
M A N N I N G

DEEP DIVES

EDITED BY
Jeffery Hicks ● Richard Siddaway ● Oisín Grehan ● Aleksandar Nikolić

CONTRIBUTORS

Chris Bellée ● Bartek Bielawski ● Robert C. Cain ● Jim Christopher ● Adam Driscoll ● Josh Gavant ● Jason Helmick ● Don Jones
Ashley McGlone ● Jonathan Medd ● Ben Miller ● James O’Neill ● Arnaud Petitjean ● Vadims Podans ● Karl Prosser ● Boe Prox
Matthew Reynolds ● Mike Robbins ● Donabel Santos ● Will Steele ● Trevor Sullivan ● Jeff Wouters

Author royalties go to support the Save the Children Fund
www.allitebooks.com

http://www.allitebooks.org

PowerShell Deep Dives

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

PowerShell
Deep Dives

Edited by Jeffery Hicks ■ Richard Siddaway
Oisín Grehan ■ Aleksandar Nikolić

M A N N I N G

SHELTER ISLAND

www.allitebooks.com

http://www.allitebooks.org

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 261
Shelter Island, NY 11964
Email: orders@manning.com

©2013 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books
are printed on paper that is at least 15 percent recycled and processed without the use of
elemental chlorine.

Manning Publications Co. Development editor: Cynthia Kane
20 Baldwin Road Copyeditor: Gwen Burda, Tiffany Taylor,
PO Box 261 and Lianna Wlasiuk
Shelter Island, NY 11964 Proofreader: Melody Dolab

Typesetter: Dennis Dalinnik
Cover designer: Marija Tudor

ISBN 9781617291319
Printed in the United States of America

1 2 3 4 5 6 7 8 9 10 – MAL – 18 17 16 15 14 13

www.allitebooks.com

www.manning.com
http://www.allitebooks.org

 To the memory and indomitable spirit of Will Steele

 @pen_test

www.allitebooks.com

http://www.allitebooks.org

vi

authors and their chapters

 Chris Bellée 28

 Bartosz Bielawski 5, 13

 Robert C. Cain 25

 Jim Christopher 22

 Adam Driscoll 14

 Josh Gavant 20

 Jason Helmick 27

 Jeffery Hicks 17

 Don Jones 1

 Ashley McGlone 8

 Jonathan Medd 12

 Ben Miller 23

 James O’Neill 9

 Arnaud Petitjean 3

 Vadims Podans 7

 Karl Prosser 21

 Boe Prox 4, 26

 Matthew Reynolds 15

 Mike F. Robbins 6

 Donabel Santos 24

 Richard Siddaway 2, 16, 19

 Will Steele 11

 Trevor Sullivan 18

 Jeff Wouters 10

www.allitebooks.com

http://www.allitebooks.org

vii

brief contents
PART 1 POWERSHELL ADMINISTRATION1

1 ■ Diagnosing and troubleshooting PowerShell remoting 3

2 ■ CIM sessions 22

3 ■ Collecting and analyzing performance counter data 31

4 ■ TCP port communications with PowerShell 51

5 ■ Managing systems through a keyhole 71

6 ■ Using PowerShell to audit user logon events 80

7 ■ Managing and administering a certification authority
database with PowerShell 93

8 ■ Using PowerShell to reduce Active Directory token bloat 115

PART 2 POWERSHELL SCRIPTING127

9 ■ The 10 PowerShell scripting commandments 129

10 ■ Avoiding the pipeline 150

11 ■ A template for handling and reporting errors 161

12 ■ Tips and tricks for creating complex or advanced
HTML reports with PowerShell 171

13 ■ Using and “abusing” dynamic parameters 192 14

■ PowerShell type formatting 207

15 ■ Scalable scripting for large data sets: pipeline
and database techniques 221

www.allitebooks.com

http://www.allitebooks.org

viii BRIEF CONTENTS

16 ■ Building your own WMI-based cmdlets 236

17 ■ Turning command-line tools into PowerShell tools 247

PART 3 POWERSHELL FOR DEVELOPERS......................259

18 ■ Using Source Control Software with PowerShell 261

19 ■ Inline .NET code 270

20 ■ PowerShell and XML: better together 278

21 ■ Adding automatic remoting to advanced functions
and cmdlets 306

22 ■ Taming software builds (and other complicated processes)
with psake 326

PART 4 POWERSHELL PLATFORMS341

23 ■ PowerShell and the SQL Server provider 343

24 ■ Creating flexible subscriptions in SSRS 354

25 ■ Inventory database table statistics using PowerShell
and SQL Server Management Objects 368

26 ■ WSUS and PowerShell 379

27 ■ Provisioning IIS web servers and sites with PowerShell 392

28 ■ Active Directory Group Management application 406

www.allitebooks.com

http://www.allitebooks.org

ix

contents
preface xxi
acknowledgments xxii
about this book xxiii
about Save the Children xxvi

PART 1 POWERSHELL ADMINISTRATION 1
EDITED BY RICHARD SIDDAWAY

1 Diagnosing and troubleshooting PowerShell remoting 3
DON JONES

Diagnostics examples 3

A perfect remoting connection 6

Connection problem: Blocked port 14

Connection problem: No permissions 16

Connection problem: Untrusted host 19

Summary 20

2 CIM sessions 22
RICHARD SIDDAWAY

WMI 22

CIM cmdlets 23

Using CIM sessions 25

CIM session options 28

Summary 30

www.allitebooks.com

http://www.allitebooks.org

x CONTENTS

3 Collecting and analyzing performance counter data 31
ARNAUD PETITJEAN

Windows Performance Logs and Alerts 31

Enumerating the counter groups 32

Finding the right counters 34

Accessing the counters’ data 37

Controlling the sampling and the collection interval 38
Getting the data from remote computers 39

Using jobs for long-running tasks 40

Saving the performance data to a file 41

Saving the data to a binary file (BLG) 41 ■ Saving the data
to an Excel file (CSV) 43

Manipulating stored performance data from a file 43

Summary 49

4 TCP port communications with PowerShell 51
BOE PROX

Testing for an open port 52

Building a more robust port checker 53

Sending and receiving data 55

Sending data 55 ■ Receiving data 57

LDAP port communications 58

Testing port 389 and receiving data with portqry.exe 58
Testing port 389 and receiving data with PowerShell 58

Creating an Echo server 65

Creating a TPC port listener 65 ■ Handling connections and data 66
Creating the Echo server 67

Summary 69

5 Managing systems through a keyhole 71
BARTOSZ BIELAWSKI

PowerShell remoting 71

Endpoints 72 ■ Constrained endpoints, take one 73
Constrained endpoints, take two 73

PowerShell Web Access 76

Summary 78

xiCONTENTS

6 Using PowerShell to audit user logon events 80
MIKE F. ROBBINS

Event log basics 80

Querying the event logs with PowerShell 81

Auditing logon failures 83

Auditing logon type and authentication protocol 87

Auditing Active Directory user-account lockout events 90

Summary 92

7 Managing and administering a certification authority
database with PowerShell 93
VADIMS PODANS

Existing tools 93

Querying the CA database 94

Accessing the database 95 ■ Getting the database schema 96
Querying the database 98

Advanced administration of the CA database 107

Required APIs 107 ■ Certificate revocation 108 ■ Certificate request
approval and denial 110 ■ CA database cleanup 112

Summary 114

8 Using PowerShell to reduce Active Directory token bloat 115
ASHLEY MCGLONE

SIDs 101 115

Where does the SID history come from? 116

The solution 117

The script 118

Listing domain SIDs and trusts 120

The challenge 120

PowerShell options 121

Active Directory cmdlets 121 ■ WMI 122 ■ NLTEST 122
ADSI 122 ■ .NET 123

The script solution 123

Summary 125

xii CONTENTS

PART 2 POWERSHELL SCRIPTING127
EDITED BY JEFFERY HICKS

9 The 10 PowerShell scripting commandments 129
JAMES O’NEILL

Constructing a sound function 129

Select your function name carefully 130 ■ Start help early 130

Output 132

Keep the pipeline in mind 132 ■ Handle and provide
a path property 133 ■ Use Write- commands properly 133

Parameters 134

Use standard parameter names and aliases 135 ■ Avoid restoring data:
make full use of the common parameters 135 ■ Assign default values
(so constants can be parameters) 136 ■ Be mindful of your users 136
Provide parameters to switch off parts of a complex function
(or script) 136 ■ Accept input from the pipeline 137 ■ Be flexible
about what is acceptable in parameters 138 ■ Using parameter types
and validation properly 139

Example: finding duplicate files 142

Extra tricks for file parameters 144

Convert to paths 145 ■ Use a path property if it exists 145
Pipe the same item into multiple parameters 146

Write code for another person to read 147

Summary 149

10 Avoiding the pipeline 150
JEFF WOUTERS

Requirements 150

Rules of engagement 151

Filtering objects sooner 152

Filtering by property 152 ■ Filtering by condition 153
Returning only the properties that you need 154

Providers and filtering parameters 154

What’s in a name? 155 ■ Where-Object isn’t bad 156

Using regular expressions 156

Using member enumeration 157

Member enumeration and properties 158 ■ Member enumeration
and methods 158 ■ Counting objects 158

Summary 159

xiiiCONTENTS

11 A template for handling and reporting errors 161
WILL STEELE

Using preference variables: $ErrorActionPreference 162

Using structured error handling: try/catch/finally 163

Using $Error and InvocationInfo objects 164

Handling custom business-logic errors with throw and try 167

Final template 168

Summary 170

12 Tips and tricks for creating complex or advanced HTML
reports with PowerShell 171
JONATHAN MEDD

Standard ConvertTo-HTML output 171

Script parameters and help 172

ConvertTo-HTML’s –Fragment parameter 174

Using a PowerShell here-string to create

the HTML header 175

Encoding an image into the HTML report 176

Adding charts to the report 177

Preparing the data for the report 180

Differentiating report data with color 182

Final steps 182

Summary 190

13 Using and “abusing” dynamic parameters 192
BARTOSZ BIELAWSKI

Static parameters 193 ■ Dynamic parameters 195

Practical applications 197

Using dynamic parameters 197 ■ “Abusing” dynamic parameters 201

Summary 206

14 PowerShell type formatting 207
ADAM DRISCOLL

Creating a formatting file 209

View definitions 209

Defining table headers 210

xiv CONTENTS

Conditional row entries 212

Grouping 214

Custom controls 214

Putting it together 216

Loading formatting data 219

Summary 220

15 Scalable scripting for large data sets: pipeline
and database techniques 221
MATTHEW REYNOLDS

The stream and the water balloon 221

Streams and water balloons in PowerShell scripts 222

The problem: holding everything in memory at once 222
The solution: stream over input items instead of collecting them 224
Pipelines are not the enemy of efficiency 225

Making it real: streaming over data in complex

realistic tasks 226

If it quacks like a database … 230

Getting started 230 ■ Getting the data to the database 232
Getting objects and insights back from the database 233
Exploring your PowerShell data outside of PowerShell 234

Summary 235

16 Building your own WMI-based cmdlets 236
RICHARD SIDDAWAY

Discovering WMI-based cmdlets 236

Creating a WMI-based cmdlet 238

Using a WMI-based cmdlet 239

Adding extra filter parameters 240

Creating cmdlets from WMI methods 242

Summary 246

17 Turning command-line tools into PowerShell tools 247
JEFFERY HICKS

Requirements 247

Conversion techniques 248

Looking for PowerShell data formats 248 ■ Parsing text output 251
Handling CLI errors 253

xvCONTENTS

A practical example 254

Summary 257

PART 3 POWERSHELL FOR DEVELOPERS 259
EDITED BY OISÍN GREHAN

18 Using Source Control Software with PowerShell 261
TREVOR SULLIVAN

Requirements 261

When to use source control 262

Introduction to Mercurial 262

Command line versus GUI 263

Common source control operations 264

Initializing a repository 264 ■ Adding files 265
Committing a new changeset 265 ■ Removing files 266

Using Mercurial from PowerShell 267

Script to initialize a repository 267 ■ Script to commit a changeset 267

Working with Mercurial in teams 268

Alternative Mercurial web services 269

Summary 269

19 Inline .NET code 270
RICHARD SIDDAWAY

.NET class for output 270

Output types 270 ■ Creating a .NET class for output 271

.NET class with methods 274

Summary 276

20 PowerShell and XML: better together 278
JOSH GAVANT

What is XML? 279

XML in .NET and PowerShell 282

Get-Content 282 ■ [xml] 283

Adapted objects and XMLNodeAdapter 284

CIM (WMI) adapted objects 285 ■ XML adapted objects 287

xvi CONTENTS

Read and write XML documents 293

Read an XML answer file 293 ■ Modify and save XML data 297

Special XML cases 299

Object serialization 299 ■ Web service communication 302

Summary 304

21 Adding automatic remoting to advanced functions
and cmdlets 306
KARL PROSSER

Delivering economic value 306

An automatic remoting example 307

The pain of manual Invoke-Command 308 ■ The pain
of increasing complexity 309

Defining the user experience 310

It all starts with ComputerName 310 ■ Inspiration from Workflow 311
Is ComputerName alone sufficient? 312 ■ Of parameters
and parameter sets 313

Implementing your solution 314

Inner and outer functions and script blocks 315 ■ Inserting the inner
function and making it work 315 ■ Testing your solution 317

Making it more standard 318

Enabling pipeline support 319

Dealing with the real world and gotchas 321

Accommodating PowerShell versions 321 ■ Dealing with modules 322
Streaming binary DLLs to the target server 322 ■ Making your cmdlets
production-ready 323 ■ “Protecting” intellectual property
and positioning your module as a product 324

Summary 325

22 Taming software builds (and other complicated processes)
with psake 326
JIM CHRISTOPHER

Building software 327

Introducing psake 327

Installing psake 328 ■ psake commands 328

psake build scripts 329

xviiCONTENTS

Running the build script 330

Building Visual Studio projects 331

Using PowerShell in psake tasks 333

Configuring the build with properties 334

Validating property values 336

Managing psake script growth 337

Identifying public tasks 338 ■ Describing your tasks 338
Grouping tasks into files 339

Summary 340

PART 4 POWERSHELL PLATFORMS 341
EDITED BY ALEKSANDAR NIKOLIĆ

23 PowerShell and the SQL Server provider 343
BEN MILLER

Requirements 343

Introduction to the SQL Server provider 344

Using the SQL Server provider 345

Examples of using the SQL Server provider 346

Getting a count of databases in an instance 350

Finding a table in many databases 351

Summary 352

24 Creating flexible subscriptions in SSRS 354
DONABEL SANTOS

Understanding SSRS subscriptions 354

Environment settings 355

Requirements 356

SQL Server and PowerShell requirements 356
Subscription requirements 356

Subscription in action 358

Main script 358 ■ Storing subscriptions 359
Retrieving subscriptions 359 ■ Parsing parameters 361
Delivering subscriptions 363 ■ Scheduling the script 365
Taking it further 367

Summary 367

xviii CONTENTS

25 Inventory database table statistics using PowerShell
and SQL Server Management Objects 368
ROBERT C. CAIN

Understanding SMO 368

Loading SMO 369

The Server object 370

Creating the inventory database using SMO 371

Creating the TableStats table using SMO 372

Resetting from previous runs 374

Gathering inventory data 374

Querying the data 375

Other ways to use the data 376

Summary 378

26 WSUS and PowerShell 379
BOE PROX

WSUS server configuration and events 379

Initial connection 379 ■ Viewing WSUS configuration 380
Viewing the WSUS database connection 381 ■ Viewing WSUS
event history 382

Automatic approval rules 383

Locating approval rules 383 ■ Creating approval rules 384

Reporting in WSUS 386

Failed update installations 386 ■ Auditing approvals 387
Client update status 389

Summary 391

27 Provisioning IIS web servers and sites with PowerShell 392
JASON HELMICK

Rapid IIS deployment 394

Transferring website files and certificates 396

Enabling remote management for IIS Manager 397

Creating a load-balanced web farm 399

Creating an SSL website 401

Automating the process 403

Summary 405

xixCONTENTS

28 Active Directory Group Management application 406
CHRIS BELLÉE

Requirements 406

User Interface development tools 407 ■ Data storage tools
and design 407 ■ Automation and auditing 408
Organizing the project files 409

Designing the UI 409

Rendering the UI 410 ■ Adding UI event-handling logic 412

Handling database interactions 417

Executing SQL statements 417 ■ Implementing UI error handling 419

Writing the Active Directory modification script 420

Summary 422

index 423

www.allitebooks.com

http://www.allitebooks.org

xxi

preface
While I was finishing another book project for Manning, a discussion developed about

a PowerShell Deep Dives book. In the past Manning published two volumes of a SQL

Server Deep Dives book written by a number of SQL Server MVPs and members of the

SQL community. The chapters were intended as in-depth content on specific aspects

of SQL Server. At the time, many of us involved in this book were also part of the

developing PowerShell Deep Dives conference.

 That event brought Microsoft MVPs and community members together for a few

days of intense PowerShell togetherness. Think of it as a geeky Woodstock festival for

PowerShell. The intent was to share PowerShell experiences and ideas on specific—or

even niche—topics that would be hard to cover in a larger conference like Microsoft

TechEd. The PowerShell Deep Dives conference eventually became the PowerShell

Summit that we enjoy today.

 The idea behind this book was to take that conference concept and put it into

book format. The chapters would be short explorations of specific PowerShell ideas—

things that might be presented at the PowerShell Summit. Some of the content in this

book has actually been presented at these conferences.

 I was “volunteered” to serve as lead editor and began my new career as cat wrang-

ler. A call went out and many people offered to contribute chapters to the book as well

as act as section editors. Eventually, we had a tentative table of contents and our volun-

teer authors started writing.

Volunteer is the key word here as nobody associated with this project is receiving any

royalties or advances. Instead, all royalties will be donated to charity, which was also a

part of the SQL Server Deep Dives project. In purchasing this book in any format, you

are supporting the outstanding work of Save the Children.

 On behalf of the authors and my coeditors, we are grateful for your support and

interest in our collective work. Are you ready to dive in deeply and uncover some

PowerShell treasures?

JEFFERY HICKS

xxii

acknowledgments
First, I must thank all of the contributors to this book, including their families and employ-

ers. Writing a book is a major undertaking, regardless of whether you are writing 30 chap-

ters or one. For many of my coauthors this book is their first publication, so not only do I

want to thank them, I also want to congratulate them. This book would never have hap-

pened without the contributions of these members of the PowerShell community.

 Next, I couldn’t have shepherded this book to completion without the assistance

and advice of section editors Oisín Grehan, Richard Siddaway, and Aleksandar Nikolić.

I think the project was more involved than they anticipated and I appreciate their

willingness to stick it out with me—especially Richard who volunteered for section

editor duty in addition to contributing three chapters of his own!

 All of us would like to thank the terrific people at Manning: Cynthia Kane, Michael

Stephens, Mary Piergies, Barbara Mirecki, Kevin Sullivan, Melody Dolab, Lianna

Wlasiuk, Tiffany Taylor, Gwen Burda, and Maureen Spencer. These few are just the tip

of a fantastic iceberg of enthusiastic people who kept us on track, supported this pro-

ject, and, in the end, made it all possible.

 Special thanks to our peer reviewers, who read the chapters during development

and provided invaluable feedback: Adam Rodgers, Allan Miller, Dave Pawson, Don

Westerfield, Douglas Duncan, James Berkenbile, Jeff Dykstra, Klaus Schulte, Mike

Shepard, Subhasis Ghosh, and Thomas Lee.

 Finally, a sincere thank-you to the PowerShell community. It is no overstatement to

say that this community is extremely active, supportive, and welcoming. I’m amazed

not only at how members of the community absorb and welcome contributions like

this book, but also at how they give and share so much of what they’ve learned with

others. This is an incredible group of people. Without their interest and support, this

project would not have come to fruition. Your enthusiasm enriches us all, and espe-

cially the lives touched by Save the Children.

xxiii

about this book
This book is for anyone with an interest in PowerShell. Perhaps you want to learn what

you can accomplish or perhaps you’re trying to solve a problem and you see a chapter

that will help. While the majority of the chapters in the book are written for IT pros,

there is plenty of content for developers and others whose PowerShell experience may

be more peripheral.

 We’re assuming you have some fundamental PowerShell knowledge. If you’re an

absolute beginner, much of the content will be lost on you. This book isn’t intended as a

tutorial for learning PowerShell, but it should teach you how to accomplish certain tasks

or take advantage of a PowerShell feature that goes beyond the core documentation.

 In any event, this is PowerShell content you likely won’t find any place else, written

by PowerShell experts and MVPs.

What version of PowerShell do I need?
This book isn’t targeted at any particular version of PowerShell. There are some chap-

ters that are PowerShell 3.0-specific and that should be evident from reading the

chapter. The safest assumption is that you’re using at least PowerShell 2.0.

Where’s coverage of Microsoft Exchange?
As we were assembling content for this book, we had to use what contributors wanted

to write about, but we also wanted to keep the book broad in scope. Yes, there are a

few chapters that are SQL Server-related, but many of the concepts and techniques

can apply to other PowerShell situations.

 Frankly, products like Microsoft Exchange, which rely heavily on PowerShell,

deserve their own Deep Dives book, and we hope someone from the Exchange com-

munity will step up and lead the effort for a similar book, hopefully with some good

PowerShell content. The same is true of other Microsoft products such as SharePoint

and Active Directory.

xxiv ABOUT THIS BOOK

How the book is organized
This book is divided into 4 parts, each centered on a PowerShell theme:

■ Part 1—PowerShell administration

■ Part 2—PowerShell scripting

■ Part 3—PowerShell for developers

■ Part 4—PowerShell platforms

This isn’t necessarily a hard and fast division. Some chapters could easily have been

assigned to multiple parts. Since the book isn’t intended as a tutorial, you can jump

from chapter to chapter as you see fit. An effort was made within each section to order

content in such a way as to facilitate learning.

Code conventions and downloads
All source code in listings or in text is in a fixed-width font like this to separate

it from ordinary text. We’ve tried to make any code that’s shown as a listing available

as a download. You should test and review all code samples in a non-production envi-

ronment. None of the code listings should be considered production-ready.

 Throughout the book you will see shorter code examples. Many of these are one-

line expressions. Due to printing limitations we have had to take a few liberties with

how code is presented. You might see a command presented like this:

PS C:\> Get-service | where {$_.status –eq 'running'} | select
 ➥ status,displayname

or like this

Get-service |
where {$_.status –eq 'running'} |
select status,displayname

It is the same one-line command. We are trusting that you have enough fundamental

PowerShell knowledge to understand what a basic command looks like and how to use

it either in the shell or a script.

 The source code for the examples in this book is available online from the pub-

lisher’s website at www.manning.com/PowerShellDeepDives.

Author Online
The purchase of PowerShell Deep Dives includes free access to a private web forum run by

Manning Publications, where you can make comments about the book, ask technical

questions, and receive help from the authors and from other users. To access the forum

and subscribe to it, point your web browser to www.manning.com/PowerShellDeepDives.

The Author Online forum and the archives of previous discussions will be accessible

from the publisher’s website as long as the book is in print.

http://www.manning.com/PowerShellDeepDives
http://www.manning.com/PowerShellDeepDives

xxvABOUT THIS BOOK

 This is the place to go to report errors in the book or to receive help with title-

specific content. If you’re looking for more general help with PowerShell, please visit

the forum at http://PowerShell.org. Registration is free and many authors of this book

are active on the site.

About the editors
Jeffery Hicks is the lead editor for PowerShell Deep Dives. The bios and photographs

of the section editors can be found at the end of the introductions for their respec-

tive sections.

■ Part 1—PowerShell administration, edited by Richard Siddaway

■ Part 2—PowerShell scripting, edited by Jeff Hicks

■ Part 3—PowerShell for developers, edited by Oisín Grehan

■ Part 4—PowerShell platforms, edited by Aleksandar Nikolić

Jeffery Hicks is a Microsoft MVP in Windows PowerShell, a Microsoft Certified Trainer,

and an IT veteran with over 20 years of experience, much of it spent as an IT consul-

tant specializing in Microsoft server technologies with an emphasis in automation and

efficiency. He works today as an independent author, trainer, and consultant. Jeff

writes the popular Prof. PowerShell column for MPCMag.com, and is a regular con-

tributor to the Petri IT Knowledgebase, 4SysOps and the Altaro Hyper-V blog, as well

as a frequent speaker at technology conferences and user groups.

 Jeff’s latest books are Manning’s Learn PowerShell 3 in a Month of Lunches, Second

Edition and Learn PowerShell Toolmaking in a Month of Lunches, both with Don Jones,

and PowerShell in Depth: An Administrator’s Guide, coauthored with Don Jones and

Richard Siddaway.

http://PowerShell.org

xxvi

about Save the Children
Save the Children is the leading independent organization creating lasting change in

the lives of children in need in the United States and around the world. Recognized

for their commitment to accountability, innovation, and collaboration, Save the Chil-

dren goes into the hearts of communities, where they help children and families help

themselves. The charity works with other organizations, governments, non-profits,

and a variety of local partners while maintaining their own independence without

political agenda or religious orientation.

 When disaster strikes around the world, Save the Children is there to save lives with

food, medical care, and education, and remains to help communities rebuild through

long-term recovery programs. As quickly and as effectively as Save the Children

responds to tsunamis and civil conflict, it also works to resolve the ongoing struggles

children face every day—poverty, hunger, illiteracy, and disease—and replaces them

with hope for the future.

 Save the Children serves impoverished, marginalized, and vulnerable children and

families in nearly 120 countries. Their programs reach both children and those work-

ing to save and improve their lives, including parents, caregivers, community members,

and members of our partner organizations. They help save children’s lives, protect

them from exploitation, and assist them in accessing education and health care.

 Through disaster risk-reduction, emergency preparedness, rapid humanitarian

relief, and long-term recovery programs, Save the Children also assists millions of girls

and boys at risk of or affected by natural disasters, conflicts, and ethnic violence.

 The editors and contributors of PowerShell Deep Dives are proud to donate the royalties

from this book to this worthy cause. Learn more at www.savethechildren.org.

www.savethechildren.org

PART 1

PowerShell administration

 Edited by Richard Siddaway

PowerShell is a tool for administrators enabling the automation of administra-

tive processes. This first part of the book gives you an overview of the range of

administrative tasks you can tackle and some superb examples of administering

systems with PowerShell.

 PowerShell remoting is fantastic for administering tens, hundreds, or thou-

sands of remote machines. But sometimes, things go wrong. Chapter 1 will show

you how to diagnose and correct problems with PowerShell remoting.

 In PowerShell 1.0 we only had WMI for working with remote machines. Power-

Shell 3.0 introduces a new way to work with WMI on local and remote machines—

the CIM cmdlets and CIM sessions, which are analogous to PowerShell remoting

sessions but only for WMI access, and which are discussed in chapter 2.

 How many times have you heard the phrase, “Users say that server X is run-

ning slowly”? You now need to investigate the server—chapter 3 shows you how

to use PowerShell to collect and analyze the data from performance counters.

 Your network is fundamental to your environment. Chapter 4 presents a set

of PowerShell-based tools that enable you to investigate networking issues, such

as which ports are available, and how to test connectivity by sending data to and

from specific ports.

 The ability to administer servers remotely is key to managing a large environ-

ment. Chapter 5 shows how this concept can be extended to remote management

from almost any device using PowerShell Web Access (a Windows Server 2012 fea-

ture). It provides true role-based access for your remote administration.

 Do you know who is logging onto to your machines, what they're doing, and when

they're doing it? The techniques presented in chapter 6 will enable you to audit your

user logons so you know, and can prove, who is doing what and when. You could

extend these techniques to investigate other events recorded in your event logs.

 Security is one aspect of an administrator's work that never goes away. Certificates

are used in a number of situations including authentication and encryption. Manag-

ing certificates can be a time-consuming activity, but chapter 7 comes to the rescue by

showing you how to use PowerShell to administer your certificate authority database.

 Part 1 closes with chapter 8 which shows you how to manage the size of the Active

Directory token used for authorization. If this token gets too large, users will experi-

ence difficulties logging on and accessing their resources.

 The chapters in this part of the book have one thing in common—the techniques

presented are designed to make your job easier. Automate the mundane and repeti-

tive, and you'll find the time to proactively make your job, and therefore your environ-

ment, better.

 Enjoy!

About the editor

Richard Siddaway has worked with Microsoft technologies for 25

years and is currently automating for Kelway (UK) Ltd. Power-

Shell caught his interest during the early beta releases for version

1.0 back in 2005. Richard blogs extensively about PowerShell and

founded the UK PowerShell User Group in 2007. A PowerShell

MVP for the last six years, Richard gives numerous talks on Power-

Shell at various events in the UK, Europe, and the US. He has pub-

lished a number of articles on PowerShell.

 After writing two PowerShell books—PowerShell in Practice (Manning 2010) and

PowerShell and WMI (Manning 2012)—Richard then collaborated with Don Jones

and Jeff Hicks to write PowerShell in Depth (Manning 2013). Richard is currently

writing an introductory book for Active Directory administrators that features

PowerShell. He can be contacted through his blog at http://msmvps.com/blogs/

RichardSiddaway/Default.aspx.

http://msmvps.com/blogs/RichardSiddaway/Default.aspx
http://msmvps.com/blogs/RichardSiddaway/Default.aspx

3

1 Diagnosing and
troubleshooting PowerShell
remoting

 Don Jones

Troubleshooting and diagnosing remoting can be one of the most difficult tasks for

an administrator. When remoting works, it works; when it doesn’t, it’s often hard to

tell why. Fortunately, PowerShell v3 and its accompanying implementation of

remoting offer much clearer and more prescriptive error messages than prior ver-

sions. But even v2 included an undocumented and little-appreciated module

named PSDiagnostics, which was designed specifically to facilitate remoting trou-

bleshooting. The module lets you turn on detailed trace log information before

you attempt to initiate a remoting connection. You can then use that detailed log

information to get a better idea of where remoting is failing.

 In this chapter I’ll walk you through several troubleshooting examples. The

idea is to help you recognize specific failure situations so that you’ll know what to

do in each case to get things working. Each example focuses on a single scenario,

such as a failed or blocked connection.

Diagnostics examples

For the following scenarios I started by importing the PSDiagnostics module

(note that this is implemented as a script module and requires an execution pol-

icy that permits it to run, such as RemoteSigned or Unrestricted). Figure 1 also

shows that I ran the Enable-PSWSManCombinedTrace command, which starts the

extended diagnostics logging.

 For each scenario I then ran one or more commands that involved remoting, as

demonstrated in figure 2. Afterward, I disabled the trace by running Disable-

PSWSManCombinedTrace, so that the log would only contain the details from that

www.allitebooks.com

http://www.allitebooks.org

4 CHAPTER 1 Diagnosing and troubleshooting PowerShell remoting

Figure 1 Loading the diagnostics module and starting a trace

Figure 2 Entering a session and running a command

5Diagnostics examples

particular attempt (I cleared the log between attempts, so that each scenario provided

a fresh diagnostics log).

 Finally, as shown in figure 3, I retrieved the messages from the log. In the scenarios

I’ll provide an annotated version of these.

NOTE In the examples I’ll typically truncate much of this output so that you can
focus on the most meaningful pieces. Also note the difference between
reading the information from the event log architecture, as in figure 3,
and reading the .EVT trace file directly, as you’ll do in some of the scenar-
ios. The latter will provide combined information from different logs,
which can sometimes be more useful.

I’ll also make use of the Microsoft Windows Remote Management (WinRM)/Analytic

log, which doesn’t normally contain human-readable information. In order to use the

log’s contents I’ll use an internal Microsoft utility to translate the log’s contents into

something you can read. (I’ve been given permission to distribute the utility, which

you can find at http://files.concentratedtech.com/psdiagnostics.zip.)

 Trace information is stored in PowerShell’s installation folder (run cd $pshome to

get there, then change to the Traces folder). The filename extension is .ETL, and you

can use Get-WinEvent –path filename.etl to read a particular file. The Construct-

PSRemoteDataObject command, included in the zip file I referenced, can translate

Figure 3 Examining the logged diagnostic information

http://files.concentratedtech.com/psdiagnostics.zip

6 CHAPTER 1 Diagnosing and troubleshooting PowerShell remoting

portions of the Analytic log’s Message property into human-readable text. A demo

script included in the zip file shows how to use it. As shown in figure 4, I dot-sourced

the Construct-PSRemoteDataObject.ps1 file into my shell in order to gain access to the

commands it contains.

 I also deleted the contents of C:\Windows\System32\WindowsPowerShell\v1.0\Traces

prior to starting each of the following examples. That way, I start each one with a

fresh trace.

A perfect remoting connection
Time for the first scenario: a perfect remoting connection. In this example you go

from a Windows 7 client computer in a domain named AD2008R2 to the domain’s

DC01 domain controller. On the DC, change to the C:\ folder, run a directory, and

then end the session. Figure 5 shows the entire scenario.

 Now read the log in chronological order. You need to be careful; running

Enable-PSWSManCombinedTrace and Disable-PSWSManCombinedTrace creates log

events for those commands. You might want to run the Enable command and then

wait a few minutes before doing anything with remoting. That way, you can tell by

the timestamp in the log when the “real” traffic begins. Wait a few more minutes

before running the Disable command, again so that you can easily tell when the

“real” log traffic ends. Also note that you’ll get information from two logs, WinRM

Figure 4 Dot-sourcing the Construct-PSRemoteDataObject.ps1 script

http://PowerShellBooks.com

7A perfect remoting connection

and PowerShell, although reading the .EVT file with Get-WinEvent will grab every-

thing in sequence.

 The connection begins with (in this example) Enter-PSSession and name resolu-

tion, as shown in figure 6.

 WinRM has to spin up a runspace (a PowerShell process) on the remote com-

puter. That includes setting several options for locale, timing, and so on, as shown in

figure 7.

 This will go on for a while. Eventually you’ll see WinRM beginning to send

“chunks,” which are packetized communications. These are sent via the Simple Object

Access Protocol, so expect to see SOAP referenced a lot. (Web Services Management

[WS-MAN] is a Web service, remember, and SOAP is the communications language of

Web services.) Figure 8 shows a couple of these 1500-byte chunks. Notice that the pay-

load is pretty much gibberish.

 This gibberish is what the Construct-PSRemoteDataObject command can trans-

late. For example, those “sending” messages have an event ID of 32868; by looking for

only those events you can see what’s being sent, as shown in figure 9.

 In this case, the client was asking the server (which is listed as the destination)

about its capabilities, and for some metadata on the Exit-PSSession command

(that’s the second message). This is how the client figures out what kind of server it’s

talking to and other important, preliminary information. Now the client knows what

Figure 5 The example for this scenario: a perfect remoting connection

8 CHAPTER 1 Diagnosing and troubleshooting PowerShell remoting

version of the serialization protocol will be used to send data back and forth, what

time zone the server is in, and other details.

NOTE Event ID 32868 is client-to-server traffic; ID 32867 represents server-to-client
traffic. Using those two IDs along with Construct-PSRemoteDataObject
can reveal the majority of the session transcript once the connection
is established.

Figure 6 Starting the remoting connection

Figure 7 Starting the remote runspace

9A perfect remoting connection

Moving on. As shown in figure 10, you’ll see some authentication back-and-forth,

during which some errors can be expected. The system will eventually get over it and,

as shown, start receiving chunks of data from the server.

 A rather surprising amount of back-and-forth can ensue as the two computers

exchange pleasantries, share information about each other and how they work, and so

on. Change your event log output to include event ID numbers, because those can be

useful when trying to grab specific pieces of data. At this point the log will consist

mainly of the client sending commands and the server sending back the results. This

is more readable when you use Construct-PSRemoteDataObject, so here’s the com-

plete back-and-forth from that perspective. First up is the client’s statement of its ses-

sion capabilities:

destination : Server
messageType : SessionCapability
pipelineId : 00000000-0000-0000-0000-000000000000

Figure 8 Data begins to transfer over the connection

10 CHAPTER 1 Diagnosing and troubleshooting PowerShell remoting

runspaceId : 4358d585-0eab-47ef-a0e6-4b98e71f34ab
data : <Obj RefId="0"><MS><Version
 N="protocolversion">2.2</Version><Version
 N="PSVersion">2.0</Version><Version
 N="SerializationVersion">1.1.0.1</Version><BA N="TimeZon
 e">AAEAAAD/////AQAAAAAAAAAEAQAAABxTeXN0ZW0uQ3VycmVudFN5c
 3RlbVRpbWVab25lBAAAABdtX0NhY2hlZERheWxpZ2h0Q2hhbmdlcw1tX
 3RpY2tzT2Zmc2V0Dm1fc3RhbmRhcmROYW1lDm1fZGF5bGlnaHROYW1lA
 wABARxTeXN0ZW0uQ29sbGVjdGlvbnMuSGFzaHRhYmxlCQkCAAAAAPgpF
 9b///8KCgQCAAAAHFN5c3RlbS5Db2xsZWN0aW9ucy5IYXNodGFibGUHA
 AAACkxvYWRGYWN0b3IHVmVyc2lvbghDb21wYXJlchBIYXNoQ29kZVByb
 3ZpZGVyCEhhc2hTaXplBEtleXMGVmFsdWVzAAADAwAFBQsIHFN5c3Rlb
 S5Db2xsZWN0aW9ucy5JQ29tcGFyZXIkU3lzdGVtLkNvbGxlY3Rpb25zL
 klIYXNoQ29kZVByb3ZpZGVyCOxROD8AAAAACgoDAAAACQMAAAAJBAAAA
 BADAAAAAAAAABAEAAAAAAAAAAs=</BA></MS></Obj>

Then the server’s:

destination : Client
messageType : SessionCapability
pipelineId : 00000000-0000-0000-0000-000000000000
runspaceId : 00000000-0000-0000-0000-000000000000
data : <Obj RefId="0"><MS><Version
 N="protocolversion">2.2</Version><Version
 N="PSVersion">2.0</Version><Version
 N="SerializationVersion">1.1.0.1</Version></MS></Obj>

Figure 9 Translating the data that was sent

11A perfect remoting connection

Next is the server’s $PSVersionTable object, which lists versioning information:

destination : Client
messageType : ApplicationPrivateData
pipelineId : 00000000-0000-0000-0000-000000000000
runspaceId : 4358d585-0eab-47ef-a0e6-4b98e71f34ab
data : <Obj RefId="0"><MS><Obj N="ApplicationPrivateData"
 RefId="1"><TN RefId="0"><T>System.Management.Automation.
 PSPrimitiveDictionary</T><T>System.Collections.Hashtable
 </T><T>System.Object</T></TN><DCT><En><S
 N="Key">PSVersionTable</S><Obj N="Value"
 RefId="2"><TNRef RefId="0" /><DCT><En><S
 N="Key">PSVersion</S><Version
 N="Value">2.0</Version></En><En><S
 N="Key">PSCompatibleVersions</S><Obj N="Value"
 RefId="3"><TN RefId="1"><T>System.Version[]</T><T>System
 .Array</T><T>System.Object</T></TN><LST><Version>1.0</Ve
 rsion><Version>2.0</Version><Version>3.0</Version></LST>
 </Obj></En><En><S N="Key">BuildVersion</S><Version
 N="Value">6.2.8314.0</Version></En><En><S
 N="Key">PSRemotingProtocolVersion</S><Version
 N="Value">2.2</Version></En><En><S
 N="Key">WSManStackVersion</S><Version
 N="Value">3.0</Version></En><En><S
 N="Key">CLRVersion</S><Version
 N="Value">4.0.30319.261</Version></En><En><S
 N="Key">SerializationVersion</S><Version N="Value">1.1.0
 .1</Version></En></DCT></Obj></En></DCT></Obj></MS></Obj
 >

Next the server sends information about the runspace that will be used:

destination : Client
messageType : RunspacePoolStateInfo

Figure 10 Taking care of authentication

12 CHAPTER 1 Diagnosing and troubleshooting PowerShell remoting

pipelineId : 00000000-0000-0000-0000-000000000000
runspaceId : 4358d585-0eab-47ef-a0e6-4b98e71f34ab
data : <Obj RefId="0"><MS><I32
 N="RunspaceState">2</I32></MS></Obj>

The client sends information about its Exit-PSSession command:

destination : Server
messageType : GetCommandMetadata
pipelineId : 03460806-3011-42a6-9843-c54f39ee6fb8
runspaceId : 4358d585-0eab-47ef-a0e6-4b98e71f34ab
data : <Obj RefId="0"><MS><Obj N="Name" RefId="1"><TN RefId="0"
 ><T>System.String[]</T><T>System.Array</T><T>System.Obje
 ct</T></TN><LST><S>Out-Default</S><S>Exit-PSSession</S><
 /LST></Obj><Obj N="CommandType" RefId="2"><TN RefId="1">
 <T>System.Management.Automation.CommandTypes</T><T>Syste
 m.Enum</T><T>System.ValueType</T><T>System.Object</T></T
 N><ToString>Alias, Function, Filter,
 Cmdlet</ToString><I32>15</I32></Obj><Nil N="Namespace"
 /><Nil N="ArgumentList" /></MS></Obj>

Later you’ll see the result of the CD C:\ command, which is the new PowerShell

prompt reflecting the new folder location:

destination : Client
messageType : PowerShellOutput
pipelineId : c913b8ae-2802-4454-9d9b-926ca6032018
runspaceId : 4358d585-0eab-47ef-a0e6-4b98e71f34ab
data : <S>PS C:\> </S>

Next, let’s look at the output of the Dir command. The first bit is writing the column

headers for Mode, LastWriteTime, Length, Name, and so forth. This is all being sent

to the client. I’ve included the first few lines for you, each of which comes across in its

own block:

destination : Client
messageType : RemoteHostCallUsingPowerShellHost
pipelineId : c259c891-516a-46a7-b287-27c96ff86d5b
runspaceId : 4358d585-0eab-47ef-a0e6-4b98e71f34ab
data : <Obj RefId="0"><MS><I64 N="ci">-100</I64><Obj N="mi"
 RefId="1"><TN RefId="0"><T>System.Management.Automation.
 Remoting.RemoteHostMethodId</T><T>System.Enum</T><T>Syst
 em.ValueType</T><T>System.Object</T></TN><ToString>Write
 Line2</ToString><I32>16</I32></Obj><Obj N="mp"
 RefId="2"><TN RefId="1"><T>System.Collections.ArrayList<
 /T><T>System.Object</T></TN><LST><S>Mode
 LastWriteTime Length Name
 </S></LST></Obj></MS></Obj>

destination : Client
messageType : RemoteHostCallUsingPowerShellHost
pipelineId : c259c891-516a-46a7-b287-27c96ff86d5b
runspaceId : 4358d585-0eab-47ef-a0e6-4b98e71f34ab
data : <Obj RefId="0"><MS><I64 N="ci">-100</I64><Obj N="mi"
 RefId="1"><TN RefId="0"><T>System.Management.Automation.

13A perfect remoting connection

 Remoting.RemoteHostMethodId</T><T>System.Enum</T><T>Syst
 em.ValueType</T><T>System.Object</T></TN><ToString>Write
 Line2</ToString><I32>16</I32></Obj><Obj N="mp"
 RefId="2"><TN RefId="1"><T>System.Collections.ArrayList<
 /T><T>System.Object</T></TN><LST><S>----
 ------------- ------ ----
 </S></LST></Obj></MS></Obj>

destination : Client
messageType : RemoteHostCallUsingPowerShellHost
pipelineId : c259c891-516a-46a7-b287-27c96ff86d5b
runspaceId : 4358d585-0eab-47ef-a0e6-4b98e71f34ab
data : <Obj RefId="0"><MS><I64 N="ci">-100</I64><Obj N="mi"
 RefId="1"><TN RefId="0"><T>System.Management.Automation.
 Remoting.RemoteHostMethodId</T><T>System.Enum</T><T>Syst
 em.ValueType</T><T>System.Object</T></TN><ToString>Write
 Line2</ToString><I32>16</I32></Obj><Obj N="mp"
 RefId="2"><TN RefId="1"><T>System.Collections.ArrayList<
 /T><T>System.Object</T></TN><LST><S>d----
 8/25/2010 8:11 AM IT Structures
 </S></LST></Obj></MS></Obj>

destination : Client
messageType : RemoteHostCallUsingPowerShellHost
pipelineId : c259c891-516a-46a7-b287-27c96ff86d5b
runspaceId : 4358d585-0eab-47ef-a0e6-4b98e71f34ab
data : <Obj RefId="0"><MS><I64 N="ci">-100</I64><Obj N="mi"
 RefId="1"><TN RefId="0"><T>System.Management.Automation.
 Remoting.RemoteHostMethodId</T><T>System.Enum</T><T>Syst
 em.ValueType</T><T>System.Object</T></TN><ToString>Write
 Line2</ToString><I32>16</I32></Obj><Obj N="mp"
 RefId="2"><TN RefId="1"><T>System.Collections.ArrayList<
 /T><T>System.Object</T></TN><LST><S>d----
 7/13/2009 11:20 PM PerfLogs
 </S></LST></Obj></MS></Obj>

Eventually the command finishes and you get the prompt again:

destination : Client
messageType : PowerShellOutput
pipelineId : f5c8bc7a-ec54-4180-b2d4-86479f9ea4b9
runspaceId : 4358d585-0eab-47ef-a0e6-4b98e71f34ab
data : <S>PS C:\> </S>

You’ll also see periodic exchanges about the state of the pipeline. The following indi-

cates that the command is done:

destination : Client
messageType : PowerShellStateInfo
pipelineId : f5c8bc7a-ec54-4180-b2d4-86479f9ea4b9
runspaceId : 4358d585-0eab-47ef-a0e6-4b98e71f34ab
data : <Obj RefId="0"><MS><I32
 N="PipelineState">4</I32></MS></Obj>

A lot of data passes back and forth, but it’s possible to make sense of it using these tools.

Frankly, most remoting problems take place during the connection phase, meaning

www.allitebooks.com

http://www.allitebooks.org

14 CHAPTER 1 Diagnosing and troubleshooting PowerShell remoting

once that’s completed successfully you’ll have no further problems. The next scenarios

focus on specific connection errors.

NOTE To clear the log and prepare for a new trace, try deleting the .EVT files
and going into Event Viewer to clear the Applications and Services Logs >
Microsoft > Windows > Windows Remote Management log. If you’re get-
ting errors when running Enable-PSWSManCombinedTrace, one of those
two tasks probably hasn’t been completed.

Connection problem: Blocked port
Figure 11 shows what happens when you try to connect to a computer and the neces-

sary port—5985 by default—isn’t open all the way through. Let’s look at how this

appears in the log.

NOTE I’m assuming you’ve already checked the computer name, made sure it
resolves to the proper IP address, and so forth; what you’re looking at is
definitely a blocked port (because I set it up that way) in this example.

Figure 12 shows that you successfully resolved the computer name. You’ll find that

testing with Enter-PSSession is easiest, because it’s easy to spot that command in the

log and see when the “real” log data begins.

Figure 11 Connection failure due to a firewall or other port-blocking problem

15Connection problem: Blocked port

A lot of the initial log traffic is still WinRM talking to itself, getting set up for the

connection attempt. Keep scrolling through that until you start to see problem indi-

cations. Figure 13 shows a timeout—never a good sign—and the error message gener-

ated by WinRM. As you can see, this is exactly what’s on-screen, so PowerShell isn’t

hiding anything.

 This is one of the trickiest bits of remoting: WinRM can’t tell why the server

didn’t respond. It doesn’t realize that the port isn’t open. For all WinRM knows,

you could have specified a computer name that doesn’t exist. All it sees is that it

sent a message out to the network and nobody replied. In the end, nearly all of the

possible “low-level” problems—bad IP address, bad computer name, blocked port,

and so forth—all look the same to WinRM. You’re on your own to troubleshoot

these problems.

 One useful technique is to use the old command-line Telnet client. Keep in

mind that WS-MAN is HTTP, and HTTP, like many Internet protocols, sends text

back and forth, more or less exactly like Telnet. HTTP has specific text it sends and

looks for, but the transmission is old-school Telnet. Run something like telnet

dc01 5985 to see if you can connect. A blank screen is normal: press Ctrl-C to

break out, and you’ll see an HTTP “Bad Request” error. That’s fine. It means you

got through. That confirms the computer name, IP address, port, and everything

else “low-level.”

Figure 12 Starting the connection attempt

16 CHAPTER 1 Diagnosing and troubleshooting PowerShell remoting

Connection problem: No permissions
This problem can be tricky, because you need to be an Administrator to enable a diag-

nostics trace. On the other hand, WinRM is usually quite clear when you can’t connect

because your account doesn’t have permission to the endpoint: “Access Denied” is the

error message, and that’s pretty straightforward.

 But you can also log on as an Administrator (or open a shell under Administrator

credentials), enable a trace, and then have another user (or your other user account)

make the attempt. Go back in as Administrator, disable the trace, and then examine

the log. Figure 14 shows what you’re looking for.

 The log data after that shows you the user account that tried to create the connec-

tion (AD2008R2\SallyS, in our example, which is why the command failed—she’s not

an Administrator). A quick check with Get-PSSessionConfiguration on the remote

machine will confirm the permissions on whatever remoting endpoint you’re attempt-

ing to connect to. Also, as shown in figure 15, running Set-PSSessionConfiguration

can be useful. Provide the –Name of the endpoint you’re checking, and add –Show-

SecurityDescriptorUI. That will let you confirm the endpoint’s permissions in a

friendlier GUI form, and you can modify it right there if need be.

Figure 13 The timeout error in the diagnostics log

17Connection problem: No permissions

Figure 14 “Access Denied” in the diagnostics log

Figure 15 Checking an endpoint’s permissions using Set-PSSessionConfiguration

18 CHAPTER 1 Diagnosing and troubleshooting PowerShell remoting

COMPANY.loc Domain/

Forest

Two-Way

forest trust

AD2008R2.loc Domain/

Forest

DC01

10.160.201.3/16

Win2008R2

DC01

10.160.39.145/16

Win2008R2
C8956784402

(alias: CLIENTA)

10.160.92.120/16

Win7

C2108222963

(alias: MEMBER1)

10.160.185.109/16

Win208R2

C3096161287

(alias: CLIENT1)

10.160.185.109/16

Win7

Figure 16 Attempted

connection for this

scenario: untrusted host

Figure 17 The error message when attempting to connect to an untrusted host. The

message gives good clues as to how to solve this problem.

19Connection problem: Untrusted host

Connection problem: Untrusted host
In this scenario you try to connect from the client in the AD2008R2 domain to a stand-

alone computer that isn’t part of a domain, as shown in figure 16.

 As shown in figure 17, the error comes quickly, even though you provided a valid

credential. You’re in a situation where WinRM can’t get the mutual authentication it

wants, and that requires additional setup, which I won’t cover here (grab my free

Secrets of PowerShell Remoting from http://PowerShellBooks.com for a walkthrough on

fixing this problem). But what does the problem look like in the diagnostics log?

 Figure 18 shows that WinRM still sends its initial salvo of traffic to the server. The

error is generated when the reply comes back that the client can’t authenticate this

server. What you see in the log is pretty much what shows up in the shell, verbatim.

Figure 18 The diagnostic log content when attempting to connect to an

untrusted host

http://PowerShellBooks.com

20 CHAPTER 1 Diagnosing and troubleshooting PowerShell remoting

Figure 19 shows a good second step to take: run Test-WSMan. Provide the same com-

puter name or IP address, but leave off the –Credential parameter. The cmdlet can at

least tell you that WS-MAN and WinRM are up and running on the remote computer,

and what version they’re running. That narrows the problem down to one of authenti-

cation, involving either your permissions (which would have resulted in “Access

Denied”) or the mutual authentication component of remoting.

NOTE You see substantially the same behavior when you attempt to connect
using HTTPS (the –UseSSL switch on the various remoting commands)
and the remote machine’s SSL certificate name doesn’t match the name
you used in your command. The error message is unambiguous both on-
screen and in the log.

Summary
Why did I bother going through the logs when, in most of the examples, the logs

echoed what was on the screen? It’s simple: as PowerShell becomes embedded in

more and more GUI applications you might not always have a console to rely on, with

its nice error messages. What you can do, however, is use the console to start a trace,

run whatever GUI app is failing, and then dig into the log to see if you find some of

the signs I’ve shown you.

Figure 19 Test-WSMan is like a “ping” for remoting

21Summary

 As for solving these problems, in many cases you’ll have to perform some addi-

tional remoting setup. That can be complex in anything but a “we all live in the same

domain” environment. I’ve put together a step-by-step guide to every configuration

scenario I could think of, complete with screen shots, in a free PDF called Secrets of

PowerShell Remoting, available from http://PowerShellBooks.com. (That site will at least

get you to the guide’s current location.)

About the author

Don Jones is a senior partner and principal technologist for

Concentrated Tech (ConcentratedTech.com). He’s authored and

co-authored six books on Windows PowerShell, including Learn

Windows PowerShell 3 in a Month of Lunches, Learn PowerShell Toolmak-

ing in a Month of Lunches, and PowerShell in Depth. Don is a Microsoft

MVP Award recipient and writes the monthly Windows PowerShell

column for Microsoft’s TechNet Magazine (TechNetMagazine.com).

Don is also the co-founder and CEO for PowerShell.org, where

you’ll find him answering questions in the “General Q&A” and

“Remoting” discussion forums.

http://PowerShellBooks.com

22

2 CIM sessions

 Richard Siddaway

PowerShell v3 introduces a great deal of new functionality. The biggest changes are

associated with Windows Management Instrumentation (WMI).

NOTE WMI is Microsoft’s implementation of the industry standard Common
Information Model (CIM). With the Windows 8/2012 wave of prod-
ucts, Microsoft started moving to a more standards-based approach for
WMI, and new terminology has emerged based on these changes.

 With WMI in PowerShell v3, you get

■ A new API

■ New objects and .NET classes
■ A new set of cmdlets
■ CIM sessions
■ The ability to create cmdlets from WMI classes

One chapter can’t cover all of these topics, so I’m going to concentrate on CIM ses-

sions with a side trip through the CIM cmdlets. For the other topics, see my book

PowerShell and WMI (Manning 2012).

 I start the chapter with a look at how WMI has been used in the past and some of

the problems associated with it, followed by a quick look at the new CIM cmdlets,

including comparisons to the existing WMI cmdlets where applicable.

 Then I discuss CIM sessions, and I close the chapter by showing you how to con-

figure CIM sessions to work with systems that still use legacy versions of PowerShell.

WMI
The WMI cmdlets in PowerShell v2 are great—if you’ve ever tried working with WMI

through VBScript, you’ll appreciate how great they are! But WMI cmdlets do come

with a few problems.

WMI is a terrific tool for working with remote systems (in PowerShell v1 it was

the only remote tool). The problem is that the WMI cmdlets work over Distributed

23CIM cmdlets

Component Object Model (DCOM) for access to remote systems. DCOM isn’t a

firewall-friendly protocol; it needs to be explicitly allowed. The remote machine also

has to allow DCOM access. You can access a remote system by using the –Computer-

Name parameter:

PS> Get-WmiObject -Class Win32_ComputerSystem -ComputerName DC02

If DCOM isn’t configured, you get an error like this:

Get-WmiObject : The RPC server is unavailable. (Exception from HRESULT:
0x800706BA)

At line:1 char:1
+ Get-WmiObject -Class Win32_ComputerSystem -ComputerName DC02
+ ~~
 + CategoryInfo : InvalidOperation: (:) [Get-WmiObject],

COMException
 + FullyQualifiedErrorId :

GetWMICOMException,Microsoft.PowerShell.Commands.GetWmiObjectCommand

The other place where DCOM bites you is on the –Authentication parameter of Get-

WmiObject. This causes confusion because you aren’t authorizing yourself; you’re deter-

mining the level of encryption on the DCOM connection to the remote machine. The

most common scenario is when the WMI provider needs PacketPrivacy—full encryp-

tion on the connection—and won’t allow remote access without it. This issue occurs

with the Internet Information Services (IIS) and cluster WMI providers, for example.

NOTE Local access ignores the need for PacketPrivacy.

You can use PowerShell remoting to overcome the DCOM problems. You’re effectively

running the commands locally and bypassing DCOM. In PowerShell v3 you get

another way to access WMI classes—the CIM cmdlets.

CIM cmdlets
CIM is an industry standard, owned and maintained by the Distributed Management

Task Force (DMTF), which is also responsible for the WS-MAN protocols. WMI is Micro-

soft’s implementation of CIM.

 Try this:

Get-WmiObject -List *_ComputerSystem

You’ll get two classes returned:

■ CIM_ComputerSystem
■ Win32_ComputerSystem

The CIM_ComputerSystem class is the original DMTF standard. The Win32_Computer-

System class is Microsoft’s version. In the root\cimv2 namespace, many of the classes

have a CIM_ and a Win32_ version. They may be identical, or the Win32_ may be a mod-

ified version of the CIM_ class, usually with extra properties. I use the Win32_ class if

there’s a choice.

www.allitebooks.com

http://www.allitebooks.org

24 CHAPTER 2 CIM sessions

 The new CIM API and cmdlets are part of an effort to further the use of CIM/WMI

by a closer adoption of standards, and to link in with the Open Management Infra-

structure initiative.

 The new CIM cmdlets are listed in table 1 with their corresponding WMI cmdlets.

The functioning of the CIM cmdlets is obvious—they do the same job as their WMI

equivalents. But some cmdlets don’t have a WMI equivalent:

■ New-CimInstance—Creates a new instance of a CIM class. In practice, it has lim-

ited applicability. I usually use the Create method of a class through Invoke-

CimMethod.
■ Get-CimAssociatedInstance—Works through WMI associations. Easier to use

than the ASSOCIATORS OF queries in WMI.
■ Get-CimClass—Investigates a CIM class. You can discover properties and meth-

ods (including arguments). Arguably the most useful CIM cmdlet.

Using the CIM cmdlets is similar to using the WMI cmdlets, but note these two differences:

■ You get a different type of object returned.
■ You get an inert object—no WMI methods. Use Invoke-CimMethod to use the

methods of a class.

You can see the differences by comparing the output of the WMI and CIM cmdlets. Try

this code:

Get-WmiObject -Class Win32_ComputerSystem | Get-Member
Get-CimInstance -Class Win32_ComputerSystem | Get-Member

Compare the results to see the changes. You may also see a difference in the default

output from a class because the CIM cmdlets produce a different object; therefore, the

formatting can be different.

Table 1 Comparison of CIM cmdlets and WMI cmdlets

CIM cmdlet WMI cmdlet

New-CimInstance n/a

Get-CimInstance Get-WmiObject

Set-CimInstance Set-WmiInstance

Invoke-CimMethod Invoke-WmiMethod

Remove-CimInstance Remove-WmiObject

Get-CimAssociatedInstance n/a

Get-CimClass n/a

Register-CimIndicationEvent Register-WmiEvent

25Using CIM sessions

 The WMI cmdlets had a –ComputerName parameter for accessing remote systems.

The CIM cmdlets give you a choice: the –CimSession parameter for working with

CIM sessions, or the –ComputerName parameter, which works with one or more com-

puter names.

Using CIM sessions
Let’s take a look at the syntax of Get-CimInstance:

Get-Command Get-CimInstance –Syntax

Get-CimInstance [-ClassName] <string> [-ComputerName <string[]>]
[-KeyOnly] [-Namespace <string>] [-OperationTimeoutSec <uint32>]
[-QueryDialect <string>] [-Shallow] [-Filter <string>]
[-Property <string[]>][<CommonParameters>]

Get-CimInstance [-ClassName] <string> -CimSession <CimSession[]>
[-KeyOnly] [-Namespace <string>] [-OperationTimeoutSec <uint32>]
[-QueryDialect <string>] [-Shallow] [-Filter <string>]
[-Property <string[]>] [<CommonParameters>]

This is an abbreviated version of the output. The important point is that there is a

-ComputerName parameter and a -CimSession parameter. Which should you use? The

following rules control the usage of these parameters:

■ No -ComputerName or -CimSession—Access the local machine using Compo-

nent Object Model (COM).
■ -ComputerName—Access the named machine(s) over WS-MAN. Create the con-

nection, retrieve the data, and break the connection.
■ -CimSession—Access the machine(s) contained in the open session by WS-

MAN by default. DCOM is available as an option.

Those descriptions are reminiscent of PowerShell remoting. Use –ComputerName to access

once or create a session for multiple round trips. The comparison is quite apt. Table 2

compares the CIM session cmdlets with the PowerShell remoting session cmdlets.

Start by using the –ComputerName parameter:

PS> Get-CimInstance -ClassName Win32_OperatingSystem `
-ComputerName W12Standard | Format-List

Table 2 Comparison of CIM session cmdlets and PowerShell remoting cmdlets

CIM session Remoting session

Get-CimSession Get-PSSession

New-CimSessionOption New-PSSessionOption

New-CimSession New-PSSession

Remove-CimSession Remove-PSSession

26 CHAPTER 2 CIM sessions

SystemDirectory : C:\Windows\system32
Organization :
BuildNumber : 9200
RegisteredUser : Windows User
SerialNumber : 00183-80000-02976-AA135
Version : 6.2.9200
PSComputerName : W12Standard

That looks similar to what you would get from Get-WmiObject, so you can assume it’s

working. The system W12Standard is a Windows Server 2012 machine running Power-

Shell v3.

 Now try the same thing against another system, WebR201 running PowerShell v2:

PS> Get-CimInstance -ClassName Win32_OperatingSystem `
-ComputerName webr201 | Format-List

Get-CimInstance : The WS-Management service cannot process the request. A
DMTF resource URI was used to access a non-DMTF class. Try again using a
non-DMTF resource URI.

At line:1 char:1
+ Get-CimInstance -ClassName Win32_OperatingSystem -ComputerName webr201 |

Format- ...
+ ~~
 + CategoryInfo : NotSpecified:

(root\cimv2:Win32_OperatingSystem:String) [Get-CimInstance],
CimException

 + FullyQualifiedErrorId : HRESULT
0x80338139,Microsoft.Management.Infrastructure.CimCmdlets.GetCimInstance
Command

 + PSComputerName : webr201

Oops. You have a problem. The problem is that PowerShell isn’t installed in isolation.

The WS-MAN protocol is also installed with it as part of the WinRM service, which is

used for remoting. Comparing the WS-MAN versions on the two machines, you can see

the difference:

PS> Test-WSMan -ComputerName W12Standard -Authentication Default

wsmid : http://schemas.dmtf.org/wbem/wsman/identity/1/
wsmanidentity.xsd

ProtocolVersion : http://schemas.dmtf.org/wbem/wsman/1/wsman.xsd
ProductVendor : Microsoft Corporation
ProductVersion : OS: 6.2.9200 SP: 0.0 Stack: 3.0

PS> Test-WSMan -ComputerName WebR201 -Authentication Default

wsmid : http://schemas.dmtf.org/wbem/wsman/identity/1/
wsmanidentity.xsd

ProtocolVersion : http://schemas.dmtf.org/wbem/wsman/1/wsman.xsd
ProductVendor : Microsoft Corporation
ProductVersion : OS: 6.1.7601 SP: 1.0 Stack: 2.0

You can see that W12Standard (running PowerShell v3) uses WS-MAN 3.0, but WebR201

(running PowerShell v2) uses WS-MAN 2.0.

27Using CIM sessions

NOTE You must use PowerShell v3 and WS-MAN 3.0 on the remote system for
the –ComputerName parameter on CIM cmdlets to work, including New-
CimSession. You also need the WinRM service running, but you don’t
need to have enabled PowerShell remoting.

The WS-MAN version appears to be a problem. It has a solution, which I’ll get to in a

bit. But first, how do you use a CIM session?

PS> $s = New-CimSession -ComputerName W12Standard
PS> Get-CimInstance -ClassName Win32_OperatingSystem -CimSession $s |
 ➥ Format-List

SystemDirectory : C:\Windows\system32
Organization :
BuildNumber : 9200
RegisteredUser : Windows User
SerialNumber : 00183-80000-02976-AA135
Version : 6.2.9200
PSComputerName : W12Standard

Create a new CIM session using the New-CimSession cmdlet. Supply one or more com-

puter names to be part of the session. Then use the session variable with the –CimSession

parameter. When you create a CIM session you can give it a name, but you can’t use

the name as input to the –CimSession parameter!

 When you create a CIM session involving multiple machines, use a variable like this:

PS> $s = New-CimSession -ComputerName W12Standard, DC02
PS> Get-CimSession

Id : 3
Name : CimSession3
InstanceId : 18d79ba0-9cbc-4462-8c35-063222e5ec6c
ComputerName : W12Standard
Protocol : WSMAN

Id : 4
Name : CimSession4
InstanceId : 28c91894-2384-4416-861c-09c80dddd8f5
ComputerName : DC02
Protocol : WSMAN

You can then access all machines in the session:

Get-CimInstance -ClassName Win32_OperatingSystem -CimSession $s

Alternatively, you can access individual machines within the session:

Get-CimInstance -ClassName Win32_OperatingSystem `
-CimSession (Get-CimSession -ComputerName DC02)

Get-CimInstance -ClassName Win32_OperatingSystem `
-CimSession (Get-CimSession -Id 4)

Get-CimInstance -ClassName Win32_OperatingSystem `
-CimSession (Get-CimSession -Name CimSession4)

http://msmvps.com/blogs/RichardSiddaway/
http://msmvps.com/blogs/RichardSiddaway/

28 CHAPTER 2 CIM sessions

Get-CimInstance -ClassName Win32_OperatingSystem `
-CimSession (Get-CimSession `
-InstanceId 28c91894-2384-4416-861c-09c80dddd8f5)

You can use any of these methods, though the computer name is probably the easiest

to work with.

 So far, you have worked with remote machines running PowerShell v3 and WS-

MAN 3.0. How do you deal with machines running older versions of WS-MAN?

CIM session options
You saw earlier that when you use the –ComputerName parameter with the CIM cmdlets,

the connections are made over the WS-MAN protocol. This connection mechanism

fails for versions of WS-MAN earlier than 3.0; that is, for PowerShell v2.

 When you create a CIM session you can use the –SessionOption parameter to

define one or more options to configure the session. These options are created using

the New-CimSessionOption cmdlet:

PS> Get-Command New-CimSessionOption -Syntax

New-CimSessionOption [-Protocol] <ProtocolType>
 ➥ [-UICulture <cultureinfo>]
 ➥ [-Culture <cultureinfo>][<CommonParameters>]

New-CimSessionOption [-NoEncryption] [-SkipCACheck] [-SkipCNCheck]
[-SkipRevocationCheck][-EncodePortInServicePrincipalName]
[-Encoding <PacketEncoding>] [-HttpPrefix <uri>]
[-MaxEnvelopeSizeKB <uint32>]
[-ProxyAuthentication <PasswordAuthenticationMechanism>]
[-ProxyCertificateThumbprint <string>]
[-ProxyCredential<pscredential>]
[-ProxyType <ProxyType>] [-UseSsl] [-UICulture <cultureinfo>]
[-Culture <cultureinfo>][<CommonParameters>]

New-CimSessionOption [-Impersonation <ImpersonationType>]
[-PacketIntegrity] [-PacketPrivacy]
[-UICulture <cultureinfo>]
[-Culture <cultureinfo>] [<CommonParameters>]

The important parameter for connecting to legacy versions of WS-MAN is the –Protocol

parameter. This enables you to create a session using DCOM as your transport mechanism:

PS> $o = New-CimSessionOption -Protocol DCOM
PS> $sd = New-CimSession -ComputerName webr201 -SessionOption $o
PS> Get-CimInstance -ClassName Win32_OperatingSystem
 ➥ -CimSession $sd | Format-List

SystemDirectory : C:\Windows\system32
Organization :
BuildNumber : 7601
RegisteredUser : Windows User
SerialNumber : 55041-437-0002014-84878
Version : 6.1.7601
PSComputerName : webr201

29CIM session options

If you create a session using WS-MAN as well, like this

PS> $sw = New-CimSession -ComputerName w12standard

you can use them together, like this:

Get-CimInstance -ClassName Win32_OperatingSystem -CimSession $sd,$sw

NOTE If your connection to a remote machine is broken and restored within
about four minutes, for instance due to a reboot of the remote machine,
then the CIM session over WS-MAN will automatically reconnect. A CIM

session over DCOM won’t reconnect.

CIM sessions over DCOM also solve another problem. A number of WMI namespaces

require PacketPrivacy authentication for remote access. IIS is an example. This fails:

PS> Get-WmiObject -Namespace 'root\webadministration' -Class Server
 ➥ -ComputerName webr201

Get-WmiObject : Access denied
At line:1 char:1
+ Get-WmiObject -Namespace 'root\webadministration'
-Class Server -ComputerName we ...
+ ~~
 ➥ ~~~~~~~~~~~~~~~~~~~~~~~~
 + CategoryInfo : InvalidOperation: (:) [Get-WmiObject],

ManagementException
 + FullyQualifiedErrorId : GetWMIManagementException,Microsoft.PowerShell.
 ➥ Commands.GetWmiObjectCommand

You need to use PacketPrivacy, which is specified using the –Authentication

parameter:

PS> Get-WmiObject -Namespace 'root\webadministration'
 ➥ -Class Server -ComputerName webr201 -Authentication 6

__GENUS : 2
__CLASS : Server
__SUPERCLASS : Object
__DYNASTY : Object
__RELPATH : Server=@
__PROPERTY_COUNT : 4
__DERIVATION : {Object}
__SERVER : WEBR201
__NAMESPACE : root\webadministration
__PATH : \\WEBR201\root\webadministration:Server=@
ApplicationDefaults : System.Management.ManagementBaseObject
ApplicationPoolDefaults : System.Management.ManagementBaseObject
SiteDefaults : System.Management.ManagementBaseObject
VirtualDirectoryDefaults : System.Management.ManagementBaseObject
PSComputerName : WEBR201

When you create a CIM session and set the protocol to DCOM, you get PacketPrivacy

automatically set for you. Unfortunately, the information returned by Get-CimSession

doesn’t show this, but it does work:

30 CHAPTER 2 CIM sessions

PS> Get-CimInstance -Namespace 'root\webadministration' `
-Class Server -CimSession $sd

ApplicationDefaults : ApplicationElementDefaults
ApplicationPoolDefaults : ApplicationPoolElementDefaults
SiteDefaults : SiteElementDefaults
VirtualDirectoryDefaults : VirtualDirectoryElementDefaults
PSComputerName : webr201

The other nice thing about CIM cmdlets is that you don’t get the system properties, so

you have a cleaner output.

 Other options available through the New-CimSessionOption cmdlet include

■ The option to set the culture—By default, New-CimSessionOption uses the culture

of the client machine, but you can set the culture to match the server.
■ WS-MAN options (such as skipping certificate checks, using proxies, and maxi-

mum envelope size)—These are analogous to configuring a remoting session

and are used in the same scenarios.
■ WMI impersonation—This is usually not required, as the default is to impersonate.

Summary
CIM sessions provide a more robust, firewall-friendly way to access WMI on remote

machines than using DCOM in the WMI cmdlets. Get to know them; they will save you

work, time, and effort.

About the author

Richard Siddaway has worked with Microsoft technologies for 25

years and has spent time in most IT roles. He currently works for

Kelway (UK) Ltd as an automation consultant. He has a long-

standing interest in automation techniques, and PowerShell has

been his primary automation tool since the early beta versions.

Richard founded the UK PowerShell User Group in 2007 and is a

PowerShell MVP. He frequently speaks at PowerShell user groups

in the UK, Europe, the US, and elsewhere around the world, and

judges the Microsoft Scripting Games. In addition to writing his blog (http://

msmvps.com/blogs/RichardSiddaway/), Richard has authored two PowerShell books:

PowerShell in Practice (Manning 2010) and PowerShell and WMI (Manning 2012), and co-

authored PowerShell in Depth (Manning 2013) with Don Jones and Jeffery Hicks. Cur-

rently he is writing an introductory book for Active Directory administrators that fea-

tures PowerShell.

http://msmvps.com/blogs/RichardSiddaway/
http://msmvps.com/blogs/RichardSiddaway/

31

3 Collecting and analyzing
performance counter data

 Arnaud Petitjean

Most of the time, performance management is a topic that interests IT pros who

have to troubleshoot performance issues. But assessing performance can be impor-

tant in a number of other scenarios, such as before you upgrade a machine to new

hardware, before updating an application to a newer version, when defining per-

formance baselines, or, worse, when users are complaining because their desktop

PC or their business application is performing badly.

 The good news is that Windows embeds all the technologies that allow you to

collect bunches of valuable data, from the global CPU, memory, network, and

disk I/O usage data to detailed information like the resource consumption of a

specific process.

 In this chapter, I’ll cover how to collect, store, and analyze performance counter

data using a dedicated set of PowerShell cmdlets. But first I’ll talk a bit about the

API that PowerShell relies on and what this API can do.

Windows Performance Logs and Alerts
The technology called Performance Logs and Alerts (PLA) is both a protocol and a

software component for logging diagnostic data on remote computers or on local

computers as well. The software component is a set of DCOM interfaces. To summa-

rize, PLA allows you to

■ Collect performance data. That data can be pulled from hardware (a CPU, net-

work, or disk, for example) or software (an application, a process, or a

thread, for example). The logged performance counter data is often useful

for the analysis of performance trends and bottlenecks. The PLA protocol

also supports logging performance counter data in a SQL database format,

a text comma-separated values (CSV) file, or a binary performance log

(BLG) file.

32 CHAPTER 3 Collecting and analyzing performance counter data

■ Collect event tracing data (Event Tracing for Windows, or ETW). The event provider is

software that can create event notifications and generate events when certain

activities, such as a disk I/O operation or a page fault, occur. ETW provides a

tracing mechanism for events raised by both user-mode applications and kernel-

mode device drivers.
■ Collect API tracing data. PLA lets you gather API call activity of an executable in

order to diagnose various issues (for example, detecting unnecessary API calls).
■ Collect configuration information. PLA collects computer settings at the time of col-

lection. You can use the configuration information to verify the system state or

track changes.
■ Generate alerts. PLA allows you to create alerts based on performance counters.

An alert can trigger running a program, logging the alert as an event, or start-

ing another data collection.
■ Start, stop, or schedule data collection. Gathering the data can consist of grouping

sets of counters into collections. PLA lets you start, stop, and schedule the col-

lections in a precise manner.

In this chapter, I’ll focus on PLA’s abilities to gather performance data, create collec-

tions, and manage them. I won’t talk about the other functionalities of PLA.

PLA relies on DCOM, which uses Remote Procedure Call (RPC) as its transport.

That means if you want to use PLA on remote computers using the built-in mecha-

nism, you have to be careful about the firewall configuration. But that isn’t an issue if

you use Windows PowerShell remoting (based on WinRM) to manage your systems

remotely. PowerShell remoting uses an HTTP/HTTPS-based protocol for the transport

that is much more firewall-friendly than RPC.

Enumerating the counter groups

Before collecting data from the performance counters, you need to identify which

ones are the most relevant for your needs and identify their names.

 To do this, use the PowerShell cmdlet Get-Counter and its -ListSet parameter. If

you ask for help for this cmdlet you’ll see two different parameter sets. For now, focus

on the second help syntax:

Get-Counter [-ListSet] <String[]> [-ComputerName <String[]>]
[<CommonParameters>]

Counters are grouped into list sets that are a convenient way to identify all the rele-

vant counters for a particular field. For example, all the counters related to the mem-

ory diagnostics are located under the Memory list set. Similarly, all the counters related

to branch cache management data, network, or PowerShell are put in the following

list sets, respectively: BrancheCache, Network Interface, and PowerShell Workflow.

 Here’s how to get them all:

PS > Get-Counter –ListSet *

33Enumerating the counter groups

Although this command line works, the output isn’t user-friendly; there’s too much

information on the screen. For better readability, use a command line that returns a

small number of properties:

PS > Get-Counter -ListSet * | Sort-Object -Property CounterSetName |
 ➥ Format-Table CounterSetName, Description –AutoSize

CounterSetName Description
-------------- -----------
...
.NET CLR Data .Net CLR Data
.NET CLR Memory Counters for CLR Garbage Collected heap.
ASP.NET ASP.NET global performance counters
BITS Net Utilization BITS Per Job Network Utilization
BranchCache Counters for measuring bandwidth and latency for Br...
Database Database provides performance statistics for each p...
HTTP Service Set of HTTP service counters...
LogicalDisk The Logical Disk performance object consists of cou...
Memory The Memory performance object consists of counters...
Network Interface The Network Interface performance object consists of..
PowerShell Workflow Displays performance counters for PowerShell Workfl...
Processor The Processor performance object consists of counte...
Telephony The Telephony System
Terminal Services Terminal Services Summary Information
...

Or better yet, try the Out-GridView cmdlet:

PS > Get-Counter -ListSet * | Out-GridView

This returns a screen like that shown in figure 1. Then you can sort on the Counter-

SetName property by clicking the column’s name.

Figure 1 List sets in Out-GridView

www.allitebooks.com

http://www.allitebooks.org

34 CHAPTER 3 Collecting and analyzing performance counter data

If you’re curious and want to count how many list sets you have at your disposal, it’s easy:

PS > Get-Counter -ListSet * | Measure-Object |
 ➥ Select-Object -ExpandProperty Count

115

You have 115 list sets on your freshly installed Windows Server 2012 machine. Now

enter a command to get the total number of counters available:

PS > Get-Counter -ListSet * | Select-Object -ExpandProperty Counter |
 ➥ Measure-Object | Select-Object -ExpandProperty Count

1773

Wow! That’s an amazing number of counters, isn’t it? Is it possible to determine how

many counters you have per list set? Sure:

PS > Get-Counter -ListSet * | Select-Object -Property CounterSetName,
 ➥ @{n='#Counters';e={$_.counter.count}} |
 ➥ Sort-Object -Property CounterSetName | Format-Table –AutoSize

CounterSetName #Counters
-------------- ---------
...
.NET CLR Data 6
.NET CLR Memory 23
ASP.NET 19
BITS Net Utilization 8
BranchCache 21
Database 35
HTTP Service 6
...
LogicalDisk 23
Memory 35
Network Interface 18
PowerShell Workflow 29
Processor 15
...

Windows Server 2012 owns more than 1700 performance counters that belong to

more than 110 categories (called the list set).

Finding the right counters
Given the huge number of counters available in Windows, finding the right ones may

not be an easy task. You could browse the web and read numerous documents about

how to assess performance in order to find the appropriate counters, or you could be

more efficient and browse the existing counters installed on your machine. To do this,

you have two options:

■ Option 1—Launch the graphical Performance Monitor console (shown in fig-

ure 2), click the Add Counters icon (the plus sign), and browse the list. Note

that if you check the Show Description box you gain access to detailed informa-

tion about the purpose of every counter.
■ Option 2—Use PowerShell to browse and search the internal repository.

35Finding the right counters

Although option 1 is a valid approach, it doesn’t allow you to copy and paste the coun-

ters’ paths, and you’ll need that information later in order to get the data. This is why

I’ll focus on option 2, the PowerShell option.

 You’ve seen that to view the counters’ sets (the list sets) you need to use the

Get-Counter cmdlet with the -ListSet parameter.

 Suppose you want to find all the counters related to disks. Try this:

PS > Get-Counter -ListSet *disk*

CounterSetName : LogicalDisk
MachineName : .
CounterSetType : MultiInstance
Description : The Logical Disk performance object consists of
 counters that monitor logical partitions of a
 hard or fixed disk drives. Performance Monitor
 identifies logical disks by their a drive
 letter, such as C.
Paths : {\LogicalDisk(*)\% Free Space,
 \LogicalDisk(*)\Free Megabytes,
 \LogicalDisk(*)\Current Disk Queue Length,
 \LogicalDisk(*)\% Disk Time...}
PathsWithInstances : {\LogicalDisk(E:)\% Free Space,
 \LogicalDisk(C:)\% Free Space,

Figure 2 Performance Monitor console—browsing the counters

36 CHAPTER 3 Collecting and analyzing performance counter data

 \LogicalDisk(_Total)\% Free Space,
 \LogicalDisk(E:)\Free Megabytes...}
Counter : {\LogicalDisk(*)\% Free Space,
 \LogicalDisk(*)\Free Megabytes,
 \LogicalDisk(*)\Current Disk Queue Length,
 \LogicalDisk(*)\% Disk Time...}

CounterSetName : PhysicalDisk
MachineName : .
CounterSetType : MultiInstance
Description : The Physical Disk performance object consists
 of counters that monitor hard or fixed disk
 drive on a computer. Disks are used to store
 file, program, and paging data and are read to
 retrieve these items, and written to record
 changes to them. The values of physical disk
 counters are sums of the values of the logical
 disks (or partitions) into which they are
 divided.
Paths : {\PhysicalDisk(*)\Current Disk Queue Length,
 \PhysicalDisk(*)\% Disk Time,
 \PhysicalDisk(*)\Avg. Disk Queue Length,
 \PhysicalDisk(*)\% Disk Read Time...}
PathsWithInstances : {\PhysicalDisk(0 E: C:)\Current Disk Queue
 Length, \PhysicalDisk(_Total)\Current Disk
 Queue Length, \PhysicalDisk(0 E: C:)\% Disk
 Time, \PhysicalDisk(_Total)\% Disk Time...}
Counter : {\PhysicalDisk(*)\Current Disk Queue Length,
 \PhysicalDisk(*)\% Disk Time,
 \PhysicalDisk(*)\Avg. Disk Queue Length,
 \PhysicalDisk(*)\% Disk Read Time...}

The counters are located under the Paths and Counter properties. These two proper-

ties are referencing the same thing because the Counter property is an alias of the

Paths property. In order to extract the counters’ names (or Counter paths in the ter-

minology), use the extremely useful -ExpandProperty parameter of the Select-

Object cmdlet:

PS > Get-Counter -ListSet *disk* | Select-Object -ExpandProperty Paths

\LogicalDisk(*)\% Free Space
\LogicalDisk(*)\Free Megabytes
\LogicalDisk(*)\Disk Transfers/sec
\LogicalDisk(*)\Disk Reads/sec
\LogicalDisk(*)\Disk Writes/sec
\LogicalDisk(*)\Disk Bytes/sec
\LogicalDisk(*)\Disk Read Bytes/sec
\LogicalDisk(*)\Disk Write Bytes/sec
...
\PhysicalDisk(*)\Current Disk Queue Length
\PhysicalDisk(*)\% Disk Time
\PhysicalDisk(*)\% Idle Time
\PhysicalDisk(*)\Split IO/Sec

Now all you have to do is to pick up the right counter, but that’s another story, and will

depend on your needs at the time. But to help prepare for that task, try using option 1

37Accessing the counters’ data

first to browse the available counters and read their descriptions, and then use Power-

Shell (option 2) to get their data once you’ve identified them.

Accessing the counters’ data

Once you determine the counters you want to query, getting the information is

straightforward. Have a look at the first help syntax:

Get-Counter [[-Counter] <String[]>] [-ComputerName <String[]>] [-Continuous
 [<SwitchParameter>]] [-MaxSamples <Int64>] [-SampleInterval <Int32>]
[<CommonParameters>]

The -Counter parameter allows you to specify the names of multiple counters. The

same goes for the second parameter, -ComputerName, which allows a string array of

computer names.

 The -Continuous switch parameter allows you to indicate whether you want to get

the counters’ data continuously, that is, whether the collection should continue while

the PowerShell process is running. The -MaxSamples parameter indicates the number

of samples of data you want to collect. –SampleInterval determines the frequency of

the data collection in seconds. If, for example, you use a value of 10 for -MaxSamples

and 2 for -SampleInterval, you’ll get a total of 10 samples, and each sample will be

collected every 2 seconds.

 Now, try it!

 Suppose you’ve identified an interesting counter, one that returns the current CPU

load of the physical processors. Enter this:

PS > Get-Counter -Counter '\Processor(*)\% Processor Time'

Timestamp CounterSamples
--------- --------------
08/10/2012 10:50:32 PM \\ws2012us-0\processor(0)\% processor time :
 32.9234067811321

 \\ws2012us-0\processor(1)\% processor time :
 0.165070557964087

 \\ws2012us-0\processor(2)\% processor time :
 39.1630898712594

 \\ws2012us-0\processor(3)\% processor time :
 0.165070557964087

 \\ws2012us-0\processor(_total)\% processor time :
 18.1041644417939

As you can see, this shows not only the general CPU load of the computer, but also the

details for all the cores. This example is for a machine with a quad-core CPU, so you

see four instances, one for each core. If you had more physical CPUs you’d see more

instances. For example, a two-socket system with four cores in each CPU would show

eight instances. The _total instance is the average load of all the cores (the sum of

the load of all the cores divided by the number of cores).

38 CHAPTER 3 Collecting and analyzing performance counter data

 If you only want one instance, instead of using an asterisk in the parentheses, spec-

ify the instance name:

PS > Get-Counter -Counter '\Processor(_total)\% Processor Time'

Timestamp CounterSamples
--------- --------------
15/10/2012 11:04:16 PM \\ws2012us-0\processor(_total)\% processor time :
 5.7687964656473

Controlling the sampling and the collection interval

If you don’t ask Get-Counter for a particular number of samples, you only get one.

Although this information can be useful as an instantaneous value, it’s generally best

to be able to get more data.

 The -MaxSample parameter specifies the number of samples to get from each

counter. (To get samples continuously you have to use the -Continuous switch.) In the

following command line you ask for five samples of the selected counter:

PS > Get-Counter -Counter '\Processor(_total)\% Processor Time'
 ➥ –MaxSample 5

Timestamp CounterSamples
--------- --------------
16/10/2012 12:26:38 AM \\ws2012us-0\processor(_total)\% processor time :
 9.62628218427481

16/10/2012 12:26:39 AM \\ws2012us-0\processor(_total)\% processor time :
 11.0301526757573

16/10/2012 12:26:40 AM \\ws2012us-0\processor(_total)\% processor time :
 18.8230172314685

16/10/2012 12:26:41 AM \\ws2012us-0\processor(_total)\% processor time :
 14.6256781806885

16/10/2012 12:26:43 AM \\ws2012us-0\processor(_total)\% processor time :
 14.0962802715194

If you don’t specify an interval, you get the data every second. You can adjust this by

setting the interval with the -SampleInterval parameter. Suppose you want to collect

three samples of data at five-second intervals:

PS > Get-Counter -Counter '\Processor(_total)\% Processor Time'
 ➥ –MaxSample 3 -SampleInterval 5

Timestamp CounterSamples
--------- --------------
16/10/2012 12:32:24 AM \\ws2012us-0\processor(_total)\% processor time :
 10.388804621813

16/10/2012 12:32:29 AM \\ws2012us-0\processor(_total)\% processor time :
 15.1723817764828

16/10/2012 12:32:34 AM \\ws2012us-0\processor(_total)\% processor time :
 17.2179883236179

39Accessing the counters’ data

Getting the data from remote computers

With the -ComputerName parameter you have the ability to query the counters of remote

computers this way:

PS > Get-Counter -Counter '\Processor(_total)\% Processor Time'
 ➥ –Computer ws2012us-0, ws2012us-1

Or:

PS > Get-Counter -Counter
 ➥ '\\ws2012us-0\Processor(_total)\% Processor Time',
 ➥ '\\ws2012us-1\Processor(_total)\% Processor Time'

Although that sounds interesting, it may not be the best option because

■ The servers (the remote machines) and the client have to be in the same domain.
■ You have to be logged in as a domain administrator because Get-Counter

doesn’t have any -Credential parameter that could give you the ability to use

an alternate account.
■ The firewalls on the remote computers have to accept DCOM/RPC protocol

because Get-Counter relies on it.

Because of these drawbacks, and if the requirements aren’t fulfilled, the best option is to

use the PowerShell remoting mechanism; therefore, you could write something like this:

PS > $scriptblock = {
Get-Counter -Counter '\Processor(_total)\% Processor Time'}
PS > Invoke-Command -ComputerName ws2012us-0,ws2012us-1 `
 ➥ -Credential $cred -ScriptBlock $scriptblock

That being said, you have to be careful because there’s a little trick. When you use the

remoting mechanisms with cmdlets like Invoke-Command, PowerShell uses serializa-

tion. That means the data you receive from a remote computer is serialized into XML

to cross the network and then deserialized on your local machine. Hence the object

you get isn’t a live object anymore but a “rehydrated” object that has lost all the meth-

ods from the original object and only has static properties. Furthermore, only one

level of depth is serialized by default, which means that if the original object contains

nested objects you can’t reach them.

 To get around this, you have two options: either dig into the object on the remote

side in order to return the data you’re interested in, or change the default settings to

return more than one level of depth for your data. For the second option, setting a

value of two levels of depth would be sufficient.

 To illustrate, try this snippet:

PS > $scriptblock = {
 Get-Counter -Counter '\Processor(_total)\% Processor Time'}
PS > $r = Invoke-Command -ComputerName ws2012us-0 -ScriptBlock $scriptblock
PS > $r.CounterSamples

Microsoft.PowerShell.Commands.GetCounter.PerformanceCounterSample

40 CHAPTER 3 Collecting and analyzing performance counter data

Because of the serialization mechanism, you get a string containing the type name of

the CounterSamples property instead of getting the expected result.

 Now extract the expected property on the remote computer side:

PS > $scriptblock = {
 Get-Counter -Counter '\Processor(_total)\% Processor Time' |
 foreach { $_.CounterSamples }
}

PS > Invoke-Command -ComputerName ws2012us-0 -ScriptBlock $scriptblock

Path InstanceName CookedValue PSComputerName
---- ------------ ----------- --------------
\\ws2012us-0\proce… _total 1.43665925470344 ws2012us-0

The other technique consists of modifying the PowerShell type data by using the new

functionality available with PowerShell v3’s Update-TypeData, which allows you to

update a type dynamically without using a ps1xml file.

 Although that’s nicer than the previous technique (even if it seems more compli-

cated), the advantage is that you can specify the level of serialization depth you want.

Hence, you get more data. Be careful with the depth level you choose because you

could get too much data and consume unnecessary extra bandwidth:

PS > $scriptblock = {
 Update-TypeData -TypeName `
 Microsoft.PowerShell.Commands.GetCounter.PerformanceCounterSampleSet `
 -SerializationDepth 2 –force
 Get-Counter -Counter '\Processor(_total)\% Processor Time'
 }

PS > $r = Invoke-Command -ComputerName ws2012us-0 -ScriptBlock $scriptblock
PS > $r | Select-Object –ExpandProperty CounterSamples

Path : \\ws2012us-0\processor(_total)\% processor time
InstanceName : _total
CookedValue : 4,36866636762234
RawValue : 120415781250
SecondValue : 129989286481071543
MultipleCount : 1
CounterType : Timer100NsInverse
Timestamp : 02/12/2012 14:30:48
Timestamp100NSec : 129989322481070000
Status : 0
DefaultScale : 0
TimeBase : 10000000

Using jobs for long-running tasks
Because data collection is often a long-running process, it presents a good opportu-

nity to use jobs to get the work done in the background and avoid blocking the Power-

Shell console.

 To create jobs, add the -AsJob parameter to Invoke-Command, and that’s it:

PS > $scriptblock = {
 Update-TypeData -TypeName

41Saving the performance data to a file

 ➥ Microsoft.PowerShell.Commands.GetCounter.PerformanceCounterSampleSet
 ➥ -SerializationDepth 2 –force
 Get-Counter -Counter '\Processor(_total)\% Processor Time' –MaxSample 5
}

PS > $r = Invoke-Command -Computer ws2012us-0
 ➥ -ScriptBlock $scriptblock –AsJob

PS > $r | Receive-Job | Select-Object -ExpandProperty CounterSamples

NOTE In order to make this work you need PowerShell 3 because we update a
type with the new functionality exposed by Update-TypeData.

Saving the performance data to a file
Saving performance data to a file is an efficient way to diagnose performance issues

afterward. Also, if you choose to export your data into a binary file format you have

the chance to view the counter values into the Windows Performance Monitor.

 Even though you can collect performance data using the PowerShell cmdlets

exclusively, it may not always be the best option. PLA offers the ability to create Data

Collectors (via COM objects) and to schedule them. I won’t cover setting up Data Col-

lectors in this chapter because it’s not PowerShell-related, but keep in mind that it

exists and may be the option of choice for large deployments.

 The key cmdlet here is Export-Counter. Have a look at its parameter set:

Export-Counter [-Path] <String> [-Circular [<SwitchParameter>]]
[-FileFormat <String>] [-Force [<SwitchParameter>]] [-MaxSize <UInt32>]
-InputObject <PerformanceCounterSampleSet[]> [<CommonParameters>]

The first parameter to set up is –Path, which you use to indicate a location for stor-

ing the data. Then you specify the file type you want to get. Three file types are avail-

able: CSV, TSV (tab separated values), and BLG. Whereas CSV and TSV are text files

that use, respectively, the comma and the tab character as delimiters, BLG is a binary

file format.

 The two other parameters, –Circular and –MaxSize, work hand in hand in the

sense that you can use -MaxSize to define a maximum file size. When you do so, and if

you use the -Circular switch, the oldest data is overwritten by the newest data when

the maximum size is reached. If you omit –Circular while specifying a maximum size,

when the limit is reached PowerShell stops gathering the data and returns a nontermi-

nating error.

Saving the data to a binary file (BLG)

Let’s see how it works. In this example you’ll collect a bunch of counters for 120 sec-

onds. I want you to take a snapshot every second and send the data into a binary file

named capture1.blg. Here’s how:

PS > $counters = '\Processor(*)\% Processor Time',
 '\Memory\Committed Bytes',
 '\Memory\Available Bytes', '\Memory\Pages/sec',

42 CHAPTER 3 Collecting and analyzing performance counter data

 '\Process(*)\Working Set - Private',
 '\PhysicalDisk(_Total)\Disk Reads/sec',
 '\PhysicalDisk(_Total)\Disk Writes/sec'

PS > Get-Counter -Counter $counters -MaxSamples 120 -SampleInterval 1 |
 ➥ Export-Counter -Path C:\PerfLogs\capture1.blg -FileFormat blg

When the collection is over, to see the data, double-click the resulting BLG file in Win-

dows Explorer; the data automatically displays in the Windows Performance Monitor

GUI, as shown in figure 3.

 The Windows Performance Monitor GUI is extremely useful in determining, at

first glance, how a system behaved. You can also display the performance counters

that belong to every process. By default, in Windows Server 2012 they aren’t shown in

order to lighten the view.

 Triggering a data collection on remote computers using PowerShell remoting is

easy. All you have to do is to enclose the Get-Counter cmdlet and its parameters into a

script block and invoke that script block with Invoke-Command, as shown in the follow-

ing listing.

Figure 3 Performance Monitor showing a BLG file

43Manipulating stored performance data from a file

#requires -version 3.0

$counters = '\Processor(*)\% Processor Time',
 '\Memory\Committed Bytes',
 '\Memory\Available Bytes', '\Memory\Pages/sec',
 '\Process(*)\Working Set - Private',
 '\PhysicalDisk(_Total)\Disk Reads/sec',
 '\PhysicalDisk(_Total)\Disk Writes/sec'

Invoke-Command -ScriptBlock {
 Get-Counter -Counter $using:counters -MaxSamples 120 -SampleInterval 1 |
 Export-Counter -Path C:\PerfLogs\capture1.blg -FileFormat blg } `
 -AsJob -ComputerName ws2012us-0, ws2012us-1

This script creates a file named capture1.blg on each remote machine in the C:\Perf-

Logs directory.

TIP Notice the use of $using here. This is a new scope in PowerShell v3 that
references a variable declared in the current session’s scope. You can only
use $using inside Invoke-Command, Start-Job, or workflows. It’s useful for
passing arguments to a command that will be executed remotely.

Saving the data to an Excel file (CSV)

Export-Counter lets you save performance data to CSV files. This format is convenient

for viewing, sorting, and organizing the data with Microsoft Excel.

 To do this, set the -FileFormat parameter to the CSV value, like this:

Get-Counter -Counter $counters -MaxSamples 120 -SampleInterval 1 |
 ➥ Export-Counter -Path C:\PerfLogs\capture1.csv -FileFormat csv

The data is saved in a CSV file named capture1.csv, which can be viewed in Excel, as

shown in figure 4.

 The other value the -FileFormat parameter accepts is TSV, which uses the tab

character as a delimiter instead of a comma.

NOTE In my experience, whether you choose to export data to a CSV file or a
binary file, the first line of data (not the header) is always incomplete or
erroneous; hence, I strongly recommend ignoring it.

Manipulating stored performance data from a file
Now that you’ve acquired some data, it’s time to make the data talk. Although you

could double-click any BLG file and see the graphical representation of the data, it

could be interesting to get access to the raw data programmatically. This way, you can

process, slice, and dice the data, and automate production of statistics or reports.

 You could, for instance, easily find out if a machine is correctly sized “CPU-wise” or

“memory-wise” and find the responsible processes in cases of CPU pegging, memory

Listing 1 Collecting and saving remote performance data to disk in a BLG file

www.allitebooks.com

http://www.allitebooks.org

44 CHAPTER 3 Collecting and analyzing performance counter data

shortage, I/O overconsumption, and so on. In a previous job I was in charge of col-

lecting performance data on 15,000 virtual desktops. The goal was to understand why

some computers were pegging for several hours in a row, and thanks to PowerShell I

found some interesting results.

 The key cmdlet here is Import-Counter. This command takes input from any file

containing performance data (CSV, TSV, BLG) that has been generated by either

Export-Counter or the PLA COM object. This is expected because, as I said earlier, the

*-Counter family relies on the PLA interface.

 Have a look at the help file to figure out how to use this command:

Import-Counter [-Path] <String[]> [-Counter <String[]>]
[-EndTime <DateTime>] [-MaxSamples <Int64>] [-StartTime <DateTime>]

Import-Counter [-Path] <String[]> -ListSet <String[]>

Import-Counter [-Path] <String[]> [-Summary [<SwitchParameter>]]

The last two syntaxes give access to metadata such as the counters’ names contained

in the file, the number of samples, and information about the collection’s start and

end times.

 Let’s look at some examples to help you better understand:

Figure 4 CSV file opened in Excel

45Manipulating stored performance data from a file

PS > Import-Counter -Path C:\Temp\DataCollector01.blg -Summary

OldestRecord NewestRecord SampleCount
------------ ------------ -----------
06/11/2012 10:59:28 PM 06/11/2012 11:55:28 PM 57

If you use the asterisk as the value of the –ListSet parameter, Import-Counter enumer-

ates all the counter names embedded in the file and displays them grouped by list set:

PS > Import-Counter -Path C:\Temp\DataCollector01.blg -Listset *

CounterSetName : Processor
MachineName : \\WS2012US-1
CounterSetType : SingleInstance
Description :
Paths : {\\WS2012US-1\Processor(*)\% Processor Time}
PathsWithInstances : {\\WS2012US-1\Processor(_Total)\% Processor Time}
Counter : {\\WS2012US-1\Processor(*)\% Processor Time}

CounterSetName : PhysicalDisk
MachineName : \\WS2012US-1
CounterSetType : SingleInstance
Description :
Paths : {\\WS2012US-1\PhysicalDisk(*)\Disk Transfers/sec}
PathsWithInstances : {\\WS2012US-1\PhysicalDisk(_Total)\Disk Transfers/sec}
Counter : {\\WS2012US-1\PhysicalDisk(*)\Disk Transfers/sec}

...

CounterSetName : Memory
MachineName : \\WS2012US-1
CounterSetType : SingleInstance
Description :
Paths : {\\WS2012US-1\Memory\Available Bytes,
 \\WS2012US-1\Memory\Pages/sec}
PathsWithInstances : {}
Counter : {\\WS2012US-1\Memory\Available Bytes,
 \\WS2012US-1\Memory\Pages/sec}

Only the first syntax of the command gives access to the raw data. If you don’t specify

any counter’s name, Import-Counter imports all the data from all the counters. Now

try importing all the data into the variable $data and see what happens:

PS > $data = Import-Counter -Path C:\Temp\DataCollector01.blg

import-counter : The data in one of the performance counter samples is not
valid. View the Status property for each PerformanceCounterSample object to
 make sure it contains valid data.
At line:1 char:6
+ $data = import-counter -path C:\Temp\DataCollector01.blg
+ ~~
 + CategoryInfo : InvalidResult: (:) [Import-Counter], Exception

+ FullyQualifiedErrorId :
CounterApiError,Microsoft.PowerShell.Commands.ImportCounterCommand

The first thing to note is the error saying that at least one counter sample isn’t

valid. As usual, reading PowerShell’s error messages is important and valuable.

46 CHAPTER 3 Collecting and analyzing performance counter data

Here, PowerShell is cautioning you to check the Status property of each Performance-

CounterSample object before using it. Don’t worry, data collection isn’t an exact sci-

ence, and this happens often.

 Next, you’ll import data, and in order to avoid flooding the console with errors

like you just saw, you can hide them using the well-known common parameter –Error-

Action by setting it to the value SilentlyContinue (or to the value 0, which is exactly

the same):

PS > $data = Import-Counter -Path C:\Temp\DataCollector01.blg
 ➥ –ErrorAction 'SilentlyContinue'

Now, your $data variable is populated with PerformanceCounterSampleSet objects.

To be more precise, $data is an array of PerformanceCounterSampleSet objects. You

can dig into the array and examine what’s in there:

PS > $data[1]

Timestamp CounterSamples
--------- --------------
06/11/2012 11:00:29 PM \\ws2012us-1\processor(_total)\% processor time :
 59.7149893297773

 \\ws2012us-1\process(system)\% processor time :
 3.08500400793026

...

 \\ws2012us-1\physicaldisk(_total)\disk
 transfers/sec:
 208.797799242242

 \\ws2012us-1\network adapter(microsoft hyper-v
 network adapter)\bytes total/sec :
 2773.05258695793

 \\ws2012us-1\memory\available bytes :
 37879808

 \\ws2012us-1\memory\pages/sec :
 1807.12422401212

I couldn’t show all the data here—it would be too much for a book page—but under-

stand that you’ve collected a certain number of counters at a given time interval. You

have your data from $Data[0] to $Data[TotalNumberOfSamples-1].

 While we’re talking about intervals, let’s determine the interval of your collection:

PS > $data[1].Timestamp - $data[0].Timestamp | Select-Object TotalSeconds

 TotalSeconds

 60.559

That’s correct; you set up your Data Collector Set to gather data every minute.

 Now you’re going to calculate the average of total percentage of processor time

consumed during the period of the data collection in order to see if your system was

performing well or poorly.

47Manipulating stored performance data from a file

 First, because you’re only interested in one particular counter, and because the

performance data files can be big, you can reduce the memory footprint (and also

simplify your script a little bit) by importing only the counters you want. You could

also specify a time interval by using the –StartTime and –EndTime parameters, but

considering that your collection lasted less than an hour you don’t need to do that;

instead, import all the data:

PS > $data = Import-Counter -Path C:\Temp\DataCollector01.blg
 ➥ -Counter '\\WS2012US-1\Processor(_Total)\% Processor Time'
Overall average calculation
PS > $d = $data | Select-Object -Expand countersamples | where status -eq 0
PS > $d[1..($d.Count-1)] | Measure-Object –Property cookedvalue -Average

Count : 56
Average : 74.9717228805766
Sum :
Maximum :
Minimum :
Property : CookedValue

Note that you took the precaution of avoiding erroneous data by filtering out the sta-

tus. Indeed, a zero value means the data is valid, so you take into account only the data

that has a zero value assigned to its status property.

 In this code snippet, you averaged the data for the duration of the whole collection

(about one hour) and determined that the CPU usage was high—around 75 percent.

In this case, the machine probably had a performance issue, but it’s not completely

obvious. You could have had the CPU pegged for 20 minutes, then no load at all. If

that were the case, the average would have lowered to 30 percent and could have

looked almost like a normal load.

 In order to get a more precise overview, try creating a script that offers the abil-

ity to slice the data and compute the average at the interval you want, like in the

next listing.

#requires -version 3.0

Param (
 [parameter(Mandatory=$true)]
 [string]$File,
 [parameter(Mandatory=$false)]
 [int]$interval = 5 # default value
)

$counter = '*\Processor(_Total)\% Processor Time'
$data = Import-Counter -path $file -Counter $counter

$d = $data | Select-Object -Expand countersamples |
 Where status -eq 0

for ($i=1; $i -lt $d.count ; $i+=$interval)
{

Listing 2 Get-AvgCPULoad.ps1

Counter’s
path to
collect

Filters out the
erroneous
counter
values

Loop starts at index 1 to
avoid bad data at index 0

48 CHAPTER 3 Collecting and analyzing performance counter data

 New-Object -TypeName PSObject -Property @{
 Timestamp = $d[$i].Timestamp;
 CPUAvg = $d[$i..($i+($interval - 1))] |
 Measure-Object -Prop cookedvalue -Average |
 Select-Object -ExpandProperty Average
 }
}

Now all you have to do is call the script and provide a BLG file path and an interval:

PS > ./Get-AvgCPULoad.ps1 -File C:\temp\DataCollector01.blg –interval 10

Timestamp CPUAvg
--------- ------
06/11/2012 11:00:29 PM 89.7425991823448
06/11/2012 11:10:28 PM 99.9192712443985
06/11/2012 11:20:28 PM 99.2941515599998
06/11/2012 11:30:28 PM 96.1755994404801
06/11/2012 11:40:28 PM 18.2450261493011
06/11/2012 11:50:28 PM 27.4416675911747

TIP Instead of specifying the machine name inside the counter’s name you
can use an asterisk, which stands for any machine name. The counter
name could have been represented like this: '*\Processor(_Total)\%
Processor Time'

The interval in listing 2 is the same as the number of minutes. This is because the data

in the binary file was collected this way. Keep in mind that an interval can represent

any time interval.

 You could improve this script a little in order to extract more information and gain

a better understanding of the data. In the improved version, shown in the following

listing, you also process the physical memory available (in bytes) and the page file

usage (expressed in number of pages per second).

Param (
 [parameter(Mandatory=$true)]
 [string]$File,
 [parameter(Mandatory=$false)]
 [int]$interval = 5
)
$counter = '*\Processor(_Total)\% Processor Time',
 '*\Memory\Available Bytes',
 '*\Memory\Pages/sec'

$data = Import-Counter -path $file -Counter $counter
$d = $data | where {$_.countersamples.status -eq 0}

for ($i=1; $i -lt $d.count ; $i+=$interval)
{
 $UBound = $i+($interval-1)
 New-Object -TypeName PSObject -Property ([Ordered]@{
 Timestamp = $d[$i].Timestamp;

Listing 3 Get-AvgGlobalLoad.ps1

Custom object
creation with
two properties
(timestamp
and CPUAvg)

Average
calculation

Counter’s path
to collect

Filters out the
erroneous
counter values

Loop starts at index 1 to
avoid bad data at index 0

Custom object creation
containing ordered hash table

49Summary

 CPUAvg = [int]($d[$i..$UBound] |
 where {$_.CounterSamples.Path -like $counter[0]} |
 foreach {$_.countersamples[0].cookedvalue} |
 Measure-Object -Average |
 Select-Object -ExpandProperty Average);
 MemoryAvailableByteAvg = [int](($d[$i..$UBound] |
 where {$_.CounterSamples.Path -like $counter[1]} |
 foreach {$_.countersamples[1].cookedvalue} |
 Measure-Object -Average |
 Select-Object -ExpandProperty Average) / 1MB);
 MemoryPageAvg = [int]($d[$i..$UBound] |
 where {$_.CounterSamples.Path -like $counter[2]} |
 foreach {$_.countersamples[2].cookedvalue} |
 Measure-Object -Average |
 Select-Object -ExpandProperty Average)
 })
}

Here’s what you get:

PS> ./Get-AvgGlobalLoad.ps1 -File C:\temp\DataCollector01.blg -interval 10

Timestamp CPUAvg MemoryAvailableByteAvg MemoryPageAvg
--------- ------ ---------------------- -------------
06/11/2012 11:00:29 PM 90 48 313
06/11/2012 11:10:28 PM 100 36 314
06/11/2012 11:20:28 PM 99 24 701
06/11/2012 11:30:28 PM 96 108 498
06/11/2012 11:40:28 PM 18 70 393
06/11/2012 11:50:28 PM 27 58 945

This presents a pretty clear picture. Your monitored system, in addition to the CPU

performance issue, is also running out of physical memory and is using the swap file a

lot. It would be worth digging deeper in order to find the responsible process or pro-

cesses. As long as the data is available you could write such a script to find the source

of the problem.

Summary

In this chapter I not only showed you how to collect, save, and analyze performance

data with PowerShell, but I also covered the methodology for finding the appropriate

counters to help you diagnose a machine’s performance issues.

 The hardest part of the troubleshooting process isn’t the data acquisition—as

you’ve seen, that’s pretty straightforward with PowerShell—but understanding the

counter values. To do this, if the performance file is a binary file you have two

options: open the file into the GUI, or use the Import-Counter cmdlet and dig

into the raw data. This second option is best when it comes to automating the

analysis. I covered this topic through a few examples in the last part of the chapter,

where you calculated the average of several counters. Calculating the average of

small samples of data helps avoid spikes and gives you a better understanding of how

a machine is behaving.

Average
calculation

50 CHAPTER 3 Collecting and analyzing performance counter data

 A topic I didn’t cover, because it’s not completely PowerShell-related, is the use of

Data Collectors. If you need to collect data from lots of machines on a regular basis,

using Data Collectors is the way to go. To create them you need to use COM objects or

wrap the logman.exe utility.

About the author

Arnaud Petitjean is a passionate and experienced IT professional

with more than 15 years in the field. He started his career as a

Microsoft Exchange administrator and progressively moved to sys-

tem administration and virtualization, a field in which he devel-

oped scripts in various languages. In 2006 he literally fell in love

with the beta version of PowerShell and has been writing scripts

ever since. He’s the founder of the French-speaking PowerShell

community (http://powershell-scripting.com) and the author of

Windows PowerShell: Reference Guide for Windows Administration (ENI

Editions, in French only; first edition, 2008; second edition, 2010; third edition, 2013).

He’s been a PowerShell MVP since 2007.

http://powershell-scripting.com

51

4 TCP port communications with
PowerShell

 Boe Prox

PowerShell can be a powerful network troubleshooting tool thanks to its reach

back into the .NET framework. In this chapter I’ll take you through some of the

more useful .NET classes that you can harness to help with your network trouble-

shooting and with building some fun scripts. By the end of the chapter you’ll know

how to create a port scanner to check for open ports on your network, send and

receive data between ports, create formatted packets to send a Lightweight Direc-

tory Access Protocol (LDAP) request to a domain controller, and process the return

packets to emulate the same type of output from another command-line interface

(CLI) tool, portqry.exe. You’ll also learn about creating a TCP listener object that

will serve as an open port on your system to allow clients to connect to your system,

and lastly, you’ll put everything together to create an Echo server that can repeat

back to you every key that you’ve typed! By using these techniques and scripts you’ll

be able to troubleshoot applications communicating on your network by checking

to see if the ports required are available on the system or if they’re being blocked,

either by software on the server or by something else, such as a hardware firewall or

an access control list (ACL) on a switch.

 Before I begin, let’s review some terminology.

 A port identifies different applications, services, or processes running on a single

system and enables them to share a single physical connection in a network. Think

of it as a door to the application instance on a server. If the door is open you can

communicate with the application on the other side, but you can’t make a connec-

tion if the door shut or blocked.

 An endpoint is the end of the network link between a client and server that allows

the use of network streams to communicate between one another. The endpoint

also provides utilities to see if the connection is active and if the streams are read-

able or writable, and to configure the size of the buffers for the streams.

52 CHAPTER 4 TCP port communications with PowerShell

 A socket is an endpoint instance of two-way communication between two applica-

tions on the same network by pairing an IP address with a port.

Testing for an open port
When troubleshooting server communications you sometimes have to test a port on

the server to see if it’s accepting any sort of communication. To do that, a TCP (or a

User Datagram Protocol [UDP]) socket is opened up from a client that attempts to

make a connection to the remote server port. Let’s assume that you’re trying to trou-

bleshoot a possible issue with clients that are authenticating in an Active Directory

domain and you need to see if LDAP (port 389) is being blocked, either by a software

firewall on the domain controller or a hardware firewall.

 To do this you must first create the client TCP object using the System.Net.Sockets

.TCPClient class. Table 1 shows the available constructors for creating the TCPClient

object. You use a constructor (also known as a ctor) to create an object and to supply

initial values as parameters to give the object a default value to prepare it for use.

For this example you’ll select the fourth option, creating a TCPClient object by sup-

plying a hostname or an IP address and a port. Using the New-Object cmdlet, you can

create the object with the supplied arguments. I’m recommending this option

because it can help you to quickly determine if the port specified on the system is

open. You’ll work through this example as if you’re running commands from my cli-

ent system, Boe-Pc, which will make the port connection to the remote domain con-

troller, DC1:

PS C:\> New-Object System.Net.Sockets.TCPClient –Argument "DC1","389"

Client : System.Net.Sockets.Socket
Available : 0
Connected : True
ExclusiveAddressUse : False
ReceiveBufferSize : 65536
SendBufferSize : 65536
ReceiveTimeout : 0

Table 1 Potential TCPClient constructors

Name Description

TcpClient() Creates a new instance of the TcpClient class

TcpClient(AddressFamily) Creates a new instance of the TcpClient class with the speci-

fied family (scheme of IP address, such as Internetwork Packet

Exchange, InterNetwork, AppleTalk, and so on)

TcpClient(IPEndPoint) Creates a new instance of the TcpClient class and binds it to

the specified local endpoint

TcpClient(String, Int32) Creates a new instance of the TcpClient class and connects

to the specified port on the specified host

53Testing for an open port

SendTimeout : 0
LingerState : System.Net.Sockets.LingerOption
NoDelay : False

From this you can see by the Connected property that you’ve connected to the port,

meaning it’s open! This is a pretty simple one-liner for checking whether or not a port

is open. What happens if the port isn’t open or is being blocked? For instance, you can

check if FTP (port 21) is enabled and running on the domain controller like this:

PS C:\> New-Object System.Net.Sockets.TCPClient –Argument "DC1","21"
New-Object : Exception calling ".ctor" with "2" argument(s): "No connection
could be made because the target machine

actively refused it 192.168.1.18:21"

At line:1 char:1
+ New-Object System.Net.Sockets.TCPClient –Argument "DC1","21"
+ ~~
 + CategoryInfo : InvalidOperation: (:) [New-Object],

MethodInvocationException
 + FullyQualifiedErrorId :

ConstructorInvokedThrowException,Microsoft.PowerShell.Commands.NewObject
Command

As you can see, the port was “actively refused” by the server, as shown by the bolded

text in the message. You could wrap this up in a Try/Catch to better handle the error

message, but this example is more about what happens when an attempt to connect to

a port is done against a closed or blocked port. Another possibility is that the connec-

tion attempt may time out. To better handle the situation I’ll show you how to wrap

this up into a simple function that can scan multiple ports and hosts.

Building a more robust port checker

Checking a single port on a single system is fine for a quick check with only a simple

line of code, but you can do much more with an advanced function. You’ll be able to

handle errors more gracefully and also provide timeout mechanisms to handle areas

where the query seems to hang for an extended period of time because the client con-

nection is attempting to connect to a port that isn’t open but isn’t actively blocking

the port. Finally, you’ll also be able to specify parameter attributes such as allowing val-

ues from the pipeline, meaning that you can pipe specific data into the new function

and it will know exactly how to handle it.

 The function you’re going to create (shown in the following listing) is called Test-

TCPPort, and it meets all of these requirements, making it a robust port checker.

NOTE Use caution whenever you’re running a port scanner of any kind on a
corporate network. This could be mistaken for an adversary attempting
to get information about the infrastructure.

Function Test-TCPPort {
 [cmdletbinding()]

Listing 1 Test-TCPPort

54 CHAPTER 4 TCP port communications with PowerShell

 Param (
 [parameter(ValueFromPipeline=$True,
 ValueFromPipelineByPropertyName=$True)]
 [Alias("CN","Server","__Server","IPAddress")]
 [string[]]$Computername = $env:COMPUTERNAME,
 [parameter()]
 [Int32[]]$Port = 23,
 [parameter()]
 [Int32]$TimeOut = 5000
)

 Process {
 ForEach ($Computer in $Computername) {
 ForEach ($p in $port) {
 Write-Verbose ("Checking port {0} on {1}" -f $p, $computer)
 $tcpClient = `
New-Object System.Net.Sockets.TCPClient
 $async = $tcpClient.BeginConnect($Computer,
$p,$null,$null)
 $wait = $async.AsyncWaitHandle.WaitOne(`
$TimeOut,$false)

 If (-Not $Wait) {
 [pscustomobject]@{
 Computername = $Computername
 Port = $P
 State = 'Closed'
 Notes = 'Connection timed out'
 }

 } Else {
 Try {
 $tcpClient.EndConnect($async)
 [pscustomobject]@{
 Computername = $Computer
 Port = $P
 State = 'Open'
 Notes = $Null
 }

 } Catch {
 [pscustomobject]@{
 Computername = $Computer
 Port = $P
 State = 'Closed'
 Notes = ("{0}" -f $_.Exception.Message)
 }
 }
 }
 }
 }
 }
}

Here is a demonstration against the domain controller to check for ports 389, 636, 21,

and 23:

Test-TCPPort -Computername DC1 -Port 389,636,21,23

Set up parameters for
the advanced function

Create
TCPClient

object

Begin connection to remote
system on specified port

Set timeout for attempted
port connection

If connection
times out, create
appropriate object

If port connection
is good, create
appropriate object

Handle connection
errors with appropriate
output object

55Sending and receiving data

The output is shown in figure 1.

 What you have now is a nice reusable function that you can use to troubleshoot

either your server or your network. You can even pipe out the output to a CSV file

using Export-CSV to provide a report on the port scan. Keep in mind that if you plan

to do this across the network against multiple systems and multiple ports, your net-

work security team might interpret it as malicious activity. Be sure to communicate

with others when you do this!

Sending and receiving data
Knowing how to check if a port is open is one thing, but being able to send data across

the network to that port and being able to handle the response from the remote

server requires a little more work. Although sending data from your local port to a

remote port is simple, the trick is to understand what the port on the other end is

expecting. Merely sending a stream of text from one port to another won’t work.

Transmissions are sent and received as bytes, and all text must be converted to bytes

before being sent to a port as a packet. Some ports are expecting a byte to be in a spe-

cific format, whereas others only require some sort of data (a single byte, for instance)

before responding back. I’ll show you an example of this later in this section.

Sending data

As mentioned, sending the data isn’t the most complicated part, but it’s vital. In order

to send anything between ports the data must be converted into bytes, which is

required for the data transmission process. To do this follow these steps:

1 Create the TCPClient object.

2 Create a network stream that will be used to transmit the data.

3 Take the input data to be transmitted and convert it into bytes.

4 Transmit the bytes to the remote port using the network stream.

As you did earlier, connect to the remote server port. This time, connect to port 7:

$tcpClient = New-Object System.Net.Sockets.TCPClient
$tcpClient.Connect("DC1",7)

Port 7 is the Echo port. Fortunately, each installation of Windows has a list of common

ports available to reference. You can find this list at C:\Windows\System32\Drivers\etc\

services. Open the file with Notepad or another text editor to see all the ports. The

Figure 1 Test-TCPPort run against DC1

http://mng.bz/FRj1
http://mng.bz/FRj1
http://mng.bz/FRj1

56 CHAPTER 4 TCP port communications with PowerShell

Echo port can be a useful network troubleshooting tool; it repeats back everything

sent to it, making it a nice example. For more information about the Echo port and

how to configure it see http://mng.bz/FRj1.

NOTE Some of the ports mentioned in this chapter may be blocked by firewalls.
Make sure the ports are open before trying these examples.

Next, take some text that you wish to send across the network and convert it into a col-

lection of bytes using the Text.Encoding class along with the GetBytes() method

(this can also be referred to as a buffer):

$Text = "This is a test message"
[byte[]]$bytes = [text.Encoding]::Ascii.GetBytes($Text)

The resulting $bytes collection will look like figure 2.

 Now that you have your data converted into bytes, create a network stream object

that you can use to transmit the bytes over to the remote port. For this, use the Get-

Stream() method on the TCPClient object:

$clientStream = $tcpClient.GetStream()

With the network stream established you can begin transmitting the bytes to the

remote client using the Write() method of the network stream object. The Write()

method takes three parameters to successfully transmit the data. The first parameter

should contain the buffer of bytes being sent across the network, and the second

parameter should be the location within the buffer that the stream should begin writ-

ing the data to on the remote port. The final parameter is the total size (or length) of

data that will be transmitted through the stream. Once the data has been transmitted,

Figure 2 Output from $bytes

showing the collection of bytes

http://mng.bz/FRj1

57Sending and receiving data

the network stream will flush the contents by using the Flush() method of the net-

work stream object, like this:

$clientStream.Write($bytes,0,$bytes.length)
$clientStream.Flush()

That’s all there is to sending data across a TCP port to another TCP port. As long as the

port is open and you know exactly what type of packet can be sent to it, the remote port

should accept the packet and respond with its own packet.

Receiving data

Now that you’ve sent some data to your destination port, how do you receive the data

that has been sent back? First you have to know if data has, in fact, been sent back to

your port. To do that, look at the network stream object created earlier and check its

DataAvailable property. If the property is set to True you know data is available:

PS C:\> $clientStream.DataAvailable
True

Next, configure a buffer to store the data. You can find out exactly how much data is

available by checking the Available property of the $tcpClient object:

PS C:\> $tcpClient.Available
22

Now you can create the proper buffer to get the data. If you attempt to guess how

large a buffer you need to get the return data stream, there’s a chance you’ll guess too

small and only get a chunk of the total data rather than all of it:

[byte[]]$inStream = New-Object byte[] 22

Using the Read() method of your network stream object, you use the same skills

learned from the Write() method to add the correct parameters to read the bytes

from the remote port:

$response = $clientStream.Read($inStream, 0, $inStream.count)

Notice that you’re saving the output of the Read() method to $response. This is the

number of bytes received from the remote port in the stream, not the bytes them-

selves. The bytes are saved in the buffer you created, $inStream. In this case, the num-

ber of bytes returned from the remote port is 22 (which matches what was seen earlier

with the Available property):

PS C:\> $response
22

This is important to know for when you begin to translate the bytes into human-

friendly text. Because you created a 1 MB buffer it becomes unnecessary to translate

anything larger than what was already received, and doing so would cause extra spaces

in the translated text. If the amount of data is greater than what your buffer can sup-

port, then you have to implement a loop to handle the extra data that needs translating

58 CHAPTER 4 TCP port communications with PowerShell

(I’ll show you how to do this later in the chapter). For this example, you only get the first

22 bytes of the buffer (starting at the 0 index and going to the 21st index of the array).

This way, you have only the text you need:

[Int]$response = $clientStream.Read($inStream, 0, $inStream.count)
[System.Text.Encoding]::ASCII.GetString($inStream[0..($response - 1)])
This is a test message

Now you can perform some cleanup of the objects to free up all of the resources, such

as memory that has been allocated to your examples:

PS C:\> $tcpClient.Dispose()
PS C:\> $clientStream.Dispose()

And just like that, you have your data sent back to you from the remote server. And if

you notice, it’s exactly the same thing you sent to the port—the Echo port is living up

to its name.

LDAP port communications
In this section, I’ll show you how to send and receive formatted packets using Power-

Shell to communicate with a domain controller in the same way you’d use another

command-line utility: portqry.exe.

Testing port 389 and receiving data with portqry.exe

You may have used portqry.exe (http://support.microsoft.com/kb/310099) in the

past to query various ports. If so, you may be aware that if portqry.exe knows the type

of formatted packet to send to a port, it will attempt to send the packet and return the

response from that port to your console. Let’s see exactly what happens when running

portqry.exe against your domain controller, like this:

.\PortQry.exe -n DC1.rivendell.com -e 389

The result is shown in figure 3.

 The complete flow from beginning the Bind request to the final Unbind request is

illustrated in figure 4. You can use this same concept to generate and run a script for

communicating with a domain controller using PowerShell.

 The output from this shows you a number of things, such as the supportedLDAP-

Version, whether the domain controller is a global catalog, its servername, and several

other things. Wouldn’t it be nice if you could do this type of query with PowerShell?

You could query for the same information and put the results into a nice object that

you could work with.

Testing port 389 and receiving data with PowerShell

PowerShell is more than capable of emulating portqry.exe by not only finding that

port 389 is open, but also by sending and receiving the formatted packets required

to successfully query LDAP. To get to that point you have to determine the kind of

http://support.microsoft.com/kb/310099

59LDAP port communications

formatted packets you need to send to the port. If you don’t know how to format the

packets you’ll never get past the initial query attempt.

 For this example you’re going to use Network Monitor (NetMon) to capture

packets during your query with portqry.exe in order to determine what kind of pack-

ets you need to send to the LDAP port. You can obviously use another sniffer, such as

Figure 3 Output from running portqry.exe against a domain controller

Domain

Computer

DC1.Rivendell.comBoe-PC

Send bind request

Send bind request response

Send search request

Send search request response

Send unbind request

Figure 4 Flow of LDAP communication between Boe-PC and DC1.Rivendell.com

60 CHAPTER 4 TCP port communications with PowerShell

Wireshark, if you have access to it. Figure 5 shows the packet and the highlighted

data that you’ll need to send as the initial Bind request to the domain controller.

 If the Bind is successful the server will respond with a Bind response packet back to

you. If the packet is 22 bytes you know it’s safe to proceed with a searchRequest

packet back to the domain controller. Once again, use NetMon to figure out what

packet you should create in order to get the response you want. In figure 6 you can

see that more data will have to be sent to the domain controller; this is necessary in

order to successfully complete the search request.

 The packet sent after your search request is the search response from the domain

controller, which contains all the information you need. With this information you

can put together a script that will not only send the proper packets to the domain con-

troller, but also take the searchResponse packet and properly format it as an object.

The script is shown in the following listing.

[cmdletbinding()]
Param (
 [string]$Computername = "DC1.rivendell.com",
 [Int]$Port = 389
)

Try {

 $tcpClient = New-Object System.Net.Sockets.TCPClient
 $tcpClient.Connect($Computername,

Listing 2 Test-LDAP.ps1

Figure 5 BindRequest packet to the domain controller

Figure 6 searchRequest packet to the domain controller

61LDAP port communications

 $Port
)

 If ($tcpClient.Connected) {

 [byte[]]$bindRequest = 0x30,0x84,0x00,0x00,
 0x00,0x10,0x02,0x01,

#10x01,0x60,0x84,0x00,0x00,0x00,
 0x07,0x02,0x01,0x02,0x04,0x00,0x80,0x00

 [byte[]]$searchRequest = 0x30,0x84,0x00,
 0x00,0x00,0x2d,0x02,0x01,

#10x02,0x63,0x84,0x00,0x00,
 0x00,0x24,0x04,0x00,0x0a,0x01,0x00,0x0a,

#10x01,0x00,
 0x02,0x01,0x00,0x02,0x01,0x00,0x01,0x01,0x00,0x87,
 0x0b,0x6f,

#10x62,0x6a,0x65,0x63,0x74,0x63,0x6c,0x61,
 0x73,0x73,0x30,0x84,0x00,0x00,

#10x00,0x00

 [byte[]]$unbindRequest = 0x30,0x84,0x00,
 0x00,0x00,0x05,0x02,0x01,

#10x03,0x42,0x00

 $bindResponseBuffer = New-Object Byte[] -ArgumentList 22

 $stream = $TcpClient.GetStream()

 $stream.Write($bindRequest,
 0,
 $bindRequest.length
)
 $stream.Flush()

 Start-Sleep -Milliseconds 1000

 If ($tcpClient.Available -eq 22) {
 Try {
 [Int]$response = $stream.Read($bindResponseBuffer,
 0,
 $bindResponseBuffer.count
)

 $stream.Write($searchRequest,0,$searchRequest.length)
 $stream.Flush()

 Start-Sleep -Milliseconds 1000
 $availableBytes = $tcpClient.Available
 $searchResponse = $Null
 [int]$response = 0
 Do {
 $searchResponseBuffer = New-Object Byte[] -ArgumentList 1024
 [Int]$response = $response + $stream.Read($searchResponseBuffer,
 0,
 $searchResponseBuffer.count
)
 [byte[]]$searchResponse += $searchResponseBuffer

Define the
packets to
be used for
requests

b

Create the network
stream to send and
receive packetsSend and

receive data
from the DC

62 CHAPTER 4 TCP port communications with PowerShell

 Write-Progress `
 -Activity ("Downloading LDAP Response from {0}" -f $Computername) `
 -Status ("Bytes Received: {0}" -f ($response)) `
 -PercentComplete (($response / $availableBytes)*100) -Id 0
 } While ($stream.DataAvailable)

 Try {
 $stream.Write($unbindRequest,0,$unbindRequest.length)
 $stream.Flush()
 } Catch {
 Write-Warning ("Line: {0} -> {1}" –f `
 $_.invocationInfo.ScriptLineNumber,$_.Exception.Message)
 }

 $MemoryStream = new-object System.IO.MemoryStream `
 -ArgumentList $searchResponse[0..$availableBytes],0,$availableBytes
 $binaryReader = new-object System.IO.BinaryReader `
 -ArgumentList $MemoryStream

 $binaryReader.ReadBytes(6) | Out-Null
 $binaryReader.ReadBytes(3) | Out-Null
 $binaryReader.ReadBytes(6) | Out-Null
 $binaryReader.ReadBytes(2) | Out-Null
 $binaryReader.ReadBytes(6) | Out-Null

 [byte[]]$bytes = $Null

 $isHeader = $True
 $isPropertyHeader = $True

 $Object = New-Object PSObject

 Do {
 Write-Verbose ("Begin of Do: {0}" -f `
 ($binaryReader.BaseStream.Position –eq `
$binaryReader.BaseStream.Length))
 If ($isHeader) {
 Write-Verbose ("Removing Header information")
 $binaryReader.ReadBytes(6) | Out-Null
 $isHeader = $False
 } Else {
 If ($binaryReader.ReadByte() -eq 0x04) {
 $expectedBytes = $binaryReader.ReadByte()
 [byte[]]$bytes += $binaryReader.ReadBytes($expectedBytes)
 }
 If ($isPropertyHeader) {
 Try {
 Write-Verbose ("Reached the end of the Property Header")
 $propertyHeader = `
 [System.Text.Encoding]::ASCII.GetString($bytes)
 } Catch {}
 $isPropertyHeader = $False
 $isHeader = $True
 $bytes = $Null
 } Else {
 If ($binaryReader.PeekChar() -eq 0x30) {
 Try {

Display a
progress
bar and

message c

Strip out headers
that serve no
purposed

Begin formatting the
searchResponse

packet

e

Determine next
available bytes

63LDAP port communications

 Switch ($propertyHeader) {
 "currentTime" {
 $time = `
 ([System.Text.Encoding]::ASCII.GetString($bytes) `
 -split "\.")[0]
 $property = `
 [datetime]::ParseExact($time,
 'yyyyMMddHHmmss',
 $Null
)
 }
 Default {
 $property = `
 [System.Text.Encoding]::ASCII.GetString($bytes)
 If ($Property -match "\t") {
 $property = $property -split "\t"
 }
 }
 }
 Write-Verbose ("Reached the end of the Property")
 $Object = Add-Member -InputObject $Object `
 -MemberType NoteProperty -Name $propertyHeader `
 -Value $property -PassThru
 } Catch {}
 $isPropertyHeader = $True
 $isHeader = $True
 $bytes = $Null
 } Else {
 [byte[]]$bytes += 0x09
 }
 }
 }
 Write-Verbose ("Reached end of Do Statement")

 Write-Progress -Activity "Formatting LDAP Response" `
 -Status ("Bytes Remaining: {0}" -f `
($binaryReader.BaseStream.Length - $binaryReader.BaseStream.Position)) `
 -PercentComplete `
(($binaryReader.BaseStream.Position / binaryReader.BaseStream.Length)*100)`
-Id 1
 Write-Verbose ("End of Stream: {0}" -f `
 ($binaryReader.BaseStream.Position -eq `
 $binaryReader.BaseStream.Length))
 } Until ($binaryReader.BaseStream.Position -eq `
 $binaryReader.BaseStream.Length)

 $object.pstypenames.insert(0,'Net.TCP.LDAPMessage')
 Write-Output $Object
 } Catch {
 Write-Warning ("Line: {0} -> {1}" -f `
 $_.invocationInfo.ScriptLineNumber,$_.Exception.Message)
 }
} Else {
 Write-Warning ("Bind was unsuccessful with {0} on port {1}!" -f `
 $Computername, $port)
}

Add multiple
items to collection

Use a progress
bar to show
formatting
status

f

Insert new
typename

64 CHAPTER 4 TCP port communications with PowerShell

$stream.Close(1)
$TcpClient.Close()
} Else {
 Write-Warning ("{0}: LDAP Connection Failed!" -f $Computername)
}
} Catch {
Write-Warning ("{0}: {1}" -f $Computername, $_.Exception.Message)
}

The LDAP packet payloads B are bytes that aren’t in a human-readable format but are

used to communicate with the domain controller. Use Write-Progress to help track

the progress of downloading the response from the domain controller c.

 Because a lot of the data isn’t needed and will only make formatting the returned

data more complicated, ignore the unneeded data by removing it from the buffer

using the ReadBytes() method d. Once you have all the data from the domain con-

troller you can begin translating the data into a human-readable format that will be

displayed as an object e. As you did earlier, use Write-Progress to track the activity

of converting the data into a human-readable format f.

 The output of the script is shown in figure 7.

 The finished product is a script that’s able to query the LDAP port and not only

send formatted packets found using NetMon, but also receive the formatted packets

sent back from the domain controller. Taking the searchRequest packets and format-

ting them into usable objects provided the finishing touch. You were able to strip out

all of the headers and get down into the data. Reviewing the NetMon captures helped

you to figure out how to handle the response packets and write the code that handled

the formatting.

Figure 7 Output of the Test-LDAP.ps1 script

65Creating an Echo server

Although this was only used for LDAP, you can easily take the same concepts from this

script and apply them to check for RPC and other ports like portqry.exe does. You can

even send web requests to a web server, as long as you know the proper syntax to use

in the request. Be sure you review the sniffer captures to know exactly what you need

to send and to view the expected return packets.

Creating an Echo server
At this point, you’ve been doing mostly client-based work that involved testing ports,

sending and receiving data, and working with formatted packets to send and receive

data. You haven’t yet worked on the server side of the house. This final section will

cover setting up a server that echoes back the text sent to it.

Creating a TPC port listener

The first step in creating an Echo server is setting up a listener to make it available on

the network. Using the System.Net.Sockets.TcpListener class you can easily config-

ure and run a server that can listen for requests and respond to them.

 To start, create the listener object on a port of your choosing; in this example

you’ll use port 7:

$Listener = New-Object System.Net.Sockets.TcpListener -ArgumentList 7
$Listener

Server LocalEndpoint ExclusiveAddressUse
------ ------------- -------------------
System.Net.Sockets.Socket 0.0.0.0:7 False

This doesn’t do anything yet. If you try to run Get-NetTCPConnection (which requires

PowerShell v3 under the NetTCP module) to look for port 7 and you don’t already

have the Simple TCP Services component installed, you’ll receive an error stating the

port isn’t available:

Get-NetTCPConnection -LocalPort 7

To start up the listener, use the Start() method. If a software firewall asks for permis-

sion to open this port, go ahead and give it permission to do so:

$Listener.Start()

Now check for listening ports again to see if anything has shown up:

Get-NetTCPConnection | Where LocalPort -eq 7

LocalAddress LocalPort RemoteAddress RemotePort State AppliedSetting
------------ --------- ------------- ---------- ----- --------------
0.0.0.0 7 0.0.0.0 0 Listen

You now have a listening port that’s available to any system with network access to this

system. If a system attempts to connect to the port very little will happen, as nothing

has been coded to handle incoming connections and data requests.

66 CHAPTER 4 TCP port communications with PowerShell

Handling connections and data

With the TCP port listener open you can now tell it to listen for and accept client connec-

tions. To enable the object to accept new connections, use the AcceptTCPConnection()

method. Once you call this method you’ll be unable to do anything else in the con-

sole, as this is a “blocking” method. You can get around this by using a PowerShell job

or creating a new background PowerShell runspace, but that’s beyond the scope of

this chapter. Only after a connection has occurred will the listener allow execution of

the script to continue, or in this case, allow access to the console again:

$incomingClient = $Listener.AcceptTcpClient()

Notice the $incomingClient variable assigned to this method. You do this because

once a connection has been made, the AcceptTcpClient() method will output a

System.Net.Sockets.TcpClient object that you’ll need to manipulate in order to

complete the connection and handle incoming data:

$incomingClient

Client : System.Net.Sockets.Socket
Available : 0
Connected : True
ExclusiveAddressUse : False
ReceiveBufferSize : 65536
SendBufferSize : 65536
ReceiveTimeout : 0
SendTimeout : 0
LingerState : System.Net.Sockets.LingerOption
NoDelay : False

You can find out the IP address of the incoming connection by digging into the Client

property of the System.Net.Sockets.TcpClient object:

$incomingClient.Client
Available : 0
LocalEndPoint : 192.168.1.13:7
RemoteEndPoint : 192.168.1.18:1093
Handle : 1332
Blocking : True
UseOnlyOverlappedIO : False
Connected : True
AddressFamily : InterNetwork
SocketType : Stream
ProtocolType : Tcp
IsBound : True
ExclusiveAddressUse : False
ReceiveBufferSize : 65536
SendBufferSize : 65536
ReceiveTimeout : 0
SendTimeout : 0
LingerState : System.Net.Sockets.LingerOption
NoDelay : False
Ttl : 128
DontFragment : True

67Creating an Echo server

MulticastLoopback :
EnableBroadcast :
DualMode :

You can see both the server IP address and port (192.168.1.13:7), as well as the client

that’s connecting to the port (192.168.1.18:1093).

 The next step is to create the network stream object from the System.Net.Sockets

.TcpClient object returned from the client connection:

$stream = $incomingClient.GetStream()

If all of this seems familiar, it should, because you’re at the same point you were ear-

lier in the chapter when receiving and sending data. Using what you learned earlier

you can now start sending and receiving data using the same methods. As a refresher,

the code you used earlier is listed here:

$tcpClient = New-Object System.Net.Sockets.TCPClient
$tcpClient.Connect("DC1",7)
$Text = "This is a test message"
[byte[]]$bytes = [text.Encoding]::Ascii.GetBytes($Text)
$clientStream = $tcpClient.GetStream()
$clientStream.Write($bytes,0,$bytes.length)
$clientStream.Flush()
$clientStream.DataAvailable
[byte[]]$inStream = New-Object byte[] 22
$response = $clientStream.Read($inStream, 0, $inStream.count)
[Int]$response = $clientStream.Read($inStream, 0, $inStream.count)
[System.Text.Encoding]::ASCII.GetString($inStream[0..($response - 1)])

$tcpClient.Dispose()
$clientStream.Dispose()

This method is generally used for a single client connection, as each blocking connec-

tion method makes it hard to handle more than one client at a time if used in a loop.

If you want to set up a more robust server I suggest getting familiar with creating your

own PowerShell runspaces and learning more about sharing variables, which makes

the handling of multiple remote connections and the sending and receiving of data

much easier.

Creating the Echo server

I’ve gone over sending data, receiving data, and working with TCP listeners to set up

your own server to listen on a port of your choosing and then handle data that’s trans-

mitted both ways. The last step in this process is to put all of this together by creating

your own Echo server. This doesn’t have much practical use other than testing net-

work communication between a client and server, but it does bring together all of the

techniques in this chapter.

 Earlier I mentioned how you can install the Simple TCP Services feature that

includes the Echo server via port 7. Using Telnet on a client, connect to the remote

server running the Echo port:

telnet dc1.rivendell.com 7

68 CHAPTER 4 TCP port communications with PowerShell

Now type a simple sentence and watch as each letter typed is repeated back, as shown

in figure 8.

 This is simple to emulate with PowerShell and doesn’t require setting up multiple

runspaces to handle incoming connections, although if you’re expecting more than

one client you’ll need multiple runspaces to effectively handle multiple connections.

Again, building runspaces is beyond the scope of this chapter.

 The script shown in the following listing opens up port 7 as the Echo server port

that will receive and resend the data sent from the client.

[cmdletbinding()]
Param()
[console]::Title = "Echo Server"
$Listener = New-Object System.Net.Sockets.TcpListener `
 -ArgumentList 7

$Listener.Start()
Write-Verbose "Server started"

While ($True) {
 $incomingClient = $Listener.AcceptTcpClient()
 $remoteClient =

$incomingClient.client.RemoteEndPoint.Address.IPAddressToString
 Write-Verbose ("New connection from {0}" -f $remoteClient)

 Start-Sleep -Milliseconds 1000

 $stream = $incomingClient.GetStream()
 $activeConnection = $True

 While ($incomingClient.Connected) {
 If ($Stream.DataAvailable) {
 Do {
 [byte[]]$byte = New-Object byte[] 1024
 Write-Verbose ("{0} Bytes Left from {1}" -f
 $return.Available,$remoteClient)
 $bytesReceived = $stream.Read($byte, 0, $byte.Length)
 If ($bytesReceived -gt 0) {
 Write-Verbose ("{0} Bytes received from {1}" -f
 $bytesReceived,$remoteClient)
 $String +=

[text.Encoding]::Ascii.GetString($byte[0..($bytesReceived - 1)])
 } Else {
 $activeConnection = $False
 Break
 }
 } While ($Stream.DataAvailable)

Listing 3 Start-EchoServer.ps1

Figure 8 Sample input to the Echo port on the remote system

Create TCP listener
object; wait for
incoming connections

Ensure always in
a listening state

Continue processing
client messages and
echoing them back

Check if data is still
available to process

69Summary

 If ($String) {
 Write-Host -Foreground Green -background Black `
 ("Message received from {0}:`n {1}" -f
 $remoteClient,$string) -Verbose

 $bytes = [text.Encoding]::Ascii.GetBytes($string)
 $string = $Null
 Write-Verbose ("Echoing {0} bytes to {1}" -f
 $bytes.count, $remoteClient)
 $Stream.Write($bytes,0,$bytes.length)
 $stream.Flush()
 }
 }
 }
}

Figure 9 shows a message being typed into the console from Telnet, with the data

being sent back. You’ll notice that the first letter only appears once. The first letter

you type doesn’t get displayed on the console; instead, the single “T” is the reply from

the Echo server.

 Figure 10 shows the PowerShell Echo server responding to each and every sent

character.

Summary

As you’ve seen, you can do many things with PowerShell to take advantage of TCP port

communications. The possibilities with these techniques are limited only by your

imagination and what you can build. Be sure to use tools such as sniffers to help you in

your exploration of TCP communications.

 Whether you’re creating a simple port scanner to emulate an Echo port or build-

ing your own PowerShell chat room and client (which I happened to do, and it’s avail-

able for download and use at http://poshchat.codeplex.com), PowerShell is more

Figure 9 Sample input to the PowerShell Echo server

Figure 10 The PowerShell Echo

server handling the responses from a

client and “echoing” back the data

http://poshchat.codeplex.com

70 CHAPTER 4 TCP port communications with PowerShell

than capable of meeting your needs. Whatever you do, have fun with it and be sure to

share it with the rest of the PowerShell community!

About the author

Boe Prox is a Senior Windows Systems Administrator. He has been

in the IT industry since 2003 and has worked with Windows Power-

Shell since 2009. He is also the recipient of the Microsoft Commu-

nity Contributor award for 2011 and 2012. Boe holds several IT

certifications, including MCITP:Enterprise Administrator, VCP 4, and

Microsoft Certified Solutions Associate. You can find him on Twitter

(@proxb) and at his blog (http://learn-powershell.net). He is also a

moderator on the “Official Scripting Guys Forum!” His current

projects are published on CodePlex: PoshWSUS (http://poshwsus.codeplex.com), Posh-

PAIG (http://poshpaig.codeplex.com), and PoshChat (http://poshchat.codeplex.com).

http://learn-powershell.net
http://poshwsus.codeplex.com
http://poshpaig.codeplex.com
http://poshchat.codeplex.com

71

5 Managing systems
through a keyhole

 Bartosz Bielawski

Imagine you’re sitting on the beach with your smartphone. You’d love to ignore

calls from work, but you just got a text saying that an important client’s account is

locked. It’s the middle of vacation season, and for whatever reason nobody in the

office is able to solve the problem. You roll your eyes and take a deep breath. Then

you open the appropriate web page on your phone, log on, and run a single com-

mand. You send a text to your colleagues that the problem is solved. Is it possible?

With PowerShell v3 and Windows Server 2012, the answer is yes.

 Windows Server 2012 comes with PowerShell Web Access (PSWA). A question

that concerns many administrators is this: do I really want to be able to do every-

thing I can normally do from my workstation when I’m connected to my systems

from my phone or tablet? Maybe I want to be able to perform only those tasks that

are safe but may be seen as crucial by some (important if “some” includes your

manager), like unlocking a client’s active directory account.

PSWA can’t restrict the list of commands available, but because it uses Power-

Shell remoting at the backend you can configure it to only use a dedicated-session

configuration. And you can set up this session configuration in a way that meets

your goals—in a way that will let you do what you must but hide anything that could

potentially cause harm to the managed system.

PowerShell remoting

PowerShell remoting is functionality that Windows administrators can use to con-

nect to remote computers if they’re running PowerShell v2 (at least) and have this

option enabled. To control who can connect to the computer and what operations

can be performed on it you’ll use session configurations (endpoints). Let’s take a

look at the different types of endpoints.

72 CHAPTER 5 Managing systems through a keyhole

Endpoints

When you use PowerShell remoting you usually connect to the default endpoint,

Microsoft.PowerShell. You can change this either by using the parameter

ConfigurationName on *-PSSession cmdlets or by changing the preference variable

$PSSessionConfigurationName. To work with remoting endpoints on your computer

you use cmdlets with the common noun PSSessionConfiguration:

PS C:\> Get-Command -Noun PSSessionConfiguration | select Name

Name

Disable-PSSessionConfiguration
Enable-PSSessionConfiguration
Get-PSSessionConfiguration
Register-PSSessionConfiguration
Set-PSSessionConfiguration
Unregister-PSSessionConfiguration

For example, if you want to see all the endpoints available on your computer, run the

Get-PSSessionConfiguration cmdlet:

PS C:\> Get-PSSessionConfiguration

Name : microsoft.powershell
PSVersion : 3.0
StartupScript :
RunAsUser :
Permission : BUILTIN\Administrators AccessAllowed, BUILTIN\Remote

Management Users AccessAllowed

Name : microsoft.powershell.workflow
PSVersion : 3.0
StartupScript :
RunAsUser :
Permission : BUILTIN\Administrators AccessAllowed, BUILTIN\Remote

Management Users AccessAllowed

Name : microsoft.powershell32
PSVersion : 3.0
StartupScript :
RunAsUser :
Permission : BUILTIN\Administrators AccessAllowed, BUILTIN\Remote

Management Users AccessAllowed

Name : microsoft.windows.servermanagerworkflows
PSVersion : 3.0
StartupScript :
RunAsUser :
Permission : NT AUTHORITY\INTERACTIVE AccessAllowed,

BUILTIN\Administrators AccessAllowed

Your default remoting endpoint (Microsoft.PowerShell) is configured to only allow

members of the local Administrators group, and it doesn’t restrict them at all. In v3 a

new group was added with the same access to this endpoint: Remote Management

73PowerShell remoting

Users. Almost everything can be done using this default configuration. Although this

is a good thing, you may want to have different, custom endpoints available on your

computer. You may want to have an endpoint that would have some elements config-

ured specifically for you—such as variables, aliases, and loaded modules—configured

in the same way you would your local environment using profile scripts.

 Another option is to create an endpoint that would expose only a limited set of

commands—a constrained endpoint. Both operations require creating a custom

endpoint (Register-PSSessionConfiguration) or modifying one that already exists

(Set-PSSessionConfiguration).

 You’ll use these cmdlets to create and configure your remoting endpoint.

Constrained endpoints, take one

You customize remoting endpoints in PowerShell v2 with startup scripts. When you

want to build a constrained endpoint in v2 you have to know exactly what is required.

No cmdlet can help you with that. You create a startup script and take a few actions to

limit the users in it:

■ Hide all variables and cmdlets (change them to private).
■ Remove all scripts and applications.
■ Change the language mode to NoLanguage.
■ Define the proxies necessary for the remoting endpoint to work.
■ Define any public commands that you want to expose.

Next, register or set the custom endpoint and pass the path to the configuration script

you’ve created to the StartupScript parameter. But there’s no built-in way to dele-

gate such an endpoint. You could change the security descriptor and allow a nonad-

ministrative account to connect to the endpoint, but you can’t change the context in

which commands run to the context of another user with higher privileges.

Constrained endpoints, take two

A nice addition to remoting in PowerShell v3 is the option to use configuration files.

When you register or configure an endpoint you can specify the path to the PSSession-

Configuration file that covers the same elements that v2’s StartupScript did, but in

a more structured way that’s easier to follow and change. The cmdlet for creating con-

figuration files for remoting endpoints is New-PSSessionConfigurationFile. With

this cmdlet you can focus on the things you want to achieve rather than on how to

achieve them.

CREATING A SAMPLE ENDPOINT

The sample endpoint you’re going to create has only one purpose: finding locked

Active Directory accounts and unlocking selected accounts. That’s it. You want to be as

restrictive as possible and have only the cmdlets you need. When using the New-

PSSessionConfiguration cmdlet to create your configuration file, for the most part

PowerShell will support you with parameters (that you can complete with the tab key)

74 CHAPTER 5 Managing systems through a keyhole

and help you with arguments (ones that have a closed list of possible values). Run this

command to create your configuration file:

New-PSSessionConfigurationFile -Path v3config.pssc `
 -SessionType RestrictedRemoteServer `
 -LanguageMode NoLanguage `
 -ModulesToImport ActiveDirectory `
 -VisibleCmdlets Unlock-ADAccount, Search-ADAccount

This creates a file containing all the fields that are supported in the session configu-

ration file. All optional fields that you haven’t specified are marked as comments,

making it easy to edit the file later and enable additional fields by “uncommenting”

them. Use the RestrictedRemoteServer configuration type to make sure your end-

point contains all the commands necessary for basic operations (connecting to the

endpoint, disconnecting from it, listing available commands). Set LanguageMode to

NoLanguage to disable any language elements (such as script blocks, variables, or

operators). By specifying ModulesToImport and VisibleCmdlets you enable the per-

formance of both actions you need: searching for locked accounts and unlocking

accounts in Active Directory.

 The configuration file (with comments removed) can be seen in the following listing.

@{

SchemaVersion = '1.0.0.0'
GUID = '607136de-2811-42f3-b526-ea2b1d5b59a2'
Author = 'BielawB'
CompanyName = 'PAREXEL'
Copyright = '(c) 2012 BielawB. All rights reserved.'

ExecutionPolicy = 'Restricted'
LanguageMode = 'NoLanguage'
SessionType = 'RestrictedRemoteServer'

ModulesToImport = 'ActiveDirectory'
VisibleCmdlets = 'Unlock-ADAccount','Search-ADAccount'
}

The file generated is easy to update—open it in your PowerShell editor of choice and

modify the keys you want to change. It’s always possible you’ll make a mistake, and this is

where the Test-PSSessionConfigurationFile cmdlet comes in handy (particularly

when used with the Verbose parameter). For example, suppose you decide to define an

alias in your configuration. As shown in figure 1, the Test-PSSessionConfiguration-

File cmdlet tells you exactly what mistakes you’ve made.

 When you’re sure the configuration file is error-free you can register the

new endpoint:

Register-PSSessionConfiguration –Name Unlock –Path v3config.pssc

You have two options here: run it on the domain controller (which will make it easier

to test) or run it on any member server (but the ActiveDirectory module won’t work

Listing 1 Configuration file (v3config.pssc) for the sample endpoint

Setting endpoint
properties

Configuring elements
important for
constrained endpoint

Selecting visible
module and cmdlets

75PowerShell remoting

until you configure RunAs credentials and bypass the double-hop issue). Your first

remoting endpoint has been created. Now you need to learn how to delegate it. As

you’ll see, delegating is not only supported in v3, it’s also pretty easy to do.

DELEGATION

Constrained endpoints are perfect candidates for delegation. With them you can

hand over authorizations to less privileged users in a controlled manner. Delegating

an already configured endpoint is a matter of running a single command (usually

Set-PSSessionConfiguration) with two parameters that will define whose creden-

tials will be delegated (RunAsCredential) and who will be allowed to use the end-

point. For the latter, you can use either ShowSecurityDescriptorUI, if you prefer

using a GUI to set up access rights, or SecurityDescriptorSddl, if you know security

descriptor definition language (SDDL) syntax. You can do it during registration or

modify the endpoint already registered. In my opinion it’s better to test constraints

first and enable delegation later. (When you invite guests to your home, you want to

clean up the house first, rather than run around with a mop once they’re already

there!) Your endpoint has been tested, so now you can delegate it:

Set-PSSessionConfiguration -Name Unlock `
 -RunAsCredential MONAD\Administrator –ShowSecurityDescriptorUI -Force

The double-hop issue

PowerShell remoting, by default, uses Kerberos for authentication. Unless the com-
puter you connect to is configured as “trusted for delegation” it won’t be able to dele-
gate a Kerberos token on the user’s behalf to other network resources. As a result,
anything that requires delegation will fail. This issue is known as the double-hop is-
sue, and you can work around it in a few ways, including using RunAs credentials. You
can also use Credential Security Support Provider (CredSSP) or configure the remote
computer as “trusted for delegation.”

Figure 1 The Test-PSSessionConigurationFile cmdlet will help you avoid errors

in your configuration file.

76 CHAPTER 5 Managing systems through a keyhole

Using ShowSecurityDescriptorUI gives you a user-friendly GUI to configure permis-

sions to your endpoint. You want to be sure only designated users can access it, so

remove the default groups and add only the NonAdmin user, as shown in figure 2.

 Now that your endpoint is up and running you can invite your “guests.”

PowerShell Web Access
You’ve got remoting set up, and now it’s time to configure a feature added in Windows

Server 2012: PowerShell Web Access. PSWA allows you to use PowerShell on almost any

device. It’s a gateway between your web browser and the remoting endpoint you want

to connect to. Security concerns are involved, but you can mitigate those risks by care-

fully designing your infrastructure. I’ll walk you through how to configure PSWA.

 To get PSWA up and running you need an IIS server that’s running Windows Server

2012 and is accessible from outside and able to connect to your internal network. It

has to support HTTPS binding, preferably with a proper certificate (to avoid an

“untrusted certificate” warning). You have to install the PSWA feature first:

Install-WindowsFeature -Name WindowsPowerShellWebAccess `
 -IncludeAllSubFeature -IncludeManagementTools

Next, run a script to install the PSWA application, in this case giving it a custom name:

Install-PswaWebApplication -WebApplicationName MyPosh

It’s important to have a limited user on your IIS server who can log in to the PSWA

gateway but do nothing more. Let’s name this user WebRestricted. The IIS server that

will run the PSWA gateway is appropriately named PSWA.

User that we

delegate rights to

“Invoke” permission

necessary to

use endpoint.

Figure 2 Giving the NonAdmin user access to the endpoint by assigning read and

execute rights

77PowerShell Web Access

 Once you’ve created your limited user (keep in mind that it can be a nondomain

user, depending on the demilitarized-zone configuration you use), you need to add

the appropriate authorization rule:

Add-PswaAuthorizationRule -ComputerName dc.monad.ps1 `
 -UserName PSWA\WebRestricted -ConfigurationName Unlock

You’ve given access to one user, one computer, and one specific configuration on this

computer. ComputerName matches the name of the computer running the constrained

endpoint, and ConfigurationName matches the name you specified when you regis-

tered the constrained endpoint. If your IIS server is outside the domain you need to

make sure it will be able to connect to the host that the authorization rule points to.

Do this by entering

Set-Item -Path WSMan:\localhost\Client\TrustedHosts `
 -Value dc.monad.ps1 –Concatenate

NOTE Be aware that the PSWA gateway can have PowerShell remoting disabled:
this technology doesn’t require it on the gateway host. It uses an HTTPS

connection from your browser to the gateway, and a WinRM connection
from the gateway to final host.

Once the configuration is complete you can open a

connection to the PSWA gateway using a web browser.

The address depends on the initial configuration, in

this case https://PSWA/MyPosh, as shown in figure 3.

 The disadvantage in setting PSWA to work with

only one endpoint, other than the default, is that you

have to specify almost all the parameters available

during the connection, as shown in figure 4.

Protocol Host Application

Figure 3 Structure of the

PowerShell Web Access URI

Figure 4 Logging on to PowerShell

Web Access with a specific

authorization rule configured

https://PSWA/MyPosh

78 CHAPTER 5 Managing systems through a keyhole

Once you connect you have your two cmdlets available, plus a few proxy functions

needed for the remoting endpoint to work. You can now check for locked accounts in

the same way you would if you were running PowerShell on a normal workstation, as

shown in figure 5.

 If you try to connect to a different host with a different user it won’t work—either

the gateway or the endpoint will stop you. With all the settings configured correctly

you can connect to the endpoint from any device, including a smartphone, tablet, or

netbook. All you need is a web browser and the ability to type letters and other charac-

ters (a pipeline can be tricky).

 The only commands available in this session are the ones you decide to expose, so

there’s no way to remove an account, for example, or disable it. If you decide you

need more commands you can add them by modifying your configuration file and

resetting the endpoint. If you need another endpoint you can configure one and add

a new authorization rule on the PSWA gateway to allow the connection. With PSWA,

you have granular control over who can perform certain tasks, where, and how, all

without leaving the door to your system wide open. If all you need is a small keyhole, a

keyhole is what you’ll get.

Summary
Your initial problem was solved with two elements: a constrained endpoint and PSWA.

The constrained endpoint is your back-end and limits the actions you can perform.

PSWA is the front-end that allows access from any device with a web browser. But this is

only the beginning. You can create your own tools that would use your back-end to per-

form actions, group several constrained endpoints, and create a single application (with

a GUI) for the help-desk staff to perform their tasks. You can define as many authoriza-

tion rules for your PSWA application as you need to manage your organization. Every-

thing can be done in a secure fashion, without fully opening the doors to your system.

Figure 5 Searching for

locked accounts from a

smartphone is almost

the same as searching

from a workstation.

79Summary

 Is it safe? There’s always risk, but the safeguards I’ve shown you can minimize it.

PSWA makes it possible to connect to a PowerShell remoting endpoint even if direct

connection isn’t possible. You connect using a regular account to both a web appli-

cation and a remoting endpoint, using authorization rules in the first case and dele-

gation in the second. It’s all about careful design. You have full control. It’s not an

all-or-nothing decision: you control what is exposed, where, and how.

 You face two situations. In one, whenever something requires your attention, you

need a good and stable Internet connection to use a virtual private network, and a

trusted and well-protected laptop to perform operations. The second is slightly differ-

ent: when you’re away from your desk, you need a gateway to connect to and an

underprivileged account so you can perform important tasks in a way that doesn’t put

your system at risk. In this chapter you gave yourself the option to perform them from

any device with an Internet connection, web browser, and keyboard (even if the keys

were only a few pixels on a touchscreen). To move between the two you needed only

to constrain the remoting endpoints and PSWA. In my opinion, this transition was

worth the price.

About the author

Bartosz (Bartek) Bielawski is a busy IT Administrator with an inter-

national company, PAREXEL. He loves PowerShell and automa-

tion. That love earned him the honor of Microsoft MVP. He shares

his knowledge mainly on his blogs and through articles published

in the Polish IT Professional magazine.

80

6 Using PowerShell to audit
user logon events

 Mike F. Robbins

Event logs are special files on Windows-based workstations and servers that record

system activity. Do you want to know if there’s a problem with your Windows-based

servers? Almost anything you’d want to know about what has occurred on your serv-

ers, whether an informational event, a warning, an error, or a security event, is con-

tained in the event logs. When’s the last time you took a look at all of the event logs

on each of your servers?

 Beginning with Windows Vista and Windows Server 2008 the event logs were

redesigned in an XML-based log format, and newer operating systems such as Win-

dows Server 2012 can contain over 200 different event logs, depending on what

roles have been enabled. Each of these event logs is an individual file located in the

%SystemRoot%\System32\Winevt\Logs folder by default. Event Viewer is the graphi-

cal user interface tool that most administrators are familiar with when it comes to

event logs, but with an overwhelming amount of data being contained in so many

individual logs on each of their servers, administrators have to learn more efficient

ways to retrieve the specific information they’re looking for.

 This chapter focuses on using PowerShell to retrieve auditing information for

user logon events from the security event log of your Windows-based servers.

Although you can use many different tools to perform this task, PowerShell is one

of the most efficient and versatile options—it allows you to control the specific

details of how you query for the information, where most of the processing takes

place, and where the data filtering occurs. It can also translate cryptic numeric

codes contained in specific events into meaningful information.

Event log basics
You can search event logs in a number of ways, depending on the piece of

information you have and the type of data you’re looking for. Because you’ll be

81Querying the event logs with PowerShell

focusing on a few different security-related user-logon events in this chapter you’ll

search by event ID.

 An event ID is a numeric code that uniquely identifies a specific type of event. How

do you determine what the event IDs are for successful logons, logon failures, and user

account lockouts? The event IDs and their descriptions can be found in the article

“Description of security events in Windows 7 and in Windows Server 2008 R2” at

http://support.microsoft.com/kb/977519. Similar information is also available as an

Excel spreadsheet at www.microsoft.com/en-us/download/details.aspx?id=21561. I’ve

listed them here for you in table 1. These event IDs were changed from three- to four-

digit numeric codes with Windows Vista and Windows Server 2008, so you won’t find

them in the event logs of older operating systems. The event IDs in table 1 are valid for

Windows Vista, Windows Server 2008, and higher.

Querying the event logs with PowerShell
The two PowerShell cmdlets specifically designed for querying information in the

event logs are Get-EventLog and Get-WinEvent.

 The Get-EventLog cmdlet has been around since PowerShell v1, but the initial ver-

sion of this cmdlet didn’t include a ComputerName parameter for support to query the

event logs of remote computers. That functionality was added to Get-EventLog with

the release of PowerShell v2. This means you’ll need at least PowerShell v2 on your

machine in order to run this cmdlet and query the event logs of remote machines.

 The Get-WinEvent cmdlet, added in PowerShell v2, is much more powerful and

efficient in certain scenarios for querying the event logs. One issue with the Get-

WinEvent cmdlet is that it doesn’t natively support running against multiple remote

computers, as the Get-EventLog cmdlet does. Looking at the help for the Computer-

Name parameter of the Get-WinEvent cmdlet confirms that it only supports a string

and not an array of strings:

PS C:\> help Get-WinEvent -Parameter ComputerName
-ComputerName <string>

Viewing the help for the ComputerName parameter of the Get-EventLog cmdlet

shows that it supports an array of strings, which means it can accept multiple com-

puter names:

PS C:\> help Get-EventLog -Parameter ComputerName
-ComputerName <string[]>

Table 1 Event IDs

Event ID Description

4624 An account was successfully logged on.

4625 An account failed to log on.

4740 A user account was locked out.

http://www.microsoft.com/en-us/download/details.aspx?id=21561
http://support.microsoft.com/kb/977519

82 CHAPTER 6 Using PowerShell to audit user logon events

You’d have to use a Foreach or ForEach-Object loop or PowerShell remoting in order

to use the Get-WinEvent cmdlet with multiple computer names in a single command.

Foreach iterates through a collection of objects, and ForEach-Object obtains its col-

lection of objects through the pipeline. For a small number of items in a collection

the performance difference of these two is negligible, but when you have a large num-

ber of items and they’re already known, Foreach is faster than ForEach-Object, as it

doesn’t have to collect the objects before the loop starts.

 The following PowerShell script shows an example of using the Get-WinEvent

cmdlet in a Foreach loop:

$ComputerName = 'server1', 'server2'
foreach ($Computer in $ComputerName)
{
 Get-WinEvent -ComputerName $Computer -Logname 'security' -MaxEvents 10
 ➥ -FilterXPath '*[System[EventID=4624]]'
}

This script is an example of using the Get-WinEvent cmdlet in a ForEach-Object

loop:

'server1', 'server2' |
ForEach-Object {
 Get-WinEvent -ComputerName $_ -Logname 'security' -MaxEvents 10
 ➥ –FilterXPath '*[System[EventID=4624]]'
}

I’ve chosen to use the FilterXPath parameter set with the Get-WinEvent cmdlet in

the examples in this chapter because the FilterHashTable parameter set isn’t sup-

ported when run from Windows Vista or Windows Server 2008, although remote que-

ries against either of those operating systems using the FilterHashTable parameter

set work without issue when the client performing the query is running Windows 7,

Windows Server 2008 R2, or higher.

 What if your servers are running Windows Server 2008 and your security team

won’t allow PowerShell to be enabled or a newer version of PowerShell to be installed?

That’s certainly not the optimum environment for remotely managing your Windows-

based servers with PowerShell, but it’s possible to remotely query the event logs of

your servers that don’t have PowerShell installed or enabled using the Get-EventLog

and Get-WinEvent cmdlets.

 To do this you need at least one machine running Windows Vista, Windows Server

2008, or higher that has PowerShell v2 or higher installed on it from which to perform

the remote querying. One issue you’re likely to run into is the “RPC Server is unavailable”

error, which is probably due to the firewall on the remote server blocking the request.

The simplest way to resolve this is to allow the Remote Event Log Management exception

in the firewall of the remote servers whose event logs you’re trying to query. It’s also pos-

sible that the security team won’t allow a generic firewall exception to be made on the

servers, but in most cases at least a single specific IP address exception is allowed for a

management workstation that’s used for this type of remote administration.

http://mng.bz/VD00
http://mng.bz/VD00
http://mng.bz/adZz
http://mng.bz/adZz

83Auditing logon failures

 Both the Get-EventLog and Get-WinEvent cmdlets run asynchronously, or against

one computer (specified using the ComputerName parameter) at a time. You can place

either cmdlet inside the script block {} of the Invoke-Command cmdlet to take advan-

tage of PowerShell remoting, which runs synchronously, or against multiple comput-

ers in parallel at the same time.

 To use Invoke-Command you must have at least PowerShell v2 installed and

PowerShell remoting enabled on the remote machines you’re targeting. PowerShell

remoting is enabled by default on Windows Server 2012. By taking advantage of

PowerShell remoting you’ll eliminate many of the issues I’ve discussed, such as

the issue with the FilterHashTable parameter set of Get-WinEvent and most of the

firewall-related issues.

 The following PowerShell script shows the Get-WinEvent example you previously

used, now modified for use with Invoke-Command. It places the script inside the script

block and moves the computer names you’re targeting to the ComputerName parame-

ter of Invoke-Command. It also eliminates the Foreach or ForEach-Object loop

because the ComputerName parameter of the Invoke-Command cmdlet supports multi-

ple computer names:

Invoke-Command -ComputerName 'server1', 'server2' {
 Get-WinEvent –Logname 'security' -MaxEvents 10
 ➥ -FilterXPath '*[System[EventID=4624]]'
}

Now that we’ve covered the basics of event logs and how to query them with Power-

Shell, let’s take a look at a real-world scenario for each of the querying methods cov-

ered in this section.

Auditing logon failures

Suppose you have external users who access a private section of your website that runs

on IIS and uses Windows Authentication. These users frequently experience difficul-

ties when trying to log in to the website. Your goal is to provide your help desk staff

with a quick and efficient method for gaining insight into the login issues so they can

determine the problem. To enable the help desk staff to read the event logs of the

servers where the website resides, but for which they don’t have administrative privi-

leges, they’ve been added to a global group in Active Directory, and that global

group has been made a member of the local Event Log Readers group on the serv-

ers. Also, the local Event Log Readers group has been granted read access to the

HKLM\SYSTEM\CurrentControlSet\services\eventlog\Security hive in the registry on

those servers; otherwise, the help desk staff still wouldn’t be able to read the security

event log.

 Earlier you learned that the event ID for “An account failed to log on” is 4625.

Viewing one of the 4625 events on the web server through Event Viewer, shown in fig-

ure 1, you’ll see status and sub-status codes that may provide additional information

that could help determine why a user can’t log on.

84 CHAPTER 6 Using PowerShell to audit user logon events

You can see that the status and sub-status codes are part of the message property by

using the Get-WinEvent cmdlet to retrieve one of the logon failure events and then

piping it to Select-Object using the –ExpandProperty parameter to view its contents:

PS C:\> Get-WinEvent -ComputerName 'www' -MaxEvents 1 -Logname 'security'
 ➥ -FilterXPath '*[System[EventID=4625]]' | select -expand message
An account failed to log on.

Account For Which Logon Failed:
 Security ID: S-1-0-0
 Account Name: laurac
 Account Domain: MIKEFROBBINS

Failure Information:
 Failure Reason: Unknown user name or bad password.
 Status: 0xc000006d
 Sub Status: 0xc0000064

Unfortunately, there’s no easy way to pull a single piece of information out of the mes-

sage property. Usually these individual items are accessible via the properties collec-

tion of Get-WinEvent, but that isn’t the case in this particular scenario.

 The Get-EventLog cmdlet has a ReplacementStrings collection similar to the

properties collection of Get-WinEvent. Both the status and sub-status codes are acces-

sible as individual elements in the ReplacementStrings collection, so you’ll use the

Get-EventLog cmdlet instead of Get-WinEvent. In the following results I’ve added

bracketed numbers that correspond to the position in the collection where each of

these items is located. You’ll need that information to access the specific elements

individually when creating your script:

PS C:\> Get-EventLog -ComputerName 'www' -LogName 'security'
 ➥ -InstanceId 4625 -Newest 1 | select -expand replacementstrings
[0] S-1-0-0
[1] -
[2] -
[3] 0x0
[4] S-1-0-0
[5] laurac
[6] mikefrobbins
[7] 0xc000006d
[8] %%2313
[9] 0xc0000064
[10] 3

Figure 1 Event 4625—example of sub-status code for Account Does Not Exist

85Auditing logon failures

[11] NtLmSsp
[12] NTLM
[13] PC2
[14] -
[15] -
[16] 0
[17] 0x0
[18] -
[19] 192.168.1.99

A little research on the Microsoft Developer Network (MSDN) turns up something

called “NTSTATUS values,” which contains the descriptions for the status and sub-status

codes at http://mng.bz/z88n. The most common ones are shown in table 2.

Now you’re ready to create your PowerShell script, to which you’ll add these status and

sub-status codes. You want the script to be parameterized for the computer name and the

number of records to retrieve. You’ll pipe the results to Select-Object and use a hash

table to display custom column names, along with adding a function named Get-

FailureReason to automatically translate the status and sub-status codes into their

meaningful descriptions from table 2. The script is shown in the following listing.

param (
 $ComputerName = $Env:ComputerName,
 $Records = 10
)

Table 2 Common logon failure status codes

Code Description

0xC0000064 Account does not exist

0xC000006A Incorrect password

0xC000006D Incorrect username or password

0xC000006E Account restriction

0xC000006F Invalid logon hours

0xC000015B Logon type not granted

0xC0000070 Invalid Workstation

0xC0000071 Password expired

0xC0000072 Account disabled

0xC0000133 Time difference at DC

0xC0000193 Account expired

0xC0000224 Password must change

0xC0000234 Account locked out

Listing 1 Auditing logon failures

http://mng.bz/z88n

86 CHAPTER 6 Using PowerShell to audit user logon events

function Get-FailureReason {
 Param($FailureReason)
 switch ($FailureReason) {
 '0xC0000064' {"Account does not exist"; break;}
 '0xC000006A' {"Incorrect password"; break;}
 '0xC000006D' {"Incorrect username or password"; break;}
 '0xC000006E' {"Account restriction"; break;}
 '0xC000006F' {"Invalid logon hours"; break;}
 '0xC000015B' {"Logon type not granted"; break;}
 '0xc0000070' {"Invalid Workstation"; break;}
 '0xC0000071' {"Password expired"; break;}
 '0xC0000072' {"Account disabled"; break;}
 '0xC0000133' {"Time difference at DC"; break;}
 '0xC0000193' {"Account expired"; break;}
 '0xC0000224' {"Password must change"; break;}
 '0xC0000234' {"Account locked out"; break;}
 '0x0' {"0x0"; break;}
 default {"Other"; break;}
 }
}
Get-EventLog -ComputerName $ComputerName -LogName 'security'
 ➥ -InstanceId 4625 -Newest $Records |
 select @{Label='Time';Expression={$_.TimeGenerated.ToString('g')}},
 @{Label='User Name';Expression={$_.replacementstrings[5]}},
 @{Label='Client Name';Expression={$_.replacementstrings[13]}},
 @{Label='Client Address';Expression={$_.replacementstrings[19]}},
 @{Label='Server Name';Expression={$_.MachineName}},
 @{Label='Failure Status';Expression={Get-FailureReason
 ➥ ($_.replacementstrings[7])}},
 @{Label='Failure Sub Status';Expression={Get-FailureReason
 ➥ ($_.replacementstrings[9])}}

A subset of the columns returned by this script is shown in figure 2. Based on these

results, it appears that the user is attempting to log in with the username of laurac.

The correct username is lcallahan.

 As shown in figure 3, had the password been incorrect instead of the username,

the generic reason for failure and status code would have been the same, but the sub-

status code would have been different.

 In this section you’ve used PowerShell to determine why a user is unable to log on

by translating cryptic status codes retrieved from the security event log of an IIS web

server into meaningful information. Finding and translating these same codes with

Figure 2 Results of the Get-LogonFailures.ps1 PowerShell script from listing 1

87Auditing logon type and authentication protocol

the Event Viewer graphical interface tool into something meaningful would be a

manual and time-consuming process, so it’s easy to see how much more efficient

PowerShell is in this situation than Event Viewer or another tool that’s unable to auto-

matically translate the codes.

 In the next section you’ll use PowerShell to determine the logon type and authen-

tication protocol for individual user logon requests to specific servers based on infor-

mation in the security event log of the server where the logon event took place. This

can help you locate incorrectly configured servers, which can cause security vulnera-

bilities because the systems are using weak logon authentication protocols.

Auditing logon type and authentication protocol

Suppose a new SharePoint farm has been built and you want to verify that Kerberos is

the authentication protocol being used between the web frontends and their dedi-

cated backend SQL Server. As previously determined, successful logons are identified

by event ID 4624 in the security event log. The numeric values for Logon Type and

Authentication Package are the two key pieces of information you’re looking for. As

with the example in the previous section, they can both be seen in the message prop-

erty of Get-WinEvent:

PS C:\> Get-WinEvent -ComputerName 'sql' -MaxEvents 1 -Logname 'security'
 ➥ -FilterXPath '*[System[EventID=4624]]' | select -expand message
An account was successfully logged on.
Subject:
 Security ID: S-1-5-18
 Account Name: PC3$
 Account Domain: MIKEFROBBINS
 Logon ID: 0x3e7

Logon Type: 10

Detailed Authentication Information:
 Logon Process: User32
 Authentication Package: Negotiate

The difference this time is that they’re available in the properties collection of Get-

WinEvent as individual elements. The logon-type code is in position 9, which is num-

ber [8], and the logon authentication protocol is in position 11, which is number [10]

of the properties collection, as shown in the following results:

Figure 3 Event 4625—example of sub-status code for Incorrect Password

88 CHAPTER 6 Using PowerShell to audit user logon events

PS C:\> Get-WinEvent -ComputerName 'sql' -MaxEvents 1 -Logname 'security'
 ➥ -FilterXPath '*[System[EventID=4624]]' | select -expand properties
[0] S-1-5-18
[1] PC3$
[2] MIKEFROBBINS
[3] 999
[4] S-1-5-21-1998522977-2393571580-1109924844-1113
[5] mpeacock
[6] MIKEFROBBINS
[7] 273615
[8] 10
[9] User32
[10] Negotiate
[11] PC3
[12] 00000000-0000-0000-0000-000000000000
[13] -
[14] -
[15] 0
[16] 2208
[17] C:\Windows\System32\winlogon.exe
[18] 192.168.1.86

Articles about logon-type numeric codes and their values are available on TechNet at

http://mng.bz/VD00 and on MSDN at http://mng.bz/adZz. These codes and values

are shown in table 3.

Table 3 Logon-type codes and values

Numeric Code Value

0 System

2 Interactive

3 Network

4 Batch

5 Service

6 Proxy

7 Unlock

8 NetworkCleartext

9 NewCredentials

10 RemoteInteractive

11 CachedInteractive

12 CachedRemoteInteractive

13 CachedUnlock

http://mng.bz/VD00
http://mng.bz/adZz

89Auditing logon type and authentication protocol

For the SharePoint-to-SQL-Server authentication test you want to run the Power-

Shell script shown in listing 2, which has the logon-type codes and values incorpo-

rated, against the SQL Server and look for the Active Directory service accounts that

are used by SharePoint on the web frontends. As with the previous script, this script

is parameterized for the computer name and the number of records to return. This

script uses a Switch statement in a hash table to return a meaningful name for the

logon-type code, which indicates the type of logon session that took place when a

user logged onto the server. It then customizes the column header names in a hash

table, and finally sorts by server name in ascending order and then by time in

descending order.

param (
 $ComputerName = $Env:ComputerName,
 $Records = 10
)
Foreach ($Computer in $ComputerName) {
 Get-WinEvent -Computer $Computer -LogName 'security' -MaxEvents
 ➥ $Records -FilterXPath '*[System[EventID=4624]]' |
 select @{Label='Time';Expression={$_.TimeCreated.ToString('g')}},
 @{Label="Logon Type";Expression={switch
 ➥ (foreach {$_.properties[8].value}) {
 0 {"System"; break;}
 2 {"Interactive"; break;}
 3 {"Network"; break;}
 4 {"Batch"; break;}
 5 {"Service"; break;}
 6 {"Proxy"; break;}
 7 {"Unlock"; break;}
 8 {"NetworkCleartext"; break;}
 9 {"NewCredentials"; break;}
 10 {"RemoteInteractive"; break;}
 11 {"CachedInteractive"; break;}
 12 {"CachedRemoteInteractive"; break;}
 13 {"CachedUnlock"; break;}
 default {"Other"; break;}}}},
 @{Label='Authentication';Expression={
 $_.Properties[10].Value}},
 @{Label='User Name';Expression={$_.Properties[5].Value}},
 @{Label='Client Name';Expression={$_.Properties[11].Value}},
 @{Label='Client Address';Expression={$_.Properties[18].Value}},
 @{Label='Server Name';Expression={$_.MachineName}} |
sort @{Expression="Server Name";Descending=$false},
 @{Expression="Time";Descending=$true}}

A subset of the columns returned by this script is shown in the following results. You

can see that the two SharePoint service accounts are using the network logon type and

the Kerberos authentication protocol:

Listing 2 Auditing logon type and authentication protocol

Parameterize for computer name
and number of records to return

Switch statement to
return meaningful name
for authentication type

Customize
column header
names

Sort by server name in
ascending order, time
in descending order

90 CHAPTER 6 Using PowerShell to audit user logon events

PS C:\> .\Get-AuthType.ps1 -ComputerName 'sql' | Format-Table

Logon Type Authentication User Name Client Name Client Address
---------- -------------- --------- ----------- --------------
RemoteInteractive Negotiate mpeacock PC3 192.168.1.65
Network Kerberos spExtFarm -
Network Kerberos spExtApp -
RemoteInteractive Negotiate mpeacock PC3 192.168.1.65

You can run this script against other servers, such as an Exchange server that’s run-

ning Outlook Web Access (OWA), to see how users are authenticating to it. You may be

surprised to find that some users are being authenticated using the Network Cleartext

logon type in that particular scenario, but at least those logon events are protected by

the SSL encryption on the OWA website, assuming you’re using SSL encryption on

your OWA website.

 In this section you used PowerShell to query the event logs of a SQL Server to

retrieve successful user logon events containing numeric logon type codes. You trans-

lated those codes into meaningful descriptions from information to determine how

users are logging onto the system and what authentication protocol is being used for

their logon sessions.

 Next you’re going to use PowerShell to query the event logs of all the Active Direc-

tory domain controllers in a specific domain to determine what computer or device is

causing a specific user account to be constantly locked out.

Auditing Active Directory user-account lockout events
Scenario: A help desk ticket has been escalated to the engineering team. It states that

a user has called the help desk three times in the past 10 minutes because their Active

Directory user account is constantly being locked out. Each time the help desk staff

unlocks the account, within a few minutes the account is locked out again, and the

user is not attempting to log in when this happens.

 In this scenario you’ll use a PowerShell script to identify the computer or device

that’s locking out the user. The event ID for account lockouts is 4740. These events

only occur on domain controllers for Active Directory user-account lockouts, but they

could happen on any domain controller in the entire domain, so you’ll need to query

each one. The script needs to complete as quickly as possible while keeping the net-

work bandwidth it uses to a minimum, and the majority of the work should be per-

formed on the domain controllers where the lockouts occurred. This is a perfect

situation for the Invoke-Command cmdlet, as PowerShell remoting is enabled on all of

the domain controllers in this environment. By default, to use PowerShell remoting

you must be an administrator on the remote machines you’re targeting.

 The script shown in listing 3 will retrieve only the Active Directory user lockout events

that have occurred in the past two hours and for which the username is AFuller. Power-

Shell v2 and the remote server administration tools must be installed on the computer

running the script. PowerShell v2 or higher must be installed and PowerShell remoting

must be enabled on each of the domain controllers that the script is running against.

91Auditing Active Directory user-account lockout events

Import-Module ActiveDirectory
Invoke-Command -ComputerName (
 Get-ADDomainController -Filter * |
 select -expand name
){
 Get-WinEvent -Logname security -FilterXPath "*[System[EventID=4740
 ➥ and TimeCreated[timediff(@SystemTime) <= 7200000]]
 ➥ and EventData[Data[@Name='TargetUserName']='afuller']]" |
 select TimeCreated,
 @{Label='User Name';Expression={$_.Properties[0].Value}},
 @{Label='Client Name';Expression={$_.Properties[1].Value}}
 }

A subset of the columns returned by this script is shown in the following results.

Invoke-Command returns an additional property named PSComputerName that tells you

what server each of the results are from:

TimeCreated User Name Client Name PSComputerName
----------- --------- ----------- --------------
9/22/2012 9:57:51 PM afuller PC1 dc02
9/22/2012 9:57:51 PM afuller PC1 dc01
9/22/2012 9:49:07 PM afuller PC1 dc03
9/22/2012 9:49:07 PM afuller PC1 dc01

What if you have hundreds of domain controllers in your environment? Isn’t there

a more efficient way of finding the user-account lockout events without having to

query every domain controller in the entire domain? If replication is working prop-

erly in your domain, all of the user-account lockout events for the entire domain

will be replicated to the security event log of the domain controller that holds the

Primary Domain Controller (PDC) emulator Flexible Single Master Operations

(FSMO) role. You can make a slight modification to the script, replacing the Get-

ADDomainController cmdlet with the Get-ADDomain cmdlet to determine which

domain controller holds this role. This results in the script only querying that indi-

vidual domain controller for the user-account lockout events. The modified script

is shown in the following listing.

Import-Module ActiveDirectory
Invoke-Command -ComputerName (
 Get-ADDomain |
 select -expand PDCEmulator
){
 Get-WinEvent -Logname security -FilterXPath "*[System[EventID=4740
 ➥ and TimeCreated[timediff(@SystemTime) <= 7200000]]
 ➥ and EventData[Data[@Name='TargetUserName']='afuller']]" |
 select TimeCreated,
 @{Label='User Name';Expression={$_.Properties[0].Value}},
 @{Label='Client Name';Expression={$_.Properties[1].Value}}
 }

Listing 3 Auditing Active Directory user-account lockouts

Listing 4 Auditing Active Directory user-account lockouts via the PDC emulator

92 CHAPTER 6 Using PowerShell to audit user logon events

As shown in the following results, this script has the same server name in the PSComputer-

Name column for each of the results because you only queried the domain controller

that holds the PDC emulator FSMO role:

TimeCreated User Name Client Name PSComputerName
----------- --------- ----------- --------------
9/22/2012 9:57:51 PM afuller PC1 dc01
9/22/2012 9:49:07 PM afuller PC1 dc01

The name of the computer that’s causing the user account to be locked out will be

returned by either of these scripts in the Client Name column of the results. In this

example the user account was being locked out by a computer named PC1. PC1 had

stale credentials saved on it in the credential manager for AFuller’s user account.

Once those credentials are removed and the account is unlocked again, the problem

will be resolved.

Summary
Several options are available to administrators when using PowerShell to query the

event logs of their remote Windows-based servers. In this chapter you learned how to

use the PowerShell cmdlets designed for querying the information contained in these

logs, eliminating the tedious task of manually sifting through them for specific data. You

also used PowerShell to automate the translation of cryptic numeric codes contained in

the properties of specific events from the security event log into meaningful informa-

tion, eliminating the time-consuming process of translating each code manually.

 The concepts covered in this chapter can be applied to any of the event logs, not

just the security event log. The PowerShell scripts I showed you are customizable for

many different scenarios; you can schedule them to run automatically at predefined

intervals, and the results can be logged to a file or a web page, or sent to an email

address without any user intervention.

About the author

Mike F. Robbins is a senior systems engineer with almost 20 years

of experience as an IT professional. He currently works for a

healthcare company in Meridian, Mississippi. A PowerShell

enthusiast, Mike uses PowerShell on a daily basis to administer

Windows Server, Hyper-V, SQL Server, Exchange, SharePoint,

Active Directory, Terminal Services, EqualLogic Storage Area Net-

works, and Backup Exec. He has written PowerShell guest blog

articles for the Hey, Scripting Guy! blog and PowerShell Magazine.

He’s a Microsoft Certified IT Professional and three-time Microsoft Certified Systems

Engineer (Windows NT 4.0, Windows 2000, and Windows Server 2003). Mike blogs at

http://mikefrobbins.com and can be found on Twitter: @mikefrobbins.

http://mikefrobbins.com

93

7 Managing and administering a
certification authority database
with PowerShell

 Vadims Podans

Since the introduction of Windows 2000 Server, the Windows operating system has

provided a built-in component that allows companies to use public key infrastruc-

ture (PKI) features in their private networks—either Certificate Services or, starting

with Windows Server 2008, Active Directory Certificate Services (AD CS).

 Unlike with commercial certificate providers (like VeriSign/Symantec, DigiCert,

and others), private AD CS allows unlimited certificate issuance at minimal cost.

The high level of security provided by digital certificates, coupled with a low price

and automatic certificate distribution (through automatic enrollment), has allowed

network administrators to use certificates to secure many internal (and, in some

cases, external) services and applications.

 Although Windows provides some command-line tools, they aren’t ready for

PKI task automation. Only Windows PowerShell allows systems administrators to

automate almost all PKI-related management tasks. In this chapter you’ll learn

about using PowerShell to automate the PKI tasks related to your certification

authority database.

 For convenience, I’ll use the abbreviation AD CS to denote Active Directory Cer-

tificate Services as a technology, and the abbreviation CA to denote an instance of

the certificate services—a certification authority.

Existing tools
Windows provides two built-in tools for accessing your CA database:

■ The Certification Authority Microsoft Management Console (MMC) snap-in

(certsrv.msc)
■ The certutil.exe command-line tool

94 CHAPTER 7 Managing and administering a certification authority database with PowerShell

Figure 1 illustrates the Certification Authority MMC snap-in.

 In figure 1 you see several folders in the left pane, and CA database contents—

certificate-request rows and columns—in the right. The folders represent logical groups

of certificate requests in the CA database by their statuses. Each column in the right pane

contains detailed information about each request row. For example, you can see infor-

mation about who requested the certificate and which certificate template was used.

 Although this is a useful tool, you can’t automate or script actions in the MMC.

To provide automation features the certutil.exe tool was developed. Although

certutil.exe can be scripted, the output is text-based, so it’s difficult to do anything

with it, and the output depends on various input factors, because the certutil.exe tool

composes the output based on returned data and may not follow any text pattern for a

certain command.

 Windows Server 2012 and Windows 8 provide a set of cmdlets that you can use to

automate a few PKI management tasks but don’t provide built-in cmdlets for CA data-

base management.

Querying the CA database

Fortunately, both of the aforementioned tools use publically available COM interfaces.

Although COM interfaces are quite complex in managed programming languages

(such as C# or VB.NET), a great COM provider in PowerShell makes life much easier.

NOTE If you plan to automate CA management tasks with PowerShell, be
ready to dive into a COM world. There are no built-in .NET classes to
manage CA servers. But don’t worry, CryptoAPI COM interfaces are smart
and powerful.

For the most part, you’ll explicitly use two COM interfaces:

■ ICertView—Intended to access and query the CA database. The ProgId for this

interface is CertificateAuthority.View, and online documentation can be

found at http://msdn.microsoft.com/library/aa385417.aspx.

Figure 1 Certification Authority MMC snap-in

http://msdn.microsoft.com/library/aa385417(VS.85).aspx

95Querying the CA database

■ ICertAdmin—Intended to perform advanced CA database administration tasks.

The ProgId for this interface is CertificateAuthority.Admin, and online docu-

mentation can be found at http://msdn.microsoft.com/library/aa383234.aspx.

WARNING These interfaces are not installed by default. In order to install them you
have to install AD CS management tools. Use Server Manager (Windows
Server 2008 and newer) or install AD CS Management components of
the Remote Server Administration Tools (RSAT) on Windows Vista and
newer client operating systems.

Before getting started I’d like to outline the basic steps required for accessing a CA

database schema:

1 Open the connection to the CA database.

2 Specify the desired database table.

3 Open the schema view and iterate over each schema column in a loop.

4 Put some logic in the loop to fetch schema details.

Accessing the database

Now you’re ready to establish a connection to your CA database. First, instantiate an

ICertView object and review the exposed members:

PS C:\> $CaView = New-Object -ComObject CertificateAuthority.View
PS C:\> $CaView | Get-Member

 TypeName: System.__ComObject#{d594b282-8851-4b61-9c66-3edadf848863}

Name MemberType Definition
---- ---------- ----------
EnumCertViewColumn Method IEnumCERTVIEWCOLUMN EnumCertViewColumn (...
GetColumnCount Method int GetColumnCount (int)
GetColumnIndex Method int GetColumnIndex (int, string)
OpenConnection Method void OpenConnection (string)
OpenView Method IEnumCERTVIEWROW OpenView ()
SetRestriction Method void SetRestriction (int, int, int, Vari...
SetResultColumn Method void SetResultColumn (int)
SetResultColumnCount Method void SetResultColumnCount (int)
SetTable Method void SetTable (int)

Next, open a connection. ICertView supports remote CA access, and you have to spec-

ify a CA configuration string in the OpenConnection method call.

 What is a CA configuration string? It’s a string that uniquely identifies the CA host

name and CA certificate name, separated by a slash. For example, suppose you have a

default AD CS installation on a computer called dc2.contoso.com, and the CA name is

Contoso-dc2-CA. The resulting configuration string will be dc2.contoso.com\contoso-

dc2-ca. For the CA host name you can use either a short (NetBIOS) name or a fully

qualified domain name:

PS C:\> $CaView.OpenConnection("dc2\contoso-dc2-ca")

If the method succeeds, it doesn’t return anything; if it fails, an error is thrown.

http://msdn.microsoft.com/library/aa383234(VS.85).aspx

96 CHAPTER 7 Managing and administering a certification authority database with PowerShell

Getting the database schema

What’s next? What can you query? At this point, nothing. You don’t even know the CA

database schema. The ICertView interface has the SetTable method, which tells you

that there are multiple tables. All modern Windows CA versions define these four

tables, shown here with their numerical values in parentheses:

■ Request (0x0)—Stores all issued and revoked certificates, and failed and pend-

ing certificate requests. Usually you’ll deal only with the Request table, as other

tables aren’t of interest to administrators.
■ Extension (0x3000)—Stores extensions for each certificate.
■ Attribute (0x4000)—Stores attributes passed along with the certificate request.
■ CRL (0x5000)—Stores the certificate revocation list (CRL) information (along

with CRLs themselves) for each CRL ever issued by the CA server.

Call the SetTable method to select the desired table:

PS C:\> $CaView.SetTable(0x0)

Now tell the CA server that you want to query the table schema. You can do this with

the EnumCertViewColumn method call:

PS C:\> $Columns = $CaView.EnumCertViewColumn(0)

The $Columns variable will contain a column iterator. Now create a simple While..Do

loop to iterate over the columns. In the loop you can extract the column information,

such as column name, display name, max length for stored data, and data type for

the column:

PS C:\> while ($Columns.Next() -ne -1) {
>> New-Object psobject -Property @{
>> Name = $Columns.GetName()
>> DisplayName = $Columns.GetDisplayName()
>> Type = switch ($Columns.GetType()) {
>> 1 {"Long"}
>> 2 {"DateTime"}
>> 3 {"Binary"}
>> 4 {"String"}
>> }
>> MaxLength = $Columns.GetMaxLength()
>> }
>> }
>>

Name DisplayName Type MaxLength
---- ----------- ---- ---------
Request.RequestID Request ID Long 4
Request.RawRequest Binary Request Binary 65536
Request.RawArchivedKey Archived Key Binary 65536
Request.KeyRecoveryHashes Key Recovery Agent Hashes String 8192
Request.RawOldCertificate Old Certificate Binary 16384
Request.RequestAttributes Request Attributes String 32768
Request.RequestType Request Type Long 4

97Querying the CA database

Request.RequestFlags Request Flags Long 4
Request.StatusCode Request Status Code Long 4
Request.Disposition Request Disposition Long 4
Request.DispositionMessage Request Disposition Message String 8192
Request.SubmittedWhen Request Submission Date DateTime 8
Request.ResolvedWhen Request Resolution Date DateTime 8
Request.RevokedWhen Revocation Date DateTime 8
<...>

Call the Next method for each column and call the appropriate methods to get the

relevant column properties.

NOTE Regarding the Binary data type, in unmanaged languages like C++ this
means a pure byte array, but the interface doesn’t support the classic byte
array (also known as safearray); therefore, the best way to store binary
data is to return the data as a base64 string and convert the string to a
managed byte array.

The database schema differs slightly between versions, so it may be reasonable to

query the database schema for your CA version to determine whether the particular

column exists. To practice with the code you can manually query schema for other

tables. The following listing contains our example wrapped to a simple function.

function Get-CADataBaseSchema {
[CmdletBinding()]
 param(
 [Parameter(Mandatory = $true)]
 [string]$ConfigString,
 [ValidateSet('Request','Extension','Attribute','CRL')]
 [string]$Table = "Request"
)
 $CaView = New-Object -ComObject CertificateAuthority.View
 $CaView.OpenConnection($ConfigString)
 switch ($Table) {
 "Request" {$CaView.SetTable(0x0)}
 "Extension" {$CaView.SetTable(0x3000)}
 "Attribute" {$CaView.SetTable(0x4000)}
 "CRL" {$CaView.SetTable(0x5000)}
 }
 $Columns = $CaView.EnumCertViewColumn(0)
 while ($Columns.Next() -ne -1) {
 New-Object psobject -Property @{
 Name = $Columns.GetName()
 DisplayName = $Columns.GetDisplayName()
 Type = switch ($Columns.GetType()) {
 1 {"Long"}
 2 {"DateTime"}
 3 {"Binary"}
 4 {"String"}
 }

Listing 1 Get-CADataBaseSchema.ps1

98 CHAPTER 7 Managing and administering a certification authority database with PowerShell

 MaxLength = $Columns.GetMaxLength()
 }
 }
}

You must set the target table to query before you call the EnumCertViewColumn

method. Otherwise you’ll get an error message after iterating over the last column.

Querying the database

Once you get the CA database schema you can query the database for request rows

and their details. To perform any query follow these steps:

1 Open a connection to the CA database.

2 Specify the desired database table to query.

3 Specify the query filters (if necessary).

4 Set the result column count.

5 Set the desired columns you want to return.

6 Open the database view and iterate over each returned row and column in

a loop.

QUERY FILTERS

When you access the CA database it’s impractical to dump the entire database for per-

formance reasons, particularly when the data is transmitted over a network. Instead, I

recommend filtering out unnecessary rows on the server side. PowerShell’s built-in fil-

tering cmdlet Where-Object performs filtering on the client side. The ICertView

interface has built-in filtering capabilities via the SetRestriction method, and you

should use them whenever possible. Let’s recall the Certification Authority MMC snap-

in, as shown in figure 2.

The Certification Authority MMC snap-in groups all request rows by their statuses in four

logical groups: revoked, issued, pending, and failed. Most likely you’ll want to do the

same thing in PowerShell. First, let’s look at the SetRestriction method description,

which can be found on MSDN at http://msdn.microsoft.com/library/aa385439.aspx.

Here’s a brief summary of the method parameters:

Figure 2 Database

contents logically

grouped in Certification

Authority MMC snap-in

http://msdn.microsoft.com/library/aa385439(VS.85).aspx

99Querying the CA database

■ ColumnIndex—Specifies the column index. Alternatively you can use predefined

tables. In real situations you’ll most likely use filters based on a specific column

or entire table with failed or pending requests.
■ SeekOperator—Specifies the logical operator. The operators are almost identi-

cal to standard PowerShell logical operators, like -eq, -le, -lt, -ge, and -gt.

The following numerical values are defined:

– CVR_SEEK_EQ (0x1)—Can be used for all data types; the only operator sup-

ported for String and Binary data types.

– CVR_SEEK_LE (0x2)—Can be used for DateTime and Long (or integer)

data types.

– CVR_SEEK_LT (0x4)—Can be used for DateTime and Long (or integer)

data types.

– CVR_SEEK_GE (0x8)—Can be used for DateTime and Long (or integer)

data types.

– CVR_SEEK_GT (0x10)—Can be used for DateTime and Long (or integer)

data types.
■ SortOrder—Specifies how to sort results. I can’t think of any real situation in

which you would need to sort the output in a special manner, so you can pass

zero to this parameter.
■ pvarValue—Specifies the data query qualifier.

The following snippet retrieves the column index for the RequestID column by using

the GetColumnIndex method:

$ColumnIndex = $CaView.GetColumnIndex(0,"RequestID")

As the first parameter, specify the table you want to query and the column name (non-

localized name). Now set the filter to restrict the output to a specific RequestID value:

$operator = @{"eq" = 1;"le" = 2; "lt" = 4; "ge" = 8; "gt" = 16}
$CaView.SetRestriction($ColumnIndex,$operator["eq"],0,100)

In this case the CA server returns only one row with RequestID = 100. Another exam-

ple uses date/time filters:

$ColumnIndex = $CaView.GetColumnIndex(0,"NotAfter")
$CaView.SetRestriction($ColumnIndex,$operator["lt"],0,[datetime]::Now)

This example sets the filter to return request rows for expired certificates, where the

NotAfter column value is less than the current date/time.

 You can specify multiple filters, and the CA will restrict the output to rows that

match the filters. One of the most popular ways to filter is by certificate-request status:

revoked, issued, pending, or failed (as shown in figure 2). You can use the following

predefined table to restrict output to pending requests:

$CaView.SetRestriction(–1,0,0,0)

100 CHAPTER 7 Managing and administering a certification authority database with PowerShell

And you can use the following predefined table to restrict output to failed requests:

$CaView.SetRestriction(–3,0,0,0)

No predefined tables exist for filtering rows to issued and revoked certificates.

Instead you have to set a filter based on the Disposition column. Table 1 lists useful

disposition codes.

For a complete list of disposition values please refer to the CertSrv.h header file in the

Windows Software Development Kit.

 If you want to look only for revoked certificates set a restriction as follows:

$ColumnIndex = $CaView.GetColumnIndex(0,"Disposition")
$operator = @{"eq" = 1;"le" = 2; "lt" = 4; "ge" = 8; "gt" = 16}
$CaView.SetRestriction($ColumnIndex,$operator["eq"],0,21)

Here’s another filter example for finding all issued certificates that will expire in

one month:

$ColumnIndex = $CaView.GetColumnIndex(0,"Disposition")
$operator = @{"eq" = 1;"le" = 2; "lt" = 4; "ge" = 8; "gt" = 16}
$CaView.SetRestriction($ColumnIndex,$operator["eq"],0,20)
$ColumnIndex = $CaView.GetColumnIndex(0,"NotBefore")
$CaView.SetRestriction($ColumnIndex,$operator["gt"],0,[datetime]::Now)
$ColumnIndex = $CaView.GetColumnIndex(0,"NotAfter")
$CaView.SetRestriction($ColumnIndex,
 ➥ $operator["lt"],0,[datetime]::Now.AddMonths(1))

As shown, you can create various filters to make the query quicker and return only the

data you need without having to filter the output by using external means.

SELECTING THE OUTPUT COLUMNS

The next step is to identify the output columns. ICertView has a predefined output-

column view depending on the certificate-request status. You can use the following

default column-view sets, shown here with their numerical values in parentheses:

Table 1 Request-row disposition codes

Disposition code Disposition meaning

9 The request is pending for approval

15 CA certificate

16 CA certificate chain

20 Issued certificate

21 Revoked certificate

30 Request is failed

31 Request is denied

101Querying the CA database

■ CV_COLUMN_QUEUE_DEFAULT (-1)—Contains the default column view for pend-

ing requests
■ CV_COLUMN_LOG_DEFAULT (-2)—Contains the default column view for issued,

failed, and revoked requests
■ CV_COLUMN_LOG_FAILED_DEFAULT (-3)—Contains the default column view for

failed or denied requests
■ CV_COLUMN_LOG_REVOKED_DEFAULT (-7)—Contains the default column view for

revoked certificates

Alternatively you can define your own column-view sets based on internal require-

ments. A custom output column assignment is performed in two steps:

1 Set the output column count by using the SetResultColumnCount method.

2 Specify the output columns by using the SetResultColumn method.

Suppose you want to display only basic information about all issued certificates. You’re

interested in the following columns: RequestID, Request.RequesterName, Common-

Name, NotBefore, NotAfter, and SerialNumber. You could use the following com-

mand sequence:

$OutColumns = "RequestID", "Request.RequesterName", "CommonName",
 ➥ "NotBefore", "NotAfter", "SerialNumber"
$CaView.SetResultColumnCount($OutColumns.Length)
$OutColumns | ForEach-Object {$CaView.SetResultColumn($_)}

The first line contains an array of columns to add, the second line sets the result col-

umn count, and the last line sets specific columns to add.

TIP Columns used to set query filters aren’t required to appear in the output.

In certain cases you may want to get all columns for each output row (but use this

option carefully, as it may consume a lot of local and network resources). Instead of

specifying all columns explicitly you can simplify the code with the following trick. Get

the overall column count by invoking the GetColumnCount method and set the col-

umns as follows:

$ColumnCount = $CaView.GetColumnCount(0)
$CaView.SetResultColumnCount($ColumnCount)
0..($ColumnCount - 1) | ForEach-Object {$CaView.SetResultColumn($_)}

Although you’re free to select any columns you want to return I recommend always

including the RequestID column in the output. This column’s value is frequently used

for other method calls.

Get column count for
default Request table

Set column
count to return

Use ForEach-
Object loop to
add all columns

102 CHAPTER 7 Managing and administering a certification authority database with PowerShell

PROCESSING THE OUTPUT

Once you’ve configured the filters and the output view you’re ready to process the

database results. First, call the OpenView method to inform the CA database that

you’re ready to receive data:

$Row = $CaView.OpenView()

The $Row variable holds the row iterator. The row iterator must be set in a While..Do

loop as follows:

While ($Row.Next() –ne -1) {#loop body}

Once the method returns -1 you’ve reached the last row and must exit the loop. The

following code fragment displays the row and column iteration loops:

while ($Row.Next() -ne -1) {
 $cert = New-Object psobject -Property @{
 ConfigString = $ConfigString;
 }
 $Column = $Row.EnumCertViewColumn()
 while ($Column.Next() -ne -1) {
 $current = $Column.GetName()
 $Cert | Add-Member -MemberType NoteProperty $($Column.GetName()) `
 ➥ –Value $($Column.GetValue(1)) –Force
 if ($Cert.CertificateTemplate -match "^(\d\.){3}") {
 $cert.CertificateTemplate =
 ➥ ([Security.Cryptography.Oid]$Column.GetValue(1)).FriendlyName
 }
 }
 $Cert
}

The code represents a simple database iterator. By starting the first loop B you create

the row iterator. Inside this loop you create the row object and the inner column itera-

tor. In the second loop c you iterate over columns and fill the row object with col-

umn values. But the column called CertificateTemplate may return a template name

(for version 1 templates) or a template-associated object identifier. As you are inter-

ested in only the template name, you add a special converter for the Certificate-

Template column d.

REUSING THE CODE

At first glance the code looks complex, but don’t worry—you can write the code once

and reuse it at any time without having to make modifications. You do this by creating

a universal function called, say, Get-RequestRow with several parameters to perform

various queries. Let’s try to determine which parameters you can use.

 As you already know, you have to specify the CA server you want to query. The CA

server is identified by a CA configuration string; therefore, the first parameter would

be something like -ConfigString. Because the CA configuration string is more than a

computer name I recommend not using the common -ComputerName for this parame-

ter to avoid parameter misuse.

Start row iteratorb

Create custom psobject
to store current row

Start column iteratorc

Add special
handling for

the Certificate-
Template

column

d

103Querying the CA database

 Based on my experience and that of other PKI administrators, most likely you’ll

query certificate rows based on a particular certificate status or certificate-request sta-

tus—issued, revoked, pending, or failed (to match the Certification Authority MMC

snap-in view); therefore you should add a second parameter called -Status.

FILTERS

You’ll use filters extensively to get output that’s more relevant. Obviously, the parame-

ter should be called -Filter. As the ICertView.SetRestriction method allows you

to specify multiple filters per query, the parameter should accept an array of filters.

 As you’ve learned, you can specify columns (properties) to return, and you specify

the last parameter, -Property, which accepts an array of properties (column names)

to return. The following code snippet displays parameter definitions:

param(
 [string]$ConfigString,
 [ValidateSet('Revoked','Issued','Pending','Failed')]
 [string]$Table,
 [String[]]$Filter,
 [String[]]$Property
)

The next step is to open a connection to a database:

$CaView = New-Object -ComObject CertificateAuthority.View
$CaView.OpenConnection($ConfigString)

Process the -Status parameter to set the initial filter:

$RColumn = $CaView.GetColumnIndex(0, "Disposition")
switch ($Status) {
 "Revoked" {$CaView.SetRestriction($RColumn,1,0,21)}
 "Issued" {$CaView.SetRestriction($RColumn,1,0,20)}
 "Pending" {$CaView.SetRestriction(–1,0,0,0)}
 "Failed" {$CaView.SetRestriction(-3,0,0,0)}
}

Now you have to process other user-defined filters. Most likely you’ve already noticed

that the ICertView filter semantics are similar to the default PowerShell comparison-

operator semantics. It would be convenient to use the following filter semantic: “Column-

Name <operator> value”. You’ll use the default PowerShell operator names that match

the filter operators: -eq, -le, -lt, -ge, and -gt. Although it looks trivial, a lot of work

is involved in writing a proper and smart parameter handler. To write a good handler

follow these steps:

1 Split each filter line into three tokens: column name, operator, and column value.

2 Because filters are passed in strings, convert string values to integers and date/

time. Column values must be the exact type as identified in the database

schema. For example, if you filter requests by the RequestID column the value

must be converted to integers. If you filter requests by the NotAfter or Not-

Before column the value must be converted to a DateTime object.

Retrieve Disposition column
index for use in filters

Revoked certificates
are identified by
Disposition = 21

Issued
certificates

are identified
by Disposition

= 20

Default restriction tables for
pending and failed requests

104 CHAPTER 7 Managing and administering a certification authority database with PowerShell

3 Perform additional transformations if necessary. For example, certificate tem-

plates internally aren’t strings but object identifiers (OIDs), and OID values are

stored in the CertificateTemplate column. It’s tough to remember template

OID values, so you should use the Oid class to convert template display names to

Oid class and retrieve the OID value.

The following code snippet displays the -Filter parameter processor:

if ($Filter -ne $null) {
 foreach ($line in $Filter) {
 if ($line -match "^(.+)\s(-eq|-lt|-le|-ge|-gt)\s(.+)$") {
 try {$Rcolumn = $CaView.GetColumnIndex($false, $matches[1])}
 catch {Write-Warning "Specified column '$($matches[1])' does not
 ➥ exist."; return}
 $Seek = switch ($matches[2])
 "-eq" {1}
 "-lt" {2}
 "-le" {4}
 "-ge" {8}
 "-gt" {16}
 }
 $Value = $matches[3]
 if (($Value -as [int]) -is [int]) {$Value = $Value -as [int]}
 else {
 try {
 $dt = [DateTime]::ParseExact(
 $Value,
 "MM/dd/yyyy HH:mm:ss",
 [Globalization.CultureInfo]::InvariantCulture
)
 if ($dt -ne $null) {$Value = $dt}
 } catch {}
 }
 if ($matches[1] -eq "CertificateTemplate") {
 if (([Security.Cryptography.Oid]$Value).FriendlyName) {
 $Value = ([Security.Cryptography.Oid]$Value).Value
 }
 }
 try {$CaView.SetRestriction($RColumn,$Seek,0,$Value)}
 catch {Write-Warning "Specified pattern '$line' is not valid!";
 ➥ return}
 } else {Write-Warning "Malformed pattern: '$line'.!"; return}
 }
}

This code snippet shows all the steps defined earlier. You split the filter expression to

tokens by using the match operator. Then you attempt to cast the filter qualifier value

to integer B and DateTime c. If the casting still fails the qualifier value is a simple

string. You add an additional value converter d, as the CertificateTemplate column

requires a template-associated object identifier, rather than a template common or

display name.

 Let me point out a trick used in the code:

Split each line to three tokens: column
name, operator, column value

Retrieve Disposition
column index

Convert textual operator
to an integer value

Try to
cast value
to integer

b

Try to cast
value to
DateTime

c

Try to cast
value to
object
identifier

d

105Querying the CA database

$dt = [DateTime]::ParseExact(
 $Value,
 "MM/dd/yyyy HH:mm:ss",
 [Globalization.CultureInfo]::InvariantCulture
)
if ($dt -ne $null) {$Value = $dt}

Why use the TryParse static method in DateTime class to convert a date/time string to a

DateTime object? Why not explicitly cast the string to a DateTime class? A while ago I

faced an issue with such castings, because explicit casting doesn’t always work, depend-

ing on regional settings. The answer came to me after I ran the following commands:

PS C:\> (Get-Date).ToString()
2012.08.25. 16:54:35
PS C:\> "$(Get-Date)"
08/25/2012 16:54:50
PS C:\>

You see that the ToString method on the DateTime object respects the regional set-

tings, and after calling this method you can still explicitly cast a returned string to a

DateTime object. But when you enclose a DateTime object in double quotes a returned

string contains a culture-invariant date/time representation. This is what happens in

our example when a DateTime object is enclosed in double quotes. Depending on the

culture settings, a backward conversion (explicit casting) may not work. Because a

culture-invariant date/time string has the same format on all systems regardless of cul-

ture settings it’s best to use the TryParse method to convert a date/time string to a

DateTime object.

 Now process the -Property parameter in the manner described:

if ($Property -contains "*") {
 $ColumnCount = $CaView.GetColumnCount(0)
 $CaView.SetResultColumnCount($ColumnCount)
 0..($ColumnCount - 1) | ForEach-Object {$CaView.SetResultColumn($_)}
} else {
 $properties = switch ($Status) {
 "Revoked" {"RequestID", "Request.RevokedWhen", "Request.RevokedReason",
 ➥ "CommonName", "SerialNumber"}
 "Issued" {"RequestID", "Request.RequesterName","CommonName",
 ➥ "NotBefore", "NotAfter", "SerialNumber"}
 "Pending" {"RequestID", "Request.RequesterName",
 ➥ "Request.SubmittedWhen", "Request.CommonName", "CertificateTemplate"}
 "Failed" {"RequestID", "Request.StatusCode",
 ➥ "Request.DispositionMessage", "Request.SubmittedWhen",
 ➥ "Request.CommonName", "CertificateTemplate"}
 }
 $properties = $properties + $Property | Select-Object -Unique | Where-
 ➥ Object {$_}
 $CaView.SetResultColumnCount($properties.Count)
 $properties | ForEach-Object {$CaView.SetResultColumn(
 $CaView.GetColumnIndex(0, $_))
 }
}

106 CHAPTER 7 Managing and administering a certification authority database with PowerShell

The column views used in this code are based on my experience. If you feel you need

a different default column view you can change it in the switch statement.

 The last step is to open the view and enumerate the rows and columns, as already

discussed in the “Processing the output” section:

$Row = $CaView.OpenView()
while ($Row.Next() -ne -1) {
 $cert = New-Object psobject -Property @{
 ConfigString = $ConfigString;
 }
 $Column = $Row.EnumCertViewColumn()
 while ($Column.Next() -ne -1) {
 $current = $Column.GetName()
 $Cert | Add-Member -MemberType NoteProperty $($Column.GetName()) -Value
 ➥ $($Column.GetValue(1)) –Force
 if ($Cert.CertificateTemplate -match "^(\d\.){3}") {
 $cert.CertificateTemplate =
 ➥ ([Security.Cryptography.Oid]$Column.GetValue(1)).FriendlyName
 }
 }
 $Cert
}
Remove-Variable Row, Column, CaView –ErrorAction SilentlyContinue
[GC]::Collect()

The complete function code can be found in the code download available with this book.

FUNCTION USAGE

Let’s look at a few examples of how to use your function. Suppose you want to get certifi-

cates based on a specified certificate template that will expire in the next two months:

PS C:\> Get-RequestRow -ConfigString "dc2\contoso-dc2-ca" -Status "Issued"
 ➥ -Filter "CertificateTemplate -eq WebServer", "NotAfter -gt $(Get-
 ➥ Date)", "NotAfter -lt $((Get-Date).AddMonths(2))"

ConfigString : dc2\contoso-dc2-ca
RequestID : 1460
Request.RequesterName : CONTOSO\WEB$
CommonName : www.contoso.com
NotBefore : 2011.08.28. 16:05:26
NotAfter : 2012.08.27. 16:05:26
SerialNumber : 659bb31735250f080002000005b4

ConfigString : dc2\contoso-dc2-ca
RequestID : 1465
Request.RequesterName : CONTOSO\WEB$
CommonName : ev2.contoso.com
NotBefore : 2011.09.03. 17:57:44
NotAfter : 2012.09.02. 17:57:44
SerialNumber : 659bb31735250f080002000005b9

The function returned two objects, meaning that two Secure Sockets Layer (SSL) cer-

tificates are about to expire. You can use this information to notify the web server

administrators about these certificates so they can take appropriate steps to renew

them in a timely fashion.

107Advanced administration of the CA database

 As a second example, suppose a user named Mike Smith leaves the company

and you need to determine which certificates were issued to him and revoke them

to prevent certificate usage. The best way is to filter by the UPN (user principal

name) column:

Get-RequestRow -ConfigString "dc2\contoso-dc2-ca" -Status "Issued" –Filter
 ➥ "UPN -eq msmith@contoso.com", "NotAfter -gt $(Get-Date)"

This sets two filters: one by UPN value, and one that instructs the CA to return rows

only for nonexpired certificates (where the NotAfter column value is set to a future

time). You can use the returned information to identify which certificates should

be revoked.

 You can export returned objects to a CSV, XML, or other type of file for analytical,

accounting, and other purposes. As this code doesn’t change in the database you can

spend time constructing various filters based on your needs.

Advanced administration of the CA database
With PowerShell you can do even more with a CA database. You’ve learned how to

query a CA database and now you can dramatically extend your experience by using

PowerShell to do certain CA administrative tasks. I’ll cover the following administra-

tive tasks in this section:

■ Certificate revocation
■ Certificate request approval or denial
■ Request row deletion (database cleanup)

Before getting started let’s look at what APIs are required.

Required APIs

In the examples to come you’ll use the Get-RequestRow function (wherever possible)

and the ICertAdmin COM interface. The following shows how to instantiate the ICert-

Admin interface and displays the exposed members:

PS C:\> $CertAdmin = New-Object -ComObject CertificateAuthority.Admin
PS C:\> $CertAdmin | Get-Member

 TypeName: System.__ComObject#{f7c3ac41-b8ce-4fb4-aa58-3d1dc0e36b39}

Name MemberType Definition
---- ---------- ----------
DeleteRow Method int DeleteRow (string, int, Date, in...
DenyRequest Method void DenyRequest (string, int)
GetArchivedKey Method string GetArchivedKey (string, int, ...
GetCAProperty Method Variant GetCAProperty (string, int, ...
GetCAPropertyDisplayName Method string GetCAPropertyDisplayName (str...
GetCAPropertyFlags Method int GetCAPropertyFlags (string, int)
GetConfigEntry Method Variant GetConfigEntry (string, stri...
GetCRL Method string GetCRL (string, int)
GetMyRoles Method int GetMyRoles (string)
GetRevocationReason Method int GetRevocationReason ()

108 CHAPTER 7 Managing and administering a certification authority database with PowerShell

ImportCertificate Method int ImportCertificate (string, strin...
ImportKey Method void ImportKey (string, int, string,...
IsValidCertificate Method int IsValidCertificate (string, string)
PublishCRL Method void PublishCRL (string, Date)
PublishCRLs Method void PublishCRLs (string, Date, int)
ResubmitRequest Method int ResubmitRequest (string, int)
RevokeCertificate Method void RevokeCertificate (string, stri...
SetCAProperty Method void SetCAProperty (string, int, int...
SetCertificateExtension Method void SetCertificateExtension (string...
SetConfigEntry Method void SetConfigEntry (string, string,...
SetRequestAttributes Method void SetRequestAttributes (string, i...

PS C:\>

In this console output you see that the ICertAdmin interface implements many power-

ful methods that allow you to manage various aspects in CA management. In the next

sections I’ll discuss several useful scenarios and PowerShell techniques.

Certificate revocation

Frequently an issued certificate must be explicitly revoked before it expires, such as

when a user leaves the company, changes positions, and so forth. In addition, special

cases arise, as when a notebook is stolen or a smart card is lost. Certificate revocation

rules must be written in a certificate practice statement (CPS) or in the company’s

security policy.

 To revoke a certificate use the RevokeCertificate method in the ICertAdmin

interface. The method description can be found at http://msdn.microsoft.com/library/

aa383251.aspx. As per this documentation the method accepts four arguments:

■ The CA configuration string
■ The certificate serial number to revoke
■ The revocation reason (enumerated)
■ The effective revocation date and time (optional)

Two special notes: first, the certificate serial number must be an even-length hex

string. How do you determine whether the string contains an even number of charac-

ters? Divide the string length by two with remainder, and if the division operation

returns 1 you must prepend the serial number with an extra zero character:

if ($string.Length % 2) {$string = "0" + $string}

If the string contains an even number of characters the expression in the IF statement

returns zero, zero is evaluated as False, and the THEN clause won’t be executed.

 Second, the Date argument expects Coordinated Universal Time (UTC), also

known as Greenwich Mean Time (GMT). It’s a common mistake for a caller to pass a

DateTime object with desired date/time. Instead, invoke the ToUniversalTime method

on the DateTime object and pass the resulting value.

 Now let’s create a sample function for revoking a certificate. The function will

accept three parameters:

http://msdn.microsoft.com/library/aa383251.aspx
http://msdn.microsoft.com/library/aa383251.aspx
http://msdn.microsoft.com/library/aa383251.aspx

109Advanced administration of the CA database

■ Request—Specifies the request object. This object can be retrieved by running

the Get-RequestRow function. You can directly pipe objects from the Get-

RequestRow function.
■ Reason—An enumeration that contains the possible revocation reasons.

Unspecified is used by default.
■ RevocationDate—Specifies the date and time at which the certificate is sup-

posed to be revoked. The current date and time is used by default.

The function is shown in the following listing.

function Revoke-Certificate {
[CmdletBinding()]
 param(
 [Parameter(
 Mandatory = $true,
 ValueFromPipeline = $true,
 ValueFromPipelineByPropertyName = $true
)]
 [Object]$Request,
 [ValidateSet(
 "Unspecified","KeyCompromise","CACompromise","AffiliationChanged",
 "Superseded","CeaseOfOperation","Hold","Unrevoke"
)]
 [string]$Reason = "Unspecified",
 [datetime]$RevocationDate = [datetime]::Now
)
 process {
 $CertAdmin = New-Object -ComObject CertificateAuthority.Admin
 $Reasons = @{
 "Unspecified" = 0;
 "KeyCompromise" = 1;
 "CACompromise" = 2;
 "AffiliationChanged" = 3;
 "Superseded" = 4;
 "CeaseOfOperation" = 5;
 "Hold" = 6;
 "ReleaseFromCRL" = 8;
 "Unrevoke" = [int]::MaxValue
 }
 if ($Request.SerialNumber.Length % 2) {
 $Request.Serialnumber = "0" + $Request.Serialnumber
 }
 try {
 $CertAdmin.RevokeCertificate(
 $Request.ConfigString,
 $Request.SerialNumber,
 $Reasons[$Reason],
 $RevocationDate.ToUniversalTime()
)
 Write-Host "SerialNumber = $($Request.SerialNumber) is revoked
 ➥ ($Reason)."

Listing 2 Revoke-Certificate.ps1

ICertAdmin

instantiation must
be placed in a

Process clause

b

Revocation
reason
enumeration

Serial number must
be an even-length
string

Passed date/time is
converted to UTC time

110 CHAPTER 7 Managing and administering a certification authority database with PowerShell

 # throw error if fails
 } catch {Write-Error $_}
 }
}

Take note of two important points: first, the ICertAdmin object instantiation must be

placed in a Process block B (instead of a Begin block). This is because the ICert-

Admin methods cache the ConfigString argument parameter and don’t clear it when

the configuration string is changed. Therefore, if you change the configuration string

without instantiating a new interface object the method will contact the previous CA

server. Second, look at the RevokeCertificate method call and the last parameter

(highlighted in bold):

$CertAdmin.RevokeCertificate(
 $Request.ConfigString,
 $Request.SerialNumber,
 $Reasons[$Reason],
 $RevocationDate.ToUniversalTime()

)

The method expects UTC, not local time. You have to call the ToUniversalTime

method on the DateTime object to convert local time to UTC.

 The usage is simple. Suppose you want to decommission a website (in this exam-

ple, www2.contoso.com) that used SSL to secure data transmission. The following one-

liner could be used:

Get-RequestRow -ConfigString "dc2\contoso-dc2-ca" -Status "Issued" –Filter
 ➥ "NotAfter -gt $(Get-Date)","CommonName -eq www2.contoso.com" | Revoke-
 ➥ Certificate -Reason "CeaseOfOperation"

The command retrieves all active (nonexpired) certificates issued to www2.contoso.com

and passes the returned objects to the Revoke-Certificate function.

 You already saw an example of retrieving all active certificates issued to a user

(Mike Smith) who left his company. Now pipe the results to the Revoke-Certificate

function and specify the suitable revocation reason (say, CeaseOfOperation):

Get-RequestRow -ConfigString "dc2\contoso-dc2-ca" -Status "Issued" –Filter
 ➥ "UPN -eq msmith@contoso.com", "NotAfter -gt $(Get-Date)" | Revoke-
 ➥ Certificate –Reason "CeaseOfOperation"

Be careful with this method, because once a certificate is revoked this operation can’t

be undone.

Certificate request approval and denial

By default Enterprise CA automatically issues certificates once they’re requested. This

behavior allows for the automatic distribution of certificates to a large number of cli-

ents. But sometimes approval from the previous CA manager (or CA administrator) is

required. For example, smart-card and code-signing certificates shouldn’t be automati-

cally issued. An enrollment agent or CA manager must process them manually. Another

example is when a certificate template constructs a certificate subject from an incoming

request. The CA manager must verify whether the requester has permission to enroll

www2.contoso.com
www2.contoso.com

111Advanced administration of the CA database

certificates for a specified name or verify other certificate-request properties and manu-

ally issue or deny the request.

 If the certificate template is configured to pend all requests, then all requests are

placed in the Pending Requests folder (see figure 1). A certificate request review is an

out-of-band process and you don’t need to be concerned with it here. In order to issue

a pending request you can use the ResubmitRequest method. (Information on this

method can be found in the MSDN library at http://msdn.microsoft.com/library/

aa383250.aspx.) The method accepts two arguments: the CA configuration string and

the request ID, which is stored in the RequestID column. The function in the follow-

ing listing approves (issues) a specified pending request and accepts only a single

argument, -Request, which identifies the request to approve.

function Approve-CertificateRequest {
[CmdletBinding()]
 param(
 [Parameter(
 Mandatory = $true,
 ValueFromPipeline = $true,
 ValueFromPipelineByPropertyName = $true
)]
 [Object]$Request
)
 process {
 $CertAdmin = New-Object -ComObject CertificateAuthority.Admin
 try {
 $DM = $CertAdmin.ResubmitRequest(
 $Request.ConfigString,$Request.RequestID
)
 switch ($DM) {
 0 {Write-Warning "The request '$($Request.RequestID)' was not
 ➥ completed."}
 1 {Write-Warning "The request '$($Request.RequestID)' failed.'"}
 2 {Write-Warning "The request '$($Request.RequestID)' was denied."}
 3 {Write-Host "The certificate '$($Request.RequestID)' was
 ➥ issued.'" -ForegroundColor Green}
 4 {Write-Warning "The certificate '$($Request.RequestID)' was
 ➥ issued separately."}
 5 {Write-Warning "The request '$($Request.RequestID)' was taken
 ➥ under submission."}
 default {
 $hresult = "0x" + $("{0:X2}" -f $DM)
 Write-Warning "The request with ID = '$($Request.RequestID)' was
 ➥ failed due to the error: $hresult"
 }
 }
 } catch {Write-Warning "Unable to issue request with ID =
 ➥ '$($Request.RequestID)'"; $_}
 }
}

Listing 3 Approve-CertificateRequest.ps1

http://msdn.microsoft.com/library/aa383250.aspx
http://msdn.microsoft.com/library/aa383250.aspx

112 CHAPTER 7 Managing and administering a certification authority database with PowerShell

And the following example approves the certificate request with ID = 100, which is in a

pending state:

Get-RequestRow -ConfigString "dc2\contoso-dc2-ca" -Status "Pending" –Filter
 ➥ "RequestID -eq 100" | Approve-CertificateRequest

NOTE You can’t approve a request that’s already been issued.

What if a CA manager decides to reject (deny) a certificate request? The function in

the following listing denies a specified pending request and accepts only a single argu-

ment, -Request, which identifies the request to deny.

function Deny-CertificateRequest {
[CmdletBinding()]
 param(
 [Parameter(
 Mandatory = $true,
 ValueFromPipeline = $true,
 ValueFromPipelineByPropertyName = $true
)]
 [Object]$Request
)
 process {
 $CertAdmin = New-Object -ComObject CertificateAuthority.Admin
 try {
 $hresult = $CertAdmin.DenyRequest(
 $Request.ConfigString,$Request.RequestID
)
 } catch {throw $_}
 if ($hresult -eq 0) {
 Write-Host "Successfully denied request with ID =
 ➥ $($Request.RequestID)"
 } else {
 Write-Warning "The request's with ID = $($Request.RequestID) current
 ➥ status does not allow this operation."
 }
 }
}

A similar syntax to that for the Approve-CertificateRequest function could be used:

Get-RequestRow -ConfigString "dc2\contoso-dc2-ca" -Status "Pending" `
 ➥ -Filter "RequestID -eq 100" | Deny-CertificateRequest

NOTE You can’t deny a request that has already been issued or denied.

CA database cleanup

Normally CAs last many years and the CA database stores all the requests that were

submitted from the time the CA server was installed. Over time the CA database can

grow to be quite large. Large databases cause big delays when the CA service

(certsvc) starts. If you think your CA database is too large you can delete request

Listing 4 Deny-CertificateRequest.ps1

http://mng.bz/JB7j

113Advanced administration of the CA database

rows that are no longer needed. This is an important process and you must plan

your database cleanup carefully. In short, you can remove all failed and pending

requests and remove issued requests that have expired. For more information I

recommend the following article written by the Ask the Directory Services Team:

http://mng.bz/JB7j.

 Once you have a plan to clean up your CA database you can take a look at the

DeleteRow method. (Information on this method can be found in the MSDN library at

http://msdn.microsoft.com/library/aa383235.aspx). Although the method accepts five

parameters you can use it in a more granular way, using only the following two argu-

ments to provide better support for your Get-RequestRow function:

■ Request—Specifies the request-row object to delete. This object can be retrieved

by running the Get-RequestRow function. You can directly pipe objects from

the Get-RequestRow function.
■ Force—Suppresses all removal-confirmation prompts.

The following listing removes a specified request row from the CA database.

function Remove-RequestRow {
[CmdletBinding(
 ConfirmImpact = 'High',
 SupportsShouldProcess = $true
)]
 param(
 [Parameter(
 Mandatory = $true,
 ValueFromPipeline = $true,
 ValueFromPipelineByPropertyName = $true
)]
 [Object]$Request,
 [switch]$Force
)
 process {
 $CertAdmin = New-Object -ComObject CertificateAuthority.Admin
 if ($Force -or $PSCmdlet.ShouldProcess(
 $Request.ConfigString,
 "Remove request row with ID = '$($Request.RequestID)'"
)
) {$Return = $CertAdmin.DeleteRow(
 $Request.ConfigString,0,0,0,$Request.RequestID
)}
 if ($Return -eq 1) {
 Write-Host "Deleted request row with ID = $($Request.RequestID)."
 } else {
 Write-Warning "Request row with ID = $($Request.RequestID) does not
 ➥ exist."
 }
 }
}

Listing 5 Remove-RequestRow.ps1

A destructive
method; you must
confirm your action.

http://mng.bz/JB7j
http://msdn.microsoft.com/library/aa383235.aspx

114 CHAPTER 7 Managing and administering a certification authority database with PowerShell

Here’s how you use the function to remove all failed requests:

Get-RequestRow -ConfigString "dc2\contoso-dc2-ca" -Status "Failed" |
 ➥ Remove-CertificateRequest

This function uses advanced parameters in the CmdletBinding attribute. This means

that the function will prompt users to confirm their actions. You can suppress confir-

mation prompts by adding the -Force switch parameter. Everything is quite straight-

forward and self-explanatory. In the method call you specify only the CA configuration

string and ID of the row you want to remove. All other parameters will be set to zero.

Summary
In this chapter you learned several great lessons about CA database management in

PowerShell. Even though you can now do more now than you could before, you

learned only a little of the functionality exposed by CryptoAPI COM interfaces. With

COM you can automate almost all aspects of CA management. You can find a Power-

Shell PKI module on CodePlex (http://pspki.codeplex.com) that uses the described

techniques to access and automate your CA database management tasks. With your

new knowledge you can extend the code and/or modify it to fit your administration

requirements. By adding the powerful PowerShell engine you can dramatically

increase your productivity and save time and money on administrative-task automa-

tion. Stay connected with Windows PowerShell!

About the author

Vadims Podans is an independent security and automation con-

sultant with four years of experience in PKI and administrative-

task automation with Windows PowerShell. He has a blog where

he writes about advanced topics in PowerShell and cryptography,

located at http://en-us.sysadmins.lv.

http://pspki.codeplex.com
http://en-us.sysadmins.lv.

115

8 Using PowerShell to reduce
Active Directory token bloat

 Ashley McGlone

As a Microsoft Premier Field Engineer I work with companies of all sizes to get their

Active Directory environment healthy. One of the most common issues I find is called

token bloat. When users become members of too many groups, their access token grows

so large that it no longer fits inside some of the default OS settings. Users can experi-

ence issues logging in, applying group policies, and authenticating to web servers.

 Token size issues are usually due to a combination of three scenarios:

■ Leftover security identifier (SID) history from Active Directory migrations
■ Heavy group nesting
■ Stale group memberships

This chapter will address the SID history scenario, because in my field experience it

seems to be the most common. Many scripts are available online to help with group

cleanup, but little has been published on automating SID history removal.

 The scripts provided in this chapter will do the following:

■ Document the extent of SID history in the environment
■ Create a SID mapping file for use with the Active Directory Migration

Tool (ADMT)

Armed with these two key pieces of information you can move forward with SID his-

tory remediation. Once remediation is complete end-user support should notice a

decline in the aforementioned troubleshooting mysteries associated with token bloat.

SIDs 101
Here are the key facts about SIDs and how they’re used:

■ Every domain has a SID that originates from the Security Accounts Manager

(SAM) database of the first domain controller (DC) promoted in that domain.

116 CHAPTER 8 Using PowerShell to reduce Active Directory token bloat

■ Every security principal in the domain has its own SID (users, computers, groups,

and others). The SID of each security principal is composed of the domain SID

and a relative identifier (RID).
■ RIDs are handed out by the domain’s RID Master Flexible Single Master Operations

(FSMO). Domain controllers have a pool of RIDs that they pull from any time

they create a security principal. By default, domain controllers keep a pool of

500 RIDs, refreshed by requests to the RID Master.
■ Access control lists (ACLs) store SIDs in access control entries (ACEs) to identify the

user, computer, or group receiving permissions to a resource.
■ During domain migrations the new domain account gets a SID in the new

domain. Then the old domain account SID can be appended as an alias that

gives this new account identical access to the old domain. This is called SID his-

tory. Domain migrations can be implemented without SID history, but most peo-

ple choose this option.
■ SID history is intended as a temporary bridge for access during a domain migra-

tion project, but too often the project wraps up without removing it. The accu-

mulation of SID history in the forest can lead to token bloat. For companies that

do frequent mergers and acquisitions this piles up quickly.

NOTE For more information on the SID data structure see the Windows Data
Type open specifications at http://msdn.microsoft.com/en-us/library/
gg465313.aspx.

NOTE For more information on calculating token size, see KB 327825 at
http://support.microsoft.com/kb/327825.

Where does the SID history come from?
Consider this scenario. You’re doing an Active Directory migration with the ADMT or

a similar product. You migrate the users and groups with the SID history option. The

project schedule falls behind. You take a shortcut with the member servers. Instead of

using the ADMT security translation process you rejoin the servers to the new domain,

leaving all of the old ACLs and SIDs untouched. You leave the SID history in place and

move on to the next big project and deadline. Everything seems to work fine.

 Management is happy that you met the deadline, but little do they know that you

created a hidden issue with the potential for generating many help desk calls.

 This scenario is common and presents the following risks:

■ Down the road you’re likely to encounter token bloat because now most

users and groups have at least two SIDs. This effectively doubles a user’s group

memberships.
■ If you decide to clean up the SID history in the future you have the potential of

orphaning users from their data because the old SIDs were still giving them access.
■ When the ADMT server is decommissioned you’ll lose all of the SID migration

data needed to clean the ACL SID history on your migrated resource servers.

http://msdn.microsoft.com/en-us/library/gg465313.aspx
http://msdn.microsoft.com/en-us/library/gg465313.aspx
http://support.microsoft.com/kb/327825

117The solution

Many companies that I work with find themselves in this place. Users are calling the

help desk with mysterious symptoms when trying to log on or access secure web serv-

ers (like SharePoint). They aren’t sure what’s causing the problem. Often it’s token

bloat and the SID history is a significant component. At this point you might purge the

SID history, but then you could lose access to all of the migrated data with old SIDs in

the ACLs. The best way forward is to go back and finish the Active Directory migration

by doing security translation on all of the migrated servers.

NOTE To better understand the domain migration process, SID history, and SID

mapping files, download the ADMT guide at www.microsoft.com/en-us/
download/details.aspx?id=19188.

The solution

In order to right these wrongs from previous migrations you need a combination of

PowerShell scripting and the ADMT. The following steps will rid your environment

of SID history:

1 Identify all servers in the environment that were involved in the Active Direc-

tory migration(s). Hopefully you have a share with the project documentation

or you can interview staff who participated in the original project. Otherwise,

you can scan servers for SID history using the Convert-SIDHistoryNTFS func-

tion provided in the SIDHistory module referenced in the “Summary” section

at the end of this chapter.

2 Install the latest version of the ADMT on a member server in your domain

(not a DC).

3 Run the PowerShell script from this chapter (listing 1) to create a SID map-

ping file.

4 Run the ADMT security translation wizard against each of the old servers and

use the SID mapping file when prompted to retrieve objects for security transla-

tion. View the ADMT log files to see where changes were made. The wizard will

translate SIDs in the following locations:

– Files and Folders

– Local Groups

– Printers

– Registry

– Shares

– User Profiles

– User Rights

5 In phases, purge SID history from users and groups, starting with a small test

population and then going by department until it’s entirely removed from the

environment. Rerun the script provided later in this chapter (listing 1) to see

where SID history remains.

www.microsoft.com/en-us/download/details.aspx?id=19188
www.microsoft.com/en-us/download/details.aspx?id=19188

118 CHAPTER 8 Using PowerShell to reduce Active Directory token bloat

WARNING Do not purge all SID history at once. That could be a resume-generating
event if you missed some resources in the re-migration. Do it in smaller
batches to be safe.

NOTE To remove SID history easily with PowerShell use the Remove-SIDHistory
function provided in the SIDHistory module referenced in the “Sum-
mary” section at the end of this chapter.

NOTE Be aware that there are other places where the ADMT process doesn’t
translate SID history, including DCOM permissions, scheduled tasks, IIS,
Exchange, and SharePoint. The PowerShell module referenced in the
“Summary” section includes a function called Convert-SIDHistoryNTFS
that will assist with translating NTFS permissions on network-attached
storage (NAS) file resources.

Because the ADMT database is long gone you have to rebuild the SID mapping

between old and new SIDs. Luckily for you this data is all present in Active Directory

because you told the ADMT to store it in the sidHistory attribute. You need to put it

into a file that the ADMT wants, called the SID mapping file. This file format is a CSV

file where the first column contains the old SID and the second column contains

either the new SID or the new user name in DOMAIN\USERNAME format. The script in

this chapter (listing 1) will do this for you. This script is entirely safe for your environ-

ment because it makes no changes and only reads data.

 In addition to the mapping file the script will also generate a CSV report of all SID

history in your domain. It includes the following columns: samAccountName, Display-

Name, objectClass, OldSID, NewSID, and DistinguishedName. Use this report before

the cleanup to assess the scope of the issue. Run it again after the cleanup to make

sure you got it all.

TIP Another handy way to view SID history for a specific user is with the
NTDSUTIL command-line tool. You can use the command group member-
ship evaluation to view all of a user’s groups and it will tell you which
ones come from SID history. This is another process to spot-check SID his-
tory before and after the cleanup.

The script

Now let’s look at the code to inventory SID history and create the ADMT mapping file.

The heart of this script is five lines that are wrapped in the following listing.

Import-Module ActiveDirectory

$ADQuery = Get-ADObject -LDAPFilter "(sIDHistory=*)" `
 -Property objectClass, samAccountName, DisplayName, `
 objectSid, sIDHistory, distinguishedname |
 Select-Object * -ExpandProperty sIDHistory

Listing 1 SID history reports

Import Active
Directory moduleb

Query all objects
with SID historyc

119The script

$ADQuery |
 Select-Object objectClass, `
 @{name="OldSID";expression={$_.Value}}, `
 @{name="NewSID";expression={$_.objectSID}}, `
 samAccountName, DisplayName, DistinguishedName, `
 @{name="DateTimeStamp";expression={Get-Date -Format g}} |
 Export-CSV SIDReport.csv -NoTypeInformation

$ADQuery |
 Select-Object @{name="OldSID";expression={$_.Value}}, `
 @{name="NewSID";expression={$_.objectSID}} |
 Export-CSV SIDMap0.csv -NoTypeInformation

Get-Content .\SIDMap0.csv |
 ForEach-Object {$_.Replace("`"","")} |
 Set-Content .\SIDMap.csv

Remove-Item .\SIDMap0.csv

"Output complete:"
"SIDReport.csv - full SID History report for reference in Excel"
"SIDMap.csv - file for use with ADMT to do security translation"

The Active Directory module for PowerShell is automatically available on any DC

that’s Windows Server 2008 R2 or above. You can also install it from the Remote Server

Administration Tools (RSAT) for Windows 7 or above. After importing the module B
you’re able to use a number of handy cmdlets, many of which begin with Get-AD*.

 Because you’re going to format the output into two separate files you’ll do the

Active Directory query c only once and capture it into the variable $ADQuery. This is

obviously more efficient than doing the query twice and piping it out twice. Using the

LDAP filter "(sidHistory=*)" will return all Active Directory objects that have a value

for SID history.

 The trick to the query is that SID history is a multivalue attribute. It’s possible that a

security principal has been migrated more than once creating multiple SID history

values. The following syntax will not work:

Get-ADObject -LDAPFilter "(sidHistory=*)" -Property sidHistory |
 ➥ Export-CSV SIDHistory.csv

This will get you a list of the objects, but the SID history column on every row will say

“Microsoft.ActiveDirectory.Management.ADPropertyValueCollection”. To see the data

you must use the ExpandProperty switch on the Select-Object cmdlet. When you dis-

play a list of object properties at the PowerShell console sometimes one of those proper-

ties may be what we call multivalued. That means the property contains multiple entries in

an array or object collection. In Active Directory several user attributes are multivalues

(including postalAddress, sIDHistory, description, and userCertificate). By

expanding these properties in your query you can get one row for each SID history

value that’s present, making the result set friendlier for exporting and reporting. This

report treats the multivalue attributes as separate rows so that you get a one-to-one list

of OldSID/NewSID entries. The working syntax looks similar to this:

Export results
as CSV reportd

Export results
as ADMT
mapping filee

Clean quotes out
of mapping filef

120 CHAPTER 8 Using PowerShell to reduce Active Directory token bloat

Get-ADObject -LDAPFilter "(sidHistory=*)" -Property sidHistory |
 ➥ Select-Object * -ExpandProperty sidHistory |
 ➥ Export-CSV SIDHistory.csv

Finally, the script exports the SID mapping data into two separate CSV files for conve-

nience: d a detailed report for viewing in Excel and e an ADMT SID mapping file.

For the ADMT mapping file you have to remove the quotes f from the CSV file,

because the ADMT doesn’t like those in the input file.

 This code appears in the SIDHistory module as the function Export-SIDMapping

and creates two CSV files: SIDMap.csv and SIDReport.csv.

Listing domain SIDs and trusts
When you view the SID history output the SIDs look like a bunch of random numbers,

but they’re not random at all. Remember how earlier you learned that the first por-

tion of a SID identifies the domain where the object was created? In order to make

sense of this SID history data you need to label the accounts with the name of the

source domain from whence they came.

 First you need a legend that maps SID history domains to their names. The domain

SID is stored on the root of the domain partition. You can get this easily enough for

the present domains in the forest, and you’ll look at that code in a minute. But what

about the old domains? If your environment is like many of those I encounter in my

line of work you may have stale trusts scattered across the forest, remnants of past

migrations never cleaned up afterward. These trusts are the clues you need to under-

stand the past.

 Luckily for you each trust is stored in the domain partition of the Active Directory

database as a trustedDomain object. One of the attributes on this object is the domain

SID of the trusted domain. Now you can see that all you need is a well-crafted Active

Directory query to retrieve these domain SIDs and build your list.

 On the flip side it’s possible that the trusts are long gone, and you won’t be able to

identify every domain in your past. I’ve met a couple of administrators who maintain a

list of all former trusted domain SIDs for such occasions. It’s a good idea; otherwise

you won’t know the names of some old domains.

The challenge
Exactly how many domain SIDs do you need to find? Consider each of these scenarios:

■ You need to identify every domain in the forest.
■ Each one of these forest domains could have external trusts. You need to enu-

merate those external, nontransitive trusts for each of the forest domains.
■ The forest root domain could have a transitive forest trust. In this case you

need to enumerate not only the remote member of the trust, but also any

child domains that may exist in the remote trusted forest. This is one of the

most challenging situations and requires adequate permissions in the remote

forest domains.

121PowerShell options

■ Those remote transitively trusted domains in other forests may have external

trusts as well, but “a trust of a trust of a trust” is too many hops for you to make.

Permissions and the lack of transitivity prevent you from getting there. In this

case you can rerun the PowerShell code again in the remote trusted domains

and manually merge the output into a single list.

PowerShell options
PowerShell has a number of ways to get domain SIDs and trusted domain SIDs. Each of

these has their own strengths and weaknesses. I have listed them in order of my per-

sonal preference:

1 The Active Directory module cmdlets

2 Windows Management Instrumentation (WMI)

3 The NLTEST command-line tool

4 Active Directory Service Interfaces (ADSI)

5 .NET code in PowerShell

Active Directory cmdlets

This method is appropriate for environments where you have at least one DC that’s

Windows Server 2008 R2 or newer in each forest domain (or you have the Active

Directory Web Service running on a legacy DC; see http://aka.ms/ADPS2003). Here

are the steps to collect the data using these cmdlets:

1 Get a list of domains in the forest:

(Get-ADForest).Domains

2 Get the SID of the domain:

(Get-ADDomain).DomainSID

3 List the name and SID of all trusted domains that aren’t forest members (filtering

on trustAttributes where the bit TRUST_ATTRIBUTE_WITHIN_FOREST is not set):

 Get-ADObject -SearchBase "CN=System,DC=Contoso,DC=com" `
 -SearchScope OneLevel `
 -LDAPFilter "(&(objectClass=trustedDomain)(!trustAttributes=32))" `
 -Property name, securityIdentifier

The downside here is that Active Directory queries across domains usually complain

about permissions. You could prompt for credentials but that could require unique

credentials for every domain. You’ll use the WMI method to avoid this scenario.

NOTE This PowerShell solution was developed using the cmdlets available in
PowerShell v2 and the Windows Server 2008 R2 Active Directory module.
Since then the Windows Server 2012 Active Directory module has been
upgraded to include the new cmdlet Get-ADTrust, which would satisfy
the needs of this script. But in order to maintain compatibility in legacy
environments that new functionality hasn’t been used.

http://aka.ms/ADPS2003

122 CHAPTER 8 Using PowerShell to reduce Active Directory token bloat

WMI

This method is handy when you have older domains where the Active Directory cmd-

lets can’t reach. Put differently, there may be Windows Server 2003 domains where the

Active Directory Web Service isn’t installed but WMI is available. The WMI method is

also easier when trying to connect to trusted domains. Each of these WMI queries will

list the SID of the domains involved:

Get-WmiObject -Namespace root\MicrosoftActiveDirectory `
 -Class Microsoft_LocalDomainInfo

Get-WmiObject -Namespace root\MicrosoftActiveDirectory `
 -Class Microsoft_DomainTrustStatus

If you don’t run these commands from a DC, you’ll need to add the ComputerName

switch and pass the name of a DC. These WMI classes only exist on DCs.

 The downside here is that there’s no quick way to enumerate all of the domains

in the forest. You would have to crawl all of the trusts to discover every domain and

its trusts.

NOTE WMI support for Active Directory has been deprecated in Windows
Server 2012, meaning that it still works but may not be available in
future releases.

NLTEST

NLTEST does some stunning trust enumeration, complete with domain SIDs. This is

exactly what you want—almost. What you don’t want is to parse a bunch of command-

line output. (NLTEST is a little-known utility that’s been in the resource kit for a long

time. It has a load of handy switches. Check it out.)

NLTEST /server:dc1 /domain_trusts /all_trusts /v

NOTE Refer to PowerShell in Depth (Manning 2013), chapter 18, for examples of
parsing output from legacy utilities.

ADSI

ADSI, as painful as it is for IT pros, can query trustedDomain objects as well, but it will

have the same permissions limitations you ran into earlier with the Active Directory

cmdlets when reaching across domain and forest boundaries:

$ADSI = [ADSISEARCHER][ADSI]""
$ADSI.SearchRoot = [ADSI]"LDAP://CN=System,DC=Contoso,DC=com"
$ADSI.SearchScope = "onelevel"
$ADSI.Filter = "(&(objectClass=trustedDomain)(!trustAttributes=32))"
$ADSI.PropertiesToLoad.Add("name")
$ADSI.PropertiesToLoad.Add("securityIdentifier")
$ADSI.FindAll()

My preference is to use the simpler syntax of the Active Directory module cmdlets, but

in this case neither the cmdlets nor ADSI fits our needs exactly.

123The script solution

.NET

To meet all the requirements you have to use .NET. I came to this realization after

many hours of blood, sweat, and tears at the PowerShell console in my lab. Once I saw

the impressive results from NLTEST I suspected there had to be a way to call the same

APIs in PowerShell. From .NET you get a forest object and then call the GetAllTrust-

Relationships method. Then you peel down into the TrustRelationshipInformation,

which holds the TrustedDomainInformation, where you find the domain SID of the

trust partners. The code for this is provided in the next section.

The script solution
You’re going to use a combination of WMI and .NET for the solution. The following

listing contains the code that will build the domain SID list.

$DomainSIDList = @{}

$MyDomainSID = Get-WmiObject `
 -Namespace root\MicrosoftActiveDirectory `
 -Class Microsoft_LocalDomainInfo |
 Select-Object DNSname, SID

$DomainSIDList.Add($MyDomainSID.DNSname, $MyDomainSID.SID)

$forest = `
 [System.DirectoryServices.ActiveDirectory.Forest]::`
 GetCurrentForest()

$forest.Domains | ForEach-Object {
 Get-WmiObject `
 -Namespace root\MicrosoftActiveDirectory `
 -Class Microsoft_DomainTrustStatus `
 -ComputerName $_.Name |
 ForEach-Object {
 $DomainSIDList.Add($_.TrustedDomain, $_.SID)
 }
}

$trusts = $forest.GetAllTrustRelationships()

ForEach ($trust in $trusts) {

 $trust.TrustedDomainInformation |
 ForEach-Object {

 $DomainSIDList.Add($_.DnsName, $_.DomainSid)

 $context = New-Object `
 System.DirectoryServices.ActiveDirectory.DirectoryContext`
 ("Forest",$_.DnsName)

 $remoteforest = `
 [System.DirectoryServices.ActiveDirectory.Forest]::`
 GetForest($context)

Listing 2 Domain SID report

Empty hash table
to hold the listb

Get current domain
SID with WMIc

Store domain
name and SIDd

Connect to
forest with .NETe

Enumerate trusts
for each domain
using WMIf

.NET equivalent to NLTEST
/DOMAIN_TRUSTS
/ALL_TRUSTS

g

TrustedDomainInformation

property holds name and SID for
each trust

h

124 CHAPTER 8 Using PowerShell to reduce Active Directory token bloat

 $remotetrusts =
 ➥ $remoteforest.GetAllTrustRelationships()

 ForEach ($remotetrust in $remotetrusts) {
 $remotetrust.TrustedDomainInformation |
 ForEach-Object { $DomainSIDList.Add($_.DnsName, $_.DomainSid) }
 }

 }
}

$DomainSIDList

This code may look somewhat busy but it boils down to two WMI calls and a couple of

.NET calls. First you create an empty hash table B to hold all of the domain name/SID

results. The first WMI call c gets the local domain name and SID, which you add to

the hash table d. You repeat this hash table insertion for each domain name/SID pair

found throughout the script.

 The first .NET call e establishes a connection with the current forest. (Behind the

scenes the cmdlet Get-ADForest does the same thing.) The forest object then has a

list of domains f that you’ll pipe to WMI to gather all SIDs from the trusts of each of

those domains. This effectively gets the SID of every domain in the forest and any

external trusts.

 That gets all of the domain-level external trusts scattered throughout the forest,

but now you need to get any external forest trusts g in the root. Looping through h
that trust information you’ll repeat the same trust enumeration steps i to find trusts

in the remote forests as well. In the end you’ll have a pretty thorough report of trusts.

But due to permissions issues and the number of trust hops there may be more trusts

to be discovered (for example, a series of trusts chaining three or more forests

together, albeit unlikely in most environments). In such cases rerun the script directly

in those remote forests and then manually merge the output into a single CSV file.

Finally, you’ll print the results j.

 This code appears in the SIDHistory module as the function Export-DomainSIDs,

and it will give you a CSV file containing all of the domain names and domain SIDs.

Use Get-Help Export-DomainSIDs -Full to see the syntax and notes. As a bonus

there’s also a function called Update-SIDMapping. This function will take the SID

report file generated by Export-SIDMapping and insert a new column showing the

source domain name for each SID history entry based on the output of Export-

DomainSIDs.

 The following is a list of the functions you’ll find in the module:

PS C:\> Import-Module SIDHistory
PS C:\> Get-Command -Module SIDHistory

CommandType Name ModuleName
----------- ---- ----------
Function Convert-SIDHistoryNTFS SIDHistory
Function Export-DomainSIDs SIDHistory
Function Export-SIDHistoryShare SIDHistory
Function Export-SIDMapping SIDHistory

Repeat trust enumeration
for trusted domainsi

Display the
results

j

125Summary

Function Get-SIDHistory SIDHistory
Function Merge-CSV SIDHistory
Function Remove-SIDHistory SIDHistory
Function Update-SIDMapping SIDHistory

For more information on modules see Help about_Modules.

Summary
I began this chapter lamenting the mysterious troubleshooting issues associated with

Active Directory token bloat, and you learned that often SID history can be the culprit.

Now you have the tools in PowerShell to generate a list of all objects that have SID his-

tory in the forest and then match that data to the old domain name where available.

Using this information you can plan your SID history cleanup project with precision.

With the ADMT and the SID mapping file you created you’re now empowered to trans-

late the SID history on your resource servers. Once the translation is complete you can

safely remove the SID history from your Active Directory objects, reducing token bloat

across the forest and winning the praise of users everywhere.

 For more information check out my blog series online, where you can find the full

PowerShell module download, additional functions to help with ACL cleanup, and

links to more resources for the topic, at http://aka.ms/SIDHistory.

About the author

Ashley McGlone is a Microsoft Premier Field Engineer (PFE). He

started writing code on a Commodore VIC20 back in 1983, and

he’s been hooked ever since. As a former Microsoft Certified

Trainer Ashley used to teach Microsoft Certified Systems Engi-

neer (MCSE) classes on NT 4.0 and Windows 2000. Ashley spent

eight years of his IT career administering a large enterprise where

he scripted for Active Directory and thousands of workstations.

Today he specializes in Active Directory and PowerShell, helping

Microsoft Premier customers reach their full potential through risk assessments and

workshops. Ashley’s TechNet blog (http://aka.ms/GoateePFE) focuses on real-world

solutions for Active Directory using Windows PowerShell. He can be found on Twitter

at @GoateePFE.

http://aka.ms/SIDHistory
http://aka.ms/GoateePFE

PART 2

PowerShell scripting

 Edited by Jeffery Hicks

When PowerShell first appeared, many people thought, “Great. Another script-

ing language from Microsoft like VBScript that I have to learn.” Actually, that’s

only half the story. IT pros have since discovered that PowerShell is an effective

interactive management engine that just happens to have a scripting interface.

PowerShell pros know that anything they can do in the shell they can put into a

script. Scripts save time and offer flexibility and reusability. The fact that Power-

Shell can also incorporate native .NET code means that you can create some

pretty awesome PowerShell-based tools.

 Whether you’re writing a basic PowerShell script, beginning to dabble in

advanced functions, or creating full-blown modules, there’s something for every-

one in this section. Everyone should at least read chapter 9 from James O’Neill

on the ten commandments of PowerShell scripting. Even if you don’t agree with

all of them, his suggestions will certainly get you thinking about how you’re

approaching PowerShell script writing.

 This section has a number of chapters that center on tips, from Will Steele,

Jeff Wouters, and Jonathan Medd, that will help you write more effective scripts.

And because there’s really no difference between running a script and typing a

command, some of their tips might carry over into your shell.

 PowerShell MVPs Bartosz Bielawksi and Adam Driscoll have contributed

chapters on scripting-related topics that I think many PowerShell scripters don’t

think about or haven’t used much. These chapters go beyond the PowerShell

help files, and while aimed at more experienced users, even beginners should

learn what they can do in PowerShell.

 The final chapters in the section are what I refer to as “tool building.” In chapter 15,

Matthew Reynolds offers some advice on improving performance when your script

needs to work with big data. PowerShell MVP and author Richard Siddaway introduces

us to the very cool world of CDXML in chapter 16. With PowerShell 3 we can now create

new tools leveraging CIM, in much the same way Microsoft did for Windows 8 and

Windows Server 2012. Finally, my contribution in chapter 17 guides you into creating

PowerShell tools from command line tools. I bet there are still a number of legacy

command line tools you use. Wouldn’t it be nice to make them more PowerShell-like

so they can be integrated into your PowerShell commands? That’s what the chapter is

all about.

 The authors and I can’t guarantee you’ll be a world-class PowerShell scripter, but

this section should add some new tools to your scripting toolkit.

About the editor

Jeffery Hicks is a longtime PowerShell MVP. He writes and speaks

wherever he can about PowerShell, efficiency, and Microsoft tech-

nologies, in between training engagements. Jeff is also known as

Prof. PowerShell from his long-running column on MCPMag.com.

His latest book is PowerShell in Depth: An Administrator’s Guide,

co-written with Don Jones and Richard Siddaway (Manning 2013).

You can follow Jeff on his blog, http://jdhitsolutions.com/blog or

on Twitter as @JeffHicks.

http://jdhitsolutions.com/blog
http://jdhitsolutions.com/blog

129

9 The 10 PowerShell scripting
commandments

 James O’Neill

In my view, PowerShell succeeds because it provides a kit of small, general-purpose

commands to be linked together to make larger, specific commands. Extending the

toolkit is a good thing, and my approach to extending the toolkit can be summa-

rized as “10 commandments” (which I jokingly call cmdments):

1 Create functions for reuse, scripts for a single task.

2 Choose names for commands and parameters wisely.

3 One task, one function: the “DoStuffWith” verb doesn’t exist for a reason.

4 Build flexibility into parameters.

5 Ask whether constants are better as defaults for parameters.

6 Ask “What could I receive?” and “What could I pass on?”

7 Use Write- and Out- cmdlets properly.

8 Use comment-based help, and include examples.

9 Learn to use the Try{} Catch{} scriptblocks; don’t rely on $ErrorAction-

Preference.

10 Choose either to support –WhatIf or to restore data.

This chapter will give you more insight into each commandment.

Constructing a sound function
Scripts do a complete job—you can have “Download new pictures from my RSS

feed.ps1” as a script that runs as a scheduled job and doesn’t rely on taking user

input. Whereas scripts are specific and self-contained, functions do small jobs, like

the built-in commands, and add tasks to the shell making them building blocks for

scripts. Functions aim to be part of one or more bigger commands.

130 CHAPTER 9 The 10 PowerShell scripting commandments

Select your function name carefully

From a syntax point of view almost any name that you use is valid, but whether it’s a

good name is another issue. The convention in PowerShell is for commands to be in

the form Verb-Noun. Nouns are always in the singular (which saves nonnative speakers

of English from having to learn irregular plurals). I’ve heard arguments for prefixing

nouns so that two sets of functions don’t clash, but in practice I’ve never found it nec-

essary; the noun need only convey the meaning of what the function does.

 I recommend following the naming conventions and sticking to PowerShell’s list

of standard verbs for two reasons: (1) users expect it and (2) if you put your code

into a PowerShell module, the Import-Module command gives warnings if the mod-

ule contains nonstandard names. Get-Verb gives a list of approved verbs, which

includes the following:

■ GET—Returns something that already exists
■ NEW—Creates something new and independent
■ ADD—Creates something “attached” to something that exists

The name also indicates the scope of the function’s work. An example I’ve used is cre-

ating functions Get-Sine, Get-Cosine, and Get-Tangent. These names mean I don’t

use Get-Tangent -inverse; I use a separate function, Get-ArcTangent. Defining sepa-

rate functions keeps your aliases simple (Sin, Cos, Tan, and ArcSin, ArcCos, ArcTan)

and you avoid “Ipconfig syndrome.” Ipconfig is the classic example of anything

loosely related to the original purpose being lashed onto a command: in Ipconfig

it’s not the command name that determines the work to be carried out, but switches

(such as /release). In PowerShell the command name determines what will be done,

and the parameters determine the details of how it should be done and to which tar-

get(s) it should be done.

Start help early

Traditionally programmers write their code and then hand it over to someone else to

write help. Command-line tools often support a -? parameter, which gets a program-

mer’s explanation of how the command works. PowerShell always returns help

derived from a function’s structure, and suitably formatted comments allow Power-

Shell to create substantive help. Specifying a one-line synopsis as part of the help rein-

forces the scope of work you set when you selected the function name, and providing

a set of examples illustrates what the function should do. Help is useful not only when

you return to a function you wrote some months before but also helps to give you a

specification to work to. You don’t need to fill in all of the descriptive parts of the help

at the outset, but it’s useful to document how you expect your function to be used at

the start and then implement to that documentation.

 In PowerShell v3 the Integrated Scripting Environment (ISE) comes with built-in

script snippets for cmdlets (see figure 1). From the ISE, right-click in the editor and

131Constructing a sound function

then choose Start Snippets or press CTRL-J. Snippets provide good practice templates

for which you fill in the blanks.

 This snippet includes the following items:

■ Comment-based Help—Help can appear before, after, or inside the function. The

snippet puts it at the top of the file.
■ Verb-Noun name—Name of the function.
■ [CmdletBinding()] header—Enables common parameters, such as Warning-

Action and ErrorAction, among other things.
■ [OutputType()] header—Allows the output type to be returned by help and

helps PowerShell v3 IntelliSense to suggest the right properties and methods in

an expression that contains the output of the function.

There’s no enforcement of this, unlike declaring a function in a compiled

language such as C#. If you don’t know what type your function returns you can

put Object here.

■ Param() block—Provides example parameters (and a reminder to insert comment-

based help for the parameter).

Figure 1 Inserting the Cmdlet (advanced function) snippet jump-starts the entry of help code.

132 CHAPTER 9 The 10 PowerShell scripting commandments

Note that it’s valid to write Function name (Param1, Param2) {body} in Power-

Shell, but not if [CmdletBinding()] is specified; in that case you must use a

param() block.

One of the example parameters accepts input from the pipeline.
■ Begin{}, Process{} and End{} blocks—Used when input comes from the pipe-

line. Begin runs before the first item, Process repeats for each item, and End

runs after the last item.

Output
With the function named, an outline of what it does, and a barebones structure for

the code, we can think about the input parameters it receives and how it returns

its results.

 In PowerShell you compose big, complicated commands by forming pipelines of

smaller ones, so you need to consider how the functions you create fit into a world of

pipelines. That includes thinking about parameters that come from the pipeline and

how to ensure that output is “pipeline-friendly.”

Keep the pipeline in mind

It’s important to think about how a function can act as a small command and be part

of larger commands, which is another reason to sketch out early in the development

process some command lines that use the function. As a general guideline, functions

should be able to pass rich objects to the next command. An example I use is finding

an MD5 hash for a file. The hash allows me to identify files uniquely even when they’ve

been renamed. I’ve saved over 50,000 picture files on my laptop, and if I want to find

duplicates I can run the following command:

Get-FilesWithHash | Group -Property hash | where {$_.Count -gt 1}

This gives me a group object containing a set of files for each hash that occurs more

than once.

 But how should Get-FilesWithHash work? I contend that it’s more useful to

return a file object with the hash as a property than to return the hash, and that a

function that accepts files as input and adds a hash to them is more flexible (and eas-

ier to write) than one that tries to do all the selection itself. A more efficient imple-

mentation of Get-FilesWithHash is

Get-Some-Files | Add-MD5Hash

When I write the help I can then include examples like these:

■ Dir | Add-MD5Hash

Returns a set of files with an MD5 hash added. PowerShell’s default formatting

won’t show the hash.

■ DIR | Add-MD5Hash | Format-Table –property Name,MD5

Shows file names and their hash.

133Output

■ $duplicates = dir | add-MD5hash | group-object Length,md5 |

 ➥ where { $_.Count -gt 1 }

Saves groups with duplicate files to $duplicates.

Although the assumption is that Add-MD5Hash will have files piped into it, it would be

an oversight if the function didn’t allow the user to specify files as a parameter.

 Some objects (such as WMI ones) are ugly; or more accurately, PowerShell doesn’t

include formatting XML for them by default. If you’re going to do in-depth work with

such objects it may make sense to create your own formatting XML file. Tools that

make this easier include James Brundage’s EZOut (http://ezout.start-automating.com),

but this can be overkill. Often the most practical thing to do is to use Format-List or

format-table inside the function. After the data is formatted it’s useless to anything

later in the pipeline, so give your function either a -Formatted switch to turn format-

ting on or a -Raw switch to turn it off.

Handle and provide a path property

Many PowerShell commands that accept files as input don’t care what kind of object

they’re passed, provided the object has a .Path property. If your function returns

objects that are (or can refer to) files, setting a .Path property ensures that your

objects can be piped straight into commands that work with files.

 For example, PowerShell’s Select-String cmdlet outputs MatchInfo objects that

return what was found, where, and so on. MatchInfo also contains a path, which

means you can put together a command like this:

Select-String -list -Pattern "while" -path *.ps1 |
 ➥ Copy-Item -Destination e:\WhileFiles

Use Write- commands properly

One of the telltale signs of people who are new to PowerShell is the way they use (or

misuse) Write-Host and Write-Output. Heavy use of Write-Host is usually a mistake

because it’s for outputting only information that isn’t to be passed into a pipeline. For

example, I use a Get-SQL command to fetch data using ODBC. I want to know how

many rows of data it returned, but I don’t want “4000 rows returned” to go into the

next command in the pipeline; this is the proper use for Write-Host. I also have a

-quiet switch to turn this off.

 New users also learn that PowerShell has an echo command like the batch file com-

mand, but echo is an alias for Write-Output, so they use Write-Output everywhere

they’d have used echo. Writing $x does the same as Write-Output $x. The only reason

to use this cmdlet is if you need to make clear where a result is being returned.

 Everyone has experienced commands that take a long time to run. Write-Progress

is the way to tell the user what’s happening in long-running tasks.

Write-Verbose provides the user with extra information if they want it, but also

puts pseudo comments in the code. For example,

Write-Verbose "About to fetch data from $URL"

http://ezout.start-automating.com

134 CHAPTER 9 The 10 PowerShell scripting commandments

reports progress to the user, but there’s no need to write a comment saying you’re

about to fetch data from that URL. Write-Debug allows the user to break into the exe-

cution, and Write-Warning tells the user when things don’t go according to plan. If

you specify [CmdletBinding()] it enables the common parameters, which control

what the script does when it gets to a verbose, debug, or warning message. By default

only warnings are displayed, but you can hide or stop warnings or show more informa-

tion by adding a switch, with no extra coding effort. Before PowerShell, users had to

modify a script to output information when debugging and then reverse the changes

out when they got it working. When you use Write- commands properly the debug-

ging lines turn themselves off when not needed.

 People who work with batch files know that output including errors can be sup-

pressed by redirecting to NUL. PowerShell allows output to be sent to Out-Null (or

cast to the [Void] type), but it treats errors differently. One of my pet peeves is when

users set $ErrorActionPreference to hide a possible error. PowerShell allows com-

mands to be wrapped in a try{} block and errors to be handled in a catch{} block,

but this is usually overkill: cmdlets (and functions that specify [CmdletBinding()])

allow error messages to be managed with a parameter, just like verbose, debug and

warning messages.

 For example, if a function calls something that might produce a nonterminating

error (for instance, searching recursively through directories might result in access

denied for some), you can suppress errors with -ErrorAction SilentlyContinue or

you can force them to be terminating errors with -ErrorAction Stop.

Parameters
When you write a specification for a function you include its name, its output and its

inputs, and a description of what it does. The code that you write to produce the out-

put from the inputs implements that specification.

 The use of the term function in PowerShell is a source of confusion for people who

have some programming background in systems programming languages. At one

time the term script cmdlet began to be used, but it never replaced function. A func-

tion is one of the five kinds of PowerShell commands—the others being aliases,

cmdlets, workflows and external programs. Ultimately users don’t care whether a

command is implemented as a function or a cmdlet; they want to know what to put in

and what comes out.

 Systems programmers who work in C#, VB, or some other compiled language use

the term function to refer to a pedantic section of code. C# programmers don’t bat an

eye over a "function" that processes files but doesn’t accept a string that contains a

path to a file—they write an extra line to get the file from the path first. That’s not

acceptable in PowerShell; commands shouldn’t say, “You gave that to me in a way I

don’t like.” For example, you could write

[System.Management.Automation.PathInfo]$x = Resolve-Path profile.ps1
Copy-Item $x ..

135Parameters

or

[system.io.fileinfo]$x = Get-Item profile.ps1
Copy-Item $x ..

or

[System.String]$x = "profile.ps1"
Copy-Item $x ..

Each of these examples forces $X to hold a different data type, and yet they all work

with Copy-Item. Anything you write that extends the set of commands users can type

in PowerShell should behave like the built-in cmdlets. You, therefore, need to antici-

pate what users will want to use as parameters and cater to that.

Use standard parameter names and aliases

Existing PowerShell commands use -Path, not –File; –Recurse, not –Subdirectories;

and so on. Your function’s parameters will be more easily understood if you follow

conventions, but you don’t need to be slavish about it. For example, PowerShell uses

ComputerName, but when I wrote a library to manage Hyper-V virtual machines on

Windows Server 2008 I thought that using Computer risked confusion between Virtual

Machine and Host, so I used Server for the host and VM for the guests. The library

was widely used and I didn’t receive a single complaint that it confused people or was

“nonstandard,” so it seems to have been a good decision.

 A parameter doesn’t have to have a single name; aliases can be helpful. Long

names can be shortened to give de facto aliases; for example, -HeartBeatTimeOut

could be –HeartBeat or more likely –h. You might prefer an alias of –TimeOut. Con-

sider a function that takes a -Describe parameter; -d is ambiguous and so is –de (it

could be –debug), but that’s no reason not to define an alias –d for this parameter.

Avoid restoring data: make full use of the common parameters

As well as enabling the -Debug and -Verbose switches and the -ErrorAction and

-WarningAction parameters, [cmdlet binding()] enables –WhatIf and -Confirm.

 If the function makes big changes you can specify an impact level of low, medium,

or high:

[CmdletBinding(SupportsShouldProcess=$true, ConfirmImpact='High')]

If ConfirmImpact isn’t specified it defaults to medium. If the impact level is higher

than the value of $ConfirmPreference confirmation will be requested. Specifying

-Confirm sets $ConfirmPreference for the function to low. An if statement deter-

mines whether the impacting action should proceed. For example:

if ($pscmdlet.shouldProcess($file.name,”Delete file”) {Del $file}

Here’s how the .ShouldProcess method works with the following switches:

■ -Confirm—Prints the message and returns true or false depending on the

user’s input

136 CHAPTER 9 The 10 PowerShell scripting commandments

■ -WhatIf—Prints the message and returns false
■ -Verbose—Prints the message and returns true

Assign default values (so constants can be parameters)

Writing a parameter in the form

ComputerName = "."

assigns it a default value—in this case ".", which means the local computer—if no

value is provided for the parameter when the function is called. It’s not necessary to

require users to supply a computer name if you can assume the current machine. In

the same way, it’s not necessary to make “Local computer” a hardcoded default: any

constant like that can be written in the parameters section, and then the user can

override it.

 For example, a function that calls Get-WMIobject shouldn’t be limited to working

only on the local machine. You can use a –ComputerName parameter that defaults to

the current computer. If there’s a business rule embedded in your function it might

even make sense for that part of your function to be the default value of a script-

block parameter. The script block gets run in the appropriate place, but to change

the rule you can specify a new one in the command line.

 For functions that return information about files it makes sense to assume *.*

(all files in the current directory), but for functions that change files it’s safer to make

no assumptions.

Be mindful of your users

Don’t expect other people to know the syntax for things inside your function. For

example, WMI uses the percent sign (%) for wildcards (SQL style) instead of the more

typical asterisk (*). In this case you either expect users to learn the SQL syntax or you

keep them in mind and include something like this in your functions:

-Replace "*","%"

Is it bad form to expect users to learn the SQL syntax? I’d argue it’s the program-

mer’s job to take on work to save the user time (not vice versa). I’ll return to this

theme later.

Provide parameters to switch off parts of a complex function (or script)

I use a script that updates remote systems and can be run as

Update-System -noBackup

Just as moving business rules into script blocks allows a script to do a second job with-

out rewriting, so providing switches that examine a large If {} block allows a single

script to do Update-SystemWithBackup and Update-SystemWithoutBackup.

137Parameters

Accept input from the pipeline

Piping in is key to the Shell part of PowerShell. The telltale construction that says,

“This should accept pipeline input” generically looks like this:

Get-thing | ForEach-Object {Verb-Thing –thing $_}

For example, if I implemented my Add-MD5Hash and found I was using it as

Dir | ForEach {Add-MD5Hash –path $_.name}

I’d know that path needs to take input. It’s easy for a parameter to accept its value

from a piped object; you prefix the parameter like this:

[parameter(ValueFromPipeLine= $true)]

In PowerShell v3 it’s only necessary to write

[Parameter(ValueFromPipeline)]

The =$true is optional, but if your work might be used with v2 it’s worth including it.

 To support multiple items being passed via the pipe a function needs the follow-

ing blocks:

■ Begin {}—runs before the first item
■ Process {}—runs once for each set of parameters (so in case of piped input,

once for each item)
■ End {}—runs after the last item

These blocks are optional; if the function doesn’t have any of them the entire func-

tion body is treated as an end block.

 Another way to tag parameters that work with the pipeline is to use Value-

FromPipeLineByPropertyName:

[parameter(ValueFromPipelineByPropertyName =
$true)][Alias('Fullname','Path')]

 $Include=@("*.ps1","*.js","*.sql"),

This says to PowerShell, “If the piped object has a property with the same name as this

parameter or any of its aliases, then use the value of that property as the parameter

value.” This function supports –include, which defaults to an array of values. If it

receives piped input that has an .Include, .FullName, or .Path property, then the

value of that property is used.

 All PowerShell commands that work with files deal with piped objects in this man-

ner. For example,

■ a PathInfo object from Resolve Path,
■ a FileInfo object from Get Item or Get ChildItem (a.k.a. Dir or ls),
■ a directorySecurity object from Get ACL, or
■ a matchinfo object from Select String.

138 CHAPTER 9 The 10 PowerShell scripting commandments

Be flexible about what is acceptable in parameters

You’ve seen that PowerShell can be flexible about the data type of parameters and

that well-written scripts don’t require the user to express parameters in an unnatural

way. Another aspect of flexibility is what you treat as “valid” input. In PowerShell you

can often do validation on parameters, but beware of validation that shifts the effort

from the writer of the script to its user.

 Flexibility also includes the number of items you accept in a parameter. The built-

in PowerShell commands accept multiple values, as shown here:

PS> stop-process 4472,5200,5224

Users will, therefore, expect this feature in your functions, too. One of your parame-

ters is usually the target of the command. If the name of the command indicates what

the command does, you can think about parameters like this:

■ The “target” parameter indicates which object or objects it acts on.
■ The remaining parameters define how it goes about it.

The “which” parameters require more flexibility than the “how” parameters.

 The target of a command could be an object or it could be an ID or a name from

which the desired object can be obtained. A name could be a wild card that expands

to more than one object, so a single-value target parameter resolves an array of tar-

get objects.

 It’s best to expand names first and then either loop through the values or call the

function recursively for each item. Recursion copes with nested arrays or arrays of

names that need to be resolved. The script shown in listing 1 is a function called test-

file, which handles exactly this scenario.

 The function starts with online help that explains that the function gets the first

line of a file; it works with file-related objects via the pipeline or as a variable or strings,

and if given something it can’t handle as a file, it returns null. Some people may pre-

fer to see a warning if the item isn’t a file, but when something like Get-ChildItem

-Recurse (or dir –r) is used it includes directories in the stream of objects sent down

the pipeline, and my own preference is to avoid printing a warning for each.

<#
.Synopsis
 Gets the first line of a file for demo purposes
.EXAMPLE
 get-acl *.* | where {$_.Owner -match "james"} | test-file
 It works with file-related objects
.EXAMPLE
 test-file p*.*
 It works with strings
.EXAMPLE
 $f = Get-Item '.\100 Meter Event.txt' ; test-file $f
 It works with stored objects

Listing 1 The test-file function

139Parameters

.EXAMPLE
 Get-Date | test-file
 Input that cannot be converted to a file returns Null
#>
function test-file
{ [CmdletBinding()]
 [OutputType([String])]
 Param
 (# The File to test
 [parameter(ValueFromPipeline=$true)]
 $Path = "*.*"
)
 Process
 { if ($path -isnot [array] -and $path -isnot [system.io.fileinfo])
 {$path = $path | Get-Item -ErrorAction SilentlyContinue}
 if ($path -is [array])
 {foreach ($p in $path) {Test-File $p} }
 if ($path -is [System.IO.FileInfo])
 {
 Get-Content -TotalCount 1 $path
 }
 }
}

The first two if statements in the Process{} block deal with the two cases the func-

tion handles when the parameter isn’t a single file. If it isn’t an array or a file then the

function uses Get-Item to try to get the correct file or files. If what is passed works

with Get-Item it works with the function, so the function delegates the responsibility

of checking validity to Get-Item. If the parameter is an array or if Get-Item returns an

array the function is called recursively for each item in the array.

 The third if is the main part of the function, which runs for the real object(s), not

for a name or the array object. If no input, or input of an impossible type, is provided

the function quietly returns nothing. In most cases “null in/null out” is a valid rule,

but on occasion when the function cannot assume a default a mandatory parameter

makes more sense.

Using parameter types and validation properly

Specifying parameter types in PowerShell isn’t validation but casting. For example, in

compiled languages like C#,

string MD5(string fileName) {}

declares MD5 as a function that returns a string and takes a string parameter, so

S = MD5(7)

causes a compiler error because 7 isn’t a string.

 In PowerShell,

Function Get-MD5{ Param([string]$FileName) }

140 CHAPTER 9 The 10 PowerShell scripting commandments

also declares a string parameter, but

Get-MD5 7

converts 7 to a string.

 This behavior is helpful, for example, if a variable F holds a fileInfo object—the

type that PowerShell’s Get-Item and Get-ChildItem (alias dir and ls) commands

return. In C#,

S = MD5(F)

returns a compiler error because, as in the previous C# example, F is the wrong type.

 PowerShell converts the object to a string, and fortunately the .toString() method

of a fileInfo object returns a string containing the path to the file.

 But casting doesn’t always do the conversion you expect. For example,

[System.IO.FileInfo]$file

won’t reject a string such as

'.\100 Meter Event.txt'

but converts it to an object representing a file in \windows\system32. The file doesn’t

exist and is read-only!

 A better approach is to leave parameters untyped and then resolve types and per-

form other validation in code, as shown in listing 1. The function works whether the

user passes a name of something or an object that represents it. At a minimum, a com-

mand should allow a –name or -path parameter as well as an -InputObject parame-

ter. For example, the following all do the same thing:

PS> stop-process 4472,5200,5224
PS> Get-Process -Name "calc" | Stop-Process
PS> $p = get-process calc; Stop-Process -InputObject $p
PS> stop-process -name calc

It’s better to support this kind of behavior without the parameter. For example, the

Rename-Item command (alias ren) doesn’t care if it’s passed a file object or a path:

PS> ren '.\100 Meter Event.txt' "100 Metre Event.txt"
PS> $f = get-item '.\100 Metre Event.txt' ; ren $f '100 Meter Event.txt'

You’re probably doing something wrong if your function forces the user to use the

equivalent of

PS> Stop-Process (get-process Calc)

or

PS> Ren (get-item '.\100 Metre Event.txt‘) "100 M Event.txt"

PowerShell provides a battery of validation that can be performed on parameters,

the most common of which is to say a parameter is mandatory. Mandatory parame-

ters were introduced in PowerShell v2, so you still see code that sets the default of

141Parameters

a parameter to “throw.” This was the only way to make a parameter mandatory in

PowerShell v1.

 The advantage of the mandatory parameter attribute is that it prompts users for

input and even offers limited help about what the input should be. The disadvantage

is that

$x = pipeline ; test-Stuff $x ;

isn’t the same as

pipeline | test-stuff

In the former, if the pipeline outputs nothing, $x is null, and if a mandatory parame-

ter contains null or an empty array, a runtime error occurs. In the latter version, when

there is nothing to pass down the pipeline no error occurs. The parameter validation

options available let you specify that null and/or empty are allowed.

 If a parameter fails validation a runtime error is generated. Where functions are

units of a larger program—as in the systems programming world—this can provide

extra validation as values pass between different parts of a script. But when a function

is a command run by a real user it can be a user interface disaster. Consider this func-

tion, which takes a possible ID, uses a regular expression to validate it, and if it’s valid,

outputs it:

Function Test-ID {
 Param
 (
 [parameter(Mandatory=$true)]
 [ValidatePattern("^\d{3}-\d{2}-\d{4}$")]
 [String[]]
 $ID
)
 process {$ID}
}

Let’s see what happens when the user enters the ID using an incorrect format:

C:\ps > Test-ID 123456789
Test-ID : Cannot validate argument on parameter 'ID'.
The argument "123456789" does not match the "^\d{3}-\d{2}-\d{4}$" pattern.
Supply an argument that matches "^\d{3}-\d{2}-\d{4}$" and try the command

again.

Users are told to make their input match "^\d{3}-\d{2}-\d{4}$" and try again.

Really? Even experienced PowerShell users need a few moments to decode a regular

expression. An alternative way to write the function is to provide users with informa-

tive feedback:

Function Test-ID {
 Param
 (
 [parameter(Mandatory=$true)]
 [String[]]

142 CHAPTER 9 The 10 PowerShell scripting commandments

 $ID
)
 process {
 If ($id -notmatch"^\d{3}-\d{2}-\d{4}$")
 {Write-Warning "ID Needs to be a US Social Security"+
 "Number in the form 123-45-6789"
 return }
 else { $ID}
 }
}

This second version isn’t ideal, though. The function should attempt to convert dig-

its with missing or incorrect separators into a correctly formatted string. Forcing

users to change their input to save you work isn’t a good use of validation. In this

case I’d test for any number of nonalphanumeric characters, including 0, inserted

between the digits:

If ($id -notmatch"^\d{3}\W*\d{2}\W*\d{4}\W*$")

This identifies bad input where digits are grouped with the separators in the wrong

places, sequences that include letters, or sequences with too many or too few digits.

But if users enter a space or no separator at all it doesn’t make their input invalid.

 This next regular expression then converts the ID to the desired format:

$id = $id -replace "^(\d{3})\W*(\d{2})\W*(\d{4})\W*$" ,'$1-$2-$3'

This is a variation on the theme that users shouldn’t need to know what’s inside your

function to use it, and you should go out of your way to save users from learning any

new syntax to use your work. Replacing “*” with “%” to get expected wildcard behavior

was an example of this, but there are plenty of other cases in which user interface

design should go the extra mile to help the user.

Example: finding duplicate files
Listing 2 comes from an Internet posting. The code looks at music files and checks

for duplicate files based on finding the MD5 hash for the files and grouping them.

Although the code works—otherwise it wouldn’t have made it to the Internet—the

initial version, shown here, includes none of the best practices I’ve advocated in

this chapter.

function Get-MD5(
 [System.IO.FileInfo]$file = $(Throw 'Usage: Get-MD5

[System.IO.FileInfo]')
)
{
 $stream = $null;
 $cryptoServiceProvider =

[System.Security.Cryptography.MD5CryptoServiceProvider];
 $hashAlgorithm = new-object $cryptoServiceProvider

Listing 2 The initial code for finding duplicates

143Example: finding duplicate files

 $stream = $file.OpenRead();
 $hashByteArray = $hashAlgorithm.ComputeHash($stream);
 $stream.Close();
 return [string]$hashByteArray;
}

filter AttachMD5
{
 $md5hash = Get-MD5 $_;
 return ($_ | AddNote MD5 $md5Hash);
}
filter AddNote([string] $name, $value)
{
$mshObj = [System.Management.Automation.psObject] $_;
$note = new-object System.Management.AUtomation.psNoteProperty $name, $value
$mshObj.psObject.Members.Add($note);
return $mshObj
}

Get-ChildItem i:\music*.* |
 where { $_ -is [System.IO.FileInfo] } |
 AttachMD5 |
 group-object Length,MD5

I’ll mention several nitpicks at the outset: the C/C#/Java style of using semicolons at

the end of lines, the use of return, and the absence of param blocks and [Cmdlet-

Binding()]. Also the filter doesn’t have a standard name, and it could be a func-

tion instead.

 Thinking back to my design rules, ask yourself, “What is the script trying to do?”

It’s trying to add an MD5 hash to an item. Therefore, it should be one function named

Add-MD5, not a filter that uses one function to get the hash, and a second function to

add the hash as a note property. The hash is currently in the form of an array of

bytes, but a single hex-formatted string is a better choice. Let’s pare down Get-MD5,

AttachMD5, and AddNote to one Add-MD5 function:

Function Add-MD5(
[System.IO.FileInfo] $file = $(Throw 'Usage: Add-MD5 [System.IO.FileInfo]')
)
{
 $hashAlgorithm = new-object
 ➥ System.Security.Cryptography.MD5CryptoServiceProvider
 $stream = $file.OpenRead()
 $hashalgorithm.ComputeHash($stream)|
 foreach -begin {$h=""} -process {$h+=$_.tostring("x2")}
 $stream.Close()
 $file | add-member -Force -PassThru -MemberType noteproperty `
 -Name "MD5" -Value $h
}

This version doesn’t support piping, but changing the body to a process{} block and

changing the parameter declaration solves this. Also, because the variable $hash-

Algorithm is reused, let’s put it in a begin{} block:

144 CHAPTER 9 The 10 PowerShell scripting commandments

Function Add-MD5 {
Param ([parameter(ValueFromPipeLine= $true, mandatory=$true)]
 [System.IO.FileInfo]$file
)
Begin { $hashAlgorithm = `
 new-object System.Security.Cryptography.MD5CryptoServiceProvider

}
Process { $stream = $file.OpenRead()
...

This is a good step forward, but the $file parameter should be $path to be consistent

with PowerShell naming conventions. Also the specification of the type requires the

user to get file objects; if anything else is passed strange results may be returned.

 Let’s improve the function in listing 3 so that it can accept a string and convert it to

one or more files. It can handle an array (either passed as a parameter or resulting

from converting a string) by calling itself recursively, and it can process a single file

object. If it receives anything else—for example, a directory object—it can ignore it.

Function Add-MD5 {
Param ([parameter(ValueFromPipeLine= $true)]$Path)
Begin {$hashAlgorithm = new-object
 ➥ System.Security.Cryptography.MD5CryptoServiceProvider }
Process { If (($Path –is [string]) –and (test-path $file))
 {$Path = get-item –path $file}
 If (($Path –is [array])
 {$Path | Add-MD5 }
 If ($Path –is [System.IO.FileInfo])
 {
 $stream = $Path.OpenRead()
 $hashalgorithm.ComputeHash($stream)|
 foreach -begin {$h=""} -process {$h+=$_.tostring("x2")}
 $stream.Close()
 $Path |
 add-member -Force -PassThru -MemberType noteproperty `
 -Name "MD5" -Value $h
 }
. }
}

Now the function works if it’s called with

PS> Dir –recurse | Add-MD5
PS> Add-MD5 *.PS1

and so on. Filtering out the directories with a recursive dir or Get-ChildItem

isn’t necessary.

Extra tricks for file parameters
As is, the Add-MD5 function works well for passing object or name-of-object for most

objects. But when the objects in question are expected to be files you can optimize the

code even more.

Listing 3 The refactored code for getting duplicates

145Extra tricks for file parameters

Convert to paths

If you convert fileInfo or pathinfo objects to strings the results contain the path of

the object. Although this doesn’t work for all objects (fileSecurity objects, for exam-

ple), declaring $path as a string array and converting objects gives one or more

strings, which can then be converted to file objects:

Param (
 [String[]]
 $Path = "*"
)
Begin {
 $hashAlgorithm =
 ➥ new-object System.Security.Cryptography.MD5CryptoServiceProvider
 }
Process { $files = (Get-Item $path -ErrorAction SilentlyContinue |
 Where-Object {$_ -is [System.IO.FileInfo] })
 if ($files) {
 foreach ($f in $files) {
 $stream = $f.OpenRead()
 .
 .
 . etc
 }
 }
 else{ Write-Warning "$path didn't yield any valid files"}
 }

As a result, $files contains the specified file(s), whether what was passed is a string

containing a file name or a wildcard, a single file object, an array of file objects, or

nothing at all (in which case it contains all files in the current directory). Anything

that comes back that isn’t a file (a directory, or a path pointing to somewhere that isn’t

in the file system) is filtered out. If the result is no files a warning is printed; otherwise

the function gets the result for each file.

 We could extend the function by using Get-ChildItem instead of Get-Item and by

adding support parameters such as –recurse and -include.

Use a path property if it exists

File-related .NET objects have a .Path property (and PowerShell adds a .PSPath prop-

erty to some). By specifying the parameter as

[parameter(ValueFromPipeLineByPropertyName = $true,
 ValueFromPipeLine = $true)]
[String[]]
$Path

the $Path parameter is the piped object’s path (if it has one) or the object as a string (if it

doesn’t have a path property). This can be extended by using known aliases for the path:

[parameter(ValueFromPipeLineByPropertyName = $true,
 ValueFromPipeLine = $true)]

146 CHAPTER 9 The 10 PowerShell scripting commandments

[Alias('Fullname','Filename','PSPath')]
[String[]]
$Path = "*"

If the object has properties with any of these names (or if the function is written with

-FileName instead of –Path), $Path will contain the path to the item.

Pipe the same item into multiple parameters

There’s no reason for a piped object to provide the value for only one parameter.

Defining a second parameter to go with the one already defined ensures that the

object is captured:

[parameter(valueFromPipeLine = $true)]
$InputObject

In the body of the function it’s possible to write the following:

if (-not $inputObject.path) {$inputObject = $f}
Add-Member -PassThru -Force -InputObject $InputObject -MemberType
 ➥ NoteProperty -Name "MD5" -Value $h

If the pipeline supplies an input object and the object has a path (it isn’t a string, for

example), that object is returned with the hash added; otherwise the file object is

returned with the hash.

 The entire optimized function is shown in the next listing.

Function Add-MD5 {
Param ([Parameter(ValueFromPipeLineByPropertyName = $true,
 ValueFromPipeLine = $true)]
 [Alias('Fullname','Filename','PSPath')]
 [String[]]
 $Path = "*" ,
 [parameter(valueFromPipeLine = $true)]
 $InputObject
)
Begin { $hashAlgorithm = `New-Object
 ➥ System.Security.Cryptography.MD5CryptoServiceProvider}
Process { $files = (Get-Item $path -ErrorAction SilentlyContinue |
 Where-Object {$_ -is [System.IO.FileInfo] })
 if ($files) {
 foreach ($f in $files) {
 $stream = $f.OpenRead()
 $hashalgorithm.ComputeHash($stream)|
 foreach -begin {$h=""} –process
 ➥ {$h+=$_.tostring("x2")}
 if (-not $inputObject.path) {$inputObject = $f}
 Add-Member -InputObject $InputObject -Name "MD5" `
 -MemberType NoteProperty -PassThru `
 -Value $h
 }
 }

Listing 4 The finished code for getting duplicates

147Write code for another person to read

 Else { Write-Warning "$path didn't yield any valid files"}
 }
}

The improved function now supports being called with the following:

■ A single, unique file name

Add-MD5 '.\100 Meter Event.txt'

■ Multiple file names and/or names that use wild cards

Add-MD5 '*.txt',*.ps1

■ File objects as a parameter

$psfiles = get-item *.ps1 ; Add-MD5 $psfiles

■ File objects via the pipeline

DIR -Recurse -Include *.TXT | Add-MD5

■ Other objects with a file property via the pipeline

Select-String -Pattern "hash" -Path *.ps1 -List | Add-MD5

■ File names via the pipeline

Type FileList.txt | Add-MD5

Write code for another person to read
Don’t try to imagine what everyone else in the world might want. Instead, imagine

yourself a few months from now, working late, up against a deadline, trying to use the

function you’re writing now. What will your future self thank you for doing, or curse

you for not doing?

 If you already use comment-based help to describe what the function does and to

list all the different ways it can be called the next step is to use Write-Verbose for

progress messages. These messages are a useful hybrid of debugging information,

which can be turned on at will but also serve as comments when you read the code. As

for other comments, unless the code is difficult to read don’t bother to explain what

it’s doing, but do explain why.

 In scripts I try to avoid PowerShell “golf” in which the smallest number of

[key]strokes wins. Generally if it’s easier to see what the script is doing with a name or

parameter written out in full, it goes in, but I find that some additions don’t add clar-

ity. For example, which version of the following code is clearer?

get-item -Path "*.txt" | where-object -FilterScript {$_.length -gt 1024} |
 ➥ foreach-object -Process {$_.name}

or

get-item "*.txt" | where {$_.length -gt 1024} | foreach {$_.name}

I think the second is easier to read, but it’s at odds with a general guideline of avoid-

ing the use of aliases in scripts. Whether to allow yourself any aliases at all is a valid

148 CHAPTER 9 The 10 PowerShell scripting commandments

question to ask. Generally if the alias is either the verb or noun part of the full name

(Where, Sort, ForEach), I think it’s OK. The following is too terse:

ls "*.txt" | ? {$_.length -gt 1024} | % {$_.name}

But at least ls, ?,and % are things I use at the command line. If I encounter SLS in a

script I need to check what it’s an alias for (Select-String), which cancels out the

savings in typing time.

 How you choose to lay out and indent code is a personal choice. The style prefer-

ences that worked well for poring over printed listings on 80-column wide fanfold

paper don’t work as well for today’s wide-but-not-tall monitors. There’s a compromise

to be made between excessively long lines that extend off the side of the screen (the

eye doesn’t like reading long lines, which is why newspapers uses multicolumn lay-

outs) and splitting lines so many times that the reader must scroll up and down. Per-

sonally, I vary my formatting style to make code easier to read. For example, if the

condition, collection, and action are all short I might write the following:

If (Condition) {ForEach ($item in $Collection) {act-on $f}}

If they’re long I might write this instead:

If ($conditionA -or $conditionB -and $conditionC -or $conditionD)
 {
 foreach ($f in (Something -long -complicated $files))
 {
 action1
 action2
 action3 $f | action4
 }
 }

Trying to write rules that dictate when to combine as one line and when to break as

two is difficult. Tasks that involve a single pipeline with many steps can be easier to fol-

low if written in shorter pieces that use variables to hold intermediate values. At the

other extreme are people who feel they can use variables only as parameters, never lit-

eral values, so they’d never write the following:

"A circle, radius 2 has a circumference of 12.566"

Instead, they’d write this:

[double]$pi = 3.1415
[double]$radius = 2
[double]$diameter = $radius * 2
[double]$circ = $pi * $diameter
$Template = "A circle radius {0} has circumference of {1:f3}"
$OutText = $Template –f $radius, $circ
Write-output –inputObject $outText

The easy-to-follow code lies somewhere in the middle.

149Summary

Summary
This chapter opened with 10 statements about what you should and should not do.

Perhaps the golden rule is to remember that PowerShell functions don’t exist in a vac-

uum. When you write functions they should resemble cmdlets and functions that

other people have implemented. Use established naming conventions. Provide help,

debugging, and feedback that you can implement without excessive overhead. Most

importantly, PowerShell commands are flexible enough with their inputs and outputs

that you can and should chain them together in pipelines. If your function works in

the middle of a long pipeline then you’re getting it right.

About the author

James O’Neill was born in 1965 and insists that he is still alive. He

used his first Microsoft product at the age of 13 and has scarcely

stopped since. From the year 2000, he served 10 years at Microsoft

where he became evangelical about PowerShell and was best

known for adding PowerShell support to the first releases of

Hyper-V. He lives near Oxford, England with his wife and two chil-

dren and occasionally manages to find time for photography and

teaching people to scuba dive. He has a worrying tendency to

write about himself in the third person.

150

Avoiding the pipeline

 Jeff Wouters

Whether you’re new to PowerShell or you’re at a more advanced level, I encourage

you to always consider performance and execution time when you write a script.

 One of the most powerful features of PowerShell is its ability to use the pipeline.

Finding objects, filtering them to return the ones you want, and performing an

action on those objects is easy to do with pipelined expressions, which I refer to as the

pipeline. Every step is one pipe in the pipeline. In general, the fewer pipes you use,

the shorter the execution time and the fewer resources that are used.

 Although creating one-liners is easy to learn and understand, following best

practices yields the best performance. If you don’t implement best practices your

script may still work, but you’ll experience negative performance and/or long exe-

cution times.

 When writing scripts I always keep this goal in mind: to complete the task at

hand in the most efficient way.

 In this chapter I’ll show you how to combine parameters so that you won’t have

long commands in which objects are piped from one cmdlet to another. This

approach improves performance, decreases the execution times of your scripts,

and generally reduces the amount of code you write.

Requirements
The only requirement for this chapter is the ability to execute PowerShell code.

You have a few ways to accomplish this:

■ On a PowerShell prompt.
■ Through a scripting editor. (Ensure that it supports PowerShell, allows for

code execution to test your code, and includes the ability to view the output

of your code.)
■ Execute scripts manually.

To measure the execution time for each command I provide in this chapter I use

the Measure-Command cmdlet, like this:

10

151Rules of engagement

PS D:\> Measure-Command {
 ➥ Get-WmiObject -Class win32_bios -Property manufacturer |
 ➥ Where-Object {$_.Manufacturer -eq "Hewlett-Packard"}}

Days : 0
Hours : 0
Minutes : 0
Seconds : 0
Milliseconds : 131
Ticks : 1315776
TotalDays : 1,52288888888889E-06
TotalHours : 3,65493333333333E-05
TotalMinutes : 0,00219296
TotalSeconds : 0,1315776
TotalMilliseconds : 131,5776

Execution times are based on my environment. These numbers are indicative and not

definitive. Their purpose is to illustrate the benefits of the alternative scripting tech-

niques I’ll show you. Results may vary based on your system.

 To make these numbers more reliable measure the execution time multiple times

and then calculate the average. The numbers won’t change much, though.

Rules of engagement

When I started to use PowerShell I was introduced to the pipeline first. When I saw

how easy it was I began to pipe everything together, never noticing execution times or

performance impact. Over the last few years the best practices I’ve learned have

enabled me to run scripts in a fraction of the execution time of my previous scripts.

 For example, consider a script I wrote that provisions 1,500 user objects in Active

Directory. The script uses a CSV file, in which 25 or more properties are defined per

user, to assign users to the appropriate groups. Previously, this script took about 12

minutes to execute, and now it takes somewhere between 55 and 60 seconds. Times

vary depending on your Active Directory server(s), but you get the idea.

 Before I introduce the pipeline best practices let’s take a look at the pipeline itself.

A pipeline uses a technique called piping to pass objects from one command to the

next. One way of piping is as follows (in order): get all processes, filter based on the

process name, and then stop the process. For example,

Get-Process | Where-Object {$_.Name –eq "notepad"} | Stop-Process

Execution time: 61 milliseconds

All objects (in this case processes) are received by the Get-Process cmdlet. Those

objects are piped to the Where-Object cmdlet where the objects are filtered based on

their name. Only processes with the name “notepad” are piped to the Stop-Process,

which in turn stops the processes. Let’s look at what can happen when your script

returns large amounts of data and how you can address the consequences.

152 CHAPTER 10 Avoiding the pipeline

Filtering objects sooner
You may encounter situations in which your code must handle large numbers of objects.

In these cases filtering that list of objects is imperative to gain the best performance.

 Let’s revise the notepad example so that it filters the objects sooner. The Get-

Process cmdlet has a –Name parameter that allows you to filter based on the name

property and eliminates the need to use the Where-Object cmdlet:

Get-Process –Name notepad | Stop-Process

Execution time: 49 milliseconds

The Get-Process cmdlet now receives and filters all processes. Only then are they

piped to the Stop-Process cmdlet. Filtering on object properties instead of using the

Where-Object cmdlet significantly reduces the number of objects (processes) passed

from the first to the second pipe. It also shortens the pipeline. This allows for shorter

execution times and less resource utilization.

 Let’s take a deeper look at this technique.

Filtering by property

Suppose you need to get all files with the .docx or .txt extension and with “Power-

Shell” in their names. You could use the Where-Object cmdlet in the pipeline:

PS D:\> Get-ChildItem -Recurse | Where-Object {
 ➥ (($_.Extension -eq ".docx") –or ($_.Extension –eq ".txt")) –and
 ➥ ($_.Name –like "*PowerShell*")}

 Directory: D:\

Mode LastWriteTime Length Name
---- ------------- ------ ----
-a--- 12-9-2012 10:36 510229 PowerShell ft Hyper-V.docx
-a--- 12-9-2012 10:36 8233 PowerShell ft Hyper-V Notes.txt
-a--- 2-9-2012 16:24 433672 PowerShell Deep Dives.docx
-a--- 2-9-2012 16:24 1285 PowerShell Deep Dives Notes.txt
-a--- 21-6-2012 00:52 306913 Practical PowerShell.docx
-a--- 21-6-2012 00:52 9835 Practical PowerShell Notes.txt

Execution time: 162 milliseconds

This script uses a pipelined expression, but if you use the Get-ChildItem cmdlet’s

parameters instead the script will run more efficiently.

 The Get-ChildItem cmdlet provides -Include and -Filter parameters. Let’s use

those instead of the pipeline:

PS D:\> Get-ChildItem -Recurse –Include *.docx, *.txt –Filter *PowerShell*

 Directory: D:\

Mode LastWriteTime Length Name
---- ------------- ------ ----
-a--- 12-9-2012 10:36 510229 PowerShell ft Hyper-V.docx
-a--- 12-9-2012 10:36 8233 PowerShell ft Hyper-V Notes.txt
-a--- 2-9-2012 16:24 433672 PowerShell ft Windows.docx

153Filtering objects sooner

-a--- 2-9-2012 16:24 1285 PowerShell ft Windows Notes.txt
-a--- 21-6-2012 00:52 306913 Practical PowerShell.docx
-a--- 21-6-2012 00:52 9835 Practical PowerShell Notes.txt

Execution time: 82 milliseconds

As you can see, it’s possible to get the same output without using the pipeline.

 In PowerShell v3 the Get-ChildItem cmdlet also provides –File and –Directory

parameters which allow you to filter for only files or directories. If you’re looking for

files only, using the –File parameter decreases the execution time of the command

because directories are skipped entirely.

 This is why I always find it useful to know what parameters are offered, and if I

don’t know, the Get-Help cmdlet saves the day.

Filtering by condition

Cmdlets that have parameters that can do the object filtering for you avoid the pipe-

line altogether. Let’s look at an example of how you could filter a list of objects based

on a condition. We’ll use the pipeline first and then I’ll show you an alternative. The

following script filters objects based on the value of the Manufacturer property:

PS D:\> Get-WmiObject -Class win32_bios -Property manufacturer |
 ➥ Where-Object {$_.Manufacturer –eq "Hewlett-Packard"}

__GENUS : 2
__CLASS : Win32_BIOS
__SUPERCLASS :
__DYNASTY :
__RELPATH :
__PROPERTY_COUNT : 1
__DERIVATION : {}
__SERVER :
__NAMESPACE :
__PATH :
Manufacturer : Hewlett-Packard
PSComputerName :

Execution time: 82 milliseconds

The more efficient way of doing this is to use the -Query parameter of the Get-

WmiObject cmdlet. You can use this parameter to search for the object and show it

based on a condition set on the value of the Manufacturer property:

PS D:\> Get-WMIObject -Query "SELECT Manufacturer FROM Win32_BIOS WHERE
 ➥ Manufacturer='Hewlett-Packard'"

__GENUS : 2
__CLASS : Win32_BIOS
__SUPERCLASS :
__DYNASTY :
__RELPATH :
__PROPERTY_COUNT : 1

154 CHAPTER 10 Avoiding the pipeline

__DERIVATION : {}
__SERVER :
__NAMESPACE :
__PATH :
Manufacturer : Hewlett-Packard
PSComputerName :

Execution time: 27 milliseconds

Filtering this way is faster and uses fewer resources. To round out this section let’s look

at how you can conserve resources when filtering many objects.

Returning only the properties that you need

When you’re done filtering objects you still have all of the properties attached to

them. This information consumes resources that you may not even need and can slow

your script and/or system down. To clean this up the Select-Object cmdlet and the

pipeline come into play:

PS D:\> Get-ChildItem -Recurse –Include *.docx, *.txt –Filter *PowerShell*|
 ➥ Select-Object LastWriteTime, Name

 Directory: D:\

 LastWriteTime Name
 ------------- ----
12-9-2012 10:36 PowerShell ft Hyper-V.docx
12-9-2012 10:36 PowerShell ft Hyper-V Notes.txt
2-9-2012 16:24 PowerShell ft Windows.docx
2-9-2012 16:24 PowerShell ft Windows Notes.txt
21-6-2012 00:52 Practical PowerShell.docx
21-6-2012 00:52 Practical PowerShell Notes.txt
...

There isn’t another way to filter the objects and return only the ones you want.

Select-Object is the way to go here.

NOTE The only reason I’m piping to Select-Object here is to make the output
appropriate for a book format (due to its width).

Providers and filtering parameters

Filtering with parameters instead of piping to Where-Object can have an impact, as

I’ve shown. Let’s go one step further and look at a type of parameter that’s more pow-

erful than others. Filtering parameters, as they’re called, work with PowerShell system

providers. To understand how filtering parameters work you need to know something

about the providers.

 PowerShell providers are part of the Microsoft.PowerShell.Core module, and fil-

tering parameters let these providers do the work for them. Providers let you access a

variety of data stores as though they were file system drives, and they show you these

stores the same way a drive is shown. These providers offer power, short execution

155Providers and filtering parameters

times, and low overhead on your system. To find out which providers offer filtering

capabilities use the Get-PSProvider cmdlet:

PS D:\> Get-PSProvider | Select-Object -Property *

ImplementingType : Microsoft.PowerShell.Commands.FileSystemProvider
HelpFile : System.Management.Automation.dll-Help.xml
Name : FileSystem
PSSnapIn : Microsoft.PowerShell.Core
ModuleName : Microsoft.PowerShell.Core
Module :
Description :
Capabilities : Filter, ShouldProcess, Credentials
Home : C:\Users\Administrator
Drives : {C, D, F}
...

The Capabilities property indicates that the file system provider offers filtering

capabilities.

 Cmdlets that are designed to work with providers have one of the following nouns:

■ ChildItem
■ Content
■ Item
■ ItemProperty
■ Location
■ Path
■ PSDrive
■ PSProvider

When you use the Get-ChildItem cmdlet PowerShell asks the file system for all of the

objects, receives them from the file system, and does the filtering itself. This is when a

filtering parameter comes in handy.

 The Get-ChildItem cmdlet has an –Include parameter which tells PowerShell to

ask the file system for the objects that comply with the given filter. The file system

therefore does the filtering before giving the requested objects to PowerShell. Power-

Shell doesn’t do any filtering and the number of objects/data transferred between

PowerShell and the provider (and by extension the system) is kept to a minimum.

 Also, the file system provider is more low-level in the system architecture than

PowerShell. Because the filtering is accomplished on a level “closer” to the actual data

it causes less overhead.

What’s in a name?

Here we get to a nice gotcha. You may presume that every cmdlet that offers, for

example, a -Query parameter automatically uses a provider, but this isn’t the case. For

example, the Get-WMIObject and Get-ChildItem cmdlets both have a –Filter param-

eter, but only one uses a provider.

156 CHAPTER 10 Avoiding the pipeline

 The Get-ChildItem cmdlet has a noun from the list you saw previously, which indi-

cates that this cmdlet uses a provider, specifically the file system provider. The Get-

WMIObject cmdlet doesn’t have a noun from the list. When you think about it, is there

any provider for WMI? No, there isn’t. To check, run the Get-PSProvider command.

Where-Object isn’t bad

I used the Where-Object cmdlet to show you a few examples of how you can avoid the

pipeline. But don’t get me wrong; the point is that when you don’t need to use

the pipeline, don’t. When you do need to use the pipeline, Where-Object has its place.

 This powerful cmdlet allows you to filter based on several statements at once. Sup-

pose you need to find all files with “PowerShell” in the name, that are between 1 and

4 MB, and that have the .docx extension. You also want to find all files with “Hyper-V”

in the name that are between 1 and 4 MB and have either the .doc or .docx extension.

Use the pipeline and the Where-Object cmdlet to do this:

PS D:\> Get-ChildItem -Recurse -File |
 ➥ Where-Object {(($_.Name -like "*PowerShell*") -and ($_.Extension -eq
 ➥ ".docx")) -or (($_.Name -like "*Hyper-V*") -and (($_.Extension -eq
 ➥ ".doc") -or ($_.Extension -eq ".docx"))) -and (($_.Length -gt 1MB) -and
 ➥ ($_.Length -lt 4MB))}

 Directory: D:\

 LastWriteTime Name
 ------------- ----
21-6-2012 00:52 Practical PowerShell.docx
12-7-2012 18:32 PowerShell ft Hyper-V.docx
16-7-2012 12:16 Hyper-V Beyond.doc
2-9-2012 16:24 Hyper-V Design - Standard.docx

Execution time: 180 milliseconds

In this example you need to use Where-Object and the pipeline because parameters

alone don’t meet the requirements.

Using regular expressions
You can use regular expressions (regex) in multiple ways. In this section I’ll show you

one example to give you an idea of the impact regex can have.

 Let’s say that you need to get all files with “PowerShell” or “Hyper-V” in the name

and that have the .docx or .txt extension. You can use pattern matching to find the files:

PS D:\> Get-ChildItem –Recurse -File |
 ➥ Where-Object {(($_.Name -match '.*PowerShell.*\.(docx|DOCX)\b') –or
 ➥ ($_.Name -match '.*Hyper-V.*\.(doc|DOC|docx|DOCX)\b')) -and (($_.Length
 ➥ -gt 1MB) -and ($_.Length -lt 4MB))}

 Directory: D:\

 LastWriteTime Name
 ------------- ----
21-6-2012 00:52 Practical PowerShell.docx

157Using member enumeration

12-7-2012 18:32 PowerShell ft Hyper-V.docx
16-7-2012 12:16 Hyper-V Beyond.doc
2-9-2012 16:24 Hyper-V Design - Standard.docx

Execution time: 298 milliseconds

The execution time is longer, but it’s easier to use pattern matching (in this case by

using regex) because you can apply this pattern to objects. Matching a pattern offers

much more flexibility than a “hard-coded” compare.

 I’m using regex for pattern matching only, but you can do much more with it. For

example, you could replace text that fits a pattern, split strings, and so on. To give you

an idea of all the possibilities, think of regex as wildcards on steroids.

Using member enumeration

In previous versions of PowerShell the only way to perform a task on multiple objects

with a one-liner was to use the ForEach-Object cmdlet in the pipeline.

 For example, in PowerShell v2 if you wanted to get a single property for a group of

objects, say the name of the objects, some code such as this was needed:

PS C:\> Get-Process | Select-Object -Property Name

Name

armsvc
conhost
csrss
csrss
dasHost
dwm
explorer
...

You needed to use the pipeline to give the group of objects to the next pipe, in this

case, a pipe in which the Select-Object cmdlet is used to filter the properties to a sin-

gle one: the name of the objects.

 Now let me introduce you to the ultimate avoid-the-pipeline feature brought to

you by PowerShell v3: member enumeration. To use this feature you place in paren-

theses anything that would’ve previously come in the pipeline before the Foreach-

Object and/or Select-Object pipe. This syntax isn’t new to PowerShell v3. What’s

new here is how it handles the fact that it doesn’t know if it’s a single object or an

entire array of objects.

 Before member enumeration you had to do some fancy tricks to handle this.

PowerShell now does it for you under the hood. Member enumeration also enumer-

ates, among other things, all possible properties and methods for these objects, which

you can use.

158 CHAPTER 10 Avoiding the pipeline

Member enumeration and properties

You can use member enumeration to get all the values of a single property on one or a

bunch of objects, like so:

PS C:\> (Get-Process).Name

Name

armsvc
conhost
csrss
csrss
dasHost
dwm
explorer
...

Note that member enumeration works only with a single property. To select multiple

properties use the Select-Object cmdlet in the pipeline.

 I didn’t provide the execution time of this script because it can be misleading. In

this example I’m getting the names of the processes, and using member enumeration

takes more time than using the pipeline.

 The gotcha with member enumeration is that the more objects you handle, the

faster it gets relative to using the pipeline. For example, on a disk with many files and

directories, time the execution of the following two commands:

Get-ChildItem –Recurse | Select-Object –Property Name
(Get-ChildItem).Name

You’ll find that member enumeration yields the shorter time.

 Let’s look at another example of member enumeration. This time we’ll use it with

a method instead of a property.

Member enumeration and methods

Suppose you need to close all applications named “App1” on all devices in your envi-

ronment. You could use the CloseMainWindow() method attached to the process

objects in a one-liner:

PS C:\> Get-Process -Name App1 | ForEach-Object { $_.CloseMainWindow() }
True

Just as you can use member enumeration with properties, the same syntax works with

methods, and that’s how you avoid the pipeline:

PS C:\> (Get-Process -Name App1).CloseMainWindow()
True

Counting objects

All methods that are available on variables that hold objects are also available with

member enumeration. Again, let’s take a practical example.

159Summary

 To count objects in previous versions of PowerShell you have to use the Measure-

Object cmdlet:

PS C:\> Get-Process | Measure-Object

Count : 52
Average :
Sum :
Maximum :
Minimum :
Property :

If you only need to know the number of objects, not the name of objects and such,

this script gives you more than you need, so you have to select only what you want:

PS C:\> Get-Process | Measure-Object | Select-Object –ExpandProperty Count
52

This is complex code relative to the information it returns. With member enumera-

tion you can count in a far easier way:

PS C:\> (Get-Process).Count
52

Instead of Count you can also use Length; if the object(s) doesn’t have such a property

it returns 1 (or 0 for $Null).

 It doesn’t matter if you handle one or a thousand objects; under the hood, Power-

Shell does the filtering and replaces what the Foreach-Object cmdlet was doing. In

fact, the ForEach-Object cmdlet isn’t used at all—it’s all native PowerShell!

NOTE In PowerShell v2 this syntax to get the count of objects works only when
you have multiple objects. In the case of a single object it gives no value
back. In PowerShell v3 using member enumeration returns the correct
value for both single and multiple objects.

Summary
You’ve seen how easy it is to avoid the pipeline—when you don’t need it. The when-you-

don’t-need-it part is important here. Piping itself is one of the best and most powerful

features of PowerShell.

 Although this chapter’s title suggests avoiding the pipeline, my goal was to show

you how to use the commands, parameters, and pipeline in the most efficient way. In

some of the examples efficiency removed the need to use the pipeline. So, in fact,

does following the PowerShell best practices and filtering on the left.

 I’ve shown you how to combine parameters instead of piping, but there are use

cases in which it’s prudent to use the pipeline because parameters may not offer the

desired functionality. But I’ve also shown that filtering parameters offer better perfor-

mance. So when you filter on the left, use the most efficient parameter.

 Learning how to best-use the power of the shell results in performance and

execution-time improvements. Remember the goal when writing your scripts: to com-

plete the task at hand in the most efficient way.

160 CHAPTER 10 Avoiding the pipeline

About the author

Jeff Wouters is a freelance technical consultant with a focus on

high availability, delivery, and deployment of applications/desk-

tops/servers using Microsoft and Citrix products. He designs and

implements solutions based on technologies such as virtualiza-

tion, redundancy, clustering, replication, and automation. He also

has a great passion for PowerShell and uses it to automate tasks

and reports on the job.

 Jeff is a PowerShell MVP and has been a speaker at IT events,

such as E2E Virtualization Conference, BriForum Chicago, and

Microsoft TechDays. He is also the founding member of the Dutch PowerShell User

Group. You can find Jeff on social media by searching for his name; he blogs at

http://www.jeffwouters.nl (mainly about PowerShell but also about anything that

piques his interest).

http://www.jeffwouters.nl

161

A template for handling and
reporting errors

 Will Steele

Writing programs that work when everything goes as expected is a

good start. Making your programs behave properly when encountering

unexpected conditions is where it really gets challenging.

—Marijn Haverbeke
Eloquent JavaScript: A Modern Introduction to Programming

Efficient, predictable error handling has been at the core of PowerShell’s design

since its earliest days and has allowed scripters to design robust automation solu-

tions with minimal effort. In small scripts a balanced combination of common

parameters, the use of Write-Error, or perhaps Write-Warning, and some well-

placed if/then statements generally prove to be enough for most scripter’s daily

automation problems. As the size and complexity of my scripts have grown, though,

so, too, has my need for a hands-off integration of error handling. With these

larger scripts my focus on problem management has dwindled relative to how

much the amount of time and energy spent on properly automating the task has

increased. In this chapter we’ll explore an approach I developed to automatically

and precisely report errors using a reusable script template.

 Many of the concepts I used to develop this template rely on PowerShell vari-

ables and language structures. What’s unique is how these items are combined so

that anyone with a PowerShell script or Integrated Scripting Environment (ISE)

can wrap their commands in my template and end up with an error-aware script

designed not only to highlight that a problem has occurred but also exactly what,

where, and why the error happened.

 To help you understand my approach I’ll cover the following PowerShell concepts:

1 The $ErrorActionPreference variable

2 The try/catch/finally error-handling structure

11

162 CHAPTER 11 A template for handling and reporting errors

3 The $Error object

4 InvocationInfo property bag

After examining these items I’ll consolidate them into a single script template to illus-

trate their practical application.

Using preference variables: $ErrorActionPreference
Preference variables are a set of built-in PowerShell variables that allow you to custom-

ize the shell’s behavior. You use the $ErrorActionPreference variable to control how

PowerShell responds to a nonterminating error at the command line or in a script,

cmdlet, or provider. Nonterminating errors, such as those generated by the Write-

Error cmdlet, don’t stop the cmdlet processing.

 The $ErrorActionPreference variable has four possible values:

■ Stop
■ Inquire
■ Continue (the default)
■ SilentlyContinue

Setting $ErrorActionPreference at the script level makes that action the default for

all commands inside that script. Usually, though, you want to control error actions at

the command level. In that case, use the –ErrorAction (or –EA) common parameter,

which is available for all commands and enables you to set an error action for an indi-

vidual command.

 Because only Stop errors can be trapped it’s important to set the error action to

Stop for any command that might generate an error that you can anticipate and that

you want to trap and deal with.

NOTE Setting $ErrorActionPreference to SilentlyContinue at the top of a
script is considered a poor practice. Doing so suppresses all errors except
for commands that specify a different –ErrorAction. Either handle
errors (-ErrorAction Stop) or allow them to display, but avoid suppress-
ing them.

For the remainder of this chapter I assume that you’ve identified the commands in

your script that might cause an error that you want to handle, and you’ve either set

$ErrorActionPreference="Stop" in your script (which would be unusual because

that requires you to trap every error for every command in the script), or you’ve set

-ErrorAction Stop for those commands.

 Also keep in mind that –ErrorAction and $ErrorActionPreference deal only

with nonterminating errors—errors that a command encounters that don’t cause it to

discontinue. If a command runs into something beyond which it can’t continue, it

always behaves as if –ErrorAction Stop were specified.

163Using structured error handling: try/catch/finally

Using structured error handling: try/catch/finally
PowerShell is built on top of the .NET Framework. As a result, many of the underlying

PowerShell features are adaptations and/or extensions of .NET objects and ideas. The

error-handling structures are no different. In fact, .NET offers a variety of language

constructs for dealing with errors, including trap, throw, and try/catch/finally. The

–ErrorAction common parameter deals with cmdlet-level, nonterminating errors.

When you need to deal with heavier exceptions use one of these three structures.

 In working with each construct the try/catch/finally structure has proven to be

the most robust. It places the code you want to run in the try block. When the code

executes the shell monitors for exceptions. If an exception is encountered in the try

block it’s first saved to the $Error automatic variable, and PowerShell then attempts to

match it to a trap or catch block. If none is found it passes control to the finally

block. If it can’t be handled at all it’s written to the error stream.

 One of the powerful features of .NET, and, inherently, the PowerShell catch block,

is its ability to track both general and specific types of errors. This ability gives you two

different approaches to error handling. The first approach is to let any and all errors

bubble up to the catch block. For large scripts I tend to use this approach because

I’m looking for anything that has failed along the way. The second approach is to

specify one or more exceptions that you may want to handle in the catch block. This

can come in handy if the conditions for which you want to handle errors are precise,

but in other situations you may not want to provide handling at all. In this chapter

we’ll focus on the catchall approach because you want as broad a set of exception noti-

fications raised as possible.

 To begin building the error-handling template let’s combine what we’ve covered

so far into this pattern:

$ErrorActionPreference = 'Stop'

try
{
 # Do work
}
catch
{
 $Error
}
finally
{
 # Finalize work
}

If we place commands in this pattern and cause a failure on purpose—a divide-by-zero

exception, for example—let’s see what it does:

$ErrorActionPreference = 'Stop'

try
{
 1/0

164 CHAPTER 11 A template for handling and reporting errors

}
catch
{
 $_
}
finally
{
 "Completed."
}

Running this script returns the following results:

Attempted to divide by zero.
At line:5 char:5
+ 1/0
+ ~~~
 + CategoryInfo : NotSpecified: (:) [], RuntimeException
 + FullyQualifiedErrorId : RuntimeException
Completed.

As you can see from this output, several important pieces of data are returned: the

error message, the error location (both the line and offset), the exception informa-

tion, and confirmation that it reached the last block with the “Completed” remark.

 With a few lines of boilerplate code you have a structured approach to try running

code, catching errors, and running clean-up code (in the finally block), if necessary.

This is the type of information you want from an organized, hands-off exception-

handling template.

 Now we can move to the final pieces of the puzzle: the $Error object and its

InvocationInfo properties.

Using $Error and InvocationInfo objects
As you work with PowerShell you’ll find that many processes hide the mechanics

behind how they handle things. For instance, when we ran the command 1/0 Power-

Shell returned a .NET error and placed it in the $Error object. To get a glimpse of

what the $Error object is, run the following two commands:

PS > 1/0
PS > $Error | Get-Member | Format-Table -AutoSize -Wrap

Running this pair of commands returns the following results:

 TypeName: System.Management.Automation.ErrorRecord

Name MemberType Definition
---- ---------- ----------
Equals Method bool Equals(System.Object obj)
GetHashCode Method int GetHashCode()
GetObjectData Method System.Void

GetObjectData(System.Runtime.Serialization.SerializationInfo
info,System...

GetType Method type GetType()
ToString Method string ToString()
CategoryInfo Property System.Management.Automation.ErrorC...

165Using $Error and InvocationInfo objects

ErrorDetails Property System.Management.Automation.ErrorD...
Exception Property System.Exception Exception {get;}
FullyQualifiedErrorId Property string FullyQualifiedErrorId {get;}
InvocationInfo Property System.Management.Automation.Invoca...
PipelineIterationInfo Property System.Collections.ObjectModel.Read...
ScriptStackTrace Property string ScriptStackTrace {get;}
TargetObject Property System.Object TargetObject {get;}
PSMessageDetails ScriptProperty System.Object PSMessageDetails {get...

The MSDN documentation for the ErrorRecord object (http://msdn.microsoft.com/

en-us/library/system.management.automation.errorrecord(v=vs.85)) includes a few

members worth checking out. Let’s revise the divide-by-zero script so that you can

examine the properties and see what sort of useful details you can dredge out of this

object. The following command gives you some items to look at:

$ErrorActionPreference = 'Stop'

try
{
 1/0
}
catch
{
 "CategoryInfo: $($_.CategoryInfo)"
 "ErrorDetails: $($_.ErrorDetails)"
 "Exception: $($_.Exception)"
 "FullyQualifiedErrorID: $($_.FullyQualifiedErrorID)"
 "InvocationInfo: $($_.InvocationInfo)"
 "PipelineIterationInfo: $($_.PipelineIterationInfo)"
 "ScriptStackTrace: $($_.ScriptStackTrack)"
 "TargetObject: $($_.TargetObject)"
 "PSMessageDetails: $($_.PSMessageDetails)"
}
finally
{
 "Completed."
}

Running this command returns the following results:

CategoryInfo: NotSpecified: (:) [], RuntimeException
ErrorDetails:
Exception: System.Management.Automation.RuntimeException: Attempted to
divide by zero. ---> System.DivideByZeroException: Attempted to divide by
zero.
 --- End of inner exception stack trace ---
 at

System.Management.Automation.ExceptionHandlingOps.CheckActionPreference(
Fun

ctionContext funcContext, Exception exception)at
 System.Management.Automation.Interpreter.ActionCallInstruction`2.
 Run(InterpretedFrame frame)
 at
 System.Management.Automation.Interpreter.Interpreter.HandleException
 (InterpretedFrame frame, Exception exception)

http://msdn.microsoft.com/en-us/library/system.management.automation.errorrecord(v=vs.85)
http://msdn.microsoft.com/en-us/library/system.management.automation.errorrecord(v=vs.85)

166 CHAPTER 11 A template for handling and reporting errors

 FullyQualifiedErrorID: RuntimeException
 InvocationInfo: System.Management.Automation.InvocationInfo
PipelineIterationInfo:
ScriptStackTrace:
TargetObject:
PSMessageDetails:
Completed.

Most of these details don’t tell you much, but the InvocationInfo object still has

some unpacking to do. As noted in the MSDN documentation, the InvocationInfo

object (http://msdn.microsoft.com/en-us/library/system.management.automation

.invocationinfo_members(v=vs.85).aspx) has a lengthy list of properties that you can

tap into to get explicit details about the invoked commands. In this case, the invoked

commands are passed to the pipeline object via the $Error collection. With some

experimentation you can take advantage of a variety of properties accessible through

the InvocationInfo object.

 Listing 1 is a revised version of the divide-by-zero script with a new helper function

called Get-TimeStamp and a cleared $Error object to prevent cross-contamination of

stale and new error records. It also includes details about the error’s exact nature.

Keep in mind that this listing is one example of how you could display error informa-

tion; it isn’t the only way.

function Get-TimeStamp
{
 Get-Date -Format 'yyyy-MM-dd HH:mm:ss'
}

$ErrorActionPreference = 'Stop'

try
{

 1/0
}
catch
{
Write-Warning @"
 $(Get-TimeStamp):
 $(Get-TimeStamp): $('-' * 50)
 $(Get-TimeStamp): -- SCRIPT PROCESSING CANCELLED
 $(Get-TimeStamp): $('-' * 50)
 $(Get-TimeStamp):
 $(Get-TimeStamp): Error in $($_.InvocationInfo.ScriptName).
 $(Get-TimeStamp):
 $(Get-TimeStamp): $('-' * 50)
 $(Get-TimeStamp): -- Error information
 $(Get-TimeStamp): $('-' * 50)
 $(Get-TimeStamp):
 $(Get-TimeStamp): Line Number: $($_.InvocationInfo.ScriptLineNumber)
 $(Get-TimeStamp): Offset: $($_.InvocationInfo.OffsetInLine)
 $(Get-TimeStamp): Command: $($_.InvocationInfo.MyCommand)

Listing 1 Enhanced template that gets error details

Captures formatted
time stamps

Sets preference
variableb

Throws intentional
errorc

Outputs error
notificationd

http://msdn.microsoft.com/en-us/library/system.management.automation.invocationinfo_members(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/system.management.automation.invocationinfo_members(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/system.management.automation.invocationinfo_members(v=vs.85).aspx

167Handling custom business-logic errors with throw and try

 $(Get-TimeStamp): Line: $($_.InvocationInfo.Line.Trim())
 $(Get-TimeStamp): Error Details: $($_)
 $(Get-TimeStamp):
"@
}
finally
{
 "$(Get-TimeStamp): Completed."
}

I set $ErrorActionPreference = Stop B because I’m generating an error by attempt-

ing to divide by zero c. You can’t specify an –ErrorAction for that division operation,

so setting the preference variable is my only recourse. At d, I use Write-Warning to

output the error notification. I could’ve written it to a file (perhaps by using Set-

Content or Out-File), but onscreen display is sufficient for this demonstration.

 When you rerun the script with these refinements you get a clear picture of what

went wrong:

2012-09-14 21:25:47:
2012-09-14 21:25:47: --
2012-09-14 21:25:47: -- SCRIPT PROCESSING CANCELLED
2012-09-14 21:25:47: --
2012-09-14 21:25:47:
2012-09-14 21:25:47: Error in C:\Users\owner\Desktop\Powershell\
SampleErrorHandling.ps1.
2012-09-14 21:25:47:
2012-09-14 21:25:47: --
2012-09-14 21:25:47: -- Error information
2012-09-14 21:25:47: --
2012-09-14 21:25:47:
2012-09-14 21:25:47: Line Number: 10
2012-09-14 21:25:47: Offset: 5
2012-09-14 21:25:47: Command:
2012-09-14 21:25:47: Line: 1/0
2012-09-14 21:25:47: Error Details: Attempted to divide by zero.
2012-09-14 21:25:47:
2012-09-14 21:25:47: Completed.

In a sample script like this, where the majority of the code is designed to show proof of

concept, you may not appreciate the usefulness of details like this. But when your

scripts push into the 3,500-line range you want an error-handling framework that

reports, with pinpoint precision and accuracy, what went wrong and where. If I run a

script and it spits out an error telling me that on line 1,764, offset 24 an error

occurred with a Get-WebConfiguration cmdlet call, it’s no mystery as to where I need

to look to find my problem or what I’m looking for when I get there.

Handling custom business-logic errors
with throw and try
Sometimes a business-logic need, not a PowerShell terminating error, requires a

script to stop running. From a purely syntactical, processing logic standpoint this is

a nonissue.

168 CHAPTER 11 A template for handling and reporting errors

 Consider a unique case in which you look at a directory to see if it has more than

100 files. The business logic here is that if more than 100 files are in a directory, pro-

cessing must stop and an error must be raised, thereby cancelling the script’s process-

ing. In a lower level .NET language you could write your own exceptions, but in

PowerShell you don’t need to go to the trouble of all that. Using throw gives you com-

plete control over when you choose to raise these exceptions or not.

 Let’s look at two approaches to handling self-raised exceptions. The Write-Error

cmdlet is the standard cmdlet, which breaks the flow of command and places output

on the error pipeline:

try
{
 if((Get-ChildItem -Path "C:\windows\system32").Count -gt 100)
 {
 Write-Error "File count surpassed processing limit."
 }
}

Because much of the reporting remains the same I’ll display only the key portion of

the error reporting. When this script runs I get this output from my framework:

2012-09-17 13:35:19: Error Details: File count surpassed processing limit.
2012-09-17 13:35:19: Line Number: 24
2012-09-17 13:35:19: Offset: 9
2012-09-17 13:35:19: Command: ErrorHandlingTemplate_002.ps1
2012-09-17 13:35:19: Line: Write-Error "File count surpassed

processing limit."

Alternatively you can replace the Write-Error cmdlet with the throw keyword:

try
{
 if((Get-ChildItem -Path "C:\windows\system32").Count -gt 100)
 {
 Throw "File count surpassed processing limit."
 }
}

This approach yields identical output in terms of the template, yet I’ve found that

using Write-Error sometimes fails to properly represent the source of the error if

you’re dealing with embedded modules and/or functions due to scoping issues. The

most effective and consistent results I’ve found come from using throw.

Final template
The final script template (listing 2) contains a few additional features for the sake of

completeness. The transcript cmdlets (Start-Transcript and Stop-Transcript)

are excellent single-line tools to build a logged record of everything that happened

from start to finish of a script. Note that these cmdlets typically work only in the

PowerShell console host and not in the ISE.

169Final template

function Get-TimeStamp
{
 Get-Date -Format 'yyyy-MM-dd HH:mm:ss'
}

Start-Transcript "$loggingdirectory\$($Host.Name)_
 ➥ $($Host.Version)_$(Get-TimeStamp).txt"

Set-StrictMode -Version 2.0

$ErrorActionPreference = 'Stop'

$Error.Clear();

try
{
 # Do work – Put the main body of your script here
 <#
 If specific errors are encountered, use throw to break out
 of try for non-terminating/business logic errors.

 Throw "$(Get-TimeStamp): Include custom reporting on business
logic/non-terminating errors."

 #>
}
catch
{
@"
 $(Get-TimeStamp): $('-' * 50)
 $(Get-TimeStamp): -- SCRIPT PROCESSING CANCELLED
 $(Get-TimeStamp): $('-' * 50)
 $(Get-TimeStamp):
 $(Get-TimeStamp): Error in $($_.InvocationInfo.ScriptName).
 $(Get-TimeStamp):
 $(Get-TimeStamp): $('-' * 50)
 $(Get-TimeStamp): -- Error information
 $(Get-TimeStamp): $('-' * 50)
 $(Get-TimeStamp):
 $(Get-TimeStamp): Error Details: $($_)
 $(Get-TimeStamp): Line Number: $($_.InvocationInfo.ScriptLineNumber)
 $(Get-TimeStamp): Offset: $($_.InvocationInfo.OffsetInLine)
 $(Get-TimeStamp): Command: $($_.InvocationInfo.MyCommand)
 $(Get-TimeStamp): Line: $($_.InvocationInfo.Line)
"@
}
finally
{
 Stop-Transcript
}

Clearing the error variable B ensures that any stops encountered are legitimately

raised by this try block and not another PSSession, script, or variable.

 By incorporating the following four PowerShell concepts it’s possible to build a

robust, “always-on” error-handling template that nails down with 100-percent accuracy

the problems in a script:

Listing 2 Complete error-handling template

Function to capture
formatted time stamps

Transcribes
output

Configures script

Sets preferences Clears error
variable

b

Implements
try/catch/

finally
pattern

170 CHAPTER 11 A template for handling and reporting errors

■ $ErrorActionPreference variable
■ try/catch/finally construct
■ $Error object
■ InvocationInfo property of the ErrorRecord

Summary
Although you can’t always catch every problem that may arise while running a script,

using techniques like these allows you to worry less about the problems you can’t fore-

see and focus more on the ones you can. In light of this error-handling template, even

if you don’t gracefully handle 99 percent of problems you’ll know about them with a

high degree of exactitude.

 Thinking back to the opening quote, my goal was to “(m)ak(e) programs behave

properly when encountering unexpected conditions ... where it really gets challeng-

ing.” With this template you now have at your disposal a practical, easy-to-use snippet,

which provides an embedded error-handling/reporting mechanism with a minimal

amount of code. Instead of focusing on how to handle what could go wrong, now you

can focus on making sure you nail down what you need to get right.

About the author

Will Steele was an IT professional and Windows PowerShell enthu-

siast. He helped get PowerShell.org up and running by acting as a

community liaison and building the site’s initial calendar of

user group meetings and other events. Will attended Christian

Brothers University, worked at Fiserv, blogged at http://Learning-

PCs.blogspot.com, and tweeted as @pen_test. Will passed away in

December 2012, shortly after making his contribution to this

book. He’s survived by his wife and three children and is deeply

missed by the PowerShell community.

http://LearningPCs.blogspot.com
http://LearningPCs.blogspot.com

171

Tips and tricks for creating
complex or advanced HTML
reports with PowerShell

 Jonathan Medd

One of PowerShell’s most common uses is to collect data and then generate reports

from that data, which makes it an excellent tool. PowerShell can export data for

reporting purposes to a number of different formats, including CSV, XML, and

HTML. But typically you can only export the data in a raw form, and you’ll have to

use other tools to make the report look pretty.

 In this chapter I’ll show you ways to improve the quality of an HTML-based

report using PowerShell tips and tricks, without needing to depend on other tools.

By means of a Systems Inventory report example you’ll see what you can achieve

with a small amount of extra knowledge.

 To create the Systems Inventory report I’ll use some standard PowerShell tech-

niques for scripts, but the focus of the chapter will be on PowerShell tips in HTML.

Throughout the chapter I’ll be putting together the following sections to build up

the script, and I’ll include the complete code at the end of this chapter:

■ Script parameters and help
■ A begin block to include generating the HTML header and report image
■ A process block to generate the queries that will produce the report data for

each computer included in the report
■ An end block to join together the various HTML code parts and export them

to a file

Standard ConvertTo-HTML output

Since PowerShell v1, a cmdlet called ConvertTo-HTML has been included as stan-

dard. Most PowerShell books and learning materials typically have covered this

12

172 CHAPTER 12 Tips and tricks for creating complex or advanced HTML reports

cmdlet since early on as a means to export data, alongside others such as Export-

CSV and Export-CLIXML, but these have usually only been covered as a basic tool.

The tale usually follows something like “…take the following example, pipe it to

ConvertTo-HTML, and you have a great report to send to your manager or display on

the company intranet.” But when you examine that report it’s unlikely to be some-

thing that’s going to get you that promotion from your manager or look great on

the intranet. Look at the following listing.

$os = Get-WmiObject win32_operatingsystem
$bios = Get-WmiObject win32_bios

$report = [pscustomobject]@{
 ComputerName = $OS.__Server
 Description = $OS.Caption
 BuildNumber = $OS.BuildNumber
 BIOSSerial = $BIOS.SerialNumber
 }
$report | ConvertTo-Html | Out-File BasicReport.html

This listing will produce a report, shown in figure 1, that isn’t particularly pleasing to

the eye as it only displays black text on a white background.

NOTE ConvertTo-HTML sends data to the pipeline, not directly to an HTML file;
consequently the data is typically sent down the pipeline to Out-File.

With the help of the tips and tricks in this chapter you can turn the report in figure 1

into something more appealing, such as you’ll see in figure 2.

Script parameters and help

The tips and tricks illustrated in this chapter will form part of an example Systems

Inventory report. Some of these examples will use parameters from the script, which is

why I introduce the script in the next listing. This script includes standard PowerShell

help and parameters, explanations that are out of the scope of this chapter.

Listing 1 ConvertTo-HTML example with Out-File

Figure 1 Basic HTML report using the ConvertTo-HTML cmdlet

173Script parameters and help

<#
.SYNOPSIS
 HTML Systems Inventory Report

.DESCRIPTION
 Create an HTML Systems Inventory Report for multiple computers

.PARAMETER ComputerName
 Supply a name(s) of the computer(s) to create a report for

.PARAMETER ReportFile
 Path to export the report file to

.PARAMETER ImagePath
 Path to an image file to place at the top of the report

.EXAMPLE
 Get-HTMLSystemsInventoryReport -ComputerName Server01 –ReportFile ‘

C:\Report\InventoryReport.html -ImagePath C:\Report\Image.jpg
#>

Listing 2 Script parameters and help

Figure 2 HTML report using tips

and tricks from this chapter

174 CHAPTER 12 Tips and tricks for creating complex or advanced HTML reports

[CmdletBinding()]

Param
 (
 [Parameter(Mandatory=$true,
 ValueFromPipeline=$true,
 ValueFromPipelineByPropertyName=$true,
 Position=0)]
 [ValidateNotNullOrEmpty()]
 [Alias("CN","__SERVER","IPAddress","Server")]
 [String[]]
 $ComputerName,

 [Parameter(Mandatory=$true,
 Position=1)]
 [ValidateNotNullOrEmpty()]
 [String]
 $ReportFile,

 [Parameter(Position=2)]
 [String]
 $ImagePath
)
...

ConvertTo-HTML’s –Fragment parameter
If you examine the HTML code in listing 1, which was generated by $report |

ConvertTo-Html | Out-File BasicReport.html, you’ll observe that the ConvertTo-

HTML cmdlet generates all of the HTML code for you, as displayed in the following

snippet. Nice and easy, but this leaves you little in the way of customization. Wouldn’t

it be great if you could use ConvertTo-HTML to generate the report data and then han-

dle the style of the document elsewhere?

PS C:\HTML> $report | ConvertTo-Html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" "http://www.w3.org/

TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>HTML TABLE</title>
</head><body>
<table>
<colgroup><col/><col/><col/><col/></colgroup>
<tr><th>ComputerName</th><th>Description</th><th>BuildNumber</th><th>
 BIOSSerial</th></tr>
<tr><td>WINDOWS8X64</td><td>Microsoft Windows 8 Pro</td><td>9200</

td><td>VMware-56 4d f3 6e 62 f3 f0 8a-24 92 69 21 a6 cc
 6b ed</td></tr>
</table>
</body></html>

My first tip is to use the –Fragment parameter of ConvertTo-HTML to generate your

data and to separately create the formatting HTML code yourself. Notice that using

the following parameter gives you only the data in HTML, but not the header:

175Using a PowerShell here-string to create the HTML header

PS C:\HTML> $report | ConvertTo-Html -Fragment
<table>
<colgroup><col/><col/><col/><col/></colgroup>
<tr><th>ComputerName</th><th>Description</th><th>BuildNumber</th><th>
BIOSSerial</th></tr>
<tr><td>WINDOWS8X64</td><td>Microsoft Windows 8 Pro</td>
<td>9200</td><td>VMware-56 4d f3 6e 62 f3 f0 8a-24 92 69 21 a6 cc
6b ed</td></tr>
</table>

I’ll use this technique a number of times to generate report data. To create the header

HTML code I’ll use a here-string and manually store the header in a variable.

Using a PowerShell here-string to create
the HTML header
It’s possible for you to manually create the HTML header and store it in a variable

ready for use later. Combining this method with the previously mentioned –Fragment

parameter means that you can better control the style of the HTML document and

concentrate on using PowerShell to collect the data for the report. I’ve set out the

HTML header in the following listing—you’re only limited by your imagination and

level of HTML knowledge, but you’ll find plenty of examples online if you need a

decent starting point. A good place to check out is www.w3schools.com, as it not only

has excellent free resources on CSS styles, but also HTML in general. Let’s take a look

at the next listing, which shows a possible example for our HTML header that will be

placed in the begin section of our script.

$HTMLHeader = @"

 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" "http://
www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

 <html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en">
 <head>
 <title>Systems Inventory</title>
 <style type="text/css">
 <!--

 body {
 background-color: #66CCFF;
 }

 table {
 background-color: white;
 margin: 5px;
 top: 10px;
 display: inline-block;
 padding: 5px;
 border: 1px solid black
 }

Listing 3 HTML header stored in a variable

http://www.w3schools.com/

176 CHAPTER 12 Tips and tricks for creating complex or advanced HTML reports

 h2 {
 clear: both;
 font-size: 150%;
 margin-left: 10px;
 margin-top: 15px;
 }

 h3 {
 clear: both;
 color: #FF0000;
 font-size: 115%;
 margin-left: 10px;
 margin-top: 15px;
 }

 p {

 color: #FF0000;
 margin-left: 10px;
 margin-top: 15px;
 }

 tr:nth-child(odd) {background-color: lightgray}

 -->
 </style>
 </head>
 <body>

"@
...

In listing 3 I’ve stored the HTML header in a PowerShell here-string, mostly setting

style information such as colors and table formatting for upcoming sections in the Sys-

tems Inventory report. I’ll include this listing in the begin block of the script because

it’s only required to be executed once, no matter how many computers are included

in the report. It’d also be good to brighten up the HTML report further by adding an

image. In the next section we’ll look at a way to do this.

Encoding an image into the HTML report
Our HTML Systems Inventory report will

begin to look a lot smarter if we include an

image and make it look similar to figure 3.

 It’s possible to do this using base64 to

encode the image using PowerShell, then

creating the necessary HTML and storing

the result in a variable. By encoding the

image into the document you won’t have a

dependency on the image file any longer.

Consequently it may make it easier to dis-

tribute the report, say by email, as you don’t

need to include the image alongside the Figure 3 Encoded image in HTML document

177Adding charts to the report

report file. You’ll place the code in the next listing in the begin section of the script

because you only have to include it once.

Function Get-Base64Image ($Path) {
 [Convert]::ToBase64String((Get-Content $Path -Encoding Byte))
 }
if ($ImagePath) {
 if (Test-Path -Path $ImagePath) {

 $HeaderImage = Get-Base64Image -Path $ImagePath

 $ImageHTML = @"
 <img src="data:image/jpg;base64,$($HeaderImage)" style="left:
 150px" alt="System Inventory">
"@
 }
 else {
 throw "$($ImagePath) is not a valid path to the image file"
 }
...

In listing 4 I created a function called Get-Base64Image that I’ll use to encode the

image. Then I’ll check that the image file exists with Test-Path and create the HTML

code that’s necessary to display an encoded image.

 Because we’ve been storing the HTML code in variables we’ll be able to put it all

together by joining the variables to create one large block of HTML code. At this

point we’ve created the header and an image, which means the end block of our

script is populated with the HTML header and encoded image, as shown in the fol-

lowing listing.

end {
 $HTMLHeader +$ImageHTML | Out-File $ReportFile
}

Now I only need to prepare the required data for each system, store the result in a

variable, and add it to the end block to create the full HTML report.

Adding charts to the report
To brighten up the report further I’m going to use the Microsoft Chart Controls next.

This tool will help me to generate a pie chart to illustrate the Service StartMode on

the computer being reported on, such as that shown in figure 4.

NOTE You can use the Microsoft Chart Controls to create charts of any type you
can think of to illustrate data in a professional format for your reports. In
this particular example I’m using a pie chart, but the code required need
only be adjusted slightly depending on the type of chart you wish to use
for your report.

Listing 4 Encode an image into an HTML document

Listing 5 Preparing the end block with the HTML header and encoded image

178 CHAPTER 12 Tips and tricks for creating complex or advanced HTML reports

If you’ve installed .NET Framework 4 you have everything you need to use the Micro-

soft Chart Controls. If you have .NET Framework 3.5 SP1 you’ll need to run an addi-

tional download, which you can find at: www.microsoft.com/en-us/download/

details.aspx?id=14422.

 I’ve created the New-PieChart function and stored it in the begin code block (see

the next listing). I’ve created it in order to create the pie chart I need for each system,

using the reporting script.

function New-PieChart {
 <#
 .SYNOPSIS
 Create a new Pie Chart using .Net Chart Controls

 .DESCRIPTION
 Create a new Pie Chart using .Net Chart Controls

 .PARAMETER Title
 Title of the chart

 .PARAMETER Width
 Width of the chart

 .PARAMETER Height
 Height of the chart

 .PARAMETER Alignment
 Alignment of the chart

 .PARAMETER SeriesName
 Name of the data series

 .PARAMETER xSeries
 Property to use for x series

Listing 6 Code for the New-PieChart function

Manual

Service StartMode

Auto

Disabled

Figure 4 Service StartMode

pie chart

http://www.microsoft.com/en-us/download/details.aspx?id=14422
http://www.microsoft.com/en-us/download/details.aspx?id=14422

179Adding charts to the report

 .PARAMETER ySeries
 Property to use for y series

 .PARAMETER Data
 Data for the chart

 .PARAMETER ImagePath
 Path to save a png of the chart to

 .EXAMPLE
 New-PieChart -Title "Service Status" -Series "Service" –xSeries
 ➥ "Name" -ySeries "Count" -Data $Services
 ➥ -ImagePath C:\Report\Image.jpg
 #>

 [CmdletBinding()]

 Param
 (
 [Parameter(Mandatory=$true)]
 [ValidateNotNullOrEmpty()]
 [String]$Title,

 [Parameter(Mandatory=$false)]
 [ValidateNotNullOrEmpty()]
 [Int]$Width = 400,

 [Parameter(Mandatory=$false)]
 [ValidateNotNullOrEmpty()]
 [Int]$Height = 400,

 [Parameter(Mandatory=$false)]
 [ValidateSet("TopLeft","TopCenter","TopRight",
 "MiddleLeft","MiddleCenter","MiddleRight",
 "BottomLeft","BottomCenter","BottomRight")]
 [String]$Alignment = "TopCenter",

 [Parameter(Mandatory=$true)]
 [ValidateNotNullOrEmpty()]
 [String]$SeriesName,

 [Parameter(Mandatory=$true)]
 [ValidateNotNullOrEmpty()]
 [String]$xSeries,

 [Parameter(Mandatory=$true)]
 [ValidateNotNullOrEmpty()]
 [String]$ySeries,

 [Parameter(Mandatory=$true)]
 [ValidateNotNullOrEmpty()]
 [PSObject]$Data,

 [Parameter(Mandatory=$true)]
 [ValidateNotNullOrEmpty()]
 [String]$ImagePath
)

 [void][Reflection.Assembly]::LoadWithPartialName ‘
("System.Windows.Forms.DataVisualization")

180 CHAPTER 12 Tips and tricks for creating complex or advanced HTML reports

 $Chart = New-Object ‘
System.Windows.Forms.DataVisualization.Charting.Chart

 $Chart.Width = $Width
 $Chart.Height = $Height

 [void]$Chart.Titles.Add("$Title")
 $Chart.Titles[0].Alignment = $Alignment
 $Chart.Titles[0].Font = "Calibri,20pt"

 $ChartArea = New-Object ‘
System.Windows.Forms.DataVisualization.Charting.ChartArea

 $ChartArea.Area3DStyle.Enable3D = $true
 $Chart.ChartAreas.Add($ChartArea)

 [void]$Chart.Series.Add($SeriesName)
 $Chart.Series[$SeriesName].ChartType = "Pie"
 $Chart.Series[$SeriesName]["PieLabelStyle"] = "Outside"
 $Data | ForEach-Object ‘
{$Chart.Series[$SeriesName].Points.Addxy($_.$xSeries , $_.$ySeries) } | Out-

Null
 $Chart.Series[$SeriesName].Points.FindMaxByValue()["Exploded"] =‘
$true

 $Chart.SaveImage("$ImagePath","png")
 }
 }

I’ll use the New-PieChart function in the next section to process services for each

computer in the report and pass that data into the function. The final step of the

function exports the chart to a PNG file. I’ll use the Get-Base64Image function again

to encode the chart image into the report.

Preparing the data for the report
To generate data for this report I’m using a mixture of WMI queries and some stan-

dard PowerShell cmdlets to give an example of some typical data you might wish to

include in an inventory report. The results of each WMI query are stored in variables

for later reference and shown in the following listing. You’ll place this code in the

process block because it’ll need to execute for every computer you want to include in

the report.

$OperatingSystem = Get-WmiObject Win32_OperatingSystem -ComputerName ‘
$Computer

$ComputerSystem = Get-WmiObject Win32_ComputerSystem –ComputerName ‘
$Computer

$LogicalDisk = Get-WmiObject Win32_LogicalDisk -ComputerName $Computer
$NetworkAdapterConfiguration = Get-WmiObject -Query "Select * From ‘

Win32_NetworkAdapterConfiguration Where IPEnabled = 1" –ComputerName ‘
$Computer

$Services = Get-Service -ComputerName $Computer
$Hotfixes = Get-HotFix -ComputerName $Computer

Listing 7 Preparing the inventory queries, variables, and pie chart

181Preparing the data for the report

$Hostname = $ComputerSystem.Name
$DNSName = $OperatingSystem.CSName +"." + ‘

$NetworkAdapterConfiguration.DNSDomain
$OSName = $OperatingSystem.Caption
$Manufacturer = $ComputerSystem.Manufacturer
$Model = $ComputerSystem.Model

$Resources = [pscustomobject] @{
 NoOfCPUs = $ComputerSystem.NumberOfProcessors
 RAMGB = $ComputerSystem.TotalPhysicalMemory /1GB -as [int]
 NoOfDisks = ($LogicalDisk | Where-Object {$_.DriveType -eq 3} | Measure-

Object).Count
 }

$StartMode = $Services | Group-Object StartMode
 $PieChartPath = Join-Path (Split-Path ‘

$script:MyInvocation.MyCommand.Path) -ChildPath ServicesChart.png
 New-PieChart -Title "Service StartMode" -Series "Service ‘ StartMode

by Type" -xSeries "Name" -ySeries "Count" -Data $StartMode ‘
-ImagePath $PieChartPath

 $PieImage = Get-Base64Image -Path $PieChartPath

$ServiceImageHTML = @"
<img src="data:image/jpg;base64,$($PieImage)" style="right: 150px" ‘

alt="Services">
"@
...

Now you can construct the HTML for each data section using the –Fragment parame-

ter technique I previously demonstrated. For example, in the next listing I create the

HTML code for the system services information. Note the boldfaced syntax I use to

sort multiple properties in different directions.

$ServicesHTML = $Services | Sort-Object ‘
@{Expression="Status";Descending=$true},@{Expression="Name" ‘
;Descending=$false} | Select-Object Name,Status | ConvertTo-
Html -Fragment

This process will be repeated for each section of the report and will generate HTML

code for us to insert into the report later (this code is cut for brevity).

<table>
<colgroup><col/><col/></colgroup> <tr><th>Name</
th><th>Status</th></tr> <tr><td>Appinfo</
td><td>Running</td></tr>
<tr><td>AudioEndpointBuilder</td><td>Running</td></tr>
<tr><td>Audiosrv</td><td>Running</td></tr>
<tr><td>BFE</td><td>Running</td></tr> <tr><td>BITS</
td><td>Running</td></tr>
<tr><td>BrokerInfrastructure</td><td>Running</td></tr>
.................
</table>
...

Listing 8 Building the HTML for the system services information

182 CHAPTER 12 Tips and tricks for creating complex or advanced HTML reports

Again, though, this is quite static-looking data—let’s

brighten it up somewhat.

Differentiating report data with color
In the previous example of system services data

turned into HTML you’ll typically end up with ser-

vices that have a status of either ‘Running’ or

‘Stopped.’ It’d be great to differentiate these with

color and make them stand out better in our

report. Figure 5 illustrates an example of this using

the report.

 I achieve this by using the –Replace operator. Any

text with <td>Running</td> will be replaced with

HTML code to turn the word ‘Running’ green:

$ServicesFormattedHTML = $ServicesHTML |
ForEach {

 $_ -replace "<td>Running</td>","<td style=’color: green’>Running</td>"

}

I need to assign more than one color, though: green for ‘Running’ and red for

‘Stopped.’ But I can do this without much extra effort, because I can use multiple

-Replace operators on the same line:

$ServicesFormattedHTML = $ServicesHTML | ForEach {

 $_ -replace "<td>Running</td>","<td style=’color: green’>Running</td>"
 ➥ -replace "<td>Stopped</td>","<td style=’color: red’>Stopped</td>"

}

The report’s almost ready. Now I just need to put everything together.

Final steps
I’ll put the report data together for each computer (we’re still inside the process

block) with a mixture of manual HTML and dynamically generated HTML stored in

variables. Each time I process a computer I add the result to the $HTMLSystemReport

variable. Then to round off things I close out the script with the end block, putting all

of the different HTML pieces together, as shown in the next listing.

$ItemHTML = @"
 <hr noshade size=5 width="100%">

 <p><h2>$Hostname</p></h2>
 <h3>System</h3>
 <table>
 <tr>

Listing 9 Building the HTML code for each computer in the report

Figure 5 Differentiating report

data with color

183Final steps

 <td>DNS Name</td>
 <td>$DNSName</td>
 </tr>
 <tr>
 <td>Operating System</td>
 <td>$OSName</td>
 </tr>
 <tr>
 <td>Manufacturer</td>
 <td>$Manufacturer</td>
 </tr>
 <tr>
 <td>Model</td>
 <td>$Model</td>
 </tr>
 </table>

</br>

 <hr noshade size=1 width="100%">

 <h3>Services</h3>
 <p>Installed Services</p>
 $ServicesFormattedHTML

 <hr noshade size=1 width="100%">

 <h3>Hotfixes</h3>
 <p>Installed Hotfixes</p>
 $HotfixesFormattedHTML

</br>

 <hr noshade size=1 width="100%">

 <h3>Resources</h3>
 <p>Installed Resources</p>
 $ResourcesHTML
"@
$HTMLSystemReport += $ItemHTML
}
end {
 $HTMLHeader +$ImageHTML + $HTMLSystemReport | Out-File $ReportFile
}

You can view the complete script in the next listing.

<#
.SYNOPSIS
 HTML Systems Inventory Report

.DESCRIPTION
 Create an HTML Systems Inventory Report for multiple computers

.PARAMETER ComputerName
 Supply a name(s) of the computer(s) to create a report for

.PARAMETER ReportFile
 Path to export the report file to

Listing 10 Completed Systems Inventory script

The end
block to
finish

184 CHAPTER 12 Tips and tricks for creating complex or advanced HTML reports

.PARAMETER ImagePath
 Path to an image file to place at the top of the report

.EXAMPLE
 Get-HTMLSystemsInventoryReport -ComputerName Server01 ‘
 -ReportFile C:\Report\InventoryReport.html -ImagePath C:\Report\Image.jpg
#>

[CmdletBinding()]

Param
 (
 [Parameter(Mandatory=$true,
 ValueFromPipeline=$true,
 ValueFromPipelineByPropertyName=$true,
 Position=0)]
 [ValidateNotNullOrEmpty()]
 [Alias("CN","__SERVER","IPAddress","Server")]
 [String[]]
 $ComputerName,

 [Parameter(Mandatory=$true,
 Position=1)]
 [ValidateNotNullOrEmpty()]
 [String]
 $ReportFile,

 [Parameter(Position=2)]
 [String]
 $ImagePath
)

begin {

 $UsedParameter = $False
 if ($PSBoundParameters.ContainsKey('ComputerName')){
 $UsedParameter = $True
 $InputObject = $ComputerName
 }

 if (!(Test-Path (Split-Path $ReportFile))){

 throw "$(Split-Path $ReportFile) is not a valid path to the report
file"

 }

 $HTMLHeader = @"

 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" "http://
www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

 <html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en">
 <head>
 <title>Systems Inventory</title>
 <style type="text/css">
 <!--

 body {
 background-color: #66CCFF;
 }

185Final steps

 table {
 background-color: white;
 margin: 5px;
 top: 10px;
 display: inline-block;
 padding: 5px;
 border: 1px solid black
 }

 h2 {
 clear: both;
 font-size: 150%;
 margin-left: 10px;
 margin-top: 15px;
 }

 h3 {
 clear: both;
 color: #FF0000;
 font-size: 115%;
 margin-left: 10px;
 margin-top: 15px;
 }

 p {

 color: #FF0000;
 margin-left: 10px;
 margin-top: 15px;
 }

 tr:nth-child(odd) {background-color: lightgray}

 -->
 </style>
 </head>
 <body>

"@

 function Get-Base64Image ($Path) {
 [Convert]::ToBase64String((Get-Content $Path -Encoding Byte))
 }

 if ($ImagePath) {
 if (Test-Path -Path $ImagePath) {

 $HeaderImage = Get-Base64Image -Path $ImagePath

 $ImageHTML = @"
 <img src="data:image/jpg;base64,$($HeaderImage)" ‘
 style="left: 150px" alt="System Inventory">
"@
 }
 else {
 throw "$($ImagePath) is not a valid path to the image file"
 }
 }

186 CHAPTER 12 Tips and tricks for creating complex or advanced HTML reports

 function New-PieChart {
 <#
 .SYNOPSIS
 Create a new Pie Chart using .Net Chart Controls

 .DESCRIPTION
 Create a new Pie Chart using .Net Chart Controls

 .PARAMETER Title
 Title of the chart

 .PARAMETER Width
 Width of the chart

 .PARAMETER Height
 Height of the chart

 .PARAMETER Alignment
 Alignment of the chart

 .PARAMETER SeriesName
 Name of the data series

 .PARAMETER xSeries
 Property to use for x series

 .PARAMETER ySeries
 Property to use for y series

 .PARAMETER Data
 Data for the chart

 .PARAMETER ImagePath
 Path to save a png of the chart to

 .EXAMPLE
 New-PieChart -Title "Service Status" -Series "Service" ‘
 -xSeries "Name" -ySeries "Count" -Data $Services -ImagePath ‘

C:\Report\Image.jpg
 #>

 [CmdletBinding()]

 Param
 (
 [Parameter(Mandatory=$true)]
 [ValidateNotNullOrEmpty()]
 [String]$Title,

 [Parameter(Mandatory=$false)]
 [ValidateNotNullOrEmpty()]
 [Int]$Width = 400,

 [Parameter(Mandatory=$false)]
 [ValidateNotNullOrEmpty()]
 [Int]$Height = 400,

 [Parameter(Mandatory=$false)]
 [ValidateSet("TopLeft","TopCenter","TopRight",
 "MiddleLeft","MiddleCenter","MiddleRight",
 "BottomLeft","BottomCenter","BottomRight")]
 [String]$Alignment = "TopCenter",

187Final steps

 [Parameter(Mandatory=$true)]
 [ValidateNotNullOrEmpty()]
 [String]$SeriesName,

 [Parameter(Mandatory=$true)]
 [ValidateNotNullOrEmpty()]
 [String]$xSeries,

 [Parameter(Mandatory=$true)]
 [ValidateNotNullOrEmpty()]
 [String]$ySeries,

 [Parameter(Mandatory=$true)]
 [ValidateNotNullOrEmpty()]
 [PSObject]$Data,

 [Parameter(Mandatory=$true)]
 [ValidateNotNullOrEmpty()]
 [String]$ImagePath
)

 [void][Reflection.Assembly]::LoadWithPartialName ‘
("System.Windows.Forms.DataVisualization")

 $Chart = New-Object ‘
System.Windows.Forms.DataVisualization.Charting.Chart

 $Chart.Width = $Width
 $Chart.Height = $Height

 [void]$Chart.Titles.Add("$Title")
 $Chart.Titles[0].Alignment = $Alignment
 $Chart.Titles[0].Font = "Calibri,20pt"

 $ChartArea = New-Object ‘
System.Windows.Forms.DataVisualization.Charting.ChartArea

 $ChartArea.Area3DStyle.Enable3D = $true
 $Chart.ChartAreas.Add($ChartArea)

 [void]$Chart.Series.Add($SeriesName)
 $Chart.Series[$SeriesName].ChartType = "Pie"
 $Chart.Series[$SeriesName]["PieLabelStyle"] = "Outside"
 $Data | ForEach-Object ‘
{$Chart.Series[$SeriesName].Points.Addxy($_.$xSeries , $_.$ySeries) } | Out-

Null
 $Chart.Series[$SeriesName].Points.FindMaxByValue()["Exploded"] = $true

 $Chart.SaveImage("$ImagePath","png")
 }
 }

 process {

 if (!($UsedParameter)){

 $InputObject = $_
 }

 foreach ($Computer in $InputObject){

 $OperatingSystem = Get-WmiObject Win32_OperatingSystem ‘
-ComputerName $Computer
 $ComputerSystem = Get-WmiObject Win32_ComputerSystem ‘

188 CHAPTER 12 Tips and tricks for creating complex or advanced HTML reports

-ComputerName $Computer
 $LogicalDisk = Get-WmiObject Win32_LogicalDisk -ComputerName

$Computer
 $NetworkAdapterConfiguration = Get-WmiObject -Query ‘
"Select * From Win32_NetworkAdapterConfiguration Where IPEnabled = 1" ‘
-ComputerName $Computer
 $Services = Get-WmiObject Win32_Service -ComputerName $Computer
 $Hotfixes = Get-HotFix -ComputerName $Computer

 $Hostname = $ComputerSystem.Name
 $DNSName = $OperatingSystem.CSName +"." ‘
+ $NetworkAdapterConfiguration.DNSDomain
 $OSName = $OperatingSystem.Caption
 $Manufacturer = $ComputerSystem.Manufacturer
 $Model = $ComputerSystem.Model

 $Resources = [pscustomobject] @{
 NoOfCPUs = $ComputerSystem.NumberOfProcessors
 RAMGB = $ComputerSystem.TotalPhysicalMemory /1GB -as [int]
 NoOfDisks = ($LogicalDisk | Where-Object {$_.DriveType -eq 3} |

Measure-Object).Count
 }

 $StartMode = $Services | Group-Object StartMode
 $PieChartPath = Join-Path (Split-Path ‘

$script:MyInvocation.MyCommand.Path) -ChildPath ServicesChart.png
 New-PieChart -Title "Service StartMode" -Series ‘
"Service StartMode by Type" -xSeries "Name" -ySeries "Count" ‘
-Data $StartMode -ImagePath $PieChartPath

 $PieImage = Get-Base64Image -Path $PieChartPath

$ServiceImageHTML = @"
 <img src="data:image/jpg;base64,$($PieImage)" ‘
style="right: 150px" alt="Services">
"@

 $ServicesHTML = $Services | Sort-Object ‘
@{Expression="State";Descending=$true}, ‘
@{Expression="Name";Descending=$false} | Select-Object Name,State |
ConvertTo-Html -Fragment

 $ServicesFormattedHTML = $ServicesHTML | ForEach {

 $_ -replace "<td>Running</td>","<td style='color: green'>Running</
td>" -replace "<td>Stopped</td>", ‘

"<td style='color: red'>Stopped</td>"

 }

 $HotfixesHTML = $Hotfixes | Sort-Object Description |
Select-Object HotfixID,Description,InstalledBy,Installedon |
ConvertTo-Html -Fragment
 $HotfixesFormattedHTML = $HotfixesHTML | ForEach {

 $_ -replace "<td>Update</td>","<td style='color: blue'>Update</
td>" -replace "<td>Security Update</td>", ‘

"<td style='color: red'>Security Update</td>"

 }

 $ResourcesHTML = $Resources | ConvertTo-Html -Fragment

189Final steps

$ItemHTML = @"
 <hr noshade size=5 width="100%">

 <p><h2>$Hostname</p></h2>
 <h3>System</h3>
 <table>
 <tr>
 <td>DNS Name</td>
 <td>$DNSName</td>
 </tr>
 <tr>
 <td>Operating System</td>
 <td>$OSName</td>
 </tr>
 <tr>
 <td>Manufacturer</td>
 <td>$Manufacturer</td>
 </tr>
 <tr>
 <td>Model</td>
 <td>$Model</td>
 </tr>
 </table>

</br>

 <hr noshade size=1 width="100%">

 <h3>Services</h3>
 <p>Installed Services</p>
 $ServicesFormattedHTML

 $ServiceImageHTML

 <hr noshade size=1 width="100%">

 <h3>Hotfixes</h3>
 <p>Installed Hotfixes</p>
 $HotfixesFormattedHTML

</br>

 <hr noshade size=1 width="100%">

 <h3>Resources</h3>
 <p>Installed Resources</p>
 $ResourcesHTML
"@
 $HTMLSystemReport += $ItemHTML
 }
}

end {
 $HTMLHeader +$ImageHTML + $HTMLSystemReport | Out-File $ReportFile
}

The script can be executed to generate the report, as this example shows:

PS C:\HTML> "WIN8X64","WIN701","WIN702" | ./SystemReport.ps1 –ReportFile ‘
 C:\HTML\InventoryReport.html -ImagePath C:\HTML\Header.jpg

190 CHAPTER 12 Tips and tricks for creating complex or advanced HTML reports

Figure 6 shows how the report now takes on a more colorful appearance than the

report with which I first started.

Summary
I hope these PowerShell tips and tricks have helped you to see a few of the possibili-

ties for transforming basic HTML reports with black text on white backgrounds that

use only ConvertTo-HTML, to something more colorful that’s presentable as a man-

agement type of report.

 I recommend you break up the report into sections, build up the different

HTML parts, and join them together at the end to turn the report into a file. If

you’re experienced with HTML or happy to carry out some deeper research you

should be able to take these reports even further than I have in this chapter—for

example, by adding charts, multiple columns and pages, and collapsing sections—

and in turn produce even better-looking reports.

Figure 6 Sample of the finished

Systems Inventory report

191Summary

About the author

Jonathan Medd has been working with IT infrastructure products

since 1997. A few years ago he discovered Windows PowerShell,

and he now cohosts the Get-Scripting PowerShell podcast. Since

April 2010 he’s been a Microsoft MVP for Windows PowerShell,

and in 2011 he was honored as a VMware vExpert. He is co-author

of VMware vSphere PowerCLI Reference.

192

Using and “abusing”
dynamic parameters

 Bartosz Bielawski

In our lives we make choices all the time; some choices are obligatory, but some-

times they’re optional. Imagine you’re buying a bike. You need to customize it, and

although some choices are “static,” such as selecting the frame or the wheels, some

aren’t. For example, you’d consider stabilizers only if you were looking for a bike

for a small child. At a bike shop a salesperson probably wouldn’t start a conversa-

tion about your purchase of a new bike with the question: “Which stabilizers do you

prefer: ones with Spiderman or ones with Lightning McQueen?” But if you men-

tion that you’re looking for a bike for your little son, these questions would seem

natural. Dynamic parameters are additional options that only make sense in your

current context and only then will you have a chance to use them.

 Version 1 of the PowerShell scripting language already was powerful and flexi-

ble and with each new version it improves. PowerShell almost always uses some lan-

guage elements in production scripts, such as parameter validation, comment-

based help, and pipeline binding. But one rarely used feature (mainly because of

complexity of application, limitations it brings to the table, and relatively small

number of use cases) is the dynamic parameter. If you’ve ever been in a situation

where you needed additional control over code, the dynamic parameter feature

may be the solution for you.

 What are dynamic parameters? They’re a way to customize your command to the

point where parameter presence and options depend on conditions, both external

and internal. Unlike static parameters, they usually show up when they’re needed.

Input parameters in any scripting language have one main purpose: they provide

flexibility to change the behavior of scripts, functions, and procedures, without hav-

ing to edit the code. PowerShell supports several levels of parameter control:

■ automatic $args
■ simple named parameters

13

193Using and “abusing” dynamic parameters

■ parameters with [Parameter()] decoration
■ parameters grouped in parameter sets
■ dynamic parameters

It’s the script author’s decision to determine the level of complexity and control to

use. To put our main topic in correct context we’ll first take a look at static parameters

to see what we can achieve in PowerShell, without implementing dynamic parameters.

Static parameters

As I mentioned previously, each version of PowerShell has introduced new language

elements that allow script authors to control parameters. In v1 they were already

robust, but the advanced functions built into v2 made them all the more powerful.

Let’s first take a look at v1 functionality, and then spend some time on the features

that were added in v2.

INITIAL DESIGN

PowerShell v1 was built to support three ways of accepting inline input to functions

and scripts: using the automatic $args variable, using named parameters, and using

positional parameters. You’ll have situations where $args is a sufficient way to

accept external input, particularly in ad hoc scripting. But this way of passing parame-

ters is fragile and can cause unexpected behavior. This is because you depend on

order and you can’t change this order or skip any of the parameters. Obviously, for

some functions you won’t have any negative effects, such as when you use the function

that turns lists of words into string arrays:

function New-StringArray {
 [string[]]$args
}

Once you start writing more robust functions, named parameters become a natural

way of accepting input and offer the added benefits of passing parameters in any

order you choose, or skipping parameters you don’t need (see the following listing).

It’s also a good idea to put parameters in the param block—this way you have consis-

tent syntax between scripts, functions, and script blocks.

function Get-ADSIComputer {
param (
 $Filter,
 $Root
)

 if (!$Filter) {
 Write-Warning "Filter is required."
 return
 }

 $Searcher = New-Object ADSISearcher -ArgumentList @(
 [ADSI]$Root,

Listing 1 Example function with named parameters

194 CHAPTER 13 Using and “abusing” dynamic parameters

 "(&(objectClass=computer)($Filter))"
)
 $Searcher.FindAll()

}

You can call your function using the parameter’s positions (as we did with $args). You

can also take advantage of how the PowerShell parser handles parameters: you don’t

have to specify a full parameter name; you only need enough from its name to differen-

tiate it from the other parameters. In our case, the first letter would be sufficient (F for

Filter and R for Root). Version 1 of PowerShell also allows you to specify type for named

parameters and give them a default value. Because the default value can be a sub-

expression it can be used to make the parameter mandatory. I’ve slightly improved

the function so you don’t have to check for the presence of the required parameter. A

trick related to the default value, shown in the next listing, will help us with that.

function Get-ADSIComputer {
param (
 [string]$Filter = $(throw "Filter is required!"),
 [ADSI]$Root = ''
)

 $Searcher = New-Object ADSISearcher -ArgumentList @(
 $Root,
 "(&(objectClass=computer)($Filter))"
)
 $Searcher.FindAll()

}

And that’s all you can do with v1. Let’s look at what v2 has to offer.

ADVANCED FUNCTIONS

When you’re writing functions or scripts in PowerShell v2 you can make them so robust

that it may be hard to tell the difference between your code and a compiled cmdlet.

Parameters can be mandatory (with the same prompt you get for mandatory parameters

in cmdlets), take value from a pipeline (both by property and value), have aliases, and

have validated input. You can support different scenarios using sets of parameters.

Parameters can be shared between sets and also be unique to one of them. Although

improved parameter binding is just one of the advanced functions in v2, I want to focus

on parameters, so I won’t discuss other advantages of writing advanced function. The

following listing is an example of the same function we defined previously, rewritten

with everything the advanced function has to offer in the parameter definition area.

function Get-ADSIComputer {
[CmdletBinding(
 DefaultParameterSetName = 'Filter'
)]

Listing 2 Example of function that uses parameters with types and default values

Listing 3 Sample advanced function

195Using and “abusing” dynamic parameters

param (
 [Parameter(
 Mandatory = $true,
 HelpMessage = "LDAP Filter",
 ParameterSetName = 'Filter'
)]
 [ValidatePattern('^\w+=[\w*]+$')]
 [string]$Filter,
 [Parameter(
 Mandatory = $true,
 ParameterSetName = 'All'
)]
 [switch]$All,
 [ValidateScript({
 $Pattern = '(^(?-i:LDAP)://.*?,DC=\w+$|^$)'
 if ($_.Path -match $Pattern) {
 $true
 } else {
 throw "Wrong path specified!"
 }
 })]
 [ADSI]$Root = ''
)

 if ($All) {
 $Filter = 'name=*'
 }
 $Searcher = New-Object ADSISearcher -ArgumentList @(
 [ADSI]$Root,
 "(&(objectClass=computer)($Filter))"
)
 $Searcher.FindAll()
}

As you can see, all those elements can help you define functions in a production-ready

fashion. You can write functions and scripts that can prevent future users from shoot-

ing themselves in the foot.

Dynamic parameters

All of the parameters I’ve mentioned up to this point are static. Even if we grouped

them in sets, all of the parameters I’ve defined are available all the time. Dynamic

parameters behave differently: their existence depends on conditions that the code

author defines. Dynamic parameters are added at runtime, which forces a different

syntax than the one reserved for static parameters: you need to explicitly use .NET

types that you use implicitly in a normal parameter definition. Dynamic parameters

can have the same elements as static parameters—that is, they can be mandatory, have

validation, aliases, and so on. As always, this technique has both advantages and disad-

vantages, which we’ll explore next.

ADVANTAGES AND DISADVANTAGES

Before we dig into the applications of dynamic parameters take a look at table 1, which

lists the reasons why you may want to use them, and why you may want to avoid them.

196 CHAPTER 13 Using and “abusing” dynamic parameters

One main advantage of dynamic parameters is that you can investigate the context in

which your command will run: mainly the current state (for example, path—some-

thing that provider cmdlets do) and the values of other parameters. Then you can

perform actions based on that information. This conditional nature makes your final

product more user-friendly, because you don’t show parameters that wouldn’t work in

a particular situation.

 Late binding (binding after all static parameters) shows up in both columns. It’s an

advantage because it gives you the added benefit of defining some options (like valida-

tion attributes) depending on your situation at runtime. This means even if you always

want to use a parameter you may want to adapt its behavior to the current situation,

something only dynamic parameters can help with. At the same time this may cause

some issues. A perfect example of that is the disambiguating of shortened parameters

that we mentioned previously: if a unique static parameter matches the short version

it’ll be always used, even if other dynamic parameters would also match.

 The biggest disadvantage is the fact that dynamic parameters are hard to discover.

Because of their dynamic nature they won’t show up in help for command, nor will

they be present in the parameter list retrieved by Get-Command, unless you run the fol-

lowing command in the required context (if the context is the only factor used, as it is

for most provider-related cmdlets):

PS C:\> Set-Location -Path C:
PS C:\> (Get-Command -Name Set-Item).Parameters['Type']
PS C:\> Set-Location -Path HKLM:\
PS HKLM:\> (Get-Command -Name Set-Item).Parameters['Type']

Name : Type
ParameterType : Microsoft.Win32.RegistryValueKind
ParameterSets : {[__AllParameterSets,

System.Management.Automation.ParameterSetMetadata]}
IsDynamic : True
Aliases : {}
Attributes : {__AllParameterSets}
SwitchParameter : False

Alternatively, you can specify the optional parameter ArgumentList, with all of the

positional parameters required by the definition of dynamic parameter:

PS HKLM:\> Set-Location -Path C:
PS C:\> (Get-Command -Name Set-Item -ArgumentList HKLM:).Parameters['Type']

Name : Type
ParameterType : Microsoft.Win32.RegistryValueKind

Table 1 Advantages and disadvantages of dynamic parameters

Advantages Disadvantages

You can investigate the context in which your com-

mand will run

Binding after all other parameters (late binding)

Dynamic parameters are harder to discover

Binding after all other parameters

Complex implementation

197Practical applications

ParameterSets : {[__AllParameterSets,
System.Management.Automation.ParameterSetMetadata]}

IsDynamic : True
Aliases : {}
Attributes : {__AllParameterSets}
SwitchParameter : False

The last disadvantage to cover from the previous table is complexity of implementa-

tion. You have to use .NET classes directly to define dynamic parameters. Rather than

memorizing the syntax you’ll probably have to use templates or snippets.

 Why would you want to use dynamic parameters? Let’s take a look first at existing

implementations of dynamic parameters; then we’ll cover a few scenarios where this

language element may be justified, regardless of the disadvantages related to it.

EXISTING IMPLEMENTATIONS OF DYNAMIC PARAMETERS

Dynamic parameters were used in all versions of PowerShell. Most dynamic parame-

ters can be found in provider-related cmdlets. Provider cmdlets were designed with

supporting common functionality in mind. But what if the provider that you’d like to

use has some unique capabilities? Should you implement this as the cmdlet parameter

for all of your providers? If you do, it may cause confusion, as users would see this

parameter and expect it to work against providers that aren’t able to understand it.

That’s why provider-related cmdlets have many dynamic parameters. You can apply

this same philosophy to any command you create. But you don’t have to stop there—

dynamic parameters can give you even more, if you can think outside the box and

“abuse” them.

Practical applications
Dynamic parameters are a way to make more general cmdlets (like provider-related

cmdlets) adaptable to current circumstances. Even though most providers support

similar operations and try to expose objects in a similar fashion, you don’t lose any

provider-specific functionality thanks to dynamic parameters. With that in mind

let’s look at practical examples of dynamic parameter implementations. As I men-

tioned previously, it’s not as straightforward as it is with static parameters. You have

to call .NET classes directly, put pieces together, and test, test, test. It may not work

at first, so testing is crucial and it usually takes some time (and/or experience) to

do it right.

 We’ll first try to do something similar to what provider cmdlets do. Then we’ll

explore some other situations where dynamic parameters can also be useful.

Using dynamic parameters

We’ll start slowly with a basic function that will support a dynamic parameter,

depending on the current date. We’ll use it to show the structure of an advanced

function that supports dynamic parameters. The next listing shows what this kind

of function looks like.

198 CHAPTER 13 Using and “abusing” dynamic parameters

function Get-Drink {
[CmdletBinding()]
param (
 [switch]$Soft,
 [switch]$Hot
)

DynamicParam {

if (0, 6 -contains (Get-Date).DayOfWeek) {
 $SM = 'System.Management.Automation'
 $Type = 'Collections.ObjectModel.Collection[System.Attribute]'
 $Name = 'Strong'
 $Param = @{
 TypeName = "$SM.ParameterAttribute"
 Property = @{
 ParameterSetName = "__AllParameterSets"
 Mandatory = $false
 }
 }
 $Attributes = New-Object @Param

 $AttributeCollection = New-Object $Type
 $AttributeCollection.Add($Attributes)

 $Param = @{
 TypeName = "$SM.RuntimeDefinedParameter"
 ArgumentList = @(
 $Name,
 [switch],
 $AttributeCollection
)
 }
 $Parameter = New-Object @Param

 $Param = @{
 TypeName =
 "$SM.RuntimeDefinedParameterDictionary"
 }
 $Dictionary = New-Object @Param
 $Dictionary.Add($Name, $Parameter)
 $Dictionary
}
}

end {
 if ($PSBoundParameters.ContainsKey('Strong')) {
 "It's weekend, let's try something strong!"
 }
 if ($Soft) {
 "Time for some soft drinks!"
 }
 if ($Hot) {
 "Tea or coffee - what will it be?"
 }
}
}

Listing 4 Basic advanced function with dynamic parameter defined

Changing regular
function into
advanced function

Creating attribute object
with selected options set

Creating attributes collection from
previously created attributes

Defining
dynamic
parameter

Defining and
returning
parameters
dictionary

Using dynamic
parameter value

199Practical applications

NOTE Once you decide to define dynamic parameters you have to use the
begin, process, and end scriptblocks; otherwise you’ll end up with errors.
But adding blocks that logically divide code into things that happen
before pipeline processing starts (begin), then happen for every item
passed into the pipeline (process), and then things that happen after
the last item in the pipeline is processed (end) is a good idea even if you
don’t plan to use dynamic parameters.

The entire process of creating dynamic parameter(s) requires several steps:

1 Create parameter attributes (this includes things like validation attributes)

2 Create collection from parameter attributes

3 Create parameter object with name, type, and previously created collection

of attributes

4 Add parameters to dictionary with their names as key, and parameter object

as value

5 Return parameters dictionary

6 In function body retrieve parameter value from $PSBoundParameters dictionary

The code shown in listing 4 may be hard to read at first (as I mentioned, it looks a lot

like C# with all New-Object calls). It’s probably a good idea to have your template

handy with the code necessary to build a parameter collection. But it’s also a good

idea to check the MSDN documentation for classes used inside this construct to make

sure you’re doing it right, particularly in the case of validation attributes.

 When would you want to use dynamic parameters in production? They’re justified

when material that your function or script should work with is dynamic as well.

Another possible scenario is to add a parameter only if it can be used when the value

of some other parameter meets some criteria.

 For example, the Get-WmiObject will accept the Credential parameter only for

remote computers. If you’re writing an inventory function using this cmdlet you may

want to make sure that the ComputerName parameter points to a remote box and only

then allow users to specify alternate credentials. The following listing presents a few

things: it adds a dynamic parameter based on the value of another parameter, sets a

default value for the created parameter, and uses ArgumentTransformationAttribute

in the DynamicParam block.

function Get-Inventory {
[CmdletBinding()]
param (
 [Parameter(
 Mandatory = $true
)]
 [string]$ComputerName
)

Listing 5 Using a dynamic parameter to decide if the Credential parameter is needed

200 CHAPTER 13 Using and “abusing” dynamic parameters

DynamicParam {
 $IPAddresses = [net.dns]::GetHostAddresses($env:COMPUTERNAME) |
 select -ExpandProperty IpAddressToString

 $HostNames = $IPAddresses | ForEach-Object {
 try {
 [net.dns]::GetHostByAddress($_)
 } catch {
 # We do not care about errors here...
 }
 } | select -ExpandProperty HostName -Unique

 $LocalHost = @(
 '',
 '.',
 'localhost',
 $env:COMPUTERNAME,
 '::1',
 '127.0.0.1'
) + $IPAddresses + $HostNames

 if ($LocalHost -notcontains $ComputerName -and
 $ComputerName) {
 $SMA = 'System.Management.Automation'
 $Type = 'Collections.ObjectModel.Collection[System.Attribute]'
 $Name = 'Credential'
 $AttributeCollection = New-Object $Type

 $Attribute1 = New-Object "$SMA.ParameterAttribute" -Property @{
 ParameterSetName = "__AllParameterSets"
 Mandatory = $false
 }
 $AttributeCollection.Add($Attribute1)

 $Attribute2 = New-Object "$SMA.CredentialAttribute"
 $AttributeCollection.Add($Attribute2)

 $Parameter = New-Object "$SMA.RuntimeDefinedParameter"`
 -ArgumentList @(
 $Name,
 [Management.Automation.PSCredential],
 $AttributeCollection
) -Property @{
 Value = [Management.Automation.PSCredential]::Empty
 }

 $Dictionary = New-Object "$SMA.RuntimeDefinedParameterDictionary"
 $Dictionary.Add($Name, $Parameter)
 $Dictionary
 }
}

end {
 $Options = $PSBoundParameters + @{
 ErrorAction = 'Stop'
 }

Collecting
local computer
names in array
of strings

Using collection to check
if computer is local

201Practical applications

 try {
 $Param = $Options + @{
 Class = 'Win32_OperatingSystem'
 }
 $OpertingSys = Get-WmiObject @Param
 $Param.Class = 'Win32_OperatingSystem'
 $ComputerSys = Get-WmiObject @Param

 New-Object PSObject -Property @{
 Name = $ComputerSys.Name
 User = $ComputerSys.UserName
 OSName = $OpertingSys.Caption
 SP = $OpertingSys.ServicePackMajorVersion
 } | select Name, User, OSName, SP
 } catch {
 "{0}: error - {1}" -f $PSBoundParameters.ComputerName, $_ |
 Write-Warning
 }
}
}

Now whenever you try to get inventory from a remote computer you have the option

to specify credentials, and if you try to connect a local computer this parameter won’t

show up, as figure 1 shows.

“Abusing” dynamic parameters

In some situations you may want to use dynamic parameters not because of the condi-

tional nature of their creation, but because of late binding and its ability to read an

environment at runtime. Because DynamicParam runs before PowerShell will perform

any operation inside a script or function you can mitigate errors, avoiding issues with

missing prerequisites.

 A good example of this kind of situation is defining type for parameters. An exam-

ple of such a function is shown in the next listing.

function Test-Type {
param (
 [Parameter(
 Mandatory = $true,
 ValueFromPipeline = $true

Listing 6 Function that uses type defined inside the module for its parameter

Using PSBoundParameters
directly on cmdlet

Figure 1 Different parameters

available for connecting to

different computers

202 CHAPTER 13 Using and “abusing” dynamic parameters

)]
 [Microsoft.ActiveDirectory.Management.ADUser]$User
)

begin {
 if (!(Get-Module ActiveDirectory)) {
 "You need to load ActiveDirectory module." |
 Write-Error
 }
}

process {
 Get-ADUser $User -Properties *
}
}

If an assembly that contains a selected type isn’t loaded before the function is used it

will cause errors that usually make sense for the author only, as you can see in figure 2.

 As the previous figure shows we’ve tried to use the function Test-Type. We

haven’t explicitly used any type; the function tried to do that on our behalf. Even

though PowerShell v3 by default would try to load the module when the command

can’t be found, it won’t work for the missing types. This means the autoloading fea-

ture didn’t help for using our function. The friendly error message the function

author included didn’t make it to the user. It may be hard to understand what went

wrong. The fix is to load the module first, but the function author can’t check for it

nor inform the user about it in a friendly error message.

 You can avoid this issue by testing the presence of the module before the function

runs, but you can also use dynamic parameters and try to import the module or throw

a friendly error message if the module isn’t available. Once you set up the dynamic

parameters you will have two benefits:

■ A module (or other required assembly) will be loaded before binding parameters.
■ If the module isn’t present on the system you’ll get an error message that clearly

states the nature of the problem.

You can see this friendly error message in figure 3.

 As you can see, the function grew a little bit. The parameter was moved to the

DynamicParam block without losing any attributes. The only thing you’ve added is

code that checks if you have the necessary type available, as shown in the next listing.

Using custom
type for static
parameter

Checking Active
Directory module
presence

Figure 2 Error message that user will receive, instead of a friendly warning built into the function

203Practical applications

function Test-TypeDynamic {
[CmdletBinding()]
param ()
DynamicParam {
 $Message = "You need ActiveDirectory module to run this function!"
 if (!(Get-Module ActiveDirectory)) {
 try {
 $Param = @{
 Name = 'ActiveDirectory'
 ErrorAction = 'Stop'
 }
 Import-Module @Param
 } catch {
 throw $Message
 }
 }
 $SMA = 'System.Management.Automation'
 $Type = 'Collections.ObjectModel.Collection[System.Attribute]'
 $Name = 'User'

 $Attributes = New-Object "$SMA.ParameterAttribute" -Property @{
 ParameterSetName = "__AllParameterSets"
 Mandatory = $true
 ValueFromPipeline = $true
 }
 $AttributeCollection = New-Object $Type
 $AttributeCollection.Add($Attributes)

 $Param = @{
 TypeName = "$SMA.RuntimeDefinedParameter"
 ArgumentList = @(
 $Name,
 [Microsoft.ActiveDirectory.Management.ADUser],
 $AttributeCollection
)
 }
 $Parameter = New-Object @Param

 $Dictionary = New-Object "$SMA.RuntimeDefinedParameterDictionary"
 $Dictionary.Add($Name, $Parameter)
 $Dictionary
}

Listing 7 Dynamic parameter supports loading the missing module to avoid error

Figure 3 The friendly error message generated by code inside a DynamicParam block

Checking Active
Directory
module presence
and loading it

Defining
parameter using
custom type
from module

204 CHAPTER 13 Using and “abusing” dynamic parameters

process {
 $User = $PSBoundParameters.User
 Get-ADUser $User -Properties *
}
}

As you can see, instead of using a condition to decide whether or not to add a parame-

ter, you’ll test the presence of the module that contains the type used for the example

parameter. If it’s absent we’ll try to load it. If loading fails we’ll provide a user-friendly

error message that informs the user what went wrong. This isn’t exactly what this fea-

ture was designed for, but that shouldn’t stop you.

 Another example situation where you may want to take advantage of late binding

without making the parameter itself optional is when you want to apply a validation

attribute that changes, depending on the value of the already bounded parameter.

The next listing contains the function that will decide on the validation attribute for

the Suffixes parameter once the Prefix is defined.

function Ping-Host {
[CmdletBinding()]
param (
 [ValidatePattern('^\d{1,3}(\.\d{1,3}){0,2}$')]
 [string]$Prefix
)

DynamicParam {
 if ($Prefix -match '^\d{1,3}(\.\d{1,3}){0,2}$') {
 $SMA = 'System.Management.Automation'
 $Type = 'Collections.ObjectModel.Collection[System.Attribute]'
 $Name = 'Suffixes'
 $AttributeCollection = New-Object $Type

 $Attribute1 = New-Object "$SMA.ParameterAttribute" -Property @{
 ParameterSetName = "__AllParameterSets"
 Mandatory = $true
 }
 $AttributeCollection.Add($Attribute1)

 switch -Regex ($Prefix) {
 '^\d{1,3}$' {
 $Pattern = '^\d{1,3}(\.\d{1,3}){2}$'
 }
 '^\d{1,3}\.\d{1,3}$' {
 $Pattern = '^\d{1,3}\.\d{1,3}$'
 }
 '^\d{1,3}(\.\d{1,3}){2}$' {
 $Pattern = '^\d{1,3}$'
 }
 }
 $Attribute2 = New-Object "$SMA.ValidatePatternAttribute" $Pattern

 $AttributeCollection.Add($Attribute2)

Listing 8 Function that validates second parameter based on value of first parameter

Using ValidateSet
for our static Prefix
parameter

Checking if Prefix
meets requirement
first

Using switch to
define pattern
for Suffixes
parameter

205Practical applications

 $Parameter = New-Object "$SMA.RuntimeDefinedParameter"`
 -ArgumentList @(
 $Name,
 [string[]],
 $AttributeCollection
)
 $Dictionary = New-Object "$SMA.RuntimeDefinedParameterDictionary"
 $Dictionary.Add($Name, $Parameter)
 $Dictionary
 }
}

end {
 $Output = @{}
 $Type = 'System.Net.NetworkInformation.Ping'
 $Suffixes = $PSBoundParameters.Suffixes
 Write-Verbose ($Suffixes -join ',')
 foreach ($Suffix in $Suffixes) {
 $IP = "{0}.{1}" -f $Prefix, $Suffix
 $Output.Add($IP,
 (New-Object $Type).SendPingAsync(
 $IP
)
) | Out-Null
 }
 do {
 foreach ($Key in ($Output.Keys |
 where { $Output.$_.IsCompleted})) {
 $Output.$Key.Result | select Status, RoundTripTime, @{
 Name = 'Address'
 Expression = { $Key }
 }
 $Output.Remove($Key)
 }
 } until (!$Output.Count)
}
}

We know that the IPv4 address consists of four octets expressed individually in decimal

numbers and separated by periods. Depending on the number of octets covered by

the Prefix you’ll define the pattern for the Suffixes so that joining them together

will produce a valid IP address. As a result, if you specify the correct number of octets

you’ll get asynchronous ping results:

PS C:\> Ping-Host -Prefix 192.168.1 -Suffixes (1..3)

 Status RoundtripTime Address
 ------ ------------- -------
 Success 4 192.168.1.1
 Success 0 192.168.1.3
DestinationHostUnreachable 0 192.168.1.2

But if the number of octets is incorrect you’ll get the error message:

PS C:\> Ping-Host -Prefix 192.168 -Suffixes (1..3)
Ping-Host : Cannot validate argument on parameter 'Suffixes'. The argument

Using .NET 4.5 method to
simplify asynchronous
pinging

206 CHAPTER 13 Using and “abusing” dynamic parameters

"1" does not match the "^\d{1,3}\.\d{1,3}$" pattern. Supply an argument
that matches "^\d{1,3}\.\d{1,3}$" and try the command again.
At line:1 char:37
+ Ping-Host -Prefix 192.168 -Suffixes (1..3)
+ ~~~~~~
 + CategoryInfo : InvalidData: (:) [Ping-Host], ParameterBindin
 gValidationException
 + FullyQualifiedErrorId : ParameterArgumentValidationError,Ping-Host

This gives us the option to make our command flexible, without losing appropriate

parameter validation.

Summary
The Windows PowerShell scripting language is flexible and potentially dynamic. Com-

mands may adapt their behavior and parameters to the circumstances at runtime and

dynamic parameters are a powerful technique to implement it.

 Dynamic parameters by definition are present depending on predefined condi-

tions. But it’s also possible to use this language element to implement parameters that

can always be present, but which require late binding. This is because of some depen-

dencies that have to be met, or some flexibility you’d like to implement in the valida-

tion of attributes. The requirement to run code during the parameter binding phase

is enough to justify using dynamic parameters.

 This flexibility, though, comes at a price that may discourage script authors from

using the technique. It’s complex and it harms discoverability of parameters. But I rec-

ommend that you know how to use this technique and have it handy for whenever cir-

cumstances justify using it. In my opinion it’s great that this option exists, and I’m

happy that most provider-related cmdlets use it to make providers more practical and

easier to use.

About the author

Bartosz (Bartek) Bielawski is a busy IT Administrator with an inter-

national company, PAREXEL. He loves PowerShell and automa-

tion. That love earned him the honor of Microsoft MVP. He shares

his knowledge mainly on his blogs and through articles published

in the Polish IT Professional magazine.

207

PowerShell type formatting

 Adam Driscoll

Type formatting is used to define how a .NET type will be displayed on the Power-

Shell command line or host. Without the use of formatting a large number of .NET

types would prove difficult to read. This chapter focuses on defining a custom for-

matting file for the PrintSystemJobInfo class. This class defines the print jobs that

are in progress on local and remote print servers. The following script outputs all

the print jobs on the local machine:

Add-Type –AssemblyName "System.Printing"

foreach($pq in (New-Object -TypeName
 ➥ System.Printing.PrintServer).GetPrintQueues())
{
 $pq.Refresh()
 $pq.GetPrintJobInfoCollection()
}

The script creates a new PrintServer object, iterates over the print queues on the sys-

tem, and then returns the print jobs for each of the print queues. Running the script

yields output similar to what’s shown here:

HostingPrintServer : System.Printing.PrintServer
HostingPrintQueue : System.Printing.PrintQueue
JobName : Print System Document
IsRetained : False
IsUserInterventionRequired : False
IsBlocked : False
IsDeleted : False
IsPaperOut : False
IsOffline : False
IsPrinting : False
…

This particular class has 33 properties. Although most of them are useful, viewing

all of them at once makes it difficult to find the most important information. This is

especially true when many print jobs are running on a machine.

14

208 CHAPTER 14 PowerShell type formatting

 One example of type formatting that comes preinstalled is the FileInfo class

returned by Get-ChildItem within the file system provider. This class contains 15

properties. The default format reduces that to 4, groups them, and displays them in a

table as shown here:

PS C:\Users\Adam> Get-ChildItem
 Directory: C:\Users\Adam
Mode LastWriteTime Length Name
---- ------------- ------ ----
d-r-- 7/13/2012 7:07 PM Contacts
d-r-- 11/18/2012 8:18 PM Desktop
d-r-- 10/14/2012 9:43 PM Documents
d-r-- 11/21/2012 8:54 PM Downloads
d-r-- 7/13/2012 7:07 PM Favorites
d-r-- 7/13/2012 7:07 PM Links
d-r-- 8/5/2012 8:08 PM Music

Another example is the RegistryKey class returned by Get-ChildItem within the reg-

istry provider. The default formatting for this class organizes the output into a key and

property value output that again is much easier to consume. Without formatting, the

registry values wouldn’t be displayed and the keys wouldn’t be grouped:

PS HKLM:\Software> Get-ChildItem
 Hive: HKEY_LOCAL_MACHINE\Software
Name Property
---- --------
7-Zip Path : C:\Program Files\7-Zip\
Adobe
AGEIA Technologies PhysX Version : 9110621
 PhysX BuildCL : 1
 HwSelection : GPU
 PhysXCore Path : C:\Program…
…

Several core formatting files are provided with PowerShell that cover many of the .NET

types. All formatting files have an extension of *.format.ps1xml. To locate the format-

ting files installed with PowerShell use the following command:

PS C:\> Get-ChildItem $PSHome*.format.ps1xml

 Directory: C:\Windows\System32\WindowsPowerShell\v1.0

Mode LastWriteTime Length Name
---- ------------- ------ ----
-a--- 6/10/2009 3:41 PM 27338 Certificate.format.ps1xml
-a--- 6/10/2009 3:41 PM 27106 Diagnostics.Format.ps1xml
-a--- 7/23/2012 1:12 PM 144442 DotNetTypes.format.ps1xml
-a--- 1/3/2012 3:36 PM 14502 Event.Format.ps1xml
-a--- 7/23/2012 1:12 PM 21293 FileSystem.format.ps1xml
-a--- 7/23/2012 1:12 PM 287938 Help.format.ps1xml
-a--- 11/4/2011 8:17 PM 97880 HelpV3.format.ps1xml
-a--- 7/23/2012 1:12 PM 101824 PowerShellCore.format.ps1xml
-a--- 6/10/2009 3:41 PM 18612 PowerShellTrace.format.ps1xml

209View definitions

-a--- 7/23/2012 1:12 PM 13659 Registry.format.ps1xml
-a--- 7/23/2012 1:12 PM 17731 WSMan.Format.ps1xml

An easy way to learn the syntax required for one of these files is to look at one of the

examples in this directory. Be careful not to edit the formatting files, as it can cause

them to fail to load and may prevent formatting from functioning. The XML schema is

strictly enforced by the formatting engine, so following another file’s example can be

helpful. The DotNetTypes.format.ps1xml file contains many commonly used formats

for .NET types, whereas formatting files such as the FileSystem.format.ps1xml file con-

tain formatting definitions for file system provider–related types. The PowerShell v3

version of the Integrated Scripting Environment (ISE) provides XML syntax highlight-

ing, basic format validation, and code folding. This makes it a readily available and

easy-to-use tool for working with formatting files.

Creating a formatting file
Formatting files define two primary sets of information: views and controls. Views are

responsible for selecting properties and laying out data in formats such as list and

table view. Controls allow for more advanced control of how data is presented to the

user. All formatting files have a root Configuration node. To get started open the ISE.

Then create a new file and name it PrintSystemJobInfo.format.ps1xml. Although the

.format portion of the filename isn’t strictly enforced, best practice is to include this in

a formatting file’s name. The .ps1xml extension is required. Within the format file

define the following nodes:

<?xml version="1.0" encoding="utf-8" ?>
<Configuration>
 <Controls>
 </Controls>
 <ViewDefinitions>
 </ViewDefinitions>
</Configuration>

The Controls and ViewDefinitions nodes contain the definition for the entire for-

matting file. Formatting files can define views for multiple .NET types and multiple

views for each of those types. The rest of this chapter focuses on defining a single view

for the PrintSystemJobInfo class.

View definitions
Within the ViewDefinitions node you can use the standard List, Wide, and Table

views. The different views are triggered when calling the different formatting cmdlets.

These include Format-List, Format-Wide, Format-Table, and Format-Custom. If only

one view is defined in the formatting file it’s treated as the default view and is trig-

gered when no formatting cmdlet is specified. Not all object types define a custom

view for each standard formatting cmdlet. To list the custom views for a particular

.NET type use the Get-FormatData cmdlet. Here’s an example that returns the custom

formatting for the System.Diagnostics.Process class:

210 CHAPTER 14 PowerShell type formatting

PS C:\> (Get-FormatData System.Diagnostics.Process).FormatViewDefinition

Name Control
---- -------
process TableControl
Priority TableControl
StartTime TableControl
process WideControl

In an effort to make instances of the PrintSystemInfoJob class a bit more readable, it

may be best to choose the Format-Table view. As many print jobs may be running on

a machine, formatting as a table allows you to fit many more instances on the screen

than with a list view. Within your ViewDefinitions node you can define a new view

and specify the TableControl view like this:

<ViewDefinitions>
 <View>
 <Name>System.Printing.PrintSystemJobInfo</Name>
 <ViewSelectedBy>
 <TypeName>System.Printing.PrintSystemJobInfo</TypeName>
 </ViewSelectedBy>
 <TableControl>
 </TableControl>
 </View>
</ViewDefinitions>

Note that you can have only one control view per View node. If you were to specify a

ListControl or WideControl node you’d get an error when loading the formatting file.

 In addition to defining the TableControl, the Name and ViewSelectedBy nodes

have been added. The Name node needs to be unique among formatting files but

doesn’t necessarily have to be the .NET type name. The ViewSelectedBy node defines

at what times this view should be used. In this case you want to use this view when a

System.Printing.PrintSystemJobInfo is output to the PowerShell host. You can also

use SelectionSet nodes, which are groups of .NET types, or ScriptBlock nodes to

define when a particular view should be selected.

Defining table headers
The table output is arranged by column headers followed by the data formatted into

rows. Your first job when using the TableControl is to define the headers that you

want displayed within the view. You can do this by putting a TableHeaders node

underneath the TableControl. Here’s the XML structure to accomplish this, which

defines six useful properties that will be displayed during output of a PrintSystem-

JobInfo object:

<TableControl>
 <TableHeaders>
 <TableColumnHeader>
 <Label>Identifier</Label>
 <Width>12</Width>
 </TableColumnHeader>

211Defining table headers

 <TableColumnHeader>
 <Label>Name</Label>
 </TableColumnHeader>
 <TableColumnHeader>
 <Label>Submitter</Label>
 </TableColumnHeader>
 <TableColumnHeader>
 <Label>Time Submitted</Label>
 </TableColumnHeader>
 <TableColumnHeader>
 <Label>Printer</Label>
 </TableColumnHeader>
 <TableColumnHeader>
 <Label>Size (kB)</Label>
 <Alignment>Right</Alignment>
 </TableColumnHeader>
</TableHeaders>

In addition to the header text, the table headers can define the width and alignment

of the column. The header text can be arbitrary but should, for good reason, make

sense in relation to what’s being displayed within the cells beneath it.

 Having defined the column structure and header text you can now define the data

that will be written to each one of the rows’ columns. You can do this with the Table-

RowEntries node, which falls within the TableControl node, as follows:

<TableControl>
 <!—header definition removed for brevity -->
 <TableRowEntries>
 <TableRowEntry>
 <TableColumnItems>
 <TableColumnItem>
 <PropertyName>JobIdentifier</PropertyName>
 </TableColumnItem>
 <TableColumnItem>
 <PropertyName>Name</PropertyName>
 </TableColumnItem>
 <TableColumnItem>
 <PropertyName>Submitter</PropertyName>
 </TableColumnItem>
 <TableColumnItem>
 <PropertyName>TimeJobSubmitted</PropertyName>
 </TableColumnItem>
 <TableColumnItem>
 <ScriptBlock>$_.HostingPrintQueue.FullName</ScriptBlock>
 </TableColumnItem>
 <TableColumnItem>
 <ScriptBlock>$_.JobSize / 1000</ScriptBlock>
 <FormatString>{0:D}</FormatString>
 </TableColumnItem>
 </TableColumnItems>
 </TableRowEntry>
 </TableRowEntries>
</TableControl>

212 CHAPTER 14 PowerShell type formatting

Notice that the entry values match the number and order of the header column defi-

nitions. This is required, and if there’s a mismatch errors will be presented when the

formatting file is loaded or data won’t appear in the correct column. The most basic

type of column data is mapped to a property on the object. For example, the Job-

Identifier, Name, Submitter, and TimeJobSubmitted are mapped to the column

headers defined in the TableHeaders node.

 The Printer column is mapped to a script block. The $_ variable refers to the current

PrintSystemJobInfo instance that the formatting file is processing. The $this variable

won’t work in these script blocks. The script block retrieves the full name of the print

queue (printer) within which the job is queued. The second script block divides the

JobSize property, which is in bytes, by 1000 to return kilobytes. A FormatString node is

used to format the value into a decimal representation. The FormatString node can

take any string that a –Format operator would accept when formatting string data with

PowerShell.

Conditional row entries
You can place conditions on how data is formatted based on the state of the object

that’s being formatted. The following listing is an example of a conditional and a

default table row entry.

<TableRowEntry>
 <TableColumnItems>
 <TableRowEntry>
 <TableColumnItems>
 <TableColumnItem>
 <PropertyName>JobIdentifier</PropertyName>
 </TableColumnItem>
 <TableColumnItem>
 <PropertyName>Name</PropertyName>
 </TableColumnItem>
 <TableColumnItem>
 <PropertyName>Submitter</PropertyName>
 </TableColumnItem>
 <TableColumnItem>
 <PropertyName>TimeJobSubmitted</PropertyName>
 </TableColumnItem>
 <TableColumnItem>
 <ScriptBlock>
 $_.HostingPrintQueue.FullName
 </ScriptBlock>
 </TableColumnItem>
 <TableColumnItem>
 <ScriptBlock>$_.JobSize / 1000</ScriptBlock>
 <FormatString>{0:D}</FormatString>
 </TableColumnItem>
 </TableColumnItems>
 </TableRowEntry>

Listing 1 Conditional row entries

Default table
row entryb

Displays only the
printer name

213Conditional row entries

 </TableColumnItems>
</TableRowEntry>
<TableRowEntry>
 <EntrySelectedBy>
 <SelectionCondition>
 <TypeName>
 System.Printing.PrintSystemJobInfo
 </TypeName>
 <ScriptBlock>
 $_.HostingPrintServer.BeepEnabled
 </ScriptBlock>
 </SelectionCondition>
 </EntrySelectedBy>
 <TableColumnItems>
 <TableColumnItem>
 <PropertyName>JobIdentifier</PropertyName>
 </TableColumnItem>
 <TableColumnItem>
 <PropertyName>Name</PropertyName>
 </TableColumnItem>
 <TableColumnItem>
 <PropertyName>Submitter</PropertyName>
 </TableColumnItem>
 <TableColumnItem>
 <PropertyName>TimeJobSubmitted</PropertyName>
 </TableColumnItem>
 <TableColumnItem>
 <ScriptBlock>
 $_.HostingPrintQueue.FullName + " (Beeps)"
 </ScriptBlock>
 </TableColumnItem>
 <TableColumnItem>
 <ScriptBlock>$_.JobSize / 1000</ScriptBlock>
 <FormatString>{0:D}</FormatString>
 </TableColumnItem>
 </TableColumnItems>
 </TableRowEntry>

Table row entry B is the default table row entry. It’s required to have one and only

one default entry that will be selected when no conditional entries match the given

object’s data. The table row entry c is an example of a conditional table row entry. In

this example it’s only selected if the print server has beeping enabled. If it’s selected the

print queue name is followed by the text “(Beeps).” Like table row entries B and c,

additional table row entries still need to have the same number and order of Table-

ColumnItem nodes as the column headers.

 When creating formatting files with other views, such as the List or Wide view,

you’ll find that they have different nodes and properties from Table view. You’ll need

to study the documentation or find examples to properly develop a formatting file

when using those views.

Conditional table
row entry

c

Table row entry
selection
condition

Displays the printer
name followed by
“(Beeps)”

214 CHAPTER 14 PowerShell type formatting

Grouping
As shown earlier, the file system provider groups files based on path. This is a result of

the formatting file definition for FileInfo objects. You can accomplish this within

your custom formatting file as well. You can easily group your print jobs by server and

printer using the following GroupBy node:

<View>
 <GroupBy>
 <ScriptBlock>
 $_.HostingPrintServer.Name+ " : " +
 ➥ $_.HostingPrintQueue.FullName
 </ScriptBlock>
 <CustomControlName>PrintJob-GroupFormatting</CustomControlName>
</GroupBy>
 <!—Other Stuff Removed For Brevity -->
</View>

The GroupBy node can group objects based on a property value or script block.

Grouping can be taken a step further and also define a custom control to use when

outputting the header value for each group. In the next section I’ll show you how to

do this. The CustomControlName node is used to define the custom control that will

format this header value.

Custom controls
Custom controls allow for advanced control of output in formatting files. You can define

custom controls either within the Controls node underneath the Configuration root

node, or within nodes such as the CustomControl node within the GroupBy node. In

the previous GroupBy example you saw the CustomControlName node referencing the

custom control from elsewhere in the document. In that case you’d define the custom

control within the global Controls node like this:

<Configuration>
 <Controls>
 <Control>
 <Name>PrintJob-GroupFormatting</Name>
 <CustomControl>
 <CustomEntries>
 <CustomEntry>
 <CustomItem>
 <Frame>
 <LeftIndent>4</LeftIndent>
 <CustomItem>
 <Text>Printer: </Text>
 <ExpressionBinding>
 <ScriptBlock>$_.HostingPrintServer.Name + " : " +
$_.HostingPrintQueue.FullName </ScriptBlock>
 </ExpressionBinding>
 <NewLine/>
 </CustomItem>
 </Frame>

215Custom controls

 </CustomItem>
 </CustomEntry>
 </CustomEntries>
 </CustomControl>
 </Control>
 </Controls>
 <!—remove ViewDefintions for brevity -->
</Configuration>

This custom control is the text that’s displayed as a header for the custom grouping

operation. Custom controls are customizable and allow for script blocks, numerous

types of text formatting, and selection conditions similar to that of views. Custom con-

trols are built around the concept of frames. A frame can control the indentation and

hanging of text within the frame. In the example a left indent of four characters is

specified. The custom item within the frame formats the object into readable text.

 Raw text, like “Printer:”, is specified with the Text node. Dynamic content, on the

other hand, can be generated in several different ways. The example uses a Script-

Block node to run a command to output several properties of the hosting print server

to the PowerShell host. Another method of dynamic content is to specify the Property-

Name node as shown in the following snippet. It outputs the value of the property of

the object being formatted:

 <ExpressionBinding>
 <PropertyName>Name<PropertyName>
 </ExpressionBinding>

Custom controls also accept conditional statements like table row entries do. For

example, you could use the same condition you used for the table row entry to select a

particular CustomEntry within the custom control. Again, you need to ensure that you

define a default CustomEntry node along with a conditional custom entry, as in the

following listing.

<CustomEntry>
 <-- CustomEntry Definition Goes Here -->
</CustomEntry>
<CustomEntry>
 <EntrySelectedBy>
 <SelectionCondition>
 <TypeName>
 System.Printing.PrintSystemJobInfo
 </TypeName>
 <ScriptBlock>
 $_.HostingPrintServer.BeepEnabled
 </ScriptBlock>
 </SelectionCondition>
 </EntrySelectedBy>
</CustomEntry>

Listing 2 A custom entry

Default custom
entry

Conditional
custom entry

216 CHAPTER 14 PowerShell type formatting

Putting it together
The final result of the steps taken throughout this chapter is shown in the following

listing. You can place this file anywhere that’s readily accessible, as long as you have

read access to its location.

<?xml version="1.0" encoding="utf-8" ?>
<Configuration>
 <Controls>
 <Control>
 <Name>PrintJob-GroupFormatting</Name>
 <CustomControl>
 <CustomEntries>
 <CustomEntry>
 <CustomItem>
 <Frame>
 <LeftIndent>4</LeftIndent>
 <CustomItem>
 <Text>Printer: </Text>
 <ExpressionBinding>
 <ScriptBlock>
 $_.HostingPrintServer.Name +
 ":" +
 $_.HostingPrintQueue.FullName
 </ScriptBlock>
 </ExpressionBinding>
 <NewLine/>
 </CustomItem>
 </Frame>
 </CustomItem>
 </CustomEntry>
 </CustomEntries>
 </CustomControl>
 </Control>
 </Controls>
 <ViewDefinitions>
 <View>
 <GroupBy>
 <ScriptBlock>
 $_.HostingPrintServer.Name + " : " +
 $_.HostingPrintQueue.FullName
 </ScriptBlock>
 <CustomControlName>
 PrintJob-GroupFormatting
 </CustomControlName>
 </GroupBy>
 <Name>
 System.Printing.PrintSystemJobInfo
 </Name>
 <ViewSelectedBy>
 <TypeName>
 System.Printing.PrintSystemJobInfo

Listing 3 A complete extension configuration

Custom
grouping
header
control

Main view for the
PrintSystemJobInfo class

Grouping
clause

Reference to the
custom control

Name of
the view

Selection conditions
for the view

217Putting it together

 </TypeName>
 </ViewSelectedBy>
 <TableControl>
 <TableHeaders>
 <TableColumnHeader>
 <Label>Identifier</Label>
 <Width>12</Width>
 </TableColumnHeader>
 <TableColumnHeader>
 <Label>Name</Label>
 </TableColumnHeader>
 <TableColumnHeader>
 <Label>Submitter</Label>
 </TableColumnHeader>
 <TableColumnHeader>
 <Label>Time Submitted</Label>
 </TableColumnHeader>
 <TableColumnHeader>
 <Label>Printer</Label>
 </TableColumnHeader>
 <TableColumnHeader>
 <Label>Size (kB)</Label>
 <Alignment>Right</Alignment>
 </TableColumnHeader>
 </TableHeaders>
 <TableRowEntries>
 <TableRowEntry>
 <TableColumnItems>
 <TableColumnItem>
 <PropertyName>
 JobIdentifier
 </PropertyName>
 </TableColumnItem>
 <TableColumnItem>
 <PropertyName>
 Name
 </PropertyName>
 </TableColumnItem>
 <TableColumnItem>
 <PropertyName>
 Submitter
 </PropertyName>
 </TableColumnItem>
 <TableColumnItem>
 <PropertyName>TimeJobSubmitted</PropertyName>
 </TableColumnItem>
 <TableColumnItem>
 <ScriptBlock>$_.HostingPrintQueue.FullName</
 ScriptBlock>
 </TableColumnItem>
 <TableColumnItem>
 <ScriptBlock>
 $_.JobSize / 1000
 </ScriptBlock>
 <FormatString>

Selection conditions
for the view

Specification
of the table

control

Column header
definitions

Default table
row entry

definitions

218 CHAPTER 14 PowerShell type formatting

 {0:D}
 </FormatString>
 </TableColumnItem>
 </TableColumnItems>
 </TableRowEntry>
 <TableRowEntry>
 <EntrySelectedBy>
 <SelectionCondition>
 <TypeName>System.Printing

.PrintSystemJobInfo</TypeName>
 <ScriptBlock>-not

$_.HostingPrintServer.BeepEnabled</ScriptBlock>
 </SelectionCondition>
 </EntrySelectedBy>
 <TableColumnItems>
 <TableColumnItem>
 <PropertyName>
 JobIdentifier
 </PropertyName>
 </TableColumnItem>
 <TableColumnItem>
 <PropertyName>
 Name
 </PropertyName>
 </TableColumnItem>
 <TableColumnItem>
 <PropertyName>
 Submitter
 </PropertyName>
 </TableColumnItem>
 <TableColumnItem>
 <PropertyName>TimeJobSubmitted</PropertyName>
 </TableColumnItem>
 <TableColumnItem>
 <ScriptBlock>
 $_.HostingPrintQueue.FullName +
 " (Beeps)"
 </ScriptBlock>
 </TableColumnItem>
 <TableColumnItem>
 <ScriptBlock>
 $_.JobSize / 1000
 </ScriptBlock>
 <FormatString>
 {0:D}
 </FormatString>
 </TableColumnItem>
 </TableColumnItems>
 </TableRowEntry>
 </TableRowEntries>
 </TableControl>
 </View>
 </ViewDefinitions>
</Configuration>

Default table
row entry
definitions

Conditional
table row entry

definitions

Table row entry
condition

219Loading formatting data

Loading formatting data
Once you’ve completed your formatting file you can load it into a PowerShell session

using the Update-FormatData cmdlet. When used without parameters this cmdlet

reloads the format data that has already been loaded into a PowerShell session. When

specifying either the PrependPath or AppendPath parameter it loads the format data

from the path specified. This is where you specify the path to your formatting file. The

difference between the AppendPath and PrependPath has to do with the precedence

of formatting files. If you use AppendPath your formatting file is of a lower precedence

than formatting files earlier in the list. The first formatting file to contain a particular

type is the formatting file that PowerShell uses to format instances of that type. Using

PrependPath ensures that your formatting file is the first file found. This is an exam-

ple of loading the format data:

Update-FormatData -PrependPath (Join-Path '$Profile
 ➥ PrintSystemJobInfo.format.ps1xml')

The command loads the formatting file from your PowerShell profile. Join-Path

combines the path to your profile and the filename before passing it to Update-

FormatData.

 After loading the custom formatting file you can run the same snippet you ran at

the beginning of this chapter. The resulting output will look like that shown in fig-

ure 1 and, as you can see, it looks quite different from that shown at the beginning

of the chapter.

 The Update-FormatData cmdlet will return any errors found within the formatting

file. Errors are generally well defined and point you directly to the node that’s causing

the problem. After any errors are corrected calling Update-FormatData again will

attempt to reload the file.

 In addition to manually loading a format file, module authors can package and

load formatting files by specifying the file in the module’s manifest. The New-Module-

Manifest cmdlet offers a FormatsToProcess parameter that accepts an array of strings

that can contain the filenames of format files to load during module import. The for-

mat files have to reside in the root directory for the module. When the module is

Figure 1 Formatted results

220 CHAPTER 14 PowerShell type formatting

either auto-loaded or loaded with Import-Module the format files are processed and

applied to the session:

PS C:\> Get-Help New-ModuleManifest -Parameter FormatsToProcess

-FormatsToProcess <String[]>
 Specifies the formatting files (.ps1xml) that run when the module is
 imported.
 When you import a module, Windows PowerShell runs the Update-FormatData
 cmdlet with the specified files. Because formatting files are not
 scoped, they affect all session states in the session.

Summary
Formatting files are an important aspect of PowerShell and are often overlooked by

casual users. .NET types can be presented in ways that make it much easier to visually

consume output written to the command line. As a module author you can use for-

matting files to provide a professional edge to your work. As a casual user you can use

them to help customize the shell to meet your needs and preferences. Whatever your

role, I encourage you to explore and discover this facet of PowerShell’s vast ecosystem.

About the author

Adam Driscoll is a software developer and team lead at Dell. He

has experience working with Microsoft .NET, Android, SQL, and

C++ but focuses primarily on PowerShell API development. As

PowerShell is fast becoming the automation tool of choice for

both Microsoft and IT administrators, he finds it exciting to con-

tribute to the platform as it evolves and advances. Adam is the

author of the Visual Studio 2010 extension PowerGUI VSX. It inte-

grates the PowerGUI PowerShell script editor into Visual Studio.

Since its inception it has received over 60,000 downloads. Adam is

also an avid blogger and author of Microsoft Windows PowerShell 3.0 First Look (Packt

Publishing 2012).

221

Scalable scripting for large
data sets: pipeline and
database techniques

 Matthew Reynolds

An online retailer needed to learn which of their Domain Name System (DNS)

records were getting the most queries after an advertising campaign. They wrote a

script to get this information from their DNS server logs, but as the logs grew, the

script slowed to a crawl. Worse, when they tried to run the script on multiple servers

remotely the script failed with an OutOfMemoryException.

 A web search for the terms PowerShell and OutOfMemoryException returns many

thousands of hits. People are clearly struggling to manage large data sets.

 The typical problem is the use of a fragile pattern that works in the lab but

doesn’t scale with real-world production data. In this chapter we’ll explore how to

write scripts that scale to any size input by processing records in “streams” instead

of “water balloons.”

The stream and the water balloon
Imagine that you need to measure the amount of water that flows down a mountain

stream per hour.

 One approach would be to build a huge balloon as a reservoir to stop and hold

all the water in one place. Then you would measure the volume of the balloon.

This could work, but it could also be slow and expensive. It also scales poorly. What

if the requirement changes to measure the amount of water flowing over a year

instead of an hour? What if the flow of water is higher than expected? Will the bal-

loon pop?

 Instead of using a balloon or any other reservoir you could use a detector to

measure the ongoing flow rate of water past a certain point in the stream. This way

there’s no balloon to build or pop, and by adding up your measurements over time

15

222 CHAPTER 15 Scalable scripting for large data sets: pipeline and database techniques

you can determine the amount of water for any time period, from a minute to a

decade. This kind of approach, where you deal with small amounts of the stream at

a time instead of collecting everything at once, is what I’ll refer to as “streaming.”

 For the IT professional using PowerShell the water in this metaphor is the source

data (event logs, database rows, Active Directory objects, log files, and so on) that you

want to measure or process in a script. You only have so much memory to work with,

which limits the size of any data balloons you could stretch to hold everything at once.

Scaling to any size input requires scripting patterns that measure or process items

flowing through a stream instead.

Streams and water balloons in PowerShell scripts
Most scripts include lines like the following:

$myThings = Get-Thing *

The variable $myThings is a water balloon in the memory space of the PowerShell ses-

sion. It will expand with the number and size of objects output by Get-Thing, and it

could pop if it gets big enough. The imaginary Get-Thing command in this example

is a stand-in for any cmdlet or method that outputs objects.

 The following variation also brings all the “things” into memory at once in a fragile

water balloon pattern, though more subtly:

Invoke-Thing –InputObject (Get-Thing *)

As before, a ballooning array is created to hold “Things” output by Get-Thing. In this

case, the array is temporary and anonymous, but equally fragile.

The problem: holding everything in memory at once

Using either variation you’ve brought all of the Things into memory at one time. If

there were 100 Things, the script might work well. What if we run it in an environ-

ment with 20 million Things?

 Pop.

 By holding all of the Things in memory at once you consume memory propor-

tional to the number of Things and risk

■ Scripts crashing with an OutOfMemoryException
■ Degrading performance of the machine (and the services it provides) by taxing

system memory resources

The following is a realistic example of the fragile water-balloon pattern (holding

everything in memory) while processing a modestly large log file (about 500 MB):

$logEntries = Import-CSV -Path (Join-Path $env:temp "biglog.txt")
Select-Object –InputObject $logEntries –Property Name

NOTE The scripts included with this book include a script (Setup__CreateBig-
Log.ps1) for generating a similar log file so you can try this snippet
for yourself.

223Streams and water balloons in PowerShell scripts

The first line creates a big, fragile water balloon. It stores all of the objects from

Import-CSV in $logEntries. The battle is already lost.

 The second line (Select-Object) is included in the example only to imply that

you would typically do some task with the log entries once you have them. The real

task could be anything. Before you can execute the interesting task, though, you are

already at risk because of the potentially large and fragile water balloon created on

the first line.

 The annotated Performance Monitor graph in figure 1 shows this script causing

high memory usage and poor system responsiveness, and eventually failing. The

descending line is system-wide available RAM as measured by the performance coun-

ter Memory\Available Mbytes. The ascending dashed line is the size of our water bal-

loon as measured by Process\Private Bytes (powershell.exe). This counter reflects how

much data is loaded into the powershell.exe process memory address space.

 In this example you can see that the available system RAM decreases as the amount

of data held in the powershell.exe process grows (the $logEntries water balloon). As

the machine runs out of available RAM it keeps itself alive through heavy page file

usage, resulting in poor system responsiveness. Finally, the script fails with an OutOf-

MemoryException as the powershell.exe instance reaches a maximum allowed size.

This example combines two different memory problems (available system RAM and

process-level memory limitations) that are subject to different limitations. Available

RAM is easy enough to understand, but fewer IT pros are familiar with process-level

memory limitations. Even on a server with terabytes of available RAM a 32-bit process

can only hold roughly 2 GB of information, and PowerShell remote sessions are fur-

ther limited to 150 MB of memory by default.

System-wide

available memory

Powershell.exe

memory usage

Very poor system

responsiveness

& high paging

Task failed after

533 seconds

(Out of memory)

Figure 1 Memory usage of Powershell.exe while processing a 500 MB log file

224 CHAPTER 15 Scalable scripting for large data sets: pipeline and database techniques

The solution: stream over input items instead of collecting them

How can you write scripts that hold up equally well against 1 Thing or 20 million

Things? Wherever possible you should stream over data instead of collecting and

looping. You can use command pipelining, as in the following example, to accomplish

tasks without creating any water balloons:

Import-CSV -Path (Join-Path $env:temp "biglog.txt") |
 ➥ Select-Object –Property Name

In this example you import the log entries and perform a task on each one. As

before, the Select-Object portion is a stand-in. The task could be anything. By pip-

ing the objects from Import-CSV into the downstream task cmdlets you avoid creat-

ing a water balloon. In this pattern the downstream cmdlets or functions receive and

process one item at a time, and you process the entire data set without ever having it

all in memory at once.

 The graph shown in figure 2, using the same counters as figure 1, shows well-

constrained memory usage, good system responsiveness, and a successful script

execution.

 This script could handle any number of input items without exhausting memory.

Not only do you use less memory, but you constrain your memory usage such that it

remains flat regardless of the number of input items. The pattern of needing to deal

with large data sets a little at a time is well established. Mature data access technolo-

gies like LDAP and SQL have “paging” constructs to protect both data providers and

consumers from resource exhaustion. In PowerShell you can use the pipeline to

similar advantage.

System-wide

available memory

Powershell.exe

memory usage
Task completed

in 133 seconds

Figure 2 Memory usage stays flat and system responsiveness stays high regardless

of input size

http://powershell4sql.codeplex.com/
http://powershell4sql.codeplex.com/
http://powershell4sql.codeplex.com/

225Streams and water balloons in PowerShell scripts

Pipelines are not the enemy of efficiency

Many students in scripting classes seem to have heard that pipelines are slow and inef-

ficient compared to water-balloon approaches like collecting objects and then looping

over them. This is an area that requires some clarity.

 Using a pipeline doesn’t magically make scripts efficient. Memory efficiency comes

with scripting patterns that avoid cramming lots of data into water balloons. Pipelines

together with cmdlets or functions that make good use of their process blocks are a

powerful way to accomplish this.

 Pipelines (and the related cmdlet binding) do have overhead. They should be

used when their benefits outweigh their costs. Pipelines can be an inefficient choice

for CPU consumption and execution time when dealing with few objects, when the

pipeline will be recreated repeatedly, or when unnecessary cmdlet binding can be

avoided. The following example demonstrates inefficient use of pipelines in a simple

task (getting the names of files in the Windows directory):

Get-ChildItem -Path $env:windir -recurse |
 Foreach-object {
 $_ | Select-Object -expandProperty Fullname
 }

Although this example is memory-efficient, it runs slower than it needs to because

pipelining is used in a wasteful way. The nested pipeline is created many times and

each time only processes one object. This took about 50 seconds per run to complete

on a test system. The following is an improved approach:

Get-ChildItem -Path $env:windir -recurse |
 ➥ Select-Object -ExpandProperty Fullname

This accomplishes the same task much faster (about 22 seconds per run on a test sys-

tem). The pipeline is only created once and all the objects are streamed through it.

 You could skip the pipeline and use a collect-and-loop (water balloon) pattern

instead, as in the following example:

foreach($fileOrDir in @(gci -Path $env:windir -recurse)){
 Select-Object -InputObject $fileOrDir -ExpandProperty FullName
}

The preceding took about 55 seconds per run to complete on the same test system.

This is similar to the inefficient pipe example and far slower than the efficient pipe

example. The following variant gains speed for this specific task by avoiding the over-

head of the call to Select-Object:

foreach($fileOrDir in @(gci -Path $env:windir -recurse)){
 $fileOrDir.FullName
}

This variant completed in about 25 seconds per run on the same test machine.

 The lesson is that collect-and-loop (water balloon) can be a fast pattern, but it isn’t

always faster than using pipes. Also, the “collect” part of collect-and-loop comes with a

226 CHAPTER 15 Scalable scripting for large data sets: pipeline and database techniques

fragile water balloon. In this example all of the FileInfo objects output by Get-

ChildItem are collected in memory before being looped through.

 The goal for the scalable scripter isn’t to use pipelines for the sake of it. Collecting

the items can be fine where the author is absolutely sure that the number and size of

items will always be modest. If the author can’t be completely sure that the size of the

balloon will always be modest in every context where the script might run, then it’s

safer to use a streaming pattern instead. Pipelines shine brightest when

■ The data set might contain many objects
■ The process blocks of cmdlets or functions on the pipeline will process the

objects efficiently
■ Excessive pipelines (for example, nested single-use pipelines) won’t be created

unnecessarily

Making it real: streaming over data in complex
realistic tasks
Scripters have two supporting patterns they can use to write streaming scripts that scale:

■ Writing effective process blocks in script functions
■ Implementing cross-object logic (grouping, averages, sums, trends, and so on)

while streaming

Does embracing pipelines mean you should use Where-Object to filter large

data sets?

A peculiar notion held by many students in scripting workshops is that the “Power-
Shell way” to filter data is to pull it all from a source indiscriminately and then use
Where-Object to filter it. This is wrong. Although Where-Object is a capable cmdlet,
it’s almost always better to filter data natively at its source (for example, using a
-Filter parameter or similar parameter as part of a Get-* cmdlet). Depending on
the script or pipeline structure it may not matter to memory efficiency, but there are
usually other advantages (CPU, execution time, network I/O, disk I/O) to filtering at
the source. Consider the following examples:

PS C:\> Measure-Command {
 ➥ Get-ChildItem -Path $env:windir –recurse |
 ➥ Where-Object{ $_.Name -eq "netlogon.dll" }
 ➥ } | Format-List -Property TotalSeconds

TotalSeconds : 36.0082583

PS C:\> Measure-Command{
 ➥ Get-ChildItem -Path $env:windir -recurse -filter netlogon.dll} |
 ➥ Format-List -Property TotalSeconds

TotalSeconds : 10.9730405

Each of these is safe in terms of memory scalability, as neither collects large num-
bers of items in memory at once. The latter, however, will run much faster and con-
sume fewer resources by filtering natively at the source data provider.

227Making it real: streaming over data in complex realistic tasks

We will explore these patterns in the context of a real-world DNS management task.

 Imagine your organization wants to get rid of some old static DNS records. Unfor-

tunately, no one feels sure whether some unknown but critical application or device

out there might still be querying and relying on these ancient records. Here you enter

the “IT paralysis by fear” zone (or alternatively the “discover your dependencies by

making cowboy changes” zone).

 You don’t have to live in fear. To count how many times a given record has been

queried you can write a script that parses the debug logs of the DNS Server service.

 You might be tempted to write this in a nonscalable way, like in this next snippet.

Note that you haven’t yet written the ConvertFrom-DnsLogLine function, but you will

shortly. First, let’s sketch out the context of how you would use it. The following is how

not to do it:

$logLines = Get-Content –Path $dnsLogPath
$parsedLogLines = ConvertFrom-DNSLogLine –InputObject $logLines
$parsedLogLines | Group-Object –Property QueryFQDN

This sketch has three scalability bugs:

■ It holds all of the raw log lines in memory at once in $logLines.
■ It holds all of the parsed log lines in memory at once in $parsedLogLines.
■ It uses Group-Object without the –NoElement parameter. As a result, Group-

Object will store yet another copy of each parsed log line and include all the

copies in the result.

Let’s look at a more scalable way to do this. Note that this is an outline of the pro-

posed flow and you still haven’t written the ConvertFrom-DnsLogLine function:

Get-Content –Path $dnsLogPath | ConvertFrom-DnsLogLine |
 ➥ Group-Object –Property QueryFQDN -NoElement

This example is likely to scale for memory usage much better. Only one log line is in

memory at a time as it flows down the pipe, and by using –NoElement you’re telling

Group-Object to count the unique instances without collecting them.

Get-Content vs. System.IO.StreamReader.ReadLine()

Experts in working with large logs might note that ReadLine() can be faster per line
compared with Get-Content (the latter does extra work that takes more time). Either
one, however, can output one line at a time and, when used correctly, can be compati-
ble with memory-efficient streaming. Whether you prefer Get-Content or ReadLine()
for reading text, consider using streaming patterns as you process the results.

Also note that Get-Content –ReadCount 0 writes the entire content of the file to
the output pipeline, in a manner similar to System.IO.StreamReader.ReadAll-
Lines(). This can be faster for modestly sized files, but it makes streaming harder
and will be fragile with large files.

228 CHAPTER 15 Scalable scripting for large data sets: pipeline and database techniques

Now that you have a usage sketch you need a ConvertFrom-DnsLogLine function. The

function should have the following qualities to enable streaming:

■ The ability to handle pipeline input elegantly
■ The ability to handle any needed cross-object logic (such as trends and sums)

without breaking the streaming pattern (that is, it shouldn’t secretly collect all

the input objects under the mattress)

The following listing demonstrates these attributes. As described in the code annota-

tions, some areas are task specific (parsing this particular log format), whereas other

sections illustrate generic streaming patterns.

function ConvertFrom-DNSLogLine{
param(
 [Parameter(ValueFromPipeline=$true)]
 [Alias("DnsLogLine")]
 [string[]]$InputObject
)
begin{
 $regexForServer2012PacketLines = `
 "(?<Raw_01_Date>^\d{1,2}/\d{1,2}/

\d{4})\s(?<Raw_02_Time>\d{1,2}\:\d{1,2}\:\
d{1,2}\s\w{2})\s(?<Raw_03_TID>\S{3,4})\s(?<Raw_04_Context>PACKET)\s+(?<Raw_
05_IPI>\S+)\s(?<Raw_06_TCPUDP>[TCUDP]{3})\s(?<Raw_07_SndRcv>[SndRcv]{3})\s(
?<Raw_08_RemoteIP>\S+)\s*(?<Raw_09_XID>\S*)\s(?<Raw_10_QueryResponse>.)\s(?
<Raw_11_OpCode>.)\s+(?<Raw_121314_FlagsCombined>\[.+\])\s+(?<Raw_15_Questio
nType>\w+)\s+(?<Raw_16_QuestionName>.*)"

 $processedLinesCount = 0
 $processedPacketLinesCount = 0
}
process{
foreach($DnsLogLine in $InputObject){

 $processedLinesCount++

 if($_ -match $regexForServer2012PacketLines){
 $processedPacketLinesCount++

 $dateTimeStr = $matches.Raw_01_Date + " " + $matches.Raw_02_Time
 $matches["DateTime"] = [datetime]::Parse($dateTimeStr)
 $matches["RemoteIpAddr"] = $matches.Raw_08_RemoteIP.trim()
 $matches["QuestionType"]=$matches.Raw_15_QuestionType.trim()
 $qrySplit= [regex]::split($matches.Raw_16_QuestionName,'\(\d+\)')
 $matches["QueryFQDN"] = [string]::Join(".",($qrySplit -ne ""))

 $matches
 }
}
}
end{
 Write-Verbose "Processed total lines: $ProcessedLinesCount"

Listing 1 ConvertFrom-DnsLogLine

Input is array and
ValueFromPipeLine

b

Task work inside
process and foreach

c

Efficient counters for
cross-object statsd

229Making it real: streaming over data in complex realistic tasks

 Write-Verbose "Processed PACKET lines: $processedPacketLinesCount"
}
}

This function processes one item at a time and, therefore, can perform with good

memory scalability on the pipeline with any arbitrarily large number of input items.

By defining the pipeline input parameter as an array B and including the foreach

loop inside the process block you can ensure that the function works with piped input

or with nonpiped input, such as –InputObject "a","b","c".

 The code inside process and foreach does the task-specific work c. In this case a

regular expression is used to parse a line from a log file. The resulting $matches

object is a hash table to which you can add keys. You added a few useful key/value

pairs to better describe the logged action and then emitted the object.

 This function also avoids secretly building up all the objects in any internal collec-

tion along the way. An easy pitfall would have been to add each item processed to

some array and then use the Count property of that array for the Write-Verbose state-

ments at the end. Instead you used integer counters d to keep track of state informa-

tion that spans across input objects. You can increment these counters millions of

times and the memory usage remains flat.

 For more complex cross-object state tracking you can often use hash tables.

Imagine you want to keep track of query counts by unique source IP address. You

could do this in a downstream cmdlet like Group-Object, but if you needed some-

thing else to be downstream instead you might prefer to track this inside your func-

tion. A flexible approach to this task is to create an empty hash table in the begin

block. Then for each input item in the process block, update the hash table, where

the key is a unique source IP address and the value is an integer counter for how

many queries originated at that IP address. As with the standalone counters seen

earlier you can increment these integers many times without increasing memory

usage. The approach doesn’t guarantee perfectly flat memory usage; it will grow

slightly with each new unique source IP address (every new key in the hash table).

Even so, this approach is far better than collecting all of the input items to accom-

plish the same.

 Using these techniques you can not only process unlimited items, but also calcu-

late metrics across input items (sums, averages, and so on) while still maintaining flat

or nearly flat memory usage across potentially huge numbers of input items.

 Imagine you’ve used your script to analyze the logs and found an ancient yet

mission-critical device that still relies on those old DNS records. Now the device can be

reconfigured, the offending records deleted, and you’re a hero in your organization.

 As you know, success will only lead to more work, which leads us to our next topic:

using databases to store script data.

NOTE These patterns are generic and could be applied to nearly any task. If you
want to explore this specific example further, however, you can generate
a debug log file like the one expected by this function by enabling debug

230 CHAPTER 15 Scalable scripting for large data sets: pipeline and database techniques

logging in the DNS Management Console (dnsmgmt.msc) on a Windows
Server 2012 machine with the DNS Server role installed. A sample log file
is also included in the code download available with this book for imme-
diate use.

If it quacks like a database …
Sometimes you need random access to a large number of items and all of their prop-

erties. Suppose your DNS log-parsing adventure proved so popular in your enterprise

that additional use cases started to appear. Rather than summarizing the queries from

a single log file on a single server, the organization now wants to analyze trends over

time across many logs and many servers. Analysts want to be able to explore the data

interactively in Excel and try out new pivots at will. Some analysts want to identify what

queries were made by a particular client on a particular day, or analyze query popular-

ity by region, and so on.

 You could implement all of this in a script and even do it using streaming-only pat-

terns. Doing it well, however, would require implementing indexing concepts and

managing many files and cross-references, and would involve many passes over the

data. In order to improve performance and reduce disk IO you would also wind up

building out some kind of caching layer that maximizes memory usage for IO effi-

ciency while dynamically limiting memory usage to avoid system exhaustion. That

sounds like a lot of work that isn’t specific to your business needs.

 Fortunately, database engines already know how to do these things and more.

Unfortunately, the word database can elicit panic from many infrastructure-oriented IT

folks. For some reason, the infrastructure folks don’t sit at the database administra-

tors’ table at lunch. This is a bridge that should be crossed because databases can be a

tremendously empowering force. They also couple well with scripting.

 Scripts can be a great tool for feeding IT-oriented data (logs, CSVs, WMI, Active

Directory) into a database. Once you get the information into a database options

abound (such as PowerShell, Excel, Power View, and Reporting Services) for adding

to, processing, or deriving meaning from the data.

 Imagine a modified version of the earlier DNS log parsing workflow that looks

something like this:

Get-Content –Path (Join-Path $env:temp "DnsDebugLog01.txt") |
 ➥ ConvertFrom-DnsLogLine | Export-DnsLogLineToDb

Note that you haven’t created the Export function yet. This is an outline of how you

would want to use it.

Getting started

If you don’t already have a database engine handy an easy way to embark is to use

the free LocalDB variant of SQL Server Express. You can install it from http://

www.microsoft.com/sqlserver.

http://www.microsoft.com/sqlserver
http://www.microsoft.com/sqlserver

231If it quacks like a database …

 For this example you’ll create a new database from scratch, including the table and

column definitions within the database. You can do this via interactive GUI (SQL

Server Management Studio or Visual Studio) or by script. A nice approach is to use

SQL Server Management Studio to define the database and tables interactively, and

then save out the .SQL script needed to recreate this at will. These clear text .SQL files

travel well alongside the related .PS1 scripts so scripters can provision the needed data-

bases anywhere they go.

 For brevity the .SQL files aren’t printed in these pages, but they’re included in the

code download that comes with this book. Also included is a script that provisions

the database by running the .SQL files against a freshly installed instance of SQL

Express on the local machine. To follow along with the rest of this section consider

installing SQL Server and running that script, which is shown in listing 2. Note that

depending on your machine and database setup specifics you may need to modify

parts of the scripts or .SQL files to suit your environment. In particular you may need

to change the value for the –Server parameter in listing 2 from (localdb)\v11.0 to

localhost (if using a non-LocalDB version of SQL Server on the local machine) or

some other server/instance name you may be using. Also you may need to adjust the

file paths in the DatabaseAsObjectStore__CreateDnsLogDb.sql file (use Notepad to

edit) to point to paths that work on your machine (the example uses C:\temp\).

$serverName = '(localdb)\v11.0'

Import-Module InvokeSqlQuery -ErrorAction Stop

$Invoc = (Get-Variable MyInvocation -Scope 0).Value
$ScriptPath = Split-Path $Invoc.MyCommand.Path

$relativeNames = @(
 "DatabaseAsObjectStore__CreateDnsLogDb.sql"
 "DatabaseAsObjectStore__CreateDnsPacketsTable.sql"
)

foreach($scriptName in $relativeNames){
 $scriptFullPath = Join-Path $scriptPath $scriptName
 Invoke-SqlQuery -Server $serverName -File $scriptFullPath
}

Listing 2 Creating the database and table

Using Entity Framework or other SQL APIs to map objects to tables

Microsoft Entity Framework (EF) is a technology that maps between the object/prop-
erty world of .NET (including PowerShell) and the table/column world of a database.
With EF, scripters can use normal objects comfortably while still enjoying the advan-
tages of a database behind the scenes for dealing with large volumes of data, sort-
ing, and indexing. EF also allows for complex relationships between objects to be
represented naturally. For example, imagine a Server object in a script that might
have several properties including Datacenter. The value of the Datacenter property

http://powershell4sql.codeplex.com

Get script path to
find related files

Run SQL
database scripts

http://powershell4sql.codeplex.com

232 CHAPTER 15 Scalable scripting for large data sets: pipeline and database techniques

In this script you created a database on the local SQL Server instance. Within that

database you created a table having columns for your data (RemoteIpAddr, Query-

Fqdn, and so on).

Getting the data to the database

Now that your database is ready you can write and use your Export-DnsLogLineToDb

function, as follows.

function Export-DnsLogLineToDb {
param(
 [Alias("DnsLogLine")]
 [Parameter(
 ValueFromPipeline=$true
)]
 [hashtable[]]$InputObject
 , $Server
 , $Database
)
begin{
 Import-Module InvokeSqlQuery
 $sqlConnection = $(
 New-SqlConnection -Server $Server -Database $Database
)
 $reusableInsertStatement = @"
 INSERT INTO [DnsPackets]
 (QueryFQDN,RemoteIpAddr,DateTime)
 VALUES
 (@QueryFQDN,@RemoteIpAddr,@DateTime)
"@
}

might be an object of another type with various properties (Country, Capabilities,
and others). EF takes care of mapping these relationships in the database and ex-
posing them as properties on the corresponding objects. It also leaves you with the
advantages of having domain-specific, strongly typed .NET objects to work with in your
script rather than always using PSCustomObject or hash-table stand-ins.

As an object-centric database abstraction this would seem an ideal solution for Power-
Shell scripting. Sadly, it’s designed for C# and ASP.NET developers and as such has
some sharp edges that make it challenging to get started. Readers who are comfort-
able with C# and Visual Studio are encouraged to explore EF with PowerShell for work-
ing with large data models. The setup is cumbersome but the usage is elegant.

In this chapter I instead use the simple and elegant Invoke-SqlQuery function
from the Powershell4SQL module at http://powershell4sql.codeplex.com/. This is a
wrapper around the System.Data.SqlClient API.

Listing 3 Export-DnsLogLineToDb

Expects piped input from
Convert-DnsLogLine

Query string with
replaceable parameters

http://powershell4sql.codeplex.com/

233If it quacks like a database …

process{
 foreach($dnsLogLine in $inputObject){
 Invoke-SqlQuery `
 -Connection $sqlConnection `
 -Query $reusableInsertStatement `
 -Parameters @{
 QueryFqdn = $dnsLogLine.QueryFqdn
 RemoteIpAddr = $dnsLogLine.RemoteIpAddr
 DateTime = $dnsLogLine.DateTime
 }

 }
}
end{
 $sqlConnection = $null
}
}

Now that you have the function you can put it all together per the original outline, as

shown in the next listing.

$server = '(localdb)\v11.0'
$db = "DnsLogDb"

$Invoc = (Get-Variable MyInvocation -Scope 0).Value
$ScriptPath = Split-Path $Invoc.MyCommand.Path

Get-Content (Join-Path $scriptPath "dnsserverlog.txt") |
 ConvertFrom-DnsLogLine |
 Export-DnsLogLineToDb $server $db

All of the DNS packets are now represented in that database. They can stay there

indefinitely. Tomorrow you could add more entries from other logs and it would all

flow together as one cohesive data set. You could add tens of millions more entries

over the course of time and the database engine would manage the storage, indexing,

and memory usage of that data set, and make it available to whomever you choose.

Thank you, SQL Server!

Getting objects and insights back from the database

Now your PowerShell sessions can pull objects back out of the database for further

scripted analysis. For example, you can get the queries from a particular client for a

particular fully qualified domain name (FQDN), as shown in the next listing.

$query = @"
 SELECT *
 FROM DnsPackets
 WHERE RemoteIpAddr = @RemoteIpAddr
 AND QueryFqdn = @QueryFqdn
"@

Listing 4 From log to database

Listing 5 Querying records from the database

Get script
path to find
additional files

Functions defined in
previous listings

234 CHAPTER 15 Scalable scripting for large data sets: pipeline and database techniques

$parameters = @{
 RemoteIpAddr = "192.168.100.17"
 QueryFqdn = "41397.ds.contoso.com"
}

Import-Module InvokeSqlQuery
Invoke-SqlQuery -Server '(localdb)\v11.0' `
 -Database DnsLogDb -Query $query `
 -Parameters $parameters |
 Out-GridView

You can also let the database engine do some of the heavy lifting for analysis. For

example, changing the SELECT * to SELECT COUNT(RemoteIpAddr) causes SQL Server

to calculate the count of matching rows without having to bring all the raw data back

into your scripting session.

Exploring your PowerShell data outside of PowerShell

Another tremendous advantage of getting the data into a database is that you can eas-

ily query it from other tools like Excel, which have their own strengths in exploring

and reporting on the data. The brave can draw charts right from PowerShell, or you

can go right from PowerShell to Excel without the database (via CSV, for example). In

cases when the data set may be very large or may be added to repeatedly over time,

when there are relationships between objects, or if you want to expose the data to

multiple applications or multiple consumers over the network, the power of the data-

base engine shines. Figure 3 gives an example of using Excel to explore the PowerShell-

fed database.

 Slicing and dicing the data can bring new insights. It can also be a little addictive

(you naturally want to go find out why 192.168.100.17 is issuing so many queries). You

Figure 3 Example of a pivot chart in Excel querying the PowerShell-fed database

235Summary

may find that you want to add additional properties/columns into your model to

allow new pivots. For example, you might find that you want to add a server column to

each query, or even a link to a row in a servers table which might have additional prop-

erties for each server, such as region or OS. As the set of questions you want to answer

from the data evolves you can keep adding to your data model as needed by updating

the shape of your PowerShell objects and the corresponding database schema.

Summary
Effective use of pipelines and process blocks can help you to write scalable scripts in

the face of any size input. You can be the scripter whose code holds up well in the

largest environments and against the longest of data streams—even in memory-

constrained remote sessions. These are patterns you can use every day so that your

scripts are scalable by default.

 Finally, there are some scenarios where you need random access to a huge number

of objects, and straightforward streaming isn’t enough. Meanwhile, holding every-

thing in memory to access items on demand isn’t scalable. In these cases use a data-

base engine that knows how to handle large data sets behind the scenes with

appropriate memory usage, durability, and indexing. Use PowerShell to provision and

populate the database, and use PowerShell, Excel, Power Pivot, and other tools to

explore and analyze the data.

About the author

Matthew Reynolds helps enterprises achieve health and perfor-

mance with Windows desktop and Active Directory. Through Micro-

soft’s Premier Field Engineering team, Matthew works directly with

Fortune 100 customers and also leads development of new diagnos-

tic tools and training to address global customer needs.

 Matthew has received multiple awards as a trainer and presenter.

He led his team in one of the top-rated sessions at TechEd 2012,

developed top-rated training sessions for new Microsoft employ-

ees, is a trainer for the Microsoft Certified Masters (aka Rangers)

program, is a regular TechReady presenter, and was a tech reviewer for Windows Power-

shell in Action, 2nd edition (Manning 2011).

236

Building your own WMI-based
cmdlets

 Richard Siddaway

Windows 8 and Windows Server 2012 come with a mass of new PowerShell func-

tionality. Depending on the features installed the server version may have 2,500 or

more new cmdlets! Did you know that of that of those 2,500 cmdlets, more than 60

percent are based on Windows Management Instrumentation (WMI)? This chapter

explains how you can create your own WMI-based cmdlets.

Discovering WMI-based cmdlets
On a Windows 8 or Windows Server 2012 system try this:

PS> Get-ChildItem -Path $pshome\modules\netTCPIP

 Directory: C:\Windows\System32\WindowsPowerShell\v1.0\modules\netTCPIP

Mode LastWriteTime Length Name
---- ------------- ------ ----
d---- 26/08/2012 14:40 en-US
-a--- 02/06/2012 15:32 19097 MSFT_NetIPAddress.cdxml
-a--- 02/06/2012 15:32 22334 MSFT_NetIPInterface.cdxml

-a--- 17/06/2012 17:08 1979 NetTCPIP.psd1
-a--- 02/06/2012 15:32 58379 Tcpip.Format.ps1xml
-a--- 02/06/2012 15:32 42813 Tcpip.Types.ps1xml

Display abbreviated for brevity.

The last three files are standard module files (manifest, format, and types, respec-

tively)—nothing exciting there. But notice the extension on the first two files:

cdxml. That’s new!

 Now look in the file:

PS> Get-Content -Path $pshome\modules\netTCPIP\MSFT_NetIPAddress.cdxml |
 ➥ select -First 5

<?xml version="1.0" encoding="utf-8"?>
<PowerShellMetadata xmlns="http://

16

237Discovering WMI-based cmdlets

 ➥ schemas.microsoft.com/cmdlets-over-objects/2009/11">
 <Class ClassName="ROOT/StandardCimv2/MSFT_NetIPAddress"

ClassVersion="1.0.0">
 <Version>1.0.0</Version>
 <DefaultNoun>NetIPAddress</DefaultNoun>

Whoa! That’s XML. What’s it doing in a PowerShell module?

 What you’ve discovered is a CDXML file—cmdlet definition XML. In a nutshell, a

CDXML file allows you to wrap the use of a WMI class in XML and publish it as a Power-

Shell module.

 In the third line of XML you see this:

ClassName="ROOT/StandardCimv2/MSFT_NetIPAddress"

Looks like the path to a WMI class. If it is, this should work:

PS> Get-CimInstance -Namespace root\standardcimv2
 ➥ -ClassName MSFT_NetIPAddress

IPAddress : fe80::38ab:4529:2ab6:eb06%13
InterfaceIndex : 13
InterfaceAlias : Ethernet
AddressFamily : IPv6
Type : Unicast
PrefixLength : 64
PrefixOrigin : WellKnown
SuffixOrigin : Link
AddressState : Preferred
ValidLifetime : Infinite ([TimeSpan]::MaxValue)
PreferredLifetime : Infinite ([TimeSpan]::MaxValue)
SkipAsSource : False
PolicyStore : ActiveStore

…

The root\standardcimv2 namespace is where Microsoft has tucked many new WMI

classes. They’re only available on Windows 8 and Windows Server 2012. You won’t find

them if you’ve upgraded to PowerShell v3 on Windows 7 or any other legacy version

of Windows.

 Look in the second line of the XML:

"http://schemas.microsoft.com/cmdlets-over-objects/2009/11">

Cmdlets over objects is Microsoft’s technology for making all this happen. This is how

WMI is used to deliver so many new cmdlets. A single CDXML file publishes a single

WMI class as a module. The module usually consists of the following:

■ A Get cmdlet—This is the equivalent of running Get-CimInstance using the class.

The Get cmdlet can have one or more parameters that are based on the WMI

class properties and act as filters.
■ Zero or more cmdlets based on the methods of the class—These cmdlets use parameters

to take the method’s arguments.
■ Classes that have static methods—These classes, such as the registry provider (Std-

RegProv), can also be exposed using CDXML files.

238 CHAPTER 16 Building your own WMI-based cmdlets

The great thing about this is that it’s easy to write your own CDXML files and wrap the

WMI classes you use as PowerShell modules. Doing so provides a much-improved

ease-of-use factor for WMI, especially among junior administrators.

Creating a WMI-based cmdlet

Microsoft is unlikely to wrap any of the root\cimv2 WMI classes as CDXML files any

time soon, if at all, so let’s see how to create your own CDXML file. We’ll use a class

everyone accesses—Win32_NetworkAdapterConfiguration. The skeleton of the mod-

ule is shown in the following listing.

<?xml version="1.0" encoding="utf-8"?>
<PowerShellMetadata xmlns=
 ➥ "http://schemas.microsoft.com/cmdlets-over-objects/2009/11">
 <Class ClassName="root\cimv2\Win32_NetworkAdapterConfiguration">
 <Version>1.0.0.0</Version>
 <DefaultNoun>Win32NetworkAdapterConfiguration</DefaultNoun>

 <InstanceCmdlets>
 <GetCmdletParameters DefaultCmdletParameterSet="ByIndex">
 <QueryableProperties>

 <Property PropertyName="Index">
 <Type PSType ="UInt32"/>
 <RegularQuery AllowGlobbing="true">
 <CmdletParameterMetadata PSName="Index"
 ➥ ValueFromPipelineByPropertyName="true"
 ➥ CmdletParameterSets="ByIndex" />
 </RegularQuery>
 </Property>

 </QueryableProperties>
 </GetCmdletParameters>
 </InstanceCmdlets>
 </Class>
</PowerShellMetadata>

This file must be saved with a .cdxml extension. The CDXML file starts with two header

rows B. These are the same for every CDXML file. The working part of the file starts

where you define the WMI class name to use c. As previously stated, the Win32_Network-

AdapterConfiguration class is used. The full path, including namespace, is provided

in the definition. A version number is supplied on the next line. This is your version

for your module. You can set it to any numbering scheme applicable to your work.

The header section closes with a default noun d. I usually use the class name without

the underscore (_), but you’re free to use whatever you want.

TIP Check the nouns of cmdlets already on your system before committing to
a final choice.

Listing 1 Creating Get-Win33_NetworkAdaptorConfiguration

Header
data

b

WMI class
and
namespacecCmdlet

noun d

Parameter
sete

WMI property
namef

Cmdlet
parameter
nameg

Closing
XML
statementh

239Using a WMI-based cmdlet

The middle section of the XML file defines your Get-Win32NetworkAdapter-

Configuration cmdlet. The cmdlet’s verb is set to Get by default. The noun is pro-

vided by the default noun you supplied earlier. Parameter sets can be defined for the

filter parameters e. The WMI property name is supplied f, and a parameter name is

provided g. The cmdlet parameter name doesn’t have to match the WMI property

name, though it often makes sense for it to do so. Additional configuration is supplied

for the parameter to allow wildcards (globbing) and for the parameter to accept pipe-

line input. The file closes with the XML tags h required to complete various sections

discussed here.

Using a WMI-based cmdlet

Now you have a CDXML file. How are you going to use it? The answer is simple—just

like any other module. Save the CDXML file into a folder on your module path. If you

call the module file NetworkAdapterConfiguration.cdxml, save it into a folder called

NetworkAdapterConfiguration. You can load the CDXML file during development by

using import-module:

PS> Import-Module .\listing1.cdxml -Force
PS> Get-Module listing1

ModuleType Name ExportedCommands
---------- ---- ----------------
Cim listing1 Get-Win32NetworkAdapterConfiguration

Use the –Force parameter while you’re developing. It makes sure the latest version

is loaded.

 If you have the module on your module path (defined by $env:PSModulePath),

PowerShell will auto-load it when it starts along with all your other modules. One

important point is the module type: it’s labeled Cim. This indicates a CDXML-based

module. If you add a manifest file the module type will change accordingly.

 Your new cmdlet is used the same way as any other cmdlet:

PS> Get-Win32NetworkAdapterConfiguration | Format-Table -AutoSize

ServiceName DHCPEnabled Index Description
----------- ----------- ----- -----------
Rasl2tp False 0 WAN Miniport (L2TP)
RasSstp False 1 WAN Miniport (SSTP)
RasPppoe False 4 WAN Miniport (PPPOE)
NdisWan False 5 WAN Miniport (IP)
NdisWan False 6 WAN Miniport (IPv6)
NdisWan False 7 WAN Miniport (Network Monitor)
kdnic True 8 Microsoft Kernel Debug Network Adapter
AsyncMac False 9 RAS Async Adapter
NVNET True 11 NVIDIA nForce 10/100/1000 Mbps Ethernet
BthPan True 17 Bluetooth Device (Personal Area Network)
...

240 CHAPTER 16 Building your own WMI-based cmdlets

This is the equivalent of typing

Get-CimInstance -ClassName Win32_NetworkAdapterConfiguration |
Format-Table -AutoSize

You’re saving a bit of work. But having a cmdlet really scores for you when you want

to filter:

Get-CimInstance -ClassName Win32_NetworkAdapterConfiguration
 ➥ -Filter "Index=11" | Format-Table -AutoSize

This becomes

PS> Get-Win32NetworkAdapterConfiguration -Index 11 | Format-Table -AutoSize

ServiceName DHCPEnabled Index Description
----------- ----------- ----- -----------
NVNET True 11 NVIDIA nForce 10/100/1000 Mbps Ethernet

Much simpler. The default display is controlled by PowerShell’s Extensible Type Sys-

tem (ETS). You can see the full set of properties by using Format-List:

Get-Win32NetworkAdapterConfiguration -Index 11 | Format-List *

Adding extra filter parameters
Two common filters when you’re looking for network adapters are the DHCPEnabled

and IPEnabled properties. You access these, respectively, like this:

Get-CimInstance -ClassName Win32_NetworkAdapterConfiguration
 ➥ -Filter "DHCPEnabled = $true"

Get-CimInstance -ClassName Win32_NetworkAdapterConfiguration
 ➥ -Filter "IPEnabled = $true"

The next listing shows the extra XML that has to be added to the CDXML file. The full

listing is available in the code download available on the book’s website.

<Property PropertyName="DHCPEnabled">
 <Type PSType ="Boolean"/>
 <RegularQuery >
 <CmdletParameterMetadata PSName="DHCPEnabled"
 ➥ ValueFromPipelineByPropertyName="true"
 ➥ CmdletParameterSets="ByEnabled" />
 </RegularQuery>
</Property>

<Property PropertyName="IPEnabled">
 <Type PSType ="Boolean"/>
 <RegularQuery >
 <CmdletParameterMetadata PSName="IPEnabled"
 ➥ ValueFromPipelineByPropertyName="true"
 ➥ CmdletParameterSets="ByEnabled" />
 </RegularQuery>
</Property>

Listing 2 Adding extra filter parameters

241Adding extra filter parameters

Each additional property follows the same format:

1 A property name from the WMI class is required.

2 The type of input—in this case, Boolean—is defined.

3 The cmdlet parameter name is defined.

4 The pipeline capabilities are set.

5 A parameter set is defined.

WMI uses, in some cases, subtly different names for data types. The best way to confirm

the data type is to use Get-CimClass to investigate the properties:

Get-CimClass -ClassName Win32_NetworkAdapterConfiguration |
 ➥ select -ExpandProperty CimClassProperties |
 ➥ where Name -like "*Enabled*"

The other point to note is that the wildcard (globbing) ability has been removed

from these parameters. It makes sense as a Boolean type will only accept $true,

$false, 1, or 0.

 With two parameter sets your cmdlet’s syntax looks like this:

PS> Get-Command Get-Win32NetworkAdapterConfiguration -Syntax

Get-Win32NetworkAdapterConfiguration [<CommonParameters>]

Get-Win32NetworkAdapterConfiguration [-Index <uint32[]>]
[-CimSession <CimSession[]>] [-ThrottleLimit <int>] [-AsJob]
[<CommonParameters>]

Get-Win32NetworkAdapterConfiguration [-DHCPEnabled <bool[]>]
[-IPEnabled <bool[]>] [-CimSession <CimSession[]>]
[-ThrottleLimit <int>] [-AsJob] [<CommonParameters>]

You can use the new parameters to filter on the enablement of IP, DHCP, or both:

Get-Win32NetworkAdapterConfiguration -IPEnabled $true
Get-Win32NetworkAdapterConfiguration -DHCPEnabled $true
Get-Win32NetworkAdapterConfiguration -IPEnabled $true -DHCPEnabled $true

The syntax reveals that there isn’t a ComputerName parameter available on the cmdlet

you’ve created. You do get a CimSession parameter, which is how you access remote

machines:

$sw = New-CimSession -ComputerName $env:COMPUTERNAME
Get-Win32NetworkAdapterConfiguration -DHCPEnabled $true -CimSession $sw

You automatically get an additional column called PSComputerName that indicates the

name of the remote machine. CimSessions automatically use Web Services Manage-

ment (WS-MAN) as the transport protocol, but if you have PowerShell v2 on a remote

machine, and therefore WS-MAN v2, it won’t work. You have to drop back to using

DCOM against machines with PowerShell v2:

$o = New-CimSessionOption -Protocol DCOM
$sd = New-CimSession -ComputerName $env:COMPUTERNAME -SessionOption $o
Get-Win32NetworkAdapterConfiguration -DHCPEnabled $true -CimSession $sd

242 CHAPTER 16 Building your own WMI-based cmdlets

You can have multiple computers in a CIM session, and you can mix and match WS-MAN–

based sessions with DCOM-based sessions:

Get-Win32NetworkAdapterConfiguration -DHCPEnabled $true
 ➥ -CimSession $sw, $sd

The other interesting parameter you get for free (PowerShell automatically adds it)—

that is, you don’t have to do any coding—is –AsJob:

PS> Get-Win32NetworkAdapterConfiguration -DHCPEnabled $true -AsJob

Id Name PSJobTypeName State HasMoreData Location
-- ---- ------------- ----- ----------- --------
51 CimJob25 CimJob Running True RSLAPTOP01

PS> Get-Job

Id Name PSJobTypeName State HasMoreData Location
-- ---- ------------- ----- ----------- --------
51 CimJob25 CimJob Completed True RSLAPTOP01

You can use the –AsJob and –CimSession parameters together to access remote

machines as a job.

WARNING When you’re accessing remote machines the request will fail if the WMI

class isn’t installed on the remote machine. This isn’t a way to bypass hav-
ing the WMI classes installed.

Creating cmdlets from WMI methods
The Win32_NetworkAdapterConfiguration class has many methods, which you can

find like this:

Get-CimClass -ClassName Win32_NetworkAdapterConfiguration |
select -ExpandProperty CimClassMethods

Two examples of creating cmdlets from these methods are shown in the next listing.

<?xml version="1.0" encoding="utf-8"?>
<PowerShellMetadata xmlns=
 ➥ "http://schemas.microsoft.com/cmdlets-over-objects/2009/11">
 <Class ClassName="root\cimv2\Win32_NetworkAdapterConfiguration">
 <Version>1.0.0.0</Version>
 <DefaultNoun>Win32NetworkAdapterConfiguration</DefaultNoun>

 <InstanceCmdlets>
 <GetCmdletParameters DefaultCmdletParameterSet="ByIndex">
 <QueryableProperties>
 <Property PropertyName="Index">
 <Type PSType ="UInt32"/>
 <RegularQuery AllowGlobbing="true">
 <CmdletParameterMetadata IsMandatory="true" PSName="Index"
 ➥ ValueFromPipelineByPropertyName="true"
 ➥ CmdletParameterSets="ByIndex" />

Listing 3 Adding methods as cmdlets

Set
Standard
parameters

b

243Creating cmdlets from WMI methods

 </RegularQuery>
 </Property>
 </QueryableProperties>
 </GetCmdletParameters>

 <GetCmdlet>
 <CmdletMetadata Verb="Get"/>
 <GetCmdletParameters DefaultCmdletParameterSet="ByIndex">
 <QueryableProperties>
 <Property PropertyName="Index">
 <Type PSType ="UInt32"/>
 <RegularQuery AllowGlobbing="true">
 <CmdletParameterMetadata PSName="Index"
 ➥ ValueFromPipelineByPropertyName="true"
 ➥ CmdletParameterSets="ByIndex" />
 </RegularQuery>
 </Property>
 <Property PropertyName="DHCPEnabled">
 <Type PSType ="Boolean"/>
 <RegularQuery >
 <CmdletParameterMetadata PSName="DHCPEnabled"
 ➥ ValueFromPipelineByPropertyName="true"
 ➥ CmdletParameterSets="ByEnabled" />
 </RegularQuery>
 </Property>
 <Property PropertyName="IPEnabled">
 <Type PSType ="Boolean"/>
 <RegularQuery >
 <CmdletParameterMetadata PSName="IPEnabled"
 ➥ ValueFromPipelineByPropertyName="true"
 ➥ CmdletParameterSets="ByEnabled" />
 </RegularQuery>
 </Property>
 </QueryableProperties>
 </GetCmdletParameters>
 </GetCmdlet>

 <Cmdlet>
 <CmdletMetadata Verb="Invoke" Noun="Win32NACRenewDHCPLease"
 ➥ ConfirmImpact="Medium"/>
 <Method MethodName="RenewDHCPLease">
 <ReturnValue>
 <Type PSType="System.UInt32"/>
 <CmdletOutputMetadata>
 </CmdletOutputMetadata>
 </ReturnValue>
 </Method>
 </Cmdlet>

 <Cmdlet>
 <CmdletMetadata Verb="Set" Noun="Win32NACIPAddress"
 ➥ ConfirmImpact="Medium"/>
 <Method MethodName="EnableStatic">
 <ReturnValue>
 <Type PSType="System.UInt32"/>
 <CmdletOutputMetadata>

Get
cmdlet

c

Renew
IP lease
cmdlet

d

Set IP
address
cmdlet

e

244 CHAPTER 16 Building your own WMI-based cmdlets

 </CmdletOutputMetadata>
 </ReturnValue>
 <Parameters>
 <Parameter ParameterName="IPAddress" >
 <Type PSType="System.String[]" />
 <CmdletParameterMetadata PSName="IPAddress">
 </CmdletParameterMetadata>
 </Parameter>
 <Parameter ParameterName="SubNetMask" >
 <Type PSType="System.String[]" />
 <CmdletParameterMetadata PSName="SubNet">
 </CmdletParameterMetadata>
 </Parameter>
 </Parameters>
 </Method>
 </Cmdlet>
 </InstanceCmdlets>
 </Class>
</PowerShellMetadata>

When you load the listing 3 module, you now get three cmdlets:

PS> Get-Command -Module listing3

CommandType Name
----------- ----
Function Get-Win32NetworkAdapterConfiguration
Function Invoke-Win32NACRenewDHCPLease
Function Set-Win32NACIPAddress

The original Get-Win32NetworkAdapterConfiguration cmdlet remains, plus Invoke-

Win32NACRenewDHCPLease and Set-Win32NACIPAddress, which you added through

the code in listing 3. These cmdlets supply the functionality of the RenewDHCPLease

and EnableStatic methods of the Win32_NetworkAdapterConfiguration WMI

class, respectively.

Listing 3 starts off the same way as listing 1 with the same header information. The

first change occurs with the definition of standard filter parameters for the cmd-

lets B. A filter parameter is defined based on the Index property of the WMI class.

Naming conventions

Before we dive into the code, a quick word on naming conventions. You can use any-
thing you want. I stick with the approved verbs (use Get-Verb to view them). If I’m
changing something I use Set—I’ve used Set-Win32NACIPAddress for the Enable-
Static method because to my mind, it’s more natural to think about setting the IP
address. I used Invoke for the RenewDHCPLease method because there wasn’t a
suitable verb. I created the nouns based on the method name (or item being modi-
fied) and the default noun, though I did abbreviate the default noun portion because
I’m not competing in the Longest Cmdlet Name in the World competition.

245Creating cmdlets from WMI methods

The parameter is made mandatory. This property is only applied to the Invoke-

Win32NACRenewDHCPLease and Set-Win32NACIPAddress cmdlets. The original Get-

Win32NetworkAdapterConfiguration cmdlet redefines the index parameter as non-

mandatory because you don’t want mandatory parameters on your Get cmdlet.

 An explicit allocation of the verb Get is made to the get cmdlet c. The rest of the

definition of the Get cmdlet is unchanged using the <GetCmdlet></GetCmdlet> tags.

 The new cmdlets are defined within <Cmdlet></Cmdlet> tags. The cmdlet to use

the RenewDHCPLease method starts by defining the verb and the noun d. The method

name is required, and you also define the return value. WMI methods have an integer

return value: a return value of 0 means the method worked successfully, and anything

else means it went wrong. If you’re lucky the class documentation on MSDN will supply

a reason to go with the value.

 You can test the new cmdlet by first checking the current value of the DHC-

PLeaseObtained property for the instance you want to reset:

Get-CimInstance -ClassName Win32_NetworkAdapterConfiguration
 ➥ -Filter "Index=10" | select DHCP*

If you want to renew the lease using the CIM cmdlets you need this code:

Get-CimInstance -ClassName Win32_NetworkAdapterConfiguration
 ➥ -Filter "Index=10" | Invoke-CimMethod -MethodName RenewDHCPLease

Your new cmdlet is so much easier to use:

PS> Invoke-Win32NACRenewDHCPLease -Index 10
0

You can put the return code into a variable and use that to return messages based on

value. The DHCPLeaseObtained method doesn’t take any arguments. Many WMI meth-

ods do take arguments; as an example, we’ll use the EnableStatic method.

 The cmdlet definition starts by defining the verb and noun e. The same return

code definition is used, and then you define some parameters. The method takes two

arguments: an array of IP addresses and an array of subnet masks. The IPAddress

parameter keeps the name IPAddress, but the WMI SubNetMask parameter is renamed

SubNet for ease of use.

 You can discover the parameter requirements using Get-CimClass:

PS> $class = Get-CimClass -ClassName Win32_NetworkAdapterConfiguration
PS> $class.CimClassMethods["EnableStatic"].Parameters |
 ➥ Format-Table -AutoSize

Name CimType Qualifiers ReferenceClassName
---- ------- ---------- ------------------
IPAddress StringArray {ID, In, MappingStrings}
SubnetMask StringArray {ID, In, MappingStrings}

Now you have a cmdlet definition. How does it work? Like this:

$address = @("172.168.5.1")
$subnet = @("255.255.255.0")

246 CHAPTER 16 Building your own WMI-based cmdlets

PS> Set-Win32NACIPAddress -Index 11 -IPAddress $address -SubNet $subnet
0

This is equivalent to using the much more complicated

Get-CimInstance -ClassName Win32_NetworkAdapterConfiguration
 ➥ -Filter "Index=11" | Invoke-CimMethod -MethodName EnableStatic
 ➥ -Arguments @{"IPAddress" = $address; "SubNetMask" = $subnet}

Summary
CDXML provides a technology to publish WMI classes as PowerShell modules. This

technology is used a lot in Windows 8 and Windows Server 2012 to deliver PowerShell

functionality. You can create CDXML files on Windows 7 machines using PowerShell v3,

but you must remember that the WMI class your module will use must be installed on

that machine. You can’t copy or re-create the CDXML files from Windows 8 and expect

them to work because the WMI classes won’t be present. Expect to see a lot more

CDXML-based functionality in the future.

 A tool to work with CDXML files called CIM IDE is available at http://archive

.msdn.microsoft.com/cimide, but it’s still prerelease and requires Visual Studio. I

have found it easier to copy the XML from existing CDXML files and modify it.

 A white paper describing the XML schema is available from http://mng.bz/xdE9.

You can find further information and more examples in PowerShell and WMI (Manning

2012) and PowerShell in Depth (Manning 2013).

About the author

Richard Siddaway has worked with Microsoft technologies for 25

years and has spent time in most IT roles. He currently works for

Kelway (UK) Ltd as an automation consultant. He has a long-

standing interest in automation techniques, and PowerShell has

been his primary automation tool since the early beta versions.

Richard founded the UK PowerShell User Group in 2007 and is a

PowerShell MVP. He frequently speaks at PowerShell user groups

in the UK, Europe, the US, and elsewhere around the world, and

judges the Microsoft Scripting Games. In addition to writing his blog (http://

msmvps.com/blogs/RichardSiddaway/), Richard has authored two PowerShell books:

PowerShell in Practice (Manning 2010) and PowerShell and WMI (Manning 2012), and

coauthored PowerShell in Depth (Manning 2013) with Don Jones and Jeffery Hicks. Cur-

rently he is writing an introductory book for Active Directory administrators that fea-

tures PowerShell.

http://archive .msdn.microsoft.com/cimide
http://archive .msdn.microsoft.com/cimide
http://mng.bz/xdE9
http://msmvps.com/blogs/RichardSiddaway/
http://msmvps.com/blogs/RichardSiddaway/

247

Turning command-line tools
into PowerShell tools

 Jeffery Hicks

As terrific as PowerShell is as an automation engine and management tool, and

despite the new cmdlets that shipped with Windows 8 and Windows Server 2012,

there are still times when a command-line (CLI) tool gets the job done. Perhaps

there isn’t a cmdlet replacement yet, or the CLI tool is easy to run. Or perhaps you

have some legacy batch files that you need to use. The downside is that although

you can run these tools in PowerShell, you’re limited with regard to what you can

do with them because CLI tools write text and PowerShell is all about objects.

 In this chapter I’ll show you how to turn output from CLI tools into something

you can work with in a PowerShell pipeline. Ultimately, I think you’ll want to create

your own PowerShell functions that wrap around a legacy command yet still write

objects to the pipeline.

Requirements
Unfortunately, not every command-line tool lends itself to a PowerShell conver-

sion. The tips and techniques I’ll show you rely on a few key requirements. If the

tool you want to use doesn’t fit into the following categories you’ll have a hard time

transforming the results to a PowerShell-friendly format:

■ The CLI tool must write text using standard out (StdOut). One easy way to test

this is to run your command and redirect it to a file: netstat > e:\temp\

netstat.txt. If you can’t do this, the command isn’t a good candidate.
■ The CLI tool should produce formatted or predictable output. The more structured

the output, the easier the transition to PowerShell.
■ The CLI tool should run without any user interaction. By that I mean you should

be able to run the tool with any necessary parameters, press Enter, and get

results. If the command requires user interaction such as answering a

prompt, it isn’t a good candidate.

17

248 CHAPTER 17 Turning command-line tools into PowerShell tools

■ You must be able to run the CLI tool in PowerShell. It should go without saying, but

the whole point is to run the command in PowerShell and then use the results

in the pipeline. If the command you want to run has some sort of odd syntax

that makes it difficult to execute from a PowerShell prompt, it will be that much

harder to transform.

Most Microsoft command-line utilities that I’m aware of should fall into these catego-

ries and meet the requirements. But there might be a third-party command-line tool

you use that is a little odd. I’m not saying it’s impossible to “PowerShell-ize” the out-

put; it just might be a little more difficult.

 Table 1 shows a number of common Microsoft command-line tools you may want

to turn into PowerShell tools.

Conversion techniques

Let me state up front that there is no universal technique for transforming the results

of a CLI tool into something PowerShell can use. Depending on the tool you may

need to combine these techniques:

■ Using PowerShell data formats
■ Parsing text output

I also think you’ll find it easier to transform a command-line tool into PowerShell

using a script or function. Although it’s possible to execute many of the examples in

this chapter directly in the console, trust me: a script will be much easier because

you’ll rarely accomplish the conversion with a one-line technique.

Looking for PowerShell data formats

The first technique is an easy one. Look at the command help, and see if the output

can be formatted into something that PowerShell already knows how to use, such as

CSV or XML. For example, if you look at help for driverquery.exe, as shown in figure 1,

there are options to format the results to a CSV format.

 This is a useful command-line option because PowerShell already knows how to

turn CSV data into objects. In fact, with a single PowerShell expression, you can take

the CSV output from driverquery and turn it into PowerShell:

Table 1 Potential PowerShell CLI tools

ipconfig driverquery schtasks

tasklist arp netstat

nbtstat dnscmd klist

net [user| localgroup] qprocess whoami

quser getmac ftype

249Conversion techniques

PS C:\> driverquery /fo csv | convertfrom-csv

Module Name Display Name Driver Type Link Date
----------- ------------ ----------- ---------
1394ohci 1394 OHCI Compliant H... Kernel 11/20/2010 5:44:56 AM
ACPI Microsoft ACPI Driver Kernel 11/20/2010 4:19:16 AM
AcpiPmi ACPI Power Meter Driver Kernel 11/20/2010 4:30:42 AM
adp94xx adp94xx Kernel 12/5/2008 6:54:42 PM
adpahci adpahci Kernel 5/1/2007 1:30:09 PM
adpu320 adpu320 Kernel 2/27/2007 7:04:15 PM
AFD Ancillary Function Dr... Kernel 12/27/2011 10:59:20 PM
...

Once the data has been converted you have objects that you can work with, which

means you can do whatever you want with the results. Here are some more examples:

PS C:\> driverquery /fo csv | convertfrom-csv |
 ➥ Group 'Driver Type' –NoElement

Count Name
----- ----
 279 Kernel
 29 File System

PS C:\> driverquery /fo csv | convertfrom-csv |
 ➥ where {$_."Driver Type" -match "File System"} | sort Displayname

Figure 1 DriverQuery.exe help with the format option for CSV

250 CHAPTER 17 Turning command-line tools into PowerShell tools

Module Name Display Name Driver Type Link Date
----------- ------------ ----------- ---------
Npfs Npfs File System 7/13/2009 7:19:48 PM
Ntfs Ntfs File System 3/10/2011 10:39:3...
rdbss Redirected Buffering ... File System 11/20/2010 4:27:5...
NetBIOS NetBIOS Interface File System 7/13/2009 8:09:26 PM
...

If all you need is basic PowerShell like I’ve shown here, this should suffice. But there

are some potential drawbacks.

 First, the property names are taken from the CLI output and might contain spaces.

Thus you’ll end up with properties like Module Name and Driver Type. If all you want is

pretty output this probably doesn’t matter. But when you want to do something with a

property you have to remember to enclose it in quotes, as I had to with "Driver Type".

 Second, all properties are treated as strings. Again, depending on the CLI tool, that

may not matter. But in my example, if you want to filter or sort on 'Link Date' you

won’t get the results you expect—at least, not without a little extra work.

 Finally, sometimes the property value includes more than meets the eye. Did you

notice in the second example, in which I filtered on the driver type for "File System",

that I used –match and not –eq? That’s because the actual value has a trailing space

that’s introduced somewhere in the conversion. It isn’t apparent at first glance, until

you try to use –eq and wonder why nothing is written to the pipeline. So I used

-match, which is more forgiving.

 One way to get around the property-name issue is to specify an alternate header in

the CSV file:

PS C:\> $h="ModuleName","DisplayName","DriverType","LinkDate"
PS C:\> driverquery /fo csv | select -Skip 1 | convertfrom-csv -Header $h

I skipped the first line of the CSV output and told ConvertFrom-CSV to use my alter-

nate header. Now my property names are easier to work with.

 Handling the property type isn’t too difficult, depending on what you need to do.

For one-time formatting you might be able to use a cmdlet:

PS C:\> driverquery /fo csv | select -Skip 1 | convertfrom-csv -Header $h |
 ➥ where {$_.Drivertype -match "file"} |
 ➥ sort @{Expression={$_.LinkDate -as [datetime]}}

Here I took my converted data and sorted on a hash table that returned the LinkDate

property as a datetime object. This gets trickier if you want to persist data in this for-

mat. Doing so takes a few extra steps, but it can also help with those odd spaces that

might crop up in property values. The code in the following listing summarizes every-

thing I just demonstrated.

#requires -version 3.0

$hash=[ordered]@{
ModuleName=[string]

Listing 1 Converting CLI CSV output to PowerShell

Create an ordered hash table
with property names and types

251Conversion techniques

DisplayName=[string]
DriverType=[string]
LinkDate=[datetime]
}

$data=driverquery /fo csv | select -Skip 1 |
 convertfrom-csv -Header $($hash.keys)

for ($i=0;$i -lt $data.count;$i++) {
 foreach ($property in $hash.keys) {
 #update each property with a trimmed version
 $data[$i].$property=$data[$i].$property.Trim() -as $hash.$property
 }
}
#write the data to the pipeline
$data

This technique requires you to know in advance what your output will be and what

object types you want to define. You build a hash table with the new property names

and assign a type as the corresponding value for each key. Fortunately, PowerShell 3.0

offers ordered hash tables, which make this much easier. You use the hash-table keys

for your new header, saving all the results to a variable.

 In order to clean up $data you have to go through every object and reassign a new

value. The new value is the old value trimmed of any trailing or leading spaces and

then cast back as the appropriate type.

 The end result is that $data now has trimmed and properly typed objects. This

means you can use $data in the pipeline like any other cmdlet output:

$data | where DriverType -eq "File System" | sort LinkDate |
 ➥ select -first 5

As you can imagine, this technique is much easier to work with in a script.

Parsing text output

If the CLI tool doesn’t offer a PowerShell-ready format like CSV you have to parse the

output. This is where it’s very important that the output is ordered and predictable.

There are a number of techniques I think you’ll find yourself turning to:

■ Use Select-Object to skip X number of lines. Often a CLI command includes

headers you don’t really care about.
■ Use Select-String to select command output lines that you want to transform

into PowerShell.
■ Use the Split() method or operator to break up lines in array. This works well

when the command output is structured and predictable.
■ Use the Trim() method to clean up values. Leading or trailing spaces can lead

to unpredictable results.
■ Use regular expressions to either identify the data you want to parse or perhaps

identify what property type you want to eventually use. You might use regular

Define a header from
the hash-table keys

Loop through
each object

Get each property, trim any spaces,
and cast it to the appropriate type

252 CHAPTER 17 Turning command-line tools into PowerShell tools

expressions on an entire line of output or on individual array elements if you’ve

split up the line.

Let’s demonstrate some of these techniques. I’m going to take the output of NBTSTAT

/N and turn it into a PowerShell object. I’ll work through the process interactively

so you can follow along; eventually I could take the steps and turn them into an

advanced function.

 Here’s the original output:

PS C:\> nbtstat /n

Local Area Connection:
Node IpAddress: [10.23.36.71] Scope Id: []

 NetBIOS Local Name Table

 Name Type Status

 QUARK <20> UNIQUE Registered
 QUARK <00> UNIQUE Registered
 JDHITSOLUTIONS <00> GROUP Registered

Wireless Network Connection:
Node IpAddress: [0.0.0.0] Scope Id: []

What matters in this case is the table of registered names. It looks like a good candi-

date for a PowerShell object. I already see names I can use for property names, like

Name, Type, and Status. So first I’ll get the lines of interest:

PS C:\> $data=nbtstat /n | Select-String "<"
PS C:\> $data

 QUARK <20> UNIQUE Registered
 QUARK <00> UNIQUE Registered
 JDHITSOLUTIONS <00> GROUP Registered

I use Select-String to filter and save the results to $data. Next, I’ll split each line

into an array. The tricky part is that because I used Select-String, each line is a

MatchInfo object, not a string, so I need to use the Line property. I’ll also trim off

spaces while I’m at it:

PS C:\> $lines=$data | foreach { $_.Line.Trim()}
PS C:\> $lines
QUARK <20> UNIQUE Registered
QUARK <00> UNIQUE Registered
JDHITSOLUTIONS <00> GROUP Registered

Next I need to split each line on the spaces between words into another array using

the –Split operator and a regular-expression pattern for a whitespace. Because the

order is predictable I know what each array element will be, so I can use them to cre-

ate a new object:

PS C:\> $lines | foreach { $temp=$_ -split "\s+"
>> New-Object -TypeName PSObject -Property @{
>> Name=$temp[0]

253Conversion techniques

>> NbtCode=$temp[1]
>> Type=$temp[2]
>> Status=$temp[3]
>> }
>> }
Name NbtCode Type Status
---- ------- ---- ------
QUARK <20> UNIQUE Registered
QUARK <00> UNIQUE Registered
JDHITSOLUTIONS <00> GROUP Registered

There are potential issues with the techniques I just used. If any property value con-

tained a space I would have had to figure out some other splitting technique. Or if

there was a line that had no space between values I would have needed some other

splitting technique.

TIP I strongly recommend defining property names without spaces or special
characters like commas and apostrophes. You may need to use the
Replace() method to strip them out. While you’re at it, my other best
practice recommendation is to trim strings. Also note that if your output
has values that you might want to sort on or perhaps measure in some
way, it’s important that you attempt to cast the text value into the appro-
priate object type.

Handling CLI errors

Handling errors from your CLI tool and turning them into PowerShell is something

you’ll have to handle on a case-by-case basis. Assuming you’re building a PowerShell

script or function to wrap around your CLI tool, you’ll need to include some logic to

validate data. For example, let’s say you’re writing a PowerShell function to wrap

around the NET USER command. When there’s no error you can use the techniques

I’ve shown you to parse the output into a PowerShell object. But what if someone tries

to get an invalid user?

 I would probably do something like this:

$data=net user $username 2>$env:temp\err.txt
If ($data) {
 #add your code to process the data
}
Else {
 #add your code to parse the err.txt file to display and handle the error.
}

Or you can use a Try/Catch block. Because the CLI tool isn’t a cmdlet it can’t throw a

terminating exception. But you can set the error action preference in the Try script-

block to handle that for you:

Try {
 $ErrorActionPreference="stop"
 $data=net user $username
}

254 CHAPTER 17 Turning command-line tools into PowerShell tools

Catch {
 Write-Warning "Failed to find $username. $($_.Exception.Message)"
}

if ($data) {
 Write-Verbose "Processing $username"
 #code to parse $data
}

A practical example
Let’s look at one more practical example. I want to take the output of ipconfig

/displaydns and turn it into PowerShell output. There’s some potentially useful

information here that would be easier to work with if I had PowerShell objects.

 First, what type of output do I get?

PS C:\> ipconfig /displaydns

Windows IP Configuration

 ntp0.cornell.edu
 --
 Record Name : ntp0.cornell.edu
 Record Type : 5
 Time To Live : 80983
 Data Length : 8
 Section : Answer
 CNAME Record : dns3.cit.cornell.edu

 coredc01.jdhlab.local
 --
 Record Name : COREDC01.jdhlab.local
 Record Type : 1
 Time To Live : 3583
 Data Length : 4
 Section : Answer
 A (Host) Record . . . : 172.16.10.190

 manning.com
 --
 Record Name : manning.com
 Record Type : 1
 Time To Live : 399
 Data Length : 4
 Section : Answer
 A (Host) Record . . . : 68.180.151.75

 manning.com
 --
 Record Name : manning.com
 Record Type : 2
 Time To Live : 85593
 Data Length : 8
 Section : Answer
 NS Record : yns2.yahoo.com

 Record Name : manning.com
 Record Type : 2

255A practical example

 Time To Live : 85593
 Data Length : 8
 Section : Answer
 NS Record : yns1.yahoo.com
...

I could create objects that would include all these properties, but I’ve decided all I

really need is the record name and the PTR or A record—essentially, anything that has

record in the name. After some initial testing I realize I need to select lines that have

the word Record followed by a space:

PS C:\> $data=ipconfig /displaydns | select-string "Record "

This should give me three lines of data for each record:

PS C:\> $data[0..2]

 Record Name : JDHIT-DC01.jdhitsolutions.local
 Record Type : 1
 A (Host) Record . . . : 172.16.10.1

The challenge is to go through $data and group by threes. A For loop will work as

long as I increase my counter by three every time instead of the usual one. Assuming I

don’t get any odd entries, this command should verify that the every third record is a

record name:

PS C:\> for ($i=0;$i -lt $data.count;$i+=3) {$data[$i]}

 Record Name : JDHIT-DC01.jdhitsolutions.local
 Record Name : ntp0.cornell.edu
 Record Name : JDH-NVNAS.jdhitsolutions.local
 Record Name : COREDC01.jdhlab.local
 Record Name : manning.com
 Record Name : manning.com
 Record Name : manning.com
 Record Name : yns2.yahoo.com
 Record Name : yns1.yahoo.com
 Record Name : incsrc.manningpublications.com
 Record Name : powershell.com

Good. Because I know what the order will be I can build an ordered hash table (which

is a new PowerShell v3 feature) for each group of record data and then use those hash

tables as properties for New-Object. In v3 I could also use [pscustomobject] instead

of New-Object:

for ($i=0;$i -lt $data.count;$i+=3) {

 $hash= [ordered]@{
 Name=$data[$i].toString().Split(":")[1].Trim()
 Type=($data[$i+1].toString().Split(":")[1].Trim()) -as [int]
 Value=$data[$i+2].toString().Split(":")[1].Trim()
 }

 New-Object -TypeName PSobject -Property $hash

}

256 CHAPTER 17 Turning command-line tools into PowerShell tools

Each item is a MatchInfo object that I need to convert to a string. Each string is then

split into an array on the colon. The property value will be the second item in the

array, so I trim it up. I know I want the type to be an [int] so I cast it accordingly. Fig-

ure 2 depicts the results.

 Now that I have rough PowerShell code that works, I can go ahead and build an

advanced function to turn this into a PowerShell tool, as shown in the next listing. My

function requires PowerShell v3 because I’m using an ordered hash table. If you

remove the [ordered] attribute it should work in PowerShell v2.

#requires -version 3.0

Function Get-IPConfigDNS {

[cmdletbinding()]
Param()

Write-Verbose "Getting DNS cache information"
$data=ipconfig /displaydns | select-string "Record "

Write-Verbose ("Retrieved {0} entries" -f $data.count)
Write-Verbose ("There should be {0} dns records" -f ($data.count/3))

for ($i=0;$i -lt $data.count;$i+=3) {
 Write-Verbose $data[$i]

Listing 2 Get-IPConfigDNS

Figure 2 Converting a group of lines into PowerShell objects

257Summary

 $hash=[ordered]@{
 Name=$data[$i].toString().Split(":")[1].Trim()
 Type=($data[$i+1].toString().Split(":")[1].Trim()) -as [int]
 Value=$data[$i+2].toString().Split(":")[1].Trim()
 }

 New-Object -TypeName PSobject -Property $hash
}
Write-Verbose "Finished parsing DNS cache data"
}

I didn’t worry about error handling because the ipconfig command should always

return data. The end result is that I have a tool I can reuse in a PowerShell expression.

Figure 3 shows my function in action. There isn’t a PowerShell command to handle

the local DNS cache, so I wrote my own!

Summary
As I hope you’ve seen, it isn’t necessarily difficult to transform a CLI tool into a

PowerShell-based tool. The easiest approach is to use a CLI tool that writes results in

a PowerShell-friendly format like CSV. Barring that, look for a tool that writes a pre-

dictable and structured format so that you can parse the results into objects. In any

event, always look at help for the command you want to convert.

Figure 3 A CL- to-PowerShell tool in action

258 CHAPTER 17 Turning command-line tools into PowerShell tools

 Once you’ve mastered the techniques I’ve demonstrated here you might want to take

your PowerShell tools further by incorporating custom formatting or type extensions. Or

you could incorporate similar command-line tools into a module. But most important,

I hope you’ll share your work with the PowerShell community.

About the author

Jeffery Hicks is a Microsoft MVP in Windows PowerShell, a Micro-

soft Certified Trainer, and an IT veteran with over 20 years of

experience, much of it spent as an IT consultant specializing in

Microsoft server technologies. He works today as an independent

author, trainer, and consultant. Jeff writes the popular Prof. Power-

Shell column for MPCMag.com and is a regular contributor to the

Petri IT Knowledgebase and 4SysOps.

PART 3

PowerShell for developers

 Edited by Oisín Grehan

PowerShell is a scripting language. Scripting is for IT pros. Are these two state-

ments true? Yes, of course, they are—I don’t think anyone would disagree with

that. But, I believe that these two truisms are often misinterpreted. This stems

from the artificial line drawn between the two major disciplines. That is to say,

people assume there is a tangible demarcation between what IT pros and devel-

opers do. But, scripting is programming, and programming is scripting. UNIX

administrators have always known this. Lord knows, working with SED, AWK, and

their ilk is often more like programming than…uh…programming.

 If you think PowerShell is not for coders then maybe it’s time you sat back

and thought about that. When’s the last time you needed to do a quick calcula-

tion? Debug a regular expression? Figure out the correct incantation to format

that pesky date string the way the dumb specification says? Opened up your

favorite decompiler to try to figure out how that poorly documented third-party

library works? Had to toggle a flag in the registry? Needed to generate or modify

a fiddly XML document? Had to decode something quickly in Base64 or unravel

some triple URL-encoded parameter that is screwing up your web application?

Had to test a remote web service? Or address any one of many other one-off or

repeating tedious tasks? In all my years coding, I’ve had to do all those things

any number of times.

 If you’ve been in one of the positions above, you’ve probably fired up Visual

Studio and coughed up yet another throwaway WinForms or Console project to

figure out how to do what your frazzled brain is refusing to process, despite

knowing how to do it. We’ve all been there. I think the first inkling that there had to

be a better way was when I discovered the fun that is the Immediate Window in Visual

Studio. It’s typically available during a debugging session, which devalues it a little, but

the ability to have your .NET code immediately evaluated in an interactive console

seemed a blindingly obvious and useful thing to have as a developer. Well, you have it

already: it’s called PowerShell—and it is amazeballs!

 PowerShell makes all things possible in IT, and the chapters in Part 3 illustrate ways

to use PowerShell that you may have never thought about before.

 Source control for PowerShell-related projects should be on everybody’s radar.

Starting in this section, Trevor Sullivan shows how to set up a free and open source

product with PowerShell in chapter 18.

 PowerShell has embraced XML from the very beginning. In chapter 20 Josh Gavant

demonstrates how easy it is to work with XML from a PowerShell prompt. PowerShell 3.0

also uses XML, in the form of CDXML, to create new CIM-based tools. PowerShell MVP

Richard Siddaway walks you through this arcane structure and explains how easy it is

to build your own CIM-based commands in chapter 19.

 If you aren’t building CIM-based commands, then you are likely creating advanced

PowerShell functions. PowerShell MVP and developer Karl Prosser shows in chapter 21

how to integrate remoting into your scripting projects.

 Finally, PowerShell MVP and software engineer Jim Christopher offers chapter 22

on managing software builds with PowerShell and psake—a use for PowerShell that

goes beyond what anyone may have originally thought.

About the editor

Oisín Grehan cut his teeth programming with an Amstrad CPC

464 way back in 1984. He was born in Dublin, Ireland, and lives in

Montreal, Canada, with his wife Carly, his daughter Mena, and his

two cats: Betsy (thin) and Peanut (fat). He currently works as a soft-

ware developer and technical architect and builds all sorts of stuff

for all sorts of people. Oisín has been a PowerShell MVP since 2008.

261

Using Source Control Software
with PowerShell

 Trevor Sullivan

Windows PowerShell is a phenomenal tool for automation, but with great power

comes great responsibility. Over time you’ll find that your script repository will

grow larger and larger, and you’ll frequently need to modify scripts to provide

additional functionality, fix bugs, or make your code more readable. As your

repository grows and morphs it’s important to maintain a history of changes to

your script files. The benefits of keeping track of history are many, most impor-

tantly including the ability to revert to an old version of a script if you make a

breaking modification.

 In this chapter I’ll describe the benefits of using source control and how to per-

form basic source control functions. It’s my hope that you’ll begin to appreciate the

benefits that using source control software can provide to you, and will seek a

deeper understanding of its capabilities.

Requirements
For this chapter of PowerShell Deep Dive you’ll need several pieces of software:

■ Microsoft Windows 7/8 system running Windows Management Framework 3.0
■ Microsoft .NET Framework 4.0 (required for PowerShell v3)
■ TortoiseHg, available from http://tortoisehg.bitbucket.org
■ Mercurial (included with TortoiseHg)

As of this writing the Release to Manufacturing (RTM) version of Windows Power-

Shell 3.0 is available for Windows 7. It’s extremely stable, and offers an array (no

pun intended) of new functionality over version 2.0. PowerShell version 2.0 is the

version built into Windows 7 out of the box. To determine which version of Power-

Shell you are running, simply type the following command at the console:

$PSVersionTable.PSVersion

18

http://tortoisehg.bitbucket.org

262 CHAPTER 18 Using Source Control Software with PowerShell

You can download the Windows Management Framework Core 3.0 release at http://

goo.gl/ixOkQ.

When to use source control
As discussed in the introduction, source control should be used in any circumstance

where having the ability to roll back or review and audit changes is crucial. In produc-

tion environments the smallest change can have a massive impact, and having the abil-

ity to rapidly revert to known-working code is vital.

 Source control systems are also great for keeping track of small, individual proj-

ects. Rather than having a single, large code repository full of random script code it’s

advisable to subdivide your code into logical groupings. PowerShell modules are good

candidates for self-contained Mercurial repositories, as they generally are designed to

represent a cohesive block of functionality.

 Another great use of source control is to integrate with a continuous integration

system, which can build different versions of your software project, no matter where

you’re at in the development cycle. Having this integration means that you can rapidly

deploy any software version into a production environment and avoid interrupting

your development cycle to manually roll back code to a known working version.

Introduction to Mercurial
There are many version control software (VCS) packages available; however in this

chapter we’ll focus on Mercurial. Mercurial is a very popular VCS package. Due to its

decentralized nature it’s highly portable, meaning that a code repository can be syn-

chronized with any other team member’s repository. With this in mind, it isn’t neces-

sary to have a centralized server, although in a team environment having a central

server would still be desirable.

 Like most other VCS packages, Mercurial has a basic concept called a repository. A

repository keeps track of changes to files that have been added to it. Thanks to the

TortoiseHg graphical user interface (GUI) tools you can easily create a new repository.

In Mercurial parlance this is known as repository initialization (figure 1).

 Once you’ve created a repository you’ll want to add files to that repository, which

instructs Mercurial to keep track of change to those files. When files are added,

changed, or removed, those changes are detected during the next commit operation,

and can be reviewed for errors prior to finalizing the commit. When you commit

changes to a source code repository you have the opportunity to add a commit mes-

sage which helps you and other developers to identify what changes have occurred

since the last commit operation.

 As you develop your code you’ll continue the process of adding or removing files

from change tracking, and when you make significant changes you’ll regularly com-

mit them back to the repository. Once you’ve reached a certain point you may be

ready to share your code with others. In this case you can push or pull your code to or

from a remote repository. Thanks to Mercurial’s decentralized nature you aren’t

http://goo.gl/ixOkQ
http://goo.gl/ixOkQ

263Introduction to Mercurial

forced to synchronize with any central repository unless all of the developers on a

project agree to it at the beginning of the project. This means you can push/pull code

changes with any replica of your repository. If you’re working on an open source pro-

ject you might synchronize your local repository with a hosted service, such as Micro-

soft’s CodePlex open source website Bitbucket.org, or any other source code hosting

provider who supports Mercurial repositories.

Command line versus GUI

The TortoiseHg package includes both GUI tools and the Mercurial command line

executable, hg.exe. For most operations either tool can be used, and it’s up to you to

determine which one you’re most comfortable with. It has been my experience that

using the GUI tools can make it more convenient to view changes, insert commit mes-

sages, and add and remove files, but there are many people who prefer to stay true to

the command line tools.

 One benefit of using the TortoiseHg GUI instead of the command line utility is

that it will save your settings and credentials for a remote repository. This helps to

avoid the necessity of typing out the remote repository URL and your credentials each

time you want to synchronize (push / pull) your local repository with the remote one.

 Using the command line over the GUI has its benefits as well. For example, you can

use the command line to automate common tasks in Mercurial and save yourself pre-

cious typing time. We’ll explore more about how to use Mercurial from PowerShell

later in this chapter. Most of the tasks you perform using the command line interface

consist of a structure similar to

hg.exe <Action> <ParametersForAction>

If you’re just getting started with Mercurial for the first time you can always type either

of these commands to help you learn the command line utility:

hg.exe help

Develop code

Commit

changes

Add/remove

files to

repository Figure 1 The high-level process of

using Mercurial once a repository has

been initialized

264 CHAPTER 18 Using Source Control Software with PowerShell

or

hg.exe help <action>

The actions you can perform are very user-friendly and easy to remember. Addition-

ally, many of the actions have aliases, making them even easier to type when you’re

deep in the middle of a coding session.

 I think you’ll find both the command line and GUI interfaces to be beneficial tools

as you get started with Mercurial. In the next section we’ll discuss some common func-

tions you’ll use when working with Mercurial.

Common source control operations

During your development workflow you’ll interact with a number of core functions in

any version control software. In this section we’ll go over some of the most common

source control operations that you should become familiar with in Mercurial. You’ll

use these functions on a daily basis as you develop your code. Using these operations

is critical to ensuring that you get the most usefulness out of your source control

repository. If you neglect to use these you’ll still have your code, but you won’t gain

the benefits of having revision history and rollback capabilities.

Initializing a repository

As discussed in the previous section, the first step to using Mercurial is to initialize a

code repository. Let’s assume that we’ll be creating a PowerShell module at the path

c:\code\Modules\ConfigMgr2012. You can perform the repository initialization using

the following command line tool:

Set-Location -Path c:\code\Modules\ConfigMgr2012
hg.exe init

Figure 2 demonstrates the TortoiseHg UI control used to initialize a repository.

 Once the code repository has been created you’ll notice that an .hg folder is cre-

ated in the root, along with an .hgignore file. These files are used by Mercurial to

keep track of the repository and shouldn’t be modified by the end user under nor-

mal circumstances.

Figure 2 The TortoiseHg

repository initialization screen

265Common source control operations

Adding files

Once you’ve initialized a code repository you’ll want to add some files to it. You can

use the command line or GUI for this purpose. Using hg.exe run the command below:

Set-Location -Path c:\code\Modules\ConfigMgr2012;
New-Item –ItemType File –Name NewScriptFile.ps1;
hg.exe add NewScriptFile.ps1;

Figure 3 shows what the TortoiseHg GUI tool looks when adding files to a repository.

You can simply uncheck the files that you don’t want to add to the source control

repository, and leave checked the ones that you want added.

NOTE Keep in mind that adding files doesn’t create any changes to the reposi-
tory. In order to actually make the newly added files become part of the
repository you must commit them, which will be demonstrated in the
next section.

Committing a new changeset

Once you have added files to your repository you’ll want to commit changes to the

repository. Performing this action creates what is known as a Mercurial changeset.

A changeset represents a series of changes that have been performed since the last

changeset was committed.

 In order to commit a new changeset using the command line simply run the fol-

lowing command:

Set-Location –Path c:\code\Modules\ConfigMgr2012;
hg.exe commit –m "Commit message" –u "Trevor Sullivan (pcgeek86@gmail.com)"

The Commit dialog box in TortoiseHg looks similar to figure 4.

Figure 3 The TortoiseHg add files screen

266 CHAPTER 18 Using Source Control Software with PowerShell

Removing files

The remove action is similar to the add action. The remove action removes a file from

change tracking in the Mercurial repository that you’re currently operating on (the

current working directory). To remove files from change tracking use this command:

Set-Location -Path c:\code\Modules\ConfigMgr2012
hg.exe remove NewScriptFile.ps1

Figure 5 shows the TortoiseHg remove dialog box. The left-hand pane shows the files

that will be removed, while the right-hand pane shows a preview of the currently

selected file.

The files that will be

added, changed, or

removed from the

Mercurial respository

Figure 4 The TortoiseHg commit dialog box

The checked files

will be removed

from the repository

when the “Remove”

button is clicked.

Figure 5 The TortoiseHg remove file dialog box

267Using Mercurial from PowerShell

Using Mercurial from PowerShell
As an end user of Mercurial you can automate many of its functions from PowerShell.

This is easy to do since the product was built around the command line. Unfortu-

nately there’s no .NET library for Mercurial. You can, however, easily call the com-

mand line utility, which we’ve already discussed.Automating Mercurial tasks can help

to streamline your workflow as a software developer, and can also be incorporated into

build scripts that run on a continuous integration service such as Cruise Control .NET

or JetBrains TeamCity.

Script to initialize a repository

The following listing shows how to wrap a Mercurial repository initialization com-

mand in a PowerShell function.

function New-MercurialRepository {
 [CmdletBinding()]
 param (
 [Parameter(Mandatory = $true)] [string] $Path
)

 if (Test-Path -Path $Path -PathType Container) {
 Start-Process -FilePath hg.exe -ArgumentList ('init "{0}"' -f $Path)
 }
}

New-MercurialRepository -Path c:\code\Modules\ConfigMgr2012

Script to commit a changeset

Listing 2 demonstrates how to perform a commit operation using a PowerShell script

cmdlet. There are parameters to pass in a commit message, the path to the Mercurial

repository, and an optional username. By default the function uses the username with

which you’re logged into a Windows session.

function Commit-MercurialChangeset {
 [CmdletBinding()]
 param (
 [Parameter(Mandatory = $true,
HelpMessage = 'Please enter a commit message.')]
 [string] $Message
 , [Parameter(Mandatory = $true,
HelpMessage = 'Please enter the path to the repository.')]
 [string] $Path
 , [Parameter(Mandatory = $false)]
[string] $Username = $env:USERNAME
)

 $Path = '{0}\.hg' -f $Path

Listing 1 The New-MercurialRepository PowerShell Function

Listing 2 The Commit-MercurialChangeset PowerShell Function

268 CHAPTER 18 Using Source Control Software with PowerShell

 if (Test-Path -Path $Path -PathType Container) {
 $Arguments = 'commit -u "{1}" -m "{0}"' -f $Message, $Username;
 Write-Host -Object $Arguments
 $Process = Start-Process -FilePath hg.exe -ArgumentList $Arguments
 ➥ -NoNewWindow -PassThru -Wait -WorkingDirectory $Path
 $Process.ExitCode
 }
 else {
 throw ('Path ({0}) does not exist!' -f $Path)
 }
}

Commit-MercurialChangeset –Message 'Test commit message.' -Path
 ➥ c:\code\Modules\ConfigMgr2012 -Username 'Trevor Sullivan'

NOTE The Commit verb is not an officially recognized PowerShell verb; how-
ever you can use any verb you like to name your function. If this function
is imported as part of a PowerShell module you’ll receive this warning:
WARNING: Some imported command names include unapproved verbs which
might make them less discoverable.

Working with Mercurial in teams
In team environments Mercurial provides the ability for team members to commit to a

single, centralized repository. By working off of a centralized repository multiple peo-

ple can make changes to the same code repository and see what each other are work-

ing on. Although it’s quite rudimentary Mercurial includes a built-in command line

webserver, which can be launched using this command:

Set-Location –Path c:\code\Modules\ConfigMgr2012
hg serve

NOTE In order to run the “hg serve” command the current directory must be
set to a folder containing a Mercurial repository. If you attempt to run
the command without navigating to a folder containing a Mercurial
repository you will receive this error message: abort: there is no Mercu-
rial repository here (.hg not found)!

Once the webserver has been launched on a remote system you can use the push and

pull commands in Mercurial to synchronize your local repository with the remote

repository. When you push changes from your local repository to the remote reposi-

tory any changesets that you’ve created will be sent up to the remote repository. If you

pull changes from the remote repository to your local repository any changesets that

other team members have pushed to the remote repository will be pulled down to

your local repository. When pulling or pushing you can also specify a changeset ID

that you’d like to be pushed or pulled, rather than pushing or pulling all changes.

 If you need to work on a project that exists on a remote server but you don’t have a

local copy of the repository you’ll need to use the clone command before you can

push or pull changesets. In this scenario the clone command replaces the init com-

mand that was discussed earlier in this chapter.

269Summary

Alternative Mercurial web services

To reiterate, the built-in Mercurial webserver is quite simplistic in its nature and

doesn’t provide a very wide set of features such as user authentication, authorization,

bug tracker integration, or a web interface to manage code repositories. If you require

these features there are software packages available that can accommodate this need.

 For example, there’s a free solution – albeit in its alpha stages – called HgLab avail-

able at http://hglabhq.com. This package is written in C# using the Microsoft .NET

Framework; it’s built on top of the HgSharp .NET library. According to its website it

offers Active Directory integration for user authentication and authorization, reposi-

tory management, and a source code browser.

 Kiln, developed by Fog Creek Software, is another centralized Mercurial solution

that is proprietary. A unique feature of this package is that it integrates with Fog

Creek’s own FogBugz bug tracking software and allows Mercurial changesets to be

tied back to software support tickets.

 I’ll leave further research into these tools up to you, dear reader. Be aware that

there are solutions out there beyond the basic, built-in Mercurial webserver.

Summary
In this chapter we discussed when to use a version control system (VCS) with Power-

Shell projects, as well as some basics of how to get started with Mercurial as a VCS. We

also examined how to call Mercurial commands from PowerShell using wrapper func-

tions and looked at the two main methods of interfacing with Mercurial repositories

from the GUI and command line. I trust that this chapter has given you some new

ideas and can help take your coding workflow to the next level.

About the Author

Trevor Sullivan is a pursuer of all types of knowledge and is partic-

ularly passionate about information technology and technical com-

munities. He has been working primarily with Microsoft solutions

since 2004 and is entirely self-taught. Trevor has received public

recognition from Microsoft for his contributions to the Windows

PowerShell community, and has also written several guest posts for

the Microsoft Hey, Scripting Guy! blog and PowerShell Magazine.

One of his more notable achievements is the release of the Power-

Events module for PowerShell, which is available on Microsoft’s

CodePlex open source website. Trevor also enjoys giving presentations and has pre-

sented on the topic of PowerShell & WMI, in addition to two guest appearances on the

weekly PowerScripting podcast.

http://hglabhq.com

270

Inline .NET code

 Richard Siddaway

PowerShell is .NET-based. This enables you to use the .NET framework in your Power-

Shell scripts by loading the relevant assemblies into PowerShell (if they aren’t part

of the default assembly set) and then using them via New-Object. You can create

intricate GUI applications as a front end to your scripts, for instance. Whether you

should or not is a discussion for another time.

 You can also use .NET code directly in your scripts, which is the topic of this

chapter. You’ll see two ways of using .NET directly in your scripts. The first way

involves creating a .NET class that you can then use for output or future processing.

The second way enables you to create a class with methods you can use in your

script to perform an action. You could access the method without creating a class,

but ultimately, creating the class gives you more flexibility. Let’s start by looking at

how to create a class for output.

.NET class for output
The PowerShell mantra is output objects. Executing a simple piece of PowerShell

such as the following produces output onscreen:

PS> Get-CimInstance -ClassName Win32_OperatingSystem |
 ➥ select CSName, Caption, OSArchitecture, LastBootUpTime, CountryCode

CSName : RSLAPTOP01
Caption : Microsoft Windows 8 Enterprise
OSArchitecture : 32-bit
LastBootUpTime : 17/08/2012 10:02:11
CountryCode : 44

Output types

If you look at the output type by piping this code into Get-Member you’ll see it’s a

Selected.Microsoft.Management.Infrastructure.CimInstance object. It’s a modi-

fied version of the object produced by the Get-CimInstance cmdlet but still an

object that can be put onto the PowerShell pipeline for further processing.

19

271.NET class for output

 Such output is common when investigating computer configuration. Another

common requirement is to retrieve information about the computer hardware. Here’s

an example:

PS> Get-CimInstance -ClassName Win32_ComputerSystem |
 ➥ select DNSHostName, TotalPhysicalMemory, Manufacturer, Model, Domain

DNSHostName : RSLAPTOP01
TotalPhysicalMemory : 2951135232
Manufacturer : Hewlett-Packard
Model : HP G60 Notebook PC
Domain : WORKGROUP

Outputting single objects is straightforward. When working interactively, outputting

multiple objects in a sequential manner is easy. What happens when you run these two

sets of code in a script? The two WMI classes work together, but you can get a format-

ting error because the default formats for the two classes clash. Also, outputting two

objects from a single script or advanced function makes further processing of the out-

put problematic if not impossible.

Creating a .NET class for output

At this point you may be thinking that you can combine the two outputs into a single

object. There are a number of ways of performing this task. Using New-Object to cre-

ate a custom object is the most commonly used, but there’s an alternative: create and

compile a .NET class as part of your script. This class becomes part of the .NET frame-

work loaded into PowerShell and can be accessed and used like any other class. It may

seem that this is an additional complication you don’t need—and in many cases, you

would be correct. But using this technique offers some benefits:

■ Class properties are strongly typed.
■ The class has a unique name, which means it works easily with PowerShell’s for-

mat and type files.

Strongly typed is a way of saying that the value you pass to a property must be of the cor-

rect data type or be automatically convertible to the correct data type. If you define a

property as an integer and try to pass it a string value, PowerShell attempts to convert

the string to an integer. If the conversion works, everything is fine and processing con-

tinues. If the conversion fails, PowerShell throws an error.

 So how do you get this to work? An example is shown in the next listing. The

source code is supplied at the start of the script. Add-Type compiles the code, after

which it can be accessed like any other .NET class.

$source = @"
public class MySystemData
{
 public string ComputerName {get; set;}
 public string DNSHostName {get; set;}

Listing 1 Creating a class for output

Class
definitionb

272 CHAPTER 19 Inline .NET code

 public string OSName {get; set;}
 public string OSArchitecture {get; set;}
 public string Manufacturer {get; set;}
 public string Model {get; set;}
 public int CountryCode {get; set;}
 public double Ram {get; set;}
 public System.DateTime BootUpTime {get; set;}
}
"@
Add-Type -TypeDefinition $source -Language CSharpVersion3

function get-computersystem {
[CmdletBinding()]
param (
 [Parameter(ValueFromPipeline=$True,
 ValueFromPipelineByPropertyName=$True)]
 [ValidateScript({Test-Connection -Computername $_ -Count 1 -Quiet})]
 [string]$computername = $env:COMPUTERNAME
)
$os = Get-CimInstance -ClassName Win32_OperatingSystem `
-ComputerName $computername |
select CSName, Caption, OSArchitecture, LastBootUpTime, CountryCode

$cs = Get-CimInstance -ClassName Win32_ComputerSystem `
-ComputerName $computername|
select DNSHostName, TotalPhysicalMemory, Manufacturer, Model, Domain

$props = @{
 ComputerName = $os.CSName
 DNSHostName = $cs.DNSHostName
 OSName = $os.Caption
 OSArchitecture = $os.OSArchitecture
 Manufacturer = $cs.Manufacturer
 Model = $cs.Model
 CountryCode = $os.CountryCode
 Ram = [math]::round($($cs.TotalPhysicalMemory / 1GB), 2)
 BootUpTime = $os.LastBootUpTime
}

New-Object -TypeName MySystemData -Property $props
}

The .NET code is defined B using a here string. The class definition is supplied first.

It looks like this:

public class MySystemData
{
}

The class keyword says you’re creating a class. It’s given a name: MySystemData. The

public keyword indicates that the class is visible to PowerShell. Within the class defini-

tion are a number of property definitions of this form:

public string ComputerName {get; set;}

Public is again used to make the property visible. The data type is defined as a

string. The property is named ComputerName. The final part of the definition makes

Class
definition

b

Compile
classc

Function
definitiond

Get operating
system

e

Get
computer

system f

Set property
valuesg

Create
object

h

273.NET class for output

the property readable (get) and writable (set). The common data types you’ll need

are shown in the listing; other types can be found in the .NET documentation.

Add-Type c is used to compile the code. The language is expected to be C# ver-

sion 3, but you can use a different version of C#, Visual Basic, J#, F#, or another lan-

guage if you have the appropriate compiler installed on your system.

NOTE You can’t unload a type or change it once you’ve successfully compiled
the code. You have to change the type (class) name or start a new
instance of PowerShell.

The code now reverts to the PowerShell you know and love. A function is defined d
with one parameter: a computer name that can be supplied by parameter or through

the pipeline. Test-Connection is used as part of the validation process to ensure that

the computer is reachable.

 Calls to Get-CimInstance retrieve the operating system data e and the computer

hardware information f. You could substitute Get-WmiObject for Get-CimInstance,

although I recommend moving to the CIM cmdlets for new work.

 A hash table is used to create the property set g. Together with New-Object h it

creates an object using the class name used in the source code.

 The function can be loaded as part of a module or script and is used exactly the

same way as any other advanced function. Running it on my test machine produces

these results:

PS> get-computersystem

ComputerName : RSLAPTOP01
DNSHostName : RSLAPTOP01
OSName : Microsoft Windows 8 Enterprise
OSArchitecture : 32-bit
Manufacturer : Hewlett-Packard
Model : HP G60 Notebook PC
CountryCode : 44
Ram : 2.75
BootUpTime : 02/09/2012 19:27:41

One objection that many people have raised to using New-Object to create a custom

object is that the order of the properties isn’t maintained. This is because of the way

hash tables work. Compare the order of creation in the code and what is produced

when you display the hash table:

PS> $props

Name Value
---- -----
OSName Microsoft Windows 8 Enterprise
Ram 2.75
Manufacturer Hewlett-Packard
ComputerName RSLAPTOP01
CountryCode 44
BootUpTime 02/09/2012 19:27:41

274 CHAPTER 19 Inline .NET code

OSArchitecture 32-bit
DNSHostName RSLAPTOP01
Model HP G60 Notebook PC

Creating an object this way using .NET preserves the order of properties; compare the

output with the source code.

 The other advantage of creating objects like this is that you define the type:

PS> (get-computersystem).getType()

IsPublic IsSerial Name BaseType
-------- -------- ---- --------
True False MySystemData System.Object

You can then create new type and format definitions if required.

 That concludes our look at using inline .NET code to create an object for output.

The second major way to use .NET code is to create a class with methods you can call.

.NET class with methods
Adding methods to your .NET code is a bit more complicated than adding properties.

For example, the code in the next listing provides a way to use the .NET MessageBox

class in your scripts.

$source = @'
using System.Drawing;
using System.Windows.Forms;

public class Messages
{
 public static System.Windows.Forms.DialogResult OK(
 ➥ string message, string caption)
 {
 return MessageBox.Show(message, caption,
 ➥ System.Windows.Forms.MessageBoxButtons.OK);
 }
 public static System.Windows.Forms.DialogResult YesNo(
 ➥ string message, string caption)
 {
 return MessageBox.Show(message, caption,
 ➥ System.Windows.Forms.MessageBoxButtons.YesNo);
 }
}
'@

Add-Type -TypeDefinition $source -Language CSharpVersion3
 ➥ -ReferencedAssemblies System.Drawing, System.Windows.Forms

[Messages]::OK('Hello, this is to inform you that you have
 ➥ a decision to make', 'Information')
$yn = [Messages]::YesNo('Do you want to take this further',
 ➥ 'Decision Time')
switch ($yn){

Listing 2 Creating a class with methods

Source code
definitionb

Method
definitionc

Compile
code

d

Use
methodse

275.NET class with methods

 'Yes' {[Messages]::OK('Well done - this technique may
 ➥ help you in the future','Decision Made')}
 'No' {[Messages]::OK('OK - the technique is here
 ➥ if you need it','Decision Made')}
}

The source code is defined in a here string B. The first two lines define other assem-

blies that you need to reference:

using System.Drawing;
using System.Windows.Forms;

The language is C# again, because that’s what I’m most comfortable with. Other

languages are available. The class name is supplied—in this case, Messages. Each

method c has its own definition block:

 public static System.Windows.Forms.DialogResult OK(
 ➥ string message, string caption)
 {
 return MessageBox.Show(message, caption,
 ➥ System.Windows.Forms.MessageBoxButtons.OK);
 }

The public keyword means you can find and use the method. The methods are

static, meaning you don’t need to create an object to use them. The return object

type is defined; in this case, it’s a System.Windows.Forms.DialogResult object. The

method name is OK. Two parameters are defined for the method named message and

caption. Each parameter is defined to accept a string.

 The working part of the method is as follows:

return MessageBox.Show(message, caption,
 ➥ System.Windows.Forms.MessageBoxButtons.OK);

This line defines the return information. A call to the MessageBox class invokes the

Show() method. The message and caption parameters provide the message to be dis-

played and the Window caption, respectively. A final parameter defines the style of

buttons to be used, in this case a simple OK button. A second method supplies the

option of having two buttons: one labeled Yes and one labeled No.

Add-Type is used to compile the code d. Notice that the assemblies you want to

reference are repeated in the call to Add-Type. If you don’t do this you’ll get a confus-

ing error with a message regarding Drawing not being found.

 The class is now ready to use e:

[Messages]::OK('Hello, this is to inform you that you have
 ➥ a decison to make', 'Information')

The message is 'Hello, this is to inform you that you have a decision to make'.

The second parameter, 'Decision Time', provides the caption for the pop-up win-

dow. Click the OK button, and the window disappears. The second method asks for a

yes/no choice; the result is returned in the $yn variable. A Switch statement pro-

cesses the result.

276 CHAPTER 19 Inline .NET code

 You might ask how to discover the values for the System.Windows.Forms.Dialog-

Result enumeration. You can look them up on MSDN or use the following function:

function Get-Enum {
param (
[string]$class
)
[enum]::GetNames("$class") |
foreach {

$exp = "([$class]::$($_)).value__"

 New-Object -TypeName PSObject -Property @{
 Name = $_
 Number = Invoke-Expression -Command $exp
 }
}
}

The function accepts a .NET class as a parameter and uses the GetNames() method of

the System.Enum class to provide the list of named values. Each name has a numeric

value associated with it, which can be discovered by using the value__ property.

Unfortunately you can’t put the class into a type definition via a variable, so I created a

string with the required code. I used string substitution to populate it and then called

Invoke-Expression to execute the code.

Summary
This chapter has shown you how to create .NET objects that you can use to combine

data from multiple objects. It has also shown how to create your own .NET class that

you can call from PowerShell.

 The techniques presented in this chapter are advanced and won’t be required by

every PowerShell user. When you need to extend PowerShell just that little bit further,

they may supply you with the answer.

About the author

Richard Siddaway has worked with Microsoft technologies for 25

years and has spent time in most IT roles. He currently works for

Kelway (UK) Ltd as an automation consultant. He has a long-

standing interest in automation techniques, and PowerShell has

been his primary automation tool since the early beta versions.

Richard founded the UK PowerShell User Group in 2007 and is a

PowerShell MVP. He frequently speaks at PowerShell user groups

in the UK, Europe, the US, and elsewhere around the world, and

judges the Microsoft Scripting Games. In addition to writing his blog (http://

msmvps.com/blogs/RichardSiddaway/), Richard has authored two PowerShell books:

http://msmvps.com/blogs/RichardSiddaway/
http://msmvps.com/blogs/RichardSiddaway/

277Summary

PowerShell in Practice (Manning 2010) and PowerShell and WMI (Manning 2012), and

coauthored PowerShell in Depth (Manning 2013) with Don Jones and Jeffery Hicks. Cur-

rently he is writing an introductory book for Active Directory administrators that fea-

tures PowerShell.

With thanks to Tobias Weltner for the discussion on using the –ReferencedAssemblies

parameter.

278

PowerShell and XML:
better together

 Josh Gavant

In the words of PowerShell creator Jeffrey Snover in his 2002 “Monad Manifesto”

(www.jsnover.com/Docs/MonadManifesto.pdf), “[t]he traditional model for admin-

istrative automation ... requires clumsy, lossy, imprecise text manipulation utilities.”

Command-line input and answer files are unstructured text; output is a hodge-

podge of details that the command’s authors deem helpful. To use the text output

from one command as input for another, that text has to be parsed, and the script

author has to pray that the chosen parsing works consistently. In fact, Snover

coined the term prayer-based parsing, and defines it as follows:

DEFINITION Prayer-based parsing is when you parse the text and pray that you
got it right. Examples include, cutting off the first three lines and
praying that it wasn’t four, cutting out columns 30–40 and pray-
ing that those spaces aren’t tabs, or casting as an integer and
praying that it’s 32 bits. (“Monad Manifesto,” p. 4, note 7)

Figure 1 provides a simple example of prayer-based parsing gone wrong. In the first

series, the word “quick” is replaced with “slow” and all is well. In the second series,

because the input file now uses the four-letter “fast” instead of the five-letter

“quick,” the parser unintentionally removes a space between words. A small differ-

ence, but it could easily crash a script or a program.

 Spoken languages and text are imprecise. We may each use different adjec-

tives to indicate the same characteristic, we may choose to separate words with

spaces, line breaks, or tabs, and we may include an attribute when describing

something that someone else would not. But the reality is that we humans ulti-

mately need to describe things in spoken languages and text. Perhaps the ideal

way to identify the Windows Update service would be a 16-byte GUID; it’s guaranteed

to be unique and have a 100-percent predictable structure. But a report that indicates

20

www.jsnover.com/Docs/MonadManifesto.pdf

279What is XML?

“service {17AE3EB7-F6B1-4C22-B55E-746767EC7346} is in state 1” is useless;

humans need to be told that “WUAUSERV is Running.”

 Structure and definition make our solutions more efficient, more resilient, and

less error-prone. But too much structure can make these solutions unwieldy and diffi-

cult to use. What allows us to attain PowerShell’s goal of structure as we preserve the

benefits and friendliness of human-readable text? Enter XML.

What is XML?
No doubt we’ve all worked with XML before, but let’s go back and begin at the founda-

tion to set a common understanding from which to build.

XML may be defined as data and markup stored in a text file in a structured for-

mat. But what purpose is this structured collection of data and metadata meant to

serve, and what benefits does it provide over other data storage formats? In answering

this question, I’ll use the following listing as an example XML document (books.xml),

which presents metadata about a small collection of books. (The example is available

here: http://msdn.microsoft.com/en-us/library/windows/desktop/ms762271.aspx.)

<?xml version="1.0"?>
<catalog>
 <book id="bk101">
 <author>Gambardella, Matthew</author>
 <title>XML Developer's Guide</title>
 <genre>Computer</genre>
 <price>44.95</price>
 <publish_date>2000-10-01</publish_date>
 <description>An in-depth look at creating applications
 with XML.</description>
 </book>
 <book id="bk102">
 <author>Ralls, Kim</author>

Listing 1 Books.xml example

Figure 1 Prayer-based parsing of the input

at the left produces the output at the right.

The prayer is unanswered in the second

series, leading to incorrect output.

Structured
data about
book

Attribute specifying
book’s ID

http://msdn.microsoft.com/en-us/library/windows/desktop/ms762271.aspx

280 CHAPTER 20 PowerShell and XML: better together

 <title>Midnight Rain</title>
 <genre>Fantasy</genre>
 <price>5.95</price>
 <publish_date>2000-12-16</publish_date>
 <description>A former architect battles corporate zombies,
 an evil sorceress, and her own childhood to become queen
 of the world.</description>
 </book>
 <book id="bk103">
 <author>Corets, Eva</author>
 <title>Maeve Ascendant</title>
 <genre>Fantasy</genre>
 <price>5.95</price>
 <publish_date>2000-11-17</publish_date>
 <description>After the collapse of a nanotechnology
 society in England, the young survivors lay the
 foundation for a new society.</description>
 </book>
</catalog>

XML provides a defined, structured, predictable way to organize textual information.

The document in listing 1 is like the bookshelf shown in figure 2: each book is exactly

the same size; each takes an exact space on the shelf; the title of each book is in an

exact place on the cover; the author’s name is at a specific, predictable location; and

an ID number is at a specific position. A robot could be told to follow an exact

sequence over and over to discover all details about each book on this bookshelf. In

the same way, an automated parser could discover all details about all books in this

XML document by repeatedly processing the text in the same way.

 The sample XML document contains a relatively readable set of data about several

books, including each book’s ID, title, and author. An automated parser can identify

and return specific pieces of information and their relationships to other information

in the document. The structure in XML allows you to create collections of in-memory

objects from XML and vice versa.

 Whereas listing 1 looks like a simple text file, XML is more than structured text.

The first sentence in the W3C XML specification states “XML describes a class of data

Element containing
book’s title

Figure 2 A well-organized

bookshelf (from www.aspbs.com/)

www.aspbs.com/

281What is XML?

objects called XML documents” (World Wide Web Consortium, www.w3.org/TR/xml/;

emphasis added). XML documents are stored as readable text, but they’re defined from

the start as data objects. The perspective that these objects are stored as formatted text

instead of 1’s and 0’s is incidental; XML is an object framework with its own members

and semantics for access and storage.

 When data is retrieved into memory it isn’t typically stored as text, so before appli-

cations and scripts can work with an XML document a processor converts it into an

appropriate in-memory model, as illustrated in figure 3. The in-memory version of an

XML document is a hierarchical tree of items defined by the XML Document Object

Model (DOM). Once the document has been converted into a DOM object applica-

tions and scripts can access its data and manipulate it.

 In Microsoft .NET, instances of System.Xml.XmlReader and derived classes analyze

and process XML documents, returning DOM-compatible representations of their

nodes and contents. Instances of System.Xml.XmlDocument store these representa-

tions in memory and provide continuing read/write access to them. Utilities and APIs

such as LINQ to XML, XPath navigation, and PowerShell’s XML facilities are built on

top of these core elements.

XML as text

All of this emphasis on complex XML processors and XML being more than text may
be leaving you scratching your head. After all, on many occasions it’s convenient to
skip the formalities and treat XML documents as simple text. I’m sure that, like me,
you sometimes do that by opening XML documents in Notepad and making quick ed-
its. I’m not telling you not to.

But when you’re writing reusable scripts for automation relying on ad hoc reading
and editing is a practice that will lead to problems. Only conforming XML proces-
sors, such as those provided by .NET and PowerShell or other libraries, should be
relied upon for the consistency and dependability needed for production-level, reus-
able scripts and code. The XML standard has many subtleties that simple text-
oriented parsing will likely not be aware of, such as XML Schemas, entities, and
enumerable attribute values, to name a few. Although text editing is sometimes
convenient for quick fixes, stick to standards-based processors for long-term con-
sistency and reliability.

XML document Document analysis Document object model

Figure 3 Processing an

XML document into an XML

Document Object Model

(DOM) tree

www.w3.org/TR/xml/

282 CHAPTER 20 PowerShell and XML: better together

If you didn’t follow all the nitty-gritty details of the past few paragraphs, don’t fret.

Your key takeaway should be that XML documents are, in fact, objects, and that this

makes them a perfect fit for PowerShell and the structure it emphasizes. Now let’s see

how PowerShell capitalizes on this.

XML in .NET and PowerShell
Having described what XML files and objects are and the structure and predictability

they provide, I’ll show you these pieces at work and use PowerShell to parse and

return information from an XML document. As illustrated in figure 4, you’ll read the

sample XML document (books.xml) and turn it into a collection of PowerShell objects.

As I demonstrate each command I’ll explain in depth what it’s doing.

 Your first step is to load the text file and convert it to an XmlDocument object. Store

this object in a variable titled XMLDoc:

PS C:\> $XMLDoc = [xml] (Get-Content C:\books.xml)

The Get-Content cmdlet retrieves text from a file and creates an array of strings (as

opposed to one long string with line breaks). Each string is one line from the origi-

nal file.

Get-Content

When (Get-Content C:\books.xml) runs an array of strings is generated. Try it:

PS C:\ > Get-Content C:\books.xml
<?xml version="1.0"?>
<catalog>
 <book id="bk101">
 <author>Gambardella, Matthew</author>
 <title>XML Developer's Guide</title>
 <genre>Computer</genre>
 <price>44.95</price>
 <publish_date>2000-10-01</publish_date>
 <description>An in-depth look at creating applications
 with XML.</description>
 </book>
 <!-- ...other <book> items omitted... -->
</catalog>

XML document Document analysis

[xml] (GetContent...)

PowerShell objects

Figure 4 Converting an

XML file into a collection of

PowerShell objects

283XML in .NET and PowerShell

To prove that the content is retrieved as an array of strings run this command:

PS C:\ > (Get-Content .\books.xml).Length
32

It returns 32, the number of elements in the array, which corresponds to the number

of lines in the original file. If a single long string were returned the value of Length

would be 1.

[xml]

Next let’s consider the [xml] symbol. This is a type literal, a reference to a type. In this

case it’s a type accelerator, which is a shorthand reference to a full type name. [xml]

represents the [System.Xml.XmlDocument] type, the .NET type encapsulating an XML

DOM data tree.

 When a type literal like [xml] is placed before an expression, it represents a con-

version of the expression to the type represented by the literal. In this case, your array

of strings is converted into a System.Xml.XmlDocument object. PowerShell accom-

plishes this by concatenating all the strings together into one long string, then calling

the XmlDocument.Load method to process the text and load the data into an Xml-

Document object. Remember, the XmlDocument object represents the in-memory

model (DOM) for the XML file. The process described here is PowerShell’s implemen-

tation of the analysis illustrated in figure 3.

NOTE Those accustomed to C# and other .NET languages may be surprised by
this conversion; casting a string directly to an XmlDocument in C# isn’t
supported. This is an example of PowerShell extending the basic .NET

casting logic with its own conversion algorithms.

The output following this conversion is demonstrated by the following command:

PS C:\> [xml] (Get-Content C:\books.xml)

xml catalog
--- -------
version="1.0" catalog

Most XML documents converted into PowerShell XML objects look like this by default,

with a property representing the XML declaration, and a property representing the

root element of the document.

 The following code is a more complete demonstration of all of the properties of

a PowerShell XML object. The XML DOM for a document node specifies most of the

capitalized properties. Some of the raw XML content has been removed for the sake

of brevity:

PS C:\> [xml] (Get-Content C:\books.xml) | Format-List -Property *

xml : version="1.0"
catalog : catalog
NodeType : Document
ParentNode :

Properties added to
XmlDocument by PowerShell

284 CHAPTER 20 PowerShell and XML: better together

DocumentType :
Implementation : System.Xml.XmlImplementation
Name : #document
LocalName : #document
DocumentElement : catalog
OwnerDocument :
Schemas : System.Xml.Schema.XmlSchemaSet
XmlResolver :
NameTable : System.Xml.NameTable
PreserveWhitespace : False
IsReadOnly : False
InnerText :
InnerXml : <?xml version="1.0"?><catalog><book
 id="bk101"><author>Gambardella,
 Matthew</author><title>XML Developer's Guide
 </title><genre>Computer</genre><price>44.95
 </price><publish_date>2000-1001</publish_date>
 <description>An in-depth look at creating
 applications with XML.</description></book>
 ...
 </catalog>
SchemaInfo : System.Xml.Schema.XmlSchemaInfo
BaseURI :
Value :
ChildNodes : {xml, catalog}
PreviousSibling :
NextSibling :
Attributes :
FirstChild : xml
LastChild : catalog
HasChildNodes : True
NamespaceURI :
Prefix :
OuterXml : <?xml version="1.0"?><catalog><book
 id="bk101"><author>Gambardella,
 Matthew</author><title>XML Developer's Guide
 </title><genre>Computer</genre><price>44.95
 </price><publish_date>2000-1001</publish_date>
 <description>An in-depth look at creating
 applications with XML.</description></book>
 ...
 </catalog>

Most of these properties will be familiar if you’ve encountered the DOM before, but

you’ll be surprised by the xml and catalog properties, which PowerShell has added. In

the next section I’ll explain where these properties come from and how you can take

advantage of them.

Adapted objects and XMLNodeAdapter
PowerShell treats objects from many different frameworks as first-class citizens. Mem-

bers of a first-class object are available as direct children (via dot notation) of the con-

taining object. Integration of multiple object frameworks in PowerShell is achieved via

the Adapted Type System (ATS). In this system, pluggable type adapters provide a

285Adapted objects and XMLNodeAdapter

translation layer between the underlying objects in their original framework and the

objects as represented in PowerShell. Figure 5 shows how this system works for Com-

mon Information Model (CIM)/Windows Management Instrumentation (WMI) classes

and objects.

NOTE Windows Management Instrumentation (WMI) is Microsoft’s implemen-
tation of a Common Information Model (CIM) service. In this section I
use the terms CIM and WMI interchangeably.

Familiar examples of adapted first-class object frameworks in PowerShell include

CIM/WMI, ADSI, XML, and ADO.NET. Even .NET objects are adapted by a .NET type

adapter. To ease you into this concept I’ll demonstrate type adaptation with CIM/WMI

first. Afterward we’ll walk through the same process with XML.

CIM (WMI) adapted objects

CIM/WMI in C# and .NET isn’t truly a first-class citizen. You can’t directly access mem-

bers (for example, properties and methods) of a CIM instance as members of the par-

ent object (via dot notation). Instead you must index into an intermediary collection.

C# code to retrieve the TotalPhysicalMemory property of a Win32_ComputerSystem

WMI object looks like this:

String ComputerName = System.Environment.MachineName;
ManagementObject comp = new ManagementObject(
String.Format(@"\\.\ROOT\cimv2:Win32_ComputerSystem.Name=""{0}""",
ComputerName));
var mem = comp.Properties["TotalPhysicalMemory"].Value.ToString();
Console.WriteLine("Memory: " + mem);
Console.ReadKey();

After creating the ManagementObject object (a classic WMI API in .NET), it’s still nec-

essary to reference the intermediary Properties property of the object and index

into this collection to retrieve individual WMI properties. When members must be

accessed indirectly in this way the object framework is considered a second-class citi-

zen of the language.

 One of several consequences of second-class citizenship is lack of IntelliSense for

the framework, as shown in figure 6.

 In PowerShell the CIM framework is a first-class citizen. The PowerShell equivalent

of the previous C# would be:

PS C:\> $Instance = Get-CimInstance Win32_ComputerSystem
PS C:\> $Instance.TotalPhysicalMemory
17057411072

Much simpler. In PowerShell CIM/WMI properties are directly accessible as children

of the object, via dot notation, without indirection or an intermediary collection. As a

result, the Integrated Scripting Environment (ISE) displays detailed properties in its

IntelliSense for CIM, as shown in figure 7.

WMI
properties
retrieved via
intermediary
collection

286 CHAPTER 20 PowerShell and XML: better together

CIM Class

Win 32 _Service

CIM Properties

DisplayName

ErrorControl

ExitCode

InstallDate

Name

PathName

ProcessId

ServiceType

StartMode

CIM Class

Win 32 _Process

CIM Properties

CommandLine

HandleCount

Name

PageFaults

Priority

Status

WorkingSetSize

CIM Class

Win 32 _LogicalDisk

CIM Properties

Compressed

DriveType

FileSystem

FreeSpace

Name

Size

Status

.NET Class

Microsoft .Management

.Infrastructure .CimInst

ance

.NET Properties

CimClass

CimInstanceProperties

CimSystemProperties

ClassName

ComputerName

Namespace

Properties

.NET Class

(CIM Wrapper)

PowerShell Object

Microsoft .Management .Infrastruc

ture .CimInstance # root / cimv 2/

Win 32 _Service

.NET Properties

CimClass

CimInstanceProperties

CimSystemProperties

ClassName

ComputerName

Namespace

Properties

CIM Properties

DisplayName

ErrorControl

ExitCode

InstallDate

Name

PathName

ProcessId

ServiceType

StartMode

.N
E

T
A

d
a
p
te

r

C
IM

A
d
a
p
te

r

PowerShell Object

Microsoft .Management .Infrastruc

ture .CimInstance # root / cimv 2/

Win 32 _Process

.NET Properties

CimClass

CimInstanceProperties

CimSystemProperties

ClassName

ComputerName

Namespace

Properties

CIM Properties

CommandLine

HandleCount

Name

PageFaults

Priority

Status

WorkingSetSize

PowerShell Object

Microsoft .Management .Infrastruc

ture .CimInstance # root / cimv 2/

Win 32 _LogicalDisk

.NET Properties

CimClass

CimInstanceProperties

CimSystemProperties

ClassName

ComputerName

Namespace

Properties

CIM Properties

Compressed

DriveType

FileSystem

FreeSpace

Name

Size

Status

PowerShell Adapted Objects

CIM/WMI Classes

Figure 5 PowerShell objects expose members from different object frameworks as first-class citizens.

In this example, the .NET CimInstance class and the specific CIM (WMI) class of an instance both

contribute properties to the PowerShell object.

287Adapted objects and XMLNodeAdapter

PowerShell elevates the CIM/WMI framework to a first-class citizen via an adapter for

the Adapted Type System (ATS). I started with this adapter as a familiar example.

Next, let’s see how the XML adapter elevates XML to first-class citizenship as well.

XML adapted objects

I described previously how XML processors convert XML documents into in-memory

objects implementing the XML Document Object Model (DOM). To understand how

PowerShell adapts XML I’ll discuss the parts that make up this in-memory DOM object.

 In the DOM each and every part of the document is a base Node as well as a more

specific, derived kind of node. Common derived node kinds and corresponding .NET

classes are listed in table 1.

Table 1 Each XML DOM Node kind corresponds to a specific .NET class.

All .NET classes are in the System.Xml namespace.

Node kind .NET class

Node XmlNode

Document XmlDocument

Element XmlElement

Attribute XmlAttribute

CDataSection XmlCDataSection

Text XmlText

Figure 6 WMI objects aren’t first-class

objects in C# and .NET, so Visual Studio

IntelliSense can’t display specific properties.

Figure 7 Because CIM/WMI is a first-class citizen in PowerShell, ISE IntelliSense can

display detailed information about CIM properties (unlike Visual Studio IntelliSense for C#).

288 CHAPTER 20 PowerShell and XML: better together

Examples of where and how different node kinds (types) appear in an XML file are

shown in figure 8.

 PowerShell’s XML type adapter adapts .NET XMLNode objects. Because all other

node classes derive from XMLNode the type adapter targets all of the kinds of XML

nodes by targeting this shared base class.

 To demonstrate and explain the XML type adapter let’s build on your manipula-

tion of the books.xml file by adding a second command:

PS C:\> $XMLDoc = [xml] (Get-Content C:\books.xml)
PS C:\> $XMLDoc.catalog.book | Format-Table title,author,price

title author price
----- ------ -----
XML Developer's Guide Gambardella, Matthew 44.95
Midnight Rain Ralls, Kim 5.95
Maeve Ascendant Corets, Eva 5.95

The root node of the books.xml document (listing 1) is titled catalog, and it contains

a number of children titled books. The book elements have their own children,

including those named title, author, and price. In C# and other .NET languages

you access the catalog element in the XML document as follows:

String nodeName = "catalog";
XmlNode node = null;
var XmlDoc = new XmlDocument();
XmlDoc.Load("C:\books.xml");
foreach (XmlNode childNode in XmlDoc.ChildNodes) {
 if (childNode.LocalName == nodeName) {
 node = childNode;
 Console.WriteLine("Found node: " + node.LocalName);
 break;
 }
}
// do something with node
Console.ReadKey();

This code helps you retrieve the root catalog node of your document. Similar routines

let you retrieve its child book nodes. The child nodes of the current node are not

accessible via dot notation (that is, as first-class members). Instead, you must use the

intermediary ChildNodes collection. Even there, you can’t index into the collection

D
o

c
u

m
e

n
t

n
o

d
e

Attribute node

Text node

E
le

m
e

n
t

n
o

d
e

Figure 8 Everything in an

XML document is a node of

some kind. Typical nodes are

shown here.

Child node retrieved
via ChildNodes
intermediary property

289Adapted objects and XMLNodeAdapter

by the name of the element (catalog); instead, you loop until you find a child element

with the correct name.

PowerShell makes working with XML nodes and their children simpler via the Xml-

NodeAdapter. In the same way that the CIM adapter adapts CIM properties for Power-

Shell objects, the XmlNodeAdapter translates XML nodes into properties of PowerShell

XML objects, as shown in figure 9.

XMLNODEADAPTER

As its name implies, PowerShell’s XmlNodeAdapter operates on XmlNode and XmlNode-

derived objects, such as XmlDocument, XmlElement, and XmlAttribute. It finds child

elements (XmlElement) and attributes (XmlAttribute) of the current node and

adapts these to be direct children of that parent node, named by their original tag

name and accessible via dot notation. In PowerShell it isn’t necessary to find a node in

the ChildNodes collection, as it is in C#; if it exists in the document it’s a property of

its parent node.

 The following example shows how you can use PowerShell to easily achieve what

was previously so complex with C# and work directly with the child elements and attri-

butes of an XML node. Start by loading the books.xml file into an XmlDocument object,

storing it in a variable, and verifying that the variable contains what you expect, an

XmlDocument node:

PS C:\> $XMLDoc = [xml] (Get-Content .\books.xml)
PS C:\> $XMLDoc

xml catalog
--- -------
version="1.0" catalog

$XmlDoc contains an XmlDocument object, which represents the entire original document.

XMLDOCUMENT OBJECT

The adapted child nodes of the XmlDocument include the XML Declaration (<?xml

version="1.0" ?>) and the root element of the document—in this case, the element

named catalog. To review all of the properties available on XmlDocument objects exe-

cute the following:

PS C:\> $XMLDoc | Format-List *

XML DOM methods and APIs

The XML DOM interface includes methods, such as GetElementsByTagName and
GetElementById, which simplify retrieval of individual attributes and child elements.
Other APIs also are available, such as XPath and LINQ to XML, which simplify querying
and parsing of XML documents. These methods and APIs, like PowerShell, wrap and
hide the generality of the underlying XML DOM and Node model.

290 CHAPTER 20 PowerShell and XML: better together

XML Document

<?xml version=”1.0" ?>

< catalog>

<book id="bk101">

<author> Gambardella, Matthew</author>

<title>XML Developer's Guide</title>

<genre>Computer</genre>

</book>

< /catalog>

.NET Class

System .Xml .XmlNode

.NET Properties

Attributes

BaseURI

ChildNodes

InnerText

InnerXml

Name

OuterXml

OwnerDocument

ParentNode

Value

.NET Class

PowerShell Object

System .Xml .XmlNode

.NET Properties

Attributes

BaseURI

ChildNodes

InnerText

InnerXml

Name

OuterXml

OwnerDocument

ParentNode

Value

XML Properties

xml

catalog

.N
E

T
A

d
a

p
te

r

X
M

L
A

d
a

p
te

r

XML Document

PowerShell XML Object

Figure 9 PowerShell uses the .NET and XML adapters to surface members of

PowerShell XML objects.

291Adapted objects and XMLNodeAdapter

Remember that the document node and all other node kinds are all derived from the

more generic node kind. To prove that the .NET DOM APIs implement this as well,

execute the following:

PS C:\ > $XMLDoc.GetType().BaseType

IsPublic IsSerial Name BaseType
-------- -------- ---- --------
True False XmlNode System.Object

GetType() returns the type of the object stored in $XMLDoc, which is XmlDocument. The

BaseType property of this type returns the base type of XmlDocument, which is XmlNode.

 Next retrieve the root element of the document:

PS C:\> $XMLDoc.catalog

book

{book, book, book}

PS C:\> $XMLDoc.catalog | Format-List -Property *

book : {book, book, book}
Name : catalog
LocalName : catalog
NamespaceURI :
Prefix :
NodeType : Element
ParentNode : #document
OwnerDocument : #document
IsEmpty : False
Attributes : {}
...output truncated

XMLELEMENT OBJECTS

The root Element Node of the XML Document is a first-class member of its parent and

can be accessed via $XMLDoc.catalog. catalog is a node of the kind Element, .NET

type XmlElement, as shown here:

PS C:\> $XMLDoc.catalog.GetType()

IsPublic IsSerial Name
-------- -------- ----
True False XmlElement

PowerShell’s XmlNodeAdapter has created this property (catalog) of the parent XML

document object based on the original XML document hierarchy.

 The child elements of the catalog element are each titled book. Multiple child ele-

ments sharing the same name are grouped into an array of nodes at the shared prop-

erty name. In this example, three XmlNode objects titled book are aggregated at the

property book of the parent XmlElement object titled catalog.

 As with any array in PowerShell, when you access the array all individual elements

are listed (that is, the array is “unwrapped”). In this case, each XmlElement node titled

292 CHAPTER 20 PowerShell and XML: better together

book is returned. Child elements and attributes of these nodes are recursively adapted

and displayed. Id is an attribute of a book element; author, title, and genre are child

elements. Despite this difference (attribute versus element), all are adapted and dis-

played uniformly by PowerShell. Output of retrieving the book property is as follows:

PS C:\> $XMLDoc.catalog.book

id : bk101
author : Gambardella, Matthew
title : XML Developer's Guide
genre : Computer
price : 44.95
publish_date : 2000-10-01
description : An in-depth look at creating applications
 with XML.

id : bk102
author : Ralls, Kim
title : Midnight Rain
genre : Fantasy
price : 5.95
publish_date : 2000-12-16
description : A former architect battles corporate zombies,
 an evil sorceress, and her own childhood
 to become queen of the world.

id : bk103
author : Corets, Eva
title : Maeve Ascendant
genre : Fantasy
price : 5.95
publish_date : 2000-11-17
description : After the collapse of a nanotechnology
 society in England, the young survivors
 lay the foundation for a new society.

Running the following proves that the book property of catalog is an array:

PS C:\> $XMLDoc.catalog.book.GetType()

IsPublic IsSerial Name
-------- -------- ----
True True Object[]

XMLATTRIBUTE AND SIMPLE XMLELEMENT OBJECTS

You may be surprised to find that $XMLDoc.catalog.book[0].id.GetType() yields the

.NET String type and not the XmlAttribute type. You may likewise be surprised that

$XMLDoc.catalog.book[0].author.GetType() also yields the String type and not

XmlElement. Conveniently (or perhaps not), PowerShell’s XML type adapter converts

attributes and simple elements with only inner text and no attributes into String objects

representing the attribute value or element inner text. This allows you to use these leaf

nodes as input variables in scripts and other scenarios, as you’ll see in the next section.

 If you need to make complex changes to the original XmlElement or XmlAttribute

objects, such as adding nested elements to an element or changing parent, child, and

293Read and write XML documents

sibling relationships of an attribute, you’ll need to bypass the adapter and index into

the intermediary collection, as in the following:

PS C:\> $XMLDoc.catalog.book[0].Attributes['id']

#text

bk101

This completes my coverage of the internals of how PowerShell captures and presents

XML documents as flexible and fluent DOM objects. Let’s now use this understanding

to provide some practical solutions.

Read and write XML documents
Reading and modifying XML documents will probably be your most important XML

task in PowerShell. As examples of this, I’ll first present how to read and use a simple

XML answer file and then discuss how to modify .NET application configuration files.

Read an XML answer file

Using an XML answer file in coordination with a script is a good way to separate con-

figuration details from the script itself, while still providing a persistent store of those

details. The logic to be executed is stored generically in the script, whereas specific

names and values are stored in one or more answer files specific to various configura-

tions. In this arrangement the script retrieves and parses the XML file, using its data to

fill in parameter and settings values, as shown in figure 10.

 Robust, reusable answer files require some forethought and planning to ensure

that the XML structure is logical and that script editors can easily target the informa-

tion they need. For our purposes, let’s assume that the work of planning the XML

structure has already been done and focus on the semantics of reading the prepared

XML file.

 Listing 2 provides a truncated SharePoint farm creation answer file as an exam-

ple. The file contains a name for the farm, database names and servers, Active

Configuration Implementation

Figure 10 Separating

configuration-specific

details from a script’s

implementation and

execution is more

complicated up front,

but makes both easier

to maintain.

294 CHAPTER 20 PowerShell and XML: better together

Directory accounts to use, URLs and names for associated web applications, and

details about a SharePoint site. Although you won’t use many of these details here,

I present this more intricate answer file to demonstrate how one might be written

for a complex application.

<?xml version="1.0" ?>
<SharePointElements>
 <Farm Name="SP2013"
 DatabaseServer="SQL01"
 FarmAccountName="CONTOSO\svcSPFarm"
 FarmAccountPassword="Pass@word1"
 FarmPassphrase="Pass@word1" />
 <ManagedAccounts>
 <ManagedAccount AccountName="CONTOSO\svcSPWebAppPool"
 AccountPassword="Pass@word1" />
 <ManagedAccount AccountName="CONTOSO\svcSPServiceAppPool"
 AccountPassword="Pass@word1" />
 </ManagedAccounts>
 <ServiceApplicationPools>
 <ServiceApplicationPool Name="SharePoint Web Applications"
 AccountName="CONTOSO\svcSPWebAppPool" />
 <ServiceApplicationPool Name="SharePoint Service Applications"
 AccountName="CONTOSO\svcSPServiceAppPool" />
 </ServiceApplicationPools>
 <WebApplications>
 <WebApplication Name="Intranet"
 AppPoolName="SharePoint Web Applications"
 AppPoolAccount="CONTOSO\svcSPWebAppPool"
 HostHeader="intranet.contoso.com"
 Port="80"
 SSL="false"
 DatabaseName="Intranet"
 DatabaseServer=""
 >
 <Sites>
 <Site Name="Intranet"
 RelativeUrl=""
 OwnerAlias="CONTOSO\Josh"
 Template="STS#0" >
 <Users>
 <User Alias="User01"
 PermissionLevel="FullControl" />
 </Users>
 </Site>
 </Sites>
 </WebApplication>
 </WebApplications>
</SharePointElements>

This answer file is used as input for a script that builds a SharePoint farm. I’ll demon-

strate the first few commands from that script.

Listing 2 A custom XML answer file for SharePoint farm configuration

295Read and write XML documents

LOAD THE FILE

To use the details in this file in a script it must first be loaded into the script’s Power-

Shell session. You can accomplish this in one of two ways, the first being the simple

syntax introduced previously:

PS C:\> $XMLDoc = [xml] (Get-Content -Path "C:\sharepoint.xml")

You may encounter scenarios in which greater control of document processing is

required. For example, you may want to validate XML schemas or require a higher

level of security by ignoring certain text that could represent an attack vector. For

more control of these settings, load an XML file by first creating and configuring an

XmlReaderSettings object, and then creating a XmlReader based on those settings, as

in the following:

PS C:\> $XmlSettings = New-Object System.Xml.XmlReaderSettings `
 -Property @{
 IgnoreComments = $true
 IgnoreProcessingInstructions = $true
 IgnoreWhitespace = $true
 ValidationType = "None"
 }
PS C:\> $Reader = [System.Xml.XmlReader]::Create("C:\sharepoint.xml",
 ➥ $XmlSettings)

With your custom XmlReader in hand, use the reader as the foundation of an Xml-

Document like this:

PS C:\> $XMLDoc = New-Object xml
PS C:\> $XMLDoc.Load($Reader)

Both the simple and full-control approach demonstrated result in a System.Xml.Xml-

Document object stored in the $XMLDoc variable and ready for further work.

USE VALUES FROM THE FILE

Next, use the answer file to create a new SharePoint farm and configuration database.

For ease of access, begin by storing the root element from the XML object in its own

variable. Remember, the $XMLDoc variable contains an XmlDocument object, which

itself contains the root element of the document:

$SP = $XMLDoc.SharePointElements

The SharePoint farm creation cmdlet has a parameter that takes a PSCredential

object specifying the farm service account. The value for this parameter is taken from

the account name and password stored in the XML file, and you need to complete the

following steps to prepare the value:

1 Convert the password into a SecureString object.

2 Create a PSCredential object using the secure password together with the

plain-text account name.

3 Set the names of the farm’s configuration and administration databases.

296 CHAPTER 20 PowerShell and XML: better together

Steps 1 and 2 are accomplished via the following two commands (values taken from

the XML file are shown in bold):

$Password = ConvertTo-SecureString `
 -String $SP.Farm.FarmAccountPassword `
 -AsPlainText `
 -Force

$FarmAccount = New-Object `
 -TypeName System.Management.Automation.PSCredential `
 -ArgumentList $SP.Farm.FarmAccountName, $Password

This code steps through the Farm element in the XML file to the FarmAccountName

and FarmAccountPassword attributes and uses those values to parameterize the script.

The script remains generic; all specific values are contained in the XML answer file.

 Your final preparatory step is to build strings for the names of the farm’s configura-

tion and administration databases. The following code uses the same information

from the XML configuration file in two different commands. Because the information

is retrieved from the same source your script guarantees a consistent naming conven-

tion for the databases, which database administrators are likely to appreciate:

$ConfigDBName = '{0}_Config' -f $SP.Farm.Name
$AdminDBName = '{0}_AdminContentDB' -f $SP.Farm.Name

With your parameter values prepared, you’re ready to call the farm creation cmdlet,

adding in the last necessary values (shown in bold):

New-SPConfigurationDatabase `
 -DatabaseServer $SP.Farm.DatabaseServer `
 -DatabaseName $ConfigDBName `
 -AdministrationContentDatabaseName $AdminDBName
 -FarmCredentials $FarmAccount `
 -Passphrase $SP.Farm.FarmPassphrase

BENEFITS OF ANSWER FILES

In this example you read values from an XML configuration file to govern the actions

of your script. In practice, these commands would be part of a greater script or series

of scripts, which could carry out complete deployment of a SharePoint environment.

 Although my purpose here has been to show you how to read and use data in XML

files, let’s not pass up an opportunity to acknowledge several of the advantages of

using an answer file to set up complex environments:

■ The script itself doesn’t have to be modified for various configuration imple-

mentations. For example, if a different destination database server is to be used

for a SharePoint farm in a quality assurance environment, only the XML file

must be modified; the script stays the same.
■ Implementation- and environment-specific details are documented separately

from the script in the answer file. Multiple answer files can represent multiple

scenarios, such as one for production and one for QA. Store these files for docu-

mentation and disaster recovery and use them to replicate environments for

297Read and write XML documents

testing. For example, the farm name and service account password may be dif-

ferent in XML files representing different farms.
■ Names and strings can be standardized by reusing values from XML elements

and attributes in multiple places in the script.

Now that you’ve learned to read XML data, let’s discuss how to make changes to data

and save them back to a file.

Modify and save XML data

.NET application configuration files typically end with a .config extension and are

stored in the same directory as the application they reference. These files provide

declarative settings in XML that govern runtime behavior of the associated .NET appli-

cation. For example, application-specific web proxy settings and trace settings can be

set here. Settings are applied via a cascading hierarchy of files, with a file named

machine.config shared by all applications at the root of the hierarchy.

TIP For more details on configuration files see http://msdn.microsoft.com/
en-us/library/vstudio/1xtk877y(v=vs.110).aspx.

In this example you’ll set the web processModel autoConfig value to true on the

local machine.config file. This causes all local ASP.NET web applications to use an opti-

mized number of worker and I/O threads (for more details, see http://msdn.micro-

soft.com/en-us/library/7w2sway1(v=vs.100).aspx).

 Begin by finding the correct machine.config file path. This file is stored in the

main Microsoft.NET folder, the path to which differs based on the .NET version num-

ber and the bitness (32 or 64) of the .NET version. The following command fills in the

appropriate pieces of this path and saves it to the appropriately named $Machine-

ConfigFilePath variable:

PS C:\> $MachineConfigFilePath =
 ➥ '{0}\Microsoft.NET\Framework{1}\v{2}\Config\machine.config'
 ➥ -f $env:SystemRoot,
 ➥ (& {if ([System.Environment]::Is64BitOperatingSystem)
 ➥ {"64"} else {""}}),
 ➥ ([System.Environment]::Version.ToString(3))

Next, load the XML document from this path using the simple load process described

previously:

PS C:\> $MachineConfigDoc = [xml] (Get-Content -Path
 ➥ $MachineConfigFilePath)

MODIFY THE XML DOCUMENT

You can now modify elements and attributes of this document in the same way you can

modify properties of other objects in PowerShell. All access and modification of these

elements effect the same in-memory representation. Set the autoConfig attribute of

the processModel element to true. The relevant part of the original XML is shown

here, with the autoConfig property value shown in bold:

http://msdn.microsoft.com/en-us/library/vstudio/1xtk877y(v=vs.110).aspx
http://msdn.microsoft.com/en-us/library/vstudio/1xtk877y(v=vs.110).aspx
http://msdn.microsoft.com/en-us/library/7w2sway1(v=vs.100).aspx
http://msdn.microsoft.com/en-us/library/7w2sway1(v=vs.100).aspx

298 CHAPTER 20 PowerShell and XML: better together

<configuration>
 <system.web>
 <processModel autoConfig="false"/>
 </system.web>
</configuration>

In the PowerShell command to change the value you refer to the nodes (elements

and attributes) by their names, treating them like properties of parent objects:

PS C:\>$MachineConfigDoc.configuration.'system.web'.processModel.
 ➥ autoConfig = 'true'

NOTE The 'system.web' property has a dot in it. To avoid confusion with the
dot operator, the property name is enclosed in single quotation marks.
This is a convenient, though possibly unintentional, artifact of the man-
ner in which PowerShell processes member names (it’s unlikely to work
in other languages).

SAVE THE XML DOCUMENT TO DISK

Finally, save the changed XmlDocument back to disk as an XML file, overwriting the cur-

rent file:

PS C:\> $MachineConfigDoc.Save($MachineConfigFilePath)

The autoConfig property is now set to true.

 The Save method is the simplest way to write an XML document object back to

disk. But just as the XmlReaderSettings object together with XmlReader provided

additional settings for reading and validating XML input, an XmlWriterSettings

object together with XmlWriter can provide additional control over writing XML back

to disk. For example, you may prefer to improve readability of the saved file by having

new lines between nodes and indenting child elements, an option you can specify. To

demonstrate, we’ll change a value in the SharePoint farm configuration file used pre-

viously and save the file with specific indentation parameters.

 First, retrieve the SharePoint XML configuration file as shown previously:

PS C:\> $XMLFilePath = 'C:\sharepoint.xml'
PS C:\> $XMLDoc = [xml] (Get-Content -Path $XMLFilePath)

Next, change the value of the Name attribute of the Farm element:

PS C:\> $XMLDoc.SharePointElements.Farm.Name = "SP2010"

Finally, specify a custom XmlWriterSettings object together with an XmlWriter:

PS C:\> $WriterSettings = New-Object `
 -TypeName System.Xml.XmlWriterSettings `
 -Property @{
 Encoding = [System.Text.Encoding]::UTF8
 Indent = $true
 IndentChars = "`t"
 }
PS C:\> $Writer = [System.Xml.XmlWriter]::Create(
 ➥ $XMLFilePath,$WriterSettings)

299Special XML cases

Use the custom XmlWriter to write your in-memory XML document to a file. You must

also call Flush to ensure all data is written to disk, and then call Close to release the

open handle to the file, as follows:

PS C:\> $XMLDoc.WriteTo($Writer)
PS C:\> $Writer.Flush()
PS C:\> $Writer.Close()

In this section I demonstrated reading and writing data from and to XML files. To

work with collections of XML files you can scale the paradigms I presented here with

loop constructs. With these typical scenarios covered, let’s conclude by discussing

some advanced uses of XML in PowerShell.

Special XML cases
I’ve discussed how PowerShell handles generic XML documents and how you can use

PowerShell to read and write your own application XML files, but XML’s rigorous

structure also makes it ideal for persistent storage or transfer of structured data

between applications and systems. In this last section we’ll take a look at how this capa-

bility is exploited for .NET and PowerShell serialization and for web service (SOAP and

REST) operations.

Object serialization

As long as you remain within the confines of a single .NET AppDomain you can largely

ignore how your objects are stored. The common language runtime (CLR) manages

the objects in memory and access and modifications to them. But as your domain of

operation expands you need to transfer objects across process and system boundaries,

and you also need to persist information and objects to long-term storage. To achieve

this the objects must first be converted into transferable, interoperational, and persis-

table formats and encodings.

 The process of converting objects from their in-memory representation to transfer-

able and storable forms is called serialization. Conversely, conversion of serialized

objects back into forms appropriate for use in a .NET application is known as deserial-

ization. Generally, the result of serialization is a text or binary file that can be stored to

disk or transferred across networks. Common serialization formats include base64-

encoded byte arrays and XML and JSON documents, as illustrated in figure 11.

XML SERIALIZATION IN POWERSHELL (CLIXML)

XML plays a prominent role in serialization within the .NET framework, and Power-

Shell is no exception. Two cmdlets in PowerShell help serialize objects into XML for

storage on disk and transfer across networks: Export-CliXml and ConvertTo-Xml.

The difference in the output produced by these two commands isn’t only cosmetic;

the CliXml produced by Export-CliXml is designed to provide high-fidelity deserial-

ization of the original object in other PowerShell sessions. Objects produced by

deserializing CliXml (using the Import-CliXml cmdlet) can often be plugged into a

command in place of the original object, depending on what members of the original

300 CHAPTER 20 PowerShell and XML: better together

object are needed. The standard XML produced by ConvertTo-Xml is only intended to

produce information about the original object; it isn’t a true serialization of the origi-

nal object, and it can’t be deserialized back into the original.

TIP Use Export-CliXml when you expect to deserialize and reuse exported
objects within another PowerShell session. Use ConvertTo-Xml to save
object data for reporting and logging purposes outside of PowerShell,
such as in a web report using XSLT.

To demonstrate each form of XML export we’ll export a service object (the Windows

Update service, known internally as wuauserv) as CliXml, import it back into the ses-

sion, and review it using Get-Member:

PS C:\> Get-Service wuauserv | Export-Clixml C:\serviceCLI.xml

PS C:\> Import-Clixml C:\serviceCLI.xml | Get-Member

 TypeName: Deserialized.System.ServiceProcess.ServiceController

Name MemberType
---- ----------
ToString Method
Name NoteProperty
RequiredServices NoteProperty
CanPauseAndContinue Property
CanShutdown Property
CanStop Property
Container Property
DependentServices Property
DisplayName Property
MachineName Property
ServiceHandle Property
ServiceName Property
ServicesDependedOn Property
ServiceType Property
Site Property
Status Property

Deserialized

objects

Serialized formats

Serialization

Deserialization

Figure 11 Objects are

serialized for persistent

storage and deserialized

to bring them back into

memory. Base64, XML,

and JSON are common

serialization formats.

Deserialized
object retains

relationship
with original b

301Special XML cases

When CliXml is imported into a PowerShell session, as we discussed previously, a dese-

rialized version of the original object is created. Note that the TypeName of the deseri-

alized version is prefixed with the Deserialized tag B. The deserialized versions of

most .NET objects are simple objects (like property bags or dictionaries) representing

the properties and saved values of the original object. Even in this diluted form they

more closely represent the original object than would a standard XML document, as

you’ll see next.

 Now we’ll export the service object as standard XML and import it back in as well.

We’ll then check its properties and TypeName via Get-Member.

PS C:\> Get-Service wuauserv | ConvertTo-Xml -As String |
 ➥ Set-Content -Path C:\service.xml

PS C:\> [xml] (Get-Content C:\service.xml) | Get-Member

 TypeName: System.Xml.XmlDocument

Name MemberType
---- ----------
ToString CodeMethod
AppendChild Method
Clone Method
CloneNode Method
CreateAttribute Method
CreateCDataSection Method
...

Objects exported as standard XML and then imported back into PowerShell, as in this

example, are represented as standard XML document objects. The original object is

lost, and you’ll have to do some fancy footwork to find its original properties and

saved values. Although neither CliXml nor standard XML necessarily provide full

fidelity to the original object, objects created by importing CliXml can be more easily

used in place of the originals.

 Notably, the CIM objects and classes introduced in Microsoft Management Infra-

structure and the PowerShell v3 CimCmdlets module were designed to be able to

be serialized and deserialized for network transfer and storage persistence with

complete fidelity to the original object. Properties are dynamically retrieved and

even CIM methods can be called on the deserialized object. This is demonstrated in

the following:

PS C:\> Get-CimInstance -ClassName Win32_Process -Filter 'Name =
 ➥ "explorer.exe"' | Export-CliXml -Path C:\processCLI.xml

PS C:\> Import-Clixml -Path C:\processCLI.xml | Get-Member

 TypeName:
 ➥ Microsoft.Management.Infrastructure.CimInstance
 ➥ #ROOT/cimv2/Win32_Process

Name MemberType Definition
---- ---------- ----------
Handles AliasProperty Handles = Handlecount
ProcessName AliasProperty ProcessName = Name

Imported object
is the same as
exported object

302 CHAPTER 20 PowerShell and XML: better together

VM AliasProperty VM = VirtualSize
WS AliasProperty WS = WorkingSetSize
Clone Method System.Object IClone...
Dispose Method void Dispose(), ...
Equals Method bool Equals(System.Object obj)
GetCimSessionComputerName Method string GetCimSess...
GetCimSessionInstanceId Method guid GetCimSession...
GetHashCode Method int GetHashCode()
GetObjectData Method void GetObjectData(...
GetType Method type GetType()
ToString Method string ToString()
Caption Property string Caption {get;}

Unlike the deserialized .NET service object we previously discussed, the TypeName of

the deserialized CIM object isn’t prefixed with Deserialized. It’s the same type of object

as the one created directly in the current process with Get-CimInstance.

 The same qualities that make XML a good serialization format for the .NET frame-

work make it an ideal medium for web communications, which must cross network

and system boundaries. Most web services accept input and produce responses as XML

documents. Let’s examine the facilities provided by PowerShell to easily parse these

XML responses.

Web service communication

The Invoke-RestMethod cmdlet (first introduced in PowerShell v3) retrieves a

response from a web resource identified by a Uniform Resource Identifier (URI). If

the response is XML it’s converted into an XmlDocument object for output. This effec-

tively means that web service responses, like XML documents, are first-class citizens in

PowerShell. In addition, Atom feeds such as those produced by OData services are

automatically further processed to retrieve the internal XML of individual items in the

collection as a collection of PowerShell objects.

 The following examples demonstrate both standard XML responses and the spe-

cial treatment of Atom/OData feeds. The public Northwind OData web service is used.

Northwind, available at http://services.odata.org/Northwind/Northwind.svc, is a col-

lection of sample data made publicly and anonymously available by the OData organi-

zation for testing.

With only the URI parameter specified, Invoke-RestMethod sends an HTTP GET request

to the URI and receives an XML document with a response:

What is OData?

OData is an extension of the Atom and RSS standards that defines and standardizes
REST patterns for publication and modification of data entities and collections on the
internet. OData defines specific URL and HTTP structures for querying and modifying
this data.

http://services.odata.org/Northwind/Northwind.svc

303Special XML cases

PS C:\> $Uri = 'http://services.odata.org/Northwind/Northwind.svc'

PS C:\> Invoke-RestMethod -Uri $Uri

xml service
--- -------
version="1.0" encoding="utf-8" stand... service

The XML is automatically converted into an XmlDocument object and adapted by Power-

Shell. You can interact with the response as you can with any XML document, as shown

in the following:

PS C:\> $Response = Invoke-RestMethod -Uri $Uri
PS C:\> $Response.service.workspace.collection

href title
---- -----
Categories Categories
CustomerDemographics CustomerDemographics
Customers Customers
Employees Employees
Order_Details Order_Details
Orders Orders
Products Products
Regions Regions
...

A request to the base URL of an OData service returns a metadata document, which lists

all data collections that the service publishes. Having discovered from the initial request

that you have a collection of data named Customers, call the standard URI to retrieve

that collection from the Northwind service. Because the data collection is returned as

an Atom feed, the individual entries in the feed are converted individually into Xml-

Documents and each returned separately (only the first two results are shown here):

PS C:\> $Uri =
 ➥ 'http://services.odata.org/Northwind/Northwind.svc/Customers'

PS C:\> Invoke-RestMethod -Uri $Uri

id : http://services.odata.org/Northwind/Northwind.svc/Customers(
 'ALFKI')
title : title
updated : 2012-09-11T23:50:25Z
author : author
link : {link, link, link}
category : category
content : content

id : http://services.odata.org/Northwind/Northwind.svc/Customers(
 'ANATR')
title : title
updated : 2012-09-11T23:50:25Z
author : author
link : {link, link, link}
category : category
content : content

Data
collection

b

304 CHAPTER 20 PowerShell and XML: better together

As a bonus example, you can use the standard query parameters provided by OData to

retrieve only a subset of the collection:

PS C:\> Invoke-RestMethod -Uri $Uri -Method Get -Body @{
 '$filter' = "Country eq 'Germany'"
 '$top' = "3"
}

id : http://services.odata.org/Northwind/Northwind.svc/Customers(
 'ALFKI')
title : title
updated : 2012-09-11T23:49:54Z
author : author
link : {link, link, link}
category : category
content : content

id : http://services.odata.org/Northwind/Northwind.svc/Customers(
 'BLAUS')
title : title
updated : 2012-09-11T23:49:54Z
author : author
link : {link, link, link}
category : category
content : content

id : http://services.odata.org/Northwind/Northwind.svc/Customers(
 'DRACD')
title : title
updated : 2012-09-11T23:49:54Z
author : author
link : {link, link, link}
category : category
content : content

The XML facilities provided by PowerShell become the foundation for serialization,

web communications, and other important tasks and utilities.

Summary
I began this chapter by positing that XML documents are not, in fact, standard text

files but instead a special kind of object saved as text. This explains XML’s special place

in PowerShell, a language built from the ground up on the principle of rejecting

unstructured text as input or output. As PowerShell is to legacy scripting languages, so

is XML to unstructured text files.

 Respecting this special place, XML documents are adapted in PowerShell into first-

class citizens, their nodes and attributes immediately accessible like the members of

any other object. This easy accessibility makes XML the perfect format for input

answer files and output data files in PowerShell; it also makes PowerShell an ideal lan-

guage for manipulating other XML data and configuration files.

 Not coincidentally, the foundations laid for XML in PowerShell lead to further

practical uses in domains where XML is a primary means of message transport and

305Summary

encoding, such as in object serialization and web service communications protocols

like SOAP and REST.

 Whenever and wherever you face input and output needs in PowerShell, consider

the structure provided by XML and the facilities provided by PowerShell to control

and manipulate it. It’s likely that XML is part of the solution you’re seeking.

About the author

Josh Gavant is a senior program manager with Microsoft Open

Technologies (http://msopentech.com), where he helps define

and support industry standards, such as XML, and ensures that

Microsoft software adheres to them. Following his belief that

knowledge is best when shared, Josh publishes technical insights

via his blog at http://blogs.msdn.com/besidethepoint and via occa-

sional tweets @joshugav.

http://msopentech.com
http://blogs.msdn.com/besidethepoint

306

Adding automatic remoting
to advanced functions
and cmdlets

 Karl Prosser

This chapter’s goal is to present a design pattern to help you produce PowerShell

modules that contain professional-grade cmdlets that are easy and intuitive for

users to run both locally and remotely with a commercial-grade user experience.

This chapter focuses on the intricacies of using a PowerShell script to create cmd-

lets that are robust and have built-in remoting functionality. I’ll talk briefly at the

end about nuances and strategies for turning your functions into enterprise-grade

modules. This chapter presumes familiarity with PowerShell remoting. If you’re

not familiar with the ins and outs of fan-in and fan-out in PowerShell remoting,

then get-help About_Remote is a good place to start.

Delivering economic value
For the most part, solutions have their value in solving a quantifiable problem.

Compared to other languages and platforms, distributed computing with Power-

Shell remoting is easier and can save you time. Something that may take weeks to

engineer on another stack may be completed in half an hour by a seasoned Power-

Shell scripter. The problem is that most users of your cmdlets are not seasoned

PowerShell scripters, and even if they were, half an hour is longer than the 5 or 10

seconds that it would take to call your cmdlet locally. Let’s produce a user experi-

ence in which running your cmdlet against a set of computers is as easy for the user

as running Get-Process locally.

 Jeffrey Snover, the architect of PowerShell, mentions a number of differentiating

value propositions of PowerShell. One of them is the consistency of verb/noun and

parameters, which allows you to learn something once and apply what you’ve learned

even when you begin using PowerShell against a completely different technology and

21

307An automatic remoting example

different set of commands. Consistency gives you the ability to guess what the com-

mand, parameter, or usage pattern will be, regardless of the environment. Even if you

can’t guess, you should be able to discover it relatively easily.

 Many built-in cmdlets, whether using PowerShell Remoting or another mechanism,

expose a -ComputerName property. You can use –ComputerName with Invoke-Command or

with cmdlets, such as Get-Process, Get-Service, Get-EventLog, Invoke-WmiMethod,

and Get-WmiObject. A nuance of our goal is to make our cmdlets as easy to use, guess-

able, and discoverable as these. The example in this chapter shows you how a scripter

takes something made locally and runs it remotely, and you’ll also see the overhead

that this process involves. You’ll see how this functionality should be set up and how it

can be simple and discoverable and can even provide tab-completion support.

 At a minimum, you’ll want to surface a –ComputerName parameter, but we’ll go fur-

ther and provide full Invoke-Command parity. In the real world, people may have to

run the code in existing sessions, with specific credentials or authentication protocols,

or on specific remoting endpoints.

An automatic remoting example
I’ll use a function that you can run locally, one without too much real-world value, and

show you how to transform it, step by step, into a robust automatic remoting–enabled

cmdlet. PowerShell v2 is the lowest common denominator: v1 doesn’t support remot-

ing, and although v3 gives you some new, shiny features, it’s not needed for this exam-

ple. I’ll refer to a few v3 features, however, particularly the way Windows PowerShell

Workflow (PSWF) is implemented in v3, which sets some precedents you can follow.

 Start by wrapping Get-Module in your own function, and pass a wildcard for your

Name parameter. The function returns a list of available modules for a single machine:

function Get-AvailableModule([string]$Name = "*") {
 Get-Module -ListAvailable -Name $Name
}

Running the function, like this

PS C:\> Get-AvailableModule -Name *power*

produces the following result:

ModuleType Name ExportedCommands
---------- ---- ----------------
Manifest Microsoft.PowerShell.Diagnostics {Get-WinEvent, Get-Counte...
Manifest Microsoft.PowerShell.Host {Start-Transcript, Stop-T...
Manifest Microsoft.PowerShell.Management {Add-Content, Clear-Conte...

I prefer this example because it’s pithy, but let’s modify it. You’re going to add a prop-

erty to indicate where the command was run so that you can easily determine this

when you run the command against multiple computers.

 You may ask, “What about PSComputerName?” Well, that’s a good question.

PSComputerName is important, and I’ll cover it, but the PowerShell formatting engine

308 CHAPTER 21 Adding automatic remoting to advanced functions and cmdlets

has a “nice” habit of often hiding PSComputerName, and you want to see your results.

Also, PSComputerName contains the name that you requested. For example, if you did

self-remoting to 127.0.0.1, then that would be the value.

 For your initial local function, do the following:

■ Add a property called WhereRan and give it the computer name from the envi-

ronment variables.
■ Grab the Name and Version properties of the PSModuleInfo object. (The for-

matting view of the previous result shows only a few columns, but the PSModule-

Info object contains many more properties.)

Here’s the resulting function:

function Get-AvailableModule([string]$Name = "*")
{
 Get-Module -ListAvailable -Name $Name |
 Select Name,Version |
 Add-Member -Name WhereRan `
 -Value $ENV:ComputerName `
 -MemberType NoteProperty -PassThru
}

Running the function like this

PS C:\> Get-AvailableModule -Name *power*

produces the following result:

Name Version WhereRan
---- ------- --------
Microsoft.PowerShell.D... 3.0.0.0 BOOKBOX
Microsoft.PowerShell.Host 3.0.0.0 BOOKBOX
Microsoft.PowerShell.M... 3.0.0.0 BOOKBOX

Before you transform this into an automatic remoting-enabled function, let’s look at

some of the pain points of running the function as an end user with Invoke-Command.

The pain of manual Invoke-Command

To run this function remotely, put the body of the function inside the script block,

which you’re passing to Invoke-Command, and hardcode the parameters inside the

script block.

 You don’t want to lose the function, so embed the function and a line that runs the

function. The parameters are still hardcoded inside the Invoke-Command script block,

but on the line that calls the function, as shown in the following listing.

Invoke-Command -ComputerName localhost -ScriptBlock {
 function Get-AvailableModule([string]$Name = "*")
 {
 Get-Module -ListAvailable -Name $Name |
 Select Name,Version |

Listing 1 Manual remoting with hardcoded parameters

309An automatic remoting example

 Add-Member -Name WhereRan `
 -Value $ENV:ComputerName `
 -MemberType NoteProperty -PassThru
 }
 Get-AvailableModule -Name "*power*"
}

You may think, “Well, that isn’t too hard.” But it’s the users who have to do this

themselves every time they run the function remotely, and they have to get it right them-

selves every time rather than having the function do it for them. Also, they have to

hardcode the parameter. In most cases, users want to pass in the parameters them-

selves—mix that in with other complexities that we’ll cover later, and the complexity

keeps growing.

 The function invocation in listing 1 produces the following result:

Name : Microsoft.PowerShell.Diagnostics
Version : 3.0.0.0
WhereRan : BOOKBOX
PSComputerName : localhost
RunspaceId : eb9bedcb-45b5-4050-90ad-803ae4198908

Name : Microsoft.PowerShell.Host
Version : 3.0.0.0
WhereRan : BOOKBOX
PSComputerName : localhost
RunspaceId : eb9bedcb-45b5-4050-90ad-803ae4198908

Note that remoting added a PSComputerName and RunspaceId to each object. Also,

the PSComputerName is based on what you passed to Invoke-Computer, which in this

case was localhost, and it differs from the name of the computer, which you populate

with the WhereRan property.

 The next step is adding the ability to pass your single parameter from your Power-

Shell environment to the remote environment.

The pain of increasing complexity

To add this functionality with Invoke-Command, you have the receiving script block accept

parameters, and then pass all of your parameters as an array using the –ArgumentList

parameter, as shown in the following listing.

Invoke-Command -ComputerName localhost -ScriptBlock {
 param(
 [string]$PassedName
)
 function Get-AvailableModule([string]$Name = "*")
 {
 ...
 }
 Get-AvailableModule -Name $PassedName
} -ArgumentList @("*power*")

Listing 2 Manual remoting with –ArgumentList parameter passing

Removed
for brevity

310 CHAPTER 21 Adding automatic remoting to advanced functions and cmdlets

NOTE You’ll see lengthier listings throughout this chapter, so I may omit
parts, such as in listing 2, if they’ve been shown in a previous listing or
aren’t germane.

In this listing you must accept a parameter in your script block and pass in the value

through –ArgumentList. You may argue that this solution isn’t too complex, but now

you have three levels of script blocks in the mix and many things that can go wrong for

an admin who wants to use your function. Additional complexities that you should be

aware of include the following:

■ Passing optional parameters
■ Passing switches
■ Passing script blocks
■ Passing dependent functions
■ Passing entire modules and saving to a temporary file on the target machine
■ Passing dependent DLLs
■ Checking for dependencies that should exist on the target machine

If users are dealing with issues related to this list of facets, they could spend many

hours, or even a week, getting things in order to be able to call your function

remotely. These are difficult challenges and some of them will require a lot of work to

implement, but we can implement them once and the user can consume them often.

It’s a good economy of scale, and we can develop patterns and procedures that allow

us to more quickly implement each additional function we wrap. We’ll have to deal

with these pains ourselves (covered later in the chapter) but in dealing with these

pains, and abstracting these complexities ourselves, we simplify tasks for our users and

solve the problem with our cost of development once, versus the user’s cost of devel-

opment every single time.

Defining the user experience
So far I’ve mentioned the user several times. What should their experience be like? Is

the pattern I’m designing a good pattern or an antipattern? Does it leave a good code

smell? Am I going with the grain of PowerShell or against it? These are important

questions, and in this section, we’ll look at PowerShell itself to help answer them.

It all starts with ComputerName

Previously I mentioned a partial list of cmdlets that have their own –ComputerName

property. Many of these cmdlets existed before PowerShell remoting and use a remot-

ing technology built into the underlying technology they expose, whether Windows

processes, event logs, or WMI.

 Run the following to get a list of these cmdlets:

Get-Command | where {
 $_.Parameters | foreach { $_.keys -contains "ComputerName" }
 }

311Defining the user experience

On my v3 machine, this command returns 38 cmdlets from the PowerShell built-in

cmdlets. I’m not sure how well ComputerName is used in third-party cmdlets, whether

Exchange, Hyper-V, SQL, or VMware. I know that some cmdlets have alternative ways

to pass in a computer name: some use a fully qualified domain name (FQDN) as a dif-

ferent parameter, some cache the computer name, and some run only on the target

machine. Also, topological complexities complicate the matter, such as with Share-

Point, in which you aren’t dealing with a flat list of computer names, but rather a

structured topology of machines and roles. Based on the built-in cmdlets, however,

you can infer that this is probably a good pattern.

Inspiration from Workflow

When determining whether we’re designing a good pattern or an antipattern,

another validation of our pattern comes from PowerShell Workflow (PSWF) in v3.

 When you define a workflow in v3, PowerShell automatically generates a wrapper

function and adds remoting-specific parameters. Let’s create a simple workflow in v3:

workflow add([int]$a, [int]$b){$a+$b}

When you call it, note that pressing the Tab key provides tab completion for a plethora

of parameters, including PSComputerName. You can even run the following function:

PS C:\> add -PSComputerName BOOKBOX -a 5 -b 3
8

Holy guacamole, Batman! What manner of stealth is enabling such trickery? The work-

flows in PSWF, are, in fact, XAML-based Windows Workflow Foundation (WF) workflows.

PowerShell creates a big wrapper around each, giving a consistent and predictable user

experience. Sound familiar? Yes, that’s the same goal we have. But what’s this wrapper?

And what parameters does it add?

$function:add.ToString() reveals the secret behind PSWF, and it’s neither pithy

nor pretty. In fact, for this simple one-line workflow, $function:add.ToString()

.split('`n') | Measure-Object reveals that the wrapped function is 480 lines long.

As for the parameters, our two parameters get transformed into 32 lines of code per

(Get-Command Add).Parameters.Count.

 Parameters added to the PSWF remoting function are the following:

Parameter Names

a b PSParameterCollection

PSComputerName PSCredential PSConnectionRetryCount

PSConnectionRetry-
IntervalSec

PSRunningTimeoutSec PSElapsedTimeoutSec

PSPersist PSAuthentication PSAuthenticationLevel

PSApplicationName PSPort PSUseSSL

312 CHAPTER 21 Adding automatic remoting to advanced functions and cmdlets

Some, such as ErrorAction, are the ubiquitous parameters added to any advanced

function. Others are specific to PSWF, such as PSPersist, but many of them are

related to remoting. An interesting thing to note is that while Invoke-Command has

parameters such as ComputerName and Authentication, the remoting wrapper func-

tion has PSComputerName and PSAuthentication. Which convention should we use?

The burden of quantity in the built-in cmdlets lends itself to ComputerName. Also,

understanding the reason why PSWF uses PS* helps cement the decision. PSWF

prepends PS because it’s wrapping your functions, and it doesn’t want to risk a con-

flict between the user’s own parameters and those it autogenerates. In this case,

however, you’re sculpting your own function from beginning to end, so using the

same remoting parameters that Invoke-Command uses is the most predictable and

consistent approach.

 Another interesting parameter that PSWF adds is the AsJob switch. Though not

covered in this chapter, I think it would be perfect for this pattern: a function that can

run locally, on remote machines, and as a background job!

 The PSWF takeaway is even more amazing than what we’re doing. You not only can

consume but also author the workflow in a user-friendly experience. The tips and

tricks in this chapter will teach you to be effective and efficient in producing auto-

matic remoting-enabled cmdlets; you may even decide to build your own functions

that can automatically wrap any function.

Is ComputerName alone sufficient?

Is supporting ComputerName alone sufficient? I once thought so until I inherited a

function that supported it, but I needed to specify a nonstandard PowerShell remot-

ing endpoint and then call it with Credential Security Support Provider (CredSSP)

authentication with an alternative credential. This function had automatic remoting

but only supported ComputerName, so for my needs it was a hindrance and not a help.

To make automatic remoting useful we need to support the full surface area of remot-

ing as Invoke-Command does.

PSConfigurationName PSConnectionURI PSAllowRedirection

PSSessionOption PSCertificateThumbprint PSPrivateMetadata

AsJob JobName InputObject

Verbose Debug ErrorAction

WarningAction ErrorVariable WarningVariable

OutVariable OutBuffer

Parameter Names (continued)

313Defining the user experience

Of parameters and parameter sets

Since we agree that Invoke-Command is our model, we want functional and parameter

parity with it. What are the parameters and parameter sets of Invoke-Command? In v2

there are 28 parameters and 32 in v3. While we want to target v2 here, you could write

clever code that also supports v3 parameters and throws errors if running under v2.

 The remaining parameters, barring the ubiquitous parameters, are listed below.

That’s 20 parameters, but you won’t need several of them:

■ FilePath isn’t relevant.
■ ScriptBlock isn’t necessary because you’re effectively supplying that.
■ InputObject is up to you and depends on whether you’re building the function

to support pipeline input, which, in this case, we aren’t doing at first, so that

can be scrapped.
■ ArgumentList is redundant because you’ll have explicit parameters and take

care of passing them to the script that does the remote work for you.
■ AsJob is twofold; although you want to support it for remoting, which is the

only context for Invoke-Command, the design pattern you’re implementing also

uses it locally. You therefore need to call Start-Job internally instead of

Invoke-Command when running locally.

That leaves us with 15 core parameters that seem essential to support full-spectrum

remoting with the v2 feature set plus –AsJob.

 To double-check, let’s compare this list with the parameters in the PSWF wrapper.

The Workflow wrapper adds many PS* parameters for its own reasons, with the

exception of ThrottleLimit, Session, and HideComputerName. Keep this in mind as

we proceed.

 Next, we’ll look at parameter sets. Invoke-Command has seven. Suppose you’re

wrapping something that already has three parameter sets; the combinatorial com-

plexity would demand 21 parameter sets. If that were the case, you’d want to follow

Parameter Names

Session ComputerName Credential

Port UseSSL ConfiguationName

ApplicationName ThrottleLimit ConnectionUri

AsJob HideComputerName JobName

ScriptBlock FilePath AllowRedirection

SessionOption Authentication InputObject

ArgumentList CertificateThumbprint

314 CHAPTER 21 Adding automatic remoting to advanced functions and cmdlets

the example of the wrapper function that PSWF sets, where it has all of these parame-

ters and more and uses only one parameter set. However, the PSWF wrapper code has

more than 200 lines of code that work out the correct combinations of parameters.

Since your function has only one parameter set to start with, use the seven parameter

sets of Invoke-Command, and strip out what doesn’t make sense for you.

Implementing your solution
Now that you understand how PSWF operates, let’s get to work. To help build the scaf-

folding for your function we’ll use another nifty PowerShell feature: proxy functions.

The code in the next listing saves a proxy function, which wraps Invoke-Command, to

your hard drive. The great thing about this is it also utilizes steppable pipelines, which

allows you to implement pipeline-streamable functions if you so desire.

$MetaData = New-Object System.Management.Automation.CommandMetaData (
 Get-Command Invoke-Command)
$proxy = [System.Management.Automation.ProxyCommand]::Create($MetaData)
$proxy | out-file -width 500 c:\temp\invoke-commandproxy.ps1

This proxy function produces an advanced-function styled script block that is approxi-

mately 200 lines long and uses steppable pipelines. It has a number of parameters and

seven parameter sets. What do you do with this code? First, make it look like your func-

tion, which involves removing the parameters that you don’t want or need and adding

your own parameters, which in this case is only one: –Name. This poor script block is

also “orphaned,” so we’ll give it a home by wrapping it in a function declaration.

 Let’s start with some pruning. To customize the proxy function, first determine

which parameters you can omit:

■ To run your function remotely, you’ll pass it to Invoke-Command as a script

block, so you can get rid of all the parameter sets that are related to running a

file: FilePathUri, FilePathComputerName, and FilePathRunspace.

You’ve almost halved the parameter sets already. Now let’s get to the parameters.

■ Remove FilePath for the same previous file-related reason.
■ Remove the four v3-only parameters.

You could support these if you want to support v3 only, or you could imple-

ment some clever techniques to gracefully degrade or error out, but for this

chapter, remove them.

■ Also remove InDisconnectedSession, SessionName, NoNewScope, and Enable-

NetworkAccess.
■ Although ScriptBlock and ArgumentList are important, you’ll provide these

internally to Invoke-Command, so they can be demoted from a parameter to an

implementation detail.
■ Finally, remove some autogenerated PowerShell help-related info and links.

Listing 3 Generate proxy function from Invoke-Command

315Implementing your solution

All of this pruning makes room to add your own parameter, the core parameter of your

own function: -Name. The start of your function now looks like the following listing.

function Get-AvailableModule {
[CmdletBinding(DefaultParameterSetName='InProcess')]
param(

 [Parameter(ParameterSetName='InProcess',Position=0)]
 [Parameter(ParameterSetName='Uri',Position=1)]
 [Parameter(ParameterSetName='ComputerName',Position=1)]
 [Parameter(ParameterSetName='Session',Position=1)]
 [string]$Name = "*",

 [Parameter(ParameterSetName='Session', Position=0)]
 [ValidateNotNullOrEmpty()]
 [System.Management.Automation.Runspaces.PSSession[]]
 ${Session}
 ...

If you run the function as is, it’s going to break because you don’t yet have any of your

own logic in it, and the inner call to Invoke-Command doesn’t yet provide any script

block to run.

Inner and outer functions and script blocks

I used to confuse myself and colleagues by talking about local functions and remote

functions. Is the remote function the code that’s running on the target machine? Or is

it the function that’s doing the remoting? Is the local function running locally where

you’re running it from (which is local to you), or local where it’s affecting the system?

 Now, for lack of a better set of words, I call them the inner and outer functions. The

inner function is what does the work, running on the specific machine. It knows noth-

ing of Invoke-Command or remoting. The outer function wraps the inner function and

enables the remoting or job invoking.

 The outer function is the user experience, and it abstracts the complexity of

PowerShell remoting, whereas the inner function is simple, knows only the machine it

runs on, and contains the “business logic” for what you’re doing.

 In this case, the start of the outer function is shown in listing 4; the inner func-

tion was introduced previously. We’ll leave the outer function with the name Get-

AvailableModule because it’s the user experience. We’ll rename the inner function to

Get-InnerAvailableModule because the user never sees or experiences this function.

Inserting the inner function and making it work

The generated proxy wrapper of Invoke-Command has code inside the begin, process,

and end blocks. The begin is where the proxy function sets up the steppable pipeline,

and this is where you insert your function and pass your own argument (Name) to

Invoke-Command.

Listing 4 Start of outer function

Truncated

316 CHAPTER 21 Adding automatic remoting to advanced functions and cmdlets

 Let’s look at the begin block before and after round one of our makeover; the fol-

lowing listing shows the block before we insert the inner function.

begin
{
 try {
 $outBuffer = $null
 if ($PSBoundParameters.TryGetValue(
 'OutBuffer', [ref]$outBuffer))
 {
 $PSBoundParameters['OutBuffer'] = 1
 }
 $wrappedCmd = $ExecutionContext.InvokeCommand.GetCommand(
 'Invoke-Command',
 [System.Management.Automation.CommandTypes]::Cmdlet)
 $scriptCmd = {& $wrappedCmd @PSBoundParameters }
 $steppablePipeline = $scriptCmd.GetSteppablePipeline(
 $myInvocation.CommandOrigin)
 $steppablePipeline.Begin($PSCmdlet)
 } catch {
 throw
 }
}

The trick here is where ScriptCmd is invoking the wrapped command and splatting

PSBoundParameters B.

DEFINITION Splatting is a PowerShell feature added in v2 that allows you to pass a
hash table in as a parameter to a function or script block.

To insert the inner function, you modify the hash table of bound parameters that gets

splatted. Pass the function as a script block and the name parameter as an argument,

as shown in the following listing.

begin
{
 function Get-InnerAvailableModule([string]$Name = "*")
 {
 Get-Module -ListAvailable -Name $Name |
 Select Name,Version |
 Add-Member -Name WhereRan `
 -Value $ENV:ComputerName `
 -MemberType NoteProperty –PassThru
 }

 try {
 $outBuffer = $null
 if ($PSBoundParameters.TryGetValue(
 'OutBuffer', [ref]$outBuffer))
 {

Listing 5 Process block: before

Listing 6 Process block: after

Invokes
wrapped
command

b

Inner
function

b

317Implementing your solution

 $PSBoundParameters['OutBuffer'] = 1
 }
 $wrappedCmd = $ExecutionContext.InvokeCommand.GetCommand(
 'Invoke-Command',
 [System.Management.Automation.CommandTypes]::Cmdlet)

 $NameToPass= $Name
 $null = $PSBoundParameters.Remove("Name")
 $PSBoundParameters.Add("Scriptblock",
 ${function:Get-InnerAvailableModule})
 $PSBoundParameters.Add("ArgumentList",@($nametopass))

 $scriptCmd = {& $wrappedCmd @PSBoundParameters }
 $steppablePipeline = $scriptCmd.GetSteppablePipeline(
 $myInvocation.CommandOrigin)
 $steppablePipeline.Begin($PSCmdlet)
 } catch {
 throw
 }
}

The first thing you’ll notice is that inside the begin block I’ve embedded a fully

named function inside the code B, which I reference as ${function:Get-

InnerAvailableModule} when I pass it to Invoke-Command d. Many people declare

the embedded function as a script block variable with $sb = { param(x,y,z) ...}.

When writing distributed code, however, I find that giving the function a name

based on a naming convention makes it easier to work out what code is running

locally and what code is running remote.

 Because the proxy code splats Invoke-Command with $PSBoundParameters, and our

own Name parameter isn’t a valid parameter for Invoke-Command, I have to remove it

from $PSBoundParameters c, but I back it up to another variable so that I can pass it

in the ArgumentList parameter e.

 Does it work?

Testing your solution

Grab the full source for listing 6 from www.manning.com/hicks/ to run a few exam-

ples. First, run it without parameters:

PS C:\>Get-AvailableModule

Name Version WhereRan
---- ------- --------
BitLocker 1.0.0.0 BOOKBOX
BitsTransfer 1.0.0.0 BOOKBOX
...

It ran locally here. How is that when we didn’t add any code to check for local and run

it locally? Well, Invoke-Command itself has that ability, and the InProcess parameter

set of both Invoke-Command and the proxy-derived function is called. If you want to

add local machine AsJob support, then have your own parameter set and condition-

ally have your own code run it locally.

Backs up
and removes
parameters

c

Passes inner function
to Invoke-Command

d

Passes
arguments to
Invoke-Commande

www.manning.com/hicks/

318 CHAPTER 21 Adding automatic remoting to advanced functions and cmdlets

 We didn’t add all of this infrastructure to run it locally, so let’s run it remotely and

target more than one machine at the same time.

 Pass in the name parameter positional to make sure the parameter sets are working,

and pass in a list of two computers as the computer name:

PS C:\>Get-AvailableModule branch* -ComputerName localhost,BOOKBOX

Name : BranchCache
Version : 1.0.0.0
WhereRan : BOOKBOX
PSComputerName : localhost
RunspaceId : ba92ad8f-c11f-4832-b35d-97ecd708a520

Name : BranchCache
Version : 1.0.0.0
WhereRan : BOOKBOX
PSComputerName : BOOKBOX
RunspaceId : 8da7bc35-5338-48d5-85d0-f5bb429588ab

You use loopback remoting on the same computer for this example, but you can see

that it ran on those machines, with the true computer name specified in the WhereRan

property and what you passed specified in the PSComputerName.

 Feel free to play with all of the parameters and parameter sets, using credentials,

different authentications, and sessions. In fact, if you were building production

code, you’d want to build unit tests around all of those different parameters and

parameter sets.

Making it more standard
To get that first function out the door, I added a few bad code smells. Your eventual

goal is to have a pattern that’s so consistent, using a technique similar to proxy func-

tions, that you can generate a wrapper around any function. (We won’t deliver an

autogenerated wrapper solution in this book.) The main problem is that the code is

specific to the script block, with the arguments list containing the one specific parame-

ter relevant to your code.

 Let’s pass a different “generic” script block that takes the script block as a parame-

ter and then a hash table of arguments to splat. This helps get around the limitations

of the ArgumentList parameter, which flattens the dynamic PowerShell mix of named

and positional parameters and forces all parameters to be positional.

 This process may get confusing because your main function already wraps a proxy, to

which you then pass your “inner” function. Now you’ll pass a different script block to be

run remotely, and then pass your inner function to that as a parameter. It’s like the

matrix inside the matrix, so let’s let the code in the following listing do the talking.

begin
{
 function Get-InnerAvailableModule([string]$Name = "*")

Listing 7 Process block: revised

319Making it more standard

 {
 #in previous listings
 }
 try {
 $outBuffer = $null
 if ($PSBoundParameters.TryGetValue('OutBuffer',
 [ref]$outBuffer))
 {
 $PSBoundParameters['OutBuffer'] = 1
 }
 $wrappedCmd = $ExecutionContext.InvokeCommand.GetCommand(
 'Invoke-Command',
 [System.Management.Automation.CommandTypes]::Cmdlet)

 $null = $PSBoundParameters.Remove("Name")
 $RemoteScriptBlock = {
 param($scriptblockToRun,[hashtable]$arguments)
 $scriptblockToRun = [scriptblock]::Create($scriptblockToRun)
 &$scriptblockToRun @arguments
 }
 $Arguments = @{name = $Name}
 $PSBoundParameters.Add("Scriptblock",$RemoteScriptBlock)
 $PSBoundParameters.Add("ArgumentList",
 @(${function:Get-InnerAvailableModule},$Arguments))
 $scriptCmd = {& $wrappedCmd @PSBoundParameters }
...

You now have a generic $RemoteScriptBlock to which you pass your own payload.

The remote script block can take any script block and any hash table of parameters b.

One thing to note is the use of [scriptblock]::Create(). Although PowerShell seri-

alizes and deserializes many types over the remoting wire successfully, it sends script

blocks as strings, so you have to turn it back into a script block on the target machine

to execute it.

 Before we move on to the pipeline, grab the full source for this listing (www.manning

.com/hicks/), and run some examples against it to make sure everything is working.

Enabling pipeline support

The pipeline is key to PowerShell, and, shame on us, this current example doesn’t

support it. Not to worry, though, let’s jump through some hoops and get it working.

You’ll wire the Name parameter so that it can be accepted in the pipeline. The first

step, shown here, is to give the $Name parameter the ability to accept the value from

the pipeline in all parameter sets:

[Parameter(ParameterSetName='InProcess',Position=0,
 ValueFromPipeline=$true)]
[Parameter(ParameterSetName='Uri',Position=1,
 ValueFromPipeline=$true)]
[Parameter(ParameterSetName='ComputerName',Position=1,
 ValueFromPipeline=$true)]
[Parameter(ParameterSetName='Session',Position=1,
 ValueFromPipeline=$true)]
[string]$Name = "*"

Removed
for brevity

New
remote
workhorse

b
Passes

arguments
as hash
table to

splat
Passes new
workhorse

Script block is
an argument

Removed for brevity

www.manning .com/hicks/
www.manning .com/hicks/

320 CHAPTER 21 Adding automatic remoting to advanced functions and cmdlets

That only allows the data to be piped in. Now you need to process it and make sure it

works remotely. The inner function isn’t pipeline-friendly, either; no matter what

plumbing you do, you won’t get pipelining. The following listing shows how to get the

inner function working with the pipeline.

function Get-InnerAvailableModule(
 [Parameter(ValueFromPipeline = $true)]
 [string]$Name = "*"
)
 { process
 {
 Get-Module -ListAvailable -Name $Name |
 Select Name,Version |
 Add-Member -Name WhereRan `
 -Value $ENV:ComputerName `
 -MemberType NoteProperty -PassThru
 }
 }

To test the listed function that now supports pipelined input, run the following command:

PS C:\>"br*","v*" | Get-InnerAvailableModule
Name Version WhereRan
---- ------- --------
BranchCache 1.0.0.0 BOOKBOX
VpnClient 1.0.0.0 BOOKBOX

Now you can put the inner function back in the main function; however, you first

need to modify the remote script block. To stream the data into your function, update

the remote script block, as shown in the following listing.

$RemoteScriptBlock = {
 param($scriptblockToRun,[hashtable]$arguments)
 $scriptblockToRun = [scriptblock]::Create($scriptblockToRun)
 if($input) {
 $arguments.remove("Name")
 $input | &$scriptblockToRun @arguments
 }
 else {
 &$scriptblockToRun @arguments
 }
}

Here we’ve broken our “generic” remote script block goal by specifying to remove

the Name parameter. With a bit more work, you could make this updated block

generic again.

 In this case, the code behaves differently if data is piped in. In B, you’re testing

whether the built-in PowerShell variable $Input has a value or not. If it does, there is

Listing 8 Pipeline-enabled inner function

Listing 9 Updated remote script block

Adds ability to accept
pipeline input

Moves logic into
process block

Processes
differently
if piped
data

b

Pipes in $inputc

Processes without
pipeline datad

321Dealing with the real world and gotchas

pipeline input, and you want to pipe data in and remove the Name parameter C or

binding will fail. Otherwise, you invoke the script block as you did previously D.

 Go ahead and grab the full source for listing 9 and run the following test:

PS C:\>"br*","v*" | Get-AvailableModule -ComputerName localhost

And we have results:

Name : BranchCache
Version : 1.0.0.0
WhereRan : BOOKBOX
PSComputerName : localhost
RunspaceId : 06a4479b-ca67-42a3-8798-349c960f628c

Name : VpnClient
Version : 1.0.0.0
WhereRan : BOOKBOX
PSComputerName : localhost
RunspaceId : 06a4479b-ca67-42a3-8798-349c960f628c

Take a look at the following example, for which I won’t show the results, and observe

the pattern in action. With this pattern, combined with some awesome engineering in

PowerShell remoting and Invoke-Command, you can achieve the epitome of distrib-

uted asynchronous coolness:

"secureboot","NetSecurity","wdac","WindowsDeveloperLicense" |
foreach {sleep 10 ;$_} |
Get-AvailableModule -ComputerName localhost,bookbox |
foreach { write-host -fore red "amazing" ; $_ }

What’s going on here? Well, it’s pipeline and fan-out remoting on steroids. You pass in

data to remoting, use the sleep loop to delay the input, fan-out to two computers, and

then process the results asynchronously as they come in.

 Read that again.

 First, secureboot is sent to both computers, which process it in their own time. As

soon as they get the data, it’s streamed back to you and travels along the pipeline,

where you output it to the screen with the word “amazing.” All the while, more data is

going every 10 seconds to each computer, and it carries on until it’s all done. Typically,

this sort of fan-out—asynchronously processed and received—is rare and difficult to

pull off in most languages and frameworks. Here, it flows naturally like a normal pipe-

line, and there are no complex callbacks.

Dealing with the real world and gotchas
In the real world, you often have dependencies that don’t fit so nicely inside your

inner script block, and this is when the pattern seems to break down.

Accommodating PowerShell versions

With remoting, you’ll be dealing with PowerShell v2 and v3. Your code may require v3

on the target machine, or it may be required to run as 32-bit or 64-bit. If so, you’ll

322 CHAPTER 21 Adding automatic remoting to advanced functions and cmdlets

have the privilege, or rather pain, of finding out whether the target machine is run-

ning a compatible version or bitness. You may choose to throw an error, if appropri-

ate, or start a job in another PowerShell version or bitness.

Dealing with modules

If your code depends on a third-party module to preexist on a destination machine,

then you can check for it. You’ll have to load the module or Snap-In inside your inner

function. You can fail gracefully with an error if it doesn’t exist, but the command may

still succeed on other machines.

 If the module is one of your own or you’re responsible for it being on the target

machine, then you have a more difficult challenge. For example, in a corporate LAN

environment, I’ve often coded my inner function to test whether the module exists

and whether it’s the latest version. If not, the function copies it from a network

share to the destination machine. But this approach doesn’t work over URLs, and

you must have a share that can be read by the user the script is running under. If

possible, you can convert a script module into a dynamic module and include it in

the inner function.

 Another approach I’ve taken is to pass in all text-based module files as strings

through arguments. Then I write them to a temporary folder on the destination

machine and load the module from there, cleaning up afterward. This allows you to

skip copying, but your script payload and network traffic can get large, depending on

the module size. In the context of remoting, this is often a negligible overhead. If it’s a

binary module, or you depend on a binary DLL, then you have an extra challenge,

which is explained next.

Streaming binary DLLs to the target server

This common scenario often causes a lot of pain, and developers end up requiring

that modules and DLLs be installed on all destination computers, negating the bene-

fits of central administration using this pattern.

 I approach this issue with a three-step process:

1 Encode the DLL in a Base64 string.

2 Pass the resulting string as part of my script to the target computer.

3 Load the DLL from a byte stream.

If, however, you’re dealing with multiple DLLs that depend on each other, you’ll have

to stream it over, save the DLLs to a temporary folder, and load them from there.

 To demo this, we’ll invent an unlikely scenario: suppose that for some manufac-

tured reason, you won’t trust PowerShell to do your math, so you take an already-

compiled C# Assembly project and run a script on it to preprocess it into Base64 so it

can be included in the text of the PowerShell function. It’s then passed via remoting

to the target computer, where it’s unencoded and loaded directly into the memory, as

shown in the following code:

323Dealing with the real world and gotchas

using System;
namespace AddDLL
{
 public class AddClass
 {
 public static int Add(int a, int b)
 {
 return (a + b);
 }
 }
}

After you compile the C# DLL in Visual Studio you can process the resultant DLL into

a Base64-encoded string (step 1):

[byte[]]$Data = Get-Content "C:\temp\add.dll" -Encoding Byte
[system.convert]::ToBase64String($Data) | `
Set-Content c:\temp\encoded.txt

Now you have a 4KB DLL encoded into a 6KB string that is on one single line. You

could add extra logic to insert carriage returns into the string and remove them dur-

ing decoding if you wish.

 Let’s take this string and inline it into the function (step 2):

function Add-InnerNumber($a,$b)
{
 $code = 'TVqQAAMAAAAEAAAA//8AALgAAAAAAAAA...'
 $ByteArray = [System.Convert]::FromBase64String($code);
[System.Reflection.Assembly]::Load($bytearray) | out-null
[AddDLL.AddClass]::Add($a,$b)
}
Add-InnerNumber 4 5

The $code line in the real listing is more than 5,000 characters wide, but it’s a complete

example of embedding a DLL in a function, and this function can be sent remotely in

the same manner as the previous examples. For the sake of space I’m not going to wrap

this in a complete automatic remoting-enabled function. In this example, you take the

Base64-encoded DLL, decode it, then load it into memory and test it (step 3).

Making your cmdlets production-ready

You now have a strategy for wrapping a function so that it has automatic fan-out

remoting abilities without having to install anything custom on your target machines.

The wrapped function also supports pipeline streaming and some DLL dependencies.

Still, you need to address the following issues before selling the result of your labor

and retiring in the Caribbean:

■ Although it’s unlikely you have one function that lives in isolation, I suggest that

you wrap it all up in a module. This module doesn’t get installed on the target

machines; it’s where the module runs from.
■ Implementing comprehensive help that includes examples and full details for

each parameter is essential to producing a useable and marketable module.

Truncated
for space

324 CHAPTER 21 Adding automatic remoting to advanced functions and cmdlets

■ If you plan on selling your module or using it in a well-controlled corporate

environment, I strongly recommend signing your script, too.
■ Parameter validation is another area to master. –Confirm and –WhatIf support

is common in well-written PowerShell functions, and how you deal with those

over the remoting boundary is a challenge with some interesting facets.
■ As always, error handling is a big deal. Be aware that PowerShell transforms termi-

nating errors into nonterminating errors when they cross the remoting boundary.

“Protecting” intellectual property and positioning your module

as a product

With scripts, and even .NET in general, it’s hard, or even impossible, to fully “protect”

your intellectual property from a technical perspective. Reverse engineering is almost

always possible; it’s just a matter of how much effort is required. Our goal is to make it

difficult enough that 90 percent of people won’t bother. Scripts often yell “don’t buy

me, copy and paste me” to one set of audiences, and “tweak me, but still blame the

author when I don’t work anymore” to others. To get around this, I use a few obfusca-

tion techniques:

■ I encode the begin, end, and process blocks of my function as Base64. (Some-

times I may add some true encryption and a few other things to discourage

somebody by having them jump through one-too-many steps to get the code.)
■ I then decode the string, create a script block, and dot source it.
■ After that, I sign the script, which discourages tampering even further.

Here is a small but complete example with one function:

function say-hello($name)
{
 "hello $name"
}

I take the body and encode it as Base64:

$sb = { "hello $name" }
$bytes = [System.Text.Encoding]::UTF8.GetBytes([string]$sb);
[System.Convert]::ToBase64String($bytes);

This results in a nice small string "ICJoZWxsbyAkbmFtZSIg", though in the real world,

this would be large, and you’d likely need to update the algorithm to add carriage

returns every so many characters.

 To execute the encoded body of script, I update my function to decode the string,

create a script block, and execute it:

function say-hello($name)
{
 $sb ='ICJoZWxsbyAkbmFtZSIg'
 . ([scriptblock]::Create(
 [System.Text.Encoding]::UTF8.GetString(
 [System.Convert]::FromBase64String($sb)

325Summary

)
)
)
}
say-hello "it works"

Use these obfuscation techniques to protect your code when it goes out into the world.

Summary
There you have it, now go and build some great functions, add automatic remoting,

document them, wrap them in a module, add –whatif support, make sure error han-

dling is excellent, obfuscate your logic, sign your scripts, and start selling them.

 You may be thinking that Mr. X and Company Y won’t buy a script module no mat-

ter what. And it’s true, some organizations won’t pay for scripts and won’t trust scripts,

but they’ll happily trust a binary, despite both entities running under the same user

credentials with the same permissions. Also, some entities won’t trust DLLs or executa-

bles but will happily trust a script module. Maybe you’ll have to cater to both audi-

ences. You can take the script assets you’ve developed here and go a step further and

wrap them in C# binary cmdlets inside a binary module, but that’s an adventure for

another day.

About the author

Karl Prosser, a PowerShell MVP since 2007, founded Shell Tools

LLC, which developed the first PowerShell IDE—PowerShell

Analyzer, and then later PowerShell Plus. He also developed Por-

table PowerShell, and in recent years he’s used PowerShell as

part of his toolkit in helping to automate the Office 365 infra-

structure for Microsoft.

326

Taming software builds (and
other complicated processes)
with psake

 Jim Christopher

Managing the build for a software project has a lot in common with a child trying

to tell a lie. The build and the lie both start as deceptively simple things, but over

time missing details are added that demand more scrutiny. As the build (or the lie)

expands to sustain itself, the likelihood of a catastrophic failure increases signifi-

cantly. For both the build master and the child, the consequences of such a failure

can be severe.

 I learned long ago the fundamental nature of any lie, but only recently have I

drawn the same conclusion about build systems: there’s no such thing as a perfect

one. The build needs to grow along with the project, swallowing up manual pro-

cesses and digesting them into an ever-expanding battery of reports and artifacts.

Adequate build systems encourage this type of growth; the better ones do it without

getting in the way. This chapter introduces you to one of these better build systems:

the psake PowerShell module.

NOTE psake is pronounced like sake (the Japanese rice wine). It doesn’t
rhyme with make as you might expect.

Complexity abounds in our field, and as simple as it is, psake will likely have you

reconsidering your approach to many forms of automation. I find that the task-

oriented nature of psake and its simple integration with PowerShell lend it to many

situations: provisioning virtual machines, scripting upgrades of versioned data-

bases, even generating boilerplate Visual Studio projects for a new client.

22

327Introducing psake

Building software

The point of any build system is to automate software production as much as possible.

This may start with a compiler slurping up some source files and spitting out some

form of binary output, but it doesn’t end there.

 One of the more complicated builds I’ve been charged with was able to accom-

plish the following steps without user intervention:

1 Compile a moderately large code base into several hundred assemblies

2 Execute a battery of unit tests against the assemblies

3 Email a report of the unit test results to the development team

4 Package the assemblies into a Microsoft Windows Installer (MSI) file

5 Package the assemblies and the MSI into a zip archive

6 Copy the archive to a release point on the network

7 Spool a virtual machine inside the quality assurance (QA) environment

8 Deploy and install the MSI onto the virtual machine

9 Execute a battery of integration tests on the QA virtual machine

10 Email a report of the integration test results to the development and QA teams

11 Create a manifest of assembly digital signatures and store them in a database

12 Produce a deployment image to be delivered to industry regulators for approval

The workflow continues from there, but you get the idea. The point is that the build

has almost nothing to do with the creation of binaries, but rather the production of

software—creating, verifying, and tracking a deliverable release candidate. Consider

the list of technologies touched in this build workflow: the compiler, the file system,

the network, the virtualization server, the database, email, and multiple proprietary

file formats. Clicking either Rebuild All or Publish in Visual Studio doesn’t get you far

down this path. It’s only a first step—albeit a necessary one—in the software produc-

tion process.

 In this light, driving a software build doesn’t demand new tooling as much as it

demands glue for tools that already work well. MSBuild does fine at wrapping the com-

piler to make binaries. Hyper-V does a great job of managing virtual machines. SQL is

great at storing stuff. The build needs a way to make these things work together with

as little friction as possible.

 psake helps PowerShell become the glue for these tools so you can do wonderful

things more easily. Driving a build with psake makes it easy to automate functionality

anywhere in the software development cycle.

Introducing psake

The psake module uses PowerShell semantics to create a domain-specific language for

build scripts. The syntax of a psake script is inspired largely by other scripted build sys-

tems like Ruby’s Rake (see http://rake.rubyforge.org).

http://rake.rubyforge.org

328 CHAPTER 22 Taming software builds (and other complicated processes) with psake

 psake is an open source project hosted on GitHub at https://github.com/psake/

psake. In addition, a psake-contrib sister project (https://github.com/psake/psake-

contrib) exists to capture useful applications of psake, such as source control or contin-

uous integration interfaces.

NOTE At the time of this writing psake is at version 4.2.0. If you find yourself
using a newer version, consult the official project wiki at https://
github.com/psake/psake/wiki and the included module help for the lat-
est project information.

Installing psake

To install psake

1 Download the zip file of the project from https://github.com/psake/psake-

contrib/zipball/master.

2 Unblock the downloaded zip file. You can do this manually by right-clicking

the zip file in Windows Explorer, selecting Properties, and then clicking the

Unblock button. You can do this at the console using the unblock-file

command available in PowerShell v3; or, if you’re using v2, this command is

also available in the PowerShell Community Extensions module (available at

http://pscx.codeplex.com).

3 Extract the zip archive into a folder named psake on your PowerShell Module

path. Most commonly this will be My Documents\Windows PowerShell\Modules

\psake. If you’re unsure about your module path you can find it in the value of

the PSModulePath environment variable: $env:psmodulepath.

4 Verify the module install by running the following command in a fresh Power-

Shell console: import-module psake. If you receive an error indicating that the

psake module couldn’t be located, double-check that the psake folder is located

on your module path.

psake commands

Once you have psake installed, open a new shell and import the psake module. Use the

get-command PowerShell cmdlet to check out the commands available in the module:

PS C:\> import-module psake
PS C:\> get-command -module psake

CommandType Name Definition
----------- ---- ----------
Function Assert ...
Function Exec ...
Function FormatTaskName ...
Function Framework ...
Function Include ...
Function Invoke-psake ...
Function Invoke-Task ...
Function Properties ...

https://github.com/psake/psake
https://github.com/psake/psake
https://github.com/psake/psake-contrib
https://github.com/psake/psake-contrib
https://github.com/psake/psake/wiki
https://github.com/psake/psake/wiki
https://github.com/psake/psake-contrib/zipball/master
http://pscx.codeplex.com
http://pscx.codeplex.com
https://github.com/psake/psake-contrib/zipball/master

329psake build scripts

Function Task ...
Function TaskSetup ...
Function TaskTearDown ...

Only two of the eleven commands exposed by psake conform to the PowerShell

verb-noun convention: invoke-psake and invoke-task. These two commands pro-

vide the means to execute a build script; the other nine commands comprise the

domain language you use to define a build script.

psake build scripts
A psake build script is nothing more than a PowerShell script that uses commands

exposed by the psake module; these scripts capture build workflows as a set of named

tasks. Each task isolates one small part of the build as a piece of PowerShell code. For

example, the following listing contains a simple psake build script that defines four

build tasks.

task –name Build –action { write-host 'running task build' }

task –name Clean –action { write-host 'running task clean' }

task –name Rebuild -depends Clean,Build –action {
 write-host 'running task rebuild'
};

task –name default -depends Build;

Each task is given a name using the –name parameter: Build, Clean, Rebuild, and

default. The Build, Clean, and Rebuild tasks contain instructions in the form of

script blocks passed in the –action parameter. You can almost read the task declara-

tion as plain English: “For task Build, do the action { write-host 'running task

build' }.”

NOTE Use the psake task statement to define a new build task.

In addition to an -action script block, the Rebuild task declares that it’s dependent

on the Clean and Build tasks by listing their names in the –depends parameter. This

means that Rebuild won’t run until the Clean and Build tasks have run first. The

default task is special. First, it’s required—every psake script must contain a task

named default to avoid an error when the build is run. In addition, the default

task isn’t allowed to have an action; it may only declare dependencies on other tasks.

NOTE Always include a task named default in your psake build script.

TIP The parameter names for the –name and –action parameters of the task
command are optional. You may find the more concise task declaration
an easier read: task Build { write-host 'running task build' }.

Listing 1 A minimal psake build script

330 CHAPTER 22 Taming software builds (and other complicated processes) with psake

Running the build script
You use the psake module command invoke-psake to run a psake build script. Let’s

say the build script in listing 1 is saved to the file listing_1.ps1. To run the script,

import the psake module and call the invoke-psake command, passing the path of

the script in the –buildfile parameter, like this:

PS C:\> import-module psake
PS C:\> invoke-psake -buildfile .\listing_1.ps1
psake version 4.2.0
Copyright (c) 2010 James Kovacs

Executing Build
running task build

Build Succeeded!

NOTE To run a build script, use the psake module command invoke-psake.

TIP The –buildfile parameter is optional. If unspecified, psake looks for a
build script named default.ps1 in the current directory.

Did you notice that only the Build task is executed? Because you didn’t specify which

task(s) to run when you called invoke-psake, the default task is executed. In this

build script the default task depends on the Build task, so that’s the only task run.

 You can list specific task names to execute in the –task parameter of invoke-psake.

For example, to run the Rebuild task defined in our build script try the following:

PS C:\> invoke-psake –buildfile .\listing_1.ps1 -task rebuild
psake version 4.2.0
Copyright (c) 2010 James Kovacs

Executing Clean
clean
Executing Build
build
Executing rebuild
rebuild

Build Succeeded!

You invoked the Rebuild task, but the Clean and Build tasks ran first, as Rebuild

depends on these other tasks. Invoke-psake ensures that those dependent tasks have

been run before the target task is executed. These dependent tasks are executed in

the order they are listed in the task –depends parameter.

 This doesn’t mean that running Rebuild will always run Clean and Build. Only

dependent tasks that haven’t already executed are run. If you run the Build task

manually before trying to run Rebuild, invoke-psake won’t run the Build task more

than once:

PS C:\> invoke-psake –buildfile .\listing_1.ps1 -task build,rebuild
psake version 4.2.0
Copyright (c) 2010 James Kovacs

331Building Visual Studio projects

Executing build
build
Executing Clean
clean
Executing rebuild
rebuild

Build Succeeded!

This implies two important things about psake tasks:

■ Each task will execute at most one time per build, regardless of how often it’s

depended upon by other tasks.
■ The ordering of task execution is contingent on the task dependency tree and

the task names passed to invoke-psake.

Keep these things in mind when breaking apart your build process into tasks.

Building Visual Studio projects
It’s time to build some code. Listing 2 defines the build for a Visual Studio project

named MyProject. For your purposes, the type of project isn’t relevant—MyProject

could be a class library, web application, Windows Presentation Foundation (WPF) cli-

ent, or whatever.

task –name Build –action {
 exec {
 msbuild ./MyProject/MyProject.csproj /t:Build
 }
}

task –name Clean –action {
 exec {
 msbuild ./MyProject/MyProject.csproj /t:Clean
 }
}

task –name Rebuild -depends Clean,Build;
task –name Default -depends Build;

The Build and Clean tasks delegate to the MSBuild command-line tool to perform

their respective actions. The psake exec command transforms unsuccessful exit

codes from old-school console applications like MSBuild into first-class PowerShell

errors. If the MSBuild commands fail, exec will raise an error. Without the exec

wrapper the MSBuild command could fail without stopping the build, resulting in

the Rebuild task trying to Build after a failed Clean, which is certainly not what you

want to happen.

NOTE Use the psake exec statement to wrap any calls to native applications that
use exit codes, so they can correctly interact with the psake build process.

Listing 2 MyProject build script

Build task executed
once, explicitly

Clean task executed
once, as a dependency

Wrap console
commands in exec
to handle exit codes

332 CHAPTER 22 Taming software builds (and other complicated processes) with psake

The output of running your Build task shows the MSBuild activity in line with the

psake script output, as in the following:

PS C:\>invoke-psake .\listing_2.ps1
psake version 4.2.0
Copyright (c) 2010 James Kovacs

Executing Build
Microsoft (R) Build Engine Version 4.0.30319.1
[Microsoft .NET Framework, Version 4.0.30319.296]
Copyright (C) Microsoft Corporation 2007. All rights reserved.

Build started 1/21/2013 3:52:04 PM.
Done Building Project "C:\MyProject\MyProject.csproj" (Build target(s)).

 Build succeeded.
 0 Warning(s) 0 Error(s)
Time Elapsed 00:00:00.21

Build Succeeded!

--
Build Time Report
--
Name Duration
---- --------
Build 00:00:00.2593068
Total: 00:00:00.2713013

Isn’t that cheating?

You may call foul on the fact that I had you delegate build logic from your psake script
to Microsoft’s build tool, MSBuild. As I stated in the beginning of this chapter, psake
isn’t a replacement for your existing tools. It’s a way to glue them together and extend
their reach.

You’re also free to point out that MSBuild is an extensible build system, but it’s
hardly a simple process. Consider the workflow for creating a custom task for an
MSBuild script:

1 Stop what you’re working on and open another Visual Studio project.

2 Define the new MSBuild task in managed code.

3 Build the task assembly and copy it into your original project tree.

4 Edit the XML for your project file to import the assembly containing your

build task.

5 Add your custom MSBuild task XML element(s) to the project file.

6 Reload your updated project file in Visual Studio, addressing the security

dialogs warning you about your “suspicious build task.”

Now compare that to the workflow for adding the same task to your psake script:

1 Modify the psake script.

2 There’s no step two. You’re done.

333Using PowerShell in psake tasks

Using MSBuild to create binaries from source code is neither cheating nor bad form.

It’s an example of why PowerShell is a great choice for these kinds of problems. As

you’re about to see, this build script provides a way to extend the Visual Studio build

workflow with things Visual Studio was never designed to do.

Using PowerShell in psake tasks
psake is PowerShell, so build scripts can use any PowerShell modules, scripts, or com-

mands at their disposal. Use psake, and your build can suddenly do anything Power-

Shell can do.

 Archiving binaries into a zip file is a common build activity. Listing 3 expands your

build with a task named PackageZip that stuffs the MyProject binaries into a zip

archive. I regularly use the write-zip command from the PowerShell Community

Extensions module (available at http://pscx.codeplex.com/) to archive files in Power-

Shell, and now you can use it in your build too.

task -name PackageZip –depends Build -action {
 import-module pscx;
 dir ./MyProject/bin/debug |
 write-zip -output ./MyProject.zip;
}

task –name Build –action {
 exec {
 msbuild ./MyProject/MyProject.csproj /t:Build
 }
}

task –name Clean –action {
 exec {
 msbuild ./MyProject/MyProject.csproj /t:Clean
 }
}

task –name Rebuild -depends Clean,Build;
task –name Default -depends Build;

The PackageZip task imports the PowerShell Community Extensions (PSCX) module

and uses the write-zip command to archive the MyProject build output. Because

packaging doesn’t make a lot of sense without a completed build, PackageZip

depends on the Build task. You can see the Build task is run implicitly when invoking

the PackageZip task:

PS C:\>invoke-psake .\listing_3.ps1 -task PackageZip
psake version 4.2.0
Copyright (c) 2010 James Kovacs

Executing Build …

Executing PackageZip

Listing 3 Adding the PackageZip task

PackageZip
uses the PSCX
write-zip cmdlet

http://pscx.codeplex.com/

334 CHAPTER 22 Taming software builds (and other complicated processes) with psake

Mode LastWriteTime Length Name
---- ------------- ------ ----
-a--- 1/21/2013 4:01 PM 9859 MyProject.zip

Build Succeeded!

--
Build Time Report
--
Name Duration
---- --------
Build 00:00:00.1787477
PackageZip 00:00:00.0826554
Total: 00:00:00.2900772

At this point the build is being automated past the initial “create some binaries”

phase. Extending the reach of this build is a simple matter of adding more tasks, but

what do you do if you need your build tasks to adapt their behavior? How can you con-

figure these tasks?

Configuring the build with properties
The sample build scripts so far have assumed many things. The Build and Clean tasks

assume a debug build, as they don’t specify any value for the Configuration MSBuild

property. You need to add the ability to build a release version of your project.

 On a related matter, PackageZip assumes that the build output will be in the

\bin\debug directory:

dir ./MyProject/bin/debug | …

This location will change in a release build, and the PackageZip task will need to adjust

its behavior accordingly. How do you configure these things when you run the build?

 psake exposes a set of configurable properties to each task. These properties are

just PowerShell variables, but they’re called properties because you define them using

the properties psake command. The following listing declares a single property you

can use to toggle the build configuration of MyProject between debug and release.

properties {
 $config = 'Debug';
};

task -name PackageZip -depends Build -action {
 import-module pscx;
 dir ./MyProject/bin/$config |
 write-zip -output ./MyProject.zip;
}

task –name Build –action {
 exec {
 msbuild ./MyProject/MyProject.csproj
 ➥ /p:Configuration=$config /t:Build

Listing 4 Configuring the build script

Declaration of psake
propertiesb

A $config property
defaulting to “debug”c

Use $config to determine
the output directoryd

Use $config to toggle
the build configuration

e

335Configuring the build with properties

 }
}

task –name Clean –action {
 exec {
 msbuild ./MyProject/MyProject.csproj
 ➥ /p:Configuration=$config /t:Clean
 }
}

…

The properties statement B requires a script block. This script block initializes each

task, so any changes made to these variables inside of one task won’t affect other tasks.

NOTE Use the psake properties statement to declare a set of configurable
properties used by your build tasks.

A single property named $config c is defined and assigned a default value of

“debug”. The property is referenced in the Build e and Clean f tasks to set the

value of the Configuration build property in MSBuild. In addition, the property is

used in the MyProject output path in PackageZip d.

 The default value of $config results in a debug build, so running the psake build

script in listing 4 produces the same output as listing 3. To see the property in action

you need to set the config property when you call invoke-psake. You do this by pass-

ing a hash table to the –properties parameter of invoke-psake, where each item

name specifies a property to set (config) and its value (“release”):

PS C:\> invoke-psake .\listing_4.ps1 -task build
 ➥ -properties @{'config'='release'}
psake version 4.2.0
Copyright (c) 2010 James Kovacs

Executing Build
Microsoft (R) Build Engine Version 4.0.30319.1
[Microsoft .NET Framework, Version 4.0.30319.269]
Copyright (C) Microsoft Corporation 2007. All rights reserved.

Build started 9/28/2012 3:18:02 PM.
Project "C:\MyProject\MyProject.csproj" on node 1 (Build target(s)).
…
CopyFilesToOutputDirectory:
 Copying file from "obj\x86\release\MyProject.exe" to
 ➥ "bin\release\MyProject.exe".
 MyProject -> C:\MyProject\bin\Release\MyProject.exe
 Copying file from "obj\x86\release\MyProject.pdb" to
 ➥ "bin\Release\MyProject.pdb".
Done Building Project "C:\MyProject\MyProject.csproj" (Build target(s
)).
…

NOTE To set build properties at runtime pass a hash table to the -properties
parameter of invoke-psake.

Use $config to toggle
the clean configuration

f

Setting the value of
$config to "release"

MyProject output is placed
in the "release" directory

336 CHAPTER 22 Taming software builds (and other complicated processes) with psake

Validating property values

Property values passed to invoke-psake override the values of the corresponding

properties defined in the build script. This enables your build to toggle between build

and release configurations. But what prevents someone from setting the config prop-

erty to something other than “debug” or “release”?

PS C:\> invoke-psake .\listing_4.ps1 -task build
 ➥ -properties @{'config'='kipplefish'}

psake version 4.2.0
Copyright (c) 2010 James Kovacs

Executing Build
Microsoft (R) Build Engine Version 4.0.30319.1
[Microsoft .NET Framework, Version 4.0.30319.296]
Copyright (C) Microsoft Corporation 2007. All rights reserved.

Build started 1/21/2013 4:03:54 PM.
Project "C:\ MyProject.csproj" on node 1 (Build target(s)).
c:\Windows\Microsoft.NET\Framework64\v4.0.30319\Microsoft.Common.targets:

error : The OutputPath property is not set for project

'MyProject.csproj'. Please check to make sure that you have specified a

valid combination of Configuration and Platform for this project.

Configuration='kipplefish' Platform='x86'.

Done Building Project "C:\MyProject.csproj" (Build target(s)) -- FAILED.

Build FAILED.

The previous output shows a failed build resulting from the user specifying an invalid

build configuration, and as verbose as the error output is, it doesn’t inform the user

how to avoid the failure. It would be nice to prevent this error from happening and

perhaps offer a more informative error in its place. To do this, modify the build so it

validates the value of the config property, raising an error when it doesn’t match an

expected value.

TIP Validate the values of all build properties at the beginning of the build,
before any potentially dangerous operations are executed against user-
supplied data.

Validating config needs to be done by the Build, Clean, and PackageZip tasks, but it

only needs to happen once during each build. It makes sense to have a single valida-

tion task on which these other tasks depend, as shown in this listing.

Why can’t I declare variables and use them in my tasks?

The reason you can’t declare variables and use them in your tasks has to do with the
way invoke-psake executes tasks. Any variable you declare in the build script will exist
in the scope of that script file. Tasks aren’t executed in this scope; instead, they’re
executed in the scope of the psake module, where your variables aren’t defined. The
script block defined by the properties statement is executed as a part of each task,
in effect defining a unique set of variables inside the scope of each individual task.

337Managing psake script growth

properties {
 $config = 'Debug';
};

task -name ValidateConfig -action {
 assert -condition (
 ➥ 'debug','release' -contains $config)
 ➥ -failureMessage "Unrecognized config
 ➥ property value: $config; valid values
 ➥ include 'debug' and 'release'"
}

task -name PackageZip -depends Build -action {…}

task –name Build -depends ValidateConfig –action {…}
task –name Clean -depends ValidateConfig –action {…}

task –name Rebuild -depends Clean,Build;
task –name Default -depends Build;

The ValidateConfig task uses the psake assert statement to ensure a valid value

has been supplied for config. When the –condition parameter is false, the error

message specified in the –failureMessage parameter is raised as an error and the

build is stopped. In your case, the –condition statement checks that config matches

one of the expected values, and the –failureMessage indicates the values allowed

for the property.

NOTE Use the psake assert command to validate conditions during the build
and issue informative error messages.

The new error message is far more helpful than the previous one and no dangerous

build tasks were executed using the invalid config property value:

PS C:\>invoke-psake .\listing_5.ps1 -properties @{ 'config'='kipplefish' }
psake version 4.2.0
Copyright (c) 2010 James Kovacs

Executing ValidateConfig
1/21/2013 4:11:13 PM: An Error Occurred:
Assert: Unrecognized config property value: kipplefish; valid values include

'debug' and 'release'

With tasks and configuration in your toolbox you’re ready to automate your software

development process. Before you find yourself lost in a sea of build scripts, let’s look at

ways to keep that automation organized.

Managing psake script growth
As a build matures the number of tasks in your psake scripts will flourish. Keeping

tasks structured and discoverable is important to both your sanity and the manageabil-

ity of the build. The information in the next few sections will help you keep your build

scripts wieldy.

Listing 5 Validating property values as a Build task

ValidateConfig validates
the $config property

Build and Clean tasks depend
on ValidateConfig task

338 CHAPTER 22 Taming software builds (and other complicated processes) with psake

Identifying public tasks

Generally only a handful of tasks are meant to start a build workflow: tasks like Build,

Clean, Rebuild, Package, and Install. I consider these tasks public. The rest of the

tasks are there to support these operations but aren’t meant to be directly invoked by

a user. I regard these tasks as private.

 I differentiate the two using a naming convention. I designate names of private

tasks with a leading underscore (_), and name public tasks normally:

task -name _ValidateConfig -action {…}
task –name Build -depends _ValidateConfig –action {…}

This naming convention neither hides the private tasks from view nor prevents any-

one from running them directly. But it does identify which tasks are the starting points

in the build workflows. When tasks start to number in the dozens this information

becomes imperative.

TIP Differentiate public and private tasks.

Describing your tasks

Adding a description to each build task will help make them discoverable. The task

command accepts a –description string parameter you can use to describe the task

to the user. This feature can also enforce the notion of private and public tasks, as

shown in the following listing.

properties {
 $config = 'Debug';
};
$private = '(do not run this task directly)'
task -name _ValidateConfig
 ➥ -description $private -action {…}

task -name PackageZip -depends Build
 ➥ -description "Creates a ZIP the project" -action {…}

task -name Build -depends _ValidateConfig
 ➥ -description "Builds out-of-date binaries" –action {…}

task -name Clean -depends _ValidateConfig
-description "Removes all build artifacts" –action {…}

task -name Rebuild -depends Clean,Build
 ➥ -description "Rebuilds the entire project";

task –name Default -depends Build;

TIP Provide a description for every task in your build.

Users see these task descriptions when they request the psake script documentation

using the –docs parameter of invoke-psake:

Listing 6 Using the Description task parameter

Private task

Public task

Private tasks get a shared
generic description

Public tasks each
get a unique
description

339Managing psake script growth

PS C:\> invoke-psake .\listing_6.ps1 -docs
psake version 4.2.0
Copyright (c) 2010 James Kovacs

Name Description Depends On Default
---- ----------- ---------- -------
_ValidateConfig (do not run this task directly)
Build Builds out-of-date binaries _ValidateConfig True
Clean Removes all build artifacts _ValidateConfig
PackageZip Creates a ZIP of the project Build
Rebuild Rebuilds the entire project Clean, Build

Using generic descriptions for private tasks helps focus the user on those public tasks

they are meant to run.

NOTE Use the –docs parameter of invoke-psake to view a list of available tasks
in a build script.

Grouping tasks into files

Isolate related tasks into files to keep your build scripts small. My preference is group-

ing tasks by purpose, where each file holds tasks related to one build activity, such

as generating code, building source files, packaging the build output, and managing

data bases.

 For larger projects I tend to have one main build script containing public build

tasks like Build, Clean, Rebuild, Test, Package, Install, Uninstall, and Deploy.

These public tasks depend on private tasks that are isolated in other psake script files.

TIP Isolate related tasks into their own file. Reference the file from a main
build script.

For example, suppose you have a set of tasks related to packaging the build output.

Group those tasks in a file named packaging.ps1:

task -name _PackageZip -action {…}
task -name _PackageInstaller -action {…}
task -name _PackageNuget -action {…}
task -name _PackageChocolatey -action {…}

In the main psake build script, reference these tasks by dot-sourcing the packag-

ing.ps1 file:

. ./packaging.ps1
task –name Package –depends _PackageZip, _PackageInstaller,
 ➥ _PackageNuget, _PackageChocolatey
 ➥ –description "Package all the things!"

Builds tend to grow rather than shrink. Doing these simple things goes a long way in

keeping your build scripts working and manageable.

340 CHAPTER 22 Taming software builds (and other complicated processes) with psake

Summary
The expectations around modern software development mandate the use of automa-

tion to ensure a consistent and reliable build, and rightfully so—it improves quality,

speeds up release cycles, and provides a consistent feedback loop for everyone

involved. Meeting these expectations is hard enough without your tools getting in the

way. Build automation hinges on these tools working together easily, and given the state

of the art, PowerShell is the best choice to make this happen on Windows.

 Where PowerShell provides the technological reach and flexibility to get your tools

working together, psake provides the structure necessary to map out the crooked

paths the build tends to wander. Combining these creates a powerhouse of automa-

tion, allowing you to take the build process well beyond the starting point of produc-

ing a binary.

 Many consider managing the build an evil, but a necessary one (this may or may

not correlate with your moral stance on lying). My hope is that this chapter pushes

you to give psake a whirl. If you do, you’ll be surprised at what you accomplish and

how little effort it takes.

 And that’s no lie.

About the author

Jim Christopher has been developing software since the age of

nine. With 18 years of professional experience across industries

such as gaming, education, and defense, his drive is designing

software, systems, and user experiences for automation. This

theme earned him Microsoft MVP awards for PowerShell from

2011 to 2013. Jim has published several open source projects tar-

geting PowerShell, including the StudioShell automation environ-

ment for Visual Studio (http://studioshell.codeplex.com). Jim

currently runs Code Owls LLC (www.codeowls.com), a small software development

company in Charlotte, North Carolina, which focuses on helping people do awe-

some things and publishes the SeeShell data visualization module for PowerShell

(www.codeowls.com/seeshell).

www.codeowls.com
www.codeowls.com/seeshell
http://studioshell.codeplex.com

PART 4

PowerShell platforms

 Edited by Aleksandar Nikolić

If you’ve made it this far in the book chances are you’re a PowerShell fan, but by

itself, PowerShell is irrelevant. Richard Siddaway once told Jeffrey Snover that

PowerShell didn’t matter. After Jeffrey’s initial shock, Richard clarified that it’s

what you can do with it that matters. This section is all about putting PowerShell

to work.

 PowerShell solutions for products and servers continue to arrive from Microsoft

product teams and third-party vendors. PowerShell is a management engine and

more of the stuff we deal with on a daily basis is being plugged into this engine.

 There’s so much that could be written about using PowerShell to manage

this platform or that application. In some cases entire books could be devoted to

topics such as managing Exchange Server or SQL Server with PowerShell. Some

of those books have been written and others are in the works.

 The chapters in this section touch on a few areas that many IT pros are likely

to have to deal with such as IIS, WSUS (Windows Server Update Services), and

Active Directory. But even if you don’t need to manage these things, you should

still take the time to look through the chapters. Often a technique or concept

can be applied to other platforms.

 The material in these chapters tends to rely on scripts and functions, which you

can download from Manning. We encourage you to look at the code and test in a

non-production environment, following along with each chapter.

 When the time comes to develop your own PowerShell platform-specific solu-

tion and you need some help, we recommend using the forum at PowerShell.org.

About the editor

Aleksandar Nikolić is a Microsoft MVP for Windows PowerShell, a

cofounder of PowerShellMagazine.com, and the community man-

ager of PowerShell.com. He is an experienced presenter and

speaker about Microsoft automation solutions, and has more than

17 years of experience as a system administrator. He is also avail-

able for one-on-one online PowerShell trainings. You can find

him on Twitter: @alexandair.

343

PowerShell and the SQL
Server provider

 Ben Miller

This chapter is written for the DBA who needs an efficient way to get information

from or manage SQL Servers in their environment with just a few commands by

using native PowerShell methods. When you’re looking at the options for manag-

ing or getting information from a SQL Server by using PowerShell your choice is

driven by a few scenarios. One use case might be to find out how many databases

are in the instances you maintain while using the simplest way to reference these

instances. Another might be to find out whether a certain object exists in a Soft-

ware as a Service (SaaS) environment with thousands of databases and multiple

servers while upgrading in a phased upgrade methodology. You may want to know

which database has the object so you don’t attempt to upgrade that database in the

second wave and find that the object exists. When faced with these or other scenar-

ios you can quickly accomplish your goal with part PowerShell methods and part

SQL Server provider.

 You have a few options for managing SQL Server using PowerShell. You can use

straight Shared Management Objects (SMOs) by loading the SMOs individually or by

using the SQL Server provider. This chapter discusses the SQL Server provider that

was released with SQL Server 2008/2008 R2. The provider for SQL 2008/R2 is imple-

mented as a Windows PowerShell snap-in (PSSnapin) and is implemented as a mod-

ule in SQL Server 2012. The provider for SQL Server 2012 has a few more cmdlets

and more properties and methods on the SMOs, but the functionality is the same. I’ll

start by introducing you to the SQL Server provider and then I’ll show you practical

ways to use the provider to get at SQL Server information using PowerShell cmdlets.

Requirements

Many modules and providers come with PowerShell in Windows, but the SQL

Server provider is a separate element that you install like any other Windows

23

344 CHAPTER 23 PowerShell and the SQL Server provider

application. It’s installed when you install SQL Server 2008, 2008 R2, or 2012 Man-

agement Tools, or you can download and install a copy of the Feature Pack for 2008

R2 at http://mng.bz/ccVK or for 2012 at http://mng.bz/m8po. You’ll need to down-

load and install the following components for 2008/R2:

■ 1033\x64\PowerShellTools.msi
■ 1033\x64\SharedManagementObjects.msi
■ 1033\x64\SQLSysClrTypes.msi

For 2012 you install the following components:

■ Microsoft Windows PowerShell Extensions for Microsoft SQL Server 2012
■ Microsoft SQL Server 2012 Shared Management Objects

These components for 2008/R2 are listed for the x64 platform, and the corresponding

items are available for IA64 and x86. With the components installed and with access to a

SQL Server you can start exploring the capabilities of the SQL Server provider.

Introduction to the SQL Server provider
Two snap-ins are registered with PowerShell when you install the SQL Server provider

components for 2008/R2: SqlServerCmdletSnapin100 and SqlServerProvider-

Snapin100. You can verify that the snap-ins are available by using the first command in

the following code. You can add them a couple of different ways, as shown:

Get-PSSnapin –Registered

Add-PSSnapin SqlServerCmdletSnapin100
Add-PSSnapin SqlServerProviderSnapin100

Alternatively you can use Wildcards, but be sure that you only get what you want:

Add-PSSnapin *SQL*

The first snap-in contains two cmdlets that you can use to execute commands against a

SQL Server. The first cmdlet, Invoke-PolicyEvaluation, is used in SQL Server policy-

based management in SQL Server 2008 and above. The second is Invoke-SqlCmd,

which is a query executer. These two cmdlets are useful, and in future versions of the

provider there are more cmdlets available.

 The second snap-in is the SQL Server provider. It’s used for navigating SQL Server

objects in a manner similar to navigating a directory structure, folders, and items in fold-

ers. Think of a directory like C:\WINDOWS and how you can use the dir command to

access the items in that folder. The objects that are returned from the SQL Server pro-

vider are SMO-based. You can do a search on “SQL SMO objects” and see the richness

these objects can bring. We’re familiar with objects in SQL Server because we deal with

tables, columns, and indexes. SMOs represent SQL Server objects and have properties

and methods to interact with objects in SQL Server, such as dropping an object, getting

properties of an object, and altering an object. This provider becomes powerful when

automating certain processes or information-gathering procedures by simplifying the

syntax to get these objects. Let’s dive in and learn how to use this provider’s power.

http://mng.bz/ccVK
http://mng.bz/m8po

345Using the SQL Server provider

Using the SQL Server provider
The SQL Server provider is exposed as a PSDrive (PowerShell Drive) by using paths

into the hierarchy of SQL Server objects. A PSDrive is a way to access items in a way

that’s similar to a directory structure. After you load the provider you can use the

PowerShell command Get-PSDrive to show all the drives available for PowerShell to

reference in a fashion similar to a file system.

 The list of drives includes a SQLSERVER: drive when the provider is loaded. This

drive begins the process of accessing SQL Server objects through a series of paths.

Table 1 shows the drive structure and what each level represents.

Table 1 SQL Server provider paths

Path Description

SQLSERVER: The drive you use to access SQL, just as you would use C:. The root of

this drive contains the following paths to explore:

SQL

SQLPolicy

SQLRegistration

DataCollection

Utility

DAC

SQLSERVER:\SQL The root of the SQL services on the local machine, and the beginning of

the path in SQL Server via the provider.

SQLSERVER:\SQL\Computer-

Name

The beginning of SQL Server’s journey in the provider. The computer

name is the next part of the path and it can be local or remote. This

doesn’t include the instance name (default or named). Executing

Get-ChildItem gets information about all instances on this

machine, including the default, and shows you their properties.

SQLSERVER:\SQL\Computer-

Name\Instance

The path that connects you to the instance of SQL Server and tries to log

you in via your Windows credentials. The following folders are available:

Audits

BackupDevices

Credentials

CryptographicProviders

Databases

Endpoints

JobServer

Languages

LinkedServers

Logins

Mail

ResourceGovernor

Roles

ServerAuditSpecifications

SystemDataTypes

SystemMessages

Triggers

UserDefinedMessages

346 CHAPTER 23 PowerShell and the SQL Server provider

With an understanding of this information you can begin to use the SQL Server pro-

vider in a powerful way. The information in table 1 will be a valuable reference for you

regarding where you can go in SQL Server because most of the objects are repre-

sented in the provider and SMO.

 As I’ve said, the real power of the provider syntax is that it’s like a directory struc-

ture. Think of what the path to a table would look like. Listing 1 demonstrates the

basic use of the provider from a console or the Integrated Scripting Environment

(ISE); this can eventually be wrapped in a function, where you can pass parameters for

the server, instance, and other parameters. It also shows using path-like structures in

PowerShell with the SQL Server provider. You can extend this to your advantage in other

pieces of automation.

$server = "localhost"
$instance = "default"
$dbname = "AdventureWorks"
$tblname = "HumanResources.Employee"

$path="SQLSERVER:\SQL\$server\$instance\Databases\$dbname\Tables\$tblname"
If(Test-Path $path)
{
 Get-Item $path
}

The more you use the SQL provider the more you’ll want to become familiar with the

paths that exist in the provider if you’re planning to do any work in SQL Server with

PowerShell.

Examples of using the SQL Server provider
Let’s get some objects and see what you can do with this tool. Listing 2 shows a func-

tion that prepares the provider for use in the various versions of SQL Server; this

function is reused throughout this chapter. It includes an example of using the provider

to get information from SQL Server. The listing uses code from http://mng.bz/4sXz to

load the assemblies so the function is reusable.

function Load-SQLSnapins
{
 [CmdletBinding()]
 Param()

 $ErrorActionPreference = "Stop"

 $sqlpsreg="HKLM:\SOFTWARE\Microsoft\PowerShell\1\ShellIds\
 ➥ Microsoft.SqlServer.Management.PowerShell.sqlps"

 if (Get-ChildItem $sqlpsreg -ErrorAction "SilentlyContinue")
 {
 throw "SQL Server Provider for Windows PowerShell is not installed."

Listing 1 Path-like access to SQL objects

Listing 2 Function to load the SQL Server provider

http://mng.bz/4sXz

347Examples of using the SQL Server provider

 }
 else
 {
 $item = Get-ItemProperty $sqlpsreg
 $sqlpsPath = [System.IO.Path]::GetDirectoryName($item.Path)
 }

 Set-Variable -scope Global -name SqlServerMaximumChildItems -Value 0
 Set-Variable -scope Global -name SqlServerConnectionTimeout -Value 30
 Set-Variable -scope Global -name SqlServerIncludeSystemObjects -Value

$false
 Set-Variable -scope Global -name SqlServerMaximumTabCompletion -Value

1000

 Push-Location
 cd $sqlpsPath

 if (!(Get-PSSnapin -Name SQLServerCmdletSnapin100 `
-ErrorAction SilentlyContinue))
 {
 Add-PSSnapin SQLServerCmdletSnapin100
 Write-Verbose "Loading SQLServerCmdletSnapin100..."
 }
 else
 {
 Write-Verbose "SQLServerCmdletSnapin100 already loaded"
 }

 if (!(Get-PSSnapin -Name SqlServerProviderSnapin100 `
-ErrorAction SilentlyContinue))
 {
 Add-PSSnapin SqlServerProviderSnapin100
 Write-Verbose "Loading SqlServerProviderSnapin100..."
 }
 else
 {
 Write-Verbose "SqlServerProviderSnapin100 already loaded"
 }

 Update-TypeData -PrependPath SQLProvider.Types.ps1xml
 update-FormatData -prependpath SQLProvider.Format.ps1xml
 Pop-Location
}

<#
namespaces based on
http://msdn.microsoft.com/en-ca/library/ms182491(v=sql.105).aspx

SQL2005
root\Microsoft\SqlServer\ComputerManagement"

SQL2008
root\Microsoft\SqlServer\ComputerManagement10"

SQL2012
\\.\root\Microsoft\SqlServer\ComputerManagement11\instance_name

348 CHAPTER 23 PowerShell and the SQL Server provider

#>
function Prepare-SQLProvider
{
 [CmdletBinding()]
 Param()
 $namespace = "root\Microsoft\SqlServer\ComputerManagement"
 if ((Get-WmiObject -Namespace $namespace -Class SqlService `
-ErrorAction SilentlyContinue)
)
 {
 Write-Verbose "Running SQL Server 2005"
 #load Snapins
 Load-SQLSnapins
 }
 elseif ((Get-WmiObject -Namespace "$($namespace)10" -Class SqlService `
-ErrorAction SilentlyContinue))
 {
 Write-Verbose "Running SQL Server 2008/R2"
 #load Snapins
 Load-SQLSnapins
 }
 elseif ((Get-WmiObject –Namespace "$($namespace)11" -Class SqlService `
-ErrorAction SilentlyContinue))
 {
 Write-Verbose "Running SQL Server 2012"
 Write-Verbose "Loading SQLPS Module ... "
 Import-Module SQLPS
 }
}

Listing 3 shows how to get a list of the database names on your server. It’s simple if you

think of your SQL Server like a file system. For each file in a file system, properties give

information about that file. Similarly, in the SQL Server provider you can access your

databases like you do files in a directory.

Prepare-SQLProvider
cd SQLSERVER:\SQL\localhost\default
cd Databases
Get-Childitem | Select Name

The example in listing 4 takes you a little further into the hierarchy to get a list of

tables. This isn’t much harder than the previous example, because the Tables folder is

another level in the hierarchy. The path is similar to SQLSERVER: \SQL\ localhost\

default\Databases\AdventureWorks\Tables. You can either use Get-ChildItem to get

the tables or you can use Where-Object to filter them by property. In this case, you

need to use the Where-Object because the SQL Server provider doesn’t have support

for filters. Figures 1 and 2 show the output from listing 4.

Listing 3 Displaying a list of database names from SQL Server

349Examples of using the SQL Server provider

Prepare-SQLProvider
CD SQLSERVER:\SQL\localhost\default\Databases\AdventureWorks\Tables
Get-ChildItem | Select DisplayName
Get-ChildItem | Where-Object { $_.DisplayName –match "HumanResources[.]" |
 Select DisplayName

Last but not least, when you aren’t in the mood or can’t use the provider to get infor-

mation but you need to use some of the objects it provides you can take advantage of

the fact that the return objects are SMO-based. You use a server object to get some

properties, or when you need access to the server object later in your code you can use

Get-Item and the provider path to the server to get a server object. This is illustrated

in the following listing. Figure 3 shows the output.

Prepare-SQLProvider
$server = Get-Item SQLSERVER:\SQL\localhost\default
$server.GetType() | Format-Table –Auto
$server | Get-Member

Listing 4 Getting a list of tables

Listing 5 Getting a server object using the SQL Server provider

Figure 1 Output of getting a list of tables

Figure 2 Output of the second command with the Where-Object clause

350 CHAPTER 23 PowerShell and the SQL Server provider

Notice in figure 3 that you see the type: the server object is a Microsoft.SqlServer

.Management.Smo.SqlSmoObject. More specifically, in the second statement it’s a

Microsoft.SqlServer.Management.Smo.Server object. You can use this approach

with databases, tables, and stored procedures to get and manipulate objects, all in a

path to the object.

Getting a count of databases in an instance
The next listing uses the SQL Server provider to get a count of databases using func-

tions to load the provider for whichever version of SQL Server is installed.

function Get-DatabaseCounts
{

 [CmdletBinding()]
 Param(
 [Parameter(Position=0,Mandatory=$true)]
 [alias("server")]
 [string]$serverName,

 [Parameter(Position=1,Mandatory=$true)]
 [alias("instance")]
 [string]$instanceName
)

 $results = @()
 (Get-Item SQLSERVER:\SQL\$serverName\$instanceName).Databases |
 Foreach-Object {
 $db = $_

 $db.Tables |
 Foreach-Object {
 $table = $_

 $hash = @{
 "Database" = $db.Name
 "Schema" = $table.Schema
 "Table" = $table.Name
 "RowCount" = $table.RowCount
 "Replicated" = $table.Replicated
 }

Listing 6 Get-DatabaseCounts function

Figure 3 Using Get-Item to get an SMO server object

351Finding a table in many databases

 $item = New-Object PSObject -Property $hash
 $results += $item

 }
 }
 $results

}

Prepare-SQLProvider -Verbose
Get-DatabaseCounts -server "localhost" -instance "DEFAULT" | Out-GridView

This listing shows the count of databases in the localhost\DEFAULT instance of SQL

Server using the Get-DatabaseCounts function.

Finding a table in many databases
This use case is a common one when you’re dealing with upgrades to a database or

when you’re deploying new code that relies on a new table that was created during

development. There are different ways to find a table in the midst of many databases.

Listing 7 shows a function that uses the provider to find the table, and listing 8 still

uses the provider but with a script.

Function Get-SQLTableInDB {
 [CmdletBinding()]
 Param(
 [Parameter(Position=0,Mandatory=$true)]
 [alias("server")]
 [string]$serverName,

 [Parameter(Position=1,Mandatory=$true)]
 [alias("instance")]
 [string]$instanceName,

 [Parameter(Position=2,Mandatory=$true)]
 [alias("table")]
 [string]$tableName
)

 (Get-Item SQLSERVER:\SQL\$serverName\$instanceName).Databases |
 Foreach-Object {
 $db = $_

 $db.Tables |
 Foreach-Object {

 $sqltable = $_
 If($tableName –eq $($sqltable.Name)) {
 Return $db.Name
 }
 }
 }
}

Listing 7 Finding the existence of a table in many databases

352 CHAPTER 23 PowerShell and the SQL Server provider

Prepare-SQLProvider
Get-SQLTableInDatabases –server "localhost" –instance "DEFAULT" `
–table "Table1"

Prepare-SQLProvider

$servername = "localhost"
$instance = "default"
$tableName = "backupset"
$schema = "dbo"

$instpath = "SQL\$servername\$instance\Databases"
foreach($db in (Get-ChildItem SQLSERVER:\SQL\$instpath)) {
 $dbname = $db.Name
 if(!(Test-Path SQLSERVER:\$instpath\$dbname\Tables\$schema`.$tableName))
 {
 Write-Output $db.Name
 }
}

Summary

In this chapter you’ve seen how to get the SQL Server PowerShell provider for 2008/R2

and how to add it to your PowerShell session. The SQL Server provider for Power-

Shell is provided as a snap-in and is loaded with the Add-PSSnapin command; you

access the structure of SQL Server using a path structure. You can add the provider to

any Windows machine by downloading the PowerShell objects in the SQL Server Fea-

ture Packs.

 Whether you’re retrieving objects individually or detecting their existence a path

structure provides a powerful way to use PowerShell and SQL Server together. This is

just the tip of the iceberg when it comes to what you can do with the provider and how

it all works, but I hope you caught the vision of where you can take it.

 Chapter 25 discusses SMO and how to use objects in SQL Server with SMO; that

chapter is a great companion to what you learned here. SQL Server 2012 wasn’t

covered in this chapter, but the concepts apply to the SQL Server 2012 provider;

it’s just loaded as a module (SQLPS) instead of a snap-in. Now, go execute some

PowerShell!

Listing 8 Finding the existence of a table in many databases using the provider

353Summary

About the author

Ben Miller is a database architect for HealthEquity, Inc. in

Draper, Utah, the largest US Health Savings Account (HSA) trust

organization. He is a SQL Server MVP and an MCM: SQL Server

2008. He has been in the industry for over 20 years and has

focused on SQL Server and automation for the past 12 years. He

has held various positions at companies like Microsoft and the

LDS Church. He regularly speaks on SQL Server and PowerShell

topics, and he is president of the Utah County, Utah SQL Server

User Group. Ben lives in Lehi, Utah, with his beautiful wife and

two children.

354

Creating flexible
subscriptions in SSRS

 Donabel Santos

If you create reports using SQL Server Reporting Services you may get requests—

for example, for specific reports with varying formats and criteria to be emailed out

to clients on the fifteenth of every month, or created and stored in a shared folder

every Monday. SQL Server Reporting Services (SSRS) supports subscriptions but

can be inflexible and rigid. PowerShell can help IT and SQL Server professionals

with flexible report scheduling and delivery that support dynamic parameters and

ever-changing user requirements.

 In this chapter we’ll look at implementing something similar to a data-driven

subscription using a list in a CSV file and PowerShell. What I’ll show you is just an

example of how you can implement data-driven subscription in PowerShell from

start to finish. Not everyone who is reading this chapter is familiar with SSRS or the

SSRS environment, so the first few sections are devoted to explaining what the envi-

ronment looks like. The formats and names I’ve chosen in this chapter may or may

not work for you, but the good thing about this approach is that it’s very flexible.

You should be able to easily change any of the names (file, parameter, variable) or

formats and adjust your PowerShell script.

Understanding SSRS subscriptions
Before we dive in to how you can create SSRS subscriptions using PowerShell, it’s

important to understand what’s already available with SSRS, what the limitations

are, and why PowerShell can be the vehicle that overcomes this gap. SSRS subscrip-

tions are discussed in detail in the MSDN entry “Subscriptions and Delivery

(Reporting Services)” (http://mng.bz/gVRN). To summarize:

■ SSRS supports standard and data-driven subscriptions.
■ Standard subscriptions only support static values, which can’t be changed

during report processing. To quote from the MSDN entry: “For each standard

24

http://mng.bz/gVRN

355Environment settings

subscription, there is exactly one set of report presentation options, delivery

options, and report parameters.”
■ Data-driven subscription, which is a feature available only in SQL Server Enter-

prise or Business Intelligence Edition, can dynamically retrieve parameters,

format, and scheduling information from a data source other than the subscrip-

tion window for report processing. As mentioned in the MSDN entry, “You

might use data-driven subscriptions if you have a very large recipient list or if

you want to vary report output for each recipient. To use data-driven subscrip-

tions, you must have expertise in building queries and an understanding of how

parameters are used.”

More often than not, different departments or groups in a company require custom-

ized reports. They have different (or multiple) report formats and scheduling prefer-

ences. For example, they may want both a PDF and an Excel report, each manager

receives only their territory’s reports, and they may want to supply a list of clients every

month in addition to their territory clients.

 If the company only has the Standard Edition of SQL Server—which is the situa-

tion for many small to medium-sized businesses—then this feat isn’t doable using the

subscription feature that comes with SSRS. Remember that standard subscription only

supports static values. The best solution is to create the subscription using a combina-

tion of .NET programming, SQL stored procedures, and perhaps some batch files.

 If a company has the Enterprise or Business Intelligence Edition, then most of this

is doable but still requires a fair bit of management from the report administrator or

DBA. Each format requires its own subscription. Each territory needs to be its own sub-

scription. Having numerous subscriptions to manage will eventually become cumber-

some to deal with.

 Toward this end, PowerShell can both simplify and automate subscriptions without

having to wrestle with SSRS editions or set up and manage multiple subscriptions from

the SSRS administration interface.

Environment settings
To follow along with this chapter, you must have already installed and configured

the SQL Server 2012 database engine and SSRS 2012 in native mode. This chapter

doesn’t cover step-by-step installation, but you can use this MSDN article as a refer-

ence: http://mng.bz/VPws.

 To provide context to the example, table 1 lists the settings of the environment

I used.

 The example uses a very simple report that accepts multiple parameters of differ-

ent data types. For simplicity I named the parameters based on their data types. This

helps differentiate the formats you’re passing to your PowerShell script later.

 When this report is accessed from the SSRS Report Manager the parameter bar

displays the individual parameters differently depending on the data type, as shown

in figure 1. For example, strings, integers, and floats are presented as text boxes.

http://mng.bz/VPws

356 CHAPTER 24 Creating flexible subscriptions in SSRS

Boolean parameters are shown, by default, as True/False radio buttons. Date param-

eters are shown with a date picker.

Requirements
This section identifies what you need to create report subscriptions using PowerShell.

SQL Server and PowerShell requirements

The example uses SSRS 2012 and PowerShell v3, but you aren’t tied to these versions.

With minor script changes you should be able to use the scripts in this chapter on

older versions of SSRS and PowerShell.

 You can also use the Microsoft Report Viewer 2010 Redistributable to render your

reports. The Microsoft Report Viewer 2010 Redistributable Package, which can be

used for SSRS 2008 or higher, can be downloaded from http://mng.bz/eA9a.

Subscription requirements

To create your own data-driven subscriptions using PowerShell a few pieces need to be

in place:

■ A location to store your subscriptions. This can be a file of any format, as long

as you can easily parse different pieces of information. If you prefer, this could

also be a database table.
■ A way to determine active subscriptions and subscription preferences in terms

of report format and report delivery.

Table 1 Demo environment settings

SQL Server instance name KERRIGAN

Report server URL http://KERRIGAN/ReportServer

Report name Sample Report

Absolute path to report /PowerShell Deep Dives/Sample Report

Report parameters StringParam—Accepts any string

IntParam—Accepts any integer

BoolParam—Accepts true or false

DateParam—Accepts any valid date format

FloatParam—Accepts any float

Figure 1 Sample report parameter bar

http://KERRIGAN/ReportServer
http://mng.bz/eA9a

357Requirements

■ A method to render and deliver reports to the appropriate subscribers.
■ A means to pass in, and parse, different report parameters.
■ An approach to schedule the script to run.

Your process flow can be mapped as shown in figure 2.

 You also need to collect some typical pieces of information before you can service

report subscriptions. Table 2 enumerates typical information you need to collect,

which you’ll consume later in your scripts.

Table 2 Subscription parameters

CSV header or table column name Description

FirstName Subscriber first name.

LastName Subscriber last name.

Delivery Delivery preference, either email or shared folder.

EmailAddress Email address.

SharedFolder Shared folder in UNC notation.

ReportPath Report path: the path to the report from the root of the report

manager. For example: /Reports/Financial Report

ExportFormat Subscriber’s preferred report format. SSRS supports the follow-

ing rendering extensions: XML, NULL, CSV, ATOM, PDF, RGDI,

HTML4.0, MHTML, EXCEL, EXCELOPENXML, RPL, IMAGE,

WORD, and WORDOPENXML.

In your subscription you allow only PDF, IMAGE, MHTML, WORD,

WORDOPENXML, EXCEL, and EXCELOPENXML.

Note that WORD and EXCEL refer to the 2003 version (.doc and

.xls), and WORDOPENXML and EXCELOPENXML refer to the

2007/2010 versions (.docx and .xlsx).

ReportParameters Parameters accepted by that report, in the following format:

parameters={param1=value|param2=value|param
3=value}

SubscriptionYear Subscription year. * if subscribed for all years, or comma delim-

ited if subscribed for multiple years.

SubscriptionMonth Subscription month. * if subscribed for all months, or comma

delimited if subscribed for multiple months.

SubscriptionDay Subscription day. * if subscribed for all days, or comma delim-

ited if subscribed for multiple days.

Import contents

from CSV file

Scheduled script

Get active

subscriptions

Parse report

parameters

Render reports

based on incoming

parameters and

preferences

Deliver reports

by email or

by file share

Figure 2 PowerShell SSRS subscription process flow

358 CHAPTER 24 Creating flexible subscriptions in SSRS

Subscription in action
Let’s look at the scripts you can use to implement subscriptions. We’ll start with the main

script and subsequently dissect the different functions you use to complete the process

flow. Note that to run the script the functions on which the main script is dependent

must be loaded first:

PS C:\Path\to\scripts>. .\Load-SSRSAssembly.ps1
PS C:\Path\to\scripts>. .\Get-SSRSParameterArray.ps1
PS C:\Path\to\scripts>. .\Get-SSRSSubscription.ps1
PS C:\Path\to\scripts>. .\Send-SSRSSubscription.ps1

Main script

The main script that retrieves all active subscriptions and sends out the reports is pre-

sented in listing 1. For this example active subscriptions are saved in a CSV file. Two

sets of parameters are included in this CSV file: subscription parameters, itemized in

table 2, which are delimited by semicolons; and ReportParameters, which are

enclosed in curly braces and delimited by pipes or vertical bars. This example uses

semicolons and pipes as delimiters because there’s a slimmer chance that these are

part of a valid subscription or ReportParameter value.

[CmdletBinding()]
param(
 [ValidateScript({Test-Path $_})]
 [string]$SubscriptionList="c:\temp\ssrs-subscription.csv",
 [string]$ReportServer="http://localhost/ReportServer"
)

Load-SSRSAssembly

Import-CSV -Delimiter ";" -Path $SubscriptionList |
Get-SSRSSubscription |
Send-SSRSSubscription -ReportServer $ReportServer

The first function you use is Load-SSRSAssembly, shown in the next listing, which loads

the assembly required to use the ReportViewer WinForms.

function Load-SSRSAssembly {
 Add-Type -AssemblyName "Microsoft.ReportViewer.WinForms, Version=11.0.0.0,

Culture=neutral, PublicKeyToken=89845dcd8080cc91"
}

Later, should you need additional SSRS assemblies, such as the ReportViewer Web-

Form, you can update this function to load those assemblies as well.

 The code lines following Load-SSRSAssembly are discussed in detail in the succeed-

ing sections. After you load the required assemblies you read a CSV file that contains all

Listing 1 Main subscription script

Listing 2 Load-SSRSAssembly function

Loads the ReportViewer
assembly

Gets subscription
list from CSV file

Filters and
returns
current

active
subscriptions

Renders and delivers
reports to subscribers

359Subscription in action

of your subscriptions. You then pass the results of this Import-CSV to another func-

tion, Get-SSRSSubscription, which filters only for active subscriptions. Active sub-

scriptions are then passed to another function, Send-SSRSSubscription, which takes

care of the actual report rendering and delivery.

Storing subscriptions

For this example you store subscription information in a semicolon-delimited file. You

capture in this file the information outlined in table 2. To help you visualize what it

looks like, here’s an example of one line in this file:

john;doe;email;john.doe@queryworks.local;\\KERRIGAN\Reports\;
 ➥ /PowerShell Deep Dives/Sample Report;PDF;parameters=
 ➥ {IntParam=2013|BoolParam=true|FloatParam=9.4|DateParam=6/30/2012
 ➥ 12:00:00 AM|StringParam=Data Warehousing};*;*;*

Of course, information here can be stored in different formats depending on your

needs. You can adjust the PowerShell script to read from an XML file, a JSON file, or

even a SQL Server table similar to the following.

CREATE TABLE [dbo].[Subscription]
 (
 [FirstName] [varchar](100) NULL ,
 [LastName] [varchar](100) NULL ,
 [Delivery] [varchar](100) NULL ,
 [EmailAddress] [varchar](100) NULL ,
 [SharedFolder] [varchar](100) NULL ,
 [ReportPath] [varchar](100) NULL ,
 [ExportFormat] [varchar](100) NULL ,
 [ReportParameters] [varchar](1000) NULL ,
 [SubscriptionYear] [varchar](20) NULL ,
 [SubscriptionMonth] [varchar](20) NULL ,
 [SubscriptionDay] [varchar](20) NULL
)
ON [PRIMARY]

Note that this is a pretty simplistic table—you’re just trying to create a table that will

store information equivalent to what’s in your text file. In reality, there are many struc-

tural and design considerations when creating this subscription table, such as the pri-

mary key, indexes, and timestamp columns.

 If you decide to capture subscription information in a table you need to update

the script that reads your subscriptions.

Retrieving subscriptions

Your subscription list, which is stored in a semicolon-delimited text file format, con-

tains a list of all subscribers, including those whose subscriptions may have already

lapsed. Table 3 lists some possible subscription frequency values.

Listing 3 Subscription table creation T-SQL script

360 CHAPTER 24 Creating flexible subscriptions in SSRS

The function Get-SSRSSubscription retrieves only the current subscribers and returns

the list to the pipeline, as shown in the next listing.

function Get-SSRSSubscription {
[CmdletBinding()]
param(
 [Parameter(Mandatory=$true,
 ValueFromPipeline=$true)]
 [string]$subscriptions
)
BEGIN {
 $currYear = (Get-Date).Year
 $currDay = (Get-Date).Day
 $currMonth = (Get-Date).Month
}

PROCESS {
 $item = $_
 $yearArray = $item.SubscriptionYear -split ","
 $monthArray = $item.SubscriptionMonth -split ","
 $dayArray = $item.SubscriptionDay -split ","

 if (-not $item.ReportPath) { return }
 if($item.SubscriptionYear -contains $currYear -or `
$item.SubscriptionYear -eq "*")
 {
 if($monthArray -contains $currMonth -or `
$item.SubscriptionMonth -contains "*")
 {
 if($dayArray -contains $currDay -or `
$item.SubscriptionDay -contains "*")
 {
 $item
 }
 }
 }
 }
END {}
}

Table 3 Sample subscription frequency values

Subscription year, month, and day Description

;;* Always active

2011;*;1 Subscribed for every first of the month for the year 2011

;;15 Subscribed every fifteenth of the month

*;3,6,9;15,20 Subscribed every fifteenth and twentieth of March, June, and

September

Listing 4 Get-SSRSSubscription function

Gets the current year,
month, and day

Parses the subscription year,
month, and day values into
their own respective arrays

Returns the subscription item
if and only if the subscription
is currently valid

361Subscription in action

This function checks whether a subscription is active. How do you check it? You take

the incoming parameter and store it in an array. For example, SubscriptionYear

can come in as either a single year (2012), an asterisk (*), or a series of years

(2010,2011,2012). You compare the incoming value with the current year and an

asterisk. If there’s a match then you know this is an active subscription for that year.

You do the same for SubscriptionMonth and SubscriptionDay. If the subscription is

active you output that object so it can be consumed by the next function or cmdlet in

the pipeline. An example invocation of this function is provided in figure 3.

Parsing parameters

Let’s talk about parsing parameters before we discuss the function that renders and

sends subscriptions. To parse the parameters that are passed with each subscription

you use the function Get-SSRSParameterArray. This function takes the report parame-

ters from the CSV file in this format:

params={IntParam=2013|FloatParam=8.89|BoolParam=false|DateParam=1/30/2012
 ➥ 12:00:00 AM|StringParam=Sample}

Get-SSRSParameterArray then converts them into a ReportParameter array that can

be used to render the report, as shown in the following listing.

function Get-SSRSParameterArray {
[CmdletBinding()]
param(
 [Parameter(Mandatory=$True,
 ValueFromPipeline=$True)]

Listing 5 Get-SSRSParameterArray function

Figure 3 Sample invocation of Get-SSRSSubscription

362 CHAPTER 24 Creating flexible subscriptions in SSRS

 [string]$paramstr
)
BEGIN{
 $paramstr = $paramstr -replace "params=",""
 $paramstr = $paramstr -replace "[{}]",""
 $paramstr = $paramstr -replace "[|]","`n"

 $hash = ConvertFrom-StringData -StringData $paramstr
 $numparams = $hash.Count

 [Microsoft.Reporting.WinForms.ReportParameter[]]$params =
 ➥ New-Object 'Microsoft.Reporting.WinForms.ReportParameter[]'
 ➥ $numparams

 $counter = 0;
 foreach ($key in $hash.keys)
 {
 $params[$counter] = New-Object
 ➥ Microsoft.Reporting.WinForms.ReportParameter($key,
 ➥ "$($hash.$key)", $false)
 $counter++
 }

 return $params
}
PROCESS{}
END {}
}

In your CSV you pass the report parameters as a single string in the following format:

parameters={label=value|label=value}

This format allows you to be flexible with the parameters. This demonstrates that you

can pass different number of parameters to reports, and different types, as long as

you can properly parse the string that contains the parameter list.

 In the Get-SSRSParameterArray function you convert the incoming parameter

string to a hash and eventually into a ReportParameter array that you can use to render

the report. To convert the parameter string into a hash you remove parameters={} and

place each label=value into its own line:

label=value
label=value
:

In the code, this looks like

 IntParam=2013
 FloatParam=8.89
 BoolParam=false
 DateParam=1/30/2012 12:00:00 AM
 StringParam=Sample

You can create a hash from this string format by passing this string to the cmdlet

ConvertFrom-StringData. When you have the hash you iterate through it and create a

Removes parameters= from
the parameter string

Removes {} from
the parameter

Places
each set of

parameters
into its

own line
Converts the
parameter string
into a hash

Creates a
ReportParameter

array based on the
number of parsed

parameters

Creates a
ReportParameter

object for each
parameter passed
in, and assigns it
back to the array

363Subscription in action

Microsoft.Reporting.WinForms.ReportParameter object for each item in the hash.

You store this in a Microsoft.Reporting.WinForms.ReportParameter[] array and later

pass it as a parameter to the SetParameter method of the ReportViewer object.

Delivering subscriptions

Once you retrieve active subscriptions and parse their corresponding parameters you

can pass this information to another function called Send-SSRSSubscription, shown in

the next listing. This function does the bulk of the report rendering and delivery work.

function Send-SSRSSubscription {
[CmdletBinding()]
param(
 [Parameter(Mandatory=$True,
 ValueFromPipeline=$True)]
 [string[]]$Subscriptions,
 [Parameter(Mandatory=$True,
 ValueFromPipeline=$True)]
 [string]$ReportServer = $null,
 [string]$SmtpServer = "queryworks.local",
 [string]$ReportSender = "ssrs-powershell@queryworks.local",
 $TempFolder = $ENV:TEMP,
 $LogFile = "C:\Temp\SSRS PowerShell Subscription.log"
)
BEGIN {}
PROCESS {
 $item = $_
 if ($item.ReportPath -eq $null) { return }

 $ts = Get-Date -Format "yyyyMMdd_hhmmt"
 $fileName = "$($item.LastName)_$($item.FirstName)_$($ts)"

 #message for display, or logging
 $msg = "$ts Report for $($item.FirstName) $($item.LastName) "

 $mimeType = $null
 $encoding = $null
 $extension = $null
 $streamids = $null
 $warnings = $null
 $params = $null

 $rv = New-Object Microsoft.Reporting.WinForms.ReportViewer
 $rv.ProcessingMode =

[Microsoft.Reporting.WinForms.ProcessingMode]::Remote
 $rv.ServerReport.ReportServerUrl = $ReportServer
 $rv.ServerReport.ReportPath = $item.ReportPath
 [Microsoft.Reporting.WinForms.ReportParameter[]]$params =
 ➥ Get-SSRSParameterArray $item.ReportParameters
 $rv.ServerReport.SetParameters($params)

 #render the report
 $bytes = $rv.ServerReport.Render($item.ExportFormat,
 $null,

Listing 6 Send-SSRSSubscription function

Composes the
timestamped
filename

Declares variables
needed for rendering
the report

Creates a
ReportViewer
object

Creates the
ReportParameter
array based on the
incoming string

364 CHAPTER 24 Creating flexible subscriptions in SSRS

 [ref] $mimeType,
 [ref] $encoding,
 [ref] $extension,
 [ref] $streamids,
 [ref] $warnings)
 $FileName = "$($FileName).$($extension)"

 $msg += " $FileName "
 $file = Join-Path $TempFolder $FileName
 $fileStream = New-Object System.IO.FileStream($file,
 ➥ [System.IO.FileMode]::OpenOrCreate)
 $fileStream.Write($bytes, 0, $bytes.Length)
 $fileStream.Close()

 #deliver according to preference
 switch($item.Delivery)
 {
 "email"
 {
 $msg += " - emailed to $($item.EmailAddress)"
 Send-MailMessage `
 -SmtpServer "$SmtpServer" `
 -To "$($item.EmailAddress)" `
 -From "$ReportSender" `
 -Subject "Report for $($item.FirstName)
 ➥ $($item.LastName) - $file - $ts" `
 -Body "Report Generated" `
 -Attachments $file

 }
 "sharedfolder"
 {
 $msg += "- saved to folder $($item.SharedFolder)"
 Copy-Item -Path $file -Destination $item.SharedFolder
 }
 }

 Write-Verbose $msg
 Add-Content $LogFile -value $msg

 #remove temp file
 Remove-Item -Path $file
 }
 END {}
}

This is a longer script. Instead of discussing each line I’ll focus on some of the key items.

 The bulk of the rendering work is done by the ReportViewer object:

$rv = New-Object Microsoft.Reporting.WinForms.ReportViewer

Some of the settings for this object are outlined in table 4. ReportViewer has many

other properties and methods documented in MSDN (http://mng.bz/9YxQ) that give

you more granular control over how you render and process the report.

Renders
the report

Assigns the proper
extension to the report
that is being rendered

Creates the
actual file

Determines
delivery method

http://mng.bz/9YxQ

365Subscription in action

The report is rendered after the ServerReport.Render() method has finished exe-

cuting. You need to capture what’s returned by this method and pass it to System

.IO.FileStream, which lets you turn the contents into an actual file in your file sys-

tem. You use System.IO.FileStream instead of the Out-File cmdlet because you

allow different file formats in the subscription, such as PDF, TIFF, XLSX, and DOCX,

which aren’t supported natively by Out-File. For this example’s purposes you only

temporarily store this file in C:\Temp, which is stored in the variable $TempFolder.

Once the file is created you then determine how to deliver the report. You get this

preference from the subscription data.

 If the delivery preference is email you get the email address of the subscriber and

send an email using the Send-MailMessage cmdlet. You attach the report to this email.

 If the delivery preference is shared folder you copy the report to the shared

folder using the Copy-Item cmdlet. You may need to adjust this section in the script,

depending on where this folder is in your environment. For example, if you have any

cross-domain folders you need to provide additional authentication before this sec-

tion will be successfully executed.

 For the example you display the message and add this message to your log file:

Write-Verbose $msg
Add-Content $logfile -value $msg

The last bit removes the temporary report that was stored in the location specified in

$TempFolder. Of course, you don’t have to delete this; you can choose to keep the file

in a permanent location.

Scheduling the script

With the script in place you need to determine how you can schedule it and how

frequently you should run it. The frequency should be defined by your business

Table 4 ReportViewer settings

Property/Method Description

ProcessingMode Specifies where the report will be processed. Accepts

two values: Local and Remote. Local specifies

that the report will be processed on the client, and

Remote indicates that the report will be processed on

the report server.

ServerReport.ReportServerUrl Report server URL.

ServerReport.ReportPath Report path, starting from the root. In this case: /Power-

Shell Deep Dives/Sample Report.

ServerReport.Render() Method that renders the report. Two of the parameters that

need to be passed to this method are format and

parameters. This method also returns the extension

you can use with the rendered report. You can learn more

about this method from MSDN (http://mng.bz/k3re).

http://mng.bz/k3re

366 CHAPTER 24 Creating flexible subscriptions in SSRS

requirements, but a nightly run is typically sufficient. After the script is scheduled the

reports are rendered and delivered based on the subscription preferences stored in

the CSV file. The subscribers of the reports can now expect a report, whether through

email or via a shared folder.

 There are different ways to schedule the script. You can use Windows Task Sched-

uler to schedule it: enter powershell in the Program/Script field and the complete

path to your PowerShell script in the Add Arguments section, as shown in figure 4.

 You can also use SQL Server Agent to schedule the script. To do so, create a new

job and use CmdExec for the job step type. Depending on what the script does you may

also need to create a proxy in SQL Server and use that proxy in the Run As section. A

sample set of values is provided in figure 5.

Figure 4 Example settings for creating a new Windows task schedule

Figure 5 Example settings for SQL Server Agent job step

367Summary

Taking it further

The scripts in this chapter are basic enough to illustrate how to use PowerShell to

create and send subscriptions. To create more flexible scripts you can look at doing

the following:

■ Using and parsing an XML or JSON file to store subscription information, or

storing this information in a table
■ Adding more exception handling to the scripts
■ Expanding the PowerShell code to use script blocks for conditions, or packag-

ing the code into modules
■ Using additional ways of delivering the report(s), such as SFTP

■ Logging results to a table instead of a text file

Summary
The scripts presented in this chapter should provide a starting point for creating sub-

scriptions in SSRS using PowerShell even without having a SQL Server Enterprise ver-

sion. Often, meeting vastly differing requirements for subscriptions can be a huge

challenge. Even the data-driven subscription that comes with SQL Server Enterprise

doesn’t provide flexibility when it comes to dynamic parameters, dynamic schedules,

and dynamic rendering formats. PowerShell can help you address those challenges, as

presented in this chapter. Using a CSV file and a few custom functions you can create a

subscription framework that works in your environment.

About the author

Donabel Santos (SQL Server MVP, MCT, MCITP) is the senior SQL

Server developer/DBA/trainer at QueryWorks Solutions, a con-

sulting and training company in Vancouver, BC. She has worked

with SQL Server in numerous development, tuning, reporting,

and integration projects with ERPs, CRMs, SharePoint, and other

custom applications. She is also the lead instructor for a number

of SQL Server courses at British Columbia Institute of Technology

(BCIT). Donabel is a proud member of the Professional Associa-

tion of SQL Server (PASS). She blogs (sqlmusings.com), tweets (@sqlbelle), speaks

(SQLSaturday, VANPASS, Vancouver TechFest), and writes (Packt, Idera, Manning).

You can reach her at donabel.santos@queryworks.ca.

368

Inventory database table
statistics using PowerShell
and SQL Server Management
Objects

 Robert C. Cain

SQL Server Management Objects, or SMO, were the only way to interact with SQL

Server in the PowerShell v1 days. Although the release of the SQL Provider simpli-

fied interacting with SQL Server from PowerShell, there are still many reasons to

understand and use SMO with PowerShell. Performance increases, finely tuned

control, and access to a large base of existing code samples are but a few of the ben-

efits to understanding and using SMO.

 In this chapter you’ll create a script to inventory all of the databases on an

instance of a SQL Server. The script will query the databases to get statistics for each

table in each database—things such as row counts, data space used, and index

space used. It will take this data and insert it into a new database named PSMVP,

which the script will create if it’s not present. In order to achieve the desired results

you need to start with a brief overview of SMO.

Understanding SMO

SMO is a set of .NET Framework libraries—dynamic-link libraries (DLLs) you can

use from PowerShell. These libraries expose a set of classes from which you can cre-

ate various objects. If you were to look at the Object Explorer in SQL Server Man-

agement Studio you’d soon notice parallels in the SMO libraries. Almost every

object in the tree has a corresponding class in SMO.

 Using these libraries can be preferable to using the SQL Provider for a few rea-

sons. First, the SQL Provider is heavily reliant on SQL, which is great for database

administrators, but a .NET developer will likely find the object model of SMO more

25

369Loading SMO

natural to work with. Second is the performance issue. When iterating over a large data-

base, using the object model is measurably faster than using the SQL Provider. Finally, a

large base of PowerShell code that uses SMO is available on the web. Knowing how to

use SMO allows a PowerShell developer to use these code samples confidently.

 At the heart of SMO is the Server class. Everything in SMO derives from the Server

class. This class is slightly misnamed, however, as what it represents is the name of the

server plus the instance name, as you’ll see shortly.

 Once you instantiate a Server object, as you’ll do in this chapter, you can begin to

explore your SQL Server, primarily by iterating over the various collections the Server

object exposes, such as the Databases collection.

 You can also create SQL Server objects at levels other than the server. For exam-

ple, you could create a variable that represents a database. This database would

come from a specific database in the Server objects Databases collection. I’ll show

you an example of that, but first let’s see how to set up SMO so you can use it in your

PowerShell session.

NOTE The examples in this chapter assume you’re executing the code on a com-
puter with SQL Server 2008 or later installed and that you have administra-
tor rights on the SQL Server.

Loading SMO
Before you can begin using the SMO libraries you have to tell PowerShell how to find

them. You do this the same way you would for any other set of .NET libraries. First,

assign the names of the SMO assemblies into an array, then use LoadWithPartialName

to load each one, as shown in the following listing.

 $assemblylist =
 "Microsoft.SqlServer.ConnectionInfo",
 "Microsoft.SqlServer.SmoExtended",
 "Microsoft.SqlServer.Smo",
 "Microsoft.SqlServer.Dmf",
 "Microsoft.SqlServer.SqlWmiManagement",
 "Microsoft.SqlServer.Management.RegisteredServers",
 "Microsoft.SqlServer.Management.Sdk.Sfc",
 "Microsoft.SqlServer.SqlEnum",
 "Microsoft.SqlServer.RegSvrEnum",
 "Microsoft.SqlServer.WmiEnum",
 "Microsoft.SqlServer.ServiceBrokerEnum",
 "Microsoft.SqlServer.ConnectionInfoExtended",
 "Microsoft.SqlServer.Management.Collector",
 "Microsoft.SqlServer.Management.CollectorEnum"

 foreach ($asm in $assemblylist)
 {
 [void][Reflection.Assembly]::LoadWithPartialName($asm)
 }

Listing 1 Loading the SMO libraries

370 CHAPTER 25 Inventory database table statistics using PowerShell

You can load these assemblies into memory in several different ways. You can

■ Put the code shown in listing 1 directly in the current script you’re running
■ Place the code in its own PS1 file in a central folder, and then execute it from

your current script
■ Place the code in your profile, if you’ll be interacting with SQL Server on a daily

basis, so the SMO libraries will always be available and ready for use

The Server object

Once you’ve loaded the libraries you can start using SMO. To do so you’ll need to

know the name of the server you wish to work with. You could hard-code the name

into your script. Or many people place the names of their servers into a text file,

from which they can load them and loop through all the servers repeating the same

set of commands.

 Another way, one that’s portable (especially if you’re working with one server at a

time), is to use the computer name environment variable, or $env:COMPUTERNAME.

This will return the name of the computer on which the current script is running.

This makes script reuse much easier, as you won’t have to change your scripts for each

server you want to run on.

 If you recall from the “Understanding SMO” section, the Server object represents

a server plus an instance. If the instance you want to work with is the default instance

on the server you may omit the instance name. If you’re working with a named

instance you could include the instance name with your list of stored server names, or

any other method from which you could result in the final server/instance name com-

bination. For the purpose of this chapter, assume you’re using the default instance,

also known as localhost, which you can omit.

 For the rest of the chapter the following code line will indicate the current server

and instance:

$instance = "$env:COMPUTERNAME"

After all that, creating a Server object is pretty simple, as you can see here:

$instance = $env:COMPUTERNAME
$Server = New-Object Microsoft.SqlServer.Management.Smo.Server("$instance")

New-Object is PowerShell’s cmdlet for creating a new object from a class in a .NET

library. Microsoft.SqlServer.Managment.Smo is the specific path in your library

where your class can be found. Server is the class you’re going to create a new object

from. Finally, you pass the server and instance, in the form of the $instance variable,

to the Server class’s constructor.

 These two lines of code will be the launching point for the rest of your project. It’s

through the Server object that you can use the rest of the SMO library.

371Creating the inventory database using SMO

Creating the inventory database using SMO
The first thing you need is a database to hold the results of your inventory. The follow-

ing listing creates the database.

$instance = $env:COMPUTERNAME
$server = New-Object Microsoft.SqlServer.Management.Smo.Server("$instance")

if ($Server.Databases.Contains("PSMVP") -eq $false)
{
 $db = New-Object
 ➥ Microsoft.SqlServer.Management.Smo.Database($server, "PSMVP")

 $fg = New-Object
 ➥ Microsoft.SqlServer.Management.Smo.FileGroup ($db, 'PRIMARY')
 $db.Filegroups.Add($fg)

 $mdf = New-Object
 ➥ Microsoft.SqlServer.Management.Smo.DataFile($fg, "PSMVP_Data")
 $fg.Files.Add($mdf)
 $mdf.FileName = "C:\SQLdata\PSMVP_Data.mdf"
 $mdf.Size = 30.0 * 1KB
 $mdf.GrowthType = "Percent"
 $mdf.Growth = 10.0
 $mdf.IsPrimaryFile = "True"

 $ldf = New-Object
 ➥ Microsoft.SqlServer.Management.Smo.LogFile($db, "PSMVP_Log")
 $db.LogFiles.Add($ldf)
 $ldf.FileName = "C:\SQLlog\PSMVP_Log.ldf"
 $ldf.Size = 20.0 * 1KB
 $ldf.GrowthType = "Percent"
 $ldf.Growth = 10.0

 $db.Create()
}

In this listing you first check to see if the database already exists on your server. The

.Databases after the Server variable represents a list, or a collection, of all the data-

bases on the server. You can check to see if PSMVP is already in the collection by

using the Contains() method. If false is returned, the if statement is triggered to

create the database.

 You then create a new database object. Note the stress on the word object. At this

point the database only exists as a construct in memory—that is, as an object. You

haven’t written it to the server yet.

 Next you start assembling the various pieces that make up a SQL Server database.

You create a file group object, then define the location and sizes for the database and

log files. As each piece is created it’s added to the database object.

 The last line ties it all together. You call the Create() method of the database

object. With this command you write the database to the SQL Server.

Listing 2 Creating the database

372 CHAPTER 25 Inventory database table statistics using PowerShell

Creating the TableStats table using SMO
Once a database exists to hold your inventory you need to ensure there’s a table to

hold the table statistics you want in your inventory. Just as the server has a collection of

databases, each database object has a collection of table objects. The Contains()

method works here as well, and you’ll use it to see if your TableStats table already

exists. If not you’ll need to create it. The following listing creates the table.

$instance = $env:COMPUTERNAME
$Server = New-Object
 ➥ Microsoft.SqlServer.Management.Smo.Server("$instance")

$db = $Server.Databases["PSMVP"]

if ($db.Tables.Contains("TableStats") -eq $false)
{
 $table = New-Object
 ➥ Microsoft.SqlServer.Management.Smo.Table($db, "TableStats")

 $col1 = New-Object
 ➥ Microsoft.SqlServer.Management.Smo.Column ($table, "TableStatsID")

 $col1.DataType = [Microsoft.SqlServer.Management.Smo.Datatype]::Int
 $col1.Nullable = $false

 $col1.Identity = $true
 $col1.IdentitySeed = 1
 $col1.IdentityIncrement = 1
 $table.Columns.Add($col1)

 $col2 = New-Object
 ➥ Microsoft.SqlServer.Management.Smo.Column ($table, "DatabaseName")
 $col2.DataType =
 ➥ [Microsoft.SqlServer.Management.Smo.Datatype]::NVarChar(250)
 $col2.Nullable = $false
 $table.Columns.Add($col2)

 $col3 = New-Object
 ➥ Microsoft.SqlServer.Management.Smo.Column ($table, "TableName")
 $col3.DataType =
 ➥ [Microsoft.SqlServer.Management.Smo.Datatype]::NVarChar(250)
 $col3.Nullable = $false
 $table.Columns.Add($col3)

 $col4 = New-Object
 ➥ Microsoft.SqlServer.Management.Smo.Column ($table, "FileGroup")
 $col4.DataType =
 ➥ [Microsoft.SqlServer.Management.Smo.Datatype]::NVarChar(250)
 $col4.Nullable = $false
 $table.Columns.Add($col4)

 $col5 = New-Object
 ➥ Microsoft.SqlServer.Management.Smo.Column ($table, "TableOwner")
 $col5.DataType =
 ➥ [Microsoft.SqlServer.Management.Smo.Datatype]::NVarChar(250)

Listing 3 Creating the table

Create
table
object

b

Create
columns

c

373Creating the TableStats table using SMO

 $col5.Nullable = $false
 $table.Columns.Add($col5)

 $col6 = New-Object
 ➥ Microsoft.SqlServer.Management.Smo.Column ($table, "RowCount")
 $col6.DataType = [Microsoft.SqlServer.Management.Smo.Datatype]::Int
 $col6.Nullable = $false
 $table.Columns.Add($col6)

 $col7 = New-Object
 ➥ Microsoft.SqlServer.Management.Smo.Column ($table, "DataSpaceUsed")
 $col7.DataType = [Microsoft.SqlServer.Management.Smo.Datatype]::Int
 $col7.Nullable = $false
 $table.Columns.Add($col7)

 $col8 = New-Object
 ➥ Microsoft.SqlServer.Management.Smo.Column ($table, "IndexSpaceUsed")
 $col8.DataType = [Microsoft.SqlServer.Management.Smo.Datatype]::Int
 $col8.Nullable = $false
 $table.Columns.Add($col8)

 $col9 = New-Object
 ➥ Microsoft.SqlServer.Management.Smo.Column ($table, "Replicated")
 $col9.DataType =
 ➥ [Microsoft.SqlServer.Management.Smo.Datatype]::NVarChar(20)
 $col9.Nullable = $false

 $table.Columns.Add($col9)

 $table.Create()

 $pk = New-Object Microsoft.SqlServer.Management.Smo.Index(
 ➥ $table,"PK_TableStatsId")
 $pk.IndexKeyType =
 ➥ [Microsoft.SqlServer.Management.Smo.IndexKeyType]::DriPrimaryKey

 $ic = New-Object
 ➥ Microsoft.SqlServer.Management.Smo.IndexedColumn($pk, "TableStatsID")
 $pk.IndexedColumns.Add($ic)

 $table.Indexes.Add($pk)

 $table.Alter()
}

In this listing you begin by creating a table object B. At this point the table only exists

as an item in memory; you haven’t written it to the database yet.

 Next you define each column you want in the table c, providing a name, along

with the data type and size, and whether it’s nullable. For the column that will become

the primary-key column you add the attributes to indicate it’s an identity column.

 Once you create each column as an object in memory you add that column object

to the columns collection of the table object d.

 After adding the columns you can write the table to the database using the Create()

method e of the table object. But you’re not done yet!

 As a final task you should create a primary key. You’ll use the first column you

defined, TableStatusId, as your key f.

Add columns
to table

d

Create
the table

e

Create
primary keyf

Add the index
to the column gAdd index

to table
h

374 CHAPTER 25 Inventory database table statistics using PowerShell

 The flow is similar to other tasks in SMO. Begin by creating a new object of type

SMO.Index. Next define what type of index it is, in this case a primary-key index.

 Next create an object that will contain the first (and in this case only) column of

your index. Map that index column to the TableStatusId column in the table. Then

add this index column to the index columns collection of your index object.

 As the next-to-last step, add the new index to the indexes collection of your table

object, using the Add() method g. Finally, modify the existing table by using the

Alter() method h. At this point the new index is written to the database.

Resetting from previous runs

It’s likely that you’ll run this script many times. When you do you should remove any

data from previous runs. The following listing accomplishes this.

$instance = $env:COMPUTERNAME
$Server = New-Object
 ➥ Microsoft.SqlServer.Management.Smo.Server("$instance")
$db = $Server.Databases["PSMVP"]
$tb = $db.Tables["TableStats"]
if ($tb.RowCount -gt 0)
{
 $dbcmd = "TRUNCATE TABLE dbo.TableStats"
 $db.ExecuteNonQuery($dbcmd)
}

In this script you first get a reference to the TableStats table. Then you check to see if

there are any rows by querying the RowCount property.

 If there are rows put a SQL statement in a variable, in this case a command to trun-

cate the table. Then run the command by using the ExecuteNonQuery() method of

the database object. ExecuteNonQuery() will run a command on the SQL Server but

not expect any result to be returned.

Gathering inventory data

Now we come to the heart of the script—gathering your inventory data. The following

listing accomplishes this.

$instance = $env:COMPUTERNAME
$Server = New-Object
 ➥ Microsoft.SqlServer.Management.Smo.Server("$instance")
$db = $Server.Databases["PSMVP"]

foreach($database in $Server.Databases)
{
 $dbName = $database.Name.Replace("[", "").Replace("]","")

Listing 4 Removing rows from previous runs

Listing 5 Gathering the inventory data

375Querying the data

 foreach($table in $database.Tables)
 {
 $tableName = "$dbName\$($table.schema).$($table.Name)"
 $tableName

 $dbcmd = @"
 INSERT INTO dbo.TableStats
 ([DatabaseName]
 , [TableName]
 , [FileGroup]
 , [TableOwner]
 , [RowCount]
 , [DataSpaceUsed]
 , [IndexSpaceUsed]
 , [Replicated]
)
 VALUES
 ('$dbName'
 , '$($table.schema).$($table.Name)'
 , '$($table.FileGroup)'
 , '$($table.Owner)'
 , $($table.RowCount)
 , $($table.DataSpaceUsed)
 , $($table.IndexSpaceUsed)
 , '$($table.Replicated)'
)
"@

 $db.ExecuteNonQuery($dbcmd)
 }
}

You start by getting a reference to the server you want to gather stats on. You also get a

reference to the PSMVP database, as you’ll need it to issue SQL commands against.

 The script has two foreach loops. The outer loop iterates over each database in

the server’s database collection. The inner loop iterates over each table in the current

database from the outer loop.

 Next, for each table, you assemble an INSERT SQL command within a PowerShell

here-string and use the various properties of the current table object to supply data

for your SQL statement.

 Note that for this example I’ve chosen a few of the most common properties of a table

to include in the inventory table. Many more properties are available to choose from.

 The complete list of all objects of the SMO, along with their properties, is available

on MSDN at http://msdn.microsoft.com/en-us/library/ms162209.aspx.

 As the final step you use ExecuteNonQuery() to insert your row into the inven-

tory table.

Querying the data
Now that your inventory database is populated with table data, it would be nice to

recover that data within PowerShell. There’s a parallel to the ExecuteNonQuery()

http://msdn.microsoft.com/en-us/library/ms162209.aspx

376 CHAPTER 25 Inventory database table statistics using PowerShell

method named ExecuteWithResults(). This method allows you to pass in a SQL

SELECT statement and return the results to a variable, as shown in the following listing.

$instance = $env:COMPUTERNAME
$Server = New-Object
 ➥ Microsoft.SqlServer.Management.Smo.Server("$instance")
$db = $Server.Databases["PSMVP"]

$dbcmd = @"
 SELECT [TableStatsID]
 , [DatabaseName]
 , [TableName]
 , [FileGroup]
 , [TableOwner]
 , [RowCount]
 , [DataSpaceUsed]
 , [IndexSpaceUsed]
 , [Replicated]
 FROM [dbo].[TableStats]
"@

$ds = $db.ExecuteWithResults($dbcmd)

$dt = $ds.Tables[0]

$dt | Format-Table -Property DatabaseName, TableName, RowCount -Autosize

The variable that’s created is called a DataSet and is analogous to a database. It con-

tains a collection of one or more tables, only here they’re of a variable type Data-

Table. Each DataTable has a collection of DataRow objects, similar to rows in a table.

 In listing 6, because you only have one DataTable being returned, you can use

array-style notation to grab it and assign it to a variable. Otherwise you could have

used a foreach to iterate over each DataTable in the DataSet.

 Here are the first few lines of results from the last line in listing 6:

DatabaseName TableName RowCount
------------ --------- --------
AdventureWorks2012 dbo.AWBuildVersion 1
AdventureWorks2012 dbo.DatabaseLog 1597
AdventureWorks2012 dbo.ErrorLog 0
AdventureWorks2012 HumanResources.Department 16
AdventureWorks2012 HumanResources.Employee 290

One of the nice things PowerShell does for you is to take the column names from

the database and convert them to property names in the data table. In this example the

selection is limited to three columns so they fit on the printed page.

Other ways to use the data
You can use the data you retrieve in several ways. For example, you can save it to a CSV

file for use as documentation in the future:

$dt | Export-Csv -Path C:\Temp\PSMVP.csv

Listing 6 Returning data from the inventory

377Other ways to use the data

You can also iterate over each row of the returned data table in a foreach loop, as is

shown in the following listing. This example lists tables with more than 100,000 rows,

but you can do anything you want within the foreach loop. (Be sure to run listing 6

first in order to put data in the $dt variable.)

Write-Output "Tables with a row count in excess of 100,000 rows`r`n"
foreach($row in $dt)
{
 if ($row.RowCount -gt 100000)
 {
 "$($row.DatabaseName).$($row.TableName) has $($row.RowCount) rows."
 }
}

Here’s the output from listing 6 on my system:

Tables with a row count in excess of 100,000 rows

AdventureWorks2012.Production.TransactionHistory has 113443 rows.
AdventureWorks2012.Sales.SalesOrderDetail has 121317 rows.
AdventureWorks2012_CS.Production.TransactionHistory has 113443 rows.
AdventureWorks2012_CS.Sales.SalesOrderDetail has 121317 rows.
AdventureWorksDW2012.dbo.FactProductInventory has 776286 rows.
BigNumbers.dbo.BigNumbers has 1000000 rows.
BIxPress.dbo.SSISDataFlowExecutionLog has 1036118 rows.
BIxPress Stress Test.Destination.BigNumbersTarget has 116297048 rows.
BIxPress Stress Test.Source.BigNumbers has 10000000 rows.
Global Change 1.dbo.BigNumbers has 1000000 rows.
Global Change 1.dbo.BigNumbersTarget has 1000000 rows.
SSISDB.internal.event_message_context has 252334 rows.
SSISDB.internal.event_messages has 1237112 rows.
SSISDB.internal.executable_statistics has 157719 rows.
SSISDB.internal.operation_messages has 1237112 rows.

You can also produce a nice-looking report by taking the output of listing 6 and pip-

ing it through several common cmdlets, as shown in the following listing.

$dt |
 Select-Object DatabaseName, TableName, RowCount |
 Where-Object {$_.RowCount -gt 100000 } |
 Sort-Object RowCount -Descending |
 Format-Table @{ Label='Database Name'
 Expression={$_.DatabaseName}
 },
 @{ Label='Table Name'
 Expression={$_.TableName}
 },
 @{ Label='Number of Rows'
 Expression={$_.RowCount}
 FormatString='#,0'
 Width=15
 } -AutoSize

Listing 7 Iterating over each row

Listing 8 Formatting the data table

378 CHAPTER 25 Inventory database table statistics using PowerShell

Here’s the output from listing 8:

Database Name Table Name Number of Rows
------------- ---------- --------------
BIxPress Stress Test Destination.BigNumbersTarget 116,297,048
BIxPress Stress Test Source.BigNumbers 10,000,000
SSISDB internal.event_messages 1,237,112
SSISDB internal.operation_messages 1,237,112
BIxPress dbo.SSISDataFlowExecutionLog 1,036,118
BigNumbers dbo.BigNumbers 1,000,000
Global Change 1 dbo.BigNumbers 1,000,000
Global Change 1 dbo.BigNumbersTarget 1,000,000
AdventureWorksDW2012 dbo.FactProductInventory 776,286
SSISDB internal.event_message_context 252,334
SSISDB internal.executable_statistics 157,719
AdventureWorks2012 Sales.SalesOrderDetail 121,317
AdventureWorks2012_CS Sales.SalesOrderDetail 121,317
AdventureWorks2012 Production.TransactionHistory 113,443
AdventureWorks2012_CS Production.TransactionHistory 113,443

In listing 8 Select-Object limits your results to only three columns. Next, Where-

Object removes all tables with 100,000 rows or fewer. Note that the PowerShell v2

syntax of Where-Object is used for backward compatibility.

 Next, Sort-Object sorts the tables so that the one with the most rows will be pre-

sented first, followed by the rest of the tables in descending order. Finally, you use

Format-Table, using expressions to print and nicely format each column.

Summary
The techniques shown in this chapter are only the tip of the iceberg when it comes to

SMO. You can expand this script to hold inventory data for indexes, stored proce-

dures, and so on; just about any object in SQL Server can be inventoried and stored.

 The SMO model is deep; with it, you can accomplish any task within SQL Server.

Because you’re going right to the objects you’ll often get much better performance

than with the SQL Provider. Finally, having a good understanding of SMO allows you to

take advantage of all those wonderful code samples available on the internet.

About the author

Robert C. Cain (http://arcanecode.com) is a Microsoft MVP in SQL

Server and a Microsoft Certified Technology Specialist in Business

Intelligence. He works as a senior consultant for Pragmatic Works,

is a technical contributor to Plurasight Training, and has coau-

thored three books. A popular speaker, Robert has presented at

events such as TechEd, SQL Rally, SQL PASS, SQL Saturdays, and

PowerShell Saturdays. Robert has over 25 years’ experience in the

IT industry, working in a variety of fields ranging from manufactur-

ing to telecommunications to nuclear power.

http://arcanecode.com

379

WSUS and PowerShell

 Boe Prox

Windows Software Update Services (WSUS) ensures that all of your system’s patch-

ing remains up-to-date and provides a way to report the status of patches and cli-

ents. The UI can be clunky and slow, but you can automate some processes with a

WSUS API, a Windows Server 2012 module, or an open source WSUS module called

PoshWSUS that I wrote for PowerShell (http://poshwsus.codeplex.com) to quickly

manage and generate reports.

 Instead of looking at the existing cmdlets available in the Windows Server 2012

UpdateServices module, I’ll show you some API tricks for using PowerShell to

manage WSUS configuration and events, provide reporting on various client and

patch statuses, start and view synchronization progress and history, and view and

create automatic installation rules to simplify patch management by approving

common updates.

WSUS server configuration and events

In WSUS two of the most basic administration tasks are client management and

patch management. Before Windows Server 2012 the only ways to manage these

tasks were to work with the UI or dig into the API via scripts or the open source

module, PoshWSUS. With Windows Server 2012 the WSUS module called Update-

Services makes it easier to manage clients. The UpdateServices module is avail-

able only on the WSUS server, allowing you to manage the server remotely using

PowerShell. If you’re not using Windows Server 2012 you’ll need to use the API to

manage a remote WSUS server.

Initial connection

To make a connection to the WSUS server both locally or remotely with the API

you must install the WSUS Administration console on the system from which

you’ll make the connection. Once the console is installed you’ll have access to

26

http://poshwsus.codeplex.com

380 CHAPTER 26 WSUS and PowerShell

the assemblies required for the WSUS connection. Let’s load the assembly and make

the initial connection to the WSUS server:

[reflection.assembly]::LoadWithPartialName(
 ➥ "Microsoft.UpdateServices.Administration") |
 ➥ out-null

For the connection attempt, I’m using the Microsoft.UpdateServices.Administration

.AdminProxy class along with the GetUpdateServer() method. This method accepts

one of three parameter sets based on your WSUS configuration and whether it’s a

remote or local connection. For the remote connection I need to supply the remote

system name, a Boolean value that designates whether the connection is secure or not,

and the remote port that I need to connect to on the WSUS server. Acceptable ports

for WSUS are 8080 and 8530 (for nonsecure ports) and 443 and 8531 (for SSL):

$Wsus =
 ➥ [Microsoft.UpdateServices.Administration.AdminProxy]::GetUpdateServer(
 "Boe-PC",
 $False,
 "8530"
)
$Wsus

WebServiceUrl : http://BOE-PC:8530/ApiRemoting30/WebSe..
BypassApiRemoting : False
IsServerLocal : True
Name : BOE-PC
Version : 6.2.9200.16384
IsConnectionSecureForApiRemoting : True
PortNumber : 8530
PreferredCulture : en
ServerName : BOE-PC
UseSecureConnection : False
ServerProtocolVersion : 1.8

From here you can see information such as the version number of the WSUS software.

The most important thing here is that we successfully connected to the WSUS server.

Viewing WSUS configuration

Once the initial connection is made you can look at the internal configuration set-

tings of the WSUS server using the GetConfiguration() method of the Microsoft

.UpdateServices.Internal.BaseApi.UpdateServer object:

$wsus.GetConfiguration()

UpdateServer :
Microsoft.UpdateServices.Internal.BaseApi.UpdateServer
LastConfigChange : 9/17/2012 2:22:43 AM
ServerId : 64ad0f03-e81d-4539-…
SupportedUpdateLanguages : {he, cs, fr, es...}
TargetingMode : Server
SyncFromMicrosoftUpdate : True

381WSUS server configuration and events

IsReplicaServer : False
HostBinariesOnMicrosoftUpdate : False
UpstreamWsusServerName :
UpstreamWsusServerPortNumber : 8530
UpstreamWsusServerUseSsl : False
UseProxy : False
ProxyName :
ProxyServerPort : 80
UseSeparateProxyForSsl : False
SslProxyName :
SslProxyServerPort : 443
AnonymousProxyAccess : True
ProxyUserName :
ProxyUserDomain :
HasProxyPassword : False
AllowProxyCredentialsOverNonSsl : False
…

This method returns a marginal number of 121 properties. You can set and easily

update the majority of these properties from PowerShell, but use caution when mak-

ing any changes to the properties here as it could leave you troubleshooting the server

to find out what changed. For example, accidentally updating IsReplicaServer to

True forces your WSUS server to be a replica of the upstream server, which inherits the

computer groups and approvals of the upstream server.

Viewing the WSUS database connection

You can look at the database connection and database properties from your WSUS server

using the GetDatabaseConfiguration() method or the CreateConnection() method

from the created Microsoft.UpdateServices.Internal.DatabaseConfiguration object:

$wsus.GetDatabaseConfiguration()

UpdateServer :
Microsoft.UpdateServices.Internal.BaseApi.UpdateServer
ServerName : MICROSOFT##WID
DatabaseName : SUSDB
IsUsingWindowsInternalDatabase : True
AuthenticationMode : WindowsAuthentication
UserName :
Password :

$wsus.GetDatabaseConfiguration().CreateConnection()

QueryTimeOut : 150
LoginTimeOut : 60
ConnectionPooling : True
ApplicationName : WSUS:powershell:1824
UserLoginName :
UseIntegrated : True
ConnectionString :
MaxPoolSize : 100
DoRetry : False
DefaultRetryTimes : 3

382 CHAPTER 26 WSUS and PowerShell

ServerName : MICROSOFT##WID
DatabaseName : SUSDB
Password :
IsConnected : False
InTransaction : False

The level of detail that you can get about the database is helpful, such as the database

name and database instance name. In fact, you could delve deeper into the database if

you want to perform queries using the ExecuteReader() method, but that’s beyond

the scope of this chapter.

Viewing WSUS event history

If you’re interested in viewing the event history of the WSUS server, call the GetUpdate-

EventHistory(StartDate,EndDate) method and supply a StartDate and an EndDate.

In this case I want to look at the events that have occurred during the past hour:

$wsus.GetUpdateEventHistory("$((Get-Date).AddHours(-1))","$(Get-Date)")

UpdateServer : Microsoft.UpdateServices.Internal.…
HasAssociatedUpdate : False
UpdateId : Microsoft.UpdateServices.…
HasAssociatedComputer : False
ComputerId :
Status : Unknown
WsusEventId : ContentSynchronizationSucceeded
WsusEventSource : Server
Id : f01cb84f-9a0b-4da8-a12a-39a6866c5787
CreationDate : 9/23/2012 7:08:20 PM
Message : Content synchronization succeeded.
IsError : False
ErrorCode : 0
Row : Microsoft.UpdateServices.Internal.…
UpdateServer : Microsoft.UpdateServices.Internal.BaseApi…
HasAssociatedUpdate : True
UpdateId : Microsoft.UpdateServices.Administrati…
HasAssociatedComputer : False
ComputerId :
Status : Unknown
WsusEventId : ContentSynchronizationFileDownloadSucceeded
WsusEventSource : Server
Id : 0c7ade08-87d6-4019-b676-0f50ce486591
CreationDate : 9/23/2012 7:08:20 PM
Message : Content file download succeeded. Di…x86_830994754
 ba721add8a13bd0266d2e092f21cab0.exe
Destination File:
 F:\WsusContent\B0\….
IsError : False
ErrorCode : 0
Row : Microsoft.UpdateServices.Internal.…

With this information you can audit for any possible failures that have occurred due to

a recent synchronization or another problem that might have caused a WSUS issue.

383Automatic approval rules

Automatic approval rules
With WSUS you can automate patch approvals by creating and configuring automatic

approval rules. You can specify categories and target groups, among other things, to

use for the rules.

Locating approval rules

To locate the rules currently on the WSUS server, use the GetApprovalRules() method

from the Microsoft.UpdateServices.Internal.BaseApi.UpdateServer object cre-

ated from the initial connection:

$wsus.GetInstallApprovalRules()

UpdateServer : Microsoft.UpdateServices.Internal.BaseApi.UpdateServer
Id : 2
Name : Default Automatic Approval Rule
Enabled : False
Action : Install
Deadline :
CanSetDeadline : True

The result does not show all of the information for the approval rules. To learn what

target groups, classifications, and categories are in the Microsoft.UpdateServices

.Internal.BaseApi.AutomaticUpdateApprovalRule object, use the GetUpdate-

Classifications(), GetComputerTargetGroups(), and GetUpdateCategories()

methods, respectively:

$approvalRules = $wsus.GetInstallApprovalRules()

$wsus.GetInstallApprovalRules()[0].GetUpdateClassifications()
UpdateServer : Microsoft.UpdateS…
Id : e6cf1350-c01b-414d-a61f-263d14d133b4
Title : Critical Updates
Description : A broadly released fix for a specific problem
 addressing a critical, non-security related
 bug.
ReleaseNotes :
DefaultPropertiesLanguage :
DisplayOrder : 2147483647
ArrivalDate : 9/23/2012 6:51:37 PM

UpdateServer : Microsoft.UpdateService…
Id : 0fa1201d-4330-4fa8-8ae9-b877473b6441
Title : Security Updates
Description : A broadly released fix for a product-specific
 security-related vulnerability. Security
 vulnerabilities are rated based on their
 severity which is indicated in the Microsoft®
 security bulletin as critical, important,
 moderate, or low.
ReleaseNotes :
DefaultPropertiesLanguage :
DisplayOrder : 2147483647
ArrivalDate : 9/23/2012 6:40:34 PM

Gets
classifications

384 CHAPTER 26 WSUS and PowerShell

$wsus.GetInstallApprovalRules()[0].
GetComputerTargetGroups()
UpdateServer Id Name
------------ -- ----
Microsoft.UpdateService... a0a08746-4dbe-4a37-9adf... All Computers

$wsus.GetInstallApprovalRules()[0].GetCategories()
Type : Product
ProhibitsSubcategories : True
ProhibitsUpdates : False
UpdateSource : MicrosoftUpdate
UpdateServer : Microsoft.UpdateServices.…
Id : a105a108-7c9b-4518-bbbe-73f0fe30012b
Title : Windows Server 2012
Description : Windows Server 2012
ReleaseNotes :
DefaultPropertiesLanguage :
DisplayOrder : 2147483647
ArrivalDate : 9/23/2012 6:47:20 PM

Now that you know what rules already exist on the WSUS server you can create new

rules to automate server tasks.

Creating approval rules

Creating an approval involves the following steps:

1 Create the approval object with a name.

2 Fill in the blanks for the configuration details (target groups, categories, classifi-

cations, and so on) of the object.

3 Deploy the object on the server.

Before you create the object get a list of the current rules to verify that the new rule

(2012Servers) doesn’t already exist:

$wsus.GetInstallApprovalRules()

UpdateServer : Microsoft.UpdateServices.Internal.BaseApi.UpdateServer
Id : 2
Name : Default Automatic Approval Rule
Enabled : False
Action : Install
Deadline :
CanSetDeadline : True

No rule exists with the name “2012Servers”, so you can create the new approval rule,

as shown in the following listing.

[cmdletbinding()]
Param (
 [parameter(ValueFromPipeline=$True,Mandatory=$True,
 HelpMessage="Name of WSUS server to connect to.")]
 [Alias('WSUSServer')]

Listing 1 Creating the 2012Servers approval rule

Gets target
groups

Gets
categories

385Automatic approval rules

 [string]$Computername,
 [parameter()]
 [Switch]$UseSSL
)
[reflection.assembly]::LoadWithPartialName(
 "Microsoft.UpdateServices.Administration"
) | out-null
$Wsus = `
[Microsoft.UpdateServices.Administration.AdminProxy]::GetUpdateServer(
 $Computername,$UseSSL,$Port
)

$newRule = $wsus.CreateInstallApprovalRule("2012Servers")

$updateCategories = $wsus.GetUpdateCategories() | Where {
 $_.Title -LIKE "Windows Server 2012*"
}

$categoryCollection = New-Object `
Microsoft.UpdateServices.Administration.UpdateCategoryCollection
$categoryCollection.AddRange($updateCategories)

$newRule.SetCategories($categoryCollection)

$updateClassifications = $wsus.GetUpdateClassifications() | Where {
 $_.Title -Match "Critical Updates|Service Packs|Updates|Security Updates"
}

$classificationCollection = New-Object `
Microsoft.UpdateServices.Administration.UpdateClassificationCollection
$classificationCollection.AddRange($updateClassifications)

$newRule.SetUpdateClassifications($classificationCollection)

$targetGroups = $wsus.GetComputerTargetGroups() | Where {
 $_.Name -Match "All Computers"
}

$targetgroupCollection = New-Object `
Microsoft.UpdateServices.Administration.ComputerTargetGroupCollection
$targetgroupCollection.AddRange($targetGroups)

$newRule.SetComputerTargetGroups($targetgroupCollection)

$newRule.Enabled = $True
$newRule.Save()

$newRule.ApplyRule()

Again, get a list of the current rules, this time to verify that the new rule exists:

$wsus.GetInstallApprovalRules()

UpdateServer : Microsoft.UpdateServices.Internal.BaseApi.UpdateServer
Id : 2
Name : Default Automatic Approval Rule
Enabled : False
Action : Install
Deadline :
CanSetDeadline : True

Creates new
rule object

Gets,
creates,
and adds
categories
collection

Gets,
creates,

and adds
classification

collection

Gets,
creates,
and adds
target
groups
collection

Runs rule against
target group

386 CHAPTER 26 WSUS and PowerShell

UpdateServer : Microsoft.UpdateServices.Internal.BaseApi.UpdateServer
Id : 6
Name : 2012Servers
Enabled : True
Action : Install
Deadline :
CanSetDeadline : True

Now we have a new approval rule that approves only the updates specified for Win-

dows Server 2012 systems. Keep in mind that the automatic approval rules run after

the WSUS synchronizes, and only the synched updates are eligible for the rule unless

you run the rule manually.

Reporting in WSUS

With WSUS you have options available for reporting on updates, clients, and synchro-

nizations. With PowerShell you can create various reports not only on all of these

items but also on conditions to narrow the scope of the reports. For example, you

could report on only the updates that failed to install on the clients. The following

sections show scripts for reporting with PowerShell. Each of the following report-

ing scripts outputs objects that can be exported to a CSV file or used for an HTML

file, if needed.

Failed update installations

When updates fail to install from a WSUS server, you need to identify those failed

patches on each system.

 The following report runs the function Get-FailedUpdateInstallation, which

queries for all updates that reported back to the WSUS server as Failed. The report

returns additional information, including the client that couldn’t install the update:

Get-FailedUpdateInstallation

InstallationState : Failed
TargetGroup : Windows 2003
Computer : DC1
ApprovalAction : Install
Update : Security Update for Windows Server 2003 (KB2731847)

The code for the Get-FailedUpdateInstallation function is shown in the follow-

ing listing.

Function Get-FailedUpdateInstallation {
 [cmdletbinding()]
 Param (
 [parameter(ValueFromPipeline=$True,
 HelpMessage="Name of WSUS server to connect to.")]
 [Alias('WSUSServer')]
 [string]$Computername,

Listing 2 Get-FailedUpdateInstallation

387Reporting in WSUS

 [parameter()]
 [ValidateSet(80,443,8530,8531)]
 [Int]$Port = 80,
 [parameter()]
 [Switch]$UseSSL
)
 Begin {
 [reflection.assembly]::LoadWithPartialName(
 "Microsoft.UpdateServices.Administration") | out-null
 $Wsus = `
[Microsoft.UpdateServices.Administration.AdminProxy]::GetUpdateServer(
 $Computername,$False,$Port
)
 $updateScope = New-Object

Microsoft.UpdateServices.Administration.UpdateScope
 $updateScope.IncludedInstallationStates = `
[Microsoft.UpdateServices.Administration.UpdateInstallationStates]
 ➥ ::Failed
 }
 Process {
 $wsus.GetComputerTargets() | ForEach {
 $_.GetUpdateInstallationInfoPerUpdate($UpdateScope) | ForEach {
 $object = New-Object PSObject -Property @{
 Computer = $_.GetComputerTarget().FullDomainName
 Update = $_.GetUpdate().Title
 TargetGroup = `
$wsus.GetComputerTargetGroup($_.UpdateApprovalTargetGroupId).Name
 InstallationState = $_.UpdateInstallationState
 ApprovalAction = $_.UpdateApprovalAction
 }
 $object.pstypenames.insert(0,"wsus.updateinstallation")
 $object
 }
 }
 }
}

The Get-FailedUpdateInstallation rule automates the process of determining

which updates failed to install so you can monitor and resolve failures more efficiently.

Auditing approvals

Sometimes you want to know who approved an update during a patching cycle or

what has been approved since the last Patch Tuesday1.

 The following report runs the function Get-ApprovalAudit, which pulls the

update approvals for all patches synchronized since a specified date. The StartDate

and EndDate parameters designate the synchronization date, but not the approval

date, for the patches. In this report example I’m looking for everything approved

since the last Patch Tuesday:

1 Patch Tuesday is the second Tuesday of every month when Microsoft regularly releases security updates.

Loads required
assemblies

Creates and
configures
update scope

Iterates
through

computers
and pulls

installation
information

388 CHAPTER 26 WSUS and PowerShell

Get-ApprovalAudit -Computername Boe-PC -Port 8530 -StartDate "09/10/2012"

Action : Install
Deadline : 12/31/9999 11:59:59 PM
CreationDate : 9/29/2012 3:38:20 AM
TargetGroup : All Computers
AdministratorName : WUS Server
GoLiveTime : 9/29/2012 3:38:20 AM
Title : Update for Windows 7 (KB2735855)

Action : Install
Deadline : 12/31/9999 11:59:59 PM
CreationDate : 9/29/2012 3:41:32 AM
TargetGroup : All Computers
AdministratorName : WUS Server
GoLiveTime : 9/29/2012 3:41:32 AM
Title : Update for Windows Server 2008 R2 for Itanium-based

Systems (KB2735855)

Action : Install
Deadline : 12/31/9999 11:59:59 PM
CreationDate : 9/29/2012 3:43:47 AM
TargetGroup : All Computers
AdministratorName : WUS Server
GoLiveTime : 9/29/2012 3:43:47 AM
Title : Update for Windows Server 2008 R2 x64 Edition (KB2735855)

The account that approved the patches, WUS Server, gave approval using an auto-

matic approval rule. The CreationDate lists when the WSUS server approved this

update for installation.

 The code for the Get-ApprovalAudit function is shown in the following listing.

Function Get-ApprovalAudit {
 [cmdletbinding()]
 Param (
 [parameter(Mandatory=$True,ValueFromPipeline=$True,
 HelpMessage="Name of WSUS server to connect to.")]
 [Alias('WSUSServer')]
 [string]$Computername,
 [parameter()]
 [ValidateSet(80,443,8530,8531)]
 [Int]$Port = 80,
 [parameter()]
 [Switch]$UseSSL,
 [parameter()]
 [DateTime]$StartDate,
 [parameter()]
 [DateTime]$EndDate
)
 Begin {
 [reflection.assembly]::LoadWithPartialName(
"Microsoft.UpdateServices.Administration") | out-null
 $Wsus = `

Listing 3 Get-ApprovalAudit

389Reporting in WSUS

[Microsoft.UpdateServices.Administration.AdminProxy]::[GetUpdateServer(
 $Computername,
 $UseSSL,
 $Port
)
 $updateScope = New-Object `
Microsoft.UpdateServices.Administration.UpdateScope
 If ($PSBoundParameters['StartDate']) {
 $updateScope.FromCreationDate = $StartDate
 }
 If ($PSBoundParameters['EndDate']) {
 $updateScope.ToCreationDate = $EndDate
 }
 }
 Process {
 $wsus.GetUpdateApprovals($updatescope) | ForEach {
 $object = New-Object PSobject -Property @{
 TargetGroup = $_.GetComputerTargetGroup().Name
 Title = `
($wsus.GetUpdate([guid]$_.UpdateId.UpdateId.Guid)).Title
 GoLiveTime = $_.GoLiveTime
 AdministratorName = $_.AdministratorName
 Deadline = $_.Deadline
 CreationDate = $_.CreationDate
 Action = $_.Action
 }
 $object.pstypenames.insert(0,"wsus.approvalaudit")
 $object
 }
 }
}

You can see how the Get-UpdateApprovals function allows you to track information

such as which administrator approved updates, the date and time the updates ran,

which computers received the update(s), and which server sent them.

Client update status

The final report runs the function Get-ClientUpdateStatistics, which shows a sum-

mary of all clients and their current patch status: installed, downloaded, waiting to

install, or pending reboot:

Get-ClientUpdateStatistics -Computername Boe-PC -Port 8530

Installed : 122
Failed : 0
NotInstalled : 56
PendingReboot : 0
Computername : dc1.rivendell.com
Downloaded : 8
Unknown : 0

Installed : 0
Failed : 1
NotInstalled : 52
PendingReboot : 0

Creates and
configures
update scope

Retrieves
approval
information

390 CHAPTER 26 WSUS and PowerShell

Computername : boe-pc
Downloaded : 1
Unknown : 0

As you can see, some patches were downloaded for installation, as well as a patch that

failed at some point during its installation.

 The code for the Get-ClientUpdateStatistics function is shown in the follow-

ing listing.

Function Get-ClientUpdateStatistics {
 [cmdletbinding()]
 Param (
 [parameter(ValueFromPipeline=$True,
 HelpMessage="Name of WSUS server to connect to.")]
 [Alias('WSUSServer')]
 [string]$Computername,
 [parameter()]
 [ValidateSet(80,443,8530,8531)]
 [Int]$Port = 80,
 [parameter()]
 [Switch]$UseSSL
)
 Begin {
 [reflection.assembly]::LoadWithPartialName(
"Microsoft.UpdateServices.Administration") | out-null
 $Wsus = `
[Microsoft.UpdateServices.Administration.AdminProxy]::GetUpdateServer(
$Computername,$False,$Port)
 $updateScope = New-Object`
Microsoft.UpdateServices.Administration.UpdateScope
 $computerScope = New-Object `
Microsoft.UpdateServices.Administration.ComputerTargetScope
 }
 Process {
 $wsus.GetSummariesPerComputerTarget
 ➥ ($updateScope,$computerScope) |
ForEach {
 $object = New-Object PSObject -Property @{
 Computername = $wsus.GetComputerTarget(
 $_.ComputerTargetID).FullDomainName
 Installed = $_.Installedcount
 Failed = $_.Failedcount
 Downloaded = $_.DownloadedCount
 NotInstalled = $_.NotInstalledCount
 Unknown = $_.UnknownCount
 PendingReboot = $_.InstalledPendingRebootCount
 }
 $object.pstypenames.insert(0,"wsus.clientupdate.statistics")
 $object
 }
 }
}

Listing 4 Get-ClientUpdateStatistics

Creates update
scope

Creates
computer scope

Displays
update
statistics

391Summary

The Get-ClientUpdateStatistics function creates a summary of each client and its

update status, making it easier to determine which computers have successfully installed

updates and which have not.

Summary
In this chapter I showed how you can use PowerShell and the available APIs to manage

your WSUS server, view the server’s configuration settings, and audit events. You can also

use APIs to audit and build automatic approval rules to provide detailed reporting.

 With Windows Server 2012 you can use the UpdateServices module to perform

basic WSUS administration tasks, such as patch approvals. For more advanced configu-

rations and reporting, the APIs are definitely the way to go as they provide additional

flexibility into the WSUS infrastructure that is not currently available through the

UpdateServices module. In addition, the module I wrote called PoshWSUS provides

cmdlets that allow for more advanced administration (http://poshwsus.codeplex.com).

With multiple options for automating your WSUS server, you can’t go wrong. If you

write scripts for your own WSUS server I hope that you’ll share them with the rest of

the community.

About the author

Boe Prox is a Senior Windows Systems Administrator. He has

been in the IT industry since 2003 and has been working with

Windows PowerShell since 2009. He is also the recipient of the

Microsoft Community Contributor award for 2011 and 2012.

Boe holds several IT certifications, including MCITP Enterprise

Administrator, VCP4, and Microsoft Certified Solutions Associ-

ate (MCSA). You can find him on Twitter (@proxb) and at his

blog (http://learn-powershell.net). He is also a moderator on the

“Official Scripting Guys Forum!” His current projects are published on CodePlex: Posh-

WSUS (http://poshwsus.codeplex.com), PoshPAIG (http://poshpaig.codeplex.com),

and PoshChat (http://poshchat.codeplex.com).

http://poshwsus.codeplex.com
http://learn-powershell.net
http://poshwsus.codeplex.com
http://poshpaig.codeplex.com
http://poshchat.codeplex.com

392

Provisioning IIS web servers
and sites with PowerShell

 Jason Helmick

The following scenario is common if you’re an administrative web master, and

here’s how it was delivered to me: “Deploy a highly available web farm (four serv-

ers) with a couple of websites, including certificates, for a new secure shopping site.

Make sure to enable graphical remote management for IIS Manager so that other

admins and developers can make changes; and, by the way, did we mention we’re

moving to Windows Server 2012 Core?” (See figure 1.)

 This isn’t a complicated project, thanks to the support of PowerShell and the

Internet Information Services (IIS) cmdlets, but you may encounter tricky spots

and gotchas along the way.

 Initially I solved this problem by using PowerShell interactively to complete the

required tasks. As a smart and lazy admin, I saved the commands to a script so that

in the future I could automate similar deployments without all the typing. I even

turned some of the tasks into advanced functions so that other admins could

accomplish some of the trickier stuff.

 In this chapter you’ll see how I interactively solved this deployment scenario,

and I’ll also show you how to automate it. The entire process from beginning to

end involves these tasks:

■ Deploy IIS to the Windows Server 2012 Core remote servers.
■ Prepare the remote servers with website files and certificates.
■ Enable remote-management support for the graphical IIS Manager.
■ Create a load-balanced web farm.
■ Create a secure load-balanced website using Secure Sockets Layer (SSL).
■ Automate the process.

Let’s get started and deploy the web servers and websites.

27

393Provisioning IIS web servers and sites with PowerShell

Setting up the lab environment

I created a lab environment to write this chapter. If you want to follow along you can
create a similar environment.

Although I’m using Windows Server 2012 Core, this deployment solution also works
on Windows Server 2008 R2, with or without a graphical desktop. I use some of the
newer networking commands from Server 2012 for the Domain Name System (DNS)
settings, but if you’re using Windows Server 2008 R2 you can work around that with
the GUI. I also use the dynamic module-loading feature in PowerShell v3; if you’re us-
ing PowerShell v2 I’ll warn you when you need to import a module.

These are the items that I set up in advance:

Deployment station—Windows 8 Pro running Remote Server Administration Tools
(RSAT). I’ll use local RSAT cmdlets in this chapter.

Four Windows Server 2012 Core servers—Each server is assigned an IP address and
is a member of the domain, although this is not required for middle-tier web servers.
You can set up the IP address through SConfig.cmd or the networking cmdlets.

Remoting—This feature is enabled for all Windows Server 2012 products; you’ll need
to enable it if you’re using Windows Server 2008 R2. (This is a requirement.)

Firewall / NAT

Open ports 80 and 443

Two websites:

http://www.company.loc

https://shop.company.loc

Deployment station

Windows 8 with

RSAT tools

Windows Server 2012 Core

load-balanced web farm

1. The goal is to deploy and

provision four IIS servers in

a load balance with

several websites.

2. Customers should be able

to connect to a public and

secure site over SSL.

IIS IIS IIS IIS

Figure 1 The deployment goal of a web farm with multiple websites

394 CHAPTER 27 Provisioning IIS web servers and sites with PowerShell

Rapid IIS deployment
To begin the deployment we’ll use PowerShell Remoting to connect to the remote

servers. Some tasks won’t be completed over remoting, so store a list of computer

names in a variable that you can pipe to commands.

1 Gather the computer names of the future web servers and store them to a vari-

able, $Servers, using one of the following options.

If the servers are members of the domain, use the Active Directory cmdlet

Get-ADComputer:

PS> $Servers = Get-ADComputer -Filter "name -like 's*'" |
 ➥ Select-Object -ExpandProperty name

NOTE If you’re using PowerShell v2, be sure to import the Active Directory
module first.

You can also get the list from a CSV or TXT file:

PS> $Servers = Import-Csv c:\servers.csv |
 ➥ Select-Object -ExpandProperty ComputerName

PS> $Servers = Get-Content c:\servers.txt

2 Create a PowerShell remote session to the servers. Store the sessions in a vari-

able $Sessions for easy access later:

PS> $Sessions = New-PSSession -ComputerName $Servers

3 Determine what software is needed to support all of the tasks for this project.

The remote servers require the following roles and features for this deploy-

ment solution, but you can add to the list if you need additional components to

support your websites:

– Web Server (IIS) (web-server)—The primary role for a web server. This installs

the components of IIS and creates the default website.

– ASP.NET (web-asp-net)—Provides support for ASP.NET websites.

– Network Load Balancing (NLB)—I’m using Microsoft’s built-in layer-3 NLB

software. You can substitute your own hardware load balancer or Micro-

soft’s layer-7 Application Request Routing (ARR) balancer. ARR has cmdlets

for easy management and is one of my favorite products. ARR also includes

additional features beyond load balancing but requires greater in-depth

Script execution—This should be enabled on the servers.

SSL certificate—For a lab environment you can use a self-signed certificate, but for
production use a good web server certificate or even an Extended Validation (EV) cer-
tificate. I created a certificate in Active Directory Certificate Services (AD CS) and ex-
ported it to a Personal Information Exchange (.pfx) file.

395Rapid IIS deployment

knowledge, so I’m sticking with the straightforward, built-in, and useful

Microsoft NLB.

– Management Service (Web-Mgmt-Service)—Required component for remote

management of IIS with IIS Manager.

4 Install the required components on the remote servers with Invoke-Command:

PS> Invoke-Command -Session $Sessions {Install-WindowsFeature
 ➥ web-server,web-asp-net,NLB,Web-Mgmt-Service}

Installing the software components to all four servers, as shown in figure 2,

takes only a few minutes (5 minutes to be exact).

The IIS installation process creates the default website automatically. Let’s

test this default website on each server before continuing with the next task.

Testing ensures that the web server is functioning properly and reduces

future troubleshooting if something goes wrong:

5 Use the $Servers variable to pipe the server names to Internet Explorer:

PS> $Servers | ForEach-Object {Start-Process iexplore http://$_}

Four separate browsers automatically launch and test the default website on

each individual server.

With the initial software deployment completed the next task is to deploy (copy) the

website files and certificate out to the servers. PowerShell makes this a snap.

PowerShell v2 notes

If you’re using PowerShell v2 on Server 2008 R2 you’ll need to import the Server
Manager module first:

Invoke-Command -Session $Sessions {Import-Module ServerManager}

Also I’m using the new Install-WindowsFeature cmdlet. In PowerShell v2 use the
Add-WindowsFeature cmdlet.

Add additional IIS components

based on your needs.

Figure 2 Performing a rapid install of the required software on multiple servers

396 CHAPTER 27 Provisioning IIS web servers and sites with PowerShell

Transferring website files and certificates
IIS supports storing your website files and applications on a central share from a clus-

tered file server. Some organizations, such as small companies, don’t have this capabil-

ity, so we’ll copy the websites from a central location (my computer) out to the

individual web servers. Because these web servers will be load-balanced, each server

needs to have the same files.

DEPLOYING THE DEFAULT WEBSITE

1 Copy the new default website to each web server’s c:\ inetpub\wwwroot path:

PS> $Servers | ForEach-Object {Copy-Item -Path c:\sites\www*.*
 ➥ -Destination "\\$_\c$\inetpub\wwwroot"}

2 Test the default website after the file transfer (see figure 3):

PS> $Servers | ForEach-Object {Start-Process iexplore http://$_}

With the default website successfully deployed we can focus on the new secure shop-

ping site.

DEPLOYING THE SHOPPING WEBSITE

Most of the websites that you’ll copy out to the web servers won’t be in the default path

(InetPub). I prefer to use a directory called sites, with each website in its own folder:

1 Create the folder structure on the remote servers (C:\ sites\ shopping), and then

copy the new website:

PS> Invoke-Command -Session $Sessions {New-Item -Path c:\sites\shopping
 ➥ -ItemType directory -Force}
PS> $Servers | ForEach-Object {Copy-Item -Path c:\sites\shopping*.*
 ➥ -Destination "\\$_\c$\sites\shopping"}

2 Generate a certificate for SSL for the secure shopping site.

(I previously generated and stored a trusted certificate on my local Windows 8

computer in c:\ sites\certpfx.)

3 Copy the certificate to the remote servers, and then use CertUtil.exe to import

the certificate:

Testing the default website

on each server

Figure 3 Successful deployment

of the default website to multiple

web servers

397Enabling remote management for IIS Manager

PS> $Servers | ForEach-Object {Copy-Item -Path c:\sites\certpfx*.*
 ➥ -Destination "\\$_\c$"}
PS> Invoke-Command -Session $Sessions {certutil -p P@ssw0rd
 ➥ -importpfx c:\company.loc.pfx}

I sent the password in clear text because PowerShell Remoting is secure and

encrypted. I wouldn’t do this in a script. The certificate imports successfully, as

shown in figure 4.

4 Remove (delete) the .pfx file from the remote servers:

PS> $Servers | ForEach-Object {Remove-Item -Path
"\\$_\c$\company.loc.pfx"}

The website files are copied to the remote servers and each server has the certificate for

the secure site. Before you finish creating and configuring the secure site you need to

enable IIS remote management so that the websites can be managed using IIS Manager.

Enabling remote management for IIS Manager
IIS remote management adds the capability of managing websites on remote servers

from IIS Manager. It’s best to enable and configure this feature using IIS Manager run

locally on each server; it’s not a friendly feature to enable through the command line

or on Windows Server 2012 Core. In addition, we need to replace the temporary, self-

signed certificate, which is assigned to remote management.

 Let’s break this into two steps: enabling the service and replacing the certificate.

ENABLING THE SERVICE

1 Enable the remote management service in the registry, and then start the Web

Management Service (WMSVC).

WMSVC has a startup type of Manual, so change the startup to Automatic

before starting the service:

PS> Invoke-Command -Session $Sessions {Set-ItemProperty
 ➥ –Path HKLM:\SOFTWARE\Microsoft\WebManagement\Server
 ➥ -Name EnableRemoteManagement -Value 1}
PS> Invoke-Command -Session $Sessions {Set-Service wmsvc
 ➥ -StartupType Automatic}
PS> Invoke-Command -Session $Sessions {Start-Service wmsvc}

Figure 5 illustrates the successful start of WMSVC on the remote computers.

Certificates successfully installed.

Don’t forget to delete the .pfx

files from the servers.

Figure 4 Deploying and installing a certificate for SSL

398 CHAPTER 27 Provisioning IIS web servers and sites with PowerShell

At this point you can connect IIS Manager to the remote computers, but you can’t use

IIS Manager to manage and change the certificates for the remote service.

REPLACING THE CERTIFICATE

The IIS remote management service uses port 8172 and binds a temporary certificate

to “all unassigned” IP addresses. You need to change this binding, and this is where

things get a little strange. To remove the old SSL binding for port 8172 and add a new

one you need to access the IIS: provider. Because PowerShell cmdlets and this pro-

vider don’t work together as well as they could, extra steps are required to complete

the process:

1 Get the thumbprint of the trusted certificate that you imported previously and

store it to a variable ($cert).

Perform this step over PowerShell Remoting so that the variable can be used

for later commands:

PS> Invoke-Command -Session $Sessions {$cert = Get-ChildItem
 ➥ -Path Cert:\LocalMachine\My | where {$_.subject -like "*company*"} |
 ➥ Select-Object -ExpandProperty Thumbprint}

2 Access the IIS: drive.

When IIS is installed, a module called WebAdministration is added, which

includes cmdlets and an IIS: provider. To ensure that the provider is loaded,

import the WebAdministration module:

PS> Invoke-Command -Session $Sessions {Import-Module WebAdministration}
PS> Invoke-command -Session $Sessions {cd IIS:\SslBindings}

Bindings are stored in IIS:\ SslBindings as path items.

3 Remove the binding that contains the temporary certificate:

PS> Invoke-command -Session $Sessions {Remove-Item -Path
 ➥ IIS:\SslBindings \0.0.0.0!8172}

NOTE Usually IIS binding information is entered and displayed as IPaddress
:port:hostname, as in *:80:*, but PowerShell interprets the colon (:) as
a path indicator. When using the cmdlets to work with bindings for IIS,
replace the colon with an exclamation mark (!), as in *!80!*.

Don't forget to set

the startup to Automatic

before you start WMSVC.

Figure 5 Enabling IIS remote management and starting WMSVC

399Creating a load-balanced web farm

4 Create a new binding that uses the new trusted certificate.

Use the Get-Item command to retrieve the correct certificate based on the

thumbprint stored in $cert. The certificate is piped to New-Item, which creates

the new binding for all IP addresses on port 8172:

PS> Invoke-Command -Session $Sessions {Get-Item
 ➥ -Path "cert:\localmachine\my\$cert" |
 ➥ New-Item -Path IIS:\SslBindings\0.0.0.0!8172}

5 Start IIS Manager (PS> Start inetmgr), and create connections to the remote

servers as shown in figure 6.

With the remote management capabilities of IIS enabled we can finish off our deploy-

ment and provisioning web server project with two final tasks: building the web farm

and creating a new secure website. Let’s start with the web farm.

Creating a load-balanced web farm
For many companies a hardware load balancer that provides high availability is the

only choice for their web farms; it’s fast, efficient, and provides certificate manage-

ment. Not everyone can afford (or even needs) this level of performance, so other

options are available. My favorite is the layer-7 load balancer for IIS from Microsoft

called Application Request Routing (ARR). It’s free, an excellent product, can be

downloaded from www.iis.net, has cmdlets for management, includes many more

With remote management

enabled, you can now add

the servers to your IIS

management console.

1

2 3

Figure 6 Adding the remote servers to IIS Manager

www.iis.net
www.iis.net

400 CHAPTER 27 Provisioning IIS web servers and sites with PowerShell

features in addition to load balancing, and, did I mention, it’s free. ARR performs

load balancing using URL rewrite. Because URL rewrite is complex and requires in-

depth knowledge of ARR I chose to use the built-in Microsoft NLB for this example

deployment situation. NLB works well and doesn’t require the additional installation

and knowledge overhead to make a great solution.

 For this task I’m using the cmdlets from the NLB module on my Windows 8 com-

puter. Alternatively you could issue these commands over PowerShell Remoting:

1 Create the load balance on server S1 with the New-NlbCluster cmdlet, and cre-

ate a cluster IP address for the default website:

PS> New-NlbCluster -HostName s1 -InterfaceName Ethernet -ClusterName web
 ➥ -ClusterPrimaryIP 192.168.3.200 -SubnetMask 255.255.255.0
 ➥ -OperationMode Multicast

2 Add another address with the Add-NlbClusterVip cmdlet:

PS> Get-NlbCluster -HostName s1 | Add-NlbClusterVip -IP 192.168.3.201
 ➥ -SubnetMask 255.255.255.0

You’ll use this additional cluster IP address for the secure website that you’ll cre-

ate in the next section.

3 Add the second server (S2) as a node in the load balance with the Get-

NlbCluster cmdlet:

PS> Get-NlbCluster -HostName s1 | Add-NlbClusterNode -NewNodeName s2
 ➥ -NewNodeInterface Ethernet

4 Repeat step 3 for the other two servers in this scenario.

The return information from the Get-NlbCluster cmdlet informs you if you

have any problems converging the load balance.

5 Launch the graphical Network Load Balancing Manager (on a Windows 8 com-

puter) from the Administrative Tools to verify the status (see figure 7).

Figure 7 Verifying the load balance in the Network Load Balancing Manager

www.iis.net

401Creating an SSL website

6 Test the load balance with full name resolution.

Create a www record in DNS that points to the cluster IP address, and then

launch a browser using the new address:

PS> Add-DnsServerResourceRecordA -Name www -ZoneName company.loc
 ➥ -IPv4Address 192.168.3.200 -ComputerName DC.company.loc
PS> Start-Process iexplore http://www.company.loc

Finally, after all this work, it’s time for the final task: creating a new and secure website

for the web farm. Let’s make a website!

Creating an SSL website
To make a new website on the remote servers use

the IIS (web) cmdlets from the WebAdministration

module. Remember that we already copied the files

for this new website to the location c:\sites\shopping:

1 Create an application pool for the new

website with the New-WebAppPool cmdlet:

PS> Invoke-Command -Session $Sessions
{New-WebAppPool -Name Shopping-Pool}

Figure 8 shows the graphical version of cre-

ating a pool in IIS Manager.

The new application pool is created with

default settings for items such as the recycle

times and identity. This is a good time to

add your own application pool commands

to alter those defaults, if desired. (See the sidebar for an example.)

Changing the application pool identity

Usually, for application pools of ApplicationPoolIdentity, the default identity is
sufficient as a restricted identity. In cases where multiple customers have websites
located on the same server (multitenant), isolating each pool with its own identity pro-
vides unique security for every customer. To set the pool identity IIS uses a number
representing the identity. The default value is 4, but if you want to have isolation you
can create individual accounts and assign those accounts to each pool as in the fol-
lowing example:

LocalSystem = 0
LocalService = 1
NetworkService = 2
SpecificUser = 3
ApplicationPoolIdentity = 4

PS> Invoke-Command –Session $Sessions {Set-ItemProperty
 ➥ -Path IIS:\AppPools\MyTest -Name processmodel.identityType -Value 3}

Figure 8 Creating a pool in IIS

Manager

402 CHAPTER 27 Provisioning IIS web servers and sites with PowerShell

2 Create a new website named Shopping.

After you create the application pool the New-Website cmdlet does the rest

of the work:

PS> Invoke-Command -Session $Sessions {New-Website -Name Shopping
 ➥ -HostHeader shop.company.loc -PhysicalPath C:\sites\shopping
 ➥ -ApplicationPool Shopping-Pool -Port 443 -ssl -SslFlags 0}

The website has a host header of shop.company.loc and points to the physical

location of the website files. The new site is assigned to the correct application

pool and a binding on port 443 is set. The –SslFlags tells the website to use a

normal certificate.

3 Create another SSL binding for the new site.

The process is the same as discussed previously, but the binding is for all IP

addresses on port 443:

PS> Invoke-Command -Session $Sessions {$cert=Get-ChildItem
 ➥ -Path Cert:\LocalMachine\My | where {$_.subject -like "*company*"} |
 ➥ Select-Object -ExpandProperty Thumbprint}
PS> Invoke-Command -Session $Sessions {Import-Module WebAdministration}
PS> Invoke-Command -Session $Sessions {Get-Item
 ➥ -Path "cert:\localmachine\my\$cert" | New-Item -Path
 ➥ IIS:\SslBindings\0.0.0.0!443!Shop.company.loc}

As shown in figure 9, the new binding is successfully created on all remote servers.

4 Test the new website.

Add a DNS record that points to the cluster IP address previously defined for

the website and then launch a browser using the address:

PS> Add-DnsServerResourceRecordA -Name shop -ZoneName company.loc
 ➥ -IPv4Address 192.168.3.201 -ComputerName DC.company.loc
PS> Start-Process iexplore https://shop.company.loc

PS> Invoke-Command –Session $Sessions {Set-ItemProperty
 ➥ -Path IIS:\AppPools\MyTest -Name processmodel.username
 ➥ -Value Administrator}

PS> Invoke-Command –Session $Sessions {Set-ItemProperty
 ➥ -Path IIS:\AppPools\MyTest -Name processmodel.password -Value

P@ssw0rd}

Figure 9 Successful creation of the new SSL binding

403Automating the process

As shown in figure 10, the new website successfully passes the test using the

trusted certificate over SSL.

Total time for this project, using PowerShell interactively, is approximately 30 min-

utes. Storing these commands in a .ps1 file helps me script future deployment proj-

ects. Why do all that typing again? I wrote the tricky tasks, such as enabling remote

management, as advanced functions so that other admins have the tools they need

without all the hassle. I increased my value to the company and managed to get a little

more time on the beach.

Automating the process

Automating the deployment process is as simple as sticking the commands in a script

file, but I went further and built in more flexibility. PowerShell Remoting and the

Invoke-Command cmdlet make life easy. For example, have you ever tried the switch

option for Invoke-Command –FilePath? This switch option eliminates the need to

copy scripts to remote computers before executing them. You write a script that per-

forms the tasks as if it were running on the local computer. To send that script to your

remote computers use Invoke-Command.

 In this section I’ll first show you the script that does the hard work, and then I’ll

show you how I call and use the script. The only changes from the commands you’ve

already seen are the following:

■ I removed all of the Invoke-Command cmdlets.
■ I changed how the certificate password is passed to the script. I don’t want the

password hardcoded in the script, so I used a PowerShell v3 feature to pass a

variable to the script with $Using:CertPassword.
■ I left out the NLB commands, in case you already have a load-balance solution,

but you can always add them.

Here’s the script, which I named Deploy-WebServer.ps1.

The new secure SSL site works

using the cluster IP address.

Figure 10 Successful test of the new website using SSL

404 CHAPTER 27 Provisioning IIS web servers and sites with PowerShell

Install-WindowsFeature web-server,Web-Mgmt-Service

Set-ItemProperty -Path HKLM:\SOFTWARE\Microsoft\WebManagement\Server `
-Name EnableRemoteManagement -Value 1

Set-Service wmsvc -StartupType Automatic
Start-Service wmsvc

certutil -p $Using:certPassword -importpfx c:\Wildcard.company.loc.pfx
Remove-Item -Path c:\Wildcard.company.loc.pfx

Import-module -Name WebAdministration
$cert = Get-ChildItem -Path Cert:\LocalMachine\My |
where {$_.subject -like "*company*"} |
Select-Object -ExpandProperty Thumbprint

Remove-Item -Path IIS:\SslBindings\0.0.0.0!8172

Get-Item -Path "cert:\localmachine\my\$cert" |
New-Item -Path IIS:\SslBindings\0.0.0.0!8172

New-WebBinding -Name "Default Website" -Protocol https

Get-Item -Path "cert:\localmachine\my\$cert" |
New-Item -Path IIS:\SslBindings\0.0.0.0!443

To use the Deploy-WebServer.ps1 script I run interactive commands to set up the

remoting connections and set a few variables. Then I call the deployment script with a

single Invoke-Command cmdlet:

1 Build a remote session to the computers that will become web servers.

Put the server names in a variable—you’ll need that later, so don’t cheat and

make this a one-liner:

PS> $Servers='server1','server2', 'server3'
PS> $Sessions=New-PSSession -ComputerName $Servers

2 Set a variable to contain the password to install the certificate.

This information is passed over the remoting session encrypted:

PS> $CertPassword="P@ssw0rd"

3 Interactively copy the website files and certificates to the remote servers:

PS> $servers | ForEach-Object{New-Item -Path \\$_\C$\inetpub\wwwroot
 ➥ -ItemType Directory -Force}
PS> $servers | ForEach-Object{Copy-Item -Path c:\sites\www*.*
 ➥ -Destination \\$_\C$\inetpub\wwwroot -Force}
PS> $servers | ForEach-Object{Copy-Item -Path c:\sites\CertPFX*.*
 ➥ -Destination \\$_\C$\ -Force}

If you put these commands in the Deploy-WebServer.ps1 file you’ll run into a

double-hop issue—the remote computers connecting to another remote server

to get the files.

Listing 1 Deploy-WebServer.ps1

Installs required
components

Enables remote
management

Removes the
certificate file

Creates new
SSL binding

405Summary

NOTE If you copy files to Windows Server 2012 Core you’ll first need to install
the FS-FileServer role to access the C$ share.

4 Run the deployment script using the –FilePath parameter:

PS> Invoke-Command -Session $Sessions -FilePath C:\scripts\deploy-
 ➥ WebServer.ps1

All the target servers now have a web server, website, and certificates installed and are

ready for action!

Summary
This chapter covered the deployment of multiple web servers with multiple websites,

which included building a web farm and installing certificates for SSL. The concepts

and tactics demonstrated here could easily be applied to other roles, features, and

products, such as SharePoint web servers and Client Access Server (CAS) arrays for

Microsoft Exchange. I gleaned the following takeaways during this real-life project:

■ I can use PowerShell interactively to solve each task, even for a more compli-

cated deployment.
■ There may not be specific cmdlets for every situation, such as enabling the

remote management of IIS, but there are ways around those issues.
■ PowerShell Remoting must be enabled to permit these larger-scale manage-

ment solutions. While it’s the default for Windows Server 2012, you need to

enable it now even if you’re not at that version yet.

Thanks to PowerShell I get an amazing amount of work done quickly and without trav-

eling to a cold data center. If you have any questions about the script or commands I

discussed in this chapter visit the forums at http://www.powershell.org, and I’ll be

happy to help!

About the author

Jason Helmick is a teacher, author, consultant, and 25-year IT vet-

eran focusing on Microsoft enterprise technologies. Jason is a

strong proponent of automation with PowerShell and is a board

member of PowerShell.Org. He is the author of Learn Windows IIS

in a Month of Lunches (Manning, 2013). You can follow and con-

tact Jason on Twitter: @theJasonHelmick.

http://www.powershell.org

406

Active Directory Group
Management application

 Chris Bellée

Windows PowerShell offers a wide range of management features, from its immedi-

ate and intuitive command shell in which “one-liners” rule, to interacting with the

Win32 API environment. With such breadth and interoperability to offer, Power-

Shell is well-positioned for lightweight application development duties.

 In this chapter I demonstrate how to use PowerShell in collaboration with

other Microsoft technologies to produce a graphical tool for managing Active

Directory group memberships. A common customer request is for a tool that can

manage temporary group membership. For example, a customer may request an

application for managing group membership around a project timeline. By auto-

mating additions and removals from a group, such an application removes reliance

on human intervention as well as the inherent security risk of users retaining

unneeded groups.

 Before diving in and writing any PowerShell code let’s evaluate the scope of

the project.

Requirements
Before writing any PowerShell code we must first define the specifications of the

group management application:

■ User interface (UI)—Help desk staff require an easy-to-use UI to view and man-

age users, ideally in a single window.
■ Data Storage—User and group membership data must be persisted in a store

that can be backed up and restored in event of an outage.
■ Automated updates—Group membership changes should be handled automati-

cally, regardless of whether the Group Management UI is running.
■ Auditing—Active Directory group changes must be logged to a file.

28

407Requirements

User Interface development tools

We’ll build the UI with Windows Presentation Foundation (WPF) technology. To design

the interface we’ll use the freely downloadable Microsoft Visual Studio Express 2012 for

Windows Desktop (http://www.microsoft.com/en-us/download/details.aspx?id=34673),

shown in figure 1.

 Visual Studio automatically generates XAML code (an XML-based markup language)

when you use its visual UI designer.

Data storage tools and design

Active Directory is unsuited for easily storing relationships between users, groups, and

dates. Many relational database products are available to store this information,

and for this project I’ll use the freely downloadable Microsoft SQL Server 2012 Express

(http://www.microsoft.com/en-us/download/details.aspx?id=29062).

 To store the one-to-many relationship between a user, a user’s group memberships,

and the membership start and end dates, we’ll need to create two database tables (see

figure 2):

■ UserTable—Stores user accounts.
■ GroupTable—Stores the user’s group membership information, such as the group

ObjectGUID, SamAccountname, a reference to the user account ObjectGUID, and

the group membership start and end dates.

Figure 1 Visual Studio 2012 Express for Windows Desktop provides a free and fully featured

development environment.

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://www.microsoft.com/en-us/download/details.aspx?id=29062

408 CHAPTER 28 Active Directory Group Management application

The ObjectGUID attribute of the Active Directory user object is the primary key in the

UserTable both because this value must be unique within a forest, and because this

value remains the same over a user account’s lifetime. The SamAccountName attribute

of the user object is also stored for UI display purposes.

 The GroupTable stores an entry for each group of which a user is a member, a ref-

erence to a particular user object in the UserTable, the valid start and end dates of

group membership, and the group’s SamAccountName value. The primary key column

(ID) is an automatically incremented integer, as many duplicate ObjectGUID’s could

exist in the table. The UserGUID column has a foreign key constraint relationship with

the UserTable’s UserGUID column.

Automation and auditing

The final point to consider is the way in which group membership changes, which are

persisted in the SQL database, are applied to the Active Directory database. The solu-

tion, for this example application, is to execute a PowerShell script via a scheduled

SQL Server Agent job. The script modifies the group membership of users if the mem-

bership start or end dates have elapsed.

 Active Directory group modifications are not taken lightly in the majority of orga-

nizations, so the inclusion of some form of auditing feature in the tool is mandatory.

For auditing we’ll log the changes to a text file. Alternatively, for a more secure solu-

tion, you could write them to a custom Windows event log file.

NOTE The script and database files for the Group Management application are
available for download at http://manning.com/hicks. You’ll need to
modify the T-SQL script file that creates the database (Create_SQL_DB.sql)
so that the FILENAME parameters match the correct paths for the data-
base and the log files on the reader’s machine. You’ll also need to mod-
ify the SQL job script (Create_SQL_Job.sql) to match the path to the
SQLJob.ps1 script.

Figure 2 Database schema for the Group Management application

http://manning.com/hicks

409Designing the UI

Organizing the project files

Now that we’ve made the supporting technology decisions we’ll divide the code and

markup into the three files listed in table 1.

Let’s start by creating the XAML file and laying out the interface.

Designing the UI

WPF, the successor to the Windows forms library, is a vector-based presentation sys-

tem that uses an XML-based markup language to implement the UI’s appearance.

All form elements are positioned relatively, which allows the form to be resized auto-

matically without having to write any code, making it an ideal UI layer for a Power-

Shell script.

 To create a new WPF project open Visual Studio 2012 Express and select New Project.

The project type should be WPF Application (the .Net language choice is irrelevant).

 The form layout is defined by a Grid control (grdMain), which consists of three

columns and four rows (see figure 1). Each user control is assigned to one or more

grid cells. Controls can be dragged onto the empty WPF form from the Toolbox panel

at the left to occupy one of the cells.

 As shown in figure 3, each control instance has a unique name so that it can be ref-

erenced from the PowerShell script.

 The form uses three WPF control types: DataGrid, TextBox, and Button. See table 2.

Table 1 The Group Management application functionality divided into three files

File Name Purpose

UI.xaml XAML markup text file that defines the UI

Main.ps1 Central script that performs the following functions: renders the UI defined in UI.xaml,

wires up the WPF control event handlers to PowerShell code, and defines helper func-

tions to perform operations against the database and search Active Directory

SQLJob.ps1 Script run as a job by the SQL Server Agent to make changes in Active Directory

Table 2 The Group Management application’s three types of form controls

Control Type Control Name Description

DataGrid grdUser Displays users managed by the application

DataGrid grdSearchUser Displays users returned by an Active Directory search

DataGrid grdSearchGroup Displays groups returned by an Active Directory search

DataGrid grdSelectedGroup Displays group memberships for an existing user

TextBox txtSearchUser Searches string input for Active Directory user search

TextBox txtSearchGroup Searches string input for Active Directory group search

410 CHAPTER 28 Active Directory Group Management application

A collapsed view of the WPF XAML markup is shown in figure 4.

 Using WPF as a presentation layer neatly separates concerns, decoupling the UI

design from the underlying PowerShell script that drives it.

TIP The PowerShell 3.0 ISE now automatically color-codes XML markup.

Rendering the UI

Once you’ve designed the UI in Visual Studio, copy the resulting XAML markup to a

new text file saved with the .xaml file extension. The UI rendered using a couple of

lines of PowerShell.

NOTE To render a Visual Studio-created .xaml file using the technique
described in this section, the following attribute, shown in bold, must be
removed from the enclosing <Window> node in the xml markup. This
attribute is used only by Visual Studio to associate the UI and the pro-
gram code class.

<Window x:Class="GroupManagementWPF.MainWindow" xmlns="http://
schemas...

Button btnSearchUser Executes an Active Directory search for user objects

Button btnSearchGroup Executes an Active Directory search for group objects

Button btnSaveChanges Saves group membership changes to the database

Table 2 The Group Management application’s three types of form controls (continued)

Control Type Control Name Description

grdUser

grdSearchUser

grdSearchGroup

grdSelectedGroup

Figure 3 The WPF UI for the Group Management application

411Designing the UI

As shown in the following snippet from the Main.ps1 file, code execution starts with

importing the WPF assemblies needed to instantiate the UI objects, followed by

reading the UI.xaml file and casting it to an XML data type. The helper function,

Get-PSScriptRoot, resolves the path of a file name to the folder where the script

was executed:

Add-Type -Assembly PresentationCore, PresentationFrameWork, WindowsBase

[xml]$xmlUI = Get-Content (Get-PSScriptRoot -File UI.xaml)

Next, an XmlNodeReader object is created to read the XmlDocument:

$xmlNodes = New-Object System.Xml.XmlNodeReader($xmlUI)

Finally, the XamlReader class’s Load() static method is used to render the XAML

markup on the screen. The $window variable holds a reference to the entire WPF form

object and is how PowerShell configures the form’s behavior:

$window = [Windows.Markup.XamlReader]::Load($xmlNodes)

UI event handling code goes here...

$window.ShowDialog()

Next we’ll write the event-handling code in the Main.ps1 file.

Figure 4 XAML markup syntax in PowerShell 3.0 ISE

Imports assemblies

Reads .xaml file

Loads XAML and
renders form

Displays form

412 CHAPTER 28 Active Directory Group Management application

Adding UI event-handling logic

Before the form can be shown using the Window’s ShowDialog() method we must

define the PowerShell code to run when a UI control event is fired, such as clicking a

button or changing the selected item in a data grid.

 To reference each control defined in the XAML markup use the FindName()

method of the WPF Window object ($window variable):

$grdUser = $window.FindName("grdUser")
$grdGroup = $window.FindName("grdGroup")

$grdSearchUser = $window.FindName("grdSearchUser")
$grdSearchGroup = $window.FindName("grdSearchGroup")

$grdSelectedUser = $window.FindName("grdSelectedUser")
$grdSelectedGroup = $window.FindName("grdSelectedGroup")

Table 3 outlines which UI control event handlers are “wired-up” to PowerShell code.

The PowerShell code to run when the event is fired is defined between the event’s left

and right parentheses, in a regular PowerShell script block.

 The following example demonstrates how to bind a datasource to a control, such

as a DataGrid. In this example a call to the SQL Server database—to return all groups

of which the currently selected user is a member—is assigned to the DataGrid’s Data-

Context property like this:

$grdUser.Add_SelectionChanged({

if ($grdUser.Items.count -gt 0)
{
 $grdSelectedGroup.DataContext = @(Get-GroupData –UserGUID `
$grdUser.SelectedItem.UserGUID)
$lblSelectedUserName.Content = $grdUser.SelectedItem.UserSamAccountName
}

})

Table 3 Form event handlers

Control Name Event Description

btnSearchUser Click() Searches for users

btnSearchGroup Click() Searches for groups

grdSearchUser SelectionChanged() Selects a user object from the search result

grdSearchGroup SelectionChanged() Adds groups to the grdSelectedGroup
DataGrid

grdUser Loaded() Populates the user list when the form loads

grdUser SelectionChanged() Adds selected user’s groups to the

grdSelectedGroup DataGrid

btnSaveChanges Click() Saves the changes in grdSelectedGroup to

the database

413Designing the UI

The database read operation is encapsulated in the Get-GroupData helper function,

which uses the System.Data.SqlClient namespace classes to query the database for

all groups of which the current user is a member. This function has a single input

parameter, the Active Directory objectGUID attribute of the user for whom we want to

return the group memberships from the SQL database. (See listing 3.)

 To display the data returned from the Get-GroupData function in the grdSelected-

Group DataGrid you can take advantage of its default setting (AutoGenerateColumns=

”True”) and set the ItemsSource binding path to Table. You can do this in the Visual

Studio GUI editor environment.

 For more control over how data is bound to the DataGrid you can optionally

define a collection of column objects manually in the UI.xaml file. Each column has a

nested DataGridTemplateColumn object on which you can set a column header and

many other optional parameters.

 The following listing shows the XAML code of the finished UI with several of these

types of parameters set. Remember that you need to make these changes manually in

the UI.xaml file rather than using the Visual Studio editor.

<Window xmlns=http://schemas.microsoft.com/winfx/2006/xaml/presentation
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Title="Group Management"
 Height="600" MinHeight="600"
 Width="1000" MinWidth="1000">

 <Grid Margin="5,5,0,0" Name="grdMain">

 <Grid.ColumnDefinitions>
 <ColumnDefinition
 Width="0.5*" MinWidth="100"/>
 <ColumnDefinition
 Width="0.75*" />
 <ColumnDefinition
 Width="1*" MinWidth="200"/>
 </Grid.ColumnDefinitions>

 <Grid.RowDefinitions>
 <RowDefinition Height="25"/>
 <RowDefinition Height="1*"/>
 <RowDefinition Height="25"/>
 <RowDefinition Height="1*"/>
 </Grid.RowDefinitions>

 <Label Name="lblManagedUsers" Grid.Column="0"

Grid.Row="0" Content="Managed Users" />

 <StackPanel
 Grid.Column="1"
 Grid.Row="0"
 Orientation="Horizontal">
 <Label Name="lblSearchUser" Content="Search Users" />

Listing 1 Complete UI.xaml code

Defines
WPF
form
start

Contains all
UI elements

Specifies
relative
sizes

Specifies both
absolute and
relative sizes

Contains
other objects
horizontally

414 CHAPTER 28 Active Directory Group Management application

 <TextBox
 Name="txtSearchUser"
 AcceptsTab="True"
 TabIndex="1"
 Margin="5,0,0,0" Width="80" />
 <Button
 Name="btnSearchUser"
 Content="Search"
 Width="60"
 Margin="5,0,0,0" Padding="5,0,5,0"/>
 </StackPanel>

 <StackPanel Grid.Column="1" Grid.Row="2" Orientation="Horizontal">
 <Label Name="lblSearchGroup" Content="Search Groups"/>
 <TextBox Name="txtSearchGroup" AcceptsTab="True" TabIndex="2"
Margin="5,0,0,0" Width="80" />
 <Button Name="btnSearchGroup" Content="Search" Width="60"
Margin="5,0,0,0" Padding="5,0,5,0"/>
 </StackPanel>

 <StackPanel Grid.Column="2" Grid.Row="0" Orientation="Horizontal">
 <Label Name="lblSelectedUser" Content="Selected User:"/>
 <Label Name="lblSelectedUserName" Margin="5,0,0,0"
Content="None"/>
 </StackPanel>

 <Button Grid.Column="2" Grid.Row="0" Name="btnSaveChanges"
Content="Save Changes" Margin="5,0,5,0" Padding="5,0,5,0"
HorizontalAlignment="Right"/>

 <DataGrid IsReadOnly="True" ItemsSource="{Binding Path=Table}"
 Grid.Column="0"
 Grid.Row="1"
 Grid.RowSpan="4"
 Margin="0,5,5,5"
 Name="grdUser"
 AlternatingRowBackground="LightBlue"
 AutoGenerateColumns="False">

 <DataGrid.Columns>

 <DataGridTemplateColumn Header="User Name">
 <DataGridTemplateColumn.CellTemplate>
 <DataTemplate>
 <TextBlock Text="{Binding
Path=UserSamAccountname}" />
 </DataTemplate>
 </DataGridTemplateColumn.CellTemplate>
 </DataGridTemplateColumn>

 <DataGridTemplateColumn Header="UserGuid"
Visibility="Collapsed">
<DataGridTemplateColumn.CellTemplate>
 <DataTemplate>
 <TextBlock Text="{Binding Path=UserGUID}" />

 </DataTemplate>
 </DataGridTemplateColumn.CellTemplate>
 </DataGridTemplateColumn >

Contains
other objects
horizontally

Binds to
DataTable
from SQL
query at
runtime

Binds to
column in
DataTable
by name

415Designing the UI

 </DataGrid.Columns>

 </DataGrid>

 <DataGrid IsReadOnly="True" ItemsSource="{Binding Path=Table}"
Grid.Column="1" Grid.Row="1" Margin="0,5,5,5" Name="grdSearchUser"
AlternatingRowBackground="LightBlue" AutoGenerateColumns="False">

 <DataGrid.Columns>

 <DataGridTemplateColumn Header="User Name">
 <DataGridTemplateColumn.CellTemplate>
 <DataTemplate>
 <TextBlock Text="{Binding
Path=UserSamAccountName}" />
 </DataTemplate>
 </DataGridTemplateColumn.CellTemplate>
 </DataGridTemplateColumn>

 <DataGridTemplateColumn Header="UserGuid"
Visibility="Collapsed">
 <DataGridTemplateColumn.CellTemplate>
 <DataTemplate>
 <TextBlock Text="{Binding Path=UserGUID}" />
 </DataTemplate>
 </DataGridTemplateColumn.CellTemplate>
 </DataGridTemplateColumn >

 </DataGrid.Columns>

 </DataGrid>

 <DataGrid IsReadOnly="True" ItemsSource="{Binding Path=Table}"
Grid.Column="1" Grid.Row="3" Margin="0,5,5,5" Name="grdSearchGroup"
AlternatingRowBackground="LightBlue" AutoGenerateColumns="False">

 <DataGrid.Columns>

 <DataGridTemplateColumn Header="Group Name">
 <DataGridTemplateColumn.CellTemplate>
 <DataTemplate>
 <TextBlock Text="{Binding
Path=GroupSamAccountName}" />
 </DataTemplate>
 </DataGridTemplateColumn.CellTemplate>
 </DataGridTemplateColumn>

 <DataGridTemplateColumn Header="UserGuid"
Visibility="Collapsed">
 <DataGridTemplateColumn.CellTemplate>
 <DataTemplate>
 <TextBlock Text="{Binding Path=GroupGUID}" />
 </DataTemplate>
 </DataGridTemplateColumn.CellTemplate>
 </DataGridTemplateColumn >

 </DataGrid.Columns>

 </DataGrid>

416 CHAPTER 28 Active Directory Group Management application

 <DataGrid IsReadOnly="True" ItemsSource="{Binding Path=Table}"
Grid.Column="2" Grid.Row="1" Grid.RowSpan="3" Margin="0,5,5,5"
Name="grdSelectedGroup" AlternatingRowBackground="LightBlue"
AutoGenerateColumns="False">
 <DataGrid.Columns>

 <DataGridTemplateColumn Header="Group Name">
 <DataGridTemplateColumn.CellTemplate>
 <DataTemplate>
 <TextBlock Text="{Binding
Path=GroupSamAccountname}" />
 </DataTemplate>
 </DataGridTemplateColumn.CellTemplate>
 </DataGridTemplateColumn>

 <DataGridTemplateColumn Header="Start Date">
 <DataGridTemplateColumn.CellTemplate>
 <DataTemplate>
 <DatePicker SelectedDate="{Binding
Path=StartDate, Mode=TwoWay,UpdateSourceTrigger=
PropertyChanged}" />
 </DataTemplate>
 </DataGridTemplateColumn.CellTemplate>
 </DataGridTemplateColumn>

 <DataGridTemplateColumn Header="End Date">
 <DataGridTemplateColumn.CellTemplate>
 <DataTemplate>
 <DatePicker SelectedDate="{Binding
 Path=EndDate, Mode=TwoWay,UpdateSourceTrigger=PropertyChanged}" />
 </DataTemplate>
 </DataGridTemplateColumn.CellTemplate>
 </DataGridTemplateColumn>

 <DataGridTemplateColumn Header="GroupGuid"
Visibility="Collapsed">
 <DataGridTemplateColumn.CellTemplate>
 <DataTemplate>
 <TextBlock Text="{Binding Path=GroupGUID}" />
 </DataTemplate>
 </DataGridTemplateColumn.CellTemplate>
 </DataGridTemplateColumn>

 <DataGridTemplateColumn Header="UserGuid"
Visibility="Collapsed">
 <DataGridTemplateColumn.CellTemplate>
 <DataTemplate>
 <TextBlock Text="{Binding Path=UserGUID}" />
 </DataTemplate>
 </DataGridTemplateColumn.CellTemplate>
 </DataGridTemplateColumn >

 <DataGridTemplateColumnHeader="UserSamaccountName"
Visibility="Collapsed">
 <DataGridTemplateColumn.CellTemplate>
 <DataTemplate>

Updates
DatePicker
on DataTable
change

b

417Handling database interactions

 <TextBlock Text="{Binding
 Path=UserSamAccountName}" />
 </DataTemplate>
 </DataGridTemplateColumn.CellTemplate>
 </DataGridTemplateColumn >
 </DataGrid.Columns>
 </DataGrid>
 </Grid>
</Window>

In this example the UserGUID column’s visibility is set to Collapsed, hiding it in the

UI, but preserving its data. The Header property specifies a custom column header.

The Start Date column contains a DatePicker object whose SelectedDate property is

populated with the datasource’s StartDate column data. Because the DatePicker can

be updated by the user you must set the binding mode to TwoWay and the Update-

SourceTrigger property to a UI event B. This allows the changes to be written to the

underlying DataTable.

 To complete the application we’ll need to add two database operations.

Handling database interactions
We need one database operation to read user and group information from the data-

base into the application and another to modify user and group relationships and

commit the changes back to the database.

 Three PowerShell functions handle these interactions: Get-UserData, Get-

GroupData, and Set-GroupData. Each function uses classes from the System.Data .NET

namespace to execute SQL statements against the database. Each function uses the

same .NET classes to open the database connection and execute the SQL statement.

Executing SQL statements

The steps required to execute SQL statements against the database are as follows:

1 Define the database connection string.

2 Create a new SqlConnection object, passing in the connection string to the

object constructor method.

3 Create a new SqlCommand object, and set its connection property with the con-

nection string.

4 Set the CommandText property of the SqlCommand object, entering the SQL state-

ment to execute.

5 Create a local DataSet object to store the results of the database query.

6 Create a DataAdapter object, and set its selectCommand property to the Sql-

Command object.

7 Use the Open() method of the SqlConnection object to open the database

connection.

8 Use the Fill() method of the SqlDataAdapter object to assign the results to

the local DataSet.

Defines WPF
form end

418 CHAPTER 28 Active Directory Group Management application

The three functions are the result of translating these steps to PowerShell code. Listings 2

and 3 show code excerpts from the Get-UserData and Get-GroupData functions.

function Get-UserData {

$strConnection = "Data Source=$script:SQLServer;
Initial Catalog=$script:DBName;Integrated Security=SSPI"

$sqlConnection = New-Object `
System.Data.SqlClient.SqlConnection($strConnection)

$strSQL = @"
SELECT dbo.UserTable.UserSamAccountname, dbo.UserTable.UserGUID
FROM UserTable
"@

$sqlCommand = New-Object System.Data.SqlClient.sqlCommand
$sqlCommand.CommandText = $strSQL
$sqlCommand.Connection = $sqlConnection

$sqlDataSet = new-object System.Data.DataSet
$sqlDataAdapter = new-object System.Data.SqlClient.SqlDataAdapter
$sqlDataAdapter.selectCommand = $sqlCommand

try
{
$sqlConnection.open()

 [void]$sqlDataAdapter.Fill($sqlDataSet,"LocalData")

 $sqlConnection.Close()
 $sqlCommand.Dispose()
 return $sqlDataSet.Tables[0]
 }

 catch
 {
 write-host $_.exception
 $sqlConnection.Close()
 $sqlCommand.Dispose()
 }
}

Notice the use of try{} catch{} blocks around the Open() and Fill() methods to

catch database connectivity issues.

function Get-GroupData {

param
(
$UserGUID
)

$strConnection = "Data Source=$script:SQLServer;
Initial Catalog=$script:DBName; Integrated Security=SSPI"

Listing 2 Get-UserData function

Listing 3 Get-GroupData function

Defines connection
string

Creates SQLConnection
object

Stores
SQL Select
statement

Creates SQLCommand
object; assigns
SQLConnection object

Creates
local

DataSet
object

Creates
SqlDataAdapter
object; assigns
SQLCommand
object

Catches
database
connectivity
issues

Defines
connection string

419Handling database interactions

$sqlConnection = New-Object `
System.Data.SqlClient.SqlConnection($strConnection)
$sqlConnection.open()

$sqlCommand = New-Object System.Data.SqlClient.sqlCommand
$sqlCommand.Connection = $sqlConnection

$strSQL = @"
SELECT dbo.GroupTable.GroupSamAccountname,
dbo.GroupTable.StartDate,
dbo.GroupTable.EndDate,
dbo.GroupTable.GroupGUID, dbo.UserTable.UserGUID,
dbo.UserTable.UserSamAccountname
FROM UserTable
INNER JOIN GroupTable
ON
dbo.UserTable.UserGUID = dbo.GroupTable.UserGUID
WHERE
dbo.UserTable.UserGUID = @UserGUID
"@

$sqlCommand.CommandText = $strSQL

[void]$sqlCommand.Parameters.AddWithValue("@UserGUID", $UserGUID)

$sqlDataSet = new-object System.Data.DataSet
$sqlDataAdapter = new-object System.Data.SqlClient.SqlDataAdapter
$sqlDataAdapter.selectCommand = $sqlCommand

 try
 {
 [void]$sqlDataAdapter.Fill($sqlDataSet,"LocalData")
 $sqlConnection.Close()
 $sqlCommand.Dispose()

 $sqlDataSet.tables[0].DefaultView.AllowNew = $true
 $sqlDataSet.tables[0].PrimaryKey =
 ➥ $sqlDataSet.tables[0].Columns.Item("GroupGUID")

 return $sqlDataSet.tables[0]
 }

 catch
 {
 write-host $_.exception
 $sqlConnection.Close()
 $sqlCommand.Dispose()
 }
}

Admittedly you could achieve the same result using a SQL stored procedure, but that

requires moving the SQL statement to the server, making the function more difficult

to understand.

Implementing UI error handling

When the user clicks the “Save Changes” button, the database updates the changes in the

grdSelectedUser DataGrid. Before the rows of data are piped to the Set-GroupData

Creates
SQLConnection object

Opens DB
connection Creates SQLCommand object;

assigns SQLConnection object

Stores SQL
Select
statement

Creates
local
DataSet
object

Creates
SqlDataAdapter
object; assigns
SQLCommand
object

Catches
connectivity
errors

420 CHAPTER 28 Active Directory Group Management application

function (to write the changes to the SQL database) you must ensure that 1) the start

and end dates aren’t empty and 2) the end date occurs after the start date.

 To achieve this create a Boolean variable $dateError and set it to $false. Next

evaluate the current row’s start and end date fields to verify that they aren’t empty. If

that check passes ensure that the end date occurs after the start date. If either of these

evaluation fails the $dateError variable is set to $true.

 After you complete the checks evaluate the $dateError variable:

■ If the variable holds $true the user is presented with a popup box and the save

operation is abandoned.
■ If it’s $false any modified rows are written back to the database.

Notice that you can access the DataGrid’s bound DataTable object using its Items-

Source property. Also you can return a collection of only the modified rows using the

GetChanges() method as shown:

 if ($dateError)
 {
 $wsh = New-Object -ComObject wscript.shell
 $wsh.popup("Date is null or EndDate before StartDate",$null,"Error",0)
 }
 else
 {
 $changedRows =
 ➥ ($grdSelectedGroup.ItemsSource.Table.DefaultView.Table.GetChanges())

 if ($changedRows)
 {
 $changedrows.Rows | Set-GroupData
 }
 }

Because the Set-GroupData function has the begin{}, process{}, and end{} blocks

defined, you can use the pipeline to pass the collection of modified rows to the Set-

GroupData function.

 The final task is to create a script that reads the SQL database information and

makes the relevant changes in Active Directory.

Writing the Active Directory modification script

The script must run automatically on a regular schedule to eliminate the need for

human intervention. To satisfy this requirement the SQL database Job Agent will run

the script once an hour. The SQLJob.ps1 script contains the logic to complete the

tasks shown in table 4.

 Listing 4 shows the logic used to add a user/group membership defined in the

SQL database to Active Directory. The Get-SQLData function returns the result of

the SQL statement and an array of custom PowerShell objects, rather than a DataSet

object, which makes the data far easier to work with.

421Writing the Active Directory modification script

$sqlAddGroups = @"
SELECT dbo.GroupTable.GroupGUID,
dbo.GroupTable.GroupSamAccountname,
dbo.GroupTable.UserGUID,
dbo.GroupTable.StartDate, dbo.GroupTable.EndDate,
dbo.UserTable.UserSamAccountName
FROM GroupTable
INNER JOIN UserTable
ON
dbo.UserTable.UserGUID = dbo.GroupTable.UserGUID
WHERE dbo.GroupTable.StartDate <= GETDATE()
AND dbo.GroupTable.EndDate >= GETDATE()
"@

Get-SQLData -strSQL $sqlAddGroups |
ForEach-Object {

$strUser = [String]::Format("LDAP://<GUID={0}>",$_.UserGUID)
$User = [ADSI]$strUser

$strGroup = [String]::Format("LDAP://<GUID={0}>",$_.GroupGUID)
$Group = [ADSI]$strGroup

 if (-not $Group.member.Contains($User.DistinguishedName.ToString()))
 {
 try
 {
 $Group.psbase.Invoke("Add",$User.Path)
 Add-Content -Value "$(get-date -f 'yyyy-MM-dd HH:mm:ss'); `
Added $($User.DistinguishedName) To $($Group.DistinguishedName)" `
-Path $logFilePath
 }
 Catch
 {
 return $_.exception
 }
 }
}

Table 4 SQLJob.ps1 functionality

Task Description

Run SQL query Returns all user and group information where group membership start date is less

than the current date and end date is greater than the current date

Run SQL query Returns all user and group information where group membership start and end

dates are both less than the current date

Process results of

first query

Binds to user and group objects in Active Directory

Determines whether the user is already a member of the group

If not a group member, adds the user to the group

Process results of

second query

Binds to user and group objects in Active Directory

Checks that the user is a member of the group

Removes the user from the group

Listing 4 Read SQL database and add user group membership

Stores SQL
Inner Join
statement

Executes SQL query
and processes group
membership additions

Binds to
user object

Binds to
group object

If user
is not

already
a member

of the
group,

adds user

422 CHAPTER 28 Active Directory Group Management application

When the user and group objects are accessed in Active Directory the objectGUID

attribute value is used in the LDAP:// binding moniker. Using the objectGUID attri-

bute ensures that the correct objects are found because this attribute can’t be modi-

fied on any directory object.

Summary
Developing a full-fledged GUI application using PowerShell can be rather daunting

because it forces you to interact with technologies, such as WPF and SQL Server, that lie

outside of the regular PowerShell environment most administrators are familiar with.

 The example in this chapter could be improved with several features, such as add-

ing a mechanism in the UI to remove users from groups, and the ability to automati-

cally send emails to the users affected by group membership changes, to name a few. I

hope this chapter has demonstrated how PowerShell can be the glue that joins differ-

ent technologies together to solve a real-world problem.

About the author

Chris Bellée is a Senior Premier Field Engineer (PFE) who works

for Microsoft Services in Sydney, Australia. His background is in

IT Administration, and he specializes in Directory Services and

PowerShell automation, delivering proactive and reactive services

for Microsoft’s Premier customers. Originally from the island of

Jersey in the Channel Islands (UK), Chris traveled to Australia

eight years ago and liked it so much that he stayed—and met his

future wife. He and his wife now have a daughter who keeps them

constantly on their toes!

423

A

AcceptTcpClient() method 66
AcceptTCPConnection() method 66
ACEs (access control entries) 116
ACLs (access control lists) 116
action parameter 329
Active Directory

SID history
cleaning 117–118
history overview 116–117
mapping domains to names 120
reporting on 118–121
script for outputting 123–125
SIDs defined 115–116
using Active Directory cmdlets 121
using ADSI 122
using .NET 123
using NLTEST utility 122
using WMI 122

user lockout events 90–92
Active Directory Group Management application

auditing feature in 408
automated script for 420–422
data storage for 407–408
database interactions

error handling for 419–420
executing SQL statements 417–419

overview 406
project files for 409
requirements for 406–407
UI for

designing 409–410
development tools for 407

event-handlers for 412–413
rendering 410–411
XAML code for 413–417

Active Directory Services Interfaces. See ADSI
ActiveDirectory module 74
AD CS (Active Directory Certificate Services) 93
adapted objects

CIM/WMI adapted objects 285–287
overview 284–285

Adapted Type System. See ATS
Add() method 374
Add-MD5 function 143–144
Add-MD5Hash 133
Add-NlbClusterVip cmdlet 400
AdminProxy class 380
ADSI (Active Directory Services Interfaces) 122
Alter() method 374
AppendPath parameter 219
Application Request Routing. See ARR
ApplicationPoolIdentity 401
approval rules, for WSUS server

creating 384–386
locating 383–384

$args variable 193
ArgumentTransformationAttribute 199
Arp 248
ARR (Application Request Routing) 399
AsJob parameter 242
ATS (Adapted Type System) 284, 287
auditing feature 408
auditing user logon events

Active Directory user lockout events 90–92
authentication protocol 87–90
logon failures 83–87

index

424 INDEX

auditing user logon events (continued)
logon type 87–90
overview 80–92
querying event logs 81–83

Authentication parameter 23, 29
authentication protocol, for user logons 87–90
autoConfig attribute 297
automatic remoting

accommodating PowerShell versions 321–322
best practices for 323–324
example of 307–308
inner functions 315–317
outer functions 315
passing parameters 309–310
pipeline support 319–321
protecting intellectual property 324–325
proxy functions 314–315
streaming binary DLLs to target server 322–

323
supporting additional parameter sets 313–

314
testing 317–318
using ComputerName property 310–311
using manual Invoke-Command cmdlet 308–

309
using modules 322
using PSWF workflows 311–312

automating website deployment 403–405
Available property 57

B

BaseType property 291
Batch value 88
binary DLLs, streaming 322–323
BLG files 41–43
BoolParam parameter 356
btnSaveChanges control 410, 412
btnSearchGroup control 410, 412
btnSearchUser control 410, 412
build scripts, psake

creating 329
managing

describing tasks 338–339
grouping tasks into files 339
identifying public tasks 337–338

properties for
overview 334–336
validating values 336–337

running 330–331
buildfile parameter 330
builds, for software. See psake module
business-logic errors, in error handling

template 167–168

C

CachedInteractive value 88
CachedRemoteInteractive value 88
CachedUnlock value 88
catch blocks, in error handling template 163–

164
CDXML files 236–238
$cert variable 398
certificate practice statement. See CPS
certification authority databases

APIs required for 107–108
approving certificate requests 110–112
cleaning up database 112–114
connecting to 95
denying certificate requests 110–112
existing tools for 93–94
getting database schema 96–98
querying

filters for 98–100
output columns 100–101
processing output 102

revoking certificates 108–110
universal function for querying

creating 102–103
filters for 103–106
using 106–107

charts, for HTML reports 177–180
CIM (Common Information Model) 22, 285

adapted objects 285–287
cmdlets 23–25
sessions

options for 28–30
overview 25–28

WMI 22–23
CIM_ComputerSystem class 23
CimInstance class 270, 286
CimSession parameter 25, 27, 241–242
class keyword 272
classes (.NET)

creating for output 270–274
methods for 274–276

CloseMainWindow() method 158
CLR (common language runtime) 299
Cmdlet tag 245
CmdletBinding attribute 114
cmdlets

CIM 23–25
consistency of 306–307
measuring execution time for 150–151

colors, for HTML reports 182
ColumnIndex parameter 99
$Columns variable 96
COM (Component Object Model) 25
command line, Mercurial 263–264

425INDEX

command-line tools, converting to PowerShell
tool

data formats for 248–251
handling errors 253
ipconfig command example 254–257
overview 247
parsing text output 251–253
requirements for 247–248

commands, for psake module 328–329
CommandText property 417
committing changes using Mercurial

overview 265
via script 267

Common Information Model. See CIM
common language runtime. See CLR
common parameters, using in functions 135–136
communications

Echo server
code for 67–69
creating TPC port listener 65
handling connections 66–67

LDAP communications
receiving data with portqry.exe 58
receiving data with PowerShell 58–65

receiving data 57–58
sending data 55–57
testing for open port 52–55

ComputerName parameter 23, 25, 27–28, 37,

136, 199, 241
ComputerName property 272, 310–311
condition parameter 337
conditional rows, for type formatting 212–213
conditions, filtering objects by 153–154
config property 334–337
ConfigString argument 110
configuration files, for constrained

endpoints 73–75
Configuration MSBuild property 334
Configuration node 209
ConfirmImpact 135
connecting

to certification authority databases 95
to SQL server using SMO 370
to WSUS server 379

connections, handling for Echo server 66–67
consistency of cmdlets 306–307
constrained endpoints

and delegation 75–76
configuration file for 73–75
in PowerShell v2 73

Construct-PSRemoteDataObject command 5, 7–9
Construct-PSRemoteDataObject.ps1 file 6
Contains() method 371–372
Continuous parameter 37
Controls node 209
ConvertSIDHistoryNTFS function 118

ConvertFrom-DnsLogLine function 227–228
ConvertFrom-StringData cmdlet 362
converting command-line tools

data formats for 248–251
handling errors 253
ipconfig command example 254–257
overview 247
parsing text output 251–253
requirements for 247–248

Convert-SIDHistoryNTFS function 117
ConvertTo-HTML cmdlet

Fragment parameter 174–175
overview 171–172

ConvertTo-Xml cmdlet 299–302
Coordinated Universal Time. See UTC
Copy-Item cmdlet 365
Counter parameter 36
Counter property 37
counters, for PLA

controlling sampling 38
enumerating groups 32–34
finding desired 34–37
on remote computers 39–40
querying 37–40
specifying intervals 38

CounterSetName property 33
counting objects 158–159
CPS (certificate practice statement) 108
Create() method 371, 373
CreateConnection() method 381
Credential parameter 39, 199
CredSSP (Credential Security Support

Provider) 75
CSV files, saving performance data as 43
custom WMI cmdlets

CDXML files 236–238
creating 238–239
filter parameters for 240–242
using 239–240
using WMI methods 242–246

CustomControl node 214–215
CustomControlName node 214
CustomEntry node 215

D

data formats 248–251
data storage 407–408
$data variable 46
DataAvailable property 57
DatabaseConfiguration class 381
databases

getting count of 350–351
in Active Directory Group Management

error handling for 419–420
executing SQL statements 417–419

426 INDEX

databases (continued)
large data sets

adding data to 232–233
advantages of 230
creating 230–232
getting objects from 233–234
querying for use in other tools 234–235

schema, for certification authority
databases 96–98

using SMO
creating 371
creating tables 372–374
inserting data 374–375
iterating through results 376–378
querying data 375–376
removing rows 374

WSUS server connection 381–382
Datacenter property 231
DataGridTemplateColumn object 413
$dateError variable 420
DateParam parameter 356
DateTime object 103, 105, 108, 110
DC (domain controller) 115
DCOM (Distributed Component Object

Model) 23
default values, for parameters 136
delegation, and constrained endpoints 75–76
depends parameter 329–330
deserialization 299
Deserialized tag 301
DHCPEnabled property 240
DHCPLeaseObtained method 245
DialogResult class 275
Dir command 12
Directory parameter 153
directorySecurity object 137
Disable-PSWSManCombinedTrace

command 3, 6
Distributed Component Object Model.

See DCOM
Distributed Management Task Force.

See DMTF
DLLs (dynamic-link libraries)

overview 368
streaming to target 322–323

DMTF (Distributed Management Task
Force) 23

DNS (Domain Name System) 221
Dnscmd 248
docs parameter 338
DOM (Document Object Model) 281, 287
domain controller. See DC
Domain Name System. See DNS
domains, for Active Directory 120
DriverQuery 248
$dt variable 377

duplicate files example 142–144
dynamic parameters

advantages of 195–197
disadvantages of 195–197
example implementations of 197
mitigating errors using 201–206
overview 195–197
using 197–201

dynamic-link libraries. See DLLs
DynamicParam block 199, 202–203

E

Echo server
code for 67–69
creating TPC port listener 65
handling connections 66–67

Enable-PSWSManCombinedTrace command 3,

6, 14
EnableStatic method 244–245
Encoding class 56
encoding images 176–177
endpoints 73
EndTime parameter 47
Enter-PSSession 14
Enum class 276
EnumCertViewColumn method 96, 98
enumerating members

counting objects 158–159
methods 158
properties 158

$env:COMPUTERNAME variable 370
environment, for SSRS 355–356
error codes 85
error handling

for command-line tool conversion 253
in Active Directory Group Management

application 419–420
template for

code for 168–169
$Error object in 164–167
$ErrorActionPreference preference

variable 162
handling business-logic errors 167–168
InvocationInfo object in 164–167
overview 161–162
using try/catch/finally pattern 163–

164
$Error object 162, 164, 166, 170
ErrorAction parameter 162
$ErrorActionPreference variable 134, 162
errors, mitigating using dynamic

parameters 201–206
ETS (Extensible Type System) 240
EV (Extended Validation) certificate 394
Event Log Readers group 83

427INDEX

event logs
overview 80–81
querying 81–83
user logons in

Active Directory user lockout events 90–92
authentication protocol 87–90
finding failures 83–87
logon type 87–90

events, viewing history for WSUS server 382
Excel files (CSV), saving performance data 43
ExecuteNonQuery() method 374, 376
ExecuteReader() method 382
ExecuteWithResults() method 376
executing SQL statements 417–419
execution time, measuring 150–151
Exit-PSSession command 7, 12
ExpandProperty parameter 36
Export-CliXml cmdlet 299–302
Export-DnsLogLineToDb function 232
Export-SIDMapping function 124
Extended Validation certificate. See EV
Extensible Application Markup Language.

See XAML
Extensible Markup Language. See XML
Extensible Type System. See ETS

F

failed update installations, for WSUS server 386–

387
failureMessage parameter 337
FarmAccountName attribute 296
FarmAccountPassword attribute 296
File parameter 153
$file parameter 144
FileFormat parameter 43
FileInfo class 137, 208
files, as parameters

converting to paths 145
piping same item into multiple

parameters 146–147
using .Path property 145–146

FileStream class 365
Fill() method 417
filter parameters

avoiding pipeline using 154–156
for custom WMI cmdlets 240–242

FilterHashTable parameter 82–83
filtering objects

by condition 153–154
by property 152–153
returning only required properties 154

filters
for certification authority database queries 98–

100
for universal functions 103–106

FilterXPath parameter 82
finally blocks 163–164
finding duplicate files example 142–144
FindName() method 412
Flexible Single Master Operations. See FSMO
FloatParam parameter 356
Flush() method 57
Force parameter 113–114, 239
ForEach-Object cmdlet 82, 157, 159
FormatsToProcess parameter 219
FormatString node 212
Format-Table view 210
Formatted switch 133
formatting types

conditional row entries 212–213
CustomControl node 214–215
example file for 216
files for 209
GroupBy node 214
loading into session 219–220
overview 207–209
TableHeaders node 210–212
ViewDefinitions node 209–210

FQDN (fully qualified domain name) 233
Fragment parameter 174–175
FSMO (Flexible Single Master Operations) 91,

116
ftype 248
fully qualified domain name. See FQDN
functions

adding Write-Verbose messages 147–148
inserting help in 130–132
selecting name carefully 130
switches for 136
using parameter types in 139–142

G

Get cmdlet 237
GetCounter cmdlet 35, 42
Get-ADComputer cmdlet 394
Get-ADDomain cmdlet 91
Get-ADDomainController cmdlet 91
Get-ADForest cmdlet 124
GetAllTrustRelationships method 123
Get-ApprovalAudit function 387
GetApprovalRules() method 383
Get-Base64Image function 177, 180
GetBytes() method 56
GetChanges() method 420
Get-ChildItem cmdlet 152–153, 155–156, 208,

348
Get-CimAssociatedInstance cmdlet 24
Get-CimClass cmdlet 24
Get-CimInstance cmdlet 24, 237, 270, 273, 302
Get-CimSession cmdlet 25

428 INDEX

Get-ClientUpdateStatistics function 389–391
GetCmdlet tag 245
GetColumnCount method 101
GetColumnIndex method 99
GetComputerTargetGroups() method 383
GetConfiguration() method 380
Get-Content cmdlet 282–283
GetDatabaseConfiguration() method 381
GetElementById method 289
GetElementsByTagName method 289
Get-EventLog cmdlet 81, 84
Get-FailedUpdateInstallation function 386
Get-FailureReason function 85
Get-FilesWithHash 132
Get-GroupData function 413, 418
Get-LogonFailures.ps1 file 86
getmac 248
GetNames() method 276
Get-NlbCluster cmdlet 400
Get-Process cmdlet 151–152
Get-PSProvider cmdlet 155
Get-PSScriptRoot function 411
Get-PSSession cmdlet 25
Get-PSSessionConfiguration cmdlet 16, 72
Get-RequestRow function 107, 109, 113
Get-SQL command 133
Get-SQLData function 420
Get-SSRSParameterArray function 361–362
Get-SSRSSubscription function 359–360
Get-Thing command 222
Get-TimeStamp function 166
GetType() method 291
Get-UpdateApprovals function 389
GetUpdateCategories() method 383
GetUpdateClassifications() method 383
GetUpdateEventHistory() method 382
GetUpdateServer() method 380
Get-Win32NetworkAdapterConfiguration

cmdlet 239, 244–245
Get-WinEvent cmdlet 81–82, 84
Get-WmiObject cmdlet 23–24, 153, 273
GMT (Greenwich mean time) 108
grdMain control 409
grdSearchGroup control 409, 412
grdSearchUser control 409, 412
grdSelectedGroup control 409
grdUser control 409, 412
GroupBy node 214
GroupTable 407
GUI vs. command line, Mercurial 263–264

H

help, inserting in functions 130–132
here-string, adding HTML header info to 175–

176

hex codes 85
hosts, untrusted 19–20
HTML reports

adding charts 177–180
adding header info to here-string 175–

176
ConvertTo-HTML cmdlet

Fragment parameter 174–175
overview 171–172

differentiating data with color 182
encoding images 176–177
overview 171
preparing data for report 180–181
Systems Inventory script example 182–190
using script parameters 172

$HTMLSystemReport variable 182

I

ICertAdmin interface 95, 107–108
ICertView interface 94, 96, 98
IIS (Internet Information Services) 23

automating deployment 403–405
connecting to servers 394–395
deploying website files 396
enabling remote management for IIS

Manager
enabling service 397–398
overview 397
replacing certificate 398–399

load balancing web farms 399–401
secure websites

configuring 401–403
deploying SSL certificates 396–397

IIS Manager, enabling remote management for
enabling service 397–398
overview 397
replacing certificate 398–399

images, encoding for HTML reports 176–177
Import-Counter cmdlet 44
Import-Module command 130
Include parameter 152
inner functions

using 315–317
vs. outer functions 315

input, valid 138–139
InputObject parameter 140
INSERT SQL command 375
installing, psake module 328
$instance variable 370
Integrated Scripting Environment. See ISE
intellectual property, protecting 324–325
Interactive value 88
Internet Information Services. See IIS
intervals, for PLA counters 38
IntParam parameter 356

429INDEX

InvocationInfo object, in error handling
template 164–167

Invoke-CimMethod cmdlet 24
Invoke-Command cmdlet 83, 90, 308–309,

403–404
Invoke-PolicyEvaluation 344
invoke-psake command 329–330
Invoke-RestMethod cmdlet, using with

XML 302–304
Invoke-SqlCmd 344
Invoke-SqlQuery function 232
invoke-task command 329
Invoke-Win32NACRenewDHCPLease 244
Invoke-WmiMethod cmdlet 24
IPAddress parameter 245
ipconfig command example 254–257
IPEnabled property 240
ISE (Integrated Scripting Environment) 130,

209, 285, 346
ItemsSource property 420

J

jobs, for long-running tasks 40
JobSize property 212
Join-Path cmdlet 219

K

Kerberos 75
Klist 248

L

large data sets
and OutOfMemoryException 221
and pipeline 225–226
example using 226–229
holding in memory 222–223
stream vs. water balloon analogy 221–222
streaming over input items 224
using database

adding data to 232–233
advantages of 230
creating 230–232
getting objects from 233–234
querying for use in other tools 234–235

LDAP communications 389
receiving data with portqry.exe 58
receiving data with PowerShell 58–65

LinkDate property 250
ListControl node 210
ListSet parameter 32, 35, 45
load balancing, for web farms 399–401
Load() method 411

loading files
in XML 295
into session 219–220

Load-SSRSAssembly 358
LoadWithPartialName 369
logon events

Active Directory user lockout events 90–92
authentication protocol 87–90
logon failures 83–87
logon type 87–90
overview 80–92
querying event logs 81–83

long-running tasks, using jobs for 40

M

$MachineConfigFilePath variable 297
Main.ps1 file 409
ManagementObject object 285
Manufacturer property 153
MatchInfo object 252, 256
MaxSamples parameter 37–38
Measure-Command cmdlet 150
measuring execution time 150–151
member enumeration

counting objects 158–159
with methods 158
with properties 158

memory, large data sets in 222–223
Mercurial

adding files 265
alternative web services for 269
command line vs. GUI 263–264
committing changes 265
initializing repository 264
overview 262–263
removing files 266
scripting commit changes 267
scripting initialize repository 267
using in teams 268–269

Message property 6
MessageBox class 274
methods

for .NET classes 274–276
member enumeration of 158

Microsoft Developer Network. See MSDN
Microsoft Management Console. See MMC
Microsoft.PowerShell endpoint 72
MMC (Microsoft Management Console) 93
modules, using when remoting 322
ModulesToImport 74
MSDN (Microsoft Developer Network) 85
multivalue attribute 119
MySystemData 272
$myThings variable 222

430 INDEX

N

naming
functions 130
parameters 135

NAS (network-attached storage) 118
Nbtstat 248
.NET

class methods 274–276
creating class for output 270–274
overview 270–277
reporting AD SID history using 123

NetMon (Network Monitor) 59
Netstat 248
Network Load Balancing. See NLB
Network value 88
NetworkAdapterConfiguration.cdxml

file 239
network-attached storage. See NAS
NetworkCleartext value 88
New-CimInstance cmdlet 24
New-CimSession cmdlet 25, 27
New-CimSessionOption cmdlet 25, 28, 30
NewCredentials value 88
New-ModuleManifest cmdlet 219
New-NlbCluster cmdlet 400
New-Object cmdlet 52, 273
New-PieChart function 178, 180
New-PSSession cmdlet 25
New-PSSessionConfiguration cmdlet 73
New-PSSessionOption cmdlet 25
New-WebAppPool cmdlet 401
NLB (Network Load Balancing) 394
NLTEST utility 122
NoElement parameter 227
NonAdmin user 76
nonalphanumeric characters 142
nonterminating errors 163
NTSTATUS values 85

O

objectGUID attribute 413, 422
ocs parameter 339
OData 302
Oid class 104
OIDs (object identifiers) 104
Open() method 417
OpenView method 102
options, for CIM sessions 28–30
[ordered] attributes 256
outer functions vs. inner functions 315
OutOfMemoryException

and large data sets 221
overview 223

output
columns, for CA database queries 100–101
creating .NET class for 270–274
keeping pipeline in mind 132–133
objects 270
parsing, for command-line tool

conversion 251–253
using .Path property 133
using Write- commands properly 133–134

OWA (Outlook Web Access) 90

P

PacketPrivacy 23, 29
parameter types, using in functions 139–142
parameters

accepting input from pipeline 137
and end users 136
assigning default values 136
dynamic parameters

advantages of 195–197
disadvantages of 195–197
example implementations of 197
mitigating errors using 201–206
overview 195–197
using 197–201

files as
converting to paths 145
piping same item into multiple

parameters 146–147
using .Path property 145–146

flexibility for valid input 138–139
in scripts 172
making use of common parameters 135–136
overview 192–193
passing for automatic remoting 309–310
providing switches for complex functions 136
static parameters

in PowerShell v1 193–194
in PowerShell v2 194–195

using parameter types 139–142
using standard names 135

parsing text output, for command-line tool
conversion 251–253

Path property
and output 133
files as parameters 145–146

PathInfo object 137
Paths property 36
PDC (Primary Domain Controller) 91
performance

and pipeline 151
and Where-Object cmdlet 156

Performance Logs and Alerts. See PLA
performance management. See PLA

431INDEX

PerformanceCounterSample object 45–46
permissions, troubleshooting remoting 16
pipeline

accepting input from 137
adding support for automatic remoting 319–321
and large data sets 225–226
and performance 151
avoiding use of

filtering objects 152–154
using filtering parameters 154–156
using member enumeration 157–159
using regular expressions 156–157

piping item into multiple parameters 146–147
PKI (public key infrastructure) 93
PLA (Performance Logs and Alerts)

counters for
controlling sampling 38
enumerating groups 32–34
finding desired 34–37
on remote computers 39–40
querying 37–40
specifying intervals 38

manipulating data programmatically 43–49
overview 31–32
saving data to file

binary files (BLG) 41–43
Excel files (CSV) 43

using jobs for long-running tasks 40
portqry.exe 58
ports 14–15

blocked, troubleshooting 14–15
creating port listener 65
testing for open 52–55
testing port 389

receiving data with portqry.exe 58
receiving data with PowerShell 58–65

PowerShell Community Extensions module. See
PSCX

PowerShell v1, static parameters in 193–194
PowerShell v2

constrained endpoints in 73
static parameters in 194–195

PowerShell Web Access. See PSWA
PowerShell Workflow. See PSWF
prayer-based parsing 278
PrependPath parameter 219
Primary Domain Controller. See PDC
PrintSystemInfoJob class 210
Process{} block 139
ProcessingMode 365
processModel element 297
properties

filtering objects by 152–153
for psake build scripts

overview 334–336
validating values 336–337

member enumeration of 158
returning required 154

Property parameter 103, 285, 335
PropertyName node 215
protecting intellectual property 324–325
Protocol parameter 28
providers, and -Query parameter 155–156
provisioning IIS web servers/sites

automating deployment 403–405
connecting to servers 394–395
deploying website files 396
enabling remote management for

IIS Manager
enabling service 397–398
overview 397
replacing certificate 398–399

load balancing web farms 399–401
secure websites

configuring 401–403
deploying SSL certificates 396–397

proxy functions 314–315
Proxy value 88
psake module

and software builds 327
build properties

overview 334–336
validating values 336–337

build scripts
creating 329
running 330–331

building Visual Studio projects 331–333
commands for 328–329
installing 328
managing scripts

describing tasks 338–339
grouping tasks into files 339
identifying public tasks 337–338

overview 327–328
using PowerShell with 333–334

PSComputerName property 91
PSCredential object 295
pscustomobject 255
PSCX (PowerShell Community Extensions)

module 333
PSDiagnostics module 3–6
PSPath property 145
PSSessionConfiguration file 73
$PSSessionConfigurationName variable 72
PSSnapin 343
PSWA (PowerShell Web Access) 71
PSWF (PowerShell Workflow)

workflows 311–312
public key infrastructure. See PKI
public keyword 272
public tasks, in psake build scripts 337–

338

432 INDEX

Q

Qprocess 248
Query parameter 153–155

and providers 155–156
overview 153

querying
certification authority databases

filters for 98–100
output columns 100–101
processing output 102

event logs 81–83
PLA counters 37–40

quiet switch 133
Quser 248

R

Raw switch 133
Read() method 57
readable data 280
ReadBytes() method 64
reading files, XML

loading file 295
overview 293–295
using values from 295–296

ReadLine() method 227
Reason parameter 109
receiving data

via TCP 57–58
with portqry.exe 58

Register-CimIndicationEvent cmdlet 24
Register-PSSessionConfiguration endpoint 73
Register-WmiEvent cmdlet 24
RegistryKey class 208
regular expressions, avoiding pipeline

using 156–157
remote computers, PLA counters on 39–40
Remote Event Log Management exception 82
Remote Server Administration Tools. See RSAT
RemoteInteractive value 88
remoting

and consistency of cmdlets 306–307
automatic

accommodating PowerShell versions 321–

322
best practices for 323–324
example of 307–308
inner functions 315–317
outer functions 315
passing parameters 309–310
pipeline support 319–321
protecting intellectual property 324–325
proxy functions 314–315
streaming binary DLLs to target server 322–

323

supporting additional parameter sets 313–

314
testing 317–318
using ComputerName property 310–311
using manual Invoke-Command

cmdlet 308–309
using modules 322
using PSWF workflows 311–312

constrained endpoints
and delegation 75–76
configuration file for 73–75
in PowerShell v2 73

enabling for IIS Manager
enabling service 397–398
overview 397
replacing certificate 398–399

endpoints for 73
making connection 6–14
overview 71–76
troubleshooting

blocked port 14–15
permissions 16
untrusted host 19–20
using PSDiagnostics module 3–6

Remove-CimInstance cmdlet 24
Remove-CimSession cmdlet 25
Remove-PSsession cmdlet 25
Remove-SIDHistory function 118
Remove-WmiObject cmdlet 24
Render() method 365
rendering UI 410–411
RenewDHCPLease method 244–245
Replace operator 182
Replace() method 253
ReplacementStrings collection 84
reporting

in HTML
adding charts 177–180
adding header info to here-string 175–

176
ConvertTo-HTML cmdlet

-Fragment parameter 174–175
overview 171–172

differentiating data with color 182
encoding images 176–177
overview 171
preparing data for report 180–181
Systems Inventory script example 182–

190
using script parameters 172

in WSUS
auditing approvals 387–389
client update status 389–391
failed update installations 386–387

ReportParameter class 363
ReportParameters 358

433INDEX

repositories, for Mercurial
initializing 264
initializing via script 267

Request parameter 109, 113
requirements

for SQL Server provider 343–344
for SSRS 356
for subscriptions 356–357

RestrictedRemoteServer type 74
ResubmitRequest method 111
retrieving subscriptions 359–361
RevocationDate parameter 109
RevokeCertificate method 108, 110
rows, conditional 212–213
RSAT (Remote Server Administration

Tools) 119, 393
RunAsCredential 75
Running tag 182

S

SaaS (Software as a Service) 343
SAM (Security Accounts Manager) 115
SampleInterval parameter 38
sampling, for PLA counters 38
saving files, XML 298–299
scalability. See large data sets
scheduling scripts 365–366
schema, database 96–98
SchTasks 248
ScriptBlock node 210, 215
scriptblock parameter 136
scripts

measuring execution time for 150–151
parameters in 172

SDDL (security descriptor definition
language) 75

searchRequest packet 60
Secure Socket Layer certificates. See SSL
secure websites

configuring 401–403
deploying SSL certificates 396–397

Security Accounts Manager. See SAM
security descriptor definition language. See SDDL
security identifier. See SID
SecurityDescriptorSddl 75
SeekOperator parameter 99
SelectedDate property 417
SelectionSet node 210
Select-Object cmdlet 36, 119, 154, 157–158
Select-String cmdlet 133
sending data, via TCP 55–57
Send-MailMessage cmdlet 365
Send-SSRSSubscription function 359, 363
serializing, XML 299–302
Server Manager module 395

ServerReport.ReportPath property 365
ServerReport.ReportServerUrl property 365
$Servers variable 395
Service value 88
SessionOption parameter 28
sessions, CIM

options for 28–30
overview 25–28

Set-CimInstance cmdlet 24
Set-GroupData function 420
Set-PSSessionConfiguration command 16, 73, 75
SetRestriction method 98, 103
SetResultColumn method 101
SetResultColumnCount method 101
SetTable method 96
Set-Win32NACIPAddress 244
Set-WmiInstance cmdlet 24
ShouldProcess method 135
Show() method 275
ShowDialog() method 412
ShowSecurityDescriptorUI 75–76
SID (security identifier) history, Active Directory

cleaning 117–118
history overview 116–117
mapping domains to names 120
reporting on 118–121
script for outputting 123–125
SIDs defined 115–116
using Active Directory cmdlets 121
using ADSI 122
using .NET 123
using NLTEST utility 122
using WMI 122

sidHistory attribute 118
SIDHistory module 117–118, 120, 124
Simple Object Access Protocol. See SOAP
SMO (SQL Server Management Objects)

connecting to server 370
creating database using 371
creating table using 372–374
inserting data 374–375
iterating through results 376–378
loading 369–370
overview 368–369
querying data 375–376
removing rows 374

SOAP (Simple Object Access Protocol) 7
Software as a Service. See SaaS
software builds. See psake module
source control software

advantages of 262
Mercurial

adding files 265
alternative web services for 269
command line vs. GUI 263–264
committing changes 265

434 INDEX

source control software (continued)
initializing repository 264
overview 262–263
removing files 266
scripting commit changes 267
scripting initialize repository 267
using in teams 268–269

software requirements 261–262
Split() method 251
SQL Server Management Objects. See SMO
SQL Server provider

examples using 346–350
finding table in many databases 351
getting database count 350–351
overview 343–344
requirements for 343–344
using 345–346

SQL Server Reporting Services. See SSRS
SQL statements, executing 417–419
SqlCommand class 417
SqlConnection class 417
SqlDataAdapter class 417–419
SQLJob.ps1 file 409
SQLSERVER path 345
SQLSERVER:SQL path 345
SQLSERVER:SQLComputerName path 345
SQLSERVER:SQLComputerNameInstance

path 345
SqlServerCmdletSnapin100 344
SqlServerProviderSnapin100 344
SqlSmoObject class 350
SSL (Secure Socket Layer) certificates 396–397
SslFlags 402
SSRS (SQL Server Reporting Services)

environment settings 355–356
requirements for 356
subscriptions

delivering for report 363–365
main script 358–359
overview 354–355
parsing parameters 361–363
requirements for 356–357
retrieving 359–361
scheduling script 365–366
storing 359

standard names, for parameters 135
StartTime parameter 47
Start-Transcript cmdlet 168
StartupScript parameter 73
static parameters

in PowerShell v1 193–194
in PowerShell v2 194–195

StdOut (standard out) 247
Stop-Process cmdlet 152
Stop-Transcript cmdlet 168
storing subscriptions 359

streaming
over input items 224
vs. water balloon analogy 221–222

streaming binary DLLs 322–323
StringParam parameter 356
strongly typed 271
subscriptions

delivering for report 363–365
main script 358–359
overview 354–355
parsing parameters 361–363
requirements for 356–357
retrieving 359–361
scheduling script 365–366
storing 359

Suffixes parameter 204
supportedLDAPVersion 58
switch statement 106
switches, for complex functions 136
System value 88
System.Data.SqlClient namespace 413
Systems Inventory script example 182–190

T

TableControl view 210
TableHeaders node 210–212
tables

finding in many databases 351
using SMO

creating 372–374
inserting data 374–375
iterating through results 376–378
querying data 375–376
removing rows 374

TableStatusId column 374
task parameter 330
TaskList 248
tasks, in psake build scripts

describing 338–339
grouping into files 339
public tasks 337–338

TCP communications
Echo server

code for 67–69
creating TPC port listener 65
handling connections 66–67

LDAP communications
testing port 389 and receiving data with

portqry.exe 58
testing port 389 and receiving data with

PowerShell 58–65
receiving data 57–58
sending data 55–57
testing for open port 52–55

TCPClient class 52

435INDEX

TcpClient() method 52
TcpListener class 65
teams, using Mercurial with 268–269
$TempFolder variable 365
template, for error handling

code for 168–169
$Error object in 164–167
$ErrorActionPreference preference variable 162
handling business-logic errors 167–168
InvocationInfo object in 164–167
overview 161–162
using try/catch/finally pattern 163–164

testing, for open TCP port 52–55
Test-PSSessionConfigurationFile cmdlet 74
Test-TCPPort 53
Test-Type function 202
Test-WSMan 20
Text node 215
$this variable 212
token bloat. See Active Directory
TortoiseHg GUI 263–265
TortoiseHg tools 262
toString() method 140
TotalPhysicalMemory property 285
ToUniversalTime method 108, 110
tracing data 32
Trim() method 251
troubleshooting, remoting

blocked port 14–15
permissions 16
untrusted host 19–20
using PSDiagnostics module 3–6

trustedDomain object 120
TrustedDomainInformation 123
TrustRelationshipInformation 123
try/catch/finally pattern 163–164
txtSearchGroup control 409
txtSearchUser control 409
type formatting

conditional row entries 212–213
CustomControl node 214–215
example file for 216
files for 209
GroupBy node 214
loading into session 219–220
overview 207–209
TableHeaders node 210–212
ViewDefinitions node 209–210

U

UDP (User Datagram Protocol) 52
UI (user interface)

designing 409–410
development tools for 407
event-handlers for 412–413

rendering 410–411
XAML code for 413–417

UI.xaml file 409
unblock-file command 328
universal functions

creating 102–103
filters for 103–106
using 106–107

Unlock value 88
untrusted host 19–20
Update-FormatData cmdlet 219
UpdateServer class 380, 383
UpdateServices module 379, 391
Update-SIDMapping function 124
UpdateSourceTrigger property 417
User Datagram Protocol. See UDP
user interface. See UI
users

auditing logon events
Active Directory user lockout events 90–92
authentication protocol 87–90
logon failures 83–87
logon type 87–90
overview 80–92
querying event logs 81–83

experience
supporting additional parameter sets 313–314
using ComputerName property 310–311
using PSWF workflows 311–312

UserTable 407
$Using:CertPassword 403
UTC (Coordinated Universal Time) 108

V

value__ property 276
versions of PowerShell, accommodating 321–322
ViewDefinitions node 209–210
ViewSelectedBy node 210
VisibleCmdlets 74
VSC (version control software) packages 262

W

water balloon vs. stream analogy 221–222
web farms 399–401
WebAdministration module 398, 401
WebConfiguration cmdlet 167
WebRestricted 76
websites

automating deployment 403–405
deploying files for 396
secure websites

configuring 401–403
deploying SSL certificates 396–397

Where-Object cmdlet 98, 151–152, 156, 348

436 INDEX

Whoami 248
WideControl node 210
Win32_ class 23
Win32_ComputerSystem class 23
Win32_NetworkAdapterConfiguration class 238,

242
$window variable 411–412
Windows Performance Logs and Alerts. See PLA
Windows Presentation Foundation. See WPF
Windows Software Update Services. See WSUS
WinRM (Windows Remote Management) Ana-

lytic log 5
WMI (Windows Management Instrumentation)

adapted objects 285–287
custom cmdlets

CDXML files 236–238
creating 238–239
filter parameters for 240–242
using 239–240
using WMI methods 242–246

reporting AD SID history using 122
WPF (Windows Presentation Foundation) 331
Write- commands, proper use of 133–134
Write() method 56–57
Write-Error cmdlet 162, 168
Write-Verbose messages, adding to

functions 147–148
write-zip command 333
WSUS (Windows Software Update Services)

approval rules for
creating 384–386
locating 383–384

overview 379
reporting in

auditing approvals 387–389
client update status 389–391
failed update installations 386–387

server
connecting to 379
viewing configuration 380–381
viewing database connection 381–382
viewing event history 382

X

XAML (Extensible Application Markup
Language) 413–417

XML (Extensible Markup Language)
[xml] type literal 283–284
adapted objects

CIM/WMI adapted objects 285–287
overview 284–285

benefits of using 296–297
ConvertTo-Xml cmdlet 299–302
Export-CliXml cmdlet 299–302
Get-Content cmdlet 282–283
modifying files 297–298
overview 279–282
reading files

loading file 295
overview 293–295
using values from 295–296

saving files 298–299
serializing 299–302
using with Invoke-RestMethod cmdlet 302–

304
XmlAttribute class 292–293
XmlDocument class 289–291
XmlElement class 291–292
XmlNodeAdapter class 289

[xml] type literal 283–284
XmlAttribute class 287, 292–293
XmlCDataSection class 287
$XMLDoc variable 295
XmlDocument class 281, 283, 287, 289–291
XmlElement class 287, 291–292
XmlNode class 287
XmlNodeAdapter class 289
XmlNodeReader class 411
XmlReader class 281
XmlReaderSettings class 295, 298
XmlText class 287
XmlWriterSettings class 298

P
owerShell has permanently changed Windows administration. h is powerful script-

ing and automation tool allows you to control virtually every aspect of Windows and

most Microsot servers like IIS and SQL Server. Here’s your chance to learn from the

best in the business.

PowerShell Deep Dives is a trove of essential techniques and practical guidance. It is rich

with insights from experts who won them through years of experience. h e book’s 28 chap-

ters, grouped in four parts (Administration, Scripting, Development, and Platforms), were

hand-picked by four section editors: Jef ery Hicks, Richard Siddaway, Oisín Grehan, and

Aleksandar Nikolić.

What’s Inside

Whether you’re just getting started with PowerShell or you already use it daily, you’ll � nd

yourself returning to this book over and over.

The Authors
Editors Jef ery Hicks, Richard Siddaway, Oisín Grehan, and Aleksandar Nikolić are

joined by PowerShell experts Chris Bellée, Bartek Bielawski, Robert C. Cain,

Jim Christopher, Adam Driscoll, Josh Gavant, Jason Helmick, Don Jones,

Ashley McGlone, Jonathan Medd, Ben Miller, James O’Neill, Arnaud Petitjean,

Vadims Podans, Karl Prosser, Boe Prox, Matthew Reynolds, Mike Robbins,

Donabel Santos, Will Steele, Trevor Sullivan, and Jef Wouters.

Manning Publications and the authors of this book support

Save the Children at www.savethechildren.org.

$44.99 / Can $52.99 [INCLUDING eBOOK]

PowerShell DEEP DIVES

POWERSHELL

M A N N I N G

To download their free eBook in PDF, ePub, and
Kindle formats, owners of this book should visit
manning.com/PowerShellDeepDives.

Managing systems through a keyhole

h e Ten Commandments of PowerShell

scripting

Scalable scripting for large datasets

Adding automatic remoting

Provisioning web servers and websites

automatically to IIS 8

And 23 more fantastic chapters

SEE INSERT

EDITORS: Jeffery Hicks Richard Siddaway Oisín Grehan Aleksandar Nikolić

	Front cover
	authors and their chapters
	brief contents
	contents
	preface
	acknowledgments
	about this book
	What version of PowerShell do I need?
	Where’s coverage of Microsoft Exchange?
	How the book is organized
	Code conventions and downloads
	Author Online
	About the editors

	about Save the Children
	Part 1—PowerShell administration
	1 Diagnosing and troubleshooting PowerShell remoting
	Diagnostics examples
	A perfect remoting connection
	Connection problem: Blocked port
	Connection problem: No permissions
	Connection problem: Untrusted host
	Summary

	2 CIM sessions
	WMI
	CIM cmdlets
	Using CIM sessions
	CIM session options
	Summary

	3 Collecting and analyzing performance counter data
	Windows Performance Logs and Alerts
	Enumerating the counter groups
	Finding the right counters
	Accessing the counters’ data
	Controlling the sampling and the collection interval
	Getting the data from remote computers

	Using jobs for long-running tasks
	Saving the performance data to a file
	Saving the data to a binary file (BLG)
	Saving the data to an Excel file (CSV)

	Manipulating stored performance data from a file
	Summary

	4 TCP port communications with PowerShell
	Testing for an open port
	Building a more robust port checker

	Sending and receiving data
	Sending data
	Receiving data

	LDAP port communications
	Testing port 389 and receiving data with portqry.exe
	Testing port 389 and receiving data with PowerShell

	Creating an Echo server
	Creating a TPC port listener
	Handling connections and data
	Creating the Echo server

	Summary

	5 Managing systems through a keyhole
	PowerShell remoting
	Endpoints
	Constrained endpoints, take one
	Constrained endpoints, take two

	PowerShell Web Access
	Summary

	6 Using PowerShell to audit user logon events
	Event log basics
	Querying the event logs with PowerShell
	Auditing logon failures
	Auditing logon type and authentication protocol
	Auditing Active Directory user-account lockout events
	Summary

	7 Managing and administering a certification authority database with PowerShell
	Existing tools
	Querying the CA database
	Accessing the database
	Getting the database schema
	Querying the database

	Advanced administration of the CA database
	Required APIs
	Certificate revocation
	Certificate request approval and denial
	CA database cleanup

	Summary

	8 Using PowerShell to reduce Active Directory token bloat
	SIDs 101
	Where does the SID history come from?
	The solution
	The script
	Listing domain SIDs and trusts
	The challenge
	PowerShell options
	Active Directory cmdlets
	WMI
	NLTEST
	ADSI
	.NET

	The script solution
	Summary

	Part 2—PowerShell scripting
	9 The 10 PowerShell scripting commandments
	Constructing a sound function
	Select your function name carefully
	Start help early

	Output
	Keep the pipeline in mind
	Handle and provide a path property
	Use Write- commands properly

	Parameters
	Use standard parameter names and aliases
	Avoid restoring data: make full use of the common parameters
	Assign default values (so constants can be parameters)
	Be mindful of your users
	Provide parameters to switch off parts of a complex function (or script)
	Accept input from the pipeline
	Be flexible about what is acceptable in parameters
	Using parameter types and validation properly

	Example: finding duplicate files
	Extra tricks for file parameters
	Convert to paths
	Use a path property if it exists
	Pipe the same item into multiple parameters

	Write code for another person to read
	Summary

	10 Avoiding the pipeline
	Requirements
	Rules of engagement
	Filtering objects sooner
	Filtering by property
	Filtering by condition
	Returning only the properties that you need

	Providers and filtering parameters
	What’s in a name?
	Where-Object isn’t bad

	Using regular expressions
	Using member enumeration
	Member enumeration and properties
	Member enumeration and methods
	Counting objects

	Summary

	11 A template for handling and reporting errors
	Using preference variables: $ErrorActionPreference
	Using structured error handling: try/catch/finally
	Using $Error and InvocationInfo objects
	Handling custom business-logic errors with throw and try
	Final template
	Summary

	12 Tips and tricks for creating complex or advanced HTML reports with PowerShell
	Standard ConvertTo-HTML output
	Script parameters and help
	ConvertTo-HTML’s –Fragment parameter
	Using a PowerShell here-string to create the HTML header
	Encoding an image into the HTML report
	Adding charts to the report
	Preparing the data for the report
	Differentiating report data with color
	Final steps
	Summary

	13 Using and “abusing” dynamic parameters
	Static parameters
	Dynamic parameters
	Practical applications
	Using dynamic parameters
	“Abusing” dynamic parameters

	Summary

	14 PowerShell type formatting
	Creating a formatting file
	View definitions
	Defining table headers
	Conditional row entries
	Grouping
	Custom controls
	Putting it together
	Loading formatting data
	Summary

	15 Scalable scripting for large data sets: pipeline and database techniques
	The stream and the water balloon
	Streams and water balloons in PowerShell scripts
	The problem: holding everything in memory at once
	The solution: stream over input items instead of collecting them
	Pipelines are not the enemy of efficiency

	Making it real: streaming over data in complex realistic tasks
	If it quacks like a database …
	Getting started
	Getting the data to the database
	Getting objects and insights back from the database
	Exploring your PowerShell data outside of PowerShell

	Summary

	16 Building your own WMI-based cmdlets
	Discovering WMI-based cmdlets
	Creating a WMI-based cmdlet
	Using a WMI-based cmdlet
	Adding extra filter parameters
	Creating cmdlets from WMI methods
	Summary

	17 Turning command-line tools into PowerShell tools
	Requirements
	Conversion techniques
	Looking for PowerShell data formats
	Parsing text output
	Handling CLI errors

	A practical example
	Summary

	Part 3—PowerShell for developers
	18 Using Source Control Software with PowerShell
	Requirements
	When to use source control
	Introduction to Mercurial
	Command line versus GUI

	Common source control operations
	Initializing a repository
	Adding files
	Committing a new changeset
	Removing files

	Using Mercurial from PowerShell
	Script to initialize a repository
	Script to commit a changeset

	Working with Mercurial in teams
	Alternative Mercurial web services

	Summary

	19 Inline .NET code
	.NET class for output
	Output types
	Creating a .NET class for output

	.NET class with methods
	Summary

	20 PowerShell and XML: better together
	What is XML?
	XML in .NET and PowerShell
	Get-Content
	[xml]

	Adapted objects and XMLNodeAdapter
	CIM (WMI) adapted objects
	XML adapted objects

	Read and write XML documents
	Read an XML answer file
	Modify and save XML data

	Special XML cases
	Object serialization
	Web service communication

	Summary

	21 Adding automatic remoting to advanced functions and cmdlets
	Delivering economic value
	An automatic remoting example
	The pain of manual Invoke-Command
	The pain of increasing complexity

	Defining the user experience
	It all starts with ComputerName
	Inspiration from Workflow
	Is ComputerName alone sufficient?
	Of parameters and parameter sets

	Implementing your solution
	Inner and outer functions and script blocks
	Inserting the inner function and making it work
	Testing your solution

	Making it more standard
	Enabling pipeline support

	Dealing with the real world and gotchas
	Accommodating PowerShell versions
	Dealing with modules
	Streaming binary DLLs to the target server
	Making your cmdlets production-ready
	“Protecting” intellectual property and positioning your module as a product

	Summary

	22 Taming software builds (and other complicated processes) with psake
	Building software
	Introducing psake
	Installing psake
	psake commands

	psake build scripts
	Running the build script
	Building Visual Studio projects
	Using PowerShell in psake tasks
	Configuring the build with properties
	Validating property values

	Managing psake script growth
	Identifying public tasks
	Describing your tasks
	Grouping tasks into files

	Summary

	Part 4—PowerShell platforms
	23 PowerShell and the SQL Server provider
	Requirements
	Introduction to the SQL Server provider
	Using the SQL Server provider
	Examples of using the SQL Server provider
	Getting a count of databases in an instance
	Finding a table in many databases
	Summary

	24 Creating flexible subscriptions in SSRS
	Understanding SSRS subscriptions
	Environment settings
	Requirements
	SQL Server and PowerShell requirements
	Subscription requirements

	Subscription in action
	Main script
	Storing subscriptions
	Retrieving subscriptions
	Parsing parameters
	Delivering subscriptions
	Scheduling the script
	Taking it further

	Summary

	25 Inventory database table statistics using PowerShell and SQL Server Management Objects
	Understanding SMO
	Loading SMO
	The Server object
	Creating the inventory database using SMO
	Creating the TableStats table using SMO
	Resetting from previous runs
	Gathering inventory data
	Querying the data
	Other ways to use the data
	Summary

	26 WSUS and PowerShell
	WSUS server configuration and events
	Initial connection
	Viewing WSUS configuration
	Viewing the WSUS database connection
	Viewing WSUS event history

	Automatic approval rules
	Locating approval rules
	Creating approval rules

	Reporting in WSUS
	Failed update installations
	Auditing approvals
	Client update status

	Summary

	27 Provisioning IIS web servers and sites with PowerShell
	Rapid IIS deployment
	Transferring website files and certificates
	Enabling remote management for IIS Manager
	Creating a load-balanced web farm
	Creating an SSL website
	Automating the process
	Summary

	28 Active Directory Group Management application
	Requirements
	User Interface development tools
	Data storage tools and design
	Automation and auditing
	Organizing the project files

	Designing the UI
	Rendering the UI
	Adding UI event-handling logic

	Handling database interactions
	Executing SQL statements
	Implementing UI error handling

	Writing the Active Directory modification script
	Summary

	index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

	Back cover

