Class: The PermissionRequest Class
	WebAudio: Digital Audio Synthesis and Real-Time Processing
	WebGL Support: Interactive 3D Rendering, Shading, and Animation
	WebRTC Support: Real-Time Communication for Your Wearables

	Android MediaBrowser Class: Browsing Third-Party Media
	Android Camera 2 API: UHD Image Processing Support

	Android 5 Notifications: LockScreen and MetaData
	LockScreen Notifications: Privacy Safeguard Control APIs
	Notification MetaData: Intelligent Notification Classification

	More Android 5 Operating System Enhancements
	The Recents Screen: Concurrent Document Support
	Data Storage: Directory Structure Selection Support
	Second Screen: Screen Capturing and Screen Sharing

	Summary

	Chapter 4: Exploring Android Studio: Getting Familiar with the IntelliJ IDEA
	Updating IntelliJ IDEA: Using the Update Info Dialog
	Exploring IntelliJ IDEA: Help, Tips, and Keymaps
	Configure Android Studio: Using the SDK Manager
	Run As Administrator: Installing Using Admin Privileges

	Learning the IntelliJ IDEA Basics: Projects and SDK
	IntelliJ Project Level: Developing Android Applications
	IntelliJ Project File Formats: Files, Folders, and Configuration
	The IntelliJ IDEA Directory-based Data Format
	The IntelliJ IDEA File-based Data Format

	IntelliJ Features: SDK, Language Support, and Auto-Coding
	Popular SDKs Supported by IntelliJ: Android, Java, and Flash
	Popular Languages Supported by IntelliJ: Java 8, XML, and Groovy
	IntelliJ Auto-Coding Features: Highlighting, Formatting, and Folding
	IntelliJ Code Highlighting, File Templates, Code Completion, and Code Generation
	IntelliJ Code Formatting, Code Folding, Search and Replace, Macros and Documentation

	Creating an Android Wearable App: Using IntelliJ
	Summary

	Chapter 5: Android Virtual Devices: Setting Up Wearables Application Emulators
	Using the AVD Manager: Creating Wear Emulators
	Using Wear Emulators: Testing Your Wearable App
	Using IntelliJ Run: Running Wearable Apps in Round Wear
	Installing the Intel Hardware Extension Manager: The intelhaxm.exe

	Switching AVDs: Running Apps in Round Wear ARM AVD
	Switching AVDs: Running Apps in Square Wear ARM AVD

	Summary

	Chapter 6: Introduction to Android Watch Faces Design: Considerations and Concepts
	Watch Face Design: Considerations and Guidelines
	A Watch Faces UI: Seamless Blending of Art and Function
	Watch Faces Power Usage: Interactive and Ambient Modes
	Watch Faces Interactive Mode: Full Color with 30 FPS Animation
	Watch Faces Ambient Mode: Grayscale with Per Minute Updates

	Watch Face Power Conservation: Low-bit and Burn Protect
	Low-bit Ultra Power Conservation: Considerations and Techniques
	Burn-in Protection and Prevention: Considerations and Techniques

	Watch Faces UI Design Shapes: Square vs. Round
	Watch Faces Concept Design: Create a Flexible Design Concept
	Watch Faces Style Design: Use a Common Set of Design Styles
	Watch Faces Design Type: Round Analog vs. Square Digital

	Watch Faces Integration: Assimilating OS Functions
	Android Notifications: CardView UI Layout Messaging
	Android Hardware State Indicators: Hardware Mode Status
	Android Hotword Placement: The OK Google Phrase
	Android Peripheral Connection: The Wear Companion App
	Watch Faces Manifest: You Don’t Have to Provide a Launcher Icon
	Watch Faces Control Panel: Your Settings Dialog Panel

	Watch Faces Function: Functional Data Integration
	Data Visualization: The Data You Want a User to See
	Data Integration: A Fusion of Watch Face Design and Data
	Data Assimilation: Use a Simple, Unified Design Objective
	Watch Face Development: Start Basic and Add as You Go

	Watch Faces Graphic Design: Multimedia Concepts
	Vector Watch Faces: Using SVG, Shapes, and Gradients
	Bitmap Watch Faces: Bitmap Formats and Image Concepts
	Android Digital Image Format Support: PNG, JPEG, WebP, and GIF
	The Foundation of Watch Faces Digital Imagery: The Pixel
	The Shape of a Watch Faces Digital Image: The Image Aspect Ratio
	Coloring Your Digital Images: RGB Color Theory
	Amount of Color in Watch Faces Digital Imagery: The Color Depth
	Representing Color in Watch Faces: Using Hexadecimal Notation
	Representing Transparency in Watch Faces: Using Alpha Channels
	Algorithmic Image Compositing in Watch Faces: Blending Modes
	Masking Watch Faces Digital Imagery: Leveraging Alpha Channels
	Smoothing Watch Faces Edges: The Concept of Anti-Aliasing
	Optimizing Your Watch Faces: Digital Image Compression Factors
	Using Indexed Color Images in Watch Faces: Dithering the Pixels

	Animated Watch Faces: Animation and AnimationDrawable
	Frame Animation for Watch Faces: The AnimationDrawable Class
	Tween Animation for Watch Faces: The Animation Classes
	Hybrid Animation for Watch Faces: The Power of Combination

	Summary

	Chapter 7: Program Watch Faces for Wear: Creating the Watch Face Code Foundation
	Gradle Scripts: Setting Gradle Build Dependencies
	Android Permissions: Watch Face Uses-Permission
	Canvas Watch Face Service: A Watch Face Engine
	The CanvasWatchFaceService Class: An Overview
	Creating a ProWatchFaceService Subclass: extends Keyword
	The CanvasWatchFaceService.Engine Class: The Engine
	Creating a Private Engine Class: Using onCreateEngine( )

	Watch Face XML Assets: Create and Edit XML Files
	Watch Face Wallpaper: Creating a Wallpaper Object in XML
	Declaring a WatchFace Service: The XML <service> Tag

	Watch Face Image Preview: Using Drawable Assets
	Summary

	Chapter 8: A Watch Faces Timing Engine: Using TimeZone, Time, and BroadcastReceiver
	Your WatchFace Surface: Android SurfaceHolder
	Android SurfaceHolder Interface: The Watch Face Surface
	A SurfaceHolder Object: onCreate(SurfaceHolder surface)

	Setting Watch Face Style: WatchFaceStyle.Builder
	Android WatchFaceStyle Class: Styling Your Watch Face
	Android WatchFaceStyle.Builder Class: Building the Style
	Building Your Watch Face: Using .setWatchFaceStyle( )

	Setting Watch Face Time: The Time-Related Classes
	Java Time Utility Classes: TimeUnit and TimeZone
	Translating Between Units of Time: Using the TimeUnit Class
	Transitioning Between Time Zones: Using the TimeZone Class

	Keep Watch Face Time: WATCH_FACE_UPDATE Constant
	Android Classes: Time, Handler, and BroadcastReceiver
	The Android Time Class: Time Processing Using Seconds
	Adding the Watch Face Time Object: watchFaceTime
	Android’s BroadcastReceiver Class: Broadcasting Time Messages
	Adding a Time Zone BroadcastReceiver Object: timeZoneReceiver
	Calling Your timeZoneReceiver Object: registerTimeZoneReceiver( )
	Calling Your timeZoneReceiver Object: registerTimeZoneReceiver( )

	Summary

	Chapter 9: Implement a WatchFaces Engine: Core WatchFaces API Methods
	WatchFace Seconds Time Engine: Using a Handler
	Android’s Handler Class: Handling Time Update Messages
	Android’s Message Class: Create a Time Update Message
	Creating a Second Hand Timer: The updateTimeHandler

	Watch Faces Time Calculation: Using System Time
	Java System Class: Accessing Time in Milliseconds
	Watch Face Seconds: Calculating Second Hand Movement

	WatchFaces API: Core Methods to Implement
	Android WatchFaceService Class: Core Constants
	Adding WatchFaceService Constants: Burn-In and Low-Bit
	Android WatchFaceService.Engine Class: Core Methods
	Adding WatchFaceService.Engine Methods: Core Function
	Telling Time While in Ambient Mode: The .onTimeTick( ) Method
	Removing a Watch Face from Memory: The .onDestroy( ) Method
	Determining Low-Bit and Burn-In Modes: .onPropertiesChanged( )
	Determining if the Watch Face Is Visibile: .onVisibilityChanged( )

	Summary

	Chapter 10: WatchFaces Vector Design: Using Vector Graphics for WatchFaces
	WatchFace Painting Engine: Using the Paint Object
	Android’s Paint Class: Paint Vector Shapes on the Canvas
	WatchFaces Painting: Creating Watch Face Paint Objects
	Declare Multiple Paint Objects: Using Compound Java Declarations
	Creating a WatchFace Component Method: Configuring the Paint
	Creating Minute, Second, and Tick WatchFace Component Methods
	Calling the WatchFace Component Paint Methods from .onCreate( )

	WatchFace Drawing Engine: The . onDraw( ) Method
	The Android Canvas Class: Your Canvas Drawing Methods
	Drawing Your WatchFace: Using the . drawLine( ) Method
	Finding the Center of the WatchFace Design: centerX and centerY
	Finding the Current Time: Hours, Minutes, and Seconds Integers
	Rotating an Hour Hand: Using the Math Class PI, Sine, and Cosine
	Rotating a Minute Hand: Using the Math Class PI, Sine, and Cosine
	Rotating Your Second Hand: Using the .isInAmbientMode( ) Method
	Creating Watch Face Tick Marks: Using a Java for Loop Structure

	Advanced Mode Support: Dynamic Paint Methods
	Controlling Anti-Aliasing: Creating a setAntiAlias( ) Method
	Controlling Burn-In: Creating a setBurnInProtect( ) Method
	Ensuring Mode Support: An ensureModeSupport( ) Method

	Invoking Mode Methods: onAmbientModeChanged( )
	Returning to Interactive Mode: checkTimer( ) Method
	Summary

	Chapter 11: WatchFaces Bitmap Design: Using Raster Graphics for WatchFaces
	Testing a WatchFaces Design: Using the Round AVD
	Sending the Whole Second Delay to Your Handler Object
	Setting a Time Object to a Current Time in the Draw Logic

	Testing a WatchFace Design: Using a Square AVD
	AVD Crashes: Can’t Connect and Not Responding Panels
	Special Screen Modes: Testing the Low-Bit Ambient Mode
	Special Screen Modes: Testing Low-Bit and Burn-In Modes

	Android WindowInsets Class: Polling Screen Shape
	Detecting WatchFace Shape: Using WindowInsets
	Android Bitmap Class: Using Digital Image Assets
	Android Resources Class: Using Your Res Folder
	Accessing Imagery: Using Bitmap and Resources
	Android Drawable Class: Creating Drawable Objects
	Loading the Drawable: Using the roundFlag Boolean
	Android’s BitmapDrawable Class: Image Drawables
	Using BitmapDrawable Object: Extract and Scale
	Scaling Bitmaps: Using the . createScaledBitmap( ) Method

	Testing Background Bitmaps: Round vs. Square
	Solving the roundFlag Problem: onCreate( ) to onDraw( )
	Optimizing Your onDraw( ): First Draw vs. Every Draw

	Summary

	Chapter 12: WatchFaces Digital Imaging: Developing Multiple Mode Assets
	Ambient Mode Bitmap: GIMP Grayscale Image Mode
	Low-Bit Mode Bitmaps: GIMP’s Posterize Algorithm
	Dithering Low-Bit Imagery: Indexed Mode Conversion
	Creating a Burn-In Mode Bitmap: Using an Invert Algorithm

	Multimodal Bitmaps: Changing Bitmaps Using Java
	Installing Bitmap Objects into Your Low-Bit Ambient Mode
	Refining Interactive Mode: Set Tick Marks Color to Black
	Testing Interactive and Ambient Modes in the Square AVD

	Android Wear Burn-In Mode: Bitmap and Java Code
	Creating Burn-In Mode Bitmaps: GIMP Brightness-Contrast
	Burn-In Protection in Java: if(enableBurnInAmbientMode)
	Testing the Burn-In Protect Mode Bitmap and Java Code

	Summary

	Chapter 13: Watch Face Configuration Companion Activity: Google Mobile Services
	Creating a ProWatchFaceCompanionConfigActivity
	The Mobile App: Adding Your Activity to AndroidManifest
	The Java Class: Creating a WatchFace Companion Activity
	The Wear App: Adding Companion Metadata to Manifest

	Google Play Services: The GoogleApiClient Class
	Android’s GoogleApiClient: Using Google Mobile Services
	Creating the Play Client: Coding Your .onCreate( ) method
	The WatchFaceCompanion Class: Configuration Constants
	The ComponentName Class: Specify a Component
	Setting Watch Face Identity: ComponentName and PeerId
	The GoogleApiClient.Builder: Building a Google API Client
	Building the GoogleApiClient: Using the Wearable API
	Starting and Stopping a Play Client: onStart( ) and onStop( )

	Connect a Client: Creating the onConnected Method
	Android Uri Class: Uniform Resource Identifier Objects
	Android Uri.Builder Class: Building an Android URI Object
	Building a Uri for a Client: Finishing the onConnected( )
	Android’s GMS DataApi Interface: Configuring a Data API
	Using the DataApi Class: Configuring the Wearable.API
	The Android PendingResult Class: Receiving the Result

	Creating a Not Connected Dialog: Using AlertDialog
	Android AlertDialog: Creating an Alert Dialog for Your App
	Android AlertDialog.Builder: Building the Alert Dialog
	Using AlertDialog.Builder: Coding the AlertDialog System

	Coding an onResult Method: DataItem and DataMap
	Android’s DataItem Interface: A Foundation for Wear Data
	Loading a DataItem Object: Using a .getDataItem( ) Method
	Android’s DataMapItem Class: A DataItem with a Map
	Using a DataMapItem Object: The .fromDataItem( ) Method
	Android Data Map
	Creating a DataMap Object: Using a .getDataMap( ) Method

	Creating a Listener Service: .onMessageReceived( )
	The Android MessageEvent Class: Processing a Message
	Implementing a MessageEvent Object: Extracting the Data
	The ConnectionResult Class: Connecting to the Network
	Implementing a ConnectionResult: Blocking a Connection

	Summary

	Chapter 14: Watch Face Configuration Companion Activity Utility and Wearable API
	The ProWatchFaceUtility Class: Managing the Data
	Creating a ProWatchFaceUtility Class: Defining Constants
	Loading DataItems into a DataMap: .putConfigDataItem( )
	Android PutDataMapRequest Class: Put in a Data Request
	Using PutDataMapRequest to Put a Configuration DataItam

	Android Wearable Class: Android’s Wearable APIs
	Using the Wearable Class: Putting a DataApi Data Request
	Using Android’s Node API: .fetchConfigDataMap( ) Method
	The Android NodeApi Interface: Searching for Connected Nodes
	Harness NodeApi: Using getLocalNode( ) and getLocalNodeResult( )

	Using Wearable DataApi: DataItemResultCallback( ) Class
	Replacing Changed Data: overwriteKeysInConfigDataMap
	Updating a DataMap Object: onConfigDataMapFetched( )

	Connect the Maps: Call the Utility from the Listener
	Finishing the Configuration Companion: UI Design
	Choosing Color Using the Spinner Widget: XML UI Layout
	Setting the Spinner Widget: setUpColorPickerSelection( )
	Setting Up a Spinner Listener: setUpColorPickerListener( )
	Setting Up All Four Spinners: A .setUpAllPickers( ) Method

	Testing the WatchFaceCompanion Activity: Nexus 5
	Summary

	Chapter 15: Wearables Application Testing: Using Hardware Devices in Android Studio
	Interfacing a Device with a Computer: USB Drivers
	Installing Wear API: Linking Smartwatch with Phone
	Downloading and Installing Wear API: Google Play Store
	Setting Up the Smartwatch: Sony SmartWatch 3

	Using ADB: Linking a Smartphone with the AVD
	Android Debug Bridge: Networking Hardware and Software
	Using AVD Inside Android Studio: ADB Port Forwarding

	Bluetooth Debugging: Linking to your Smartwatch
	Smartwatch Set Up: Pair and Enable Bluetooth Debugging

	Java Singleton: ProWatchFaceUtility( ) Constructor
	Testing and Debugging: Creating Your .APK Files
	The Android Studio Build System: An Overview
	Components of a Build System: AAPT, AIDL, DEX, CLASS, and APK
	Android Application Java Code Limitation: 64 Kilobytes of Methods

	Configuring Gradle Builds: Creating Different APK Types
	Configuring Gradle Build: Anatomy of a build.gradle Configuration
	Using ProGuard: Compacting, Optimizing, and Obfuscating Code

	Building Your Project: Using the Gradle Build Engine
	Running the Make Project Utility: Using the Gradle Build Console
	Running Your APK: Using a USB Device Target Device Setting
	Hardwired USB Connection: Setting Up a Smartwatch USB Driver

	Summary

	Chapter 16: Wear API Deprecation: Updating Apps to Use New Classes or Methods
	Dealing with the Unexpected Update: Android 5.2
	Dealing with Deprecation: .getDrawable( ) and Time
	Android’s Resources Class: Two .getDrawable( ) Methods
	The Resources.Theme Nested Class: Theme Attributes
	The ResourcesCompat Class: Backward Compatibility
	Dealing with Deprecated Classes: The Time Class
	The Calendar Class: An Abstract Class for Date and Time
	The GregorianCalendar Class: A Concrete Class for Date and Time

	Upgrading Your Code: Calendar and .getDrawable( )
	Upgrading the Time Class Code: Using the Calendar Class
	Upgrading timeZoneReceiver: The .setTimeZone( ) Method
	Upgrading the onDraw( ) Method: Using .setTimeInMillis( )
	Loading Your Time Variables: Using the .get( ) Method
	Upgrade the onVisibilityChanged( ) Method: .setTimeZone( )
	Upgrading the Code: Using the .getDrawable(int, Theme)

	Solving IDE Problems Introduced by SDK Upgrades
	Upgrading Gradle Files: Adding Build Definition Sections
	Using Invalidate and Restart: Rebuilding Project Structure
	Using Import Project
	Re-creating a Project from Scratch: Copy Code and Assets
	The Moral of the Story: Android Is More than Java or XML

	Summary

	Chapter 17: The Future of Android IoT APIs: Android TV, Glass, Auto, and Wear
	HD and UHD Android TV: The Opposite of Wear
	Android Auto: Android Apps for the Car Dashboard
	Google Glass: Develop Apps for Smart Eyeglasses
	Android Wear: Interesting API Elements to Explore
	Detecting Location: GPS Data from Google Play Services
	Voice Actions: Using Speech Recognition Technology

	Summary

	Index

